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Every solution of a problem raises new unsolved problems; 

the more so the deeper the original problem and the bolder its solution. 

The more we learn about the world, and the deeper our learning, 

the more conscious, specific, and articulate will be our knowledge 

of what we do not know, our knowledge of our ignorance. 

For this, indeed, is the main source of our ignorance – the fact 

that our knowledge can be only finite, 

while our ignorance 

must necessarily be infinite. 

 

(Karl R Popper 1963) 

 

(Conjectures and Refutations. Routledge & Kegan Paul New York) 

 

 
 

 

 

 

 

Science does not rest upon solid bedrock. The bold structure of its theories 

rises, as it were, above a swamp. It is like a building 

erected on piles. The piles are driven down from above into the swamp, 

but not down to any natural or ʻgivenʼ base; and if we stop driving 

the piles deeper, it is not because we have reached firm ground. 

 We simply stop when we are satisfied that the piles are firm enough to carry the structure, 

at least for 

the time being. 

 

(Karl R Popper 1992) 

 

(The Logic of Scientific Discovery. Routledge London, 1992) 
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Abstract 

Animals have to deal with an environment presenting vast amounts 

of ever-changing sensory information. What features of this 

information flow are captured by the sensory system? My thesis 

work examines how signals experienced during free olfactory 

behaviors are processed by first-order olfactory sensory 

neurons (OSNs) of the Drosophila larva. By combining a novel 

extracellular recording technique with a microfluidics control system 

to control odor delivery in time and space, the computational 

principles underlying the encoding of dynamical odor stimuli were 

explored in a single OSN. An optogenetic approach was used to 

explore the OSN coding space and mimic naturalistic odor 

responses. The results described herein suggest that relative changes 

of the stimulus and their temporal integration are captured in a 

single OSN. Finally, larval behavior was characterized in closed-loop 

virtual odor environments and dissected with respect to the 

influence of dynamic features of the stimulus. It emerged that the 

neural activity of a single OSN is firmly correlated with dynamic 

features, notably the derivative of the stimulus intensity. These 

findings link the neural activity of single sensory neuron to 

behavioral transitions. Taken together, the results of this work 

provide an entry point into the understanding of larval action 

selection during chemotaxis. 
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Resumen 

Los animales tienen que hacer frente a un entorno caracterizado por 

un flujo variable y abundante de información sensorial. ¿Qué rasgos 

de este flujo de información son capturados por el sistema sensorial? 

Este trabajo examina como las neuronas olfativas sensoriales de 

primer orden (NOS) de la larva de Drosophila procesan las señales 

experimentadas durante comportamientos olfativos 

incondicionados. Mediante la combinación de una novedosa técnica 

de grabación extracelular y un sistema de control de microfluidos 

que permite controlar temporal y espacialmente el suministro de 

olor, se exploraron los principios computacionales que permiten 

codificar los estímulos dinámicos de olor en una sola NOS. Para 

explorar el espacio que codifican las NOS y recrear una respuesta 

olfatoria naturalista se utilizaron técnicas de optogenética. Los 

resultados de este estudio sugieren que tanto los cambios de 

estímulos relativos como su integración temporal son capturados en 

una sola NOS. Por último, se cuantificó la conducta larval en 

entornos de olor virtual de bucle cerrado (closed-loop virtual odor 

environment) y se analizó teniendo en cuenta la influencia de las 

características dinámicas del estímulo. Del análisis resultó que la 

actividad neuronal de una única NOS está firmemente 

correlacionada con características dinámicas, en particular con la 

derivada de la intensidad del estímulo. Estos hallazgos ponen de 

manifiesto vinculan la actividad neuronal de una sola neurona 

sensorial con transiciones del comportamiento. En conjunto, los 

resultados de este trabajo proporcionan un punto de partida para 
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comprender la toma de decisiones de las larvas durante la 

quimiotaxis. 
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Preface 

The survival of animals vitally depends on their ability to receive 

sensory information from their adjacent environment. To 

appropriately react to new sensory information animals constantly 

adjust their behavior. What features within the sensory information 

stream lead to changes in an animal’s behavior?  

This work focuses on the sensorimotor basis of a behavior 

performed by Drosophila larvae ascending an odor gradient. This 

behavior, called ‘chemotaxis’ has been described in various species, 

but the sensorimotor basis of this phenomenon has seldom been 

studied in naturalistic contexts. First, the sensory experience during 

chemotaxis is characterized in a single olfactory sensory neuron 

(OSN) of the Drosophila larva. Through well-controlled odor 

stimulations it is shown that an OSN can act as a differentiator 

through a combination of integral feedback and feed-forward 

regulation of olfactory transduction. By taking advantage of 

molecular tools in conjunction with optogenetics experiments in an 

olfactory virtual reality are conducted both behaviorally and 

electrophysiologically, which reveal that high firing rates of the OSN 

suppress turning, whereas low firing rates facilitate turning. Using a 

generalized linear model, light is shed on the question of how 

sensory activity modulates the probability of switching from a run to 

a turn. This work clarifies the link between computations carried out 

in single OSNs and action selection underlying navigation during 

larval chemotaxis.  
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 Theory and Introduction  1 

Theory and Introduction 

Why	  this	  work	  is	  not	  about	  plants:	  Animals	  and	  their	  need	  

for	  sensory	  coding	  

Unlike plants, animals are able to actively move and explore their 

surroundings, without the need to grow extra branches. The 

combination of these animal-specific, self-induced movements can 

be characterized as behavior. In order to accomplish nature’s most 

crucial task — survival — while moving and behaving, it is essential 

for each animal to assess the correct context for every type of 

behavior at all times. The context for every behavior, however, is in 

permanent flux, given the dynamic world it inhabits. A new danger 

(i.e. a predator or a falling rock) lurking behind a corner certainly 

provides a catastrophic change of context for a foraging animal. 

Thus, animals have to quickly assess changes of the context to react 

adequately and immediately to alterations in their immediate 

environment. On the surface this appears a seemingly impossible 

task given the multitude of possible stimuli to be tracked at all times. 

To accomplish an adequate reaction in all situations, animals thus 

need a system that allows them to interrogate their environment in 

not one, but multiple ways simultaneously to obtain trustworthy 

multi-dimensional information about it — in a timely manner. For 

multicellular organisms1, nature's invention to solve this problem is 

known as the nervous system (Hill, Wyse et al. 2012) which is able 

to provide real-time information about the environment with 

varying degrees of complexity tailored to the specific needs of a 

                                                
1 All multicellular animals except sponges have neurons and nervous systems (Hill, 
Wyse et al. 2012). 
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given species. Yet not only does the nervous system gather real-time 

information from its environment and thus provides the context for 

all behaviors, it is also able to efficiently transport this information 

distance beyond the single cell level — a feature essential for 

multicellular organisms, where different cellular compartments are 

too far away from each other as to allow for communication based 

on diffusion alone. Similar to other biological systems, the nervous 

system seems to have evolved towards ever-increasing complexity 

over time, culminating in 86 billion neurons found in the average 

human brain (Herculano-Houzel 2009), a number that is still topped 

by the 251 billion neurons residing in an elephant brain (Herculano-

Houzel, Avelino-de-Souza et al. 2014). This number is close but still 

significantly smaller than there are stars in our galaxy (Voytek 2013). 

The sensory nervous system allows an animal to detect cues from its 

surroundings via a multitude of sensors or receptors, which are 

embedded in respective information channels, called sensory 

neurons. Each sensory neuron can be categorized with respect to 

the physical modality (or modalities) it is tuned to; temperature, 

mechanical stimulation (i.e. touch), electromagnetic radiation (i.e. 

light), sound, and volatile chemicals (odors). In humid environments 

even more specialization is going on: A wide variety of sensors have 

tuned their bandwidth towards the detection of various modalities 

confined to the liquid space: dissolved chemicals (taste), pH, CO2, 

and humidity to name only a few amongst the most prominent 

(Grant 1996; Waldmann 1997; Clapham 2003). 

When taking a broader perspective on sensory systems among the 

different species that populate our planet, it seems obvious that the 
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characteristics of a sensory system a given animal processes are 

highly customized to fit its individual behavioral capabilities in the 

context of its natural habitat. It is this recurrent feedback that an 

environment exerts on an organism’s specialized neural subsystems 

(and the organism as a whole), which has allowed those same 

systems to evolve among a path of ever-increasing efficiency, 

flexibility, adaptability, and robustness (Csete 2002). 

Although neurons themselves are intrinsically electrical in nature, it 

is important to emphasize that information transmitted across the 

nervous system is subject to extensive modulation by chemical 

signaling cascades, namely second messengers, and hormones to 

name only a few (Restifo and White 1990). Also, the communication 

amongst individual neurons happens mainly via distinct classes of 

chemical synapses, each class speaking a different neurotransmitter 

language. With neurotransmitters themselves being highly conserved 

across the animal kingdom, their employment within a given 

nervous system has been shown to vary greatly for across phyla 

(Ryan and Grant 2009). In insects, opposed to mammals, signals 

captured by the sensory system are propagated chiefly through 

cholinergic synapses (Masse, Turner et al. 2009), while synapses 

within the motorneurons appear to be mainly glutaminergic (Mahr 

and Aberle 2006). 

Neural networks can be described as hierarchical structures, where 

the term hierarchy is meant to refer to a repeated encapsulation of 

smaller elements of neural networks in larger ones (Kaiser, Hilgetag 

et al. 2010), an organization often described as recursive or fractal 

(Sporns 2006). Sensory neurons send information they receive from 
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their surroundings (periphery) towards higher order neural hubs, 

where the signal is processed and split up towards different 

locations up in the neural hierarchy. Upon arrival at higher neural 

processing centers, external stimuli from various sensory modalities 

are integrated and compared with intrinsic sensory cues such as 

hunger or thirst (Marella, Mann et al. 2012). Through this process, 

the nervous system is able to establish the context that gives the 

animal the opportunity to adequately react to a given stimulus. Parts 

of the higher processing centers are also capable of memorizing 

relevant context specific information over various time scales. The 

tuning curve1 of sensory neurons (Butts DA 2006), although largely 

species specific, can vary wildly depending on developmental or 

even seasonal factors. Another common theme among sensory 

systems is the high degree of adaptation2 they illustrate, a property 

allowing them to provide a meaningful response over a broad 

intensity range. Yet, what are the features among the ever-changing 

flow of sensory information that are captured by the sensory 

system? How do sensory systems process information they obtain 

from their environment and how does this information modulate an 

animal’s behavior? My thesis work addresses these questions by 

firstly analyzing freely moving larvae in a controlled odor 

environment to record behaviorally relevant odor concentration 

time courses. A representative odor time course was subsequently 

presented in electrophysiological experiments aiming to measure the 

corresponding OSN activity. The characterized neural activity was 

                                                
1 A tuning curve represents the average firing rate of a neuron as a function of 
relevant stimulus parameters (Butts DA 2006). 
2 Sensory adaptation is a change over time in the responsiveness of the sensory 
system to a constant stimulus (en.wikipedia.org/wiki/Neural_adaptation). 
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then reproduced by means of optogenetics and tested behaviorally 

in freely moving larvae navigating light induced virtual odor 

environments. 

Throughout time, sophisticated olfactory systems have evolved to 

track temporal changes in the concentration of volatile odorant 

molecules — food odors, pheromones associated with the presence 

of conspecifics and substances signaling danger. Research on larval 

olfaction can be traced back to the Dutch scientist Jan 

Swammerdam who documented the behavior, anatomy, and life-

cycle of the cheese fly larva Piophila casei already in the 17th century 

(Cobb 1999). However, during the past century, research in the fruit 

fly Drosophila melanogaster gained more and more momentum, 

culminating in Drosophila becoming one of the most studied model 

organisms in biology (Beckingham, Texada et al. 2005) Drosophila’s 

success story may at least in part be attributed to it being a small, 

fast growing, and short lived animal with a relatively simple nervous 

system (Bellen 2010; Stephenson and Metcalfe 2013). At present, a 

rich genetic toolbox allows for an unprecedented genetic dissection 

of Drosophila’s neural circuits, as is most prominently accomplished 

by the famous GAL4-UAS expression system — in some cases 

down to the level of single neurons (Luo, Callaway et al. 2008; 

Jenett, Rubin et al. 2012; Pfeiffer, Truman et al. 2012; Brand 1993). 

Although Drosophila larvae possess an even simpler nervous system – 

comprising a total of less than 10,000 neurons (Nassif, Noveen et al. 

2003) — they are capable of orchestrating an extraordinary 

repertoire of complex behaviors (Louis, Phillips et al. 2012). Their 

sensory system is well equipped to detect a wide variety of physical 
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dimensions such as light, smell, heat, taste, touch, and humidity. 

While larvae are strongly avoiding light stimuli detected by their 

visual system, it appears as though they are strongly attracted by 

odors detected by the olfactory system. In fact, they display a very 

stereotypic pattern of olfactory-guided orientation maneuvers 

allowing them to efficiently allocate food sources from a distance, as 

one would expect of an animal that literally eats all day long. Also, 

the Drosophila larval olfactory system seems to share the basic 

architecture not only with its adult counterpart but also with 

mammals (Gerber and Stocker 2007). Perhaps more surprisingly, 

larvae have been shown to perform Pavlovian conditioning — a 

learning process in which an innate behavioral response to a potent 

stimulus is elicited in response to a paired previously neutral 

stimulus (Pauls, Selcho et al. 2010; Eschbach, Cano et al. 2011; 

Galili, Ludke et al. 2011; Wessnitzer, Young et al. 2012). Contrary to 

adult flies, larval behavior, since they do not fly, is mostly limited to 

two spatial dimensions. Tracking of larvae is therefore a less 

complex task and can be readily automated. The combination of 

these features renders the Drosophila larva a perfect model organism 

to address the question of quantitative sensory coding at the 

peripheral sensory system. 

 

Odor	  detection	  and	  foraging	  strategies	  among	  different	  

species:	  From	  bacteria	  to	  multicellular	  organisms.	  

The detection of physical stimuli is by no means confined to 

complex multicellular organisms. All living cells are in some way 
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sensitive to chemicals in their immediate environment — a 

predisposition that likely led to the eventual evolution of specific 

receptor proteins, which later became the building blocks of ever 

more complex chemosensory organs of multicellular organisms 

(Ache and Young 2005). 

Orientation in response to chemical cues can be classified into two 

major categories: taxis when the organism is capable of directional 

changes directly correlated with the stimulus, and kinesis (from 

ancient Greek κίνησις (kinesis), meaning 'movement, motion’) when 

the organism undergoes directional changes in response to a 

stimulus, resulting in a reorientation towards a random direction. 

Organisms performing kinesis, although they exhibit no direct bias 

towards the stimulus source, over time tend to accumulate closer to 

the source of an attractive substance. This effect can be 

characterized as an emergent indirect bias of the organism towards 

the source. Bacteria have been shown to efficiently track chemical 

gradients by performing klinokinesis (from ancient Greek κλίνω 

(klino), meaning ‘to bow, to incline one’s self’). In doing so, they 

implement a strategy of straight swimming phases — called runs — 

interrupted by distinct, random changes in orientation — called 

tumbles. The overall reorientation rate has been shown to be 

governed by the nutrient concentration (Berg 1972). In spite of its 

simplicity, this orientation algorithm produces efficient gradient 

ascents through a biased random walk. 

In the nematode Caenorhabditis elegans, a numerically simple neural 

network transforms odor information into orientation behavior. It 

was proposed that C. elegans’ orientation behavior employs an 
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improved random walk search strategy to locate an attractive odor 

source (Pierce-Shimomura 1999). It was later discovered that 

chemotaxis in C. elegans is in fact a combination of kinesis and 

weathervaning1 (Bargmann 2006; Iino and Yoshida 2009; Lockery 

2011), a taxis control mechanism involving continuous correction of 

the orientation during runs (Iino and Yoshida 2009; Izquierdo and 

Lockery 2010).  

Contrary to bacteria and C. elegans, many animals are equipped with 

even more sophisticated motor functions. The behavioral strategy 

that is enabled by this staggering increase in complexity is referred 

to as taxis and allows for a directional response to a given stimulus 

(from ancient Greek τάξις (taxis) meaning ‘arrangement’) (Kendeigh 

1961). However, the term ‘taxis’ is ambiguous, since it refers to 

different facts depending on the context of its use: Taxis behaviors 

are either defined according to the biophysical modality a given 

organism responds to (i.e chemotaxis, thermotaxis, or phototaxis)2, 

or with respect to the means a sensory organ processes sensory 

stimuli. Examples following the latter definition of taxis are 

tropotaxis, which describes a strategy of an organism continuously 

comparing information detected via its bilateral sensory organ to 

infer the direction of a concentration gradient, and klinotaxis, which 

refers to a behavioral strategy of an organism receiving information 

from many sensory inputs that actively sample the environment to 

determine the strongest change in concentration. Apart from the 

                                                
1 Weathervaning refers to ‘runs’ during chemotaxis being slightly bent towards the 
direction of higher concentration (Iino and Yoshida 2009; Gomez-Marin and 
Louis 2014). 
2 One example of this ambiguity the term ‘bacterial chemotaxis’, which refers to a 
behavior that can be more accurately described by the term chemoklinokinesis. 
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necessity to sense a change in concentration, animals performing 

klinotaxis also require some kind of memory, which allows them to 

continuously carry out successive comparisons of the present 

stimulus environment with the past stimulus environment (Gomez-

Marin, Duistermars et al. 2010; Gomez-Marin and Louis 2012). To 

perform tropotaxis, memory is no prerequisite since concentration 

differences are compared spatially among different sensors, which 

renders temporal comparisons optional. 

When following an appetitive smell, Drosophila larvae, not unlike 

humans, mice, or dogs, actively seek for cues guiding them to the 

source of the stimulus. Larval chemotaxis could thus be more 

accurately defined as chemoklinotaxis, since animals actively sample 

an odor gradient to locate the odor source (Gomez-Marin and Louis 

2012; Gomez-Marin and Louis 2014). 
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How	  to	  control	  odor	  environments	  to	  study	  the	  interplay	  of	  

sensory	  input	  and	  behavior	  

To embark upon the question of peripheral sensory coding it is 

indispensible to get a handle on the quantitative (naturalistic) 

stimulus time course that an animal experiences during 

unconstrained behavior. In the past, the ability of adult flies to 

measure minute differences between concentrations measured at 

their left and right antennae was tested in a miniaturized treadmill 

coupled to a customized olfactometer (Borst 1982). More recent 

solutions involving airborne olfactory stimuli mixed in laminar 

airflows have broadened the understanding of how rapidly changing 

odor stimuli are encoded by the peripheral olfactory sensory system 

of adult flies (French, Torkkeli et al. 2011; Gershow, Berck et al. 

2012; Martelli, Carlson et al. 2013; Szyszka, Gerkin et al. 2014). To 

date, the creation of a tightly controlled odor environment remains a 

challenging task given the diffusible, and often turbulent nature of 

airborne odor stimuli (Vetter, Sage et al. 2006). However, previous 

work established a solution to this problem by allowing Drosophila 

larvae to behave in a static odor gradient formed by the diffusion 

from single odor droplets in an enclosed arena (Louis, Huber et al. 

2008). The airborne concentration profile inside the arena was 

quantified by infrared spectroscopy and fitted to numerical 

simulations. Individual larval trajectories were subsequently mapped 

onto the odor profile to obtain the actual odor-stimulus-intensity-

time-course for individual animals. Using this approach it was found 

that the duration of runs is strongly modulated by the sensory 

experience the larva undergoes: the average perceived change in 
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odor concentration before a turn steadily declines from an 

increasing concentration to a decreasing concentration. This 

observation was found to be valid for numerous odors over an 

ample range of concentrations (Gomez-Marin, Stephens et al. 2011; 

Gomez-Marin, Partoune et al. 2012). The time derivative of the 

stimulus is continuously normalized by the stimulus concentration, 

!
!
× !"

!"
. 

As a result, runs heading towards the stimulus are elongated while 

runs heading away from the stimulus are shortened. In addition, 

larvae are able to distinguish spatial odor concentration information 

to such an extent as to accurately turn to the side of higher odor 

concentration first (Gomez-Marin and Louis 2012). A correction 

mechanism similar to weathervaning (similar to C. elegans) has also 

been shown to fine-tune the orientation of individual runs towards 

the stimulus (Gomez-Marin and Louis 2014; Ohashi, Morimoto et 

al. 2014). Interestingly, larval mutants, having only one pair of a 

functional single olfactory sensory neuron (OSN), exhibit no deficit 

in locating the odor source1 by means of active sampling when 

compared to their wild type counterpart (expressing all 21 OSNs). 

Even animals expressing only one unilateral single OSN are able to 

locate the source, however, with a slight overall decrease in the 

accuracy of gradient sensing (Louis, Huber et al. 2008). These 

findings suggest that the signal encoded by one pair of OSNs 

transmits enough information to direct orientation of Drosophila 

larvae in an odor gradient. 

                                                
1 Note that single OSN functional larvae are only able to detect a limited subset of 
odors when compared to their wild type counterparts. 
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The mechanistic hypotheses about the control of larval chemotaxis 

outlined above (Gomez-Marin and Louis 2012; Gomez-Marin and 

Louis 2014), however, still lack a quantitative neural model of the 

underlying olfactory processing. 

From	  sensory	  coding	  to	  behavior	  (and	  vice	  versa):	  An	  

example	  of	  sensorimotor	  integration.	  

What features among the ever-changing flow of sensory information 

are captured by the sensory system? And how does this information 

modulate an animal’s behavior? 

What makes the assessment of sensory-motor systems challenging is 

the fact that the stimulus and its neural representation are naturally 

intertwined with an animal’s interaction with its physical 

environment. The sum of all these interactions can be summarized 

as recurrent behaviors which ultimately close the sensory control 

loop by the generation of a continuous stream of sensory feedback 

(Fry, Rohrseitz et al. 2008). In the case of larval olfaction, a 

continuous olfactory stimulus is actively generated through a series 

of behavioral patterns, which are referred to as chemotaxis. To 

understand the neural representations, transformations, and circuit 

dynamics underlying the sensorimotor phenomena of chemotaxis, it 

has been proposed to characterize the transfer properties — i.e. how 

the neural representation of olfactory stimuli is transformed into 

behavior — to infer the systems’ structure–function relationships 

(Huston and Jayaraman 2011). 

When focusing on the neural activity aspect, it was found that in 

insects as in mammals, behaviorally relevant temporal relationships 
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of neural representations of sensory inputs could be simplified down 

to a dual principle: 

(1) a rate or phase code where the firing or spike timing of 

OSNs is related to the odor concentration (Hopfield 1995; 

Abraham, Spors et al. 2004; Masse, Turner et al. 2009), or 

the temporal sequence of the response relative to some 

clock signal (i.e., stimulus onset); 

(2) a combinatorial principle where increasing intensities of an 

odor either recruit the activity of more OSNs (Malnic and 

Hirono 1999; Wilson and Mainen 2006), or cause changes of 

the timing of neurons with respect to each other in a 

population (e.g., synchrony, neuronal activation sequences) 

(Bathellier 2010). 

Although this combinatorial principle (2) has been shown to apply 

to the Drosophila larva, where increasing intensities of an odor recruit 

the activity of an increasing number of OSNs (Kreher, Kwon et al. 

2005; Gerber and Stocker 2007; Kreher, Mathew et al. 2008; 

Asahina, Louis et al. 2009), past work has revealed that a 

combinatorial principle is by no means essential for chemotaxis: the 

information contained in a single pair of OSNs is sufficient to guide 

Drosophila larvae to the source of an odor gradient in a manner 

undistinguishable from wild type (WT) larvae (Fishilevich, 

Domingos et al. 2005; Louis, Huber et al. 2008; Asahina, Louis et al. 

2009). 

To successfully dissect sensorimotor systems, it is most useful to 

commence by characterizing the transformation of behaviorally 

relevant stimuli (stimuli experienced during free, naturalistic 
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behavior) into a neural response (stimulus to neural). In a second 

step recurrent behavioral transitions are modeled as the function of 

the neural response time course (neural to behavior). Huston and 

Jayaraman suggest to further simplify this approach by assuming the 

olfactory-to-motor integration to be a largely feed-forward process, 

with sensory inputs being transformed by successive banks of spatial 

and temporal filters (Huston and Jayaraman 2011). 

Detailed studies of the signal transduction cascade underlying 

bacterial chemotaxis have demonstrated that even a single cell can 

compute temporal changes in the concentration of chemical stimuli. 

This mechanism relies on nearly perfect sensory adaption (Shimizu, 

Tu et al. 2010), which permits the cell to track changes in stimulus 

intensity over several orders of magnitude and achieve robust 

gradient ascents (Lazova 2011). OSNs in C. elegans have been shown 

to fire specifically to either positive or negative changes in 

concentration (Chalasani, Chronis et al. 2007; Lockery 2011) 

However, in adult Drosophila, single OSNs can extract much more 

complex features associated with the dynamics of olfactory stimuli. 

Here, the firing rates follow the time derivative of the stimulus in an 

analog manner over wide concentration ranges (Kim, Lazar et al. 

2011; Szyszka, Gerkin et al. 2014). This analysis led Kim et al. to 

propose that fly OSNs operate according to an adaptive neural 

encoder. 

Neurons are limited in the resolution (frequency range) with which 

they are able emit spikes. Therefore, a reduction in the response to 

sustained stimuli could serve to decrease the redundancy of a rate 

coded signals (Tkačik and Bialek 2014). In adaptation the relation 
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between the magnitude of the signal and a neuron’s firing rate is 

changed. As a result, a sensory neuron is rendered relatively 

insensitive to small fluctuations of the background intensity without 

compromising its ability to encode larger fluctuations. In other 

words, adapted responses bear a strong resemblance to responses to 

lower odor concentrations. In the visual system of the blow fly it 

was found that the magnitude of the rescaling selected by the 

adaptation process optimizes information transmission (Brenner, 

Bialek et al. 2000). It was proposed that this optimization is largely 

achieved through the context dependence in the neural code that is 

established on an apparently continuous range of timescales from 

tens of milliseconds to minutes (Fairhall, Lewen et al. 2001). In the 

end, there may be multiple neural codes operating simultaneously at 

different temporal scales, with each code carrying complementary 

information (Fairhall, Lewen et al. 2001). Such multiplexed codes 

could provide several computational advantages, such as reducing 

the ambiguity inherent to single-scale codes and enhancing 

robustness of neural representations to environmental noise 

(Panzeri, Brunel et al. 2010). 

 

Dissecting	  larval	  chemotaxis:	  Behavioral	  repertoire,	  

behavioral	  classification	  

When observing larvae navigating in an odor gradient, there can be 

no doubt that they are efficiently making their way to the highest 

odor concentration. Larvae crawl forward with peristaltic (rhythmic) 

head and body movements. From time to time they stop to swing 
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their head around, rapidly sampling their immediate surrounding, to 

resume crawling into a new direction. Although larval behavior 

during chemotaxis is very complex with regards to the various 

motor programs coordinating crawling, peristalsis, and head 

movements all at the same time, the overall search behavior appears 

to be relatively simple when studied in greater detail. Previous work, 

by using a high-resolution single animal-tracking algorithm, 

established that only a small number of behavioral classifiers are 

sufficient to account for a large part of the behavioral repertoire 

during chemotaxis. Reported behavioral categories include straight 

runs, stops, turns, and episodes of active head casting (sampling) 

preceding a turn (Figure 1) (Gomez-Marin, Stephens et al. 2011; 

Gomez-Marin and Louis 2012). 

 

 

Figure 1. Top view of larval body posture changes as seen during chemotaxis. A 
larva is seen to interrupt its run (a) to stop (b), sample right (c), sample left (d), 
turn (e), and start a new run (f). Pictures courtesy of Balaji Iyengar, adapted from 
Gomez-Marin and Louis 2012. 

 

The transition between the different behavioral categories is 

governed by changes in the odor-stimulus-time-course immediately 

preceding a transition event (see previous section). A prolonged 
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decrease in the perceived odor concentration at the timescale of 

several seconds triggers an animal to stop (type I decision: when to 

turn) and quickly sample its environment at a sub-second timescale 

(type II decision: which side to turn to), followed by a turning event 

in the direction of increasing concentration (~70% success rate) 

(Figure 1) (Gomez-Marin, Stephens et al. 2011; Gomez-Marin and 

Louis 2012). 

This work’s main focus lies on the control of the duration of a run 

(type I decision), a behavioral mechanism common to bacteria, C. 

elegans and Drosophila. This behavior is ideally suited to study how 

dynamical changes in odor concentration can be used to regulate 

whether an ongoing run is maintained or a turning maneuver is 

initiated. 

 

The	  larval	  olfactory	  system’s	  architecture	  

How does the sensory system achieve the transmission of 

information from the periphery to higher processing centers in the 

brain? 

The main structure of the olfactory system is fairly conserved 

among all insects and in its core architecture (Figure 2) it is very 

similar to the vertebrate olfactory system. Chemical stimuli enter the 

larval chemosensory system bilaterally via the dorsal organ — a tiny, 

balloon-like structure at the tip of the larval head. The dome, 

containing the profuse dendritic tree of 21 OSNs, forms the center 

of the dorsal organ. It is perforated at its base and also its cuticular 

wall contains many pores through which odorants can enter the 
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sensillum lumen to make contact with olfactory dendrites (Chu and 

Axtell 1971; Singh 1984). Odorant binding proteins present in the 

hemolymph of the dome are thought to be involved in the uptake 

and transport of hydrophobic odorant molecules through the 

sensillum lymph (Steinbrecht 1997). The 21 sensory neurons 

protrude the dome in 7 bundles of triplets, which host the 25 

olfactory receptors. Binding of the odorant molecule to the receptor 

leads to activation of the OSN in the form of spikes. The dendrites 

of each OSN express mostly one type of odorant receptor (OR) in 

conjunction with the odorant receptor co-receptor (Orco) (Larsson, 

Domingos et al. 2004; Bargmann 2006; Benton, Sachse et al. 2006). 

The cell bodies of the sensory neurons are located inside the dorsal 

ganglion (Singh 1984; Python and Stocker 2002; Stocker 2008). 

Being the source of all OSNs, the dorsal organ is widely regarded as 

the equivalent of the vertebrate nose. Embedded in this structure, 

OSNs form the peripheral layer within the olfactory system serving 

to convert chemical stimuli from the environment into electrical 

signals. Each of the 21 OSN axons targets a unique glomerulus1 

each of which represents a segregated anatomical structure within 

the larval antennal lobe (AL). The AL embodies a complex sensory 

relay circuitry and is often referred to as the insect-equivalent to the 

vertebrate olfactory bulb. 

  

                                                
1 Glomerulus is a common term used in anatomy to describe globular structures of 
entwined vessels, fibers or neurons. ‘Glomerulus’ is the diminutive of the Latin 
glomus meaning ‘ball of yarn’ (en.wikipedia.org/wiki/Glomerulus). 
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Figure 2. Schematic Representation of the Olfactory System of the Drosophila larva 
(adapted from Cachero and Jefferis) (Cachero and Jefferis 2008). 

 

In each glomerulus a single OSN forms synapses with the second 

layer neurons of the olfactory system — projection neurons (PNs), 

which pass the information on to higher brain centers, and local 

interneurons (LNs), which distribute information among glomeruli 

for purposes of signal enhancement and gain control (Masuda-

Nakagawa, Gendre et al. 2009) (Figure 2). LNs are a heterogeneous 

cluster of neurons interconnecting a large number of heterogeneous 

neurons within the antennal lobe (Das, Sen et al. 2008). In Drosophila 

larvae it has been shown that lateral inhibition between glomeruli is 

mediated by GABAergic inhibitory local interneurons (iLNs) 

(Asahina, Louis et al. 2009). In the adult fly additional 

subpopulations of LNs have been characterized. Here, in addition to 
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lateral inhibition and gain control, signal amplification is reported to 

happen by excitatory local interneurons (eLNs) (Shang, Claridge-

Chang et al. 2007). A recent study suggests an even more complex 

framework of connectivity within the antennal lobe of the adult 

Drosophila: It reports that part of the adult glutaminergic LNs (Glu-

LNs) may in fact inhibit GABAergic LNs (GABA-LNs), while 

excitation of PNs is solely achieved through electrical coupling of 

LNs to PNs (Yaksi and Wilson 2010). In contrast, Glu-LNs are 

reported to directly inhibit not only PNs, yet also GABA-LNs, thus 

disinhibiting PNs. Inhibition in such a network topology is achieved 

on different spatial and temporal scales. The authors suggest that 

this functionality could allow for more robust gain control and rapid 

transitions between network states akin to the wiring of many 

cortical circuits in vertebrates where corecruitment of excitation and 

inhibition is a common motif (Liu 2013). There, it was reported that 

the recruitment of interneurons via feedforward and/or feedback 

excitatory projections leads to inhibition proportional to local 

and/or incoming excitation (Isaacson and Scanziani 2011). In this 

context, the right balance of these two opposing synaptic 

conductances appears to play a crucial role in maintaining proper 

cortical function (Isaacson and Scanziani 2011). 

