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Abstract 

 

 

 

 

The purpose of this thesis is to study the influence of reverse logistics in optimal 

manufacturing, remanufacturing and storage capacities of an industrial system. 

The interest in reverse logistics has grown in recent years in parallel with the 

increasing concern about environmental issues in the industrialized world. In 

chapter 2, we provide an introduction to reverse logistics: explaining the 

definition of reverse logistics and the reasons for which has been created as a 

differentiated area of management of traditional logistics, describing the types of 

products involved in reverse logistics and the different processes to recover its 

value, and examining the behavioral characteristics of a reverse logistics 

systems, compared with the traditional logistics system. 

In chapter 3 we review the literature both in the field of capacity management in 

traditional systems and in the field of reverse logistics. 

To meet the objective of the thesis, we study three models of a system in which 

the recovered product is indistinguishable from the new product. The process 

followed for the study was the same in each of the models presented: firstly, we 

determine the optimal production policy for every value of capacities; the 

second step is determining the optimal value of the capacities when optimal 

policies are applied and third we study the dependency of optimal capacities on 

some parameters related with reverse logistics. 
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In chapter 4 we study a system with uniform demand and random returns to 

show the influence of the randomness of returns in the optimal capacities. The 

cost function to optimize is the expected value of cost in a period.  

In chapter 5 we study a model in which demand and returns are known 

functions, continuous and periodic. The cost function to optimize is the cost 

incurred in the period and the problem of determining the optimal production 

policy is an optimal control problem. Using this model, we analyze the 

dependence of optimal capacity on the time between sales and product returns. 

In chapter 6 we present a stochastic model where demand and returns are 

sequences of random variables. The cost function to optimize is the expected 

value of cost in a period. To perform the calculation of optimal policies we 

assume that returns are stochastically independent of demand (this assumption 

is commonly used in the literature). The hypothesis is validated by simulation 

after optimal capacity is calculated. The model is used to study the dependence 

of the optimal capacities on the probability that the product is returned and also 

on the variable costs of remanufacturing. 

Finally in chapter 7 we discuss the conclusions and future research topics.
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Notation and Acronyms 

 

 

 

Capacities

P  Manufacturing capacity (units of output) 

: 

R  Remanufacturing capacity (units of output) 

S  Storage capacity (units of product) 

 

Variable costs

cp Variable manufacturing cost (per unit of output) 

: 

cr Variable remanufacturing cost (per unit of output) 

cs Variable cost of alternative supplier  (per unit) 

cec Variable cost of external channel (per unit) 

crc Cost of collecting end-of-life product (per unit) 

h Holding cost of a product (per unit and period) 

f Manufacturing order cost (per manufacturing order) 
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Fixed costs

Cp(P) Manufacturing cost depending on manufacturing capacity (per 

period) 

: 

Cr(R) Remanufacturing cost depending on remanufacturing capacity 

(per period) 

H(S) Storage cost depending on storage capacity (per period) 

 

D  Demand (units per period). 

Demand and returns in stochastic models with discrete time: 

T1, T2 End-of-life of a product occurs between T1 and T2 after it is sold 

pi Probability that the end-of-life of a product occurs i periods after it 

is sold (i = T1,...,T2) 

ρ Probability of and end-of-life product being returned 

 

t  Time 

Demand and returns in deterministic model with continuous time: 

d(t)  Demand in time t (units per time unit). 

τ Return lag period (i.e. time between the moment at which the 

product sold and the moment at which is returned  

ρ Return rate (i.e. units returned/units sold)  
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Chapter 1 

Justification and aim of thesis 

 

 

 

 

Interest in reverse logistics has increased in recent years with the growing 

concern for the environment in the industrialized world. Companies have 

recognized that their customers are increasingly seeking products and services 

that are environmentally sound. The management of products that have 

completed their useful life is now a key factor in business decision-making 

processes and the use of reverse logistics can provide companies the tools they 

need to act efficiently. 

Much of the research in the field of reverse logistics has focused on tactical and 

operational rather than strategic aspects, with the bulk of studies examining 

production planning and inventory management (Rubio et al., 2008). Few 

studies have analyzed aspects related to capacity planning in systems with 

remanufacturing capabilities (Georgiadis et al., 2006).  

Decisions regarding manufacturing capacity are generally taken in the context 

of strategic planning, whereas production and inventory management decisions 

are considered to be of a more tactical nature, meaning that they might be less 

than optimal if not integrated into the decision-making process as a whole (Hax 

and Candea, 1984). The problem of jointly managing capacities and inventory 
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levels has been dealt with by numerous studies (Van Mieghem, 2003). This 

type of management approach consists of optimizing a function that 

contemplates manufacturing capacity acquisition and maintenance costs and 

production and inventory management costs. A key factor when addressing this 

problem is whether demand is stochastic or deterministic. Deterministic demand 

is not very realistic but may be of use for drawing conclusions regarding the 

behaviour of systems, simply because it is easier to analyze. Models that 

analyze joint capacity and inventory management can be designed alongside 

models of systems without reverse logistics, and adapted accordingly. 

The aim of this thesis is to study the influence of reverse logistics on optimal 

manufacturing, remanufacturing, and storage capacities.  

In order to study the influence of reverse logistics on optimal manufacturing, 

remanufacturing, and storage capacities, we studied three models of a system 

in which new and recovered products are indistinguishable from each other. 

The first of these is a model with uniform demand and random returns, the 

second is a model with known demand and known returns, and the third is a 

model with random demand and random returns. In each of the cases, we 

studied the impact of different reverse logistics factors on optimal capacities. 

The first model shows how the random nature of returns influences optimal 

capacities, the second model shows how optimal capacities vary with variations 

in the time between when a product is sold and returned, and the third model 

shows how capacities are dependent on the probability of return. 
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Chapter 2 

Introduction 

 

 

 

 

According to de Britto and Dekker (2004), the European Working Group on 

Reverse Logistics (REVLOG) defined reverse logistics as: 

“The process of planning, implementing and controlling backward 

flows of raw materials, in-process inventory, packaging and 

finished goods, from a manufacturing, distribution or use point, to 

a point of recovery or point of proper disposal”  

According to this definition, reverse logistics consists of three distinct phases: 

planning, implementation, and the control of material flows. Thus, using the 

process of reverse logistics requires the taking of strategic decisions (to resolve 

planning aspects) and operational decisions (to resolve issues related to 

implementation and the control of material flows). 

Material flows in reverse logistics are flows that take place in production and/or 

distribution processes. They essentially involve raw material, in-process 

products, packaging, and finished products. The source of flow can be any point 

at which these materials are located and destinations include points at which 

they can be recovered and disposed of adequately. Product recovery refers to 

the tasks required to ensure that a product or its components can be reused.  
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Closed-loop supply chains (CLSCs) are closely related to reverse logistics. 

CLSCs are supply chains with a reverse logistic process with a backward flow 

of material towards the manufacturer. We will study the concept of CLSCs in 

more detail later in this paper but the following questions immediately arise. 

Under what circumstances does it make sense to plan, implement, and control 

return flows? What materials should be considered? Why would a company be 

interested in recovering or disposing of certain materials or products? In brief, 

why should a company implement a reverse logistics system?  

Fernández (2004) compiled a long list of reasons for implementing reverse 

logistics systems from the literature (Thierry et al. 1995; Guide et al. 2000; Tan 

and Kumar 2003, Tan et al. 2003, de Brito and Dekker 2004), of which the 

following can be highlighted: 

• Legal requirements. In recent decades, there has been a proliferation of 

legal measures aimed at protecting the environment from the potentially 

harmful effects of products that have completed their useful life. In many 

cases, manufacturers and distributors can now be held accountable for 

harm caused by waste generated by their products. In the European 

Union, for example, companies are responsible for recovering or 

correctly disposing of any waste generated by products they produce or 

distribute. 

• Growing concern for the environment by both consumers and 

companies. The increased social awareness of the need to protect the 

environment has led to increasing demands for environmentally 

responsible behaviour by companies, particularly in terms of carbon 

emissions and waste generation. Companies, for their part, wish to 

reinforce their image of environmentally responsible enterprises. 

• Profitability. Product recovery can generate both direct benefits 

(reduction in use of raw material and waste disposal costs and recovery 

of value of end-of-life products) and indirect benefits (demonstration of 

environmentally responsible behaviour and improved customer 

relations).  
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• New direct distribution channels. Several links in the supply chain have 

been eliminated in certain sectors thanks to the use of electronic mail. 

Tasks related with product devolutions, that were traditionally distributed 

among various operators are now performed by new direct distribution 

channels. 

The next question is what type of materials should be recovered and why. As 

stated by de Brito and Dekker (2004), products are returned or disposed of 

either because they do not work properly or because they are no longer of use. 

We can differentiate between the following types of returns: 

• Production returns. Products that are recovered in the production phase, 

e.g., surplus raw material, in-process or finished products that do not 

meet quality standards, damaged products. 

• Distribution returns. Finished products returned during the distribution 

phase. There are several reasons why a product is returned to a 

manufacturer: 

o Product recalls, due to defects that could affect safety or interfere 

with correct usage. Such products are normally returned within a 

recall campaign launched by the manufacturer and/or distributor. 

o Commercial returns, i.e. products returned by retailers to the 

supplier. These returns can include defective products, products 

damaged prior to delivery, short-life products, and unsold 

products. 

o Stock adjustments. 

o Products used throughout the supply chain (e.g.  pallets). 

• Customer returns i.e. finished products returned by the customer/end 

user. Examples are commercial returns, products under guarantee, 

products in need of repair, products that have reached the end of their 

period of use (e.g., leased products), and end-of-life products. 
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As we can see, the types of products returned, and the reasons for these 

returns, are very varied. The flows they generate, however, have certain 

characteristics that distinguish them from traditional material flows. Fleischmann 

et al. (1997) and Tibben-Lembke and Rogers (2002) described these 

differences: 

• Uncertainty surrounding the quality and quantity of products returned. 

The main source of uncertainty in traditional supply channels is related to 

demand variations. Supply, in contrast, is considered to be controlled 

and reliable. Traditional logistics systems contain numerous 

management tools to offset the effects of uncertainty regarding demand 

levels. Examples are management of existing stock and demand forecast 

tools. Reverse logistics systems, in contrast, are affected by 

uncertainties regarding the quality and quantity of returned products. 

• Several points of origin but a single destination point. Traditional material 

flows move from a single point (point of manufacture) to many 

destinations (points of consumption or use). In reverse logistics systems, 

however, the flows move from these points towards a single 

remanufacturing or disposal point. 

• Product and packaging quality. The quality of returned products may 

differ from that of a new product. For example, if a product has 

completed its useful life or is returned because it is defective, it will be of 

a lower quality than a new product. Quality also varies from one returned 

product to the next, and this influences the processing required and the 

associated costs.  

• Unclear destination and/or path. When a product is returned, it is not 

immediately known if it is going to be processed or disposed of. It must 

therefore be stored until it has been inspected and a decision taken. In 

traditional logistics, products have clear destinations and their movement 

depend on demand-related factors. 

• Production control and inventory management. Production control and 

inventory management in traditional logistics systems assumes that 
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suppliers deal with orders in a predictable manner. There is a certain 

control over the behaviour of the supply chain. In the case of product 

recovery, however, the behaviour of a return channel is very difficult to 

control.  

All of these differences mean that traditional logistics solutions are not directly 

applicable to reverse logistics systems.  

In a reverse logistics system, returned products are inspected to decide if they 

should be directly reused/resold, disposed of, or recovered. The processes 

required to recover a product depend on the complexity of the tasks to be 

performed, the extent of product transformation required, and the amount of 

value added during the transformation. Thierry et al. (1995) mentioned the 

following product recovery processes: 

• Repair. Processes required to make a defective product work properly. 

The tasks involved are product disassembly, repair of damaged parts, 

and reassembly. 

• Refurbishment. Processes applicable to used products that still work but 

have lost performance quality. The tasks involved are inspection, 

disassembly, repair/replacement of necessary parts, and reassembly. 

The resulting product does not have the same quality as a new product. 

• Remanufacturing. Processes involving disassembly, classification, 

refurbishment, and reassembly to create an as-new product. 

• Cannibalization.  Recovery of a small part of a returned product to be 

used in the repair, refurbishment, or remanufacture of other products. 

• Recycling. Recovery of material from returned products to be 

transformed into raw material for new processes. 

The final destination of a recovered product depends on its condition after 

completion of the recovery tasks listed above. A recovered product may be 

distinguishable from a “new” one. Recovered products, however, may also be 

indistinguishable from new products. In such cases, they can be returned to the 
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market using the same channels as those used for new products. Production 

systems, are therefore, affected by reverse logistics, and the aim of this thesis, 

as mentioned at the beginning, is to analyze this influence. 

Before analyzing the aspects of CLSC management in more detail, let us look 

at some basic characteristics of a standard supply chain. A supply chain is 

characterized by flows of material and information moving in opposite 

directions, passing successively through the different participants in the chain. 

Material flowing from a supplier to a customer moves forward (downstream) 

whereas information on orders between a customer and a supplier moves 

backwards (upstream). From a very general perspective, supply chain 

processes can be divided into two subprocesses.  

• Production planning and inventory management. This consists of the 

design and management of the production process (planning of needs, 

acquisition of raw material and components, design and planning of the 

production process and design and control of material management 

system) and the management of inventories (design and inventory 

policies for raw materials, components, in-process material, and finished 

products). 

• Distribution. This consists of all the steps relating to the transport and 

delivery of material from the wholesaler to the retailer. Several options 

exist. Material can be transported, for example, either directly to the 

retailer or stored in warehouses from where it is then shipped.  

Supply chain management can be divided into 11 different areas: 

1. Location. Decisions regarding the location of the supply chain take into 

account quantitative and qualitative aspects such as basic supply and 

transport infrastructures, local legislation, government incentives, and 

taxes. 

2. Transport and logistics. This includes all aspects related to the flow of 

materials within the supply chain, including the transport, storage, and 

handling of materials. 
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3. Inventory management and demand forecast. Inventory-related costs 

tend to be easy to identify and reduce by analyzing the problems 

affecting a supply chain. Simple stochastic inventory models can be used 

to generate potential savings related to the sharing of information among 

the participants in the chain. 

4. Marketing and channel structures. This includes management aspects 

related to the structure of the supply chain and supplier-customer 

relationships. While inventory management focuses on the quantitative 

aspects of this relationship, marketing and channel structure 

management deals with customer relations, negotiations, legal issues, 

and the influence of the management of channels and supply chain 

structure on the bullwhip effect. 

5. Management of suppliers and supply sources. This involves the 

management of supplier relations and decisions regarding their location. 

6. Information systems. This category involves decisions regarding 

information technology systems designed to optimize inventory levels. 

7. Product design and launching of new products. This deals with aspects 

that should be taken into account to facilitate the creation of new 

products and shorten time to market. 

8. Aftersales services and support. Management of repair services for sold 

products and replacement part supplies. 

9. Outsourcing. This examines the impact of outsourcing logistics services 

on the supply chain. In many cases, it is necessary to establish strategic 

alliances when outsourcing key services such as the use of external 

logistics suppliers. 

