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“T'O ME IT SEEMS THAT THOSE SCIENCES ARE VAIN
AND FULL OF ERROR WHICH ARE NOT BORN OF EXPE-
RIENCE, MOTHER OF ALL CERTAINTY, FIRST HAND EX-
PERIENCE WHICH IN ITS ORIGINS, OR MEANS, OR END
HAS PASSED THROUGH ONE OF THE FIVE SENSES.”

Leonardo Da Vinci 1452-1519.
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Abstract

This thesis is focused on the analysis and development of Ensembles of Neural Net-
works. An ensemble is a system in which a set of heterogeneous Artificial Neural
Networks are generated in order to outperform the Single-network based classifiers.
However, this proposed thesis differs from others related to ensembles of neural
networks [11, 2, B, 4], 5], [6, [7] since it is organized as follows.

In this thesis, firstly, an ensemble methods comparison has been introduced in order
to provide a rank-based list of the best ensemble methods existing in the bibli-
ography. This comparison has been split into two researches which represents two
chapters of the thesis.

Moreover, there is another important step related to the ensembles of neural net-
works which is how to combine the information provided by the neural networks in
the ensemble. In the bibliography, there are some alternatives to apply in order to
get an accurate combination of the information provided by the heterogeneous set
of networks. For this reason, a combiner comparison has also been introduced in this
thesis.

Furthermore, Ensembles of Neural Networks is only a kind of Multiple Classifier
System based on neural networks. However, there are other alternatives to generate
MCS based on neural networks which are quite different to Ensembles. The most
important systems are Stacked Generalization and Mixture of Experts. These two
systems will be also analysed in this thesis and new alternatives are proposed.

One of the results of the comparative research developed is a deep understanding
of the field of ensembles. So new ensemble methods and combiners can be designed
after analyzing the results provided by the research performed. Concretely, two new
ensemble methods, a new ensemble methodology called Cross-Validated Boosting
and two reordering algorithms are proposed in this thesis. The best overall results
are obtained by the ensemble methods proposed.

Finally, all the experiments done have been carried out on a common experimental
setup. The experiments have been repeated ten times on nineteen different datasets
from the UCI repository in order to validate the results. Moreover, the procedure
applied to set up specific parameters is quite similar in all the experiments per-
formed.

It is important to conclude by remarking that the main contributions are:

+ An experimental setup to prepare the experiments which can be applied
for further comparisons.

+ A guide to select the most appropriate methods to build and combine
ensembles and multiple classifiers systems.

+ New methods proposed to build ensembles and other multiple classifier
systems.
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Resumen

Esta tesis se centra en el analisis y desarrollo de Conjuntos de Redes Neuronales. Un
conjunto es un sistema en el que un numero determinado de Redes Neuronales Artifi-
ciales heterogéneas se entrenan con el fin de superar el rendimiendo de clasificadores
basados en una tunica red. Sin embargo, esta tesis difiere de las tesis relacionadas
con los conjuntos de redes neuronales de otros investigadores [I], 2, 3 4 [5, [6] [7] ya
que en ella se ha realizado lo que detallamos a continuacién.

En esta tesis, en primer lugar, se ha introducido una comparativa de métodos de
disenio de conjuntos con el fin de proporcionar una lista ordenada con los mejores
métodos de conjuntos. Esta comparativa se ha dividido en dos estudios los cuales se
representan con dos capitulos de esta tesis.

Ademas, hay otro paso importante relacionado con los conjuntos de redes neuronales
que es la forma de combinar la informacion proporcionada por las redes neuronales
individuales. Se pueden aplicar diferentes alternativas para conseguir una combi-
nacién apropiada de las redes del conjunto. Por esta razon, se ha realizado en esta
tesis una comparativa de combinadores.

Por otra parte, hay otras alternativas para generar sistemas basados en multiples
clasificadores que son muy diferentes a los métodos de conjuntos. Los sistemas més
importantes son Stacked Generalizacion vy Mizutre of Fxperts. Estos dos sistemas
seran también analizados en esta tesis.

Fruto de los conocimientos adquiridos es la propuesta de nuevos métodos de con-
juntos que aparecen en esta tesis. Concretamente estos son: dos nuevos métodos
Boosting, una metodologia de conjuntos llamada Cross-Validated Boosting y dos
algoritmos de reordenamiento. Los métodos de diseno de conjuntos que hemos prop-
uesto en esta tesis, en general, obtienen los mejores resultados.

Por 1ltimo, todos los experimentos realizados se han llevado a cabo en un marco
experimental comtn. Los experimentos se han repetido diez veces en diecinueve bases
de datos del repositorio UCI con el fin de validar los resultados. Por otra parte, el
procedimiento aplicado para establecer los parametros especificos es bastante similar
en todos los experimentos realizados.

Es importante concluir senalando que las principales contribuciones de esta tesis
son:

+ Un marco experimental para preparar los experimentos que se pueden
aplicar para otras futuras comparaciones.

+ Una guia para seleccionar los métodos mas adecuados para crear y com-
binar conjuntos de clasificadores y sistemas de multiples clasificadores.

+ Nuevos métodos de disenio de conjuntos de redes neuronales y otros Sis-
temas de Multiples Clasificadores.
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Validation Commuttee version 2”7 and “Inverse Boosting”

CVCv2TCAv1: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 27 and “Totally Corrective Adaptive Boosting
version 17

CVCv2TCAv2: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 2”7 and “Totally Corrective Adaptive Boosting
version 27

CVCv2WCB: New C(ross-Validated Boosting ensemble based on “Cross-
Validation Committee version 2”7 and “Weighted-Conservative Boosting”

CVCv3: Ensemble method “Cross-Validation Commitiee version 37

CVCv3ACB: New C(ross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3”7 and “Averaged-Conservative Boosting”

CVCv3Adaboost: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3” and “Adaptive Boosting”

CVCv3Aggreboost: New Cross-Validated Boosting ensemble based on
“Cross-Validation Committee version 3”7 and “Aggressive Boosting”

CVCv3ARCxz4: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3”7 and “Arcing Classifier”

CVCv3Aveboost: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3”7 and “Awveraged Boosting”

CVCv3Aveboost2: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3” and “Awveraged Boosting version 27

CVCv3Conserboost: New Cross-Validated Boosting ensemble based on
“Cross-Validation Committee version 3”7 and “Conservative Boosting”
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CVCv3Inverboost: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3” and “Inverse Boosting”

CVCv3TCAv1: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3”7 and “Totally Corrective Adaptive Boosting
version 17

CVCv3TCAv2: New Cross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3”7 and “Totally Corrective Adaptive Boosting
version 27

CVCv3WCB: New C(ross-Validated Boosting ensemble based on “Cross-
Validation Committee version 3”7 and “Weighted-Conservative Boosting”

DAN: Combiner “Dynamically Averaged Networks”

DA Nv1: Combiner “Dynamically Averaged Networks version 17
DA Nv2: Combiner “Dynamically Averaged Networks version 27
DECO: Ensemble method “Decorrelated”

DP: Ensemble method “Disjoint Partitions”

DPR: Ensemble method “Disjoint Partitions with replications”

EENCL: Ensemble method “FEvolutionary Ensemble with Negative Correlation
Learning”

EENCL-BG: Ensemble method “Fvolutionary Ensemble with Negative Cor-
relation Learning, selecting the Best Generation”

EENCL-LG: Ensemble method “Fvolutionary Ensemble with Negative Cor-
relation Learning, selecting the Last Generation”

EN: Expert Network (in Mizture of Experts and Stacked Generalization mod-
els)

EVOL: Ensemble method “Ensembles Voting On-Line”
FSCL:“Frequency Sensitive Competitive Learning” (clustering algorithm)
GN': Gating Network (in Mizture of Experts model)

Inverboost: Ensemble method “Inverse Boosting”

IoP: Increase of Performance (measurement)

KNN: K-Nearest Neighbors

MCS': Multiple Classifiers System

MF: Multilayer Feedforward (network architecture)

MFSE: Simple Ensemble of Multilayer Feedforward Networks

MSE: Mean Squared Error
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NCL: Ensemble method “Negative Correlation Learning”

OLA: Ensemble method “Observational Learning Algorithm”

OP: Ensemble method “Querlapping Partitions”

OPR: Ensemble method “Querlapping Partitions with replications”
PER: Percentage of Error Reduction (measurement)

RBF: Radial Basis Functions (network architecture)

RBFSE: Simple Ensemble of Radial Basic Functions

RBFSE, in_max: Simple Ensemble of Radial Basic Functions with mix-max
normalization

RBFSE,,: Simple Ensemble of Radial Basic Functions with sum normaliza-
tion

RBFSE;p esnoia: Simple Ensemble of Radial Basic Functions with threshold
normalization

SE: Ensemble method “Simple Ensemble”

SE*: Special version of the ensemble method “Simple Ensemble”

SG: Stacked Generalization

SN: Single Network

STC': “Stacked Generalization” combiner

STC+: “Stacked Generalization plus” combiner

STCP: “Stacked Generalization plus” combiner

TCA: Ensemble method “Totally Corrective Adaptive Boosting”

TCAv1: Ensemble method “Totally Corrective Adaptive Boosting version 17
TCAv2: Ensemble method “Totally Corrective Adaptive Boosting version 27
UCT: University of California, Irvine

W. Awve: Combiner “Weighted Average”

W.Ave ddw: Combiner “Weighted Average with Data-Dependent Weights”
WCB: Ensemble method “Weighted-Conservative Boosting”

WTA: Combiner “Winner Takes All”
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CHAPTER 1. INTRODUCTION

1.1 Historical Background

The research on Artificial Neural Networks started in 1943 when McCulloch Pitts
discovered that an increase in computational resources could be obtained by com-
bining simple processing units [§]. Nowadays, some ideas he suggested are still being
used.

After a few years of research done by Donald O. Hebb [9], H. D. Block [10] and Frank
Rosenblatt [I1), 12], Minsky and Papert demonstrated in [I3] that the perceptron
has some limitations that do not allow it to solve non-linear separable classification
problems. A simple function like the XOR problem could not be implemented by a
perceptron.

In the 80’s, the research on the field of Neural Networks revived. In 1989 the director
of the Defense Advanced Research Projects Agency, henceforth DARPA, of United
States started funding projects related to Neural Networks. Moreover, John Hop-
field, a well-known American scientist, started working on the Neural Networks field
and published two important papers [14] 15]. Furthermore, David B. Parker [10]
and Yann LeCun [I7] proposed simultaneously a new learning algorithm to train
neural networks which could solve non-linear functions. This algorithm was called
Backpropagation and the XOR problem could be solved with it.

Finally, in June 1987 the First International Joint Conference on Neural Networks,
also known as IJCNN, took place in Washington, USA. Then, this research field was
consolidated by other important publications and conferences.

1.2 Motivation and Objectives

Although a neural network can be used for signal processing and data segmenta-
tion, among other disciplines, in the current research they are going to be used
to solve classification problems. Moreover, there are some areas in which a single
neural network can be applied as medicine, trade, statistics, among others, as indi-
cated in references [18| [19]. However, important improvements are being done in the
field called Multiple Classifiers Systems (MCS) based on neural networks. Better
results in classification can be obtained if a set of different networks collaborate, in
a cooperative or in a competitive way, in order to solve a problem.

Analogously, in the real world, humans and other biological systems tend to col-
laborate, in some different ways, in order to achieve a main goal or a portion of
it as shown in the next figures. Sometimes, collaboration requires strict rules or a
centered supervision.

Concretely, figure (a) shows some firefighters collaborating in order to extinguish
a fire. Although all of them are cooperating and sharing the same goal, some fire-
fighters are close to the fire whereas there are others on a helicopter (although they
do not appear on the picture). They are not doing exactly the same, but they share
the same objective. This is an example of cooperation in which all the elements, in
this case firefighters, are solving the same problem.
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Figure 1.1: Two different collaborations

Figure (b) shows a flat or an office which is being rebuilt. This figure is quite
representative because there are bricklayers, plumbers, electricians and painters per-
forming specific tasks which are part of a bigger task, the repair of the flat. This is
an example of cooperation in which each element is solving a specific part of a task.

In both cases, there is at least a supervisor who controls the elements of the system.
There is a team or a person who coordinates the firefighters, specially in severe
cases. In the case of the office, two people are clearly supervising the jobs done in
the office.

Nowadays, some advances in classifiers are given by different kinds of Multiple Clas-
sifier Systems. There are cooperative and competitive models which can be suc-
cessfully applied to neural networks in order to generate accurate classifiers. These
models are inherited by our nature and our society because cooperating and collab-
orating is the first option to overcome big problems in daily life. We consider that
Multiple Classifier Systems based on neural networks are quite interesting so they
should be deeply analysed and compared. Moreover, an appropriate mechanism to
fuse the information provided by the networks should be also strongly considered
for a deep study as an important part of the design of a MCS.

However, the proposed methods in the literature, to design or combine the networks
of an ensemble, are introduced without performing an exhaustive or representative
comparison with other traditional methods. In most of the cases, there are only
references to Bagging and Boosting approaches as important ensemble methods.
Moreover, the criteria to setup the experiments and validate the results depends on
the author. So comparing the methods that have been proposed in the bibliography
is nearly impossible with the results provided by each author, even if the same
datasets were used. Two methods can not be directly compared if the experimental
setup differs.

4
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Additionally, some recent ensemble methods or combiners are proposed exclusively
to solve an own specific problem. These proposals do not include information about
the accuracy of the proposed system on other problems or datasets. So comparing
these new methods to traditional ones is impossible.

Furthermore, there are a huge number of methods to design and build ensembles of
neural networks. Also, the research on ensembles is still important as recent papers
published in the most important conferences on neural networks show.

For these exposed reasons, we think that the importance of the proposal of new
methods is highly reduced if there is not an objective and robust basis to measure
the accuracy or performance of the proposed method and to establish the rules for
a further comparison with other methodologies.

We think that it is necessary to perform an exhaustive study of the different ensemble
methods and ensemble combiners proposed in the bibliography. On the one hand,
we will establish the basis and criteria to measure the accuracy of ensembles. On
the other hand, we will propose a rank based list of the best ensemble alternatives
according to its performance.

Finally, the study of traditional ensemble methods and other models improves the
knowledge on this field. So the proposal of new ensembles is easier and possible. In
this thesis, new ensemble alternatives and models have been proposed by modifying a
traditional ensemble or by mixing some different approaches into a single procedure.

We can conclude by remarking that the main objectives of this thesis originally were:

+ Perform a complete comparison of methods to design/build Multiple Clas-
sifiers Systems. A high number of alternatives will be analyzed and their
performance will be tested carrying out a common experimental setup.

+ Perform a deep comparison on ensembles combiners. Similarly, the com-
parison among combiners will not be reduced to simple or well known
procedures. Some methodologies will be analyzed and tested.

+ Analyze more complex Multiple Classifier Systems, such as Stacked Gener-
alization and Mixzture of Fxperts, and adapt them to the ensemble approach
if possible.

+ Design new ensemble methods. In this thesis, we propose some new ensem-
ble variants, a new ensemble methodology called Cross-Validated Boosting
and two reordering algorithms.

1.3 Tools

A high number of alternatives to generate multiple classifiers systems along with
ensemble combiners have been implemented to develop the current dissertation. To
carry out these experiments, a large capacity of calculus and digital storage have
been required.
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Nowadays, the Neural Networks and Soft Computing research group (NN&SC) of
Universitat Jaume I has several computers in the laboratory T1-1114-DL (figure
, which are powered by Intel Xeon processor, exclusively for research tasks.
Moreover, each computer have enough main memory to run the experiments and
enough secondary memory to temporally store the data generated. Finally, there are
two RAID 5 systems to keep the generated data before storing it on DDS/ tapes.

Recently, some new computers based on Intel Core Quad and Intel i7 technology
have been added to the laboratory so the computational capacity has been highly in-
creased. Moreover, a new digital LTO2 tape recorder has been bought to definitively
store the generated data. Finally, a new 3GB RAID 5 system has been introduced
in a Xeon computer to temporally store the data.

The laboratory equipment has been shared with other members of the Neural Net-
works and Soft Computing group and undergraduated students. Concretely, Maria
del Carmen Ortiz Gomez was researching on the optimization of the RBF network
design for her PhD thesis whereas Elena Prades Carceller performed some experi-
ments for her final undergraduated project.

The supervisors of this thesis, Carlos Antonio Herndndez Espinosa and Maria de
las Mercedes Ferndndez Redondo, have also performed some experiments related to
different projects in the laboratory.

-

Gigabit LAN

| Intel Xeon Servers

| ]

Figure 1.2: NN&SC' Laboratory
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The programming language chosen to implement the simulations is MatLab. Mat-
Lab is a development system whose operations on vectors and matrices are highly
optimized so it perfectly fits on developing neural networks. Arithmetical operations
related to high-sized matrices are often required in the training procedure of neural
networks, [20].

Finally, only free software has been utilized in order to prepare this thesis and the
published papers. IfTEX has been used to write the thesis whereas the figures, plots,
graphs and diagrams have been prepared with Open Office. Some books and manuals
related to IXTEX [21), 22], 23] and Open Office have been reviewed.

1.4 Contributions

All the main objectives previously described have been successfully reached as it
is shown in this thesis. The main contributions, in a general way, derived from the
research performed are:

+ A base to prepare the experiments and simulations for further comparisons
is proposed in this thesis. This procedure is better than a criteria based
on each author, because when a new method is proposed their results can
be easily compared with the rest of the methods employed in this thesis in
a common experimental configuration, like the setup we propose and has
been utilized.

+ A guide to select the most appropriate methods to design ensembles and
multiple classifiers systems. In the conclusions chapter, a reduced list of
methods or models to build ensembles and Multiple Classifier Systems
(MCS) is proposed as methods or models that should be seriously consid-
ered for classification tasks. This recommendation is the final conclusion
of the comparisons done.

+ A ranking of the best combiners, the procedures to fuse the networks which
fit better on a wide number of databases and ensemble alternatives.

+ New methods to build ensembles and multiple classifier systems. After
reviewing and implementing traditional alternatives, new ones have been
proposed. Some of this new variants have provided excellent results on sev-
eral datasets and they also are on the top of the best performing ensembles
shown in the comparison ranking.

+ New combiners applied to ensembles of neural networks. The experiments
done in this thesis show that some of these new ways used to fuse the
networks of an ensembles have improved the performance of the original
ensembles.

Furthermore, the global research done in this thesis has been published in the most
important conferences as we will show in the last chapter related to the general
conclusions.
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1.5 Thesis outline

The rest of this thesis is organized as follows:

+ Concepts and first experiments related to Pattern Recognition, Neural Net-
works Architectures and Multiple Classifier Systems will be reviewed in
chapters [2 and [3]

+ Chapters [4 and [5] will be focused on the comparison of methods to design
ensembles of neural networks. The ensemble methods analyzed have been
divided into two categories depending on their nature. In the first category,
the ensemble variants analyzed are those in which the training algorithm
or network structure is modified. The second category is based on other
alternatives in which the modifications are applied to the learning set.

+ Chapter [6] will deal with the procedures used to combine ensembles of
neural networks. In this chapter, the combiners reviewed will be applied
to the most representative ensemble methods.

+ Some reordering procedures of the training set will be also applied to the
traditional ensembles in chapter [7} These reordering procedures are pro-
posed in this thesis and they will randomly alter the sequence of patterns
so the training will not be viced with the same sequence. They add diver-
sity to the different networks of the ensemble.

+ Some new boosting variants have also been proposed and they will be
described and analyzed in chapter [§ Firstly, some basic improvements
are proposed and applied to boosting. Finally, we successfully introduce
a completely new methodology in which Boosting is mixed in another
important ensemble approach, Cross-Validation.

+ Other Multiple Classifier Systems will be analyzed in chapters [9] and [10]
The Stacked Generalization model is described and studied as a Multiple
Classifier System MCS and as an ensemble combiner in the first chapter
whereas the second chapter will be focused on the Mixture of Experts
model.

+ Finally, the last chapter will provide the general conclusions and we will
describe some lines of future work.

+ The appendixes will show:

+ The description of the datasets used in the experiments per-
formed in this thesis.

4+ The specific parameters applied in the experiments for the net-
works, ensembles and more complex models.

4+ The complete raw results obtained by the ensembles and MCS
we have built.
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CHAPTER 2. PATTERN RECOGNITION WITH ARTIFICIAL NEURAL NETWORKS

2.1 Introduction

The current chapter will be focused on describing the basic characteristics of Artifi-
cial Neural Networks, henceforth ANN, when they are applied to solve classification
problems. Firstly, some preliminary definitions will be shown. Secondly, the two most
widely used architectures along with the process to train them will be described:
Multilayer Feedforward and Radial Basis Functions.

2.2 Preliminar definitions

Here, some basic concepts related to neural networks will be defined and introduced.

2.2.1 Pattern recognition and Classification

Defining Pattern Recognition is not a simple task, in reference [24] we can see the
following interesting definition:

“Pattern recognition is about assigning labels to objects. Objects are
described by a set of measurements called also attributes or features.”

A pattern is a set of attributes that represent an object or situation from the real
world whereas the label represents the class which contains this object along with
similar objects.

Pattern recognition can be seen as the act of processing raw data and taking a
decision based on the category of the data. In classification problems, a classifier
assigns the most appropriate class label to a pattern.

2.2.2 Artificial Neural Networks

It is a complex task to define exactly what a neural network is. There are some
definitions that depend on the viewpoint of the author.

A basic definition of an artificial neural network can be found in [25]:

“A neural network is a processing device, either an algorithm, or actual
hardware, whose design was motivated by the design and functioning of
human brains and components thereof.”

In [26], an artificial neural network is defined as follows:

“An ANN is a network of many very simple processors (units), each pos-
sibly having a local memory. The units are connected by unidirectional
communication channels (connections), which carry numeric (as opposed
to symbolic) data. The units operate only on their local data and on the
inputs they receive via the connections.”

The first definition described the basic functionality of an artificial neural network.
The second one focuses on the elements which process the information and their
interconnections. However, there are some gaps in those definitions because the
learning process is not specified and there are not any limitations in its structure.

11
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Artificial neural networks will be used to solve classification problems in this thesis.
However, they can also be used signal processing or data segmentation.

2.2.3 Network Architecture

The network architecture specifies internal units and how they are organized. Re-
viewing the bibliography it can be seen that the most widely used architectures of
neural networks are the following ones:

£ Multilayer Feedforward.

+ Radial Basis Functions.

+ Kohonen self-organizing network.
+ Hopfield network.

+ Boltzmann machines.

£ Neuro-fuzzy networks.

Although there is an important number of alternatives, Multilayer Feedforward net-
works, henceforth MF, and Radial Basis Functions, henceforth RBF, will be re-
searched in this thesis. Both selected architectures are well known and they are the
most extended in the bibliography. Their architecture specifications along with the
corresponding learning procedures will be reviewed in this chapter.

2.2.4 Learning process

There are some classification systems, like the artificial neural networks studied in
this chapter, that classify data based on a priori knowledge. In the case of artificial
neural networks, this a priori knowledge is given by the learning process.

During the learning process, known patterns of a particular classification problem
are presented to the network in order to improve its performance and its general-
ization ability. The generalization capability is the ability to correctly respond to
patterns which were not used during the training process. Usually, an optimization
function method based on gradient descent is applied in order to minimize the error
or maximize the accuracy of the network.

The learning process can be Supervised or Not supervised. A learning process is
Supervised when the class label of the patterns presented to the network is known
and used in the training process. If the class label is unknown or unused, the learn-
ing process is Not supervised. The most important training algorithms, like Back-
propagation, are Supervised. The not supervised learning processes are often used,
for instance, to know how the pattern are distributed on the input space.

This thesis will be centered on neural networks trained with supervised learning algo-
rithms. However, some ensemble combiners and MCS models will use not supervised
learning algorithms.

12
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2.3 Artificial Neural Networks

As we mentioned previously, we are going to work with Artificial Neural Networks
in the case of solving classification problems. In this section the internal operation of
ANNSs and the two most widely used network architectures along with their training
algorithms are going to be described.

2.3.1 Neurons

The biologic neurons are the information process elements of the human brain and
they are strongly interconnected. A biological neuron is composed by three main
components: The dendrites, the soma and the axon. The dendrites of a neuron are
cellular extensions with many branches which send to the soma the electric signals
received. The soma is the central part of the neuron. Its main task is processing all
the signals received. The axon carries the output nerve signals away from the soma.
Many neurons have only one axon, but this axon may undergo extensive branching,
enabling communication with many target neurons. The synapses are specialized
structures where chemicals neurotransmitter are released in order to communicate
with target neurons. In figure [2.1] a graphical description of a neuron and their
interconnection is shown.

Figure 2.1: Biologic Neurons - Structure and Interconnection

On the other hand, the artificial neurons try to imitate the biological neurons be-
havior. The artificial neurons receive some values from the input sensors or other
artificial neurons and these values are mathematically processed in order to get an
output value.

In figure a simple artificial neuron model is shown. In this model, a transfer
function ¢ is applied to the summatory of the weighted values arriving from the
input sensors.

13
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Figure 2.2: Artificial neuron description

The most frequently used transfer functions are the following ones:

+ The Sigmoid transfer function:
B 1
T+ exp(=¢)

+ The Identity transfer function:

$ia (§) =€ (2.2)
+ The Step transfer function:

Psig (€) (2.1)

Gstep (£) = { g): thflejvv?se, (2:3)
It has been demonstrated that a Multilayer Feedforward network with a single hid-
den layer and step nodes can approximate any function with a specified precision.
Unfortunately, the most important training algorithms, like Backpropagation, re-
quire the use of a derivative transfer function and it is not possible to calculate the
derivate of the step function. The sigmoid transfer function has a similar behavior
to the step function, as it can be seen in figure [2.3} and it is possible to calculate its
derivate. For these reasons, the sigmoid transfer function is the most often used in
some neural networks.

Sigmoid Identity Step

0©) 1 T T 0 1 T T i 0@ 1

o
ywo
ywo

Figure 2.3: Graphical representation of the different transfer functions
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2.3.2 The Multilayer Feedforward architecture

The Multilayer Feedforward architecture, henceforth MF, is one of the most extended
network topologies, we can see the full description in [I§] and [19]. In a MF network,
the neurons are organized in independent layers. Each layer is composed by a few
independent neurons which only process the information provided by the elements
of the previous layer. Once the information is processed, the results are sent to the
next layer.

The MF network is composed by the following layers:
+ Input layer.
+ One or several Hidden layers.
+ Output layer.

The input layer is the layer which transmits the input information of the incoming
pattern to the hidden layers. The number of neurons of this layer corresponds to the
number of input parameters or characteristics of the problem. The identity transfer
function is applied to the neurons of this layer.

The hidden layers are in charge of processing the information coming from the
previous layer. The sigmoid transfer function is applied to the neurons of these
layers. The number of units depends on the classification problem.

The output layer is the layer which processes the information provided by the last
hidden layer. This layer provides the final output of the classification process by
applying the sigmoid transfer unit to each neuron of the layer. The number of units
corresponds to the number of output parameters or classes of the problem.

Although a MF network can be composed by several hidden layers, a single hidden
layer is generally enough. A MF with a single hidden layer and with step nodes can
approximate any function with a defined precision |27, 28]. In this thesis we will use
in our experiments a single hidden layered version of the MF network with sigmoid
nodes.

Furthermore, the connections between the input layer and the hidden layer, and
the connections between the hidden layer and the output layer are weighted. These
weighted connections will be denoted as wih; ; and who,, respectively.

A learning process, also called training, has to be applied to establish the appropriate
values of the connection weights. The first step consists on setting random values to
these weights. Then an iterative training algorithm is applied in order to adjust the
weights and make them to converge to an ‘optimal’ status. Usually, these training
algorithms are based on gradient descend.

Finally, the diagram of the Multilayer Feedforward network architecture is shown in

figure

15
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Y

X

Figure 2.4: Multilayer Feedforward Network

For the input layer, the input values, iz, and the output values, 70, correspond to
the value of the input parameters because the identity transfer function is applied
in the input layer units.

1; = 10; = X; (2.4)

For the hidden layer, the input values, Az, and the output values, ho, are given
by equations 2.5 and 2.6 We can notice in equation 2.6 how the sigmoid transfer

function is applied.
Ninputs

i=1

Where 0; is a threshold value which is adapted during the training procedure.
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b 1

T 1y exp(—hi;)
For the output layer, the input values, o7, and the output values, oo (also denotated
by y), are given by equations and . We can also notice in equation how the
sigmoid transfer function is applied. Analogously, & in equation is a threshold
value which is also adapted during the training procedure.

(2.6)

Nhidden
ol = Z whoj, - hoj + & (2.7)
j=1
1
Yk = 00} = (2.8)

1+ exp(—oir)
Where:

+ Ninputs (Vi in the previous figure) is the number of input parameters of
the problem.

& Npidgdgen (Npig in the previous figure) is the number of units of the hidden
layer.

+ Nogsses (Noy in the previous figure) is the number of classes of the problem.

+ wih; ; corresponds to the value of the weighted connection between neuron
1 of the input layer and neuron j of the hidden layer.

+ who;; corresponds to the value of the weighted connection between neuron
j of the hidden layer and neuron k of the output layer.

In the previous equations, we can notice that the input value of the neurons of the
hidden layer and output layer, hi; and oij, corresponds to the weighted summatory
of the output of the previous layer plus a threshold value.

To implement the threshold values in a practical way, a special neuron is added to
its input layer and to the hidden layer. This special neuron always have the value
1 at output so the threshold values always correspond to the value of the weighted
connections of this neuron. In this way, the equations of the weights of the training
algorithm can also be applied to the thresholds.

Once the output of the network is calculated, the class to which the pattern x
corresponds is determined by equation [2.9]

Class(z) = argmax (y.(x)) (2.9)

c=1,...,Nclasses

With this equation we calculate the predicted class for an input pattern x and the
process of recognition has finished. The function arg maz represents the argument,
¢, with maximum value, y.(x). In this case, the pattern x belongs to the class ¢
whose associated output y. has the highest value.

17
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2.3.3 Training a Multilayer Feedforward Network

Backpropagation is a supervised learning algorithm commonly applied to train MF
networks. The learning process with this algorithm is based on the minimization of
the Mean Squared Error (MSE). This error, denoted in equation [2.10, measures the
difference between the output provided by the network for pattern x, y(z), and the
desired output or target of the pattern x in the training set, d(z).

Error(z) = % : ZC: (de(z) — ye(z))? (2.10)

Where the desired output d is given by:

d.(x) =

{ 1 if z € class ¢ (2.11)

0 otherwise

The algorithmic description of the learning procedure is described in algorithm [2.1]
Whereas a graphical representation of an epoch is shown in figure

Algorithm 2.1 MF Network Training{7" ,V'}
Set initial weights randomly
for e =1 to epochs do
for = 1 to Npatterns do
Adjust the value of the weights who and wih
end for
Calculate M SE over validation set V'
Save epoch weights and calculated validation MSE
end for
Select epoch with lowest validation MSFE
Assign best epoch configuration to the network

wi h(t) who(t)

oty L

Y Y y
E)ackpropagatiorﬂ

|

7 wi h(t+1) who(t+1)

Figure 2.5: Graphical description of an iteration of Backpropagation
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In Backpropagation, equation [2.12] is applied in order to adjust the weights of the
MF networks.

OError
ow

Where 7 is the adaptation step, W is a particular weight and « is the momentum
rate. Evaluating the derivate, equation is obtained to adjust the weights of the
connections between the hidden layer and the output layer.

OError () = OError
ow N Owho, i,

Where ho; is the output of the j-th hidden node (2.6) and:
O = (di —yr) - (1 — yg) -y (2.14)

Furthermore, equation [2.15| can be applied to adjust the weights of the connections
between the input layer and the hidden layer.

W(t+1)=W(t)—n

() +a- (W(t) - W(t-1)) (2.12)

(t) = =0y - ho; (2.13)

Noutput
32’%’;"’" (t) = gi:ZO: (t) = — (hoj (1= hoj) - hz_‘; S - whojﬁ) - x; (2.15)
To perform the experiments, the original datasets of each database have been divided
into three different subsets. The first set is the training set 1" which is used to adapt
the weights whereas the second set is the validation set V' which is used to select the
network configuration with the best estimated generalization capability. Finally, the
third set is the test set T'ST" which is used to obtain the accuracy of the network
and the final results.

When we refer to the original learning set L, we really refer to the union of the
training and validation sets, the only sets which are involved on the learning proce-
dure. A graphical description of the procedure applied to generate the specific sets
is shown in figure [2.6

. OD - original dataset |

80% of paW Wf patterns

L - learning set| [ T3S - test set

80% of paW\ZO‘%‘Of patterns

| T-training set | |V - validation set|

Figure 2.6: Generating the Training, Validation and Test sets

The major problem of this training algorithm is overfitting. When overfitting occurs,
the network is only able to correctly classify the patterns from the training set and
the network accuracy drastically decreases with new patterns which were not used
in training.
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Figure depicts an example of overfitting. In the figure, we can notice how the
MSE on the validation set increases from 1000 to 5000 epochs. For this reason the
final network is based on the M .SFE on the validation set.

0.13 — Validation MSE
— Training MSE
X Best Epoch

0.11f b

0.091 b

MSE

0.07 M

0.05¥ R

0.03 1000 2000 3000 4000 5000

Epoch

Figure 2.7: Mean Square Error on Training and Validation sets

2.3.4 The Radial Basis Functions architecture

The Radial Basis Functions, henceforth RBF, is another network architecture com-
monly applied to classification problems. It has been demonstrated that, in some
cases, the results that have been obtained with RBF networks are better than the re-
sults of MF networks. Moreover, the training of an RBF network can be faster com-
pared to the MF' architecture when a not supervised training algorithm is employed
for the hidden layer of the RBF. For these reasons, the RBF network architecture
has to be seriously considered to solve classification problems.

In this network topology, the basic elements are grouped into three layers:
+ The input layer.

+ The hidden layer.
+ The output later.

The transfer functions used in RBF networks are totally different to the traditional
functions we have previously defined. A gaussian transfer function is applied to
the neurons of the hidden layer, also called Clusters or Gaussian Units (GU). In
the input and output layers, the identity transfer function is applied to the neurons.
Moreover, the interconnections between the input and hidden layer are not weighted.

In both architectures, MF and RBF, there is an input layer which, sometimes, is
omitted in the specifications. However, it is hard to believe that a neuron has a
vectorial input, as the hidden units in RBF, according to biology, for this reason we
have included the input layer in RBF networks.
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Y

X

Figure 2.8: Radial Basis Functions Network Structure

The output of a RBF network is determined by the following equation:

Ncluste'rs

Jj=1

Where h; is the output of the i-th cluster (unit of the hidden layer).

In [29, B30] it is used a sensitivity analysis to show that the traditional Gaussian
Unit, called exponential generator function in the papers, of the RBF network has
low sensitivity for gradient descent training for a wide range of values of the widths,
this parameter should be tuned carefully. As an alternative, two different transfer
functions were proposed, called in the papers lineal generator function and cosine
generator function. For this reason, we describe the following three equations that
can be employed to calculate the output of the clusters.
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+ The Fxponential generator transfer function:

2
h; = exp (—M) (2.17)

0;

+ The Linear generator transfer function:

1

1 o1
h; = ( 5 ) (2.18)
lz = vl|” + 2

+ The Cosine generator transfer function:

hi = &
Vlle =l + a2

(2.19)

Where:
4 v is the center of the radial function.

4 In the Fxponential generator function, o is the width of the gaussian func-
tion. This value is obtained by trial an error.

+ In the linear generator function, v is a parameter that has to be empirically
set by trial an error and the configuration m = 3 has been determined in
some papers as optimal.

+ In the cosine generator function, a is a trainable parameter that has to be
adjusted during the learning procedure.

2.3.5 Training a RBF network

The learning process of a RBF network is not as simple as in the case of MF
networks. The training procedure is more complex because the weights, the centers
and the widths of the gaussian functions have to be adjusted. There are two main
methodologies to train a RBF network.

The first methodology consists in dividing the training procedure into two different
steps. In the first step, the value of the centers and widths is determined by applying
a common non-supervised algorithm. In the second step, the centers and widths are
kept unchanged and the weights w are modified by a supervised training algorithm.
The learning process is quicker when the training is divided into these two steps, but
the performance of the final network highly depends on the success of determining
the center and widths of the gaussian functions. Some typical two-stepped algorithms
can be found in [31], 32, [33], 34].

The second methodology consists of applying a global training algorithm in order to
adjust all the trainable parameters. This methodology is similar to Backpropagation
so it has the same drawbacks, for instance, high computational cost and low training
speed. However, some authors have successfully applied it [29, [35], 36}, 30].
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2.3.6 Training RBF with exponential generator units

After some experiments performed, the gaussian function (Ezponential generator
Function) was chosen to be employed in order to generate RBF networks [37].
The low sensitivity for gradient descent training in the widths of the gaussians
described in [29 [30] was omitted by setting the value of the widths by a trial
and error procedure. And according to our experiments with this last procedure,
the performance of the three generator functions was similar and superior to the
training in two steps (non-supervided, supervised) [37, 38]. So we finally decided to
employ the usual gaussian transfer functions in our experiments trained by gradient
descent.

Algorithm 2.2 RBF Network Training{T" ,V'}

Set initial weights randomly
for e =1 to epochs do

for =1 to Npatterns do

Adjust the value of the centers v and weights w

end for

Calculate M SFE over validation set V'

Save epoch weights and calculated M SE
end for
Select epoch with lowest validation MSFE
Assign best epoch configuration to the network

The equation to adjust the value of the weights of the output layer is:

Netusters

Aw, =17 - Z en kI (2.20)
k=1

Where 7 is the adaptation step and £° is the difference between the output of the
network and the desired output and h; is the output of the gaussian units. The
equation applied to adapt the centers of the gaussian units is the following one:

Nclusters

Av, =1n- Z 5’;7,9 (xp — vg) (2.21)

k=1

Being € determined by equations and [2.23]
Nclasses

hoo_ 0
Epk = Qg * g ik Wig (2.22)
i=1

2 e — vq|”
Qg =~ rexp |~ (2.23)

g

Finally, the width of the gaussian is set to an equal value for all clusters and it is
obtained by trial and error.
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2.4 Comparing the network architectures studied

2.4.1 Experimental setup

In this first comparative study, the two included network architectures (MF and
RBF) and K-Nearest Neighbors (KNN) [39] are tested and their accuracy on some
classification problems is calculated. The main characteristics of this research are:

+ Nineteen datasets from the UCI Repository are used.
+ Two network architectures (MF and RBF) and KNN are compared.

+ The training parameters of the networks are optimized by a trial and error
procedure using the validation set.

+ The experiments are repeated ten times with each database with different
partitions of data in training, validation and test sets to get:

4+ The mean value of performance.
4+ The error rate by standard error theory.

The description of all the datasets used in the experiments can be found in appendix
[Al The training parameters for MF and RBF are in appendixes and [B.4]

2.4.2 Results

In this subsection, the performance of the MF and RBF networks on each database
is shown in table 2.1l

Table 2.1: Performance of the single network

Database MF-Net RBF-Net
aritm 75.6 = 0.7 75.2 + 0.6
bala 87.6 0.6 89.4 +0.7
band 72.4+1.0 724+ 1.5
bupa 58.3 £ 0.6 71.9+1.2
cred 85.6 = 0.5 87.14+0.5
derma 96.7+ 0.4 96.8 +0.4
ecoli 84.4 +£0.7 87.9+0.9
flare 82.14+0.3 81.5+ 0.6
glas 78.5+ 0.9 93+1
hear 82.0 £0.9 83.4+1.6
img 96.3 + 0.2 97 £ 0.3
ionos 87.9+0.7 90.6 +1
mok1 74.3+1.1 99.6 = 0.2
mok2 65.9 4+ 0.5 90.8+1
pima 76.7 = 0.6 77.1+£0.8
survi 74.2 + 0.8 76.4 £+ 1.6
vote 95.0+0.4 96.1 = 0.6
vowel 83.4 1+ 0.6 97.3+0.3
wdbc 97.44+0.3 97.1+0.2
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The performance shown in the previous table is calculated as the mean performance
of a single network after repeating the experiments ten times as described above.
The performance is the percentage of correctly classified patterns on the test set,
TST, and the error rate is given by equation [2.24]

std(Per formance)

7 (2.24)

Error =

Where std is the standard deviation of the performance after repeating the experi-
ments n times, in the experiments performed n is set to 10.

At first sight, it can be observed that, in general, the RBF network provides similar
or better results than the MF network. Moreover, there are some particular cases
in which the performance of the RBF' network is much better than the performance
of the MF network. For instance, the RBF network is much better than the MF
networks in datasets bupa, glas and two mok problems.

Furthermore, the performance of the K-Nearest Neighbor classifier has also been
tested on the datasets previously used. KNN is an instance-based classifier in which
classification is based on some distance or similarity function such as the Fuclidean
distance. Two instances far apart are less likely to belong to the same class than two
closely situated instances. The results of this classifier are shown in table 2.2 Four
different values for k& have been considered.

Table 2.2: Performance of K-Nearest Neighbors

Database k=1 k=3 k=25 k=9
aritm 61.8 +1.6 63.0 +1.3 61.7+0.9 62.6 £ 1.0
bala 79.0+1.1 81.8+0.9 84.9+0.8 7.8+ 1.0
band 65.1 +1.6 70.7 £ 1.2 71+£2 73.1+£0.8
bupa 63.7+ 1.6 61 +2 61.6 £1.8 624+1.7
cred 83.4+0.9 86.8 + 0.6 86.3 £ 0.7 87.1+0.5
derma 94.9 + 0.8 96.2 + 0.5 96.3 0.7 95.9+0.7
ecoli 81.9+1.3 86.0 + 0.8 85.4 +0.8 85.6 £ 1.3
flare 73.24+1.0 78.7+1.3 80.24+0.9 80.6 = 1.0
glas 90.2+1.3 86.4 + 1.6 86.0 + 1.3 83.4+14
hear 7494+ 1.5 78.6 £ 1.5 79.8+ 1.7 80.8+ 1.6
img 96.2 £ 0.2 94.9 4+ 0.3 94.6 £0.3 94.2 +£0.2
ionos 7.0+ 1.1 85.6 1.1 84.7+1.0 83.9+14
mok1 75.0 £ 1.3 81.6 1.4 75.8 £ 1.6 72.0 £ 1.8
mok2 775+1.6 80.0+1.3 799+1.4 75.8£0.9
pima 70.5 £ 1.2 71.7+£0.9 725+ 1.1 72.6 £ 0.8
survi 63.6 = 1.2 68.0+ 1.0 69.7 +1.2 73.1+1.0
vote 93.6 + 0.8 93.6 =0.5 93.5+0.5 93.3+0.4
vowel 96.6 = 0.5 91.4+1.0 85.1+0.8 73.0+1.1
wdbc 94.8 + 0.5 96.6 = 0.6 96.3 £0.5 96.6 = 0.5
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According to the previous table, the KNN classifiers provide similar or worse results
to MF networks in a few cases and they perform worse than RBF networks in
general. The main advantage of these classifiers is that they do not need to be
trained. Although research on statistical or decision-based classifiers as KNN is also
interesting, this thesis will be only focused on neural networks.

2.4.3 Analysis of the results

As it can be observed in table 2.1 the RBF network provides better results than
the MF network in general. But we will consider both architectures for further
experiments.

However, there are other characteristics that should be seriously considered such
as the resources required to set the optimal training parameters and to train the
networks. These resources are related to the main memory and computational time
required to set the parameters and to train the networks.

The following table, table[2.3] shows the computational cost, the training time of the
networks with optimal parameters, and the memory required for both architectures.
These results have been obtained by running a single program on an Intel Core i7
processor. In this script, the different networks have been trained in serial, never
more than a network has been trained simultaneously.

Table 2.3: Training resources required

MF RBF
dataset time (sec) mem (MB) time (sec) mem (MB)
aritm 35.8 50.5 510.6 893

bala 45.7 6.6 78 20.3
band 28.6 38.8 108.4 131.5
bupa 37.6 7.1 53.2 20.7
cred 77.1 18.7 499.6 164.4
derma 4.8 1.3 446.2 518.9
ecoli 43 7.3 4353 3372.8
flare 137.9 11.9 22144 387.2
glas 9.6 1.9 201 282.2
hear 16.6 1.5 120.1 60.8
img 55.2 4.6 17986.1 2830
ionos 26.3 12 336 345.8
mok1 16 14 145.1 39
mok?2 44.5 10.4 536.4 174.7
pima 101.4 12.8 282.6 72.4
survi 75.3 9.6 133.6 17.2
vote 18.1 0.5 24.7 3.7
vowel 99.8 11.5 1776.1 887.6
wdbc 30.8 6.5 1714.3 1077.4
total 865 215.6 31520.1 11300.4
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According to the previous table, training an MF is, in general, faster than training
an RBF network by gradient descent. In fact, the time required to train a network for
all the datasets is only 15 minutes for MF networks whereas the same experiment on
RBF networks takes more than 8 hours. Moreover, the memory required for training
and definitively storing an evolution of the simulation is much higher for the case of
RBF networks. There are some datasets in which the memory required to train the
RBF network reach a size higher than one gigabyte whereas 50 megabytes is the
highest value of required memory for MF networks.

It is important to mention that the resources showed are related to training of a
single network with optimal parameters with a modern computer. However, tunning
the optimal parameters requires training several networks with different values of all
the training parameters for a large number of iterations. In other words, setting the
optimal parameters for both architectures is a long term task even if the experiments
are distributed in all the computers of our laboratory.

2.5 Conclusions

The application of neural networks in order to solve classification tasks has been
introduced in this chapter. In fact, two network architectures, MF and RBF, have
been described and some basic experiments with them have been performed.

The results of these basic experiments show that the classifiers based on RBF net-
works may be more accurate than the classifiers based on MF networks. However,
the computational cost and resources required to set the optimal parameters and to
train a single network is much lower for MF networks than for RBF networks.

Moreover, the statistical classifier K-Nearest Neighbors has also been implemented
and compared to MF and RBF networks. This statistical classifier is important
because it provides good results, it does not depend on any training parameter and
it does not require a training procedure. However, classifying a pattern is a little bit
slow since the pattern has to be compared to all the patterns of the training set. In
this thesis we will be focused on neural networks.

Finally, the most appropriate network architecture should be selected depending on
the dataset and its application. In further experiments, both network architectures
will be initially considered and applied. However, the majority of experiments will be
performed with the MF network due to its versatility and suitability on ensembles
of neural networks.
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CHAPTER 3. DESIGNING ENSEMBLES AND OTHER MCS

3.1 Introduction

In this chapter, ensembles of neural networks are introduced. This chapter is or-
ganized as follows. Firstly, some theoretical concepts related to the ensemble model
and other Multiple Classifier Systems will be introduced. Secondly, Simple Ensemble
will be described. Finally, some basic experiments are performed.

3.2 Preliminar definitions

Here, some basic concepts related to the research performed will be defined.

3.2.1 Multiple Classifier Systems

A Multiple Classifier System, also known as MCS, is a complex classification system
which is composed by simpler classifiers. The final output or prediction is based on
the information provided by the base classifiers.

The main idea is that a classification problem may be more easily solved by a set of
‘simple’ classifiers than with a unique and more complex classifier. As Kittler et al.
said [40] 41]:

“the sets of patterns misclassified by the different classifiers would not
necessarily overlap”

This sentence means that you could design a good classifier by creating an appro-
priate model which properly combines the information of different simple classifiers.

Reviewing the bibliography we can see that there are three major approaches or
models when we discuss about MCS, which are:

+ Ensembles of Classifers.
+ Modular Systems.
+ Multiple Level Classifiers.

Although these three approaches are important, the most important model is the
Ensemble of Classifiers that will be applied to Neural Networks in this thesis.

3.2.2 Ensembles of Neural Networks

The Ensemble model consists in training a set of neural networks with different
weight initialization or properties in the training process with the purpose of solving
a problem. Furthermore, the same network architecture is used in all the networks
of the ensemble and all the networks completely solve the whole problem. Finally,
once all the networks are trained, a suitable combiner is applied to calculate the
final output of the ensemble.

The process of designing an ensemble of neural networks consists of two main steps:
4+ The ensemble development.

4+ The determination of a suitable combiner.
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Figure 3.1: Ensemble Basic Diagram

In the first step, the development of the ensemble, the networks of the ensemble are
trained according to the specifications of the design alternative. In this case, the
diversity of the ensemble is generated by the method applied to build the ensemble.
Chapters 4] and 5| are focused on the methods to build ensembles of neural networks.

The second step, the determination of the suitable combiner, consists in selecting
the most accurate combiner for the generated ensemble. In chapter [0 procedures
to combine ensembles will be described and analyzed. Further, the Output average
described in equation is supposed to be the first option to combine the networks
of the ensemble when the building method does not require a specific combiner.

1 Nnetworks
yensemble (l‘) _ Z ynet (ZL') (3'1)
Nnetworks net—1

Output average is the simplest combiner and it averages the individual classifiers
outputs, y™¢, across the different classifiers, Npemworks- LThe notation of the vari-
ables shown in the previous chapter is modified by adding a superindex referring to
the network of the ensemble. The number of networks of the ensemble is given by
Nnetworks or Nnets'

3.2.3 Diversity and Neural Networks
The On-line version of the Cambridge Dictionary defines diversity as:

Diversity Noun. When many different types of things or people are included in
something.

In the MCS field, diversity is associated with the grade of dependence among the
base classifiers which form the whole classification system. It is clear that a set
of absolutely equal networks will commit the same errors in the problem and will
not improve the performance of a single network. Measuring the dependence of the
networks is not an easy task and some equations to measure the diversity of a MCS
can be found in the bibliography [42].

In this thesis, some different ensemble methods will be analyzed in which diversity
is applied in some different ways.
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3.3 Why Ensembles and MCS classify better?

As mentioned in chapter [, the MF network and the RBF network could approxi-
mate any function with a specified precision. Unfortunately, the ‘optimal’ classifier
is nearly impossible to be built in the real world. Some causes of this problem could
be:

+ The data set is finite, there might not be enough data.

+ Some important features of the problem might be omitted.
+ Noisy or imprecise data might be introduced.

+ Optimal training is NP-Hard for neural networks [43], 44].

Although some complex training algorithms could have been proposed to overcome
this drawback, in [45, [46] Ho expressed that the best solution may consist in com-
bining some simple classifiers in an effective way.

“Instead of looking for the best set of features and the best classifier, now
we look for the best set of classifiers and the best combination methods.
One can imagine that very soon we will be looking for the best set of
combination methods and then the best way to use them all. If we do not
take the change to review the fundamental problems arising from this
challenge, we are bound to be driven into such an infinite recurrence,
dragging along more and more complicated combination schemes and
theories and gradually loosing sight of the original problem.”

Some authors have defended the idea of combining some classifiers, neural networks
in our case, by giving theoretical demonstrations or by suggesting the main reasons
why a multiple classifier system might perform better than a single one [40} 4T, 47,
48, 149].

In this section the Tumer and Ghost framework and the Diettrich reasonings will be
introduced in order to justify our research on ensembles of artificial neural networks
for classification tasks.

3.3.1 Tumer and Ghosh framework

Tumer and Ghosh [47, 48] provided a theoretical framework for analyzing the com-
biner output average when the classifier outputs are an estimation of the posterior
probabilities of each class. This framework is shown in figure |3.2]

The output of a classifier for the ith class f;(z) is given by f;(xz) = pi(z) + ni(2)
where p;(z) is the posterior probability of class ¢ for a given input z, and n;(x) is
the associated error. The bayesian decision would be given to class ¢ for the pattern
x if pi(x) > pp(z) ¥V k #i.

Unfortunately, classifiers produce an output f; and not p; so there is an added error

Eqddeq over the bayesian error Fpgyesian- 1his composed error is given by:

Ei = EZayesian + Ecizdded (32)
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Figure 3.2: Tumer and Ghosh’s Framework

In the previous figure, the yellow shaded area corresponds to the bayesian error
whereas the orange shaded area corresponds to the expected added error. As we can
see, the bayesian error correspond to the posterior probabilities overlap and it can
not be reduced. Moreover, the expected added error is the error of a classifier in
addition to the bayesian error.

Tumer and Ghosh also suggested that the expected added error of an ensemble
Eensemble will decrease with an increase in the number of the different members

(Nnetworks) of the ensemble as shown in the following equation:

1
ensemble __
Eodded " = N Eqdded (3.3)
networks

Unfortunately, this equation can be only applied if the members of the ensemble are
totally independent. If the classifiers are correlated, the added error of an ensemble
is given by:

ensemble 1+5 Nnewr -1
Egpaeate = ](\7 t d st ) " Baddea (3.4)

Where ¢ denotes the correlation coefficient which ranges from 0 to 1. This value
denotes the degree of dependence of the networks. There are some methods and
measurements to calculate this coefficient as we can see in [42].

From this framework, we can conclude that the ensemble approach is quite inter-
esting because the error in classification decreases as new independent networks are
added to the ensemble.
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3.3.2 Diettrich reasonings

Dietterich identified in [49] the three major problems of a classification system based
on a single classifier and how an ensemble of classifiers could overcome them. In order
to define these problems, he assumed that all the possible classifiers where defined
into a classifiers space H.

The statistical problem: There can be classifiers with very different final configuration
and with the same accuracy. Combining predictions from these classifiers produces
a smoothing in the output space and reduces the risk of choosing a single poor
classifier, C; in figure |3.3] The main idea is that a classification system based only
on one classifier has the risk of being composed by the worst possible classifier. If the
classification system is composed by some classifiers (a typical MCS) the probability
of having the behavior of the worst classifier is much lower.

The computational problem: As mentioned above, the ‘optimal’ classifier if nearly
impossible to be built. It is known that an optimal training algorithm is NP-hard for
the case of neural networks [43],[44]. When a training algorithm based on the gradient
descent is applied, the final classifiers are susceptible to be in a local optima. If the
networks of an ensemble are properly combined, the ensemble may perform better
than any of the single networks without applying a complexer training algorithm

The representational problem: Although it has been suggested that the MF and RBF
networks are universal and any decision boundary can be represented by applying
them, the classifiers space H is limited because the training set is finite and the
‘optimal’ classifier, C' in figure [3.3] which can exactly represents the real decision
boundary could be outside H.

Figure |3.3| shows the graphical illustrations of the three arguments proposed by
Dietterich. The appearance of the figure has been adapted in this thesis.

statistical computational representational
H

Figure 3.3: Diettrich arguments

35



ENSEMBLES OF ANNS: ANALYSIS AND DEVELOPMENT OF DESIGN METHODS

3.4 How ensembles are grouped?

In this section we will classify the ensemble methods according to how diversity is
generated. First of all, the different ways of generating diversity will be reviewed.
Finally, the ensemble methods will be divided into two different approaches.

3.4.1 Sources of diversity

As we have previously mentioned, the classifiers of an ensemble are most useful when
they make independent errors. Furthermore, some authors defend that the error of
the MCS decreases as the ensemble diversity increases.

There are some sources to create different neural networks with a increase in the
diversity of the system. In figure we see some of them:

learning dataset

weight initialization
\ ) / target equation

training algorithm —~ diversity

/‘ — pattern modification

network structure

Figure 3.4: Sources of Diversity in Neural Networks

Weight initialization: If the networks of an ensemble have different starting points,
initial weight configurations, then the different networks can converge to different
local minima, having independent errors and the ensemble may provide a better
classification than any of the individual classifiers.

Learning dataset: If the learning datasets are different in each network, then the
space of possible classifiers is also different. The main problem of creating different
learning datasets is that the number of patterns in a particular dataset is usually
low so the different learning sets are similar.

Target equation and training algorithm: Traditionally, the target equation
applied with Backpropagation is the Mean Square Error but other target equations
that include information of the other networks in the ensemble can be also applied.

Pattern modification: The modification of the pattern information, input at-
tributes or class label, can be useful in some cases.

Network structure: The space of possible classifiers also depends on the internal
structure of the network. Using networks with different number of processing units
can be interesting. Moreover, the use of different values in the training parameters
can be useful.

Finally, we think that if all these sources of diversity are properly mixed, good
classification systems can be designed.
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3.4.2 Final classification

The alternatives to design ensembles of neural networks have been divided into two
major groups depending on how diversity is generated. These groups are:

+ Methods based on the modification of the training algorithm.
+ Methods based on the modification of the learning set.

