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Abstract

This dissertation revolves around the task of computational key estimation in elec-
tronic dance music, upon which we perform three interrelated operations. First, we
attempt to detect possible misconceptions within the task, which is typically accom-
plished with a tonal vocabulary overly centred in Western classical tonality, reduced
to a binary major-minor model which might not accomodate popular music styles. Se-
cond, we present a study of tonal practises in electronic dance music, developed hand
in hand with the curation of a corpus of over 2,000 audio excerpts, including multiple
subgenres and degrees of complexity. Based on this corpus, we propose the creation
of more open-ended key labels, accounting for other modal practises and ambivalent
tonal configurations. Last, we describe our own key finding methods, adapting exis-
ting models to the musical idiosyncrasies and tonal distributions of electronic dance
music, with new statistical key profiles derived from the newly created corpus.
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Resum

Aquesta tesi doctoral versa sobre anàlisi computacional de tonalitat en música elec-
trònica de ball. El nostre estudi es concentra en tres operacions fonamentals. Primer,
intentem assenyalar possibles equívocs dins de la pròpia tasca, que normalment es
desenvolupa sobre un vocabulari tonal extremadament centrat en el llenguatge de la
música clàssica europea, reduït a un model binari major-menor que podria no acomo-
dar fàcilment estils de música popular. Seguidament, presentem un estudi de pràcti-
ques tonals en música electrònica de ball, efectuat en paral·lel a la recol·lecció i anàlisi
d’un corpus de més de 2.000 fragments de música electrònica, incloent diversos sub-
gèneres i graus de complexitat tonal. Basat en aquest corpus, suggerim la creació
d’etiquetes tonals més obertes, que incloguin pràctiques modals així com configura-
cions tonals ambigües. Finalment, descrivim el nostre sistema d’extracció automàtica
de tonalitat, adaptant models existents a les particularitats de la música electrònica de
ball, amb la creació de distribucions tonals específiques a partir d’anàlisis estadísti-
ques del recentment creat corpus.
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Resumen

Esta tesis doctoral versa sobre análisis computacional de tonalidad en música electró-
nica de baile. Nuestro estudio se concentra en tres operaciones fundamentales. Prime-
ro, intentamos señalar posibles equívocos dentro de la propia tarea, que normalmente
se desarrolla sobre un vocabulario tonal extremadamente centrado en el lenguaje de
la música clásica europea, reducido a un modelo binario mayor-menor que podría no
acomodar fácilmente estilos de música popular. Seguidamente, presentamos un es-
tudio de prácticas tonales en música electrónica de baile, efectuado en paralelo a la
recolección y análisis de un corpus de más de 2.000 fragmentos de música electró-
nica, incluyendo varios subgéneros y grados de complejidad tonal. Basado en dicho
corpus, sugerimos la creación de etiquetas tonales más abiertas, que incluyan prác-
ticas modales así como configuraciones tonales ambiguas. Por último, describimos
nuestro sistema de extracción automática de tonalidad, adaptando modelos existentes
a las particularidades de la música electrónica de baile, con la creación de distribucio-
nes tonales específicas a partir de análisis estadísticos del recién creado corpus.
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Chapter 1
Introduction

“You should look for a completely different idea,
elsewhere, in another area, so that something passes

between the two which is neither in one nor the other.”

Gilles Deleuze, Dialogues (1977)

Electronic dance music, or its acronym EDM, is a meta-label that refers to a number
of musical practises originating in the 1980’s and extending into the present, made
almost solely with electronic equipment and a strong presence of percussion imposing
a steady beat, and mostly intended for dancing at nightclubs and raves.

In my opinion, these two broad descriptors —dance and electronic— are at the very
origin of what is arguably the most drastic shift in the development of popular music
in the Twentieth Century, exerting an influence in music production and consumption
habits comparable to the arousal of musical notation, the standardisation of equal
temperament or the arrival of recording technology in previous historical moments.
From the music industry to music education, EDM has revolutionised the ways of
composing and performing music, the acts of collective music consumption, and the
very notions of authorship and musicianship.

This highly technological turn, brings in a number of opportunities for those working
in areas related to computer engineering, artificial intelligence, information retrieval,
and music technology, including a myriad of real-world applications, such as music
recommendation systems, educational resources, and creative tools for the electronic
music producer or DJ.

1
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1.1 Motivation

As a music professional, the principal domains in which I develop my work are music
technology and music composition, magnetised by the appeals of musical formalisa-
tion and the expressive powers of new musical instruments alike. In particular, I have
been long interested in the tension between digital technology and musical expression,
and in how this friction influences the development of musical language. Therefore,
it felt natural to embark on a project that could couple certain aspects of computa-
tional data extraction with more orthodox musical analysis, materialising into tools
that could offer the electronic —dance— music maker analytical insights to guide or
support her creative flow in non-intrusive ways.

There seems to be an ample interest in understanding the creative processes behind
electronic dance music, suggested by the increasing number of online magazines and
user fora, offering discussions on new technology and production techniques, as well
as regular interviews or release criticism.1 The relevance of electronic dance mu-
sic has also been acknowledged by music scholars (e.g. Tagg, 1994; Middleton &
Manuel, 2015), and is reflected in the proliferation of publications addressing EDM

from several interdisciplinary perspectives, including social and cultural studies (e.g.
Thornton, 1995; Rietveld, 1998), music journalism (e.g. Reynolds, 1998; Brewster
& Broughton, 2000), ethnomusicology (Fikentscher, 2000), and, to a lesser extent,
music theory proper, where most efforts have gone into elucidating aspects of rhythm
and structure, as they are the most salient aspects of EDM (Butler, 2006). The study
of its tonal practises, on the other hand, has remained somehow unattended, as pitch
and harmony normally play secondary roles in these genres. Nevertheless, there is
some evidence that novel tonal techniques —detached from previous conceptions
of tonality— are developed by EDM practitioners as part of their musical language
(Wooller & Brown, 2008), creating new sound aggregates (for example, by combin-
ing different musical sources together) and temporal structures, such as large-scale DJ

sets. Furthermore, EDM producers are in demand of tools providing tonal descriptions
of tracks, in order to facilitate the classification and mixing of sound files.

For these reasons, the task of automatic key estimation seemed an interesting start-
ing point for my research, connecting scientific domains —mostly music information
retrieval— to music-theoretical interests, such as elucidating how EDM musical prac-
tises might have caused novel tonal configurations, just as much as they have produced
new rhythmic and formal structures.

1http://www.synthzone.com/mags.htm, for example, lists over 20 “electronic music magazines,
publications and journals”. Moreover, a simple query in any online search engine should provide quick
access to numerous online resources.

http://www.synthzone.com/mags.htm
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1.2 Contexts of Action

Before I continue clarifying my research goals, in this section I provide a brief de-
scription of what I consider the most important aspects of electronic dance music,
contributing to the consolidation of a unique practice, differentiated from other popu-
lar music styles. Although this initial report might appear a bit lengthy, I regard it an
important asset for a better understanding of the nature of my research objectives and
thesis contributions in the next two sections, and for this reason it has been inserted
at this point. Similarly, I dedicate a few paragraphs to introduce the scientific domain
of music information retrieval, within which most of the research presented should be
framed.

1.2.1 Electronic, Dance, Music

In the introductory chapter to his compilation of essays on EDM, Butler (2012, pp. xi–
xii) outlines four pervading aspects that characterise what is an otherwise heterogen-
eous group of practises, styles, contexts and geographical locations. The first of these
aspects, he claims, is the central position of the recording, not as mode of distribution
—as in most popular music nowadays— but as the primary element of performance
itself. Secondly, dancing is taken as the principal producer of meaning as well as a
genuine type of performance, dancers being the ‘performing audience’, as Butler put
it, in contrast to a more passive consumer of other types of music. The third common
trace is related to the site-specificness of “collective dancing to recorded music”, be
this in the club, a unique space designed specifically for this purpose, or in the rave,
normally one-time massive events happening at picturesque locations. The last ele-
ment tying this musics together is, according to Butler, their common roots in 1970’s
disco, in which essential practices of what later would be recognised as DJ culture
originated, such as the constant musical flow throughout the session, or techniques
like beat- and tempo-matching (Brewster & Broughton, 2000).

Therefore, although other authors have expressed their discontent with the term ‘elec-
tronic dance music’ as an umbrella for such a diverse account of practices (e.g.
McLeod, 2001; Doehring, 2015), the fact that it condenses essential elements of these
manifestations in a open-ended way —electronic, dance, music— together with the
absence of a better denomination, has made it consolidate as an appropriate metagenre
label, and in that sense it is used throughout this dissertation.2

2However, it is perhaps worth noting that the label ‘electronic dance music’ has been appropriated
by North American music industry to refer to a specific subgenre of US post-dubstep arising around
2010.
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One of the most salient aspects of EDM is, without a doubt, its ‘all-electronic’ quality
(Butler, 2006, p. 33), establishing a clear boundary with other popular music styles,
mostly vocal and guitar-centred. Electronic dance music originates from the record
itself —even if the record contains vocals and acoustic instruments— bringing into
play a new type of musician (the DJ), a new instrument (the turntable), and a new
notion of musical skill, consisting in playing records instead of notes, in combining
existing musics to arrive at a new sound, rather that composing with a previously
defined palette of notes and chords. This technological orientation soon embraced
all sorts of electronic appliances, including synthesisers, drum-machines, sequencers,
samplers and —later on— computers, with which EDM makers add additional layers
to their mixes, eventually creating music from scratch, giving raise to the figure known
as the producer. These diametrically different and complementary approaches to EDM

—mixing vs. producing— pervade the whole development of EDM, and are already
present at very origins of the genre.

Another distinctive characteristic of EDM is its purely ‘sonic’ nature, contrasting with
the enormous importance of vocal styles in all other popular music styles. Contrary
to this tendency, EDM is predominantly instrumental, and the use of voices —sung or
spoken— is at best restricted to a repeating sentence or a few scattered words. The
exception to this norm is clearly represented by hip-hop, which, although undoubtedly
grounded in DJ’s mixing culture, it inherits the strophic nature of lyrics, to the extent
that throughout this research, it will be left out of the EDM container.

The loop represents the quintessential structural unit of EDM. The origin of loop-
based composition has been arguably traced back to 1960’s rock (Spicer, 2004), as
a natural consequence of the developments in multi-track recording and production
technology. However, in EDM the loop stands as the main appropriative matter —
consisting mainly of drum-kit breaks and bass snippets— upon which the musical
structure unfolds. Perhaps symptomatically, EDM compositions are typically presen-
ted as ‘tracks’, denoting the characteristic reductionism of EDM compared to other
musical styles. In contrast with the song format (multi-layered, based on strophic
alternation, with pitch and semantic implications), EDM tracks appeal to the driving
role of the percussion track as the principal organiser of the musical flow, upon which
additional layers might become as little as ornamental (Doehring, 2015, p. 133). In
Butler’s words, “in EDM, drums are the music, to the extent that the few melodic ele-
ments that are present [...] frequently assume a percussive role as well” (Butler, 2006,
p. 93).

Figure 1.1 presents an imaginary ‘map’ of three relatively nearby cities, where the first
genres of EDM originated almost simultaneously.3 My intention in locating these cit-

3Geographically, Chicago is West of Detroit. However, I arranged this figure according to musical
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TECHNO
HOUSE

ACID JACK

HIP-HOP

DEEP GARAGE

FIGURE 1.1: Musical and social space in early EDM subgenres. This imaginary map intends to show
some of the main tendencies and contrasts that characterise different EDM styles, already present in these
early manifestations.

ies in such an arrangement is to present some formative contrasts that, in my humble
opinion, pervade the whole history of EDM. Towards the right of Figure 1.1, I loc-
ate the EDM styles bearing a clearer influence of disco music, as represented by New
York’s garage and other early variants of house. These subgenres are closes to the
song form characteristic of other popular styles, presenting acoustic instrumentation
—although from the records!— and vocal parts, and extending into most forms of
mainstream pop music nowadays. Early house styles were originally integrated within
the black and gay social network, organised around emblematic collective dancing
spaces (New York’s Paradise or Chicago’s Warehouse), where an extremely refined
practise of mixing originated and developed. In contrast, in the left side of Figure 1.1
(bear in mind that arrows represent a continuum between both extremes) Detroit’s
techno music exemplifies a more introverted tendency, originating mostly in the stu-
dio, and exploiting the expressive powers of drum machines, sequencers and synthes-
isers, stimulated by a certain dystopian and technophile imaginary, with influences of
Kraftwerk and new wave. Current sequels of early techno can be traced in current
styles such as minimal techno, progressive, or tech house, for example. It is worth
noting that Figure 1.1 locates hip-hop in a different orbit. With this representation,

similarities rather than by geographical location.
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I intend to illustrate that although hip-hop shares certain practises of mixing and ap-
propriation with other EDM styles, its preeminently vocal and lyrical aspect, leaves it
out of the sphere of EDM, at least in what regards the remainder of this dissertation.

Musical Characteristics of EDM

According to Moore (2012), popular music styles can be differentiated and character-
ised by observing four basic textural functional layers, namely the explicit-beat layer,
the functional-bass layer, the melodic layer and the harmonic-filler layer. Within this
descriptive framework, many EDM genres often prescind of the melodic and harmonic
layers, keeping a tight interaction of the bass and beat layers.

As I have already advanced, EDM is mostly about the beat, and, regarding this aspect,
Butler establishes a useful differentiation between two broad tendencies, dividing the
EDM ecosystem into ‘breakbeat-driven’ and ‘four-on-the-floor’ styles (2006, p. 78).
The first ones, originated in Britain after house music was exported from the US, and
typically comprise of subgenres such as jungle, hardcore, UK garage or drum‘n’bass.
The essence of breakbeat styles is the ‘dereconstruction’ of classic soul and funk drum
breaks into all sorts of temporal rearrangements. These styles tend to deemphasise
strong beats, placing considerable stress on metrically weak parts (Butler, 2006, p.
78). On the other hand, four-on-the-floor genres originate in disco’s steady bass-drum
pattern, evolving —via house music— into a large variety of genres progressively
farther from the initial disco reference, including techno and trance, for example.

In general, EDM tracks are relatively fast, with tempos ranging between 120 and 150
BPM, although there are styles defined exactly by laying out of these boundaries, such
as trip-hop and downtempo electronica (with tempos as slow as 80 BPM), or gabber
techno, reaching extremely high speeds of over 200 BPM (Butler, 2006, p. 34). Tempo
characterisation seems to be a reliable indicator of certain subgenres, for example,
dubstep (140), drum‘n’bass (160–180) or house (120–130).4,5,6

Other than rhythm and tempo, EDM subgenres are characterised by the musical activ-
ity —if any— present in other textural layers, as much as by their ‘instrumentation’.
For example, in house and trance, is common to find a clear harmonic-filler layer, with
chord progressions borrowed from either soul or jazz music (in deep house), or har-
monic sequences from Western classical music, in some trance derivates. Similarly,
trance is typically melodic, with lines achieving epic resonances in subgenres such as

4http://techno.org/electronic-music-guide/
5http://www.complex.com/music/an-idiots-guide-to-edm-genres/grime
6Snoman (2009) provides a practical account of musical features of EDM subgenres in a recipe-like

presentation, suggesting ‘tricks’ to face the production of different styles.

http://techno.org/electronic-music-guide/
http://www.complex.com/music/an-idiots-guide-to-edm-genres/grime
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psy-trance, whereas the house melodic layers seem closer to soul or rhythm‘n’blues,
with some variants like balearic house mixing with and extending into mainstream
pop music. On the contrary, techno and the subgenres under its sphere of influence,
are much sparser regarding both harmonic and melodic layers. Some styles such
as minimal techno almost completely prescind of pitched materials, whereas hybrid
forms such as progressive or tech house tend to integrate chordal or melodic units
within the more intricate rhythmic layer. Sparsity in the mid and high pitch registers
is also characteristic of breakbeat-driven styles, which focus on heavy audio sample
manipulation —breaks— counterbalanced with prominent bass lines.

Regarding the instrumentation of the various subgenres, the general ‘dichotomy’ sug-
gested in Figure 1.1 seems to easily accommodate newly created genres all the way
to the present. On the one hand, genres owing to the disco-soul-funk traditions nat-
urally bear resemblance with the instrumentation in these popular music styles. This
is true for much house music, incorporating samples from acoustic instruments and
vocal lines. On the other hand, styles such as minimal, techno, tech house, progress-
ive house and trance, tend to favour fully synthesised textures, and yet, hardcore and
dance variants abuse sampled material of incidental sounds such as sirens, horns,
spoken voices and other types of field recordings. Jungle, drum‘n’bass and other
breakbeat-driven genres seem to be specially inclined towards extreme sample ma-
nipulation, as I have already noted, originating in acoustic drum breaks from soul
records, and presenting a quite unique scenario within the EDM ecosystem, given the
more noticeable influence of styles such as dub, reggae and hip-hop, from which it
borrows the presence of vocals.7

In any case, what all EDM subgenres have in common —disregarding their instru-
mentation and basic rhythmic layout— is their structural organisation based in re-
petition. The essential structural unit of EDM is the loop, a short excerpt of music
that is rhythmically aligned, layered and repeated, alone or in combination with other
loops. A typical EDM track is composed by aggregation and juxtaposition of smal-
ler units of different lengths, coexisting at different musical layers. It is common to
find one-bar units for most rhythmic-percussive patterns, two or four bars loops for
harmonic-melodic content, and eight bars for complete textural-structural sequences.

This ‘modular’ (Butler, 2006) structural organisation promotes what Spicer (2004)
has denominated ‘accumulative form’, by which a musical composition unfolds as
an accumulation of thematic fragments —loops— creating a thickening texture, thus
replacing “the climactic presentation of the main theme with the climactic accumu-
lation of riffs into a texturally thick groove” (Garcia, 2005, par. 4.2). Furthermore,

7As I stated before, for the sake of convenience ,I will not regard hip-hop within the umbrella of
EDM, mostly appealing to the preeminent role of prose and vocals in these musics.
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according to Garcia (Garcia, 2005, par. 4.4), accumulative forms in EDM are often
populated with ‘aural signposts’, guiding the listener/dancer throughout the musical
structure. Accumulation in EDM is typically resolved with an expressive formula
culminating in the so-called ‘drop’, and divided into three subsequent steps (Sol-
berg, 2014). First, the breakdown introduces a sudden and momentary release of the
rhythmic-percussive activity; its main dramatic effect is the removal of the bass-drum
—what Butler has called “withholding the beat” (2006, p. 92). It is typically followed
by a build-up stage, in which various types of ‘uplifters’ (Solberg, 2014, p. 70) might
be used, such as ascending arpeggios, glissandi, or other pitched-up components, nor-
mally precipitated by an acceleration in the quantisation of rhythmic elements; and
necessarily resolving into the drop, the moment at which the foundational bass-drum
is re-introduced at maximum power, supplying the emotional peak(s) of the track.

The Histories of EDM

To conclude this brief excursion into the contexts and the characteristics of EDM, it is
perhaps worth pointing at the various few historical accounts in circulation. The most
ambitious of these is possibly the monograph by Reynolds (1998), a music journalist
and rave addict himself, who reports on the origins and development of EDM through
its various time-spaces from an arguably personal vision. This is complemented by a
compilation by Shapiro (2000), with chapters dedicated to individual subgenres. The
role —and history— of the DJ has been studied by Brewster & Broughton (2000) and
Fikentscher (2000), introducing an ethnomusicological perspective into EDM studies.
Regarding specific genres, Rietveld (1998) dedicated an individual study to house
music, whereas techno has also been object of a number of publications (Sicko, 1999;
Barr, 2000). All of this monographs were published just before the turn of the century,
and address ‘histories’ from the first twenty years of EDM. Similarly, Butler (2006)
only reports on the historical origins of EDM (New York garage, Chicago house and
Detroit techno), admitting the much lengthier implications of a history of EDM proper.

1.2.2 Music, Information, Retrieval

The relatively young area of music information retrieval (MIR)8 —a discipline con-
solidating towards the year 2000— attempts to extract, analyse and otherwise study
aspects of music with computational approaches. MIR emerges as an interdisciplin-
ary field combining music-related studies, mostly music theory, musicology and mu-

8Also referred to as music information research.
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sic cognition, with engineering domains such as signal processing, machine learning,
statistics and data science (Downie, 2003; Schedl et al., 2014).

Broadly speaking, MIR tends to break down research problems into music’s con-
stitutive parameters, such as pitch, rhythm or structure (e.g. chord detection, meter
recognition, structural segmentation), in connection with perceptual questions (e.g.
tonality inference, downbeat detection), cultural aspects (e.g. genre recognition, cover
song identification) and other domain-specific problems (e.g. audio source separa-
tion, audio-to-musical-score alignment). In its origins, MIR was mainly devoted to
extracting information from symbolic formats, most notably MIDI, although research
on symbolic realms has expanded to incorporate refined score following systems that
are successfully used in live performances (Cont, 2008) and image recognition en-
deavours, hand in hand with musicological study and library science (Rebelo et al.,
2012). Nowadays, most research efforts lay in extracting information from audio
signals, although the overwhelming presence of the internet and digitisation of know-
ledge, is drawing an increasing attention towards the study of music-related textual
and semantic data (Oramas & Sordo, 2016).

Research outcomes from the MIR community, are presented in music-and-technology
conferences, such as the International Computer Music Conference9 or the Sound and
Music Computing Conference,10 as well as in engineering pools including IEEE11 or
the Audio Engineering Society.12 Since the year 2000, the International Society for
Music Information Retrieval organises its own annual conference, ISMIR, with notable
impact across academia and industry. Very recently, the same organisation launched
an open-access journal initiative.13

Regarding electronic dance music, MIR research has mostly focused in the meter and
rhythm domain (Heittola & Klapuri, 2002; Hockman et al., 2012; Leimeister et al.,
2014; Panteli et al., 2014; Hörschlager et al., 2015; Gómez-Marín et al., 2016), given
the central position these elements bear in EDM. However, there has been research
looking at other musical aspects, such as timbre characterisation (Rocha et al., 2013;
Honingh et al., 2015), structure detection (Aljanaki et al., 2014; Glazyrin, 2014; Yad-
ati et al., 2014; Scarfe et al., 2014; López-Serrano et al., 2016) and genre identification
(Kirss, 2007; Jacobson et al., 2007; Sesmero Molina, 2008; Collins, 2012), and to a
lesser extent, key estimation (Sha’ath, 2011), an area to which I have contributed two
publications in the course of my research (Faraldo et al., 2016a, 2017).

9http://computermusic.org/page/23/
10http://www.smc-conference.org/
11https://www.ieee.org
12http://www.aes.org/
13https://transactions.ismir.net/

http://computermusic.org/page/23/
http://www.smc-conference.org/
https://www.ieee.org
http://www.aes.org/
https://transactions.ismir.net/
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One of the reasons for the good health of the discipline is the applicability of MIR

research to real-world scenarios. These include classification and study of music lib-
raries for scholar research, recommender systems for music streaming services such
as Spotify,14 and the development of creative tools for electronic musicians and ama-
teurs alike, facilitating otherwise tedious tasks such as organising sample collections
by tempo or key, providing musical descriptions and intuitive visualisations of mu-
sical knowledge, or offering alternatives for creative variation and continuation. The
GiantSteps project, an European initiative gathering together partners from academia,
industry and music education, was an important effort to bridge current advancements
in music computing with the needs of EDM creatives. It is in this context that almost
the totality of my doctoral research has been carried on.15

1.3 Research Objectives

Although a popular area in the music information retrieval community, the task of
automatic key extraction from audio files has been slightly overseen in recent years,
considered somewhat of a solved problem. Academic algorithms and commercially
available applications provide relatively solid key estimation solutions, although their
performance changes drastically when addressing different musical styles. This sug-
gests that differences in the musical function of pitch and harmony call for different
engineering approaches, taking into account stylistic particularities rather than aiming
for all-purpose solutions, something that had already been noted by Gómez (2006a).

There are a number of available methods tailored specifically to EDM. Most of them,
arise as aiding tools for harmonic mixing, a technique largely used by DJ’s to se-
quence music tracks according to their tonal similarity (Vorobyev & Coomes, 2012).
However, these solutions tend to present similar limitations: (a) they are restricted to
a binary classification into major and minor keys, and (b) they normally produce one
single label per track —given their orientation towards large-scale DJ sets.

In my own listening experience of EDM, these restrictions do not correspond with
the complexity of the music, where I frequently find myself surprised with rare pitch
combinations, modal configurations other than typical major or minor scales, tonally
ambiguous passages, or simply atonal or ‘atonical’ excerpts.

Therefore, in the particular context of EDM, the task of automatic key detection from
audio seemed an interesting objective, more relevant than other tonality-related MIR

problems, such as automatic chord extraction or melody identification, since musical

14https://www.spotify.com
15http://www.giantsteps-project.eu/

https://www.spotify.com
http://www.giantsteps-project.eu/
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actors such as chords, melodies and tonal directionality do not seem to be all that char-
acteristic of EDM. On the other hand, the interplay of different pitch-class sets from
various simultaneous musical sources at various textural levels, conveying different
degrees of tonal strength and modal ambiguity, seemed a passionating and promising
area of study.

As a consequence of this, the main goal of my research has been to diagnose the
performance of key estimation algorithms in EDM, proposing musically informed al-
ternatives to existing methods. Furthermore, this endeavour has been the principal
motivation towards studying idiosyncratic tonal practises in EDM, what has become a
second objective of this research on its own.

Since I started my doctoral study, I got increasingly convinced that electronic mu-
sic production techniques —first revolving around record players, sequencers and
samplers, nowadays mostly around Digital Audio Workstations— have had a notice-
able impact in the development of tonal language in EDM, for such production prac-
tises seem closer to cinematographic montage —based on splicing, layering and pro-
cessing sound files— than to musical operations based on traditional compositional
operations on symbolic notation. While this has been demonstrated for other mu-
sical parameters (e.g. Butler, 2006, for rhythm and structure) and genres (e.g. Spicer,
2004, for pop-rock), the influence of layering and looping in the materialisation of
unique tonal layouts and the ways listeners integrate them together, has been paid
insufficient attention. Furthermore, since structural and functional needs of EDM

—centred around dancing and intense emotional exposure— are mostly achieved
through rhythmic and timbral means; harmonic, tonal and/or pitched components in
EDM could be rather open-ended and experimental, freed from the musical structuring
role typically assigned to pitch, especially in Western classical music.

In order to clarify these potential effects, I decided to embark on a study of tonality in
EDM that could inform my research in automatic key estimation. I wanted to attain a
descriptive —not prescriptive, or critical— study of tonality in EDM, in line with what
Meyer described as style analysis (Meyer, 1973, pp. 6–9), identifying a set of tonal
configurations that are idiomatic of EDM, distinct from other genres, and statistically
observable.

I also wanted that my observations could directly benefit the makers —at least begin-
ners and amateurs— in the form of computational methods that could eventually be
offered as compositional aids or classification tools in digital creative environments,
consummating a feedback loop between my interest in musical analysis and my desire
to promote musically driven MIR research.
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1.4 Actions in Context

In line with the defined research goals, my report on the original outcomes contained
in this manuscript is divided into two different chapters, corresponding to musical
analysis and music information retrieval, respectively. I have tried to establish a nu-
trient dialogue between both areas throughout my research: musical analyses have
informed the key detection methods proposed, and various MIR techniques have sup-
ported analytical enquiries. However, for the sake of clarity, findings in either domain
are presented and discussed separately.

1.4.1 A Study of Tonal Practices in EDM

As a first set of contributions, I discuss a series of novel tonal configurations, that —I
believe— are a consequence of several interrelated factors. These include:

The use idiosyncratic production techniques and technologies, revolving around
playing and mixing records in the first place, and directed towards the Digital
Audio Workstation afterwards.

A generalised lack of directional dynamics and other tonal artefacts, such as
chord sequences and cadential points, in connection with the cyclical and re-
petitive structure of the music.