10. Metrics and incentives. This involves the design and use of metrics to 

analyze supply chain management aspects. 

11. Global aspects. This examines the impact of a company’s international 

operations on the above categories. 
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CLSC is a relatively new concept within the area of supply chain management. 

Guide and Van Wassenhove (2006) defined CLSC management as “the design, 

control, and operation of a system to maximize value creation over the entire life 

cycle of a product with the dynamic recovery of value from different types and 

volumes of return over the time”. Souza (2008) provided a list of strategic, 

tactical, and operational aspects related to CLSC management that can be 

used to provide solutions to the above-mentioned problems, linked to the 

behaviour of reverse logistics material flows. 

• Strategic aspects. Location and capacity of returned product facilities,  

recycling facilities, and remanufacturing facilities, for example. Product 

recovery strategy, prices of recovered products. 

• Tactical aspects. Quality and quantity of returned products that are going 

to be processed for recovery. Planning of remanufacturing programme, 

taking into account the uncertainties surrounding return quantities and 

quality. Return inventory management. 

• Operational aspects. Operational decisions regarding tasks aimed at 

recovering the value of returned products. 

CLSCs can also be classified into different groups (see, for example, Flapper et 

al. 2005). We have decided to classify them according to whether or not the 

recovered product is distinguishable from the new product. 

• Distinguishable. In this case, the design of the CLSC should be as shown 

in Figure 1. There is no interaction between the direct supply chain and 

the flow of materials in the reverse logistics system. The CLSC loop is 

closed through the customers.  

• Indistinguishable. In this case, the production system is fed by the 

reverse logistics system. Reverse logistics has a considerable effect on 

production system dynamics as returns form a new supply channel and 

generate a series of factors that complicate inventory management such 

as uncertainty and lack of control over the channel, existence of multiple 
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sources of supply, supply capacity constraints, and a lack of monotonicity 

in return inventory levels. This model is shown in Figure 2.  

As can be seen, the behaviour of the reverse logistics system influences that of 

the direct supply chain. The management of the traditional production and 

storage system should therefore take into account flows of material from the 

reverse logistics system.  

 

  

Figure 1. Closed-loop supply chain model in which recovered products are 

distinguishable from new products. Source: authors. 

The growing interest in reverse logistics and CLSCs in the business community 

(Díaz et al. 2004) is evidenced by the increase in the level of related activities in 

leading sectors such as the transport sector, the consumer electronics sector, 

the textile sector, and the press and media, to name but a few (Verstrepen 

et al., 2007). Interest is also increasing within academic spheres, with the 

publication of many articles analyzing how reverse logistics systems work in 

companies such as Canon, Philip Morris, Esteé Lauder, Kodak, and Nortel 

Networks (de Brito et al. 2004). The following table 1, taken from Fernández 

(2004), shows some of the studies conducted in this area. 
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Figure 2. Closed-loop supply chain model in which recovered products 

are indistinguishable from new products. Source: authors. 
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Personal 
computers 

Ashayeri, J., Heuts, R., Jansen, A. (1999) 
Knemeyer, A., Ponzurick, T., Logar, C. (2002) 
Krikke, H. Harten, A., Schuur, P. (1999) 
Fleischmann, M., van Nunen, J., Gräve, B. (2002) 
Tan, A., Yu, W., Kumar, A. (2003) 
White, Ch., Masanet, E., Rosen, Ch., Beckman, S. (2003) 

Vehicles 
Bellmann, K. and Kahre, A. (2000) 
Purohit, D. (1992) 

Packaging and 
containers 

Bloemhof-R. J., van Nunen, J, Vroom, J, van der Linden, A. (2001) 
Del Castillo, E. and Cochran, J. (1996) 
Duhaime, R., Riopel, D., Langevin, A. (2000) 
Giuntini, R. and Andel, T. (1994) 
Kroon, L. and Vrijens, G. (1995) 

Carpets 
Ammons, J., Realff, M., Newton, D. (1997) 
Louwers, D., Kip, B., Peters, E., Souren, F., Flapper, S. (1999) 

Power tools Klausner, M. and Hendrickson, C. (2000)  

Electronic 
equipment 

de Ron, Ad. and Penev, K. (1995) 
Fleischmann, M., Beullens, P., Bloemhof-R., J., Wassenhove, L. (2001) 
Maslennikova, I. and Foley, D. (2000) 

Domestic 
appliances 

Krikke, H., Bloemhof-R., J., Wassenhove, L. (2003)  

Paper 
Madu, Ch., Kuei, Ch., Madu, I. (2002) 
Fleischmann, M., Beullens, P., Bloemhof-R., J., Wassenhove, L. (2001) 

Plastic Pohlen, T. and Farris, M. (1992) 

Medical 
equipment 

Ritchie, L., Burnes, B., Whitlle, P., Hey, R. (2000) 
Rudi, N., Pycke, D., Sporsheim, P. (2000) 

Batteries Stavros, E., Costas, P., Theodore, G. (2003) 

Table 1. Key publications on case studies of reverse logistics and closed-loop supply chains. 
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Chapter 4 

System with deterministic uniform 

demand 

 

 

In this chapter we study a production system with constant demand and 

stochastic returns for a single product and analyze the effects of stochastic 

remanufacturing factors on system performance. 

In Section 4.1 we describe the system and outline the conditions of the 

parameters involved, considering two scenarios. In the first one the company 

meets all demand and in the second scenario not all demand is necessarily 

met. In section 4.2 we describe the manufacturing and remanufacturing policy 

for the first scenario, provide an approximation of the probability distribution 

used to determine the amount and rate of returned products, present an 

algorithm for calculating the optimal manufacturing and remanufacturing 

capacities, and calculate optimal values for a specific case study. In section 4.3 

we give an iterative process to determine the manufacturing and 

remanufacturing capacities for the second scenario. In section 4.4 we describe 

how to determine optimal manufacturing and remanufacturing capacities when 

there are n different quality types of returned products. We present several 

examples to illustrate how are calculated the manufacturing and 

remanufacturing policies and the manufaturing and remanufacturing capacities. 

The examples shown are solved using MATLAB. Finally in section 4.5 we 

present the main conclusions of the chapter.  
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4.1 Description of the system 

We consider a system that produces and sells a single product. The product is 

returned to the company once it has completed its useful life.  The returned 

product can then be remanufactured and resold as new or  disposed of. The 

system has the following features: 

• The time horizon of the system is discrete with periods of equal length. 

• The company makes the decisions at the end of each period. 

• The demand D (units/period) is known and is the same in each period.  

• It is a just-in-time production system, so there should be no inventories.  

• The system has maximum manufacturing and remanufacturing capacities 

of P and R units per period respectively. It is assumed that there is 

sufficient manufacturing capacity to supply the demand, i.e. P + R ≥  D. 

It is also assumed that P ≤  D and R ≤  D because capacities greater 

than D will never be used in order to meet demand. 

 

Figure 1. Schematic representation of the system 

The manufacturing costs of the original production system and the 

remanufacturing system are composed of fixed costs Cp and Cr (which depend 

on the installed capacity and, therefore, do not vary provided that the 
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manufacturing and remanufacturing capacities remains constant) and variable 

costs (per unit of output) cp and cr. It is assumed that Cp is an increasing 

function of P and Cr is an increasing function of R. 

The returns have the following characteristics: 

• The end-of-life of the product occurs between periods T1 and T2 after it is 

sold. pi is the probability that the end-of-life of the product occurs i 

periods after it is sold (i = T1,…,T2). 

• ρ is the probability of an end-of-life product being returned. Therefore, 

ρ ·pi is the probability that a unit sold in period t will be returned in period 

t+i. 

• There is only one quality type for returned products. Therefore, each unit 

of returned product undergoes the same remanufacturing process. 

• A remanufactured product has the same life expectancy and return 

quality as a manufactured product. 

• Each returned unit has a cost of crc. 

• The cost of disposing a returned product is zero. 

If we assume that there is no product returns, the optimal inventory policy is 

such that the inventory costs are zero. Therefore, the costs for each period 

would be Cp(D) + cp·D. When products are returned and recovered, the 

company can sell units from either the original production system or the 

remanufacturing system. 

Since there is an inherent degree of uncertainty in the availability of returns, we 

analyze two different scenarios. In the first one there is a supplier with sufficient 

capacity that enables the company meet all demand with a cost per unit of cs; it 

is assumed that cs is greater than cp and cr. In the second scenario the 

company’s inventory policy can sometimes cause supply interruptions; in this 

case, the unmet demand is lost at a shortage cost per unit, b; it is assumed that 

b is greater than cp and cr. 
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4.2 Determining optimal manufacturing and remanufacturing 

capacities in a system with an alternative supplier 

The costs incurred by the company during each period depend on the quantity 

of goods manufactued, recovered, and remanufactured by the company and on 

the goods purchased from the supplier. These amounts will be limited by the 

installed manufacturing and remanufacturing capacities and by the quantity of 

returned products, which is a random value. 

The optimal manufacturing and remanufacturing capacities are calculated by 

minimizing the expected value of the cost incurred in each period according to 

the following process: first, we determine the optimal manufacturing and 

remanufacturing policy for a period and the associated cost for a given capacity 

and a given return; next, we calculate the expected value of the associated cost 

and determine the capacities that produce the lowest value. 

 

4.2.1 Optimal manufacturing and remanufacturing policy  

The manufacturing and remanufacturing policy is obtained by optimizing the 

equation shown below, given the manufacturing and remanufacturing 

capacities, P and R, and the units of returned product available during each 

period, r:  

  [MIN] c = Cp(P) + Cr(R) + cp·x + cr·y + cs·(D - x - y) + crc·r 

  s.t.: 

   

+ ≤
≤
≤

≥
min{ , }

, 0

x y D
x P
y R r
x y

 

Where x and y are the quantities of product to manufacture and remanufacture 

respectively. The optimal solution depends on the values of r, P, R and D, and 

also on the relation between cr and cp. 
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When cr < cp, we prefer remanufacturing to manufacturing. The optimal y is the 

highest value allowed by constraints (i.e. y = min{R, r}) and the optimal x is 

min{P, D - y}. Three cases can be distinguished: 

1. r < D – P: The company meets total demand using the alternative 

supplier. The optimal values and costs incurred are: 

x = P , y = r  

c = Cp(P) + Cr(R) + ( cp - cs) ·P + cs·D + (cr – cs + crc)·r  

2. − ≤ <D P r R : The optimal values and costs incurred are: 

x = D - r , y = r  

c = Cp(P) + Cr(R) + cp·D + (cr - cp+ crc)·r  

3. ≥r R : The returns are higher than R. The optimal values are: 

x = D - R , y = R  

c = Cp(P) + Cr(R) + cp·D + (cr - cp)·R + crc·r 

When r pc c≥  we prefer manufacturing to remanufacturing. The optimal x is the 

highest value allowed by constraints (i.e. x = P) and the optimal y is min{r, D - 

x}. We have two cases: 

1. r < D – P. The optimal values and costs incurred are: 

x = P , y = r  

c = Cp(P) + Cr(R) + ( cp - cs) ·P + cs ·D + (cr – cs + crc)·r  

2. − ≤D P r . In this case, the optimal values and costs incurred are: 

x = P ,  y = D - P  

c = Cp(P) + Cr(R) + (cp – cr)·P + cr ·D + crc·r 
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4.2.2 Probability distribution of returned product quantity 

The quantity of product returned during a given period from the quantity of 

product sold in the i-th previous period follows a binomial distribution B(D, ρ·pi), 

where pi is the probability that the product will come to the end of its useful life 

during the i-th period after its sale; ρ is the probability that the product will be 

returned once it has completed its useful life and D is the quantity of product 

sold during the i-th previous period. 

The quantity of product returned during a given period is equal to the sum of the 

returned products from each of the previous periods. The probability that this 

value will be r  is denoted by p(r). 

The expected value of combined manufactured and remanufactured products 

from the company is called PM and is calculated using the following expression: 

  ( )
−

=

= − − −∑
0

( )
D P

r
PM D D P r p r      (4.1) 

When ρ·pi is sufficiently small, we can approximate the probability distribution of 

returns from a given period to a Poisson distribution with parameter D ·ρ ·pi. 

Therefore, the total quantity of product returned during a given period follows a 

Poisson distribution with parameter ρ·D (since the sum of pi is 1). In this case 

we obtain:  

  

ρ ρ−

=
( )( )
!

D re Dp r
r

       (4.2) 

 

4.2.3 Calculating optimal manufacturing and remanufacturing capacities 

If we assume the manufacturing and remanufacturing policy established in 

section 4.2.1 and the probability distribution of product returns defined in section 

4.2.2, we can determine the expected value of the cost function by using the 

following expression: 
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∞

=

= ⋅∑
0

( ( )) ( ) ( )
r

E c r c r p r       (4.3) 

Case cr < cp: 

−

=

 = + + − ⋅ + ⋅ + − + ⋅ ⋅ ∑
0

( ( )) ( ) ( ) ( ) ( ) ( )
D P

p r p s s r s rc
r

E c r C P C R c c P c D c c c r p r + 

= −

 ⋅ + − + ⋅ ⋅ ∑ ( ) ( )
R

p r p rc
r D P

c D c c c r p r + 
∞

=

 ⋅ + − ⋅ + ⋅ ⋅ ∑ ( ) ( )p r p rc
r R

c D c c R c r p r  

 By reordering the terms we obtain: 

=( ( ))E c r ( ) ( )
−

=

⋅ + ⋅ + + − − − ⋅∑
0

( ) ( ) ( )
D P

p rc p s p
r

c D c E r C P c c D P r p r + 

( ) ( )
=

 
− − ⋅ − − ⋅ 

 
∑

0
( ) ( )

R

r p r
r

C R c c R R r p r       (4.4) 

Where E(r), the expected value of r is equal to ρ·D because the entire used 

product is recovered. We can then define the following functions for determining 

the optimal solution: 

( ) ( )
−

=

= + − − −∑1
0

( ) ( ) ( )
D P

p s p
r

g P C P c c D P r p r     (4.5) 

( ) ( )
=

 
= − − ⋅ − − 

 
∑2

0
( ) ( ) ( )

R

r p r
r

g R C R c c R R r p r     (4.6) 

g(P, R) = cp ·D + crc ·ρ·D + g1(P ) + g2(R )     (4.7) 

Therefore, the desired values of P and R are the solution of the following 

problem PROBL: 

[MIN] g(P, R) 

s.t.: 
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≤
≤
+ ≥

≥, 0

P D
R D
P R D
P R

 

Case r pc c≥ : 

The desired values of the capacities P and R are the solution of the problem 

PROBL but now with the following expressions for g1, g2 and g : 

g1(P ) = Cp(P) + (cp – cr)·P + (cs - cr)· ( )
−

=

− −∑
0

( )
D P

r
D P r p r   (4.8) 

g2(R ) = Cr(R)         (4.9) 

g(P, R) = cr ·D + crc·ρ·D + g1(P ) + g2(R )     (4.10) 

 Both cases are non-linear programming problems. 

 

4.2.4 Numerical example 

We analyze a company that produces and sells a product with the following 

features: 

• Demand D = 100 u/period. 

• Variable cost of manufacturing cp = €10/u. 