The first group based on the modification of the training algorithm also includes
the methodologies based on alterations on the target equation or network structure.
Whereas the second group based on the modification of the learning set includes the
methodologies in which the training or validation sets or the patterns are altered.

Finally, the first category will be described and analyzed in chapter 4] whereas the
second category will be reviewed in chapter [f] Before describing these alternatives
to generate ensembles, Stmple Ensemble will be studied in this chapter.

3.5 Simple Ensemble

As has been previously described, the learning process of an artificial neural network
is based on minimizing a target function. A simple procedure to increase the diver-
sity of an ensemble consists in using several neural networks with different initial
values of the trainable parameters. Once the initial configuration is randomly set,
the network can be trained as a single network. Finally, a combiner as the Qutput
average described in equation |3.1| can be applied to combine the outputs. With this
ensemble method, known as Simple Ensemble, the networks of the ensemble converge
into different final configurations. The description of Simple Ensemble is shown in

algorithm [3.1]

Algorithm 3.1 Simple Ensemble {T V', Nycrworks }
Generate N, ctworks different seed values: seed;
for i =1 to Nyerworks dO

Random Generator Seed = seed;
ANN Training { 7', V', seed; }
end for
Save Ensemble Configuration

Although this is a simple method, it provides a considerable increase in performance
with respect to a single network. In figure [3.5, we can see a graphical example of
the relation between the number of networks in a ensemble and the accuracy of the
ensemble for the case of MF ensembles and dataset vowel. In this figure, we can
notice that the improvement in performance increases as new networks are added
to the ensemble. Unfortunately, this improvement tends to be softer and softer as
the number of networks increases, this behavior can be justified by equation (3.4 of
Tumer and Ghosh. In this case, we have that there is only one source of diversity
and it is limited. And the networks of the ensemble may tend to fall into a few
local optima. For these reasons, there is a limit in which adding new networks to an
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ensemble does not increase or increases slightly the performance of the classification
system.

Accuracy of Ensembles depending on the number of ANNs
100 — T T T T T T T T I Ensemble Performance
Single Net Performance
Ensemble Error rate

97.51

95~ b

Enesemble Success rate in Classification %

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ensemble Size - Number of ANNs

Figure 3.5: Example of the increase in performance. Ensembles of MF networks and
dataset vowel.

As it has been mentioned, the networks tend to fall into a few local optima due to the
characteristics of the ensemble method and to the problems derived from gradient
descent methods. Figure a) shows graphically the theoretical simple ensemble
in which all the networks converge into different configurations. In the worst case,
figure [3.6b), all the networks converge to the same local optima so the errors are
correlated and the networks are not independent. Finally, it also shows how the
networks converge in a typical simple ensemble, figure c).

Theoretical case worst case typical case

()

Figure 3.6: Representation of the Theoretical, Worst and Typical Simple Ensemble

Finally, the use of different initial values of the trainable parameters is assumed to
be used in all the methods to build ensembles of neural networks.
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3.6 First experiments on ensembles

3.6.1 Experimental setup

In this section, Simple Ensemble is tested with the two reviewed network architec-
tures, MF and RBF. The purpose of these experiments is to test in which archi-
tectures the use of ensembles improves the performance with respect to a single
network. The main characteristics of this research are:

+ Nineteen datasets from the UCI Repository.

+ Two network architectures employed: MF and RBF
+ Optimized training parameters.

+ Simple Ensemble applied to generate the ensembles.
+ One combiner applied: Output average.

+ Experiments repeated ten times with different partitions in training, vali-
dation and test sets:

+ Mean value of performance.
4+ FError rate by standard error.
+ Three general measurements applied to the comparison.
+ Mean Increase of Performance.
4+ Mean Percentage of Error Reduction.
4+ Paired Student’s t-test.

The description of the nineteen datasets used in the experiments can be found in
appendix [A] The optimized training parameters for the MF and RBF networks are
in appendixes and B.4] Finally, the general measurements applied to test the
behavior of Simple Ensemble are described in section [3.6.3]

3.6.2 Raw results

In this subsection, the performance of Simple Ensemble, using a MF and RBF
network, on each database is shown along with its error rate in tables |3.1] and
[3.2] respectively. We consider as performance the percentage of correctly classified
samples in the test set and the error in the performance is given by equation [2.24]
Moreover, the results obtained with a single network are also included.

At first sight, it can be observed that the analysis of the raw results is a tedious pro-
cedure because the amount of data to process is too high and it is difficult to obtain
general conclusions. This data should be simplified without loosing accuracy about
the general behavior of the ensembles. This is the main reason why the Increase of
Performance, the Percentage of Error Reduction and the Paired Student’s t-test are
applied in this thesis. These measurements will be described in subsection [3.6.3.1]
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Table 3.1: Performance - Simple Ensemble of MF networks

Database 1-net 3-net 9-net 20-net 40-net
aritm 75.6 £0.7 73.4+1 73.8£1.1 73.8 £ 1.1 73.8 1.1
bala 87.6 £0.6 96 + 0.5 95.8 £0.5 95.8 0.6 95.9+0.5
band 72.4+1.0 73.5£1.2 729+1.5 73.8£1.3 73.8 1.3
bupa 58.3 £ 0.6 72.3+1.2 72.4+1.1 723+ 1.1 72.7+1.1
cred 85.6 £ 0.5 86.5 + 0.7 86.4 + 0.7 86.6 0.7 86.5 + 0.7
derma 96.7 £ 0.4 97.2+0.7 97.5£0.7 97.3+0.7 97.6 £0.7
ecoli 84.4 +0.7 86.6 = 0.8 86.9 0.8 86.9 0.8 86.9 £+ 0.7
flare 82.1+0.3 81.8+£0.5 81.6+04 81.5+0.5 81.6 £0.5
glas 78.5+0.9 94 +0.8 94 + 0.7 94 + 0.7 94.2 0.6
hear 82.0+0.9 829+ 1.5 83.1+1.5 83.1+1.5 82.9+1.5
img 96.3 0.2 96.5 0.2 96.7 0.3 96.7 = 0.2 96.8 == 0.2
ionos 87.94+0.7 91.1+1.1 90.3+1.1 90.4+1 90.3+1
mok1 74.3£1.1 98.3+0.9 98.8 £0.8 98.3+0.9 98.3 +0.9
mok2 65.94+0.5 88 + 2 90.8 £ 1.8 91.1+1.1 91.1+1.2
pima 76.7 £ 0.6 759+ 1.2 75.9 £ 1.2 759+ 1.2 75.9 £ 1.2
survi 74.2+0.8 74.3+1.3 74.2+1.3 74.3+1.3 74.3+1.3
vote 95.0 0.4 95.6 £ 0.5 95.6 £0.5 95.6 £ 0.5 95.6 £ 0.5
vowel 83.4+ 0.6 88+ 0.9 914+0.5 91.4+0.8 92.2+0.7
wdbc 97.44+0.3 96.9 £ 0.5 96.9 £ 0.5 96.9 0.5 96.9 +£0.5
Table 3.2: Performance - Stmple Ensemble of RBF networks
Database 1-net 3-net 9-net 20-net 40-net
aritm 75.2+0.6 75.2+1 75.4+0.9 75.4+0.9 75.3+0.9
bala 89.4 +£0.7 89.6 £ 0.7 89.7 £ 0.7 89.7 £0.7 89.7 £ 0.7
band 72.4+1.5 729+ 1.5 73.5+t1.6 74+1.4 4.7+ 1.4
bupa 71.9+1.2 71.7£1.3 71.9+1.3 71.9+14 72.1+1.2
cred 87.1+0.5 87+ 0.5 87.24+0.5 87.2+0.6 87.2+0.6
derma 96.8 + 0.4 96.8 £ 0.5 97.2+0.5 97.34+0.5 97.24+0.5
ecoli 87.9+0.9 88.2+0.9 88.2+0.9 879+ 1 88.14+0.9
flare 81.54+0.6 81.6 £0.6 81.6 £0.5 81.94+0.5 81.7+0.5
glas 93+1 93.2+1 93.4+0.9 93.24+1 93.2+1
hear 83.4+ 1.6 83.6 1.7 82.7+1.9 825+ 1.8 83.2+ 1.7
img 97+ 0.3 96.9 £ 0.3 97+ 0.3 97+ 0.3 96.9 0.3
ionos 90.6 =1 90.7+ 1.1 90.6 £ 1.1 909+ 1.1 90.7+ 1.1
mok1 99.6 0.2 99.6 0.3 99.8 £0.3 99.8 £0.3 99.8 £0.3
mok?2 90.8+1 90.3+ 1.3 9144+ 1.3 91.4+£1.2 91.5+1.2
pima 77.1£0.8 77.3£0.9 77.3+0.9 77.4£0.9 77.4+0.9
survi 76.4 £ 1.6 75.6 £ 1.5 75.6 £1.5 75.6 £ 1.5 75.7+t1.5
vote 96.1 0.6 96.3 0.6 96.3 £ 0.7 95.9+0.6 96 + 0.6
vowel 97.3+0.3 97.2+0.4 97.3+0.3 97.3+0.4 97.2+0.3
wdbc 97.14+0.2 97.24+0.3 97.3+0.3 97.1+04 97.1+0.3
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3.6.3 General measurements

3.6.3.1 Measurements based on the performance of a single network

In the current and future experiments, the Increase of Performance, henceforth IoP,
and the Percentage of Error Reduction, henceforth PER, of the results with respect
to a single network have been calculated in order to perform an exhaustive compari-
son. The ToP value is an absolute measurement whereas the PE R value is a relative
measurement. Both of them can be used to compare easily ensemble methods. More-
over, they are based on the mean performance of the ensemble after repeating the
experiments ten times. Finally, figure [3.7] shows a graphical representation of the
general measurements [oP and PER.

General measurements based on performance as
percentage of correctly classified patterns

ph %E 100%

" single net

¢ ) performance
o o ensemble
%/—/ 100% performance
PER

Figure 3.7: Graphical representation of IoP and PER

The IoP is described in equation [3.5] and its value denotes the increase of perfor-
mance of the ensemble with respect to the performance of a single network.

IoP = Per formancegpsempie — Per formancegingienet (3.5)

Where Performance in equation [3.5, and in the following equations, is the per-
centage of correctly classified patterns in the test set of the single network or the
ensemble.

The PER value, described in equation [3.6] ranges from 0%, where there is no im-
provement by the use of an ensemble method with respect to a single network, to
100%, where the error have been totally reduced and the performance of the ensem-
ble is 100%. The PER value has been often used to compare ensemble methods and
other algorithms [50, [51, [52), 53], [54].

PER = 100 - ErrorSingleNet - ErrorEnsemble

3.6
ETTOTSingleNet ( )

where:
Error =100 — Per formance (3.7)

A negative value of ToP or PER means that a single network performs better than
the ensemble.

Finally, the mean [oP and the mean PER across all databases is calculated to
obtain a global measurement used to compare the ensemble methods. All the results
shown in this thesis are based in these measurements.
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3.6.3.2 The Paired T-Test

The mean IoP and the mean PER are the two measurements used to rank the
ensemble methods in this thesis. Unfortunately, the ensembles can not be statistically
compared with them so the Paired T-Test will be also applied in some cases.

This test determines whether two alternatives or procedures differ from each other in
a significant way under the assumptions that the paired differences are independent
and identically normally distributed. The measurement value, t, is given by equation

B8

—  — (n—=1
t_(X—Y)\/ - (n=1) (3.8)
Zi:I(Xi - Yz’)Q
where:
X, =X, —-X;, Y,=Y,-Y, (3.9)

The t-value represents, in this case, the ratio between the increase of performance
and the variability or dispersion of the performance of a method X with respect to
another method Y. A positive t-value means that X performs better than Y whereas
a negative t-value means the opposite. However, the ¢ value is not enough to per-
form a statistical comparison so the table of Student’s t-distribution and confidence
intervals are applied to determine the significance level denoted by «. Commonly,
two methods are statistically different if o < 0.05.

The vectors X and Y contain the values of the performance of the classifiers for
each experiment and dataset. In this thesis, the experiments are always repeated 10
times with different partitions of the datasets on 19 classification problems so these
vectors have 190 elements.

Finally, the ¢-test is commonly used in machine learning in order to determine
whether one learning algorithm is statistically better than another on a given task
[55, [56), 57] and it has been implemented in the Waikato Environment for Knowledge
Analysis (WEKA) suite along with learning algorithms and ensemble methods [5§].

3.6.4 Analysis of the general results

Performing a deep analysis of the complete results generated is a complex task.
Moreover, to have a general idea of the behavior of the ensembles and extracting
conclusions is not trivial. For these reasons the discussion of the results has been
divided into three analyses.

Firstly, the results of Simple Ensemble are compared to the results provided by the
Single Network in order to determine if this basic ensemble improves the results of
the single network. The MF and RBF networks are used to perform this first study.
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Secondly, we want to test if the networks of the ensemble differ on the patterns
correctly classified as Kittler said [40, [41]. This is a measurement of the diversity of
the different networks in the ensemble.

Finally, the results obtained by Simple Ensemble of MF networks are compared to
the results obtained by Simple Ensemble of RBF networks. Although both ensembles
can be compared analyzing the raw results, the T-Test is applied to determine if
the results are statistically different or not.

3.6.4.1 First analysis: Comparing Simple Ensemble to Single Nets

Comparing the performance provided by a single network to the performance of
ensembles composed by 3, 9, 20 and 40 networks is not an easy task with the in-
formation provided by tables [3.1] and [3.2] The general measurements mean loP and
mean PER are calculated in order to have general information about the improve-
ments done by the ensembles with respect to the single network.

Table shows the general results related to the ensembles of MF' and RBF' net-
works trained with Simple Ensemble. These results can be easily derived from tables
and by applying the equations of the general measurements shown in sec-
tion [3.6.3.1] With this procedure, simplified information about the behavior of the
ensembles is obtained.

Table 3.3: Simple Ensemble - General results

Simple ensemble of MF Simple ensemble of RBF

Size mean [oP mean PER Size mean [oP mean PER
3-net 4.97 21.84 3-net 0.02 0.15
9-net 5.27 23.65 9-net 0.14 3.71
20-net 5.34 23.73 20-net 0.14 3.06
40-net 5.43 24.64 40-net 0.23 3.29

In the previous table, the information of Simple Ensemble considering 4 different
ensemble sizes and two network architectures is shown. In the case of MF networks,
there is a considerable increase of performance with respect to a single MF network.
For example, the PER values range from 22% to 25%.

In the case of RBF networks, unfortunately, the performance of the ensemble is close
to the performance of the single RBF network (low general results). There is not a
high improvement of performance neither in general nor in any database. Moreover,
the mean IoP and the mean PER are not completely correlated, for instance the
PFER value for 40 networks is lower than for 9 networks whereas the IoP value for 40
networks is greater than the value for 9 networks. Maybe this is due to the similarity
of the ensembles with respect to the single network, the ensemble provides slightly
better, or worse, results than the Single Network and the mean IoP is close to 0.
However a slight increase, or decrease, of performance has a specific PE R depending
on the classification problem so it may differ to IoP in this case.
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For this reason, the statistical test was also applied to compare the results provided
by a single RBF network to the results provided by the Simple Ensemble of RBF
networks.

Table 3.4: T-Test of Single-Network versus Simple Ensemble for RBF' networks

Size t-value «
3-net —0.17 0.87
9-net —1.24 0.22
20-net —1.24 0.22

40-net —2.00 0.05

According to the previous table, the results provided by the single RBF network can
only be statistically improved by ensembles of 40 RBF networks. We need to train
an ensemble of 40 RBF networks in order to obtain a clear statistically significant
increase of performance of 0.23% with respect to a single RBF network. We think
that training 40 RBF networks is not worth because the increase of performance is
low and the computational cost is quite high.

We consider that the ensemble model fits better on the MF network because the
mean [oP and PER with respect to the single network is considerably higher than
for the case of RBF network.

3.6.4.2 Second analysis: Diversity on the classified patterns

The raw results previously shown (tables and and do not provide information
about how individual patterns have been classified because it only shows the count
of the correctly classified patterns. Moreover, a pattern that have been correctly
classified by a network may not be correctly classified by the ensemble because
the output provided by the ensemble corresponds to the simple average among the
outputs of all the networks of the ensemble. Finally, the networks of the ensembles
can provide similar performance without sharing the same set of correctly classified
patterns.

Comparing one-by-one how the patterns are classified is a nearly impossible task
because there is a high number of patterns in each dataset and the experiments
have been repeated ten times. One way to determine if the networks of an ensemble
differ on classifying patterns is applying the union of the correctly classified patterns
among all the networks of the ensemble and then counting the number of patterns
of this new “set”. If this new count is considerably greater than the performance of
the ensemble, it means that the networks of the ensemble do not correctly classify
the same patterns.

In order to evaluate if the networks of the generated ensembles differ on classifying
patterns, the union previously mentioned has been calculated for Simple Ensemble
of MF and RBF networks. Table shows the performance for these ensembles of
40 networks and the mean number of patterns which has been correctly classified
by, at least, one network of the ensemble. This measurement has been denoted as
unton in the table.
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Table 3.5: Number of patterns correctly classified at least by one network

MF Net RBF Net
Database ensemble 40 net union ensemble 40 net union
aritm 73.8+1.1 79 £ 2 75.3+0.9 80.5+1.1
bala 95.94+0.5 99.1 £0.2 89.7 £ 0.7 91.4+0.9
band 73.84+1.3 80.9+1.6 74.7+1.4 87.5+1.1
bupa 72.7+1.1 82.6 +1.3 72.1+1.2 76.9+1.6
cred 86.5 0.7 88.6 + 0.9 87.2+ 0.6 89.3+ 0.5
derma 97.6 £ 0.7 98.7+ 0.5 97.2+0.5 98.24+0.5
ecoli 86.9 = 0.7 91.9+0.7 88.1+0.9 89.9+ 0.9
flare 81.6 0.5 84.0+1.0 81.74+0.5 84.1 +0.6
glas 94.2 + 0.6 97.8 £0.8 93.2+1 95.2 +1.2
hear 82.9+1.5 85.8+1.4 83.2+1.7 87.8+1.3
img 96.8 + 0.2 99.20 £0.12 96.9 + 0.3 974+ 0.3
ionos 90.3+1 95.6 = 1.0 90.7+1.1 94.0+1.0
mok1 98.3 0.9 100.00 4 0.00 99.8 + 0.3 100.00 4+ 0.00
mok2 91.14+1.2 99.3 0.2 91.54+1.2 97.5+0.7
pima 75.9 +1.2 78.6 1.5 77.44+0.9 79.0 £ 0.8
survi 74.3 £ 1.3 77.5+£1.5 75.7+1.5 80.3 £ 1.7
vote 95.6 = 0.5 95.6 = 0.5 96 £ 0.6 97.0 £ 0.6
vowel 92.24+0.7 99.5 +0.3 97.2+0.3 98.3+0.3
wdbc 96.9 + 0.5 97.1+04 97.1+£0 97.7+0.3

According to table [3.5] the networks of the ensembles differ on classifying patterns
independently of the network architecture chosen. There are some datasets in which
the number of patterns correctly classified by, at least, one network of the ensemble
is much greater than the number of patterns correctly classified by the ensemble.
This behavior can be clearly seen, for instance, in database bupa for MF networks
and in band for RBF networks. It also means that, maybe, the Output Average may
not be the best combiner and that combining ensembles could be more interesting
that though.

Furthermore, the diversity of the networks seems to be higher in the case of MF
networks than RBF' networks. We can see that the union of MF' is higher than the
union of RBF in 11 of 19 datasets. Moreover, the difference between the performance
of the ensemble and “union” tends to be higher for MF networks. These results
corroborate the affirmation that the ensemble model is more appropriate for MF
networks, at least in the case of Simple Ensemble.

3.6.4.3 Third analysis: MFSE versus RBFSFE

In this last analysis, the results provided by Simple Ensemble of MF networks,
MFSE, are compared to the results obtained by Simple Ensemble of RBF networks,
RBFSE. The raw results, tables and [3.2] showed that the performance of MFSE
is similar to the performance of RBFSFE in general. The majority of datasets have
similar performance independently of the network architecure choosen to build the
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Simple Ensemble. Moreover, there are two datasets, bala and wvowel, whose per-
formance depends on the network architecture. Concretely, MFSE performs much
better than RBFSE for dataset bala whereas for dataset vowel it is the opposite.

However, there is not any fact that clearly affirm that MFSE and RBFSE pro-
vide similar results. For this reason, the T-Test was applied to compare the results
provided by MFSE and RBFSE, the statistical results are shown in table [3.6]

Table 3.6: T-Test - MFSE versus RBFSE

Size t-value «
3-net —2.06 0.04
9-net —1.74 0.08

20-net —1.59 0.11
40-net —1.65 0.10

According to the previous table, the results provided by MFSE and RBFSE are sta-
tistically similar for the cases of ensembles of 9, 20 and 40 networks. The differences
are not statistically significant but RBFSE performs slightly better according to the
t-value. Although RBFSFE tends to slightly outperform MFSE, the time required to
generate the networks in RBFSFE is much higher. There is only one case, ensembles
of 3 networks, in which RBFSFE is statistically better than MFSE.

In the rest of this thesis, we will be centered on the analysis of ensembles of MF
networks for several reasons. Firstly, we consider that ensembles of MF networks
are interesting because the MF network is one of the most extended network archi-
tecture. And second, it seems that the ensemble model fits better on MF networks
because the performance with respect to a single MF network is clearly improved
by the ensemble.

3.7 Conclusions

There are some alternatives in order to generate a multiple classifier system. In
this chapter the ensemble approach has been introduced and a first research has
been performed. Concretely, a basic ensemble method has been applied on MF and
RBF networks and important conclusions can be derived from this first study on
ensembles of neural networks.

The first conclusion of this chapter is that, according to the experiments done, the
simple ensemble approach fits better on MF networks than on RBF. The increase
of performance obtained by the ensembles with respect to the single network is
considerably higher for MF networks than for RBF networks. Moreover, with the
ensembles of 3 MF networks the increase with respect to a single MF' network is
considerably high whereas the single RBF network is only statistically improved by
the ensembles of 40 networks. Maybe, the ensembles of RBF networks require much
more than 40 networks to considerably improve the single network.
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Secondly, the networks of an ensemble do not classify patterns in the same way.
There are patterns correctly classified by a particular network which are not cor-
rectly classified by other networks or the whole ensemble. Concretely, there are some
datasets in which the percentage of patterns which have been correctly classified by,
at least, one network of the ensemble is much higher than the performance of the
ensemble. And this effect, the diversity of the networks in the ensemble seems to be
higher in ensembles of MF networks. Besides that, the Output average is a ‘demo-
cratic’ combiner in which all the networks have the same weight on the final output,
so the final output correspond to the decision taken by the majority of networks.
For this reason, a deeper analysis on combining neural networks is highly suggested.
There are more factors apart from the outputs and the performance of the network
which should be considered when the networks of an ensemble are combined.

Thirdly, the differences between the results provided by medium and high sized
ensembles of MF networks and the results of the ensembles of RBF networks of the
same sizes are not statistically significant. However, the results are slightly better
for the case of ensembles of RBF' networks.

This thesis will focus on an analysis on ensembles of MF networks mainly because
of the following reasons:

+ It is easier to improve the results of a single network and generate a better
classifier according to the first experiments showed in this chapter.

+ The MF structure is simpler than RBF and therefore the procedure to
set specific parameters and the algorithm to train the networks are, both,
also simpler and they have less computational cost for the MF network.

+ The computational cost of training a RBF network by gradient descent is
considerably higher than for the MF network.

+ The MF network is more widely used than RBF' in classification.

So, the MF' architecture will be initially considered for further experiments related
to ensembles of neural networks and the RBF' will also be only used in determined
cases.

Furthermore, we performed some preliminary experiments on well-known ensemble
methods with RBF networks whose results were published in [59] 60]. In those ex-
periments, we trained ensembles of RBF networks with complex ensemble method-
ologies such as Cross Validation Committee, Bagging and Adaptive Boosting. The
results showed that, in general, the performance of these advanced ensemble methods
were worse than the performance provided by Simple Ensemble of RBF networks.
Those important ensemble methods will be reviewed and analyzed in the following
chapters.

In conclusion, further experiments will be focused on two major areas: Analyzing
methods to generate ensembles of neural networks and studying combiners which
successfully provide a global output, maximizing the performance of the ensemble.
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The RBF network will not be utilized in the analysis and development of ensemble
methods. But it will be present in the combiners study and, moreover, in further

experiments based on more complex models such as Stacked Generalization (chapter
@ and Mizture of Experts (chapter .
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CHAPTER 4. A COMPARATIVE STUDY OF ENSEMBLE METHODS (I)

4.1 Introduction

In this chapter, some methods to design and build ensembles of neural networks will
be reviewed and analyzed.

As was previously mentioned, an Ensemble of Neural Networks is a well-known
type of multiple classifier systems. Moreover, there are some possible sources of
diversity and, therefore, there is an important number of different alternatives to
design ensembles of neural networks. In order to perform a readable comparison of
ensemble variants, the comparison has been split into two chapters. Concretely, the
research performed here is focused on the ensembles based on modifications of the
training algorithm. The other alternatives, in which the training and validation sets
are modified, will be analyzed in the following chapter.

This chapter is organized as follows. Firstly, the reviewed ensemble methods will
be described in section Secondly, the experimental setup along with the used
databases are introduced in section [£.3] Thirdly, the results and their discussion are
shown in section [4.4

4.2 Analyzed Methods

The ensembles that modify the training algorithm are described in this section.
They have been divided into two different subgroups depending on how the training
algorithm is altered.

The alternatives that indirectly change the training algorithm are included in the
first subgroup. These ensembles modify the target equation and indirectly change
the training algorithm because the adaptation of the trainable parameters is altered.
They introduce communication among the different networks of the ensemble inside
the error function and their purpose is to build cooperative systems. The following

methods will be described in subsection [1.2.1]
« Cooperative Ensemble Learning System.
4+ Decorrelated.

The variants that directly change the training algorithm are included in the second
subgroup. They modify the structure of the training algorithm in order to build an
accurate classifier. These ensembles are often complex and require specific training
parameters. The methods listed below will be described in subsection [4.2.2]

« Ensembles Voting On-Line.
& Observational Learning Algorithm.
« Adaptive Training Algorithm.

£ FEvolutionary Ensemble with Negative Correlation Learning.
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4.2.1 Methods that modify the target equation

In this subsection, some ensemble alternatives that modify the target equation and
the training algorithm will be shown.

4.2.1.1 Cooperative Ensemble Learning System

Cooperative Ensemble Learning System, henceforth CELS, is an ensemble variant
proposed by Liu and Yao that modifies the target equation and, therefore, the learn-
ing algorithm [61]. In this methodology, all the networks of the ensemble are trained
in parallel. The parameters of the whole networks are adapted in each epoch of the
algorithm. Moreover, a penalty term is added to the M SE equation in order to pro-
duce biased individual networks whose errors tend to be negatively correlated. The
new target is described in equation [4.1]

Neiasses
1
Errorpe(r) = Z <§ (de(T) = Yemer (7)) + Penaltyc,net(x)> (4.1)

c=1

Where Penalty is described in equation and denotes the correlation between a
network with respect to the other classifiers of the system. According to [62], the
effectiveness of the ensemble can be reduced if the networks are correlated. For this
reason this term is added and minimized during the training.

Nnets

Penaltyepet () = A+ (Yenet(2) — de(2)) - Z (Yei(z) — de()) (4.2)

=1
i#net

In equation [4.2] A\ denotes the weight of the penalty. The value of this parameter
depends on the classification problem so it must be set empirically by trial and error.

Algorithm 4.1 CELS {T ,V, Parameters}

for net = 1 to Ny erworks AO
Set initial values of the trainable parameters for net-network
end for
for e =1 to epochs do
for =1 to Npatterns do
for net = 1 to N,yerworks dO
Adjust the trainable parameters
end for
end for
Calculate M SE of the ensemble over validation set V'
Save ensemble configuration and calculated MSFE
end for
Select epoch with minimum validation M SFE
Assign best epoch configuration to the ensemble and save it
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In CELS, the equations applied to adjust the trainable parameters must be calcu-
lated according to the new target function. In appendix we have included the
new equations for MF networks.

4.2.1.2 Decorrelated version 1

Decorrelated version 1, henceforth DECOv1, is also an ensemble that only modifies
the target equation so the training algorithm is slightly altered [62]. In DECOwv1
the networks are trained in serial and the main purpose is to penalize an individual
classifier for being correlated with the previously trained one. For this reason Rosen
added a penalty term to the M SE equation as in :

Neiasses

1

Errorpe(z) = Z <§ A(d(2) = Yemer (1)) + Penaltyc,net(x)> (4.3)
c=1

In this case, Penalty is described in equation [£.4] and denotes the correlation degree
between a network and the previously trained one. Its value increases if the present
and the previous networks incorrectly classify the pattern in the same way.

Penaltyepet(r) = A (de(®) — Yenet—1(2)) - (de(T) — Yener (7)) (4.4)

Where A\ denotes the weight of the penalty term which must be set empirically by
trial and error because it depends on the classification problem. The structure of
this ensemble method is shown in algorithm [4.2] In this detailed description we can
realize that the first difference between CELS and DECOwl! is that the networks in
DECOwv1 are not trained in parallel.

Algorithm 4.2 DECOv1 {T,V, Parameters}
Generate N, ciworks With different seed values: seed,,e;
for net = 1 to Nyetworks dO

Random Generator Seed = seed,,e
Set initial weights randomly
for e =1 to epochs do
for =1 to Npatterns do
Calculate output of the previous network
Adjust the value of the trainable parameters
end for
Calculate M SFE over validation set V
Save epoch weights and calculated MSFE
end for
Select epoch with minimum validation M SFE
Assign best epoch configuration to the network and save it
end for
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Finally, we have included the new equations to adjust the weights for MF networks
in appendix
4.2.1.3 Decorrelated version 2

Decorrelated v2, henceforth DECOwv2, is an ensemble alternative which was also
proposed by Rosen in [62]. In this case, the penalty term is only added to odd
networks. Here, the target is given by the following equation:

Neiasses
1
Errorpe(z) = Z <§ A(do(2) = Yemer (1)) + Penaltyc,net(a:)> (4.5)

c=1

And, the penalty term is given now by:

Penaltye () — { A (de(®) = Yenet—1(2)) - (de(x) = Yemer(x))  if net is odd

0 otherwise
(4.6)

The purpose of this penalty is the same than in DECOv1, however it is only applied
to odd networks. In DECOv2, X also denotes the weight of the new term and it also
depends on the problem. As in DECOwv1, a trial and error procedure must be used
in order to empirically set its value.

The description of this ensemble method is shown in algorithm [£.3] The basic struc-
ture of DECOwv2 is quite similar to the description of DECOvI shown in algorithm
42

Algorithm 4.3 DECOv2{T |V, Parameters}
Generate N, ctworks With different seed values: seed,,
for net =1 to Npetworks dO
Random Generator Seed = seed,,
Set initial weights randomly
for e =1 to epochs do
for v = 1 to Npatterns do
Calculate output of the previous network if net is odd
Adjust the value of the trainable parameters
end for
Calculate M SE over validation set V'
Save epoch weights and calculated M SE
end for
Select epoch with minimum validation M SFE
Assign best epoch configuration to the network and save it
end for

The equations applied to adjust the trainable parameters in DECOv! can also be
found in appendix [B.2.2]
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4.2.2 Methods that directly modify the training algorithm

In this subsection, some ensemble variants that directly modify the training algo-
rithm will be shown.

4.2.2.1 Ensembles Voting On-Line

Ensembles Voting On-Line, henceforth EVOL, is an ensemble method proposed by
Auda in [63]. In this case, a specific training algorithm is introduced to generate
ensembles. Its whole description is shown in algorithm [4.4]

Algorithm 4.4 EVOL {T |V, Parameters}
for net =1 to Nnetworks do
Set initial weight values for network net
end for
for e =1 to epochs do
for xr =1 to Npatterns do
for net =1 to Nnetworks do
Calculate:
error™(x) = % . Ziﬁl;ms (yret(x) — dc(x))z
miss"(z) = { L Class.(ynet(x» = class(d(z))
1 otherwise
end for

Calculate ensemble output
y(z) = voting (y (z))
while x is incorrectly classified by the ensemble do
Select individual network net with lowest error™(z) and miss™(z) =1
while x is incorrectly classified by the network net do
Adjust the value of the trainable parameters of network net with x

Recalculate: 4" (z) , error™(z) and miss™(z)
end while
Recalculate ensemble output
end while
end for

Calculate M SE of the ensemble over validation set V'
Save epoch weights and calculated M SFE

end for

Select epoch with minimum validation M SFE

Assign best epoch configuration to the ensemble

Save ensemble configuration

The combiner wvoting is used to fuse the outputs of the networks. In wvoting, each
network (net) provides a vote to a class (¢) given by the highest output of the
classifier, y"*. The class which has been most often voted by all the networks is
assigned to the pattern. The number of votes, 7, is calculated with equation
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Nnets

Y.(z) = Z vote!™ (4.7)

net=1

Where vote® is the vote value of an individual network, net, on a given class, c.
Then, the class ¢ with highest 7.(z) is assigned to the pattern, x, according to the
following equation:

Class(x) = argmax (y.(z)) (4.8)

c=1,...;Nciasses

The technique proposed by Auda is complex and its computational cost is consid-
erably high. All the networks are trained in parallel because the parameters of all
the networks are adapted in each iteration.

In EVOL, we train the ensemble for some epochs. In each epoch, we present all the
patterns from the training set to the ensemble. Concretely, for each pattern, z, from
the original training set, T, we do the following three steps.

Firstly, the pattern x is presented to all the networks of the ensemble. For each
network, net, of the ensemble, we calculate the Mean Squared Error (MSE) of the
pattern z. With this procedure, we calculate the error vector, error™(x). Moreover,
the vector of missclassified patterns, miss, can be calculated along with the error
for pattern x. An element of this vector, miss™(x), denotes if the pattern, z, has
been correctly, or incorrectly, classified by the network, net.

Secondly, the output of the ensemble is calculated, 7(z). To obtain this ‘final’ output,
we use the voting scheme. With this procedure, the pattern, x, corresponds to the
class, ¢, which has been the most often voted class by the individual networks. This
final output is important because the third step of the training will not be done if
the pattern is correctly classified.

Thirdly, the parameters of the networks will be adapted if the pattern, x, is not
correctly classified by the ensemble. This step is an iterative training which finishes
when the ensemble correctly classifies the pattern x. In each iteration, we adjust
the network, net, with lowest error, error™(z), if it has incorrectly classified the
pattern, miss™(x) equal to 1. After adapting the network, we recalculate the output
of this network, y"(x), its error value, error™(z) and its missclassification value,
miss™(x). This iteration finishes when the network correctly classifies the pattern.
Then, this third step finishes if the ensemble also correctly classifies the pattern.
If the ensemble does not correctly classify the pattern, the following network with
lower error™(x) and that incorrectly classifies the pattern is chosen and adapted.

Once all the patterns have been presented, the MSE on the validation set is calcu-
lated and the weight configuration of the ensemble is temporally saved.

Finally, after the last epoch, the ensemble configuration of the best epoch, the one
with lowest validation error, is chosen as the final ensemble.
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4.2.2.2 Observational Learning Algorithm

Observational Learning Algorithm, henceforth OLA, is an ensemble alternative based
on a social learning theory proposed by Jang [64]. In OLA, all the networks of the
ensemble are trained simultaneously in a parallel learning procedure. The parameters
of all the networks are adapted in each iteration of the training algorithm. According
to the reference, OLA can improve the generalization of the ensemble with the use
of a virtual set when the original training set has insufficient or noisy data.

Firstly, each network, net, is trained with a specific training set, 7"¢, for a deter-
mined number of epochs. The specific training sets, T"¢, are generated by Bootstrap
[65]. With this procedure, the patterns of the specific training set, 7", are randomly
sampled with replacement from the original training set, T'. The size of the specific
sets is equal to the size of the original set. After adapting the networks on the spe-
cific training set, 7", a virtual set is generated for each network, V1™, Then the
network parameters are adjusted using this new set.

The patterns of the virtual set are the patterns of the specific training set. However,
random noise is added to the input parameters of each pattern using a normal
distribution with low variance. Furthermore, the desired output (target) of these
patterns is also modified. The new desired output of a virtual pattern v is given by:

[ 1 if class(average(y—"*(v))) = ¢

de(v) = { 0 otherwise (4.9)
For a given virtual pattern, v, its new desired output, d(v), corresponds to the output
provided by using Output average over all the networks of the ensemble except one,

the network which is being trained on this virtual set, net. The description of OLA
is shown in algorithm

Algorithm 4.5 OLA {T" |V, Parameters}

for net = 1 to Nyetworks dO
Set initial weight values for network net
Create specific training set 7" by randomly sampling from 7" with replacement
end for
for : = 1 to epochs do
for net = 1 to Nperworks dO
Adjust the trainable parameters of network net on T7¢
end for
for net = 1 to Npetworks dO
Create the virtual training set V7™
Adjust the trainable parameters of network net on V7™
end for
Calculate M SE over validation set V' and save weight configuration
end for
Select epoch with lowest validation MSFE and assign its weights to the ensemble
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4.2.2.3 Adaptive Training Algorithm

Adaptive Training Algorithm, henceforth ATA, is a complex ensemble learning pro-
cedure proposed by Wanas in [66] and it is introduced in algorithm [4.6]

Algorithm 4.6 ATA {T' |V, Parameters}

P =any constant (usually between 10% to 40%)
' =0.0001
for net =1 to Npetworks dO
Converged,e =0
Set initial weight values for network net
Generate the specific training set 7" by Cross-Validation
Initialize Confidence Factor variables: C'F, . = CFbest e = CFprev,, =0
end for
for net =1 to Npetworks dO
for e =1 to epochs do
Adjust the trainable parameters of network net on T"¢
end for
end for
while (ije’f:“l“o"’” Convergedpe:) < Npetworks Ao
for net = 1 to Nyetworks dO
if Converged,.; =0 then
Per f,.. = Percentage of correctly classified patterns on validation set, V,
by network net
CFprevye = CFuy
CFnet = Perfnet
0=P -CF,y
if C'F,,., > CFbest, then
CFbestye = CFet
The network configuration is temporally stored
end if
if |CF,et — CFprevye| > T then
Generate the training set MT"¢
for e =1 to epochs do
Adjust the trainable parameters of network net on MT"¢
end for
else
Converged, = 1
Store definitively the network configuration
end if
end if
end for
end while

The complex training algorithm of this ensemble method is divided into two steps.
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In the first step, the networks are trained for a few epochs on the specific training
sets. In the original paper, there was not any direct reference about creating the
different training sets so we decided to apply K-fold cross-validation in order to
generate them because it satisfies the requirements related to the specific training
sets of the ensemble. With this procedure, the original training set, 7', is divided
into k subsets, T}, and the specific training sets, 7", are given by equation m

Nnetworks

™= | T (4.10)
i=1
i#net
In the second step, the non-converged networks are iteratively trained for a preset

number of epochs on a special training set M7 described below. The ensemble
training finishes when all the networks have converged.

Before the training on the special set, the performance of the network on the valida-
tion set is calculated. In this method the performance is the percentage of correctly
classified patterns. Then the confidence factor of the network CF,; is stored as
previous confidence factor C'Fprev, and the calculated performance is assigned as
the new confidence factor of the network C'F,,.;. If this new factor is higher than the
best confidence factor C Fbest,.;, the network configuration is temporally stored and
the value of the confidence factor is assigned to the best confidence factor because
the current network is better than the previous one temporally stored.

At this point, we calculate if a network net has converged. The network net converges
if the difference between the confidence factor and the previous confidence factor is
lower than a preset threshold value I'.

If the network has not converged, it is trained with the special training set M7,
According to the original reference, the special training set of a network is composed
of two parts. The first part are the patterns from the specific training set 7"¢ with
the same classes as the patterns from the validation set which were incorrectly
classified by the network net. We will denote R the number of these patterns. The
second part, contains a percentage of patterns, given by equation [4.11} whose classes
were correctly classified by the network generated in the previous iteration, net. In
this equation, P and § are calculated as in algorithm [4.6

Percentage = 0.01 - R - (P + ) (4.11)

If the network has converged, the temporally stored configuration, C'Fbest,, is set
to the final network. Furthermore, this network will not be used in further iterations.

Two different versions of this technique have been implemented in this thesis. In
the first one, ATA-LE, the networks are trained with specific training sets, 7"¢ and
MT"™ and the final network configuration always corresponds to the last epoch of
the training procedure. In the second one, ATA-BE, the networks are also trained
with these sets but the network configuration is given by the epoch with lowest M SE
on the validation set. The first version is the original method whereas the second
one is proposed by us in order to avoid overfitting during the training procedure.
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4.2.2.4 Evolutionary Ensemble with Negative Correlation Learning

Genetic algorithms and other evolutionary theories are important alternatives to
design ensembles of neural networks [67]. Evolutionary Ensemble with Negative Cor-
relation Learning, EENCL [68], was proposed by Liu et al. and it is an important
technique to generate ensembles.

The basic description of this method is shown in the next algorithm.

Algorithm 4.7 EENCL {T', V , Parameters}

Set initial weight values for network net Vnet € [1...Nyerworks)
Ensemble training with Negative Correlation Learning, NCL
for g= 1 to Ngenerations do
Select Ngescents descent networks
Mutate Ngescents descent networks
Train the descents by applying NCL
Calculate network net fitness Vnet € [1... Nperworks + Naescents]
Select Nperworks best networks according to fitness values
Generate ensemble with best networks
end for
Generate final ensemble

The basic structure of this ensemble is decomposed in the following main steps:
+ Basic training algorithm, NCL in this case.
+ Selection of the descents.
+ Mutation of the selected descents.
+ Evaluation of the networks, in this case based on fitness.
+ Replacement strategy.
+ Combination of the networks.
+ Building the final ensemble.

FEENCL was proposed by the same author who proposed CELS. For this reason, the
base training algorithm applied, NCL, is similar to CELS. In this case, the ensemble
methodology is not only given by the training algorithm because all the other steps
previously listed are also important.

4.2.2.4.1 Negative Correlation Learning

Negative Correlation Learning, henceforth NCL, is the algorithm proposed to adjust
the weights of the networks in this evolutive technique. This procedure is applied at
the beginning of the ensemble algorithm in order to establish the first generation of
networks. It is also used to train the mutated descents generated in each generation
of the ensemble method.
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NCL is a training algorithm in which the target equation and the basic training al-
gorithm described in chapter[2|are modified. In fact, all the networks of the ensemble
are trained in parallel. Moreover, a penalty term is added to the M SFE equation in
order to generate negatively correlated networks, being the new target equation the
following;:

Nclasses
1
Errorpe(r) = Z (5 (de(x) — yc,net(ac))2 + Penaltymet) (4.12)
c=1

And the weighted penalty error is given by:

Nnetworks

Penaltyepe(®) = A Wena@) =) - > (eale) =7)  (413)
ismet
Where A\ denotes the weight of the penalty term and 7 denotes the output of the
ensemble when the Qutput average is applied to combine the networks. The value
of X\ depends on the problem and a trial and error procedure is used to empirically
set its value. Penalty denotes the correlation between a network with respect to the
other networks of the ensemble. According to [62], this term is added in the error and
minimized during the training because the accuracy of an ensemble can be reduced
when the correlation degree among the networks is high.

The equations applied to adjust the trainable parameters must be calculated ac-
cording to the new target function. These new equations are included in appendix
for the case of MF networks. The description of NCL is shown in algorithm
£33

Algorithm 4.8 NCL {7,V | Parameters}
Initialize trainable parameters for all networks
for e = 1 to Nepoens do
for j =1 to Nyerworks do
Adjust the trainable parameters on the training set 1" for j-network
end for
end for
Save ensemble configuration

As we can see, EENCL is composed by two training algorithms. The main technique
establishes the evolutive process whereas NCL is used to train the networks and
adapt the network parameters.

4.2.2.4.2 Selecting descents

In EENCL, the procedure applied to select the descent networks is quite easy. At the
beginning of each generation, a few networks of the ensemble are randomly picked
out with replacement in order to generate the descents of the generation. All the
networks have the same probability of being selected.
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4.2.2.4.3 Mutation of the descent networks

Once the descents have been selected, their configuration is altered in two steps.
Firstly, some noise is added to the trainable parameters, weights of the networks.
This noise is given by the standard normal distribution N (0, 1). Then, NCL is used
to train only the descents. But in this step, the information provided by the original
networks and the descents is used to calculate the error according to equation [4.12]

4.2.2.4.4 Fitness Evaluation

Fitness is introduced in order to obtain the suitability of the network with respect
to the ensemble. It is given by the following algorithm:

Algorithm 4.9 Fitness{ensemble, Npetworks, Ndescents }

Fitnessnet =0V net € [1 B Nnetworks + Ndescents]
for z =1 to Nyuterns do
for net =1 to Nnetworks + Ndescents do
Classify pattern x with network net
end for
Let Total be the number of networks which correctly classify x
for net =1 to Nyetworks + Naescents dO

Fitness. . — Fitness. . + { 7o i @ is correctly classified by net
net — net

0  otherwise
end for
end for

If a pattern, x, is learned correctly by n networks, each of these n networks receives
1/n fitness. A network which correctly classifies a hard to learn pattern (n is low)
is given better fitness, and it has better chance to continue in the ensemble. This
fitness encourages each individual net to cover different patterns in the training set.

4.2.2.4.5 Replacement strategy

Once the fitness of each network is calculated, the final ensemble has to be built. In
EENCL the Nyepworks networks with highest fitness are selected to form the ensemble
of the next generation.

4.2.2.4.6 Combination of the networks

The combiner OQutput average used in Simple Ensemble is also used to fuse the
outputs provided by the networks and calculate the final output vector 7.

4.2.2.4.7 Building the final ensemble

Although in the original reference the final ensemble corresponds to the system ob-
tained at the last generation of the evolutionary algorithm, we have also selected
the best generation, the generation with lowest MSE on the validation set, in order
to built the final ensemble. For this reason we will evaluate two different evolution-
ary ensemble methods, FENCL-LG which corresponds to the last generation and
FENCL-BG which is the version we propose based on selecting the best generation.
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4.3 Experimental Setup

The comparative research of this chapter is concerned with ensembles in which the
training procedure is, directly or indirectly, modified.

Concretely, eight different alternatives have been reviewed. The different models can
not be directly compared with the information and results provided in the original
references because each author has used a specific set of databases and test setup
in order to validate the results of the proposed methods. Moreover, non public
databases are sometimes used to test new ensemble variants.

We consider that the comparison we want to perform can be useful in order to
determine the ensemble methods which provide the best performance in general. In
the comparison, we will use an experimental framework that can be reproduced by
any researcher interested in ensembles of neural networks.

In this research, we want to obtain the performance of the analyzed alternatives on
some different cases. These cases are different sizes of the number of networks in the
ensemble and different partitions of the databases. The main characteristics of the
performed research are:

+ Nineteen classification problems from the UCI Repository.

The eight methods reviewed are applied to generate the ensembles.
One network architecture for the networks in the ensemble: MF'.
Four different ensemble sizes: 3, 9, 20 and 40 networks.

Optimized training parameters.

One combiner applied, Qutput average, except for EVOL ( Voting).

The experiments have been repeated ten times with different partitions of
training, validation and test sets in order to obtain:

4+ The mean value of performance.
4+ The error rate by standard error theory.
+ Three general measurements applied to the comparison:
4+ Mean Increase of Performance.
4+ Mean Percentage of Error Reduction.
4+ Paired Student’s t-test.

The description of the nineteen databases used in the experiments can be found in
appendix [A] The optimized training parameters of the networks are in appendix
[B.3, whereas the specific parameters of the ensembles are in appendix [B.5 Finally,
the general measurements applied to compare the ensembles analyzed are the mean
Increase of Performance (equation, the Percentage of Error Reduction (equation
3.6) and the Paired Student’s t-test (section |3.6.3.2)).
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4.4 Results and discussion

The main results related to this ensemble comparison are shown in this section.
Concretely, table shows the mean [oP and the mean PER of the ensemble
methods analysed in this chapter for four different ensemble sizes.

Table 4.1: Ensemble Comparison 1 - General Results

Mean IoP Mean PER

Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
CELS 4.72 5.42 5.46 5.53 21.51 23.73 25.75  26.35
DECOv1 5.48 5.78 5.85 5.83 24.76 26.6 26.99 27.03
DECOv2 5.46 5.53 5.58 5.78 24.87 25.71  25.92 26.4

EVOL —-10.71 -16.09 —-19 —21.15 —144.86 —211.67 —271.14 —290.72

OLA 1.01 —-252 -—-3.05 —285 -—16.26 —58.59 —64.29 —61.41
ATA-LE 4.58 4.91 5.01 4.77 19.44  22.05 22.18 20.22
ATA-BE 4.42 5.24 5 5.02 19.97 23.4 22.58  21.59

EENCL-LG 4.41 4.06 4.52 4.2 16.87 14.93 1599 17.71
EENCL-BG 4.89 4.82 4.67 5.07 20.42 19.6 19.02  22.36

According to the results shown in the previous table, Decorrelated provides the best
results. Although both versions of Decorrelated provide similar results, DECOwvl is
slightly better than DECOv2.

Similarly, CELS also provides good results for any ensemble size and it works better
than Simple Ensemble for 9, 20 and 40 network ensembles. However, CELS is slightly
worse than the two implementations of Decorrelated for any ensemble size.

Moreover, EVOL and OLA perform worse than a single MF network because the
PER value is always negative. EVOL provides a mean decrease of performance
higher than 10%. In the original references [63, [64], the authors obtained good
results but they were only tested on one dataset. The Cleveland Heart Disease was
used to evaluate EVOL and an artificial classification problem was used to test
OLA. Although these methods had good performance on the dataset employed in
the original references, this does not mean that they have good performance on
other classification problems because they were only tested in one dataset and their
results can not be generalized.

Although ATA provides good results, its performance is lower than the performance
provided by Simple Ensemble. The version proposed in this thesis, ATA-BFE, provides
slightly better results than the original implementation, ATA-LFE, in a wide number
of cases. In the original reference [66], ATA was tested on three datasets: a 20-class
problem from [69], the Glass Dataset [10] and the Satimage database [70]. According
to the results shown in the reference, ATA performed better than a normal ensemble
on the first and second datasets. However, the normal ensemble performed better
than ATA for the third dataset.
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In the case of EENCL [68], it provides good results but they are also lower than the
results provided by Simple Ensemble. Moreover, the version proposed in this thesis,
FENCL-BG, performs clearly better than the original proposal, EENCL-LG. In the
original reference, two databases from UCI repository were used in the experiments.
In both datasets, ENNCL performed better than a simple ensemble of MF networks.

The general performance shown in this research for ATA and ENNCL may be con-
sidered more accurate than the performance shown in the original references [60, [68]
because the number of networks in the ensemble and datasets used here are higher.
Maybe, an experimental setup with only two datasets, as used in the original refer-
ences, may not provide the general performance of a method.

As mentioned above, CELS, DECOvl and DECOuv2 perform better than Simple
Ensemble. Unfortunately, the general measurements applied do not provide any sta-
tistical information so the T-Test was applied three times. Firstly, it has been used
to compare these three ensembles to Simple Ensemble, table[d.2] Secondly, the three
methods have been statistically compared among them, table[4.3] Thirdly, the ¢-test
will be applied to compare the original versions of ATA and ENNCL to the versions
we propose of them in this Thesis, table [£.4]

Table 4.2: Statistical results of the best methods versus Simple Ensemble
Methods measure 3-net 9-net 20-net 40-net
CELS vs SE t'vzlue _02155 8:23 8?? gjéi
DECOv1 vs SE V21 0.36826 0?6385 O?dggl 0%63051
D) I OAORZ i 21D t-vzlue 0.263?14 02.63198 02.65191 0?6386

According to the results shown in the previous table, both version of Decorrelated
improve the results provided by Simple Ensemble, SE, and the differences are statis-
tically significant. In both versions, it can be seen that the values of a are quite low
so the results provided by them are quite different when compared to SE. Moreover,
CFELS provides slightly better results than SE for the cases of 9, 20 and 40 networks
but the differences between them are not statistically significant.

Table 4.3: Statistical results among the best methods
Methods measure 3-net 9-net 20-net 40-net
t-value —-3.63 —2.83 —-2.15 —1.4
« 0.0004 0.0052 0.033 0.16
t-value —-3.32 —-0.72 -0.77 -—-1.09
Q 0.0011  0.47 0.44 0.28

t-value 0.13  1.92  1.92  0.44
DIMSOIL i DS 0.9 0056 0057 0.66

CELS vs DECOv1

CELS vs DECOv2
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According to the results of table [4.3] both versions of Decorrelated perform better
than CFELS because the t-value is always negative in the first and second row of
table [4.3] The differences between DECOvl and CELS are statistically significant
for ensembles of 3, 9, 20 networks and the differences of DECOv2 and CFELS are
only statistically significant for the case of ensembles of 3 networks. Although DE-
C'Ovl and DECOv2 are similar in general, the differences between them are almost
significant for the cases of ensembles of 9 and 20 networks because « is close to 0.05

and DECOwvl performs better than DECOv2.

For the ensembles based on ATA and FENCL, the original implementation according
to the references has been compared to the version we have proposed to avoid over-
fitting in table [4.4] For this reason, ATA-LF is statistically compared to ATA-BE
and a similar comparison is done for EENCL-LG with respect to EENCL-BG.

Table 4.4: Statistical results of original ATA and EENCL
Methods measure 3-net 9-net 20-net 40-net
t-value +0.93 —1.58 —-0.04 —1.22
0.35 0.12 0.97 0.22
t-value —-2.89 —-388 —-0.8 —3.86
«@ 0.0043 0.0001 0.43 0.0002

ATA-LE vs ATA-BE

EENCL-LG vs EENCL-BG

According to the results of table [£.4] the differences between both versions of ATA
are not statistically significant but the ¢-value shows that our version is slightly
better for ensembles of 9 to 40 networks.

Moreover, the proposed version of EENCL, EENCL-BG), is in general better than the
original method and their differences are statistically significant except for ensembles
of 20 networks where « is high.

4.5 Conclusions

In this chapter a comparison among traditional ensemble methods based on modi-
fications of the training algorithm has been performed. Important conclusions can
be derived from this first comparison.

Firstly, not all the ensemble alternatives proposed in the bibliography improve the
accuracy of Simple Ensemble. Most of them provide results which are quite similar to
the results provided by Simple Ensemble. Even more, there are two of them, Ensem-
bles Voting On-Line and Observational Learning Algorithm, in which the ensembles
perform worse than a single Multilayer Feedforward network. The results of these
two ensemble variants were not expected since they reported good performance in
the original references. Concretely, EVOL could draw accurately the decision bound-
aries because each network focused on different regions in the input space according
to the original reference. In addition, the original experiments performed in OLA
showed that this ensemble alternative could give better generalization performance
than Simple Ensemble and Bagging in regression and classification tasks. Maybe,
the use of only one classification problem, as reported in their original references,
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is not enough in order to perform a comparison with other classifiers such as Sim-
ple Ensemble because the general behavior of a classification system could not be
obtained with only one dataset.

Secondly, only three methods CELS, DECOvl and DECOv2 improved the results
provided by Simple Ensemble. Unfortunately, CELS only seems to be slightly better
than Simple Ensemble because the differences between them are not statistically
significant. The two versions of Decorrelated are clearly and statistically better than
Simple Ensemble. Moreover, DEC'Ov1 is better than CELS in most of the cases and
it is only slightly better than DECOv2 according to the statistical tests.

Thirdly, the version proposed in this thesis of ATA, ATA-BE, is slightly better than
the original implementation, ATA-LE. Moreover, the alternative we have proposed of
EENCL, EENCL-BG, is also statistically better than the original version, EENCL-
LG. Selecting the final network configuration according to the lowest M SE on the
validation set is an important improvement which is highly suggested instead of
selecting the configuration associated to the last iteration, epoch or generation.

However, the original and proposed versions of these two ensembles, ATA and
EENCL, perform slightly worse than Simple Ensemble according to the results of
our experiments. In the original references, the original implementations tend to
perform better than other ensembles such as Simple Ensemble. These comparisons
were done with a reduced number of datasets and, maybe, their general behavior
can not be obtained by only two or three classification problems.