In contrast to the abundant connectivity shared with LNs, most AL 

glomeruli are connected to only one single PN (although a few PNs 

form connections to more than one glomerulus (Das, Gupta et al. 

2013)), each of which makes contact with hundreds of Kenyon cell 

dendrites at the level of the mushroom body (MB) calyx, the 

neuronal substrate underlying olfactory learning and memory 
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(Ramaekers, Magnenat et al. 2005) (Figure 2). PNs also project to 

the lateral horn, a distinct region in the brain involved in the 

orchestration of innate behaviors (Stocker 1994; Marin 2002; Luo, 

Axel et al. 2010; Ruta, Datta et al. 2010). 

The full receptor repertoire of the larval olfactory system has been 

thoroughly functionally characterized in the past most notably by 

(Kreher, Kwon et al. 2005). Olfactory receptors show a 

predominantly excitatory response to a specific chemical; in fewer 

cases responses have been shown to be inhibitory. While some 

receptor neurons respond to a wide array of different odorants, 

others appear to be more narrowly tuned, sensitive to only a small 

number of odorant molecules. The sensitivity to an individual 

odorant varies greatly between different odor receptors, and the 

response dynamics of various odor responses seem to be different 

in both duration and onset kinetics as well. With higher odor 

concentration, more and more receptors become activated (Hallem 

and Carlson 2004; Kreher, Kwon et al. 2005; Hallem and Carlson 

2006). However, as mentioned previously, a concerted activation of 

different OSNs is not indispensable to guide gradient ascent during 

larval chemotaxis (see ‘How to control odor environments to study 

the interplay of sensory input and behavior’). 
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The	  transformation	  of	  a	  chemical	  into	  an	  electrical	  signal:	  

Olfactory	  transduction	  in	  ORs	  

‘To transduce’ means to convert something from one form into 

another. In the context of odor transduction it describes the process 

of transforming a chemical signal of odorant molecules into an 

electrical signal travelling along a neuron. 

Electrical activity within neurons consists of the movement of ions 

through channels embedded in neuronal surface membranes. The 

major charge carrying ions are sodium (Na+), potassium (K+), 

chloride (Cl-) and calcium (Ca2+). The surface membranes of 

neurons are primarily composed of lipids, which pose an efficient 

barrier to the ionic flow. The ability of ion channels to enable ion 

flow is most prominently governed by the electrical potential that 

exists across the membrane, the gradient of ions set up by 

membrane pumps, and the semi permeable nature of the channels. 

In Drosophila, as in most other higher organisms, electrical 

information within a neuron travels in the form of spikes. A spike is 

generated once the membrane potential of a neuron passes a certain 

threshold (depolarization) thus activating a critical number of 

voltage-sensitive ion channels. The recruitment of these ion 

channels leads to an abrupt and transient change of membrane 

voltage that propagates to other neurons via the long cellular 

protrusion called axon (Izhikevich 2007). The voltage dependence 

of channel opening (activation) is steep and sigmoidal, as 

determined in voltage clamp studies where membrane potential is 

the only parameter varied (Jan and Jan 1989). In their pioneering 

studies, Hodgkin and Huxley proposed that this steep voltage 
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dependence arises from three or four voltage-sensitive components 

that function as voltage sensors that are embedded within the 

membrane (Hodgkin and Huxley 1952). Over time, it became clear 

that a voltage change exerts an electrostatic force on these voltage 

sensors triggering conformational changes that result in a channel 

opening (Jan and Jan 1992; Jiang, Lee et al. 2002; Long, Tao et al. 

2007). The movements of charges intrinsic to the cation channels 

(gating current) have since been examined electrophysiologically and 

have been modeled extensively (Armstrong 1981; Jan and Jan 1989; 

Hille 2001). 

In vertebrates olfactory transduction starts from a G-protein-

coupled seven-transmembrane odorant receptor, which transduces 

the message via a complex multilayered metabotropic signaling 

cascade in a rather slow manner — typically on the order of 100 ms 

(Bhandawat 2005; Shusterman, Smear et al. 2011). In contrast, 

olfactory transduction in insects works differently and happens at a 

much faster time scale with a response latency of only 10 ms (Nagel 

and Wilson 2011). Although the overall transduction process is still 

largely unknown, some parts of this complex puzzle have started to 

emerge. The short response latency observed in insects may be 

attributable to an ionotropic1 component speeding up the overall 

transduction process. As a result, invertebrates compared to 

vertebrates encode odors up to 10 times faster (Bhandawat 2005; 

Nagel and Wilson 2011). Similar to vertebrate olfactory receptors, 

Drosophila ORs are seven-transmembrane proteins (Benton, Sachse 

et al. 2006), which were originally thought to be G-protein coupled 
                                                
1 Ionotropic receptors are ‘ligand-gated transmembrane ion channels’ (interactive-
biology.com/3974/ionotropic-vs-metabotropic-receptors/). 
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receptors. However, they exert an inverted membrane topology, an 

intracellular N- and an extracellular C-terminus allowing them to 

function as ligand-gated ion channel (Benton, Sachse et al. 2006; 

Lundin, Käll et al. 2007). In insects, odorant receptors (ORs) are not 

functional all alone; instead they need a co-receptor — Orco — that 

is necessary for both localization and stabilization of ORs in 

dendritic membranes, and the formation of the OR-Orco complex 

— a functional odorant-gated cation channel mediating the 

ionotropic signal transduction (Sato, Pellegrino et al. 2008). In 

addition to the primary response, it has been suggested that either 

G-protein-mediated potentiation or modulation of the ionotropic 

response could be taking place. Insect ORs may thus represent a 

distinct class of receptors belonging to both ionotropic and 

metabotropic receptors. However, there seems to be no evidence 

for an ionotropic Orco-based mechanism of pheromone transduction 

in Manduca sexta (Stengl 1994; Nolte 2013), raising the question 

whether the finding that Orco acts as an ionotropic receptor is truly 

universal to all insects (Sato, Pellegrino et al. 2008; Nichols, Chen et 

al. 2011; Pask, Jones et al. 2011; Nakagawa, Pellegrino et al. 2012). 

Second messengers such as cyclic nucleotides or inositol (1,4,5)-

trisphosphate (IP3) establish a link of the metabotropic part of the 

olfactory transduction to Orco. In adult Drosophila IP3 has been 

shown to act on Orco indirectly via the inositol (1,4,5)-trisphosphate 

receptor (InsP3R) (Murmu, Stinnakre et al. 2010) whereas cyclic 

adenosine monophosphate (cAMP) levels within the OSN appear to 

be positively correlated with an increase in neural activity exclusively 

in the presence of Orco (Deng, Zhang et al. 2011). The discussion on 

whether Orco functions via an ionotropic or metabotropic activation 
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implies that a combined activation of both pathways (ionotropic and 

metabotropic) could contribute to the olfactory transduction 

cascade in single OSNs (Wicher, Schäfer et al. 2008; Nakagawa and 

Vosshall 2009; Wicher 2010; Martin 2011; Stengl and Funk 2013; 

Wicher 2013). 

The fact that the physiology of olfactory adaptation in insect OSNs 

looks qualitatively similar to the adaptation seen in vertebrate OSNs 

hints towards the notion that a metabotropic signaling cascade 

might directly contribute to modulating the odor response in insects 

(Shirsat and Siddiqi 1993; Hildebrand and Shepherd 1997). In this 

context, it seems that calcium is playing a key role mediating a 

negative feedback (Berridge 1995) causing olfactory adaptation in 

numerous species (Matthews and Reisert 2003). In Drosophila, it has 

been proposed that a change in Ca2+ levels affects both onset of and 

recovery from adaptation through a yet unknown Ca2+ channel 

present in the membrane of olfactory neurons (Deshpande 2000). In 

amphibians1 crucial components of the Ca2+ signaling cascade in 

sensory neurons have already been identified for years (Leinders-

Zufall, Rand et al. 1997; Leinders-Zufall, Greer et al. 1998; Leinders-

Zufall 1999; Zufall and Leinders-Zufall 2000; Munger, Lane et al. 

2001). Here, Ca2+/ calmodulin-dependent protein kinase II 

(CaMKII) plays a role in determining the temporal response 

properties of ORNs during odor adaptation. However, only 

adaptation induced by sustained odor pulses was impaired by an 

inactivation of CaMKII, whereas adaptation induced by brief odor 

pulses was not. The study concluded that different kinetic forms of 

                                                
1 Experiments done in tiger salamanders. 
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odor adaptation exist in single ORNs which are likely controlled by 

separate molecular mechanisms (Leinders-Zufall 1999). In 

Drosophila, although many results hint towards the presence of a 

multi-layered, mixed ionotropic and metabotropic transduction 

cascade (Wicher, Schäfer et al. 2008; Nakagawa and Vosshall 2009; 

Wicher 2010; Martin 2011; Stengl and Funk 2013; Wicher 2013), the 

overall mechanism of odor transduction remains still open. 

 

The	  manipulation	  of	  neural	  systems	  by	  synthetic	  optical	  

actuators:	  Optogenetics	  

Channelrhodopsin-2 (ChR2) is a light-gated, non-selective cation 

channel in the single-cell green alga Chlamydomonas reinhardtii that has 

become an important tool in neuroscience paving the path to an 

entirely new field — referred to as optogenetics (Dugue, Akemann 

et al. 2012). ChR2 conducts H+, Na+, K+, and Ca2+ ions. In contrast 

to olfactory receptors, which form heterodimers with the co-

receptor Orco, channelrhodopsin channels are homodimeric (Muller, 

Bamann et al. 2011; Kato, Zhang et al. 2012). Similar to ORs, they 

are ionotropic, seven transmembrane proteins, and they likely do 

not couple to a heterotrimeric G-protein (Nagel, Szellas et al. 2003; 

Kato, Zhang et al. 2012). Instead, they contain the light-isomerizable 

chromophore all-trans-retinal1, allowing for an extremely fast 

response time. ChR2 is most efficiently activated by blue light at an 

absorption maximum of 480 nm (Figure 3). 

                                                
1 To render ChR2 functional in Drosophila larvae, all-trans retinal has to be added 
to the fly food since insects are unable to synthesize all-trans-retinal on their own. 
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Figure 3. A channelrhodopsin-2 molecule before and after exposure to light: The 
protein’s amino acid chain forms an α-helix measuring seven times the diameter 
of the cell membrane. When exposed to incident light, helix 2 (cyan) twists out 
(green), opening the ion channel for calcium (green spheres) and sodium ions 
(cyan spheres). In the middle of the channel, the small, photo-sensitive retinal 
(green/cyan) is bound to the protein Image courtesy: (Sattig 2013). 

 

Once the all-trans-retinal complex absorbs a photon, a short-lived 

conformational change is elicited which transiently opens the pore 

of the channel. As a result, cations surge through the channel, 

depolarize the neuron and evoke spikes (Muller, Bamann et al. 2011; 

Kato, Zhang et al. 2012). 

ChR2 can be expressed in virtually any cell type in vertebrates and 

invertebrates to serve as a light switch triggering the firing of 

neurons in a highly controlled manner (Schoenenberger, Scharer et 

al. 2011). 
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In contrast to the difficulty of creating tightly controlled odor 

environments, optogenetics offers an alternative way to reverse 

engineer odor stimuli through the creation of controlled virtual light 

environments. In the Drosophila larva, a virtual reality environment 

has been successfully applied to elicit basic innate olfactory 

behaviors (Bellmann, Richardt et al. 2010), as well as associative 

olfactory memory (Schroll, Riemensperger et al. 2006; Honda, Lee 

et al. 2014). In adult flies, it was exploited to investigate the use of 

bilateral comparisons between left and right antennae (Gaudry, 

Hong et al. 2013). In C. elegans optogenetics was used to evoke 

genuine orientation behavior by modulating the activity of 

interneurons in the neural pathway that controls chemotaxis 

(Kocabas, Shen et al. 2012). 

At present there exist many modified forms of ChR2 with enhanced 

characteristics for research purposes. The ChR2 version used for 

this project — ChR2-H134R (Pulver, Pashkovski et al. 2009) — 

carries a single point mutation at position H134 and displays 

increased photocurrents, a modest reduction in desensitization, and 

a slight increase in light sensitivity compared to the wild-type (Nagel, 

Brauner et al. 2005; Berndt, Schoenenberger et al. 2011; Lin 2011) 

ChR2. The off kinetics of ChR2-H134R with 18 ms is slightly 

slower compared to the wild type version of ChR2 (Yizhar, Fenno 

et al. 2011). 

In this project, instead of using pulsed light to evoke neural activity 

in one OSN through ChR2, the light intensity itself was used as a 

proxy to simulate changes in odor concentration detected by one 

OSN. Since the maximum neural activity elicited by light is slightly 
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lower than the one elicited by an odor it was important to adjust the 

odor concentration range to be in good agreement with the light 

stimulation. The reverse engineering of olfactory activity was 

achieved through stimulation protocols at an intensity range of 15-

207 W/m2, an intensity level allowing for a neural activity 

reminiscent of real odor responses (Kocabas, Shen et al. 2012) (see 

‘Results section; Neural firing and adaptation: Dose response’). 
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Chapter 1 - Materials and Methods 

Physiology	  

Extracellular recordings of single OSNs (suction electrode recording 
technique) 

Every multi cellular organism relies on the well-controlled 

propagation of signals within and among cells or cellular 

compartments, a task that is widely accomplished through means of 

chemical messengers. However, chemical signals come with the 

caveat that they are limited in the temporal resolution they can 

achieve. It is electrical activity that solves this problem by facilitating 

a rapid flow of information among spatially separate cell populations 

of cells within complex organisms. In order to listen to the content 

of these fast electrical signals we need to intercept the message at 

cells that are specialized in performing this task — the neurons. 

By measuring the membrane potential of a neuron one can listen in 

to the electrical message transmitted within it — typically in the 

form of spikes. However, even in non-spiking neurons of C. elegans 

one can record the passive propagation of the electrotonic potential. 

Measuring the membrane potential is achieved through 

electrophysiology — the study of the electrical properties of 

biological cells and tissues. Electrophysiology is all about measuring 

voltage changes or electric currents on a wide variety of scales, but it 

is most prominently applied in the context of action potential 

activity of spiking neurons. The simplest of all electrophysiological 
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recording techniques are extracellular recordings. Here, tiny 

extracellular signals arising from the flow of an ionic current 

through the extracellular fluid are recorded via a chlorinated silver 

wire inside a fine glass electrode that is backfilled with extracellular 

saline. 

In the past several groups have successfully recorded odor 

responses in the larval olfactory system: Oppliger et al. used a drawn 

out glass capillary with a 1 um closed tip which was back-filled with 

Kaissling sensillum lymph ringer as the recording electrode. They 

inserted the electrode at the rim of the dome of the dorsal organ or 

in the terminal organ, whereby the tip of the electrode broke on 

entry and the recording was initiated (Oppliger, P et al. 2000). 

Kreher et al. took a comparable approach where they recorded the 

extracellular electrical activity of sensory neurons by inserting an 

electrode into the lumen of the dome sensillum (Kreher, Kwon et al. 

2005). A similar method was also used by (Hoare, McCrohan et al. 

2008). 

To probe the response properties of a single OSN, a new 

extracellular recording technique based on the suction of the 

antennal nerve into a glass pipette downstream from the dorsal 

organ (DO) ganglion was developed in collaboration with Julia Riedl 

and David Jarriault (Figure 4). This approach enables the acquisition 

of excellent extracellular recording data with a low signal to noise 

ratio. However, since it is essential to keep the recording electrode 

immersed in a saline bath, it is necessary to deliver odor stimuli in 

the liquid-phase. 
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Figure 4. Illustration of the preparation used for suction electrode recordings of 
single functional OSNs expressing channelrhodopsin (ChR2). The preparation is 
bathed in saline to prevent the dehydration of the dorsal organ ganglion to which 
the recording electrode is attached. Controlled odor stimulations are achieved in 
liquid phase with a customized mass-flow controller system. 

 

Larvae (3rd instar) expressing the co-receptor Orco in only one OSN 

(Or42a-Gal4>Orco) were raised on standard fly food containing 0.5 

mM all-trans- in an incubator in complete darkness. Prior to the 

dissection they were transferred into 15% (w/V) glucose solution 

washing them free of food. The larval dissection was carried out in 
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cold extracellular saline (Singleton and Woodruff 1994)1 on a 

Sylgard coated petri dish. The larval head was dissected away from 

the body using a 3 mm Vanna spring scissor (Fine Science Tools, 

Germany) leaving the brain intact and attached to the head. A small 

amount of tissue glue (Histoacryl, B. Braun, Germany) was applied 

onto the round glass cover at the bottom of a small volume 

perfusion chamber (Bioscience Tools, USA) using a pulled glass 

pipette. Remaining saline was carefully dipped off the head before it 

was glued centric onto the glass slide. A drop of saline was 

immediately added on top of the larval head to avoid dehydration. 

The cuticle covering the mouth hook was carefully removed using 

the above mentioned Vanna spring scissors to allow the recording 

electrode access to the dorsal organ ganglion. In addition, the dorsal 

organ itself was now perfectly visible allowing for a precise 

positioning of the odor delivery pipette. The perfusion chamber 

containing the larval head immersed in extracellular saline was 

connected to two syringe pumps (Aladdin2-220, World Precision 

Instruments, USA), to ensure the perfusion of the prep with 

extracellular saline and to continuously clear odor molecules out of 

the chamber. To preserve the integrity of the preparation, the DO 

was maintained in a saline solution and odors were presented in 

liquid phase. 

In close vicinity of the dorsal ganglion the antennal nerve was 

sucked into the recording pipette by applying a negative pressure of 

-20 kpa. Recordings were performed in ‘current clamp’ mode where 

                                                
1 Composition of external saline according to Singleton and Woodruff 1994:               
108 mM NaCl, 5 mM KCl, 2 mM CaCl2, 8.2 mM MgCl2, 4 mM NaHCO3, 1 mM 
NaH2PO4, 5mM trehalose, 10 mM sucrose, 5 mM HEPES [pH 7.5, 265 mOsm]. 
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the membrane potential is free to vary, and the amplifier records 

whatever voltage is resulting from action potential generated by the 

neurons inside the suction electrode. Recording electrodes were 

pulled (P97, Sutter instruments, USA) out of glass capillaries (1.5mm 

/ 1.12mm OD/ID, World Precision Instruments, USA) with a 10 

um open tip and back-filled with 3 uL extracellular saline. The 

recording electrode was connected via a chlorinated silver wire (0.38 

mm in diameter) to a head stage (Axon MultiClamp 700B, Molecular 

devices, USA), mounted on a micromanipulator (ROE-200 & MPC-

200, Sutter instruments, USA), which in turn was connected to a 

microelectrode amplifier (Axon MultiClamp 700B, Molecular 

devices, USA). The signal was amplified 100×, visualized on an 

oscilloscope (Tektronix, USA), and recorded at a sample rate of 20 

kHz in a PC equipped with the free data acquisition software 

SpikeHound (Lott III 2009). 

 In the extracellular recordings single spikes could be readily 

detected due to a strongly reduced spontaneous activity of OSNs in 

the Orco null background (Hoare et al., 2008). However, also non-

olfactory sensory neurons are likely to contribute to the activity 

monitored from the DO ganglion. In addition to the co-receptor 

Orco, channelrhodopsin 2 (ChR2) was expressed in the single 

functional OSN (Pulver, Pashkovski et al. 2009). Brief light flashes 

were applied to elicit ChR2-evoked spikes in a nearly deterministic 

manner within the Or42a OSN, providing the wave-form template 

for the spike-sorter (Figure 5). The spike-sorting step ensured that 

only spikes originating from OSNs were included in the dataset, 

while non-OSN specific spikes were filtered out (see ‘Materials and 
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Methods section; Data acquisition, analysis, spike sorting, and spike 

yield analysis’). Odor ramps with controlled temporal features were 

produced with an olfactometer mixing two aqueous flows — pure 

saline and saline mixed with isoamyl acetate (IAA) — directed onto 

the dorsal organ. Both flows were mixed in complementary 

proportions while maintaining the resulting flow constant at all 

times (see ‘Materials and Methods section; Odor stimulation in 

liquid-phase). This setup similar in design to past olfactometers 

(Borst 1982) (Kim, Lazar et al. 2011) was designed to produce 

aqueous stimulus time course on the timescale of a typical run. 

 

Data acquisition, analysis, spike sorting, and spike yield analysis 

The extracellular signal obtained from the antennal nerve was 

amplified 100×, visualized on an oscilloscope (Tektronix, USA), 

and recorded at a sample rate of 20 kHz in a PC equipped with the 

free data acquisition software SpikeHound (Lott III 2009). A 

custom Matlab based spike-sorting algorithm (OpSIN) developed 

and written by Parvez Ahammad was used to analyze the 

extracellular recording data obtained from single-electrode 

recordings. The spike-sorting algorithm is based on the finding that 

waveforms of light-driven spikes and odor-driven spikes elicited in 

the OSN are indistinguishable from each other while spikes 

originating from non-OSN neurons correspond to waveforms with 

a waveform that is distinct (Figure 5C). In every recording, precisely 

timed short-latency light-driven spikes were used to elicit activity in 

the Or42a>ChR2 OSN. During this light stimulation phase the 
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OpSIN algorithm parsed the extracellular recording data and 

collected candidate ChR2-evoked spikes based on simple amplitude 

thresholding and local non-maximum suppression (Figure 6).  

 

 

Figure 5. (A) Illustration of the preparation used for suction electrode recordings 
of single functional OSNs expressing channelrhodopsin (ChR2). The preparation 
is bathed in saline to prevent the dehydration of the dorsal organ ganglion to 
which the recording electrode is attached. Controlled odor stimulations are 
achieved in liquid phase with a customized mass-flow controller system. 

(B) ChR2-triggered activity observed in an Or42a-expressing olfactory sensory 
neuron (OSN) in response to brief pulses of blue light (10 ms) shown at an 
increasing temporal resolution (Bi-Biii). 

(C) Superimposition of light- and odor-evoked spike waveforms observed in the 
same OSN (two different recordings in a and b). Spike waveforms associated with 
the light stimulation intervals (blue spikes) were superimposed on spike 
waveforms of spikes collected during an odor stimulation episode (gray spikes). 
Although light- and odor-evoked spike waveforms are very similar to each other 
during the same recording, the overall shape of the spike waveforms varied across 
recordings.  
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All spikes collected during this process were clustered into groups of 

similar waveforms using an affinity propagation algorithm (Frey and 

Dueck 2007). From these clusters, the experimenter identified the 

cluster containing the highest number of spikes as the one 

representing the template waveform specific to the OSN of interest 

(corresponding solely to ChR2-evoked activity) (Figure 5B). For the 

spike sorting process template spike waveforms derived from ChR2-

evoked spike clusters were then used to identify OSN specific spikes 

throughout the entire recording. This spike selection was 

accomplished by comparing candidate waveforms identified 

throughout the recording to the ChR2 derived waveform template 

by transforming candidate waveforms to appear as similar as 

possible to the template via dynamic time warping (Berndt and 

Clifford 1994). The residual difference between the warped 

candidate and the original template was taken as the pair-wise 

distance between the two waveforms. Finally, the probability of 

spike occurrence at every candidate location was estimated by 

warping the residual distance between the candidate waveform and 

the chosen set of spike templates. A spike-probability-histogram-

based cut-off was applied across the entire recording to select the 

correct spikes and assign identities. 

𝑑 𝑇,𝑋 = 𝑋 − 𝐷𝑇𝑊 𝑇 → 𝑋 !
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A spike-probability-histogram-based cut-off was applied across the 

entire recording to select the correct spikes and assign identities. 

𝑝 𝑇,𝑋! = 𝑒
! !,!!

!  

where K is the median of all the pair wise distances computed 

across the set of spike-candidates. 

𝑝 𝑇 = max  (𝑝 𝑇,𝑋! ) 

where the spike candidate’s probability is based on its best matched 

template. 
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Figure 6. Flow chart of the functions underlying the spike-sorting algorithm. Spike 
candidates were selected during light-activation episodes based on simple 
amplitude thresholding and local non-maximum suppression. Spike selection was 
accomplished by comparing candidate waveforms identified throughout the 
recording to the ChR2-derived waveform template by transforming candidate 
waveforms to appear as similar as possible to the template via dynamic time 
warping (DTW).   
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To quantify ChR2 driven neural activity of the OSN, the spike yield 

of animals (Or42a-Gal4>UAS-Orco,UAS-ChR2-H134R;Orco-/-) 

raised with retinal was compared to the yield of those raised in 

normal food without added retinal (negative controls) by analyzing a 

total of 35 recordings for either case. However, due to the lack of 

light evoked activity in the OSNs of the controls that were raised in 

normal food, the recording in this condition was started with short 

odor pulses, which served to elicit OSN specific activity. Template 

spikes in the control condition were thus collected during the odor 

stimulation phase. 

 

 

Figure 7. (A) Cross-correlation of light- and odor-evoked spikes (blue), and cross-
correlation of light-evoked to spontaneous background spikes (gray). The 
similarity in the shape of the waveform is larger between the light- and odor-
evoked spikes compared to light-evoked and background spikes. Light-evoked 
spikes were collected from time windows during a light stimulation interval; odor-
evoked spikes were collected during the odor stimulation interval; background 
spikes were collected from intervals devoid of light and odor stimulations. 

(B) Average spike yield of the Or42a-expressing OSN measured in a 58ms time 
window with and without light stimulation. The data was obtained by analyzing 35 
recordings. 
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The spike yield for the light-stimulation condition was obtained by 

analyzing the time window during which blue light was pulsed (33 

ms pulse duration) plus a 25 ms cushion after the light pulse was 

switched off (total time window of analysis was 58 ms). In the non-

stimulation case, the 58 ms time window was chosen right before 

the onset of the light stimulation. 

Figure 7B illustrates the spike yield during the light stimulation in 

animals raised in all-trans retinal food compared to animals raised in 

normal fly food. The spike yield during the light stimulation window 

was found to be 2.30 +/- 0.40 spikes in animals raised in the 

presence of all-trans retinal. The corresponding spike latency was 

6.96 ms +/- 1.02 ms. For the negative controls (animals raised in 

normal fly food) the spike yield during the light stimulation window 

was found to be 0.17+/-0.13 spikes a value significantly different 

from the positive controls (Wilcoxon signed-rank test, p<0.001). 

The corresponding spike latency was 33.08 ms +/- 13.67ms. The 

corresponding instantaneous firing rate during the time window of 

analysis during a light flash was found to be 39.61 Hz for the 

positive controls and 2.91 Hz for the negative controls. During a 

light flash, animals raised in food containing all-trans retinal show a 

13.53 fold increase in spike yield compared to the negative controls. 

In the absence of light stimulation the spike yield of animals raised 

in all-trans retinal food was 0.057 +/- 0.24 spikes. For the negative 

controls (animals raised in normal fly food) the spike yield in the 

absence of light was 0.029 spikes +/- 0.17 spikes. The instantaneous 

firing rate during the time window of analysis without any light 

stimulation was found to be 0.98 Hz for the positive controls and 
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0.49 Hz for the negative controls. In the absence of light, animals 

raised in food containing all-trans retinal showed a two-fold increase 

in the spike yield compared to negative controls.  

Comparing the spike yield during light stimulation to the non-

stimulation condition it was found that animals raised in all-trans 

retinal food showed a 79.31-fold increase from the non-stimulation 

to the light stimulation case, while negative controls showed a mere 

six-fold increase from the non-stimulation to the light stimulation 

case (Figure 7B). 

 

 

Figure 8. OSN activity in response to three light ramps recorded in larvae raised in 
the absence of all-trans retinal. The absence of all-trans retinal renders the OSN 
non responsive to light. 
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Thus, a noticeable light sensitivity seems to be present even in larvae 

raised in normal fly food without retinal added to it (negative 

controls). However, in those animals the light response was much 

less pronounced compared to the light response observed in the 

positive controls. In fact, when comparing the magnitude of the 

change of the spike yield, the observed change was 13.22 times 

greater for the positive control compared to the negative control. 

Figure 8 illustrates the firing rate recorded in OSNs of larvae raised 

in fly food lacking all-trans retinal. Here, the observed OSN activity 

remained reasonably constant throughout the light stimulation 

phase. 

 

Peristimulus time histogram (PSTH) analysis 

A peristimulus time histogram (PSTH) is an analysis tool used to 

transform discrete spiking events into a continuous representation 

of neural activity in the form of a frequency. This frequency or 

instantaneous firing rate depends on the average inter-spike-interval 

(ISI) — the time, which passes between two individual spiking 

events — within a certain time window of analysis. Individual spikes 

from a continuous spike train are collected into fixed time bins over 

which the average spike frequency is subsequently calculated. The 

time window or bin size over which the average spike frequency is 

calculated has to be chosen carefully. A small time window will 

allow assessing the frequency almost instantaneously, in that it will 

at the minimum only depend on the spike preceding and following 

the a given spike. However, since spikes are fundamentally 
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stochastic events (Lecar and Nossal 1971; Lecar and Nossal 1971), 

the resulting frequency will be very noisy (the lower the frequency 

— the noisier). A large bin size on the other hand will smoothen out 

small differences of the individual ISIs resulting in a less noisy spike 

frequency. 

 

 

Figure 9. OSN response to a quadratic light ramp analyzed with bin sizes of 
different durations ranging from 10 ms, 25 ms, 50 ms, and 100 ms. Based on this 
analysis the bin size was set to 50 ms. The PSTH was computed on a pool of 
minimum 10 recordings conducted on minimum 10 preparations.   
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Here, an average is calculated on the basis of a larger number of 

spikes. In this work the optimal bin size for the PSTH analysis was 

assessed experimentally. A sample dataset (quadratic light 

stimulation) with bin sizes of different durations ranging from 10 

ms, 25 ms, 50 ms, and 100 ms was analyzed. From Figure 9 it can be 

seen that the calculated spike frequency from a bin size of 10 ms 

fluctuates greatly resulting in a very noisy spike frequency. However, 

with increasing bin sizes the resulting spike frequency becomes less 

noisy. It was found that by the using a 50 ms time window the noise 

level of the resulting spike frequency was at acceptable levels. Also, 

by using a 50 ms bin size, the overall resolution of the spike train 

(25 Hz) was kept close to the sampling rate of stimulus (30 Hz). 

To reduce the overall noise level of the final firing data, the PSTH 

was mildly low-pass filtered using a Savitzky-Golay filter (3rd degree, 

over 21 frames), which is based on a local least-squares polynomial 

approximation. A Savitzky-Golay filter provides the advantage of 

reducing noise while maintaining the shape and height of waveform 

peaks resulting in smoothing without loss of resolution (Press 1988; 

Schafer 2011). 

 

Light stimulation: setup and calibration 

For the light stimulation a blue light emitting diode (LED) (LCS-

0470-03-22, Mightex Systems, Canada) was mounted in a lighthouse 

(U-DULHA, Olympus, Japan) and integrated into the light path of 

the microscope (BX51, Olympus, Japan) allowing for localized 
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stimulation of the larval head through a 40x immersion objective. 

The light intensity arriving at the larval head was estimated by 

measuring the photocurrent under the objective with a photodiode 

(SM05PD7A, Thorlabs) connected to a bench top photodiode 

amplifier (PDA200C, Thorlabs). The active area of the photodiode 

was 4.8 mm2 while the spectral responsivity of the photodiode at 

470 nm was provided by the manufacturer of the photodiode as 

0.09 !
!

  at λ=470 nm. 

The diameter of the in focus light spot was measured to be 1 mm. 

The photocurrent arriving at the larval head was determined to be 

270 uA. The area of the in focus light spot was calculated 

accordingly. 

𝐴 = 𝜋 0.5  𝑚𝑚 ! = 0.7854  𝑚𝑚! 

The measured photocurrent (Irig) was then converted into units of 

light intensity (W/m2). 