A shift in importance of pitch structures, from playing a primary role in other
musical genres, to occupying a secondary —and sometimes decorative— posi-
tion in EDM.

Moreover, I attempt to demonstrate that such tonal manipulations are conscious com-
positional elements in EDM, materialising both in the simultaneity of sounds and in
their temporal arrangement. In addition, perhaps as a methodological side-effect, this
study also contributes to the research community with the following evidence:

Two datasets of two-minute audio excerpts of a variety of EDM subgenres, with
global key estimations, adding up to more than 2,000 labels.

A collection of 500 musical analyses, including detailed pitch-class set annota-
tions, global tonal labelling, modal changes, characteristic musical features,
and verbose descriptions of salient or unfrequent attributes.
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I am aware that the study of tonal practises in EDM presented in subsequent chapters is
necessarily partial an incomplete. First, I admittedly decided to study tonality within
the constraints of what Tagg has called the ‘extended present’ (2012, pp. 272–273),
normally assimilated to single musical phrases or sequences. This notion is particu-
larly useful in EDM, and I have equated Tagg’s notion to the span of a cycling loop,
typically comprising between two and eight measures, and representing a complete
musical unit in EDM. This excludes from my study large-scale tonal structures such
as DJ sets, focusing on short-term tonal relationships, normally of a motivic nature.

Another complication arises from the fact that EDM encompasses a large variety of
subgenres, with clearly differentiated attributes. I could have limited my enquiry to
a given historical or socio-geographical arena (for example, to studying the role of
synthesised bass lines in early acid house, or chord sequences in Chicago’s soulful
house). However, my intention was to identify certain constants across practises and
subgenres, even at the risk of providing necessarily vaguer descriptions. Nevertheless,
insights on specific genres will appear at several points in the thesis.

Similarly, I could have investigated potentially transversal practises, such as the tonal
complexity and transformations between original tracks and remixes, a sort of natural
ground for studying tonal variation in tracks with a common origin. Another thrilling
perspective would be that of studying harmonic complexity from a psycho-acoustical
stand, based on an personal intuition that relates pitch-interval simplicity with the de-
gree of timbral complexity. However, a direction exploring harmonic mixing from the
perspective of psychoacoustics has been recently explored by Gebhardt et al. (2015,
2016) and Bernardes et al. (2017a).

Nonetheless —and although modest— I regard this preliminary study of tonal prac-
tises in EDM as significant on its own, and wishfully capable of motivating further
computational analysis research, creative tools and applications, as well as supple-
mentary musicological study.

1.4.2 Algorithms for Key Estimation in EDM

All the musical observations presented, are, to a great extent, motivated by the devel-
opment of better informed algorithms for the tasks of tonal recognition in EDM. As I
have already noted, it is frequent to use computational tools to estimate the musical
key of audio tracks in EDM production environments. This has a direct application in
the sequential mixing of musics that are tonally related. However, the available solu-
tions do not offer any detail regarding modality or tonal ambiguity other than a binary
classification, what could be of great utility in the simultaneous mixing of sounds.
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In this dissertation I contribute two methods for automatic key finding, which are eval-
uated with existing and newly created datasets. They are also compared to existing
approaches. In varying degrees, the algorithms described are capable of:

Characterising pieces globally, with a single key label, improving the perform-
ance of most available algorithms in EDM.

Providing finer detail regarding bimodal and or tonic ambiguity, enhancing the
binary major-minor classification with labels accounting for atonal fragments
(‘no-key’) and ‘other’ modal practises falling out of the binary model.

Some of such algorithms have already been integrated into commercial applications,16

with good critical reception.17,18 Methods providing additional verbose, on the other
hand, have proved valuable in observing and elaborating on some of the tonal prac-
tices I claim characteristic of EDM, establishing and interesting conversation between
my two areas of interest.

1.5 Structure of this Dissertation

Following this Introduction, the next two chapters lay down the music theoretical
foundations and scientific background for the remainder of this thesis. In Chapter 2,
I introduce the basic musical terminology used throughout my explanation, the con-
cepts of key and tonality, and their particular uses across various musical practises,
including EDM. Chapter 3, complementarily, contextualises the domain of music in-
formation retrieval (MIR), discussing tonality-related research and providing a de-
tailed review of the literature on automatic key estimation.

Chapter 4 represents a turning point in the dissertation, a hinge between the contex-
tual chapters and the original contributions, as illustrated in Figure 1.2. As such, it
gives account of the methodological aspects of my research, including a discussion on
available datasets for computational tonal analysis, and a description of common eval-
uation procedures for key finding algorithms. Additionally, the chapter advances the
description of a newly created data collection, the GiantSteps Key Dataset, which is
used in conjunction with already available data to present a preliminary evaluation of
existing systems, in order to make an argument supporting the contributions described
in subsequent chapters.

16http://reactable.com/rotor
17https://www.soundonsound.com/reviews/reactable-systems-rotor
18http://ipadloops.com/reactable-rotor-tangible-modular-music-synth-for-ipad

http://reactable.com/rotor
https://www.soundonsound.com/reviews/reactable-systems-rotor
http://ipadloops.com/reactable-rotor-tangible-modular-music-synth-for-ipad
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FIGURE 1.2: Structure of this dissertation.

In Chapter 5, I share my findings regarding tonal practises in EDM, as they have in-
formed a good amount of decisions in the design or variation of dedicated key finding
methods. This report is grounded in tonal analyses of EDM tracks, adding up to over
2,000 audio excerpts with new key annotations, and a detailed analysis of 500 audio
excerpts, providing evidence of novel tonal configurations, as well as tracing distinct-
ive tonal behaviours across various subgenres. Chapter 6 builds upon some of the
aspects referred in the previous chapter, and describes —and evaluates— the contrib-
uted methods for key estimation in electronic dance music. The discussion unfolds
in a bottom-up fashion, from an explanation of low-level signal processing decisions,
through the description of tonality profiles, derived from various corpora of EDM, to
a discussion of the scope and degree of descriptive detail of the proposed solutions.
I conclude the chapter with a final evaluation, comparing the results of the proposed
methods with existing key finding algorithms.

The main body of this work is completed with a concluding chapter, where I summar-
ise the contributions herein, and share some of the limitations and difficulties I found
during the research process, suggesting potentially interesting ways of continuing this
work.

For the sake of completion, I have prepared three appendices with complementary in-
formation and resources originated in the course of my research. Appendix A presents
a lists of peer-reviewed publications to which I have contributed, related to the con-
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tents of this dissertation. In Appendix B, I condense the typewriting conventions used
throughout this dissertation, and is meant to serve as a quick reference guide. Last,
Appendix C, points to the materials generated in the course of my doctoral research,
including datasets, musical analyses and computer programs to reproduce the experi-
ments herein.

***

In the following chapters, I shall change my voice to the first person plural, for I would
not have been able to accomplish this work alone. In that plural voice, resonate the
echoes of my supervisors and fellow doctorandi, as much as those of all the people that
helped me in unaccountable ways, by pointing at flaws in my discourse, suggesting
roads of enquiry, and giving unconditional support. However, this Introduction —as
well as the concluding chapter— is narrated in singular person, assuming the complete
responsibility for all the opinions contained herein, the organisation and readability of
the whole manuscript, and especially, of any possible misunderstanding that it could
motivate.



Chapter 2
Fundamentals of Tonality

“If you have built castles in the air,
your work need not be lost.

that is where they should be.
Now put the foundations under them.”

Henry David Thoreau, Walden (1854)

This chapter presents the foundations upon which the music-theoretical elaborations
and contributions of this thesis are supported. We begin our narration by defining
the basic musical terminology that is used throughout this work, before addressing
the fundamentals of Western classical tonality in Section 2.2. Section 2.3 examines
particular practises across popular music styles, presumably closer to our object of
study, which is considered in Section 2.4, with a review on the scarce literature on
tonality in EDM.

We have intended to adjust our explanation to the requirements of our research,
providing significant music-theoretical background to the extent that it will prove
useful when considering tonal characterisation and automatic key estimation in sub-
sequent chapters. For this reason, our report has been intendedly simplified, in order
to remain accessible to the reader less familiar with music-theoretical literature.

2.1 Basic Tonal Terminology

Throughout this dissertation, we have tried to use musical terminology that is both
all-embracing and precise regarding the denotation of musical objects and concepts.
Philip Tagg (2012, 2013, 2014) has made a significant effort to normalise musical

17
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terminology based on notions of cultural equity —across Western and Non-Western
musics, popular or with enduring classical traditions— as well as on lexicological
and etymological consistence. It is for these reasons, that we incorporate some of his
acceptations and neologisms in the lexicon of this dissertation, especially those desig-
nating tonal aspects, where conflicting terminology mostly appears. This is probably
because a specific type of tonality is the most characteristic artefact of Western clas-
sical music, functioning as the yardstick upon which any other possible interplay of
musical tones is normally considered. Different periods and musical styles have de-
veloped different practices of tonality. However, the variety of tonal practises has
been often neglected in scholar work —or expressed in terms of cultural inferiority
— although this situation is perceptibly changing due to the consolidation of popular
music studies. As Tagg puts it,

“The concepts of tonality circulating in Western academies of music, whatever
their canonic repertoire, are still all too often inadequate, illogical and ethnocen-
tric. They simply don’t do much to help music students living in a multicultural,
internet linked, ‘global’ world to get to grips with the tonal nuts and bolts of all
those musics that don’t fit the conceptual grid of categories developed to explain
certain aspects of the euroclassical or classical and jazz traditions. [...] The dif-
ficulty is that the vast majority of those other musics is under-theorised, in the
sense that existing music theory often seems to have either misleading terms or
no terms at all to designate their specific tonal dynamics.” (Tagg 2014, p. 14)

2.1.1 Frequency, Pitch, Octave

In a broad sense, sound can be thought of as an oscillating pattern of movement within
a given medium —be this air, water or other material— that can be perceived by
our auditory system. Sound patterns can be divided into periodic and aperiodic sig-
nals. Periodic sounds present a repeating or quasi-repeating oscillation through time,
whereas aperiodic signals tend to be more difficult to predict. The main property of a
periodic oscillation is its frequency, defined as the number of equal-length cycles that
a signal completes over a period of time. A convenient measure of frequency is in
cycles-per-second (cps), more commonly referred to as Hertz (Hz). Periodic sounds
in the range between 20 and 20,000 Hz are experienced by humans as tones, with
perceived heights that change in correlation to their frequency. Figure 2.1a depicts a
short fragment of a sine tone at 100 Hz, in its time-domain (above) and spectral (be-
low) representations. Sine tones are the simplest periodic oscillations, consisting of
only one frequency component. However, musical tones are usually complex oscilla-
tions, made up of aggregate harmonics, ‘children’ oscillations at proportional ratios,
such as, for example, the sung vowel ‘e’ shown in Figure 2.1b. Even when these
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FIGURE 2.1: Time- (above) and frequency-domain (below) representations of periodic and aperiodic
signals: the graphs represent 0.1 seconds of (a) a sine tone, (b) a sung vowel ‘e’ and (c) white noise.
Spectrograms have been truncated at 1000 Hz. for visualisation purposes.

complex oscillations occur —which is most of the times in the physical realm— we
are still able to perceive one prominent, fundamental tone, typically corresponding to
the largest audible period, or inferred psychoacoustically from the signal’s compon-
ents. We refer to the perceptual height of periodic sounds as pitch. Since human’s
cognitive apparatus tends to perceive physical magnitudes with different logarithmic
or non-linear curves, pitch is generally not reported in Hertz, but according to con-
ventions accounting for the variety of tones in a given musical milieu. On the con-
trary, completely aperiodic signals, typically known as noise, do not evoke a sense of
height, distributing their energy uniformly across the whole spectrum, as Figure 2.1c
illustrates.

An important connection between the physical and cultural realms seems to be the
fact that tones doubling or halving their frequency are perceived as highly similar,
to the extent that they are considered equivalent in most musical systems across the
world (Honingh & Bod, 2011). This is specially the case in musical cultures where
“men, women and children sing together in unison” (Trehub et al., 2015). In Western
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FIGURE 2.2: Two octaves written in Western musical notation, illustrating the relationship between
pitch names, octaves and simple intervals.

musical culture, pitches with a frequency ratio of 1:2 are said to be one octave apart.
This denomination comes from the fact that this ratio has been typically divided into
seven musically related tones, the subsequent eighth named just like the first, given
its perceptual similarity. However, it is worth noting that different traditions, divide
the octave in different number of tones.

2.1.2 Pitch, Chroma, Diatonic Interval

In the anglophone world, musical divisions of the octave are named with the first
seven letters of the alphabet (a–g), as illustrated in Figure 2.2.19 To specify pitches
from a particular octave, an index can be added to the pitch name. According to
the standard pitch notation, the lowest note of a piano (the reference instrument for
Western music theory) is an a0. However, contrary to what one would intuitively de-
duce, octave cycles start in c and not in a. The reason for this is grounded in the
centrality of c in western musical theory, for reasons that will become apparent in
the following paragraphs. Pitch names without octave specification usually designate
octave-equivalent families of tones, called chromas or pitch classes (pc’s). For ex-
ample, the chroma a is made up of a’s from across all octaves. Conventionally, the
distance or interval between two different pitches is given by counting the total or-
dinal of letters from the first —typically the lowest— to the second. For example, the
interval between a and b is a second, between c and e, or e and g, a third, and between
c and g, a fifth.

In Western music theory, however, the intervallic distance between consecutive nat-
ural pitches is not constant. Consolidating in the Eighteenth Century, Western music
widely adopted what is known as the equal temperament system, by which octaves

19For the sake of clarity and to minimise confusion between various musical objects, throughout this
dissertation we write single pitch names in lower-case sans-serif typeface. This and other typesetting
conventions are summarised in Appendix B.
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FIGURE 2.3: Distribution of the twelve chromas in a piano keyboard.

are divided into twelve perceptually equal intervals, called semitones. The semitone
is the smallest musical interval to be found in most Western music, corresponding to
adjacent keys on a piano, or subsequent frets on a guitar.

Intervals between consecutive pitch names are either one or two semitones (i.e. one
tone) apart.20, and musical orthography must differentiate between a total of twelve
different pitch classes with only seven note names. This is achieved by indicating a
raise or a decline from the so-called ‘natural’ tones, by appending or prepending the
sharp (]) or flat ([) symbol, respectively.21 Figure 2.3 depicts the layout of an octave
in a piano keyboard. Natural tones are represented by the white keys, whereas altered
pitches correspond to the black keys. In the figure, the leftmost black key can be
indistinctly referred to as c] and d[, which are said to be enharmonically equivalent
tones. The preference for one or other label is normally determined by the specific
musical context. For disambiguation purposes, a natural symbol (\) can be used to
cancel the effect of any accidental when accompanying a pitch or chroma.

Figure 2.4, presents, in musical notation, the chromatic division of the octave into
twelve chromas. Besides pitch names, it is common to refer to pitch classes by using
numerical indexes, written above the staff in the figure.22 This numerical equivalence
facilitates and generalises typical musical transformations —especially when using
computers— and it has been widely adopted in circles embracing set theory (Forte,
1973; Straus, 2005), as we will shortly see. Throughout this thesis we use duodecimal
notation for the representation of pitch classes, substituting 10 and 11 with

2

and

3

,
respectively.23

20Here we introduce the first of a series of polysemic and potentially confusing terms. Up to this
point, ‘tone’ denoted any sound with a pitched quality. In other common acceptation, the word desig-
nates the musical interval comprising two semitones.

21Typically, when referring to altered pitches —in written or spoken language— the alteration or
‘accidental’ is reported after the pitch name (a]). In musical notation, however, the alteration precedes
the notehead.

22Although semantically equivalent, we normally use ‘chroma’ when dealing with alphabetical la-
bels, and ‘pitch class’ to refer to numerical notation.

23It is an extended practice to write pc’s in duodecimal notation, especially in computational analysis
environments. The most common alphabet assimilates 10 to A and 11 to B; however, since these two
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FIGURE 2.4: Musical notation of an octave divided into 12 semitones, with labels showing the chroma
names and pc-integers in duodecimal notation (

2

= 10,

3

= 11). The intervallic distance between the
natural pitches (tone [T] or semitone [S]) is also shown.

2.1.3 Scale, Interval Quality

In previous paragraphs we discussed pitches as single abstract units, without refer-
ence to any particular musical context. In most pitched-centric musics, the basic
vocabulary to establishing such a context is given by the scale. A musical scale can
be thought of as a palette of ‘available’ chromas, arranged alphabetically, typically in
ascending order. The starting pitch of such stepwise ordering holds the most import-
ant position in the scale, providing it with a referential name, and normally occupying
the gravitational centre around which all other chromas are arranged. This notion of
musical organisation around a central note, the tonic, has been referred to as tonicality
(Reti, 1958; Tagg, 2014), and is the foundation over which the broader concepts of
key and tonality are grounded, as we will see in Section 2.2.

Besides its tonal centre, the most distinctive feature of a scale is its particular pattern
of intervals. If we consider the sequence of all the notes in Figure 2.4, we observe a
pattern of eleven successive semitones, forming what is known as a chromatic scale,
since it contains all the available ‘colours’ in equally tempered music. Nevertheless,
scales typically consist of sequences of intervals of variable length, presenting asym-
metric patterns. Figure 2.4 also highlights the interval pattern between the white note-
heads, presenting a sequence of two consecutive tones, plus one semitone, plus three
subsequent tones, plus one last semitone (T–T–S–T–T–T–S), dividing the octave into
seven pitches before returning to the initial chroma c. This particular pattern is called
the major or ionian scale, being the most common pitch structure in Western music.24

Any particular scale is identified by its tonic and its intervallic structure (therefore,

letters can be mistaken with pitch names, we follow the convention proposed by The Dozenal Society
of Great Britain, included in the Unicode standard (<http://www.dozenalsociety.org.uk/>, accessed 15th

Sep. 2017).
24It is far more common to refer to this scale as the major scale. However, we reserve the term ‘major’

to characterise larger musical contexts —as we will shortly explain— preferring the label ‘ionian’ to
refer to this scalar pattern specifically.

http://www.dozenalsociety.org.uk/
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pitch st. interval label
relative
degree

c 0 perfect unison 1̂
c] 1 augmented unison ]1̂
d[ 1 minor second [2̂
d 2 major second 2̂
d] 3 augmented second ]2̂
e[ 3 minor third [3̂
e 4 major third 3̂
f 5 perfect fourth 4̂
f] 6 augmented fourth ]4̂
g[ 6 diminished fifth [5̂
g 7 perfect fifth 5̂
g] 8 augmented fifth ]5̂
a[ 8 minor sixth [6̂
a 9 major sixth 6̂
a] 10 augmented sixth ]6̂
b[ 10 minor seventh [7̂
b 11 major seventh 7̂
c 12 perfect octave 8̂

TABLE 2.1: Typical musical intervals and/or relative scale degrees from c. In bold font, we emphasise
the degrees of the ionian scale, which are either major or perfect. For other intervals, note that the same
distance in semitones has different denotations depending on the start and end alphabetic pitch names.

the white-notehead scale in Figure 2.4 is named C ionian).25 Interestingly, this scale
in particular is formed by all and only the natural chromas, what may partially ex-
plain why c has consolidated as the reference pitch for music theoretical explanations
instead of a, for example.

In Figure 2.2, musical intervals were labelled as ordinal numbers counting the simple
distance between two pitches. Accordingly, the interval between c and d is a second,
just as much as the distance between e and f. However, the scale in Figure 2.4 shows
that these two distances comprise of two and one semitones, respectively. Similarly,
the thirds c–e and g–e take in four and three semitones, whereas thirds c–e[ and e–g]
present three and four semitones. To solve this ambiguity (same alphabetic distance,

25In order to differentiate musical contexts (scales, chords, or keys) from single pitches, we use cap-
italised pitch names to refer to the former, and lower-case letters to refer to the latter (see Appendix B).
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FIGURE 2.5: Ionian scales from three different tonics: C ionian (top), E[ ionian (middle), A ionian
(bottom). In order to keep the same intervallic pattern, the use of accidentals becomes necessary.

different semitonal interval), a clearer labelling of intervals can be achieved by adding
the major, minor and perfect interval types to the basic distances, differentiating ma-
jor seconds (c–d) from minor seconds (e–f), minor thirds (c–e[) from major thirds
(c–e). In order to measure these compound distances, the ionian scale is usually taken
as a reference, given that all the intervals between the tonic and the other notes in the
scale are either major or perfect. All other intervals falling out of the ionian scale are
either minor intervals (when a major interval is lowered one semitone), diminished or
augmented (when perfect intervals, typically fourths and fifths, are lowered or raised
one semitone). Table 2.1 lists the most common intervals counted from c, expressing
their distance in semitones, their labels and their scale degree. The latter notation is
extremely useful to describe pitch patterns in relative terms, highlighting their mu-
sical quality without a reference specific pitches. Relative scale degrees and intervals
are indicated with circumflex accents on Arabic numerals, following a widespread
convention. A flat ([) preceding the number indicates a minor or diminished interval,
whereas a sharp symbol (]) defines an augmented step (e.g. 1̂, [3̂, ]4̂, \7̂).

2.1.4 Transposition, Rotation, Mode

Figure 2.5 shows the results of transposing the C ionian scale to other tonics, obtaining
the scales of E[ ionian and A ionian. Note that in order to preserve the ionian intervallic
pattern, different alterations are used. These scales, although providing different tonal
contexts (C, E[, A) still convey the same ionian mood or quality. The operation called
transposition merely consists in adding a constant interval to a collection of pitches. In
general, we can think of transposition as an operation that preserves the same musical
character, only that with a different collection of pitches.
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FIGURE 2.6: The seven diatonic modes, written as subsequent rotations of the C major (ionian) scale
(left) and transposed to c (right). Each pattern provides a distinctive musical quality due to the intervallic
relations with the tonic.

Another typical operation is scalar rotation (called ‘diatonic transposition’ in tradi-
tional music theory). Rotation implies that pitches in a scale are shifted circularly,
maintaining the same ordered collection starting at different points. A scale has as
many rotational variants as chromas. These variants are typically called modes. In
practice, there is absolutely no difference between a scale and a mode. Both are alpha-
betically ordered sequences of pitches, dividing the octave in a number of intervals.
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overall quality mode name scale degrees

major
Lydian 1̂ 2̂ 3̂ ]4̂ 5̂ 6̂ 7̂
Ionian 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂
Mixolydian 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ [7̂

minor
Dorian 1̂ 2̂ [3̂ 4̂ 5̂ 6̂ [7̂
Aeolian 1̂ 2̂ [3̂ 4̂ 5̂ [6̂ [7̂
Phrygian 1̂ [2̂ [3̂ 4̂ 5̂ [6̂ [7̂

diminished Locrian 1̂ [2̂ [3̂ 4̂ [5̂ [6̂ [7̂

TABLE 2.2: Characteristic scale degrees and relationships in the diatonic modes. The scales are ordered
to maximise their similarity, presenting only one different degree across subsequent rows (in colour).
The modes are further divided into major, minor and diminished, according to their overall quality.
Scale degrees in colour provide the distinctive musical character of each mode.

Figure 2.6 illustrates the effects of rotation (left) and transposition (right), introdu-
cing the seven modes of the diatonic collection —yet another acceptation to refer to
the ionian pattern. These diatonic modes are also known as the ‘greek’ modes, due
to a misreading of Hellenic music theory by Mediaeval scholars, and each iteration
in the circular shift receives a demonym from a former greek region (ionian, dorian,
phrygian, lydian, mixolydian, aeolian and locrian). What is most important is that
each rotation of the scale produces a different intervallic pattern, or what is the same,
a new scale type. On the contrary, the effect of transposition keeps the same inter-
vallic structure across different tonic notes. Left and right sides of Figure 2.6 shows
how rotation of the natural pitches (in the left) alter significantly the scale. This be-
comes visible in the right column, where all modes have been transposed down to c.
The accidentals accompanying the notes show the deviations from the ionian pattern.
Below each pattern, we annotate the different interval sequences (left) and their scale
degrees (right). Analogously, Table 2.2 presents the seven diatonic modes arranged
by pattern similarity, so that each mode differs with the preceding and succeeding
scale in only one pitch (marked in colour), where the distinctive character of each
mode lays. Ionian and aeolian scales are highlighted, for they have served as models
to explain Western tonal practise, assimilated as the major and minor modes, respect-
ively. However, the layout of Table 2.2 suggests that at least three different modes
could provide a sense of ‘majorness’ or ‘minorness’, based on the third scale degree,
as we will shortly see.
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2.1.5 Modality, Key, Chord

Western tonal theory has been typically explained divided into two different modal-
ities, known as major and minor. The notion of modality implies a context beyond
a specific scale, comprising a number of procedures by which a tonal centre is es-
tablished and articulated, including particular phrasings and specific sequences of
musical objects.26 A related concept, the idea of key refers to the materialisation of a
specific modality from a particular tonal centre. Therefore, just as a scale is defined
by a pattern and a tonic, a key implies a tonic and a specific modality. Consequently,
Western tonal theory recognises twenty-four possible keys, half major, half minor.

Although a given key can be suggested by a simple sequence of single tones, Western
music has been characterised by its polyphonic nature, that is, by the use of simultan-
eous pitches conveying various degrees of consonance. Consonance is mainly a per-
ceptual magnitude (sensory consonance), although with elements of cultural construc-
tion (musical consonance), indicating the degree by which musical intervals appear
as ‘pleasant’ to the ear (Terhardt, 1974). Typically, the key of a piece of music will be
suggested by its melody as much as from its polyphonic units. A good synthesis of
the workings of polyphony can be found in the musical discipline of harmony, which
summarises the unification of tonal practise in euroclassical music, a term coined by
Tagg (2014) to designate European music from the so-called ‘Common Practise Era’,
roughly spanning from 1600 to 1900, and comprising the consolidation, development
and crisis of European tonal language, as traced in the oeuvre of composers such
as Haydn, Mozart, Beethoven or Brahms. Numerous handbooks on harmony have
formalised the construction of pitch aggregates and their timely succession, since the
publication of Rameau’s treatise in 1722 (e.g. Rameau, 1971; Schoenberg, 1974; Pis-
ton, 1991).

Abstract polyphonic units are normally referred to as chords. Although in its broader
acceptation a chord is virtually any aggregate of two or more pitches at any interval-
lic distance, most musical practises have favoured chordal systems based in similar
interval types, either fourths or fifths, but most notably, in the aggregation of thirds.

Figure 2.7 shows the seven diatonic triads of C major, obtained by stacking thirds over
the tones of the ionian scale. Triads (three-pc chords) are the basic units of Western
harmony, although there is no theoretical limitation to pile up as many thirds as de-
sired, other than exhausting the chromas in the scale. A closer look at the various
triads in the figure, reveals that their internal structure differs slightly, based on the
differences between intervals of the same basic distance mentioned above. For in-

26We deliberately use the term ‘modality’ to establish a semantic difference with ‘mode’, which
simply refers to an ordered collection of chromas.
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FIGURE 2.7: The seven diatonic triads of C major. The scale degrees that form each chord are written
above the staff. Below, Roman numerals express the type of each chord, which is detailed under the first
occurrence of each type.

stance, the first chord in Figure 2.7 (c, e, g) presents a structure of 4 + 3 semitones,
constituting a major triad (1̂, 3̂, 5̂). Alternatively, the second aggregate (d, f, a) repres-
ents a minor chord, with a pattern of 3 + 4 semitones (1̂, [3̂, 5̂). There is yet another
unique chord type in Figure 2.7, forming on the seventh degree, resulting from two
stacked minor thirds. This chord type is known as a diminished chord, because of
the [5̂ interval between the extreme notes of the triad. Chords are labelled after their
root note, that is, the lowest pitch in the stack of thirds, and their chord type (e.g.
Cmaj, Dmin, Bdim). They can also be referred in relative notation using Roman nu-
merals, taking the ionian scale as a reference, just like with regular intervals. In such
cases, letter capitalisation differentiates major and minor chords, and ‘o’ indicates a
diminished chord.27 The chord-type distribution in Figure 2.7 applies to any major
context, which natively presents one diminished chord (viio), three minor chords (ii, iii
and vi) and three major chords, I, IV and V. The latter ones are also called the ‘tonal
chords’ for being arguably the most important elements in establishing a musical key,
normally referred to as the tonic, subdominant and dominant chords, respectively.