Finally, both versions of Decorrelated can be considered the best ensemble methods
among the alternatives analyzed in this chapter. They will be considered for the
list of best ensembles and DECOv1 will be used in the combiners study. In the
best cases, the increase of performance is close to 6% and the percentage of error
reduction is around 27% with respect to a Single MF Network. The results shown
in this chapter have been published in references [MFC1, MFC2, MFC3]| detailed in
the conclusions chapter.
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CHAPTER 5. A COMPARATIVE STUDY OF ENSEMBLE METHODS (II)

5.1 Introduction

In this chapter, some ways to design and build ensembles of neural networks will
be analyzed and compared. Concretely, the research performed here is focused on
ensembles which modify the learning set.

The current research is organized as follows. Firstly, the reviewed ensemble alter-
natives will be described in section [5.2] Secondly, the setup of the experiments is
introduced in section Moreover, the results and their discussion are shown in
section [5.4]

5.2 Analyzed Methods

In this section, ensembles which are based on modifications of the learning set are
reviewed. Since there are several approaches to modify the learning set, the different
alternatives have been split into the following three different subgroups: Models that
Statically modify the learning set, alternatives that Dynamically modify the learning
set and Boosting variants.

The models that modify the learning set statically are those that randomly gener-
ate the training sets for the different networks before training the networks of the
ensemble. Any previous study on the training set patterns is not required. Then,
each network is independently trained using the corresponding training set as an
independent network. The following methods will be described in subsection [5.2.1]

+ Bagging and its variants.

+ Different versions of Cross-Validation Committee.
& Disjoint partitions.

+« QOverlapping partitions.

The design alternatives that modify the learning set dynamically are those that
modify the learning set of the networks during training. The training algorithm of
this kind of ensembles should be modified so they were included in the previous
chapter, concretely in subsection [£.2.2] We consider in this category:

& Observational Learning Algorithm.
& Adaptive Training Algorithm.

The variants based on boosting are those that construct a sequence of networks in
which their successive training sets are overfitted with hard to learn patterns by the
previous networks. A sampling distribution is used to generate the different training
sets. The following Boosting methods will be reviewed in subsection [5.2.2]

+ Boosting 3.
+ Adaptive Boosting and its variants.

& Arcing Classifiers.
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5.2.1 Methods that statically modify the learning set

5.2.1.1 Bagging

Bootstrap Aggregating, henceforth Bagging, is the simplest method that modifies the
learning set. Bagging was proposed by Breiman in [71]. In this model, each training
set is generated for each network by randomly sampling patterns with replacement
from the original training set. According to reference [48], the generated training
sets should double the original training set size.

5.2.1.2 Bagging with noise

Bagging with noise, henceforth Bagnoise, is a variant of Bagging. In this case, the
size of the generated training sets is ten times the size of the original training set.
Furthermore, the input patterns contains random noise generated by a normal dis-
tribution with low variance. Bagnoise was proposed by Raviv in [72].

5.2.1.3 Cross Validation Committee version 1

Cross-Validation Committee version 1, henceforth C'VCvl, is an ensemble in which
the training set is randomly split into some subsets of the same size, T;. The number
of subsets corresponds to the number of networks of the ensemble. The training set
of the network, 7™, is given by equation .

T = nGk T; (5.1)

z;énet

In figure a graphical diagram related to the generation of the different training
sets is shown. A 5-network ensemble is supposed in the figure. The validation set is
kept unchanged for all the networks in the ensemble.

(__ original validationset ) y'=y=_=y*

C original training set D)

(v IO

Cr T O @R —

T4

/\/\

T

Figure 5.1: Generation of the different training sets for Cross-Validation version 1

This ensemble method, also called Cross-Validation leaving-one-out, is fully de-
scribed in references [73], [74].
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5.2.1.4 Cross Validation Committee version 2

The second version of Cross-Validation Committee is a variant of C'VCv1. In this
case, the original learning set, composed with the patterns from the training and
validation sets, is split into k different subsets of the same size, L;. The new training
set of a network, 7™, is generated as in C'VCvl but the omitted subset, L., is
used for validation, V""", These specific sets are given by the following equations:

" Nnetworks "
Tnet = .!1 L, Ve = Lot (5.2)
i;é_net

In figure 5.2 a graphical diagram related to the generation of the different sets is
shown. In this case, there are specific training and validation sets for each network.
As in the previous method, the example is given by an ensemble of 5 networks.

C original learning set ) - -
specific specific
glenenarc I
O rone® ~ (L G v
r (L L@ v
\TSC LICLZCLS- v

Figure 5.2: Generation of the different training sets for Cross-Validation version 2

The whole description of C'VCv2 can be found in references [75)], [76].
5.2.1.5 Cross Validation Committee version 2.5

One important characteristic of the two previous methods is that the subset size
inversely depends on the number of networks. There are some problems derived from
this fact. On the one hand, if the ensemble is composed by a reduced number of
networks, the generated training sets are smaller than usual whereas the generated
validation sets are larger and the performance of the individual networks usually
decreases because of the use of a small training set. On the other hand, if the
ensemble is composed by a high number of networks, the generated training sets are
similar to the original training set in C'VCvI and similar to the original learning set
in CVCv2 and the diversity and performance of the ensemble decreases. Moreover,
the validation sets are smaller than the original validation set, being insignificant in
some cases.
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In this new method proposed by us, Cross Validation Committee v2.5, the number
of subsets generated, Ngupsers, does not depend on the ensemble size. In this way, the
training and validation sets can almost keep their original sizes and the problems
derived can be avoided if Ngypsers i properly set. To set its value, we have generated
ensembles with different values of Ngypsers, between 3 and 10, and the best results
were obtained when it was set to 5. Moreover, the size of the specific training and
validation sets is similar to the size of the original sets with this value. For these
reasons, we have finally set Nypsers t0 5 in all the experiments done.

The training and validation sets in this version of CV(' are given by the following
equations:

‘ Nnetwo'rks "
et — U Lz Vet = Linde:cnet (53)
i=1
i#indeTnet
Where the index related to a specific neural network, index,.;, depends on the
modulus after division of the number of the network, net, and the total number of

subsets. Its value is given by:

t—1
ndex,e = 1+ modulus (ne ) (5.4)

subsets

The graphical diagram related to the generation of the different training sets is
shown in figure[5.3] In this case, a n-network ensemble is supposed in the figure and
Noupbsets 1S D as set in our experiments.

C original learning set D Specific Specific
validation sets

CEAEAENENC R

Figure 5.3: Generation of the different training sets for Cross-Validation version 2.5

Although the problems related to previous versions are avoided, the training and
validation sets are repeated every five networks. It can be considered a disadvantage
because the final network configuration depends on the training and validation sets
so the diversity among networks may be reduced.

74



CHAPTER 5. A COMPARATIVE STUDY OF ENSEMBLE METHODS (II)

5.2.1.6 Cross Validation Committee version 3

In the previous ensemble, C'VCv2.5, the generated training and validation sets can be
shared by some networks. To avoid this minor problem, we propose Cross Validation
Committee v3 (CVCv3). In this proposed version, the learning set is also split into
Ngupsets but the training and validation sets are given by equation In this case,
Noupsets 18 now set to 10.

Nsubsets
t t __
et = U Lz Vet = LindewnetJ U Lindexnet,g
i=1 (5.5)

i#indernet,l
i#indeTnet,2

Where the indexes related to a neural network, index .1 and index, 2, are ran-
domly set with the constraint that the different networks have different training and
validation sets. Here, we show an example of these indexes.

ndeXper 1 INAdeTpet 2

nety 1 6
nets 2 7
net,, 5} 8

In order to explain better C'VCv3, a graphical diagram related to the generation of
the different sets is shown in figure As in CVCv2.5, an n-network ensemble is
supposed in the figure but, in this case, there are 10 subsets in this method which
is the value used in our experiments.

(_ original learning set )

L, Cr, O CRA@RC v L O CE @D —
specific specific
training sets validation set

TR CEC ( L, (L v
T (L, BN E@AEN v

Ballerenenc enanen I
enenans aneney - I

Figure 5.4: Generation of the different training sets for Cross-Validation version 3
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5.2.1.7 Disjoint Partitions

Disjoint Partitions, henceforth DP, is an ensemble method in which the training set
is randomly split into k disjoint subsets of the same size. Each network is trained
with the corresponding disjoint subset. The union of the different disjoint subsets is
the original training set.

This ensemble was proposed in [77], a graphical example is shown in figure [5.5]
Where the training set for the first network is 7" = [z5, 9], the training set for the
second network is 7% = [z2, 27| and so on.

At first sight, this procedure has two disadvantages. Firstly, the training set of the
different networks is very small and the performance of the individual networks
decreases. Secondly, the validation set is the same for all the networks and the
diversity of the ensemble can be also decreased for this reason.

5.2.1.8 Disjoint Partitions with Replications

Disjoint Partitions with Replications, henceforth DPR, is an evolution of DP in
which the training set is also split into & disjoint subsets. For each disjoint subset,
elements from the same subset are randomly selected and added to this subset until
its size is equal to the size of the original set.

Then, each network is trained with its corresponding subset. Although new elements
are added to the disjoint sets, there is not any overlap among them. The intersection
between two disjoint sets is the void set.

This method was also proposed in [77], a graphical example is also shown in figure
5.5l Under our point of view, DPR increases the sizes of the training sets with respect
to DP. But the diversity of the particular training set is the same and the validation
sets are equal for all networks.

5.2.1.9 Overlapping Partitions

Qverlapping Partitions, henceforth OP, is an ensemble method which slightly differs
from DP. In OP, the training set is also randomly split into k disjoint partitions but
a certain percentage of patterns are randomly selected from the disjoint partitions.
They will form a common set of patterns and these patterns are excluded from the
original disjoint subsets. The union of the selected patterns in the common set with
the remaining disjoint subsets will form the overlapping subsets.

Finally, each network is trained with the corresponding overlapping subset. The
union of the different overlapping subsets is the original training set whereas the
intersection of the different overlapping sets are the patterns of the common set
randomly selected from the disjoint partitions.

Figure shows a graphical example of this ensemble proposed by Dara in [77].

76



CHAPTER 5. A COMPARATIVE STUDY OF ENSEMBLE METHODS (II)

5.2.1.10 Overlapping Partitions with Replications

QOwverlapping Partitions with Replications, henceforth OPR, is an ensemble method
similar to Querlapping Partitions. But in this case, the patterns of each overlapping
subset are replicated until the size of the overlapping subset is equal to the size of
the original set. It is a mixture between OP and DPR. Then, each network is trained
with the corresponding overlapping subset with replications. This model was also
proposed in [77], and its graphical example is also shown in figure .

AVA

X,

Figure 5.5: Generating the training set for Disjoint and Overlapping partitions

5.2.2 Boosting methods

In this subsection some boosting variants will be reviewed. The origins of Boosting
are dated in 1988 when Kearns openly asked ‘Can a set of weak learners create a
single strong learner?’ [78]. The early Boosting models proposed by Freund and Yoav
were the affirmative answer of this question [79].

Most of the methods reviewed in this thesis are improved versions of Adaptive Boost-
ing [79] in which some modifications have been proposed by different authors to de-
sign better ensembles. In fact, in this thesis we also propose modifications of Adaptive
Boosting. In this section, the classic boosting implementations are reviewed but the
boosting alternatives proposed by us in this thesis will be described and analyzed
in chapter [§
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5.2.2.1 Boosting 3

Boosting 3, henceforth Boost3, is a method to design an ensemble of 3 networks as
described in [80]. Each network is trained on different training sets based on the
performance of the previous network.

The first network is trained on the original training set 7'. Once it has been trained,
it is tested on the same set marking their patterns with information related to the
correct or incorrect classification by the network. Then a new training set of the same
size is built T2. In this new set, half of the patterns corresponds to patterns which
were incorrectly classified by the previous network and the other half corresponds to
patterns which were correctly classified. This dataset is built by randomly selecting
patterns with replacement from the original training set with the parity restriction
commented.

Then, the second network is trained with the new training set 7. Once the network
has been trained, it is tested again on the original training set marking their patterns
with information related to the classification by the second network. If a pattern is
not correctly classified by the first and second network then it is added to a new
training set 7.

Finally, once the new training set 7 is generated, the third network is trained using
this new set. The ensemble learning procedure finishes when the third network has
been trained.

5.2.2.2 Adaptive Boosting

Adaptive Boosting, henceforth Adaboost, is an important ensemble alternative pro-
posed by Freund and Schaphire in [79]. Adaboost constructs a sequence of networks
in which the training sets of the successive classifiers are overfitted with hard to
learn patterns by the previous networks.

In Adaboost, the successive training sets are generated by randomly sampling with
replacement, but the probability of selecting a pattern, x, depends on a sampling
probability distribution, called Dist, where each pattern has a particular probability
of being selected, Dist,. This sampling distribution, Dist, is updated after training
each network and the probability of selecting a pattern increases if the trained
network does not correctly classify the pattern, h"(z) is not equal to d(x), whereas
the probability decreases if the pattern is correctly classified.

A basic training diagram of Adaboost is shown in figure |5.6| and the description is
shown in algorithm [5.1]

Adaboost uses a specific model to combine the output provided by the networks of
the ensemble. This combination method, henceforth boosting combiner, is described

in equation [5.0}

Nnetworks 1 o Enet
h(x) = argmax g log
c=1,..., Nclasscs net:h"”(m):c

(5.6)

Enet
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Where €' and h"¢ are described in algorithm and arg maz is the maximum
function. The final hypothesis, h(z), is calculated by a weighted voting system based
on the error of all the networks, €"¢*, and their predictions, h"¢*. Each network, net,
assigns a vote value, log 1;§;€t, to the predicted class, h"“*(x) equal to c. If the error
of the network is low, its vote value will be high and this network will have more
importance in the final ensemble classification. Finally, the class ¢ with highest final

vote value, arg max of the summatory, is associated to the pattern.

1

Dist.= VxeTl
[lﬂ"(’l‘"j‘
Tl » T2 » T3 » Tk
ANN, ANN, | ANN,
D? D? D*
L L L

Figure 5.6: Adaboost training basic diagram

Algorithm 5.1 Adaboost {T', V', Nyerworks }
Initialize Sampling Distribution Dist:
DZSti = ]-/Npatterns VeeT
for net =1 to Npetworks dO
Create T' sampling from T using Dist"
MF Network Training 7", V/
Calculate misclassified vector:
1 if h"e*(z) # d(x) z is incorrectly classified by net
0 otherwise x is correctly classified by net
h"(z) is the class associated to the pattern xz according to the output of net
d(x) is the target associated to the pattern x
Calculate error:
Enet — ZNpatterns D,L'Stget . miSSZEt

=1

Update sampling distribution:

net __

miss,” =

1 : " o onet
= 1f miss
. . enet
Dist" 1 = Distme . (2-enet) ’
ey otherwise

end for

Although Adaboost is considered one of the most important ensembles, some authors
like Breiman [81], Kuncheva [82] or Oza [83] have deeply analyzed variants and suc-
cessfully improved it. Better results are obtained by modifying the equation used to
update the sampling distribution, Dist, or by adding new constraints to the origi-
nal algorithm. Unfortunately, any deep research on comparing different combination
methods for boosting ensembles has not been done yet.
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5.2.2.3 Averaged Boosting

Oza proposed a variant of Adaboost in [83] called Averaged Boosting, henceforth Ave-
boost. In Aveboost, the sampling distribution related to a neural network, Dist™t*!
depends on three factors.

+ The sampling distribution of the previous network, Dist"™.
+ The equation used to update the distribution of Adaboost, equation [5.8
+ The number of networks previously trained, net.

The basic algorithm structure and the specific combiner are keep unchanged with
respect to the algorithm described in Adaboost.

In Aveboost, the equation to update the sampling distribution is given by:

net - Dist + C7e

Dist™+! = 5.7
* net + 1 (5:7)
where:
1 . .. .
—— if x is incorrectly classified by net
Crt = Dist™" . { 2.enet ih . Y Y (5.8)
s(—aen Otherwise

As it can be observed in equation [5.7] the weighted average highly depends on the
number of networks previously trained, net. The strength of the sampling distri-
bution update decreases as the value of net increases. The limit of Dist™*! when
net increases in equation is equal to Dist"™, so when net increases the sampling
distribution is kept unchanged in the successive networks.

The major problem of Adaboost is that the ensemble tends to be unstable after
training some networks because the training sets are overfitted quickly by hard to
learn patterns. In contrast, in Aveboost, the values of the sampling distribution can
not shoot up, or down, quickly because a weighted average is applied to update the
sampling distribution. In this case, the update of the sampling distribution tends to
be softer and softer as new networks are added to the ensemble.

5.2.2.4 Averaged Boosting version 2

Ninkunj C. Oza proposed Averaged Boosting version 2, Aveboost2, in [84] one year
after describing Awveboost. In this variant, some new variables are introduced with
respect to the original boosting description. The purpose of the new variables, 37¢
and "', are to optimize the training and to improve the specific combiner. It is
described in algorithm [5.2]
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Algorithm 5.2 Aveboost2 {T', V', Nyetworks
Initialize Sampling Distribution Dist:
Dlsti = 1/NpatteTns VeeT
for net =1 to Npetworks dO
Create T' sampling from T using Dist"
MF Network Training 7", V/
Calculate misclassified vector:
net | 1 Af () # d(x) x is incorrectly classified by net
x 0 otherwise x is correctly classified by net
h"™*(x) is the class associated to the pattern z according to the output of net
d(x) is the target associated to the pattern x
Calculate error € and other measures:
et = 3" Dist? - misshet
net
ﬂnet = lienet

net __ 2-(1—e™®!).net+1
v - 2-enctnet+1 .
Update sampling distribution:

whet — Distnet . { 1 if z incorrectly classified

MISS

T Bmet otherwise

net
x

net __ w
Cx - Z]_anetworks w;
i=
. net+1 _ net-Distet4+Onet
dl;ZStm - net+1
en or

Aveboost2 uses a specific method to combine the output provided by the networks
of the ensemble, the Aveboost2 combiner, which is described in equation [5.9

Nnetworks

1— net
h(x) = argmax Z log <7”et- ‘ ) (5.9)

net
C:17...7Nclasses net:h"Et(z):c €

The Aveboost2 combiner is similar to the one used in Adaboost. However, in this case
the vote value given by a network net will also depend on the number of networks
previously trained. The value of 7"¢ increases as the number of networks added
to ensemble increases, and therefore the final vote provided by the network also
increases with net. In this way, the output provided by the firsts networks of the
ensemble are penalized.

5.2.2.5 Totally Corrective Adaboost version 1

Totally Corrective Adaboost version 1, henceforth TCA wvl1, is another variant of
Adaboost. In this case an optimization procedure is applied to calculate the values
of the sampling distribution. Algorithm shows the basic design of the ensemble
structure whereas algorithm shows the optimization procedure applied to update
the sampling distribution in TCAwv1.
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Algorithm 5.3 TCAvV1 {T, V', Nuctworks
Initialize Sampling Distribution Dist:
Distl = 1/Nyatterns Yo € T
for net =1 to Npetworks dO
Create T' sampling from T using Dist"
MF Network Training 7", V/
Calculate misclassified vector:
—1 if "¢ (x) # d(x) r is incorrectly classified
+1 otherwise x is correctly classified
h"™*(x) is the class associated to the pattern z according to the output of net
d(x) is the target associated to the pattern x
Generate the new sampling distribution: Dist Update TCA {Dist, net}
end for

net __

Uy

As we can see in algorithm [5.3] the basic structure of T'CAv! is similar to the
algorithm described for Adaboost. However, in TCA, the misclassification vector
mass is replaced by the u vector whose values are now 1 or —1. Moreover, the
procedure to update the sampling distribution is more complex because it is not
given by a simple equation. In TCAwvI, the optimization procedure described in
algorithm is used to obtain the new values of the sampling distribution.

Algorithm 5.4 Dist Update TCAv1 {Dist, net}

d1 = D’iStl
vt = max |dj- u%‘
q;€{1,2...,net}

Converged = false

j=1

while not(Converged) do
¢j = argmax aj : uqi’

q;€{1,2...,net}

~ <1+aj~uq-j>

a; =1In{ —=—

A 1-dj-u

dji1 = dj - exp (~, - u)

Normalize | djiq

-~

dj; 1 - u%

It q;€{1,2...,net}

if [v7¢h — 7| <T then
Converged = true
Dist™ ! = d; 4
else
j=Jj+1
end if
end while
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In algorithm , the new distribution, 81, corresponds to the initial configuration in
which all the patterns have the same probability of being selected, Dist!. Moreover,
the value v} is also calculated as the maximum value of the multiplication between

31 and each individual u vector.

Then, an iterative procedure is applied to adapt the new distribution until the pro-
cedure converges. In each iteration, the new distribution, d, is adapted as follows.
Firstly, we select the network, g;, which provides the highest value of the multipli-

cation of two vectors, the distribution which is being updated, aj, and its u vector
(u%). Once the “best” network has been selected, network ¢;, (according to the bib-
liography, ¢; has been used to define this “winner” network and the variable for the
arg max function), the distribution is updated according to the following equation:

Q.)

j+1 = aj -exp (—a; - u¥) (5.10)

where:

14+d:-ud
&; = In (%) (5.11)

1—dj'uq-i

After updating 8, it must be normalized. The summatory of the probabilities of
all the patterns must be one according to this ensemble. For this reason, all the
individual values of dj;q are divided by the summatory of all the values of this
vector.

Finally, vglfl is calculated as the maximum value associated to the multiplication

between two vectors, the new distribution aj+1 and each individual u vector. The
procedure finishes and the new sampling distribution is set (Dist"**1) if the differ-
ence between v]’-ﬁtl and its previous value, U}m, is lower than a threshold, I". This

stopping criteria was introduced by Oza in [83].

TCAwvl is described and analyzed in [83] as a modified version of the corrective
boosting method proposed in [85].

5.2.2.6 Totally Corrective Adaboost version 2

Totally Corrective Adaboost v2, henceforth TCAv2, is a slight modified version of
TCAv! in which the procedure to optimize the sampling distribution also corre-
sponds to algorithm [5.4 but it is slightly modified. Concretely, the following stopping
criteria:

: net net
if |vm+1 — U | < I'" then

Is replaced by:

if ((}U?Jertl - U;'wt| < F) or (((]) > Npatterns) and ('U;Zertl > U;wt))) then

In this case, the iterative procedure also finishes if the number of iterations, j, is
greater or equal than Npgerns and v?fl is greater than v}wt. This new stopping

criteria was also proposed by Oza.
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5.2.2.7 Aggressive Boosting

Aggressive Boosting, henceforth Aggreboost, is the first of three boosting alternatives
proposed by Kuncheva in [82]. According to [82, 86], the equation applied to update
sampling distribution of Aggreboost is equal to the equation of Adaboost described in
[87, 88]. However, this new equation introduces the reinitialization of the sampling
distribution when the error, €, is not in the range (0,...,0.5). The description of
Aggreboost is shown in algorithm

Algorithm 5.5 Aggreboost {T, V', Nyetworks }
Initialize Sampling Distribution Dist: Distl =1 /Npatterns V& € T
for net = 1 to N, etworks dO
Create T' sampling from T using Dist"™
MF Network Training 7", V/
Calculate misclassified vector:
net | 1 At AN (x) # d(2) z is incorrectly classified
v 0 otherwise x is correctly classified
h"¢*(x) is the class associated to the pattern z according to the output of net
d(x) is the target associated to the pattern x
Calculate error and other parameters:
"t =3 Dist? - missl®
pret =\ /155, et € (0,0.5)
Enet = 2. misstt — 1
if €*“* ¢ (0,0.5) then
Reinitialize Sampling Distribution Dist: Dist™" = 1/Npaserns V& € T
end if
Update sampling distribution:
D,L'Stget+1 — Dist:et . (6net)§;wt
Normalize(Dist™*1)
end for

Miss

The variants proposed by Kuncheva use the specific combiner described in equation
henceforth Kuncheva’s combiner, which is quite similar to the one used in
Adaboost. In this case, the square root is used in the equation to calculate the vote

values.
Nnetworks n
h(xz) = argmax Z In \/@ (5.12)
c=1,...,classes enet .

net:hnet(z)=c

5.2.2.8 Conservative Boosting

Conservative Boosting, henceforth Conserboost, is the second ensemble proposed by
Kuncheva in [82]. Conserboost applies a softer equation to update the sampling dis-
tribution. In this alternative, the value of the sampling distribution is only updated
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for the misclassified patterns. In addition, this variant also allows the reinitializa-
tion of the sampling distribution as in Aggreboost. The description of Conserboost
corresponds to algorithm but the value of the parameter £ is given by:

£ = missl® (5.13)

x

5.2.2.9 Inverse Boosting

Inverse Boosting, henceforth Inverboost, is the last boosting model proposed by
Kuncheva in [82]. Opposite to Adaboost, Inverboost applies an equation to update
the sampling distribution in which the hard to learn patterns tend to disappear
from the training set. So the different learning sets are specialized on easy to learn
patterns. In this variant, the classifiers tend to be more and more similar, decreasing
the diversity in the process.

The basic description of Inverboost also corresponds to the description of Aggreboost,
the only difference between them is the value of the parameter £ which, in this case,
is given by:

£t = —miss™ (5.14)

T

It is though that this variant was due to a missprint in the description of the algo-
rithm described in the references [89, 90]. However, this method is included in our
comparison because it can be useful for further experiments and research.

Although the three boosting alternatives proposed by Kuncheva appeared previously
in the bibliography [89, O0], most of the time they were simply called Adaboost and
any distinction among them had not been done. Kuncheva was the first researcher
in naming, distinguishing and analising them.

5.2.2.10 Arcing Classifiers

Breiman proposed an ensemble called ARC-z/ in the paper Arcing Classifiers [81].
ARC-z/ can not be considered as a pure boosting method because the sampling
distribution of the i-th network, Dist’, only depends on the number of times the
pattern, x, has been missclasified by the ¢ — 1 previous trained networks, equation

Moreover, the procedure to update the sampling distribution is quite different.

Sometimes, ARC-z/ is cataloged as a boosting variant because they share the same
spirit which is overfitting the training sets with hard to learn patterns.

In this case, the values of the sampling distribution, probabilities in the reference,
are calculated by equation [5.15] after training a network.

(143" miss?)
atterns ne . 4
S (14 30 missT)
Finally, the Boosting combiner was not used to combine the networks in the original
reference. Instead, the Voting scheme was the combiner applied to obtain the final

hypothesis of the ensemble system as in EVOL. This combiner was described in
subsection [4.2.2.1] and it will be fully analyzed in the next chapter.

Distretl = (5.15)
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5.3 Experimental Setup

The purpose of this comparative research is to obtain the performance of the en-
semble methods in which the learning set is modified. As was commented, the main
problem of the research in this field is that there is not a common test framework
so it is not possible to compare the different alternatives from the results provided
in the original references.

Although some problems related to this research were described in the previous
chapter, there are specific problems related to the ensemble models included in this
chapter. As Kuncheva said in [82], some variants derived from Boosting were named
with its generic name and a comparison differentiating the may be important.

The main characteristics of the performed research are:

+ Nineteen datasets from the UCI Repository are employed.

+ Twenty different alternatives are applied to generate the ensembles.

+ One network architecture is used, the MF network.

+ Four different ensemble sizes are considered: 3, 9, 20 and 40 networks.

+ We have utilized optimized training parameters.

+ One combiner is applied for each ensemble:
+ Output average in CVC versions, DP, OP and Boosting3.
4+ Specific combiners in boosting.
+ Voting in ARCx4.

+ The experiments have been repeated ten times with different partitions of
training, validation and test sets in order to obtain:

4+ The mean value of performance.
+ The error rate by standard error theory.
+ Three general measurements were applied for the comparison:
+ Mean Increase of Performance.
+ Mean Percentage of Error Reduction.
4+ Paired Student’s t-test.

As mentioned in the previous chapter, the description of the datasets from the UCI
repository are in appendix [A] The optimized training parameters of the networks
are in appendix whereas the specific parameters of the ensembles are in ap-
pendix [B.5] Finally, the general measurements utilized to compare the ensemble
models, mean [oP and mean PER can be found in equations and respec-
tively. Although the results and their analysis of this chapter are based on these
measurements, the Paired Student’s t-test will also be used.
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5.4 Results and discussion

The main results related to this ensemble comparison are shown in this section.
Firstly, table shows the mean IoP and the mean PER of Simple Ensemble and
the ensemble methods analyzed in this chapter for four different ensemble sizes.

Table 5.1: Ensemble Comparison 2 - General Results

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
Bagging 5.09 5.78 5.95 5.76 22.93 27.55 2825 27.69
Bagnoise 3.95 4.03 3.98 4.18 13.32 12.44 13.12 13.66
CvcC 4.38 5.53 5.35 5.53 20.66 24.3 24.23  24.21
CVCv2 5.48 5.95 5.98 5.85 25.73 27.09 25.34 23.7
CVCv2.5 5.48 6.17 5.94 5.94 24.25  27.85  26.65 27.55
CVCv3 5.56 5.96 6.17 6.16 24.06 26.59 28.35 28.68
DP 283 —214 —-5.16 —8.15 11.18 —21.36 —51.46 —80.4
DPR 293 —1.27 —-499 -—-7.89 12.54 —13.11 —4297 —70.71
oP 3.47 0.12 —463 —-9.06 13.38 —10.89 —43.14 —87.71
OPR 3.96 1.48 -3.3 767 1529 —2.16 -—-33.38 —74.78
Boosting 4.36 = = = 16.35 = = =

Adaboost 3.69 4.55 4.93 4.98 15.4 19.5 22.96 24.54
Aveboost 4.33 5.57 5.95 6.04 18.26  26.11  27.12  26.53
Aveboost2 4.02 4.59 4.88 5 17.67 2234 2299 23.32
TCAv1 2.18 2.88 2.04 0.19 —6.52 —-3.97 -—-7.12 —35.58
TCAv2 3.01 2.63 2.26 1.19 6.59 —1.64 —12.94 —21.21

Aggreboost 3.56 4.79 5.53 5.83 14.82 20.26  25.27  26.56
Inverboost 2.89 095 —123 -2.76 9.2 -3.12 —15 —24.18

Conserboost 4.42 5.31 5.65 6.06 19.72  25.63 26.62 27.84

ARCx4 4.06 3.78 4.8 5.24 18.01 17.69 22.56 24.37

On the one hand, according to the previous general results, the ensemble alternatives
which improve Simple Ensemble are: Bagging, the whole versions of Cross-Validation
Committee and a few variants based on Adaptive Boosting for the case of a high
number of networks in the ensemble from 9 to 40 networks (Awveboost, Aggreboost
and Conserboost).

On the other hand, DP, DPR, OP, OPR and some Boosting variants (Inverboost,
TCAv1 and TCAv2) perform worse than Simple Ensemble and, in most of the cases,
perform worse than a single MF' network.

The results provided by DP, OP and variants were expected because the size of the
training set or the number of different patterns used in training was so small. In the
original reference [77], they were tested using two artificial databases. Concretely,
the 80-D Correlated Gaussian with 80 classes from [91] and the 20-class Gaussian
from [69]. In both datasets, each class had a total number of 100 patterns so the
total number of patterns used for training was high. Moreover, the authors generated
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ensembles of 6 to 9 networks. Although the results provided by the authors were
positive, they tested the four methods on artificial datasets with a large number of
patterns and using small ensembles. With that experimental setup, all the networks
of their ensembles had enough patterns for training. We consider that the general
behavior shown in this thesis for the four models is more accurate than in the original
references because the experimental setup we have used, with several normal datasets
and quite different sizes of the ensembles, is more complete.

Moreover, the results provided by Inverboost were also expected because the patterns
close to the class boundaries tend to be removed on the successive training sets and it
was suggested that this algorithm was due to a missprint [82]. The results provided
by both versions of TCA were not expected because the optimization procedure
used seems to be quite elaborated. We do not know their behavior according to its
authors because they did not include any empirical result in the original reference
[85]. However, Oza commented in [83] that TCA may not perform well.

However, with the general measurements there is not any statistical information
about the dissimilarity of Simple Ensemble and the best alternatives. For this reason,
the t-test was applied to compare Simple Ensemble to these alternatives described
in this chapter in order to test if they statistically improve the results provided by
Simple Ensemble. The results of the tests are in table [5.2] Moreover, the different
versions of Cross-Validation Committee are statistically compared among them in
table 5.3 whereas the best Boosting variants are statistically compared to Adaboost,

table (.41

Table 5.2: Statistical results of the best methods versus Simple Ensemble

Methods measure 3-net 9-net 20-net 40-net
SE vs Baeein t-value —0.57 —2.64 —4.01 —2.20
ggimng o 0.57  0.0091 0.000086 0.029

t-value 2.66 —153 0.16 —0.56

=18 D GV, o 0.0085 0.13  0.87  0.58
t-value —-2.19 -3.71 —3.54 —2.19

=13 v CVIC72 o 0.03  0.00027 0.00051 0.029
t-value —222 —445 —345 —261

2 s OVbvng o 0.027 0.000014 0.0007  0.01
t-value —220 —3.33 —461 —3.88
S o 0.029  0.001 0.0000073 0.00014

SE vs Aveboost t-vzlue 2.48 -137 —-3.01 —2.78

0.014 0.17 0.0029  0.006

t-value  4.17 1.53 —-0.83 —1.77
0.000047 0.13 0.41 0.078

t-value 1.88 —-0.14 —-1.33 —-2.99
0.061 0.89 0.19 0.0031

SE vs Aggreboost

SE vs Conserboost
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In the previous table, Simple Ensemble, SE, is statistically compared to the best
ensemble methods according to the mean ToP and PER of table[5.1] Firstly, Bagging
and all the versions based on CVC, except CVCuvli, perform better than Simple
FEnsembles and their differences are statistically significant, except for the case of
3-nets and Bagging.

Secondly, Aveboost and Conserboost improve the results provided by Simple Ensem-
ble and the differences between them and Simple Ensemble are significant for the
case of ensembles of 40 networks. In this case, ensembles of 40 networks, Aggreboost
only performs slightly better than SE because « is greater than 0.05. Moreover, the
differences between Aveboost and Simple Ensemble are also statistically significant
for ensembles of 20 networks. Finally, the three boosting variants perform statisti-
cally worse than Simple Ensemble for the case of ensembles of 3 networks.

The C'VC versions have been statistically compared among them in table[5.3|because
each newer version described is an improvement of the previous version. For this
reason, it has been considered that any version should be compared to the previous
ones.

Table 5.3: Statistical results among C'VC' methods

Methods measure 3-net 9-net 20-net 40-net
cveviwoven T Sl T oons 047
v v I L
ovevt vs ovevs YN 0 G0t 000013 00014
CVCv2 vs CVCv2.5 [value _o(_]é%l —()z‘é?’ 8%8 _o(.)éil
CVCv2 vs CVCv3 [value —0("%?17 —0%38 —02209 61025
CVCv2.5 vs CVCv3 "value —()9,-7317 (1)2;’ —0}1%6 —02526

Firstly, C'VCv1 is improved by the other versions of Cross-Validation Committee.
However, there are two cases in which the differences with respect to C'VCv2 are
not statistically significant, ensembles of 9 and 40 networks. These statistical values
may be due to the size of the training and validation sets in medium and high
sized ensembles generated by C'VCv2. As we pointed out, their sizes depend on the
number of networks of the ensemble.

Secondly, C'VCv2 is slightly improved by CVCv2.5 and C'VCv3 in most of the cases
but the differences are not statistically significant. Minor changes are applied to both
ensemble methods with respect to CVCv2. Fortunately, ensembles of 40 networks
generated by CVCv3 can improve statistically the results of C'VCv2. As has been
mentioned, diversity is low in C'VCv2 because the specific training sets are similar
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and the specific validation sets are nearly insignificant when the number of networks
is high. This problem does not occur in C'VCv3 so this last version of C'VC' can
provide quite good results in high sized ensembles.

Finally, CVCv2.5 and C'VCuv3 have similar general performance but CVCv3 per-
forms slightly better. The statistical test shows that the differences between them
are not significant. C'VCv2.5 should be considered a bridge version between C'VCv2
and C'VCv3 and it should not be seriously considered for further experiments.

In the case of boosting variants, only four models have been included in the statistical
comparison. The original Adaptive Boosting has been compared to the best boosting
variants. Moreover, Aveboost has been compared to Conserboost because they are
the two best boosting alternatives.

Table 5.4: Statistical results among Boosting methods
Methods measure 3-net 9-net 20-net 40-net
t-value —2.27 -—-3.27 -3.20 -3.51
Q@ 0.024 0.0013 0.0016 0.00056
t-value —-0.39 —-146 —2.31 —3.20
Q@ 0.7 0.15 0.022 0.0016
t-value —2.55 —2.66 —2.58 —3.54
Q@ 0.012 0.0086 0.011 0.0005

t-value —0.35 1.66 1.75 —0.09
Aveboost vs Conserboost 0.72 0.098 0.081 0.93

Adaboost vs Aveboost
Adaboost vs Aggreboost

Adaboost vs Conserboost

The results provided by the statistical tests in table [5.4] show that Aveboost and
Conserboost clearly improve Adaboost. Moreover, the dissimilarity of Conserboost
and Aveboost with respect to Adaboost increases as new networks are added to the
ensemble according to the t-value. Furthermore, Aggreboost is only slightly better
than Adaboost for low and medium sized ensembles, 3 or 9 networks in the ensemble,
because the differences are not statistically significant. The probability of reinitial-
izing the sampling distribution in low and medium sized ensembles is very low so
Adaboost and Aggreboost have both, in general, the same behavior on these cases
and the difference between them becomes clear for 20 and 40 networks in the en-
semble. In these two cases, Aggreboost is better than Adaboost and a denotes that
the differences between them are statistically significant.

Finally, Aveboost performs better than Conserboost in two cases and in the other
cases Conserboost performs better. The statistical test shows that the differences
between them are not significant. But in ensembles of 9 and 20 networks, the differ-
ences are almost significant because « is slightly higher than 0.05. Although these
two methods provide similar results this does not mean that they classify exactly
the same patterns.

90



CHAPTER 5. A COMPARATIVE STUDY OF ENSEMBLE METHODS (II)

5.5 Conclusions

Some interesting information can be derived from the results shown in the previous
tables. First of all, considering the best performing methods, the mean increase of
performance with respect to a single network is higher than 6% and the percentage of
error reduction is between 28% and 29%. The best results obtained here are slightly
higher that the best results shown in the previous chapter.

Secondly, the best ensemble version of Cross-Validation is CVCv3 and it has been
proposed by us. In C'VCv3, the number of partitions does not depend on the number
of networks and, moreover, the networks do not share the same validation set. So
the size of training and validation sets are kept in a reasonable value and the di-
versity of the ensemble is improved. Although C'VCv2.5 has also good performance,
the ensembles of 40 networks generated by CVCv3 are the only ensembles which
statistically improve the results provided by the traditional models based on Cross-
Validation which are commonly applied in the literature, CVCv1 and CVCv2. 1t is
important because, as was mentioned before, this concrete implementation, C'VCv3,
has been proposed in this thesis. Furthermore, C'VCv2 and CVCv2.5 also provides
good results and their differences with respect to Simple Ensemble are statistically
significant.

Thirdly, the Boosting variants are accurate. Conserboost and Awveboost provide the
best results in this class of ensembles whereas TCA and Inverboost provide the worst
ones. Conserboost and Aveboost are two different approaches in which the sampling
distribution is updated by successfully applying a softer equation. The results of
Inverboost were expected because hard to learn patterns disappear from training
and Kuncheva described it as a missprint. Although the optimization procedure
to update the sampling distribution proposed in T'CA is elaborated, the results
show that TCAvI and TCAv2 should not be considered. Unfortunaltely, TCA was
not empirically tested in the original reference so we do not know its behavior on
the experiments performed by the researchers if they were done. Furthermore, Oza
reached similar conclusions about TCA in [83].

Moreover, Bagging also provides good results and it is better than Simple Ensemble
in all cases. Furthermore, Bagging performs better than Boosting in a wide number
of cases. However, the best results provided by Bagging are overcame by Conserboost
in the case of 40 networks in the ensemble. Unfortunately, Bagnoise does not improve
the results obtained by Simple Ensemble.

In addition, the implementations based on disjoint and overlapping partitions do not
provide good results. The size of the specific training sets inversely depends on the
number of networks of the ensemble so the performance of the individual networks
in the ensemble usually decreases with the size of the training set. The size of the
specific training sets is much lower and there are not enough samples to successfully
train a network. In the original references, they provided good results because they
were tested on large datasets and they used ‘small’ ensembles. So, they had enough
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patterns to successfully train all the networks of the ensemble. However, there are
some classification problems in which a large dataset can not be generated and,
therefore, DP, DPR, OP and OPR are not suggested to be applied. For this reason,
we consider that the general behavior shown in this thesis is more accurate for these
four ensembles.

Finally, the best ensemble methods are: Bagging, CVCv3, Aveboost, Conserboost.
These four alternatives should be seriously considered when ensembles of neural
networks are designed. However, Bagging is special because the training set is dou-
bled so the computational training requirements are also doubled. The ratio between
performance and requirements of Bagging should be seriously considered when the
ensembles are being designed. Finally, the origins of the four best models are quite
different so it may be interesting to design new methods in which some different
ensemble approaches are combined. Although diversity is generated in all of these
alternatives by modifying the learning sets, the modifications applied are quite dif-
ferent among them.

To conclude this chapter, is important to remark that the best ensemble alterna-
tives according to the two ensemble comparisons done in this thesis are should be
strongly considered. Bagging, CVCv3, Aveboost and Conserboost are the best meth-
ods according to the current research and both versions of Decorrelated were highly
suggested in the previous chapter. They should be used to solve classification prob-
lems because they provide excellent general results and their origins, or sources of
diversity, are quite different among them. For instance, C'VCv3 uses slightly differ-
ent training and validation sets, Conserboost overfits softly the networks with hard
to learn patterns and Decorrelated modifies the target equation in order to reduce
the correlation between networks.

The results shown in this chapter have also been published in references [MFC1,
MFC2, MFC3] which are detailed in the last chapter of this thesis.
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CHAPTER 6. A COMPARATIVE STUDY OF ENSEMBLE COMBINERS

6.1 Introduction

In this chapter, some methods to combine the networks of an ensemble will be
analyzed and compared. Concretely, the research performed here is focused on com-
biners applied to ensembles previously trained with Simple Ensemble, Decorrelated,
Cross Validation Committee v2 and Conservative Boosting. In this way, four differ-
ent ensemble alternatives have been used to test the different combiners analyzed
in this chapter. We have selected them because they are the most representative
ones. Although Cross Validation Committee v2 is outperformed by Cross Valida-
tion Committee v3, we have chosen CVCv2 because it was the ensemble used in
the first combiner study published in [76]. Moreover, Simple Ensembles of RBF
networks are also studied. The comprehension and analysis of this chapter would
have been much more difficult if we were included more ensemble alternatives in the
comparison.

The current research is organized as follows. Firstly, the studied combiners will be
reviewed in section [6.2] Then, the setup of the experiments is described in section
6.3, whereas their discussion is shown in section [6.4

6.2 Analysed Combiners

The combination of the information provided by the networks of an ensemble is an
important step in the process to build the final classifier [92, 93] [76]. Selecting the
most appropriate way to fuse the outputs can highly improve the performance of the
system. Although the most commonly applied alternative is Qutput average, there
are some important models which will be studied in this chapter.

Since there are some different approaches to combine the networks, we have grouped
them into the following categories in this thesis:

& Combiners based on averaging.
« Voting schemes.

& Competitive combiners.

+ Other combiners.

+ Feature Based Combiners.

+ Two-Layered MCS.

The models based on averaging are those in which a simple average is applied in
order to calculate an averaged output vector, y, or ensemble hypothesis, h(y(z))
or Class(y(x)), without using any previous knowledge on the dataset. The voting
schemes apply a voting procedure to select the most appropriate class, the class with
highest number of votes is assigned to the pattern.

The competitive alternatives usually use prior knowledge on the dataset in order to
select the most relevant networks for a determined pattern whereas a small weight
is assigned to the less relevant networks in the final hypothesis. Moreover, there are
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other ways to fuse the networks which are based on more complex operators such
as the Choquet Integral or the Zimmermann Compensatory Operator. Furthermore,
we will analyze two combiners which depend on the data (pattern) which is being
classified.

Finally, some two layered MCS, such as Mizture of experts [94] or Stacked General-
ization [95], can be adapted to combine ensembles if the networks of the ensemble
are “assigned” to the “first layer” of these systems and they are kept unchanged
during the training procedure.

6.2.1 Combiners based on averaging

The alternatives based on averaging are those in which a simple average is calculated
for each output of the networks without using any knowledge on the dataset. The
main problem of this approach is that the best and the worst networks have the
same influence on the final decision.

6.2.1.1 Output average

This approach, Qutput average or Ensemble averaging, simply averages the individ-
ual outputs across the different classifiers. The final output is given by:

Nnets

D D) (6.1

Ye(r) =7.(1) =

net=1

Then, the class, ¢, yielding the maximum of the averaged values, .., is assigned to
the pattern.
Class(x) = argmax (Y.(z)) (6.2)

c=1,...,Nelasses

Where arg max returns the argument, class ¢, with highest output value y.(z).
6.2.1.2 Dynamically Averaged Networks version 1

Dynamically Averaged Networks version 1, henceforth DANvi, was proposed by
Jimenez [96]. In this case, a weighted average is applied in order to obtain the
output vector of the ensemble. To perform this special average, the weights are
proportional to the certainties of the respective network output.

1 Nnets

Bola) = Telw) = —= D_ wiy"() (6.3)

net=1

Where the values of the weights, w, are given by:

Cnet net( ) Zf net($) > 0.5
net _ _ —“¢ net __ Y.z Ye >
w, = Zi]inlets C'i (64) Cc - { 1— yget<x) otherwise (65)

Cc
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We may notice in the previous equations that the weights depend on the output
values. When an output of a class, ¢, is close to 0 the probability that the pattern,
x, does not belong to that class is the highest one. If the same output is close to 1,
the probability that the pattern belongs to that class is also high. Finally, when an
output is close to 0.5, the probability that the pattern belongs or not to the class ¢
are similar and close to 50%.

The author proposes that the certainties of the outputs are given by the outputs
themselves. The certainty of a specific output, ¢, for a given network, net, is C"¢
and it reaches the highest value when the output, y”¢, is close to 0 or 1 whereas the
lowest certainty value, 0.5, is given when the output is also 0.5.

As in Output average, the class, ¢, yielding the maximum of the averaged values, 7.,
is assigned to the pattern.

6.2.1.3 Dynamically Averaged Networks version 2

Dynamically Averaged Networks version 2, henceforth DANv2, is an evolution of
DANwv1 which was also proposed by Jimenez [97]. Although, the special average
previously described is also applied, the weights are now given by:

et — XD (—y-(C2)?) (6.6)

© S exp (—y - (C1)2)

Where v depends on the problem and it has to be set by trial and error. Moreover,
the second difference with respect to DANwl is that the weights do not linearly
depend on the output values because the certainties are squared and the exponential
function is also introduced into the equation.

6.2.2 Voting schemes

In this subsection, the voting schemes will be reviewed. The combiners analyzed are
quite different, but the use of a counter is the philosophy shared by them.

6.2.2.1 Majority Voting

In Majority voting each classifier, net, provides a vote to a class, ¢, given by the
highest output of the classifier. This approach will be named Voting henceforth.

3 net 3 : 3 net
vote"(z) = { 1 if y is the highest value in y

¢ 0 otherwise (6.7)

Then, the summatory of all the votes for class ¢ is calculated according to the
following equation:

Nnets

ve(x) = Z vote (x) (6.8)

net=1
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Finally, the class which has been most often voted by the classifiers, the one with
highest v.(x), is assigned to the pattern, z, as in equation .

Class(x) = argmax (v.(x)) (6.9)

c=1,...,Neiasses

The main problem of Voting is that the information provided by the network is
reduced to a single vote so the probabilistic information related to each output is
omitted.

6.2.2.2 Nash Vote

In Nash Vote [98], henceforth Nash, each classifier, net, assigns a real-valued vote
between zero and one for each candidate output or class, ¢. The vote value, vote?® (x),
is given by the value of the output.

vote! (x) =y (z) (6.10)
The product is applied to all the votes in order to calculate the final output or nash
value.

Nnets

nash.(x) = H votel () (6.11)

c
net=1

Finally, the class ¢ which has the highest nash value, nash.(z), is assigned to the
pattern, x, as shown in equation [6.12

Class(z) = argmax (nash.(x)) (6.12)

c=1,....Nciasses

The main problem of Nash is that a single network with low performance can drasti-
cally alter the output of the ensemble because of the use of the product. For instance,
if a classifier assigns the value 0 to a class, the nash value of this class is also 0 even
if the other classifiers assign the value 1 to the same class.

Although the previous example can be possible, the probability of having the worst
case is very low. The Nash vote can be seen as a voting scheme with censor votes.

6.2.2.3 Borda Count

Borda Count [99, [76], henceforth Borda, is a ranking-based combiner. In this case,
the classes are ranked in descending order according to the output values. The first
element of the ranked list has the highest output value and the lowest value is set
to the last element.

Each network of the ensemble, net, assigns to a class, ¢, as many votes as the number
of classes are ranked below ¢ by the network. For a given class, ¢, its number of votes
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corresponds to the number of classes whose output value is lower than the output
value of class c. For example, a network with 5 different outputs will give to the
class with highest output, the borda count of 4.

Firstly, equation [6.13]is used to determine if a class j is ranked below another class
¢ in network net.

(Y

J 0 otherwise (6.13)

et () — { 1 if yp(x) is greater than y7“(z) in network net
Then, the individual Borda values, B¢, are calculated with equation m Each
value denotes the number of classes ranked below a class, ¢, by a network, net.

Nclasses

By = Y () (6.14)

eyt
=1
i#c

Once all these values are calculated, the Borda Count related to the ensemble,
Borda, is calculated with equation [6.15, This final count is the summatory of the
individual values of a class, ¢, for all the networks in the ensemble.

Nnets

Borda.(r) = Z (B (z)) (6.15)

net=1

The class, ¢, with highest count, Borda.(z), is assigned to the pattern as given in
the following equation:

Class(x) = argmax (Borda.(x)) (6.16)

c=1,...,Nciasses

6.2.3 Competitive combiners

In this subsection some competitive alternatives will be described. They are consid-
ered competitive because a “switch control” is applied to select the best network for
each case. Moreover, external information can be used to prior the networks.

6.2.3.1 Winner Takes All

In Winner Takes All, henceforth WTA, the class with overall maximum output
across all classifiers and outputs is selected as the correct class, it is calculated with

equation [6.17]

Class(z) = argmax y,“ (6.17)
Tletilw-,Nclasses
C:L“': classes
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Here, the final output vector only depends on the network which provides the maxi-
mum overall output and the information provided by the other networks is omitted.
The aim of this method is to identify the most appropriate network by the highest
output and switch control to it.

6.2.3.2 Weighted average based on Correlation Matrix

In this approach, henceforth W.Awve, some weight values are introduced to the out-
puts of the different networks prior to averaging. The weights try to minimize the
difference between the output of the ensemble and the desired or true output (target)
on patterns from the learning set. The weights can be estimated from the error cor-
relation matrix, equation m Each value of the matrix, C; ; denotes the correlation
of the error between two networks, ¢ and j.

N, patterns

Cij = (x)) : (yj(x) - d(x))) (6.18)

patterns =1

Then equation [6.19|is used to calculate the weights, w, of the special average. The
weights depend on the inverse of the correlation matrix, denoted with IC on the
equations.

ZNnets IC met.n
ZNnets ZNnets ]’C

net __

(6.19)

Finally, the final output vector for a pattern, z, according to this weighted average,
y(x), is given by the following equation:

Nnets

glx) = > (w" -y (6.20)

net=1

According to the original references, in all the previous equations, it has been sup-
posed that the networks have only one output. A complete specification with another
index term, the output class, can induce to errors so a simpler specification was pub-
lished in the original reference.

In the classification problems used in this thesis, there are as many outputs as classes
have the database. To calculate the weighted average for a classification problem with
Neasses, there will be a correlation matrix, C¢, and its inverse, I1C*, for each class,
c. In the equations we refer to the inverse of the correlation matrix as IC' instead
of C~! because adding the superindex class, ¢, to C~! could have induced to error.
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Therefore, there will also be a specific weight value, w?®, for each network net and
class c. Finally, the single output, y(z), will be a vector of Nggsses elements, y.(x).

Nnets

Jelx) = > (wpe - yre) (6.21)

net=1

The class with highest final value, y.(z), is assigned to the pattern as given in the
following equation:

Class(z) = argmax (Y.(z)) (6.22)

c=1,....Nciasses

The full description of Weighted Average can be found in [73, 98] [76]. It is considered
competitive because the information provided by the worst networks are nearly
omitted, they have low weights in the final output, whereas the information of the
best performing networks have high weights on the final output. Prior knowledge,
the error of the patterns from the training set, is used to set these weights.

6.2.3.3 Bayesian Combination

Bayesian Combination, henceforth Bayes, was originally proposed in [100]. Accord-
ing to the original reference it is based on the Belief value. This value is the nor-
malized probability that the pattern x belongs to class c¢. Equation [6.23| is used to
calculate its value.

[Taityp (x € clclass(y™ (z)) = )

Belief,(x) = . .
S Netasses [TNnets (2 € il class(ymet(x)) = jnet)

(6.23)

Where p (x € c|class(y™(z)) = j™) is the probability that the pattern x belongs
to a class, ¢, when the output provided by the network net predicts the pattern
as class 7. This value is calculated with the normalized value from the confusion
matrix C' in reference [101].

net
Cc?j

Nc asses ne <624)
Zi:i Oz',jt

p (z € d|class(y™(z)) = j) =

In this combiner, C'is the confusion matrix, it is not the correlation matrix described
in Weighted Average. The confusion matriz is calculated by equation [6.25¢

Npatterns

cret= 3" () (6.25)

=1
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Where:

v

et (1) { 1 if Class(y™(l)) =i and Class(d(l)) = j (6.26)

i 0 otherwise

The confusion matrix of a network, C’Z?f;t, denotes the total number of patterns from
the training set which have been cataloged to belong to the class ¢ but they belong
to the class j according to the desired output, d, or target.

Finally, the class, ¢, with highest value, Belief.(x) is assigned to the pattern as
shown in equation [6.27]

Class(x) = argmax (Belief.(x)) (6.27)

c=1,...;Nciasses

This combiner is also competitive because the belief values associated to a network
depend on how the networks classify patterns from the training set. In this combiner,
the control is switched to those networks which can classify better a concrete pattern
and the “worst” networks are nearly omitted. To perform this task, prior knowledge
on the training set is used.

6.2.4 Other combiners

In this section, some complex alternatives which do not belong to the previous groups
are introduced. These combiners are based on complex procedures which are not
trivial. Moreover, some concepts such as the Choquet Integral or the Zimmermann’s
Compensatory Operator are analyzed to describe better the new combiners.

6.2.4.1 Choquet Integral

Choquet Integral, henceforth Chogquet, was proposed in [102, [103], 104] and is based on
Sugeno’s k-fuzzy measure [105]. With this model, the class, ¢, with highest Choquet
Integral value (Cyg,) is assigned to the pattern, x, as in equation m

Class(z) = argmax Cg.(x) (6.28)

C:1,27.-~7Nclu.5565

The fuzzy densities described in equation [6.29 and the following two definitions are
required in order to calculate the values of the integral C'g.

Pret
Gnet = ds : Noots (629)

Zn:l Pn

Where p,: is the percentage of correctly classified patterns on the validation set.
Moreover, the sum of the densities should correspond to a desired sum d,. This last
parameter has to be set by a trial and error procedure. Finally, these calculated den-
sities are important because they represent the degree of importance of the networks
in the final classification.

102



CHAPTER 6. A COMPARATIVE STUDY OF ENSEMBLE COMBINERS

First Definition:
Let g : 28 — [0,...,1] be defined as density function:
1. g(0) =0 and g(Npes) = 1
2. if A, B C 2= and A C B — g(A) < g(B)
3. if A, C 2Nnets /Yn 1 < n < 0o and {A,} is monotonous
o lim, , g(A,) =g (lim, , A,)

Generally, the density value related to the union of the two sets can not be directly
calculated and the following equation should be applied to obtain these densities.