𝐿𝑖𝑔ℎ𝑡  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐼!"#

0.09   𝐴𝑊
 

The transformation function at the electrophysiology rig (driving 

voltage (V) to light intensity (W/m2)) was obtained from the 

calibration curve shown in Figure 10A. At the electrophysiology rig, 

the LED was controlled by a custom Labview (National 

Instruments, USA) interface. The current controlling the LED was 

fed into the data acquisition software, where it was recorded along 

with the signal from the suction electrode. 
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Figure 10 Light calibration and polynomial transfer function at the 
electrophysiology rig (A) and the larval tracker (B).  
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At the larval tracker, the photodiode was placed in equal distance to 

all LEDs in plane with the tracking arena and placed in the spot of 

the highest light intensity at a driving current of 750 mA while 

keeping the light beam of each LED focused onto the measurement 

plane. The calibration curve obtained at the larval tracker (stimulus 

(%) to light intensity (W/m2)) is shown in Figure 10B. The light 

intensity range used for behavioral and electrophysiological 

experiments ranged from 15 - 207 W/m2. This intensity range was 

established by analyzing the elicited activity level of the Or42a OSN 

over a broad spectrum of light intensities (see ‘Results section; 

Neural firing and adaptation: Dose response’). 

 

Odor stimulation in liquid-phase 

The objective for the odor delivery system was to generate rapidly 

fluctuating odor time courses on a fixed larval preparation. The 

resulting odor stimulation replay had to be quantitatively and 

temporally and reminiscent of what a larva would experience during 

chemotaxis in real odor gradients. The limiting factor of this 

approach was set by the sample rate of the pressure-driven flow 

controller, which reached its maximum at 10 Hz. 

The final odor concentration used at the electrophysiology rig was 

taken from animals behaving in an odor gradient (unconstrained 

behavior). The concentration experienced by a larva during 

chemotaxis was mapped on the reconstructed odor gradient 

landscape and recorded over the time of the experiment. The 

resulting concentration time course was then transformed from air-
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phase concentration values (uM) to liquid phase concentration 

values (uM) via a scaling factor that was obtained by quantitatively 

relating well-controlled air-phase and liquid-phase odor responses 

through means of functional imaging. 

Two-barrel pipettes (1.5 mm / 0.84 mm OD/ID, World Precision 

Instruments, USA) were pulled using a PMP-107 Multipipette Puller 

(MicroData Instrument, USA) resulting in a two-barrel tip with a 5 

µm OD. One barrel was back-filled with the odor solution (IAA 

dissolved in extracellular saline), the other with extracellular saline 

alone. An injection needle (0.51mm / 0.26mm OD/ID, Becton, 

Dickinson and Company, USA) was inserted into the back of each 

barrel and airtight sealed using hot-melt adhesive. Each barrel was 

subsequently connected to separate channels of a pressure-driven 

flow controller (Microfluidic Control System (MFCS), Fluigent, 

France). The tip of the odor stimulation pipette was placed and 

maintained at a distance of 10 um in front of the larval dorsal organ 

with a micromanipulator (ROE-200 and MPC-200, Sutter 

instruments, USA). The output pressure and with it the flow of each 

individual channel of the odor delivery pipette was controlled at a 

temporal resolution of 10 Hz via a custom Labview interface 

(National Instruments, USA). The Labview program allowed for an 

arbitrary control of the stimulus time course through individual pre-

loaded input files (CSV files) that contained the corresponding 

pressure time course driving individual channels of the pressure-

driven flow controller. The stimulus time course contained in the 

input file was either derived from reconstructed odor time courses 

of behaving animals or based on linear and non-linear functions 
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(depending on the objective of the individual experiment). Rapid 

concentration changes of the odorous stream were achieved by 

varying the flow between the empty channel and the odor channel 

while keeping the overall flow constant at a set value of 

0.00032 mL/s (measured flow rate corresponding to a 320 mbar 

output pressure). 

 

 

Figure 11. Calibration of fluorescein in liquid phase (left) showing a linear 
relationship of the fluorescein concentration and the measured change in 
fluorescence. The calibration on the right illustrates a linear relationship of the 
output pressure of the flow controller and the observed change in fluorescence. 
Error bars represent the standard deviation.  

 

The liquid phase odor stimulation system was calibrated using a 

dilution series of the fluorescent dye fluorescein, which was expelled 

at a constant pressure 

𝑝!"# = 320  𝑚𝑏𝑎𝑟 

into a perfusion chamber (Bioscience Tools, USA) while imaging the 

tip of the pipette with a high-speed camera (Andor, United 

Kingdom). 
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 The relationship between the fluorescein concentration and the 

measured fluorescence was best fitted by a linear function (Figure 11 

left) where 𝑎 denotes the slope of the function. 

𝑆!"#$%&' = 𝑎 ∗   𝑐!"#$%&'(&)* 

When varying the output pressure while keeping the concentration 

of fluorescein constant (corresponding to 𝑆!"#!"#$ = 1 as 

determined in Figure 11 left) the observed fluorescence could be 

mapped to the output pressure using a linear function (Figure 11 

right) where 𝑏 denotes the slope of the function. 

𝑆!"#$%&' = 𝑏 ∗   𝑝!"#$%&'(&)* 

The concentration arriving at the dorsal organ was quantified by 

comparing the fluorescence measured at the tip of the odor delivery 

pipette (∆𝐹(𝑅𝑂𝐼!"#)  to the fluorescence measured right at the 

dorsal organ (∆𝐹(𝑅𝑂𝐼!"#$%&) . Assuming that the fluorescence 

measured at the tip of the odor delivery pipette represents the 

undiluted concentration, the dilution factor (𝑑 ) was calculated 

according to: 

𝑑 =
∆𝐹(𝑅𝑂𝐼!"#)
∆𝐹(𝑅𝑂𝐼!"#$%&)

 

Given that the overall pressure is kept constant at                  

𝑝!"# = 320  𝑚𝑏𝑎𝑟  throughout the stimulation, the final 

concentration hitting the dorsal organ can be calculated according 

to: 

𝑐!"#$%& =
𝑐!"!#$$#
𝑑 ∗

𝑝!"!#
𝑝!"#
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where 𝑝!"!# denotes the pressure of the odor channel. However, 

when comparing the pressure time courses of the odor and the 

solvent channel it became clear that the MFCS pump produced a 

small but notable departure from the ideal assumption that the 

overall pressure would be kept constant. During rapid transitions, 

the closing time of the valve seemed longer compared to its opening 

time. The resulting small alteration of 𝑝!"!# and 𝑝!"#$%&' (pressure 

of the solvent channel) were therefore accounted for by using the 

real (measured) pressure of the odor and solvent channel for all time 

points as the basis of the final concentration calculation throughout 

the stimulation time course: 

𝑐!"#$%& =
𝑐!"!#$$#
𝑑 ∗

𝑝!"!#
𝑝!"!# +   𝑝!"#$%&'

 

 

In Figure 12 it can be seen that the departure of the concentration 

from the ideal conditions while almost absent for slow transients 

(Figure 12A shallow linear stimulation), slightly increases for very 

fast transients as seen for steep linear slopes (Figure 12B) and even 

more so for an exponential stimulation (Figure 12C). Comparing the 

adjusted output signal (the same as the one shown in Figure 12C) to 

the measured fluorescence for the most drastic change in 

concentration — the exponential stimulation — leads to a decent 

fit, indicating the relevance of considering the pump’s departure 

from ideal conditions (Figure 12D) when analyzing the final 

stimulus time course truly hitting the larval dorsal organ. 
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Figure 12. (|A) Normalized ideal (blue) vs. normalized adjusted (red) 
concentration time course of a shallow linear ramp. In this example, the adjusted 
concentration time course is almost identical to the ideal time course (see close-up 
view in inlet a).  

(|B) Normalized ideal (blue) vs. normalized adjusted (red) concentration time 
course of a steep linear ramp. The adjusted concentration time course departs 
slightly from the ideal time course (see close-up view in inlet b). 

(C) Normalized ideal (blue) vs. normalized adjusted (red) concentration time 
course of an exponential stimulation. The adjusted concentration time course 
departs from the ideal time course (see close-up view in inlet c). 

(D) Normalized adjusted odor time course (red) compared to the measured 
change in fluorescence (green). 

 

The time lag between the pressure output and the actual odor 

stimulus arriving at the dorsal organ was quantified by computing 

the cross correlation between the recorded output pressure of the 

MFCS and the fluorescence signal measured at the larval dorsal 

organ. The shift of the peak of the cross correlation with respect to 

the peak of the autocorrelation of the pressure output signal was 
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taken as the indicator for the time lag in each experiment. The 

estimated lag ranged between 500 and 600 ms; the final lag was 

estimated to be 500 ms (Figure 13). 

 

 

Figure 13. (A) Autocorrelation (blue) of the pressure signal and cross correlation 
(red) of the pressure and the measured fluorescence signal (other colors indicate 
the cross correlation derived from individual fluorescein experiments). To 
compute the time lag of the odor stimulation, the shift of the peak of both 
correlations with respect to each other was computed. 

(B) Median lag estimated over 7 experiments (exponential fluorescein stimulation). 
The error bar represents the standard deviation. 

 

Odor stimulation in gas-phase 

The gas-phase odor stimulation was achieved by means of a custom 

olfactometer delivering a continuous stream of air (510 mL/min). 

The air stream, regulated by two mass flow controllers (Cole-

Parmer, USA), was humidified, and subsequently passed through the 

odor solution after which the odorized air stream was delivered to 

the tip of the larval head — the site of the dorsal organ. Rapid 
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concentration changes of the odorized stream were achieved by 

varying the flow between the empty channel and the odor channel 

while keeping the overall flow constant. A custom Labview protocol 

(analogous to the one driving the MFCS during liquid phase odor 

stimulations) was used to control the flow rate of the individual 

mass flow controllers in real time at a sample rate of 30 Hz. This 

setup is similar in design to past olfactometers (Borst 1982; Kim, 

Lazar et al. 2011) and it was adapted to produce a stimulus time 

course on the timescale of the typical run produced by a larva. 

 

Gas-phase odor calibration: Determining the absorption coefficient of 
isoamyl acetate (IAA) using IR spectroscopy 

Fourier Transform-Infrared Spectroscopy (FT-IR) takes advantage 

of the fact that molecules absorb specific frequencies that are 

characteristic of their structure. The infrared spectrum of a sample is 

recorded by passing an infrared light beam through a sample. When 

the frequency of the IR is the same as the vibrational frequency of a 

bond, absorption occurs. Examination of the transmitted light 

reveals how much energy was absorbed at each frequency or 

wavelength. During a measurement, the whole wavelength range is 

measured at once and then an absorbance spectrum is generated. 

Analysis of the position, shape and intensity of peaks in this 

spectrum reveals details about the molecular structure and 

concentration of the sample.1 The advantage of FT-IR spectroscopy 

lies in the precision of its quantitative measurements. Using this 

                                                
1 https://en.wikipedia.org/wiki/Infrared_spectroscopy 
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technique, odor concentrations of pure odors can be measured 

directly as opposed to the relative measurements obtained by a 

photoionization detector (PID). However, the temporal resolution 

of FT-IR spectroscopy is much slower than the above-mentioned 

PID. In FT-IR spectroscopy, absolute odor concentrations are 

calculated by applying the Beer Lambert law, which states that the 

absorbance ( 𝐴 ) of an absorbing chemical species is directly 

proportional to the path length (l) and concentration (c) of the 

chemical. Absorbance (𝐴 ) is a measurement without any units, 

obtained at a particular wavelength of light. 

𝜀 =
𝐴
𝑐 ∗ 𝑙 

𝜀 =
4894.7𝑀!!

10.2𝑐𝑚  

A gas-flow cell was used to assess the molar extinction coefficient of 

the odor in gaseous phase. The average odor concentration along 

the light path was estimated using the Beer-Lambert law (Swinehart 

1962). The odor (IAA) was mixed with the solvent n-hexane1 in 

different proportions and injected directly into the gas flow cell by 

using a 10 uL Hamilton syringe. To minimize errors, the volume 

injected into the cell was fixed to 10uL. The quantities of odor 

tested were 0, 0.01, 0.1, 0.2, 0.25, 0.5 and 1 mL. In all cases, the 

absorbance was measured by calculating the height of the 

absorption peak at the wave number 1765 cm-1 — a wavelength 

specific to IAA (Freeman 2006). In order to reduce the noise of 

                                                
1 Hexane represents a substance, which does not absorb light at the wavelength 
specific to IAA. 



 Materials and Methods  

 
57 

each measurement, absorption spectra were calculated from multiple 

scans (90 – 100 scans). Between trials, the gas flow cell was 

disassembled and all parts were rinsed with n-hexane. In addition, 

the chamber was constantly evacuated by connecting the exhaust to 

a 20 kpa vaccum connection in between each measurement and 

wash. 

 

 

Figure 14. Absorbance of isoamyl acetate (IAA) at different concentrations. The 
data corresponds to the maximum peak height for each measurement. 

 

The experimentally measured absorbances are presented in Figure 

14. In the absence of odor, it was found that the absorbance at 1765 

cm-1 was not zero but 0.0199 (red square). This marginal absorption 

might have been due to the presence of some residual odor on the 

wall of the flow cell after the wash and/or weak absorption by 

hexane at 1765 cm—1. To account for this offset, the absorption 

measured in the presence of odor was corrected by the value 

observed in the presence of the solvent only (Figure 14). 
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To estimate the absorption coefficient, the three highest dilutions 

were taken into consideration — the very same concentrations used 

by Louis, Huber, et al. and Asahina et al. (Louis, Huber et al. 2008; 

Asahina, Louis et al. 2009). Considering the geometry of the gas-

flow cell (height: 10.2 cm, radius: 1.4 cm), the absorption coefficient 

was estimated to be 479.87 M-1 cm-1 at 25° C (Figure 15). 

 

 

Figure 15. Estimation of the absorption coefficient based on least-square error fit. 
By using the slope of the absorbance, the absorption coefficient was calculated: 
ε=4894.7/10.2=479.87 M-1 cm-1. 

 

When injecting an excess of 5 uL of pure odor into the cell some 

part of the liquid odor remained visible on the bottom of the cell 

meaning that the odor did not fully evaporate. Thus, it was assumed 

that purely saturated odor vapor was present inside the gas cell and 

this condition was chosen to estimate the concentration of saturated 

odor. The measurement was initiated right after the injection of 10 

uL odor and performed for 15 min during which the absorbance 

increased monotonically. After this point, the absorbance saturated 

at a value close to 1.36 (offset corrected) (Figure 16). Using the 
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absorption coefficient, the concentration of the saturated vapor was 

estimated to be 278.45 uM. 

 

 

Figure 16. Estimation of the concentration of saturated odor vapor. The 
measured absorbance can be seen to saturate around 20 min into the experiment 
indicating that the vapor inside the cell was saturated. 

 

Gas-phase odor calibration: Estimating the saturation concentration of the 
airborne odor flow using IR spectroscopy 

To establish the saturation concentration of air passing through pure 

IAA the odor stream was directly injected into the gas flow cell. 

However, for unknown reasons, the absorbance exceeded the 

measurable range. To lower the resulting concentration, the airborne 

flow was diluted by clear air in the following ratios: !
!"
, !
!"

, and !
!"

 

(Table 1). These ratios were approximated in a fixed resulting flow 

of 950 mL/min — a flow rate also compatible with the suction of 
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the photoionization detector used for the calibration described in 

‘Materials and Methods; Gas-phase odor calibration without 

artifacts: Measuring the airborne odor concentration with a 

photoionization detector (PID)’. 

 

Table 1. Estimation of the odor concentration of a saturated odor flow (IAA). 

Dilution Absorbance Predicted 

absorbance for 

pure odor 

Predicted 

concentration of 

saturated vapor 

1/83 (0.06V) 0.0183 1.521 310.66 uM 

1/38.5 (0.13V) 0.0373 1.436 293.47 uM 

1/19.2 (0.26V) 0.0847 1.626 332.12 uM 

1/10 (0.52V) 0.0163 1.630 333.05 uM 

 

After a short initial rise, the absorbances quickly saturated at a 

plateau value. These plateau values were taken to infer the 

absorbance expected for an undiluted flow. The corresponding 

airborne odor concentrations were calculated by using the 

absorption coefficient derived from Figure 16. 

The estimated odor concentrations of the saturated vapor were 

clearly larger than the value measured upon injection of 10 uL of 

pure odor in the cell (278.445 uM). How did this discrepancy arise? 

One possible explanation is that a constant flow of odorized air 

funneled through the gas cell results in condensation of IAA at the 

gas cell’s glass wall leading to a steady rise of the measured 

absorbance largely exceeding the values measured with static, 
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odorized air. This hypothesis was subsequently tested by measuring 

the absorbance of an airflow containing purely saturated vapor 

(Figure 17). In this experiment the air passing through 10 mL of 

pure IAA was kept at a constant flow. However, this time, the 

measurements were initiated before the injection of the saturated 

airflow into the flow chamber was initiated. Upon injection of the 

odor flow, the measured absorbance rose continuously well above 

the levels measured in the experiments where 10 uL of pure IAA 

were injected into the gas cell. The absorbance reached values as 

high as 2.54, two fold the value measured for saturated vapor, and 

showed no sign of saturation when the experiment was stopped, 

thus corroborating the notion of continuous odor condensation at 

the gas cell’s wall. 

 

 

Figure 17. Measuring the absorbance of a saturated odor flow (IAA): The 

measured absorbance rises steadily and never saturates due to condensation or 

adsorption of the odor.   
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In light of this artifact specific to the FT-IR-Spectroscopy it was 

decided to use the PID to measure the concentration of the 

odorized air stream. 

 

Gas-phase odor calibration: Measuring the airborne odor concentration 
with a photoionization detector (PID) 

In a photoionization detector (PID) air is continuously sucked into a 

compartment where an UV lamp excites gaseous odor molecules 

into positively charged ions. As a result the gas becomes electrically 

charged and the ions produce an electrical signal, which is reported 

by the detector. With increasing concentrations of an airborne odor, 

more ions are produced, leading to a stronger signal at the detector. 

The PID is not capable to measure absolute odor concentrations, 

but rather relative differences of odor concentrations. The voltage 

readout that it provides needs to be calibrated by odorized air with 

known concentration. 

To calibrate the PID, the air stream was passed through pure IAA 

to obtain saturated vapor. However, since the PID signal saturated 

at very high concentrations of airborne IAA, it was necessary to 

dilute the airflow down to a measurable range. The saturated vapor 

was obtained with the olfactometer in the same experimental 

conditions as described in the previous section (see ‘Materials and 

Methods section; Gas-phase odor calibration with artifacts: 

Estimating the saturation concentration of the airborne odor flow 

using IR spectroscopy’). The concentrations of the diluted air stream 
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were calculated assuming a 278.445 uM saturation concentration as 

determined by IR spectroscopy.  

 
Table 2. Air-borne odor concentrations used for the calibration of the PID. 

Dilution Air-phase 

Concentration [uM] 

∞ 0 uM 

1/83 (0.06V) 3.35 uM 

1/38.5 (0.13V) 7.23 uM  

1/19.2 (0.26V) 14.50 uM  

1/10 (0.52V) 27.84 uM  

 

The estimated concentration values of the diluted air stream used 

for the PID calibration are reported in Table 2, while the calibration 

curve is shown in Figure 18. It can be seen that the PID voltage 

𝑠!"# and the airborne odor concentration followed can be estimated 

by a linear function with a slope of 𝑎 = 5.5444 5. The 

concentration of IAA in the odorized air stream could be estimated 

as follows: 

𝑐(𝐼𝐴𝐴)!"# = 𝑎 ∗ 𝑠!"# 

𝑐(𝐼𝐴𝐴)!"# = 5.5444 ∗ 𝑠!"# 
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Figure 18. Calibration of the photoionization detector (PID) with airborne 
odorant stimuli showing a linear relationship between the odor concentration and 
the measured voltage change. Error bars represent the standard deviation. 

 

Calcium imaging of single OSNs at the level of the antennal lobe 

The OSN activity was monitored by means of calcium imaging at 

the axon terminal of the OSNs at the level of the larval antennal 

lobe (Or42a>GCaMP3) using a high-speed camera (Andor, United 

Kingdom) and a fluorescence microscope (BX51 mounted with 40x 

water immersion objective, Olympus, Japan) at a sample rate of 30 

Hz. The OSN activity was measured during odor stimulation in gas 

and liquid phase, respectively. 

 

Tungsten electrode recordings 

In contrast to the suction electrode recording technique where the 

delicate antennal nerve within the glass electrode requires the whole 

prep to stay in contact with extracellular saline at all times, the 
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tungsten electrode recording technique — since the signal is 

recorded by the tungsten wire directly — does not require a liquid 

recording environment and can be carried out while the larva is 

exposed to the air. However, due to the dry recording environment, 

the larval head cannot be dissected when using tungsten electrodes 

to record from the OSN, as doing so would lead to immediate 

dehydration of the tissue. As a result, the olfactory nerve is much 

more difficult to target with the electrode and a strong neural signal 

is hard to record. To facilitate the acquisition of a strong signal, 

recordings were carried out in larvae having all OSNs functional. 

Attempts to record in single functional larvae did not yield a 

meaningful response. In my tungsten electrode recording 

experiments I was able to record the local field potential of the OSN 

while the detection of spikes was only successful in very few 

recordings and were only obtained in a thoroughly filtered dataset. 

Recordings were carried out with etched uncoated tungsten 

electrodes with a tip size of ~3 - 5 um. Etching was carried out in 

accordance to the protocol by Pellegrino et al. (Pellegrino, 

Nakagawa et al. 2010). A raw (un-etched) tungsten electrode was 

inserted (from above) into an upright standing 50 mL falcon tube 

filled with 0.5 M potassium hydroxide while applying a constant dc 

voltage (7 V). The anode was connected to the tungsten electrode, 

while the cathode was connected to the etching solution. 

Approximately 10 alternating cycles of immersing either 1/3rd of the 

length of the electrode or only the very tip into the etching solution 

were carried out. The cumulative time of tip etching was 6 - 7 min, 

while the cumulative time of 1/3rd length etching was 3 - 4 min. 
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Etching of multiple tungsten electrodes at once lead to a slight 

increase in the time that was necessary to complete the etching 

process. 

The blunt end of an etched tungsten wire was inserted into a slightly 

shorter boroscillate glass capillary filled with 1% agarose (in H2O). 

The back end of the electrode pointing out of the glass capillary was 

then inserted into the electrode holder and finally carefully wrapped 

around the gold connector pin. The boroscillate glass capillary 

greatly enhanced the stability and thus the movement precision of 

the long tungsten wire. The tip of a 10 uL plastic pipette tip was cut 

at the back to get a piece that was ~10 mm in length. The larva was 

inserted at the rear end of the pipette tip which was in turn inserted 

into a 10 mm long cut silicone tube (Novosil 1x3 mm) that was 

finally connected to a 50 mL syringe filled with extracellular saline 

(Singleton and Woodruff 1994. Applying a pressure of 

approximately 500 mbar through the syringe, the front end of its 

mouth hook was allowed to point out of the pipette tip. While 

applying a constant pressure with the syringe in order to expose the 

larval mouth hook at the front of the pipette tip, the tissue around it 

was glued to the pipette tip by mouth-pipetting around 5 ul of 

histoacryl using a broken boroscillate glass pipette. The reference 

electrode, a chlorinated silver wire connected to a CV-7 headstage, 

was inserted from the back end of the silicone tube connected to the 

pipette tip and moved forward until it slightly touched the rear end 

of the larva. Finally, a pulled and subsequently broken boroscillate 

glass pipette was inserted into the remaining end of the silicone-

tubing-larva-containing-pipette-tip (next to the silver reference 
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electrode) to fix it with the pipette holder. The pipette holder was 

connected to the pressure-driven flow controller to allow the 

application of a constant pressure on the larva keeping the mouth 

hook immobilized end exposed to the air. A typical working 

pressure ranged from 100 – 700 mbar. Typically, the pressure was 

set to a value where all movements of the mouth hook ceased and 

the larva appeared to be completely immobilized. A sketch of the 

recording setup is shown in Figure 19. 

 

 

Figure 19. Tungsten electrode recording setup with air phase odor delivery 

system.   
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The tungsten electrode was moved into the vicinity of the larval 

dorsal organ (frontal) using the 10× magnifying objective, while the 

actual targeting of the antennal nerve ganglion was carried out using 

a 50×   long working distance objective. GFP expression in the 

OSNs used as a beacon to guide the tungsten electrode towards the 

cell bodies within the dorsal organ’s dome. Recordings were carried 

out in the dome both close do the dendrites as well as near the cell 

bodies at the antennal nerve ganglion where the local field 

potential (LFP) of the neural activity was detected. Figure 20 

illustrates the LFP in response to a linear stimulation of IAA 

recorded in an animal in which all OSN were functional (WT – 

W1118). All recordings were carried out with Multiclamp in current 

clamp mode (100× AC membrane potential, 500 mOhm, Gain = 1) 

with a 10 kHz bessel filter. The signal was recorded at a sample rate 

of 20 kHz in a PC equipped with the free data acquisition software 

SpikeHound (Lott III 2009). Air-phase odor ramps of IAA were 

delivered using a constant airflow generated by a custom built 

olfactometer controlled by Labview (as described in ‘Materials and 

Methods section; Odor stimulation in gas-phase’). The overall flow 

rate was monitored before the actual experiment using an electronic 

mass flow meter. It was noted that the tungsten recording method 

was more prone to picking up electrical artefacts and much more 

sensitive to electrical noise compared to the suction electrode 

recording technique. 
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Figure 20. LFP recorded in WT larva response to linear IAA odor ramps (blue). 
The odor concentration, which was measured separately, is reported in red. It can 
clearly be seen that the LFP changes with negative values in response to the odor. 
Over the time course of the odor stimulation pattern the OSN response decreases 
in amplitude – a hallmark of adaptation.   
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Behavior	  

The closed-loop larval tracker: A versatile tool to record and classify 
behavior at high temporal and spatial resolution 

The behavior of single larvae was studied in a closed environment 

with a droplet of IAA placed on the ‘ceiling’ of the arena. These 

experiments were carried out in the larval tracker, which contained a 

large glass arena covered by an agarose slab (Figure 21A). The video 

camera was mounted on a moving stage following the behaving 

larva in the middle of the three blue LEDs (LCS-0470-03-22 LED, 

Mightex Systems, Canada), and delivered images at a resolution of 

800x800 pixels with a frame time interval of 23 ms. Below the arena 

was a red LED backlight providing the necessary illumination. The 

camera was equipped with a high-pass filter to filter out any blue 

light from the blue light stimulation. The larval tracker stimulation 

module consisted of three blue LEDs, connected in serial and 

whose angle and position were fixed to maximize the light intensity 

at the arena within the camera’s field of view. The LEDs were 

connected to an LED controller (Mightex Systems P/N: SLA-1200-

2) whose output current limit was set to 750 mA. The controller’s 

output current was changed in direct proportion to the analog 

voltage fed to the controller. 
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Figure 21. (A) Schematic drawing of the closed-loop tracker. The blue LEDs and 
the camera are mounted on a moving stage that follows the larva while it crawls 
on an agarose slab (40x40 cm or approximately 120x120 body lengths of the 
larva). 

(B) Depiction and description of the moving camera stage equipped with three 
LEDs. 

(C) Flow chart outlining the interaction of the core modules of the tracking 
software. 

(D) Illustration of the spatial trajectory generated by an Or42a>ChR2 larva upon 
stimulation by a virtual light gradient. (Top-left) Predefined light landscape with a 
geometry approximating the odor distribution produced by a point source. During 
the behavioral tests, the full gradient is not projected onto the arena: the larva is 
illuminated by the LEDs at an intensity determined by its position in the virtual 
light gradient. (Bottom) The light intensity is updated based on the motion of the 
larva, which forms the temporal evolution shown in the graph. (Top-right) The 
spatial trajectory described by an Or42a>ChR2 larva in the virtual light gradient.  
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The larval tracker control unit (LTCU) represented the main 

hardware interface responsible to drive both LEDs and a video 

camera. While the camera was controlled via a transistor–transistor 

logic (TTL) signal, a 12-bit digital-to-analog converter (DAC) output 

was used in sending the control signals (0 – 5 V analog signal) to the 

LED controller. An In-Circuit Debugging (ICD) Port was used for 

connecting the LTCU to an ICD3 Programmable Interface 

Controller (PIC) via a registered jack (RJ11) connector interface, 

while an USB Port enabled the LTCU’s communication to the PC. 

An embedded program written in C is used to run the LTCU. This 

C program enables the LTCU to respond to the commands issued 

by the PC. The software interface of the tracking and image analysis 

software interfacing the LTCU was written in JAVA. 

 

Kinematic variables and behavioral mode classifiers  

Alex Gomez-Marin, Matthieu Louis, and Moraea Phillips performed 

the work on the definition of all kinematic variables and behavioral 

mode classifiers. 

In a first attempted turning events were detected in an off-line 

analysis by setting a threshold on the reorientation rate of the larva. 

Although this method led to satisfactory results in previous studies, 

the higher resolution of the closed loop tracker analysis made it 

unsuitable for the conditions tested. Therefore, a geometrical 

approach based on the topology of the physical trajectory described 

by the larva was adopted. In a first step, the trajectory was parsed 

into segments of equal sizes. Next, the angle between successive 
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segments of the trajectory was calculated. Finally, the distribution 

over these angles was computed. This distribution had the 

characteristics of a long-tailed exponential. The threshold was set at 

the location of the ‘kink’ of the distribution. Turning events were 

associated with positions where the trajectory curled at an angle 

larger than the threshold. Good results were obtained for trajectory 

segments of 5 mm and an angular threshold of 20 degrees. The 

results of the behavioral classification were insensitive to the exact 

value of the trajectory segments and the angular threshold. The turn 

identification was based on the trajectory of the midpoint. To 

distinguish runs from non-runs, empirical filters based on three 

sensorimotor features were defined: 

The first feature was the head angle between the direction of the 

body axis and the neck axis (midpoint-head). The second feature 

was the instantaneous velocity vector measured at the tail position 

(vector vtail), and the third feature the angle between the tail velocity 

vector and the direction of the body axis (unitary vector 1m) (Figure 

22A). Transitions from a run to a non-run state take place as soon as 

(1) the head angle is larger than a threshold t1 or (2) the dot product 

of the tail velocity vector and unitary vector corresponding to the 

direction of the body axis is smaller than t2 (condition C1) (Figure 

22B). The first condition on the head angle identifies head casts 

while the second condition on the dot product identifies sequences 

of behavior associated with a stop or a forward run. Transitions 

from a non-run to a run take place when the following two 

conditions are verified: (3) the head angle must be lower than the 

threshold value t3 and (4) the dot product of the tail velocity and 
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unitary vector along the body axis must be larger than t2 (condition 

C2). The thresholds of the conditions (1-4) were set at a value that 

maximizes the difference in the cumulative distribution of the run 

and non-run state along the relevant sensorimotor feature (head 

angle or dot product) for the two possible types of behavioral state 

transitions (run → non-run or non-run → run) (Figure 22B). 

Distributions of the frame-by-frame sensorimotor features were 

constructed by pooling the annotated frames from 4 representative 

trajectories. The manual ground-truth annotation was achieved by 

Vani Rajendran and Matthieu Louis. The value of the thresholds 

used in the analysis were: t1=18 degrees, t2=0.0065 and t3=13 

degrees. Figure 22C bottom shows a frame-by-frame manual 

classification of run/non-run behavior achieved by the two trained 

annotators (A1 and A2) in comparison to the computational 

classification obtained by the filters described in panel B. The table 

reports the percentage of true positives (frames classified as a run by 

both the annotator and the algorithm) and false negatives (frames 

classified as a run by the annotator and a non-run by the algorithm). 

This good match validates the use of the computational classifiers in 

real-time experiments. Due to the high sampling rate of the tracker 

and the inherent noise of the stepper motors, the position of the 

points of interest were subject to minute jittering. 
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Figure 22. Annotation of behavioral classifiers defining run and non-run states. 
(A) Definition of runs and non-runs: (1) the head angle between the direction of 
the body axis (tail-midpoint) and the neck axis (midpoint-head); (2) the 
instantaneous velocity vector measured at the tail position (vector vtail) and (3) the 
angle a formed between tail velocity vector and the direction of the body axis 
(unitary vector 1m). 

(B) Illustration of definitions of thresholds of the conditions governing behavioral 
transitions from run to a non-run state. 

(C) (Top) Report of values of the thresholds used in the analysis. (Bottom) 
Comparison of frame-by-frame manual classification of run/non-run behavior 
achieved by the two trained annotators (A1 and A2) versus the computational 
classification obtained by filters described in panel B. 