A reason of the predominance of ionian tertian harmony in Western music theory
can be given in the light of three facts: First, euroclassical and pop music have been
predominantly written in major modality —as much as 60 to 75% of the repertoire,
depending on the source (Krumhansl, 1990, pp. 62–75). Second, major modality
is quite straightforward regarding the theoretical formation of its elements and their
musical materialisation; on the contrary, minor modality is normally taken as subsi-
diary of the major, and needs multiple scales and ‘exceptions’ to adjust the theory

27We use chord labels in abbreviated form in order to differentiate them from key names (C major
[key] vs. Cmaj [chord]). Appendix B lists the abbreviations used, and summarises this and other writing
conventions.
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harmonic num. 1 2 3 4 5 6 7 8
pitch g2 g3 d4 g4 b4 d5 f5 g5

degree 1̂ 1̂ 5̂ 1̂ 3̂ 5̂ [7̂ 1̂
frequency (Hz) ≈100 ≈200 ≈300 ≈400 ≈500 ≈600 ≈700 ≈800

FIGURE 2.8: Harmonic series of a theoretical g2, indicating the approximated equal-tempered pitches,
the musical interval with the first harmonic, their approximate frequency and the harmonic number.

to the practise, as we will see in Section 2.2.2. A third reason —contributing to the
previous two— is to be found in the inner structure of musical sounds. As stated at
the beginning of this primer, most pitched sounds are the result of complex oscilla-
tions composed by a number of harmonics. Figure 2.8 shows the harmonic series of
a hypothetical g2. More exactly, it presents its first eight harmonics, with their scale
degree (taking g as the tonic) and their approximate frequency. The progression of
frequencies illustrates the ‘harmonic’ quality of the signal, showing that frequency
components are integer multiples of the fundamental frequency. Furthermore, the ex-
ample illustrates that each component of this hypothetical g2 could be perceived as a
definite pitch, in which case, the first six harmonics correspond to the components of
the tonic major triad (forming intervals related by octave, perfect fifth and major third
with the fundamental frequency). This probably has had an influence in consolidating
the major triad as a the most stable tonal aggregate since Rameau.

2.1.6 Pitch-Class Set Operations

We conclude this first section on basic musical terminology by proposing a slightly
different approach to looking into pitch collections, based in the so-called pitch-class
set theory. Introduced by composer Milton Babbitt, pitch-class set theory has been
thoroughly formalised by Forte (1973), gaining widespread acceptation across ana-
lytical circles worldwide. Although initially conceived as an analytical device for
early Twentieth Century music —what has been typically labelled ‘atonal’ music—
it has proved a powerful tool to study ‘post-tonal’ musical expressions, such as the
works of the Repetitive Minimalists and other tonal practises that do not conform
with Western tonal standards (Straus, 2005). Accordingly, it shall prove useful when
approaching the study of reduced pitch collections in electronic dance music.

A pitch-class set (pc-set) is simply a collection of unique pitch classes (numerical
indexes representing the twelve chromas). Just like chords or scales, pc-sets can be
ordered and manipulated in various ways by rotation, transposition or inversion. Or-
dering a pc-set involves arranging it in ascending order. Typically, an ordered set is
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interval 0 1 2 3 4 5 6
inverse 0

3 2

9 8 7 6

TABLE 2.3: Pitch-class inversion equivalence.

expressed in its most condensed form, with the smallest interval between the first and
last notes, representing the pc-set’s normal order. If there are various possibilities
meeting this condition, the arrangement with smallest intervals at the beginning is
chosen as the normal order. For example, the scale of C ionian, is represented the
pitch class set {024579

3

}, which is expressed in its normal order as {

3

024579}, since
this is the expression that minimises the distance between the edges (10 semitones)
with the smallest intervals towards the beginning (S–T–T–S–T–T–T). The main power
of pc-set expression lays in its capacity of abstraction, allowing comparisons between
different collections of pitches. The most common way of classifying pc-sets is by re-
ducing them to their prime form. According to Forte (1973), a prime form is a pc-set
in normal order, transposed so that its first element is 0. Transposing a pc-set is just
a matter of adding a constant number of semitones to all the elements in the set, and
calculating its modulo 12, since pc’s only comprise the octave range. Therefore, we
obtain the prime form of the diatonic set by adding one semitone to its normal order:
({1}+ { 3

024579}) mod 12 = {013568 2}.28

It is important to notice that this prime form (corresponding to the locrian pattern)
represents all the modal variants of the diatonic scale, neutralising the effect of in-
tervallic rotation and therefore of modal differentiation. Pitch-class set operations
normally de-emphasise the tonicality of pitch collections —is not for nothing that the
theory originated to describe atonical music. Another common operation is inversion,
which literally consists in calculating an interval in its opposite direction. However,
given that pitch-classes are always positives in range 0–

3

, the inversion of a pitch-class
can be seen as a substitution with its inverse or complementary interval, obtained by
subtracting the interval to twelve (12− i), as shown in Table 2.3. As a matter of fact,
set theory regards inverse intervals as equivalent, what reduces the interval vocabulary
to just six semitones. The intervallic content of a pc-set is expressed by its interval
vector, a string of six integers indicating the number of intervals of each type (1, 2, 3,
4, 5 or 6 semitones) between all individual components in the set. For example, the
diatonic set {013568

2

} has an interval vector <254361> (2×1’s, 5×2’s, et cetera).

Identical interval vectors indicate that pitch-class sets are related, and in most cases,
can be reduced to the same prime form by transposition or inversion equivalence.

28Recall that pitch classes 10 (B[) and 11 (B) are respectively written as

2

and

3

, as explained in
Section 2.1.2 and Appendix B.
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major triad set: {047}
inverted set: {085} (applying the substitution rules in Table 2.3)

normal order: {580} (minimising the outer interval)

prime form: {037} ({7}+ {580}) mod 12

minor triad set: {037}

FIGURE 2.9: Stepwise transformation of a major triad into a minor triad by inversion, reordering and
transposition. In strict pc-set theory, major and minor triads are represented by the same pc-set {037}.

Consider, for example, the pc-set representing a major triad, {047}. This set looks
like a prime form, since it has the smallest possible interval between the extreme
notes. However, recall that the only difference between major and minor triads is
the ordering of their total intervals (a minor third, a major third and a perfect fifth),
sharing the same interval vector <001110>. Figure 2.9 illustrates, step by step, the
transformation of the major triad into its prime form as a minor triad {037}, by inver-
sion, reordering and transposition. Strictly speaking, in pc-set theory the major and
minor chords are two different expressions of the same intervalic structure. However,
the identity between these two triads is not completely operational when extrapolat-
ing the theory to study tonal and post-tonal music. It is for that reason, that we do
not consider inversionally equivalent sets as identical, reducing each set to its non-
inversional prime form, that is, a normal order transposed so that the first element is
zero, referring to this as pseudo-prime form. In practical terms this means that we
only consider transposition and rotation as identity operations.

2.2 From Key to Tonality

Up to this point, we have presented basic terminology that hopefully will prove use-
ful when discussing aspects of tonality throughout this dissertation. For a matter of
focus, we have decided to concentrate mostly on pitch aspects —the prime matter of
tonality— excluding from the discussion essential musical parameters such as rhythm
or form, that will be addressed only when they become necessary to our explanation.
Similarly, the descriptions provided in this section must be taken as an overview of an
otherwise enormously arborescent topic, with unaccountable publications and spec-
ulative perspectives. In any case, we have tried to present theoretical notions that
will recur in subsequent chapters, either to formulate our hypotheses or to ground our
criticism.
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2.2.1 ‘Tonality’ Under Suspicion

The notion of tonality is definitely one of the most prominent concepts across West-
ern musics —and in a great deal of non-Western cultures too, although perhaps under
different denominations. In its broadest sense, it defines the systematic arrangement
of pitch phenomena and the relations between them, specially in reference to a main
pitch class called the tonic (Hyer, 2012). However, the influence of scholar literat-
ure, articulated around the currency of tonality, may have hindered the study of other
musics with different structuring paradigms. Musics, for example, without a pre-
defined system of pitch relationships and motifs, like post-minimalist drone music as
introduced by La Monte Young, or non-idiomatic free improvisation as defended by
Bailey (1993). Furthermore, other types of music, do not present definite pitch at all.
Think of so many musique concrète compositions, Japanese taiko drumming or some
subgenres of electronic dance music, such as minimal techno.

We think that in its most basic sense, the term ‘tonal’ should be used to denote any
music made with tones, that is, with perceivable pitch units, in opposition to atonal
music, made with various kinds of un-pitched elements. This differentiation is im-
portant for our purposes, since we will be dealing with a type of music —EDM— that
is both tonal and atonal —in these acceptations— presenting sections with just spe-
cial effects or spoken voices, and sometimes even whole tracks composed only with
percussive elements, with sparse or none pitch content at all.

Therefore, “music made with tones” establishes a clear baseline to consider of ‘tonal
music’, constituting the basic requirement for our study of tonality in EDM and one of
the features that will help us identify some EDM subgenres. Consequently, we prefer
the term tonical (Reti, 1958) to denote music where pitched elements suggest the pres-
ence of one or more pitch centres, like euroclassical music with its major and minor
modality, but also including all other modal practises. Similarly, the word atonical
denotes music that is composed with pitch elements, but does not convey a sense of
tonic centrality. An example of atonical music is what has been typically identified as
‘atonality’, epitomised in the works of the Second Viennese School and serialism.29

Perhaps ironically, a large body of post-serial music, such as Lachenmann’s musique
concrète instrumentale, happens to be atonal in the more etymologically appropriate
acceptation suggested.30

29Although it seems that Schoenberg himself disliked the term, according to Whittall (2011).
30Most of the novel vocabulary presented in this section is borrowed from Tagg (2014). We point the

reader to his writings for a thorough explanation of the concepts introduced (especially tonal/atonal and
tonical/atonical), accounting for etymological, lexicographical and otherwise musicological reasons.
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Other interesting label is pantonality (Reti, 1958), proposed to precisely recognise
tonal relationships in sequences of pitches, intervals and chord sequences with chan-
ging tonics, without appealing to the structural implications of tonality that we de-
scribe in the following block, and even not conveying a key centre in any large scale
sense (Drabkin, 2012). In this sense, pantonality acknowledges other ‘tonal’ practises
such as free atonalism or even twelve-tone composition, as alternative methods to
organise pitch relationships, although most significantly embraces other Modernists
approaches to tonality, such as the parallel chord streams of Debussy or the polytonal
practises of composers like Stravinsky or Casella. Polytonality has been an issue of
discussion too. In theory, polytonality is the presence of more than one tonality (tonic
and mode) operating at the same time. However, authors like Van der Toorn (cited
in Krumhansl, 1990; Tymoczko, 2002) have questioned the possibility of perceiving
two keys simultaneously, favouring complex-scale interpretations in relation to Strav-
isnky’s Petrouchka Chord (an aggregate of Cmaj and F]maj). Krumhansl (1990, pp.
226–239) offers an empirical discussion on this issue (using the Petrouchka chord as
source tor her experiment) with results suggesting that listeners can actually recog-
nise the importance of both tonal centres. In our opinion, the fact that the polychord
under consideration presents two triads one tritone apart (dividing the octave most
neutrally in two equal intervals) plays an unacknowledged role in the experiment, and
we look forward to experimental results with less neutral intervallic relations (e.g.
major seconds). In this same context, Tymoczko (Tymoczko, 2002, p. 83) brings in
the term polyscalarity, as a conceptual midterm acknowledging Stravinsky’s intention
of using two different modes without falling into the perceptual puzzle. This notion
of multiple scales operating simultaneously will be of utility in explaining some tonal
configurations in EDM, arising from the combination of different musical sources.
However, in the following blocks, we return to more restrictive notions of tonality, in
order to explain the basic workings of euroclassical music and rock modality.

2.2.2 Major-Minor Duality in Euroclassical Music

In her research on tonality perception, Krumhansl (1990) conceives tonal music as
indicating a musical organisation around a reference chroma, where harmony plays
an important role in establishing such sense of tonical centricity. In this acceptation,
primarily monodic music, such as Gregorian chant and many manifestations of folk
music are excluded, even though they obviously present similar scalar constructions
and a clear reference to a tonic note. These ‘other’ tonical manifestations, are nor-
mally referred to as modal, denoting a somewhat vaguer definition of the relationships
between a pitch-class set —a mode— and the tonal centre it suggests. Nonetheless,
Krumhansl’s dual definition of tonality corresponds to the original usage of the term,
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(a) Major

(c) Minor

(b) Aeolian
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FIGURE 2.10: Cadences for various modal configurations. The major perfect cadence (a), an aeolian
cadence (c), and the more frequent minor cadence (c), with a major V chord. We provide four-part
realisations to illustrate the normative voice-leading in euroclassical practise.

first appearing at the beginning of the Nineteenth Century, intended to establish a
difference with previous polyphonic practises (Hyer, 2012).

The fundamentals of euroclassical major-minor tonality can be distilled from three
influential facts, according to Whittall (2011). First, Rameau (1971)[1722] systemat-
ised the principle of inversion, by which chords are composed of stacks of thirds, and
defined in terms of their root and type independently of their lowest note (typically
perceived as the supporting note of the chord). With this operation, Rameau made
equivalent all possible reorderings of the same chord set (i.e. {ceg} and {gec}), some-
thing novel at that time. This equation allowed, by the beginning of the Nineteenth
Century, to substitute figured-bass indications with Roman numerals associated with
chords, defining a closed chord vocabulary connected with each key. Last, Riemann
(1903) systematised in his theory of functional harmony, the fundamental role of tonal
functions in establishing a tonality. Tonal functions are mainly assumed by the tonic
(I), dominant (V) and subdominant chords (IV), whose intervalic distance one fifth
above and below the tonic, respectively, provides an equidistant tensional arrange-
ment balanced around the tonic chord.

Thus, euroclassical tonality is essentially grounded in a sense of musical directional-
ity, obtained by the succession of the basic tonal functions, and materialised in chord
progressions and cadences. These two elements are the actual narrative forces of
euroclassical music. Cadences represent arrival points, interruptions of the rhythmic
flow associated with the structural organisation of the music, and taxonomised almost
as if they were rhetoric figures. The choice of chords in a sequence, on the other hand,
determines the character, mood and directionality of a given excerpt, greatly connec-
ted with its modality. The major modality is essentially defined by the ionian scale,
with its characteristic intervals, chords and tonal functions. However, minor modality
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FIGURE 2.11: The three typical variations on the minor scale: A aeolian, A minor harmonic, with its
raised seventh degree (\7̂), and A minor melodic, with different ascending and descending patterns.

shows a bit of resistance when inserted in the narrative scaffold of euroclassical func-
tional harmony, at least, when assumed as a natural diatonic minor, assimilated with
the aeolian scale presented in Figure 2.6.

Figure 2.10a presents a major perfect cadence. This simple four-chord structure, sum-
marises the basic workings of tonal functional harmony: A tonic chord (I, representing
tonal stability) progresses towards a subdominant chord (IV, normally associated with
a state of intermediate tonal tension); then, the subdominant function continues onto
the dominant chord (V, the maximum exponent of functional tension), which finally
resolves back into the tonic. Naturally, these tonal dynamics are often extrapolated to
different chords and sequences. However, the tonal forces expressed in this example
are always present in euroclassical composition.

By contrast, Figure 2.10b is presents a minor cadence rarely seen in euroclassical mu-
sic, although it essentially presents the same structure. The three minor chords used
(i, iv, v) are derived from the aeolian scale. The essential ‘problem’ of this cadence,
regarding tonal harmony, is located in the ‘tone’ resolution (g→a) in v→i, contrasting
with the semitone movement present in the perfect cadence (a), where it lays a great
deal of the dominant tension. Due to the lack of the ‘leading tone’ (\7̂), a v can hardly
be considered as a dominant function, thus dismantling the essence of tonal func-
tional narrative. Alternatively, Figure 2.10c presents the typical euroclassical minor
cadence, where v is substituted by a major chord (V ‘borrowed’ from the parallel key
of A major), re-establishing the lacking semitonal resolution (g]→a). This operation
reflects well the bias towards major modality present in euroclassical tonality.
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FIGURE 2.12: Triads of two combined minor scales. Chords in orange represent triads originating in
the aeolian scale, whereas the ones coloured in blue come from the minor harmonic scale. The affected
scale degrees are the third, fifth and seventh, potentially associated to tonal-dominant functions.

Another indicator of the difficulty to fit the minor modality within the tonal-functional
building can be found in the variety of scales to explain it. Figure 2.11 shows three
variants of the A minor scale. On top, the aeolian scale represents the natural tones,
obtained by rotation of the diatonic set, and representing the closest counterpart to the
C ionian scale. A common variant is the so called ‘harmonic’ scale, which basically
raises the seventh degree, creating a semitone interval with the tonic (\7̂–1̂). Unfor-
tunately, the harmonic scale introduces a melodic problem, since the interval [6̂–\7̂
comprises of three semitones, providing an unwanted ‘exotic’ sound to this scale. In
order to overcome this problem, the ‘melodic’ scale in the bottom presents an altern-
ate pattern, borrowing the \6̂ and \7̂ degrees from its ionian homonym, in order to be
able to resolve to the tonic by semitone, and avoiding the augmented interval present
in the harmonic scale. However, since resolution is no longer needed when leaving
the tonic, the descending pattern of the minor melodic scale is essentially the aeolian
mode. Theoretically at least —and according to their informative names— the har-
monic scale is used to compose chord sequences in minor modality, complying with
the impositions of tonal harmony; the melodic scale, complementarily, is used melod-
ically to convey a minor feeling without alien intervals. In practice, however, the
aeolian scale also plays a role in euroclassical harmony.

Figure 2.12 shows the triads derived from the aeolian (orange) and harmonic (blue)
scales. The chords depicted in black, mostly representing subdominant functions, are
found in either scale. The differences arise on the degrees that can potentially convey
a dominant feel, namely the third, fifth and seventh degrees. The harmonic scale
brings in two chords borrowed from the major modality (V, viio), plus a new chord
type, an augmented triad ([III+), which is hardly used in real music. Additionally, the
aeolian scale contributes three chords: [III, which is extensively used, [VII, which is
only occasionally used, and v, rarely found in euroclassical tonality.
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FIGURE 2.13: Heinichen’s (right) and Kellner’s (left) versions of the regional circle. Whilst Hein-
ichen’s diagram alternates between major and minor relatives, Kellner’s representation is the first to
order relative degrees in two concentric circles.

2.2.3 Key Relationships

In the previous block we have already suggested some posible relationships between
different modes and keys. We have noted the transfusion of chords from a major mod-
ality into its homonym minor key, for the purposes of tonal resolution. Two homonym
keys are said to be parallel, sharing the tonic (1̂), subdominant (4̂) and dominant (5̂)
degrees, while presenting differences in the other so-called modal degrees (e.g. C ma-
jor and C minor). These common elements, and specially the sharing of tonal centre,
make these keys perceptually related despite the amount of different tones in their
respective scales is apparent (4 degrees). Other common connection is established
between two keys that, although differing in tonic note, share the notes of their re-
spective diatonic sets. This relation occurs, for example, between the keys of C major
and A minor, whose respective modes (C ionian, A aeolian) are identical regarding their
pc-set {

3

024579}. These two keys are said to be relative to each other, and transitions
between them in the course of a musical piece are extremely common. Comparing
elements between pitch-class sets is a simple and effective method to assess the de-
gree of similarity or ‘closeness’ between two keys, relating their ‘diatonic distance’
with the number of common pitches between the two keys, as has been observed by
music theorists (e.g. Schoenberg, 1974; Lerdahl, 2001). Significantly for tonal har-
mony, keys sharing six-out-of-seven pitches are located a fifth apart, what establishes
a powerful connection between the tonal chords and the tonal regions of the dominant
and subdominant. Distance relationships between different keys, chords or pitches
have motivated the creation of various tonal spaces throughout the History of Music
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FIGURE 2.14: Sections of the regional circle, in Roman numerals and relative notation, expressing the
principal neighbouring relationships for major (left) and minor (right) keys.

(Lerdahl, 2001). The ‘circle of fifths’ or ‘regional circle’ is a well-know of such tonal
spaces, illustrating the relationships between relative and neighbouring keys. Fig-
ure 2.13 shows two of the first regional circles published, by Heinichen (1728) and
Kellner (1732). While previous representations showed an alternation of major and
minor keys (the first regional circle known is attributed to Diletzky, 1679) Kellner
seems to be the first to separate major and minor keys in two concentric circles.

A closer detail of the regional circle is presented in Figure 2.14, abstracted into relat-
ive notation for major (left) and minor (right) keys. In both cases, the most common
key relationships are represented in the respective figure. A major key is typically
related to its dominant, subdominant and minor relative (vi) regions. Alternatively,
minor keys mostly relate to their major relative ([III) and subdominant, although ex-
cursions to other neighbour regions are not uncommon. As a general principle, the
further two keys are in the circle of fifths, the further they are in terms of tonal simil-
arity, and inter-key distance can be simply measured by counting the number of fifths
between two tonics, as suggested above (Lerdahl, 2001).

Key relationships are essential to euroclassical tonal dynamics. In the course of a
piece, music typically evolves through various tonal regions, establishing temporary
deviations from the initial key. This process of digression from one key to another

Cmaj     Amin     Fmaj    Gmaj     Cmaj    Emin     Gmaj     Amaj    Dmaj  

C: I         vi         IV         V         I           iii        V
D: ii         IV         V          I

FIGURE 2.15: Simple modulation process using two pivotal chords (Gmaj, Emin) to proceed softly
from C major to D major.
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FIGURE 2.16: Hierarchical organisation of the constitutive elements of tonality. Pitches are the most
basic elements of tonality, arranged melodically and harmonically, to suggest a particular musical key. In
euroclassical tonality, the perception of a given key is mainly achieved with specific chord sequences and
cadences. Furthermore, the overarching impression of a governing tonality is reached through narrative
processes across various related key regions.

is called modulation, and it is arguably one of the most expressive devices in West-
ern classical music. Most typically, music modulates to neighbour keys, especially
to the dominant region (in major) and the relative major (in minor). Modulations can
be abrupt and surprisingly unexpected, however, it is frequent to prepare the ear for
the new key by means of a modulation process, consisting in a moment of temporary
—or analytical— ambivalence. This ambivalence is typically achieved by the use of
‘pivotal chords’, consisting of the common chord vocabulary of both departure and
arrival keys, thus providing fairly soft transitions. Furthermore, modulation processes
tend to culminate with a cadential process, reassuring the new tonal region. Fig-
ure 2.15 illustrates a simple modulation from C major to D major, two steps apart in
the circle of fifths. After establishing the key, the second half of the example initiates
a modulation process through chords that are common to both keys (pivotal chords
Emin and Gmaj), allowing a double interpretation of the fragment, until the unequi-
vocal new dominant chord (Amaj) appears in the second last bar, softly completing
the modulation to D major.

Up to this point, we have attempted to cover the very basic materials of tonality, from
an euroclassical music-theoretical perspective. We have seen how the division of the
octave into various interval patters creates different scales, and how from these scales
different chord vocabularies are obtained. We have also seen that chords are sequen-
tially organised to provide a sense of key, and that multiple keys are combined in the
course of a musical composition. In a proper sense, the notion of tonality, comprises
each and all of these layers of musical information, operating simultaneously in order
to convey a final sense of tonality, as suggested by the drawing in Figure 2.16. This
is at least the opinion of theorists like Schenker or Schoenberg (1974), who proposed
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that a musical composition embodies one single tonality, structurally articulated by
other secondary keys. Tonality, in this acceptation, appeals directly to the organ-
isation of large musical structures, controlling any of its constitutive elements in an
almost fractal metaphor.

2.3 Modal Practises in Popular Music

The description of euroclassical tonality provided in the previous block must be re-
garded as a practicable simplification of what is otherwise an extremely sophisticated
tradition. Our intention was to establish a common ground, upon which other tonal
practises —closer to and including our object of study— can be discussed and un-
derstood. Furthermore, this will help understanding some methodological decisions
regarding the design and evaluation of key-finding systems, as discussed in Chapters 3
and 4, respectively. In the following paragraphs, we describe tonal and modal aspects
in pop and rock music, to the extent that are deemed useful in developing subsequent
chapters, since tonality in EDM is more akin to these genres. Throughout this disser-
tation, we refer indistinctively to these musics with the agglutinating term ‘popular
music’, as it is common in scholar literature (e.g. Middleton, 1990; Moore, 2003;
Tagg, 2014). The term ‘popular music’ is a polysemic and somewhat polemic ac-
ceptation, which has been defined either in relation to the music publishing industry
(measured in terms of sale-rates and media presence) or to the essential class struggle,
theorised both from a top-down elitist view (“inferior music”, “music for the masses”)
and a bottom-up leftist populist standpoint (“music of the people”) (Middleton, 1990,
pp. 3–7). Throughout this dissertation, we use the term to define a musical ground
clearly differentiated from both the Western ‘written’ repertoire and traditional or
‘folk’ music, including pop and rock, but also other Western —and predominantly
anglophone— manifestations, such as soul, funk, reggae or metal. Given the focus
of this dissertation on electronic dance music, we have deliberately excluded it from
this category. This is, in the first place, a simple methodological decision, which will
allow us to differentiate EDM’s tonal practises from those present in other popular
music styles. However, this division is further grounded on two differential facts,
already discussed in the introductory section to EDM (1.2.1). On the one hand, the
essentially instrumental and accumulative nature of EDM contrasts with most popu-
lar music styles, which are predominantly sung and typically arranged into strophic
structures. On the other hand, EDM seems to impose new production, consumption
and distribution schemes, away from rock’s stardom system and the record-sale mar-
kets which are typically associated with some of the definitions of ‘popular music’
(Tagg, 1994; Middleton, 1990).
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aeolian [VI - [VII - i (A[maj - B[maj - Cmin)
mixolydian I - [VII - IV (Cmaj - B[maj - Fmaj)

ionian I - V - vi - IV (Cmaj - Gmaj - Amin - Fmaj)

FIGURE 2.17: Some common chord sequences in popular music, in Roman numeral notation and
rendered in C. The degrees selected, denote quite specifically a diatonic mode (from Moore, 1992).

2.3.1 The Extended Present

Popular music —in the restricted meaning that we have just suggested— is predom-
inantly sung, and the impositions of cyclical verse structures have had a definitive
role in shaping the essential formal layout of most popular musics. Regarding their
tonal construction, Moore (1992) remarks that the formally strophic nature of popu-
lar songs forced harmonic movement to be arranged as cyclical chord progressions,
returning to the initial chord at the beginning of each verse, in contrast with the tonal
linearity of euroclassical music (1992, p. 81). These cyclical sequences, typically
chord loops comprising three or four chords (Figure 2.17) are one of the most sali-
ent structural elements of popular music, and have been studied and taxonomised in
detail, according to modal and intervallic characteristics, by Moore (1992) and Tagg
(2014, pp. 401–455).