9(AUB) =g(A) +g(B) + A-g(A) - g(B) (6.30)
VA, BCR/ANB=0and A > —1

Let R = {nety,...,nety,.,.} be a finite set composed by the neural networks of the

ensemble, and g; = g({net;}) is the density value of network calculated by:

9(A1) = g({net1}) = g1 (6.31)
g(A,J) =g; + Q(Ai_l) + A Gg; * g(Ai_l),Vi/l <1 < Nnets (632)

The A value is calculated by solving equation [6.33] The final A value must be different
to 0 and be in the range [—1,...,c0].

Nnets

Abl=T] A+ X guer) (6.33)

net=1

In the first definition, the equations used to calculate the values of g(A;) have been
described. These values are used in the second theorem to calculate the final value
of C'g. As in Weighted average, it has been supposed that the networks have only
one output because the description for the n class version is more complex and may
induce to error.

Second Definition:
Let define the discrete Choquet Integral as:

Nnets

Cg(z) = Cg{h(nety),..., h(nety,.,.)} = Z {h(net;) — h(net;—1)} - g(A;) (6.34)

Being:
A; = {nety, ... net;} (6.35)
h(nety) =0 (6.36)
For this reason:
0 < h(nety) <... < h(nety,,.) <1 (6.37)
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In the previous equations, h(net;) corresponds to the output of the network, y*(z).

In order to combine an ensemble in which each network provides an output vector of
Neasses €lements. The previous equations will be also used to calculate the Choquet
Integral Cg.(z) for each class, ¢, but the value of h(net;) will be given by yi(x).

With the description of the fuzzy densities, ¢ in [6.29, and the two previous defini-
tions we can calculate the Choquet Integral and, therefore, implement the combiner.
However, this procedure is complex. For this reason, we introduce the following
algorithm in which each step is described.

Algorithm 6.1 Choquet Inegral
Calculate the performance of all the networks: p,.s
Calculate the fuzzy densities of all the networks with equation [6.29 gy
Calculate the roots, A, of equation [6.33
Calculate g(A,.) for all the networks, net, of the ensemble (eql6.31] and
Calculate the Choquet Integral for each class, ¢, as in equation [6.34

According to the algorithm, the performance (as percentage of correctly classified
patterns on the validation set) and the fuzzy densities are calculated. Their values
are stored in ppe and g, respectively.

Then, the X value is calculated with equation [6.33] The degree of this equation cor-
responds to the number of networks in the ensembles, V,,.;s, because of the product
in the equation (the product of (1 4 A - gne) is repeated N, times). Although we
can get some different roots for this equation, only one is valid for the combiner.
This value must accomplish the restrictions shown in the first definition. In the ex-
periments we have always obtained only one valid A value because the desired sum,
ds in equation [6.29] has been properly set. After some experiments, we set the value
of dy with equation [6.38| as we describe in the appendix

Nnets

ds = 0.95 - M (6.38)

Nnpet
maxngge:ip net

Once we obtain a valid A, the values of g(A;) are directly calculated as in equations
and[6.32] At this point, the fuzzy densities, gner, must be differentiated from the
fuzzy measurement, g(A4;) or g({net;}). Although they do not represent the same,
they have a common name, g, in the original references.

Finally, the Choquet Integral is calculated for each class, ¢, with the values of g(A;)
and the outputs of the networks, h(net;) are really 3’ (x). However, the index vector
net; has been permuted to accomplish with restriction shown in equation [6.37] All
the networks are sorted in ascending order according to the output values. The first
network has the lowest output value and the last one has the highest value.

Some concepts related to this combiner and the previous definitions can be found
in [102] 103}, [106].
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6.2.4.2 BADD Defuzzyfication Strategy

BADD Defuzzyfication Strategy, or simply BADD, is a weighted average system
based on the Basic Defuzzification Distribution strategy described in [107]. In this
case, the training set of a network, 7", is represented by a reference point v,..
To calculate this reference point, the procedure described in algorithm has been
used.

Algorithm 6.2 Calculate reference point of the training set { net , 7" }

Initialize the reference point v, (0) with small values
for ite =1 to N;. do
for x =1 to Npgperns do
Unet — ,Unet + Cite * [33' —0
end for
end for

net]

In the previous algorithm, the initial reference point of a network, v™* is randomly
set with small values close to 0. Then, the patterns, =, from the training set, 77¢
are used to adapt it for some iterations. Each adaptation makes the reference point
to approach to the pattern, x, but it will never exactly correspond to the pattern, x,
because a slowly decreasing sequence of learning coefficients, c¢;., is used to weight
the update. The values of c¢;. are between 0 and 1, and they decrease as the in-
dex increases. In this thesis we have used the following equation to calculate this
decreasing sequence.

ite

Nite
The importance of a network, net, in the final classification depends on the distance
between the pattern which is being classified, x, and its euclidean distance to the
reference point, v,.. Equation is used to calculate p™*(x) which represents the
membership degree of the pattern, x, with respect to the specific training set of the
network, net .

Cite =1—10.9 - (6.39)

It is important to mention that two networks with have used the same training set
can achieve the same reference point. For instance, this behavior occurs for Simple
Ensemble because the same base training and validation sets are shared by all the
network of the ensemble. In Cross-Validation Committee version 2, each network
has specific training and validation sets so the reference points are slightly different
among them.
1
net ) =

we () 1+ (d(z, Uner))”
In the last equation, P is a constant and d(z,v,.) denotes the euclidean distance
between x and v,.. In equation the parameter ¢ determines the type of de-
fuzzification applied. These parameters, P and J, were set, respectively, to 2 and 3
as it was done in the literature.

(6.40)
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Then, equation is used to obtain the final output.

S (@) yi(@))
S (et ()

Finally, the class yielding the highest final value, y.(z), is assigned to the pattern
as in the other alternatives based on averaging (for instance, as in equation of
Weighted Average).

() = (6.41)

6.2.4.3 Combination by Zimmermann’s Compensatory Operator

This alternative is based in the Zimmermann’s compensatory operator described in
[TO8]. The output of the ensemble is given by the following equation

Ue(x) = ( ﬁ (yget(x))“’?“) : (1 — ﬁ (1- yget(m))w?“> (6.42)

net=1 net=1

The parameter v represents the degree of compensation between the union and
intersection parts of the operator whereas w represents the weight value associated
to the networks. An optimization procedure is applied to set both parameters but
there are two constraints to consider in this process:

Nnets

> w" = Nyes (6.43)
- v €[0,1] (6.44)

However, the previous constraints can be avoided if equations [6.45 and [6.46] are
applied to calculate both parameters as described in [109]. In this way, two variables
a and b must be adapted along with a vector d with N, elements. They must
be calculated and adjusted for each output class ¢. The advantage of use the new
variables instead of directly calculating the weights and + is that they are not limited
by any constraint so the procedure to adapt them can be easily done.

dnet 2
w?d = Nnets : Jgn:t—é)2 (645)
Zn:l (d?)
2
a
. = < 6.46
ey (6.46)

The value of the parameters a., b. and d. should be determined by an optimiza-
tion procedure. In this thesis, a gradient-descent algorithm has been applied to set
these parameters without considering any constraint as suggested in [76]. Moreover,
this algorithm is similar to Backpropagation because it is an iterative procedure in
which all the patterns from the training set are presented to the combiner and the
parameters are adjusted to minimize an error function. The basic description of this
procedure is in algorithm [6.3

106



CHAPTER 6. A COMPARATIVE STUDY OF ENSEMBLE COMBINERS

Algorithm 6.3 Determining Zimmerman parameters { a , b, d }

Randomly set initial values of a and b in range described in (6.47)
for net =1 to N,,os do
Set initial values d"¢" according to network performance (equation
end for
for : =1 to Ny. do
for =1 to Npatterns do
for ¢ =1 to N gsses dO
Adjust the value of the parameter a. with equations and
Adjust the value of the parameter b, with equations and
for net =1 to N,,es do
Adjust the value of the parameter d?¢* with equations and
end for
end for
end for
end for
Store final Zimmerman parameters values

Before starting the iterative procedure, a. and b. parameters are initialized with
small values close to 0. The initial values of, d*, corresponds to the performance
of the network on the validation set, the performance is the percentage of correctly
classified patterns.

ae, be € [—0.05,0.05] (6.47)

drt = per fro! (6.48)
Then the iterative procedure is repeated for some iterations. In each iteration, all the
patterns from the training set are presented to the combiner. In each presentation,
all the parameters are adjusted according to the equations from to [6.57 A
minimization procedure has been applied to optimize these parameters. Concretely,
the Mean Square Error is minimized as we did in Backpropagation. This equation

is reproduced here in equation [6.49

errory(z) = (Jo(x) — do(z))? (6.49)

Where g.(x) is the output of pattern x for class ¢ provided by the Zimmermann’s
operator, equation [6.42] and d(z) is its desired output vector or target.

The values of a,, b. and d?*" are adapted according to the following equation.

param.(t + 1) = param.(t) + step - Gerrore(z) (6.50)

dparam,
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Where param refers to the parameter which is being adapted and step is the adapta-
tion step. In this thesis, this step has been set to 0.1 after a trial and error procedure.
Moreover, t refers to the current value of the parameter and ¢ + 1 denotes the same
parameter after adjusting it.

Before showing the final derivatives for each parameter, we introduce the following
equations in order to simplify their description:

Nnets

Pro=TT (w(x)) (6.51)

net=1

Nnets
P2 = T (1)) (6.52)

net=1

And:

Partl, = (P1)' ™ (6.53)
Part2, = (1 — P2)™ (6.54)

In the previous equations, Partl. and Part2. are the first and second part of the
equation [6.42] As we mentioned, they are only used to simplify the final equations.

Finally, the final derivatives used to adjust the parameters are given by the following
equations:

derrore(z) 2-a,- b
a2 (Ye(z) — de(2)) - ye(2) - @)
-(In(P1,) -In (1 — P2,)) (6.55)
derrory(z) 2-a2-b,
o, 2 (ye(x) — de(2)) - ye(z) - o
(In(1— P2.)-1n(PL,)) (6.56)
derrorc(r)
“oaet 2 (ye(x) — dc(x)) -
: <% - Part2, + Partl,. - 813;2—7;2;(93)) (6.57)
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Where:

OPartl.(x)
odret

2- Nnets : dget
5
(o0 ()

- (Z (log(y®*(x)) - (d")?) + (fj(dl‘)Q) - log(y?“)) (6.58)

n=1 n=1

= (=) (PL)

apaa;—w = (Z (log(1 =y (x)) - (dg)?) + (f(dﬁf) log(1 — yf}et)> .

n=1 n=1

2- Nnets : d?et
2
(s ay?)

(=) (1= P27 P2, - (6.59)

6.2.5 Feature Based Combination

In Feature Based Combination, the input data space is partitioned into N, re-
gions represented by a reference point v;. The regions and their reference points
are calculated with the Frequency-Sensitive Competitive Learning algorithm, FSCL,
described in algorithm [6.4]

Algorithm 6.4 Frequency-Sensitive Competitive Learning
Initialize the reference points with small random values v;(0),i = 1,2, ..., k
Initialize f: frego =0, 7eg =1,2,..., Nyey, B = 0.1, and v = 0.05
for ite =1 to N;. do

for x =1 to Npgperns do
Find the reference point v; Euclidially closest to z
for reg =1 to N,., do

1 if reg=j

0 otherwise
freg,ite = freg,ite—l + B : (Zreg - freg,ite—l)
breg - d(l‘, U’r‘eg) CY (ﬁeg - freg,ite)

end for

Find the winner:
k= argmin (d(z,v;) —b;)

Rreg =

i=1,2,....Nreg
for reg =1 to N,., do
|1 if reg=k
Yrea =\ 0 otherwise
Upeg(ite + 1) = Upeg(it€) + Qreg - Cite * [T — Ureg(ite)]
end for
end for
end for
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Firstly, the initial reference points are randomly generated with small values close
to 0. Then, an iterative procedure, in which all the patterns are considered, is used
to adapt them. Each pattern, x, from the learning set is used to update the values
of the reference points. The values of 5 and v are parameters which were set with a
trial and error procedure as shown in appendix [B.6]

The update is done in three stages. In the first stage, the region whose reference
point, v,eg, is the closest to the pattern, z, is determined as region j. Then, a new
value, b, is calculated for all the regions. The b values depend on f and z values.
According to the algorithm, z; is set to 1, whereas z is 0 for the other regions.

In the second stage, the winner region, region k, is determined. This is the region
in which the difference between the distance to reference point (d(x,v;)) and by has
the lowest value among all the regions.

In the last stage, the reference point of the winner region, vy, is updated. This
adaptation makes the winner reference point, vy, to approach to the pattern, x. The
reference points of the other regions are kept unchanged because their ¢,., values
are always 0. for them.

In this algorithm the parameter c;,. also represents a slowly decreasing sequence of
learning coefficients as in the original reference [76] and it is calculated with equation
0.60

ite
Nite

Cite =1 —0.9 - (6.60)
Once all the final reference points are calculated, the combination procedure uses
them to calculate the specific optimal parameters for each region. It means that the
parameters of the combiners will depend on the pattern which is being classified and
the region it belongs to.

According to [76], Feature Based Combination is only applied to two models previ-
ously described:

+ Choquet Integral with Data-Dependent Densities.
+ Weighted Average with Data-Dependent Weights.

The description of both methods will be introduced below. They are similar to the
original versions, but some parameters will now depend on the region of the pattern
which is being classified.

6.2.5.1 Choquet Integral with Data-Dependent Densities

Choquet Integral with Data-Dependent Densities, henceforth Choquet ddd, is the
feature based version of Choquet Integral. In this model, the fuzzy densities g
depend on the region and they are given by:

b

net __ jreg reg

g =d s ——— (6.61)
! S g
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Where, p:‘eeg, is the percentage of correctly classified patterns by network, net. Only
the patterns which belong to the region reg from the validation set, V', are used to

calculate this percentage. The value of the desired sum, d.® is calculated with:

k net
Znet:l preg

k net
maXnetzlpreg

The class assigned to the pattern is determined with equation where C'gl%(x)

(&
represents the Choquet Integral for the class ¢ when the pattern, x, matches into

region reg.

dr9 = 0.95 - (6.62)

Class(z) = argmax Cg.%(z) (6.63)

c=1,2,...,Nciasses
Here, the values for the Choquet Integral are calculated as in the original combiner.
But, each value of the integral C'g®(z) will depend on the region associated to the

pattern, reg, because its final value will be based on gf:;. Then, equation is
used to calculate the region related to a pattern, reg.

reg = argmin d(z,v,) (6.64)
=12, Nyegions
According to the previous equation, arg min assigns to reg the region, r, whose
reference point, v,, has the lowest euclidean distance, d(z,v,), with respect to the
classified pattern, x. This region is selected because its reference point is, among all
the regions, the closest one to the pattern.

6.2.5.2 Weighted Average with Data-Dependent Weights

The Weighted Average with Data-Dependent Weights, henceforth W. Ave ddw, mixes
Weighted Average and Choquet Integral with Data-Depend Densitied in a single
combiner. On the one hand, a weighted average scheme is used to generate the final
output. On the other hand, the weights are calculated with the densities, g;‘f;, of
the Choquet Integral.

The weighted average of equation [6.65|is applied to fuse the outputs. The weight
values, ¢!, are calculated with equation m

reg’
Nnets

g(x) = > (gt yi()) (6.65)

net=1

Moreover, the region, reg, associated to a pattern, x, is also determined by equation
as in Choquet Integral with Data-Depend Densitied.

6.2.6 Two-Layered MCS

The main characteristic of this kind of classifiers is that the system is composed
by two layers of simple classifiers. In this case, the networks of the first layer are
used to solve the problem whereas the networks of the second one are trained for
combination or aggregation tasks. Usually, they are complex systems in which the
training procedure involves the training of the networks of the first and second layer.
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An ensemble of neural networks can be used as the simple classifiers of the first layer,
whereas one or several networks can be trained to fuse the outputs of the ensemble.
A part of our research has focused on developing new combiners based on this kind
of systems.

The two most known models are Stacked Generalization [95] and Mizture of Experts
[94]. Although these two systems are quite different, they can be adapted to be
applied as ensemble combiners. In fact, we have proposed in this thesis two new
combiners based on Stacked Generalization (Stacked and Stacked+), figure [6.1] and
a new combiner based on the Mixture of Experts, figure [6.2

y(X)

Comb.
Network

A
) ) Y (x)

NN

1

Ax Ax X
Ax

Figure 6.1: Basic Stacked Generalization model

NN

2

NN,

b y(x)

]47

yk(X) g(X)
Gating
NN, @ork
y
X X

Figure 6.2: Basic Mixture of Experts model

NN,
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=2 ()

Y Y(x)
NN
Ax
t

In the previous figures, we can see that the philosophy of both models is different.
The combination network of Stacked Generalization processes the output of the
networks in order to give a final output. The gating network of Mizture of Experts
uses the original pattern in order to set the weights of a weighted average.

We have considered that the new combiners should not appear in this chapter be-
cause they are based on advanced models which will be detailed in other chapters. In
this way, we will perform a special analysis of the new combiners and the advanced
models in chapters [9] and [L0] Moreover, we can do a deeper comparison among the
original proposals and the new approaches (combiners) we will introduce.
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6.3 Experimental Setup

Prior to our research, Verikas et al. introduced an important combiner analysis [76].
However, we consider that this comparison was not complete enough because only
one ensemble model, CV(Cv2, was trained on four databases from the FLENA project
[T10]. Moreover, the experiments were repeated eight times using ensembles of only
5 networks and standard MF networks with 10 hidden units. Other ensemble sizes
were not used and the number of hidden units was not optimized for the problems.

In the research shown here, we want to expand that research by including other en-
semble alternatives, the RBF network, more combiners, a high number of databases
and we will apply optimal training parameters. Moreover, two general measurements
will be employed in order to compare all the ways to fuse the networks. The main
characteristics of our research are:

+ Nineteen classification problems from the UCI Repository.
+ Ensembles of MF networks generated by:
+ Simple Ensemble.
4+ Decorrelated v1.
+ Cross Validation Comittee v2.
+ Conservative Boosting.
+ Ensembles of RBF networks generated by Simple Ensemble.
+ Four different ensemble sizes: 3, 9, 20 and 40 networks.
+ Fourteen combiners applied.
+ Optimized parameters for networks, ensembles and combiners.

+ The experiments have been repeated ten times with different partitions of
training, validation and test sets in order to obtain:

4+ Mean value of performance.
+ Error rate by standard error theory.
+ Two general measurements applied to the comparison:
+ Mean Increase of Performance.
4+ Mean Percentage of Error Reduction.

The description of the nineteen datasets used in the experiments can be found in
appendix [A] The ensemble methods applied were previously described in chapters
and p] All the values of the parameters are in appendix [B] Concretely, the optimized
training parameters of the networks are in sections and [B.4], the parameters of
the ensembles are in section [B.5] whereas the specific parameters of the combiners are
in section [B.6] Finally, the general measurements applied to compare the combiners
analyzed are the mean [oP (equation and the mean PER (equation [3.6)).
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6.4 Results and discussion

The current comparison has been split into two subsections in order to differenti-
ate the ensembles of Multilayer Feedforward and Radial Basis Functions networks.
Firstly, the combiners reviewed are applied to the four different ensemble alternatives
which were employed to generate ensembles of MF networks. Secondly, a similar but
different research is accomplished with Simple Ensembles of RBF networks.

6.4.1 Combining ensembles of MF networks

For the case of ensembles of MF networks, the combiners analyzed in this chapter are

employed with the ensembles previously trained with Simple Ensemble, Conserboost,
CVCv2 and Decovl. Table shows the results related to Simple Ensemble.

Table 6.1: Combining SFE of MF networks
Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Average 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
DAN 4.28 4.46 4.36 4.18 16.57 18.56  17.05 16.7
DAN 2 4.25 4.43 4.36 4.2 16.4 18.25 17.04 16.76
Voting 4.77 5.03 5.06 5.17 19.83 22.09 22.39 23.13

Nash 4.85 5.11 5.23 5.29 20.5 21.93 2281 23.17
Borda 4.77 4.96 4.95 5.09 19.41  21.06 21.21  22.23
WTA 4.83 5.23 5.26 5.18 20.89  22.61 23.14 22.65
W.Ave 4.71 5.55 5.31 4.91 20.03  25.46 24.89  19.87
Bayes 4.89 4.65 4.04 3.65 20.57  18.22  13.11 9.38

Choquet 4.81 5.09 — — 20.89  22.08 — —
BADD 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64

Zimm 4.96 5.38 4.7 2.02 22.32  24.54  20.27 2.47
Choquet ddd 4.73 5 — — 20.53  21.46 — —
W.Ave ddw 4.97 5.33 — — 21.81  23.83 — —

In the previous table, we can firstly see that the results related to all the combiners
based on Choquet Integral (Choquet, Choqued ddd and W.Ave ddw) has been lim-
ited to ensembles of 3 and 9 networks because the time required to calculate some
parameters was so high for the cases of ensembles of 20 and 40 networks.

Secondly, Output average (Average), Weighted Average with Data-Dependent
Weights (W.Ave ddw) and BADD Defuzzyfication Strategy (BADD) provide the
best results for all the ensembles. BADD is, in this case, equivalent to Qutput av-
erage because all the networks are trained on the original training set and the
membership degree, u, is the same in all the networks.

Thirdly, Weighted Average (W.Ave) and the combiner based on Zimmermann’s
Compensatory Operator (Zimm) also provide good results in some cases. But their
performance is quite low for ensembles of 40 networks, specially in the case of Zim-
mermann’s Compensatory Operator.
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Finally, we consider that Output average is a good combiner in the case of Simple
Ensemble because it is simple and it provides good results for any ensemble size.
Weighted Average with Data-Dependent Weights also provides good results, but it
could not be applied to high sized ensembles because it is based on Choquet Integral.
Other alternatives, such as Weighted Average and Zimmermann’s operator can only
be applied to low sized ensembles, 3 networks. As we can see, only Qutput average
fits well in all the cases.

In order to compare easily all the alternatives to fuse the outputs with respect
to Output average, we have calculated the difference in the general measurements
provided by Output average and the other combiners. A positive value means that
the alternative is better than Output average and a negative one means the opposite.
These results are shown in table [6.2

Table 6.2: Differences of Output Average and the other combiners - SE of MF net-
works

Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
DAN -0.69 -081 -0.98 —-1.25 —-527 —-5.09 —-6.68 —7.94
DAN 2 -0.72 -0.84 -098 —-123 —-544 —-54 —6.69 —7.88
Voting —-0.2 —-0.24 -028 -026 —-2.01 -1.56 —-1.34 -—1.51
Nash -0.12 -0.16 -0.11 -0.14 -—-1.34 -1.72 —-0.92 —1.47
Borda —-0.2 -031 -039 -034 —-243 —-259 —2.52 —241
WTA —-0.14 -0.04 -0.08 -0.25 -0.95 -—-1.04 -—-0.59 -1.99
W.Ave —0.26 0.28 —0.03 —-0.52 —1.81 1.81 1.16 —4.77
Bayes -0.08 -0.62 -—-13 -—-1.78 —1.27 —543 -—-10.62 —15.26
Choquet —0.16 —0.18 — — —0.95 —1.57 — —
BADD 0 0 0 0 0 0 0 0
Zimm —0.01 0.11 —0.64 —3.41 0.48 0.89 —3.46 —22.17
Choquet ddd -0.24 —0.27 — — —1.31 —2.19 — —
W.Ave. ddw 0 0.06 — — —0.03 0.18 — —

With this new table, we can see that the differences with respect to Qutput average
are, in general, small and negative. This means that the results provided by Output
average, in most of the cases, are slightly better than the results provided by the
other alternatives.

Table [6.3| shows the results of the current research related to ensembles previously
trained with Decorrelated v1, the best ensemble model according to the comparison
shown in chapter [4]

As can be seen in table Output average and Weighted Average with Data-
Dependent Weights (W.Ave ddw) provide the best results in ensembles trained with
DECOwl1. The results provided by the other models are, in general, worse than them.
Moreover, BADD is also equivalent to Qutput average. In this ensemble, Output av-
erage can also be considered the best combiner.
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Table 6.3: Combining DECOvI of MF networks
Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Average 5.48 5.78 5.81 5.83 24.73  26.63 26.84 27.08
DAN 3.91 4.11 3.9 3.68 15.52 17.34 17.17 16.74
DAN 2 3.93 4.08 3.87 3.65 15.53 17.14 16.99 16.38
Voting 5.06 5.49 5.43 5.44 22.66  25.27  25.17  25.52

Nash 5.12 5.38 5.99 5.58 21.6 2273 2457 24.52
Borda ) 5.25 5.24 5.21 2099 22.78  23.13 23.35
WTA 5.46 5.24 5.37 5.33 23.92 2206 23.84 23.24

W.Ave 5.43 5.36 5.52 4.88 24.68 23.66 2494  20.77
Bayesian 5.33 4.68 3.99 3.41 23.63 1799 13.08 8.79

Choquet 5.38 5.18 = = 23.11  21.54 = =
BADD 5.48 5.78 5.81 5.83 24.73  26.63 26.84 27.08
Zimm 5.34 5.53 4.76 1.91 23.24  24.83  20.23 3.87

Choquet ddd 5.26 5.14 = = 2277 2145 = =

W.Ave. ddw 5.53 5.79 = = 25.03  26.61 = =

Table shows the results related to ensembles generated by CVCv2, this is the
ensemble method applied in the study done by Verikas et al. in [76].

Table 6.4: Combining C'VCv2 of MF networks
Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Average 5.47 5.95 5.98 5.85 25.73  27.08 25.34  23.69
DAN 4.22 4.27 4.61 3.57 16.2 16.39 16.86  12.79
DAN 2 4.17 4.27 4.53 3.61 15.9 16.44 16.39  13.05
Voting 5.25 5.82 5.93 5.63 23.98 26.06 25.78  22.52

Nash 5.33 5.63 5.62 5.49 23.38 24.1 22.49 21.37
Borda 5.19 5.62 5.82 5.46 22.98 2447 2475  21.03
WTA 5.48 5.39 5.22 4.9 26.03 23.71 20.95 19.82
W.Ave 5.7 5.27 4.75 4.08 24.25 2281 18.9 14.4
Bayesian 5.43 4.82 3.93 2.61 23.7 16.27 11.06 1.44
Choquet 5.37 5.31 — — 24.81  23.69 — —
BADD 5.25 5.81 5.99 5.84 23 25.47  25.61  23.45
Zimm 5.45 5.12 4.14 2.29 23.93 21.58 14.51 —8.37
Choquet ddd 5.31 5.13 — — 24.58  22.87 — —
W.Ave. ddw 5.48 5.98 — - 25.77  27.19 — —

In CVCv2, the best combiner, according to the mean PER, is Winner Takes All
(WTA) for ensembles of 3 networks. For ensembles of 9 networks, the best choice is
Weighted Average with Data-Dependent Weights. Voting is the combiner which fits
better for ensembles of 20 networks. Qutput average provides the best overall results
for ensembles of 40 networks. Moreover, BADD defuzzyfication also provides good
results in general for any ensemble size.
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According to the analysis done by Verikas et al., Weighted Average with Data-
Dependent Weights provided the best overall results. In this thesis, this combiner
also provides the best overall results for C'VCv2. Moreover, Choquet Fuzzy Integral
with Data-Dependent Densities (Choget ddd) also provided good results. Further-
more, BADD combination scheme was also among the best approaches. Altough
the last two combiners provided good results here, they were outperformed by other
alternatives such as Output average.

Finally, the results provided by Output average are close to the best results for
all the ensemble sizes. The other good alternatives to combine ensembles do not
provide good results for any ensemble size. For instance, BADD defuzzyfication does
not provide good results in ensembles of 3 networks and Winner Takes All had
low performance in ensembles of 40 networks. Maybe, Qutput average can also be
considered the best alternative to fuse the networks in C'VCv2 because it provides
high performance for any case.

Table [6.5| shows the results of the combiners on ensembles trained with Conserboost,
one of the best boosting variants according to the results shown in chapter [5

Table 6.5: Combining Conserboost of MF networks
Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Boosting 4.42 5.31 5.65 6.06 19.72 25.63 26.62 27.84
Average 4.98 5.57 5.75 5.98 23.04 27.08 27.6 26.87

DAN 0.84 —489 558 —46 —6.95 —39.61 —-57.67 —59.21
DAN 2 0.8 —-4.9 —-566 —4.65 —-74 —39.58 —58.75 —60.15
Voting 4.31 4.93 4.91 5.59 19.11  23.64 23.73  26.36

Nash 4.29 4.94 5.33 5.58 17.3 22.46  25.08  25.16
Borda 3.94 4.68 4.83 5.53 1597 21.65 23.05 25.93
WTA 4.5 2.83 1.27 —-0.91 18.73 8.36 —4.26 —31.45
W.Ave 4.39 5.02 5 4.74 2043  23.15 2278  21.26

Bayesian 3.93 3.37 2.23 0.98 16 10.77 2.08 —10.73
Choquet 4.26 2.32 — — 16.29 2.62 — —

BADD 4.98 5.57 5.75 5.98 23.04  27.08 27.6 26.87

Zimm 4.48 4.3 —0.2 —3.1 20.39 18.43 —8.24 —64.22
Choquet ddd 4.03 2.29 — — 14.69 2.32 — —
W.Ave. ddw 4.89 5.6 = = 2241  27.05 = =

For the case of ensembles of 3, 9 and 20 networks, Output average performs better
than the specific Boosting combiner shown in the first row. Moreover, Weighted
Average with Data-Dependent Weights (W.Ave ddw) also provides better results for
ensembles of 3 and 9 networks. In general, Output average should be applied to fuse
the networks generated by Conserboost for any ensemble size. Finally, the specific
Boosting combiner is the best alternative for ensembles of 40 networks and this
concrete configuration provides the best overall results.
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The results of the four previous tables show that the best combiner is, in general,
Output average. It is the only model which provides relative good results accord-
ing to the general measurements, mean [oP and mean PER, for all the ensembles
alternatives and for all the sizes (low, medium and high). However, its results are,
sometimes, slightly outperformed by other combination rules such as Weighted Av-
erage with Data-Dependent Weights. And for the case of Boosting variants, Boosting
combiner should also be seriously considered for high sized ensembles, 40 networks,
because it provides the best results.

In general, the results provided by the combiners are quite similar among them but
there are some specific cases in which a specific alternative fits specially better on
a few datasets. It means that two (or more) combiners can reach a similar general
values but one is more suitable for a set of databases and the other one fits better
on another subset of classification problems.

This last behavior can not be seen in the general results. However, there is a special
case which can be given as example, the results (percentage of correctly classified
patterns from the test set) on dataset ionos are between 89% and 91% when Output
average is applied to combine the ensembles previously trained with Simple Ensem-
ble, DECOvl and CVCwv2. The complete results related to these ensembles are in
the appendix [C] tables [C.93] to [C.104] but we show a resume in table [6.0]

Table 6.6: Performance of dataset tonos with Qutput Average
Ensemble 3-net 9-net 20-net 40-net
SE 91.1+£1.1 903+1.1 904+1 90.3+1
DECOvl 90.9+0.9 90.7£1.0 91.1+£09 91.0+1.0
CVCv2 89.74+1.4 90.4+1.3 91.0+0.9 92.0+1.0

In table [6.7] we show the resume of the main results related to the same ensemble
but, in this case, Bayesian Combination is used to combine the ensembles.

Table 6.7: Performance of dataset tonos with Bayesian Combination
Ensemble 3-net 9-net 20-net 40-net
SE 914411 93.14+14 93.14+14 934+14
DECOv1 92.3+1 93 +0.9 92+ 1.1 94.1 +1
CVCv2 924+ 1.2 93+09 94.1+£09 934+£1.1

We can see in the previous table that Bayesian Combination can provide better
results than Output average when they are applied to combine the same ensembles.
In fact, the results of ionos are between 93% and 94% when Bayesian Combination
is used to fuse the networks in ensembles of 20 and 40 networks. This values are
higher that the ones shown for Qutput average.

To perform easier the comparison between these two combiners in the case of
database ionos, we have included a new table with the difference in performance
between Bayesian Combination and Output average. A positive value in this table
means that Bayesian Combination provides a better percentage of correctly classi-
fied patterns from the test set than Qutput average.
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Table 6.8: Difference in performance of Bayesian and Output Average in ionos

Ensemble 3-net 9-net 20-net 40-net
SE 0.3 2.8 2.7 3.1
DECOv1 1.4 2.3 0.9 3.1
CVCv2 2.3 2.6 3.1 1.4

In the last table, the difference in performance shows that Bayesian Combination
can reach an increase in performance around 3% with respect to Qutput average
for ionos when ensembles of 20 or 40 networks are combined. Although Bayesian
Combination always performs better than Output average because the results are
always positive, there are two cases in which the difference can be considered low
because it is lower than 1%.

As shown in tables to Bayesian Combination performs quite worse than
Output average for ensembles of 20 and 40 networks. To see it more clearly, we
show in table the difference in the mean JoP across all databases of Bayesian
Combination and Qutput average.

Table 6.9: Difference in mean PER of Bayesian and Qutput Average

Ensemble 3-net 9-net 20-net 40-net
SE —0.08 —0.62 —1.3 —1.78
DECOv1 —0.15 —1.1 —1.82 —2.42
CVCv2 —0.04 —1.13 —2.05 -3.24

In table [6.9] the values are always negative because Output average always provide
a better mean [oP than Bayesian Combination. Bayesian Combination is quite
interesting because it is not recommended to combine ensembles of 40 networks but
it provides the best results for tonos in ensembles of 40 networks.

As a final conclusion of this part of the experiments, we can say that Qutput average
provides good results for any ensemble size and ensemble method but the other
combiners can also provide excellent results for specific datasets. In table [6.10, we
show for each dataset the performance of the ensembles of 40 networks designed
with Sitmple Ensemble and Output average. Moreover, the best result considering all
the alternatives to fuse the networks, except Output average, is shown. Finally, we
show the difference between Qutput average and the highest performance.

Table [6.10] shows that the difference between the best model and Output average is
never negative but, in most of the datasets, it is low. In databases band, bupa, cred
and derma, Output average also provides the highest results because the difference
with the best model is 0%. Output average should be the first alternative in combin-
ing because it provides good results in general, but the ‘optimal’ combiner depends
on the dataset as we can clearly see for ionos, vowel, glas, mokl and other datasets.
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Table 6.10: Performance of Output Average and the best combiner for each dataset

Database Output Average Best Combiner Difference
aritm 73.8+1.1 7494+ 1.3 Zimm, 1.1%
bala 95.94+0.5 974+ 0.3 W.Ave 1.1%
band 73.8+1.3 73.8+1.3 BADD 0%
bupa 72.7+1.1 727+ 1.1 BADD 0%
cred 86.5 + 0.7 86.5 + 0.7 Nash 0%
derma 97.6 +0.7 97.6 0.7  Voting 0%
ecoli 86.9 + 0.7 87.54+0.6 WTA 0.6%
flare 81.6 £0.5 81.7+ 0.5 Bayesian 0.1%
glas 94.2 + 0.6 95.84+0.9 W.Ave 1.6%
hear 82.9+1.5 83.1+1.5 Nash 0.2%
img 96.8 + 0.2 97.2+0.3  W.Ave 0.4%
ionos 90.3+1 93.4+ 1.4 Bayesian 3.1%
mok1 98.3+0.9 100 =0  Bayesian 1.7%
mok2 91.14+1.2 91.6 1.2 Zimm 0.5%
pima 75.9+1.2 76 +1.2 Borda 0.1%
survi 74.3+1.3 746 +0.9  Zimm 0.3%
vote 95.6 + 0.5 958+ 0.6  Zimm 0.2%
vowel 92.2+0.7 94.7+0.4  W.Ave 2.5%
wdbc 96.9 + 0.5 97 +£0.4 Borda 0.1%
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6.4.2 Combining ensembles of RBF networks

Tablel6.11]shows the results of the different combiners on ensembles of RBF networks
previously trained with Simple Ensemble.

Table 6.11: Combining Simple Ensemble of RBF networks (Original ensemble)
Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Average 0.02 0.14 0.14 0.23 0.15 3.71 3.06 3.29

DAN —-0.09 —-0.12 —-0.02 0.00 0.63 —-0.51 2.08 —1.89
DAN 2 -0.14 —-0.11 -0.07  0.03 0.17 -0.59 130 —-1.76
Voting —-0.02 0.17 0.14 0.18 1.94 4.40 3.19 3.33

Nash 0.00 0.10 0.09 0.16 0.09 3.50 2.62 0.94
Borda —-0.03 0.14 0.14 0.17 1.87 4.16 3.10 3.23
WTA 0.06 0.10 0.12 0.10 1.27 0.92 0.87 —0.76
W.Ave —0.11 —-0.16 —-1.84 —9.50 5.56 5.74  —50.49 —313.54

Bayesian  —0.07  0.06 0.06 0.06 4.02 -037 —-6.91 —10.56
Choquet 0.10 0.04 — — 1.31 0.53 — —
BADD 0.02 0.14 0.14 0.23 0.15 3.71 3.06 3.29
Zimm —10.57 —-9.47 —-9.82 —8.19 —274.63 —300.11 —218.13 —205.21
Choquet ddd 0.05 0.04 — — 1.00 0.63 — —
W.Ave. ddw 0.02 0.14 — — 0.21 3.83 — —

As can be seen in the table, Output average is one of the best alternatives to fuse
the networks. However, its performance is similar to a single network because the
mean [oP is close to 0 and the mean PER is lower than 4%. Moreover, Voting and
Borda Count (Borda) also provides good results according to the mean PER.

Both versions of Dinamically Averaged Networks (DANv1 and DANv2), Nash Vote
and Zimmermann Operator provide worse results than Qutput average. According to
the mean PER, Weighted Average, Bayesian Combination and Choquet Integral only
provide good results when the ensemble size is low, 3 networks, but their performance
decrease when the ensemble size is higher.

Finally, the ToP and PER values are not correlated in some cases. This means
that Qutput average fits specially better for a subset of datasets whereas another
subset of datasets is better combined by the other alternatives. This behavior can
be clearly seen in Weighted Average, Majority Voting, Borda Count and Bayesian
Combination for the case of ensembles of 3 networks where the mean loP is negative
but the mean PER is positive and quite high.

The analysis of the results is a little bit more difficult in the case of RBF networks
because some combiners may not fit well on this network architecture. It is important
to mention that the outputs provided by MF networks range from 0 to 1 so they can
be interpreted as the probability of corresponding to the associated class. A high
value on the ¢-th output neuron means that the probability of the pattern to belong
to class 7 is also high. This behavior can not be expected in RBF networks because
the outputs are not [0, ..., 1] ranged.
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Maybe, there are models which can not work well, such as Zimmermann’s Operator,
if the outputs are not in a this range. For this reason three different normalization
procedures have been applied in order to solve this problem. The first normalization,
threshold, is described in equation [6.66] It consists of cutting values lower than 0
and higher than 1 by applying a threshold. Min-max is the second procedure and it
is described in equation This is the typical normalization in which the lowest
value of the output vector is set to zero and the highest value is set to one. Finally,
the last alternative we have used, sum, is calculated with equation [6.68 In this last
case, the summatory of all the elements of the output vector must be one and there
can not be negative values.

0 if y(z) <0
Yetass () = 1 if y (x) > 1 (6.66)
Yelass () otherwise
-~ class \ L) — man
Yclass (ilf) — Yd ( ) - <y>
max(y) — min(y)

—~ ) — Yelass (x) - mln(y)
Betass (2) = Gy — miin(y))

(6.67)

(6.68)

Table [6.12] shows the results of the combiners on ensembles of RBF networks whose
outputs have been normalized with the threshold equation.

Table 6.12: Combining Simple Ensemble of RBF networks ( Threshold norm.)
Mean IoP Mean PER

Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net

Average 0.01 0.14 0.16 0.24 0.09 3.78 3.27 3.36

DAN -0.09 -0.12 —-0.03 —-0.01 0.63 —0.47  2.16 —1.87
DAN 2 -0.14 —-0.10 -0.07  0.03 0.17 —0.25 1.30 —1.76
Voting —-0.02  0.17 0.14 0.18 1.94 4.40 3.19 3.33

Nash 0.00 0.08 0.05 0.08 0.09 3.34 2.21 0.18
Borda —-0.03 0.14 0.14 0.17 1.87 4.16 3.10 3.23

WTA 0.06 0.08 0.11 0.09 1.27 0.78 0.72 —0.85
W.Ave -0.20 -0.26 —-1.90 -9.74 4.51 3.73 —48.03 —316.57

Bayesian  —0.07  0.06 0.06 0.06 4.02 —-0.37 —-6.91 —10.56
Choquet 0.12 0.06 — — 1.89 1.14 — —
BADD 0.01 0.14 0.16 0.24 0.09 3.78 3.27 3.36

Zimm 0.13 —0.20 —-0.87 —3.20 7.15 0.85 —11.10 —69.37
Choquet ddd 0.07 0.06 — — 1.51 1.24 — —
W.Ave. ddw 0.02 0.14 — — 0.15 3.83 — —

The results provided are quite similar to the results shown in table [6.11] However,
this normalization highly improved the results of Zimmerman Operator, specially for
the case of 3 networks in the ensemble. It also slightly improved, Choquet Integral
with data depend densities. However, Weighted Average is slightly worse than the
original RBF' output.

Table [6.13] shows the results related to the ensembles of RBF networks where the
min-maz equation has been used to normalize the outputs.
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Table 6.13: Combining Simple Ensemble of RBF networks (min-maz normalization)

Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Average —0.02 0.16 0.15 0.18 1.69 4.23 3.41 3.29
DAN -0.17 -0.14 -0.12 -0.10 -0.09 —-1.03 -—1.57 —3.88
DAN 2 —-0.17 -0.14 —-0.11 0.00 —-0.08 —-0.81 —-1.08 —2.33
Voting —0.02 0.17 0.14 0.18 1.94 4.40 3.19 3.33
Nash 0.01 0.00 —0.08 —0.29 1.68 —-191 —-7.98 —13.08
Borda —0.03 0.14 0.14 0.17 1.87 4.16 3.10 3.23
WTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
W.Ave —6.67 —12.35 —17.54 —28.53 —816.49 —901.34 —986.77 —1273.33
Bayesian —0.07  0.06 0.06 0.06 4.02 —-0.37 —6.91 —10.56
Choquet —042 —0.81 — — —7.46 —17.15 — —
BADD —0.02 0.16 0.15 0.18 1.69 4.23 3.41 3.29
Zimm 0.03 0.02 —0.08 —0.28 2.21 —148 —8.01 —13.32
Choquet ddd —-0.46 —0.91 — — —7.76 —18.23 — —
W.Ave. ddw —0.02 0.15 — — 1.79 4.12 — —

The results provided by min-max are also similar to the results shown in table
This normalization only improved Zimmerman and Weighted Average with
data depend weights. However, combiners such as Choquet Integral, Choquet Integral
with data depend densities and Weighted Average now perform quite worse than a
single RBF network and the RBF ensemble without normalization. Concretely, in
Weighted Average, the mean PE R value is close to —1000%.

Finally, table shows the results of all the alternatives to fuse RBF networks
which have been normalized with the sum equation.

Table 6.14: Combining Simple Ensemble of RBF networks (sum normalization)

Mean IoP Mean PER
Combiner 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Average 0.01 0.13 0.14 0.20 0.28 3.88 3.05 3.02
DAN —-0.15 —-0.11 -0.10 0.03 0.25 —0.17 —-0.61 -—1.27
DAN 2 —-0.16 —-0.15 —-0.10 0.02 0.08 —0.88 —-0.74 -—1.64
Voting —0.02 0.17 0.14 0.18 1.94 4.40 3.19 3.33
Nash 0.00 0.10 0.08 0.12 0.09 3.48 2.48 0.60
Borda —0.03 0.14 0.14 0.17 1.87 4.16 3.10 3.23
WTA 0.02 0.13 0.12 0.12 2.17 1.50 1.64 —0.22
W.Ave —-0.25 —-043 —243 -993 -0.90 -0.99 -60.35 —319.62
Bayesian —0.07 0.06 0.06 0.06 4.02 —-0.37 —6.91 —10.56
Choquet 0.04 0.11 — — 4.19 1.31 — —
BADD 0.01 0.13 0.14 0.20 0.28 3.88 3.05 3.02
Zimm 0.15 —0.41 -349 -—5.97 6.07 —3.34 —84.39 —149.41
Choquet ddd —0.01 0.11 — — 3.94 1.54 — —
W.Ave. ddw 0.01 0.12 — — 0.26 3.83 — —

123



ENSEMBLES OF ANNS: ANALYSIS AND DEVELOPMENT OF DESIGN METHODS

The performance and analysis of min-maz and sum are similar. This similarity was
expected because both procedures are nearly the same. However, the sum normaliza-
tion performs better than miz-maz for the following combiners: Weighted Average,
the two Choquet Integral versions (Choquet and Choquet ddd) and, in some cases,
Zimmerman Operator.

In general, the results provided by most of the combiners tend to be similar. How-
ever, their accuracy highly depend on the normalization applied to the outputs of
the RBF' networks, according to the complete results and the results shown in ta-
bles to [6.14] There are three combiners, Majority Voting, Borda Count and
Bayesian Combination, which are not affected by any of the normalization proce-
dures used in this research. These combiners are based on relative measurements
which are not altered by the normalization equations. Furthermore, Majority Voting
and Borda Count have provided good general results and they are, maybe, the most
appropriated combiners for RBF' networks.

Although Output average provides good results in general and for any normalization
procedure, they can be improved if the most appropriate model and normalization
equation are chosen. Concretely, the best general performance is obtained by the
ensembles of three RBF' networks combined by Zimmermann’s operator when sum
and threshold are used to obtain RBF networks with [0, ..., 1] ranged outputs. In
those cases, the mean PFE R was higher than 6% and the highest overall value, 7.15%,
was also obtained with Zimmermann’s operator.

Furthermore, the general results also shown that the combiners are dataset depen-
dent. Two different alternatives with similar values of the mean IoP do not have
similar values of the mean PER and vice versa. This means that the first model fits
better for some datasets and the other one fits better for other classification prob-
lems. Moreover, there are some cases in which the mean IoP is negative whereas
the mean PER is positive. In this case, we can realize easily that both measure-
ments are important and they do not have to completely agree. Maybe, this behavior
means that the alternative used to fuse the networks is valid for some classification
problems but it is not a good choice for the others.

To conclude the experiments related to RBF networks, we also can say that Qutput
average provides good results in all the cases considered. As in the research done
in ensembles of MF networks, Output average should be one of the first options
when ensembles of RBF networks are being combined. Moreover, the voting schemes
Magjority Voting and Borda Count also provide good general results according to
the mean PER and they do not require any normalization procedure. The other
alternatives may be less important because their results depend on the classification
problem, ensemble size and normalization procedure used. However, they can provide
high results in specific cases.
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6.5 Conclusions

Some interesting papers were studied and deeply analyzed in order to do this com-
parison. Fourteen combiners (fifteen in boosting ensembles) were selected to be em-
ployed in ensembles of MF and RBF networks. The experimental setup depends
on the network architecture chosen. In the case of MF networks, we have applied
them to four ensemble methods. In the case of RBF networks, only Simple Ensemble
was considered but three equations were introduced to normalize the output of the
networks.

Firstly, the different alternatives were applied to fuse the networks in ensembles of
MF networks. A representative set of ensemble models were used in the experiments:
Simple Ensemble, Decorrelated version 1, Cross Validated Committee version 2 and
Conservative Boosting. The results are quite interesting because Output average
provides good results even for the ensembles generated by Conservative Boosting.
Moreover, Weighted Average with Data Depend Weights should be seriously consid-
ered for the case of a low number of networks in the ensemble (3 and 9 networks in
the ensemble). Furthermore, Boosting combiner should also be applied to combine
ensembles of a large number of networks in the ensemble (40 networks) generated
by the boosting variants.

Secondly, the combiners were applied to ensembles of RBF networks previously
generated by Simple Ensemble. Unfortunately, the outputs provided by the RBF
networks used in the experiments did not range from zero to one so a normalization
procedure had to be applied. For this reason, three different normalization equations
were used to obtain the final output of the RBF networks with information inside
[0, 1]. Finally, the experiments involved the original and the modified ensembles.

The results related to ensembles of RBF networks show that the Output average also
provides good results for any case and normalization procedure applied. Moreover,
Magjority Voting and Borda Count also provided good general results. However,
the performance of most of the combiners, expect the voting ones, depend on the
normalization procedure applied. The extreme cases are provided by ensembles of 3
networks combined by Zimmermann’s Operator. On the one hand, it performs quite
worse than a single network when the original outputs, without any normalization,
are combined, in this case, the mean PER is lower than —10%. On the other hand,
it provides the best overall mean PER, its value is close to 7%, on ensembles of
RBF networks when the threshold and sum normalizations are used.

Thirdly, the combination methods reviewed in this chapter are dataset dependent.
In the case of MF networks, some of them, such as Bayesian Combination, highly
improved some datasets, ionos for instance. However, their general results are not
the best and sometimes they are worse than Output average. In the case of RBF
networks, we can observe more clearly that there is not any direct relation between
mean [oP and mean PER. Sometimes, the results show that an alternative performs
better than another according to a general measurement but, in the same case, it is
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worse according to the other measurement. This means that both can have similar
general performance but the first way to fuse the networks fits better for some
datasets and the second one fits specially better in other datasets. In the case of
RBF networks, the best combiner for an ensemble also depended on the classification
problem and the procedure applied to normalize the outputs has also a direct relation
with the final performance.

In the ensembles of MF or RBF networks, the ‘optimal” alternative to combine the
networks will depend on the dataset and on the ensemble generated. Any combiner,
even a bad one according to the general results, can provide good results for a specific
dataset.

Its important to conclude by remarking that Output average is the first alternative
that should be seriously considered if accuracy and resources required are balanced.
It provides good results for any dataset when it is applied to combine ensembles of
MF and RBF networks. Moreover, it is the simplest model because it is based on
an unweighted average procedure. Furthermore, Majority Voting and Borda Count
provide good results for ensembles of RBF networks and they do not depend on the
normalization procedure. However, a deeper study considering all the alternatives
should be applied when the experiments are focused on a specific dataset. For a
specific classification problem, a punctual high improvement may be obtained by
choosing the appropriate combiner and ensemble configuration

The results shown in this chapter have been published in references [MFC4, MFC5,
MFC6, MFBI4, RBF3, RBF4] which are detailed in the conclusions chapter of this

thesis.
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CHAPTER 7. ADDING DIVERSITY BY REORDERING THE TRAINING SET

7.1 Introduction

In the researches previously done, the original Backpropagation algorithm has been
applied as described in the original references. Although it has been modified in
some ensemble methods, there has not been introduced any constraint related to
the patterns. In particular, the order in which the patterns are presented to the
network during training is fixed for every epoch of the learning procedure.

However, this order can be randomly changed. This means that the sequence of
patterns from the training set can be exclusively set for every network because the
on-line version of the Backpropagation algorithm is used. Change the sequence from
one network to another can add diversity to the ensemble. Moreover, the sequence
can be altered for every iteration or epoch of the Backpropagation algorithm. Al-
though there are some ensemble alternatives in which the training set depends on
the network, such as Boosting, we propose the application of two reordering methods
to all the traditional ensembles when possible.

This chapter is organized as follows. Firstly, the two reordering alternatives will be
described in section Secondly, the experimental setup along with the databases
used are introduced in section Furthermore, the results and their discussion are
shown in section [7.4] Finally, this research is finished with the conclusions.

7.2 Ensemble methods and reordering procedures

The reordering procedures that modify the sequence of patterns from the training
set are described in this section. Three algorithms to reorder the training set are
introduced in order to test how important reordering is on the ensemble model.

The first alternative consists in using a fix sequence of patterns for all the networks
in the ensemble or a fix sequence in each network of the ensemble in the case of
Boosting or similar methods, no change in the sequence of patterns is applied. The
second procedure consists in randomly reordering the original training set at the
beginning of the learning process and after to keep the initial order fixed. Finally,
the last one consists in randomly reordering the training set at the beginning of
each epoch of the Backpropagation algorithm. In the two last methods, randomly
sampling without replacement is applied to alter the sequence of patterns from the
training set.

As mentioned in the third chapter, all the networks of an ensemble converge into
some different configurations. As shown in figure there can be some networks
which can fall in the same, or very similar, final configuration if the diversity in the
training conditions is low.

In figure [7.1] some classifiers are shown in the possible classifiers space. Each dot
“” represents the network configuration at the end of an epoch. It can be seen
that classifiers C, C5, Cy and Cg have a similar final configuration. Concretely,
classifiers C and C'3 will have the same final configuration since they had the same
configuration at the end of epoch A and the configuration will continue being the
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same after epoch A if they have the same order of patterns in the training set.
Moreover, classifier Cg has a similar performance if compared to classifiers C; and
(3 since it has a similar “intermediate” configuration if compared to C5. However,
C; achieves the final configuration without having any similarity with the other
three classifiers previously mentioned.

simple ensemble

Figure 7.1: Simple Ensemble space and zoom

When the sequence of patterns in the training set is the same for two classifiers,
they will achieve the same final network configuration if they have a common start-
ing point, which is given by the weight initialization, or a common “intermediate”
configuration. For this reason, it is important to apply a reordering algorithm in
order to avoid this behavior.

Moreover, network learning is also viced by the sequence of patterns if it is kept
unchanged during the whole network training. The sequence of patters should also
be reordered during training because the direction to the final configuration depends
on the sequence of patterns applied.

This effect is important in the case of an on-line learning algorithm, where the
weights are adapted after every pattern presentation to the network and will not be
interesting in a batch training algorithm where the weights are only changed after the
presentation of the whole training set. In theory, on-line training and batch training
should be equal if the learning step is small enough, but in practical situations this
is not true and the order of the patterns in the training set has a significant effect.

7.2.1 Original training set order

This first procedure was described in chapter [2, and it is reproduced here in algo-
rithm [7.1] With this alternative, each network is trained according to the original
Backpropagation algorithm. Furthermore, the training set is not altered in most of
the ensemble methods so all the networks are trained using the same sequence of
patterns.

In this algorithm, the Mean Squared Error (equation [2.10)) is minimized in order to
adapt the parameters of the networks, usually their weights.
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Algorithm 7.1 Original Network Training{7T" ,V, net}
Set initial weights randomly
for e =1 to epochs do
for i =1 to Npatterns do
Select pattern x; from T’
Adjust the trainable parameters
end for
Calculate M SFE over validation set V' and save weights
end for
Select epoch with lowest validation M SE
Assign best epoch configuration to the network and save network configuration

This is the algorithm carried out in the experiments done in the previous chapters.
Although the sequence of patterns is not altered by the algorithm applied to train
the network, some ensembles perform an initial reordering task such as Bagging and
Boosting.

7.2.2 Static reordering

The static reordering algorithm can be applied to those ensembles in which the net-
works are trained independently. It is called static because the sequence of patterns
for each individual network is kept unchanged during the whole training process.

In this case, the sequence of patterns is reordered at the begining of the training
procedure of every given network. The new training set TR is drawn at random
without replacement from the original training set T associated to the network and
with the same number of patterns included in T'.

Algorithm 7.2 Static Network Training {7,V net}

Generate TR™ by sampling T' without replacement
Set initial weights randomly
for e =1 to epochs do
for i =1 to Npatterns do
Select pattern x; from T R™
Adjust the trainable parameters
end for
Calculate M SFE over validation set V' and save weights
end for
Select epoch with lowest validation M SFE
Assign best epoch configuration to the network and save network configuration

This reordering method can not be applied to the ensembles in which all the networks
are trained simultaneously, such as CELS or FENCL. According to their original
references [61], 68], a pattern is presented to all the networks in each iteration.
Different patterns can not be presented to different networks in a given iteration.
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Moreover, it is senseless to apply them to Boosting and Bagging because in those
ensembles each network has a specific training set which is not shared with the other
networks. Perhaps, the reordering intrinsically applied by them may be part of their
increase of performance with respect to Simple Ensemble.

Furthermore, Static reordering will be applied to the ensembles based on Cross
Validation Committee because the training sets and the sequences of patterns differ
only slightly from one network to another.

7.2.3 Dynamic reordering

The dynamic reordering algorithm can be applied to any ensemble. It is called
dynamic because the sequence of patterns is altered sometimes during training,
typically in every epoch. In this case, the new training set TR is also drawn
at random without replacement from the original training set T' associated to the
network or ensemble and with the same number of patterns of 7'

As shown in algorithm [7.3] the network will not be viced by applying the same
sequence of patterns epoch after epoch because it is randomly reordered at the
beginning of each epoch of Backpropagation.