 

To get rid of these artifacts, the trajectories were smoothened with a 

Savitzky-Golay filter (Press 1988; Schafer 2011). This gentle filtering 

removed the fluctuations on small spatial scale irrelevant to the 

motion of the larva. The geometric approach was used to classify 

the data from all closed-loop experiments. For all open-loop 

experiments turns were identified by the online classifier 

implemented in the tracker software. 
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Virtual light environments: Closed-loop and open-loop tracking conditions 

The larval tracker was used under two conditions: 

(1) closed-loop, where the motion of the larva was directly driving 

the stimulation pattern, thereby closing the sensorimotor loop; 

(2) and open-loop, where the motion of the larva had no influence 

on the stimulation pattern. 

For closed-loop experiments (1) involving a virtual light landscape 

(Figures 60, 62, and 67), the light intensity was updated based on 

the position of the head of the larva mapped on a predefined light 

landscape. The light landscape was loaded in the software controller 

environment as a matrix with a spatial resolution of 1x1 mm. Since 

the position of the larva was monitored at a higher resolution, the 

intensity of the spatial landscape was redefined by using a bi-linear 

interpolation along the x and y-axis. The position of the center of 

the light gradient was automatically adjusted at the beginning of the 

experiment in such as way that every larva started in a direction 

facing the center of the gradient at a fixed distance of 9.6 mm from 

the center for the exponential light gradient (Figures 61 and 63A) 

and a distance of 17.1 mm for the family of light landscapes (Figure 

67). The minority of trajectories from which larvae failed to detect 

the presence of the light gradient was discarded from the dataset. 

In open-loop conditions (2) on the other hand, the LED intensity 

was updated in accordance to a predefined temporal light stimulus 

(by randomly selecting either a pre-defined light stimulation 

function or continued baseline stimulation) only when a larva is in a 

run mode. During a run, the motion of the larva had no influence 
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on the intensity of the stimulus. A predefined run-based light 

stimulation was stopped and returned to its baseline value as soon as 

a larva terminated its run to initiate a turn. 

In chemotaxis experiments involving real odors the tracker was 

purely tracking larval behavior in the odor gradient without 

executing any light stimulation at all. 

 

Creation of controlled odor gradients to study larval chemotaxis 

The controlled odor environment was created in a 120 mm x 120 

mm x 12 mm arena consisting of a polystyrene dish (the lid of a 

Greiner square dish, Sigma-Aldrich, USA) standing on a 2% w/V 

agarose surface inside the closed-loop tracker (Figure 23). A 3 uL 

0.25 M IAA odor droplet was placed inside a plastic reinforcement 

ring at the center of the dish (internal diameter of odor droplet: 5 

mm). Inside the arena, an odor gradient formed by the diffusion 

from the source for 30 s prior to the introduction of a single larva. 

This step required briefly opening the arena. The tracking of single 

animals was then initiated and lasted for a minimum duration of 3 

min. 

 

Quantification and modeling the odor diffusion underlying the odor 
gradient during chemotaxis 

Diffusion from an odor droplet creates a radially symmetric gradient 

that can be approximated by a Gaussian distribution (Louis, Huber 

et al. 2008; Asahina, Louis et al. 2009; Gomez-Marin, Stephens et al. 
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2011). However, unlike in previous work, it was found that the 

reduced volume of the source leads to a non-stationary gradient that 

could not be adequately approximated by a static Gaussian 

distribution. In fact, the Gaussian profile was slowly flattening out 

over the time course of several minutes. Larvae performing 

chemotaxis were exposed to an odor gradient that slowly changed 

over time. Therefore, a precise quantification of the dynamics of the 

odor diffusion process was needed, to correlate the behavior of the 

larva with a faithful reconstruction of the odor gradient. To this end, 

Madhusudhan Venkadesan developed a model for the diffusion of 

the odor inside the behavioral arena. The diffusion process was 

modeled based on a system of partial differential equations (PDEs) 

that included realistic boundary conditions. 

 

 

Figure 23. Configuration of behavioral arena used in the model consisting of a 
rectangular transparent plastic box sitting on a surface of agarose.  The odor 
source consisted of a solution of IAA mixed with paraffin oil. 

 

The parameters of the PDE model were optimized to fit the IR 

measurements (Figure 24). The reconstructed odor gradient then 

served as a template to infer the stimulus time course experienced 

by the larva during real trajectories (Figure 26 and 27). 
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Figure 24. Physical model of odor diffusion in behavioral arena. Infrared 
spectroscopy was used to estimate the absorbance and thereby the average 
concentration along sections of the arena (IR beam depicted in panel A). The time 
course of the cumulated concentration was determined for 7 sections at a distance 
from the source ranging from 0 to 45 mm (only first 6 are shown in the graph). 
Measurements were made for a source of 1.0 M. The parameters of the model 
were estimated by optimizing the fit of the model with the average concentration 
profiles along the 7 sections of the arena. The PDE model led to a good fit of the 
temporal profiles of the average concentrations after an initial transient phase of 
30 s. 

 

All behavioral experiments were conducted at a concentration of 

0.25 M. At this low concentration and due to the small volume of 

the source, accurate temporal profiles of the average odor 

concentration could not be obtained through infrared spectroscopy 

for all sections of the plate. Therefore, the gradient was estimated by 

using a source concentration of 1 M assuming that the gradient 

forming inside the arena scaled linearly with the source 

concentration. This assertion however, could only be validated at 

the area where the concentration was highest — directly under the 

source (Figure 25). 
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Figure 25. Behavioral experiments were conducted with a 3 uL odor droplet at a 
concentration of 0.25 M. Under the source, it was found that the average 
concentration of the odor scaled as a function of the source concentration. The 
gradient reconstructed at 1.0 M was scaled by a factor 0.25. 

 

Using Fourier transform–infrared (FT-IR) spectroscopy, the odor 

concentration time course along the length of the single-odor-source 

device was measured for various cross sections (one every 7.5 mm) 

of the behavior chamber to reconstruct the two-dimensional 

geometry of the odor gradient (Louis, Huber et al. 2008) 

(experimental setup described in ‘Materials and Methods section; 

Creation of controlled odor gradients to study larval chemotaxis’). 

The measurements were taken after the odorant was placed in the 

chamber following the exact same protocol used for the behavioral 

experiments. From these 7 sections, the average concentration was 

measured continuously over a time interval of 360 s (Figure 24).  

The parameters underlying this physical model were estimated by 

model-based estimation techniques. The process was modeled as a 

3D diffusion, with separate diffusion constants for air and the 

droplet. Exposed plastic surfaces of the chamber were treated as 

adsorptive boundary conditions. Since the odor gradient was initially 

established in the arena for 30 seconds before the introduction of a 

larva, the model also included non-zero initial concentration of the 
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odor in the air, agarose and plastic chamber. COMSOL Multiphysics 

v4.3 was applied to solve the diffusion equation.  

The geometry of the experimental arena is described in Figure 23. 

The radius rring of the odor ring confines the liquid droplet so that 

the radius of the flat face is equal to rring. The volume Vdrop of the 

droplet, made up of odor and solvent, is fixed to be 3 uL. The 

formula of a sphere is given as 

  !drop!  
!
!
  !drop !drop

! !!!ring
!  

with hdropas the droplet height. The agarose layer at the bottom of 

the chamber was modeled as a two-dimensional sheet with an 

independent diffusion constant. 

 

 

Figure 26. The numerical integration of the PDE model allowed for a 
reconstruction of the temporal evolution of the odor gradient experienced by the 
larva at arbitrary spatiotemporal precision. The reconstruction was saved at time 
steps of 1s. Between defined sections the gradient was linearly interpolated. Over 
time, the gradient tended to flatten out, an effect caused by a gradual depletion of 
the source. 
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Parameter estimation was achieved using the 

MATLAB/Optimization toolbox by solving a nonlinear least 

squares problem. For a given set of parameters based on an initial 

guess about the order of magnitude, the diffusion process was 

simulated, and integrals of the concentration along the sections 

corresponding to the experimental measurements were evaluated. 

The objective function to be minimized for estimating the 

parameters was the root mean squared error of the average 

concentration at each of the seven locations and at all times.  

The results of the dynamic gradient reconstruction are shown in 

Figure 26. The difference between the static and the dynamic 

temporal odor profiles shown in Figure 27 underlines the 

importance of the dynamic gradient reconstruction for the 

experimental conditions. 

 

 
Figure 27. Reconstruction of the concentration time course experienced during a 
representative trajectory (the one shown in Figure 29, panels A and B). The 
magenta trace was obtained after mapping the behavior on the dynamic 
reconstruction of the gradient shown in Figure 26. In contrast, the blue trace was 
obtained after mapping the behavior on the gradient computed 60 s after the 
onset of the odor diffusion. 
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There were two simultaneous diffusion processes, both of which 

were modeled using the partial differential equation (PDE): 

𝜕𝑥
𝜕𝑡 = 𝐷!∇!𝑥 

 

The diffusion constant 𝐷! depended on whether the medium 𝑖 is air 

or droplet. At the droplet-air boundary, a flux continuity condition 

was used — as a result the odorant could not accumulate at this 

boundary. As a result of the flux continuity at the droplet-air 

boundary, and because diffusion through air was substantially faster 

than through the droplet, the odor developed a radial profile in the 

droplet despite starting with a homogenous initial concentration. 

This process serves as approximation of the coupled evaporation-

diffusion process. Since modeling the diffusion limited evaporation 

process (Kelly-Zion, Pursell et al. 2011) would render this problem 

intractable in the context of a model-based parameter estimation, 

the overall evaporation process was approximated while ignoring 

natural convection, concentration-dependent changes in volatility, 

and chemical interactions with the solvent. Although inaccuracies 

could arise from this approximation, the model was able to match 

experimental measurements with good fidelity as seen from the 

results of the model-based estimation (Figure 24). 

The top flat face of the droplet that contacts the plastic cap was 

treated as a no-flux boundary. Flux continuity is imposed on the 

spherical interface with air. The remaining boundaries, air-agarose 

and air-plastic, were modeled as Robin boundary conditions to 

accommodate the possibility of adsorption-desorption. Although 
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the standard way of treating adsorption reactions would be to use a 

reactive boundary condition where the odorant is treated as free in 

the air or bound to the boundary, these boundaries were modeled as 

a Robin boundary condition, which reduces the number of 

parameters to be considered. This simplification of the boundary 

conditions was necessary to estimate the associated parameters with 

a single experiment. 

Considering a diffusing chemical species with concentration 𝑥(𝑡, 𝑟) 

that varies with time 𝑡 and location 𝑟  within the chamber, the flux 

vector 𝐽 of this chemical is given by 𝐽   = −𝐷∇𝑥, where 𝐷 is the 

diffusion constant in air. If the normal direction to the boundary 

under consideration denoted as 𝑛, the Robin boundary condition 

relates to the normally incident flux to the boundary reaction by 

−𝑛. 𝐽   = 𝑘!(𝑥!,! − 𝑥), where 𝑘! is related to the reaction rate at the 

boundary 𝑖 (agar or plastic), and 𝑥!,! is the saturation concentration 

of the odorant on this boundary. This reaction drives the flux 

towards the saturation concentration of the boundary. For example, 

if the concentration of the odorant in air is lower than the saturation 

concentration, the boundary would become an odor-source by 

undergoing desorption, with a rate governed by 𝑘! . Conversely, a 

higher concentration of the odorant in air would lead to adsorption 

at the boundary. 

To minimize the objective function, Sequential Quadratic 

Programming (SQP) as implemented by the function fmincon in 

MATLAB v8.2 was used. The Jacobian of the cost function with 

respect to the parameters being estimated was computed using finite 
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differences. All physical parameters were constraint to be greater 

than 0. None of these inequality constraints were active for the 

converged solution. From 20 random initial guesses that were tried 

out, one included a condition in which all parameters were set to 0. 

Once the optimization converged, the converged estimates were 

perturbed using random numbers. The perturbed estimates were fed 

back to the estimator, and ran again until convergence. 20 such 

restarts were carried out, and all of them converged to the same 

estimates, which are shown in Table 3. 

 

Table 3. Parameters of PDE model for odor diffusion. The parameters were 
optimized for IAA under the experimental condition outlined described in Figure 
23. 

 

  

Parameter Physical description Converged value 

!air Diffusion constant in air 8.9377 x 10-7 m2s-1 

!drop Diffusion constant in droplet 8.7859 x 10-11 m2s-1 

!!,air Initial odorant concentration in air 4.0492 x 10-7 mol L-1 

!!,drop Initial odorant concentration in droplet 0.0450 mol L-1 

!agar Robin rate for air-agar boundary 1.5762 x 10-6 ms-1 

!plastic Robin rate for air-plastic boundary 5.8025 x 10-5 ms-1 

!!,agar Saturation concentration of agar 3.6817 x 10-5 mol L-1 

!!,plastic Saturation concentration of plastic 5.7921 x 10-7 mol L-1 

!
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Fly	  stocks	  

Previous work has demonstrated that larvae are very sensitive to 

light in that they actively avoid it (Xiang, Yuan et al. 2010). Light 

sensors that are mediating the light avoidance response are located 

in the larva’s bolwig’s organ (the larval ‘eye’), and in class IV 

multidendritic neurons along the larva’s body wall. In order to make 

larvae insensitive to light the 410-amino acid apopotosis-inducing 

protein hid was ectopically expressed in the bolwig’s organ 

(GMR>hid) — the larval eye — rendering all photoreceptor 

neurons dysfunctional even in animals expressing only one copy of 

the gene (Haining 1999). In addition, by introducing a deletion of 

the dtrpA1 gene (dtrpA1[1]), the light sensitive class IV 

multidendritic neurons along the larval body wall lost their 

sensitivity to light. For this work, all behavioral experiments were 

achieved in double blind 3rd instar larvae (GMR>hid/+;dtrpA1[1]) 

(Kwon, Shim et al. 2008) (Xiang, Yuan et al. 2010) which expressed 

both the co-receptor Orco and the light gated ion channel 

Channelrhodopsin-2 (ChR2-H134R) in only one OSN(Or42a-

Gal4/UAS-Orco,UAS-ChR2-H134R;Orco-/-) (Fishilevich, Domingos 

et al. 2005). The UAS-ChR2-H134R transgene was a gift from 

Stefan Pulver and Leslie C. Griffith (Pulver, Pashkovski et al. 2009). 

The complete genotype of all larvae used in the experiments (both 

electrophysiology and behavior) was  

Or42a-Gal4,GMR>hid/UAS-Orco,UAS-ChR2-H134R; 

dtrpA1[1],Orco-/- 

For the control experiments in larvae with a functional olfactory 

system (WT background) blind glass60j mutant larvae were used 
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instead of GMR>hid (Or42a-Gal4>UAS-ChR2-

H134R;gl[60j];dtrpA1[1]) (Moses, Ellis et al. 1989). 

Larvae used in all functional imaging experiments expressed the 

calcium indicator GCaMP3 exclusively in the Or42a neuron (Or42a-

Gal4>UAS-GCaMP3) while having the rest of the olfactory system 

intact (all OSNs were functional). 

All flies were raised on standard fly food1 containing 0.5 mM all-

trans-retinal in an incubator in complete darkness (food vials 

wrapped in aluminum foil) to minimize exposure to ambient light 

until the experimental test. Approximately 96 hours after egg-laying, 

3rd instar larvae were taken out of the food and immersed in a 15% 

(w/V) glucose solution from where they were taken to participate in 

a given experiment. 

                                                
1 3% (w/V) molasses; 2% (w/V) yeast; 5% (w/V) corn meal; 0.26% (w/V) agar; 
1.5% (w/V) Tegosept/Nipagin; 0.5% (w/V) propionic acid; 87.74% H2O (V/w). 
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Chapter 2 - Results 

Physiology	  

Phase conversion of liquid-phase odor concentration to gas-phase odor 
concentration 

While behaving larvae detect odor in air, all electrophysiological 

experiments were conducted in liquid phase. It was therefore 

essential to determine the liquid phase equivalent of the air-phase 

concentration experienced by larvae during chemotaxis. To this end, 

the calcium indicator GCaMP3.0 was expressed in the Or42a neuron 

(Or42a>GCaMP3) and functional imaging at the axon terminal at 

the level of the larval antennal lobe was performed. The neural 

activity was measured during odor stimulation in gas and liquid 

phase, respectively (Figure 28 panels A-C). 

The final phase correlation (liquid-phase odor concentration to 

airborne odor concentration) was established for a 8 s exponential 

ramp. In liquid phase, both background and maximum 

concentration were fixed to the pre-existing experimental conditions 

used for the electrophysiology: they corresponded to a range 

spanning between 50 mM and 530 mM. The corresponding ∆!
!

 of 

the OSN response ranged between 10% and 60% in liquid phase. 

The background and maximum concentration of the airborne ramp 

was adjusted to obtain an activity profile with a ∆!
!

 matching the 

liquid-phase stimulations. According to the measurements 

performed with the PID, the concentration estimate of the final air-
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phase exponential odor time course ranged from 2.20 to 20.13 uM 

and led to an OSN response whose ∆!
!

 ranged between 10% and 

59%. It was found that the ratio of the maximum ∆!
!

 in both gas and 

liquid phases was 0.98. The ratio of the integral of ∆!
!

 over the full 

time course of the stimulation was 0.87. The calcium responses 

elicited by an exponential ramp in the Or42a OSN with a 

concentration range of 50-530 uM in liquid phase was found to be 

equivalent to a concentration range of 2.20 to 20.13 uM in gas 

phase. The measured OSN response dynamic was almost equivalent 

for both phases.  

To map the concentration range of 2.20-20.13 uM in gas phase onto 

the concentration range of 50-530 uM in liquid phase, the ratio 

between the peak concentrations of the ramp in liquid and gas 

phases was established: 

 

𝑟!"#$"% → 𝑟!"#:    ρ
liquid-gas =

max  (  𝑐!"#$"%)
max  (  𝑐!"#)

 

𝑟!"#$"% → 𝑟!"#:    ρ
liquid-gas =

530  𝑢𝑀
20.13  𝑢𝑀 = 26.73 
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This conversion was applied to predict the behavior of the larva in 

airborne odor gradient on the basis of a model for the OSN activity 

developed for liquid-phase stimulations. It was concluded that for 

the same concentration, the effective number of odorant molecules 

reaching the odorant receptors had to be 26.73 times higher in gas 

than in liquid phase. The phase mapping, was not perfect since the 

relationship 𝐶!"#$"% ≈ 𝐶!"# * 26.73 does not hold for the minimum 

concentration of the ramp (50 uM in liquid and 2.20 uM for gas 

phases). However, overall the calcium imaging results suggest that 

response dynamics of the Or42a>ChR2 OSN are comparable upon 

odor stimulations in liquid and in gaseous phases (Figure 28D). 

To account for the same level of neural activity achieved in the 

Or42a OSN, the odor concentration measured in gas phase was 

transformed into the liquid phase equivalent via the following 

relationship: 

𝑥!"#$"% = 𝑥!"# ∗ ρ
liquid-gas 

where xgas denotes the gas phase odor concentration present during 

all behavioral experiments, and xliquid denotes the liquid phase 

concentration as it was present in all electrophysiological 

experiments. Ultimately, xliquid was used as the input to the IFF+IFB 

model predicting the neural activity (model introduced in Figure 40). 
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Figure 28. (A) Schematic illustration of the single OSN imaging setup: air-phase 
odor stimulation of the larval dorsal organ with a custom-built olfactometer. A 
continuous stream of air (510 mL/min) was regulated by two mass flow 
controllers. The odorous air stream was delivered to the larval dorsal organ. 

(B) Liquid-phase odor stimulation of the larval dorsal organ with a pressure 
controller connected to a two-barrel pipette. The fixed larval head was perfused 
by a constant flow of extracellular saline while the odorous solution was delivered 
via the glass pipette. 

(C) Schematic illustration of the imaging site: The OSN activity was recorded by 
imaging the GCaMP activity elicited in the axon terminal of the Or42a OSN at the 
level of the antennal lobe (Or42a glomerulus). 

(D) Odor response profile (∆!
!

) of the Or42a OSN in response to an exponential 
odor stimulation in the air-phase (left) and liquid-phase (right). The response 
amplitude and overall dynamics are conserved between the two phases. The shade 
represents the standard deviation. The data comes from a total of 6 experiments 
that were conducted on 3 different preparations. Other functions that were tested 
in both phases (sigmoid and linear) did not yield as good results as the 
exponential.   
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Neural firing in real odor environments: OSN response to naturalistic 
stimuli 

How does the Or42a>ChR2 OSN respond to a concentration ramp 

that replicates the stimulus time course experienced by freely 

behaving larvae during chemotaxis? This question was addressed by 

stimulating larvae with a representative odor time course derived 

from an animal performing chemotaxis (Figure 29, panels A and B). 

The concentration experienced by the larval head and midpoint 

during this trajectory is shown in Figure 29C. Electrophysiological 

recordings of this three-minute stimulation pattern (derived from 

the stimulus time course experienced at the larval head) in different 

preparations led to consistent patterns of neural activity (Figure 

30A). Although the OSN activity appears to follow the envelope of 

the stimulus time course, closer examination reveals that the input-

output relationship underlying the OSN activity does not follow a 

simple linear function. The firing rate displays a clear amplification 

of the changes in stimulus intensity — a phenomenon clearly visible 

during the first 40s of the stimulus time course. The complexity of 

the OSN transfer function can be illustrated in the activity 

corresponding to two consecutive runs, R1 and R2, highlighted in 

blue in Figure 1A. Run R2 brings the larva close to and then beyond 

the peak of the gradient. The corresponding stimulus time course 

displays a 10-s rising phase followed by a falling phase. The neural 

activity elicited by run R1 and R2 is shown in Figure 30C.  
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Figure 29. (A) Superimposition of 10 consecutive trajectories observed in an odor 
gradient of IAA. Trajectories of the midpoint with turns are indicated by small 
black circles. Arrows indicate the direction of motion. The odor gradient shown 
in the background corresponds to the reconstructed snapshot 60 s after the onset 
of the diffusion process. 

(B) Illustrative trajectory of a larva freely moving in an attractive odor gradient 
(IAA, source concentration: 0.25 M). Position of the midpoint shown in black; 
position of the head shown in magenta. Two run segments, R1 and R2, are 
underlined in green. Turns are depicted as white disks. Black arrows indicate the 
direction of motion. The odor gradient in the background was reconstructed from 
the numerical simulations of the odor diffusion modeled by a PDE system with 
realistic boundary conditions (snapshot of the gradient 60 s after onset of the 
odor diffusion). 

(C) Concentration time course corresponding to the trajectory of the head 
(magenta) and midpoint (black) position depicted in panel A. The reconstructed 
sensory experience is based on mapping the head positions (magenta) and 
midpoint positions (black) on the reconstructed odor gradient computed upon 
integration of the PDE system for the entire duration of the trajectory.  
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The maximum concentration of the odor is observed around 45 s 

throughout the ramp when the larva is closest to the gradient’s peak. 

Remarkably, the OSN activity reaches its maximum earlier than the 

stimulus intensity. The firing rate to decrease more than 5 s before 

the stimulus does. Moreover, small fluctuations in the stimulus 

intensity are dramatically amplified in the pattern of OSN activity 

(see time points denotes by a ‘*’ symbol in Figure 30C). 

 

 

Figure 30. (A) Concentration time course corresponding to the trajectory of the 
head position depicted in Figure 29B. The reconstructed sensory experience is 
based on mapping the head positions on the reconstructed odor gradient 
computed upon integration of the PDE system for the entire duration of the 
trajectory. 

(B) Raster plot of 9 suction electrode recordings for the Or42a>ChR2 OSN 
stimulated by the concentration shown in panel A (5 preparations). (Bottom) 
PSTH of the OSN response to the concentration time course shown in panel A 
with the shade representing the standard deviation. 

(C) Close-up view of the sensory experience (top) and OSN response (bottom) 
corresponding to the illustrative runs R1 and R2 shown in panel Figure 29B 
(green box). Black circles on the abscissa denote turns. The input-output 
relationship driving the dynamics of the OSN activity is more complex than a 
proportional detector: the maximum firing rate is attained before the stimulus 
intensity reaches its maximum. 



 Results  

 
95 

Neural firing and adaptation: Dose response 

How does an OSN respond to most simple odor stimuli? To 

characterize the response of the OSN to the simplest kind of 

stimulation, binary odor pulses were used. This approach is similar 

to the one utilized in the characterization of OSN responses in both 

adult and larval Drosophilae (Hallem & Carlson, 2006; Kreher, 

Mathew, Kim, & Carlson, 2008). 

Each odor pulse lasted 20 s. The OSN exhibits a transient peak in 

activity at the onset of the pulse (Figure 31), but then rapidly relaxes 

to a steady state — a clear sign of adaptation to the stimulus. The 

concentration range of the pulses was chosen to cover the minimum 

and maximum intensities observed in the odor gradient used in the 

behavioral experiments. Figure 31A illustrates the response elicited 

by odor pulses of increasing concentrations of IAA. Over the 

concentration range considered, the adapted steady state activity 

increases in a nearly linear way with the pulse concentration (Figure 

33). However, this linear dose-response relationship cannot account 

for the response elicited by the naturalistic stimulus of Figure 30A. 

A similar procedure was undertaken to obtain the responses to static 

light stimuli of increasing intensity evoked by ChR2. By increasing 

the light intensity of the pulses, an increase of the neural activity 

similar to the one observed for odor responses was found. 
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Figure 31. Dose response of the Or42a-expressing OSN stimulated by step pulses 
of increasing odor concentrations (52-522 uM). (Inset) Reduced subset of traces 
for clarity (same data as main figure). The data was obtained from 15 recordings 
conducted in 5 different preparations. Throughout the figure, shades surrounding 
PSTHs represent standard deviations.   
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The OSN adapted faster in response to light stimulation and the 

elicited activity was slightly weaker compared to the odor response, 

yet the overall response dynamics looked similar. Figure 32 

illustrates the response to pulses of increasing light intensity (25 - 

500 W/m2). 

In conclusion it can be seen that the neural activity in response to 

static odor or light stimuli does not perfectly adapt. In contrast, the 

steady state activity seems to scale linearly with the stimulus intensity 

over the range of concentrations that were tested. Although the 

odor dose response is hyperbolic, no saturation was observed du to 

the truncated odor concentration range that was used. One 

(technically) limiting aspect was the decreased reliability of the spike 

sorter with regards to very high firing rates, exemplified by odor 

responses to very high concentrations of IAA. 

In the case of the light stimulation the neural steady state activity 

can be seen to saturate for higher light intensities at an activity level 

below the one that is observed for the odor stimulation. The light 

dose response also served as an important reference point for the 

selection of the light intensity range for all subsequent dynamic light 

stimulation protocols (see ‘Results section; ‘Linearly evolving 

stimuli: the influence of speed’ and ‘Non-linearly evolving stimuli: 

the influence of both speed and acceleration’). 
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Figure 32. (B) Dose response of the Or42a-expressing OSN stimulated by pulses 
of increasing light intensities (25-500 W/m2). (Inset) Reduced subset of traces for 
clarity (25, 50, 100, and 200 W/m2, same data as main figure). For all conditions 
the PSTHs were computed on a pool of 12 recordings conducted on minimum 4 
preparations. Throughout the figure, shades surrounding PSTHs represent 
standard deviations.  
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They were explicitly defined for an intensity range not leading to a 

saturation of the ChR2-evoked light response (15 - 250 W/m2). 

Following this approach it was possible to achieve light-evoked 

neural response profiles in response to both linear and non-linear 

functions that looked very similar to odor-evoked activity. 

 

 

Figure 33. Experimental dose-response of the Or42a-expressing OSN stimulated 
by prolonged stationary stimulus pulses of odor and light. 

(A) Odor: OSN stimulated by pulses of increasing odor concentrations (52 - 522 
mM). The mean activity was measured over a 5 s-time window after relaxation of 
the neuron to steady state activity (computed on the data shown in Figure 31). 

(B) Light: OSN stimulated by pulses of increasing light intensities (25 – 
500 W/m2). The mean activity was measured over a 10 s time window after 
relaxation of the neuron (computed on the data shown in Figure 32). Throughout 
the figure: Error bars represent the standard deviation. 

 

Linearly evolving stimuli: the influence of speed 

To systematically address how the Or42a>ChR2 OSN encodes 

changes of the stimulus time course, a property often referred to as 

slope sensitivity, linear odor ramps with symmetrical 8 s rising and 

falling phases were tested. As shown in Figure 34, the neural activity 
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abruptly increases during the onset of the ramp before reaching a 

plateau value. Increasing or decreasing the slope of the rise in 

stimulus by a factor 2 (Figure 35A) indicated that the plateau value 

reached by the OSN activity scaled with the slope of the stimulus 

increase. This observation suggested that the OSN is sensitive to the 

derivative of the stimulus intensity (speed). During the falling phase 

of the ramp, the neural activity rapidly drops at the transition from 

the rising to the falling phase before following the evolution of the 

stimulus value (Figure 34). 

 

 

Figure 34. Response to a linear odor ramp with an equal rise and fall time of 4 s. 
The odor concentration (magenta) is computed from the flow ratio measured 
experimentally based on the flow-controller outputs.  PSTH computed on a pool 
of minimum 24 recordings conducted in 8 different preparations. The variability 
across different preparations and animals can be appreciated from the raster plot. 
The inter-animal variability seems higher than the variability across preparations 
performed in the same animal. The shade surrounding PSTH represents the 
standard deviation.  
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The end of the falling phase coincides with a period of neural 

inhibition below baseline activity. However, the firing rate appeared 

to be more directly driven by the stimulus intensity rather than the 

stimulus derivative, suggesting that the response properties of the 

OSN depend on the sign of the stimulus derivative. 

 

 

Figure 35. (A) Response to three linear ramps with variable slopes during the rise 
phase and equal slope during the fall phase. The ‘low’ (‘high’) ramps have a 
positive slope that is twice slower (faster) than the medium ramp. During the rise 
phase of the ramp, the activity of the OSN reaches a peak value that scales with 
the slope of the ramp. 

(B) Response to three linear ramps with variable slopes during the fall phase and 
equal slope during the rise phase. The ‘slow’ (‘fast’) ramp has a negative slope that 
is twice slower (faster) than the medium ramp. During the rise phase of the ramp, 
the plateau reached by the OSN activity grows with the slope of the ramp. During 
the fall phase of the ramp, the activity of the OSN is more directly driven by the 
stimulus intensity. For the three ramps, the OSN activity becomes inhibited when 
the ramp terminates. Throughout the figure: The odor concentration (magenta) is 
computed from the flow ratio measured experimentally based on the flow-
controller outputs. The PSTH is computed on a pool of minimum 24 recordings 
conducted on minimum 8 preparations; shades surrounding PSTHs represent 
standard deviations.  
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Variations in the slope of the falling phase corroborated this 

qualitative model (Figure 35B) — the more abrupt the decrease of 

the odor stimulation — the stronger the decline of the respective 

neural activity in response to the stimulus decrease. 

 

Non-linearly evolving stimuli: the influence of both speed and acceleration 

To test the sensitivity of the OSN to higher order changes of the 

stimulus, a series of nonlinear ramps — a quadratic, exponential, 

sigmoid, and asymptotic (odor and light) stimulation was tested. In 

the selected ramps the stimulus speed varies over time, different for 

each function. 

For the quadratic ramp, the stimulus speed varies linearly over time: 

however, its second derivative (acceleration) is stationary. In 

response to a quadratic ramp (Figure 36B), the OSN activity can be 

seen to increase sharply before reaching a plateau value 

approximately 4 s throughout the rising phase. In comparison to the 

linear ramp (Figure 36A) also the decrease in neural activity is 

steeper in the case of the quadratic ramp. 

Is there a function that is able to trigger a steady increase of the 

OSN activity throughout the rising phase of the ramp? This 

phenomenon was obtained by stimulating the OSN with an 

exponential ramp, featuring a monotonically increasing stimulus 

derivative throughout the rising phase of the ramp (Figure 36C). 

This acceleration correlated with a continuous increase in OSN 

activity. 
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Figure 36. Response to nonlinear ramps based on a symmetrical 8s-rise and 8s-fall 
profiles. The ramps tested have the following characteristics: (A) linear (∝t), (B) 
quadratic (∝t2), (C) exponential (∝e-8(et-1)), (D) sigmoid (∝t3/(t3+43)), and (E) 
asymptotic (1-e(-t/1.5)) with the time given in s. The odor concentration (magenta) 
(top panels) is computed from the flow ratio measured experimentally based on 
the flow-controller outputs. The same (idealized) profile was used for the light 
stimulation with an intensity ranging between 15 W/m2 and 207 W/m2. The time 
derivative of the concentration time course (top panels) is represented according 
to the y-scale on the right of the graph (gray). The derivative (top panels) was 
computed after mild smoothening of the stimulus input. The PSTH of the Or42a-
OSN odor response (panels in the middle) was computed on a pool of minimum 
16 recordings conducted on minimum 9 preparations. The PSTH of the light 
ramps (bottom panel) was computed on a pool of minimum 10 recordings 
conducted on minimum 10 preparations. Throughout the figure, shades 
surrounding PSTHs represent standard deviations. 