A related consequence of the verse-chorus alternating structure, together with the
repetitive nature of harmonic loops, separates further these musics from the euroclas-
sical tradition, where modulation is the main organiser of the musical flow. Contrarily,
modulation as a linear process is rare in popular music, and a great deal of the rep-
ertoire tends to remain in a single key for the whole song (as we statistically show in
Chapter 4.1). However, modulation is not alien to popular music styles, but it is nor-
mally performed differently. Although it is still common to use pivotal chords, new
tonal regions are normally not reassured via traditional cadential processes (Moore,
1995, p. 193). Besides, shifts to a different key without a previous preparation are
frequent in transitioning between verses and choruses. These shifts are typically as-
sociated with aspects of emotional pitch intensification (for example, by progressing
from a verse in minor into its relative major in the chorus), rather than to macro-
structural tonal-functional organisation (Doll, 2011, p. 3). A similar operation has
been described by Temperley (2011) as scalar shift, implying changes in the scalar
pattern (mode) throughout a song, while maintaining a common tonal centre. In this
sense, Moore has observed that an “important difference between modal and tonal is
the assumption of span. There seems to be no a priori reason why we should assume
that a mode operates throughout a song” (Moore, 2012, p. 71). A last example of
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I        ii     V/V     iii     V/vi     iv      IV       v       V       vi     V/ii     VII

I     or     i            II           III           IV           V           VI           VII

(a) Chromatic-minor

(b) Major

% % %

%

% %

FIGURE 2.18: (a) ‘Minor-chromatic’ and (b) ‘major’ palettes by Stephenson (2002). While the first
is a ‘majorisation’ of all the triads in an aeolian mode, his major mode is essentially a mixolydian with
additional chords borrowed from the parallel minor (iv, v) and neighbour keys as secondary dominants.

the intensional —rather than structural— role of key changes in rock is epitomised in
what Everett has denominated the “truck-driver’s modulation” (Everett, 2004, p. 14),
consisting in the successive modulation upwards by seconds, carrying no necessary
implication of return (also Moore, 1995, p. 193).

For this reasons, in opposition to the extensional design of euroclassical music, with
its supra-structural organisation around one single tonality, the musical experience of
songs is identified with intensional aesthetics, intimately linked with what Tagg has
denominated the extended present, “lasting roughly as long as it takes a human being
to breathe in and out, or the duration of a long exhalation, or of a few heartbeats, or of
enunciating a phrase or short sentence” (Tagg, 2012, p. 282), that is, corresponding to
the short-memory span that a regular listener holds for interpretive purposes, aligned
with harmonic loop repetitions, or the span of a verse or a chorus in a song.31

2.3.2 Rock Modality

Various sources provide different explanations regarding the formation of rock mod-
ality. For example, Everett (2004), considers up to six different tonal systems, tak-
ing into account principles of voice leading and harmonic structure. As a matter of
fact, the first approach he describes is that of (a) common-practise tonality, coex-
isting with other diverging approaches such as (b) diatonic modality, allegedly un-
der the influence of traditional music styles. His third category represents a state
of (c) relaxation of the principles of functional harmony and voice leading within the
realms of euroclassical or diatonic modality, whilst the fourth system comprises of (d)
musics evolving from the blues, radicalised in his fifth category, including (e) non-

31The differentiation between ‘intensional’ and ‘extensional’ comes from Chester (1970). Exten-
sional denotes musical developments over larger periods of time (e.g. a Sonata form) whereas inten-
sional characterises musical developments akin to repetition. See also (Tagg, 2014, pp. 356–257).
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ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1 3 32 4 5 6 6 77 1%
FIGURE 2.19: Rock’s ‘super-mode’ as proposed by Temperley (2001, pp. 258–264), as a combination
of the ionian pattern (white noteheads) with the characteristic degrees of flat-side rock’s common modes:
mixolydian, dorian and aeolian (in black). This results in an almost chromatic scale, with only [2̂ and
]4̂ missing.

functional harmonisations of the pentatonic scale. Last, Everett’s sixth system em-
braces other mainly chromatic practises, in which tonal centres progressively loose
their syntactical function. Stephenson (2002, pp. 88–96), alternatively, proposes a
threefold taxonomy, including aeolian harmony, a chromatic-minor system, which
comprises of major triads over the degrees of the aeolian scale, and an ‘extended’ ma-
jor mode, including major and minor triads over the degrees of the mixolydian scale,
illustrated in Figure 2.18.

From the various approaches to rock modality, Moore (1992, 1995, 2012) condenses
in simple terms the harmonic role of diatonic modes (principally ionian, mixolydian,
aeolian and dorian) in the conduction of the bass —whose notes are most likely in root
position— considering the diatonic chord types as irrelevant for the expression of the
mode (Moore, 2012, p. 73). This way, modal expression becomes an intermediate
ground between melodic and harmonic thinking, with vague reminiscences of the
parallel mixtures in the music of the French impressionists (e.g. Debussy), where the
chord types assume more of a ‘sounding’ quality, rather than ‘functional’. This view
is supported by the study on heavy metal harmony by Lilja (2009), who attributes a
major quality to all power chords (chords without thirds, only consisting of tonic and
fifth, thus neither major nor minor), reinforced by highly distorted guitar sounds.

In summary (1) chords on any scale degree are often of major type, or, in the case
of power chords, they tend to be perceived as such, given the reinforced harmonic
series of the root and its fifth (Lilja, 2009, p. 102–114). On the other hand, (2) the
root scale degrees tend to abandon ionian modality, favouring ‘flat-side’ modes, such
as mixolydian, dorian and aeolian, as supported by the various theoretical observa-
tions. Everett’s fifth system, for example, includes songs ‘harmonising’ the minor
pentatonic scale, with power chords or major triads. Similarly —from a ‘major-
centric’ perspective— the ‘supermode’ proposed by Temperley (2001, p. 258–264)
(Figure 2.19), represents an attempt to include the flattened degrees ([3̂, [6̂, [7̂) char-
acteristic of the modes into the ionian set, something that can be also interpreted as
a merge of the parallel major and natural minor modes. One important thing these
‘flattened’ modes have in common is the absence of the leading \7̂ degree, quintes-
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Cmaj   Gmaj   Dmaj   Amaj    Emaj

E:   VI        III        VII         IV           I% % %
FIGURE 2.20: Chord cycle of Jimmy Hendrix’s “Hey Joe”. This popular sequence contains various
characteristic features of rock modality.

sential to tonal functional harmony, as we have seen in the previous section. From
this follows that the V-I does not play such a primary role in popular music harmony,
superseded by subdominant relationships (Stephenson, 2002, p. 113). Consequently,
the minor harmonic scale, which was used to provide the aeolian with a leading tone,
is less common, insofar as the aeolian mode stands as popular music’s minor modal-
ity par excellence. Figure 2.20 presents the six-chord sequence of Jimmy Hendrix’s
“Hey Joe”, which illustrates some of the common traits of rock modality: (1) the root
notes come from the E aeolian mode (although they can be ambiguously seen as the C
pentatonic scale {cdega}); (2) all the chords played are major (and originally distor-
ted) and (3) the sequence presents a ‘round of subdominants’ proceeding clockwise
in the circle of fifths towards Emaj.

All of the theories presented suggest that the euroclassical distinction between major
and minor modality in popular music is, to say the least, questionable, and this fact
should be acknowledged in key-recognition systems, as we will address in the follow-
ing chapter. However, authors coincide that the type of modality just discussed is just
one of the ‘possibilities’ of popular music harmony, coexisting with more normative
euroclassical harmony as well as with blues-based influences.

2.3.3 Blues, Pentatonicism and Dominant Seventh Chords

The influence of blues patterns in popular musical styles has been acknowledged by
most authors writing on popular music harmony. However, its influence is particularly
noticeable in the formation of rock‘n’roll, blues-rock and early metal genres (Lilja,
2009, pp. 30–35).

Blues is typically expressed over the minor pentatonic scale, although, as in other folk
and world musics, it is often embellished with additional notes, falling out of the scale
and of the well-tempered system. Figure 2.21 shows, in white noteheads, the scale of
C minor pentatonic, presenting an intervalic pattern that avoids semitones (removing
the differences between the three ‘minor’ modes, aeolian, dorian and phrygian, laying
on the second and sixth degrees). Black noteheads, and especially ]4̂, represent the
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ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ1 3 3 4 5 74 7 1<
FIGURE 2.21: Minor pentatonic scale (white notehead) with additional blue-notes.

so-called blue notes, idiomatic passing notes recurrent in melodic patterns and riffs.
The other two blue notes, (\3̂ and (\7̂) are normally present in the harmonic structure,
typically a idiosyncratic sequence involving major chords I, IV and V. As a matter
of fact, blues harmony is more commonly conveyed with ‘dominant-seventh’ chord
types, four-note sets originally appearing over the fifth degree of the ionian scale (or
the first mixolydian degree).

Up to this point, we managed to organise our explanation without the need to dis-
cuss new chord types, since both euroclassical music and rock are essentially triadic.
However, other musical genres, like jazz, use of ‘embellished’ chords to define its
characteristic harmonic sound, influenced by the language of French impressionists,
tin-pan alley and blues alike. These ‘new’ chords are typically obtained by simply
piling up more thirds together, according to the same constructive principles of tri-
adic tertian harmony, obtaining chords of four, five and more notes that add their
characteristic ‘colours’ to the triads.

Figure 2.22 illustrates some of these tertian constructions, typically named after the
interval between the root and the highest note in the stack of thirds. On the left (a),
the tetrads Cmaj7 and G7 are shown, as a result of piling up four consecutive thirds
upon the roots of the C ionian collection. Note that their intervallic pattern differs
slightly: the first, indicates a major seventh interval from the root (maj7), whereas the
single ‘7’ implies a ‘minor (dominant) seventh’. Similarly, (b) Amin9, and Dmin9 are
five-note chords built with the notes of the diatonic collection. Naturally, these exten-
ded chords are used in other musical besides jazz. The min9 chord, for example is the
most common pc-set in house music, as we will see in Chapter 5 However, domin-
ant sevenths are particularly abused throughout most tonal styles, from euroclassical
music to blues, where it stands as the basic chord type in most traditional sequences,
involving I7, IV7 and V7, although freed from their dominant tonal functions. These
7th chords, instead, can be seen as the ‘consonant’ continuation of power chords and
major triads, aligning with the acoustic properties of the root’s harmonic series (Lilja,
2009, p. 135). Figure 2.22c shows yet another common type in blues-rock, a C7]9,
representing the fertile coexistence of melodic minor pentatonicism (]9̂ ≈ [3̂) over
major/dominant harmonies.
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Cmaj7     G7     Dmin9   Amin9

aeolian: iv9         i9     
ionian:  ii9          vi9     

ionian: Imaj7      V7 I7#9

C7#9
(a) (b) (c)

FIGURE 2.22: Typical chords containing more than three notes, namely ‘sevenths’ and ‘ninths.’

2.3.4 Modal Ambivalence

Modal harmony is prone to naturally introduce musical ambivalence, promoted by the
rotational nature of the modal system (remember that C ionian, D dorian, G mixoly-
dian and A aeolian share the same pitch-class set). This peculiarity, together with the
absence of dominant-tonic cadences in the normative sense, calls for other strategies
for in establishing a possibly ambiguous tonal centre. The main perceptual marks
for the disambiguation of the tonic are typically provided by the alignment of tonic
chords with hypermetrically strong positions32 together with other aspects such as
persistence (length) and laterality (initial/final chords) (Moore, 2012, p. 75). Fig-
ure 2.23 presents three different chord progressions, obtained by rotation of the same
chord sequence. In these examples, the disambiguation factor between the perceived
tonics are mainly attributed to the metrical arrangement of the chords in each pro-
gression. Tagg (2014, pp. 421–450) has generalised a similar type of ambivalence as
‘bimodal reversibility’, an operation by which the same sequence can be heard in two
modes simultaneously, especially between ionian-mixolydian and aeolian-phrygian.
Other typical bimodal sequences by nature are often found among so-called harmonic
shuttles, consisting in an ongoing oscillation between two chords of similar duration,
in which cases, the preference of a tonic chord over the other might become a totally
irrelevant issue. In addition to this, some traditional music styles present a particular
musical interaction that can not be univocally perceived from a single tonal centre,
but as a shared tonicality by two chords in the same progression. These bimodal
sequences (a term coined by Vega (1944), according to Tagg, 2014, p. 436), thus con-
vey a sense of ‘horizontal’ tonical ambivalence as the validation of two tonal centres
in relation to the same scalar material, rather than as the simultaneous operation of
different tonics that the notion of polytonality implies. This type of bimodality is es-
pecially frequent between relative keys (I/vi or i/[III), and is common in traditional
musics from Ecuador, Cuba or Argentina (Béhague & Schechter, 2012; Tagg, 2014).

32A hypermeter can be thought of as a ‘measure of measures’, normally grouping blocks of four bars,
as a continuation of the metrical hierarchy of the 4/4 time signature (Stephenson, 2002, pp. 56–60).
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(a) ionian: |: I | | IV | V :| (Cmaj - Fmaj - Gmaj)
(b) mixolydian: |: I | | IV | [VII :| (Gmaj - Cmaj - Fmaj)
(c) ‘major’ |: I | II | V | I :| (Fmaj - Gmaj - Cmaj - Fmaj)

FIGURE 2.23: Possibly ambiguous chord loops in ionian, mixolydian and Stephenson’s ‘major’ palette,
obtained by rotation of the same chord sequence. The original sequences have been transposed so that
they present the same chords. The chord sequences belong to (a) The Beatles, “Here Comes The Sun”,
(b) The Kinks, “Lola” and (c) “Mr. Spaceman” by The Byrds. Harmonic patterns are taken from Moore
(1992).

Yet another source of tonal ambiguity comes from the so-called ‘harmonic-melodic
divorce’, by which the harmonic sequence and the melodic expression do not neces-
sarily express the same modality, as a relaxation of the melodic expression with regard
to the harmonic structure (Stephenson, 2002; Moore, 1995; Temperley, 2007b). As
we have seen, this could be effect of power-chord metal structures, major harmonisa-
tions over aeolian patterns or the minor/dominant interaction in blues-derived styles.
This is the case, for example, in Led Zeppelin’s “Whole Lotta Love”, annotated in the
corpus by Temperley & De Clercq (2013), which will be discussed in Chapter 4. The
tonal centre of the song is clearly E. However, authors annotate the tonic chord differ-
ently as Emaj and Emin. In my humble opinion, the actual tonic chord is a thirdless
power chord. And this is exactly the point. As listeners, we could be more inclined
towards the ‘major quality’ implied by the harmonic series of E5, according to Lilja’s
thesis (the instrumentation is, after all, a distorted electric guitar). Or perhaps, we
perceive more prominently the minor pentatonicism suggested by the riff (or is it
mixolydian?). We can also follow the vocal melody, where g] (3̂) appears often, al-
though sometimes considerably lowered as to be perceived closer to a g\ ([3̂). Or after
all, we would be better accepting the multi-faceted and ambivalent nature of rock’s
modality, with influences as diverse as euroclassical tonality, folk-song modality and
blues pentatonicism, in an otherwise extremely unique form of tonal organisation.

2.4 Pitch and Tonality in EDM

As stated in Section 2.3, throughout this thesis we treat EDM as a musical genre
differentiated from other popular music styles, mainly for methodological reasons.
However, yet another indicator of its ‘different’ nature could be given by the visible
isolation of the topic in popular music theory. As Doehring observes, musicological
analysis has contributed far less to the study of EDM than other disciplines, arguing
that EDM falls out of the reach of musicological enquiry, because it “cannot claim
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to be accepted by the dominant definition of music” (2015, p. 134). This fact is
only worsened by the lack of scores, common instruments, symbolic compositional
operations and widespread record circulation.33

In any case, the most comprehensive musicological studies address aspects of rhythm
and meter (Butler, 2006; Danielsen, 2010), since they are doubtlessly the most prom-
inent elements in EDM. Formal aspects have been covered by Spicer (2004), Garcia
(2005) and Solberg (2014); and a few publications have attempted the analysis of
complete tracks, raising specific methodological questions (Ratcliffe, 2013; Doehring,
2015), and presenting timid considerations of melodic and harmonic features, in re-
lation to other sonic, technological and procedural aspects (Ratcliffe, 2013, sec. 6).
Therefore, most references to tonal habits in EDM are inserted incidentally in works
addressing other musical aspects. For example, in analysing Andrés’s “New For U”,
a successful 2012 house track, Doehring observes that

“most of the chords have alterations we know from a lot of styles of popular
music. The main theme [...] is a pentatonic scale on A minor that starts over a
Dmin, which thus becomes a Dmin9.” (Doehring, 2015 p. 144)

Similarly, Ratcliffe writes in a similarly descriptive prose about “Chimes” by Orbital,

“This material appears to have been constructed using a technique common to
Detroit techno and early forms of EDM, whereby a sampled chord is assigned
to the notes of a keyboard and then played/sequenced as melodic material.”
(Ratcliffe, 2013 s. 6)

These two fragments, certainly suggest a deliberate compositional working of har-
monic aspects, either associated with previous musical styles in the case of Doehring,
or to particular techniques characteristic of certain EDM genres in the text by Ratcliffe.
In a similar vein, in one of the first publications drawing attention towards electronic
dance music, Tagg (1994) devotes a paragraph to describing 1990’s rave music in
terms of its tonal idiosyncrasies. Tagg does not ascribe a prominent role to the bass
layer, describing bass riffs as simple, made of repeating “notes under the overlying
chord (usually a triad) or cycling stepwise round it.” However, he concedes some
relevance to the harmonic-filler, which normally consists of power chords or triads
without extensions, played as syncopated stabs, with piano-like envelopes. Although
this characterisation is not generalisable to other types of EDM, Tagg observes that,

33As Doehring himself points out, most EDM music is released in vinyl and published in short batches
of around 200 copies, to be normally distributed among DJ’s, and therefore hardly accessible for the
regular audience or the scholar.
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“The tonal language of rave music also shows some interesting traits. Whereas
‘R&B dance’ uses a lot of disco’s major and minor seventh sonorities and
whereas ‘dance rap’ sticks to the basically percussive backing tracks of rap mu-
sic in general, European and North-American techno-rave seems to go in a big
way for the Aeolian and Phrygian modes, not as harmonic padding for blues
pentatonicism, but as straight sets of minor mode triads or bare fifths without
much trace of a seventh, let alone ninth, eleven or thirteenth. [...] No interna-
tionally popular music of this century has shown such a leaning towards these
modes.” (Tagg, 1994 p. 215)

With his description, Tagg locates techno’s tonal language in a unique position, not
only with regard to the house music described by Doehring, but also with regard to all
other Western major popular styles, expressing a perceptible fascination for the abuse
of phrygian modality in techno-rave music. A similar observation is generalised in
the following comment by Spicer:

“An emphasis on dissonant tritone and semitonal relationships seems to be a
characteristic of the harmonic language of many techno tracks: for example,
also on Music for the Jilted Generation, Prodigy build the main groove of
their ‘Full throttle’ around another oscillating two-chord vamp, I-[II, featuring
phrygian mixture. (Spicer, 2004 p. 54)

Whether this is characteristic of techno, truth is that we do not know about the
sources that Spicer considered to make his claim (that techno emphasises tritone and
semitonal relationships). On another track by Prodigy, Spicer continues,

“While “Break and enter” is most definitely in G], this tonality is by no means
projected in a conventional manner. [...] The first two of the pitched riffs illus-
trate the oscillating two-chord vamp that governs most of the main body of the
track: a G]min7 chord moving to a tritone-related Dmaj triad [...] suggesting
instead a kind of locrian mixture wherein the dominant chord is build on the
lowered fifth scale degree.” (Spicer, 2004 p. 54)

Yet, in the following page, Spicer acknowledges a sense of “conflicting modality, for
example, G] aeolian against G] locrian” (2004, p. 55), which seems to call for the term
polyscalarity (Tymoczko, 2002) that we had introduced in Section 2.2.1.

These various comments make reference to popular music harmonic language, vari-
ous chord types, melodic-harmonic interaction, particular scales and even, polytonal-
ity. After all, it seems natural that the heterogeneity of EDM incorporates a wide vari-
ety of approaches, from the most conservative loans from other musical styles, such
as jazz, soul and even euroclassical music —EDM is appropriative by definition— to
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more adventurous and ‘unique’ configurations. However, the excerpted quotations do
not clarify much about tonality in EDM. First, most of them are expressed incident-
ally in works covering other aspects. Furthermore, with the exception of Tagg and
Spicer’s generalisations, all other observations correspond to individual analyses, and
no author has claimed any prescriptive meaning for their descriptions.

2.4.1 A New Tonal Framework

Wooller & Brown (2008) have already signalled that musicological analysis might
have overlooked the significance of tonality in EDM. They acknowledge that limita-
tions of the analytical power of traditional methods might have concealed potentially
novel practises, claiming that tonality is an important creative parameter in EDM,
when conceived and observed in more open-ended terms.

For example, they detect that EDM tracks sometimes convey an apparent lack of tonic
(“atonicity”), and that tonal ambiguity and the coexistence of non-tonal voices with
tonal layers are common territories, although in most scenarios, the recognise a clear
tonic and modality, typically pentatonic, minor or mixolydian (2008, p. 93).

However, their most interesting contribution, is a conceptual framework to think of
tonality in a more open ended way, characterising tonal practises in EDM by describing
the horizontal and vertical interactions of pitched materials, for which they define four
different tonal attributes, providing an ample list of examples within their paper.

1. The rate of tonal change (TC) relates to the amount of activity across the tonal
layers. At one extreme of this attribute the music consists on a one-tone drone
or a reduced pitch-class set that does not change over time, whereas the other
end represents mostly atonical music (i.e. music in which it is difficult to find a
sense of tonal centre; Wooller & Brown call this “atonicity”).

2. The concept of tonal stability (TS) is related to the notions of tonal implication
and tonal ambiguity proposed by Temperley (2007c) referring to the strength
of the tonic feel (what we have defined elsewhere as tonicality) as much as to
the recognisability of specific modes or scales.

3. The pitch-to-noise ratio (PNR) attribute intends to establish a bridge between
the timbral predominance of most edm with the potential tonal information car-
ried within. With this descriptor, Wooller & Brown are able to differentiate
between tracks that consist only of noisy, untuned and/or distorted sound ma-
terials at one end, and tracks with pure sinusoidal tones on the other.
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4. Last, the number of independent pitch streams (IPS) refers to the counterpointal
density of the music, as identifiable voices operating independently and simul-
taneously.

Other authors like Ratcliffe (2013) seem to adhere to this analytical framework to
observe tonal interaction within EDM tracks. However, its open-endedness, although
an extremely useful departure point, does not target specific traces, as they could be
used, for example, in an automatic key estimation system. In any case, this proposed
framework seems to break with the reductionistic explanations found in the literature,
as much as other preconceptions inherited from either euroclassical tonality or rock
modality. However, this apparent openness is somehow contradicted by the prolifera-
tion of software offering automatic key analysis for DJ’s (some of which are described
and evaluated in Chapter 4.3), invariably based in the euroclassical binary dichotomy,
especially supported by a well-known mixing technique, as we discuss in the next
block.

2.4.2 Harmonic Mixing

DJ mixing can be seen both in terms of simultaneity, (by layering diverse sound
sources together to create a new whole) and progression, that is, the sequential ar-
rangement of different musical moments in order to create an engaging experience
throughout the DJ set. The notion of harmonic mixing originates in the second one, as
a conceptual extension of the practice of beat-matching between consecutive records
in a set, in order to guarantee soft transitions between tracks. Analogously, choos-
ing tracks with tonally related keys seems to smooth the transition between them,
supporting the ideal of an uninterrupted DJ set.

Companies like Mixed in Key34 —the industry standard in key detection software—
have developed a didactic —and marketable— narrative around the craft of harmonic
mixing, proposing the so-called Camelot Wheel shown in Figure 2.24, a colourful re-
working of Kellner’s regional chart from 1737 (compare it with Figure 2.13), labelled
‘by the hours’ rather than by chroma names, since there are twelve potential tonal
centres, just as there are 12 hours.

As we have seen in Section 2.2.3, the circle of fifths is a music theoretical construct
that arranges musical keys in intervals of fifths. In the equal-tempered system, this
circle assumes enharmonic equivalence (f] ≡ g[), so that adding twelve consecutive
fifths leads back to the initial pitch, completing the chromatic circle. The importance
of this arrangement is that keys one fifth apart share most of their diatonic scale, as

34http://www.mixedinkey.com/

http://www.mixedinkey.com/
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FIGURE 2.24: The so-called Camelot Wheel, a double circle of fifths arranged with hour labels, de-
signed to simplify harmonic mixing (compare with Figure 2.13).

we have seen, with six shared tones between neighbouring regions, what has been
proven to be correlated with perceptual similarity Krumhansl (1990); Lerdahl (2001)
and had a great influence in the development of modulation as a discursive technique
in euroclassical music. In the Camelot Wheel, major keys (labelled with a B) are
represented in the outer circle, whereas the minor relative keys (labelled with an A)
are depicted along the same radius, in the inner circle. ‘Time differences’ between
keys represent their relatedness.

The marketable didactics of the Camelot Wheel spread in websites35,36 and publica-
tions (Vorobyev & Coomes, 2012) where tips and tricks are published to underline the
importance of a well, harmonically aware, mix. For example, they advise beginners to
start of by mixing tracks with the same number (8A and 8B, parallel keys) or moving
one ‘hour’ in either direction in the circle (neighbouring keys).37 For an energy boost,
they advise to turn ‘two hours clockwise’ (ascending tone change)38 or mix the keys
of the tonic and mediant (I, iii) “diagonally on the wheel from 8B to 9A” or vice versa
(Vorobyev & Coomes, 2012).

35http://harmonic-mixing.com
36http://camelotsound.com/
37http://harmonic-mixing.com/HowTo.aspx
38http://harmonic-mixing.com/EnergyBoostMixing.aspx

http://harmonic-mixing.com
http://camelotsound.com/
http://harmonic-mixing.com/HowTo.aspx
http://harmonic-mixing.com/EnergyBoostMixing.aspx
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Recently, harmonic mixing has attracted attention in the MIR field, and the last couple
of years have seen publications addressing harmonic mixing from psychoacoustic per-
spectives. For example, Gebhardt et al. (2015, 2016) measure the perceptual rough-
ness to determine the compatibility between two different tracks, whereas Bernardes
et al. (2017a) proposed a metric that uses inter-key distance and sensory consonance,
integrated in a visualisation tool to guide users in their mixes. However, in the light
of Wooller & Brown (2008) considerations, the binary division into major an minor
modalities, promoted by harmonic mixing technologies, seems, to say the least, in-
appropriate for some EDM subgenres. Furthermore, if the assumption that most EDM

is essentially minor, as suggested by statistical studies of popular music (Schellen-
berg & Von Scheve, 2012), but especially, by the figures that will be provided in
Chapter 4, a finer differentiation into phrygian and aeolian modes could become use-
ful for tonal characterisation in EDM. On the other hand, monotonic or difficult tracks
might as well be better characterised just by considering the tonic note, as proposed
by Temperley & De Clercq (2013) for rock music, potentially identifying practises
with varying rates of tonal change.

***

In this chapter, we have presented the basic workings of tonality, from its consolida-
tion during the Common Practise Era to more recent tonal developments in Western
popular music. We have also shown that there has not been much research regard-
ing tonality in EDM, probably (un)motivated by the general belief that pitch is either
structurally unimportant or a mere appropriation from other musical styles, including
pop, jazz and euroclassical music. However, the analytical framework proposed by
Wooller & Brown (2008) suggests that there might be genuine tonal practises in EDM,
but they require be examined under a different light. In this sense, we would like to
recall what it was said in Section 2.2.1: If we consider tonality in any of the restricted
meanings that we have discussed in this chapter, we will possibly be blinded before
any attempt of discovery. On the contrary, if we regard the term ‘tonal’ as a laboratory
in which all ‘music made with tones’ can be conceptualised and understood, we are
likely to be surprised with some tonal configurations found in EDM. But before we
reach that stage in Chapter 5, the next two chapters introduce relevant background in
MIR, addressing the topic of computational key estimation and other related method-
ological aspects.