Algorithm 7.3 Dynamic Network Training{7T , V , net}
Set initial weights randomly
for e =1 to epochs do
Generate TR by sampling T" without replacement
for i =1 to Npatterns do
Select pattern z; from T R
Adjust the trainable parameters
end for
Calculate M SE over validation set V'
Save epoch weights and calculated M SE
end for
Select epoch with lowest validation MSFE
Assign best epoch configuration to the network
Save network configuration

7.2.4 Simple Ensemble*

In the third chapter Simple Ensemble (SE) was fully described. The results of that
chapter showed that it provides reasonable good performance despite its simplicity.
To perform the first experiments on reordering a slight modification was introduced
to Simple Ensemble.

This modification will be named Simple Ensemble® or SE*. Its algorithmic descrip-
tion is shown in algorithm and its graphical description can be found in figure
7.2
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Algorithm 7.4 Simple Ensemble® {T', V' | Npctworks }
Generate a single seed value for weight initialization: seed
for net = 1 to Nperworks dO

Random Generator Seed = seed
Network Training {T",V, net}
end for
Save Ensemble Configuration

simple ensemble*

common initial - »
configuration

Figure 7.2: Simple Ensemble* output space

As can be seen in the previous algorithm, the modification consists of training a set
of different networks with the same initial weight initialization. Any reordering pro-
cedure described in this chapter can be applied as the Network Training procedure.

In the case of Static reordering, the networks will be trained with the same initial
configuration, training parameters and learning set. However, the sequence of pat-
terns in the training set will be different for each network despite having the same
patterns.

In the case of Dynamic reordering, the sequence of patterns will be different for
each network and for each epoch of Backpropagation. But the networks will also be
trained with the same parameters and initial weight configuration.

The original network training without reordering could be also applied to Simple
Ensemble*. However, its application is totally senseless because all the networks will
fall into the same final network configuration, they will be identical. For instance, if
we set all the weights to the same initial values for the different networks and we do
not apply reordering, it is clear that all the networks in the ensemble will have the
same final configuration when we use training algorithm The ensemble will not
have any diversity and this ensemble will not improve the single network. So with
ensemble SE* we can test the effectiveness of the reordering procedures.
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7.3 Experimental Setup

In this chapter two reordering algorithms, Static Reordering Algorithm and Dynamic
Reordering Algorithm, have been proposed. Moreover, a new ensemble based on
Simple Ensemble has been introduced to perform the first experiments and see the
effectiveness of reordering. The main characteristics of the experiments done to test
the performance of the new methods are:

+ Nineteen datasets from the UCI Repository.
+ Three reordering algorithms:
& Original Training Algorithm.
+ Static Reordering Training Algorithm.
+ Dynamic Reordering Training Algorithm.
+ Two basic ensembles to perform a first analysis:
+ Simple Ensemble.
+ Simple Ensemble*.
+ Seventeen classic ensembles to test reordering:
4+ All the versions of ATA, CELS, Decorrelated and EENCL.
4+ Bagging, Boosting and C'V(C' and variants.
+ Output Average as ensemble combiner.
+ MF network as network architecture with optimized training parameters.
+ Four different ensemble sizes: 3, 9, 20 and 40 networks.

+ Experiments repeated ten times with different partitions of the training,
validation and test sets to obtain:

4+ Mean value of performance.
4+ Error rate by standard error theory.
4+ Paired Student’s t-test.

+ Three general measurements applied to the comparison:
+ Mean Increase of Performance (IoP).
+ Mean Percentage of Error Reduction (PER).
+ Student’s Paired t-test.

The description of the nineteen datasets used in the experiments can be found in
appendix[A] The optimized training parameters of the networks are in appendix [B.3]
whereas the specific parameters of the ensemble methods are in appendix [B.5| Fi-
nally, the mean IoP (equation and the PER (equation are used to compare
the ensembles and the t-test is employed to perform the statistical comparisons.
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7.4 Results and discussion

The main results related to the research done on reordering are shown in this section.
As previously mentioned, a first research was performed on Simple Ensemble and
Simple Ensemble* whereas a second research has been focused on applying the
reordering algorithms to the classic ensemble methods.

For this reason, this section has been split into three subsections. The first and second
ones will show the discussion of the two versions of Simple Ensemble, whereas the
main results of the classic ensemble methods are in the third subsection.

7.4.1 Reordering on Simple Ensemble

Firstly, the reordering algorithms were applied to Sitmple Ensemble and Simple FEn-
semble* in order to test if the accuracy of the ensembles could be improved. The
general results, mean [oP and mean PER across all databases with respect to a
single MF network, are shown in table [7.I] The ensembles have been tested for
ensembles of 3, 9, 20 and 40 networks.

Table 7.1: Reordering on Simple Ensemble

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
SE 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64

SE - Static 5.32 5.67 5.78 5.83 23.79  26.41 27 27.61
SE - Dynamic 9.53 5.65 5.8 5.8 2572 26.16 2743 27.17
SE* - Static 5.23 5.55 5.58 5.99 23.46 254 2591 26.42
SE* - Dynamic 5.45 5.81 5.91 5.74 24.44  26.65 27.08 26.37

At first sight, it can be seen that the accuracy of Simple Ensemble is improved when
the two reordering algorithms, static and dynamic, are applied. The mean IoP is
increased in a 0.5% whereas the mean PER is increased around 3%.

Moreover, the results provided by applying the reordering algorithms to Simple
Ensemble* are also better than the original Simple Ensemble. According to these
results, changing the sequence of patterns may be considered a source of diversity
stronger than selecting different initial network configurations.

Perhaps, this behavior may be given by the procedure used to set the initial
weight values. The interval for the initial weight values in MF networks is small,
[—0.05,...,40.05] in all our experiments, according to [I1I]. So the differences
among all the different initial networks and the diversity of using different start-
ing networks or starting points are also small. This small interval is used in order to
avoid premature saturation. The premature saturation occurs when the output value
of a neuron is a wrong extreme value. The extreme values are given by the lowest
and highest possible values, 0 and 1 in our case. Furthermore, it was shown in [112]
that the saturation is likely to occur at the first epochs of training. This saturation
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depends on the number of nodes, the maximum slope the transfer function and,
above all, the amplitude of the initial weight values.

Figure [7.3| shows graphically how the classifiers of the ensemble are generated when
the original Simple Ensemble and Simple Ensemble* with reordering are applied.
Obviously, the best results are obtained if reordering and selecting different ini-
tial network configurations are both applied. When Static reordering is applied the
different networks are not trained with the same sequence of patterns so the proba-
bility of reaching a similar final configuration is lower. Furthermore, this sequence of
patterns is also altered in each epoch of training when Dynamic reordering is used
so any network from the ensemble is not viced with the same sequence during its
training.

In the case of SE* it is clear that the Dynamic reordering provides slightly better
results than the Static reordering so it may be interesting to apply it. However, in
the case of SE it is only better for the case of ensembles of low number of networks (3
networks). For these reasons, we consider that both reordering alternatives should
be applied to other classic ensemble methods. Reordering provides an interesting
extra source of diversity when an ensemble is generated.

simple ensemble simple ensemble*
without reordering with reordering

different initial
configurations

common initial
configuration

Figure 7.3: Simple ensemble and Simple Ensemble*

Furthermore, reordering on the original Simple Ensemble (SE) outperforms some
classic ensemble methods such as Cooperative Ensemble Learning System (CELS)
and Decorrelated as shown in table [7.2] There is only one case, DECOvI and en-
sembles of 9 networks, in which any reordering method does not provide the best
results. In this case, the mean PER of DECOv! is 26.6% but the highest PER
provided by Simple Ensemble is 26.41%.

Moreover, reordering is better than Bagging and the best Boosting variants in some
cases. In the case of Bagging, reordering on SE is better when the number of networks
in the ensemble is low (3 networks). Whereas, it is clearly better than Adaboost in all
the cases. Finally, both reordering alternatives on SE provide better general results
that the best boosting variants, Aveboost and Conserboost, for the case of low and
medium number of networks in the ensemble (3 and 9 networks).
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Table 7.2: Comparing reordering algorithms to classic ensemble methods
Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
SE - Static 5.32 5.67 5.78 5.83 23.79  26.41 27 27.61
SE - Dynamic 5.53 5.65 5.8 5.8 25.72  26.16 27.43 27.17
SE* - Static 5.23 5.55 5.58 5.99 23.46 25.4 25.91  26.42
SE* - Dynamic 5.45 5.81 5.91 5.74 24.44  26.65 27.08 26.37

CELS 4.72 0.42 5.46 5.53 21.51 23.73 25.75 26.35
DECOv1 5.48 5.78 5.85 5.83 24.76 26.6 26.99 27.03
DECOv2 5.46 9.53 5.58 5.78 2487 2571 2592 264
Bagging 5.09 5.78 5.95 5.76 22.93 2755 2825  27.69
Adaboost 3.69 4.55 4.93 4.98 15.4 19.5 2296 24.54
Aveboost 4.33 5.57 5.95 6.04 18.26  26.11  27.12  26.53

Conserboost 4.42 5.31 5.65 6.06 19.72 25.63 26.62 27.84

The results shown in the previous table are important because ensembles with good
performance can be generated with a simpler procedure when they are compared
to other classic ensembles. Moreover, there are a few cases, specially for the case
of boosting variants, in which reordering on SE is better according to the mean
PER but a boosting alternative is better according to the mean IoP. For instance,
in the case of 20 networks in the ensemble the mean IoP for Dynamic reordering
on Simple Ensemble is 5.8% and this value for Awveboost is 5.95%, whereas the
the mean PFER values are 27.43% and 27.12% respectively. Although both methods
provide general good results, Aveboost specially improves the results of some datasets
whereas reordering specially improves the results of other datasets. For this reason,
Dynamic reordering should be applied to other ensemble methods, such as Boosting,
because the sources of diversity are different.

Although all the results shown improve the original Simple Ensemble, the general
measurements applied do not provide any statistical information so the t-test was
employed to compare the results obtained with the original Simple Ensemble, the
statistical results are shown in table [7.3]

Table 7.3: Statistical results - Reordering on Simple Ensemble
Methods measure 3-net 9-net 20-net 40-net
t-value —-1.66 —2.43 —-3.32 —2.79
Q@ 0.1 0.016 0.0011 0.0059
t-value —2.42 —-2.04 —-297 24
Q@ 0.017 0.043 0.0034 0.017
t-value —-1.25 —1.65 —-1.64 —1.04

SE traditional vs SE static
SE traditional vs SE dynamic

SE traditional vs SE* static

& 0.21 0.1 0.1 0.3
t-value —23 —322 —381 —205
. . * .
=12 e tlomel v D18 o s o 0.022  0.0015 0.00019 0.042
t-value —1.27 —20 -274 —134
* : * .
=l SEhe vE Ble dymeniie o 021  0.047 0.0067 0.18
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According to the results shown in table applying Dynamic reordering to Simple
Ensemble and Simple Ensemble® improve the original Simple Ensemble and the
differences are statistically significant because the t-values are negative and « is lower
than 0.05. Moreover, Static reordering applied to Simple Ensemble also statistically
improves the original ensemble in most of the cases. However, Static reordering
applied to Simple Ensemble® slightly improves the original Simple Ensemble but
the differences are not statistically significant.

Moreover, Static reordering is statistically compared to Dynamic reordering for the
ensembles generated by Simple Ensemble® in the last row. The statistical results
show that Dynamic reordering is better than Static reordering because the t-values
are negative. However, their differences are only statistically significant (o lower
than 0.05) for the cases of ensembles of 9 and 20 networks.

As a final conclusion, Dynamic reordering should be applied to any ensemble whereas
Static reordering should be used with those ensembles in which the networks are not
trained simultaneously or reordering is not implicit. In both cases, the use of different
initial network configurations must be also applied. Both, reordering and different
weight initializations, should be used simultaneously.

7.4.2 Reordering and weight initialization strategy

As it has been previously shown, the interval for initial weight values in MF networks
is [—0.05, ..., +0.05] according to [ITI]. To test if changing the sequence of patterns
can be considered a better source of diversity than selecting different initial network
configurations, we have repeated the experiments using different intervals for initial
weight configuration. The results of these experiments are in tables to

Table 7.4: Reordering on Simple Ensemble with initial interval [—0.25, ..., +0.25]

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
SE 5.36 5.68 5.66 5.72 24.31 25.32 25.55 25.84

SE - Static 5.56 5.89 6 5.97 25.63 2749 2838  28.3
SE - Dynamic 5.67 5.96 5.97 5.9 25.84 27071 2817 27.72
SE* - Static 5.33 5.66 5.68 5.76 24.03 2643 26.84 27.26
SE* - Dynamic  5.42 5.52 5.37 5.43 245 25.07 2428 25.03

Table 7.5: Reordering on Simple Ensemble with initial interval [—0.5, ..., +0.5]

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
SE 5.56 5.82 5.8 5.78 24.99  26.33 25.97 26.02

SE - Static 5.59 5.93 5.99 5.99 25.04 28.01 2842  28.5
SE - Dynamic 5.75 5.87 6.02 6.02 26.82 2739 2797 28.33
SE* - Static 5.75 5.87 6.02 6.02 26.82 2739 2797 28.33
SE* - Dynamic 5.15 5.14 5.26 5.23 23.63 23.53 2454 24.39
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Table 7.6: Reordering on Simple Ensemble with initial interval [—1.5,...,+1.5]

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
SE 5.61 5.93 6.07 6.08 25.17 27.64 28.14 28.1

SE - Static 5.52 6.13 6.18 6.24 2542 29.38 29.48  29.95
SE - Dynamic 5.82 6.16 6.23 6.22 2732  29.29 29.64 29.46
SE* - Static 5.1 5.33 5.41 5.9 22.34 2435 24.88 25.7
SE* - Dynamic  5.03 5.16 5.19 5.21 2299 2418 2433 24.22

Firstly, according to the three previous tables, the performance of Simple Ensemble
with or without reordering seems to increase as the interval for initial weight val-
ues becomes higher. It means that there can be more initial different networks and
diversity may be increased when the interval becomes higher. In fact, the highest
results of Simple Ensemble (mean IoP around 6.2% and mean PER close to 30%)
are obtained by using reordering with high sized ensembles (40 networks) and the
highest interval ([—1.5,- - ,41.5]). On the other hand, the effect of premature sat-
uration described above seems to be less important in an ensemble than in a single
network.

Secondly, Simple Ensemble* with Dynamic reordering tends to perform worse as
the interval increases. Simple Ensemble®* with Static reordering performs better
than Simple Ensemble for the first interval, [—0.25, ..., 0.25] (except for 3 networks
where the results are similar), and the second interval, [-0.5...0.5] but it performs
worse for the last interval [—1.5,...,+1.5]. In general, SE* fits better when the
interval used to set the initial weight values is small. If this interval is high, such as
[—1.5,...,41.5], the use of different initial networks is better source of diversity than
reordering because there are more possible starting points and the initial networks
of the ensemble are more different.

Finally, the best results are obtained if both sources of diversity, different initial
configuration for weights and reordering the sequence of patterns of the training set,
are applied together to generate ensembles.

7.4.3 Reordering on classic ensemble methods

The results have shown that reordering has a positive effect on SE so both reordering
algorithms, static and dynamic, have been applied to the classic methods.

Initially, all the ensemble models described in chapters 4] and |5 have been consid-
ered to be used along with the reordering algorithms. But the worst ones, such as
EVOL and OLA, are not included and only the most important Boosting methods
are considered. The results related to the original network training of the chosen
ensembles correspond to the original results shown in those chapters. These results
are reproduced in tables and to perform the comparison easier. For each
ensemble alternative, we compare the results of the original version with respect to
the results when the reordering algorithms are employed.
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Firstly, Static reordering has been applied to the classic ensemble models in which
the networks are trained independently and the sequence of patterns has not been
altered by the ensemble. Bagging and Boosting generate a specific training set for
each network by sampling so Static reordering is implicit. Moreover, Static reordering
can not be applied to CELS and EENCL because all the networks are trained at
the same time and the sequence of patterns must be the same for all the networks
according to the original references.

The general results, mean IoP and PER, of the classic ensembles along with the
results related to applying Static reordering to them are shown in table [7.7

Table 7.7: Static reordering on classical ensemble methods

Mean [oP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
CVCvl 4.38 5.53 5.35 5.53 20.66 24.3 24.23  24.21
CVCvl static 4.91 5.46 5.56 5.51 21.52  23.62 23.16 23.90
CVCv2 5.48 5.95 5.98 5.85 25.73 27.09 25.34 23.7
CVCv2 static 5.48 6.06 6.02 5.96 25.28 27.69 25.89 24.96
CVCv2.5 5.48 6.17 5.94 5.94 24.25  27.85 26.65 27.55
CVCv2.5 static 5.69 6.13 6.23 6.22 25.65 28.00 28.87 28.95
CVCv3 5.56 5.96 6.17 6.16 24.06 26.59 28.35 28.68
CVCv3 static 5.87 6.19 6.24 6.23 26.58 27.52 28.83 28.90
DECOv1 5.48 5.78 5.85 5.83 24.76 26.6 26.99  27.03
DECOv1 static 5.30 5.67 6.02 5.96 24.46 27.21 2854 28.24
DECOv2 5.46 5.53 5.58 5.78 24.87  25.71  25.92 26.4
DECOvV2 static 5.36 5.67 5.86 5.72 24.69 26.17 27.22 26.44
ATA-LE 4.58 4.91 5.01 4.77 19.44  22.05 22.18 20.22
ATA-LE static  4.46 5.05 5.02 4.66 18.14 22.36  21.36 19.99
ATA-BE 4.42 5.24 5 5.02 19.97 23.4 22.58 21.59

ATA-BE static 4.28 5.21 5.03 5.06 17.61 2295 21.10 21.88

The results of the previous table show that the ensembles based on Cross-Validation
Committee can be improved, in general, if Static reordering is applied. However,
C'VCwl is the unique exception because Static reordering provides similar or worse
results with respect to the original version. In fact, Static reordering provides the
best overall results when it is applied to CVCv2.5 and CVCv3, the mean [oP is
nearly 6.25% and the mean PER is close to 29% for ensembles of 40 networks.

In the case of the alternatives based on Decorrelated, Static reordering slightly im-
proves them for ensembles of 9, 20 and 40 networks according to the mean PER.
However, there are two cases, ensembles of 9 networks trained with DECOv1 and en-
sembles of 40 networks trained with DECOv2, in which the original training provides
better ToP and worse PER. In those cases, both have similar general performance.

For the methods based on Adaptive Training Algorithm, the Static reordering algo-
rithm can not improve the original ensembles (ATA-BE and ATA-LE), in general,
and their general results are similar.
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Table|7.8shows the results of the original ensembles along with the results related to
applying Dynamic reordering to the classic ensembles. In this case, there are more
alternatives because Dynamic reordering can be applied to any ensemble.

Table 7.8: Dynamic reordering on classical ensemble methods

Mean IoP Mean PER

Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Bagging 5.09 5.78 5.95 5.76 22.93 27.55 2825 27.69
Bagging dyn 5.11 5.67 5.80 5.84 22.71  25.99 27.21 27.88
Bagnoise 3.95 4.03 3.98 4.18 13.32 1244 13.12 13.66
Bagnoise dyn 3.88 4.08 4.01 3.97 12.88 13.64 13.47 13.18
CVCvl 4.38 5.53 5.35 5.53 20.66 24.3 24.23  24.21
CVCvl dyn 5.13 5.72 5.51 5.33 24.16 25.06 22.64 21.65
CVCv2 5.48 5.95 5.98 5.85 25.73 27.09 25.34 23.7
CVCv2 dyn 5.56 6.41 6.04 5.86 26.73 30.10 2590 24.86
CVCv2.5 5.48 6.17 5.94 5.94 24.25 27.85 26.65 27.55
CVCv2.5 dyn 5.84 6.10 6.04 6.15 26.45 27.59 28.05 28.38
CVCv3 5.56 5.96 6.17 6.16 24.06 26.59 28.35 28.68
CVCv3 dyn 5.66 6.07 6.29 6.13 25.73 28.03 28.77 28.05
CELS 4.72 5.42 5.46 5.53 21.51 23.73 25.75  26.35
CELS dyn 5.44 5.93 6.15 5.91 25.68 27.62 29.31 29.03
DECOv1 5.48 5.78 5.85 5.83 24.76 26.6 26.99  27.03
DECOv1 dyn 5.51 5.81 5.87 5.98 25.64 26.86 27.53  28.23
DECOv2 5.46 5.53 5.58 5.78 24.87 25.71  25.92 26.4
DECOv2 dyn 5.35 5.67 5.69 5.77 23.62 24.73 2493 25.24
Adaboost 3.69 4.55 4.93 4.98 15.4 19.5 22.96 24.54
Adaboost dyn 4.00 4.88 4.92 4.93 16.05 23.03 22.86 23.05
Aveboost 4.33 5.57 5.95 6.04 18.26  26.11  27.12  26.53

Aveboost dyn 4.61 5.73 6.02 5.93 18.76  25.35 27.91 26.72
Aggreboost 3.56 4.79 5.53 5.83 14.82  20.26  25.27  26.56
Aggreboost dyn 3.54 4.70 5.56 5.95 13.58 20.43 25.86 27.50
Conserboost 4.42 5.31 5.65 6.06 19.72  25.63 26.62 27.84
Conserboost dyn 4.37 5.43 6.00 6.22 19.70 25.05 28.49 29.80

ATA-LE 4.58 4.91 5.01 4.77 19.44  22.05 22.18 20.22
ATA-LE dyn 4.23 5.03 4.82 4.62 17.12 2220 20.55 19.59
ATA-BE 4.42 0.24 S 5.02 19.97 234 22,58 21.59

ATA-BE dyn 4.47 5.23 5.36 5.27 19.04 2450 24.99 24.20
EENCL-LG 4.41 4.06 4.52 4.2 16.87 14.93 1599 17.71
EENCL-LG dyn 4.29 4.49 4.44 4.61 17.14  16.40 18.92 18.54
EENCL-BG 4.89 4.82 4.67 5.07 20.42 19.6 19.02  22.36
EENCL-BG dyn 5.15 5.05 5.12 4.77 22.86 19.92 2183 20.89

According to table [7.§ Dynamic reordering does not have a high positive impact
on the ensembles based on Bagging but the ensembles based on Cross-Validation
Committee can be improved if Dynamic reordering is applied. C'VCv1 is the unique
C'VC ensemble in which Dynamic reordering provides considerable low performance
for the case of a high number of networks in the ensemble (20 and 40 networks).
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Furthermore, Dynamic reordering provides better results than Static reordering in
most of the cases. However, Static reordering performs better on C'VC when en-
sembles of a high number of networks are generated (typically 40 networks and
sometimes 20).

In the case of the ensembles generated by CELS, Dynamic reordering provides a
high improvement in the performance with respect to the original ensemble. The
best results for CELS are provided by ensembles of 20 networks using Dynamic
reordering (mean IOP equal to 6.15% and mean PER equal to 29.31%).

For the methods based on Decorrelated, Dynamic reordering slightly improves DFE-
C'Ovl whereas the results related to DECOuv2 are slightly worse. For them, Static
reordering has been better except for the case of 3 networks in the ensemble.

Dynamic reordering works well on boosting. It improves the results provided by the
best boosting alternatives for medium and high sized ensembles (typically 20 and 40
networks in the ensemble) and it provides the best overall results of these methods.
However, it only improves the results of Adaboost for the cases of 3 and 9 networks.

The results related to Adaptive Training Algorithm show that the Dynamic reorder-
ing algorithm can not improve the original method ATA-LE except for ensembles
of 9 networks. However, the version we proposed of ATA, ATA-BE, performs better
when Dynamic reordering is applied, especially for ensembles of 20 and 40 networks.

Applying Dynamic reordering to EENCL provides, in general, better results that the
traditional versions according to the PE R values. Although the traditional training
is the best choice for EENCL-BG and 40 networks (highest PER for the original

ensembles), its results are overcome by Dynamic reordering with only 3 networks.

Furthermore, we have applied the Student’s t-test in order to statistically compare
the original training to reordering in tables to [7.14] The first table introduces
the statistical results for Bagging and Bagnoise.

Table 7.9: Statistical results - Reordering on classic ensemble methods (I)

Methods measure 3-net 9-net 20-net 40-net

. . t-value —0.07 0.73 1.11 —0.62
Bagging Vs. Bagging dyn o 093 046 026  0.53
. . t-value 0.30 —-0.07 —-0.14 1.23
Bagnoise Vs. Bagnoise dyn o 0.75 0.94 0.88 0.21

The statistical results of table [7.9| show that the differences between the original
training and the reordered version are not statistically significant for Bagging and
Bagnoise. There are two cases in Bagging, 9 and 20 networks in the ensemble, in
which the original training procedure is slightly better than Dynamic reordering.
In Bagnoise there are also two cases, 3 and 40 networks in the ensemble, in which
Dynamic reordering is slightly worse than the original training procedure because
the t-values are positive. This behavior was expected because the original Bagging
and Bagnoise implicitly performed Static reordeing.
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The statistical results for the ensembles based on CVC' are shown in table [7.10l

Table 7.10: Statistical results - Reordering on classic ensemble methods (II)

Methods measure 3-net 9-net 20-net 40-net
CVCvl Vs. CVCv1 stat t“’zlue _0?6?;4 8:?;3 —0};2)5 8;;
CVCvl Vs. CVCv1 dyn fvalue 279 078 081078

CVCv2.5 Vs. CVCv2.5 stat t"’zlue —02(3)7 8:?2 —0?(-);8 6387;1
CVCv2.5 Vs. CVCv2.5 dyn t'Vzl“e _0%6;7 8:2%;1 _0(.)42 2 —Oﬁéf
OVOv3 Vs. OVOvastar TR THE T
CVOv3 Vs CVOvaayn  TVRMe Ed O SRR

According to table[7.10] the differences between the original C'VC' and the reordered
versions are not, in general, statistically significant. However, there are a few cases
in CVC in which the value of « is lower than 0.05 and the results are statistically
significant. Both new reordering algorithms are statistically better than the original
ensemble for C'VCvl and 3 networks in the ensemble. There are other two cases,
CVCv2 with 9 networks and C'VCv2.5 with 20 networks, in which the differences
between one of the two proposed alternatives with respect to the original ensemble
are also statistically significant.

In table[7.11] the statistical results for CELS are introduced. In this table, it can be
observed that applying Dynamic reordering to CELS improves the original ensemble
and their differences are statistically significant in all the cases (negative t-values
and « lower than 5%). It is important to mention, that CELS is the only traditional
ensemble (without considering Simple Ensemble) which has been outperformed by
a reordering algorithm (Dynamic reordering) for all the ensemble sizes and the
differences are statistically significant also for all the ensemble sizes.

Table 7.11: Statistical results - Reordering on classic ensemble methods (III)
Methods measure 3-net 9-net 20-net 40-net

t-value —-3.27 —-3.10 —-4.02 —2.21
CELSRVECE LS v o 0.001  0.002 0.00008 0.028

The statistical results of the ensembles generated with DECOvl and DECOuv2 are
shown in table [Z.12]
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Table 7.12: Statistical results - Reordering on classic ensemble methods (IV)

Methods measure 3-net 9-net 20-net 40-net
DECOv1 Vs. DECOVI stat t'v‘;l“e 00'?44 813 Btgf _0237
DECOv2 Vs. DECOV? stat t"’zlue 8:?? *0%?54 6%775 8?7’;
DECOv2 Vs. DECOv2 dyn t“’zlue 8:?;‘ _0%6 _8‘653 8:8?

It can be seen, in table [7.12] that the differences between the original versions of
DECO and their reordered versions are not statistically significant. The reordered
versions of DECO are slightly better because the t-values are negative and « is
higher than 0.05 in most of the cases.

Table [.13] shows the statistical results for ensembles based on ATA and EENCL.
According to this table, the difference between the performance of these methods
with the traditional training and reordering algorithms is not statistically significant
because « is higher than the threshold value (0.05).

Table 7.13: Statistical results - Reordering on classic ensemble methods (V)

Methods measure 3-net 9-net 20-net 40-net

ATA-LE Vs. ATA-LE stat t'vzlue 3;33 5%; _8,'9()); . 061366
ATA-LE Vs. ATA-LE dyn t'vzlue é:gg 6%)’ 05,843 8§§
ATA-BE Vs ATA-BEstat 3 (0 (30 ol
ATA-BE Vs. ATA-BEdyn VM (7 (00 S
EENCL-LG Vs. EENCL-LG dyn t'vzlue 06.563 _0%(')%2 8:;:5)) _0%1528
EENCL-BG Vs. EENCL-BG dyn t'vzlue 6125 _02163 6%525 (1):?;1

The t-values related to both versions of ATA show that in more than half of cases
(62.5%), the orginal ensemble is slightly better than the proposed alternatives with
reordering because the t-value is positive.

For EENCL, the t-values show that the proposed versions are better than the original
ensemble in 5 of 8 cases (62.5%). Moreover, the a value for the case of EENCL is
low for 9 networks (FENCL-LG) and 20 networks (EENCL-BG). In these two cases,
Dynamic reordering is better than the original ensemble and their differences are
almost significant.
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Finally, statistical results related to Adaptive Boosting and the best variants (Awve-
boost, Aggreboost and Conserboost) are in table According to the table, the
difference between their performance with the traditional training and the reorder-
ing algorithms is not statistically significant because « is greater than 0.05. However,
there is only one case in which the differences are statistically significant (Conser-
boost and 20 networks) and there are some cases (mainly in Adaboost) in which «
is quite close to this percentage (5%) and the differences are almost significant.

Table 7.14: Statistical results - Reordering on classic ensemble methods (VI)

Methods measure J3-net 9-net 20-net 40-net

Adaboost Vs. Adaboost dyn t-vzlue _011528 _01127 _8"54 _010788
Aveboost Vs. Aveboost dyn t-vzlue _012:}71 _003?15 _0061’173 %%8
Aggreboost Vs. Aggreboost dyn t-vzlue _009?))9 823 _009%6 _004755
Conserboost Vs. Conserboost dyn t-v:;lue 8;‘;’ _00418 6%??;9 0?312

In general, the results of reordering on classic ensemble methods slightly improve the
results provided by the original methods without reordering. Moreover, the difference
in performance, in general, is not statistically significant because in a 91% of the
cases shown the value of « is greater than 0.05, only in 9 cases o denotes a significant
difference.

However, there are some cases in which « is close to this “limit” value. We think
that we may obtain significant differences if we increase the number of results used
to do the statistical test, i.e., the number of databases and the number of partitions
of the original learning set in training, validation and test sets.

For instance, the experiments are repeated n times with different partitions on the
training, validation and test sets. In all our experiments performed, n has been set to
10. If n is increased to 20, we may have more precise general results and we will have
more data in order to perform the statistical tests. In the following table, we show
the statistical test applied to compare the traditional C'VCv3 with its reordered
versions. To perform this test, in this case, we have repeated the experiments 20
times as described above.

Table 7.15: Statistical results - Reordering on C'VCv3 after repeating the experi-
ments 20 times

Methods measure 3-net 9-net 20-net 40-net
t-value —2.935 —2.585 —1.468 —2.558

GRS o LV sl o 0.004 0.01 0.143 0.011
t-value —2.332 —1.694 —1.308 —1.563

OV Wi, GOV dlym o 0.02  0.091 0.192 0.119
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As we can see, the value of « in the previous table is lower than for table [7.10]
Moreover, « is lower than 0.05 in half of cases so the new alternatives are statistically
significant in these cases. Repeating the experiments 20 times and increasing the
number of databases will provide more data to the statistical test and we can realize
that the difference of reordering with respect to traditional training tends to be
statistically significant.

7.5 Conclusions

In this chapter an exhaustive comparison about reordering the training set on the
ensemble methodology has been performed. Two reordering procedures are success-
fully proposed. Important conclusions can be derived from this research.

Firstly, the results showed that applying reordering to Simple Ensemble provides
good results. Dynamic reordering fitted better in the cases of low number of networks
in the ensemble (3 and 9 networks) and Static reordering fitted better on medium-
high sized ensembles (20 and 40 networks).

Secondly, reordering the sequence of patterns is an important source of diversity
as reported with the results of Simple Ensemble*. Training a set of networks with
the same initial configuration and with a reordering algorithm provides statistically
better results than the original Simple Ensemble algorithm when a small interval
for weight initialization is used to generate the initial networks.

However, the use of different initial configuration for the networks is also important,
specially when the interval for weight initialization is high. Although Simple En-
semble has been improved by using a higher interval, we have employed the small
interval suggested in [IT1], [—0.05,...,40.05], in all the experiments performed in
this thesis in order to avoid premature saturation.

Thirdly, the best results with Simple Ensemble are obtained when reordering is
applied to networks with different initial weight configurations. In this case, two
different sources of diversity, the use of different initial networks and reordering, are
properly mixed.

The results of these firsts experiments were a vital aim to apply reordering to the
classic ensemble methods described in the previous chapters. Some ensemble meth-
ods were omitted since their results with the original training were not good enough.

Fourthly, applying Static reordering and Dynamic reordering slightly improve the
classic ensemble methods. The Dynamic reordering algorithm is a better alternative
since it provides the best results in most of the cases and it can be applied to any
ensemble method. But Static reordering provides better results in C'VC methods for
the case of ensembles of 40 networks. Although the results are only slightly improved,
reordering can be considered an important step in order to design better ensemble
methods. In fact, reordering on Simple Ensemble can improve the results of good
classic ensemble methods.
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Finally, the results related to the best classic ensemble methods, which were reported
in chapters [4l5], were mean ToP lower than 6.2% and the mean PER between 28%
and 29%. The best overall results of this chapter are provided by applying Dynamic
reordering to CVCv2, where the mean IoP is 6.41% and the mean PER is close to
30.1%. Although the results of the classic ensembles are quite good, they may be
improved by refining the ensemble methods step by step.

The results related to reordering have been published in reference [MFR1] which is
detailed in the conclusions chapter.
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CHAPTER 8. IMPROVING BOOSTING METHODS

8.1 Introduction

In chapters 4] and [5] it has been shown that Boosting variants and different versions
of Cross-Validation are successfully applied to train ensembles of neural networks.

Some authors like Breiman [81], Kuncheva [82] or Oza [83] have deeply studied
Adaptive Boosting (Adaboost) and successfully improved it by modifying the equa-
tion used to update the sampling distribution or by adding new constraints to the
original algorithm. Although these variants of boosting perform better than Ad-
aboost in general, there are some important cases in which the variants perform
worse because the results depend on the database and on the ensemble size.

In this chapter the following two new boosting models and a new methodology to
improve boosting are successfully proposed:

+ Averaged-Conservative Boosting.
4+ Weighted-Conservative Boosting.
4+ Cross-Validated Boosting methodology.

This chapter is organized as follows. Firstly, the new ensemble methods will be
described in sections to [8.4] Secondly, the experimental setup is introduced in
section [8.5 Thirdly, the results and their discussion is shown in section

8.2 Averaged-Conservative Boosting

Averaged-Conservative Boosting, henceforth ACB, is a new boosting variant, pro-
posed by us, in which Averaged Boosting and Conservative Boosting are mixed in
order to design a more robust boosting alternative. This new ensemble, described
in algorithm at the end of this section, is based on the principles of boosting
described in chapter [5] (subsection |5.2.2]).

As we have previously mentioned, Adaptive Boosting, Adaboost, is a well known
ensemble. Its main problem is that after training some networks the training sets
tend to be overfitted with hard to learn patterns by a sampling distribution, Dist.
Figure [8.1] graphically describes the strength of the equation applied in Adaboost.

Dist"™ et net,  net, net
X

2 . enet

Dist"®
X

. net
Dlstx

2(1 _€l1et)

Figure 8.1: Updating the sampling distribution in Adaboost

151



ENSEMBLES OF ANNS: ANALYSIS AND DEVELOPMENT OF DESIGN METHODS

The error, €, and other variables (such as 8 and the missclassification vector miss)
correspond to the original ensembles and they are reproduced here in algorithm [8.1]

In the previous figure, the green and red bars denote the new value of the distribu-
tion for sampling the patterns and building the new training set for correctly and
incorrectly classified patterns respectively. Analyzing the figure, it can be noticed
that the strength keeps unchanged network after network. So the values of the dis-
tribution, Dist, can shoot up or down quickly. Some authors proposed in [82, 83 [84]
softer versions of Adaboost in order to slow the process and achieve better results.
Awveboost and Conserboost are the best alternatives. Figure |8.2 graphically describes
the strength of the equations used in Awveboost (left part) and Conserboost (right
part).

diszze’ net, net, net, net, Dis tzet . ﬂnetm net, N net, net, net,
2 ’ EI?E[
dist™ ﬂﬂ — Dist"
R X
dist™ Dist"!
X X
2.(1_6"81) Bnet

(a) (b)

Figure 8.2: Updating the sampling distribution in Aveboost (a) and Conserboost (b)

In Awveboost, the strength of the equation applied becomes softer and softer as new
networks are added to the ensemble. After training some networks, the strength
is marginal and the distributions of two consecutive networks are similar. In this
method, the equation to update the sampling distribution is given by:

net - Distl® + Cnet

Dist™+! = 8.1
x net + 1 (8.1)
where:
1 . . . .
—— if x is incorrectly classified by net
CI" = Dist™" . { Zepet ih . Y Y (8.2)
m otherwise

In Conserboost the value of the distribution of the incorrectly classified patterns
is increased whereas the value of the correctly classified is kept unchanged. It is
considered more conservative or softer than the equation used in Adaboost because
the probability of selecting the correctly classified patterns is not changed. The
equation used to update the sampling distribution, Dist™"! is given by equation
3.0

net

Distie*! = Distict - (§net)™ (8.3)
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Moreover, the summatory of all the elements of the distribution must be always
1. In the new distribution, Dist"*! the sum of all the values will be higher that
1 because the value of the incorrectly classified patterns is increased with respect
to Dist™" and the other values are kept unchanged. A normalization procedure is
applied in order to satisfy that the summatory of all the elements of Dist™*! will
be also 1. This procedure is given by the following equation:

s ofnet+1
Dist?

Npatterns - gnet+1
>t Dist;

Dist™ ! = (8.4)

In this normalization, all the values of the distribution are decreased by a factor
which corresponds to the summatory of all the elements of Dist™*! before the
normalization and this summatory will never be lower than 1. For this reason, the
strength of the equation is softer than in Adaboost after applying the normalization
of the distribution because all the values of the distribution are decreased during
the normalization after updating its values. The strength of Conserboost after nor-
malization is graphically shown in figure

net1 net, net3 netk

. net+1 onet
DlStx B

normalization

. net
Dzstx

. net+1
Dist

normalization

Figure 8.3: Updating the sampling distribution in Conserboost after normalization

The previous methods, Aveboost and Conserboost, improve the results provided by
Adaboost separately. The origins of both methods are quite different so we thought
that a new approach based on both can provide good performance and robustness.

In the method proposed, ACB, the sampling distribution is updated by mixing the
averaged equation of Aveboost, equation [8.1] and the relaxed equation of Conser-
boost, equation [8.3l The main idea of this method is to apply a equation which
weights the values of the former distribution as in Aveboost, but the new values are
calculated as in Conserboost giving priority to the former values. The values of the
new distribution are given by the weighted equation [8.5]

net - Dist? + Cnet
net + 1

- gnet+1 __
Dist, =

(8.5)
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Where the value of C, is now given by:

net

Cret = Distiet - ()™ (8.6)

Figure shows the graphical representation of the strength related to this new
ensemble method.

Dist:lcet . Bnet net, net, net, net,

| T _

net

Distx

Bnet

Figure 8.4: Updating the sampling distribution in ACB

In the ensemble comparison performed in a previous chapter, it can be seen that
Conserboost performs better than Aveboost for the case of ensembles of 3 networks,
whereas Awveboost performs better for the cases of ensembles of 9, 20. In the case
of 40 networks, both have similar performance but Conserboost is slightly better.
These results are reproduced in table [8.1]

Table 8.1: General Results of Aveboost and Conserboost
Mean IoP Mean PER

Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Aveboost 4.33 5.57 5.95 6.04 18.26 26.11 27.12 26.53
Conserboost 4.42 5.31 5.65 6.06 19.72 2563 26.62 27.84

As can be seen in the previous figure and table, the strength of the new equation
initially corresponds to Conserboost, which performs better for small ensembles, and
it becomes similar to Awveboost, which performs better for high ensembles. In this
way, the behavior of two important methods is mixed into a single one. The first
networks, the basis of the ensemble of ACB, are trained as in Conserboost (only the
probability for incorrectly classified patterns is altered) and then this update of the
sampling distribution tends to be softer as the number of networks increases.

Finally, the reinitialization of the distribution is also allowed as in Conserboost. It
has been successfully applied in the methods proposed in [82] in which Conserboost
was introduced. So, we think it can be useful in ACB too. The description of this
new boosting method is shown in algorithm |8.1}
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Algorithm 8.1 ACB {T', V| Nyctworks }
Initialize Sampling Distribution Dist:
Distl = 1/Nyatterns Yo € T
for net =1 to Npetworks dO
Create T' sampling from T using Dist"
Network Training {7” , V'}
Calculate misclassified vector:
net | 1 if () # d(x) x is incorrectly classified
v 0 otherwise x is correctly classified
h"™*(x) is the class associated to the pattern z according to the output of net
d(x) is the target class associated to the pattern x

Calculate error and other parameters:
net __ m - ofnet o onet
€t =" Distl® - miss]

ﬂnet — /1;:::’5 ’ 6net c (0’ 05)
if €"* ¢ (0,0.5) then
Reinitialize Sampling Distribution Dist: Dist" =1/ Npatterns Vo € T
end if
Update sampling distribution:
Cpet = Distret - (grety™"
Dist™ 1 = (net - Dist™ + Cmet) . negﬂ
Normalize( Dist™ ")
end for

MISS

8.3 Weighted-Conservative Boosting

Kuncheva proposed a relaxed version of Adaboost called Conservative Boosting [82].
According to the results shown in chapter [5] Conserboost can be considered one of
the best ensemble alternatives. However, the results depend on the database and on
the ensemble size and, moreover, there are some specific cases in which Conserboost
performs worse than Adaboost.

Table [8.2] shows an extract of the complete results of Adaboost and Conserboost
with representative results. Moreover, the difference of performance between them
is also shown. With these results we show how the difference between Conserboost
and Adaboost is not constant and in some cases is negative (i.e. database Bupa with
9 networks), which means that Adaboost performs better.

Weighted-Conservative Boosting, henceforth WCB, is a new boosting method in
which Conservative Boosting is slightly modified in order to obtain a parameterized
equation to update the sampling distribution. We think that Conserboost may be
improved if a new parameter which should depend on the problem, is added in order
to control the update of the sampling distribution. Our main purpose is to obtain
a method whose performance will be better than the performance of Adaboost for
any case in the general measurements.
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Table 8.2: Comparison of the performance of Adaboost and Conserboost

database networks Conserboost Adaboost difference
3 71.82% 70.18% 1.64
band 9 74% 72.91% 1.09%
20 74.55% 73.45% 1.1%
40 75.82% 71.09% 4.73%
3 2% 70.43% 1.57%
bupa 9 71.29% 73.29% —2%
20 72.86% 73% —-0.14%
40 73.43% 72.57% 0.86%

In WCB, the sampling distribution is updated by a modified version of the relaxed
equation of Conserboost in which a problem-dependent parameter is added. The
main idea of WCB is to apply a good equation whose strength could be set depending
on the database and ensemble size, equation [8.7] This parameter, «, allows the
algorithm to successfully update the sampling distribution for each case and it should
be set by trial and error. The values of the new distribution are given by:

net

Dist;et—}-l — DiStZet Co - (ﬁnet)missx (87)

Finally, the proposed ensemble method is fully described in algorithm [8.2]

Algorithm 8.2 WCB {T, V', Npectworks }
Initialize Sampling Distribution Dist: Distl = 1/Npaserns Vo € T
for net =1 to Npetworks dO
Create T' sampling from T using Dist"
Network Training {7" , V'}
Calculate misclassified vector:
net | 1At AN (x) # d(2) z is incorrectly classified
v 0 otherwise x is correctly classified
h"*(x) is the class associated to the pattern z according to the output of net
d(x) is the target class associated to the pattern z

Calculate error and other parameters:
net __ m - ofnet o onet
et =% """, Distl - miss]

gret = (/=22 enet € (0,0.5)
if €*“* ¢ (0,0.5) then
Reinitialize Sampling Distribution Dist: Dist" = 1/Npaserns V& € T
end if
Update sampling distribution:
Distnet+! = Distnet - o - (fret)™*="
Normalize(Dist™ 1)
end for

miss
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8.4 Cross-Validated Boosting

Cross-Validated Boosting is a completely new boosting methodology in which Cross-
Validation Committee and Boosting approaches are mixed into a single methodology.
According to the results published in chapter [5] some methods based on Boosting
and C'VC provided the best results.

However, both approaches are quite different. On the one hand, Cross-Validation
Committee are methods in which the original learning set is split into subsets which
are used to generate the specific training and validation sets. On the other hand,
Boosting is a methodology that constructs a sequence of networks in which the
networks are overfitted with hard to learn patterns.

Although the general results show that C'VC' approach is slightly better, in general,
than Boosting, this does not mean that they classify exactly equal the same pat-
terns because Boosting focuses its training on hard to learn patterns, to improve the
performance of the ensemble in those patterns which are close to the class bound-
aries, and C'VC' focuses on generating slightly different versions of the training and
validation sets, to increase the diversity of the ensemble.

In order to test that both approaches provide different solutions with similar per-
formance we have compared the performance of 40-net ensembles previously trained
with CVCv8, Conserboost and a special classifier Any, described below, in the fol-
lowing table. In this table, “performance” is the percentage of correctly classified
patterns on the test set.

Table 8.3: Performance of CVCv8 and Conserboost

Database CVCv3 Conserboost Any Difference
aritm 76.0 £ 1.3 75.1£1.0 81.5+1 5.5%
bala 95.5+ 0.6 96.2 +£0.7 97.1+04 0.9%
band 749+1.1 75.8+ 1.5 79.6 £ 1.3 3.8%
bupa 73.3+1.2 73.4+1.1 76.6 £1.2 3.2%
cred 86.9 + 0.8 86.0 £ 0.7 89.6 + 0.6 2.7%
derma 97.6 £0.5 97.6 0.7 98.34+0.5 0.7%
ecoli 86.2+ 1.0 8§7.8+ 1.1 89 +£0.9 1.2%
flare 82.1+0.6 82.4+0.6 84.8+04 2.4%
glas 94.6 £0.9 97.0+£ 0.7 97.6 £0.6 0.6%
hear 84.4+14 83.9+0.9 86.6 + 1.2 2.2%
img 97.0+0.3 97.2+0.2 98 + 0.2 0.8%
ionos 91.1£0.9 91.9+0.8 94.9+0.6 3%
mok1 99.4 +0.6 100 £ 0 100 £ 0 0%
mok2 95.3+1.3 86.6 + 1.4 96.5+0.9 1.2%
pima 76.6 £ 1.1 76.2 £ 1.2 79.5 £ 1.1 2.9%
survi 73.9+1.2 73.3+1.5 75.9+14 2%
vote 96.1 +0.6 95.5 +0.8 97 + 0.6 0.9%
vowel 93.2+0.6 97.3+0.6 98.4+0.3 1.1%
wdbc 97.1+0.3 96.3 £ 0.5 97.7+0.5 0.6%
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In the previous table, the performance of ensembles of 40 networks generated with
CVCv3 and Conserboost (two of the best ensemble alternatives according to the
comparison performed in chapter [5]) is shown. Moreover, we have also included the
performance of a special classifier, Any, which denotes the percentage of patterns
correctly classified by, at least, one of those two ensembles (C'VCv3 and Conser-
boost). Furthermore, we have also included the difference in performance of Any
with respect to the maximal performance provided by CVCv3 and Conserboost.

In this case, ensembles of 40 networks, the results provided by Any are better than
the results provided by CVCv3 and Conserboost. Although both ensemble methods
have similar performance, they do not correctly classify the same patterns as can be
obviously seen in database aritm. In this case, the difference of Any with respect to
the other ensemble methods is higher than 5%.

As it has been mentioned before, both approaches are quite different. CVC' focuses
on using slightly different training and validation sets whereas Boosting focuses
on specializing the networks on patterns close to the boundaries. These sources of
diversity are also completely different so we consider that a new methodology based
on both approaches should be seriously considered in order to build ensembles of
neural networks efficiently. The methods based in the new methodology will inherit
the advantages provided by both approaches.

This new methodology is detailed in algorithm [8.3]

Algorithm 8.3 Cross-Validated Boosting {7, V', Npetworks }
Initialize Sampling Distribution:
Distl = 1/Npatterns V& € L
Generate L from the union of T and V'
Apply Cross-Validation to Learning set L to generate subsets
for net = 1 to Nyerworks dO
Create T from subsets of L
Create V" from subsets of L
Create T sampling patterns from L which also are in 77 using Dis
Network Training {7” , V"¢}
Calculate misclassified vector miss,e:
Calculate error ¢
Calculate other parameters if required
Reinitialize sampling distribution if required
Update sampling distribution Vz € L

Normalize Sampling Distribution:
ZNpatterns (D?:Stget-i-l) — 1

=1
end for

tnet

In the methodology we propose, Cross-Validated Boosting, the generation of the spe-
cific training and validation sets is divided into two steps. In the first one, specifics
sets are generated as in Cross-Validation, T and V™. Then, the training set
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used to train the network, 7", is generated by sampling patterns, according to the
sampling distribution of the particular boosting algorithm, from L which also are
in 7™, It is important to mention that L refers to the original learning set which
contains the patterns from the original training and validation sets. With this proce-
dure, described in algorithm the patterns which are not present in 7"¢ are also
not present in the training set used to train the network 7" and simultaneously it is
applied the boosting distribution to sample and overfit with hard to learn patterns.
Moreover, each network has a validation set which is not shared with the other
networks.

Figure 8.5 shows how the specific training set 1" is generated for a network net.
With this picture we want to give a visual representation of the two steps related to
the procedure applied to generate the specific training sets, 7".

Discard x and select a new pattern

no
‘ sample a pattern ‘

. T : -
Dist™————* original learning set ) X, T, eT"™?
? no ' - ‘ yes

select a new pattern T haS Npatterns ? Introduce xi in7T'

Yesl
Generate 7" and V™ ) M o S
by Cross-Validation Train net-th network with 7" and V' as validation

from learning set L
and update the
distribution Dis¢™ A

Figure 8.5: Generating 7" in Cross-Validated Boosting

Cross-Validation Boosting is not just a method, its a methodology since there are
several versions of Cross-Validation Committee and Boosting that can be combined
among them. For instance, we can mix C'VCv2 and Conserboost in a single ensemble
method and we can also mix C'VCv3 and Inverboost. However, C'VCv1 is not sug-
gested to be employed because C'VCv1 does not provide specific validation sets and
this source diversity is not used. We consider that this source of diversity is quite
important and it should be present in the new methodology. Furthermore, Boosting3
is limited to generate ensembles of 3 networks and in our experiments we also use
ensembles of 9, 20 and 40 networks so it will not be used.

The ensembles derived from this new methodology will be named as the ver-
sion of the Cross-Validation applied to generate the specific sets plus the Boost-
1ng vartant employed to update the sampling distribution. For instance, the new
Cross-Validated Boosting model based on CVCv2 and Adaboost will be named
CVCv2Adaboost whereas the new alternative based on C'VCv3 and Inverboost will
be named C'VCv3Inverboost.
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8.5 Experimental Setup

In this chapter two new ensemble methods, Averaged-Conservative Boosting and
Weighted-Conservative Boosting, are proposed. Moreover, a new methodology called
Cross-Validated Boosting is also described.

As in the previous ensemble comparisons, a similar experimental setup is applied to
test the performance of the new methods. Its main characteristics are:

+ Nineteen datasets from the UCI Repository.

+ Two new ensemble alternatives:

+ Averaged-Conservative Boosting.
+ Weighted-Conservative Boosting.

+ Eighteen new ensembles based on Cross-Validated Boosting combining:
+ Two versions of Cross-Validation, CVCv2 and CVCv3.
4+ Nine Boosting approaches.

One network architecture: MF network.

Four different ensemble sizes: 3, 9, 20 and 40 networks.

Optimized training parameters.

Two combiners applied:
4+ QOutput Combiners.

+ Specific Boosting Combiner.

+ Experiments repeated ten times with different partitions of the training,
validation and test sets to obtain:

4+ Mean value of performance.
4+ FError rate by standard error theory.
+ Three general measurements applied to the comparison:
4+ Mean Increase of Performance.
4+ Mean Percentage of Error Reduction.
4+ Student’s Paired t-test.

The description of the nineteen datasets used in the experiments can be found in
appendix[A] The optimized training parameters of the networks are in appendix [B.3]
whereas the specific parameters of the ensembles are in appendix [B.5] Futhermore,
the general measurements applied to compare the ensembles studied are the mean
IoP (equation [3.5]) and the PER (equation [3.6). Finally, the Student’s Paired t-test,

described in section [3.6.3.2] is also used.
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8.6 Results and discussion

The results of the ensembles proposed in this chapter are shown in this section.
Due to their size, the section has been split into three subsections. The first one
will show the discussion related to the results provided by ACB and WCB whereas
the second one will be focused on the Cross-Validated Boosting methodology with
classic boosting variants already known in the bibliography. Finally, we show the
results provided with Cross-Validated Boosting where the new proposed boosting
alternatives ACB and WCB are used as the boosting procedure.

8.6.1 Ensembles generated with ACB and WCB

In the first experiments performed in this chapter, Averaged-Conservative Boost-
ing, ACB, and Weighted-Conservative Boosting, WCDB, have been used to generate
ensembles of MF networks.

Table shows the mean ToP and the mean PER of the new ensembles applying
Output average, ave in the table, and the specific Boosting Combiner, bst in the
table, to fuse the output of the networks. Moreover, the results of Simple Ensemble
and some boosting alternatives are included to compare them with the new methods.

Table 8.4: Results of the new ensemble methods ACB

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
Adaboost 3.69 4.55 4.93 4.98 15.4 19.5 22.96 24.54
Aveboost 4.33 5.57 5.95 6.04 18.26 26.11 27.12 26.53

Conserboost 4.42 5.31 5.65 6.06 19.72 25.63 26.62 27.84
ACB - ave 4.59 5.53 5.89 6.04 21.39 27.37 28.18 28.46
ACB - bst 4.32 5.16 5.75 6.08 17.61 24.69 26.89 28.3
WCB - ave 4.93 5.43 6.01 6.13 22.26 2597 29.13 29.87
WCB - bst 4.68 5.49 5.89 6.18 21.69 26.11 27.97 29.54

Firstly, we can see that the results of the new ensembles depend on the combiner
applied. In general, Qutput average provides the best results. However, the specific
Boosting Combiner also provides similar results for the case of ensembles of 40
networks. For the cases of ensembles from 3 to 20 networks we should apply Output
average whereas both combiners can be applied to ensembles of 40 networks.

Secondly, the proposed methods, ACB and WCB, improve the results provided by
Awveboost and Conserboost, in general. In the case of ACB, it provides better results
than Aveboost and Conserboost for the ensemble of 3 networks. In the first networks
the sampling distribution is updated as in Conserboost so good results are obtained
for low sized ensembles. Then the updating equation becomes softer and softer and
the accuracy of the ensemble increases as new networks are added to the network
as in Aveboost. As we can see, according to the mean PER, both classic boosting
methods have been successfully mixed.
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Furthermore, WCB also provides better results than Conserboost. In this case, a
parameter which depends on the problem has been included in the equation to
update the sampling distribution. With this parameter we can control the strength
of the update so we can optimize this update for each problem. Moreover, we can
also avoid those cases in which the Adaboost performed better than Conserboost.
Adaboost is better than Conserboost in 17 of 76 cases (22%) but Adaboost is better
than WCB in only 13 cases (17%).

Moreover, the ensembles of 20 networks generated by WCB, where the mean IoP
and PER are 6.01% and 29.13% respectively, performs slightly better than the
ensembles generated in chapters 4 and 5], where the mean IoP and PER are around
6.1% and 28.7%. Furthermore, the best overall results are provided by ensembles of
40 networks trained with WCB and combined with Qutput average, where the mean
IoP and PER are close to 6.2% and 30% respectively.