• Variable cost of remanufacturing cr = €5/u. 

• Variable recovery cost crc = €1/u. 

• Fixed manufacturing costs according to the capacity P: 

= ⋅ − ⋅ 2( ) 15 0,05pC P P P . 

• Fixed remanufacturing costs according to the capacity R: 

= ⋅ − ⋅ 2( ) 3 0,01rC R R R . 
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• Unitary cost of supply cs = €30/u. 

• Probability of product returns ρ = 0.3. 

• Probability distribution of product returns: the company configuration 

meets the conditions for using a Poisson distribution with parameter 

ρ·D. 

The system without returns will have a manufacturing capacity of 100 units with 

a cost of €2000 per period. When the remanufacturing system is included, the 

minimum of g is reached at (P, R) = (72, 30) and its value is g (P, R) = 

€1818.70. This gives a PM of 98.70. 

 Figure 2 shows the graph of the function g(P, R).  

 

Figure 2. Total cost depending on the manufacturing and 

remanufacturing capacities. 
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4.3 Determining optimal manufacturing and remanufacturing 

capacities in a system without an alternative supplier 

The optimal manufacturing and remanufacturing policy is calculated as in 

section 4.2.1, using the same expressions and changing the unit cost of supply 

cs for the unit cost of shortage b.  

The quantity of product returned during a given period from the quantity of 

product sold in the i-th previous period follows a binomial distribution B(vi, ρ·pi), 

where vi is the quantity sold during the i-th previous period and ρ and pi are 

defined as in section 4.2.2. 

Since in this case there is a possibility of inventory shortage, the value of vi 

behaves randomly and is less than D. We suppose that the system is in a 

stationary state and therefore the probability distributions of sales are the same 

in each period. The probability distribution of returned product quantity, p(r), 

depends on q(v), the probability distribution of the quantity sold in any period, 

which, in turn, depends on p(r). In order to solve this cyclic dependency we use 

the following iterative process (IP1) to compute p(r):  

Step 0: Start the process with  

  ( )0

1
0

v D
q v

v D
=

=  ≠
 

Where q(v) is the probability that the sales in a period will be v.  

Step 1: Compute υn(ri), approximation, in the n-th iteration, of the probability 

of the number of returned units corresponding to the sales of the i-th 

preceding period is equal to ri as follows, for i = T1,…,T2 and ri = 0,…,D: 

( ) ( ) ( ) ( ) ( ) ( )υ υ ρ ρ −

− −
= =

 
= = − 

 
∑ ∑1 1| · · · 1 · ·i i

i i

D D
r v r

n i n i n i i n
v r v r i

v
r r v q v p p q v

r
 (4.11) 

Compute pn(r), approximation, in the n-th iteration, of the probability of the 

total number of returned units is equal to r, for r = 0,…,( T2 – T1 + 1)·D: 
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r r
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       (4.12) 

Step 2: Calculate the PD of product sold each period qn(v) using pn(r) 

calculated in step 1: 

( ) ( )
−

=


 <
= − ≤ <

 − =


∑
0

0

1 ( )

n n
D P

n
r

v P
q v p v P P v D

p r v D

     (4.13) 

Step 3: Calculate the difference between qn-1(v) and qn(v) where difference 

means some measure of how far one distribution is from the other (for 

example the quantity ( ) ( )1( ) ( )n nE q v E q v−−  can be used as a measure of 

the difference). If the difference is greater than a tolerance, add 1 to n and 

go to step 1; otherwise take p(r) = pn(r). 

The optimal manufacturing and remanufacturing capacities are calculated by 

solving problem PROBL from section 4.2.3 but replacing the unit cost of supply 

cs with the unit cost of shortage b in the expression of g1(P) and replacing 

crc·ρ·D with crc·ρ·V in the expression of g(P,R), where V is the expected value of 

the product sold:  

( )
−

=

= − − −∑
0

( )
D P

r
V D D P r p r       (4.14) 

 In the case cr < cp, using the expression of V, we have: 

  ( ) ( )= + − −1( ) ( ) ·p pg P C P b c D V      (4.15)
 

  
g(P, R) = Cp(P) + b·D + (cp + crc ·ρ – b)·V + g2(R )   (4.16) 

Analogously, in the case ≥r pc c we have: 

 g(P, R) = Cp(P) + (cp - cr)·P + b ·D + (cr + crc ·ρ – b)·V + g2(R )  (4.17) 
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When solving the problems it is important to take into account that the PD of 

product returns p(r) depends on P. Therefore, we define an iterative process 

(IP2) to find the optimal values: 

Step 0: Start the process with P0 = (1 - ρ)·D. 

Step 1: Compute the PD of returned products using the iterative process 

IP1 described above. 

Step 2: Determine (Pn, Rn) by solving problem PROBL, which optimizes the 

value of the expected cost gn(Pn,Rn). 

Step 3: If the desired accuracy in gn(Pn, Rn) is not achieved, then go to step 

1; otherwise finish the process.  

We recalculate the numerical example of section 4.2.4 but replacing the unit 

cost of supply cs with the unit cost of shortage b = €30/u and with product end-

of-life occurring between periods 1 and 6 with probabilities p1 = 0.1, p2 = 0.2, p3 

= 0.2, p4 = 0.25, p5 = 0.15, p6 = 0.1. 

The minimum of g is reached at (P, R) = (72, 30) and its value is g (P, R) = 

€1820.90. This gives a value of V = 98.61. 

We have used the following tolerances in step 3 of each iterative process: 

For IP1:  
( ) ( )

( )
1

1

( ) ( )
0.001

( )
n n

n

E q v E q v
E q v

−

−

−
<   

For IP2: 
( ) ( )

( )
− − −

− − −

−
<1 1 1

1 1 1

, ,
0.001

,
n n n n n n

n n n

g P R g P R
g P R

 

The main process (IP2) converges in 3 iterations and for each iteration IP1 

converges in 3 iterations. 
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Figure 3. Probability distribution of quantity sold in a period. 

Mean value = 98.61, standard deviation = 2.44. 

 

4.4 System with n quality types of returned products 

In this section we consider a specific case in which the returned product is 

defined according to a series of quality types and we calculate the optimal 

manufacturing and remanufacturing policy. The procedure outlined in this 

section can be considered a generalization of the one described in the previous 

section, 4.2. 

The configuration is similar to that of a system in which all returned products are 

of the same quality. The variable remanufacturing costs are cj, j=1,…,n. and the 

returns have the following characteristics: 

• pi and ρ are defined in the same way as for a single quality. 

• There are n different quality types for returned products. 

o πj, j=1,…,n is the probability that a returned product is of quality type j. 
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o aj units of remanufacturing resources are required to remanufacture 

one unit of returned product of quality type j (j=1,…,n). 

 It is assumed that cs is greater than cp and cj (j=1,…,n). 

The manufacturing and remanufacturing policy is obtained by optimizing the 

linear equation shown below, given the manufacturing and remanufacturing 

capacities, P and R, and the units of returned product of quality type j (j=1,…,n) 

available in each period, rj: 

   [MIN] 
= =

 
= + + ⋅ + ⋅ + ⋅ − − 

 
∑ ∑

1 1
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p r p j j s j
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Where x is the quantity of product to manufacture and yj are the quantities of 

returned product of quality j (j=1,…,n) to remanufacture. By modifying the 

notation slightly, we obtain the following formula: 

[MAX] 
1

1

n

j j
j

S y
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=

⋅∑  
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Where the objective function has been reversed and the notation has been 

changed as follows: 

- The variable x is redefined as yn+1 = x 

- The objective function parameters are compacted: 

o Sj = cs - cj   for   j=1,…,n 

o Sn+1 = cs - cp 

o rn+1 = P 

o an+1 = 0 

By using the constraints of the problem, the dual problem and the 

complementary slackness theorem we obtain the following expressions: 

1

1

n

j
j

y D
+

=

≤∑  

=

⋅ ≤∑
1

n

j j
j

a y R  

≤ = +1,..., 1j jy r j n  
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1

1
0

n

j D
j

y D µ
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( ) 0 1,..., 1D j Y j j ja S y j nµ µ µ+ ⋅ + − = = +  

, , , 0 1,..., 1j j D Yy j nµ µ µ ≥ = +  
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Where , , 0 1,..., 1j D Y j nµ µ µ ≥ = +  are the dual variables. Four different cases 

can be distinguished depending on the values of rj  (j=1,…,n+1), R and D: 

1. The company is unable to cover all demand and all returned products 

can be remanufactured. Then, 

+

=

<∑
1

1

n

j
j

r D  and 
=

⋅ <∑
1

n

j j
j

a r R  

And the optimal values are:  

- 0D Yµ µ= =  

- µ= = = +1,..., 1j j j jy r S j n  

 

2. The company is unable to cover all demand and not all returned products 

can be remanufactured. Then , 

+

=

<∑
1

1

n

j
j

r D  and 
=

⋅ ≥∑
1

n

j j
j

a r R  

The optimal values are:  

   - + +=1 1n ny r , 1 1n nSµ + +=  

Defining:  

   - /j j jS aα =  

There is a subscript k such that the optimal solution is: 

- 0Dµ =  

- =j jy r , ( )j j j kaµ α α= −  if j kα α>  
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3. The company can cover all demand and all returned products can be 

remanufactured. Then  

+
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Optimal values: there is a subscript k such that the optimal solution is: 

- D kSµ = , 0Yµ =  

- =j jy r , j j kS Sµ = −  if j kS S>  

- 
−

=

= − ≤∑
1

1

k

k j k
j

y D r S , 0kµ =  

- 0jy = , 0jµ =  if j kS S≤  

4. The company can cover all demand but not all returned products can be 

remanufactured. Then 

+

=

≥∑
1

1

n

j
j

r D  and 
=

⋅ ≥∑
1

n

j j
j

a r R  

Optimal values: no analytical expression can be found for the optimal 

solution and must be calculated case by case. 

 

4.5 Conclusions 

In this chapter we studied the behavior of a system with reverse logistics for 

manufacturing and remanufacturing a product under steady demand. The 

optimal manufacturing policy is constant when there is no reverse logistics, the 

company satisfies all the demand and no inventories are required. 
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We can draw several conclusions about the effects of uncertainty on the 

amount and rate of returns in the system and use them to compare it with an 

equivalent system without reverse logistics. First of all we saw that the optimal 

manufacturing policy becomes more complex when the system has to take into 

account product returns. Also, using the method that has been described for 

calculating the optimal manufacturing and remanufacturing capacities, we found 

that the manufacturing capacity can be set at a lower value than the demand 

and so the demand could not be totally met unless we use an alternative 

supplier. Finally, if the company could operate with inventories, the optimal 

capacities could change, so the uncertainty on returns also influences the 

inventory system.  

In the last section, we described a system with n different return qualities and 

determined the optimal policy for a given period. We saw that the complexity 

increases and that could be optimal to remanufacture although the cost of 

remanufacture were higher than the original manufacturing costs.
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Chapter 3 

Literature review 

 

 

 

 

In this chapter, we will review key articles that have been published in the field 

of interest and that aid us in meeting the aim of this thesis. We have divided 

these articles into two types: those that deal with manufacturing and storage 

capacity management in production systems and those that use mathematical 

models to study reverse logistics systems.  

The aim of this chapter is to shed light on aspects that should be taken into 

account when managing production system capacities and to describe show 

mathematical models that have been used to study systems with reverse 

logistics. 

 

3.1 Manufacturing and storage capacity management 

Several reviews have summarized studies dealing with capacity management 

(Luss, 1982; Van Mieghem, 2003; Wu et al. 2005). Van Mieghem (2003), for 

example, described the different types of problems related to capacities—
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increases/decreases, choice of technology, acquisition, and location—and 

discussed how these problems were addressed in the literature. 

We are going to focus on optimal management strategies based on capacity 

acquisition and increases/decreases. Rajagopalan and Swaminathan (2001) 

explored the interaction between production planning and capacity acquisition 

decisions in an environment with deterministic demand growth. Atamtürg and 

Hochbaum (2001) studied optimal solutions in an environment with non-

stationary deterministic demand and production needs that could be covered 

through the acquisition of new capacities, subcontracting, and the use of 

existing inventories. Bradley and Arntzen (1999) used an approach aimed at 

maximizing return on assets in an aggregate planning model and concluded 

that a production strategy based on minimizing unit cost and maximizing 

equipment use can generate less-than-optimal financial results. Queuing theory 

and newsvendor network models have been used to study systems with 

stochastic demand (Van Mieghem, 2003). Bradley and Glynn (2002) used a 

queuing-like model to demonstrate that the impact of capacity decisions on 

optimal inventory policies should be taken into account when taking such 

decisions. Newsvendor network models are used when the function to optimize 

and the corresponding constraints are linear (Van Mieghem and Rudi, 2002; 

Angelus and Porteus, 2002), allowing manufacturing capacity and inventory 

policy to be optimized simultaneously. Alp and Tan (2008) presented a dynamic 

programming model to resolve the problem of determining permanent 

manufacturing capacity levels and optimal adjustments with contingency 

resources (e.g. via the use of overtime) to meet demand. Their study can be 

classified as tactical or operational as they proposed resolving production-

capacity problems with the temporary hiring of workers or the use of overtime, 

contrasting with strategic-type studies whose purpose is to optimize the 

acquisition of permanent resources. 

 



17 
 

3.2 Reverse logistics and CLSCs 

Rubio et al. (2008) analyzed the main characteristics of articles in the area of 

reverse logistics. Based on the methodology used, they reported that 30% of 

the studies were case reports, literature reviews, or surveys, 65% were studies 

of mathematical models, and the remaining 5% were theoretical studies on the 

management of CLSCs. Of the studies that used mathematical models, 7.5% 

dealt with problems related to the recovery and distribution of end-of-life 

products, 80% dealt with problems related to production planning and inventory 

management, and 12.5% dealt with problems related to the supply chain.  

The aim of this thesis, which is to study the influence of reverse logistics on 

production system capacities, falls within the area of CLSC management. It is, 

however, also related to inventory management because we consider that such 

systems should operate optimally.  

 

3.2.1 Mathematical CLSC models  

Jarayaman et al. (1999) presented a mixed integer programming model that 

resolves the problem of designing a CLSC by simultaneously taking into 

account the location of remanufacturing/distribution facilities, transport, and the 

optimal production and storage of remanufactured products. 

Majumder and Groenevelt (2001) presented a system in which the 

remanufactured returned product was indistinguishable from the new product 

and a model in which a manufacturer and a remanufacturer were competing to 

sell new and remanufactured products. Using the model, they drew conclusions 

about incentives that existed in the system to increase the quantity of products 

to be remanufactured. 

A model presented by Linton et al. (2002) that took into account the stochastic 

behaviour of useful life and the probability of return to estimate cathode ray tube 

televisions returns showed the importance of estimating returns when designing 

a CLSC. 
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Bufardi et al. (2004) proposed a multicriteria decision aid (MCDA) approach for 

deciding how to deal with end-of-life products. They analyzed key factors that 

should be taken into account including the formulation of a set of alternatives, 

the selection of criteria to evaluate these alternatives, and the choice of an 

appropriate MCDA method. 