Chapter 3
Tonality and Computers

“Like our bodies and like our desires,
the machines we have devised are possessed

of a heart which is slowly reduced to embers.”

W. G. Sebald, The Rings of Saturn (1995)

The main goal of this chapter is to delineate the scientific terrain over which we have
grounded our computational approaches to studying tonality in EDM. As explained
in Chapter 2, tonality has been a principal actor in most Western musical practices,
including euroclassical, jazz and most types of popular music. Quite naturally, this
predominance has been mirrored in the interest of the scientific community, address-
ing the study of tonal aspects from a variety of disciplines, including cognitive psy-
chology, artificial intelligence and information science. In particular, the challenge of
computational key estimation from audio, has motivated abundant research in the MIR

domain, which is exceptionally condensed in two doctoral dissertations specifically
addressing the topic (Gómez, 2006a; Noland, 2009).

Gómez (2006a) starts her discussion with an extended review of literature related to
tonal induction and symbolic key finding, before describing various approaches in
the audio domain, broadly grouped into transcription-based and pitch-distributional,
and respectively dissected in a bottom-up fashion. Additionally, Gómez presents an
interesting report on the various adaptations of theoretical profiles to operating in
the audio domain. On the other hand, Noland (2009) organises her report around
a taxonomy of tonality models used in various key estimation algorithms, dividing
her narrative into (a) psychoacoustic models, (b) tonal hierarchies, (c) pitch spaces,
(d) preference-rule systems and (e) machine learning approaches. Furthermore, No-
land presents a comparison of low-level signal processing methods, and analyses the
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benefits and shortcomings of the chromagram as as pitch-class summarisation rep-
resentation. Consequently, we have tried to organise this chapter in ways that could
complement the detailed reviews in the mentioned works.

In the following section we start by succinctly discussing the role of tonal hierarch-
ies in tonality induction —the cognitive processes involved in key determination—
upon which an important number of key finding algorithms has been grounded. We
continue discussing some early methods of key finding in Section 3.2, developed in
close connection with the cognitive hypotheses presented, and operating on symbolic
representations of music, and devote the last section of this chapter (3.3) to review
relevant key estimation algorithms in the audio domain.

However, we recall that the main aim of this research is the adaptation of existing
models of tonality estimation based on music-theoretical inspection of EDM, which
seems to present unique tonal characteristics unseen in other musical styles. Accord-
ingly, the descriptions contained herein are intentionally directed towards aspects that
will become useful in the achievement of our goals.

3.1 Tonal Hierarchies and Pitch Distributions

“Results of psychological studies indicate that Western listeners, even those
without formal instruction, have extensive knowledge of typical tonal and har-
monic patterns. However, contrary to traditional assumptions, at least some as-
pects of this knowledge are acquired without extensive experience and training.”
(Krumhansl, 2004 p. 266.)

The process of key determination seems to be a faculty that most listeners are reas-
onably capable of, as the quote by Krumhansl suggests. It is commonly accepted that
humans induce tonal aspects from a musical stimuli based on previously acquired
tonal hierarchies. Although the details regarding the hierarchical organisation differ,
evidence of tonal hierarchisation has been found across different cultures and differ-
ent musical habits. Furthermore, according to Krumhansl & Cuddy (2010), tonal hier-
archies (a) are musical ‘facts’ that characterise different musical styles, (b) represent
statistically significant patterns of the music they relate to, and (b) have a psycholo-
gical reality.

Krumhansl’s series of ‘probe tone’ experiments stand amongst the first experimental
evidences of the existence of tonal hierarchies. The essence of the probe tone ex-
perimental method is to present a subject with a musical context (normally a scale,
a melody or a chord sequence), asking her to rate the suitability of a proposed con-
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FIGURE 3.1: Major and minor probe tone profiles by Krumhansl & Kessler (1982).

tinuation to the initial context. Using the probe tone method, Krumhansl and collab-
orators have studied aspects such as tonal completion (Krumhansl & Shepard, 1979)
and tonal context (Krumhansl & Kessler, 1982), over which further study relating
tonal hierarchies with inter-key distance, tonal consonance or musical memory has
been grounded. A good summary of this body of research can be found in Krumhansl
(1990).

Figure 3.1 shows the contextual probe tone ratings from Krumhansl & Kessler (1982),
in which subjects were asked to rate, in a scale from 1 to 7, the appropriateness of
a proposed tone within a predefined tonal context. Although they conducted their
experiments in the tonal region of C, they claim that experimental results revealed
that these findings can be extrapolated to any other tonal centre, and accordingly,
figures throughout this manuscript tend to represent relative scale degrees rather than
specific chroma’s.

Krumhansl & Kessler’s profiles (KK) present intriguing correlations both with music
theoretic observations and statistical descriptions of several musical corpora (Krum-
hansl, 1990, pp. 66–75). In these key profiles, the tonic note stands as the most im-
portant degree, after which the tonic triads of the respective modes appear. This tonal
hierarchy is followed by the respective scale degrees, whereas the chromatic steps are
situated at the bottom. This hierarchical division of musical pitch in relation to a tonal
centre is of great importance in music cognition, and draws from Meyer’s observa-
tion that humans develop their appreciation of musical style as statistical processes
through listening to music (1957). Similarly, Krumhansl argues that “tonal hierarch-
ies might be acquired through experience with the musical style, particularly through
internalizing the relative frequencies and durations with which tones are sounded”
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tonic: 1̂
diad: 1̂ 5̂
triad: 1̂ 3̂ 5̂

modal: 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂
chromatic: 1̂ ]1̂/[2̂ 2̂ ]2̂/[3̂ 3̂ 4̂ ]4̂/[5̂ 5̂ ]5̂/[6̂ 6̂ ]6̂/[7̂ 7̂

FIGURE 3.2: Lerdahl’s major ‘basic tonal space’ establishes a five-level hierarchy of pitch-classes
given a tonal centre. (1988, p. 321)

(1990, p. 77). Therefore, according to Krumhansl’s theory, we determine the key of a
musical segment through a process of pattern matching between previously acquired
tonal hierarchies and the particular pitch distribution of a given musical piece.

From a music-theoretical perspective, Lerdahl (1988) studied the relationship between
single pitches, chords, and keys with an algebraic model —in contrast with most
‘geometrical’ tonal spaces— of which the simplest representation is the ‘basic tonal
space’ shown in Figure 3.2. Lerdahl’s basic space establishes a five-level hierarchy
for all pitch-classes given a tonal centre. The five levels correspond with progress-
ively fainter indicators of tonal context, as represented by the (a) tonic note, (b) tonic
diad (power chord), and (c) tonic triad, the (d) diatonic set, and finally, the (e) chro-
matic collection. Lerdahl himself points at the remarkable correspondences of his
theoretical model and to Krumhansl & Kessler’s experimental profiles (1988, p. 338).

In a similar vein, the ‘Spiral Array’ proposed by Chew (2000) explicitly attempts to
incorporate the multi-levelled structure of tonality, representing pitches, chords and
key relationships in a unified geometrical space. In simple terms, Chew’s Spiral Array
is an extension of the tonnetz, a planar representation of key and chord relationships
dating back to Euler’s times, and re-signified by Riemann (1903) to express chord and
key relationships in tonal functional harmony. In Chew’s model, the circle of fifths
proceeds linearly along an ascending helix, while major thirds appear at the vertical
alignment of pitch nodes. These basic intervalic relationships allow Chew to identify
chord types with various planar configurations between pitch nodes, and, similarly,
to associate specific keys to the distance-minimising point between its main chordal
surfaces (i.e. tonic, dominant and subdominant), as represented in Figure 3.3. Besides
its theoretical interest, Chew’s spiral model has been used in the context of key finding
algorithms, both in symbolic (Chew, 2000, pp. 99–106) and audio domains Chuan &
Chew (2005b).
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FIGURE 3.3: Simple tonnetz plane (top-left) representing major-third and perfect-fifth intervals along
its axes. All other representations correspond to structures in the Spiral Array: translation of the tonnetz
space (bottom-left), and pitch-chord-key distance relationships for major (top-right) and minor (bottom-
right) modalities (Chew, 2000).

3.2 Symbolic Approaches to Key Identification

In this section we discuss key estimation methods which operate over symbolic rep-
resentations of music, typically MIDI files, providing encoded sequences of pitch
heights and durations, as shown in Figure 3.4. However, pitch-event representa-
tions do not necessarily imply the recognition of higher-level musical objects, such
as chords and their progression, not to mention a sense of tonicality suggested to a
particular listener.39 The psychological reality of these higher-level structures is one
of the aspects that symbolic approaches to key determination seek to illuminate. As a
matter of fact, the essence of tonal analysis —from music cognition to musicological
enquiry— resides in unveiling the relationships between decontextualised collections
of objects (pitches, aggregates, sequences) providing them with a meaningful explan-

39Although musical scores do write a key signature at the beginning of the staff, this has little effect
on the actual perception of tonality, simply serving as a ‘deciphering’ code (i.e. ‘key’ in its original
acceptation) of the note symbols.
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FIGURE 3.4: Symbolic representations of the first fugue subject from J.S. Bach’s Well Tempered
Clavier, in Western musical notation (above) and in a ‘piano-roll’ view (below), showing the height
and duration of MIDI events.

ation at some level. Formalising these enquiries into computer programs has proven
fruitful in elucidating problems across several domains, from musicological questions
about style (e.g. Cope, 1991) to cognitive research about our perception of music (e.g.
Krumhansl, 1990; Temperley, 2001).

3.2.1 Some Early Methods

A number of early rule-based approaches have been proposed, originating in mul-
tidisciplinary studies in the fields of music psychology and artificial intelligence. For
example, Longuet-Higgins and Steedman (1971, cited in Temperley, 2007a, p. 51)
proposed a method to estimate the key on monophonic melodies, in the contexts of
ionian and minor-harmonic scalar patterns. Their algorithm operates sequentially and
on an event basis, discarding the keys not accounting for the totality of the pitches
in the melody at each new step. This system appeals to a second rule in case the
algorithm runs out of possibilities (e.g. if a modulation introduces chromatic tones)
or there is more than one choice left (i.e. the melody consists of less than seven pitch
classes), by looking at the first note to infer the key from it. Holtzman provided a sim-
ilar algorithm, by observing basic tonal marks, such as the presence of the elements
of the tonic triad; and Chafe et al. focused on melodic and rhythmic accents to detect
tonal cues at important metrical positions (1977, cited in Krumhansl, 1990, p. 77).

3.2.2 Pattern-Matching Algorithms

As an attempt to assess tonality induction, Krumhansl and Schmuckler (Krumhansl,
1990, pp.77–81) modelled a key-finding algorithm mimicking the pattern matching
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process between learnt tonal hierarchies and a musical stimuli. In their algorithm,
they measure the total duration of each pitch class in an observed segment, creating
a twelve-dimensional vector comparable to the probe tone ratings by Krumhansl &
Kessler. The obtained distribution (sometimes referred to as ‘input vector’) is then
compared pairwise with the major and minor experimental profiles, rotated to the
12 possible pitch classes. This comparison is computed as the Pearson correlation
coefficient r,

r =

∑n−1
i=0 (xi − x)(yi − y)√∑n−1

i=0 (xy − x)2
∑n−1

i=0 (yi − y)2
(3.1)

where x and y represent the sample mean of each vector,

x =
1

n

n−1∑
i=0

xi (3.2)

providing a single value in the range between −1 and 1, where a result of 1 identifies
the two profiles as identical, and −1 implies that profiles are exactly opposite. The
highest correlation value from the 24 measures obtained is taken as the key of the
fragment.

This ‘template-matching’ approach, is still regarded as of the most successful meth-
ods for key identification, and has been implemented in both symbolic- and audio-
processing scenarios with a number of variations. Temperley (1999) proposed a few
improvements over the Krumhansl-Schmuckler (KS) method, including adjustments
in the profile ratings, the correlation method, and the input-vector calculation, en-
abling the assessment of tonal evolution over time —thus potentially detecting mod-
ulations. Temperley proposes a few corrections in the original ratings, “arrived at
by a mixture of theoretical reasoning and trial and error” (1999, p. 74). In Temper-
ley’s opinion, the new profiles provide a more faithful account of pitch distributions
in euroclassical music by treating chromatic and non-modal degrees equally in both
modes, by shifting the prominence of the aeolian [7̂ towards the leading-tone from the
minor harmonic scale (\7̂), according to euroclassical normative practice (Figure 3.5).
However, Krumhansl describes the subjects of her experiment as “university students
of diverse musical backgrounds” (1990, p. 21), what might explain the coexistence of
both lowered and natural sevenths in the experimental profiles, likely denoting a the
subjects exposure to all sorts of popular music styles, besides euroclassical music.

Furthermore, during his revision of the rating profiles, Temperley (1999) proposed
other modifications. For example, he observes that the Pearson correlation formula
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FIGURE 3.5: Modification of Krumhansl & Kessler’s key profiles by Temperley (1999). Note that the
values for chromatic and non-modal degrees are treated equally in major and minor profiles, and that [7̂
has the lowest weight of all twelve degrees, below [2̂ and ]4̂.

can be substituted by the dot product
∑

xy, slightly simplifying the process. He ar-
gues that normalising both vectors for their mean and variance has no effect in the
result, since the input-vector is the same for al 24 keys, although he acknowledges
that normalising both key profiles might avoid biases towards one or other modal-
ity. However, of more relevance is the proposed alternative to the durational weights
imposed by Krumhansl and Schmuckler. Instead, Temperley divides the musical
stream into shorter segments, creating an activation ‘flat’ profile with the pitch classes
present on each segment —acknowledging ‘inspiration’ from the previous model by
Longuet-Higgins & Steedman. An argument supporting this “flat-input/weighted-
profile” given the short analysis segments, is that the fewer the pitches, the more
likely they will fall on stable tonal degrees, as represented by the hierarchies encoded
in the profiles, or otherwise, they might indicate a modulation, i.e., a change in the
hierarchy. However, to prevent an excessive jitter in the output of the algorithm, Tem-
perley imposes a penalty when keys differ between consecutive segments, mimicking
the perceptual inertia of remaining in the same key until there is enough evidence of
an actual key change.

The various methodologies presented so far were directed towards euroclassical mu-
sic. More exactly, all the models discussed addressed short melodic fragments, and
were evaluated using the 48 fugue subjects from J. S. Bach’s Well-Tempered Clavier,
one of the foundational works of euroclassical tonality. This is probably one of the
motivations behind Temperley’s critique of KK’s aeolian-biased minor profile. In a
different publication, Temperley (2001, pp. 258–264) devoted a few pages to the
problem of key identification in popular music, suggesting a new profile accounting
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FIGURE 3.6: ‘Super-profile’ from Temperley (2001), calculated with Lerdahl’s basic tonal space prin-
ciple. Values are scaled as in Temperley (1999), to allow direct comparison.

for rock’s diverging modality. Instead of dividing keys into major and minor, he cre-
ates a single ‘supermode’ profile, merging the ionian and aeolian scales, and bringing
together the ‘colours’ of rock’s four common modes (ionian, dorian, mixolydian and
aeolian), as it was discussed in Section 2.3.2. This ‘super-profile’ —the label is ours—
can be obtained by applying Lerdahl’s basic space, as shown in Figure 3.6. However,
one of the main shortcomings of this approach, is that, while modality in rock ac-
counts for various modes, and scalar shifts might occur in the course of a song, as we
have seen, particular segments typically do not involve the degree of chromaticism
suggested by this profile. In any case, Temperley’s experiment brings out an issue
about extrapolating specific models to cultural or musical domains that lay beyond
the reach of the model. This exactly, has been acknowledged by the author and his
colleague De Clercq in a more recent publication on rock harmony, observing that

“most work on key estimation in popular music has identified keys as major
or minor, following the common-practice key system. However, we found in
creating our corpus that it was often quite problematic to label songs as major
or minor [...]. Thus, we simply treat a ‘key’ in rock as a single pitch-class.”
(Temperley & De Clercq, 2013 p. 194)

In later works, (e.g. Temperley, 2007a) makes a shift from cognitively-oriented pro-
files to corpus-driven distributions, highlighting important similarities between both
approaches that can be taken as an argument supporting the statistical foundations
of musical style. Figure 3.7 shows statistically derived profiles from two different
musical collections, the Essen collection, comprising of over 6,000 monodies from
European folk songs (Schaffrath & Huron, 1995); and the Kostka-Payne profiles,
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FIGURE 3.7: Statistical key profiles from the Essen (above) and Kotska-Payne corpora (below) from
Temperley (2007a). The first one is obtained from single folk melodies, whereas the second is calculated
from polyphonic music excerpts of euroclassical repertoire.

based on harmonic analyses of fragments of polyphonic euroclassical music from
Kostka & Payne (1995). It might be interesting to note that the Essen profiles are
calculated as a single probability distribution, which could be reversely used as gen-
erative Markov process of zero order, in which each new event is completely inde-
pendent from previous events (actually Temperley calculated these profiles within a
generative/analytical model). Conversely, due to the polyphonic nature of the corpus,
the profiles extracted from the Kostka-Payne workbook represent the joint distribu-
tion of twelve different variables, corresponding to each scale degree given a particu-
lar tonal context. However, and despite this differences, these corpus-driven profiles
show remarkable similitudes with those obtained experimentally: they emphasise the
tonal organisation in hierarchies, suggesting that style-related variations occur in other
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modal degrees. For example, the minor profile of the folksong corpus resembles the
original Krumhansl & Kessler profiles in that they present more energy in the aeolian
[7̂, what can be taken as distinctive of folk and popular music styles. On the contrary,
Temperley’s orientation towards euroclassical music is visible in his modification of
Krumhansl & Kessler’s profiles, which align with the profiles of the Kostka-Payne
corpus.

In summary, despite the different variations and origins of key profiles, they all aim
to represent a pitch hierarchy operating in music (whether acquired experientially or
learnt from an analytical corpus). Therefore, differences in the weight of specific
scale degrees (e.g. [7̂ vs. \7̂), must certainly correspond to the statistical differences
between musical styles (e.g. popular vs. euroclassical music). However, stylistic
differences aside, the multiple variations of the key profiles might as well simply
represent statistical ‘noise’, in which case key profiles could be reduced to Lerdahl’s
theoretical basic tonal space (Figure 3.2) as suggested by Temperley (2007a, p. 92).

3.2.3 Other Approaches

As we advanced in Section 3.1, one of the practical applications of Chew’s Spiral
Array is in determining the key of a musical piece. The ‘Center of Effect Generator’
algorithm (Chew, 2000, pp. 99–106), frames the task of key finding as a problem of
distance-minimisation in the Spiral Array. Like in the method by Longuet-Higgins
& Steedman, Chew’s algorithm proceeds sequentially on an event basis. However,
Chew’s algorithm does not need to wait for completion of the analysis excerpt, provid-
ing a new estimate at each new step. As pitch classes unfold in the analysis, their
respective duration weights are accumulated at each respective chroma position in the
geometric space (Figure 3.3). In this fashion, the ‘center of effect’ C is calculated as
the sum of all the past pitch positions p weighted by their durations d at any given
event in time i:

Ci =

i∑
j=1

di · pi (3.3)

In Chew’s model, chords and keys have fixed positions in the geometrical space, just
as much as chromas do: “a chord is the composite result, or effect, of its compon-
ent pitches. A key is the effect of its defining chords” (Chew, 2001) Therefore, the
key of the excerpt is simply calculated as the shorter Euclidean distance between
the ‘center of effect’ C and each key position K, where C = c1, c2 · · · , cn, and
K = k1, k2 · · · , kn, in an Euclidean n-dimensional space:
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d(C,K) =

√√√√ in∑
i=1

(ci − ki)2 (3.4)

In a similar vein, Shmulevich & Yli-Harja (2000) proposed a variation of the KK

method to estimate keys in an accumulative fashion, by applying an smoothed sliding
window, emulating the effect of short-term memory (past events contribute less to
the estimation at each subsequent step). They locate the 24 keys as points in an
Euclidean space, separated by their inter-key distances (the correlation values between
all possible keys), and convert the input vector into a spatial representation with multi-
dimensional scaling. With this translation, as in Chew’s model, the shorter Euclidean
distance indicates the closest key.

We find that these two models provide interesting insights regarding the estimation of
keys as continuous processes, what seems to stand closer to how a listener or musi-
cian operates in reality. In popular music theory, for example, pattern-matching ap-
proaches have being criticised exactly for not being able to consider the temporal and
accumulative properties involved in musical perception, as expressed in the following
quote:

“In addition to making mistakes in determining keys, these methods [KS and
Longuet-Higgins] are all flawed in that they do not model correctly the process
they are meant to explain. Human beings do not, before surmising the key of a
musical passage, wait for the completion of a pitch source or wait for enough
notes on which to base a comparison between durations and tonal strengths of
pitches. A listener picks up clues from the very first sound she hears, interpret-
ing it in relationship to her vast stores of tonal memories. [...] Although no
satisfactory system has been developed of explaining how a key is perceived,
the picture seems to be something like this: listeners perceive patterns that their
musical memories teach them to associate with a particular key. The first notes
heard, even the very first note, suggest as a tonality the key in which they are the
most structural members; subsequent notes either confirm the original impres-
sion or supersede it with another.” (Stephenson, 2002 pp. 31–32.)

3.3 Key Estimation from Audio

Nowadays, the problem of musical key identification has mostly shifted to the au-
dio domain, as we explain in this section. Research problems are multiple, broadly
concentrated in the multidisciplinary domain of MIR. The number of application scen-
arios of key characterisation, including library organisation, recommendation systems
and music creation, is probably one of the main appeals towards the task.
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FIGURE 3.8: Various time representations of an audio file containing the first fugue subject from J.S.
Bach’s Well-Tempered Clavier, as recorded by Glenn Gould. The figure on top represents the raw
audio signal, as a function of amplitude over time. In the middle, the same signal is represented as a
log-frequency spectrogram, whereas in the bottom figure, the file has been transformed into a chroma
representation using a constant-Q transform. Audio analysis were conducted with the librosa-python
library40 (Mcfee et al., 2015) with ws = 4,096 and hs = 512 pt. Note that the chroma representation
bears a close resemblance with the MIDI piano-roll from Figure 3.4.

With independence of the application domain, extracting pitch and duration informa-
tion from an audio signal requires a few additional steps in order to transform the di-
gital audio encoding into workable symbols or representations. Once this is achieved,
many methods of tonal enquiry do not differ substantially from the ones discussed
in the previous section —especially in the later stages of the determination process,
as it might be suggested by the transformations shown in Figure 3.8. However, it
is worth noting that a direct comparison with symbolic approaches would only be
guaranteed by a proper transcription process, as pointed by several authors (Izmirli,
2005b; Peeters, 2006a) what has not been yet accomplished successfully for EDM and
most polyphonic music. Therefore, the models discussed in this section extract tonal
information directly from the audio signal, avoiding the transcription process.

Figure 3.10 outlines the essential architecture of an audio key-finding system. As
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FIGURE 3.9: General structure of an audio key-finding system.

suggested, the first step necessarily consists in the transformation of the audio signal
into a workable representation. This representation must be comparable in some way
with a previously established model of tonality, be this an array of key profiles, a
geometrical space or a different collection of descriptors. In any case, the results of
this comparison (e.g. correlation) will determine the key chosen by the system, with
or without additional verbose. Most methods perform each of these stages differently,
but they all divide the estimation process into these structural steps.

3.3.1 Preliminary Assumptions

Digital audio signals typically comprise of thousands of discrete points represent-
ing oscillatory pressure waveforms. Standard quality audio formats —as represented
by the CD standard— digitise audio signals at a sampling rate (R) of 44,100 points
per second, offering a frequency range of up to 22,050 Hz, slightly above the hu-
man perceptive threshold. Besides, standard music distribution formats are normally
stereophonic, containing two independent parallel streams of audio data, in order to
store some spatial information within the digital representation. For the task of key
estimation from audio —as much as for most other MIR tasks— stereo signals are
typically merged into a single mono stream by summing the content of both channels,
since tonal information neither originates nor depends in spatial information. There-
fore, in the remainder of this section, all audio signals described must be assumed
mono-aural, and initially sampled at 44,100 Hz.

Although differences in the methodology to extract pitch information from audio
signals are noticeable, authors normally depart from general assumptions about the
nature of harmonic signals. These properties, and the general ways in which they
might be addressed in signal processing, are summarised in the following bullets.
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It is assumed that high-frequency components do not carry much information
about pitch, and it is common to disregard spectral data above a threshold (think
for example, that the highest musical note played by a piano or a piccolo flute
corresponds to c8 ≈ 4,186 Hz).

Furthermore, in the range below this threshold, higher partials of harmonic
signals contribute less to the perception of pitch. Accordingly, spectral decay
functions or spectral envelopes relating to this fact are typically implemented.

Musical heights are organised according to logarithmic laws. The distribution
of octaves across the frequency range is exponential (f2i), and so it is the in-
ternal division into twelve perceptually equal semitones per octave 12

√
2. Con-

sequently, the frequency range in spectral representations tends to be split into
logarithmic units.

3.3.2 Template-Based Key Estimation Pipeline

The problem of tonal inference from audio has been typically split into two main
tasks, key estimation and chord detection, although many authors have addressed
both endeavours simultaneously (Catteau et al., 2007; Papadopoulos, 2010; Mauch
& Dixon, 2010b; Ni et al., 2012). These two operations require a similar measure of
tonal summarisation, generically referred to as chroma-feature or chroma vector, what
makes the first steps in the processing pipeline of both tasks essentially equivalent.
After all, chords and keys could be regarded as two hierarchical levels of the same of
problem, only differing in scope and time-scale.

Hidden Markov Models (HMM) have been one of the preferred techniques to approach
chord and key detection endeavours, given their suitability to model time-series stat-
istics. Sheh & Ellis (2003) were the first to apply a HMM for chord recognition from
audio, followed by numerous other publications (e.g. Bello & Pickens, 2005; Papado-
poulos & Peeters, 2007). Probabilistic models have been applied in the simultaneous
estimation of various contextual elements, too. For example, Papadopoulos (2010)
uses a HMM to simultaneously estimating, chords, downbeat and keys; Mauch &
Dixon (2010b) use a Dynamic Bayesian Network to jointly estimate bass pitch-class,
in addition to the three mentioned parameters; and Ni et al. (2012) jointly predict
chords, bass and key.

Regarding key estimation on its own, approaches using HMM’s have typically con-
sidered semantic units such as tonal regions (Chai & Vercoe, 2005) or harmonic se-
quences (Noland & Sandler, 2006; Papadopoulos & Peeters, 2009), although there
exist models trained directly with raw chroma vectors (Peeters, 2006b), avoiding
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any pre-assumptions about musical context or content beforehand. This end-to-end
approach has been recently explored with neural-network models, in both chord-
(Korzeniowski & Widmer, 2016) and key-estimation environments (Korzeniowski &
Widmer, 2017), with a great deal of success. However, most approaches to key es-
timation are based on chroma-based profile-extraction and template-matching. In the
remainder of our report, we concentrate in this methodology, as it constitutes the main
foundation of our own key detection methods, discussed in Chapter 6.

The basic pipeline of a profile-based tonality estimation method was first given by
Fujishima (1999) in the context of a chord recognition system. Broadly speaking,
template-based estimation methods usually convert the audio signal to the frequency
domain by means of a fast Fourier transform or a constant-Q transform. The spectral
representation is then folded into a chroma-based feature representing perceptually
equal divisions of the musical octave, providing a measure of the intensity of each
pitch class per time frame. For improved results, a variety of pre-processing tech-
niques such as tuning-frequency finding, transient removal or beat tracking can be
applied. It is also common to smooth the results by weighting neighbouring vectors.
Lastly, similarity measures serve to compare the averaged chromagram to a set of
templates of tonality, and pick the best candidate as the key estimate. Figure 3.10
shows the signal flow of a template-based model with all its possible variations, upon
which we have organised our explanation.