To provide statistical information to the results, the t-test is applied to compare
the ensembles as has been previously done. In this case, the proposed methods are
combined by Output average and Boosting Combiner, whereas the original boosting
methods are combined by Boosting Combiner as in their references.

ACB and WCB are statistically compared to their original boosting methods in
table 8.5l ACB has been compared to Adaboost, Aveboost and Conserboost whereas
WCB has been compared to Adaboost and Conserboost. With this procedure, it can
be tested if the proposed methods perform better than the original versions.

Table 8.5: ACB and WCB compared to their original boosting methods
Methods measure 3-net 9-net 20-net 40-net
t-value 2.77 3.17 3.13 3.50
LACIBERE v el pees! 0.0061 0.0018 0.002 0.00057
t-value 2.21 2.22 2.70 3.58
o 0.028 0.028 0.0076 0.00043
t-value 0.66 1.27 1.51 —-0.13
a 0.51 0.21 0.13 0.90
t-value —0.38 —0.76 0.55 0.15
o 0.70 0.45 0.58 0.88
t-value 1.01 —-0.21 —-0.34 —-0.03

ACB-bst vs Adaboost

ACB-ave vs Conserboost

ACB-bst vs Conserboost

ACB-ave vs Aveboost

a 031 083 073 008
tvalue —0.01 —213 —1.11 023
SULIE=DET ve Avvelioost - 099 0035 027  0.82

t-value 3.49 2.79 3.22 3.63
« 0.00061 0.0058 0.0015 0.00036
t-value 2.89 2.88 3.00 3.70
« 0.0042 0.0045 0.0031 0.00028
t-value 1.89 0.53 1.67 0.40
WCB-ave vs Conserboost o 0.06 0.60 0.10 0.69

t-value 0.93 0.84 1.11 0.71
WCB-bst vs Conserboost 0.36 0.40 0.27 0.48

WCB-ave vs Adaboost

WCB-bst vs Adaboost
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First of all, we can see in the previous table that, in general, the ensembles com-
bined by Qutput average provide higher ¢t-values and lower « values than the same
ensembles combined with Boosting Combiner. For the case of ensembles of 40 net-
works, both combiners provide similar general results but the ensembles combined
with Boosting Combiner tend to perform slightly better according to the statistical
values. We think that Output average may be used when the new ensembles, ACB
and W(CB, are combined according to the statistical test and general measurements.
Boosting Combiner can also be used to combine ensembles of 40 networks.

Secondly, the improvements of ACB and WCB with respect to Adaboost are statis-
tically significant because « is quite lower than 0.05. Moreover, both new methods
slightly improve Conserboost but the results are not statistically significant because
a is greater than 0.05.

Thirdly, ACB provides better PER than Aveboost for any ensemble size but it also
provides worse IoP for the cases of ensembles of 9 and 20 networks. Considering the
best combiner, the statistical tests show that Awveboost is slightly better than ACB
for the cases of 9 and 20 networks in the ensemble but the differences between them
are not statistically significant because « is quite greater than 0.05. We consider that
both methods provide excellent results but Aveboost fits better in some datasets and
ACRB fits better on other datasets because their sources of diversity are different.

To conclude this part of the experiments, the new methods ACB and WCB provide
slightly better results than the classic boosting methods according to the PER and
the statistical tests. Improving an ensemble method requires some steps and the
new methods may be considered as an important part, or step, in the procedure of
designing better ensemble methods.

8.6.2 Results of Cross-Validated Boosting

In this subsection, we present the results of the new ensembles based on Cross-
Validated Boosting where the original boosting methods are used. These classic

variants are: Adaboost, two versions of Aveboost, Aggreboost, Conserboost, Inverboost
and ARCz4.

Table [8.6] shows the mean ToP and the mean PER of the classic ensembles and the
new proposals based on Cross-Validated Boosting. In these results, Output average,
denoted by “-a” at the end of the name of the method, and Boosting Combiner,
denoted by “-b”, are used to fuse the outputs of the networks generated by the
new ensembles, whereas Boosting Combiner is only used in the original boosting
variants.

Firstly, the results provided by the new ensembles improve in general the general
performance provided by the original boosting alternatives they were based on. In
this way, the successive improvements of Adaboost have been outperformed. But, in
the case of Adaboost and Inverboost the cross-validated variants are only better for
the case of 3 and 9 networks. For Inverboost, the new ensembles also improves it for
the case of 20 networks.
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Table 8.6: Results of the new Cross-Validated Boosting methods

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Adaboost 3.69 4.55 4.93 4.98 15.4 19.5 2296 24.54

CVCv2Adaboost-a 4.18 4.97 4.66 291 1828 22.61 20.92 9.79
CVCv2Adaboost-b  3.09 496 4.75 458 12.21 23.31 21.58 20.79
CVCv3Adaboost-a 4.18 479 449 442 16.64 2155 19.79 20.34
CVCv3Adaboost-b 3.53 4.61 4.66 489 11.71 20.39 21.52 22.52
Aveboost 433 557 595 6.04 18.26 26.11 27.12 26.53
CVCv2Aveboost-a 4.39 585 6.14 583 19.35 273 29.2 26.45
CVCv2Aveboost-b 381 583 6.25 5.8 15.56 27.57 29.96 26.95
CVCv3Aveboost-a 493 588 6.19 6.24 21.28 27.58 29.84 29.95
CVCv3Aveboost-b 426 561 6.02 6.15 16.32 26.44 2847 28.77
Aveboost2 4.02 459 488 5 17.67 2234 2299 23.32
CVCv2Aveboost2-a 4.35 523 534 539 1944 2442 26.24 26.42
CVCv2Aveboost2-b 3.41 499 534 532 14.81 23.14 24.55 25.71
CVCv3Aveboost2-a 4.46 5.16 535 549 20.32 2498 26.11 26.16
CVCv3Aveboost2-b 4.03 482 503 5.22 174 22.62 24.21 24.27
Aggreboost 3.56 479 553 583 14.82 20.26 25.27 26.56
CVCv2Aggreboost-a 3.96 5.12 5.69 566 16.07 23.85 2743 27.16
CVCv2Aggreboost-b 3.35 5.11 577 5.83 11.78 23.42 27.54 27.43
CVCv3Aggreboost-a 3.97 4.96 5.63 5.9 14.46 21.56 27.13 28.06
CVCv3Aggreboost-b 3.41 492 561 6.19 12.27 23.18 27.25 29.25
Conserboost 442  5.31 5.65 6.06 19.72 25.63 26.62 27.84
CVCv2Conserboost-a 4.67 5.89 6.06 5.79 2251 27.51 29.03 28.06
CVCv2Conserboost-b 3.79 575 6.16 593 16.88 26.45 29.52 27.83
CVCv3Conserboost-a 4.88 591 6.36 6.49 2237 28.38 30.02 30.67
CVCv3Conserboost-b 4.09 5.7 6.29 6.5 17.17 2745 30.18 31.29
Inverboost 289 095 —-123 —-2.76 9.2 312 -—-15 —24.18
CVCv2Inverboost-a 3.04 2.15 —-0.62 —4.49 9.76 2.7 —12.89 —39.55
CVCv2Inverboost-b 2.74 1.85 —1.44 —-591 852 0.83 —19.66 —52.92
CVCv3Inverboost-a 3.69 193 —-0.52 —-2.71 13.89 542 —7.47 —20.86
CVCv3Inverboost-b 3.29 1.64 —-1.39 —-3.65 12.38 3.64 —13.81 —30.37
ARCx4 4.06  3.78 4.8 5.24 18.01 17.69 22.56 24.37
CVCv2ARCx4-a 3.36 3.73 489 533 16.17 19.43 24.51 24.54
CVCv2ARCx4-b 2.99 439 535 6.07 12.23 19.96 25.66 29.07
CVCv3ARCx4-a 3.93 3.91 5.2 5.73 1833 19.52 26.56 28.32
CVCv3ARCx4-b 3.14 4.2 542  6.06 13.62 19.6 26.78 28.84

Secondly, the new proposed methods based on CVCw3 provide, in general, better
results than the ones proposed and based on C'VCv2. However, there are a several
cases for ensembles of 9 networks in which the ensembles based on C'VC?2 are better.

Thirdly, Output average has a good performance for any ensemble, in general,
whereas Boosting Combiner fits better on high sized ensembles. Furthermore, Output
average is the best combiner for the new alternatives based on Aveboost v2.
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The analysis of the general results is a complex task. There are seven boosting meth-
ods which have been mixed with two version of C'VC' and two ensemble combiners
have been used. For these reasons, the two following resume tables are introduced
which denote which is the best C'VC method and combiner for each case.

Table 8.7: Best combiner of the new Cross-Validated Boosting methods
Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
CVCv2Adaboost ave ave bst bst ave bst bst bst
CVCv3Adaboost ave ave bst bst ave ave bst bst
CVCv2Aveboost ave ave bst ave ave bst bst bst

CVCv3Aveboost ave ave ave ave ave ave ave ave
CVCv2Aveboost2 ave ave bst ave ave ave ave ave
CVCv3Aveboost2 ave ave ave ave ave ave ave ave

CVCv2Aggreboost ave ave bst bst ave ave bst bst
CVCv3Aggreboost awve ave ave bst ave bst bst bst

CVCv2Conserboost ave ave bst bst ave ave bst ave
CVCv3Conserboost ave ave ave bst ave ave bst bst
CVCv2Inverboost ave ave bst bst ave ave bst bst
CVCv3Inverboost ave ave bst bst ave ave bst bst

CVCv2ARCx4 ave bst bst bst ave bst bst bst
CVCv3ARCx4 ave bst bst bst ave bst bst bst

According to table the best combiner is Output average for ensembles of 3
and 9 networks, whereas Boosting Combiner fits better on ensembles of 20 and 40
networks. As table [8.8 shows, C'VCv3 fits better on ensembles of 3 and 40 network
and C'VCv2 fits slightly better on ensembles of 9 and 20 networks.

Table 8.8: Best CVC method of the new Cross-Validated Boosting methods

Mean [oP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Adaboost-ave v3 v2 v2 v3 v2 v2 v2 v3
Adaboost-bst v3 v2 v2 v3 v2 v2 v2 v3
Aveboost-ave v3 v3 v3 v8 v3 v3 v3 v3
Aveboost-bst v3 v2 v2 v3 v3 v2 v2 v3

Aveboost2-ave v8 v2 v3 v3 v3 v3 v2 v2
Aveboost2-bst v3 v2 v2 v2 v3 v2 v2 v2
Aggreboost-ave v8 v2 v2 v3 v2 v2 v2 v8
Aggreboost-bst v3 v2 v2 v8 v3 v2 v2 v3

Conserboost-ave v3 v3 v3 v3 v2 v3 v3 v3
Conserboost-bst v8 v2 v8 v8 v8 v3 v3 v3
Inverboost-ave v3 v2 v2 v2 v3 v3 v2 v2
Inverboost-bst v8 v2 v2 v2 v3 v3 v2 v2
ARCx4-ave v3 v3 v3 v3 v3 v3 v3 v3
ARCx4-bst v8 v2 v3 v2 v3 v2 v3 v2
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The t-test is also applied to all the ensembles in order to statistically compare
them. Firstly, the new ensembles based on Cross-Validated Boosting are compared
to Adaptive Boosting (tables and . Then, each new alternative based on
Cross-Validated Boosting is compared to its corresponding original boosting version

(tables and [8.12]).

Table [8.9 shows the statistical results when Adaboost is compared to the new Cross-
Validated Boosting alternatives based on CVCv2. Boosting Combiner is used to
combine the ensembles in Adaboost, whereas Output average (ave in the table) and
Boosting Combiner (bst in the table) are used to combine the new ensembles.

Table 8.9: Cross-Validated Boosting vs. Adaboost (I)

Methods measure 3-net 9-net 20-net 40-net

t-value —-1.81 -1.62 -0.21 1.06

Adaboost vs CVCv2Adaboost-ave o 0071 011 0.84 0.29
t-value 048 —-1.66 —-0.39 —1.25
o 0.64 0.1 0.69 0.21
t-value —-2.25 -3.62 -3.51 -3.13
« 0.025 0.0004 0.0006 0.002
t-value —-1.08 —-3.65 —-3.85 —3.1

Adaboost vs CVCv2Adaboost-bst

Adaboost vs CVCv2Aveboost-ave

Adaboost vs CVCv2Aveboost-bst

« 0.28 0.0003 0.0002 0.0023
t-value —-2.07 -—-2.32 -—-1.64 -241
Adaboost vs CVCv2Aveboost2-ave o 004  0.021 0.1 0.017

t-value —-0.19 —-1.78 —-1.62 —-2.3
« 0.85 0.077 0.11 0.023
t-value —-140 -2.09 —-2.36 —2.82

Adaboost vs CVCv2Aveboost2-bst

Adaboost vs CVCv2Aggreboost-ave

Q@ 0.16 0.038 0.019 0.0052
t-value —0.06 —1.98 —-2.6 -—3.15
Adaboost vs CVCv2Aggreboost-bst o 0.95 005 001 0.0019

t-value —-3.01 -3.82 —-3.26 -—3.02
« 0.0029 0.0002 0.0013 0.0029

t-value —-1.02 -3.53 —-3.51 —-3.3
« 0.31 0.0005 0.0006 0.0012

t-value 0.56 3.81 7.67 7.59

Adaboost vs CVCv2Conserboost-ave

Adaboost vs CVCv2Conserboost-bst

Adaboost vs CVCv2Inverboost-ave

« 0.58 0.0002 =~0 ~0
Adaboost vs CVCv2Inverboost-bst elme 116 ol 20 6
« 0.25 ~0 ~0 ~0

t-value —-0.08 0.81 —-0.64 —-2.29

Adaboost vs CVCv2ARCx4-ave o 0.94 0.42 052  0.023

t-value 1.15 0.08 3.27 —1.49

Adaboost vs CVCv2ARCx4-bst o 0.25 094 00013 014

According to the previous table, the new cross-validated ensembles based on Ave-
boost, Aveboost v2, Aggreboost and Conserboost highly improve the original Adaboost
because the t-value is negative and high. Moreover, this improvement is statistically
significant because the value of « is quite lower than 0.05, except for the case of three
networks in the ensemble. The differences of the new methods based on ARCx/ and
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Adaboost with respect to the original Adaboost are not, in general, statistically sig-
nificant. Furthermore, Adaboost is better than the new methods based on Inverboost
and their differences are statistically significant, but this is also the case with the
original or classic Inverboost.

Table[8.10[shows the statistical results when Adaboost is compared to the new Cross-
Validated Boosting models based on C'VCv3 and combiners Output average “-ave”
and Boosting Combiner “-bst”. As in the previous table, the original boosting vari-
ants are combined with Boosting Combiner.

Table 8.10: Cross-Validated Boosting vs. Adaboost (11)

Methods measure 3-net 9-net 20-net 40-net

t-value —-1.78 —-1.32 0.17 —-0.97

Adaboost vs CVCv3Adaboost-ave o 0.03 0.19 0.86 0.33
t-value —-0.42 —-091 -022 -1.74

« 0.67 0.36 0.83 0.08
t-value -3.53 —-3.81 —-3.65 —3.69
« 0.0005 0.0002 0.0003 0.0003
t-value —1.89 —-3.18 —3.27 —3.57
« 0.06 0.0017 0.0013 0.0005
t-value -2.43 -2.10 -1.61 -2.52
« 0.016 0.037 0.11 0.013
t-value —-1.5 —-1.33 —-0.98 -—-2.12
« 0.14 0.19 0.33 0.035
t-value —1.42 —-1.72 —-2.42 -—-3.22
« 0.16  0.087 0.016 0.002
t-value —0.2 —-1.61 —2.46 —3.66
« 0.84 0.11  0.015 0.00033
t-value —-3.38 —-3.76 —-3.94 —4.11

Adaboost vs CVCv3Conserboost-ave o 0.0009 0.0002 0.0001 =~ 0
t-value —-1.69 —-3.36 —3.69 —4.14

« 0.093 0.001 0.0003 =~0

t-value —0.73 3.86 7.35 6.42

Adaboost vs CVCv3Adaboost-bst

Adaboost vs CVCv3Aveboost-ave

Adaboost vs CVCv3Aveboost-bst

Adaboost vs CVCv3Aveboost2-ave
Adaboost vs CVCv3Aveboost2-bst
Adaboost vs CVCv3Aggreboost-ave

Adaboost vs CVCv3Aggreboost-bst

Adaboost vs CVCv3Conserboost-bst

Adaboost vs CVCv3Inverboost-ave

o 0.47 0.0002 =0 ~0
Adaboost vs CVCv3Inverboost-bst moelze O ol D 029
« 0.96 ~0 ~0 ~0

t-value —-1.21 054 -1.29 -2.90

Adaboost vs CVCv3ARCx4-ave o 023 0.59 020 0.0041

t-value 0.66 0.57 3.71 —1.43

Adaboost vs CVCv3ARCx4-bst o 051 057 0.0003 016

As table [8.10] shows, the new ensembles based on the mixture of C'VCv3 and Ave-
boost, Aveboost v2, Aggreboost and Conserboost also highly improve the original
Adaboost. Furthermore, t-values shown in the table denote higher difference than
the t-values shown in table [8.9] specially for the case of ensembles of 3 and 40 net-
works. Moreover, it also occurs the same with the o values which tend to be lower
in this table. This means that the results of the new alternatives based on CVCv3
tend to be better than the results of the new ensembles based on CVCv2.
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For instance, C'VCv3Conserboost provides better results than C'VCv2Conserboost
for ensembles of 40 networks. The t-value is —3.02 and « is 0.0029 in
CVCv2Conserboost with Output average and the t-value is —4.11 and « is almost 0%
in CVCv3Conserboost with Output average. In the case of CVCv3Conserboost the
t-value is higher, which means that it has better performance and lower dispersion
ratio than C'VCv2Conserboost when both are compared to Adaboost. Moreover, the
value of « is quite lower, almost 0%, in C'VCv3Conserboost which denotes that the
difference of the results is higher for C'VCv3Conserboost than for CVCv2Conserboost
when both are compared to Adaboost.

Furthermore, table shows the statistical results when each original boosting
variant is compared to its new Cross-Validated Boosting version based on C'VCv2.

As in the previous tables and [8.10), Boosting Combiner is used to fuse the

networks in the original boosting variants.

Table 8.11: Cross-Validated Boosting vs. Original methods (I)
Methods measure 3-net 9-net 20-net 40-net
t-value —1.81 —-1.62 —-0.21 1.06
Adaboost vs CVCv2Adaboost-ave o 0071 0.11 0.84 0.99
t-value 048 —-1.66 —0.39 -—-1.25
« 0.64 0.1 0.69 0.21
t-value —-0.04 -1.21 -0.99 1.23
« 0.97 0.23 0.33 0.22
t-value 2.00 —-1.17 —-1.63 1.38
« 0.047 0.25 0.1 0.17
t-value —1.13 —-3.15 —2.85 —247
« 0.26 0.0019 0.0049 0.014
t-value 237 —-183 —-2.36 -—2.13
« 0.019 0.069 0.019 0.034
t-value —1.42 —-1.20 -—-0.58 0.81
o 0.16 0.23 0.56 0.42
t-value 0.53 —-1.09 —-0.97 0.00

Adaboost vs CVCv2Adaboost-bst
Aveboost vs CVCv2Aveboost-ave
Aveboost vs CVCv2Aveboost-bst
Aveboost2 vs CVCv2Aveboost2-ave
Aveboost2 vs CVCv2Aveboost2-bst
Aggreboost vs CVCv2Aggreboost-ave

Aggreboost vs CVCv2Aggreboost-bst

« 0.60 0.28 0.33 1.00
t-value —-0.92 -2.69 -—-1.77 1.28
Conserboost vs CVCv2Conserboost-ave o 036 0.0078 0.0% 0.20

t-value 226 —2.04 —-2.27 0.67
Conserboost vs CVCv2Conserboost-bst o 0025 0.043 0024 050
t-value —-0.53 —-3.64 —-1.79 3.72
« 0.60 0.0004 0.076 0.0003
t-value 0.55 —2.83 0.58 5.25

Inverboost vs CVCv2Inverboost-ave

Inverboost vs CVCv2Inverboost-bst

« 0.58 0.005 0.56 ~0
t-value 1.00 1.66 —6.58 —3.56
ARCx4 vs CVCv2ARCx4-ave o 0.32 01 ~0 00005

t-value 3.16 1.13 —-0.41 -1.66

ARCx4 vs CVCv2ARCx4-bst o 0.0018 0.26 0.68 0.1

According to table [8.11) Aweboost2 is improved by its new cross-validated alterna-
tives based on C'VCv2 and the differences are statistically significant. Conserboost
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with both combiners and Inverboost with Qutput average are improved for the cases
of ensembles of 9 and 20 networks and the differences are also statistically significant.
Furthermore, CVCv2ARCx4 with Output average improves the original ARCzj and
the differences are significant only for the cases of ensembles of 20 and 40 networks.

As commented before, the alternative of C'VCv2 is best suited for ensembles of 9
and 20 networks in comparison with C'VCwv3. In this sense, for the case of 9 and 20
networks in table 25 of a total of 28 t-values are negative which means that
the proposed cross-validated ensembles outperform the original ones for the case of
medium size ensembles (9 and 20 networks in the ensemble). In ensembles of 3 and
40 networks, the original variant is better than a new alternative in 17 of 28 cases.

Finally, table [8.12 shows the statistical results when each original boosting method
is compared to its new Cross-Validated Boosting version based on CVCv3. As in
table [8.11] the original boosting ensembles are fused by Boosting Combiner and the
two combiners are included for cross-validated boosting.

Table 8.12: Cross-Validated Boosting vs. Original methods (II)

Methods measure 3-net 9-net 20-net 40-net

t-value —-1.78 —-1.32 0.17 —-0.97

Adaboost vs CVCv3Adaboost-ave o 0076  0.19 0.86 0.33
t-value —-0.42 —-091 -0.22 -1.74
« 0.67 0.36 0.83 0.084
t-value -2.31 -154 -1.27 -1.15
« 0.022 0.13 0.21 0.25
t-value 024 —-0.18 —-0.36 —0.62
« 0.81 0.85 0.72 0.53
t-value —-1.58 —-2.64 -2.39 -—-2.97
« 0.12 0.0089 0.018 0.0034
t-value -0.06 —-1.04 -0.82 -1.33
« 0.95 0.30 0.41 0.19
t-value —-1.49 —-0.60 —-0.37 —-0.30
«@ 0.14 0.55 0.71 0.76
t-value 0.29 —-0.46 —-0.35 —2.00
« 0.77 0.65 0.73 0.05
t-value —-1.82 —-240 -290 -2.14
Conserboost vs CVCv3Conserboost-ave o 0071 0017 0.0042 0.034

t-value 129 —-1.64 -—-2.73 —-2.46
Conserboost vs CVCv3Conserboost-bst o 0.20 01 0.0068 0015
t-value —2.63 —-3.19 —2.25 -—-0.12
«@ 0.0092 0.0017 0.025 0.90
t-value —1.39 —-2.22 0.46 2.47
« 0.17 0.028 0.64 0.014
t-value —-0.68 1.66 —-7.31 —5.89
« 0.50 0.1 ~ 0 ~0
t-value 2.44 2.00 0.00 -1.63
« 0.016 0.046 1.00 0.1

Adaboost vs CVCv3Adaboost-bst
Aveboost vs CVCv3Aveboost-ave
Aveboost vs CVCv3Aveboost-bst
Aveboost2 vs CVCv3Aveboost2-ave
Aveboost2 vs CVCv3Aveboost2-bst
Aggreboost vs CVCv3Aggreboost-ave

Aggreboost vs CVCv3Aggreboost-bst

Inverboost vs CVCv3Inverboost-ave
Inverboost vs CVCv3Inverboost-bst
ARCx4 vs CVCv3ARCx4-ave

ARCx4 vs CVCv3ARCx4-bst
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As shown in table the proposed ensembles based on C'VCv3 improved the orig-
inal variants and provided statistically significant differences in nearly 50% of the
cases. Moreover, Aveboost2, Conserboost and surprinsingly Inverboost are statisti-
cally improved by, at least, one of the two combiners employed.

Comparing the t-values for the case of OQutput average as combiner, 26 of a total of 28
values are negative which means that the cross-validated version seems to perform
better. Furthermore, in 12 of the 28 cases the result is even statistically significant.

As a resume, table [8.13|shows the statistical comparison among each original boost-
ing variant and its cross-validated version. This table is a resume of the two previous
ones and it can be used to perform an easier comparison. In the table, a negative
t-value means that the proposed method is statistically better than its original
boosting alternative whereas a positive value means that it is statistically worse.
Analogously, — and + denote the tendency of the t-values when the differences are
not statistically significant. Finally, symbol ‘=’ denotes that the proposed method
and its original have almost the same performance.

Table 8.13: Resume of the Statistical comparison

Output Average Boosting Combiner
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
CVCv2Adaboost — — = F & = = =
CVCv2Aveboost — — — + +2 — — -+
CVCv2Aveboost2 — =315 —2.85 =247 4237 — —2.36 —2.13
CVCv2Aggreboost — — — + + — — =
CVCv2Conserboost — —2.69 — + +2.26 —2.04 —2.27 +
CVCv2Inverboost — —-364 — 4372 + —283 + +5.25
CVCv2ARCx4 + + —6.58 —-3.56 +3.16 + — =
CVCv3Adaboost - — + = = = = =
CVCv3Aveboost —2.31 — - - + — — -
CVCv3Aveboost2 — =264 —239 —297 — — — —
CVCv3Aggreboost — — — — + — — -2
CVCv3Conserboost — —24 —-29 —-214 + — =273 —2.46
CVCv3Inverboost —2.63 —3.19 —2.25 — - =222 + 4247

CVCv3ARCx4 — + =731 =589 4244 +2 = —

As the previous resume table shows, the best alternative to generate the new boost-
ing methods is based on CVCv3 and Output average. These new variants provide
statistically better results in nearly 50% of the cases and in the other cases the
tendency is also to be better except in two cases. In the case of the new ensembles
based on CVCv3 and Boosting Combiner we can see that there are four cases in
which they are statistically better than their original. However, there are some cases
in which the original method is statistically better than the new proposed one. In
the other new alternatives based on CVCv2, the behavior is similar because there
are only a few statistically improvements and there are some cases in which the new
proposed models are statistically worse than their original boosting variant.
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Taking into account all the results shown in this subsection, we consider that the
new cross-validated boosting ensembles improve the original boosting alternatives.
In order to obtain the best ensemble, the Cross-Validated Boosting models should be
based, in general, on C'VCv3 and combined with Output average. In the procedure of
designing better ensembles, the new proposed methodology may be also considered
as an important step.

8.6.3 ACB and WC(CB with Cross-Validated Boosting

In the third experiments performed in this chapter, ACB and WCB have been
used to generate ensembles of MF networks with the Cross-Validated Boosting
methodology. The new ensembles are CVCv2ACB, CVCv3ACB, CVCv2WCB and
CVCv3WCB. With this procedure, we mix three important and different alterna-
tives, proposed by us, which have been successfully applied to design new ensembles
as shown in the previous experiments of this chapter.

In this case, the results of the four new ensembles are shown in table In this
table, it is included their mean IToP and PFER. As in the previous experiments,
Output average, ave, and the specific Boosting Combiner, bst, are used to fuse the
outputs of the networks. Moreover, in table [8.15 we show which combiner fits better
for each new ensemble and size.

Table 8.14: General performance of ACB and WCB with Cross-Validated Boosting

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
ACB-ave 4.59 5.53 5.89 6.04 21.39 27.37 28.18 28.46

CVCv2ACB-ave 4.21 5.97  6.15 5.97 2042 2986 29.83 27.95
CVCv3ACB-ave  4.68 5.91 6.3 6.58  20.65 28.59 29.82 31.42

ACB-bst 4.32 5.16 5.75 6.08 17.61 24.69 26.89 28.3
CVCv2ACB-bst 4.01 5.78 6.19  6.16 18.2 2859  29.8  28.57
CVCv3ACB-bst 4.3 548  6.06 6.44 1881 25.92 29.44 31.33

WCB-ave 4.93 5.43 6.01 6.13 2226 25.97 29.13 29.87
CVCv2WCB-ave 3.85 5.28  6.12 5.86  16.47 26.52 28.46 27.17
CVCv3WCB-ave 4.57 5.79 547  6.63 19.85 27.98 285 32.49

WCB-bst 4.68 5.49 5.89  6.18 21.69 26.11 27.97 29.54
CVCv2WCB-bst  3.49 5.32 6.18 6.12 14.02 26.81 30.01 29.12
CVCv3WCB-bst  4.02 5.71 5.83  6.27  15.75 27.27 29.66 30.44

Table 8.15: Better combiner for the new methods

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
CVCv2ACB ave ave bst bst ave ave ave bst
CVCv3ACB ave ave ave ave ave ave ave ave
CVCv2WCB ave bst bst bst ave bst bst bst
CVCv3WCB ave ave bst ave ave ave bst ave
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Some important conclusions can be derived from the results shown in the two previ-
ous tables. Firstly, the new ensembles based on the combination of Cross-Validated
boosting and ACB provide better results than ACB alone. However, there are a few
cases in which C'VCv2ACB is not better because of the inherited problems of C'VCv2
in small (3 networks) and high (40 networks) ensembles. Although Output aver-
age and Boosting Combiner work well, in general, on these new methods, it seems
that OQutput average is the best combiner for C'VCv3 in both cases, CVCv3ACB
and CVCv3WCB. In the case of CVCv2 the result varies, the best combiner for
CVCv2ACB is Output average except for the case where the number of networks is
high (40 networks). And the best combiner for CVCv2WCB is the specific Boosting

Combiner except for a low number of networks in the ensemble (3 networks).

Secondly, CVCv2ACB and CVCv3ACB have a good performance for any ensemble
size. The ensembles of 40 networks trained with C'VCv3ACB and combined with
Output average provide a mean IoP of 6.58% and a mean PER of 31.42%. Fur-
thermore, the ensembles of 9 networks trained with CVCv2ACB and combined with
Output average provide excelent results, the mean IToP is 5.97% and the mean PER
is 29.86%, and its performance is similar to the best classic ensembles according to
the results shown in chapters [4] and [5] where the mean IoP and PER are, respec-
tively, 6.16% and 28.68% on ensembles of 40 networks trained with CVCwvS3.

Thirdly, in the case of the cross-validated versions of WCB, the original boosting
variant outperform the cross-validated version for a low number of networks in the
ensemble (3 networks). For medium size ensembles (9 and 20 networks in the ensem-
ble), the best alternative is CVCv2WCB with Boosting Combiner and, finally, for a
high number of networks in the ensemble (40 networks) CVCv3WCB with Output
average is the best alternative.

Fourthly, the best results are provided by the ensembles of 40 networks trained with
CVCv3WCB and combined with OQutput average where the mean IoP is 6.63% and
the mean PER is 32.49%. In this case, these values are the best overall results we
have obtained in this thesis.

Finally, we have applied the t-test to compare the ensembles as it has been done in
the previous sections to see if the results are statistically significant. In this case,
ACB, WCB and the proposed ensembles are combined with Qutput average and
Boosting Combiner, whereas the original boosting variants are combined only with
Boosting Combiner as described in the original references.

The Cross-Validated Boosting versions of ACB and WCB are statistically compared
to their original boosting variants in tables [8.16] and [8.17. Moreover, they have
also been compared to Adaboost, Aveboost and Conserboost. With this procedure, it
can be tested if the proposed methods perform better than Adaboost, which is the
“first” boosting method or perform better than Aveboost and Conserboost which are
the best boosting alternatives according to the ensemble comparison performed in
previous chapters.
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In table we can see the results of the statistical tests related to the combination
of Cross-Validation Boosting and ACB. First of all, better results are provided when
Output average is applied to combine the networks instead of Boosting Combiner
because the t-values related to Output average are lower. There are a few cases,
specially in ensembles of 20 and 40 networks, in which Boosting Combiner is also
a good combiner for CVCv2ACB. The conclusions derived from this table will be
based on the use of the best combiner.

Table 8.16: Statistical test-ACB and Cross-Validated Boosting

Methods measure 3-net 9-net 20-net 40-net
Adaboost va CVEv2ACB-ave T 0 g p00oia 0000
Adaboost va CVEV2ACE-bst TN 5T G nins 00 000w
Adaboost vs CVCv3ACB-ave t—v:;lue 6%? 07)36(?165 0_0%5?7 0.80401
i e v
o Ve G
Aveboost vs CVCv2ACB-bst t-v:;lue (1);2 _()1"??4 _011?;8 83;
Aveboost vs CVCv3ACB-ave t—vz;lue _012117 _010%5 6%225 6%3};
Aveboost vs CVCv3ACB-bst t“’zl“e 00-.193 8:2? —095577 0._()?()).126
Conserboost vs CVCv2ACB-ave t-vzlue 00.'482 0._0?(’)‘212 E%f’s ggg
Conserboost vs CVCv2ACB-bst t-v:;lue (1)?1 6%3?97 8%1517 _005585
Conserboost vs CVCv3ACB-ave t—vz;lue _003%1 B%ES 0_30211 O_(z)))ng)
Conserboost vs CVCv3ACB-bst t-vzlue 09652 _8.'484 _010875 _020%1
ACB-ave vs CVCv2ACB-ave t-vzlue é;lé _020%9 _011%52 09649
pem s oveaenie W
ACB-ave vs CVCv3ACB-ave t—vz;lue _007?;))4 _0103)2 E%f’g 0—0%(%9
ACB-bst vs CVCv3ACB-bst t'Vzl“e 06.193 —O}i‘él —0324 —0%25

Secondly, we can see that the new ensembles, CVCv2ACB and CVCv3ACB, provide
better statistical results (¢-value is negative), in general, than the original alter-
natives except for the case of 3 networks in the ensemble. In this specific case,
ensembles of 3 networks, the results are not statistically significant because « is,
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in general, higher than 0.05. Moreover, in the case of 3 networks in the ensem-
ble, CVCv3ACB is only slightly better than the original boosting alternatives but
CVCv2ACB is slightly worse than Aveboost, Conserboost and ACB according to the
positive t-values.

Thirdly, CVCv2ACB and CVCv3ACB are better than Adaboost and their differences
are statistically significant in all the cases except for low sized ensembles (3 networks)
generated by CVCv2ACB where « is higher than 0.05.

Fourthly, CVCv3ACB performs better than Awveboost according to the t-value. For
this method the differences are statistically significant for ensembles of 9, 20 and
40 networks. CVCv2ACB performs better than Awveboost and the differences are
statistically significant only for the case of 9 networks in the ensemble. In the other
three cases (ensembles of 3, 20 and 40 networks) « is higher than 0.05 but, only
for low sized ensembles (3 networks), the t-value denotes that Aveboost is slightly
better.

In addition, the new ensembles, CVCv2ACB and CVCv3ACB, are better than Con-
serboost, in general, but the differences are statistically significant only for the cases
of ensembles of 9 and 20 networks. Moreover, it also occurs for CVCv3ACB and en-
sembles of 40 networks. In the other cases, o does not denote a statistical difference
but the new ensembles tend to be slightly better than Conserboost except for the
ensembles of 3 networks generated by CVCv2ACB.

Furthermore, the statistical results shows that CVCv3ACB improves the original
ACB but the differences are statistically significant only for medium and high sized
ensembles (20 and 40 networks in the ensemble). In the other two cases the dif-
ferences are not statistically significant because « is higher than 0.05. Moreover,
CVCv2ACB is better than ACB and their differences are statistically significant
only for the case of 9 networks in the ensemble. In the other cases, the original ACB
is slightly better for low sized ensembles (ensembles of 3 networks) but it is slightly
worse for medium-high sized ensembles (20 and 40 networks).

Finally, CVCv3ACB should be considered better alternative, in general, than
CVCv2ACB because it reports better general and statistical results. Considering
the best combiner, CVCv3ACB is statistically better than the original boosting al-
ternatives in 12 of 16 cases but CVCv2ACB is only statistically better in 8 cases.
Moreover, CVCv3ACB is never worse than any original boosting alternative consid-
ering the best combiner, whereas C'VCv2ACB performs slightly worse than Aveboost,
Conserboost and ACB for low sized ensembles (3 networks). Furthermore, when the
proposed ensembles are statistically compared to the four original alternatives, the
best t-value is given in 12 of 16 cases by CVCv3ACB. The other 4 cases, in which
CVCv2ACB provides better t-values, always correspond to 9 networks in the en-
semble.

In table B.I7 the results of the statistical tests of the new methods based on
WCB are shown. Firstly, it seems that, in general, Qutput average fits better in
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CVCv3WCB and Boosting Combiner is better choice for CVCv2WCB according to
the resume table and the statistical results. Furthermore, Qutput average also pro-
vides good results for low sized ensembles (3 networks) generated by CVCv2WCB.
In this case, the following analysis will be also based on the best combiner.

Table 8.17: Statistical test- WCB and Cross- Validated Boosting

Methods measure 3-net 9-net 20-net 40-net
Adaboost vs CVCv2WCB-ave t—vzlue _01222 B%S’f 0_0%(?5?6 0‘5’021%
T Tl
Adaboost vs CVCv3WCB-ave t-vzlue _020?7 O_OZ()’)(?ZS _010;4 0_0?())(?128
Adaboost vs CVEVSWORB-bst TN o o0 oo
Aveboost vs CVCv2WCB-ave t—vz;lue éi’é (l)éz _()Oﬁ?’ 82;
Aveboost vs CVCv2WCB-bst t-vzlue 02"023 822 6125 _((])'39
Aveboost vs CYVCv3WCB-ave t-vzlue 6(3128 61271 01.'154 *0112117
Aveboost vs CVCv3WCB-bst t—vzlue (1)38 6%? 06.563 _01224
Conserboost vs CVCv2WCB-ave t-vz;lue 10'.615 8;; 6%2; 832
Conserboost vs CVCv2WCB-bst t-vzlue (2)(6)§ _009(;4 6%135 _007351
Conserboost vs CVCv3WCB-ave t—vzlue 6%; 6%2272 O()'i)? —011?;)1
Conserboost vs CVCv3WCB-bst t—vzlue (1):132 _010784 _00417 _01‘-?(33
WCB-ave vs CVCv2WCB-ave t-vzlue 02.'09083 822 _00645139 16.229

t-value  3.27 0.62 —1.41 0.26
o 0.0013  0.53 0.16 0.8
t-value  1.27 —1.57 1.64 —1.04

WCB-bst vs CVCv2WCB-bst

WCB-ave vs CVCv3WCB-ave

« 0.21 0.12 0.1 0.3
t-value 2.35 —0.79 0.23 —0.49
WCB-bst vs CVCv3WCB-bst o 0.02 0.43 0.82 0.62

Secondly, Adaboost performs worse than CVCv2WCB and CVCv38WCB and the dif-
ferences are statistically significant in all the cases except for the case of CVCv2WCB
and 3 networks in the ensemble because « is quite higher than 0.05.

Thirdly, the differences among the new ensembles and the other boosting alterna-
tives (Aveboost, Conserboost and WCB) are not statistically significant because « is
greater than 0.05, in general. There are two cases, ensembles of 9 networks generated

by CVCv3WCB and ensembles of 20 networks generated by CVCv2WCB, in which
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Conserboost performs worse than the proposed methods and the differences are sta-
tistically significant. Moreover, there is a special case, 3 networks in the ensemble, in
which CVCv2WCB performs statistically worse than WCB considering the “best”
combiner because the t-value is positive and « is lower than 0.05.

Finally, according to the t-values, CVCv3WCB performs better than CVCv2WCB
except for the medium sized ensembles (20 networks) because the t-values provided
by CVCv3WCB are lower. i.e, Aveboost vs CVCv2WCB-ave provides a t-value of
0.94 for 40 networks but this value is —1.47 when the same original ensemble (Awve-
boost of 40 networks) is statistically compared to CVCv3WCB-ave. In this example,
we can see how the t-value of CVCv3WCB-ave is lower than the one provided by
CVCv2WCB-ave when they are compared to the same original ensemble.

We can conclude that we have successfully combined ACB and WCB with Cross-
Validation. On the one hand, C'VCv3WCB provides the best overall results according
to the general measurements. On the other hand, CVCv3ACB statistically improves

in same cases the best boosting methods such as Adaboost, Aveboost, Conserboost
and ACB.

8.7 Conclusions

Several new ensembles based on Adaptive Boosting have been proposed in this
chapter. First, Averaged-Conservative Boosting and Weighted-Conservative Boost-
ing have been analyzed. Second, the Cross-Validated Boosting methodology was
successfully introduced.

As it is shown during this chapter, ACB and WCB slightly improve the boost-
ing variants they were based on, despite the results are not statistically significant.
ACB is a bridge method between Aveboost and Conserboost. ACB is interesting be-
cause it successfully mixes two approaches, Aveboost and Conserboost, which differ
on generating the different training sets. WCB provides better general results than
any ensemble alternative described in chapter [5] This new ensemble is also inter-
esting because the equation used to update the sampling distribution can adapt its
strength depending on the problem because the value of the new parameter added
its “optimized” to the problem.

Though these two new boosting alternatives can be considered only slight improve-
ments on boosting methods, they provide good results which may be probably im-
proved by refining them.

Secondly, a completely new ensemble methodology, Cross-Validated Boosting, has
been successfully proposed. With this new methodology we can propose several new
ensembles since it has been applied to:

+ 7 classic boosting variants.
4+ 2 versions based on Cross-Validation Committee.

4+ 2 ensemble combiners.
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Furthermore, it is a new methodology, it will be probably possible to employ it with
any CVC' version or Boosting method proposed in the future.

In general, the new ensembles based on Cross-Validated Boosting improve Adaptive
Boosting and the original boosting variant they were based on, specially when the
new ensemble models are based on C'VCv3 and the combiner applied is Output
average. Boosting combiner also provides good results when it is applied to ensembles
of 40 networks previously trained with the proposed Cross-Validated Boosting based
on CVCvS.

Thirdly, the new alternatives ACB and WCB have been also used to generate
Cross-Validated Boosting variants. Four new ensembles are introduced: C'VCv2ACB,
CVCv3ACB, CVCv2WCB and CVCv3WCB. As we pointed out before, Cross-
Validated Boosting is a new methodology and can be applied to new Boosting meth-
ods such as ACB and WCB. On the one hand, ACB and WCB provide excellent re-
sults. On the other hand, the classic boosting variants have been improved when they
have been mixed with C'VC methods. Among the four new variants, CVCv3ACB
and CVCv3WCB should be seriously considered. Furthermore, the combiner Qut-
put average is, in general, the most appropriate way to combine the networks in
these two new ensembles. C'VCv3ACB statistically improves the results provided by
Adaboost, Conserboost, Aveboost and ACB for the case of ensembles of 20 and 40
networks. It is the first boosting alternative that statistically improves these four
classic ensembles. CVCv3WCB provides the best overall results of this thesis and its
best mean IoP, in ensembles of 40 networks, is higher than 6.5%. We consider that
both new methods, CVCv3ACB and CVCv3WCB, are quite interesting according
to all the measurements and tests applied.

Finally, the best overall ensemble performance is provided by 40-net ensembles
trained by CVCv3WCB and combined by Output average. The maximum value of
the mean loP is 6.63% and the mean PER is 32.49%. The results of the original en-
sembles, CVCv3 and WCB, were close to 6.15% (IoP) and lower than 30% (PER)
so CVCv38WCB provides an extra increase of mean loP close to 0.5% and mean
PER higher than 2.5% with respect to the original ensembles. Moreover, ensem-
bles of 40 networks trained with CVCv3ACB and CVCv3Conserboost also provide
excellent results.

To conclude this chapter it is important to remark that good results have been
obtained with the proposed ensemble models. We consider that the new methods
based on Cross-Validated Boosting and the boosting variants ACB and WCB are
the best overall ensemble alternatives. First, CVCv3ACB has improved the classic
boosting variants and ACB. Furthermore, the differences with respect to them are
statistically significant in some cases. Second, CVCv3WCRB is slightly better than the
best classic boosting alternatives but it provides the best overall results of this thesis
for the case of 40 networks in the ensemble. Both, CVCv3ACB and CVCv3WCB,
are based in the new methodology, Cross-Validation Boosting, and in new boosting
methods, ACB or WCB. All of them have been proposed in this thesis. For this
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reason, it is also important to remark that any slight improvement to an ensemble
should be seriously considered. A sequence of improvements is the way to obtain
the best ensembles because an original ensemble proposal is slightly refined step by
step. In the case of CVCv3WCB, the final ensemble is a high refined version of the
original ensembles C'VCv1 and Adaboost.

The results related to ACB, WCB and Cross-Validated Boosting have been pub-
lished in references [MFBI1,MFBI2,MFBI3|. Their description can be found in the
conclusions chapter.
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CHAPTER 9. STACKED GENERALIZATION

9.1 Introduction

In the previous chapters the research has been focused on analyzing and improving
Multiple Classifier Systems based on the Ensemble model. However, there are some
other important approaches to generate Multi-net systems.

Among the approaches to build a classification system, Stacked Generalization is a
well-known model. Stacked Generalization is an architecture which is composed by
two or more layers of generalizers. A generalizer is a “black box” which solves any
kind of problem and it can be a classifier (neural net). Firstly, the level-0 generaliz-
ers solve the original problem, whereas level-1 generalizers process the information
provided by the previous layer in order to give a single output of the system.

This chapter, which will be focused on the application of the principles of Stacked
Generalization in ensembles of neural networks and it is organized as follows. Firstly,
in section[9.2] the original Stacked Generalization procedure is described and two new
combiner methods based in principles similar to Stacked Generalization are pro-
posed. Secondly, the experimental setup of the experiments is introduced in section
9.3 Finally, the results and their discussion are shown in section [9.4

9.2 Stacked Generalization

Although most of the methods to create a Multi-Net System are based on the ensem-
ble approach (Boosting, Bagging, Cross-Validation), there are important approaches,
like Stacked Generalization, in which the neural networks can also be introduced.

Stacked Generalization was introduced by Wolpert in 1994 [95] as a scheme for
minimizing the generalization error rate of one or more generalizers. The Stacked
model consists of two or more layers of generalizers as shown in figure 9.1}

y*(x)
average
]
< | Level-1 Level-1 Level-1 | §
2 Gen 1 Gen 2 Genm | 2
- 8
é
join
/
2 | Level-0 Level-0 Level-0 | £
¢ Gen1 Gen 2 Genn | 38
2 3
xt

Figure 9.1: Stacked Generalization model
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In first place, the generalizers of the level-0 (experts) solve the original problem.
Secondly, the generalizers of the second layer, level-1, process the information pro-
vided by the previous layer, the outputs of the experts, in order to reduce the bias
of the generalizers and give a more accurate output. Wolpert proposed this scheme
to provide a technique which achieves a generalization accuracy as higher as possi-
ble. Moreover, Wolpert also introduced a specific procedure to design the different
learnings sets for the level-0 and level-1 generalizers.

At the beginning of the training procedure, a set of generalizers called level-0 gen-
eralizers are built using the original input data, =, and the class label, d(z). Each
generalizer is trained with the patterns of a specific training set 7%. Then, a set
of generalizers called level-1 generalizers are designed using the patterns, z, of the
level-1 training set, 7°9, and the class label d(z). A pattern from 7% z, is given
by the outputs provided by level-0 generalizers, [y'(2),...,y"(z)], on this pattern.
Figure shows how T is generated.

Yy

A

Level-0
Gen. n

Level-0
Gen. 2

Level-0
Gen. 1

e i

Figure 9.2: Generating the level-1 training set of Stacked Generalization

Wolpert proposed Stacked Generalization in a general way. Some authors like Ghor-
bani & Owrangh [113] and Ting & Witten [114], [115] have implemented specific
versions of Wolpert’s model which can be directly applied to neural networks. These
two implementation will be reviewed in this section.

The original Stacked Generalization can be incorrectly catalogued as an ensemble
combiner because the level-0 generalizers may be wrongly identified as an ensemble
and the level-1 generalizers as their combiner. The training procedure employed in
the scheme proposed by Wolpert involves the level-0 and level-1 generalizers and
they can not be trained independently so Stacked Generalization is a new model
different to the ensemble approach. However, the level-1 generalizers can be applied
as an ensemble combiner if the constraints that links level-0 and level-1 training are
omitted. In this way, two combiners called Stacked and Stacked+ will be proposed
in this chapter.
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Finally, we will show a comparison among all the implementations and combiners
based on the Stacked model.

9.2.1 Ting & Witten’s implementation

Ting & Witten proposed a version of Stacked Generalization that can be applied to
the Multilayer Feedforward architecture in [114) 116] and it was reviewed in [115].

In this implementation we will talk about expert networks, or experts, and combina-
tion networks. These networks are, respectively, the level-0 and level-1 generalizers
according to the original model. The number of expert and combination networks
are, respectively, Negperts and Neompiners-

Firstly, the training set is randomly split into k equal subsets by applying k-fold
cross-validation. According to the original references, k does not depend on the
number of the experts. The subsets, T;, of the original training set, T', are given by
the following equation:

T={T1,T,,..., T} (9.1)

Secondly, all the expert networks are trained with the same specific training set,
Tewperts or £ according to the original reference. This specific training set corre-
sponds to the union of all the previous subsets except one, j.

k
Texperts _ E*j _ {T _ ]”]} — U T; (92)
=

Finally, the combination networks are trained with the patterns from a specific
training set, 7% or L¢y according to the original reference. This new set has the
patterns from the subset which were not used in the training process of the experts,
T;. With this procedure, we are training the combination networks with patterns
which were not used to train the experts. The patterns which are used to train the
combination networks are:

7} = {l']_, e ’xSUbsetelem} (93)

However, the data provided by the patterns from 7} are not enough to train the
combination networks because these networks process the outputs of the patterns
from Tj. For this reason, the specific training set, 79, is really calculated with

equation [9.4k

Subseteiom

T =Lov=L= | [0@). ).y @)da)]  (94)

i=1

Where (y!(x;), y*(z;), . .., y¥t=(x;)) denotes the outputs of the experts on the i-th
pattern x from Tj, whereas d(x;) denotes its desired output, or target. Subseteenm
denotes the number of patterns of each subset, including T}.
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Furthermore, this implementation of Stacked can not be successfully applied if the
number of subsets, k, is high. The size of T*9 inversely depends on the number of
subsets so it can not contain enough patterns to train the combination networks.
In the original reference, k was set to 10 but we noticed that the size of £’/ can
be considerably low in the databases used in this thesis. So we performed some
experiments with different values of k and we finally set the value of j and k to 5.

Figure [9.3| shows how the training set of the expert networks and combination net-
works are generated. In the figure, a n-experts Stacked system is supposed.

C original training set D

/<T1<T2<T3 ’I‘expem

Figure 9.3: Stacked Generalization applied by Ting & Witten

This implementation was initially based on the following generalizers: Decision Tree
C4.5, Nawe Bayesian Classifier and [B1. However, this version proposed by Ting
& Witten can also be applied to neural networks as shown in [117].

9.2.2 Ghorbani & Owrangh’s implementation

Ghorbani & Owrangh proposed a version of Stacked Generalization that was applied
directly to Artificial Neural Networks [I13]. In this implementation, Cross-validation
is also applied to create the different training sets of the experts by randomly split-
ting the training set into k equal subsets:

T = {T17T27°"aTk‘} (95)

With this procedure, k different experts can be built with different training sets by
changing the subset that is left out. For this reason, k corresponds to the number
of expert networks Negperss in this method.

Firstly, each expert network, net, is trained with its specific training set, 7"¢.

Nezpe'rts
™= |J T (9.6)
i=1

1=
i#£net
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Then, the patterns from the union of all the subsets are used to train the combination
networks.

Nexpe'rts

U 1—’1/ = {,Il’ e ,xNezpert5~Sub8€telem} (97)
i=1

However, the input data provided by the patterns from the union of all the subsets
is not used to train the combination networks because these networks only process
the outputs of the experts. For this reason, the specific training set, 7%, is really
given by the following equation:

Ne:cperts -Subsetejem

T%9 = U [(y" (), 4P (), -y (ay)); d ()] (9-8)

i=1

Where (y'(x;), y*(x:), . . ., yNret=(x;)) are the outputs of the experts on the i-th pat-
tern z from the union of all the subsets, d(z;) is the desired output of the pattern,
and finally, Subset e, is the number of patterns of each subset.

In figure we show how the training set of the expert networks and combination
networks are generated for a system with 5 experts.

C original training set D)

Cr (T O —
X Xd(x)
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Y

Figure 9.4: Stacked Generalization applied by Ghorbany & Owrangh
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9.2.3 Two new combiners based on Stacked Generalization

Although the Stacked model corresponds to a specific Multi-net system, it can also
be introduced in ensembles of neural networks. In fact, an optimal neural network
can be applied to combine the outputs provided by the networks of an ensemble and
reduce the error of the entire system [118] [119]. This combination network can learn
the mistakes done by the ensemble in order to avoid them.

In the Stacked combiners proposed in this thesis, Stacked and Stacked+, there is not
any associated constraint related to the training sets of the combination networks.
The predictions of the networks of the ensemble on the whole training set are used
to train the combination networks. These two combiners should not be considered
as pure 2-leveled models because the two levels are independently generated.

y(x) Yo )
average average
(Y (YR
[
: f% A
join join -~
[T [T
[
NN, NNZJ @ NN, NN, NN
t t
x! (a) ! (b)

Figure 9.5: Diagrams of a) Stacked & b) Stacked+ combiners

It can be noticed in the previous figure that the predictions of the networks are
the basis of the combination networks training in the combiner Stacked, whereas in
Stacked+ the original input data, z, is also used. We consider that the use of the
original input data may be important in the combination networks. The training
sets for the combination networks in Stacked, T%9, and Stacked+, T9*, are given by:

Npatterns

1= U 0@y @) d(a)] (9.9)

Npatterns

79" = U [(?/1(%)» e ayk(xi)>$i)§ d(%)] (9.10)

=1

Where x; is the input data of the i-th pattern, y'(z;),...,y*(z;) are the outputs of
the experts on this pattern and d(x;) is its desired output or target.
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9.3 Experimental Setup

In this chapter, the Stacked Generalization model, as Multi-Net system and two
new ensemble combiners based on the ideas of Stacked Generalization are studied.
A deep comparison among them is performed.

As in the previous ensemble comparisons, a similar experimental setup is employed
to test the performance of Stacked Generalization. However, there are some special
features because this model differs from the ensemble model.

Firstly, we test the two implementations of Stacked Generalization as Multi-Net
System. These implementations were proposed by Ting & Witten and Ghorbani &
Qwrangh.

Secondly, the new combiners, Stacked and Stacked+, are tested using a single MF
combination network in the level-1. In this case, four ensembles of MF networks
(Simple Ensemble, Adaboost, CVCv3Conserboost and Inverboost) are used as ex-
perts (level-0). Moreover, an ensemble of RBF networks (Simple Ensemble) is also
employed as level-0 generalizers.

Thirdly, Stacked and Stacked+, are tested using ensembles of MF combination net-
works as level-1 generalizers. In this case, Simple Ensemble is used to build the level-
0 generalizers and three ensembles of MF networks (Simple Ensemble, CVCv3ACB
and C'VCv3Conserboost) are employed to generate the combination networks (level-

1).
Finally, the main characteristics of the performed comparison are:
+ Nineteen datasets from the UCI Repository.

+ Optimized training parameters for expert and combination networks.

+ Experiments repeated ten times with different partitions of the training,
validation and test sets to obtain:

4+ Mean value of performance.
4+ FError rate by standard error theory.
+ Three general measurements applied to the comparison:
+ Mean Increase of Performance.
+ Mean Percentage of Error Reduction.
+ Paired Student’s t-test.

The description of the nineteen datasets used in the experiments can be found in
appendix [A] The optimized training parameters of the expert networks and combina-
tion networks are in appendixes[B.3], [B.4)and [B.7] Finally, the general measurements
applied to compare the combiners studied are the mean Increase of Performance
(equation , the mean Percentage of Error Reduction (equation and the Stu-
dent’s Paired t-test, described in subsection |3.6.3.2
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9.4 Results and discussion

The results of the original Stacked systems and the combiners based on the Stacked
Generalization principles, Stacked and Stacked+, studied in this chapter are shown
in this section. As previously mentioned, the Stacked approach can be applied in
different ways. For this reason, this section has been split into three subsections.
The first one will be focused on the original Stacked models shown in section [9.2]
The second one will be focused on the results provided by combining ensembles of
neural networks with a single network using Stacked and Stacked+. Finally, the last
subsection will show the results of combining ensembles, expert networks trained
with Simple Ensemble, with another ensemble of combination networks.