 

The results suggest that the OSN is sensitive to the acceleration of 

the stimulus. During the falling phase of the ramp, the neural 

activity decreases abruptly from a peak value to a value below 

baseline (Figure 36C). 

To individually address the sensitivity of the OSN to changes in the 

speed and the acceleration of the stimulus, a sigmoid and an 

asymptotic ramp was tested. These functions feature changes of the 

first and second derivative, which happen in distinct periods during 

the stimulation. The sigmoid displays a change in the sign of the 
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second derivative during the rising phase of the ramp (acceleration), 

which switches from positive (5-9 s) to negative (9-13 s) values 

(Figure 36D). The first derivative stays positive throughout the 

entire rising phase (5-13 s). The change in acceleration is 

accompanied by a transition from a temporal increase to a decrease 

in the OSN activity contrary to the fact that the overall stimulus 

increases for another 4 s (Figure 36D). The OSN adapts so fast, that 

the activity is unable to catch up with a decelerating stimulus 

increase. As a result, the OSN firing rate peaked with the first 

derivative and not the absolute intensity of the stimulus. During the 

falling phase of the ramps, the OSN firing rate behaved in a way 

that could not be predicted from the slope sensitivity observed 

during the rising phase. 

In the case of the asymptotic ramp, the first derivative remains 

(decreasingly) positive throughout the rising phase (5-13 s), only 

turning negative during the falling phase whereas the second 

derivative starts off with a strong almost instant transition from 

positive to negative values at the 5 s mark approaching zero at the 

13 s mark to then turn negative again (Figure 36E). Accordingly, the 

OSN activity continuously decreases over time as dictated by the 

second derivative of the stimulus. The decrease of the neural activity 

slows down around the 13 s mark, an observation clearly coinciding 

with the second derivative transiently approaching zero 

(Figure 36E). Taken together, these findings highlight the sensitivity 

of the OSN to respond to both the speed and the acceleration of 

the stimulus. 
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When comparing the activity of the OSN in response to an odor 

stimulus (Figure 36 panels A-E middle) to the activity elicited by 

light (Figure 36 panels A-E bottom it can be appreciated that the 

patterns of OSN activity induced by light throughout all conditions 

is similar to the one induced by the odor, aside from the OSN firing 

rate ensuing a rapid transient (linear stimulation Figure 36A) where 

the activity decreases instead of reaching a plateau, as is the case for 

the equivalent odor stimulation. 

 

OSN responses to slow changes of the stimulus 

How does the OSN respond to slowly evolving stimuli? Is the OSN 

response profile conserved over different time scales? 

To assess the response elicited by a slowly evolving stimulus time 

course, the quadratic, sigmoid, and exponential light stimulation 

protocols were stretched to last twice as long as the original 

stimulation protocol (16 s rising phases as opposed to 8 s rising 

phases). In order to emphasize the similarities of the responses, 

Figure 37 depicts both conditions (middle panels ‘fast’ and bottom 

panels ‘slow’) simultaneously while compressing the time axis of the 

16 s-time courses to match the slower stimulation time course 

qualitatively. 
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Figure 37. (A) Response to three light ramps on variable time scales. The ramps 
tested have the following characteristics: (A) quadratic, (B) exponential, and (C) 
sigmoid. The light stimulation was derived from the (idealized) odor profile 
shown in Figure 36 (panels B-D) with an intensity ranging between 15 W/m2 and 
207 W/m2. The PSTH was computed on a pool of 12 recordings conducted on 
minimum 4 preparations; shades surrounding PSTHs represent standard 
deviations. 

 

It can be appreciated from the firing rate obtained throughout all 

conditions, that the shape of the ‘slow’ response, when compressed, 

is still conserved in all cases. These findings support the notion that 

the response profile of the OSN seems to be constant over a wide 

range of stimulus time scales. 
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Modeling the OSN activity: System identification approach 

To model the Or42a OSN input-output relationship, a standard 

systems identification approach was attempted by stimulating the 

OSN with an M-sequence (discretized version of white noise). Since 

fluctuations in odor concentration with high-frequency components 

are difficult to achieve in liquid phase, neural activity was elicited by 

light. The M-sequence was based on a discretization of the light 

intensity range 15 – 207 W/m2 into the following 5 values: 15, 50, 

100, 150 and 207 W/m2. It featured all possible 4-element 

combinations of these 5 intensities. 

The Or42a>ChR2 OSN produces consistent patterns of neural 

activity when stimulated with an M-sequence (Figure 38A). 

Rearrangement of the input and output signals in Fourier space 

yields a standard biphasic filter (Chichilnisky 2001; Nagel and 

Wilson 2011) (Figure 38 panels B and C). To test the accuracy of 

this filter, the activity elicited by a shorter light ramp featuring an 

exponential rise and decay was predicted. 
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Figure 38. A linear filter alone is insufficient to account for the transfer function 
of the OSN. 

(A) Stimulation of the Or42a>ChR2 OSN by a maximum-length M-sequence 
generated with light. In the experiments, changes in light intensity occurred with 
time steps of 33 ms. (Bottom) PSTH of the neural response computed over 10 
trials (10 preparations) and for a bin size of 10 ms. 

(B) Computation of the linear filter, h, through the operations described in panel 
B (Chichilnisky 2001; Nagel and Wilson 2011). Function F represents the Fourier 
transform from the time domain to the frequency domain; F-1 represents the 
inverse transformation from the frequency domain to the time domain. The bar 
above the variables in frequency space denotes the complex conjugate 
transformation. To cancel any DC drifts in the OSN response, the filter was 
computed on windows of 5 s slid over the entire duration of stimulus (20 s). An 
average filter was computed from this series (dark blue). The linear filter was used 
to make predictions about particular stimulus time courses. 

(C) Neural activity predicted from the linear filter in response to the M-sequence. 
The prediction was obtained by convolving the filter with the time course of the 
stimulus. The resulting activity was normalized to have the same mean as the 
experimental activity. The result of the prediction is shown for a 2 s window of 
the complete stimulus (dashed gray box in panel Figure 38A). The activity 
predicted from the linear filter (dark blue) is compared to the predictions of the 
IFF model that will be introduced in Figure 40 (green). The correlation coefficient 
(r) of the predicted and the experimental activities is 0.37 for the linear filter 
reconstruction compared to 0.57 for the IFF model (the overall goodness of fit of 
the IFF is presented in Table 4).   
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Given the discrepancy between the experimentally observed activity 

and the prediction of the model (Figure 39 panels A and B), it was 

concluded that the olfactory transduction pathway within the OSN 

does not operate in a way that can be approximated by a linear filter. 

 

 

Figure 39. A linear filter alone is insufficient to account for the transfer function 
of the OSN. 

(A) Application of the linear filter (derived from figure 38 panel C) for the M-
sequence to stimulation by an exponential ramp (red). The linear filter (dark blue) 
fails to predict the PSTH that was observed experimentally (black line; gray shades 
represent the standard deviation) (r=0.56). PSTH calculated on the same set of 
light recordings presented in Figure 36 panels C and D for a bin size of 10 ms. 
Prediction of the IFF model, which will be introduced in Figure 40 shown in 
green (r=0.93) (the overall goodness of fit of the IFF is presented in Table 4). 

(B) Application of the linear filter derived in panel C to a sigmoid ramp (red). As 
in panel A, the linear filter (dark blue) fails to reproduce the experimental PSTH 
(r=0.54) while the IFF model leads to a good fit (green, r=0.98). PSTH calculated 
on the same set of light recordings presented in Figure 36 panels C and D for a 
bin size of 10 ms. Shades surrounding PSTHs represent standard deviations.   



 Results  

 
110 

As a consequence of the poor fit, it was decided to systematically 

investigate the dynamical features encoded in the activity patterns of 

the Or42a>ChR2 OSN stimulated by odor pulses, linear and 

nonlinear ramps. 

 

Phenomenological model for the olfactory function of a single OSN 

Given that a systems identification approach resulted in an 

incomplete description of the input-output relationship of the OSN, 

a different modeling formalism was adopted to predict the OSN 

firing rate. Following studies of the biophysical basis of olfactory 

transduction in moth and flies (Gu et al., 2009; K. I. Nagel & 

Wilson, 2011) a kinetic description of this input output relationship 

based on ordinary differential equations (ODE) was established and 

is discussed in the following sections1. Although these models 

represent a coarse-grained approximation of the underlying 

biophysical processes, a more detailed representation would not be 

possible due to our limited knowledge of the molecular basis of 

olfactory transduction and spike generation in the Drosophila larva. 

Even though the nature of the molecular mechanism driving the 

transduction of the ion channels formed by odorant receptor (OR) 

remains widely unknown, it has been suggested that negative 

feedback regulates olfactory transduction in adult flies — a model 

with strong experimental support (K. I. Nagel & Wilson, 2011). 

                                                
1 All models presented in this chapter (IFF, IFB and IFF+IFB combined) were 
developed by Alex Gomez-Marin and Matthieu Louis. Marco Musy and Matthieu 
Louis accomplished the parameter optimization of the model. 
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In addition, research in the moth described the dual effect of an 

increase in the OR activity on the spike rate (Gu et al., 2009): The 

primary effect takes place immediately upon the onset of the 

stimulus, on a short timescale, by which the inflow of cations 

increases the firing rate; the secondary effect kicks in on a longer 

timescale where an increasing concentration of intracellular calcium 

ions starts to decrease the firing rate through an inhibitory effect 

involving the binding of calcium with calmodulin. In agreement with 

a similar model proposed by Bargmann and colleagues (S. Kato, Xu, 

Cho, Abbott, & Bargmann, 2014), it was hypothesized that calcium 

increases the OSN firing rate by gating voltage-dependent ion 

channels (L-type) while decreasing the OSN activity through a 

delayed inhibitory effect mediated by the calcium-calmodulin 

complex (see ‘Introduction section; The transformation of a 

chemical into an electrical signal: Odor transduction in ORs’). These 

considerations motivate a model in which the OSN activity is 

dynamically regulated by a combination of a negative feedback loop 

(or integral feedback, IFB) together with an incoherent feedforward 

loop (IFF) featuring fast activation and slow negative inhibition 

(Figure 40). Using a mass-action-kinetics formalism (Ackers, 

Johnsontt, & Shea, 1982; Bintu et al., 2005), the two regulatory 

motifs were combined in a system of 3 ODEs featuring 8 free 

parameters (Figure 40B, bottom). 
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The three variables are: x the stimulus strength (input: odor 

concentration or light intensity), y the instantaneous firing rate of 

the OSN (output), u a phenomenological intermediate variable that 

might represent the intracellular concentration of calcium 

(Figure 40D). 

The stimulus strength x for the odor experiments was globally 

adjusted according to the phase mapping achieved through the 

phase conversion calcium imaging experiments (Figure 25): 

 

𝑥 = 𝑥!"#$"% 

𝑥!"#$"% = 𝑥!"# ∗ ρ
liquid-gas 

 

where xgas denotes the gas phase concentration that larvae were 

exposed to in behavioral experiments, and xliquid the stimulus 

strength in liquid phase in which all electrophysiology experiments 

were conducted. 
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Figure 40. (A) Hypothetical physiological processes underlying the olfactory 
transduction pathway and spike generation. The integral feedback (IFB) motif is 
built on the assumption that an inhibitory feedback modulates the activity of the 
odorant receptor, as was proposed in the adult fly (Nagel and Wilson 2011). The 
incoherent feedforward (IFF) relies on the hypothetical existence of a delayed 
inhibitory effect on voltage-gated calcium channels, as was proposed for the 
transduction cascade of C. elegans (Kato, Xu et al. 2014). 

(B) Abstract regulatory network combining the IFF and IFB circuit motifs 
described in panel A (individual motifs outlined in the gray box). Variable x 
represents the stimulus intensity, u the activity or concentration of the 
intermediate variable and y the firing rate of the neuron. The three pathways 
regulating the activity of u are outlined by numbers (1)-(3). Pathway (3) is specific 
to the IFB motif (light blue). (Bottom) ODE system providing a 
phenomenological description of the reaction scheme outlined in panel A for the 
combination of the IFF and IFB regulatory motifs. 

(C) Decomposition of the predicted activity of individual pathways contributing 
to the regulation of u for a 8s-linear odor ramp with the stimulus variable x shown 
in magenta (top). Simulated concentration of u (middle) and firing rate y (bottom) 
upon integration of the ODE system. The PSTH is the same as the one shown in 
the middle panel of Figure 41. 

(D) Activity computed from the terms (1) - (3) outlined in panel B for: the 
stimulus feedforward activation (1), first order decay (2), and coupling of the 
firing rate with the intermediate variable (3). 

 

The parameters of the model were derived through a Simplex 

algorithm (Nelder & Mead, 1964) aiming at optimizing the fit of the 

model’s predictions and the experimental observations for the 

naturalistic odor stimulation and the family of ramps considered in 

Figure 36. The results of the modeling are shown in Figure 41 et 

seq. 



 Results  

 
114 

Incoherent feedforward (IFF) and integral feedback (IFB) motifs 

The dynamics of the IFF motif described in Figure 40 can be 

described by a 3-variable ordinary differential equation (ODE) 

system. It was hypothesized that the firing rate of the OSN (y) 

results from the combined effects of direct excitation and indirect 

inhibition of the OSN activity. The excitation is mediated by the 

gating of the odorant receptor (OR) by the binding of odorant 

molecules or the absorption of photons by ChR2. By analogy to the 

olfactory transduction cascade in the moth (see ‘Introduction 

section; The transformation of a chemical into an electrical signal: 

Odor transduction in ORs’), the model proposes that the indirect 

inhibition is mediated by an intermediate variable (u) that could 

represent the concentration of calcium bound to calmodulin. The 

dynamics of variable u results from a production term proportional 

to the stimulus x and a first-order decay term. 

To model the direct excitation and indirect inhibition of the OSN 

activity, a control function (d(x,u) was used (d denotes 

depolarization) inspired from the cis-regulatory logic of gene 

transcription (Goentoro and Kirschner 2009): 

𝑑 𝑥,𝑢 = 𝛽!
𝑥

𝛽! + 𝑥 + 𝛽!𝑢
  

This expression was built from thermodynamic considerations 

about the state of a promoter occupied by transcription factors 

(Ackers, Johnson et al. 1982; Bintu, Buchler et al. 2005). Here, it was 

hypothesized that a similar function is suitable to describe the 

depolarizing effects of the opening of the OR (or ChR2), and the 
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indirect hyperpolarizing effects that calcium bound to calmodulin 

might have on the OSN membrane. The contribution of each trend 

is described by x and b3 u, respectively. 

In addition, it was assumed that the intermediate variable u and the 

OSN activity y undergo a first order decay. For the OSN activity, the 

introduction of such a decay can be justified by speculating about 

the existence of ion pumps that restore the membrane to resting 

potential after an initial increase of cations following the gating of 

the OR (or ChR2) (Gu, Lucas et al. 2009). Through simulations, it 

was discovered that an additional constitutive decay (offset) term 

was needed that vanishes at a low firing rate. Although the 

molecular correlate of this offset remains undefined, it could be 

explained by the homeostatic function of ion pumps. The combined 

effects of the two decays is mathematically described as: 

ℎ 𝑦 = −𝛽!
𝑦!

𝑦! + 𝜃! − 𝛽!𝑦 
 

Where h stands for hyperpolarization. To keep the model as simple 

as possible, the membrane potential was not modeled explicitly. 

Instead it was assumed that depolarizing d(x,u) and hyperpolarizing 

h(x) effects on the OSN membrane can be translated into excitatory 

and inhibitory effects on the OSN firing rate. While the current 

knowledge about the olfactory transduction cascade in Drosophila 

was insufficient to justify these assumptions, the goodness of fit 

resulting from the integration of the ODE model demonstrated that 

the OSN dynamics could be captured by the combination of d(x,u) 
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and h(x). By combining the previous relationships, the following 

systems of ODEs were obtained: 

 

𝑑𝑢
𝑑𝑡 = 𝛼!𝑥 − 𝛼!𝑢 

𝑑𝑦
𝑑𝑡 = 𝛽!

𝑥
𝛽! + 𝑥 + 𝛽!𝑢

− 𝛽!
𝑦!

𝑦! + 𝜃! − 𝛽!𝑦 

 

 

(1) 

The second regulatory motif that was considered is a negative 

integral feedback loop (IFB). This motif has been implicated in the 

process of olfactory transduction and adaptation in adult flies (Nagel 

and Wilson 2011). It also forms the regulatory basis of the 

transduction pathway underlying adaptive chemoreception in 

bacterial chemotaxis (Yi, Huang et al. 2000; Tu, Shimizu et al. 2008). 

For this motif, it was assumed that the activity of the neuron had an 

excitatory effect on the intermediate variable u, which in turn has an 

inhibitory effect on the OSN activity. In a first approximation, the 

negative feedback was assumed to be linear. The difference between 

the IFF and IFB motif is that the production of the intermediate 

variable u is proportional to the firing rate y. These considerations 

yielded the following system of ODEs: 

 

𝑑𝑢
𝑑𝑡 = 𝛼!𝑦 − 𝛼!𝑢 

𝑑𝑦
𝑑𝑡 = 𝛽!

𝑥
𝛽! + 𝑥 + 𝛽!𝑢

− 𝛽!
𝑦!

𝑦! + 𝜃! − 𝛽!𝑦 

 

(2) 
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Parameter fitting of IFF+IFB and pure IFF model 

The application of the IFF+IFB model to a linear odor ramp is 

illustrated in Figure 40 (panels C and D). The prediction of the 

model for the OSN firing rate (cyan) is compared to the 

experimentally measured OSN spiking activity (PSTH, black). 

 

 
Figure 41. Fit of the solution of the ODE model on a linear stimulation ramp 
generated with odor and light (ramp introduced in figure 36A). 

(A) Stimulus intensity given as odor concentration (uM). The time derivative of 
the concentration profile (gray) is represented according to the ordinate on the 
right of the graph. The derivative was computed after mild smoothening of the 
stimulus time course. The same (idealized) profile was used for the light 
stimulation with an intensity ranging between 15 W/m2 and 207 W/m2. 

(B) Results of the model compared to the odor-evoked OSN activity. Close-up 
view of the 8 s linear ramp highlighting the difference in the behavior of the pure 
IFF (green) and combined IFF+IFB (cyan) circuit motifs for the odor 
stimulation. The PSTH of the odor response (panel in the middle) is the same as 
the one shown in figure 36A (middle). 

(C) Comparison of the outcome of the experimental PSTH and model based on a 
pure IFF motif (green) for the light stimulation. The PSTH of the light ramp 
(bottom panel) is the same as the one shown in figure 36A (bottom). Throughout 
the figure, shades surrounding PSTHs represent standard deviations; parameters 
were obtained through a Simplex parameter optimization.   
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As the contribution of the IFB motif on the dynamics of variable u 

is approximately 30% that of the IFF (cyan versus magenta curves, 

Figure 40D), it was concluded that the IFF pathway dominates the 

control of the OSN spiking activity with the IFB pathway 

nonetheless contributing to the dynamics. 

The application of the IFF and the IFF+IFB model to a linear odor 

and light ramp is further illustrated in Figure 41. The non-negligible 

contribution of the IFB motif on the odor-evoked OSN activity can 

be appreciated on the odor ramp which illustrates that the fitness of 

the model decreased when the IFB pathway was artificially disabled 

from the ODE model (green line, inset of Figure 41B). The 

prediction of the pure IFF model (green) and the combined 

IFF+IFB model for the OSN firing rate (cyan) is compared to the 

experimentally measured OSN firing rate (PSTH, black). Figures 41-

43 establish that the composite model leads to a remarkably good fit 

over a wide range of different stimulation conditions (experimental 

PSTH — black line, prediction of the IFF+IFB model — blue line, 

prediction of the IFF model alone — green line). The goodness of 

fit of the IFF and the combined IFF+IFB model is quantified in 

Table 4. 
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Overall, the activity patterns elicited by light ramps was similar to 

those elicited by odor ramps; the pure IFF model lead to a 

remarkably good fit (Figures 42 and 43). As for the linear ramps, the 

termination of the nonlinear ramps induced a short phase of 

inhibition below baseline. 

 

 
Figure 42. Fit of the solution of the ODE model for three linear stimulation 
ramps introduced in Figure 35A. 

(A) Stimulus intensity given as odor concentration (uM). The time derivative of 
the concentration profile (gray) is represented according to the ordinate on the 
right of the graph. The derivative was computed after mild smoothening of the 
stimulus time course. The same (idealized) profile was used for the light 
stimulation with an intensity ranging between 15 W/m2 and 207 W/m2. 

(B) Results of the model compared to the odor-evoked OSN activity: Comparison 
of the outcome of the model featuring a pure IFF motif (green) and a 
combination of the IFF and IFB motifs (cyan) for the odor stimulation. The 
PSTH of the odor response (panels in the middle) are the same as the ones shown 
in figure 35A. 

(C) Results of the model compared to light-evoked OSN activity: Comparison of 
the outcome of the model featuring a pure IFF motif (green) for the light 
stimulation. Parameter optimization shows that the IFB motif does not contribute 
to the light-evoked OSN dynamics. The PSTH of the light ramps was computed 
on a pool of minimum 10 recordings conducted on minimum 10 preparations. 
Throughout the figure, shades surrounding PSTHs represent standard deviations; 
parameters were obtained through a Simplex parameter optimization. 
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The suppression of the OSN activity was well captured by the IFF 

model, even though the strength of the suppression is stronger than 

that observed upon stimulation by the odor (Figures 41 and 42). 

From the ODE system presented in Figure 40 and in equations (1)-

(2), it becomes clear that the time derivative of u can be multiplied 

by an arbitrary scaling factor reabsorbed by the fitting parameter b3 

in the time derivative of y. For this reason it was necessary to fix one 

of the parameters to a constant value. For numerical convenience a1 

was set to a1=0.1. 

To infer the actual value of this parameter, one would have to 

experimentally access the value of the intermediate variable u, whose 

molecular identity remains yet unknown. For the pure IFF model, 

the number of free parameters was 7. In addition to these 

parameters, the scaling of the firing rate y elicited by individual 

stimulation protocols was considered via a multiplicative factor 

accounting for variability across experimental conditions (e.g. 

minute differences in the positions of the stimulation pipette). 

The maximization of the likelihood function was achieved by means 

of the Nelder-Mead (NM) method (Nelder and Mead 1965), which 

proved to be fast and reliable. The result of the NM optimization 

was then refined through a gradient search algorithm (Brun and 

Rademakers 1997). For the dataset corresponding to the light 

stimulation, the result of the fitting procedure, yielding a probability 

of c2 very close to zero, was able to rule out the relevance of the IFB 

model alone. In contrast, the IFF was able to reproduce the 

experimental observation with good accuracy.  
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Figure 43. Fit of the solution of the ODE model for four nonlinear stimulation 
ramps generated with odor and light (ramps introduced in Figure 36 panels B-E). 

(A) Stimulus intensity given as odor concentration (uM). The time derivative of 
the concentration profile (gray) is represented according to the ordinate on the 
right of the graph. The derivative was computed after mild smoothening of the 
stimulus time course. The same (idealized) profile was used for the light 
stimulation with an intensity ranging between 15 W/m2 and 207 W/m2. 

(B) Results of the model compared to the odor-evoked OSN activity. Comparison 
of the predictions for the pure IFF (green) and combined IFF+IFB (cyan) circuit 
motifs for the odor stimulation. The PSTH of the odor response are the same as 
the ones shown in figure 36 B-E (middle). 

(C) Comparison of the outcome of the experimental PSTH and model based on a 
pure IFF motif (green) for the light stimulation. The PSTH of the odor response 
are the same as the ones shown in Figure 36 B-E (bottom). Throughout the 
figure, shades surrounding PSTHs represent standard deviations.  

 

In the case of the odor stimulation, a significant improvement of the 

model fit was obtained by adding an IFB component to the IFF 

motif. In the expression of the time derivative of u, the term a3y was  

added. The fitted value of the composite IFF+IFB motif indicated 

that the IFB component was not negligible during the stimulation 

and could account for about 30% of the final firing rate (Figure 38). 

In contrast to the pure IFF model, variables u and y of the IFF+IFB 
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model were entangled in the structure of the ODE resulting in a 

coupling that allowed for a fit of the value for parameter a1. The 

effect of introducing additional terms in the denominator of the 

function defining y, such as the product uy was also examined. 

Besides the test of other circuit motifs, the introduction of 

additional free parameters represented a qualitative test against the 

possibility of over-fitting. The improvements in the fitting obtained 

in these cases were very marginal. 

 

 

Figure 44. Predicted and experimental dose-response of the Or42a-expressing 
OSN stimulated by prolonged stationary stimulus pulses of odor (A) and light (B) 
(based on the electrophysiological data reported in figures 27 - 29). 

(A) Dose response of the Or42a-expressing OSN stimulated by pulses of 
increasing odor concentrations (52 - 522 mM) (same data is shown in figure 33A). 
Activity predicted by the model for the pure IFF (green) and combined IFF+IFB 
(cyan) motifs upon optimization of the parameter for the linear and nonlinear 
ramps shown in Figures 41-43 (middle) (same data is shown in figure 33A). 

(B) Dose response of the Or42a-expressing OSN stimulated by pulses of 
increasing light intensities (25 - 500 W/m2). Activity predicted by the model for 
the pure IFF motif (blue) upon optimization of the parameter for the linear and 
nonlinear ramps shown in Figures 41-43 (bottom) (same data is shown in 
figure 33B). Throughout the figure: Error bars represent the standard deviation. 
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With regards to both light and odor stimulation protocols, the data 

comprised stimulation patterns on diverse timescales and with 

varying stimulus durations: 10 linear and nonlinear ramps 

(Figures 41-43) lasting less than 25 s and a ‘naturalistic’ stimulus 

lasting more than 200 s (Figure 30). 

It was found that the parameter set leading to a good fit during the 

first 30 s of the light or odor stimulation did not yield an accurate fit 

for longer times. By fitting the activity at the beginning and the end 

of the naturalistic stimulation, it was discovered that the discrepancy 

between both time ranges was mainly due to a change in the 

threshold q of the Hill term in the time derivative of y (equation 1). 

Therefore, the threshold q was allowed to change smoothly between 

the two different time ranges with the functional expression: 

𝜃! = 𝜃  (𝜏/𝑡)! for 𝑡 > 𝜏 with t=30 s. 

A third set of measurements of the firing rate at steady state (Figure 

44) was used as an independent control of the parameter fit 

obtained from the fitting of the other stimulation protocols (for the 

detailed results of the OSN firing rate in the dose response see 

Figures 31-33). 

Two metrics were used to quantify the goodness of fit of the model 

for the OSN firing rate. First, Pearson’s correlation coefficient was 

used where the experimental observations were denoted as 𝑋! and 

the output from the model as 𝑌!. The final correlation coefficient 

was computed as:  

r =
(X! − X)(Y! − Y)!

!!!

s!  s!
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where s! is the standard deviation of variable X and n represents 

the total number of time points in the dataset. The second metric 

used is the coefficient of variation of the root-mean-square error 

defined as (results of the goodness of fit are summarized in table 4):  

 

CV RMSE =

1
n (X! − Y!)!!

!!!

X
 

 

Table 4. Quantification of the goodness of fit of the IFF and IFB models against 
the experimental data. 

(A) Comparison between the ODE models and the experimental OSN firing rate 
through Pearson’s correlation coefficient computed over the duration of the 
stimulus ramp listed in Figures 58 and 59. 

(B) Comparison between the ODE models and the experimental OSN firing rate 
through the coefficient of variation (CV) of the root-mean-square error (RMSE) 
computed over the duration of the stimulus ramp listed in Figures 58 and 59. 
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OSN responses to rapidly changing stimuli 

Before executing turns to head towards an increasing odor 

concentration a larva typically stops and executes a series of head 

casts to sample its immediate environment. Contrary to runs, where 

a larva experiences slowly evolving changes in odor concentration, 

during sampling, an animal gathers fast changes of the stimulus 

intensity during a short period of time. How are these fast-changing 

stimuli captured by the OSN? 

When categorizing larval head casts during chemotaxis, they 

naturally come in two flavors: head casts executed in the direction of 

increasing intensity, and those occurring in the direction of 

decreasing concentration. Most head casts occur in the direction of 

increasing odor concentration (positive head casts) and only a 

minority of casts happens in the direction of decreasing intensity 

(negative head casts). Through a head cast, a larva is able to detect 

changes in concentration of 100 nM (air-phase) over a time course 

of 0.5 - 1.5 s (Gomez-Marin, Stephens et al. 2011). Depending on 

the background concentration present at the time of a given head 

cast the detected change of odor concentration corresponded to 

approximately 5 - 50% over the background concentration.  
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Whenever the last head cast was associated with a concentration 

increase exceeding 50 nM (air-phase), the likelihood of turning 

towards the higher odor concentration exceeds 80% indicating that 

the larva previously detected the increase in concentration while it 

was sampling its environment (Gomez-Marin, Stephens et al. 2011). 

In a first set of experiments the stimulus time course during a head 

cast was assumed to capture 

(1) a fast linear increase in odor concentration followed by a fast 

linear decrease bringing it back to the starting concentration 

(up-gradient); 

(2) a fast linear decrease in odor concentration followed by a 

fast linear increase bringing it back to the starting 

concentration (down-gradient). 

When presenting a real odor stimulus, the stimulus time course was 

governed by the technical limitation of the odor delivery system. 

The stimulus time course was thus chosen according to the fastest 

change the pressure-driven flow controller was technically able to 

accomplish with high reliability. The OSN response to fast linear 

changes in odor concentration on a time scale similar to a larval 

head cast is shown in Figure 45. 
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Figure 45. Or42a-OSN response to rapidly evolving odor stimuli. The stimulus 
intensity is given as odor concentration (uM). Rapid changes of the stimulus were 
conducted after relaxation of the neuron to steady state activity. 

(A) OSN response to rapid linear negative changes of the stimulus time course 
(5% and 50% stimulus change with respect to the background concentration). 

(B) OSN response to rapid linear positive changes of the stimulus time course 
(5% and 50% stimulus change with respect to the background concentration). 
The stimulus change is reported with respect to the background stimulation. 
Throughout the figure, the PSTH was computed on a pool of minimum 12 
recordings conducted on minimum 4 preparations; shades surrounding PSTHs 
represent standard deviations.   
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When comparing the stimulation time course happening during a 

positive head cast (Figure 45B) with its negative counterpart 

(negative head cast, Figure 45A) one can see that the OSN seems to 

respond more vividly to the former compared to the latter — an 

observation concurring with the finding that most sampling events 

occur first in the direction of a positive concentration change 

(Gomez-Marin, Stephens et al. 2011). The OSN’s response appears 

to be asymmetric with regards to positive and negative changes of 

the stimulus intensity with a minor bias towards positive changes. 

Building upon the remarkable resemblance of the OSN response 

dynamics in response to both odor and light stimuli, a more intricate 

investigation of the encoding of rapidly evolving stimuli was 

performed using light evoked activity as approximation of odor-

evoked activity. This approach granted both superior temporal 

resolution and a more precise control of the stimulus time course 

compared to the liquid phase odor delivery system used in this 

project. Figure 46 shows the OSN response experienced during a 

positive head cast. The stimulus features a rapid (500 ms) positive 

linear change over the background intensity (2.5 - 20 % with respect 

to the background intensity).  
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Figure 46. Or42a-OSN response to rapidly evolving positive light stimuli. The 
stimulus intensity is given as light intensity (W/m2). The stimulus change is 
reported with respect to the background stimulation. Rapid changes of the 
stimulus were conducted after relaxation of the neuron to steady state activity.  

(A) OSN response to rapid linear positive changes of the stimulus time course 
(2.5% and 5% stimulus change). A detectable OSN response is only observed for 
minimum 5% change of the stimulus (same observation as in Figure 47).  