3.3.3 Time- to Frequency-Domain Conversion

The first step towards tonal analysis of audio signals is to be able to determine the
evolution of the pitched materials along the time axis. The Fourier transform allows
to translate, without any information loss, the time domain into the frequency domain,
typically using the discrete Fourier transform (DFT).

Furthermore, it is common to split the audio signal in sequential, sometimes over-
lapping fragments of short duration, in order to capture the temporal evolution of the
signal, in a technique known as the short-time Fourier transform (STFT), and typically
computed as a fast Fourier transform (FFT) with Cooley & Tukey (1965)’s method.
At this stage, each audio frame is multiplied by a smoothing function of of the same
size, aimed at attenuating the edges of each data frame in order to remove unwanted
spectral components originating in the slicing process. The FFT divides the signal’s
frequency range into linear multiples (bins), with a frequency resolution df given by

df = 0.5
R

ws
(3.5)
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FIGURE 3.10: Processing pipeline of a profile-based system for key determination, with possible inter-
mediate operations. In remainder of this chapter, we detail each of these stages.
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dependent on the sampling rate R of the signal and the window size ws chosen.
Lengthier windows have a finer frequency resolution at the expense of a lower tem-
poral grain. This is often compensated by increasing the windowing overlap, or by
downsampling the audio signal, providing a finer frequency resolution, accelerating
the computational process, and in turn, discarding higher-frequency components. No-
land & Sandler (2006) study the effect of downsampling and other digital signal pro-
cessing (DSP) in the context of key estimation tasks.

Apart from this type of data reduction, linearly spaced spectrograms are often trans-
lated into logarithmic scales, both in terms of magnitude and frequency resolution, in
order to provide a closer approximation to human perception. For example, Pauws
(2004) uses an arc-tangent function to mimic the pitch-loudness curve of human per-
ception, and Ni et al. (2012) propose a novel implementation based on a loudness-
weighted chromagram.

An alternative computational transformation for tonality-related audio is the constant-
Q transform (CQT), which roughly splits the signal’s frequency range into a series of
logarithmically spaced filters at a constant Q factor, expressed as the ratio between
each filter’s centre frequency cf and the chosen bandwidth bw (Brown, 1991). An ef-
ficient implementation of the Constant-Q transform is provided in Brown (1992), tak-
ing advantage of the FFT algorithm. The apparent superiority of the CQ transform over
regular FFT methods lays in its finer resolution towards the lower frequencies, and its
division of the frequency range into units closer to human perception, what might
simplify some subsequent steps in the processing chain. However, both STFT-based
and CQ approaches have been used indistinctly in the literature, achieving comparable
results in key and chord estimation systems (Kelz et al., 2016).

In any case, the spectrograms obtained by either transform represent the signal in all
its complexity, including periodic sounds from note attacks and percussive transients,
together with the frequency components that presumably represent harmonics of ac-
tual pitches. With this in mind, a variety of techniques have been proposed to isolate
tonally meaningful information. For example, Pauws (2004) uses a spectral-peak de-
tection function to discard spurious non-harmonic peaks, and Gómez (2006a) uses
a transient detection function to remove short noisy segments from the final chro-
magram aggregation. With a similar goal, Izmirli (2005b) applies a spectral flatness
measure, zeroing windows with a flatter spectrum, and Peeters (2006b) implements
a sinusoidal analysis/resynthesis model to reduce transient noise. More recently,
harmonic-percussive source separation techniques (Fitzgerald, 2010; Driedger et al.,
2014) have been used in chord and key identification tasks (Ueda et al., 2010a; Ni
et al., 2012), arising as an optimal processing stage for popular musics with high per-
cussive and transient content, such as EDM. Similarly, harmonic removal techniques
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(Lee, 2006), spectral whitening algorithms (Schwarz & Rodet, 1999; Röbel & Rodet,
2005) or slightly diverging methodologies (Klapuri, 2008; Mauch & Dixon, 2010a;
Müller & Ewert, 2010) have been applied to neutralise the effect of equalisation and
other timbral effects before the chromagram calculation Gómez (2006a).

Furthermore, the issue of tuning (i.e. that a4 = 440 Hz) is something that should not
be taken for granted, since a good amount of music might fall out of this theoretical
reference, including early music in lower tunings, orchestral recordings in slightly
higher standards, or popular music simply out of the reference. With this in mind,
some methods incorporate a phase of tuning determination over the spectrogram, al-
though other approaches address this problem —and its potential correction— after
the chromagram calculation. One common method to address this is by computing
simple statistics over spectral components (Dressler & Streich, 2007), spectral-peak
histograms (Zhu et al., 2005; Gómez, 2006a), or applying a ‘modelling error’ for
various tuning candidates (Peeters, 2006b).

3.3.4 Tonal Representations from the Frequency Domain

Shepard (1964) suggested a widely accepted description of pitch as a combination
of two separate properties, height and chroma, which could be represented separately.
This intuition is reflected in the music-theoretical notion of pitch-class, which discards
the height dimension establishing the octave equivalence. Similarly, a chroma-based
descriptor ignores height by mapping all octaves into a single chroma space. Despite
the multiplicity of variants, chroma-features are typically derivations of STFT or CQ

transforms, obtained by mapping or folding the spectral representation into an n-
dimensional vector, representing the totality available pitch-classes.

Fujishima (1999) originally proposed the pitch-class profile (PCP) for use in chord
recognition. The simplest conversion from a full-range spectrum into a chroma rep-
resentation be to add the energy contribution of each spectral directly to its corres-
ponding index in a twelve-dimensional chroma-vector. To improve this conversion, a
number of spectral techniques were suggested in the previous subsection. However,
there are other enhancement features, that can be inserted during the chroma-features
calculation.

A common variation of the PCP calculation is the so-called ‘harmonic pitch-class pro-
file (HPCP) proposed by Gómez (2006b), which proposes a few modifications over
the original algorithm. Gómez limits the spectral peaks under consideration to the
frequency range between 100 and 5,000 Hz, disregarding both the low- and high-ends
of the spectrum, and making the computation slightly lighter. As an input parameter
of her method, the number of spectral peaks to consider can be manually selected.
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FIGURE 3.11: HPCP (above) and NNLS chromagram (below), from four random four-bar loops from a
corpus of EDM tracks. Both analyses were carried in Sonic Visualiser, with the Vamp plugins developed
by the respective authors, using their default settings. Spectral analysis parameters were set to a 16,384
pt. hanning window with hop sizes of 2,048 pt.

Besides, the chroma-feature size is increased by a factor of three (3 × 12), obtain-
ing a finer bin resolution of 36 divisions per octave. The major difference with the
PCP method, however, lays in the ‘folding’ procedure of the spectral peaks into the
chroma-feature. In Gómez’s approach, each bin in the HPCP receives the contribu-
tion of various frequency components according to a weighting cos2 function centred
at the bin’s frequency, with a window length expressed in semitones (defaulting to
1.333 semitones), which allows each frequency component to contribute in different
proportions to various chroma-bins. According to Gómez, this procedure reduces the
errors produced by inharmonic components in the signal.

The main advantage of finer chromagrams with 24 and 36 divisions per octave is
that they can be used to detect and eventually ‘adjust’ the tuning of the chroma-
feature, either by discarding bins falling out of the reference frequency (Harte &
Sandler, 2009), or by applying median filters to shift the energy towards the actual
semitone frequencies (Peeters, 2006b). Harte & Sandler (2009) proposed a tuning
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detection method based on a 36-steps chromagram, which they subsequently convert
into a ‘tuned’ 12-bin chromagram. Harte & Sandler accumulate the peak positions per
semitone (with a resolution of 3 bins) and perform quadratic interpolation to find the
semitone index with the maximum peak, which they regard as the tuning frequency.
Afterwards, they create a 12-semitone chromagram with the peaks that are multiples
of the estimated tuning frequency.

Other chroma-extraction procedures attempt to minimise the effect of timbre or har-
monics in the final vector. One of the most successful approaches to overtone removal
is represented by the non-negative least squares (NNLS) chroma’ by Mauch & Dixon
(2010a). In their approach, the authors detect the fundamental frequencies of pitches
from a log-frequency spectrogram, which are then used as query entries in a manually
curated dictionary of idealised note profiles, consisting only of pure harmonics, from
which they derive the final 12-bin chromagram. Alternatively, Müller & Ewert (2010)
proposed a timbre-invariant chroma-feature (the CRP chroma) using a discrete cosine
transform to discard timbral information as represented in the lower bins of an MFCC.

Additionally, and independently from the chosen chroma-feature, instantaneous chro-
magrams are often normalised with regard to the energy in the frame, to make them
robust to dynamic changes, typically with L1, L2 or L∞ norms, according to (Cho
& Bello, 2014; McVicar et al., 2014). Figure 3.11 shows a comparison of two of the
described methods, a HPCP (above) and a NNLS chroma (below), on four different
four-bar random loops from a corpus of EDM.41

The final step in the chroma-feature calculation typically involves a smoothing func-
tion over consecutive individual chroma-vectors. Given that tonal units are normally
of a duration longer than a single analysis window (comprising full beats, bars, and/or
hyper-measures), groups of frames are often aggregated together, either with moving
average filters (Fujishima, 1999; Lee, 2006), sliding median filters (Papadopoulos &
Peeters, 2007; Harte & Sandler, 2009), or, particularly in popular music approaches,
with beat-syncronous aggregation, averaging together chromas belonging to regular
musical durations, typically obtained with beat-detector algorithms (Bello & Pickens,
2005; Mauch & Dixon, 2010b; Ni et al., 2012). It is also worth noting, that authors
Mauch & Dixon (2010b) proposed the calculation of a separate bass-chromagram
addressing specifically the bass-layer, an approach also taken by Ni et al. (2012).

41The four tracks belong to the GiantSteps key dataset, which will be described in Chapter 4. Their
specific file id’s are, from left to right, 2018991, 2436276, 3005030 and 3415063.
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FIGURE 3.12: Modification of Krumhansl & Kessler’s key profiles by Sha’ath (2011) for EDM.

3.3.5 Templates of Tonality for Audio

Adaptation of Theoretical Models

Given the complexity of audio signals, and despite the processing steps reported in
order to obtain the clearest representation of pitch distributions, the theoretical key
profiles discussed in Section 3.1 are often ‘adapted’ to account for the complexity
of harmonic signals in contrast with the simple symbolic representation of musical
tones.

Early audio key finding methods used directly the KK profiles without any further
transformation. It is the case of Pauws (2004), who instead tries to model the chro-
magram according to human auditory sensibility curves. Similarly, Sha’ath (2011)
makes small heuristic modifications on the original profiles, in order to obtain bet-
ter results in his corpus of EDM. As shown in Figure 3.12, the main differences in
Sha’ath’s profiles are a slight boost of the weight for the \7̂ in major and a relatively
significant increment of the subtonic ([7̂) in minor. Other than these, the two profiles
remain essentially identical. Although Sha’ath does not provide any musicological
grounding for his modifications, he is actually taking part in a modal disambiguation,
by favouring ionian and aeolian modalities.

However, other approaches perform modifications in order to incorporate the nature
of complex harmonic signals in the tonality profile. For example, Gómez (2006b)
adapts the KK profiles to give account of (a) polyphony and the (b) upper partials
of the fundamental tones. Gómez constructs her polyphonic profiles by adding to-
gether the respective weights of the tonic, subdominant and dominant chords at the
degrees belonging to each chord. Additionally, she considers the first four harmon-
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ics of each scale degree —possibly because the fifth harmonic already falls out of
equal temperament— and adds each harmonic contribution to the respective scale po-
sition weighted by a exponential decay factor s experimentally set to 0.6. A similar
approach had been previously used in Purwins et al. (2000) accounting only for the
third harmonic (i.e. a fifth).

An alternative method is suggested by Izmirli (2005b), who creates tonality templates
in a twofold manner. First, combined templates are obtained as the multiplication of
the flat and modified profiles proposed by Temperley (1999), obtaining a key profile
with zeroes in the non-chromatic degrees. Then, spectra of single piano notes in range
a1–b5 (with a decreasing function mimicking the less frequent occurrence of higher
notes) are used to create 24 ‘spectral profiles’ accounting for all major and minor
keys, by multiplying them with the combined profiles, which are finally averaged
chroma-wise into a final chroma template for each candidate key.

Statistical Profiles

Apart from the variations upon the cognitive and theoretical models described, other
authors have proposed the construction of tonal profiles based on direct analysis of
musical recordings, just as Temperley had done with the Essen and Kostka-Payne
score collections (Figure 3.7). One of the advantages of statistical profiling from audio
recordings, is that it prescinds of the adaptations required by symbolic models, since
spectra of rich sounds are already embedded within the model representation. In this
sense, these approaches bridge the fracture between the model (key profile) and the
input vector (chromagrams) present in other strategies. With statistical distributions,
the tonality model is typically represented by an ‘idealised’ or averaged chromagram,
so the similarity assessment needs no further adaptation. Furthermore, chances of an
optimal performance increase when the model and the input vectors are calculated
with the same parameters and methodology, as already pointed by Izmirli (2005b)
and Noland & Sandler (2009).

On the other hand, corpus-driven profiles are at best biased to specific musical genres
rather that aiming at all-purpose solutions, since tonal and timbral features vary con-
siderably among styles. A recent experiment by Korzeniowski & Widmer (2017)
showed that merging corpora of various musical styles considerably lowered the per-
formance for all the involved genres, something that can be easily pictured by men-
tally comparing a polyphonic keyboard fugue from the Eighteenth Century to an
EDM track comprising of synthesisers, several layers of percussion, tonal glissandi
and spoken voices, when all of these aspects are somehow ‘contaminating’ the tonal
model.



78 TONALITY AND COMPUTERS

1̂ ]1̂/[2̂ 2̂ ]2̂/[3̂ 3̂ 4̂ ]4̂/[5̂ 5̂ ]5̂/[6̂ 6̂ ]6̂/[7̂ 7̂

relative scale degrees

0.00

0.02

0.04

0.06

0.08
w

ei
gt

hs
0.06 0.01 0.06 0.01 0.06 0.04 0.02 0.06 0.01 0.05 0.01 0.05
0.07 0.01 0.05 0.05 0.02 0.05 0.02 0.07 0.03 0.03 0.04 0.03

major
minor

FIGURE 3.13: Key profiles from The Well-Tempered Clavier (Noland & Sandler, 2007).

Gómez (2006a) already signals that corpus-based methodologies typically carry genre
specificities, and that therefore, cross-stylistic evaluation poses some conceptual prob-
lems. Furthermore, she acknowledges —in 2006— that EDM presents a severe chal-
lenge for existing algorithms, an aspect to which we return in Chapter 4.

Amongst existing corpus-driven profiles from musical recordings, Noland & Sandler
(2007) extracted major and minor models from Glenn Gould’s recordings of the first
book of Bach’s Well-Tempered Clavier, comprising of 24 preludes and fugues in all
euroclassical keys. Noland & Sandler use a constant-Q transform that is subsequently
folded onto a single octave chromagram with 36 divisions (3 per semitone), adding
together the contributions of equivalent pitches across all octaves. After the chroma-
gram calculation, they sum together all chromagrams in a given track, rotating the
resulting vector so that the tonic of each piece is represented by the first bin in the
vector. Each of the resulting profiles is weighted by the duration of each piece, and
summed together with all other pieces with the same modality. The two resulting
profiles, one major and one minor, are finally normalised so that values add up to 1.

With regard to models specifically addressing EDM, Faraldo et al. (2016a, 2017) de-
rive statistical profiles from several corpora of electronic dance music, as it is detailed
in Chapter 6.
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3.3.6 Key Determination

Global vs. Local Analysis

Most approaches towards audio key identification have considered the global scope
of complete musical excerpts, providing a single estimation label for each analysed
item (e.g. Pauws, 2004; Izmirli, 2005b; Gómez, 2006b; Peeters, 2006b; Korzeniowski
& Widmer, 2017). This, as we have seen in Chapter 2, seems to be a good character-
isation for euroclassical music, where, despite modulation, compositions are regarded
as conveying a single tonality, ultimately expressed by the sequence of tonal regions
throughout the piece. Authors attempting a global characterisation of euroclassical
music, typically address the first seconds of the audio signal where the key of the
piece is stablished unambiguously, in order to avoid falling into modulation processes,
although there are approaches that explicitly address the detection of modulation cues
(Purwins et al., 2001; Chai & Vercoe, 2005).

In popular music styles, the notion of tonality is somewhat laxer. The assumption
of a unifying tonality does not necessarily apply, and different parts (e.g. versus and
chorus) can convey different tonal centres without holding specific structural implic-
ations. Therefore, although considering the first seconds of a piece of popular might
work for some items, it does not align conceptually with the nature of the music,
which, tonal considerations aside, might as well start with un-pitched introductions,
such a drum pattern, unthinkable in euroclassical music. Perhaps with this in mind,
Noland & Sandler (2009) attempted both local and global characterisations, by mod-
elling short-term harmonic sequences with a Hidden Markov model, what seems to
fit conceptually with the tonal structuring of most popular songs.

In the domain of electronic dance music, on the other hand, the differentiation between
local vs. global key estimation might appear as irrelevant, given the almost total ab-
sence of modulation processes, and its structural organisation based on accumulation
rather than in alternating parts.

Confidence Measures

Approaches with a global characterisation goal commonly adopt the Pearson correl-
ation method described in Section 3.2.2. Besides the highest rank, indicating the
chosen key of the fragment, some authors use the difference between the first and
second correlation values as a measure of confidence —unambiguity— of the key
estimation (Gómez, 2006b; Izmirli, 2005a). Other authors have demonstrated that a
measure of cross-entropy provides comparable results (Temperley, 2007a; Temperley
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& De Clercq, 2013), and yet others have employed geometric distances as a simil-
arity calculation. For example, Sha’ath (2011) uses the cosine distance to compare
input vectors templates, and Chuan & Chew (2005b) consider the minimum Euclidean
distance of chroma features in the Spiral Array as the key determining factor. How-
ever, distance-based methods (e.g. nearest neighbour) have been mostly employed
in spatial representations or approaches with larger vocabularies, such as chord type
dictionaries (e.g. Fujishima, 1999) or wider modal classes, in the context of world
music analysis (Chordia & Senturk, 2013).

The global key estimation process typically proceeds by averaging the entire analysed
fragment (Gómez, 2006b; Faraldo et al., 2016a), although silent or flat chromagrams
are typically left out of the computation process. Noland & Sandler (2006) and Izmirli
(2005a), alternatively, both consider individual frame-based key labels and confidence
measures of each temporal frame, to obtain a global estimation by adding the confid-
ence values of each provided key.

Tonal Vocabulary

All the algorithms discussed in this section, whether operating at a global or a local
scope, had a limited vocabulary of 24 keys (12 tonics × 2 modalities). While this
might be optimal for the euroclassical tradition, where these modalities have their
origin and genuine expression, there is evidence that this classification does not res-
ult appropriate for popular musics, where tonal centre identification might be more
aligned with the natural modal ambiguity of some popular music genres (Temperley
& De Clercq, 2013). This shortcoming could be addressed by, for example, increas-
ing the verbosity of the modal details, either by increasing the modal candidates to the
four rock modes, or by providing some details regarding other salient aspects, such as
the major/modal ambivalence. We believe that EDM-oriented algorithms, could also
benefit from this slightly diverging scenario.

In sum, in subsequent chapters, we will attempt to adapt template matching methods
to the musical and timbral particularities of EDM, that will be described in Chapter 5,
deriving statistical profiles and expanding the tonal classifier to provide finer modal
information in Chapter 6.

***

In this chapter we have described various scientific approaches to the identification
of key, from its psychological reality to its materialisation in computational methods,
both operating in symbolic and non-symbolic domains, with a particular focus on
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template-matching approaches. The definition of analysis scope and tonal vocabulary
seem to be of great importance in the development and evaluation of key estimation
methods, and there are signs that these might differ when addressing different musical
styles. However, to a great extent, these aspects are pre-determined by the availability
or research corpora with the required degree of analysis. This and other methodolo-
gical concerns are addressed in the next Methodology, where we report on available
corpora for tonal analysis as well as on regular evaluation conventions. Furthermore,
we present a preliminary evaluation with state of the art methods, supporting the
plausibility of a closer look to tonality in EDM.





Chapter 4
Methodology

“In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City,

and the map of the Empire, the entirety of a Province.”

Jorge Luis Borges, On Exactitude in Science (1946)

The primary concern of this dissertation revolves around automatic key identifica-
tion in electronic dance music. With that purpose, we have embarked in a study to
identify characteristic tonal practises in EDM, an endeavour that, to our knowledge,
has only been addressed superficially (Wooller & Brown, 2008), and that is the object
of Chapter 5.

One of the imperatives of computational musical analysis is the availability of a rep-
resentative body of valid and reliable data, typically originating in human knowledge
or empirical evidence. These corpora are subsequently used in the development and
evaluation of proposed analytical methods. With this in mind, this chapter surveys
existing music collections with computer-readable tonal information, that are acces-
ible to the MIR community. Datasets with key annotations include euroclassical music
(mostly relying on the habit of naming compositions with the key on the title), popular
music, and a number of scattered labels of EDM from different websites. An important
effort of our current research has gone into curating, collecting and analysing a corpus
of electronic dance music, with the purposes of identifying specific tonal practises in
EDM, developing and testing our research algorithms. One of the outcomes of such
endeavour —the GiantSteps Key Dataset— has been already published (Knees et al.,
2015) and referenced in a number of publications (Faraldo et al., 2016a, 2017; Bern-
ardes et al., 2017b; Korzeniowski & Widmer, 2017), and it is conveniently described
in the section dedicated to EDM test collections.
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The second part of this chapter is devoted to discussing validation practises and other
methodological aspects regarding the evaluation of key-finding algorithms, whereas
Section 4.3 offers a preliminary evaluation of available key detection systems with
the described datasets. With this operation, we intend to make an argument support-
ing the need of analysis methods tailored to specific musical genres —EDM, in this
particular— in dialogue with music-theoretical enquiry.

4.1 Music Collections

As reported in Chapter 3, tonality has been an active area of research in MIR, creating a
demand of test collections complying with different research goals. Tonally-annotated
datasets normally include one or more of the following marks: structural sections,
keys (either globally or indicating key changes) and chords, although melodic an-
notations could be considered tonal observations too (e.g. Temperley & De Clercq,
2013).

Although the importance of well-formed corpora and test datasets for information
research is capital, literature on the topic is not abundant, originating mainly in the
areas of linguistics and speech processing (MacMullen, 2003). Regarding music in-
formation research, the issue of corpus formation has been been addressed by Peeters
& Fort (2012) and Serra (2014), who makes an important differentiation between test
datasets (a collection of annotated data to be used in a particular experimental frame-
work) and research corpora, which normally include wider efforts devoted to capture
essential aspects of a particular musical practise. Serra isolates five important criteria
in the creation of research corpora: purpose, coverage, completeness, audio quality
and reusability. We have condensed them in the following bullets, according to the
needs of the current research.

Availability of good quality audio paired with metadata labels (quality, com-
pleteness and reusability). This is not always possible due to copyright law-
infringement, what is sometimes compensated with an unambiguous reference
to particular audio releases, or by offering alternative ‘encodings’ such as time-
series of spectra or chromagrams instead of the actual sound files.

Empirical evidence of the data labels (purpose, reusability). This is normally
achieved through a process of manual annotation, preferably by more than one
subject, especially in domains —such as key labelling— open to multiple in-
terpretations. In some cases, the process of annotation is partially supported by
an automated task, under the supervision of a human expert.
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Representativeness and significance of the collected data (coverage), which
should represent in statistically significant terms the variety and specificity of
a given repertoire. This is a crucial requirement, since observations stemming
from the study of a given corpus, are necessarily contained within the boundar-
ies of the provided data.

4.1.1 Euroclassical Music

Euroclassical music has been typically described as presenting a main key, major or
minor, which is established at the beginning of a composition, abandoned through
modulatory processes throughout its development, and typically recalled in the con-
clusion. This main or global key, is normally expressed in the title of the piece, or at
least, in the score’s key signature.

This simple fact has favoured —and conditioned— many key estimation methods ad-
dressing euroclassical tonal estimation, and most procedures normally consider the
first seconds (between 2.5 and 20) of the analysed sound file only. In this sense, virtu-
ally all euroclassical music repertoire could be used for key estimation, and, as a mat-
ter of fact, different authors tend to use different musical sources by merely consider-
ing the key in the title as ground truth. For example, Pauws (2004) uses a combination
of keyboard music from Bach, Shostakovich and Chopin, whereas Izmirli (2005b)
takes a random selection from the Naxos Records streaming service,42 and Peeters
(2006a) benefits from a database of “European baroque, classical and romantic mu-
sic.” It has been an extended practice to use Johann Sebastian Bach’s Well-Tempered
Clavier (Pauws, 2004; Gómez, 2006a; Noland & Sandler, 2007), for it presents an
even distribution of all 24 major and minor keys, plus it is considered one of the
fundamental oeuvres laying down the foundations of euroclassical tonality.

For this research, we occasionally take advantage of an in-house test collection, the
‘Classical DB’ (CDB), previously compiled by Gómez (2006a). This dataset con-
tains 881 audio tracks comprising keyboard, chamber and orchestral music from the
common-practise period, labeled after the key in the title of each piece or movement.

4.1.2 Popular Music

In the MIR community, most efforts towards the creation of tonality-related corpora
have been directed towards popular music. This is probably an effect of several cir-
cumstances, such as the lack of written scores providing additional metadata and the
wide interest in automatic chord recognition tasks.

42http://www.naxos.com

http://www.naxos.com
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The largest accomplishment in this direction is materialised in the Million Song Data-
set (Bertin-Mahieux et al., 2011), a collection providing an extensive list of audio-
feature descriptions, including tonal information.43 However, the metadata accom-
panying each entry is algorithmically extracted by The Echo Nest and lacks human
validation.44 Furthermore, the lack of available audio makes this corpus unsuitable
for training and evaluation endeavours. Another relevant contribution, conceived as
an enduring effort in which annotations are expected to grow both in number of items
and annotated parameters, is the SALAMI project (Smith et al., 2011), providing struc-
tural annotations for over 1,400 recordings from various sources, including the Inter-
net Archive45 and other published datasets, like the RWC dataset (Goto et al., 2002,
2006). The structural manual annotations are complemented with additional audio
descriptors, also taken from The Echo Nest. Among the additional features, a global
key estimate is provided, but again, it is inferred algorithmically.

A related compilation, with relevant tonal information, is the McGill-Billboard data-
set (Burgoyne et al., 2011), a collection of 742 unique songs from US billboard charts,
containing popular music hits from the period between 1958 and 1991. The Billboard
datasets encodes, besides SALAMI-style structural annotations, metric and chordal in-
formation. Furthermore, although the authors are not permitted to release publicly
the related audio, they provide timed chromagrams of the audio, and claim to be open
to extract other features on demand. Recently, Korzeniowski & Widmer (2017) ob-
tained a subset of this dataset with 625 global key annotations, by discarding songs
with multiple tonics or with ambiguous modality (less that 90% of tonic chords in the
same mode), that we will use in subsequent experiments.

More modest in number of items, the Isophonics dataset results as the union of differ-
ent forces around the Queen Mary University in London, gathering structural, metric
and tonal descriptions of pop music (Mauch et al., 2009b). References with key an-
notations include the complete discography by The Beatles (180 songs transcribed by
Harte, 2010), 18 songs by Queen (from ‘Greatest Hits’ compilations), Carole King
(7 tracks from her album Tapestry) and Zweieck & die Herzrhythmus-Combo,46 pre-
sumably annotated or revised by Mauch (2010). The online repository,47 provides
reference to the exact audio releases used for the transcriptions, although it recom-
mends to use the key annotations with care (The Beatles) and “moderate confidence”.