9.4.1 Original Stacked methods

In this subsection, the results obtained by the implementations proposed by Ting
& Witten, denoted with T& W in the tables, and Ghorbani & Owrangh, G& O in
the tables, are shown. Firstly, table [9.1] shows the general results of these models.
Moreover, the results of the experts combined by Output average as an ensemble
are also shown. In the table, we denote with “ - Stacked” the general results of the
whole model with the implementations previously described and “ - Ezperts” refers
to the results of the ensemble only composed by the expert networks.

Table 9.1: Original Stacked Models
Mean [oP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
T&W - Experts 4.37 4.63 4.76 4.83 17.70 19.41 19.66 19.60
T&W - Stacked 4.46 4.81 5.06 5.18 18.87 20.26 21.52 22.00
G&O - Experts 4.71 5.56 5.64 5.46 20.59 25.69 25.21 23.72
G&O - Stacked 5.02 5.69 5.29 5.45 22.75 26.03 22.70 23.73

At first sight, it can be noticed that the version proposed by Ting & Witten performs
worse than Simple Ensemble. Moreover, the ensembles conformed by their experts
are also outperformed by Simple Ensemble. This behavior was expected for this
Stacked model because the training set applied to generate the combination network
has a lower number of training examples than the one used in Simple Ensemble.

Moreover, the version proposed by Ghorbani & Owrangh slightly improves the re-
sults provided by Simple Ensemble in the cases of a low number of expert networks
(3 and 9 networks). Moreover, the results provided by this model improve the results
provided by the ensemble composed by their expert networks in the same cases (3
and 9 networks).

Furthermore, it is interesting to printout that in the case of Ghorbani & Owrangh
and a high number of experts (20 and 40 experts), the simple Qutput Average of
the experts is a better combination system than Stacked. The reason may be the
curse of dimensionality of the stacked network whose inputs are the outputs of a 40
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networks system, i.e., the number of inputs of this network seems to be high and
the number of patterns in the training set is low to successfully train such a high
input dimensional network.

The t-test was applied to determine if the slight improvement provided by the ex-
perts and Stacked model proposed by Ghorbani & Owrangh is statistically signifi-
cant. Firstly, the results provided by Simple Ensemble are compared to the results of
the experts networks as ensemble combined with OQutput Average and to the whole
Stacked model. Finally, the results provided by the experts as ensemble are statis-
tically compared to the results provided by the whole Stacked model. The results
of this comparisons are in table [9.2) which show that the differences among Simple
Ensemble, the experts as ensemble and the whole model are not statistically sig-
nificant except for the case of 9 networks and the comparison of Simple Ensemble
with Ghorbani & QOuwrangh Stacked model where Stacked supposes a statistically
improvement of Simple Ensemble.

Table 9.2: Statistical Results - Original Stacked Models

Methods measure 3-net 9-net 20-net 40-net
t-value 1.09 -1.63 —-1.83 —0.18

=10 07 (CLH0) = gy o 028 0.0 0.07  0.86
t-value —-0.04 —-2.11 0.25 —0.15

=12 (CLH0) S RIEETE o 097 0.036 080  0.88

t-value —-1.99 -0.76 1.83 0.03

G&O - Experts vs G&O - Stacked 0.05 0.45 0.07 0.98

Finally, the best overall results are provided by the model proposed by Ghorbani
& Owrangh with 9 expert networks. This concrete model, nine experts and one
combination network, slightly outperforms the ensembles of 40 networks generated
by Simple Ensemble without training a high number of networks. As the results of
the experts of Ghorbani & Owrangh shows, the proposed model maybe do not fit
well on ensembles of a high number of networks (40 networks) because the experts
are generated as in CVCu1 (see references [73],[74]) so they have the same drawbacks
related to the size of the specific training sets.

9.4.2 Ensemble combiners based on the stacked idea

The Stacked model can be introduced to propose new combiners of ensembles, the
combination networks learn from the output provided by the networks. In these new
combiners, there is not any constraint that directly links the training set applied to
train the ensemble and the training set applied to train the combination networks
so it is not exactly a Stacked model.

In this case, we will apply a single combination network to fuse the outputs provided
by previously trained ensembles. The networks of the ensemble are trained with a
“full” training set and the combiner network is also trained with a “full” training
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set provided by the output of the ensemble and the targets of the original training
set.

We will perform some experiments on ensembles of MF networks and a few ones
on ensembles of RBF networks. The results of these experiments are shown, respec-
tively, in subsections [9.4.2.1] and [9.4.2.2]

9.4.2.1 Combining an ensemble of MF networks

In the case of MF networks, the new combiners Stacked and Stacked+ have been
applied to the following ensembles:

+ Simple Ensemble.
+ Adaptive Boosting.
+ CVCv3Conserboost.
+ Inverboost.

Simple Ensemble and Adaptive Boosting (Adaboost) have been selected because they
are simple and original ensemble methods. CVCv3Conserboost was selected because
it is one of the best overall ensembles. We have not obtained results with the C'VC
versions due to the similarity with the model proposed by Ghorbany & Owrangh.

Inverboost was selected because it is a special variant which try to overfit the training
set with easy to learn patters. Applying the Stacked model can provide interesting
results because the ensemble performs worse than a single network.

The results of the selected ensembles along with the results provided by Stacked
and Stacked+ are shown in table [0.3] The notation in the table STC means that
the Stacked combiner is applied to the particular ensemble, and STCP means that
in this case the combiner is Stacked+ (Stacked Plus). The name of the ensemble
method applied as expert networks is included and SN is also included to denote a
single combination network.

Table 9.3: Combining ensembles of MF networks with Stacked

Mean IoP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 497 527 534 543 21.84 23.65 23.73 24.64
STC-SE-SN 530 5.72 5.74 574 23.79 26.44 27.15 27.52
STCP-SE-SN 5.12 5.63 578 562 22.63 26.38 27.26 26.71
Adaboost 3.69 455 493 498 15.40 19.50 22.96 24.54
STC-Adaboost-SN 4.22 451 445 445 1857 18.33 19.33 19.70
STCP-Adaboost-SN 450 4.72 457 436 20.95 21.34 20.18 20.02
CVCv3Conserboost 4.09 570 6.29 650 17.17 27.45 30.18 31.29

STC-CVCv3Conserboost-SN 4.63 548 553 524 20.63 25.42 25.19 24.20
STCP-CVCv3Conserboost-SN 4.78 5.65 5.63 5.32 2228 26.28 25.84 24.62

Inverboost 289 095 —-1.23 —-2.76 9.20 —-3.12 —15.00 —24.18
STC-Inverboost-SN 3.69 415 407 4.11 11.38 17.77 17.43 16.22
STC-Inverboost-SIN 450 4.72 457 436 20.95 21.34 20.18 20.02
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Firstly, Stacked and Stacked+ are successfully applied as combiner of the ensem-
bles generated by Simple Ensemble. Although Stacked slightly performs better than
Stacked+ in general, both provide general good results. In this case, the additional
information of the inputs of Stacked+ increases the curse of dimensionality in the
combination network but does not provide useful information, so the performance
of Stacked+ decreases with respect to Stacked.

Secondly, in the case of Boosting ensembles, Stacked and Stacked+ improve the
results of the boosting combiner only in the case of a low number of networks in the
ensemble (3 and 9 networks for Adaboost and 3 networks for Conserboost). It seems
again an effect of the curse of dimensionality. As the number of networks in the
ensemble increases, the number of inputs of the combiner networks also increases
(it is 40 times the number of classes of the classification problem) and, maybe, the
number of examples in the training dataset it is not enough to train the combiner
network with good generalization.

Similar results were obtained when the Stacked combiners were applied to other
boosting variants such as: Aveboost, ACB, WCB and most of the boosting models
based on Cross-Validated Boosting. The results of these experiments have not been
published and they are not included in this thesis because their conclusions are simi-
lar to the conclusions reached with the three representative boosting methods shown
in this subsection. We consider that adding more results to this research would not
add new useful information because all the Boosting variants report similar analysis
when the new Stacked combiners are used. Moreover, the comprehension of this sub-
section might be negatively affected because the huge number of results, in the table
we show three rows for each ensemble alternative (original results, performance with
Stacked and performance with Stacked+) so adding all these Boosting variants to
the research supposes a large table of results because we have generated ensembles
with more than 25 different boosting variants in this thesis.

Moreover, Inverboost is a boosting variant which has been highly improved with the
new combiners. This improvement is quite important because the general results
are good but the experts as ensemble are quite bad. The ensembles of 40 networks
performed quite worse than a single network, concretely the mean IoP was —2.76%,
whereas the results provided by the new Stacked combiners on these same ensembles
are quite better than a single network, the mean IoP is higher than 4%. Applying
Stacked and Stacked+ have provided an increase of performance close to 7% with
respect to the results provided by the original ensemble. It seems that Stacked and
Stacked+ can highly improve the performance of a “bad” ensemble correcting the
decissions taken by a just simple combiner as the specific Boosting Combiner used
in Inverboost.

9.4.2.2 Combining an ensemble of RBF networks

It can be seen in the previous subsection that the new Stacked combiners based on
a single MF network can improve the accuracy of the ensembles of MF networks
based on Simple Ensemble. For this reason, those combiners, which were based on
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a single MF' combination network, were also applied to combine ensembles of RBF
networks.

Stacked and Stacked+ have been only applied to ensembles previously trained with
Simple Ensemble due to the similarity in the performance of all the ensemble meth-
ods with RBF networks. However, the outputs of a RBF network are not [0, ..., 1]
ranged. A normalization procedure is applied to the outputs of a RBF network
in order to obtain values in the range [0,...,1]. As shown in chapter @, there are
combiners that can not fit well if the outputs are not in the mentioned range but
they can provide good results when a normalization procedure is applied. We think
that applying an output normalization can be also useful in Stacked and Stacked+.
For this reason, the new Stacked combiners have been applied to fuse the original
and normalized RBF networks. The three normalizations we have used (threshold,
min-maz and sum) are described in equations to The results of applying
the Stacked combiners on RBF ensembles are in the following table:

Table 9.4: Combining ensembles of RBF networks with Stacked

Mean [oP Mean PER
Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
RBFSE 0.02 0.14 0.14 023 0.15 371 3.06 3.29
STC RBFSE 0.04 0.34 —-0.05 —0.13 2.58 4.56 0.4 —0.26
STCP RBFSE —0.31 —-0.04 —-0.13 —-0.05 —-2.87 1.72 1.33 0.91

RBFSE,},cshold 0.01 014 0.16 024 0.09 378 327 3.36
STC RBFSE;n esnoia 0.07 032 0.08 —-0.01 324 497 356 0.83
STCP RBFSE;p,csnoia —0.19 —0.02 —0.16 —0.04 0.01 1.39 1.1 1.79
RBFSE;,,, 0.01 013 0.14 020 028 388 3.05 3.02

STC RBFSE,,, -0.02 0.17 0.12 -0.13 265 06 241 —0.23
STCP RBFSE,,,, -0.23 —-0.06 0.00 -0.09 —-077 196 124 -0.39
RBFSE,,.in—max —-0.02 0.16 0.15 0.18 1.69 4.23 341 3.29
STC RBFSE,,in—maz —0.50 —0.56 —0.51 —0.51 —-2.14 —6.26 —5.15 —4.57
STCP RBFSE,,in—maez —0.71 —0.64 —0.37 —0.46 -39 —-5.06 —1.78 0.02

At first sight, the new combiners perform better if the threshold normalization is
applied. This is the only normalization procedure which reports positive PER for
any ensemble size. In fact, the best overall results (mean PER) are provided by
applying Stacked to the 9-net ensembles with threshold outputs (PER equal to
4.97%). However, there are some cases in which the Stacked combiners provide good
results when they are applied to combine the networks without normalization, the
highest mean [oP is obtained with Stacked and the original 9-net ensembles (/0P
equal to 0.34%). Stacked+ also provides good results with the sum normalization
and medium sized ensembles (9 and 20 networks) but they provide negative values
for the other sizes (ensembles of 3 and 40 networks).

Secondly, it can be noticed that Stacked provides better overall results, in general,
than Stacked+ when they are applied to ensembles of RBF networks. However, both
combiners do not improve the original ensemble when the number of expert networks
is high (20 or 40 networks).
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Both effects may be explained again by the curse of dimensionality. In Stacked+, we
introduce the original inputs of the training set as additional inputs of the combiner
network. It seems that this extra information is not useful in this case and performs
as a noise deteriorating the classification accuracy of the network.

In the case of Stacked, the performance deteriorates as the number of networks in
the ensemble increases. An increase in the number of networks means a proportional
increase in the number of inputs of the combiner network keeping the same size of
the training set. So the size of the original training sets seems to be appropriate for
training the combiner network only in ensembles of 3, 9 and, perhaps, 20 networks
for the case of the threshold normalization.

Thirdly, Stacked and Stacked+ perform worse than a single RBF network in some
cases, specially when the min-maz normalization is applied. It can be observed
that there is an important decrease of performance when Stacked and Stacked+
are applied to the ensembles with min-maz-normalized outputs. For this kind of
RBF networks, Stacked+ provides worse results than a single RBF network but it
is better than using the new combiner Stacked.

Finally, only RBFSFE and RBFSFEp esnoiq have been improved by one new com-
biner, Stacked (STC in the table), when the number of experts (the number of
networks in the ensemble) is low, 3 or 9 networks, and perhaps 20 networks.

9.4.3 Stacked and Stacked+: Ensembles as combination
networks

In this subsection, an ensemble of combination networks, henceforth combination
ensemble, will be applied to combine another ensemble of expert networks. In this
case, an ensemble will be on charge of combining another ensemble as shown in
figure 9.5

Though any ensemble can be used to generate the experts and the combination
networks, the ensemble alternatives applied will be limited. The ensembles previously
trained with Simple Ensemble will be only employed as expert networks whereas
a few ensemble models will be introduced to generate the combination networks
according to Stacked and Stacked+.

The models selected for the combination ensemble were: Simple Ensemble,
CVCv3ACB and CVCv3Conserboost. Their results are in tables [0.5 and 0.6l Al-

though Output average, denoted by “a” in the tables, has been initially applied
to combine the combination networks, Boosting Combiner, denoted by “b” in the
tables, has also been applied to combine the combination ensembles based on Cross-

Validated Boosting.

Firstly, the results of the combination ensembles designed with Stacked in order to
combine ensembles of expert networks previously trained with Simple Ensemble are
shown in table [9.5
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Table 9.5: Stacked with ensembles of combination networks
Mean IoP Mean PER

Method CN 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble — 497 527 534 543 21.84 23.65 23.73 24.64
SE-SN 1 5.3 5.72 574 574 23.79 26.44 27.15 27.52
SE-SE 3 528 579 569 576 2356 26.95 27.05 27.44
SE-SE 5 532 581 568 575 2395 27.15 26.95 27.44
SE-SE 9 5.3 581 5.69 572 23.88 27.13 26.8 27.33
SE-CVCv3ACB a 3 527 5.8 5.69 5.75 24.69 26.48 26.97 27.31
SE-CVCv3ACB a 5 528 582 581 579 24.74 26.89 27.71 28.37
SE-CVCv3ACB a 9 526 577 574 578 2449 26.26 26.78 28.27
SE-CVCv3ACB b 3 532 583 567 582 24.74 26.26 26.7 27.11
SE-CVCv3ACB b 5 535 587 568 589 2553 27.04 27.25 28.65

9

3

5

9

3

5

9

SE-CVCv3ACB b 534 592 571 587 25.02 27.43 27.55 28.23
SE-CVCv3Conserboost a 527 5.66 5.71 571 23.76 25.71 26.77 26.75
SE-CVCv3Conserboost a 519 569 574 5.64 2299 2589 26.72 25.69
SE-CVCv3Conserboost a 5.25 557 5.65 5.55 24.32 2558 26.54 25.32
SE-CVCv3Conserboost b 5.29 558 5.76 5.6 24.38 25.05 27.44 25.83
SE-CVCv3Conserboost b 541 559 578 568 25.89 2547 27.47 27.01
SE-CVCv3Conserboost b 5.38 5.73 5.81 5.6  25.78 26.3 28.35 26.67

The first four rows of table [9.5 show the results of combining ensembles previ-
ously trained with Simple Ensemble by the combination ensembles, also trained by
Simple Ensemble as the combiner Stacked. The other rows show the results of com-
bining the same ensembles by the other combination ensembles (CVCv3ACB and
CVCv3Conserboost). Furthermore, in the table, CN refers to the number of networks
in the combination ensemble. For example, in the third row we can find SE-SE as
“Method” and the value 5 for “CN”. This means that the expert networks are a
Simple Ensemble (the first SE in SE-SE), the combiner networks are also a Simple
Ensemble (the second SE in SE-SE) and the number of networks in the combiner
ensemble is 5 (CN = 5). In the first row we can find also SE-SN, where SN stands
for Single Network, meaning that a single network combiner, not an ensemble, is
used to fuse the outputs of the experts.

According to the mentioned table, the results provided by Simple Ensemble can
be improved by applying a combination ensemble. However, the results provided
by a combination ensemble are quite similar to the results provided by a single
combination network (SE-SN), specially when they are combining a few experts.

Fortunately, it can observed that the results provided by Stacked can slightly outper-
form Simple Ensemble without training a huge number of networks. For instance, an
ensemble of 3 experts trained by Simple Ensemble which has been combined by an
ensemble of 5 combination networks trained by CVCv3ACB provides a performance
slightly better than the ensembles of 40 networks trained with Simple Ensemble.
Moreover, the results provided by combining ensembles of 9 expert networks with
Stacked clearly outperforms the ensembles of 40 networks combined by Output aver-
age. Furthermore, SE-CVCv3ACB with Boosting Combiner provides better results
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than SE-CVCv3ACB with Output average for the low and medium sized ensembles
(3 and 9 expert networks). And SE-CVCv3Conserboost with Boosting Combiner is
better than SE-CVCv3Conserboost with Qutput average for the case of low sized en-
sembles (3 expert networks). In these last cases, it is also better to use a combination
ensemble than a single network as combiner.

Secondly, table shows the results of the combination ensembles designed with
Stacked+, when they are applied to combine ensembles of expert networks previously
trained with Simple Ensemble.

Table 9.6: Stacked+ with ensembles of combination networks
Mean IoP Mean PER

Method CN 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble — 497 527 534 543 21.84 23.65 23.73 24.64
SE-SN 1 512 5.63 578 5.62 2263 26.38 27.26 26.71
SE-SE 3 513 573 579 561 2288 26.89 27.27 26.89
SE-SE 5 507 572 579 567 2261 27.02 273 27.1
SE-SE 9 513 573 578 5.69 226 27.05 27.44 273
SE-CVCv3ACB a 3 552 584 581 592 2571 26.55 27.5 27.49
SE-CVCv3ACB a 5 557 597 586 597 26.77 27.81 27.6 28.17
SE-CVCv3ACB a 9 560 592 589 590 27.36 27.71 27.14 27.70
SE-CVCv3ACB b 3 538 584 577 599 2506 26.73 26.16 28.2
SE-CVCv3ACB b 5 553 599 584 6.09 26.11 27.69 27.31 28.82
9
3
5
9
3
5
9

SE-CVCv3ACB b 5.48  5.93 5.9 6.14 25.39 27.72 27.03 28.68
SE-CVCv3Conserboost a 5.38 5.88 5.8 5.85 23.62 27.38 26.85 26.47
SE-CVCv3Conserboost a 5.57 5.8 591 5.87 2545 26.74 27.42 27.12
SE-CVCv3Conserboost a 5.65 596 5.71 5.78 27.563 27.24 25.66 26.3
SE-CVCv3Conserboost b 527 585 5.69 5.60 23.87 28.09 26.31 25.71
SE-CVCv3Conserboost b 5.56 5.9 5.95 5.73 25.69 27.17 28.04 25.79
SE-CVCv3Conserboost b 5.77 588 577 587 285 27.43 26.89 26.89

In general, the combiner Stacked+ provides better results than the combiner Stacked
when an ensemble is employed as a combiner model and the model of this ensemble
is complex and of high performance as Cross-Validated Boosting. This improvement
with respect to the combiner Stacked can be clearly seen when Cross-Validated
Boosting methods are applied to generate the combination ensembles. With this
procedure, the performance is improved but the complexity of the combination en-
semble is also increased.

Moreover, the best results provided by a Simple Ensemble of 40 networks are clearly
improved by this model by training only a few networks. Applying Stacked+ to
an ensemble of 9 networks (9 experts) with a combination ensemble of 5 networks
(5 combiners) can provide a mean IoP close to 6% and a mean PER close to
28% instead of 5.4% and 24.6% of a Simple Ensemble of 40 networks. So, with
only 14 networks we achieve better resutls than with 40 networks changing the
design model. Higher values on these general measurements can be reached with
more experts and combination networks as we can see that the best overall results,
mean [oP equal to 6.14%, are obtained with a system (SE-CVCv3ACB b) with
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40 experts and 9 combination networks according to the mean /oP. However, the
highest mean PER, 28.82%,is obtained with the same system but the number of
combination networks is 5. This behavior is due to the use of an heterogeneus set
of classification problems and the origins of the mean PER (relative values) and
IoP (absolute measurement). Both systems, with 5 and 9 combination networks,
can be considered the best performing combiners for Simple Ensemble among all
the alternatives shown in this chapter.

Under the point of view of the combiner employed in the combination ensemble, we
have tested Output average (denoted by “a” in the table) and Boosting Combiner
(denoted by “b” in the table) as before. In this case, the results are varied. On the
one hand, for SE-CVCv3ACB the best combiner seems to be Qutput average for a
wide number of expert networks ranging from 3 to 20, but in the case of 40 expert
networks (a high number of experts) the most appropriate combiner seems to be
Boosting Combiner. On the other hand, for SE-C'VCv3Conserboost the results are
the contrary, from 3 to 20 networks Boosting Combiner is the appropriate combiner
and for 40 experts is Qutput average.

Finally, applying a combination ensemble provides better results than a single com-
bination network when they are used to fuse the networks of a Simple Ensemble. This
is the case of the systems with 3 and 9 expert networks in SE-C'VCv3Conserboost,
and also it is the case for every number of networks in SE-CVCv3ACB if we select
the most useful combiner for the concrete number of expert networks.

9.5 Conclusions

Stacked Generalization is a model which was proposed by Wolpert in 1994. This
model is composed by two or more levels of classifiers. The classifiers of the first
level, the experts, process the original information whereas the classifiers of the
second level, or combiners, process the information provided by the first level. This
model is a special Multiple Classifier System, however there can be implemented as a
whole model or the two levels can be generated independently which is the approach
followed to propose the combiners Stacked and Stacked+. For this reason, the study
has been split into three subsections.

The stacked idea has been applied in three different ways: According to the original
stacked models, as an ensemble combiner formed by a single neural network in the
two versions, Stacked and Stacked+, and as an ensemble combiner formed by a
combination ensemble following again the two versions of combiners Stacked and
Stacked+.

As was mentioned before, two authors adapted the original methods in order to
apply it to neural networks and other classifiers as base classifiers. But only one ver-
sion, the implementation proposed by Ghorbani & Ouwrangh, slightly outperformed
Simple Ensemble. Their model with 9 experts and a single combination network is
statistically better than a Simple Ensemble composed by 9 networks and it is slightly
better than a Simple Ensemble composed by 40 networks. Moreover, we also saw
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that this implementation was slightly worse than Simple Ensemble according to the
mean PER when the number of expert was high (20 and 40 experts).

Moreover, the Stacked idea was also applied to propose new variants of ensemble
combiners, Stacked and Stacked+. Firstly, Stacked and Stacked+ with a unique MF
network as combiner were applied to ensembles of Multilayer Feedforward networks
and the results showed that, in general, the combiners proposed are good on low and
medium sized ensembles (3 and 9 networks). Moreover, they are also good combiners
for high sized ensembles (20 and 40 experts) in Simple Ensemble and Inverboost.
In this case we have to remark that the results provided by the combination of
Inverboost with Stacked and Stacked+ are quite good because the same ensembles
combined by Boosting Combiner performed quite worse than a single network. It
seems that the proposed combiners have corrected the bad decisions taken by the
original ensemble. However, the new combiners do not provide good results on the
other boosting methods when the number of experts is high (20 and 40 networks).

Furthermore, Stacked and Stacked+ have been used to combine ensembles of RBF
networks (experts) with a single MF combination network. As previously suggested,
some normalization procedures were applied to the outputs of the RBF networks
in order to get the output values in the range [0,...,1]. The results showed that
the new combiners fit well when they were applied to combine low and medium
sized ensembles (3 and 9 networks) with the original and threshold normalized RBF
networks. Moreover, the sum and min-max normalization procedures should not be
applied along with the proposed Stacked and Stacked+.

Finally, the information provided by an ensemble of expert networks can be pro-
cessed by another ensemble of neural networks, a combination ensemble in this case.
The results show that good performance can be reached with the new stacked com-
biners with a few expert networks and a few combination networks. The best overall
results of combining Simple Ensemble with Stacked are mean I[oP equal to 5.92%
and PER equal to 28.65 and the best results obtained by Stacked+ are mean loP
equal to 6.14% and PER equal to 28.82%. In both cases, the best results were
reached when CVCv3ACB was used to generate the ensemble of combination net-
works. In general, Simple Ensemble is improved by both new combiners when a
combination ensemble is applied. Moreover, they provide better results than the
combiners shown in chapter [6] for Simple Ensemble. According to the results shown
here, a combination ensemble is a good way to combine ensembles of expert networks
and it should be seriously considered.

It is important to conclude by remarking that a stacked system can be affected
by the curse of dimensionality if it is composed by a high number of experts, i.e
40 experts, because the number of inputs of the combination network increases as
the number of experts increases. In the combiners proposed, the input data of the
combination networks are the outputs of the experts on the training set. For instance,
40 experts mean that the number of inputs of a combination network is 40 times
the number of classes of the original problem (outputs of the experts). Maybe, the
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number of patterns for training this kind of networks is not enough and we do not
achieve good generalization in systems with a high number of experts. As further
work, we will research in codifying better these inputs in order to reduce the curse
of dimensionality in the combination networks.

The results of shown in this chapter have been published in references
[AM1,AM2,AM3|. These references are described in the conclusions chapter.
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CHAPTER 10. MIXTURE OF EXPERTS

10.1 Introduction

As has been pointed out in this thesis, there are some other important approaches
to generate Multiple Classifier Systems. Here, Mixture of Experts will be introduced
and modified. In this model, all the networks are trained simultaneously and one of
them is used to weight the output of the other networks.

This chapter, is organized as follows. Firstly, the Mixture of Experts is described
as a whole classification system in section [10.2] Moreover, some important network
architectures are proposed to be used along with this important model. Furthermore,
we also introduce a new way to combine ensembles based on this approach. Then,
the experimental setup is introduced in section [10.4] Finally, the results and their
discussion are shown in section [[0.5]

10.2 Mixture of Experts

Mixture of Ezxperts is one of the important approaches to generate Multiple Classifier
Systems and it was proposed by Jacobs et al. in [94]. In the literature, it has been
also named Mixzture of Neural Networks or Mixture of Expert Networks.

The Mixture of Fxperts is a modular model to build a complex classification system
which consists in training different neural networks, also called expert networks or
simply experts, along with a gating network. Then, the problem is divided by the
system into some subproblems and each new subproblem tends to be solved by one
expert. The gating network is used to weight the outputs of the experts in order
to calculate the final output of the whole classifier. Figure [10.1] shows a graphical
description of this system.

b y(x)

lZ(y"'g")
i) Y oo 9
Gating
EN, EN, EN, Network
A
x Ax X X
fX

Figure 10.1: Mixture of Ezperts Structure

In the original references, the base network architecture used does not contain any
hidden node as shown in figure[10.2] According to the literature, this Basic Network
can only solve linear problems [24, 27]. The main idea of this model is that a classifier
with a few networks plus the gating network can achieve similar results than more
complex network architectures, Multilayer Feedforward (MF') or Radial Basis Func-
tions (RBF'). Moreover, the computational cost of the new model is lower because
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the network architecture chosen is simpler. Furthermore, this process guarantees
that the interference among the experts is reduced [120], 94].

Figure 10.2: Basic Network Structure

The output vector of the experts, y™¢, and gating network, g, are given by the
following two equations.

yglztss = xT ’ w?l?ztss (101)
eXp (xT : anet)

> exp (@ - ay)

Gnet =

(10.2)

Where 27 is the transpose of the input data vector and w refers to the weights.
Concretely, w’, —denotes a vector whose elements are the weights between each

input, x;, and an output unit, class, of network net. The outputs of experts, ye
are calculated with the scalar product of these two vectors. The outputs of the gating
network, g,;, are calculated in a similar way but, in this case, the weights are denoted
by a. The last two equations are similar but they are not identical. Although the
same architecture is selected to generate all the networks of the system, the gating
network requires a special normalization (the sum of all weights, g, is one) based on

calculating the exponential function (ezp) of the output neurons.

The description of the procedure used to design a classifier with Mizture of Experts
is described in algorithm [10.1]

Algorithm 10.1 Mixture of Experts
Random initialization of networks
for ite = 1 to Ny, do
for each pattern from training set do
for net =1 to Negperts do
Adapt expert weights
end for
Adapt gating weights
end for
Calculate L. over Validation set and save temporally its weights
end for
Select iteration, ite, with highest L;,. and set its weight to the system.
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In Mixture of experts, the whole classification system is trained for some iterations.
In each iteration, all the patterns are iteratively presented to all the networks of
the system (experts and gating) and the weights are adjusted. The weights of these
networks are adapted by maximizing a sophisticated error function based on the
Mean Squared Error, L in equation [10.3] Equations and are used to adjust
the weights of the experts and gating network. Once all the patterns have been
presented, the mean of the cost function of the iteration, L;., is calculated with
all the patterns from the validation set, V', and the weights are temporally stored.
When the procedure finishes, the system configuration is set with the weights of the
iteration with highest L.

Negperts
1
L =log ( Y Guet - oxp (—5 |ld - y"“\f)) (10.3)

net=1

L is considered a sophisticated error function because the error of a network is
weighted by the corresponding output of the gating network, g, in the cost function
of the system. The error of an expert is only considered in L if this expert is in
charge of solving this part of the problem according to the gating network. The
error of each network is calculated with the exponent part, exp. This exponent is
a vector norm which corresponds to the negative value of the Mean Squared Error,
MSE, described in chapter 2 (equation . If the error is high, L is low because
the exponent is also low. L inversely depends on the error of the networks. For this
reason, L is maximized in this case. A high value of L denotes that the weighted
error of all the networks is low.

The equations applied to update the weights of the experts, w, and gating network,
a, are obtained with a gradient ascent algorithm. The final equations used to update
each weight value of the experts and gating network are:

wzgass (t + 1) = wzgass (t) +n- hmnet ’ (dClaSS - y?lfztss) © Ty (104)
Giet (E+1) = Qiper (8) + 1+ (A" = goet) - 25 (10.5)

Where 7 is the adaptation step which must be set by a trial and error procedure and
hm™ is calculated with equation [10.6] This last variable, hm, is used to simplify
the equations applied to adjust the weights. The variable ¢ is used to denote the
current value of the parameters (weight values) and ¢ + 1 refers to the new value of
the same parameters after adjusting them.

Goer - oxp (=5 - [ld = y|*)
hm" = N - 5 (10.6)
S gn - exp (=5 - ld = )

203



ENSEMBLES OF ANNS: ANALYSIS AND DEVELOPMENT OF DESIGN METHODS

In this model, the original problem is split into some subproblems, each subproblem
tends to be solved by one expert. Moreover, the boundaries between classes are
given by hyperplanes when the basic network architecture is applied [24], 121]. In
fact, each expert will provide an hyperplane to separate two classes and the gating
network decides which hyperplane fits better for a determined pattern. A simple
graphical description is shown in figure where: (a) is a subspace of the input
space which shows the real boundary between class; and classs, (b) and (c) represent
the boundary predicted by expert; and experty respectively and (d) represents the
boundary of the mixture system on the subspace when the gating network weights
the experts.

|

expert, ]expert1

Figure 10.3: Mixture - Graphical representation

As it can be seen in the previous example, each expert represents a portion of the
complex boundary between the two classes. In (b) the boundary predicted by expert;
is similar to the top part of the real boundary but it is quite different to the bottom
part of the real boundary. The opposite behavior occurs with the boundary predicted

204



CHAPTER 10. MIXTURE OF EXPERTS

by experts in (c) because the inferior region of the real boundary is well represented
by this expert but the superior part is not. In (d), a complexer boundary is generated
from the two first predicted boundaries and the information of the gating network.
This last boundary represents better the real boundary in any region.

Finally, Mizture of Experts is based on simple networks so the resources required are
low. However, its performance should be similar to a single classifier based on more
complex networks. Although this model was improved by applying other structures
[122, [123] [124] [125], this thesis will be focused on the original version.

10.2.1 Applying other network architectures

In the original model, the simple Basic network (BN) is the basis of the Mizture
of Fxperts. However, we propose to use other alternatives such as Multilayer Feed-
forward (MF') or Radial Basis Functions (RBF'). In this way, better base classifiers
are applied to generate the experts and the gating network.

The basic algorithm of Mizture of Experts is not modified when a new network ar-
chitecture is introduced. However, the parameters of the experts and gating network
will be optimized according to the network chosen.

10.2.1.1 Mixture and the MF network

In the case of MF networks, we have used this network architecture to generate the
experts and the gating network. The outputs of each expert, y"¢, are calculated
as a single MF network (equation . This equation is reproduced and simplified
here in equation [I0.7} In the equations described in this subsection, wih represents
the weights between the input and hidden layers of a network and who denotes the
weights between the hidden and output neurons as we did in previous chapters. The
supperindex net denotes the number of the expert network but g refers to the gating
network.

Nhidden

net __ . net . net

Yelass — gbslg § whoh,class hoh (107)
h=1

Where ¢y, is the sigmoid transfer function, equation , and ho is given by:

Ninput

hoh = Gig | Y wihst - a; (10.8)

i=1

However, the outputs of the gating network, g, are given by the following equation:

eXP (Yner)

Gnet =
S exp (i)

(10.9)
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Where:
Nhidden Nhidden
yget - (z)id ( Z whoi,net ) hOi) = Z whoz,net ) hOi (101())
h=1 h=1
Ninput
hof, = dsig | D wihl, - x; (10.11)
=1

The structure chosen for the gating network slightly differs from the original MF
network because the identity transfer function (¢4 is described in equation
is applied to calculate the output units, y7.,, in equation . Then, the output
vector, 39, is normalized in to obtain the final values of the gating network,
Jnet- In a normal MF network, the sigmoid transfer function is used to calculate the
output units as done, for instance, in equation to calculate the output of the
experts. We had to adapt the MF network because the gating network worked as
the combiner Output average with the original equations. The outputs of the MF
network are ranged between 0 and 1 and, maybe, this range is not appropriate for
a gating network. Moreover, there is not any restriction related to the summatory
of all the elements of the output vector in the traditional MF network. Maybe, the
weights provided by the gating network may be relative (their summatory should
be one) and not absolute. For this reason, the output layer was modified and, now,
it is “similar” to the Basic Network.

Finally, the weights of the experts, wih™* and who"™, and gating network, wih? and

who?, are adjusted in the training procedure with the following equations where the
superindex net denotes the number of the expert and g is the gating network:

Nelasses

wihl5h (t+ 1) = wils! (¢) +n - hm™ - Hpet - Y~ (52 whops) -2 (10.12)

c=1
whoz,etflass (t + 1) = wh‘O;LL,ectlass (t) + n- hmnet ’ 63?35 ’ hozet (1013>
Nnets
wihi, (t +1) = wihi, () +n - Z ((hm™ — gn) * Phm - Ti) (10.14)
n=1
who,’;,net (t+1) = whofmet (t)+n- (hm”d — gnet) - hoj, (10.15)

In the previous equations, 7 is the adaptation step, hm and ho are given by equations
and [2.6] Finally the other variables are calculated as follows:

H;Let — hOZEt . (1 _ hozet) (1016)
53225 = (dclass - y?zitss) ’ (1 - yzﬁss) ’ (y?lztss) (10'17)
Phnet = hOi ’ (]‘ - ho}gz) ’ whoigz,net (1018)

The three last equations have been introduced to simplify the equations used to
update the weights of the experts and gating network (equations |10.12] to |10.15)).
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10.2.1.2 Mixture and the RBF network

In the case of RBF networks, the outputs of the experts, 4", and the outputs of

the gating network, g, are calculated with equation [10.19| and [10.20]

Neiusters

Vi = D Wi - B (10.19)
ct=1
Nclusters
Gnet = Z Wy et * oy (10.20)
ct=1

Where the subindex ct denotes the number of the clusters or hidden nodes of the
network and w refers to the weights between the hidden units (clusters) and the
output neurons of the RBF network. Moreover, h" and hJ corresponds to the
Gaussian function (Ezponential generator Function) and they are calculated as:

__ ,ynet

h?{"t—exp< llz — v (am)Q” ) (10.21)
ct
— 92

b exp (_nx o ) (10.22)

(02)?

These previous equations are based on the output provided by the original RBF
network (equation [2.16)). Furthermore, o is the width of the gaussian function and
it is set by a trial an error procedure and v denotes the center of the RBF networks.

In this case, the RBF network architecture should not have to be adapted, as we
did in MF, when it is applied as gating network.

net net

Therefore the centers and weights of the expert networks, v and w™, and gating
network, v9 and w?, are adjusted in the training procedure with the following four
equations.

w?t?zlass (t + 1) = w?zfilass (t) +n- hmnEt ' (ddass yclass) hnet (1023)
() =0 )+l Y ((d— ) ) (1024)
c=1
Wet net(t + 1) Wet net( ) +n- (hm - gnet) ' hgt (1025)
Nnpets
Uig,ct<t +1) = /Ug,ct(t) +n- azg,ct : Z ((hmn — Gn) - wgt,r) (10.26)
n=1

Where « is given by:

ne 2. thet ne
O‘i,c::: - (U?tet)2 ) (ZI’J - ,Ui,c;,‘:) (1027)
2. h?
o = Ty (= vle) (10.28)
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This network structure was successfully applied as experts in [126], the performance
of the modified model was considerably higher than the original version.

10.3 Mixture as an ensemble combiner

Although the Mixture model corresponds to a modular classifier, it can also be
related to ensembles of neural networks. This model was adapted to improve the
generalization ability of Optimal Linear Combinators in which a weighted average
was applied [127]. For this reason, we propose to apply a gating network to weight
the outputs provided by the networks of an ensemble to reduce the error of the whole
classifier. We think that the gating network can learn which expert, network of the
ensemble, fits better for a determined pattern. In this way, the gating network can
switch the control to the most appropriate networks of the ensemble for a determined
pattern, x.

In the Mixture combiner proposed, the ensemble is set as expert networks and then
the gating network is trained while the experts are kept unchanged. This combiner
can be seen as a sophisticated version of Weighted Average whose success will depend
on the gating network. The description of this combiner is given by algorithm [10.2]
whereas a graphical diagram of the training is given by figure [10.4]

Algorithm 10.2 Ensemble combiner based on Mixture of Experts
Random initialization of gating network
Generate Ensemble or Select previously trained ensemble
Set networks of the ensemble as experts
for ite = 1 to iterations do
for each pattern from training set do
Adapt gating network parameters
end for
Calculate L;;, over Validation set
Save gating network weights
end for
Select iteration with highest L (best iteration)
Set best iteration parameters to gating network and save final configuration

In this new combiner, the ensemble is used as a set of expert networks. In this
point a new ensemble can be trained or a previously generated ensemble can be
used. Then, the gating network is trained for some iterations. In each iteration,
all the patterns from the training set are presented to the network. The trainable
parameters of the gating network, usually its weights, are adapted with the same
equations introduced in the previous section. Depending on the network architecture
chosen for the gating network, the corresponding equations will be used to adjust
the network parameters. It is important to mention that the trainable parameters
of the experts are kept unchanged during this training procedure because we are
introducing an ensemble combiner. At the end of each iteration, the mean of the
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target function, L, is calculated with all the patterns from the validation set and the
parameters of the gating network are temporarily stored. Finally, the configuration
of the best iteration, the one with highest L, is set to the final gating network. With
this procedure, we set the most suitable configuration of the gating network avoiding
overfitting.

T

Wit +1)

ensemble |

1]

Figure 10.4: Example of the training algorithm of Mixture as an ensemble combiner

In algorithm and figure [10.4], it can be noticed that the proposed Mixture com-
biner differs from the two Stacked combiners introduced in the previous chapter.
Firstly, a quasi non-supervised learning algorithm is applied to train the gating net-
work whereas the combination networks are generated by a supervised algorithm.
The desired output of the gating network are not previously defined but the targets
of the combination network in Stacked are the real class (target) of the pattern.
Secondly, the original pattern input is used to train the gating network but the
combination network of Stacked combiners mainly processes the output of the ex-
perts. Finally, the outputs of the gating network are the weights associated to the
experts in a special average, in contrast, the combination network of the proposed
Stacked and Stacked+ provides a final prediction for each pattern. Although the
combiners we proposed in the last and current chapter are based on the use of a
neural network, they differ on the way they are designed and in their final purpose.
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10.4 Experimental Setup

In this chapter the Mixture of Neural Networks model, has been analyzed and mod-
ified. In all the experiments, we have used a single gating network according to the
original references.

We have to take into consideration that the original implementation was an alter-
native to more complex networks so its aim was not to provide a high increase in
performance with respect to the other advanced classifiers.

The experimental setup applied is similar to the experiments carried out for the
ensemble methods. In this case, the number of experts corresponds to the number
of networks trained in an ensemble. With this procedure the classification systems
generated can be compared to the single MF network and to Simple Ensemble. The
main characteristics of the experiments done in this chapter are:

+ Nineteen classification problems from the UCI Repository.

+ Three implementations of the original model with two network architec-
tures Basic Network and Multilayer Feedforward.

4+ Multi-net systems with 3, 9, 20 and 40 experts.
4+ 1 unique gating network.

+ Two implementations of a new ensemble combiner with two network ar-
chitectures Basic Network and Multilayer Feedforward.

4+ Ensembles of 3, 9, 20 and 40 networks trained with Simple En-
semble as experts.

4+ 1 unique gating network.
+ Optimized training parameters.

+ The experiments have been repeated ten times with different partitions of
training, validation and test sets in order to obtain:

4+ Mean value of performance.
4+ Error rate by standard error theory.
+ Two general measurements applied to the comparison.
4+ Mean Increase of Performance.
4+ Mean Percentage of Error Reduction.

The description of the nineteen datasets used in the experiments can be found in
appendix [A] The training parameters of the experts and gating network are in
appendix [B.8 Finally, the general measurements applied to compare the methods
and combiners studied are the mean Increase of Performance (equation and
the mean Percentage of Error Reduction (equation . Furthermore, the complete
results will also be considered to compare all the alternatives.
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10.5 Results and discussion

The results related to the Mizture of Neural Networks are shown in this section.
As previously mentioned, the Mizture approach can be applied in different ways.
For this reason, this section has been split into two different subsections. The first
one will be focused on the original Mizture model whereas the results provided by
combining ensembles with a gating network are shown in the second part.

10.5.1 Original Mixture models

In this subsection, three different implementations of the original Mizture model
have been considered. They are based on the Basic Network (BN ) and the Multilayer
Feedforward network (MF'). Concretely, these methods are:

+ Miz-BN-BN: The experts and the gating network are designed with the
simple architecture BN.

& Miz-BN-MF': The architecture BN is chosen to generate the experts but
the gating network is generated with a MF network.

& Mix-MF-MF: The architecture MF is selected to create the experts and
the gating network.

The results of these three alternatives along with the results of Simple Ensemble
are shown in the following table. The three new classifiers are tested with the mean
IoP and mean PFER with respect to a single MF network as we did to evaluate
the different ensemble alternatives. To compare easier the behavior of Mixture with
respect to ensembles, we have generated systems with 3, 9, 20 and 40 experts. In this
way, we can compare Simple Ensemble of 9 networks and Miz-MF-MF composed
by 9 MF experts.

Table 10.1: Mixture of Neural Networks
Mean IoP Mean PER

Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
Mix-BN-BN —5.25 —-0.94 0.53 0.76 —64.40 —21.83 —11.90 —13.40
Mix-MF-BN 4.08 4.32 4.40 4.36 17.13 1898 18.63 18.36
Mix-MF-MF 5.06 4.62 5.03 4.88 21.23 18.69 21.11 19.20

At first sight, Miz-MF-MF is the alternative which provides the best overall results
among all the three implementations based on the Mixture model. The MF network
is much better than the simple BN so the original Mizxture model is improved by
the new implementation we propose with MF networks. Although Mixz-MF-BN also
provides good results, it is slightly worse than Miz-MF-MF. Finally, Miz-BN-BN
provides quite worse results than the other two mixture versions and it is worse
than a Single network in most of the cases.

Moreover, it can also be noticed that the two new versions we propose, Miz-MF-
BN and Mix-MF-MF, are overcome by Simple Ensemble. However, the ensemble

211



ENSEMBLES OF ANNS: ANALYSIS AND DEVELOPMENT OF DESIGN METHODS

model and the Mizture model are two different approaches and they highly differ on
classifying patterns so both models should be seriously considered.

Furthermore, the purpose of the original mixture method, Miz-BN-BN, is to obtain
similar results than a more complex classification system. It means, that a mixture
of simple networks should provide similar performance than a simple MF network
but the computational requirements should be lower. Moreover, the procedures to
set the parameters and train the system are much faster for Mixz-BN-BN than for
a single MF network. According to the mean [oP, Miz-BN-BN can provide better
results than a single network when the number of experts is 20 and 40 because the
mean [oP is positive. Although Miz-BN-BN provides worse results than a single MF
networks in the other two cases, the absolute difference can be considered low for 9
networks because it is lower than 1%. Despite the mean IToP is positive in two cases,
there are a few datasets in which Miz-BN-BN performs quite worse than a single
MF network according to the general results shown in appendix [C] for 20 and 40
experts (table [C.155). Moreover, this behavior can also be seen in table because
the mean PER is negative but the mean [oP is positive for the systems with 20
and 40 experts. This means than the classifier performs well for some datasets but
there is another set of classification problems in which the performance is not good.

To illustrate this behavior, the following resume table shows an extract of the com-
plete results of a single MF network, an ensemble of 40 MF networks generated with
Simple Ensemble and Miz-BN-BN with 40 experts and a single gating network. In
the table, the performance of the three classifiers is shown as the percentage of cor-
rectly classified patterns in the test set. This performance is shown for eight repre-
sentative classification problems. The complete results for all classification problems
can be seen in appendix C.

Table 10.2: Extract of the complete results

Database MF net SE Mix-BN-BN
aritm 75.6 £0.7 73.8+1.1 73.22 +1.04
band 72.4+1.0 73.8+1.3 75.45 +1.25
bupa 58.3 £ 0.6 72.7+1.1 72.14 +£1.65
ecoli 84.4 + 0.7 86.9 + 0.7 74.71 £ 1.43
flare 82.14+0.3 81.6 0.5 81.81 +0.58
mok2 65.9 + 0.5 91.14+£1.2 68.38 £ 2.31
vote 95.0+0.4 95.6 £0.5 96.50 4+ 0.67
vowel 83.4 4+ 0.6 92.2 4+ 0.7 77.58 £0.73

In the previous table, it can be observed that the results provided by the three
approaches are not correlated. Firstly, there are a few cases in which a single MF
network provides the best results, datasets aritm and flare. Secondly, Simple En-
semble (SE in the table) provides similar o better results to the single MF network
and it is clearly the best performing classifier for mok2 and vowel. Thirdly, Miz-BN-
BN provides similar results to the single network in general but in a few datasets
this original model can highly improve or worsen the single network. For instance,
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this model provides the worst overall results for datasets ecoli and vowel but it is
the best classifier for band and vote. Mix-BN-BN highly depends on the dataset
and case so, maybe, the low and negative general results are given by this fact. We
consider that the performance of the worst cases, databases ecoli and vowel, can
penalize the general behavior of Mix-BN-BN.

A similar analysis can be derived from the results provided by the new two mizture
methods, Mix-MF-BN and Miz-MF-MF. The new mixture implementations provide
the best results only on some databases whereas there is another set of classification
problems in which the performance is slightly lower. However, the results are not as
bad as in the original implementation because the base classifiers (MF networks) are
better. Now, the experts can predict better the boundaries between classes because
they are not limited by simple hyperplanes. In any case, the general performance of
Mixture of Experts has been improved with the MF network at the expense of the
complexity and computational cost in these new methods proposed by us.

As mentioned above, ensembles and mixture are quite different. The first one is
composed by similar networks which try to solve a problem whereas the second
one is composed by a set of classifiers which are specialists in solving a part of the
problem. With this appreciation, mixture methods can be successfully applied to
the classification problems which are susceptible of being divided into subproblems.
Maybe, not all the datasets have this characteristic so this model will only fit well
on the classification problems which have this feature.

Finally, Miz-BN-BN should only be seriously considered if it provides similar or
better results than a Single MF Network or Simple Ensemble. It should be dismissed
in the cases in which it is considerably worse than the other two alternatives. The
training procedure of the original mixture method is quite faster if compared to
the single network and ensembles and it is an important advantage. Moreover, this
model can classify the patterns in a different way if compared to other advanced
networks or ensembles so in further researches this feature can be interesting.

10.5.2 Mixture as an ensemble combiner

The Mixture model can also be applied to combine ensembles of neural networks as
we proposed in subsection [I10.3] In this case, the networks of the ensemble are used
as experts and they are keep unchanged during the training. Only the weights of
the gating network are adapted in order to maximize the cost function L.

It is important to mention that the combination network of the Stacked combiners
highly differs from the gating network of the Mizture combiner. The first ones classify
the patterns with the information provided by the networks whereas the second one
provide the weights of a special average.

In the experiments, a single gating network will be used to determine which networks
provide the most appropriate outputs. The ensembles previously trained with Simple
Ensemble will be applied as expert networks. Moreover, the BN and MF' networks
will be used in the experiments as a gating network.
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Concretely, the two new combiners based on the Mizture model we propose are:

+ Miz-SE-BN: An ensemble trained with Simple Ensemble (SE) is used as
experts and a single Basic Network (BN) is applied as gating network.

+ Miz-SE-MF: Here the Simple Ensemble is combined with a single MF
network as gating network.

The results of Simple Ensemble along with the results provided by the Mizture
combiners, Miz-SE-BN and Miz-SE-MF, are shown in table[I0.3] As in the previous
subsection, the mean [oP and the mean PFE R with respect to a single MF network
are used to compare all the alternatives.

Table 10.3: Mixture as ensemble combiner
Mean IoP Mean PER

Method 3-net 9-net 20-net 40-net 3-net 9-net 20-net 40-net
Simple Ensemble 4.97 5.27 5.34 5.43 21.84 23.65 23.73 24.64
Mix-SE-BN 4.76 5.39 5.42 5.42 20.89 24.22 24.68 24.92
Mix-SE-MF 4.90 5.43 5.31 5.40 21.74 24.11 23.71 24.70

According to the mean PER, it can be observed that both Mixture combiners,
Mix-SE-BN and Miz-SE-MF, slightly improve the performance of the ensembles
previously trained with Simple Ensemble for the cases of medium and high sized
ensembles, 9 to 40 experts, except for the case of Miz-SE-MF and 20 networks.
However, the mean IoP shows that the Qutput average is slightly better than the
new combiners we have proposed for ensembles of 40 networks.

Although the MF network performs better than the BN, the combiner Miz-SE-
BN provides better mean IoP and PER than Miz-SE-MF when medium and high
sized ensembles are combined, 20 to 40 networks in the ensemble. Moreover, the
procedure to set the parameters of the gating network is faster and less complex for
BN. For these reasons, the Mix-SE-BN combiner should be considered instead of
Miz-SE-MF.

Finally, the two Stacked combiners, Stacked and Stacked+ described in the previous
chapter, perform also better than the two Mizture combiners proposed here. Accord-
ing to the results shown in chapter |§] (table , Stacked and Stacked+ provided a
mean PER higher than 23% for the case of low sized ensembles (3 networks) gener-
ated by Simple Ensemble. In the other cases (ensembles of 9, 20 and 40 networks),
the mean PER was higher than 26% for both Stacked combiners and the highest
value with Simple Ensemble was 27.52% (Stacked and ensembles of 40 networks).
However, the way in which the two models are applied is quite different so the four
alternatives should be seriously considered. As we concluded in chapter [6] a punc-
tual high improvement may be obtained by applying the most appropriate combiner,
even those which do not provide good general results.
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10.6 Conclusions

The Mixture of experts is a model which was proposed by Jordan in 1991 and it has
been successfully applied to neural networks. In this model, a set of expert networks
are trained along with a gating network to solve a problem. Each expert tends to
specialize on solving a part of the problem whereas the gating network is in charge
of selecting which expert fits better on classifying a pattern. Originally, the Basic
Network was the architecture chosen to be applied to this model. The main idea of
the model is that a set of quite simple networks can perform as advanced network
architectures, such as the Multilayer Feedforward network, with lower training re-
quirements. In this research we want to evaluate this alternative to generate MCS
and propose new implementations based on better network architectures in order to
generate good classifiers.

This model is a special Multiple Classifier System in which all the networks are
trained simultaneously. However there can be also used as an ensemble combiner.
For this reason, this research has been split into two sections.

Firstly, the whole model has been implemented as described in the literature. In the
original version, the BN has been used as expert and gating networks. Moreover,
the MF network has also been successfully applied to the Mixture model in the
experiments performed as we have proposed. The results provided by the original
mixture method, Miz-BN-BN, the single MF network and the Simple Ensemble
of MF networks are not correlated. The best results are provided by Miz-BN-BN
in some datasets whereas in other datasets the best performance is provided by a
single MF network or Simple Ensemble. Although the performance of Miz-BN-BN
depends on the dataset, in general, the low performance was expected. This model
was proposed as a simple alternative to more complex network architectures such
as MF and RBF. In the majority of datasets, its performance is similar to the
performance of the single MF network because Mixz-BN-BN was not an alternative
to ensembles. Furthermore, Simple Ensemble has also the behavior expected, it
performs better than the single MF network and Mix-BN-BN.

The Mixture model provides good results if advanced network architectures are used
as experts and gating networks according to the results shown here and in reference
[126]. Miz-MF-BN provides better results than a Single MF network and the orig-
inal implementation Miz-BN-BN. In this first alternative we proposed, the experts
are better because the MF network can approximate any function with a defined
precision [27) 28]. The second version we proposed, Miz-MF-MF also provided good
results and it is the best mixture alternative. Although Simple Ensemble is better
that the two implementations we proposed, there can be specific datasets in which
the mixture models can be better than this ensemble.

Secondly, we proposed to use the Mizture model as ensemble combiner. The networks
of the ensemble have been set as the expert networks and then their weights have
been kept unchanged during the training of gating network. The results show that
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the application of a gating network can slightly improve the performance of an
ensemble in general. This improvement also depends on the dataset, being higher
in some datasets than in other ones because the two general measurements do not
completely agree.

It is important to conclude the chapter by remarking that the Mixture model is a
special Multiple Classifier System which has to be carefully applied. It can improve
the results provided by a more complex network architecture and reduce the compu-
tational cost and other training requirements. The way in which the model is trained
differs from other approaches, such as the ensemble approach, so they should not
fail on classifying the same patterns. The classifiers and combiners generated by the
Mauxture model should be seriously considered even if their performance is similar or
a little bit worse if compared to a single MF network or ensembles. However, there
can be some classification problems or datasets in which the results provided by the
mixture methods and combiners can be considerably low so the mizture methods
should be dismissed for these conflictive classification problems. This behavior can
be seen if the two general measurements are compared between them. Similar values
of the mean IoP do not provide similar values of the mean PER and vice versa. In
this way, a model or classifier can be better than another according to one measure-
ment but it can be worse according to the other one. Furthermore, there are cases
in which a general measurement is positive and the other one is negative.