Fandel and Stammen (2004) designed a mixed-integer linear programming 

model that analyzed the business process during the entire life cycle of a 

product, including recycling. The main contribution of this study is that the 

model can be used as a strategic decision-making tool when designing a CLSC. 

Georgiadis and Vlachos (2004) used a system dynamics approach to estimate 

stock and return flows in a reverse logistics supply chain in which variations in 

remanufacturing capacity were allowed. They considered that demand 

depended on the green image factor, which, in turn, depended on model 

variables related to the recovery of products. 

Hesse et al. (2005) proposed a model for the hospital bed market in the United 

States based on the game theory. The market was dominated by two 

companies that sold new products (primary market) and could repurchase used 

products to resell in the secondhand market (secondary market). The model 

provided the quantity of products that should be recovered and the price at 

which they should be resold. 

Horvath et al. (2005) studied the influence of reverse logistics on the financial 

management of a retail chain. The random nature of the quality and quantity of 

product returns from customers affects retailer cash flow management. The 

article presented a model to calculate the expected retailer holding time (time 

from when the returned product is received to the time it can be resold). Using 

this model, they drew several conclusions on cash flow management strategies 

in retail chains. 

Nagurney and Toyasaki (2005) proposed a model for the integrated 

management of the CLSC that can be used to analyze and calculate material 

flows and prices in the electronic product recycling sector.  
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Finally, Corbacioglu and van der Laan (2007) showed that holding costs for 

remanufactured and manufactured products cannot be calculated in the same 

way and that the method used to calculate the former is not trivial. 

3.2.2 Mathematical inventory management models in reverse logistics systems 

Inventory management in a reverse logistics system differs from that in a 

traditional logistics system when the recovery system interacts with the existing 

manufacturing system, i.e. in cases where the recovered and the new product 

are identical. In practically all the articles that present mathematical inventory 

management models for reverse logistics systems, it is assumed that new and 

recovered products are indistinguishable from each other. It is also assumed, in 

practically all the models, that the system has unlimited resource capacities 

(production, recovery, and storage). The main differences between the models 

can be seen in Tables 1 and 2. 

Following the system used by Fleischmann and Minner (2004), we have 

classified these models into deterministic and stochastic models. 

Deterministic models

Constant demand models. Richter and Dobos (2004) performed a comparative 

study of the most important reverse logistic models with inventory management 

based on the economic order quantity. The differences they observed were due 

to the fact that the models analyzed different systems with different optimization 

criteria, both in terms of the function to optimize and the set of manufacturing 

and remanufacturing policies permitted. These policies depended on the design 

of the model. For models with production setup costs, for example, 

manufacturing and remanufacturing were performed in batches and separately 

(i.e. products were either manufactured or remanufactured at a given moment). 

Such policies are typical in systems that share manufacturing and 

remanufacturing resources. 

: 

The following table 1 shows the key articles that have analyzed deterministic 

models. 
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 Time Continuous Discrete 
Demand  Constant Variable  
Returns Constant Variable 
Disposal? Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Cost of disposal? Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Returned product stock? Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes 

Serviceable stock? Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes 

Identical unit storage costs 
for new and remanufactured 
products? 

Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes 

Identical recovered and new 
products? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Manufacturing and 
remanufacturing setup costs? Yes Yes Yes Yes Yes Yes Yes No No No No Yes 

Supply interruptions 
admitted? No Yes No No No No No No Yes No No No 

Manufacturing lead time? No Yes No No No No No No No No No No 

Remanufacturing lead time? No Yes No No No No No No No No No No 

Table 1. Key articles describing deterministic models, with characteristics of systems 

analyzed. 

In the model presented by Teunter (2001), “the class of policies Π considered 

are those with fixed batch sizes Qm for manufacturing and Qr for recovery, 

where M manufacturing batches and R recovery batches succeed each other”.  

Within class Π, only policies in which M = 1 or R = 1 are considered. In the 
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study by Richter (1996), in order to meet demand, products in the recoverable 

product warehouse are recovered until the maximum batch size is met and then 

new products are manufactured. Minner (2001) showed that manufacturing and 

remanufacturing in batches of the same size is not necessarily an optimal 

policy. The model presented by Teunter and van der Laan (2002) showed that 

optimal order quantity calculation based on the optimization of average costs 

are different from those based on net present value costs. Choi et al. (2007) 

extended Richter’s model to contemplate a wider set of 

manufacturing/remanufacturing policies. Acceptable policies were those that 

alternated manufacturing and remanufacturing batches in order to meet 

demand. The authors came to the conclusion that optimal policies were not 

necessarily those considered by Teunter (2001) or Richter (1996). Nonetheless, 

they performed a numerical study of 8,100,000 cases in which only 0.2% of 

cases had an optimal solution outside the set of Teunter (2001). 

Rubio and Corominas (2008) studied optimal policies in a lean production 

environment and concluded that an optimal production strategy combined 

manufacturing, remanufacturing, and disposal. The model is extended to 

analyze a system with limited manufacturing and remanufacturing capacities.  

Variable demand/continuous time models. Minner and Kleber (2001) presented 

a linear cost model, formulated an optimal control problem, and resolved it 

using Pontryagin’s maximum principle. Their model was extended by Kiesmüller 

et al. (2000), who introduced the possibility of stock shortage, backlogging 

unmet demand. Kleber et al. (2002) also extended the model of Minner and 

Kleber (2001) by taking into account multiple product return options. Dobos 

(2003) also presented a similar model to that proposed by Minner and Kleber 

(2001) but the function to be optimized was quadratic rather than linear.  

Variable demand/discrete time models. Richter and Weber (2001) extended the 

classical Wagner-Within model by including the possibility of returned products. 

They first presented a model for remanufactured products from the moment 

they are returned to the manufacturer to the moment they are returned to the 

market. They then modelled a system with both manufacturing and 

remanufacturing facilities, and finally introduced the option of disposing of 
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recovered products. With constant costs over time and zero setup costs, the 

model proposed by Richter and Weber (2001) was equivalent to the discrete 

version of the model used by Minner and Kleber (2001). 

Stochastic models

Van der Laan and Salomon (1997) proposed a production planning and 

inventory control model in a system with both remanufacturing and disposal. 

The aim was to create a system that was both stable and robust. They 

proposed two types of inventory policies: a push-disposal policy and a pull-

disposal policy, which, while not necessarily optimal, reduced variations in 

inventory levels. They showed that the expected cost of the system with the 

option of product disposal was lower than that of the system without this option. 

To perform the calculations, they used a definition of inventory position that did 

not include either the returned product or the product to be returned. 

: 

Kiesmüller and van der Laan (2001) showed that assuming that demand and 

returns are independent can lead to the use of less-than-optimal inventory 

policies. The main characteristics of the model used are shown in Table 2. To 

perform the calculations, they defined an inventory position that took into 

account the product yet to be returned and order-up-to inventory policies 

(although they acknowledged that these may not be optimal). Although they 

admitted the possibility of stock shortage, they computed the probability 

distribution of returns under the assumption that demand is fully met (arguing 

that the service level would be high). The model did not admit product disposal 

policies. 

Fleischmann et al. (2002) present a continuous-time model in which both 

demand and returns were independent Poisson processes. They calculated the 

optimal production policy by considering net demand (demand less returns) and 

extending the results of Federguren and Zheng (1992). 
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 Time Continuous Discrete Discrete Discrete Continuous Discrete Discrete 

Demand  Coaxian-2 General General Poisson Poisson 
process General General 

Returns Coaxian-2 General General Stochastic Poisson 
process General General 

Recovery costs? Yes Yes No No No No Yes 

Disposal? Yes Yes No No No No Yes 

Cost of disposal? Yes Yes No No No No Yes 

Returned product stock? Yes Yes No No No No Yes 

Serviceable stock? Yes Yes Yes Yes Yes Yes Yes 

Identical unit storage 
costs for new and 
remanufactured 
products? 

Yes Yes Yes Yes Yes Yes No 

Identical recovered and 
new products? Yes Yes Yes Yes Yes Yes No 

Manufacturing and 
remanufacturing setup 
costs? 

Yes No No No Prod. Prod. No 

Supply interruptions 
admitted? Yes Yes Yes Yes Yes Yes No 

Manufacturing lead 
time? Yes Yes No Yes No No Yes 

Remanufacturing lead 
time? Yes Yes No Yes No No Yes 

Table 2. Key articles describing stochastic models, with characteristics of systems 

analyzed. 
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Fleischmann and Kuik (2003) studied a discrete-time system with random, 

independent demands and returns. The cost structure was formed by fixed 

order costs and convex stock shortage and holding costs. They showed that an 

inventory control policy of the type (s,S) is optimal when the optimization 

criterion is the minimization of the expected cost value. 

The system proposed by Inderfurth (2004) was different to those described 

above as he assumed that the remanufactured product and the new product 

were different and therefore sold in different markets. When there were no 

remanufactured products, the company offered new products. The model was 

used to calculate the company’s manufacturing, remanufacturing, and disposal 

policies based on optimizing the expected cost value per period. 

On reviewing the literature, we can conclude that few studies have analyzed the 

problem of jointly determining capacity and inventory. As Vlachos et al. (2007, 

p. 368), stated,  “Capacity planning is an extremely complex issue, since each 

time a company considers expanding productive capacity, it must consider a 

myriad of possibilities”. Examples include the duration and type of product life 

cycle and the uncertainty that surrounds the return process in terms of how 

many products will be returned, in what condition, and when and where 

(Georgiadis et al., 2006).  Using the system dynamics approach, Vlachos et al. 

(2007) modelled the long-term behaviour of a CLSC in a remanufacturing 

environment with efficient capacity expansion policies for product recovery and 

remanufacturing. They included in their analysis certain environmental and 

legislative factors that influence profitability calculations. Although they also 

used the system dynamics approach, Georgiadis et al. (2006) embarked on a 

more ambitious analysis in terms of both objectives and structure, allowing for 

wider applicability of results. Specifically, the authors investigated the most 

suitable capacity planning policies for products with different life cycles and 

return flow characteristics. Rubio and Corominas (2008) studied a system with 

deterministic demand and adjustable manufacturing and remanufacturing 

capacities. 

Other studies performed in the area of reverse logistics have analyzed systems 

with capacity constraints. Kiesmüller et al. (2004) and Kleber (2006) proposed a 
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deterministic continuous-time, finite horizon model for inventory management. 

Using the theory of optimal control, this model determined the structure of the 

optimal policy for a system without constraints. The model was extended to 

include systems with manufacturing and remanufacturing capacity constraints 

and to include an update factor to calculate the total cost for a long-term 

horizon.
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Chapter 5 

System with periodic demand 

 

 

 

 

In this chapter we describe a method for calculating manufacturing and storage 

capacity in a reverse logistics system in which demand is deterministic and 

product returns depend on demand. Using the method described, we will show 

how the returns function influences both manufacturing and storage capacities. 

Section 5.1 describes the system we are going to study. Section 5.2 describes a 

method for calculating an optimal manufacturing policy in an environment with 

fixed manufacturing and storage capacities. In section 5.3, we apply this 

method to calculate optimal manufacturing and storage capacities, and in 

section 5.4, we apply it to study the impact of the product return lag period on 

optimal manufacturing and storage capacities. We present several examples to 

illustrate how are calculated the manufacturing policies and the manufaturing 

and storage capacities. The examples shown are solved using MAPLE. Finally 

in section 5.5 we present the main conclusions of the chapter.  
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5.1 Description of the system 

We consider a company that in addition to manufacturing and selling a 

particular product, can also recover it when it has reached the end of its life and 

sell it again as new by remanufacturing or reusing it. We have defined the 

following time-dependent variables: 

d(t): product demand (product units per time unit). Demand is periodic with 

fundamental period T. 

ur(t): returned products to be remanufactured (product units per time unit). 

Returns depend on demand, with ur(t) = ρ ·d(t-τ), where ρ is the return rate 

and τ  is the return lag period, i.e. the time between the moment at which the 

product is sold and the moment at which it is returned. 

p(t): production of new products (product units per time unit). 

r(t): remanufacture of returned products (product units per time unit). 

I(t): finished product inventory (product units). 

 

Figure 1. Schematic representation of the system 

Product demand is a non-negative deterministic function with a continuous first 

derivative and is greater than returns d(t) ≥ ρ ·d(t-τ). The system is in a 

stationary mode, i.e., all the time-dependent functions have the same value in t 
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and in t+T. To satisfy demand, the company has an inventory of finished 

products I(t) which is fed by the manufacturing system at a rate of p(t) and by 

the returned product remanufacturing system at a rate of r(t). 

The company remanufactures all returned products as soon as they are 

received, i.e. r(t) = ur(t) = ρ·d(t-τ) and does not accept product supply 

interruptions. 

The cost function variables are defined as follows: 

Cost function 

cp: variable manufacturing cost per one new product unit 

cr: variable remanufacturing cost per unit 

h: final inventory cost (cost per time unit of having one finished product unit 

in stock). 

Cp(P): fixed manufacturing cost per one new product; this depends on 

manufacturing capacity P (maximum attainable manufacturing rate) 

Cr(R): fixed remanufacturing cost per returned product; this depends on 

remanufacturing capacity max{ ( ) | 0 }R r t t T= ≤ ≤  

H(S): fixed storage cost per finished product; this depends on the finished 

product storage capacity S 

It is assumed that cp, cr and h are constant and that Cp(P), Cr(R) and H(S) are 

continuous functions with a continuous, non-negative first derivative. 

The costs incurred in period T are: 

 ( )= + + + + +∫0
( ) ( ) ( ) ( ) ( ) · ( )

T

T p r p rc C P C R H S c p t c r t h I t dt   

The following constraints apply:  

 ( ) ( ) - ( )dI p t r t d t
dt

= +   



48 
 

 0 ( )p t P≤ ≤   

 0 ( )r t R≤ ≤   

 0 ( )I t S≤ ≤   

To determine optimal manufacturing, remanufacturing, and storage capacities, 

we will solve the cost function minimization cT subject to the previous 

constraints. 

Net demand is defined as follows:  

 ˆ( ) ( ) ( )d t d t d tρ τ= − ⋅ −   

ˆ( )d t  is a non-negative deterministic function that is periodic with fundamental 

period T and has a continuous first derivative. Integrating the first constraint 

between t = 0 and t = T gives  

 
0 0

ˆ( ) ( )
T T

p t dt d t dt=∫ ∫  (5.1) 

Thus, the variable manufacturing cost in period T depends only on net demand, 

which means that it will not influence cT minimization. In view of the above 

conditions, optimal manufacturing and storage conditions can be determined by 

solving the following mathematical program:  

 = + + ∫0
[ ] ( ) ( ) ( )

T

T pMIN c C P H S hI t dt  

 s. t.:  

 ˆ( ) ( )dI p t d t
dt

= −  (5.2) 

 0 ( )p t P≤ ≤  

 0 ( )I t S≤ ≤  
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The problem is solved in two stages: first, we calculate the optimal 

manufacturing policy for given capacities P, S, and then we calculate optimal 

manufacturing and storage capacities for the finished product. 