(B) OSN response to rapid linear positive changes of the stimulus time course 
(2.5, 5, 10, and 20% stimulus change). Throughout the figure, the PSTH was 
computed on a pool of minimum 10 recordings conducted on minimum 2 
preparations; shades surrounding PSTHs represent standard deviations.   
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Figure 47 shows the corresponding response profile corresponding 

to a negative head cast. The minimum change of the stimulus 

intensity to cause a detectable change of the OSN firing rate appears 

to be 5% for both positive and negative head casts (Figure 46A and 

47A). The notion that the OSN responds asymmetrically to positive 

and negative stimuli is likewise supported by these findings. 

When observing larval behavior during chemotaxis it becomes clear 

that the categorization of head casts into ‘left’or ‘right’ does not 

hold true for all head casts. Instead, there are a number of casting 

events that are not rightfully captured by this metric: i.e. in cases 

where a first sweeping to the left continues towards the right 

without interrupting the movement at all. When considering these 

cases (Gomez-Marin, Stephens et al. 2011), head casts can be 

categorized into  

(1) those experiencing positive changes followed by negative 

changes (up-down); 

(2) those experiencing negative changes followed by positive 

changes (down-up). 

Figure 48 shows the observed OSN firing rate for both cases (5 % 

and 10 % changes over the background concentration, respectively) 

while Figure 49 illustrates the corresponding more simple only-up or 

only-down casts. 
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Figure 47. Or42a-OSN response to rapidly evolving negative light stimuli. The 
stimulus intensity is given as light intensity (W/m2). The stimulus change is 
reported with respect to the background stimulation. Rapid changes of the 
stimulus were conducted after relaxation of the neuron to steady state activity.  

(A) OSN response to rapid linear positive changes of the stimulus time course 
(2.5% and 5% stimulus change). A detectable OSN response is only observed for 
minimum 5% change of the stimulus (same observation as in Figure 46).  

(B) OSN response to rapid linear negative changes of the stimulus time course 
(2.5, 5, 10, and 20% stimulus change). Throughout the figure, the PSTH was 
computed on a pool of minimum 10 recordings conducted on minimum 2 
preparations; shades surrounding PSTHs represent standard deviations.   
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In the first case (1) the OSN response features a more prominent 

inhibition of the activity in response to the stimulus transition from 

high to low. In the second case (2) the OSN shows less inhibition 

and stronger activation in response to the stimulus transition from 

low to high. 

 

 

Figure 48. Probing the symmetry of the Or42a-OSN response to rapidly evolving 
light stimuli through inverted stimulus time courses (up-down and down-up). The 
stimulus intensity is given as light intensity (W/m2). The stimulus change is 
reported with respect to the background stimulation. Rapid changes of the 
stimulus were conducted after relaxation of the neuron to steady state activity. 

(Left) OSN response to rapid linear changes (up-down) of the stimulus time 
course (5% and 10% stimulus change). 

(Right) OSN response to rapid linear changes (down-up) of the stimulus time 
course (5% and 10% stimulus change). Throughout the figure, the PSTH was 
computed on a pool of minimum 10 recordings conducted on minimum 2 
preparations; shades surrounding PSTHs represent standard deviations. 
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While the maximum firing rate reached by the OSN is identical in 

both cases, the overall change in neural activity is more prominent 

in the first case (1) where the difference of the minimum and 

maximum activity for 10 % changes over the background is 14 Hz. 

 

 

Figure 49. Probing the symmetry of the Or42a-OSN response to rapidly evolving 
light stimuli through inverted stimulus time courses (down-only and up-only). The 
stimulus intensity is given as light intensity (W/m2). The stimulus change is 
reported with respect to the background stimulation. Rapid changes of the 
stimulus were conducted after relaxation of the neuron to steady state activity. 

(Left) OSN response to rapid linear changes (down-only) of the stimulus time 
course (5% stimulus change: middle panel, and 10% stimulus change: bottom 
panel). 

(Right) OSN response to rapid linear changes (up-only) of the stimulus time 
course (5% and 10% stimulus change). Throughout the figure, the PSTH was 
computed on a pool of minimum 10 recordings conducted on minimum 2 
preparations; shades surrounding PSTHs represent standard deviations. 
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In the latter (2) case the difference between the minimum and 

maximum activity for 10 % changes over the background is only 

10 Hz. Once again, these results coincide with the observation that 

the majority of head casts occur towards the side of higher 

concentration. When comparing the responses to the more simple 

up-only and down-only head casts, the OSN response is crisper in 

the case of uninterrupted up-down and down-up casts. Overall it 

seems that larvae adopt a sampling pattern, which optimizes the 

detectability of a changes in the stimulus intensity as sensed by 

OSNs. 

 

Does the OSN perform fold-change detection? 

Larvae carrying only a single pair of functional OSNs are still able to 

efficiently perform chemotaxis over a broad range of odor 

concentrations. How are OSNs capable of detecting changes of the 

odor gradient that allow animals to accurately track odors over this 

broad range of concentrations? 

More than 150 years ago, the physician Ernst Heinrich Weber 

proposed that in observing the disparity between things that are 

compared, it is not the difference between the things that is 

perceived, but rather the ratio of this difference to the magnitude of 

things compared. As a result, the discrimination threshold, or the 

threshold for detecting an increment in the intensity, changes 

depending on how much intensity there is i.e. in the background 

before the increment occurs (Fancher and Rutherford 2012). 

Experiments in the visual system have shown that the retina 
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produces approximately the same response for two visual displays 

that are related by a simple proportional scaling of all intensity 

values according to Weber’s Law (Barlow and Levick 1969; Meister 

and Berry 1999). Recently, Goentoro et al. studied cellular responses 

that depended on the fold-change in the input signal, and not on its 

absolute level (Goentoro and Kirschner 2009). They found a fold-

change detection feature in signaling systems in cells and identified it 

as a feature of Weber’s Law; a response proportional to the fold-

change in the stimulus relative to the background. As a result, the 

amplitude and duration of such a response would depend only on 

fold changes in input and not on absolute levels of the stimulus 

(Shoval, Goentoro et al. 2010). It should be noted that although 

fold-change detection generally entails Weber's law, this is not 

necessarily true for the reverse case. Weber's law — even with exact 

adaptation — does not always enable to fold-change detection 

(Shoval, Goentoro et al. 2010). 

Is a single OSN capable of performing fold-change detection? 

To assess whether the OSN encodes relative rather than absolute 

changes of the stimulus intensity, experiments featuring three 

sigmoidal stimulus time courses — all starting off at different 

baseline intensities — were conducted. The light stimulation profile 

with the shape of a sigmoid was designed such that the relative 

change in intensity (3 fold) was kept constant throughout all three 

stimulation conditions: 

(1) 15 W/m2 to ramp up to 45 W/m2  

(2) 75 W/m2 to ramp up to 225 W/m2, 

(3) 150 W/m2 to ramp up to 450 W/m2 
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Figure 50. Testing the Or42a OSN response to whether it encodes relative rather 
than absolute changes of the stimulus intensity (light). 

(A) The stimulus intensity is given as light intensity (W/m2). The sigmoid light 
stimulation was conducted after relaxation of the neuron to steady state activity. 

(B) OSN response (PSTH) to a sigmoid stimulation featuring a three fold increase 
of the stimulus intensity starting from different baseline intensities (top: 15 - 45 
W/m2, middle: 75 -225 W/m2, bottom: 150 - 450 W/m2). 

(C) Superimposition of all three PSTHs while correcting for the small offset of 
the baseline activity. The individual OSN responses become literally 
indistinguishable from one another. Throughout the figure, the PSTH was 
computed on a pool of minimum 20 recordings conducted on minimum 8 
preparations; shades surrounding PSTHs represent standard deviations.   
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As can be seen from the PSTHs shown in Figure 50B, the OSN 

response dynamics are similar both qualitatively and quantitatively in 

all conditions. When superimposing the OSN response while 

correcting for the small offset of the baseline activity, they are 

almost indistinguishable from one another (Figure 50C). 

In a second set of experiments the stimulus intensity was elevated 

sequentially in a staircase-like fashion. As a result, the neural activity 

was allowed to adapt after the first stimulus increase. The second 

increase then triggered a neural response starting from a new 

(elevated) background intensity. The staircase featured different 

types of stimulation protocols (step, linear, and sigmoid) to test how 

qualitatively different stimulus time courses impact the neural 

response profile. 

The neural activity is most vividly elevated in response to the first 

step-like increase in stimulus intensity (Figure 51A). The second 

stimulus increase, although identical to the first one in absolute 

terms, triggers a response that is smaller compared to the first one. 

Since the second stimulus increase starts off from much higher 

baseline intensity, this observation is to be expected considering 

Weber’s proposition of keeping track of the relative increase in 

intensity rather than the absolute. 

Beyond the notion of fold-change detection, the results shown in 

Figure 51 also emphasize that the main component affecting the 

neural response profile is the temporal shape of the stimulus time 

course. While a step-like stimulus triggers a spiky, rapidly adapting 

response, the neural responses are more graded and smoother in 

response to a linear and sigmoidal increase (Figure 51). 
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Figure 51. Assessing the ability of the Or42a OSN response to track relative 
changes of the stimulus intensity through staircases of light stimulation. The 
stimulus intensity is given as light intensity (W/m2). The staircase stimulation was 
conducted after relaxation of the neuron to steady state activity. OSN response 
(PSTH) to an ideal (A), linear (B), and sigmoid (C) staircase light stimulation 
featuring a fixed increase of the stimulus intensity. Throughout the figure, the 
PSTH was computed on a pool of minimum 10 recordings conducted on 
minimum 2 preparations; shades surrounding PSTHs represent standard 
deviations. 

 

Taken together, these results support the notion that even a single 

OSN is capable of tracking relative changes of the stimulus intensity 

making it possible for animals to successfully navigate through a 

broad range of odor gradients. Future work will have to show 

whether these findings, which were obtained with light recordings, 

also hold for real odors.  
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Behavior	  

Controlling larval behavior: Closed loop tracking experiments 

Can we make predictions about larval behavior purely on the basis 

of the known neural activity of a single OSN? The preceding 

sections discussed the most prominent dynamic features found to 

comprise the activity pattern of the Or42a>ChR2 OSN in response 

to both odor and light stimuli:  

(1) rapid increases in neural activity triggered by abrupt positive 

changes in the stimulus intensity;  

(2) a tendency of the neural activity to reach a plateau value 

when the stimulus does not accelerate; 

(3) decreases in neural activity associated with strong stimulus 

decelerations; 

(4) complete inhibition of the neural activity upon abrupt 

negative changes in stimulus intensity (e.g. exponential 

decrease). 

Theses observations are further supported by the model predictions 

(Figures 41-45). This section will focus on taking the findings of the 

previous sections one level further: The neural activity will be used 

as the basis to model larval behavior during chemotaxis. 

What features found in the neural activity of the OSN affects the 

control of run-to-turn transitions? A larval tracker capable of 

monitoring the position and behavioral state of a single larva in real-

time at a rate of 30 Hz was built to tackle this question. Equipped 

with blue LEDs, the tracker was conceived to evoke predictable 
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patterns of neural activity in the Or42a>ChR2 OSN in freely 

behaving larvae (Figure 52). Unlike other tracking systems 

(Faumont, Rondeau et al. 2011), this setup was designed to keep the 

stage on which the larva evolves fixed by mounting the camera and 

stimulation LEDs on a moving stage whose position was 

continuously updated to stay locked with the animal’s position 

(Figures 21 and 52). 

 

 

Figure 52. Schematic drawing of the closed-loop tracker. The blue LEDs and the 
camera are mounted on a moving stage that follows the larva while it crawls on an 
agarose slab (40x40 cm or approximately 120x120 body lengths of the larva). 

 

Using empirical classifiers (Figure 22), the behavior of the larva was 

classified runs and non-runs on a frame-by-frame basis (state 

including head casts, turns and stops). Coupled with the 

physiological characterization of the Or42a>ChR2 OSN, the tracker 

allowed for the creation of virtual olfactory realities that were used 

to study the behavioral responses they produce. To avoid the innate 
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light avoidance behavior of larvae (Sawin-McCormack, Sokolowski 

et al. 1995; Kane, Gershow et al. 2013), experiments were conducted 

in blind larvae (see ‘Materials and Methods section; Fly stocks’). 

Blind animals carried a genetically ablated, non-functional Bolwig’s 

organ (GMR>hid) and a knocked out TrpA1 gene (Xiang, Yuan et 

al. 2010). To make sure that blind larvae did not react to light 

stimuli, freely behaving blind larvae (GMR>hid;TrpA1[1]) were 

exposed to a series of pseudo-random light flashes, with a minimum 

inter-flash interval of 5 s. The behavior resulting from the flash was 

characterized by computing the flash-triggered averages of the 

amplitude of the absolute head angle and its time derivative. From 

Figure 53 it can be appreciated that, while WT animals (black) show 

a strong light response manifesting through an increase in head 

motion following the flash (release of head cast), blind GMR-

hid;dtrpA1[1] larvae (red) were not affected by the light flashes. 

These findings are in agreement with controls reported by Gepner 

et al. who tested genetically blinded larvae (GMR-hid/+;UAS-

CsChrimson/Or42a-Gal4) expressing CsChrimson in the Or42a 

OSN and found that they were unresponsive to blue light (Gepner, 

Skanata et al. 2015). 
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Figure 53. Abolishment of photophobic behavior in blind larvae. Stimulation of 
larvae with light flashes of 0.5 s (intensity: 207 W/m2). Light flashes were 
interspaced by a time interval picked from a Poisson distribution with mean 7.7 s. 
The behavior resulting from the flash was characterized by computing the flash-
triggered averages of the amplitude of the absolute head angle and its time 
derivative. Wild type larvae (black) display an increase in head motion following 
the flash (release of head cast). Blind GMR-hid;dtrpA1[1] larvae (red) were not 
affected by the light flashes. The graph represent the means of the kinematic 
variables computed across trajectories; the error bar denotes the SEM. 

 

From stimulus to neural to behavior: Building a generalized linear model 
(GLM) to predict larval behavior 

Building upon the ODE model developed for the OSN activity 

(Figure 40), the control of run-to-turn transitions was modeled by 

assuming a linear relationship. Matthieu Louis developed the 

behavioral model that is presented here in conjunction with Alex 

Gomez-Marin and Shaul Druckmann. Based on the observation that 

the turn probability remains the same when the OSN activity is 

constant (Figure 51) it was hypothesized, that the relationship 

between the OSN activity and run-to-turn transitions could be 

captured by a simple model where the time-varying probability of 

turning is described as a linear combination of a constant, a basal 
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turn rate term (𝜆!) and a term proportional to the current OSN 

firing rate: 

𝜆! + 𝜆! ∗ 𝑦(𝑡) 

 

Combined with a logit transformation to map the linear 

combination (which may be positive or negative) onto the definition 

domain of probability of turning, the turn probability was modeled 

by a generalized linear model (GLM) (Myers, Montgomery et al. 

2002). In Figure 54, the integrated GLM model is outlined for the 

turn rate as a function of the predicted OSN activity. The model 

was trained on a set of light stimulation patterns identical to the 

linear and nonlinear ramps used to characterize the OSN response 

(Figures 58 and 59). 

The predicted probability of turning was computed from a 

generalized linear model (GLM) based on a linear function of the 

firing rate of the OSN y. 

This led to the following relationship: 

 

ln
λ(t)

1− λ(t) = γ! + γ!y(t) 
 

(13) 

 

The two parameters of the model, the basal turn rate γ!  and γ!, 

were computed from the open-loop experiments listed in Figures 58 

and 59. The values of these parameters are reported in Table 5. 
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Figure 54. Quantitative model for the modulation of turn probability as a function 
of the sensory experience (integrate neural-to-behavior model). The turn 
probability is predicted from a linear combination of the predicted neural activity 
(g1) and a constant basal turning rate (g0). This linear combination is then fed into 
a Logit transformation to convert the domain of definition of the neural activity 
into probabilities ranging from 0 to 1. The two parameters of the model, g0 and 
g1, are determined from a linear regression on the experimental turning rate. The 
OSN activity driven by light, y, is predicted from the pure IFF model described in 
Figure 40. The raw stimulus intensity (not processed by the OSN) was used as the 
input into the control model. The parameters of this control model are denoted as 
g0’ and g1’. 

 

For each ramp, the results of the predicted turn rate are displayed in 

Figures 58 and 59 (cyan line). For the linear and nonlinear ramps, 

the GLM accurately reproduces the time course of the experimental 

turn probability (cyan line, Figures 58 - 59), indicating that the OSN 

firing rate was sufficient to predict the control of run-to-turn 

transitions. From a given firing rate of the OSN y, the turn rate was 

obtained as: 

λ t =
1

1+ e! !!!!!!(!)
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The goodness of fit of the model was evaluated by applying it to the 

closed-loop experiments described in Figures 60-67. The 

performance of the test model was compared to a control model 

where the turn probability was directly predicted from the stimulus 

intensity without any sensory processing achieved by the OSN 

(dashed magenta line, Figures 58 and 59). 

For this control model, the same form of GLM was independently 

fitted with the firing rate replaced by the stimulus intensity. The 

values of the parameters of the test and control models are reported 

in Table 5. The goodness of fit of the GLM was found to be 

contingent on the nonlinear transformation achieved by the OSN 

(Table 6). However, for the majority of ramps, this improvement 

did not match the quality of the fit produced by the integrated 

neural-to-behavior model (Table 6), suggesting that circuits 

downstream from the OSNs are controlling run-to-turn transitions 

by processing the present OSN activity without substantial temporal 

integration. It appears that the turn probability alone is sufficient to 

predict the sensorimotor control resulting from the virtual reality 

paradigm.  

For the probability of turning, two metrics were used to quantify the 

goodness of fit of the model. First, Pearson’s correlation coefficient 

was used where the experimental observations were denoted as 𝑋! 

and the output from the model as 𝑌! (Table 6 last column). 
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The final correlation coefficient was computed as: 

 

r =
(X! − X)(Y! − Y)!

!!!

s!  s!
 

 

where s! is the standard deviation of variable X and n represents 

the total number of time points in the dataset.  

The second metric represents the coefficient of variation of the 

root-mean-square error defined as:  

 

CV RMSE =

1
n (X! − Y!)!!

!!!

X
 

 

The integrated GLM predicts the time course of the experimental 

turn probability with good accuracy. The goodness of fit is greatly 

enhanced upon processing of the stimulus intensity by the OSN 

(IFF model for light-driven activity elicited in the Or42a>ChR2 

OSN). 
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Three conclusions can be drawn from the successful application of 

the integrated GLM model of Figure 54: 

(1) A stationary OSN activity leads to inherently stochastic 

transitions from run to turn. When the OSN activity remains 

constant, the probability of turning at a given time is largely 

independent of the time during which the larva has already 

been running; 

(2) a high OSN firing rate induces strong suppression of turning 

(rising phase of the ramps); 

(3) inhibition of the OSN activity induces strong facilitation of 

turning (most evident during the falling phase of the 

exponential ramp); 

These results indicate that the nonlinear response characteristics of 

the OSN contribute to behavioral control in a significant way. 

 

Challenging the GLM: Controls for closed-loop behavioral experiments 

For the control model, the relationship (13) was: 

   

ln
λ(t)

1− λ(t) = γ′! + γ′!x(t) 
 (14) 

 

where the parameters γ′!  and γ′!  were computed from a linear 

regression on the open-loop experiments listed in Figures 58 and 59. 
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Consistent with the findings that the OSN activity is sensitive to the 

slope of the ramp, it was found that the performance of the 

stimulus-to-behavior GLM was improved by combining the light 

intensity (x) with its first derivative (dx/dt) (Figure 55). 

The contribution of the first derivative of the stimulus intensity was 

assessed in the following control model: 

 

ln
λ(t)

1− λ(t) = γ′′! + γ!!!x t +   γ′′!
dx
dt (t) 

 (14) 

 

The time derivative of the stimulus was defined by the change in 

stimulus intensity that occurred during the frame (33 ms) preceding 

the present time point t. 
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Figure 55. Comparison of the predictions of the stimulus-to-behavior controls 
with and without the first derivative of the stimulus for four representative light 
ramps (A-D). Time courses of the stimulus intensity (magenta, top) and its time 
derivative (gray, top). The turn probability estimated from the experimental data is 
shown in black (bottom). The prediction of the integrated neural-to-behavior 
model is shown in cyan (bottom). The performance of the stimulus-to-behavior 
control based on the stimulus intensity alone (dashed magenta line, bottom) 
improves by linearly combining the light intensity with its first derivative. It was 
noted that the stimulus-to-behavior control outperforms the neural-to-behavior 
model in all presented cases. The discrepancies between the controls and the test 
model are particularly pronounced during the beginning of the upward phase of 
the ramp. The goodness of fit is quantified in Table 6.  



 Results  

 
150 

In closed-loop experiments conducted in light and odor gradients 

(Figures 61-71), the predictions of the GLM described in (13) were 

analyzed by computing the turn-triggered average of the turn 

probability. This average time course was compared to two controls. 

The first control consisted in achieving turn predictions based on a 

sensory experience whose relation to the corresponding behavior 

was uncoupled. The time course of the light (odor) intensity was 

inverted and associated with the forward time course of the 

behavior. This first control preserved the statistics of the stimulus 

intensity experienced by the larva. The second control was based on 

the assumption that the OSN firing rate was constant over time and 

corresponded to the mean activity predicted by a typical trajectory. 

Given that each larva experienced a different time course of light 

intensity, the mean OSN firing rate was computed on a trajectory-

by-trajectory basis. The stimulus-based GLM derived in equation 

(14) for the open-loop light ramps (Figures 58 and 59) was deemed 

inadequate to predict closed-loop behaviors in odor gradients 

because of the mismatch between the dynamic range of the stimulus 

in the light ramps and in the odor gradient. The values of the 

parameters of both test and control models are reported in Table 5. 

The goodness of fit of the stimulus-based GLM and the two test 

models is reported in Table 6. 
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Table 5. Parameters of the GLM obtained upon optimization of model on the 
closed-loop behaviors listed in Figures 58 and 59. The first two columns of the 
table report the value of the stimulus-to-behavior control without (left) and with 
(center) the contribution of the first derivative of the stimulus. The last column 
reports the value of the integrated neural-to-behavior model fed with the 
predicted firing rate of the OSN. 

 
 

 

 

 

Table 6 Quantification of the goodness of fit of the control and test GLM against 
the experimental data. 

 (A) Comparison between the integrated neural-to-behavior and stimulus-to-
behavior GLMs and the experimental estimate of the turn probability through the 
application of Pearson’s correlation coefficient on the time course of the 
experimental turn probability and the predicted turn probability. 

(B) Comparison between the integrated neural-to-behavior and stimulus-to-
behavior GLMs and the experimental estimate of the turn probability through the 
coefficient of variation of the RMSE on the time course of the experimental turn 
probability and the predicted turn probability. The quantification was restricted to 
the first 12 s of the ramp where the experimental estimate of the turn probability 
is reliable. The goodness of fit was computed over the entire duration of the ramp 
across conditions and is reported at the bottom of the table for both metrics. 

  

! Control without 1st 
derivative of 
stimulus 

Control with 1st 
derivative of 
stimulus 

Test model 
with predicted 
neural activity 

γ0!(constant)! -0.8156 -0.8200 -0.3534 
γ1!(input variable)! -0.0114 -0.0013 -0.1523 

γ2!(derivative of input 
variable)!

0 -0.0214 0 
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Triggering behavioral transitions: Optogenetic stimulation in open-loop 
conditions 

Taking advantage of the tracker’s ability to produce stereotyped light 

ramps, reproducible patterns of neural activity were elicited in the 

Or42a>ChR2 OSN (Figures 41-43, bottom). In a first series of 

optogenetic behavioral experiments an open-loop paradigm was 

used to associate each run with a light ramp. For example, the onset 

of each run was associated with either an exponential ramp (test 

condition) or constant basal light intensity (control). 

 

 

Figure 56. (A) Presentation of the run-locked light stimulation paradigm where 
runs are randomly assigned to constant stimulation (control) or to a test ramp 
with an exponential profile similar to that introduced in Figure 43. 

(B) Midpoint position of the larva during a trajectory with the light intensity color-
coded according to the colorbar on the left. Illustrative runs denoted as R1-4 are 
interspaced by turns T1-3 denoted by arrows. 

 

For successive runs, the two stimulation conditions — ramp and 

constant stimulation — were picked at random. This approach 

allowed for the correlation of the predicted OSN firing rate with the 

control of run-to-turn transitions. 
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When an exponential ramp was played to the larva, the pattern of 

light stimulation was maintained exclusively for the duration of a 

run state. It was eventually interrupted as soon as the larva initiated 

a turning maneuver, an event triggering the immediate reset of the 

light intensity back to basal levels. As the motion of the larva had no 

influence on the stimulation pattern it experienced during a run, this 

experimental protocol features a sensorimotor loop that is 

essentially open. The alternation between the ramps and constant 

stimulation is illustrated in Figure 56 where runs R1 and R4 are 

associated with basal stimulation and runs R2 and R3 are associated 

with the exponential ramp. The majority of the runs associated with 

an exponential ramp did not terminate before the falling phase of 

the ramp. This trend was quantified through the turn probability, 

which was defined as the relative number of runs that switched to a 

turn during a sliding time window of 1 s. Upon constant light 

stimulation, the turn probability was largely independent of the 

duration of the ongoing run (light gray line, Figure 57). In contrast, 

the turn probability was strongly modulated by the exponential light 

ramp. During the rising phase of the ramp (0-8 s), turning was 

strongly inhibited: the turn rate dropped below the value 

corresponding to basal stimulation (light gray line). During the 2 s 

that precede the end of the rising phase (6-8 s), the turn rate almost 

approaches values close to 0. Conversely, a sharp increase in turning 

was observed during the falling phase of the ramp (black line, Figure 

57). The estimation of the turn probability remained accurate until 

the number of remaining runs became too small. The dot on the x-

axis indicates the time point where fewer than 10% of the initial 

runs are left.  
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Figure 57. Turn probability estimated from an experimental set of trajectories 
upon constant stimulation (light gray) and stimulation by an exponential light 
ramp (black). The turn probabilities are reported as the fraction of turns occurring 
during a 1-s window centered on the time point of interest. Error bars are 
estimated by resampling the initial distribution 100 times without replacement and 
with a sample containing half of the original set (error bars represent standard 
deviations). The dashed line depicts the mean turning rate computed for the 
constant stimulation condition. It can be seen that the turning rate is largely 
independent of the run duration. The small disks on the x-axis indicates the time 
point after which fewer than 10% of the total number of runs are left for the 
constant stimulation (light gray) and exponential ramp (dark gray). Beyond these 
time points, the estimate of the turn probability becomes unreliable. 

 

Beyond this indicative value, a large fluctuation in the turn rate was 

observed due to the low number of long-lasting runs available for 

analysis. The modulation of the turn probability by the light evoked 

neural activity supported the idea that a strong activation of the 

OSN efficiently suppresses turning whereas inhibition of the neural 

activity promotes turning. These results indicate that certain 

behavioral transitions are indeed strongly dependent on context 

specific modulations of the OSN activity. 
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To explore the modulation of the turn probability by the OSN 

activity in greater depth, larvae were exposed to different light 

stimulation protocols in open-loop conditions (stimulation 

exclusively during a run-mode). The behavioral experiments were 

designed to employ the same linear and non-linear functions that 

had been used to characterize the OSN response dynamics by 

means of electrophysiology (Figures 41-43). When exposed to a 

linear increase in light intensity the turn probability is suppressed 

whenever the OSN firing increases (Figure 58). The suppression 

seems to be slightly slope dependent: the steeper the increase, the 

stronger the suppression of turning. A strong facilitation of turning 

(turn probability highest) is triggered whenever the OSN firing rate 

drops significantly. This drop in neural activity coincides with a 

transition of the stimulus from a linear increase to a linear decrease 

in light intensity (Figure 58). 

The results obtained in animals exposed to non-linear light ramps in 

open-loop conditions highlight the importance of the OSN activity 

in controlling the turn probability (Figure 59). In the case of the 

sigmoid stimulation protocol, the turn probability is slightly elevated 

during a time where the stimulus reaches its maximum light 

intensity. 
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Figure 58. Fit of the stimulus-to-neural (ODE) model and predictions of the 
integrated neural-to-behavior model for the linear ramps. 

(A) Stimulus intensity given as odor concentration (uM, magenta). The same 
(idealized) profile was used for the light stimulation with an intensity ranging 
between 15 W/m2 and 207 W/m2. Fit of the solution of the ODE model for the 
linear stimulation ramps generated with odor and light. Upon mild smoothening 
of the stimulus time course trajectories with a Savitzky-Golay filter, the time 
derivative (gray) of the concentration profile is represented according to the 
ordinate on the right of the graph. 

(B) Modeling of the OSN activity elicited by odor ramps. Comparison of the 
experimental PSTH (black) with the outcome of the model featuring a pure IFF 
motif (green) and a combination of the IFF and IFB motifs (cyan). 

(C) Same as B for the light ramps. Comparison of the experimental PSTH with 
the outcome of the model based on a pure IFF motif (green). For all conditions 
shown in this figure, the PSTHs were computed on a pool of minimum 10 
recordings conducted on minimum 10 preparations. 

(D) Application of the stimulus-to-behavior integrated model to predict behavior 
to stereotyped light ramps (model introduced in Figure 54). The test model (cyan) 
is based on the neural activity modeled by the IFF motif (green, panel C). As 
indicated in the textbox on the right, the control model is purely based on the 
stimulus (dashed red). The black dashed line in the background represents the 
average turn probability observed upon stimulation at constant intensity. The 
integrated stimulus-to-behavior model clearly outperforms the predictions of the 
control model. For all test conditions, the experimental turn probability was 
estimated on a sample of 490 to 970 runs.  
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This counter intuitive observation, however, starts to make sense 

when the actual neural firing rate is considered: the OSN activity 

starts to drop as soon as the rising stimulus passes its turning point 

where the 2nd derivative (acceleration) of the stimulus time course 

starts to turn negative (compare to ‘Results section; Non-linearly 

evolving stimuli: changing both speed and acceleration). Also in the 

case of the non-linear ramps it can be seen that turn facilitation is 

strongest when the drop in OSN activity is strongest (as is the case 

after the exponential light stimulation in Figure 59). Conversely, 

over periods of mild decreases in neural activity, the turn probability 

raises only mildly (as can be seen for the asymptotic stimulation in 

Figure 59). 

Is a linearly dissected version of a non-linear ramp able to reproduce 

behavioral results similar to the ones obtained for non-linear ramps? 

A linear piecewise approximation of an exponential, an asymptotic 

and a combination of the two stimulation protocols were tested in 

larvae behaving in open-loop conditions as outlined above. While 

the behavior elicited by an asymptotic stimulation is well 

recapitulated by its piecewise linear approximated version (Figure 

60), in the case of the piecewise exponential the behavior is slightly 

different from the actual exponential. Turning is temporarily 

suppressed in response to each boost of neural activity triggered at 

each stimulus’ positive inflection point (0 s and 4 s into the 

stimulation) (Figure 60). Overall, discrete features of the piecewise 

linear approximations are translated into measurable behavior.  
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Figure 59. Fit of the stimulus-to-neural (ODE) model and predictions of the 
integrated neural-to-behavior model for nonlinear ramps. 

(A) Stimulus intensity given as odor concentration (uM, magenta). The same 
(idealized) profile was used for the light stimulation with an intensity ranging 
between 15 W/m2 and 207 W/m2. Fit of the solution of the ODE model for the 
nonlinear stimulation ramps generated with odor and light. Upon mild 
smoothening of the stimulus time course with a Savitzky-Golay filter, the time 
derivative (gray) of the concentration profile is represented according to the 
ordinate on the right of the graph.  

(B) Modeling of the OSN activity elicited by odor ramps. Comparison of the 
experimental PSTH (black) with the outcome of the model featuring a pure IFF 
motif (green) and a combination of the IFF and IFB motifs (cyan).  

(C) Same as B for the light ramps. Comparison of the experimental PSTH with 
the outcome of the model based on a pure IFF motif (green). For all conditions 
shown in this figure, the PSTHs were computed on a pool of minimum 10 
recordings conducted on minimum 10 preparations.  

(D) Application of the stimulus-to-behavior integrated model to predict behavior 
to stereotyped light ramps (model introduced in Figure 54). As indicated in the 
textbox on the right, the test model (cyan) is based on the neural activity modeled 
by the IFF motif (green, panel C). The control model is purely based on the 
stimulus (dashed red). The dashed horizontal line in the background represents 
the average turn probability observed upon stimulation at constant intensity. 
Dashed vertical lines indicate time points associated with abrupt changes in the 
first derivative of the stimulus. The integrated stimulus-to-behavior model clearly 
outperforms the predictions of the control model. Experimental turn probabilities 
estimated on samples of 490 to 970 runs.  
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It is noteworthy that the different stimulus segments specific to the 

piecewise linear dissected ramps transitioned very abruptly, a fact 

rendering this kind of stimulation impossible when using real odors. 