43https://labrosa.ee.columbia.edu/millionsong/
44The Echo Nest was a digital platform providing online automatic analysis of audio and musical

features. In March 2016, it was acquired by Spotify.
45http://www.archive.org
46Definitely not a mainstream band. An online search did not provide much information about it,

other than a online listening service to their —apparently only— album Zwielicht, containing the 18
songs transcribed by Mauch in this collection.

47http://isophonics.net/datasets

https://labrosa.ee.columbia.edu/millionsong/
http://www.archive.org
http://isophonics.net/datasets
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A: I vi | IV V |
In: $A*2
Ch1: $A*4
Ch2: $A*3 I IV | I |
Ch3: $A*3 I |
Br: IV | I | IV | I | IV | I | V/V | V |
S: [Ab] [12/8] $In $Ch1 $Ch2 $Br $Ch2 $Br $Ch3

FIGURE 4.1: De Clercq’s harmonic transcription of The Penguins’s Earth Angel, illustrating the syntax
proposed by Temperley & De Clercq (2013).

Temperley & De Clercq (2013) provide harmonic and melodic annotations for a col-
lection of 200 rock songs (RS), chosen after Rolling Stone magazine’s selection of
“500 Greatest Songs of All Time” (a continuation of the work initiated in de Clercq
& Temperley, 2011).48 The main goal of their annotations is to study statistical trends
in rock music at various levels, so they propose a labelling framework that is in-
terpretable as a series of rewrite rules, capturing essential structural traits without
redundancy (like a repeating chord sequence), while simultaneously linking them to
actual song renditions. Figure 4.1 shows one of such harmonic transcriptions. In
this example, the two-bar chord sequence A (in Roman Numeral notation) is repeated
twice in the introduction (In) and four times in Ch1 (the $ sign indicates the sub-
stitution operation). The next two choruses (Ch2, Ch3) present different cadential
endings, and the chords in Br represent a novel bridge section. The last line S (song)
is reserved to unveil the song’s tonal center and the structure of the song, written as a
sequence of substitution signs. This way, the authors guard themselves from making
assumptions about the modality of a song (at least in dual terms) leaving the capa-
city to infer the modality to a particular parsing algorithm. This notation convention
also allows the authors to write modulations relative to a central tonic. However, the
main argument supporting this annotation method is the semantic limitation of a dual
modal system given the particularities of rock’s modal system, as we have discussed
in Section 2.3.2.

Other interesting resource has been published by Di Giorgi (2013), and comprises of
the first five albums by Robbie Williams, totalling to 65 songs annotated with chords
and key changes with four different modal variants (major, mixolydian, minor and
dorian).49 The ‘major’ label refers exclusively to the ionian scale; however, although

48Analysis data and computer programs to help parsing the corpus are currently available in the
following website, and not in the one reported in the publication: http://rockcorpus.midside.com/

49http://www.researchgate.net/publication/260399240

http://rockcorpus.midside.com/
http://www.researchgate.net/publication/260399240
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the ‘minor’ label is in principle associated to aeolian (Di Giorgi, 2013, p. 21), it seems
plausible that it could also denote other minor variants (harmonic) not discussed at all
in the publication. In any case, Di Giorgi’s research is oriented towards beat-aligned
chord detection, and the diatonic modal frame proposed seems intended to extend the
chord vocabulary in relation to a tonic triad (for example, [VII and \VII in a C con-
text). Regarding chord identification per se, Barbancho et al. (2013) prepared a large
experimental dataset with 275,040 piano chords and various degrees of polyphony.
However, this data does not provide any contextual key information.

Figure 4.2 shows the distribution of keys in the three different pop music datasets.
All the collections present a strong bias towards major modalities (85% on average)
and tend to focus on natural tonal centres. This is particularly clear in The Beatles
dataset (BT), where most keys correspond to guitar open chords (Cmaj, Dmaj, Emaj,
Gmaj, Amaj), what can be seen as indicative of the importance of the instrumental me-
dium in the compositional process. As stated above, the McGill-Billboard key dataset
(BB) comprises of 625 unambiguous tracks without key changes. That suggests that
from the total of 742 entries in the corpus, the remaining 15.8% are either tonally
ambiguous, or present at least one key change. Similarly, from the 180 songs by The
Beatles, 21 songs (≈ 11.3%) contain at least one key change, typically correlated
with a structural change in the song, although we assume the single key reduction
by Pollack (1999) for this statistics. A closer examination of Harte’s annotations
(Mauch et al., 2009a), reveals that seven tracks are annotated as modal variants (4
mixolydian, 2 aeolian and 1 ‘modal’). This brings up an important aspect of ana-
lysing popular music: Rock modality typically presents an array of scale variants
beyond the ionian/harmonic euroclassical system, These variants, however, can be
broadly grouped into major (ionian, lydian, mixolydian) and minor (aeolian, dorian,
phrygian, harmonic), mostly according to the type of their tonic chord.

The RS dataset has been analysed independently by two experts with slightly diver-
gent approaches. For example, one annotator (De Clercq) tends to annotate local key
changes, whereas the other (Temperley) normally analyses them as applied chords. In
total, Temperley annotates 31 tracks with key changes vs. the 35 by De Clercq, around
16.5% of all the songs, in which cases we have taken the predominant key as global.
Despite these minor differences, the agreement between the two annotators is very
high (93.3%, according to their paper). For example, in the case of Led Zeppelin’s
“Whole Lotta Love”, referenced in Section 2.3.3, authors annotate the tonic chord
differently, as major and minor (Emaj vs. Emin) showing an interesting disagreement
in relation to the ambiguity of power chords and rock’s major/minor modal merge,
However, it is precisely for this type of songs that they have decided to report the
key as the tonic note only. Other difficult entry, although much more ‘classical’, is



4.1 MUSIC COLLECTIONS 89

83.0% 17.0%

Billboard

C C] D E[ E F F] G A[ A B[ B
tonic note

0

5

10

15

pe
rc

en
ta

ge
(%

)

major
minor

88.8% 11.2%

The Beatles

C C] D E[ E F F] G A[ A B[ B
tonic note

0

5

10

15

20

pe
rc

en
ta

ge
(%

)

major
minor

81.0% 19.0%

RS200

C C] D E[ E F F] G A[ A B[ B
tonic note

0

5

10

15

pe
rc

en
ta

ge
(%

)

major
minor

FIGURE 4.2: Distribution of keys in three popular music datasets (from top to bottom: Billboard (BB),
The Beatles (BT), and Temperley & De Clercq (2013) (RS).



90 METHODOLOGY

Queen’s Bohemian Rhapsody. After a start on B[ major, the song evolves alternating
regions of E[ and B[ (with a short bridge in A major). However, the song ends in a
surprising change to F major. Therefore, although we have chosen E[ major as the
most prominent key (the longest region in duration) this type of song shows how ap-
proaches based on a single global key estimation might say very little about the music
under consideration.

4.1.3 Electronic Dance Music

Regarding electronic dance music, the biggest effort in building a test dataset prob-
ably comes from Sha’ath (2011), who initially released a list of key annotations for a
hundred EDM tracks in order to develop his software KeyFinder. Recently, he has ex-
panded this list to a thousand entries with the help of three human experts, to which we
refer as the KeyFinder dataset (KFD). Although access to audio files is not public due
to copyright issues, the annotations with one global key estimation per audio track,
with a modal vocabulary of major and minor are freely provided in his website50. In
the course of our research, we managed to obtain 998 of the total tracks as MP3 files
at variable bitrates (128–320 KBPS), although there might be differences in some au-
dio files with regard to Sha’ath’s personal audio collection, especially when it comes
to remix versions. Besides, a closer examination of the annotations reveals around
200 entries representing other popular music styles such as reggae, rock or rhythm’n
blues, including songs by artists like Aretha Franklin, AC/DC or Bob Marley.

Figure 4.3 shows the distribution of global keys in the KeyFinder dataset (KFD). It
is notorious the great presence of minor keys (90.6%), contrasting with the modal
distributions in euroclassical music or pop. Although we do not have numbers re-
garding the rate of modulations in this dataset, we are inclined to think that these
will be less common than in other popular music styles, given that typical alternat-
ing ‘verse-chorus’ structures so common in pop-rock are essentially absent in many
EDM subgenres Garcia (2005). Another interesting observation lays in the distribu-
tion of tonal centres: Figure 4.3 shows a much more even distribution of the keys
along the 12 chromas, what might be indicative of production and creative techniques
centred around synthesisers, digital tools, and eventually keyboards, in contrast with
the guitar-centric distribution of keys in pop-rock datasets.

Other labelled sources on the internet come from DJ magazines and online software
reviews. For example, the web platform Djtechtools, has a series of entries reviewing

50http://www.ibrahimshaath.co.uk/keyfinder/KeyFinderV2Dataset.pdf

http://www.ibrahimshaath.co.uk/keyfinder/KeyFinderV2Dataset.pdf
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FIGURE 4.3: Distribution of global keys in Sha’ath’s dataset (KFD).

available key estimation software in 2009,51 2012,52 201453 and 2015.54 Similarly, DJ

Endo annotated a collection of EDM tracks with the same purpose in 2011 (ENDOA)55

and 2013 (ENDOB),56 what somehow shows the interest in key estimation in the EDM

and DJ communities. We will come back to some of these resources in the next
paragraphs, since we have merged some them into the GiantSteps Key dataset.

4.1.4 The GiantSteps Key Dataset

The GiantSteps project57 helped us become aware, amongst other things, of the need
of better tailored algorithms for applied MIR in music production environments. How-
ever, due to a more or less systematic lack of analytical ground truth in EDM, we
embarked on the recollection of empirical data that we could use in our development
process. This process materialised in the creation of the two so-called GiantSteps
datasets, comprising of annotations of musical tempo and global key. Both data col-
lections are already publicly available, and were initially described in Knees et al.
(2015), from which we extract most of the content for this block. However, in the
reminder of this dissertation, we only consider the GiantSteps Key dataset (GS).

As mentioned elsewhere, it is common for a certain type of DJ to organise her col-

51http://jtechtools.com/2009/11/02/key-analysis-software-smackdown
52djtechtools.com/2012/01/26/key-detection-software-showdown-2012-edition
53djtechtools.com/2014/01/14/key-detection-software-comparison-2014-edition
54djtechtools.com/2015/11/16/key-detection-software-comparison-2015-edition
55http://blog.dubspot.com/dubspot-lab-report-mixed-in-key-vs-beatport
56http://blog.dubspot.com/endo-harmonic-mixing-key-detection-analysis
57http://www.giantsteps-project.eu/

http://jtechtools.com/2009/11/02/key-analysis-software-smackdown
djtechtools.com/2012/01/26/key-detection-software-showdown-2012-edition
djtechtools.com/2014/01/14/key-detection-software-comparison-2014-edition
djtechtools.com/2015/11/16/key-detection-software-comparison-2015-edition
http://blog.dubspot.com/dubspot-lab-report-mixed-in-key-vs-beatport
http://blog.dubspot.com/endo-harmonic-mixing-key-detection-analysis
http://www.giantsteps-project.eu/
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lection with simple tonal information (i.e. with global keys). DJ’s often obtain their
tracks online in music stores like Traxsource,58 Junodownload59 or Beatport,60 de-
signed to facilitate DJ’s creative workflow by selling music labeled with genre, tempo
and key information, as well as release dates, record labels or remix artists, besides
other more regular tags. Beatport is one of most popular of such online services,
providing two-minute free previews for each entry in their database. Each item, typic-
ally each single track, is described in an individual web page, where related metadata
in JSON format and the 96 KBPS MP3 audio preview can be easily obtained from
the source code, providing an interesting resource for audio and semantic MIR. Un-
fortunately, Beatport’s key and tempo metadata are algorithmically determined, thus
becoming useless for training and evaluation purposes.

To balance things out, however,

“until late 2014, Beatport allowed its customers to provide feedback on tempo
and key information via a link on their website, pointing to a dedicated online
forum. In this forum, users would post their corrections in free-form text using
natural language. We performed a complete web crawl of this user forum in
May 2014. At the time of the crawl, there were 2,412 comments available, of
which 1,857 contained a direct link to a track on the Beatport website. From the
link to the track, we downloaded the complete metadata record in JSON format
using web scraping techniques. From this, we also extracted the associated style
descriptor for statistical reasons.” (Knees et al. (2015))

From all the posts containing a link to a specific track, we safely filtered those that
could point to other popular key estimation algorithms such as Mixed-In-Key61 or
Melodyne,62 searching for key labels in the remaining ones. After this process, we
obtained a total of 404 key corrections, of which 15 were duplicates, and 1 track was
no longer available, leaving us with a total of 388 tracks with key annotations. A
detailed explanation of the process of information extraction from the Beatport forum
can be found in Knees et al. (2015).

In order to enlarge the collection, we decided to incorporate other scattered labels
from EDM magazines and blogs. In particular, the analyses by Endo mentioned in
previous paragraphs conveniently annotate various Beatport resources: ENDOA con-
sists of a list of 100 tracks provided as a GIF image file. This image contains 99 items

58http://www.traxsource.com/
59http://www.junodownload.com
60http://www.beatport.com
61http://www.mixedinkey.com/
62http://www.celemony.com/en/melodyne/what-is-melodyne

http://www.traxsource.com/
http://www.junodownload.com
http://www.beatport.com
http://www.mixedinkey.com/
http://www.celemony.com/en/melodyne/what-is-melodyne
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(one of which is a duplicate) with artist name, song title, his key label, and the predic-
tions of the Mixed-In-Key software and Beatport. We used OCR software to convert
this list to a spreadsheet in order to obtain the human labels and access to the audio
excerpts from the Beatport website. Using a simple script we retrieved the metadata
of the candidate tracks from Beatport. When artist and title matched perfectly, the
track and key label were assigned together, whereas in cases with multiple candidates
(for example, with different remix versions), called for a manual assignment to the
correct version. This process allowed us to obtain 92 out of the unique 98 tracks in
Endo’s list. In his second report (ENDOB), Endo makes a more exhaustive comparison
between seven different key estimation applications. The new track list holds a total
of 119 entries. 19 references direct to YouTube videos, while other seven tracks are
listed without links or Beatport key tags. Excluding these 26 items, we are left with
a batch of 93 additional songs with manual labels and direct links to the Beatport
samples. As a last resource, we looked at the annotations used in the Djtechtools’s
2014 showdown mentioned above, conducted on 60 tracks. With all these sources ad-
ded together, we obtained a merged dataset with 633 labelled tracks, 29 of which were
duplicates among the different sources. In these duplicate cases, the different sources
agreed on the reported key, providing evidence of the reliability of our approach. In
total, we gathered a global-key dataset of 604 two-minute EDM excerpts, as it is cur-
rently published.63,64 A simple evaluation of the Beatport key labels, revealed that
only 29.5% of the keys reported in the website are correct.

In the process of elaborating this manuscript, we performed a thorough revision of
the complete GS collection, making a few changes in the data as it is published, in-
cluding the correction of 63 key labels, which is discussed in Chapter 5. During the
revision process, we rewrote the web scraping code almost from scratch, in order to
facilitate the acquisition of audio directly from the Beatport website, together with all
the available metadata, including but not limited to artists, title, remix version, label
and key. 65

Beatport refurbished its website in 2016, as a consequence of structural changes in
the company. One noticeable difference is a slightly new taxonomy of the avail-
able genres. For example, tracks previously labeled as ‘Pop Rock’ have completely
disappeared; others, like ‘Chill Out’ and ‘Electronica’ form now a new group of
‘Electronica / Downtempo’; and a portion of the ‘Progressive House’ tracks is now
under the ‘Big Room’ label. Other potentially interesting change is the incorpora-

63The original GS dataset is hosted in Github (https://github.com/GiantSteps/giantsteps-key-dataset).
64Johannes Kepler University provides a descriptive portal of the two GiantSteps datasets (tempo

and key) plus some simple evaluation results (http://www.cp.jku.at/datasets/giantsteps/).
65A detailed description of this and other additional resources accompanying this thesis, including

analysis data and computer code to download and parse the datasets is provided in Appendix C.

https://github.com/GiantSteps/giantsteps-key-dataset
http://www.cp.jku.at/datasets/giantsteps/
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FIGURE 4.4: Distribution of tracks by genre and mode in the GS dataset.

tion of Zplane’s tonart algorithm for the automatic key tagging.66 However, after
re-downloading the GS entries, we confirmed that the key labels remained identical
for the available tracks. Compared to our initial download in May 2014, 64 tracks
from the dataset are no longer accessible through the website, although all audio
clips remain available. We also removed three exact audio duplicates under differ-
ent entries67 and discarded two additional tracks that are clearly non-EDM styles.68 In
order to compensate these missing items, we incorporated a new entry,69 making up
to a total of 600 tracks. From these tracks, 540 entries contain the complete metadata

66According to Zplane’s website (http://licensing.zplane.de/technology#tonart).
674320199 = 1922470, 5085261 = 2666332 and 5740146 = 1986370.
683284384 and 5015793.
69140603.

http://licensing.zplane.de/technology#tonart
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FIGURE 4.5: Distribution of major and minor keys in the GiantSteps dataset.

offered by Beatport, 42 items have partial metadata (kept in the ID3 tags of the files)
and 18 tracks are left with the genre label only.70.

Figure 4.4 shows the distribution of the new GS tracks according to the most recent
genre labelling, together with the number of major and minor tracks per genre. The
presence of house variants is perceptible, with more than half of the total items (332).
Alternatively, Figure 4.5 redistributes all 600 tracks by tonal centre and modality,
showing a similar distribution compared to KFD, and with 84.6% of the items in minor
modes.

4.1.5 Summary of Music Collections

Figure 4.6 shows a comparison of the key distributions in the three musical genres
reported. The Euroclassical music dataset (CDB) presents a small prominence of ma-
jor keys (≈ 63%), which conforms to assumptions about euroclassical tonality (e.g
Krumhansl, 1990, pp. 66–75). The three combined pop music collections, increase
the bias towards major modes (≈ 84%), and also a concentration of items in the notes
of the natural pentatonic scale. The modality distribution between pop and EDM is
almost inverse, with EDM tracks containing as little as 15% of the total. Here, the
distribution across the twelve chroma is slightly more even, although the combination
of the GS and KFD increases slightly the presence of natural tonics, just like in the
other two genres.

70 ID3 tags is the standard metadata format for MP3 files. Common fields as track, artist or album
names, are normally embedded into the actual sound file using this standard (http://id3.org/)

http://id3.org/
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FIGURE 4.6: Joint distribution of keys in different musical genres. From top to bottom: Euroclassical
(CDB), popular music (BB + BT + RS) and EDM (KFD + GS)
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To conclude this section on music collections, Table 4.1 shows a summary of the
datasets discussed containing key information, together with their number of entries,
musical genres covered, and quality of the available audio data. We can see that al-
most half of the datasets provide a single key estimation per audio item, whereas the
other half provides structural key annotations. Regarding the vocabulary used, most
datasets are annotated in twofold major/minor modal vocabulary, although interest-
ingly, both BB and RS datasets are transcribed in richer ways permitting to obtain
additional modal information.

4.2 Evaluation Methods

In the computational study of certain musical styles, the tasks of tonic identification
and mode recognition can be isolated as separate problems. This is a regular practise,
for example, when approaching the computational study of some Non-Western mu-
sics, like Turkish Makam music (e.g. Karakurt et al., 2016) or several Indian traditions
(e.g. Gulati et al., 2014). One of the reasons for this conceptual separation of the scale
pattern and the underlying tonic can be found in the normally larger range of possible
modes given a single tonic, and in the essentially monodic quality of many these tra-
ditions. However, in Western musics —and especially in euroclassical music, with
only two basic modes— a tonal centre can hardly be seen in isolation with the mod-
ality it prescribes, for it normally is associated with a tonic chord (already suggesting
a certain mode), and a set of relationships with other chords and neighbouring keys.
This is probably the reason why most authors have proposed evaluation strategies that
try to capture subjective aspects of tonal perception, like the close interplay between
nearby keys. For example, C major is typically perceived as being closer to A minor
(although it does not share neither tonic or mode) than to D major (sharing mode and
only one second apart) or C minor (sharing the tonic note). Therefore, it is a common
practise to report some of these ‘acceptable’ errors besides the ratio of correct tonic,
mode and key. Gómez (2006a), for example, details the correct joint estimation of
tonic and mode (key) as a measure of the accuracy of her system, but also provides
further details regarding the percentages of correct modes, semitone errors (as po-
tential tuning errors), as well as errors related by dominant, relative and parallel key
relationships. Pauws (2004) provides similar details, although he adds together the
just mentioned errors (plus a subdominant error) as a measure of the accuracy of the
system.
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4.2.1 The MIREX Scoring System

The Music Information Retrieval Evaluation eXchange (MIREX)71 is an international
initiative born to evaluate advances in music information retrieval among different re-
search centres, by quantitatively comparing algorithm performance using test datasets
that are not available beforehand to participants (Downie, 2008; Downie et al., 2010).
Since 2005, it is celebrated on a yearly basis, as a special event taking place during
the International Society for Music Information Retrieval Conference (ISMIR).

Over the years, authors have detected flaws and problems in different MIREX eval-
uation tasks (Salamon & Urbano, 2012; Hu & Kando, 2012; Davies & Böck, 2014;
Scholz et al., 2016), although there seems to be room for discussion and revision of the
evaluation strategies, given it is a community-driven initiative. Regarding the audio
key finding task, however, the test dataset and evaluation criteria would have remained
the same since the first edition in 2005,72 if it was not for the recent incorporation of
the GS dataset (Knees et al., 2015), introduced previously in this chapter.73

The ‘mirex2005’ key dataset (the test collection that has been used in all MIREX

editions so far) comprises of 1,252 euroclassical music pieces rendered from scores
onto monoaural uncompressed audio files with a MIDI synthesiser.74 The ground truth
is taken from the title of the works, since, as we explained above, it was a regular
habit to name compositions according to formal and tonal descriptors (e.g. Mozart’s
Symphony No. 40 in G minor or Beethoven’s Piano Sonata No. 8 in C minor).

Regarding the evaluation procedure, the submitted algorithms must provide a single
label indicating the tonic and the mode of each audio file. Tonic notes can include any
of the twelve chromas, whilst modality is limited to a binary output of major or minor
only. However, since the perception of key is considered to be contextual and slightly
subjective, the evaluation system imposes a ranking by which related keys, such as
relative or parallel keys, or those by a distance of a perfect fifth, are weighted and
summed together into a composite weighted score. The weighting of neighbouring
keys is, to say the least, misleading, and the task’s webpage does not make any further
clarification regarding the ‘perfect fifth’ distance. As a matter of fact, looking into the

71http://www.music-ir.org/mirex/wiki/MIREX_HOME
72http://music-ir.org/mirex/wiki/2005:Audio_Key_Detection
73However, the use of the GS dataset is not reported on the official wiki website, where there is only

reference to the ‘mirex05’ dataset.
74According to their website, two different synthesisers were used for the first edition in 2005 (“Win-

amp synthesised audio and Timidity with Fusion soundfonts”, in http://www.music-ir.org/mirex/wiki/
2005:Audio_Key_Finding_Results), yielding slightly different results. Subsequent editions seem to
have omitted the Winamp files, and they only provide error percentages for a single database synthesised
using Timidity.

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://music-ir.org/mirex/wiki/2005:Audio_Key_Detection
http://www.music-ir.org/mirex/wiki/2005:Audio_Key_Finding_Results
http://www.music-ir.org/mirex/wiki/2005:Audio_Key_Finding_Results
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error types

correct fifth* relative parallel other

weights 1.0 0.5 0.3 0.2 0.0

TABLE 4.2: MIREX key-finding evaluation error-weighting system. Between 2005 and 2016, the fifth
error only accounted for dominant errors. Subdominant errors were given a score of 0.

computer code used in the MIREX evaluation,75 reveals that the evaluation algorithm
only regards as a ‘positive’ error the dominant-as-tonic mislabelling. This biased
weighting seems to be a bug in the algorithm, which has been corrected for the 2017
edition to punctuate equally both ascending and descending fifth relationships.76 The
weighting values for the different errors are presented in Table 4.2.

The participant algorithms are run over the initial 30 seconds of each audio track,
discarding the rest of the audio information to prevent the interference of modulation
processes in the estimation of the principal key. In our view, although a convenient
solution when analysing euroclassical music, it remains questionable whether this
prescription should apply to other musical genres such as pop music or EDM, since
key changes are not characteristic of these types of music.77

Brief Discussion of MIREX Results

Tables 4.3 and 4.4 show the evaluation results with the ‘mirex05’ dataset for all the
algorithms submitted to the competition since its origin until 2016.78 Results are
taken from the corresponding MIREX webpages, with the exception of the 2005 edi-
tion, where we have used the results for the Timidity database —instead of the two
provided— for the sake of comparability.

What becomes evident at first sight, is the temporal gap between the first edition in
2005 and the second in 2010, year after which the evaluation has been run on a yearly
basis, even though in 2014 and 2015 there is only a single, recurrent candidate. In
order to show a more realistic adjustment with the number of novel submissions, we

75https://github.com/ismir-mirex/nemadiy/blob/master/analytics/trunk/src/main/java/org/imirsel/
nema/analytics/evaluation/key/KeyEvaluator.java (accessed 20th August 2017)

76This information was revealed in a personal communication with Johan Pauwels, the person re-
sponsible of the evaluation task, and reflected in the 2017 results webpage.

77Again, according to an informal conversation with the task captain, the evaluation on the GS data
was carried on the full two-minute excerpts, although this detail is not provided in the results webpage.

78Results for the 2017 competition are not published as of 10th Nov. 2017 (music-ir.org/mirex/wiki/
2017:Audio_Key_Detection_Results). However, the 2017 competition seems to use additional datasets
(ISO, RW and BB, summarised in Table 4.1).

https://github.com/ismir-mirex/nemadiy/blob/master/analytics/trunk/src/main/java/org/imirsel/nema/analytics/evaluation/key/KeyEvaluator.java
https://github.com/ismir-mirex/nemadiy/blob/master/analytics/trunk/src/main/java/org/imirsel/nema/analytics/evaluation/key/KeyEvaluator.java
music-ir.org/mirex/wiki/2017:Audio_Key_Detection_Results
music-ir.org/mirex/wiki/2017:Audio_Key_Detection_Results
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present resubmissions in a smaller font size. From this reduction, we can see clearly
that the first edition in 2005, attracted the largest number of participants (6, one author
sending two variants of the same algorithm), followed by 2010–2011 with 4 independ-
ent participants. Last, in 2012 and 2016 there where 3 independent contenders, a rate
that seems to be preserved in the 2017 edition.

A look at the scores reveals that the results from the first competition have not being
improved in subsequent editions. For example, if we set an arbitrary boundary at 0.85
MIREX points (in bold font), we find that five from the seven methods submitted in
2005 (which have been mentioned and discussed in varying degrees in Section 3.3)
surpass that mark. On the contrary, this criterion is only met once in later editions, by
the method proposed in Cannam et al. (2013), based on the work of Noland & Sand-
ler (2007). The best performing algorithm on the ‘mirex 05’ dataset is the one pro-
posed by Izmirli (2005a), based on templates elaborated from sampled piano notes,
weighted with the flat profiles mentioned in Temperley (1999). It is followed closely
by the algorithm by Purwins et al. (2000), based on constant-Q profiles correlated
with probe tone profiles by Krumhansl & Kessler, although most submissions from
2005 yield very similar results. If we lower the boundary to .80 points, however, we
can find at least two methods in each year’s competition reaching or surpassing this
value, implying at least 70% of correctly classified instances.