5.2 Optimal manufacturing policy 

In this section, we will determine the optimal manufacturing policy for a 

company with fixed manufacturing capacity P and fixed storage capacity S. We 

will first describe a simplified case and then extend our findings to a production 

system with periodic demand. 

 

5.2.1 Simplified case  

Let us consider the case of a company with variable demand over 52 weeks 

and an average demand of 100 units per week (Figure 2). To satisfy demand at 

all times, the company must product at least 100 units per week. It will therefore 

need to always produce at maximum capacity if it is to have sufficient stocks to 

cover demand between t = 26 and t = 52, which is when demand exceeds 

manufacturing capacity. To calculate storage capacity, it suffices to observe that 

maximum inventory levels will be reached in week t = 26 (from this moment on 

manufacturing will not cover demand) and minimum levels in week t = 52. The 

difference between stock levels between these two times is the area bounded 

by the demand curve and the manufacturing capacity curve between t = 26 and 

t = 52, and its value is 827.6. Storage capacity, therefore, must be at least S = 

827.6 units.  

Let us now assume that manufacturing capacity is 120 units per week. As can 

be seen in Figure 3, maximum inventory levels are reached in t2 = 29.4 and 

minimum levels in t3 = 48.6. Similar calculations to above show that the 

minimum storage capacity must be S = 374.7 units. At a point in time before t2, 

the company will start to produce at maximum levels in order to accumulate 

stock to cover demand after t2. Let this point in time be t1, which is calculated by 

matching S to the manufacturing surplus between t1 and t2. As can be seen in 

Figure 2, t1 = 17.9. Following an optimal manufacturing plan, the company 
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should produce as much as possible between t1 and t3 and match 

manufacturing to demand at all other times. 

 

Figure 2. Demand over 52 weeks. The points shown correspond to t1 = 

17.9, t2 = 29.4, and t3 = 48.6. The red horizontal line represents 

manufacturing capacity and the grey horizontal line, average 

demand. 

 

Figure 3. Inventory levels with an optimal manufacturing policy and a 

manufacturing capacity of 120 units per week. The points 

shown correspond to t1 = 17.9, t2 = 29.4, and t3 = 48.6 

Let us now assume that a returned product is remanufactured and sold as new 

and that τ is the number of weeks from the moment at which the product is sold 

to the moment at which it is ready to be resold. Let us also assume that 20% of 

all products sold are returned (ρ = 0.2) and that we want to calculate the 
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necessary storage capacity. To do this, we will analyze the net demand curve 

(demands – returns), just as we did in the above scenarios, in which there were 

no returns. As can be seen in Figures 4(a), 4(b), and 4(c), for each τ value, 

there is a corresponding storage capacity requirement and a period of time 

between t1 and t3 in which manufacturing is at its maximum capacity. In the 

three cases studied, we established a manufacturing capacity of 96 units (20% 

higher than the average net demand). 

Table 1 shows a summary of the results for different return lag periods. 

The following conclusions can be made for a periodic demand function with a 

peak and a trough: 

• Minimum storage requirements are determined by manufacturing 

capacity. 

• In a system with product returns, storage requirements depend on 

manufacturing capacity and on the length of time between when the 

product was sold and when it was returned. Storage capacity is twice as 

high for a return lag period of 26 weeks as for a period of 0 weeks.  

Return lag 

period (τ ) 
t1 t2 t3 S 

0 17.9 29.4 48.6 299.8 

13 14.1 27.0 47.7 470.0 

26 14.4 28.2 49.8 612.6 

Table 1. Times and storage capacities required for a system with variable 

demand, a return rate of 20%, and varying return lag periods (τ ). 

In the next section, we will extend our findings to a general case involving 

periodic demand. 
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(a) t1 = 17.9, t2 = 29.4, and t3 = 48.6. S = 299.8 

 

(b) t1 = 14.1, t2 = 27.0, and t3 = 47.7. S = 470.0 

 

 

(c) t1 = 14.4, t2 = 28.2, and t3 = 49.8. S = 612.6 
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Figure 4: Net demand (demands – returns) for different return lag periods. 

The red horizontal line represents manufacturing capacity and 

the grey horizontal line, average net demand. The grey curve 

represents demand without returns. 

 

5.2.2 General case 

 Let Imax and Imin be the maximum and minimum inventory levels, respectively.  

 max
[0, ]

( )max
t T

I I t
∈

=  

 min
[0, ]

= ( )min
t T

I I t
∈

 

For the problem to be solved, Imin must equal to 0 as if it was greater, there 

would be a solution with min( ) ( )I t I t I= −  for a lower cost. 

 Let 2 [0, ]t T∈  be a point in time at which inventory levels are at their maximum 

(I(t2) = Imax). If Imax = 0, the optimal policy would be ˆ( ) ( )p t d t t= ∀ , but this is only 

possible if ˆ( )P d t t≥ ∀ . 

If max 0I ≠ , let t1 and t3 , respectively, be the nearest points in time before and 

after t2 when inventory levels are at their minimum (I(t1) = I(t3) = Imin). It is known 

that t1, t2, and t3 exist because I(t) is continuous and periodic. 

5.2.2.1 Optimal policy in period 1 3[ , ]t t  

The optimal manufacturing policy for the period [t1, t3] is p(t) = P. To 

demonstrate this, we will show that no other policies in this period are optimal. 

Suppose that we have a policy such that p(t) < P in a given period 

4 5 1 3( , ) [ , ]t t t t⊂ . Let I(t) be the inventory function when this policy is applied; 

consider a point in time 1t  such that 

11 4t t t< <   
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1 1 5( ) ( ) [ , ]I t I t t t t≤ ∈   

≤ −∫
t

t
I t P p t dt5

1
4

( ) ( ( ))   

It is known that 1t  exists because I(t) is a continuous, strictly positive function in 

1 3( , )t t . Consider the point in time 4t  such that 

44 5t t t< <   

= −∫
t

t
I t P p t dt5

1
4

( ) ( ( ))   

Then, the next policy  

 

11

1 4

4 5

1 5

ˆ( ) [ , ]

( ) ( , )( )
[ , ]

( ) ( , )

d t if t t t

p t if t t tp t
P if t t t
p t if t t t

 ∈


∈= 
∈

 ∉

 

and the corresponding inventory function ( )I t   
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1 1 4

1 4 54

1 5

0 [ , ]

( ) ( ) ( , )
( )

( ) ( ) ( ( )) [ , ]

( ) ( , )

t

t

if t t t

I t I t if t t t
I t

I t I t P p t if t t t

I t if t t t

 ∈


− ∈= 
− + − ∈


∉

∫
 

satisfy the constraints of the problem. The cost of policy ( )p t  is lower than that 

of policy ( )p t  since ( ) ( )I t I t< in the period 1 5( , )t t . 

Thus, the optimal policy in period 1 3[ , ]t t  is ( )p t P= , 1 3( ) ( ) 0I t I t= = , and 

 = − = −∫ ∫2 2
max

1 3

ˆ ˆ( ( )) ( ( ))
t t

t t
I P d t dt P d t dt  (5.3) 

 therefore 
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 − =∫ 3

1

ˆ( ( )) 0
t

t
P d t dt  (5.4) 

5.2.2.2 Calculating Imax, t1, t2 and t3 

 Let us assume that p*(P,t) is the optimal manufacturing policy when 

manufacturing capacity is P. Accordingly, p(t) = p*(P,t) is the solution to the 

mathematical program (5.2). By integrating the first constraint, we obtain:  

 − = − ∀∫ * ˆ( ) ( ) ( ( , ) ( )) ,
tb

b a a bta
I t I t p P t d t dt t t  (5.5) 

For the second constraint, *( , )p P t P t≤ ∀ , which gives  

 − ≥ − ∀ ≤∫ ˆ( ) ( ) ( ( ) )
tb

a b a bta
I t I t d t P dt t t  

and if we insert maximum inventory levels on each side of the inequality, we 

obtain  

 
≤ ≤

≥ − ≥ −∫max
ˆ{ ( ) ( )} { ( ( ) ) }max max

tb
a b tt t t t aa b a b

I I t I t d t P dt  (5.6) 

Given that p*(P,t) is the optimal policy, in section 5.2.2.1, we saw the existence 

of t2 and t3 satisfying (5.3); therefore  

 3
max

2

ˆ ˆ{ ( ( ) ) } ( ( ) )max
t tb

t tt t aa b

d t P dt d t P dt I
≤

− ≥ − =∫ ∫  (5.7) 

 By joining inequalities (5.6) and (5.7)  

 max
ˆ( ( ) )max

tb

tt t aa b

I d t P dt
≤

= −∫  (5.8) 

 Thus, Imax is obtained by solving the following non-linear program:  

 = −∫ ˆ[ ] ( , ) ( ( ) )
y

x
MAX f x y d t P dt  (5.9) 

 s. t.: 
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 0x y− ≤  (5.10) 

Let us assume that ( , )f x y  is the optimal value of the objective function (5.9), 

such that 

 max ( , )I f x y=  

To find point ( , )x y  one can distinguish between 2 cases:  

 1. If ˆ( ) 0 [0, ]P d t t T− ≥ ∀ ∈ , then ( , ) 0f x y =  and ( , )x y  can be any point on the 

boundary of the region defined by (5.10), i.e. x y= . Thus, 

 Imax = 0 

 2. Otherwise, ( , )x y  will be located inside the region defined by (5.10), i.e. 

x y< . Given that ( , )x y  must be a local optimal point, it satisfies the following 

conditions:  

 ( , ) 0f x y∇ = . After algebra, we obtain the following conditions:  

 = =ˆ ˆ( ) ( )d x P d y P  (5.11) 

The Hessian matrix of f at point ( , )x y  is negative semi-definite 

 

2 2

2

2 2

2

( , ) ( , )
ˆ '( ) 0

( , )
ˆ( , ) ( , ) 0 '( )

f x y f x y
d xx x y

H x y
f x y f x y d y
x y y

 ∂ ∂
   −∂ ∂ ∂ = =    ∂ ∂   

∂ ∂ ∂ 

 

For this matrix to be negative semidefinite, the following must hold true:  

 ˆ ˆ'( ) 0 '( ) 0d x d y≥ ≤     (5.12) 

Thus, ( , )x y  is a point that satisfies (5.11) and (5.12), and in addition, 

maximizes f. 
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To calculate the optimal value of f, it is not necessary to find all the points that 

satisfy (5.11) and (5.12); rather, one can restrict the search to a region of points 

(x,y) such that [0, ]x T∈ , [ , ]y x x T∈ + , because f  has the following properties:  

(a) ( , ) ( , )f x y f x T y T x= + + ∀  as ˆ( )d t  is periodic of period T  

(b) ′ ′ ′+ = + + ∀( , ) ( , ) ( , ) , ,f x y y f x y f y y y x y y  

(c) ( , ) 0f x x T x+ ≤ ∀  because if this were not the case, using the 

previous properties, one would obtain 

 
0

ˆ ˆ( ( ) ) ( ( ) ) 0
T x T

x
d t P dt d t P dt

+
− = − >∫ ∫  

in which case no manufacturing policies would satisfy (5.1).  

When x < y, if f(x+T,y+T) is the optimal value, then so is f(x,y) (property a) 

From the second property 

 ( , ) ( , ) ( , )f x y T f x y f y y T+ = + +  

And from the third property, ( , ) ( , )f x y T f x y+ ≤ . Therefore, when x < y, if 

f(x,y+T) is optimal, then so is f(x,y). 

The following method can therefore be used to calculate Imax, t1, t2 and t3; 

(a) Determine the sets U  and V  defined as:  

 = ∈ = ≥ˆ ˆ{ [0, ] | ( ) , '( ) 0}U x T d x P d x  

 = ∈ = ≤ˆ ˆ{ [0,2 ] | ( ) , '( ) 0}V y T d y P d y  

(b) Calculate Imax using the following expression:  

 max
ˆmax{ ( ( ) ) | , , }

y

x
I d t P dt x U y V x y x T= − ∈ ∈ < < +∫  (5.13) 

(c) t2 and t3, respectively, are the elements of U and V  that satisfy (5.13) 
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(d) The point in time t1 is the closest point to 2t  that satisfies both (5.4) 

and 1 2t t≤   

5.2.2.3 Optimal policy in period [t3,T+t1] 

Because the system is periodic, if the optimal policy for the period [t1,T+t1] is 

known, it is a simple matter to calculate it for [0,T]. The advantage of using the 

period [t1,T+t1] is that it only remains to calculate the optimal policy for the 

subperiod [t3,T+t1] that satisfies I(t3) = I(T+t1) = 0. 

Let 3 3 1[ , ]t t T t′ ∈ +  be the closest point in time to 1T t+  such that 3
ˆ( )d t P= , i.e.  

 3 3 1max{ [ , ]}t t V t T t′ = ∈ ∩ +  

The optimal manufacturing policy for the period 3 1[ , ]t T t′ +  is ˆ( ) ( )p t d t= . To 

demonstrate this, it suffices to observe that 3( ) 0I t ′ = , because in this case using 

this policy would give I(t) = 0 for the period in question. Let us assume that we 

are using an optimal policy p(t) and that 3( ) 0I t ′ > . Let 3 3t t′′ ′≤  be the closest point 

in time to 3t ′  such that 3( ) 0I t ′′ = ; if we integrate the first constraint of the 

mathematical programme (5.2) we have: 

 ′ = − −∫
'
3

''
3

3
ˆ( ) ( ( ) ( ))

t

t
I t d t p t dt  

 
'
3

1
3

ˆ( ) ( ( ) ( ))
T t

t
I t d t p t dt

+
′ = −∫  

Because 3( ) 0I t ′ > , there exists a period 4 5 3 3[ , ] [ , ]t t t t′′ ′⊂  in which ˆ( ) ( )p t d t>  and 

an interval 4 5 3 1[ , ] [ , ]t t t T t′ ′ ′⊂ +  in which ˆ( ) ( )d t p t> . The following policy is defined:  

 

3 4

1 4 5

5 4

2 4 5

5 1

( ) [ , )
( ) [ , ]

( ) ( ) ( , )
( ) [ , ]
( ) ( , ]

p t if t t t
p t if t t t

p t p t if t t t
p t if t t t
p t if t t T t

ε

ε

∈
 − ∈ ′= ∈
 ′ ′+ ∈

′∈ +
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 Where ε1 and ε2 are chosen such that ( )p t  satisfies the constraints of the 

programme (5.2) and 5 4 1 5 4 2( ) ( )t t t tε ε′ ′− = − . The resulting inventory function ( )I t  

is  

 

3 4

4 1 4 5

4 1 5 4

5 4 1 4 2 4 5

5 1

( ) [ , )
( ) ( ) [ , )

( ) ( ) ( ) ( , )
( ) ( ) ( ) [ , ]
( ) ( , ]

I t if t t t
I t t t if t t t

I t I t t t if t t t
I t t t t t if t t t
I t if t t T t

ε
ε
ε ε

∈
 − − ∈ ′= − − ∈
 ′ ′ ′− − + − ∈

′∈ +

 

The cost of policy ( )p t  is lower than that of policy p(t), demonstrating that policy 

p(t) cannot be optimal, which contradicts the initial hypothesis. Thus, 3( ) 0I t ′ =  

and the optimal policy in 3 1[ , ]t T t′ +  is ˆ( ) ( )p t d t= . 