The stimulation was therefore solely conducted with light. 

 

 

Figure 60. Predictions of the integrated neural-to-behavior model for the linear 
piecewise approximated ramps.  

(A) Stimulus intensity given as light intensity (15 W/m2, magenta).  

(B) Experimental PSTHs (black) were computed on a pool of minimum 10 
recordings conducted on minimum 10 preparations. 

(C) Application of the stimulus-to-behavior integrated model to predict behavior 
to stereotyped light ramps (model introduced in Figure 54). The test model (cyan) 
is based on the neural activity. As indicated in the textbox on the right, the control 
model is purely based on the stimulus (dashed red). The black dashed line in the 
background represents the average turn probability observed upon stimulation at 
constant intensity. The integrated stimulus-to-behavior model clearly outperforms 
the predictions of the control model. For all test conditions, the experimental turn 
probability was estimated on a sample of 490 to 970 runs.  
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Validating the GLM: Studying unconstrained behavior in simple virtual 
olfactory gradients (closed-loop) 

Is the GLM model able to make accurate behavioral predictions in 

conditions of unconstrained larval behavior in simple virtual light 

gradients? 

The control of run-to-turn transitions is inherently stochastic in 

nature. Therefore, the predictive power of the integrated neural-to-

behavior model (Figure 54) needed to be tested by experiments 

involving animals behaving in virtual olfactory gradients in 

conditions where the sensorimotor loop was closed (closed-loop).  

 

 

Figure 61. Synthetic chemotaxis in a virtual odor gradient produced by light 
stimulation. The larva experiences a light intensity determined by a predefined 
stimulus landscape. The landscape displayed in the background is an exponential 
gradient centered on a point ‘source’. 

(A) Overlay of 10 trajectories recorded in the exponential light gradient. Turns are 
indicated as small black circles. Larvae evolving in this light gradient accumulate at 
the peak of the gradient as observed for odor gradients. 

(B) Illustrative trajectory of the midpoint (black) and head (magenta). Black 
arrows indicate the direction of motion. 

(C) Overlay of the trajectory of the midpoint with the predicted instantaneous 
turning rate color-coded according to the colorbar on the left. The turn 
probability tends to increase (red color range) when the larva is moving away from 
the gradient’s peak whereas it decreases (blue color range) when the larva is 
moving towards the peak. 
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In this paradigm, a light gradient with a fixed geometry comparable 

to the odor gradient was used (Figure 61). In this virtual 

environment a larva experienced a light intensity defined by the 

position of its head according to a predefined virtual light landscape. 

Unlike in the open-loop paradigm, the light stimulation was 

continuously modulated by the larval behavior. Figure 61B illustrates 

the trajectory of an Or42a>ChR2 larva in the exponential light 

gradient. In a way similar to the odor-driven behavior (Figure 29, 

panels A and B) (Gomez-Marin, Stephens et al. 2011), the larva 

ascends the light gradient, overshoots the gradient’s peak, 

implements a sharp turn and returns to the gradient’s peak — a 

behavior termed ‘circling’. Figure 62B explores how the 

Or42a>ChR2 OSN responds to the light time course reconstructed 

from an animal’s behavior in a virtual exponential gradient. 

The experimental PSTH obtained from the electrophysiological 

recording is reported in the middle panel (black trace) and well 

recapitulated by the predictions of the IFF model (green trace). The 

neural activity was subsequently fed into the GLM model to predict 

the turn probability associated with individual runs (Figure 62C, 

cyan line). In Figure 61C the resulting turn probability is shown 

color-coded on top of the trajectory of the midpoint. As a general 

trend, the termination of a run is preceded by an increase in the 

predicted probability of turning. 

 



 Results  

 
162 

 

Figure 62. (A) Time course of the light intensity associated with the trajectory 
displayed in Figure 61 (panels B and C). To compare to data obtained in a real 
odor gradient see Figure 71. 

(B) PSTH of the OSN activity measured experimentally upon a replay of the 
intensity time course at the electrophysiology rig (black). Neural activity predicted 
by the model based on the IFF motif (green) presented in Figure 40. 

(C) Turn probability (cyan) predicted from the integrated neural-to-behavior 
model presented in Figure 54. The predicted turn probability is only shown for 
the behavioral sequences associated with runs.  

 

When comparing behavior elicited by a linear and by an exponential 

ramp in open-loop conditions, it appears that the behavior elicited 

by a linear gradient is different from that generated by an 

exponential gradient: in the exponential gradient (Figure 57), run-to-

turn transitions are more stereotypic and more precise than in the 

linear gradient (Figure 58). This comes as a result of an increased 

suppression of turning when moving down gradient while 
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experiencing a more drastic decrease of stimulus intensity. To test 

this prediction, closed-loop experiments with freely moving animals 

were carried out in virtual light gradients with an exponential and a 

linear geometry (Figure 63). 

 

 

Figure 63. (A) Overlay of 10 consecutive trajectories recorded in the exponential 
light gradient shown in panel A. Each trajectory corresponds to a different larva. 
Turns are indicated as small circles. Scale bar represents 1 cm. 

(B) Overlay of 10 consecutive trajectories recorded for a linear light gradient with 
the same peak value as the exponential gradient shown in panel A. 

 

In both light gradients, larvae accumulated around the gradient’s 

peak. However, as expected, the spread of the trajectories with 

respect to the peak was larger for the linear light gradient (Figure 

64A). With regards to the duration of runs, no noticeable increase 

was found between the two gradients (Figure 64B). 

Next, by focusing on runs lasting longer than the mean (cutoff: 4 s), 

the average stimulus input (turn-triggered average) and the 

corresponding predicted OSN activity preceding a turn was 

computed (Figure 65). 
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Figure 64. Radial distribution of distances to the source and the run durations 
during closed-loop behavioral experiments in two virtual light landscapes 
(exponential and linear). Larvae tend to accumulate more closely to the peak of 
the exponential gradient, even though the average run duration is the same in 
both light gradients. Distribution computed on runs with a minimal duration of 
1s. 

(A) Comparison of the distribution of distances to the source (peak intensity) 
between the run set obtained for the exponential light gradient (black) and the 
linear light gradient (green). The circles indicate the median distance (median 
distance for the exponential light gradient: 7.7 mm).  

(B) Comparison of the distributions of the run durations between the run set 
obtained for the exponential light gradient (black) and the linear light gradient 
(green). The circles indicate the median run duration (median rund duration for 
the exponential light gradient: 3.8 s). 

 

For both the linear and exponential gradients, it was found that the 

average stimulus intensity decreases monotonically for several 

seconds before a turn is implemented (Figure 65 panels A and B). 

The rate of stimulus decrease, however, is slightly larger for the 

exponential gradient than the linear gradient. In the case of the 

exponential gradient, the stimulus deceleration prior to turning is 

more prominent. As a result, the predicted OSN activity, although 

showing a monotonic decrease for both conditions, is more strongly 

suppressed for the exponential gradient (Figure 65 panels A and B). 
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Figure 65. (A) Turn-triggered average of the sensory experience (top, magenta) 
and predicted OSN activity (bottom, blue) for the runs observed in the 
exponential light gradient. Shown is the relative change in stimulus intensity or 
firing rate upon normalization by the value observed at the end of the run (x0 or 
y0). Analysis restricted to the set of runs lasting longer than 1 s. 

(B) Same as A for the runs observed in the linear light gradient. 

(C) Turn-triggered average of the sensory experience (top, magenta) and the 
predicted OSN activity (bottom, blue) for the runs observed in the odor gradient. 
Shown is the relative change in stimulus intensity or firing rate upon 
normalization by the value observed at the end of the run (x0 or y0). Analysis 
restricted to the set of runs lasting longer than 1 s. 

In all three cases both the stimulus intensity and neural intensity decreases prior to 
the initiation of a turn. However, the amplitude of the decrease is reduced by a 
factor two when comparing the turn-triggered average observed in the odor 
gradient to the turn-triggered average of the light gradients.   



 Results  

 
166 

The turn-triggered average of the predicted turn rate suggested a 

similar conclusion: prior to a turn, the probability of turning 

increases steadily over the course of several seconds. This increase 

tends to be shorter and slightly steeper for the exponential gradient, 

which might explain why larvae are able to pinpoint the gradient’s 

peak more accurately in the exponential landscape (Figures 63, 64, 

and 66). 

For both light landscapes, the modulation of the predicted turn 

probability was compared to two controls: 

(1) behavioral predictions based on the assumption that the 

OSN spiking activity remained constant (use of average 

firing rate predicted on a trajectory-by-trajectory basis) and 

(2) behavioral predictions upon uncoupling of the stimulus and 

the behavior by inverting the reconstructed temporal 

evolution of the stimulus. 

In contrast to the test model, neither control displayed substantial 

increases in turn probability prior to turning (Figure 66). From the 

results in this section it can be seen that the integrated neural-to-

behavior model built on controlled conditions of stimulation (open-

loop paradigm) was sufficient to predict run-to-turn transitions 

arising from free behavior in a virtual odor gradient (closed-loop 

paradigm). 
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Figure 66. Predicted turn probability in different light landscapes. 

(A) Turn-triggered average of the predicted turning rate for the exponential light 
gradient. A comparison is made between the predictions based on the OSN 
activity driven by the real stimulus intensity (cyan), predictions using the OSN 
activity driven by the time-reversed stimulus time course (uncoupled control, 
black) and predictions based on the assumption that the neural activity stays 
constant over the course of each trajectory (constant control, red). The stimulus-
to-behavior model was trained on the experiments described in Figures 58 and 59. 
Analysis restricted to the set of runs lasting between 4s and 10s. It was observed 
that the predicted turning rate steeply increases 4 s before the turn, highlighting 
the stereotypy in the sensorimotor control of run-to-turn transitions.  

(B) Same as A for the linear light gradient. It was observed that the predicted 
turning rate increases more steadily prior to the turn, which is due to the 
shallower change in sensory experience associated with movements in the linear 
landscape. 
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Validating the GLM: Studying unconstrained behavior in complex 
virtual olfactory gradients (closed-loop) 

Through behavioral experiments in open-loop conditions (Figures 

58 and 59) it was demonstrated that inhibition of OSN activity 

facilitates turning whereas sustained high levels of OSN activity 

suppresses turning. In addition, it was shown that larvae are able to 

navigate simple virtual light gradients through a behavior 

reminiscent to chemotaxis (Figures 61-66). 

 

 
Figure 67. Experimental and predicted OSN activity elicited by 4 stimulus time 
courses starting with a common 8s exponential increase (stimulus shown in 
magenta; first derivative of the stimulus shown in gray). 

(A) The stimulus ramp ends with a symmetrical exponential decrease (‘volcano’). 

(B) The stimulus ramp ends with an abrupt drop to baseline intensity (‘well’). A 
strong inhibition of neural activity is observed upon the instantaneous decrease of 
intensity to baseline level. 

(C) The stimulus ramp ends with a maintenance of the maximum intensity 
(‘mesa’). The transition from an exponential increase in the stimulus intensity to a 
constant intensity leads to a transient decrease in neural activity before a steady 
state value is reached. 

(D) The stimulus ramp ends with a linear increase (‘linear’). The switch of an 
exponential increase to a linear increase of the stimulus intensity leads to a 
transient decrease in neural activity similar to the one observed for the ‘mesa’ 
(panel C). 
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How do changes of the OSN activity — OSN activity elicited by 

rapid transitions of the stimulus — modulate unconstrained 

behavior in more complex virtual light gradients? 

Four radially symmetrical light landscapes were designed with 

characteristics challenging the GLM’s predictions (Figures 67 and 

68). The geometrical properties of the gradients were chosen to 

facilitate behavior with predictable modulations of run-to-turn 

transitions. All cases feature an exponential increase at the rim of 

the landscape that is transitioned into a different kind of stimulation 

at the center specific for each case. 

(1) First, a landscape with an exponential rise interrupted 8 mm 

from a center point was considered. At this distance, the 

exponential rise was transformed into an exponential fall. 

The shape of this landscape is reminiscent of a ‘volcano’ 

(Figures 67A and 68Ai). Given that the average speed of a 

larva is 1 mm/s, the geometry of the landscape was chosen 

in such a way that a larva starting at 16 mm from the center 

and moving towards the center should experience the 

stimulus time course depicted in Figure 67A (volcano, 

magenta line). The corresponding OSN activity and model’s 

prediction are presented below the stimulus time course 

(Figure 67A, black and green lines). The turning probability 

was expected to be lower during the rising phase of the 

gradient while it was expected to be higher whenever the 

stimulus fell. Trajectories were therefore expected to 

produce back-and-forth meandering along the rim of the 

volcano. As a result, the central area would be avoided.  
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(2) The second case consisted of an extreme version of the 

volcano comprising an extreme drop in intensity in the 

central area of the landscape (well). A larva moving from the 

periphery of the landscape towards the center would 

experience an exponential rise in light intensity followed by a 

sudden drop of stimulus intensity to a basal value. This 

stimulus time course is depicted in Figure 67B. In response 

to the abrupt transition from the rising to falling phase the 

OSN features a vigorous suppression of the neural activity 

(Figure 67B, black and green lines). The corresponding 

behavior was expected to be associated with a nearly 

deterministic release of turns as soon as the larva 

experienced a drop in intensity associated with the central 

area (crater) of the landscape. As a result, larvae were 

predicted to avoid the central area even more aggressively 

than for the volcano. 

 

(3) The third landscape was complementary to the well: a 

plateau (or mesa) where the maximum light intensity reached 

at the rim was maintained up to the center (Figure 67C). A 

larva starting at a distance from the center would experience 

an exponential rise followed by a constant intensity. This 

pattern of stimulus intensity creates a rising phase followed 

by a small drop in neural activity before the firing rates 

plateaus until the end of the ramp. The IFF model accurately 

predicts the OSN activity (Figure 67C, black and green 

lines). The effect expected on the behavior was a moderate 
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increase in turning for inward runs that passed the rim, but 

no significant avoidance of the central area of the plateau 

(mesa). 

 

(4) The fourth landscape featured a linear hat (cone) at its 

center. A run moving towards the center would be 

associated with an exponential rise in stimulus intensity 

followed by a linear increase (Figure 67D, magenta trace). In 

a counterintuitive way, this stimulation pattern was not 

expected to lead to a monotonically increasing OSN activity: 

the firing rate drops at the transition from an exponential 

increase to the linear increase — a phenomenon well 

recapitulated by the IFF model (Figure 67D, black and green 

lines). This decrease is due to a deceleration in the stimulus 

intensity in spite of the monotonic increase of the stimulus 

intensity.  

A run associated with this stimulation pattern is expected to 

produce a behavior similar to that of the plateau (mesa) landscape. 

The behavioral predictions from the qualitative model were verified 

by the experimental observations. For the volcano landscape, 

Or42a>ChR2 larvae meander around the rim (Figure 68Ai, middle). 

Inward runs are interrupted quickly when the larva reaches out 

beyond the rim. This point is illustrated by restricting the 

representation to the set of inward runs that start outside the central 

area of the landscape (Figure 68Ai, right). In Figure 68Aii, the 

stimulus time course, the predicted OSN activity and the turn rate 

are represented for a representative run. 
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Figure 68. (Ai) Symmetrical two-dimensional light landscapes corresponding to 
the exponential ‘volcano’ profile. (Left) 15 trajectories superimposed onto the 
stimulus landscape. (Top-Left) Radial density distribution of all positions with 
respect to the center of the landscape (origin of axis). (Right) Set of 48 runs 
starting from the external edge of the ‘volcano’ and heading towards its center. 

(Aii) Sensorimotor properties of the illustrative run depicted in magenta in panel 
Ai. (Left) Stimulus intensity time course: the peak of the rim is reached after 
approximately 5 s and it is followed by a decrease in stimulus intensity. (Center) 
Predicted neural activity: the OSN activity is expected to drop significantly after 
the landscape’s rim has been passed. (Right) Predicted turn probability from the 
stimulus-to-behavior model. The probability of turning significantly increases 
when the larva is moving down-the-gradient and a turn follows approximately 4 s 
after the crossing of the rim. 

(Bi) Same as Ai for the ‘well’ profile. For this landscape, it was observed that the 
crossing of the rim leads to an aversive response. Consequently, larvae avoid the 
well at the center of the landscape. 63 runs are shown in the right plot.  

(Bii) Same as Aii. When the larva passes the rim, the light intensity drops to 
baseline and the OSN activity becomes inhibited. As a consequence the turning 
rate is predicted to spike steeply: within 1 s after the crossing of the rim, a turn is 
implemented.  

(Ci) Same as Ai for the ‘mesa’ profile. For this landscape, it was observed that the 
crossing of the rim does not lead to an aversive response: larvae tend to maintain 
their ongoing run. The center of the landscape is therefore visited. 79 runs are 
shown in the right plot.  
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(Cii) Same as Aii. When the larva passes the rim, the neural activity decreases 
slightly as expected from the electrophysiological response in panel A. This 
decrease in neural activity leads to a moderate rise in turn probability, which 
triggers a turn approximately 4 s after the crossing of the rim.  

(Di) Same as Ai for the ‘linear’ increase profile. For this landscape, the rate of 
change in the stimulus decreases when the larva crosses the landscape’s rim 
whereas the stimulus intensity keeps increasing up to the peak of the gradient. 

(Dii) Same as Aii. In agreement with panel A, the switch from an exponential to a 
linear increase in the stimulus leads to a moderate decrease in neural activity for 
the first 4 s of the run in spite of the positive light gradient experienced by the 
larva. This decrease becomes moderately amplified when the larva passes the peak 
of the landscape. Throughout the run, the turning is predicted to monotonically 
increase from a low starting value. As for the ‘mesa’, the central area the landscape 
is visited by larvae. 72 runs are shown in the bottom plot.  

 

The steady increase in turn probability lasts several seconds before 

the run terminates. In contrast to the volcano, the well creates an 

even stronger repulsion for the central area that results in an 

exclusion zone (Figure 68Bi, middle). The predicted turn probability 

of the representative run shown in Figure 68Bii accounts for the 

nearly instantaneous release of turning when the rim is crossed. This 

observation is contrasted by the plateau (mesa) landscape, where the 

central area does not trigger any aversive behavior: upon crossing of 

the rim, runs do not sharply terminate; instead, the central area is 

widely occupied (Figure 68Ci, middle). Yet, the predicted turn 

probability of a representative run illustrates the modest increase in 

turning rate that results from the crossing of the rim (Figure 68Cii). 

This observation supports the notion that even a slight decrease of 

the OSN activity leads to a measurable increase of the turn 

probability. The landscape featuring a central linear hat (cone) 

produces a behavioral pattern reminiscent of the one elicited by the 

plateau (mesa) (Figure 67Di, middle). In spite of the continuously 

rising stimulus intensity experienced by an animal that crosses the 
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rim, only a moderate increase in turning is expected (first 5 seconds 

of illustrative run shown in Figure 68Dii). These results are also 

compatible with the notion that the OSN functions as a slope 

detector that is sensitive to the derivative of the stimulus intensity 

(speed). 

To strengthen the previous observations, the average duration of 

runs directed towards the center after crossing of the rim was 

quantified for each landscape. This average was predicted to capture 

the efficiency with which turns were elicited by stereotyped changes 

in stimulus intensity experienced at the rim. As shown in Figure 

69B, the run duration is shortest for the well landscape (average turn 

latency: 0.93 s) where a near-deterministic interruption of ongoing 

runs upon crossing of the rim was observed. Also the volcano 

featured a relatively short run duration (average latency: 3.48 s). 

Differences between the medians of the run duration were tested by 

applying on a Wilcoxon test with a Bonferroni correction to 

maintain the confidence level higher than 99%. The difference in 

the average latencies to turning of the well and volcano is 

significant. Also, the duration of the runs observed for the plateau 

(mesa) and linear hat (cone) is significantly larger than the well 

(average turn latency of mesa and linear hat: 6.6 s and 6.7 s), 

supporting the idea that runs are elongated whenever the OSN 

activity is maintained at a constant firing rate. No significant 

difference is found between the median of the run duration for the 

plateau (mesa) and the linear hat (cone). The differential effect of 

the landscape on the sensorimotor control of a run can be 

accounted for by our predictions of the average modulation of turn 
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rate prior to turning. Figure 69A shows that a sharp increase of the 

turn probability over the course of only 2 s is sufficient to induce 

turning in the well landscape. The volcano landscape yields a milder 

increase in turning over the course of approximately 4 s, a duration 

that is consistent with the average latency to turn found in Figure 

69B. The increase of the predicted turn probability is weakest for 

both the plateau (mesa) and linear hat (cone). This observation 

explains the high prevalence of runs occurring in the central area of 

the landscape. 

 

 

Figure 69. (A) Turn-triggered average of the predicted turn probability for the 
subset of runs entering the landscape’s central area. 

(B) Distribution of run durations following the crossing of the landscape’s rim 
(see panel A). Analysis restricted to the subset of runs described in the left graphs 
of Figure 67 Ai-Di (runs entering the central area of the landscape). The 
experience of an abrupt decrease in light intensity promotes turning within 2 s 
(‘well’ condition) whereas runs are elongated upon experience sustained neural 
activity elicited by a constant or a linear increase in the stimulus intensity (‘mesa’ 
and ‘linear’ landscapes). The interruption of the predicted increase in turning 
correlates with the shortening or elongation of the runs observed for the 4 classes 
of tested landscapes. Differences between the medians of the run duration were 
tested by applying on a Wilcoxon test with a Bonferroni correction to maintain 
the confidence level higher than 99% (for the non-significant (N.S.) cases 
p>0.05/6; for all other pairwise comparisons p<0.05/6). 
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Comparing the odor and light gradient architectures 

When comparing the behavioral results obtained in odor gradients 

(Figure 29) to behavioral results obtained in virtual light gradients 

(Figures 61-69) it is crucial to include differences between the light 

and odor gradient structure to put behavioral differences found 

between the two modalities into the context of each gradient’s 

architecture. 

Most importantly, the odor gradient is not static, yet constantly 

evolving over time as opposed to the light gradient that remains 

constant throughout the time course of an experiment. For the sake 

of simplicity, a snapshot of the odor landscape 60 s after the 

initiation of the diffusion process was chosen (Figure 70A) to 

compare the real odor gradient to the static exponential virtual light 

landscape (Figure 70B, same gradient as Figure 61). By comparing a 

normalized cross-section along the odor gradient’s peak (Figure 

70A, f(5,y)) to the normalized cross-section along the peak of the 

virtual light gradient (Figure 70B, g(5,y), one can appreciate the 

difference between the two of them: The virtual light gradient is 

more narrow and represents a perfect exponential increase towards 

its peak (Figure 70C). The odor on the other hand is slightly broader 

and deviates from an ideal exponential in that it is more dispersed 

— likely a result of the diffusion process (Figure 70C). When 

comparing the derivative of the cross-sections of the odor and light 

gradients, df/dy and dg/dy, where y represents the variable associated 

with the vertical axis, one can observe that the slope of the light 

gradient is considerably steeper than the slope of the odor gradient 

(Figure 70D).   
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Figure 70. Comparison of geometries of the exponential light gradient and odor 
gradient. 

(A) Reconstruction of the odor gradient displayed in Figure 29 with color-coding 
according to the scale on the right. Snapshot corresponding to the odor landscape 
60 s after the initiation of the diffusion process. Cross-section intersecting the 
gradient’s peak: f(5,y). 

(B) Same as panel A for the light gradient presented in Figure 60. Cross-section 
along gradient: g(5,y).  

(C) Comparison of the cross-sections f and g of the odor and light gradients, 
respectively. Each profile was normalized by its maximum value reached under 
gradient’s peak. 

(D) Comparison of the derivative of the cross-sections of the odor and light 
gradients: df/dy and dg/dy where y represents the variable associated with vertical 
axis. From this analysis, it was observed that the slope of the light gradient is 
considerably steeper than the slope of the odor gradient, which is expected to 
facilitate chemotaxis.  
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As a result, chemotaxis in the virtual light gradient is expected to be 

more effective — a notion ultimately supported by the results 

reported in this work (see the following section). 

 

Validating the GLM: Studying unconstrained behavior in controlled real 
odor gradients (closed-loop) 

Is the integrated GLM model suitable to predict larval behavior 

elicited by real odor gradients? 

Since the GLM was built to describe open-loop behavior stimulated 

by synthetic light signals it does not naturally follow that it also 

applies to free closed-loop behavior elicited by naturalistic odor 

signals. 

From Figure 29A it can be seen that, although the accumulation of 

larvae at the peak of the odor gradient is evident, the overall 

precision of the orientation responses seems reduced compared to 

the exponential light gradient (Figures 61-64). This observation is 

confirmed when comparing the median distances to the odor 

source:  In the odor gradient larvae on average stayed further away 

from the source (median distance from odor: 13.3 mm) than in the 

exponential light gradient (median distance from peak intensity: 7.7 

mm) (Figure 71). 
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Figure 71. (A) Time course of the reconstructed odor concentration associated 
with the trajectory displayed in Figure 29B. To compare to data obtained in a 
virtual light gradient see Figure 62. 

(B) PSTH of the OSN measured experimentally in response to a replay of the 
odor concentration course at the electrophysiology rig (black) (the same as the 
one presented in Figure 30). Neural activity predicted by the composite IFF+IFB 
model (cyan) introduced in Figure 40. 

(C) Turn probability (cyan) predicted by the stimulus-to-behavior model 
presented in Figure 54. The predicted turn probability is only shown for the 
behavioral sequences associated with runs.  
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In agreement with this idea, the average run duration is significantly 

longer for the odor gradient (5.4 s) than for the exponential light 

gradient (3.8 s) (Figure 72 and 64). This decrease in performance is 

likely due to the larger width of the odor gradient resulting from the 

shallower nature of the odor gradient architecture (see ‘Results 

section; Comparing the odor and light gradient architectures’). If 

this assumption holds true, motion in the surroundings of the odor 

gradient should lead to smoother changes in stimulus intensity, thus 

only mildly modulating both the OSN activity and the turn 

probability. 

 

 
Figure 72. Distribution of distances to the source and the run durations during 
closed-loop behavioral experiments in an odor gradient. 

(A) Radial distribution of the distance to the odor source for runs with a duration 
longer than 1 s. The circles indicate the position of the median of the distribution. 
Larvae tend to maintain a larger distance from the peak in an odor gradient 
compared to when they behave in a light gradient (Figure 64). 

(B) Radial distribution of the run duration in an odor gradient for runs with a 
duration longer than 1 s. The circles indicate the position of the median of the 
distribution (median run duration: 3.8 s). 

 

The integrated model developed for light-driven behavior can be 

readily adapted to responses elicited in an odor gradient by using the 

IFF+IFB model to predict the activity of Or42a OSN in response to 
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dynamic olfactory stimulation (Figure 40). In Figure 71B, the 

goodness of fit between the predictions of the IFF+IFB model 

(cyan line) and the experimentally observed PSTH (black line) can 

be appreciated for a representative trajectory. Using the IFF+IFB 

model, the predicted OSN activity preceding a turn was computed 

(Figure 71C). Similar to the light gradients tested in Figure 61 et 

seq., it was found that the average stimulus intensity monotonically 

decreases for several seconds prior to a turn (Figure 65C). This 

result is consistent with previous analysis of chemotaxis behavior 

(Gomez-Marin, Stephens et al. 2011). An analogous trend is 

observed for the predicted OSN firing rate prior to a turn.  

 

 
Figure 73. Turn-triggered average of the predicted turning rate for the behavior in 
the odor gradient. A comparison is made between predictions using the OSN 
activity driven by a real stimulus intensity (coupled test, cyan), predictions using 
the OSN activity for time-reversed stimulus time courses (uncoupled control, 
black) and predictions based on the assumption that the neural activity stays 
constant over the course of each trajectory (constant control, red). The integrated 
neural-to-behavior model was trained on the light-evoked behavior reported in 
Figures 58 and 59. The analysis was restricted to the set of runs lasting at least 4 s 
and maximum 30 s (53 % of original run set). The predicted turn probability can 
be seen to increase 4 s prior to the turn. 
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As a consequence, the average predicted turn probability 

monotonically increases for several seconds prior to a turn (Figure 

73). Since the increase in turn probability is caused by a decreasing 

OSN activity, we understand why most turning events are found to 

take place during runs happening down gradient. 

Taken together, these results establish that the structure and 

parameters of the GLM model developed on the basis of the open-

loop light stimulations are relevant to predict the behavior produced 

in controlled odor gradients. The model forms a good conceptual 

basis to explain how run-to-turn transitions are modulated by the 

detection of naturalistic olfactory stimuli by the peripheral olfactory 

system. 

 

Validating the GLM and extending the single OSN paradigm: 
Navigating virtual light gradients in animals with intact olfactory systems 
(closed-loop) 

All behavioral results shown to this point were obtained in single 

Or42a functional animals. As a consequence, the tested animals are 

able to sense their olfactory environment with only one functional 

channel — an extremely unnatural situation. Are these findings also 

relevant in animals with an intact olfactory system?  

To address this question, animals expressing ChR2 in the Or42a 

OSN with the rest of the olfactory system intact were tested through 

optogenetic behavioral experiments using the open-loop paradigm. 

As described previously, the onset of a given run was either 

associated with the test condition (an 8s-linear light ramp) or the 
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control condition (constant basal light intensity). Figure 74 shows 

the evolution of the resulting turn probability during the linear light 

stimulation in single functional animals (compare to Figure 57D left) 

and Or42a functional within the WT background. 

 

 
Figure 74. Application of the stimulus-to-behavior integrated model to predict 
behavior to a linear light ramp (model introduced in Figure 54). The test model 
(cyan) is based on the neural activity modeled by the IFF motif. The dashed 
horizontal line in the background represents the average turn probability observed 
upon stimulation at constant intensity. 

(A) Turn probability estimated from an experimental set of trajectories obtained 
in Or42a single functional animals upon constant stimulation (light gray) and 
stimulation by a linear light ramp (black) (same data as Figure 59D left). 

(B) Turn probability estimated from an experimental set of trajectories obtained in 
Or42a functional, WT background animals upon constant stimulation (light gray) 
and stimulation by a linear light ramp (blue). 

(C) Turn probability estimated from an experimental set of trajectories obtained in 
both genotypes shown in panels A and B (single Or42a functional, black; WT 
OSN background, blue) upon stimulation by a linear light ramp. The turn 
probabilities obtained in both genotypes are very similar.   
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Interestingly, the turn probabilities are very similar in both cases, 

suggesting that even in animals with a fully functional olfactory 

system an animal’s behavior — when stimulated — is mainly 

governed by the signal it receives through the one Or42a OSN 

expressing ChR2. 

Or42a functional, WT background animals were subsequently tested 

in a virtual light gradient in closed-loop conditions. Consistent with 

the findings obtained in open-loop conditions (Figure 74), WT 

background larvae are attracted to the highest light intensity of the 

virtual light gradient (Figure 75). 

 

 
Figure 75. Synthetic chemotaxis of larvae in a virtual odor gradient produced by 
light stimulation. Each larva experiences a light intensity determined by a 
predefined stimulus landscape. The landscape displayed in the background is an 
exponential gradient centered on a point ‘source’ (light gradient identical to the 
one shown in Figure 60). 

(A) Overlay of 10 trajectories of Or42a single functional animals recorded in the 
virtual light gradient (same data as Figure 60A). Larvae evolving in this light 
gradient accumulate at the peak of the gradient. 

(B) Overlay of 10 trajectories of Or42a functional, WT background animals 
recorded in the virtual light gradient. Similar to single functional animals, larvae 
accumulate at the peak of the gradient. 
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With regards to their overall navigation, WT background larvae 

appear to be slightly less precise compared to Or42a single 

functional animals. The results of these control experiments 

underline the relevance of the findings obtained for single Or42a 

functional animals by putting them into the context of an overall 

intact olfactory system.  

 

Likelihood analysis of larval behavior in controlled olfactory environments 

How good are the behavioral predictions obtained from the GLM? 