Finally, applying more complex network structures as we propose will improve the
accuracy of the system as we saw for Miz-MF-BN and Mix-MF-MF. On the one
hand, the experts based on MF networks represent better the boundaries in any
region. On the other hand, the gating network assigns the weights in a effective way
because the influence regions of the experts are not bounded by simple hyperplanes.
However, the resources required by the mixture model based on complex networks
are considerably higher if they are compared to the original model with the Basic
Network.

The results of the research done in this chapter has been published in
[AM4,AM5,AM6]. These references are detailed in the last chapter of this thesis.
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CHAPTER 11. CONCLUSIONS AND FUTURE WORK

11.1 Summary of the Thesis

This thesis has been focused on the analysis and development of ensembles of neural
networks with the purpose of solving classification problems. This kind of Multiple
Classifier Systems has been introduced to replace the classifiers based on a single
neural network because it has been demonstrated that the generalization capability
of an ensemble is high when the individual networks that compose it are not cor-
related and they do not commit the same errors [72, [48]. In this thesis, the most
important alternatives to generate these different networks are reviewed and new
variants are also proposed. Moreover, any ensemble should provide a single global
output or a final hypothesis (predicted class). For this reason, selecting the most
appropriate way to combine the networks of an ensemble is also an important key
when the final ensemble is being designed. Some different ways to fuse the networks
have also been analyzed and new combiners have been successfully introduced. Fur-
thermore, other complex approaches to solve classification systems based on Multiple
Classifier Systems, such as Stacked Generalization and Mizture of Fxperts, have also
been considered and some experiments have been carried out. Finally, we introduce
a detailed summary of the research performed in this thesis.

First of all, two important network architectures, the Multilayer Feedforward (MF)
network and the Radial Basis Functions (RBF') network, were analyzed. Moreover,
they were tested using a heterogeneous set of classification problems. Furthermore,
their performance was also compared to the statistical classifier K-Nearest Neigh-
bors (KNN) because it is an alternative classifier commonly used in the literature.
A first research showed that KNN could not outperform the two network archi-
tectures. Moreover, those results showed that the two network architectures should
be seriously considered for classification tasks. On the one hand, the RBF network
provides the highest general performance on some classification problems. On the
other hand, the MF network also provides good general results and the procedures
applied to set the optimal training parameters and to train the final networks is
faster if compared to RBF networks trained by supervised gradient descent.

Secondly, the MF and RBF networks were used to generate basic ensembles and
their performance was tested with Simple Ensemble. The general results showed
that the ensemble approach fits better when the MF network is used to generate
the individual networks. On the one hand, the ensembles of MF' networks clearly
outperform the results provided by the single MF network. Probably, the different
MF networks of the ensemble have similar performance but they fall into different
local optima so the global classifier is much better than any of the single networks.
On the other hand, the single RBF networks and the ensembles of RBF networks
have similar performance according to the experiments introduced in chapter 3] The
reason may be that the different RBF networks of an ensemble are quite similar
among them so the global output is similar to the output provided by any single
network. In other words, the ensembles of RBF networks are not suggested because
the networks are highly correlated and they classify nearly in the same way.
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Thirdly, an exhaustive comparison of ensemble methods was performed in chapters
M and 5} At this point, only the MF network was chosen to be used as base classifier
in the ensemble comparison as suggested in the first research done with Simple
Ensemble. In order to make this comparison more comprehensible, it was divided
into two chapters of the thesis. The ensembles were divided into two main groups
depending on how the diversity, or dissimilarity among the networks, was generated.
These groups were: Ensembles which modify the training algorithm and Ensembles
which modify the learning set. Some different alternatives from the literature were
applied in this global comparison. The most important ensemble methods, according
the general results shown in this thesis, are:

« Simple Ensemble.

Awveraged Boosting (Aveboost).

Bootstrap Aggregating (Bagging).

Cross-Validation Committee version 2 (CVCv2).
Cross-Validation Committee version 2.5 (CVCv2.5).
Cross-Validation Committee version 3 (CVCv3).
Conservative Boosting (Conserboost).

Decorrelated version 1 (DECOv1).

+ Decorrelated version 2 (DECOv2).

- F £ £ £ + #

Although there are some important alternatives in order to generate diversity on en-
sembles, the results showed that the modification of the learning set can be consid-
ered one of the most important sources of diversity because the best overall results
are provided by the ensembles based on Bagging, Boosting and Cross-Validation
Committee. Moreover, both versions of Decorrelated, in which the target equation
used to update the weights of the network is altered to penalize correlated networks,
are also a good alternative. Finally, Simple Ensemble has been included in the list
because it provides good results if compared to the single MF network and it is the
simplest way to generate ensembles. We consider that this basic ensemble should
be the first alternative in order to test if the ensemble model is appropriate for a
concrete classification problem or final application.

There have been some important ensembles; such as Adaptive Boosting (Adaboost)
or Evolutionary Ensemble with Negative Correlation Learning (EENCL), that have
been dismissed because they did not outperform Simple Ensemble. Other alterna-
tives, i.e. Cooperative Ensemble Learning System (CELS)), are not included in the list
because they are only slightly better than Simple Ensemble. The ensemble methods
included in the previous list are only those alternatives which have provided statis-
tically better results than Simple Ensemble. Finally, there are a few methods, i.e.
Totally Corrective Adaboost (TCA), Ensembles Voting On-Line (EVOL) or Obser-
vational Learning Algorithm (OLA), whose results were not expected because they

220



CHAPTER 11. CONCLUSIONS AND FUTURE WORK

perform worse than a single MF network (their mean IoP and PER values were
negative).

Among the three versions of Cross-Validation Committee shown in the list, we con-
sider that the best choice is Cross-Validation Committee version 8 because it reports
the best general results and its performance is not negatively affected by the size of
the ensemble. As we mentioned in chapters [5 and [§] the ensembles based on CVCv2
are not suitable when the system is composed by a large number of networks (i.e,
ensembles of 40 networks) because the partition used depend on the number of
networks, but the ensembles based on C'VCv3 do not have this problem and they
provide better performance. Each new version of Cross-Validation Committee can
be seen as an improvement of the previous version so the last version can be consid-
ered the best choice. Furthermore, it is important to remark that C'VCv3 has been
proposed by us. In this way, we consider that this new ensemble, C'VCv3, which
provides the best overall results of this ensemble comparison (its mean [oP is 6.17%
and its mean PER is 28.68%), is a good contribution that can be used by any
researcher to solve their classification problems.

Fourthly, an exhaustive comparison of combiners was done in chapter [6] using en-
sembles of MF networks previously generated by Conservative Boosting, Cross-
Validation Committee version 2, Decorrelated version 1 and Simple Ensemble. More-
over, the comparison was also done with ensembles of RBF networks previously
trained with Simple Ensemble. In the case of RBF networks, we had to use three
normalization procedures because the outputs were not in the range [0,...,1]. The
results showed that Qutput average is the first combiner to be seriously considered
because it provides excellent general results and it is the most simple combiner. Its
general performance is high for ensembles of MF' and RBF networks and does not de-
pend on the ensemble size. Furthermore, Majority Voting and Borda Count are also
good alternatives for ensembles of RBF networks because they provide good results
and their performance do not depend on the normalization procedure. Finally, there
have been some cases in which a “bad” combiner has provided high performance
in a specific dataset (i.e. dataset ionos combined with Bayesian Combination). For
this reason, we think that a deep study on combiners should be performed when a
final ensemble is being designed for a specific classification problem.

Fifthly, two new reordering algorithms of the training set (Static reordering and
Dynamic reordering) were proposed to be used with ensembles of neural networks
in chapter [/} The main idea is that the order in which the patterns are presented to
the networks should be different for each network of the ensemble and each iteration
of the training procedure Backpropagation. The first results showed that we can
improve the performance of Simple Ensemble if reordering is applied during training.
Then, we tested if reordering was a better source of diversity than using different
random initialization of the networks. Although we have seen that reordering is
an important source of diversity, the best results are obtained if it is used along
with using different initial network configurations or starting points. Both reordering
algorithms slightly improved the best classic ensembles with traditional training but
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Dynamic reordering is a slightly better alternative than Static reordering, in general,
according to the results shown. Moreover, Dynamic reordering could be applied to
any ensemble but the features of some ensembles (CELS, EECNL, Boosting, among
others) do not allow to use Static reordering with them. However, as an example,
Static reordering is a better choice for CVC' and ensembles of 40 networks. The two
new algorithms should be seriously considered and we think that they are another
good contribution of this thesis.

Sixthly, some improvements on Boosting variants were successfully introduced in
chapter[8] The new ensembles can be divided into three groups. In the first group, two
new ensembles, Averaged-Conservative Boosting (ACB) and Weighted-Conservative
Boosting (WCB), were successfully introduced. Their results slightly improve the re-
sults provided by the original boosting methods, Adaboost and Conserboost mainly.
In the second group, the ensembles based on the new Cross-Validated Boosting
methodology were also successfully proposed. In this new approach, the Cross-
Validation model and the Boosting model were mixed into a single ensemble method-
ology. Fourteen new alternatives based on Cross-Validated Boosting were tested
using two different combiners (Qutput average and Boosting Combiner). The new
ensembles can provide high performance, specially when they are based on CVCv3
and Qutput average, according to the general and statistical results shown. More-
over, the new alternatives based on C'V(Cwv2 also provide good results when the
number of networks in the ensemble is 9. This special behavior is caused by the par-
tition done in C'VCwv2 which benefits these ensembles but penalizes the performance
of high sized ensembles. Finally, in the last group, we introduced new ensembles
based on the two new proposed methods ACB, WCB and Cross-Validated Boost-
ing (CVCv2ACB, CVCv3ACB, CVCv2WCB and CVCv3WCB). The results showed
that CVCv3ACB and CVCv3WCB are the best overall ensemble methods. The first
one, CVCv3ACB, statistically improved the best classic boosting methods such as
Adaboost, Aveboost and Conserboost. The last one, CVCv3WCB provided the best
overall general results in this thesis when the combiner Qutput average is applied
(its mean PER is 32.49% and its mean [oP is 6.63%).

At this point, we have to remark that CVCv3ACB and CVCv3WCB are high re-
fined ensembles. Although their origins are based on Adaptive Boosting and Cross-
Validation Committee version 1, they have not inherited the problems of these two
classic ensembles. In these new ensembles, a good partitioning procedure to generate
the specific training and validations sets with Cross-Validation (the subsets are gen-
erated as in C'VCv8) and the most advanced equations to update the sampling dis-
tribution of boosting (the “complex” soft equations introduced in ACB and WCB)
are used together to design a more robust ensemble. The ensembles Cross-Validation
Committee v3, Averaged-Conservative Boosting and Weighted-Conservative Boost-
1ng, and the idea of mixing Cross-Validation and Boosting into a single methodology
have, all of them, been proposed in this thesis as improvements of classic ensem-
bles. Furthermore, we introduced the global combination of all of these individual el-
ements, and this “idea” provided the best overall results in this thesis as CVCv3ACB
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and CVCv3WCB report. We consider that the new boosting variants proposed in
this thesis (ACB and WCB), the new Cross-Validation Boosting methodology (with
classic boosting ensembles) and their global combination (CVCv2ACB, CVCv3ACB,
CVCv2ACB and CVCv3ACB), are an important contribution in the field of Multiple
Classifiers Systems as the global results show.

Finally, other Multiple Classifier Systems have been analyzed. Concretely, the orig-
inal versions of Stacked Generalization and Mixture of Fxperts have been imple-
mented in order to compare their accuracy to Ensembles of Neural Networks. These
alternatives were introduced in chapters [9] and [10] respectively.

Although the original classifiers based on Stacked Generalization provide good re-
sults, specially the Ghorbani & Owrangh’s implementation, their performance is
“similar” to the general results provided by Simple Ensemble. However, the Stacked
model provides better results if it is issued to propose an ensemble combiner. In this
thesis, the new combiners Stacked and Stacked+ have been introduced. The results
showed that good performance can be obtained by combining low-medium sized
ensembles of MF and RBF networks by a single MF combination network with
Stacked and Stacked+. Maybe, the new combiners do not work as desired for large
ensembles because of the curse of dimensionality. Perhaps, the combination networks
require so many inputs and the final prediction can not be properly obtained for
these high sized ensembles.

Moreover, we have tested the new combiners using an ensemble of expert networks
(generated with Simple Ensemble) and some ensemble alternatives to generate a
set of combination networks. The ensemble alternatives used to generate the combi-
nation ensemble were: Simple Ensemble, CVCv3ACB and CVCv3Conserboost. The
results showed that the ensemble model Simple Ensemble whose best PER result
is 24.65% can be highly outperformed by using a combination ensemble. In fact, we
achieve a mean PER equal to 28.82% with Simple Ensemble combined by Stacked+
and a combination ensemble generated with C'VCv3ACB.

The new combiners based on Stacked Generalization, Stacked and Stacked+, are a
good contribution in the field of combining ensembles of neural networks. With them,
the performance of the ensembles can be improved because the combination networks
can learn from the errors committed by the expert networks. As we clearly see
when we use Stacked and Stacked+ to combine ensembles generated with Inverboost
(Inverboost provided worse results than a single MF network but Stacked combiners
fixed it). However, they can not fit on high sized ensembles in most of the cases. As
we pointed out, this behavior may be due to the curse of dimensionality because the
number of inputs of the combination networks increases as the number of networks
increases.

The Mizture model was also successfully applied as a whole model and as an ensem-
ble combiner. The original version (called Miz-BN-BN in this thesis) was designed
as an alternative to complex network architectures, it provided better results than
expected for some datasets and, in some cases, it clearly outperforms the single
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MF network and Simple Ensemble. However, there were a few cases in which it
performed quite worse than a single MF network. Maybe, this model only fits in
those classification problems in which the original problem can be divided into some
subproblems. Moreover, this original version has been improved by applying the
Multilayer Feedforward network as experts and gating network. The new versions,
Mix-MF-BN and Mixz-MF-MF, perform better than the original implementation but
slightly worse than a Simple Ensemble in general. We think that the three versions
are important because they are based on divide and conquer so they are “different”
to the classifiers generated with the ensemble approach.

Furthermore, this model was used to combine ensembles generated with Simple
Ensemble. Mix-SE-BN and Mix-SE-MF were introduced to combine ensembles with
a special weighted average. In the first alternative, a Basic Network was used to
generate the gating network whereas the Multilayer Feedforward network was in
charge of the gating network in the second combiner. The results showed that they
slightly improve the performance of the original ensemble combined with Output
average. Moreover, it seems that Miz-SE-BN provides slightly better results and it
is less complex than the other alternative proposed, Mix-SE-MF.

11.2 General Conclusions

The final and most important conclusions of this thesis are discussed in this sec-
tion. The presented conclusions clearly synthesize all the research done for more
than seven years in the field of ensembles of neural networks and other advanced
classification systems.

Firstly, neural networks are base generalizers which provide good results in classifica-
tion tasks according the experiments we have realized in this thesis. In fact, this kind
of classifiers are better than K-Nearest Neighbors, an important statistical classifier
commonly used in the literature. Between the two architectures of neural networks
analyzed in this thesis, Multilayer Feedforward (MF) and Radial Basis Functions
(RBF), the last one provides better results but it can not be properly used with
ensembles because its diversity degree is low (all the networks of an ensemble of
RBF networks tend to be similar among them). To generate an ensemble of MF
networks may be a better alternative than using a system based on RBF networks
according to the performance, complexity and training requirements of the system.

Secondly, several classic ensemble alternatives from the literature have been tested
and a few of them have been selected as the best ensembles when they are applied
to solve classification problems. All these methods included in the list shown in the
previous section provide excellent results for any database so they should be seri-
ously considered to apply to any classification task. Moreover, Simple Ensemble has
also been included in it because it is simple, reports good results and it can be used
as base classifier to statistically compare the new alternatives. A new ensemble al-
ternative should appear in the list of best ensembles if it improves Simple Ensemble
and the statistical test denotes that the differences between this new alternative
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and Simple Ensemble are statistically significant (if a new ensemble does not im-
prove Simple Ensemble or their differences are not statistically significant, this new
ensemble should not be considered a good alternative).

Moreover, new ensembles have been proposed in this thesis and most of them should
also be included in the previous list because they provide better performance than
Simple Ensemble and accomplish the statistical requirements. For instance, two new
versions of C'V(' were proposed in this thesis and they were included in the first list
of best ensembles because they are better than Simple Ensemble and their differences
with respect to Simple Ensemble are statistically significant.

Furthermore, we introduced new ensembles in advanced researches. Using the new
reordering algorithms, we have improved the performance of the best classic en-
sembles (Simple Ensemble, some CVC' versions, Decorrelated, Conserboost, Ave-
boost among others) so the new versions of these ensembles should be seriously
considered instead of the “traditional” versions without reordering. Moreover, the
new Awveraged-Conservative Boosting and Weighted-Conservative Boosting ensem-
bles improve the best classic Boosting variants so they should be considered better
alternatives than Awveboost and Conserboost (the best boosting variants according
to the classic ensemble comparison). In addition, the best overall performance with
ensembles of neural networks are provided by the new ensembles generated with
the Cross-Validated Boosting methodology. In general, the boosting variants have
been improved by using this new methodology when it is based on the partition of
the learning set done by C'VCv3 and the final combiner is Qutput average. In fact,
CVCv3ACB and CVCv3WCB (ensembles based on advanced boosting variants pro-
posed by us and the new Cross-Validated Boosting methodology introduced in this
thesis) provide the best overall performance. However, the new Cross- Validated al-
ternatives based on C'VCv2 provide the best results in ensembles of 9 networks and
Boosting combiner performs well in high sized ensembles (40 networks).

We think that the reordered versions of the classic ensembles, ACB, WCB and the
cross-validated boosting ensembles based on CVCv3 and Output average (even the
most sophisticated versions, CVCv3ACB and CVCv3WCB) should be included in
the list of the best ensembles.

Thirdly, as has been previously shown, the ensemble alternatives are improved step
by step and sometimes the differences between one single improvement and the
original ensemble are not statistically significant. Although the best overall results
are provided by 40-network ensembles generated by CVCv3ACB and CVCv3WCB,
our example will be based in CVCv3ACB. This ensemble is based on C'VCv3 and
ACB. On the one hand, C'VCv3 is proposed in this thesis as an improved version
of CVC2 and, therefore, C'VCv1. On the other hand, ACB is also proposed in this
thesis as refined version of Conserboost and Aveboost (both ensembles are “classic”
improvements of Adaboost). In the results shown in chapter [§ (tables [8.4] and
, we can see that the differences between ACB and Aveboost are not statistically
significant. Moreover, the differences of ACB with respect to Conserboost are not
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also statistically significant. In both cases, ACB is slightly better than these classic
boosting ensembles according to the mean PER. However, CVCv3ACB is clearly
better than the classic boosting variants because it provides better mean PER
and the differences with respect them are statistically significant. We can consider
ACB as a slight improvement of the classic boosting variants but its refined version,
CVCv3ACB, is clearly better than all of them.

With the last example we want to remark that we do not have to focus our conclu-
sions in the intermediate results because a global view shows us that a sequence of
improvements (even slight improvements) can provide us the best ensemble alter-
native and it can be quite better than the original one. In figure [11.1} we show a
representative view of the sequence of improvements done on ensembles (along with

the mean JoP) to achieve the best ensembles, CVCv3WCB and CVCv3ACB.

aveboost 6%
adaboost 4.9%

bagging 5.9%

Figure 11.1: Diagram of best ensemble alternatives

Fourthly, selecting the most appropriate combiner for an ensemble is not an easy
task. The combiner which should be applied to a specific ensemble will be chosen
depending on the dataset, size of ensemble and alternative applied to design the
ensemble. Initially, Output average should be always be used to fuse the networks
because it provides good results in a wide majority of cases. Moreover, other com-
biners such as Voting and Borda Count can also be used for ensembles of RBF net-
works. Although the different Boosting variants introduce a specific combiner (Boost-
ing combiner), Output average provides the best results for Averaged-Conservative
Boosting, Weighted-Conservative Boosting and the best ensembles based on the
Cross-Validated Boosting methodology. However, the Boosting combiner should also
be considered because it provides good results for ensembles of 40 networks, maybe
it does not work well on low and medium sized ensembles because there are not
enough networks to apply its special weighted average.

Furthermore, the proposed Stacked Combiners and Mixture Combiners should also
be seriously considered despite their training requirements because they provide
an alternative view to fuse the networks. Specially, the new Stacked Combiners can
learn from the mistakes done by an ensemble and they can provide high performance
when they are used to combine low and medium sized ensembles. In the case of high
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sized ensembles, the combination networks may not properly process the outputs of
a high set of networks because of the curse of dimensionality.

Fifthly, the research of new ensembles and combiners should not be considered as
finished. Although a simple improvement can not be considered “important”, the
summatory of some improvements can derive in good alternatives. We do not have to
partially see how a new ensemble improves a previous version because a global view
can show us that it is clearly a good choice to design ensembles of neural networks. As
shown in this thesis, the best results are provided by CVCv3ACB and CVCv3WCB.
Both methods have been designed after performing several improvements on Cross-
Validation and Boosting. Maybe, with all the information provided in this thesis or
by using a new alternative point of view, we can slightly improve them. Although the
new hypothetical ensembles can be considered “similar” to our best ensembles, their
refined versions could statistically outperform our best versions. As depicted in figure
11.1] with symbol ‘?’, we do not know yet the performance of a new hypothetical
ensemble based on CVCv3ACB or CVCv3WCB but we think it might be better.

Sixthly, other Multiple Classifier Systems have been studied despite this thesis has
been focused on ensembles of neural networks. The original versions of both models
have been implemented but they do not report extraordinary results. However, those
alternative models are interesting because they address the classification problems in
a different way so they might not commit exactly the same errors than an ensemble
may.

Finally, we provide a deep analysis to other researchers. Some techniques are studied
in this thesis and the “worst” ones can be discarded. Moreover, new good models
are also introduced here. Other researchers have enough information in order to de-
cide which alternatives can be used for their own classification problems. Moreover,
they can avoid the systems which provide the worst results. Although we can in-
form about which is the alternative (or alternatives) with best overall performance,
each final application is unique so its ‘best’ classification system will depend on the
characteristics or features of the application.

For instance, there can be applications in which an error rate is tolerated whereas
there are other applications where the highest performance is required. It is sense-
less to use an advanced ensemble if the performance provided by Simple Ensem-
ble is enough for the problem. However, we should apply the best ensembles, i.e
CVCv38ACB and CVCv3WCRB, if we need a classifier with the highest performance.

Furthermore, there are applications in which the prediction should accomplish with
some timing restrictions and we have to balance them with the performance of the
classifier. An example is depicted in figure [L1.2] where we use an advanced classifier
to establish the path that a robot should follow in an orange grove. This classification
system processes an image captured by the vision system (a) and predicts the class
which belongs to each region of the input image (b). With this generated image and
the information provided by other sensors, the final path, shown as the light blue
line in (c), can be established. In this case, a high performance system composed
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by a few networks has to be selected because it is better than a single network but
also the computational requirements are lower than for a high sized ensembles. For
instance, CVCv2ACB or CVCv3ACB can be used to generate a small ensemble or
we can combine a small Simple Ensemble with Stacked+ and a few combination
networks.

classification
with a small
system

postprocessing

(b)

Figure 11.2: Path planner based on classification with neural networks
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Moreover, there are applications in which one classifier (single neural network, en-
semble or other multi-net system) is enough whereas there are applications which
require some quite different classification systems that are consulted by an human
expert. The following figure shows a possible application in which some different sys-
tems can be applied to solve the classification problem “Diagnostic of breast cancer
based on mammography”. In this hypothetical application, the diagnostic is given
by the doctor considering his own experience, the medical history of the patient and
the predictions provided by diverse classifiers based on neural networks.

Ph.D.
Thesis
- Method diag perf.

- KNN v 88%
u C4.5 x 92%
™ Single MF x 90%
- Single RBF 4 96%
- Simple Ensemble x 95%
cvcv3 v 94%
u A | Conserboost v 93%
n g Aveboost x 93%
mamography @ | CVCV3WCB v 98%
© | STC-SE-CVCv3ACB x 95%
O | DECOv1 x 91%

Final diagnostic
Breast cancer maybe present

literature and
experience

patient's
medical history

Figure 11.3: Breast Cancer diagnostic

In the previous figure, a final diagnostic of breast cancer is shown. The informa-
tion provided in this thesis can be used to select some different approaches and
classifiers with good performance: DECOv1, CVCv3WCB, Stacked-SE-CVCv3ACB,
Single RBF among other alternatives. The prediction done by these advanced clas-
sifiers can be used by the specialist in order to provide the final diagnostic.
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11.3 Publications

In this section, the most important publications related with the results introduced
in this thesis are shown.

The results have been published in the most important conferences related to neu-
ral networks such as International Work-Conference on Artificial Neural Networks
(IWANN), International Joint Conference on Artificial Neural Networks (IJCNN),
World Congress on Computational Intelligence (WCCI) and International Confer-
ence on Neuro-Information Processing (ICONIP). All of them are on the top 60
conferences related to Artificial Intelligence, Machine Learning, Robotics and Hu-
man Computer Interaction being the IJCNN on the 25th position [12§].

Furthermore, IJCNN and ICONIP are cataloged to belong to group “A” (the most
important and relevant category in this rank) according to “The Excellence in Re-
search for Australia Conference Ranking Ezercise” (CORE) [129] whereas [WANN
and International Conference on Artificial Neural Networks (ICANN) belong to
group “B”.

11.3.1 Ensembles of RBF networks

Our papers which describe the research with the RBF network as single classifier
and as an ensemble are shown here.

(RBF1) Mercedes Ferndndez-Redondo, Joaquin Torres-Sospedra and Carlos
Hernandez-Espinosa. Training RBFs Networks: A Comparison Among Su-
pervised and Not Supervised Algorithms. In Neural Information Process-
ing, volume 4232 of Lecture Notes in Computer Science, pages 477-486.
Springer, 2006. Proceedings of the International Conference on Neural
Information Processing.

(RBF2) Carlos Herndndez-Espinosa, Mercedes Fernandez-Redondo and Joaquin
Torres-Sospedra. Ezperiments on Ensembles of Radial Basis Functions. In
Artificial Intelligence and Soft Computing , volume 3070 of Lecture Notes
in Computer Science, pages 197-202. Springer, 2004. Proceedings of the
International Conference on Artificial Intelligence and Soft Computing.

(RBF3) Carlos Herndndez-Espinosa, Joaquin Torres-Sospedra and Mercedes
Fernandez-Redondo. Combination Methods for Ensembles of RBF's. In Ar-
tificial Neural Networks: Formal Models and Their Applications, volume
3697 of Lecture Notes in Computer Science, pages 121-126. Springer, 2005.
Proceedings of the International Conference on Artificial Neural Networks.

(RBF4) Joaquin Torres-Sospedra, Mercedes Fernandez-Redondo and Carlos
Hernandez-Espinosa. A comparison of combination methods for ensembles
of RBF networks. In Proceedings of the International Joint Conference on
Neural Networks, volume 2, pages 1137-1141. IEEE, 2005.
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(RBF5)

(RBF6)

11.3.2

Mercedes Fernandez-Redondo, Joaquin Torres-Sospedra and Carlos
Hernandez-Espinosa. Combinacion de Conjuntos de Redes Radial Ba-
sis Functions. In Actas del Simposio de Inteligencia Computacional,
SIC02005, pages 515-520. Thomson, 2005.

Joaquin Torres-Sospedra, Carlos Hernandez-Espinosa and Mercedes
Fernandez-Redondo. An Ezperimental Study on Training Radial Basis
Functions by Gradient Descent. In Artificial Neural Networks in Pattern
Recognition, volume 4087 of Lecture Notes in Artificial Intelligence, pages
81-92. Springer, 2006. Proceedings of the IAPR Workshop on Artificial
Neural Networks in Pattern Recognition.

Ensembles of MF networks: Comparisons

The papers published related to comparisons of ensembles of MF' networks are the
following ones:

(MFC1)

(MFC2)

(MFC3)

(MFC4)

(MFC5)

Mercedes Fernandez-Redondo, Carlos Hernandez-Espinosa and Joaquin
Torres-Sospedra. Classification by Multilayer Feedforward Ensembles. In
Fuliang Yin, Jun Wang et al., editors, Advances in Neural Networks, vol-
ume 3173 of Lecture Notes in Computer Science, pages 852-857. Springer,
2004. Proceedings of the International Symposium on Neural Networks.

Joaquin Torres-Sospedra, Carlos Hernandez-Espinosa and Mercedes
Fernandez-Redondo. New results on ensembles of multilayer feedforward.
In Wlodzislaw Duch, Janusz Kacprzyk, Erkki Oja and Slawomir Zadrozny,
editors, Artificial Neural Networks: Formal Models and Their Applica-
tions, volume 3697 of Lecture Notes in Computer Science, pages 139-144.
Springer, 2005. Proceedings of the International Conference on Artificial
Neural Networks.

Carlos Hernandez-Espinosa, Mercedes Fernandez-Redondo and Joaquin
Torres-Sospedra. Nuevos Ezperimentos sobre Conjuntos de RNAs. In Ac-
tas del Simposio de Inteligencia Computacional, SICO2005, pages 19-25.
Thomson, 2005.

Joaquin Torres-Sospedra, Mercedes Fernandez-Redondo and Carlos
Hernandez-Espinosa. Combination Methods for Ensembles of MF. In
Wlodzislaw Duch, Janusz Kacprzyk, Erkki Oja and Slawomir Zadrozny,
editors, Artificial Neural Networks: Formal Models and Their Applica-
tions, volume 3697 of Lecture Notes in Computer Science, pages 133-138.
Springer, 2005. Proceedings of the International Conference on Artificial
Neural Networks.

Joaquin Torres-Sospedra, Mercedes Fernandez-Redondo and Carlos
Hernandez-Espinosa. A research on combination methods for ensembles
of multilayer feedforward. In Proceedings of the International Joint Con-
ference on Neural Networks, volume 2, pages 1125-1130. IEEE, 2005.
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(MFC6) Joaquin Torres-Sospedra, Carlos Herndndez-Espinosa and Mercedes

11.3.3

Fernandez-Redondo. Combinacion de Conjuntos de Redes Multilayer Feed-
forward. In Actas del Simposio de Inteligencia Computacional, SICO2005,
pages 11-18. Thomson, 2005.

Ensembles of MF networks: Boosting improvements

The papers, in which the proposed improvements of the Boosting methods have been
published, are the following ones:

(MFBI1)

(MFBI2)

(MFBI3)

(MFBI4)

11.3.4

Joaquin Torres-Sospedra, Carlos Hernandez-Espinosa and Mercedes
Fernandez-Redondo. Designing Multilayer Feedforward Ensembles with
Cross Validated Boosting Algorithm. In Proceedings of International Joint
Conference on Neural Networks, IJCNN 2006, pages 2257-2262. IEEE,
2006.

Joaquin Torres-Sospedra, Carlos Hernandez-Espinosa and Mercedes
Fernandez-Redondo. Mizing Aveboost and Conserboost to Improve Boost-
ing Methods. In Proceedings of International Joint Conference on Neural
Networks, IJCNN 2007, pages 672-677. IEEE, 2007.

Joaquin Torres-Sospedra, Carlos Hernandez-Espinosa and Mercedes
Fernandez-Redondo. Designing a Multilayer Feedforward Ensemble with
the Weighted Conservative Boosting Algorithm. In Proceedings of Interna-
tional Joint Conference on Neural Networks, [JCNN 2007, pages 684-689.
IEEE, 2007.

Joaquin Torres-Sospedra, Carlos Hernandez-Espinosa and Mercedes
Fernandez-Redondo. Researching on combining boosting ensembles. In Pro-
ceedings of the International Joint Conference on Neural Networks, IJCNN
2008, pages 2290-2295. IEEE, 2008.

Ensembles of MF networks: Reordering the training
set

The proposed reordering techniques shown in chapter 7| have been published in:

(MFR1)

11.3.5

Joaquin Torres-Sospedra. Carlos Hernandez-Espinosa. and Mercedes
Fernandez-Redondo. Adding Diversity in Ensembles of Neural Networks
by Reordering the Training Set. In Vera Kurkova. Roman Neruda. and
Jan Koutnik. editors. Artificial Neural Networks, volume 5163 of Lecture
Notes in Computer Science, pages 275-284. Springer, 2008. Proceedings of
the International Conference on Artificial Neural Networks.

Ensembles of MF networks: Advanced models,
Stacked and Mixture

The papers in which we introduce our research with Stacked and Mizture models as
whole classifiers and ensemble combiners are:
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(AM1) Joaquin Torres-Sospedra, Carlos Herndndez-Espinosa and Mercedes
Ferndndez-Redondo. Combining MF Networks: A Comparison among Sta-
tistical Methods and Stacked Generalization. In Friedhelm Schewenker and
Simone Marinai, editors, Artificial Neural Networks in Pattern Recogni-
tion, volume 4087 of Lecture Notes in Artificial Intelligence, pages 210-220.
Springer, 2006. Proceedings of the IAPR Workshop on Artificial Neural
Networks in Pattern Recognition.

(AM2) Joaquin Torres-Sospedra, Carlos Herndndez-Espinosa and Mercedes
Fernandez-Redondo. Stacking MF Networks to Combine the QOutputs Pro-
vided by RBF Networks. In Joaquim Marques de S&, editor, Artificial Neu-
ral Networks, volume 4668 of Lecture Notes in Computer Science, pages
450-459. Springer, 2007. Proceedings of the International Conference on
Artificial Neural Networks.

(AM3) Carlos Hernandez-Espinosa, Joaquin Torres-Sospedra and Mercedes
Fernandez-Redondo. Researching on Multi-Net Systems Based on Stacked
Generalization. In Lionel Prevost, Simone Marinai and Friedhelm
Schwenker, editors, Artificial Neural Networks in Pattern Recognition,
volume 5064 of Lecture Notes in Artificial Intelligence, pages 193-204.
Springer, 2008. Proceedings of the IAPR Workshop on Artificial Neural
Networks in Pattern Recognition.

(AM4) Joaquin Torres-Sospedra, Carlos Herndndez-Espinosa and Mercedes
Ferndndez-Redondo. Designing a New Multilayer Feedforward Modular
Network for Classification Problems. In Proceedings of International Joint
Conference on Neural Networks, IJCNN 2006, pages 2263-2268. 1EEE,
2006.

(AM5) Joaquin Torres-Sospedra, Carlos Herndndez-Espinosa and Mercedes
Fernandez-Redondo. The Mixture of Neural Networks Adapted to Multi-
layer Feedforward Architecture. In De-Shuang Huang, Song Wu and Kang
Li, editors, Intelligent Computing, volume 4113 of Lecture Notes in Com-
puter Science, pages 488-493. Springer, 2006. Proceedings of the Interna-
tional Conference on Intelligent Computing.

(AM6) Mercedes Fernandez-Redondo, Joaquin Torres-Sospedra and Carlos
Hernandez-Espinosa. The Mixture of Neural Networks as Ensemble Com-
biner. In Lionel Prevost, Simone Marinai and Friedhelm Schwenker, ed-
itors, Artificial Neural Networks in Pattern Recognition, volume 5064 of
Lecture Notes in Artificial Intelligence, pages 168-179. Springer, 2008. Pro-
ceedings of the IAPR Workshop on Artificial Neural Networks in Pattern
Recognition.

11.3.6 Other publications

In this subsection we introduce other papers we have published but their research
has not been included in this thesis:
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(OP1)

(OP2)

11.4

Mercedes Fernandez-Redondo. Carlos Hernandez-Espinosa. and Joaquin
Torres-Sospedra. Hyperspectral Image Classification by Ensembles of Mul-
tilayer Feedforward Networks. In Proceedings of International Joint Con-
ference on Neural Networks, [JCNN 2004, volume 2, pages 1145-1149.
IEEE 2004.

Carlos Hernandez-Espinosa, Mercedes Fernandez-Redondo and Joaquin
Torres-Sospedra. Some FExperiments on Ensembles of Neural Networks
for Hyperspectral Image Classification. In Mircea Gh. Negoita, Robert J.
Howlett and Lakhmi C. Jain, editors, Knowledge-Based Intelligent Infor-
mation and Engineering Systems, volume 3213 of Lecture Notes in Com-
puter Science, pages 677-684. Springer, 2004. Proceedings of the Interna-
tional Conference on Knowledge-Based Intelligent Information and Engi-
neering Systems.

Citations to our work

The citations related with the previous publications are introduced in this section.
These citations involve important conferences, journals and patents. We consider
that the citation of our work means that our investigation tasks have been useful
for other researchers.

Wu Di, Dai Ji, and Chi Zhongxian. Intrusion detection based on an im-
proved art2 neural network. In Proceedings of the Sixth International Con-
ference on Parallel and Distributed Computing Applications and Technolo-
gies, pages 234-238, IEEE Computer Society, 2005. Our paper [MFC1] has
been cited.

Vidya Manian, Luis O. Jimenez-Rodriguez, and Miguel Velez-Reyes. A
comparison of statistical and multiresolution texture features for improving
hyperspectral image classification. Proceedings of SPIE - The International
Society for Optical Engineering, volume 5982, art. no. 598201. SPIE, 2005.
Our paper [OP1] has been cited.

Guilherme Palermo Coelho and Fernando J. Von Zuben. The influence of
the pool of candidates on the performance of selection and combination
techniques in ensembles. In Proceedings of the International Joint Confer-
ence on Neural Networks, IJCNN 2006, pages 5132-5139. IEEE, 2006. Our
paper [MFC5] has been cited.

Shivam Tripathi, V.V. Srinivas, and Ravi S. Nanjundiah. Downscaling of
precipitation for climate change scenarios: A support vector machine ap-
proach. Journal of Hydrology, 330(3-4):621-640, Elsevier, 2006. Our paper
[OP2] has been cited.

234



CHAPTER 11. CONCLUSIONS AND FUTURE WORK

- Marjory Cristianny C. Abreu and Anne Magaly de Paula Canuto. Fvaluat-
ing the influence of the choice of the ensemble members in some fuzzy com-
bination methods. In Proceedings of the International Joint Conference on
Neural Networks, pages 448-453. IEEE, 2007. . Our papers [RBF4,MFC5]
have been cited.

- Marjory Cristianny C. Abreu and Anne Magaly de Paula Canuto. An ez-
perimental study on the importance of the choice of the ensemble members
in fuzzy combination methods. In ISDA’07: Proceedings of the Seventh
International Conference on Intelligent Systems Design and Applications,
pages 723-728, Washington, DC, USA, 2007. IEEE Computer Society. Our
papers [RBF4,MFC5] have been cited.

- Dingding Chen, Allan Zhong, John Gano, Syed Hamid, Orlando De Je-
sus, and Stan Stephenson. Construction of surrogate model ensembles with

sparse data. In IEEE Congress on FEvolutionary Computation, pages 244-
251. IEEE, 2007. Paper [MFC5] has been cited.

- Anne Magaly de Paula Canuto and Marjory Cristianny C. Abreu. Using
fuzzy, neural and fuzzy-neural combination methods in ensembles with dif-
ferent levels of diversity. In Artificial Neural Networks - [CANN 2007, 17th
International Conference, Porto, Portugal, September 9-13, 2007, Proceed-
ings, Part I, volume 4668 of Lecture Notes in Computer Science, pages
349-359. Springer, 2007. Our papers [RBF4,MFC5] have been cited.

- Ivdn Machoén, Hilario Lopez, J. Rodriguez-Iglesias, E. Maranén, and I.
Vazquez. Short communication: Simulation of a coke wastewater nitrifica-
tion process using a feed-forward neuronal net. Environmental Modelling
and Software, 22(9):1382- 1387, Elsevier, 2007. Our paper [MFC2] has been
cited.

- Vidya Manian and Luis O. Jimenez. Land cover and benthic habitat classi-
fication using texture features from hyperspectral and multispectral images.
Journal of Electronic Imaging, 16(2):023011, SPIE and IS&T, 2007. Our
paper [OP1] has been cited.

- Samuel Robert Reid. Partial Ensemble Selection for Multiclass Classifi-
cation. PhD Proposal, Faculty of the Graduate School, University of Col-
orado, 2007. Our paper [AM1] has been cited.

- Samuel Robert Reid. Model Combination in Multiclass Classification. Doc-
toral Dissertation, Faculty of the Graduate School, University of Colorado,
2010. Our paper [AM1] has been cited.
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Lin-Tao Lv, Na Ji and Jiu-Long Zhang. A RBF neural network model
for anti-money laundering. Proceedings of the International Conference
on Wawvelet Analysis and Pattern Recognition, ICWAPR 08, vol.1, pages
209-215, IEEE, 2008. Our paper [RBF1] has been cited.

Marcio Leandro Gongalves, Mércio Luiz De Andrade Netto, José Alfredo
F. Costa, and Jurandir Zullo Junior. An unsupervised method of classifying
remotely sensed images using kohonen selforganizing maps and agglom-
erative hierarchical clustering methods. International Journal of Remote
Sensing, 29(11):3171-3207, Taylor & Francis, 2008. Our paper [OP2] has
been cited.

Dingding Chen, Allan Zhong, Syed Hamid, and Stanley Stephenson. Neu-
ral network based surrogate model construction methods and applications
thereof. Patent record available from the US Patent Office, 2008. Paper
[IMFC5] has been cited.

Vidya Manian and Miguel Velez-Reyes. Support vector classification of
land cover and benthic habitat from hyperspectral images. International
Journal of High Speed Electronics and Systems, 18(2):337-348, World Sci-
entific, June 2008. Our paper [OP1] has been cited.

Chris Matthews and Esther Scheurmann. Ensembles of classifiers in ar-
rears management. In Bhanu Prasad, editor, Soft Computing Applications
in Business, volume 230 of Studies in Fuzziness and Soft Computing, pages
1-18. Springer, 2008. Our paper [MFC4| has been cited.

Shuyan Chen, Wei Wang, and Henk van Zuylen. Construct support vector
machine ensemble to detect traffic incident. Expert Systems with Applica-
tions, 36(8):10976-10986, Elsevier, 2009. Our papers [RBF4,MFC5| have
been cited.

Davide Roverso. System and method for empirical ensemble-based virtual
sensing. Patent record available from the World Intellectual Property Or-
ganization, 2009. Our paper [AM1] has been cited.

Alan R. Hilal and Otman Basir. Combination of enhanced adaboosting
techniques for the characterization of breast cancer tumors. Proceedings of
the International Conference on Future BioMedical Information Engineer-
ing, FBIE 2009, 2009, 568-571. Our paper [MFBI4] has been cited.
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11.5 Future work

The research done in this thesis can be complemented with the following three
opened lines that has been considered for future work:

+ Continuing the research in ensembles.
4+ Other researches related to ensembles of neural networks.

+ Study and development of real optimized applications.

11.5.1 Continuing the research in ensembles

As has been commented before, we do not consider the research in designing ensem-
bles as finished. In this opened line, we will use the knowledge acquired in this thesis
in order to design more robust ensembles. With design we mean the procedure to
train the different networks and the technique applied to fuse all the information
provided by the individual networks.

For instance, we are nowadays working in optimized versions of Decorrelated and
Cooperative Ensemble Leaning System and the first results seem to be good. Fur-
thermore, we do not discard to use other different alternatives proposed recently in
the literature with the purpose of designing better ensembles of neural networks.

We think that this line is the natural continuation or future work of the research
done in this thesis. However, we will not focus only on it and we will explore new
alternatives to ensembles and other optimization procedures.

11.5.2 Other researches related to ensembles of neural net-
works

This thesis has been focused on ensembles of neural networks and other models
based on Multiple Classifier Systems. However, we have focused only on selecting
the “optimal” training parameters for the network architecture (number of hidden
nodes, adaptation step among others) and the most appropriate specific parameters
for the different ensemble alternatives and combiners (i.e the A value of Decorrelated,
a in Weighted-Conservative Boosting or v in Dinamically Averaged Networks). For-
tunately, there are some other alternatives in order to improve the performance of
the neural networks. Although some of them depend on the classification problem,
the alternatives we will consider are:

+ Input selection.

+ Weight decay.

+ Weight initialization.

+ Pruning.

+ False positive/negative reduction.

4+ Advanced combination of classifiers.

237



ENSEMBLES OF ANNS: ANALYSIS AND DEVELOPMENT OF DESIGN METHODS

Input selection is used to denote the process of selecting those inputs which are
most relevant in describing the output. In complex classification problems there
are a huge quantity of information which has to be processed. For instance, each
pattern of database aritm has 277 input elements. Another important example, the
input vector used in the combination networks of Stacked combiners is high when
the ensemble size is also high (i.e. 40 expert networks). A priori, we do not know
the importance of each individual input and there can be features which may not
be useful for classification. Those useless inputs could decrease the performance of
the network. For these reasons, they should be removed and those inputs which are
retained after this process can be considered the most important features which the
neural network can process. We consider that this methodology can be applied in
two levels, to the independent networks (optimizing each network of an ensemble)
and directly to the whole ensemble (optimizing the performance of the ensemble by
selecting the most appropriate inputs and only use them in the individual networks).
In [I9] a deep analysis of input selection methods in MF networks was introduced,
among all the alternatives they concluded that the analysis of trained MF networks
provided the best results, these alternatives were cataloged to belong to the group
“ARNMEF” in that reference. Moreover, a technique based on the analysis of the
training set also provided good results.

The best alternatives to perform input selection according to reference [19] are shown
in the following list. They are ranked in descending order according to their perfor-
mance so the first element can be considered the best choice.

+ UTA [130].

+ GD-DS [131].

+ TEKA[I32, 133].
+ BL2 [134].

+ DEV [137].

+ TEKB [132, 133).
+ DER2 [136].

+ MAO [137].

+ CLO [138).

+ BL1 [134].

+ BOW [139).

+ YOU [140].

+ BA (with 8 set to 0.5) [I41].

All the methods shown in the previous list are described in their references and they
are also described and analyzed in [19]. Moreover, there are some recent methods
which can be also considered and they are introduced in [142] 143].
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Weight Decay was introduced by Paul J. Werbos [144]. With this procedure, the
weights of the links are decreased while they are trained with Backpropagation. This
methodology can be applied along with input selection [145].

Although the classical weight initialization procedure has been the only alternative
used in this thesis. Some advanced techniques will be considered for future work.
In chapter [7, we saw that the performance of Simple Ensemble could increase if
the interval of weight initialization was also increased. The best mean PER for
the normal Simple Ensemble is 25.84% but we can achieve a 28.14% if we use a
higher interval. The initial configuration of a network depends on how the weights
are initialized and it seems that the diversity degree among all the networks of
a basic ensemble also depends on this procedure. For this reason, we think that
considering other alternatives to set the initial weight values (starting points of the
minimization) should also be tested with ensembles. In this case, we can apply each
alternative to the ensemble in order to select the most important one and use it
to establish the initial configuration of all the networks. Furthermore, we can also
evaluate all these techniques on the individual networks and use the best performing
ones to generate the individual networks in a way in which the different networks of
an ensemble could use different alternatives to establish the initial configuration. We
think that the diversity of an ensemble can be increased if we use this last alternative.
Concretely, the initialization techniques described in [1406], 147, 148] provided the
best performance as reported in [19]. However, there are more alternatives in the
literature which can also be tested.

Pruning is one of the most researched areas and this approach involves the removal
of connections and hidden units based on the value of the weights. With this pro-
cedure the less important weights and/or hidden neurons can be removed while the
accuracy of the networks can be increased. Moreover, the final architecture of the
network tends to be less complex because it can contain less elements. In this way;,
the optimized networks can provide better performance and the computational cost
of the prediction can be reduced. There are some interesting pruning alternatives,
i.e. the techniques described in [149] 150} [I51], that could be applied to the best en-
sembles generated in this thesis. Prunning can also be used in two levels, optimizing
the individual networks or applying directly to the ensemble in order to eliminate
the same link and/or hidden unit in all the networks.

False positive/negative reduction can be introduced to the problems in which a
false positive is much worse than a false negative or vice versa. There are some
applications in which not only the performance is important. In these problems,
there are external factors, such as economical or psychological, which should be
seriously considered. For instance, the negative diagnosis of a severe decease such as
cancer when the patient is ill can have physical consequences which are not allowed.
The existing illness is underestimated and does not receive attention. As it was
shown in [152] 53], 154, [I55] there are some techniques that can be successfully
applied to determined problems. This new criteria (false positive is more important
than a false negative or vice versa) can also be introduced to the ensemble model.
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Advanced combination of classifiers will be focused on properly combining a set
of diverse ensembles and other advanced models. In this thesis, combining has
been focused only on fusing the information provided by an ensemble of neural
networks. However, we consider that the use of a set of heterogeneous advanced clas-
sifiers such as different ensembles of MF networks with high performance (Decor-
related, best Boosting variants, CVCv3, our CVCv3ACB and CVC3WCB, among
others), advanced Stacked systems (Stacked G& O, Stacked-Inverboost-SN, Stacked-
SN-CVCv3ACB) and the best Mizture approaches (Miz-MF-MF and Miz-SE-BN)
can be used together in order to provide a final global output. Although some of
them may provide similar performance, their origins are quite different so they do
not have to classify exactly in the same way and they may not agree in all the
individual predictions. In this way, the final prediction is easily reached if all the
different advanced systems agree but this prediction is less “clear” if there is not a
consensus among all the classifiers. As Ho expressed in [45, 46], maybe we should
combine effectively all the “simple” classifiers (at this stage we can consider as “sim-
ple classifier” an ensemble of neural networks and the other models analyzed in this
thesis) we dispose in order to obtain a more accurate classification system.

In the advanced combining we propose, the information provided by some different
classifiers, including ensembles and other MCS, will be considered for the final out-
put. A superior model can be designed if the knowledge acquired by the different
ensembles methods and other models are properly combined and it could provide
better accuracy compared to the best ensemble methods (as an ensemble performs
better than any individual network). Advanced combiners can be applied to perform
this task as was suggested in [127].

11.5.3 Real optimized applications

The research shown in this thesis has been done on an heterogeneous set of databases.
In the future, the knowledge acquired during the last years can be applied to generate
final applications based on neural networks on a few specialized and interesting
datasets. Concretely, the following three real problems have been initially considered:

+ SPAM detection on electronic mail.
+ Diagnostic of breast cancer based on mammography.
& Terrain classification for navigation into orange groves.

Although they are introduced in the following subsections, they are not fully de-
scribed because they are consider for further work and some concrete parts may
vary in the final design.

11.5.3.1 SPAM detection on electronic mail

In this first application we consider, each e-mail can be processed by a neural net-
worked system in order to classify it as normal mail or SPAM. We consider that this
“filter” can be useful because SPAM is a problem which had grown exponentially
the last years, and today comprises nearly the 90% of all the e-mail in the world.
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In figure we show the percentage of SPAM e-mail in january 2010 according to
the bulletin published by Karpesky Labs [150].
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Figure 11.4: Spam percentage in email - January 2010 (Kaspersky Labs)

Moreover, the economical costs are quite high for the Internet Service Providers,
ISP, and the corporations and institutions which have to buy specific anti-viruses
and SPAM filters. For these reasons, we consider that a final application based on
SPAM detection is quite interesting for final users (they do not receive viruses or

useless mail) and for the ISP (they can filter conflictive mail and reduce the data
traffic).

The predictions can be done by the local e-mail client (i.e. Mozilla Thunderbird), by
the e-mail server or by both. Some features are extracted from the e-mail (such as
the frequency of a determined word, the appearance of special characters or the use
of capital words) and they can be used to perform the prediction. Although in the
UCT repository of machine learning there is a dataset generated by Hewlett-Packard
Laboratories which can be used, we consider that we should generate a new dataset
because SPAM is in constant evolution and part of them is specific to the location
(country or region).

Finally, we can find in the literature that there are some recent publications [157,
158, 159, [160] with proposals to detect SPAM in e-mail so, we think, it is an active
research field.
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11.5.3.2 Diagnostic of breast cancer based on mammography

In this second application, we think that an advanced classification system can be
used to suggest the diagnosis of Breast Cancer to a specialist. In this case, a classifier
based on neural networks is used to predict if a mass detected in a mammography
is benign or malign as depicted in figure [11.5]

1) detection of masses 2) extract features 3) prediction
il Age: 50 benign
. ~~ 7 mass shape: round
suspicious_; ‘ mass margiln:' CI(cumscr/bed
mass & mass density: high

X =[50, round, circumscribed, high] e

N

mamography

Figure 11.5: Example of the process of detecting and classifying a suspicious mass
in a mammography

As we mentioned, this concrete application may be considered as a tool instead of a
pure automated diagnostic application. The final decision or diagnosis is provided by
the specialist which uses, among other sources of information, the prediction of one,
or more, advanced classifiers. We think that a tool of these characteristics can be
useful because it can have a high generalization capability and it can be considered
a good “supporting” system. This aim was introduced in figure [11.2

Moreover, we can apply the optimization procedures described in the previous sub-
section in order to improve the performance of the classifiers and reduce the false
negatives in the diagnosis of breast cancer. As it has been mentioned, the conse-
quences of this diagnosis in ill patients can not be allowed. However, its important
to mention that the final diagnosis is always given by a specialist who also uses his
own experience in order to give the final diagnosis. In conflictive cases, he has to
take the last decision.

Finally, according to the bibliography [161], 162 163, 164, 165], this kind of appli-
cations is interesting and the research on this field does not decrease. Moreover,
we have recently performed a first analysis of this problem using two versions of
database “Mammographic Mass Data” from the UCI repository of machine learning
[70] and the results are good. In this database, the age of the patient and three
features extracted directly from the mammography (mass shape, mass margin and
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mass density) are used to predict if it is benign or malign. Moreover, the assess-
ment assigned in a double-review process by physicians is also considered for the
prediction. In the first study we performed, we could saw that this assessment is
important in the final classification and it is a good input feature. However, it has
been a first study and we have to perform a deeper analysis in order to provide
optimized classification systems in which these assessments can be present or not.

This first research has been done under the supervision of Carlos Herndandez-
Espinosa Ph.D. and Mercedes Ferndndez-Redondo Ph.D. and we think it can be
a good research line so we are still working on it.

11.5.3.3 Terrain classification for navigation into orange groves

In this application, we want to use a neural network based system in order to help
an autonomous robot in its navigation into an orange grove. We decided to use
it because a similar application was performed with neural networks in [166]. In
that paper, a neural network was used for terrain classification tasks in a more
general way because it was introduced for detection of any kind of off-road terrains
in military applications. We think that this approach can also be used in our specific
problem because our environment is more “controlled”. However, it is not totally
controlled because the weather and lightning conditions are important factors. These
“uncontrolled” factors aimed us to use neural networks in classification because using
simple color-based approaches were not enough. With “more controlled”, we meant
that our outdoor environments (where our robot should work) are simpler than the
ones used in the reference because the basic structure of the different orange groves
are similar (in the reference their robot should deal with an heterogeneous set of
environments which were quite different among them).

Concretely, our proposed classifier processes a captured image in order to predict
its areas as Sky (light blue in the image), Soil/Land (red), Orange trunks (yellow)
and Orange Crown (green) as depicted in figure m

Figure 11.6: Image captured at an orange grove (left) and predicted classes (right)

However, the classification is not directly done with the original image. According to
[166], the two-level Daubechies wavelet transform (concretely Daub2) is adopted for
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each HSL channel of the captured image. HSL is one of the most common cylindrical-
coordinate representations of points in an RGB color model and a pixel value de-
pends on the hue, saturation, and lightness. Each wavelet provides seven sub-band
images so a total of 21 sub-band images (3 channels and 7 sub-band images per
channel) are used for classification. Then, some parameters (Energy and Mean) are
calculated with the values of the sub-band images for each block of the original im-
age. A block is a N x M area of the original image and the parameters of the wavelet
are calculated using the pixels of the sub-band images which belongs to the original
area. Moreover, the relative position in the image (vertical and horizontal axises)
are also used in the classification. In the original reference it has been suggested
that this last information is useful because, for instance, the sky is always located
at the top of the image. Finally, the input vector is generated as described in the
reference. We do not describe deeper how the vector inputs are generated because
this project is still in an initial stage and, maybe, the input features can vary.

Once the classification tasks are done, the predictions will be used to obtain the
boundaries of the land (or soil) with the orange trunks and soil. To calculate the
border lines we will use the Hough transform. In the example (ﬁgure7 the border
lines have been calculated in some different sections because the original borders are
complex and, sometimes, are not given by simple lines. With the border lines (blue
lines in figure [11.7] (a)), we calculate the center of the path. Thi