Next we calculate the optimal policy for the period 3 3[ , ]t t ′ . Let ′ ′∈1 3 3[ , ]t t t  be the 

closest point in time to 3t ′  such that 

 3

1

ˆ( ( )) 0
t

t
P d t dt

′

′
− =∫  (5.14) 

Then the optimal policy in 1 3[ , ]t t′ ′  is p(t) = P because we can use the same 

argument as in section 5.2.2.1. 

The optimal policy for the period 3 1[ , ]t t ′  is calculated recursively using the 

reasoning presented in this section but replacing 1T t+  with 1t ′ . 

5.3 Optimal manufacturing and storage capacities 
 

5.3.1 Storage capacity S 

Given a manufacturing capacity P, the optimal storage capacity S is the same 

as Imax (if it were higher, there would be surplus capacity and if it were lower, 

there would be supply interruptions). 
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Note that Imax, S, t2, and t3 depend on P as they all depend on the value of the 

elements of U  and V  and these depend on P. 

 

5.3.2 Example 

Consider this case with the following demand: 

 ( ) 100 1 0.3sin ( 4) 0.25sin ( 13.3)
26 13

d t t tπ π    = − + + −        
 

We want to determine storage capacity S with a return rate of ρ = 0.2, a return 

lag period of τ = 26 weeks, and a manufacturing capacity of P = 96 units per 

week. See the example in Figure 5. 

 

Figure 5: Net demand (demand – returns) for the example with a return 

lag period of 26 weeks (τ = 26). The points shown 

correspond to t1 = 13.0, t2 = 21.4, and t3 = 48.2. P = 96. 

Then: 

= {21,4 33,7}U  = {28,0 48,2 80,0 100,19}V  

S = 180.4 units 

t1 = 13.0  t2 = 21.4 t3 = 48.2  
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5.3.3 Calculating optimal manufacturing capacity P 

Pmin and Pmax are defined:  

 min 0

1 ˆ( )
T

P d t dt
T

= ∫  

 max
[0, ]

ˆ( )max
t T

P d t
∈

=  

There are no manufacturing policies that satisfy (5.1) for P values of less than 

Pmin, which means that the mathematical programme does not have a solution. 

For maxP P≥ , max 0I = . Because Cp(P) is an increasing function, the minimum 

costs for maxP P≥  are achieved when P = Pmax. 

Optimal manufacturing capacity, therefore, is found in the interval [Pmin, Pmax]. 

Given a value of min max[ , ]P P P∈ , the cost cT incurred in period [0,T] is calculated 

by following the steps below:  

1. Calculate the optimal manufacturing policy p*(P,t) following the 

procedure described in section 5.2 

2. Calculate S as described in section 5.3.1 

3. Calculate ( )I t using (5.5)  

 *

1

ˆ( ) ( ( , ) ( ))
t

t
I t p P t d t dt′ ′ ′= −∫  (5.15) 

4. Calculate the cost incurred in the period [0, ]T   

 
0

( ) ( ( )) ( )
T

T pc C P H S P h I t dt= + + ∫  (5.16) 

The expression S(P) represents the dependent relationship between S and P 

described in section 5.3.1, and p*(P,t) is the optimal policy when manufacturing 

capacity is P described in section 5.2. 
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Optimal capacity is calculated numerically using the steps described above 

exploring min max[ , ]P P P∈  values. 

 

5.3.4 Example 

Let us consider another case with the same demand, the same return rate (ρ = 

0.2), and the same return lag period (τ = 26 weeks) as above but with the 

following cost functions: 

  Cp(P) = 250(P - 80) + 14000 

 H(S) = 7 S 

Using the procedure described in section 5.2.2, we calculated the optimal policy 

for 25 P values in the interval [Pmin, Pmax], where Pmin = 80 and Pmax = 116.06. 

Figure 6 shows the values for t1, t2 and t3. Note that the dependency between t2 

and manufacturing capacity P is not continuous; in general, dependency 

between t1, t2 and t3 in P is not continuous.  

For each P value, we calculated the optimal storage capacity using the method 

described in 5.3.1. Figure 7 shows the dependency between optimal storage 

capacity and manufacturing capacity, i.e. S(P). 

For each P value, we calculated the total cost incurred in period T using (5.16). 

Figure 8 shows the dependency between cost and manufacturing capacity 

when optimal manufacturing and storage policies are used.  
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Figure 6: Dependency between manufacturing capacity and t1 (black 

circles), t2 (solid green circles), and t3 (red asterisks). 

 

Figure 7. Optimal storage capacity with respect to manufacturing 

capacity. 

 

 Figure 8. Total cost in a given period T with respect to 

manufacturing capacity using the optimal policy. 
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Finally, we numerically calculated the optimal manufacturing capacity 

(minimizing the total cost in period T) as P* = 104.42. Using this capacity, we 

obtained the following values: 

t1 = 27.79 t2 = 37.05 t3 = 46.84 

S(P*) = 73.29 Cp(P*) = 20105  H(S(P*)) = 513 cT(P*) = 21394 

 

5.4 Dependency between optimal capacities and return period 
lag 

In section 5.2.1, for a system with a fixed manufacturing capacity, we obtained 

different storage capacities for different return lag periods, demonstrating that 

storage capacity is dependent on this period. 

This section presents the results of a study of the dependent relationship 

between optimal manufacturing and storage capacities and return lag periods in 

a system such as that described in section 5.3.4 

We first calculated optimal manufacturing and storage capacities for a system 

without returns and obtained the following values: 

P* = 119.20 t1 = 20.31 t2 = 37.79    t3 = 48.35 

S(P*) = 118.61 Cp(P*) = 23800  H(S(P*)) = 830 cT(P*) = 25951 

We then calculated optimal capacities and associated costs for a system with a 

return lag period that varied from 0 to 52 weeks. The results are shown in 

Figures 9, 10, and 11.  

As can be seen in Figure 9, there are considerable differences (as high as 

100%) between minimum and maximum levels. It can also be seen that optimal 

storage capacity may be higher in a system with returns than in one without. 

Manufacturing capacity variations were minimum (close to 10%), as can be 

seen in Figure 10. 
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Figure 9. Dependency between optimal storage capacity S and return 

lag period for the scenario described in section 5.3.4. The 

points correspond to optimal storage capacities for the system 

with returns, and the continuous line to the optimal storage 

capacity for the system without returns. 

 

Figure 10. Dependency between optimal manufacturing capacity P 

and return lag period τ for the scenario described in 

section 5.3.4. 

Finally, as can be seen in Figure 11, optimal costs varied considerably with lag 

period variations. It is worth noting that costs might ultimately be higher for the 

system with returns than that without (25951 in our case) once remanufacturing 

costs had been added. 
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Figure 11. Dependency between optimal cost and return lag period τ 

for the scenario described in section 5.3.4. 

 

5.5 Conclusions 

We have presented a method for calculating optimal production and storage 

capacities in a reverse logistics system with periodic demand in which all 

returned products are manufactured.  

Key aspects of method: 

• By using fixed production and storage capacities, the method can be 

used to calculate optimal production policies. 

• It can also be used to calculate optimal production and storage 

capacities. 

• It is easy to apply and, as was seen in section 5.4, can be used to study 

the relationship between optimal capacities and product return lags.  

Other important conclusions are those mentioned in section 5; the most relevant 

of these is that returns have a very strong impact on storage needs and overall 

profitability. 

 The method could also be used to study: 

• The feasibility of implementing a reverse logistics system 
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• The advisability of investing in policies designed to modify product 

return lag periods 

• The influence of product return rates ρ on production and storage 

capacities  
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Chapter 6 

System with stochastic demand 

 

 

 

 

In this chapter, we study a system with stochastic demand and returns in order 

to calculate optimal manufacturing and storage capacities. The model 

presented can be used to study the behaviour of optimal manufacturing and 

storage capacities when there are variations in manufacturing costs and return 

probability. 

In section 6.1 we describe the system we are going to study and in section 6.2 

we describe the method used to calculate the optimal manufacturing and 

remanufacturing policy under the assumption that manufacturing and storage 

capacities are known. We also explain how to calculate optimal capacities. In 

section 6.3 we present three numerical examples that have been solved using 

MATLAB and CPLEX: one shows how to calculate the optimal policy and the 

other two analyze how capacities change with variations in return probability 

and remanufacturing costs. Finally in section 6.4 we present the main 

conclusions of the chapter.  
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6.1 Description of the system 

The system consists of a company that produces, sells, and recovers a product 

for which it has manufacturing, remanufacturing, and finished product storage 

systems. The remanufacturing system has sufficient capacity to remanufacture 

all the products returned.  

Assumptions of model 

• Time is discrete and the time horizon is infinite. 

• Demand is random with a known probability distribution that is 

independent of the period; values are integers, with a maximum value 

of D. 

• The remanufactured product is indistinguishable from the newly 

manufactured product. 

• The useful life of the product ends between periods T1 and T2 after 

the product has been sold; it is a random variable and the probability 

distribution is independent of the sales period. πτ  is the probability 

that the useful life of a product has a duration of τ  periods (τ = 

T1,...T2).  

• ρ is the probability of an end-of-life product being returned. Therefore, 

ρ · πτ is the probability that a unit sold in period t will be returned in 

period t+τ. 

• Demand that cannot be satisfied with manufactured or 

remanufactured products is met through an external supply channel 

with capacity (T2 – T1 + 1 )·D.  

• Products that are manufactured and remanufactured in a given period 

are available for sale in the same period. 
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Figure 1. Schematic representation of system. 

The costs for the company are as follows: 

• The manufacturing system has a cost per period Cp(P) (dependent on 

manufacturing capacity P) and a cost cp per unit produced.  

• The storage system has a cost per period Cs(S), which is dependent 

on storage capacity S.  

• e: unit cost of disposing of a returned product 

• f: manufacturing order cost 

• cr: remanufacturing unit cost 

• h: holding cost 

• cec: external channel unit cost 

It is assumed that functions Cp(P) and Cs(S) are continuous increasing 

functions. 

The following variables are defined: 

st: stock available at the end of period t 

ut: units manufactured in period t 
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vt: units remanufactured in period t 

dt: product demand in period t; this is a random integer variable with pd = 

p(dt = d), (d = 0,...,D) 

rt: units returned in period t; this is a random integer variable with qr = p(rt 

= r), (r = 0,…,(T2-T1+1)·D. 

The chronological order of events in period t is as follows: 

1. Stock levels available at the end of the preceding period (st-1) are 

analyzed. 

2. A decision is taken on how many products to manufacture (ut), between 

0 and min(P,S-st-1). 

3. Demand is satisfied with existing stock, newly manufactured products, 

and external channel supplies.  

4. Returned products are remanufactured in this period as follows. If there 

are sufficient returns, these products are remanufactured until the 

warehouse is full and all other returns are disposed of. Otherwise, all 

returned products are remanufactured. 

The quantity of products purchased from the external channel is max(0, dt - st-1 - 

ut) 

The quantity of products to remanufacture is vt = min(S – s’t, rt) where s’t = 

max(0, st-1 + ut - dt) is the stock level after demand has been met. 

The stock at the end of the period will be st = s’t + vt. Therefore, st is a random 

variable that depends on previous stock levels st-1, random variables dt and rt, 

and the decision ut. Note that the st variables have values of between 0 and S. 

The cost incurred in period t is: 
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 ct = Cp(P) + Cs(S) + cp ·ut + cr·vt  + e·max(0, rt - vt,) + h·st +  

       + cec·max(0, dt - st-1 - ut) + f·max(0, min(1, ut))   (6.1) 

Therefore, ct is a random variable that depends on random variables st-1, st, dt 

and rt , on decision ut, and on remanufacturing capacity P and storage capacity 

S. 

 

6.2 Calculating optimal manufacturing and storage capacities 

We want to calculate manufacturing capacities P and storage capacities S that 

minimize the expected cost in a period: 

{ }− ≤
,

, 1,
minmin ( ) ( )   

P S
t P S tP S u

E c u s P       (6.2) 

The problem is resolved by calculating the P and S values that minimize the 

expected cost E(ct) when the optimal policy uP,S is used. To calculate the 

optimal manufacturing policy for fixed P and S values, the following problem 

must be resolved:  

{ }− ≤
,

, 1min ( ) ( )   
P S

t P S tu
E c u s P       (6.3) 

Calculating the expected cost value will be more or less complicated depending 

on the behaviour of returns. If returns form a succession of independent random 

variables that are also independent of demand, the problem becomes 

considerably simpler. It is not surprising thus that the assumption that returns 

are independent of demand is common in studies designed to calculate optimal 

inventory policies in systems with reverse logistics and stochastic returns (e.g. 

Fleischmann et al., 2002; van der Laan, 2003; and Fleischmann and Kuick, 

2003). Fleischmann et al. (2002) argued the following: “Our assumption of 

independence of demand and returns is motivated by the fact that items are 

difficult to monitor once issued to the market. While at a first glance it may seem 

more appealing to model returns as a function of previous demand, estimating 

this correlation often appears to be difficult in practice. In many applications the 
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issuing date of a given returned item is not known. Hence, the sojourn time in 

the market can only estimated on aggregated basis. Moreover, both the sojourn 

time and its variance may be rather large compared to demand inter-occurrence 

epochs, reducing observable correlation further. Hence, rejecting the 

assumption of independence of demand and returns appears to be hard in 

many cases”. In this study, we therefore decided to resolve the problem of 

determining optimal capacities by first assuming that returns form a succession 

of independent random variables with a known probability distribution and then 

calculating the probability distribution of returns according to the useful life of 

the products and the probability of return to test the influence of the succession 

independence assumption (rt) on the result. 

Let us assume that returns (rt) form a succession of random independent 

variables with probability distribution qr = p(rt = r), r = 0,…,(T2 –T1 + 1)·D. By 

fixing P and S, we can see that the problem of calculating the optimal policy is a 

Markov decision problem with an infinite horizon and remuneration, no 

actualization, and an optimization criterion consisting of minimizing the 

expected remuneration value.  

The state in period t is determined by st-1, the state space is {0,1,…,S}, the 

actions in each period are defined by the manufacturing quantity ut, the set of 

actions is {0,1,…,min(P,S)}, and the remuneration is related to the cost incurred 

in a given period, and is equal to – (ct - Cp(P) - Cs(S)). The negative sign 

converts the cost function into a remuneration function; we subtract capacity 

costs from the cost per period to obtain a simpler expression of the 

remuneration function. 