To assess the quality of the behavioral predictions obtained from 

the GLM described in equation (13), the likelihood associated with 

the observation of the entire set of runs obtained in the closed-loop 

light and odor gradients was calculated (analysis performed by 

Matthieu Louis). The likelihood of the ensemble of runs observed in 

the odor and light gradient was calculated on the time course of the 

predicted turn probability (Figure 73 and 77A for the odor gradient, 

Figure 76A for the light gradient). Considering that the total number 

of runs observed in a particular gradient was N, the likelihood of the 

ith run was computed based on the turn probability predicted on 

bins of 1 s. Since relationship (13) gives the turn probability in 

seconds, the probability of observing a turn between time t and (t + 

1 s) is: 𝜆! 𝑡  where the index i refers to the sensory experience 

associated with the ith run. The probability of not turning during the 

same time interval is: 1− 𝜆! 𝑡 . The probability of observing a 

given run lasting 5.6 s can be estimated as: 
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p! = 1− λ! 0.6 ∗ 1− λ! 1.6 ∗ 1− λ! 2.6

∗ 1− λ! 3.6 ∗ λ! 4.6  

 (16) 

Finally, using relationship (15), the likelihood of the entire set of 

runs was calculated as: 

L = p!

!

!!!

 
 

(17) 

The value reported in Figures 76B and 77B is the logarithm of L. 

Next, the log-likelihoods (logL) of the predictions associated with 

the test model and the two controls were calculated (see also Table 6 

and ‘Results section; From stimulus to neural to behavior: Building a 

generalized linear model (GLM) to predict larval behavior’). To 

evaluate the reliability of differences between the test model and 

controls, a standard bootstrap approach (Martinez and Martinez 

2001) was applied. From the original collection of runs, 10,000 

independent new samples of runs were generated based on random 

resampling with replacement. For each sample, the logL of the test 

model and the controls was computed.   
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Figure 76. (A) Turn-triggered average of the predicted turn probability for the 
exponential light gradient. A comparison is made between predictions based on 
the OSN activity driven by the stimulus intensity (test model, cyan), predictions 
using the OSN activity driven by the time-reversed stimulus time course 
(uncoupled control, black) and predictions based on the assumption that the 
neural activity stays constant over the course of each trajectory (constant control, 
red). The stimulus-to-behavior model was trained on the stimulation protocols 
presented in Figures 58 and 59. The turn probability can be seen to steeply 
increases 4 s before the turn, highlighting the stereotypy in the sensorimotor 
control of run-to-turn transitions. 

(B) Log-likelihood of the predictions of the neural-to-behavior model compared 
to the controls. Bootstrap analysis of the difference in log-likelihood (logL) 
between the test model and the controls normalized by the log-likelihood of the 
test model (DlogL/logLtest). Distribution of the relative difference in logL is 
shown for the test model against the constant neural activity control (red), and the 
uncoupled stimulus control (gray). The median of the distribution is equal to the 
value obtained from the original full set of runs; the median is indicated by a dot 
in the x-axis. As an internal control, the neural-to-behavior model was tested 
against itself (blue). Out of 10,000 resampled subsets of runs, none of the controls 
were found to be more likely than the test model (p<0.0001). The analysis was 
restricted to the set of runs with a duration comprised between 4 s and 30 s (44 % 
of original run set).  
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Next, the relative difference in logL of the model and control was 

computed: 

!logL
logLtest

=
(logLtest!logLcontrol)

logLtest
  

The distribution of this variable is reported in Figure 76 for the 

behavior induced by light and Figure 77 for the behavior induced by 

the odor gradient. Finally, the number of instances where !logL
logLtest

 is 

lower than 0 (control outperforming the test model) was computed. 

A p-value was derived for the hypothesis that the test model yields a 

larger likelihood than the controls. Overall, it was found that the test 

model generates predictions that are more likely than the controls 

where the OSN activity is assumed to be constant or the sensory 

experience is uncoupled with the behavior.  
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Figure 77. (A) Turn-triggered average of the predicted turning rate for the 
behavior in the odor gradient. A comparison is made between predictions using 
the OSN activity driven by a real stimulus intensity (coupled test, cyan), 
predictions using the OSN activity for time-reversed stimulus time courses 
(uncoupled control, black) and predictions based on the assumption that the 
neural activity stays constant over the course of each trajectory (constant control, 
red). The integrated neural-to-behavior model was trained on the light-evoked 
behavior reported in Figures 58 and 59. The analysis was restricted to the set of 
runs lasting at least 4 s and maximum 30 s (53 % of original run set). The 
predicted turn probability can be seen to increase 4 s prior to the turn. 

(B) Log-likelihood of the predictions of the integrated neural-to-behavior model 
compared to the controls. Bootstrap analysis of the difference in log-likelihood 
(logL) of the test model and the controls normalized by the log-likelihood of the 
test model (DlogL/logLtest). Distribution of the relative difference in logL 
computed for the test model against itself (cyan), against the constant neural 
activity control (red), and against the uncoupled stimulus control (gray). The 
median of the distribution is equal to the value obtained from the original full set 
of runs; the median is indicated by a dot in the x-axis. Based on 10,000 resampled 
subsets of runs, it was concluded that the test model is significantly larger than 
both controls (p=0.0026 for the constant neural activity control and p<0.0001 for 
the uncoupled stimulus control). The analysis was restricted to the set of runs 
with a duration comprised between 4 s and 30 s. 
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Discussion 

Navigation through natural environments presents a crucial and 

constant challenge that most living organisms (unless they are 

plants) need to take up. Sensory-guided orientation strategies 

provide the means to continuously challenge this problem. The 

accumulation of successful navigation maneuvers (i.e. avoiding 

predators or navigating towards more nutrient rich environments) 

will ultimately result in augmenting the life span of individual 

organisms and thereby directly contribute to the long-term survival 

of any given species. 

Larval chemotaxis is a perfect example of a sensory-guided 

orientation maneuver that largely depends on a very specific part of 

the sensory system: Olfaction1. This makes chemotaxis ideally suited 

to examine the impact of continuous olfactory stimuli on behavioral 

transitions driving the orientation of larvae ascending odor 

gradients. Simple sensory-guided behavior can be even further 

simplified by studying Drosophila larvae in which the control of 

olfactory behavior is reduced to the information mediated by a 

single pair of OSNs (single OSN functional animals). This approach 

is viable, as the capacity of single OSNs to direct orientation 

decisions remains comparable to wild type (Fishilevich, Domingos 

et al. 2005; Louis, Huber et al. 2008). This work focused on the 

OSN expressing the Or42a odorant receptor whose response profile 

has been characterized in detail in response to pulses of various 

odors (Kreher, Kwon et al. 2005; Kreher, Mathew et al. 2008; 

                                                
1 In addition there is crosstalk between other sensory modalities that is affecting 
the function of the olfactory system. 
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Asahina, Louis et al. 2009; Mathew, Martelli et al. 2013). IAA was 

chosen as a representative odor as it is known to elicit robust 

chemotaxis in single functional Or42a OSN larvae (Fishilevich, 

Domingos et al. 2005; Louis, Huber et al. 2008; Gomez-Marin, 

Stephens et al. 2011). In addition, IAA elicits neural activity of the 

Or42a OSN with relatively low firing rates that are well reproducible 

with ChR2. 

The first aim of this project was to examine how naturalistic 

olfactory stimuli, as larvae experience them during free chemotactic 

behavior, are encoded in the activity pattern of the Or42a OSN. 

The second aim was to reverse engineer the neural signal elicited by 

naturalistic odor stimuli with the help of optogenetics. This 

objective was achieved by deploying light intensity as a proxy 

representing the odor concentration in animals expressing the light 

gated ion channel ChR2. By varying the light intensity in real time 

OSN activity patterns very similar odor-evoked activity were 

achieved. 

The third aim was to accomplish larval chemotaxis behavior in 

response to purely light evoked OSN activity, and to use this 

approach to identify relevant features of OSN activity triggering 

behavioral transitions during chemotaxis. 

To record the firing rate of single functional OSNs, a new 

extracellular recording technique was devised to obtain responses 

from a single functional larval OSN (Figures 4 and 5). This 

technique advanced pioneering recordings from fully intact olfactory 

systems (Oppliger, P et al. 2000; Kreher, Kwon et al. 2005). 

Recordings from the antennal nerve required to carefully discard 
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spikes originating from non-olfactory sensory neurons — neurons 

innervating the dome of the dorsal organ that might be implicated in 

functions related to gustation, thermosensation and 

mechanosensation (Gerber and Stocker 2007). Spike sorting was 

achieved by taking advantage of optogenetics to identify the 

waveform of the action potentials originating from the OSN of 

interest (Figure 5). Unlike previous studies that concluded that odor 

representations are inherently fuzzy in the peripheral olfactory 

system of the larva (Hoare, McCrohan et al. 2008; Hoare, Humble et 

al. 2011), the activity of the Or42a OSN was found to be highly 

reproducible across trials and preparations (Figures 30 and 34). The 

trial-to-trial reproducibility of the recordings might be explained by 

the enhanced stability of the recording technique that, in principle, 

permits to record the activity of any neuron that can be both easily 

accessed and genetically targeted. 

Most primary sensory neurons operate differently from simple 

proportional counters (Rieke 1997; Song, Postma et al. 2012). When 

stimulated by an odor ramp, the activity pattern of the OSNs 

captures features associated with the time derivative of the stimulus. 

As an extreme case, the OSNs of C. elegans and cockroaches operate 

as bipolar ON or OFF detectors that respond to either increases or 

decreases in stimulus intensity (Tichy, Hinterwirth et al. 2005; 

Chalasani, Chronis et al. 2007). In adult flies, it has been 

demonstrated that the activity pattern of a single OSN comprises 

features pertaining to complex dynamical features of the airborne 

odor stimulus (Martelli, Carlson et al. 2013). It has also been shown 

that adult fly OSNs represent changes in the stimulus derivative 
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(Kim, Lazar et al. 2011) — a property that can be partially 

accounted for by a linear-nonlinear (LN) model (Nagel and Wilson 

2011). In agreement with these observations, the results presented 

here indicate that the larval Or42a OSN realizes an unsuspected 

degree of information processing. The OSN activity exhibited a high 

sensitivity to in response to the first derivative of the stimulus 

(speed) as well as its temporal variation (acceleration). In addition, a 

high degree of nonlinearity was uncovered since the OSN response 

to increases and decreases in stimulus intensity was proven to be 

strongly asymmetrical (Figures 34 and 35). The OSN response 

pattern appears to be conserved over a wide timescale. The activity 

level of the OSN in response to the light ramps seems to be 

proportional to the background intensity enabling the neuron to 

perform fold-change detection (Figure 50). 

Attempts to model the Or42a OSN response properties with an LN 

model proved unsatisfactory (Figures 38 and 39), as was the case for 

adult OSN (Kim, Lazar et al. 2011). This result is not surprising in 

the light of the nonlinearity of the larval OSN response 

characteristics (Figures 34-36). As a consequence, an alternative 

modeling formalism was explored to capture the core regulatory 

mechanisms underlying olfactory transduction and spike generation 

(work of Matthieu Louis and Alex Gomez-Marin) (Figure 40 et 

seq.). Inspired by models describing sensory adaptation in bacterial 

chemotaxis (Barkai and Leibler 1997; Tu, Shimizu et al. 2008), a 

system of ordinary differential equations (ODEs) was explored and 

a coarse-grained mathematical description of the olfactory 

transduction cascade of the Or42a OSN established (Figure 40 et 
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seq.). To date, the olfactory transduction cascade in Drosophila is still 

widely uncharacterized; the firing rate was therefore modeled 

phenomenologically as the function of the stimulus intensity. The 

model relied on the combination of two regulatory motifs known to 

play a role in chemosensation: 

(1) a negative integral feedback motif (IFB) that also forms the 

core mechanism regulating bacterial chemotaxis (Yi, Huang 

et al. 2000) and 

(2) an incoherent feedforward loop (IFF) (Kato, Xu et al. 2014) 

that was used in C. elegans to describe the transfer function 

converting an olfactory input into the OSN activity. 

The negative IFB mechanism (1) has been hypothesized to directly 

contribute to the olfactory transduction pathway in adult flies (Nagel 

and Wilson 2011). 

The two motifs are outlined in Figure 40A-B. The type-1 IFF (2) 

features a dual effect of the stimulus on the OSN activity: fast 

excitation and delayed inhibition (Alon 2007). In invertebrate 

olfaction, it is plausible that the molecular correlate of the IFF 

involves the negative effect of calcium bound to calmodulin on 

cation channels (Gu, Lucas et al. 2009). The IFB motif (1) would 

thus act directly on the odor transduction pathway of the odorant 

receptor (OR) whereas the IFF motif would act on voltage-gated ion 

channels further downstream. 

As shown in Figure 40B, the IFF and IFB motifs can be described 

by two simple 3-element circuits (Milo, Shen-Orr et al. 2002; Alon 

2007). To delineate the contribution of each motif, a non-biased 

approach was adopted by optimizing the parameters of a circuit that 
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combines the IFF and IFB motifs. In the past, this approach was 

successfully applied to reverse engineer the regulatory circuits 

controlling developmental processes (Cotterell and Sharpe 2010; 

Lim, Lee et al. 2013). Similarly, a lot of contributions leading to a 

deeper understanding of neural circuit functions were attained by 

screening circuit motifs and corresponding parameter values (Prinz, 

Bucher et al. 2004; Dunn, Conery et al. 2007). Starting with 

experimental patterns of odor-driven activity, the model was trained 

against the stereotyped ramps presented in Figures 35 and 36 

together with the naturalistic stimulus shown in Figures 29 and 30. 

For the light-driven activity of the Or42a>ChR2 OSN, the 

parameters of the model were optimized separately on the ramps 

and naturalistic stimulus (Figures 41-43 and Figure 61B). In spite of 

the simplicity of the 3-element circuit describing the function of the 

Or42a>ChR2 OSN, the results of the optimized model were able to 

recapitulate the richness of the OSN dynamics with remarkably high 

accuracy (Figures 41-43, Figure 61B). Figure 40 (panels C and B) 

illustrates that the strength of the IFF pathway is stronger compared 

to the IFB. Yet the IFB contribution to the dynamics significantly 

contributes to the goodness of the fit for non-stationary stimulation. 

With regards to light evoked activity through ChR2, the parameter 

optimization indicates that the contribution of the IFB pathway is 

not required. This important observation reinforces the idea that the 

IFB captures a negative feedback specific to the odorant receptor 

that would not affect the transduction process mediated by ChR2. 

Odorant receptors and channelrhodopsins belong to distinct 

families of proteins: G-protein-coupled-receptor (GPCR) 

photoreceptors and non-GPCR chemoreceptor (Benton, Sachse et 
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al. 2006; Yau and Hardie 2009) making it unlikely that these two 

channels share the same signaling pathway. On the other hand, both 

insect ORs and channelrhodopsins are known to be ionotropic 

channels, a feature that could explain why the response dynamics 

elicited by both odor and light bears such a striking resemblance. 

How can this similarity be explained? Excitation and inhibition of 

the OSN activity could be due to direct channel gating. The channel 

gating process would spark an ionotropic spike-generation 

mechanism shared by the light and odor pathways. In the Or42a 

OSN, the activity elicited by odor and light was similar enough to 

replace naturalistic patterns of odor concentration by time-varying 

patterns of light. While the involvement of a metabotropic signaling 

cascade appears unlikely in the case of ChR2 there is mounting 

evidence that it may play an important role in ORs (Wicher, Schäfer 

et al. 2008; Nakagawa and Vosshall 2009; Wicher 2010; Martin 2011; 

Stengl and Funk 2013; Wicher 2013). The necessity to include the 

IFB motif to achieve a good fit of the modeled odor response hints 

at the presence of a metabotropic signal transduction cascade in 

Drosophila OSNs. 

Although surprisingly complex at first, the computation achieved by 

a single OSN is reminiscent of the operation performed by a single 

cell controlling chemotaxis or sensing developmental factors 

(Goentoro and Kirschner 2009; Shimizu, Tu et al. 2010; Shoval, 

Goentoro et al. 2010). It has been shown in adult Drosophila that 

OSNs are in fact sensitive to the stimulus speed, (Kim, Lazar et al. 

2011). Two salient characteristics of the OSN transfer function are 

that the OSN displays strong inhibition in response to a rapid decay 
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of the stimulus intensity; sustained OSN activity on the other hand 

is only observed when the stimulus undergoes constant acceleration. 

Such accelerations are typically encountered in single-odor-source 

gradients with Gaussian profiles where runs directed towards the 

odor source will generate exponential increases in stimulus intensity. 

To test this working hypothesis, one would have to study behavior 

in response to controlled and repeatable patterns of OSN activity. 

The limitations inherent to the control of airborne odorant 

molecules rendered this approach untenable for real odors. 

However, through the use of optogenetics and by substituting the 

odor stimulus with light stimulation, an unprecedented control over 

the activity elicited in a single OSN was achieved. In a novel tracker 

(Figures 21 and 52), Drosophila larvae were exposed to light patterns 

with a fixed temporal profile of ramps whose OSN response had 

previously been characterized by means of electrophysiology. In 

such ‘virtual olfactory realities’ the behavioral effect of reproducible 

patterns of the OSN firing rate on run-to-turn transitions was 

thoroughly tested. To allow comparison across trials, the beginning 

of the light ramp was always locked with the onset of a run. The 

ramp was terminated as soon as the larva switched from a run to a 

turning maneuver (actions including stop, head cast and turn). 

Through this approach, generic features in OSN activity sufficient 

to elicit behavioral transitions could be characterized: OSN 

inhibition promotes turning whereas a sustained or rising activity of 

the OSN suppresses turning (Figures 56-59). The analysis also 

revealed that the activity of the OSN could be fully inhibited by 

negative odor gradients. 
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Based on the experimental findings of this work, an integrated 

mathematical model quantitatively describing this control rule was 

developed for run-to-turn transitions (Figure 54) (work of Matthieu 

Louis and Alex Gomez-Marin). This model spans different levels of 

organization of the neural circuitry controlling chemotaxis: the 

encoding of the stimulus by the peripheral OSNs and the 

conversion of this information into a binary decision between the 

maintenance and the interruption of an ongoing run. To establish 

the validity of the behavioral predictions of the model to closed-

loop unconstrained behavior, the stimulation paradigm was 

modified in such a way as to give larvae full control over their 

sensory experience. The geometrical properties of the gradients were 

chosen to permit larvae to collect sensory information leading to 

predictable modulations of run-to-turn transitions. Light landscapes 

were designed with a common geometrical configuration: a radial 

symmetry similar to odor gradients, and an exponential slope leading 

to a rim located at a fixed distance from the center of the landscape. 

Different geometries were tested for the area inside the rim; those 

geometries were chosen to create sensory experience with a 

predictable pattern neural activity intended to produce distinct 

behavioral outcomes by triggering certain behavioral transitions. For 

the well landscape, a transition from an exponential stimulus 

increase in to an abrupt decrease produces a predictable interruption 

of runs. The slightly milder decrease in stimulus intensity 

experienced by larvae in the volcano landscape induces turning in a 

predictably smoother way. Runs are elongated when the OSN 

activity is maintained at a moderately high level in the mesa 

landscape. The experimental results also support the 
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counterintuitive prediction that run-to-turn transitions found in the 

plateau case should be undistinguishable from the ones found in a 

linear increase in light intensity. Thus, the integrated model  — 

developed in open–loop conditions — was successfully validated by 

findings obtained in freely behaving animals in closed-loop settings 

(Figures 67 and 68). It clarifies how features encoded in the activity 

of peripheral sensory neurons regulate the probability of run-to-turn 

transitions — a conceptual advance that complements recent work 

in C. elegans (Kato, Xu et al. 2014) and the Drosophila larva (Klein, 

Afonso et al. 2015). The model also corroborates the idea that 

sensory representations are rapidly transformed into motor 

representations in the circuit controlling chemotaxis (Luo, Wen et al. 

2014). The inhibitory interneurons located in the larval antennal 

lobe (Gerber and Stocker 2007; Das, Gupta et al. 2013) are 

nonetheless expected to filter the olfactory information arising from 

the OSNs (Asahina, Louis et al. 2009; Larkin, Karak et al. 2010). 

The good performance of the model with regards to its predictions 

at the level of single runs, suggested that the impact of 

computations in neurons downstream from the OSN on the 

behavior seems minimal in the context of larval chemotaxis. 

However, the model’s accuracy is expected to improve through the 

addition of downstream circuits of the olfactory system. 

Ultimately, the model was tested on the closed-loop behavior 

elicited by a controlled real odor gradient. In Figure 71, it can be 

seen that the predicted evolution of the turning rate is on average in 

good agreement with the observed transitions from run to turn. 

This outcome is striking considering that the model underlying the 
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behavioral predictions was trained on data obtained in an open-loop 

paradigm purely using light stimulation. The basic structure of the 

model must therefore comprise control features that are 

fundamental to the selection of orientation behaviors in response to 

the activity of the peripheral olfactory system. Nonetheless, it is 

evident that the model cannot account for the entire complexity of 

the orientation strategies underpinning larval chemotaxis. To 

achieve accurate predictions on single runs, it might be necessary to 

integrate the contribution of weathervaning to the control of run-to-

turn transitions, together with potential history-dependence effects 

of past runs and turns on subsequent runs. It is also plausible that 

the outcome of the orientation decision associated with a given turn 

— whether or not the larva corrects its motions towards the 

gradient — might influence the persistence of the following run. 

To extend the relevance of the single functional Or42a OSN 

paradigm into the realm of a fully intact olfactory system, Or42a 

functional, WT background animals (with a fully functional olfactory 

system) were tested under both open- and closed-loop conditions 

(Figures 74 and 75). The obtained behavioral results were very 

similar for both genotypes. These observations underline the 

relevance of all the findings obtained for single Or42a functional 

animals by putting them into the context of an overall intact 

olfactory system. 

The overall accuracy of the behavioral predictions achieved by the 

GLM depended highly on the nonlinear transformation of the 

stimulus by the transduction cascade of the OSN. This 

transformation could be partially reproduced by feeding the GLM 
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with a linear combination of the stimulus intensity and its first 

derivative (Figure 55 and Table 6). The decrease in the goodness of 

fit highlighted the behavioral relevance of the nonlinear processing 

achieved within the OSN. 

The multilevel model described in this work is able to predict the 

control of run duration as a function of the activity transmitted by 

one single OSN — Or42a. In the future, the present model should 

be extended to OSNs expressing other odorant receptors. Can the 

neural activity in other neurons likewise be described by the 

IFF/IFB motif valid for the Or42a OSN? Do other ORs play 

different roles within the circuit? How is it that some OSNs seem to 

respond only to a handful of odors while Or42a is broadly tuned? In 

various flying insects, OSNs are capable of tracking rapid odor 

pulses on sub-second timescales and differentiating this signal (Kim, 

Lazar et al. 2011; Fujiwara, Kazawa et al. 2014; Szyszka, Gerkin et al. 

2014). Whether the sensorimotor model proposed here applies to 

the integration of turbulent olfactory inputs happening at faster time 

scales remains to be defined. To this end, the OSN response was 

characterized in conditions inspired by those experienced during 

lateral head movements (Figures 45-49), yet no behavioral 

experiments were carried out. 

In adult Drosophila it has been shown that at the circuit level, the net 

effect of lateral input to a PN is generally inhibitory (Wilson 2013). 

When putting the IFF/IFB circuit motif governing the OSN activity 

of the Or42a OSN (Figure 40) into the context of the broader 

olfactory circuit, while assuming that the outlined principles similarly 

hold for the larval olfactory circuit, IFF motif correctly describes the 
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structure of the overall olfactory circuitry up to the PN level, just 

beyond the antennal lobe (Figure 78). It remains to be confirmed 

whether the IFF/IFB motif is equally applicable to other OSNs. 

However, if this is so, each OSN within the olfactory circuitry may 

represent an independent IFF/IFB element, which, taken together 

forms a sum total that — as a whole — could be considered as the 

activating part (Figure 78 – I) of an overarching IFF motif. In this 

motif, PNs, transmitting the processed olfactory information, are 

directly activated by OSNs (Figure 78 – I, PN activity denoted as Y). 

OSNs, on the other hand, also activate LNs, which in turn inhibit 

PNs.  The LN activity therefore represents the intermediate variable 

(U) (Figure 78 – II), acting as an inhibitor of the resulting PN 

activity. This observation suggests that the larval olfactory circuit 

may represent a nested self-similar system in which each single 

component is governed by the same dynamics as the embedded 

overarching system. 

How such a system could accomplish the seemingly insurmountable 

task of sensing and discriminating high-dimensional signals at 

various time scales has been addressed in a recent study performed 

in adult Drosophila by Kim et al. in which the authors characterize 

the response of PNs combined with the dynamic sensory encoding 

by OSNs (Kim, Lazar et al. 2015). The study finds that PNs signal 

the rate of change and the acceleration of odor concentration signals 

to higher brain centers. 
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Figure 78. Nested IFF circuit motif applied at the at the circuit level of the larval 
olfactory system. The IFF motif correctly recapitulates the dynamics of the neural 
activity as it is seen at the circuit level (Wilson 2013). OSNs form synapses with 
both PNs and LNs. OSNs activate both PNs and LNs (I). LNs on the other hand 
mainly inhibit PNs (II) thus creating the inhibitory arm of an overarching IFF 
motif. 

 

These findings support the notion that even at a circuit level the 

sensory information processing — though through entirely different 

cellular mechanisms — appears to be governed by similar principles 

as odor intensity information processed in a single OSN. However, 

the signal converging from the concerted activity of multiple OSN 

at the level of the antennal lobe conveys an even higher 

dimensionality, as in addition to odor intensity, information with 

regards to the odor quality is embedded within the neural 

population activity. The decoding of both quantitative and 

qualitative odor information at the level of the antennal lobe and 



 Discussion  

 
204 

how it relates to population coding, gain control and signal 

amplification is currently a highly researched topic. To elucidate all 

of the ALs processing functions it will be needed to examine and 

functionally dissect the neural circuitry down to the single synapse 

level. This is especially needed for the highly heterogenic and all 

interconnecting local interneurons that are likely involved in a 

multitude of difference processing functions each of which could be 

tailored to a different network state. 

When taking an evolutionary perspective it is at least perceivable 

that the olfactory system slowly evolved from autonomous sensors. 

Over time they would have started to come together to form a 

circuitry mirroring the dynamics governing each element of the 

circuitry. The resulting self-similar dynamics of the odor processing 

circuitry definitely seems well suited to perceive odors from the 

outside world whose statistics also exhibit self-similar multi-

timescale features extending over several orders of magnitude. 

The Drosophila larva offers a unique opportunity to examine how 

neural circuits implement sensorimotor algorithms underpinning a 

wide range of behaviors (Ohyama, Jovanic et al. 2013; Vogelstein, 

Park et al. 2014). In the future, interdisciplinary approaches 

combining behavioral screens, electrophysiology, functional 

imaging, and circuit reconstruction with virtual sensory realities on 

the one hand (Yao, Macara et al. 2012), and computational modeling 

and robotics on the other hand (Grasso, Consi et al. 2000; Webb 

2002; Izquierdo and Lockery 2010; Ando, Emoto et al. 2013), could 

bring about major improvements in our understanding of how 
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brains with reduced numerical complexity exploit streams of sensory 

information to guide behavior. 
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Conclusion 

While this project started off by developing a new extracellular 

recording technique with which OSN responses to simple, static 

odor pulses were characterized. However, with the advent of 

optogenetics, the my thesis work quickly progressed into the 

quantitative study of the peripheral olfactory system that you see in 

front of you. 

The very first behavioral experiments that took advantage of a 

simple static light gradient were performed with larvae that were not 

blind. Although the light avoidance reaction was not abolished, it 

was transiently overridden in animals that showed temporary 

attraction to the virtual odor stimulus. These early findings 

represented the first reassuring hint that changing the light intensity 

could approximate a change in odor concentration. Still, the innate 

light avoidance reaction was too strong to be superseded by an 

attractive virtual odor stimulus. It thus became clear that virtual 

chemotactic behavior in response to light stimuli could only be 

elicited in animals that were truly blind. To this end two alleles 

(GMR-hid and dtrpA1[1]) were crossed into an anosmic background 

while at the same time expressing Chr2 and rescuing the function in 

one single OSN through Orco. Astonishingly, larvae expressing 

ChR2 in a blind background showed in fact a clear attraction to blue 

light stimuli. 

The light stimulation was quickly set up at the electrophysiology rig 

and put into action to record the first responses evoked by light 

flashes. A thorough characterization of the ChR2 evoked light 
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response to different light flashing patterns followed suit. In the 

meantime the quantitative odor stimulation at the electrophysiology 

rig was made possible through the employment of a new 

microfluidic pressure pump in conjunction with custom multi-barrel 

pipettes. In order to get a better handle on the OSN response 

dynamics a new stimulation program was written to support the 

stimulation of more complex linear and non-linear ramps. The same 

ramps were subsequently transformed into light intensities to elicit 

light evoked neural activity comparable to the one elicited by 

isoamyl acetate. 

In the end, by taking advantage of the closed-loop tracker, the 

different building blocks of the project were finally assembled to 

build a quantitative model not only describing the neural activity in 

response to both odor and light stimuli, yet that would use the 

modeled neural activity to predict larval behavior. 

This work outlines tools and techniques necessary to successfully 

extract and reverse engineer behaviorally relevant features of 

sensory information in the context of a given behavior, a very 

powerful approach when applied to studying sensory systems. It 

allows closing the sensorimotor loop for a robust, well-defined 

behavior and to study it as the function of a sensory stimulus. In the 

case of the larval olfactory system, however, to know the stimulus 

time course was not enough: The non-linear transfer function 

governing the activity of sensory neurons required the development 

of a model suited to quantitatively describe the relationship between 

the stimulus and the elicited neural activity. This relationship was 

established through the introduction of optogenetics while testing 
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the neural response to both odor and light stimuli. Once the activity 

of the sensory neuron was modeled accurately, quantitative 

behavioral predictions turned out to be possible. In principle, this 

approach should be applicable to any well-defined, genetically 

manipulable sensory system. 

The journey through this project has been an incredible endeavor, 

an infinite learning process and a truly challenging multidisciplinary 

effort. Through the simplification of the already simple olfactory 

system of Drosophila larvae I was humbled to experience the 

incredible amount of complexity still present in a simplified neural 

system that, in principle, receives input from only one OSN. I 

learned how a single OSN acting as a slope detector is able to sense 

both the speed and the acceleration of the stimulus time course, and 

I was surprised that even animals with very small brains show highly 

individual behavior that is remarkably hard to predict. But to see 

larvae chemotacting in a virtual light gradient, hence proving that 

the reverse engineering approach was succeeding was among the 

most astonishing experiences I was allowed to live through in this 

project. 
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Abbreviations 

 

A  Absorbance 
AC  Alternating current 
AL  Antennal lobe 
Ca  Calcium 
CaM  Calmodulin 
CaMKII Calmodulin-dependent protein kinase II 
cAMP  Cyclic adenosine monophosphate 
ChR2  Channelrhodopsin-2 
DAC  Digital-to-analog converter 
DAG  (1,2)-diacylglycerol 
DO  Dorsal organ 
EAG  Electro-antennography 
eLN  excitatory local interneuron 
GLM  Genleralized linear model (behaviour) 
FT  Fourier transform 
GABA  gamma-Aminobutyric acid 
GFP  Green fluorescent protein 
Glu  Glutamate 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
iLN  inhibitory local interneuron 
IAA  Isoamyl acetate (a.k.a. isopentyl acetate, 

IUPAC: 3-methylbut-1-yl ethanoate) 
ICD  In-Circuit Debugging 
ID  Inner diameter 
IFB  Incoherent feedback 
IFF  Incoherent feed forward 
IP3  Inositol (1,4,5)-trisphosphate 
InsP3R  Inositol (1,4,5)-trisphosphate receptor 
IR  Infrared 
ISI  Inter-spike-interval 
LED  Light emitting diode 
LFP  Local field potential 
WT  Wild type (throughout this work WT refers to the  

genotype W1118) 
LN  Local interneuron 
LTCU  Larval tracker control unit 
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MB  Mushroom body 
MFCS  Microfluidic control system 
Na  Sodium 
OD  Outer diameter 
OR  Olfactory receptor 
Orco  Odorant receptor co-receptor (formerly known as  

Or83b) 
OSN  Olfactory sensory neuron 
ORN  Olfactory receptor neuron (see OSN) 
PC  Personal computer 
PDE  Partial differential equation 
PIC  Programmable Interface Controller 
PID  Photoionization detector 
PN  Projection neuron 
PSTH  Peristimulus time histogram 
RJ  Registered Jack 
SQP  Sequential Quadratic Programming 
TTL  Transistor–transistor logic 
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