To define the Markov decision problem, we need to determine pij(u), the 

probability of transition between states i and j when decision u is taken. In other 

words pij(u) = p(st = j | st-1 = i, ut = u) with ≤ ≤0 min( , - )u P S i . In the previous 

section, we saw that the variable state st was dependent on st-1 and the random 

variables dt and rt. This dependence can be expressed as: 

st = max(0, st-1 + ut - dt) + min(S – max(0, st-1 + ut - dt), rt)  (6.4) 

Therefore, the probability of transition between states is expressed by: 
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( ) ( )
( )

( )
,, i u j

ij t t
d r

p u p d d p r r
+∈Ω

= = =∑      (6.5) 

Where the domains Ωi+u,j contain the values (d,r) such that starting from state i 

and taking decision u, we progress to state j. In other words, if we make k = i+u, 

we define the domains as follows: 

( ) [ ] [ ] ( ) ( )( ){ }, , 0, 0, | max 0, - min - max 0, - ,k j d r D R j k d S k d rΩ = ∈ × = +  

For ≤ ≤ +0 k P S  and ≤ ≤0 j S . To calculate the domains Ωi+u,j , we distinguish 

between 3 cases: 

Case 1: j < S and j i u≤ +  

( ){ } ( ) ( ){ }, , | - , | 0 min -1, - ( )i u j d j i u d D r j i u r r j D j i u+Ω = + ≤ ≤ ∪ + + ≤ ≤ + +  

Case 2: j < S and j i u> +  

( ){ } ( ) ( ){ }, , | - , | - - min -1, - ( )i u j d j i u d D r j i u r j i u r j D j i u+Ω = + ≤ ≤ ∪ + + ≤ ≤ + +  

Case 3: j = S 

( ){ }, , | ,i u j d r i u d D S r M+Ω = + ≤ ≤ ≤ ≤ ∪ ( ) ( ){ }≤ ≤ + + ≤ ≤, | 0 min , -1 , - -d r d D i u S d i u r M  

Where M = (T2-T1+1)·D. Hence 

( )
( )

( )
( )

( )

+ +

= + =

+ +

= + = +

= + =

= = + = + + = < ≤ + ≤

= = = + = + + = < > +

= = + = + + ≥

∑ ∑

∑ ∑

∑ ∑

min -1, -( )

0

min -1, -( )

-( )

· ( ) ( - )· ( )

( ) · ( ) ( - )· ( )

· ( ) ( - )· (

j D j i uD

t t t t
d i u r

j D j i uD

ij t t t t
d i u r j i u

D M

t t t t
d i u r S

p d d p r j p d i u j r p r r j S j i u S

p u p d d p r j p d i u j r p r r j S j i u

p d d p r r p d i u S k p r
( )+ +

= +








 = + ≤


∑
min -1, -( )

-( )
)

S D S i u

k S i u
k j S i u S

In other words, 
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( )

( )

( )

+ +

+ +
= + =

+ +

+ +
= + = +

+ +

+ +
= + = = + =


+ < ≤ + ≤


= + < > +


 + = + ≤


∑ ∑

∑ ∑

∑ ∑ ∑ ∑

min -1, -( )

-
0

min -1, -( )

-
-( )

min -1, -( )

-
-( )

·

( ) ·

·

j D j i uD

d j i u j r r
d i u r

j D j i uD

ij d j i u j r r
d i u r j i u

S D S i uD M M

d r i u S k r
d i u r S k S i u r k

p q p q j S j i u S

p u p q p q j S j i u

p q p q j S i u S

 

Note that pij(u) is equal to ( )( ),, i u jp d r +∈ Ω , the probability that ( ) ,, i u jd r +∈ Ω . 

 

6.2.1 Calculating the optimal manufacturing policy 

State transition costs will be the expected value of the costs of each of the 

possible paths towards the transitions. 

Given manufacturing capacities P and storage capacities S, we want to 

calculate cij(u): the expected cost of the transition from state i to j when decision 

u is taken, i.e. cij(u) = E(c | i,j,u) where c = ct - Cp(P) - Cs(S). Defining 

c(i,j,u,d,r) = cp·u + cr·min(S – max(0, i + u - d), r) + e·max(0, r - vt,) + h·j +   

  cec·max(0, d - i - u) + f·max(0, min(1, u))    (6.6) 

( )
( )

( )
( )( ), ,

,
, , ,

( )
( ) ( , , , , ) , | ( , ) ( , , , , )

( , )i u j i u j

t t
ij i u j

d r d r i u j

p d d p r r
c u c i j u d r p d r d r c i j u d r

p d r
+ +

+
∈Ω ∈Ω +

= =
= ∈ Ω =

∈ Ω∑ ∑
 Hence, 

( )
( ) ,,

( )· ( ) ( , , , , ) ( )
i u j

ij ij t t
d r

c u p u c i j u d r p d d p r r
+∈Ω

= = =∑     (6.7) 

Let us distinguish between 3 cases: 

Case 1a: j < S and j i u≤ + : 

( ) ( ) ( )( )
( )+ +

+ +
=

 = + + + ∑
min -1, -( )

-
0

· · · · ·max 0,min 1, · ·
j D j i u

ij ij p r i u j r r
r

c u p u c u c r h j f u p q +

 ( ) ( )( )
= +

 + + + + + ∑ · · · · - - ·max 0,min 1, · ·
D

p r ec d j
d i u

c u c j h j c d i u f u p q  
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Case 1b: j < S and j i u> + : 

( ) ( ) ( )( )
( )

( )+ +

+ +
= +

 = + + + ∑
min -1, -( )

-
-

· · · · ·max 0,min 1, · ·
j D j i u

ij ij p r i u j r r
r j i u

c u p u c u c r h j f u p q +

 ( ) ( )( )
= +

 + + + + − − + ∑ · · · · ·max 0,min 1, · ·
D

p r ec d j
d i u

c u c j h j c d i u f u p q  

Case 2: j = S 

( ) ( ) ( ) ( ) ( )( )
( )

( )+ +

+ +
= + =

 = + + + + ∑ ∑
min -1, -( )

-
-

· · · · - · ·max 0,min 1, · ·
S D S i u M

ij ij p r i u S k r
k S i u r k

c u p u c u c k e r k h S f u p q

+ ( ) ( ) ( )( )
= + =

 + + + + + ∑ ∑ · · · - · · - - ·max 0,min 1, · ·
D M

p r ec d r
d i u r S

c u c S e r S h S c d i u f u p q  

For each manufacturing capacity P and storage capacity S, the optimal policy is 

calculated by resolving the following linear programme (Puterman, 1994, p. 391 

and subsequent pages): 

  [MIN] 
= =
∑∑ ,

0 0
( )·

iPS

i i u
i u

c u y  

  s.t.: 

   
= = =

=∑ ∑∑, ,
0 0 0

- ( )· 0
ji PP S

i u ji j u
u j u

y p u y     i = 0,…,S 

   
= =

=∑∑ ,
0 0

1
iPS

i u
i u

y  

   , 0i uy ≥     i = 0,…,S,  u=0,…,Pi 

where Pi = min(P,S-i), yi,u are the variables, and ci(u) is: 

 
0

( ) ( )· ( )
S

i ij ij
j

c u p u c u
=

= ∑  

If y*
i,u is a basic optimal solution for the previous linear program, the optimal 

policy in state i will be to produce u if y*
i,u > 0 and  
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= =
∑∑ *

,
0 0

( )·
iPS

i i u
i u

c u y  

is the expected cost of applying the above optimal policy. Therefore, the 

expected cost incurred in a period when the optimal policy is applied is 

CO(P,S) = Cp(P) + Cs(S) + *
,

0 0
( )·

iUS

i i u
i u

c u y
= =
∑∑    (6.8) 

6.2.2 Calculating optimal capacities 

In the previous section, we described how to calculate the optimal policy and 

obtain the expected cost when this policy is applied with fixed manufacturing 

and storage capacities P and S. We also defined the function CO(P,S) which at 

each (P,S) point takes the expected cost value on applying the optimal policy 

when manufacturing capacity is P and storage capacity is S. The optimal 

capacities in this case will be those that minimize the function CO(P,S). 

Given that tu S≤  and that Cp(P) is an increasing function, the optimal value is 

achieved for a value of ≤P S . Note that S*, the optimal storage capacity, is 

limited. From (6.1), we know that 

( ) ( )≤ ∀, ,s oC S C P S P S    

In particular, for optimal manufacturing and storage capacities (P* and S*, 

respectively),  

( ) ( )≤* * *,s oC S C P S  

We calculated CO(P0,S0) for some (P0,S0) and calculated SMAX such that 

Cs(SMAX) = CO(P0,S0). SMAX exists as Cs(S) will reach the value of CO(P0,S0). If 

not, Cs(S) would be a limited function but storage capacity costs cannot be 

limited if capacity is increased indefinitely.  

This gives 

( ) ( ) ( ) ( )≤ ≤ =* * *
0 0, ,s o o s MAXC S C P S C P S C S  
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And therefore *
MAXS S≤  as Cs(S) is an increasing function.  

 

6.2.3 Probability distribution of returns 

In this section, we are going to calculate the probability distribution of returns 

based on the probability distribution of the useful life of the product and the 

probability of return. To do this, we defined the random variables Zt,τ : units 

returned in period t sold in period t-τ (τ = T1,...T2) and defined the following 

probability distributions related to these random variables: 

• Distribution of probability of Zt,τ: ητk = p(Zt,τ = k) k = 0,…,D.  

• Distributions of probability of Zt,τ  conditioned by dt = i (i = 0,...,D): given i 

we define υτik = p(Zt,τ = k | dt = i) (τ = T1,...T2, k = 0,…,D). 

We first calculated υτik, the conditioned probability distributions. We know that a 

product’s useful life has a random duration of between T1 and T2 and once this 

has come to an end, the product has a probability ρ of being returned. 

Therefore, if the sales in a period are i, the probability distribution of returns they 

generate is:   

 ( ) -

,

( · ) 1- ·
( )

0

i kk

i k t t

i
k i

p Z k d i k
k i

τ τ
τ τ

ρ π ρ π
υ

 
≤ = = = =  

 >

  (6.9) 

For i = 0,...,D and τ = T1,...T2. We have the values: 

 ,( ) ·
D

k t i i k
i k

p Z k pτ τ τη υ
=

= = = ∑   for  k = 0,…,D y τ = T1,...T2.  (6.10) 

We are now able to calculate the probability distribution of returns as 
2

1

,

T

t t
T

r Z τ
τ =

= ∑ , where the distribution is obtained from the probabilities of Zt,τ, as 

( ) ( )1 2, ,···t t T t Tp r r p Z Z r= = + + = . Hence, 
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T T

r t T k

k r

q p r r
τ

τ
τ

τ
τ

η
+

=

+

+
=

=

 
= = =  

 ∑
∑ ∏   for r = 0,…,(T2-T1+1)·D  (6.11) 

This expression can be calculated through the convolution of the Zτ  probability 

distributions, with the following recurrence relationship:  

( ) ( )
( )( )

( )

1

min ,

-1,
max 0, - -1 ·

, · - , -1
r D

T T k
k r T D

f r T f r k Tη +
=

= ∑   for T>1 and r = 0,…,T·D: 

This allows us to calculate qr = f(r, T2-T1+1) from ( )
1,,1 T kf k η=  k = 0,…,D. 

The random variables rt (t = 1,2,…) form a succession of random variables that 

are dependent on demand and on each other, considerably complicating the 

calculation of the probability of transitions between states. We will see in the 

numerical example 2 how the assumption of return independence affects the 

solution obtained.  

 

6.3 Numerical examples 

 

6.3.1 Example 1 

We wish to determine the manufacturing and storage capacities for a system 

with the following parameters and values: 

D = 5; p0=0.1, p1=0.15, p2=0.25, p3=0.25, p4=0.15, p5=0.1 

ρ = 0.3; T1 = 1, T2 = 3; π1 = 0.25, π2 = 0.50, π3 = 0.25 

cp = 10, e = 1, f = 0.5, cr = 5, h = 1, cec = 30,   =( ) 10·pC P P ,  =( ) 2·sC S S  

As explained in the preceding sections, the optimal policy is calculated for each 

manufacturing and storage capacity value (P and S, respectively). 
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Figure 2 shows the probability distribution of returns within a given period. Table 

1 shows the optimal policies and associated cost for each manufacturing 

capacity value for S = 6. Note that when the system is in state i = 6, 

manufacturing is no longer taking place as the maximum quantity that can be 

produced in this case, P6, is 0. 

 

Figure 2. Probability distribution of returned products in a given 

period using the demand distribution and ρ = 0.3. 

 

Manufacturing 
capacity 

State Costs 

0 1 2 3 4 5 6   
0 0 0 0 0 0 0 0 62.092 
1 1 1 1 1 1 1 0 53.910 
2 2 2 2 2 2 1 0 47.124 
3 3 3 3 2 1 0 0 47.847 
4 4 4 3 2 1 0 0 50.122 
5 5 4 3 2 1 0 0 52.440 
6 5 4 3 2 1 0 0 54.574 

Table 1. Optimal policies for different manufacturing capacities with a 

storage capacity of S = 6. 

The minimum cost is 47.124 and is achieved with a manufacturing capacity of 2. 
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Manufacturing costs are obtained by calculating the optimal policies for different 

S and P values. Table 2 shows the costs for different manufacturing and 

storage capacities. 

 

  
Storage capacity 

M
an

uf
ac

tu
rin

g 
ca

pa
ci

ty
   0 1 2 3 4 5 6 7 8 

0 75.750 65.275 61.766 61.137 61.320 61.693 62.092 62.476 62.839 
1   67.673 58.689 55.384 54.227 53.889 53.910 54.091 54.345 
2     57.378 50.875 48.272 47.252 47.124 47.311 47.574 
3       51.629 48.425 47.716 47.847 48.149 48.491 
4         50.590 49.999 50.122 50.418 50.758 
5           52.323 52.440 52.733 53.072 
6             54.574 54.867 55.206 
7               56.830 57.169 
8                 58.996 

Table 2. Production costs for different S and P values. 

Note that the minimum cost is obtained when P = 2 and S = 6. 

 

6.3.2 Example 2 

In the following example, we will study optimal storage and manufacturing 

capacities and optimal cost when there are variations in the probability of 

returns ρ. 

The following parameters are used: 

D = 10; p = (0, 0, 0, 0, 0, 0.1, 0.15, 0.25, 0.25, 0.15, 0.1) 

T1 = 1, T2 = 3;  π  = (0.25, 0.50, 0.25) 

cp = 10,  e = 1,  f = 40 ,  cr = 5,  h = 1,  cec = 30   

=( ) 10·pC P P ,    =( ) 2·sC S S  

In Figure 3, we show the probability distribution for demand.  
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Figure 3. Probability distribution for demand from numerical 

example 2. 

We took 10 return probability ρ values: 0, 0.1, 0.2, …, 1. Let us assume that 

returns form a succession of independent random variables whose probability 

distribution is calculated following the steps described in the preceding section. 

Figure 4 shows some of the probability distributions for returns, namely those 

corresponding to the return probabilities 0.1, 0.5, and 1. 

 

(a) ρ: 0.1 
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(b) ρ: 0.5 

 

(c) ρ: 1.0 

Figure 4. Probability distribution of returns for different ρ values. 

For each ρ  value, we calculated the optimal manufacturing and storage 

capacities following the process explained in section 6.2. Table 3 and Figures 5 

and 6 show the corresponding results.   
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ρ S* P* Cost 

0.0 18 12 149.99 
0.1 17 11 144.44 
0.2 17 10 138.66 
0.3 17 10 132.67 
0.4 16 9 126.38 
0.5 15 8 119.82 
0.6 14 7 112.97 
0.7 14 6 105.77 
0.8 13 0 89.94 
0.9 16 0 75.09 
1.0 16 0 65.29 

Table 3. Optimal manufacturing capacity (P*), storage capacity (S*), 

and costs (CO(P*,S*)) for different return probabilities ρ. 

 

Figure 5. Expected cost versus manufacturing capacity with optimal policy 

for different ρ and S values. For each ρ value, the S value used 

is the optimal value. The asterisks show optimal cost. 

In all cases, the optimal storage capacity is greater than demand.  

Observations 

For ρ values of close to 1, the optimal manufacturing capacity is 0. In other 

words, demand is met through returned products and external channel supplies.  
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For ρ values of close to 0, the optimal manufacturing capacity is greater than 

maximum demand. This means that in certain periods, it is financially 

worthwhile producing more products than there is demand for and storing the 

surplus. This is because order costs (f = 40) and external channel costs (cec = 

30) are relatively high compared to manufacturing costs (cp = 10) and storage 

costs (h = 5). 

 

Figure 6. Expected cost value versus return probability ρ, using the optimal 

policy and optimal manufacturing and storage capacities.  

The optimal cost is obtained for ρ = 1, S = 16, and P = 0. The reason for the 

extreme behaviour in this example is that return-related costs (e and cr) are 

much lower than manufacturing-related costs (cp, cec, and f). 

To complete example 2, we will check how the return independence assumption 

affects the results obtained. To do this, we will simulate the system using 

optimal P and S values and the optimal policies obtained with the return 

independence assumption and then compare the results to those in Table 4.  

For ρ  values of between 0.1 and 1, we simulated 100 expected cost values. 

Each value was obtained by simulating the functioning of the system for 11,000 

periods and calculating the average cost for periods 1001 to 11,000. In all of the 

cases, T1 = 1. Table 4 shows a comparison of the data from the simulation and 

those from Table 3. For each ρ, the table shows the expected cost based on the 
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return independence assumption (from Table 3), the average simulated cost 

(based on 100 samples), and the percentage difference between both amounts.   

ρ 
Expected cost 

value 
(calculated) 

Mean cost 
value 

(simulated) 
Difference 

(%) 

0.1 144.4 144.5 -0.03% 
0.2 138.7 138.7 0.00% 
0.3 132.7 132.7 0.01% 
0.4 126.4 126.4 0.01% 
0.5 119.8 119.8 0.00% 
0.6 113.0 112.9 0.03% 
0.7 105.8 105.7 0.10% 
0.8 89.9 89.1 0.90% 
0.9 75.1 72.8 3.10% 
1,0 65.3 59.4 9.06% 

Table 4. Comparison of results from Table 3 and simulation results. The 

second column shows the data from Table 3, the third column 

shows the results of the simulation, and the fourth column shows 

the differences between both amounts expressed as a 

percentage.  

We also simulated the expected cost for T1 = 5 and 18, with ρ = 1. The 

difference between the cost obtained by simulation and that using the method 

explained in section 6.2. is 3.57% and 2.42%, respectively. It can therefore be 

seen that the longer the useful life of the product, the lower the effect of the 

return independence assumption. 

 

6.3.3 Example 3 

In this example, we study optimal cost for a system in which there are variations 

in remanufacturing cost cr and return probability ρ. 

The following parameters are used: 

D = 10; p = (0, 0, 0, 0, 0.1, 0.15, 0.25, 0.25, 0.15, 0.1) 
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T1 = 1, T2 = 3; π  = (0.25, 0.50, 0.25) 

cp = 10,  e = 10,  f = 40 ,  h = 5,  cec = 30  

=( )pC P P ,    =( ) 2·sC S S  

Table 5 and Figure 7 show the results obtained for cr values of between 5 and 

10. Note that for cr values close to cp (cr = 9, 10), optimal costs are obtained 

when there are no returns; for values lower than 8, they are obtained when ρ = 

1.  

 

Figure 7. Expected cost value versus return probability ρ, using the 

optimal policy and optimal manufacturing and storage 

capacities for cr values. 
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Table 5. Optimal manufacturing capacity (P*), storage capacity (S*), and costs 

(CO(P*,S*)) for different remanufacturing costs g and return probabilities ρ. 

 

6.4 Conclusions 
 

In this chapter we have developed a model with reverse logistics, stochastic 

demand and returns, and limited manufacturing and storage capacities. Using a 

linear program we have calculated the optimal manufacturing policy when 

capacities are fixed and we have described the way to obtain the optimal 

capacities. 

We have studied certain factors that are directly related to reverse logistics and 

affect the calculation of capacities: 

1. Return independence assumption: in section 6.3, through a simulation study 

used to analyze the influence of return independence on optimal costs, we 

concluded that this influence, in most cases is not significant. Indeed, the 

calculations are simplified considerably. We also saw that the costs were 

very similar regardless of whether the return independence assumption was 

applied or not. Differences were only noticeable when the return probability 

was close to 1. Finally, we saw that the influence of the return independence 

assumption decreased with a longer return lag period.  

ρ 
cr = 5  cr = 6  cr = 7  cr = 8  cr = 9  cr = 10 

S* P* Cost  S* P* Cost  S* P* Cost  S* P* Cost  S* P* Cost  S* P* Cost 

0.0 9 9 134.0  9 9 134.0  9 9 134.0  9 9 134.0  9 9 134.0  9 9 134.0 
0.1 15 14 133.5  15 14 134.2  15 14 135.0  15 14 135.7  15 14 136.5  15 14 137.2 
0.2 14 13 131.0  14 13 132.5  14 13 134.0  14 13 135.5  14 13 137.0  14 13 138.5 
0.3 13 11 128.2  13 11 130.4  13 11 132.7  13 11 134.9  13 11 137.2  13 11 139.4 
0.4 12 9 125.0  12 9 128.0  12 9 131.0  12 9 134.0  12 9 137.0  12 9 140.0 
0.5 12 9 121.6  12 9 125.4  12 9 129.1  12 9 132.8  12 9 136.5  12 9 140.3 
0.6 12 8 118.1  12 8 122.6  11 8 127.0  11 8 131.5  11 8 135.9  11 8 140.3 
0.7 12 7 114.3  12 7 119.6  11 7 124.7  11 7 129.9  11 7 135.1  11 7 140.3 
0.8 12 6 110.9  12 6 116.8  12 6 122.7  11 6 128.6  11 6 134.4  11 6 140.2 
0.9 11 5 108.7  11 5 115.2  11 5 121.6  11 5 128.1  11 5 134.5  10 5 140.9 
1.0 11 0 107.7  11 0 114.6  10 0 121.6  10 0 128.4  10 0 135.2  10 0 142.1 
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2. Product return probability: we saw that manufacturing and storage capacities 

in a system with stochastic demand are strongly dependent on return 

probability and that optimal manufacturing capacities can vary greatly 

depending on the return probability values studied. 
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Chapter 7 

Conclusions and future research topics 
 

 

 

 

7.1 Conclusions 

In our review of the literature, we saw numerous studies that have analyzed 

reverse logistics systems and others that have addressed the problem of 

determining optimal manufacturing and storage capacities in traditional 

systems. Only three of the studies analyzed (Kiesmüller et al. 2004, Vlachos et 

al. 2007, and Rubio and Corominas 2008), however, have taken into account 

the problem of determining optimal capacities in systems with reverse logistics. 

The difficulty of analyzing such systems probably explains why most studies 

have opted for simpler models. The aim of this thesis was to study optimal 

capacities in a reverse logistics environment to obtain results with real-life 

applications.  

We studied three models, each from a category of systems dealt with in 

traditional inventory management studies: 1) a system with uniform 

deterministic demand, 2) a system with cyclically variable deterministic demand, 

and 3) a system with stochastic demand. We then analyzed scenarios in which 

returns were known and unknown (stochastic) to assess how reverse logistics 

can influence optimal capacities in different demand and return scenarios.  
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In the introduction, we saw that return flows are different to flows in traditional 

logistics systems in several respects, of which the following influence to the 

models analyzed:  

• Uncertainty surrounding the quality and quantity of products returned 

• Varying quality from one returned product to the next 

• Production control and inventory management 

The random nature of returns is one reason why production control and 

inventory management are more complicated in reverse logistics systems, but it 

is not the only reason. Management strategies also become more complicated 

when there is interaction between reverse and traditional logistics systems, as 

is the case, for example, when new products and recovered products are 

indistinguishable from each other. 

Thanks to the models presented, we were able to study how these 

characteristics influence optimal capacities. Specifically, we studied the 

influence of inventory management in chapter 5, the influence of inventory 

management and the uncertainty surrounding return quantities in chapter 6, and 

the influence of the varying quality from returned products, the uncertainty 

surrounding return quantities and the inventory management in chapter 4. 

We used the same method to study the influence of reverse logistics on optimal 

capacities in each of the models studied. First of all, we calculated the optimal 

policy using a given cost function and assuming that capacities were fixed; 

second, we calculated the optimal capacity values that optimized cost; and 

third, we studied how optimal quantities varied with variations in reverse 

logistics parameters.  

Only a few of the publications that have studied the behaviour of reverse 

logistics systems have calculated optimal policies when analyzing the influence 

of certain factors (such as the influence of production delays on cost). Instead, 

they tend to restrict the analysis to a set of a fixed policies. In our case, 

however, we had to calculate optimal policies as we needed these results to 
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resolve the optimization problem in the second phase of our analysis. Had we 

restricted our search to a set of policies, the optimal costs calculated for some 

of the capacities might have been significantly different from the absolute 

optimal cost. 

In the above chapters, we have studied certain factors that are directly related 

to reverse logistics and affect the calculation of capacities: 

3. Product return probability

In a system with constant demand and stochastic returns, we saw that 

optimal manufacturing capacity was lower than demand. Although the sum 

of manufacturing and remanufacturing capacities is higher than demand, the 

random behaviour of returns makes it impossible to always meet demand. 

We contemplated the possibility of using an alternative supply channel and 

saw that: 

  

• The new channel was used when returns were insufficient to cover 

demand even though supply costs were very high compared to 

manufacturing costs.  

• The quantity of products supplied by the new channel was small 

compared to total demand. The system was therefore capable of meeting 

practically all the demand.  

The system would behave similarly if an alternative supplier was not used. In 

other words, manufacturing and remanufacturing system would not be 

capable of covering all the demand but the level of service would be very 

high. 

We saw that a deterministic system becomes stochastic once returns are 

introduced, meaning that the management of such a system must be 

adapted accordingly.  

We saw in chapter 6 that manufacturing and storage capacities in a system 

with stochastic demand are strongly dependent on return probability and that 
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optimal manufacturing capacities can vary greatly depending on the return 

probability values studied. 

4. Return lag period

On studying the system with deterministic demand and returns, we saw that 

optimal manufacturing capacity depends on the length of the return lag 

period. We also saw that storage capacity depends exclusively on 

manufacturing capacity, meaning that optimal storage capacity is also 

affected by the return lag period. 

  

5. Return independence hypothesis

In chapter 6, through a simulation study used to analyze the influence of 

return independence on optimal costs, we concluded that this influence is 

not significant. Indeed, the calculations are simplified considerably. We also 

saw that the costs were very similar regardless of whether the return 

independence assumption was applied or not. Differences were only 

noticeable when the return probability was close to 1. Finally, we saw that 

the influence of the return independence assumption decreased with a 

longer return lag period.  

  

6. Remanufacturing costs

The influence of remanufacturing costs on manufacturing capacities was 

analyzed in chapter 6. We saw that in a scenario with low remanufacturing 

costs compared to manufacturing costs, the optimal cost was obtained when 

the probability of return was 100%. When remanufacturing costs were high, 

the cost decreased with a decrease in return probability. 

  

The following points should be taken into account when attempting to optimize a 

system to which a reverse logistics setup is added: 

• Manufacturing and storage capacities should be adapted. We saw that 

optimal manufacturing and storage capacities are strongly dependent on 

several factors related with product returns. This means that when 
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reverse logistic is implemented, the optimal capacities may be different of 

those capacities corresponding to the system without reverse logistics. 

• Manufacturing policies and inventory management should be modified 

(note that these changes will affect the raw material purchase policy). 

• Remanufacturing capacities should be implemented. When optimal 

remanufacturing capacity is not zero, the company must decide where 

remanufacturing system have to be installed and how reverse logistics is 

implemented (collection of end-of-life product and transportation to 

remanufacturing facilities or proper disposing). 

• The relationship with suppliers should be modified as supply quantities 

and rhythms will change due to modifications on manufacturing policies 

and capacities.  

 

7.2 Future research topics 

The findings of this study could be used as a starting point for future studies. 

Such studies could: 

1. Analyze the influence of other factors related to reverse logistics on 

capacities. Examples are the effect of manufacturing and remanufacturing 

lead times, remanufacturing and storage costs, and disposal costs on 

capacities. Design and run a computational experiment to validate the 

performance and the sensitivity of each model.  

2. Analyze the behaviour of systems with unstable/nonseasonal demand and 

returns (average values, not constant over time).  

3. Convert the models described into decision-aid tools, for both strategic 

decisions (determination of capacities) and operational decisions 

(determination of optimal inventory policies). Such studies could evaluate 

different alternatives and scenarios. Using the models presented in this 

study, further studies should analyze elements to be incorporated into these 
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models and in the cost function to be optimized. The inclusion of certain 

elements (e.g. the possibility of backorders, and manufacturing and 

remanufacturing lead times) would make these models more applicable to 

real-life situations. 
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Appendix. Numerical results of examples 
 

The compact disc attached to this thesis contains several files corresponding to 

the examples described in chapters 4 and 6. The files contained in CD are the 

following: 

• Example_4.2.4.xls: optimal cost calculated for P = 0,…,100 ; R = 0,…, 

100 in example shown in Figure 2 (section 4.2.4.).   

• Example_6.3.2.xls: optimal cost for ρ = 0,…,1 P = 0,…, 20; S = 0,…, 20 

in example shown in section 6.3.2.  

• Example_6.3.2_SIM.xls: expected cost simulated in section 6.3.2. 

• Example_6.3.3.c_r_5.txt: optimal cost calculated in example of section 

6.3.3. for cr = 5 and ρ = 0,…,1 P = 0,…, 15; S = 0,…, 15  

• Example_6.3.3.c_r_6.txt: optimal cost calculated in example of section 

6.3.3. for cr = 6 and ρ = 0,…,1 P = 0,…, 15; S = 0,…, 15  

• Example_6.3.3.c_r_7.txt: optimal cost calculated in example of section 

6.3.3. for cr = 7 and ρ = 0,…,1 P = 0,…, 15; S = 0,…, 15  

• Example_6.3.3.c_r_8.txt: optimal cost calculated in example of section 

6.3.3. for cr = 8 and ρ = 0,…,1 P = 0,…, 15; S = 0,…, 15  

• Example_6.3.3.c_r_9.txt: optimal cost calculated in example of section 

6.3.3. for cr = 9 and ρ = 0,…,1 P = 0,…, 15; S = 0,…, 15  

• Example_6.3.3.c_r_10.txt: optimal cost calculated in example of section 

6.3.3. for cr = 10 and ρ = 0,…,1 P = 0,…, 15; S = 0,…, 15  

 