In any case, the MIREX evaluation results should only be read in the narrow musical
context they represent: 30 second excerpts of euroclassical music, rendered to au-
dio from musical scores. Therefore, they say little about how the submitted methods
would perform on actual musical recordings, or in other musical styles, at different
exposure times. In any case, at least from 2015, the submitted algorithms can be eval-
uated comparatively, on a dataset of two-minute real audio recordings, representing a
body of electronic dance music, as shown in Table 4.5. At first glance, it is already
noticeable that the performance decreases considerably compared to the results in
Tables 4.3 and 4.4. It is remarkable the decrease of the QM Key Detector, from over
82.67% correctly classified instances to a bare 39.7%, practically halving its perform-
ance. We attribute this drop to at least two factors: first —and most importantly— the
GS dataset contains real audio excerpts, as opposed to audio synthesised from MIDI

scores. This introduces aspects beyond the scope of transcription, mostly of timbral
or spectral nature, with clearly difficult the detection process. Second, this decrease
in performance suggests that EDM represents an actual challenge to the key estima-
tion task, perhaps indicating that the models and assumptions of tonality present in
submitted algorithms do not reflect well the range of tonal practises in EDM. This is at
least partially suggested by the two different variants by Faraldo et al. (2016b), whose
only difference lays in the profiles used. Fkey uses the modified KK profiles, whereas
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fkey-edm uses tonality templates derived from a corpus of EDM. We will return to this
algorithm in Chapter 6, since it is one of the methods developed in the course of this
research.

4.2.2 Other Methodological Concerns

In the following paragraphs we discuss some methodological decisions taken to war-
rant consistency and comparability across all the experiments contained in this work.

Evaluation Metrics

For each dataset and algorithm under analysis, we normally report the percentage
of correctly estimated tonics and correctly estimated modes independently, together
with a joint key estimation. Additionally, we describe typically ‘acceptable’ errors
(neighbours, relatives, parallels), and provide a MIREX weighted score according to
the weights in Table 4.2. It is important to note that although diverging from previous
MIREX scores and other popular MIR evaluation toolboxes such as ‘mir_eval’79 (Raf-
fel et al., 2014), we consider fifth errors (neighbour keys) to include both ascending
and descending intervals, provided that both tonics share the same mode. Therefore,
the four possible mislabels in the ‘fifth’ category include ‘I as V’, ‘I as IV’, ‘i as v’,
and i as iv’. We think this is a more neutral way of assessing this error, which, in
our view, was biased towards euroclassical music in previous MIREX competitions.
For example, dominant relationships (I-V-I) summarise the main directional force in
euroclassical music, with almost every composition in major modality containing a
modulation to the dominant region. In contrast, rock modality rarely presents this
structure, superseded by predominantly subdominant relationships (I-IV-I) (e.g. Tem-
perley & De Clercq, 2013).

Track Length

As discussed above, the MIREX evaluation has been typically carried on the initial
30 seconds of MIDI renders of euroclassical music scores. This follows an extended
practice of performing key estimation in fragments of short duration at the beginning
or end of a piece of music (before a “departure from” or after a “return to” the main
key) (Pauws, 2004; Izmirli, 2005b; Peeters, 2006a; Gómez, 2006b). One of the mo-
tivations of observing the beginning of a piece of music is to avoid falling into mod-
ulations that can obstruct the global-key estimation task. However, modulation is not

79http://craffel.github.io/mir_eval/

http://craffel.github.io/mir_eval/
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characteristic of EDM neither of pop music. Furthermore, as it will be shown shortly,
our experiments suggest that computational key estimation generally provides better
results when analysing full-length tracks, something already noted by Pauws (2004),
who discusses the classification accuracy for different analysis windows (from 2.5
seconds to entire pieces) at different time positions in the music signal.

Audio Quality

Up to this point, we have not explicitly discussed the quality of the audio files in the
above mentioned datasets. In computational research, audio resources are necessar-
ily digitised and stored in a computer or online server. Datasets with a high audio
quality are normally transcoded from CD’s in uncompressed PCM formats. However,
uncompressed data takes a considerably larger memory space than other compressed
formats. The FLAC file format (standing for ‘free lossless audio codec’), is a com-
pression audio format that provides the same quality as original uncompressed data at
lower memory consumption, but not all decoders are FLAC-friendly. In the reality of
music consumption, with increasing online music purchases and streaming services,
the actual standard are so-called lossy formats, which reduce the amount of data by
compressing or cutting frequency bands typically without much musical information,
and in which the human hearing apparatus is perceptually weaker. An MP3 file at
320 KBPS is considered to be a good quality audio file, despite being encoded in a
lossy format. For example, the Spotify streaming service distributes music in Ogg
Vorbis format, an open-source alternative to MP3 encoding, at 96, 160 or 320 KBPS,
depending on whether the streaming happens on a mobile device, a desktop computer
or with a premium account.80 While audio bit rates seem to vary substantially across
resources, a sampling rate of 44,100 Hz seems to be the standard quality for most
audio resources, from CD rips to lower quality compressions.

With this amount of variability, a good key estimation algorithm should expect to
receive all sorts of data formats and qualities, especially if the algorithm is developed
for a practical scenario and/or with a creative orientation. Fortunately, the datasets
we have at hand reflect well the variety of formats and compression levels found in
real world scenarios, as shown in Table 4.1. For example, the KFD includes lossy
formats at various bitrates, as a side-effect of our gathering of tracks from various
sources; most popular music datasets have been transcoded into FLAC directly from
compact discs; the GS collection has been downloaded from online preview clips as
low-quality MP3 files at 96 KBPS.

80https://support.spotify.com/us/article/What-bitrate-does-Spotify-use-for-streaming/

https://support.spotify.com/us/article/What-bitrate-does-Spotify-use-for-streaming/
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A potential problem of ‘perceptual’ codecs like MP3, is that they filter out high-
frequency content, what could be detrimental in analysing specific musical genres,
such as EDM, characterised by its high percussive content and saturated electronic
timbre. According to Urbano et al. (2014), who evaluated the robustness of chroma
features under various codecs and bitrates in a variety of musical genres, chroma fea-
tures are very robust to encoding differences, even with bitrates as low as 64 KBPS.
However, they advise to normalise the chroma vector in order to minimise the effects
of lossy audio codecs, and observe that best results are usually achieved when training
data is the same encoding format as the expected analysis data. In the last part of this
chapter, we present a preliminary evaluation of the effect of audio degrading in the
key recognition task.

4.3 Evaluation of Available Resources

4.3.1 Competing Algorithms

As mentioned elsewhere, the extended practise of harmonic mixing among DJ’s and
producers, together with an increasing demand for automatic labelling and classific-
ation of ever growing music collections, are probably the main factors behind the
proliferation of digital tools for key estimation in recent days. Some of these tools
originate in academic research and are made available as part of audio analysis envir-
onments such as Essentia, an open-source library for audio analysis and description
(Bogdanov et al., 2013a) which includes a variant of the method by Gómez (2006a),
described in Section 3.3. Similarly, the approach by Noland & Sandler (2007) is
wrapped as a vamp plugin (the QM Key Detector) to be used within the analysis soft-
ware Sonic Visualiser. These methods are normally regarded as general solutions, or
targeted at euroclassical music at best.

On the contrary, commercially available methods are typically tailored to popular
music and, with the exception of Beatunes81 —a music player that incorporates ana-
lytical methods to create enhanced playlists— are mostly aimed at the production and
mixing of EDM. Some of these solutions are offered as standalone applications with
key analysis as their only —or main— purpose. It is the case of Mixed-in-Key82 and
KeyFinder,83 a freely available piece of software by Sha’ath (2011). However, key
estimation methods are normally integrated into all-purpose DJing tools, as Native

81http://www.beatunes.com
82http://www.mixedinkey.com
83http://www.ibrahimshaath.co.uk/keyfinder/

http://www.beatunes.com
http://www.mixedinkey.com
http://www.ibrahimshaath.co.uk/keyfinder/
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key scope

name abr. changes global related publication

Essentia Key Extractor ES • Gómez (2006a)

KeyFinder 2.3 KFA • Sha’ath (2011)

Mixed-In-Key 8 MIK •
QM Key Detector Plugin QM • Cannam et al. (2016)

Traktor 2.11 TK •

TABLE 4.6: Key estimation algorithms used in this preliminary evaluation. We also show their analysis
scope and indicate related publications where applicable.

Instrument’s Traktor,84 Pioneer’s Rekordbox,85 Serato86 or Virtual DJ.87

In the following paragraphs we describe briefly the peculiarities of some of these solu-
tions, summarised in Table 4.6, before proceeding with the evaluation per se. In par-
ticular, our evaluation will compare the QM key detector and Essentia’s Key Extractor
(which implements the method by Gómez (2006b)) to KeyFinder, Mixed-In-Key —
the preferred choice among EDM producers— and Traktor, which is regarded as the
quality standard in djing software. Bear in mind that commercial applications are
black boxes, and so we can not learn much about their inner workings. However, we
consider this comparison to be a valid indicator of the state-of-the-art when it comes
to applied MIR in real life scenarios.

Essentia’s Key Extractor

Essentia88 is a C++ framework with python bindings for audio signal processing and
music information research developed at the Music Technology Group in Pompeu
Fabra University (Bogdanov et al., 2013a). It provides an ever growing collection
of analysis and processing methods that users —namely programers— can combine
and adjust according to their needs. Besides, Essentia comes with a number of default
‘extractors’, that is, predefined combinations of instructions to perform typical analyt-
ical tasks, aimed at less proficient users. Since most parts of the methods introduced
in Chapter 6 are developed in Essentia, in this preliminary evaluation we include the

84http://www.native-instruments.com/en/products/traktor/
85http://www.rekordbox.com/
86http://serato.com/
87http://www.virtualdj.com/
88http://essentia.upf.edu/

http://www.native-instruments.com/en/products/traktor/
http://www.rekordbox.com/
http://serato.com/
http://www.virtualdj.com/
http://essentia.upf.edu/
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parameter value

window size 16,384 pt.

hop size 2,048 pt.

window type blackman & harris

minimum frequency 40 Hz

maximum frequency 5,000 Hz

maximum number of peaks 10,000

split frequency bands 7

non-linear spectral transformation 7

chromagram size 36 bins

chroma weighting type squared cosine

chroma weighting size 1.333 st.

key profile temperley (Fig. 3.5)

similarity cross-correlation

TABLE 4.7: Essentia’s key extractor configuration parameters.

output of Essentia’s key extractor, which is based in the method by Gómez (2006b)
described in Section 3.3. For the most parameters, we have used the extractor’s de-
fault settings, listed in Table 4.7. However, in order to provide a fairer comparison, we
have increased the analysis window size from the 4,096 points by default to 16,384
points.

Mixed In Key 8

Mixed-In-Key (MIK) is probably the most popular software when it comes to key de-
tection for harmonic mixing, due to its acknowledged high performance. This piece
of software analyses sound files in search of keys, tempo and cue points, writing the
estimated metadata into the files or exporting it as CSV files. Mixed-In-Key occasion-
ally reports multiple keys for a single track, however the exported annotation for each
track is still one single label, separated with a slash (e.g. ‘A/Am’, ‘G/Gm/Dm’). In
such cases, the first label is always the one that takes the lengthier segment of the ana-
lysed audio. Additionally, some files are labelled as ‘All’. After inspection, we found
that ‘All’ labels typically refer to fragments with spoken voice or highly percussive
segments, in any case with sparse pitch content, resulting highly neutral for harmonic
mixing purposes (i.e. with no key).
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parameter value

window size 16,384 pt.
hop size 2,048 pt.
window type blackman
minimum frequency 27.5 Hz.
maximum frequency 1,760 Hz.
chromagram size 12 bins
key profile shaath (Fig. 3.12)
similarity cosine distance

TABLE 4.8: KeyFinder 1.26 default parameters.

KeyFinder 2.3

KeyFinder (KFA) is a free piece of software for OSX, whose only functionality is to
analyse the global key of any imported audio file, writing the resulting estimation onto
the audio file as an ID3 tag or in the filename. The method in previous versions of the
software (1.26) was described in Sha’ath (2011), and allowed the user to manipulate
some analysis parameters, such as the window size or overlapping factor, as well as
to selecting different key profiles, even customised ones. Unfortunately, the current
version (2.3) lacks any user configuration, becoming a hidden system. Table 4.8 sum-
marises the default configuration parameters in KeyFinder 1.26, which is presumably
similar to the one in the current version.

QM Key Detector

The QM Key Detector (QM) is based on the work by Noland & Sandler (2007) and
available as a Vamp plugin written by Cannam et al. (2016) for Sonic Visualiser,89

a user-friendly program that can perform a wide range of sonic analyses, aimed at
researchers and musicologists. The QM Key Detector vamp plugin, uses key profiles
derived from analysis of J. S. Bach’s Well-Tempered Clavier I (1722), with default
window- and hop-sizes of 32,768 points, providing a key estimation every 10 frames.
QM’s output vocabulary is limited to a major-minor classification, plus an ‘unknown’
label, when the algorithm can not detect a specific key. We have processed all the files
using the sonic-annotator software,90 with a script kindly provided by Chris Cannam,

89http://www.sonicvisualiser.org
90http://vamp-plugins.org/sonic-annotator

http://www.sonicvisualiser.org
http://vamp-plugins.org/sonic-annotator
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that reduces the multiple estimations to a single one by choosing the most prevalent
as the global estimation, as submitted to the MIREX competition.91

Traktor 2.11

Traktor (TK) is Native Instruments’ DJ and mixing software, possibly among the pre-
ferred solutions by professionals and amateurs alike. Intimately working with their
own series of dedicated controllers, Traktor’s visual metaphor reminds of a solid DJ

mixer, allowing the user to perform typical mixing operations. It offers tempo and key
analysis per file, storing the analysis results onto an NML file, Native Instruments’ own
XML dialect. Generally speaking, all the mixing solutions available (rekordbox, Ser-
ato, Virtual DJ, etc.) are very similar regarding their functionality and graphic user
interface, with options to mix with one, two or four desks.

4.3.2 Evaluation Results

The remainder of this chapter presents a comparison of the research-oriented and
commercially available algorithms discussed, in order to prepare the ground for the
discussion of our own contributions in Chapter 6. We start with a preliminary valid-
ation of some of our methodological assumptions, namely, the preferred evaluation
on full-length excerpts and the robustness to various audio formats and qualities. Al-
though we are mainly interested in measuring their performance in EDM, we present
additional results for popular and euroclassical music too. Except where noted other-
wise, all the methods were tested with their default settings and the latests software
versions as per October 2017. All the algorithms under consideration are only cap-
able of a binary modal output. Therefore, these evaluations are carried considering
a binary major-minor classifier. However, we included an additional ‘no key’ class,
adding to 25 possible outputs (12 pcs × 2 modes + 1 ‘nokey’), given that QM and
MIK include such labelling (as ‘unknown’ and ‘All’, respectively). Last, we have only
considered the global key of each piece, since only QM explicitly labels on a segment
basis.

Track Length

In Table 4.9, we show the effect of selecting a shorter analysis period from the be-
ginning of each audio file. Like in the previous measurement, we tested the same

91https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_key_detection/
qm-keydetector

 https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_key_detection/qm-keydetector
 https://code.soundsoftware.ac.uk/projects/mirex2013/repository/show/audio_key_detection/qm-keydetector
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weighted score

length dataset ES QM MIK

7.5 s.
WTC .8385 .4917 .8572
BB .5661 .4096 .6498
KFD .3566 .2885 .5422

15 s.
WTC .8656 .6052 .8062
BB .6301 .4649 .7102
KFD .3873 .3156 .5995

30 s.
WTC .8438 .6198 .7656
BB .6866 .5347 .7533
KFD .3986 .3614 .6610

60 s.
WTC .8188 .7333 .7385
BB .7305 .5936 .7675
KFD .4197 .4222 .7253

all
WTC .9020 .8281 .8552
BB .7304 .6565 .7784
KFD .4551 .4557 .7658

TABLE 4.9: Effect of analysing the first n audio seconds with various key-finding algorithms on datasets
from different genres (euroclassical, popular and EDM). The methods tested are Essentia (ES), the QM

key detector (QM) and Mixed-In-Key (MIK).

three methods on different musical styles, providing the MIREX weighted score for
four different durations, 7.5, 15, 30 and 60 seconds, plus the score for the complete
audio track. What is true in all scenarios is, despite the different algorithms and test
collections, that all methods provide their best results when analysing the complete
audio duration (with the only exception of MIK, that reaches an equivalent result when
taking only 7.5 seconds of WTC). Besides, this experiment suggests that the musical
genre has an influence in the results, depending on the analysis window. Similarly, the
particular characteristics of each algorithm seem affect the performance at the various
durations.

QM originally provides an estimation every 10 analysis windows (of 32,768 points,
roughly every 2.22 seconds), taking the longest averaged fragment as the global es-
timate. That is probably the reason why it presents the greater variability between
the different durations, and that the improvement increment seems correlated with the
number of estimated segments for all three datasets.
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% of ‘no key’ estimations

method set 7.5 s. 15 s. 30 s. 60 s. all

MIK

WTC 0.00 0.00 0.00 0.00 0.00
BB 2.08 1.12 0.48 0.32 0.00
KFD 6.80 5.70 4.30 2.30 0.20

QM

WTC 0.00 0.00 0.00 0.00 0.00
BB 0.64 0.16 0.16 0.32 0.16
KFD 0.70 0.60 0.70 0.40 0.30

TABLE 4.10: Percentage of items with ‘no key’ estimations produced by QM and MIK for the different
durations and datasets, all of which contain no ‘no key’ labels.

Similarly, ES and MIK present this incremental behaviour in pop and EDM. Regarding
euroclassical music, both algorithms drop performance in the intermediate stages, re-
gaining accuracy at the entire duration. We attribute this behaviour to the modulatory
nature of the WTC corpus, which seems to introduce difficulties in the intermediate
parts of each track, but also to peculiarities of the key finding process. In the case
of ES, the accumulative nature of the algorithm (which averages all the chromas to-
gether) probably makes the system favour other keys instead of the main key at the
intermediate levels, regaining confidence with the appearance of the main key toward
the end of each piece. It is plausible to infer that MIK also participates of a certain ac-
cumulative procedure, although we can not be certain. One more observation can be
drawn from Table 4.9. As we already said, MIK provides a ‘no key’ estimation when
it detects un-pitched excerpts. In very short excerpts (7.5 secs.), MIK is able to de-
termine the key of WTC pieces as good as with the complete audio —actually slightly
better— probably because the opening of each work is very clear key-wise. However,
in BB and KFD, the scoring for the 7.5 fragments is considerably lower, compared to
the entire track. In order to study this, Table 4.10 shows the percentage of ‘no key’
estimations for the three datasets. As expected, WTC does not present any of such
estimations, being essentially pitch-only music. However, ‘no key’ labels appear as
we look into popular music, and they become significant in EDM, especially for MIK,
reaching up to 6.8% on 7.5 second fragments. This is a possible explanation of the
poorer performance on these styles using short time window (since for the moment,
all the annotations are labelled with a key). Besides, this might tell us something
about the nature of some EDM —and to a lesser extent, rock— tracks, probably start-
ing with un-pitched materials only, such as spoken voices, special effects or simply
introductory drum patterns.
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weighted score

dataset encoding ES QM MIK

WTC
.FLAC .9021 .8281 .8698
.MP3@96 .9021 .8458 .8552

BB
.FLAC .7304 .6565 .7788
.MP3@96 .7296 .6550 .7795

KFD
.MP3@var .4551 .4557 .7658
.MP3@96 .4543 .4519 .7667

TABLE 4.11: Effect of audio quality degradation in various key finding algorithms on datasets from
different genres: euroclassical (WTC), popular (BB) and EDM (KFD). The methods tested are Essentia
(ES), the QM key detector (QM) and Mixed-In-Key (MIK).

Audio Quality

Table 4.11 illustrates the effect of quality downgrading in three datasets from differ-
ent musical styles (WTC, BB, KFD) an three different algorithms (ES, QM, MIK). We
simply present the MIREX score —a proper evaluation follows in the next section—
on the original data and downgraded to MP3 files at 96 KBPS. The downgraded audio
quality is chosen according to the format of the GS dataset. Our main intention is to
confirm the observations by Urbano et al. (2014), validating the usage of lower qual-
ity data for research purposes. As can be seen in the table, the effect of downgrading
is residual in all instances, and the difference is never greater than 0.018 points (QM

on WTC, in which the algorithm performs slightly better on the downgraded sample).
MIK presents a difference of 0.015 points in the WTC, but all other tests show minimal
differences, below 0.004 points. We take this to justify that throughout this disserta-
tion, we will always perform evaluations using the original format of each dataset.

General Evaluation

We close this chapter with a short evaluation of the five algorithms described at the
beginning of this section. Figure 4.7 shows a bar-chart with the weighted scores for
three different styles, including the WTC dataset, plus a combination of the popular
music and EDM datasets, respectively. The highest scores concentrate in euroclassical
music, where ES obtained the highest rank, followed by MIK and TK. We observe
a decremental drop in ES and QM as we progress to the other genres, suggesting an
increasing complexity in popular music and EDM. It is important to note, however
that this ‘complexity’ is surely not tonal, but mainly of a spectral nature: whilst WTC
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FIGURE 4.7: MIREX weighted scores per algorithm per genre.

is keyboard-only music, pop-rock instrumentation typically includes guitars, percus-
sion and vocals. EDM, on the other hand, is mostly made with electronic musical
instruments, what opens a door to sonically vaguer areas. From Figure 4.7, it can also
be inferred that popular music presents less variability regarding the percentage of
correctly estimated keys with the different algorithms, whereas EDM seems to pose a
real challenge to methods such as ES and QM, initially tailored for euroclassical music
using the key profiles by Temperley (1999) and Noland & Sandler (2007), as shown
in Figures 3.5 and 3.13.

Additionally, Tables 4.12 and 4.13 provide a detailed evaluation on the popular music
and EDM datasets, respectively. Regarding popular music, the less accurate combina-
tion appears to be KFA on The Beatles’s music, with almost half of the items correctly
classified (≈ 0.47%), in contrast with MIK, which provides the highest results for
the ‘rock’ datasets BB and RS (≈ 0.71%). Algorithms seem to punctuate their best
on the Billboard dataset, something that is more noticeable by looking at the MIREX

weighted scores. We attribute this to the fact that BB is a ‘cleaned’ dataset, with am-
biguous and modulating tracks removed from the test collection. The only exception
to this pattern is QM, which seems to prefer The Beatles.

In contrast, the results for EDM present more variability among the different algorithms.
Both ES and QM (methods designed for euroclassical music) present the lowest scores
for the two test datasets, down to≈ 0.32% of correctly estimated keys (ES on GS). On
the upper side, MIK is again the algorithm with the best scores (≈ 0.70% for KFA and
≈ 0.68% for GS), followed by Traktor and KeyFinder, whose performance should be
taken carefully, since the ≈ 0.67% accuracy on KFD likely comes as an overfitting
effect, given that the algorithm come from the same origin.



116 METHODOLOGY

correct items typical errors

method set tonic mode key fifth relative parallel other MIREX

ES

BTL .5500 .8611 .5278 .1056 .0444 .0222 .3000 .5983
BB .6704 .8576 .6416 .1488 .0288 .0288 .1520 .7304
RS .5771 .8060 .5075 .2090 .0348 .0696 .1791 .6363

KFA

BTL .5722 .6167 .4667 .1111 .1889 .1056 .1278 .6000
BB .6480 .6416 .5488 .0832 .1760 .0992 .0928 .6630
RS .6716 .6517 .5323 .0746 .1095 .1393 .1443 .6303

MIK

BTL .7500 .7500 .6389 .0722 .0833 .1111 .0944 .7222
BB .7936 .7840 .7072 .0656 .0704 .0864 .0704 .7784
RS .8060 .7960 .7064 .0448 .0547 .0995 .0945 .7651

QM

BTL .6778 .8000 .6111 .1111 .0333 .0667 .1778 .6900
BB .6448 .7952 .5696 .1120 .0528 .0752 .1904 .6564
RS .6318 .7612 .5373 .1095 .0398 .0945 .2189 .6229

TK

BTL .6833 .6667 .5611 .0667 .1111 .1222 .1389 .6522
BB .7680 .7456 .6688 .0640 .0832 .0992 .0848 .7456
RS .7413 .7413 .6418 .0597 .0597 .0995 .1393 .7094

TABLE 4.12: Evaluation of available algorithms with popular music datasets.

correct items typical errors

method set tonic mode key fifth relative parallel other MIREX

ES
GS .4000 .6467 .3183 .1667 .0933 .0817 .3400 .4460
KFD .3878 .6463 .3377 .1794 .0591 .0501 .3737 .4551

KFA
GS .6617 .8167 .6050 .1117 .0667 .0567 .1600 .6921
KFD .7084 .8737 .6663 .1062 .0341 .0421 .1513 .7381

MIK
GS .7283 .8433 .6800 .0767 .0583 .0483 .1367 .7455
KFD .7575 .8677 .7054 .0802 .0331 .0521 .1293 .7658

QM
GS .4517 .5967 .3900 .1150 .1417 .6167 .2917 .5023
KFD .3767 .5792 .3387 .1413 .1293 .0381 .3527 .4557

TK
GS .6800 .7917 .6250 .0850 .0833 .0550 .1557 .7035
KFD .7064 .8206 .6543 .0912 .0541 .0521 .1483 .7265

TABLE 4.13: Evaluation of available algorithms with EDM datasets.
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To us, it came as a surprise that neither MIK, nor TK —supposedly professional solu-
tions aimed specifically at EDM— managed to supersede the results obtained with the
popular music datasets. Someone could argue that this could be caused by particularly
challenging or unusually difficult datasets, in comparison to the average difficulty of
EDM. However, we are more inclined to think that the actual challenges for key es-
timation in EDM lay in the wide range of timbral configurations, the omnipresence of
percussive elements, and perhaps, an under-consideration of likely tonal configura-
tions. any case a ≈ 0.70% of accurately classified entries (for rock and EDM) leaves
considerable room for improvement in this metagenre.

***

In this chapter, we have reviewed existing musical collections with key annotations.
We have tried to cover different musical styles —broadly categorised as euroclas-
sical, popular and electronic dance music— in order to highlight differences between
them, aligning with the idiosyncratic tonal practises of each style as discussed in
Chapter 2. Furthermore, we presented simple statistics for each genre, regarding the
distribution of tonal centres and modality, and introduced the GiantSteps key dataset,
a collection of 600 EDM excerpts which constitutes the first contribution stemming
from our research. Additionally, we discussed typical evaluation metrics, proposing
a minor variation regarding the evaluation of neighbouring keys, as well as defending
key analyses using full audio excerpts, offering fundaments and experimental support
to our claims. Furthermore, we conducted a preliminary evaluation of key estima-
tion algorithms on datasets from various musical backgrounds. Both academic and
commercial applications, considered close to the state of the art, presented a clear
variability across musical genres, with the best results on euroclassical music, despite
the likely presence of modulation. We attribute the lower performance on popular
music and EDM mainly to the timbral complexity present in these genres, but also to
possible misconceptions of the tonal practises characteristics of these styles. This fact
has already been pointed for popular music (Temperley & De Clercq, 2013); however,
to our knowledge, there is no research illuminating whether this is the case regard-
ing electronic dance music. Given this scenario, in the next chapter, we continue our
narration with a statistical study of tonal practises in EDM, originating in an effort
to gather additional data for our experiments, and which we believe, it sheds some
light about tonal configurations in EDM that might have been behind the decreased
performance in this metagenre, including the use of reduced pitch-class sets, modal
ambiguity, as well as bimodal and atonical passages.





Chapter 5
A Study of Tonal Practises in EDM

“We were never musicians,
we’re just collage artists”

Future Sound of London

In the previous chapter we introduced the GiantSteps Key Dataset, an effort to gather,
with a reliable methodology, ground-truth from online resources, that we could ex-
ploit evaluating existing key estimation algorithms, as well as developing and testing
our own. The main advantage of the method described,92 was its semi-automatic
procedure, relying on user-information from fora and contrasting annotations across
various sources, reducing considerably our labelling efforts. However, some of the
impositions of such methodology is that the number of available audio fragments, the
distribution between keys and genres, as well as the degree of annotation detail or its
labelling confidence, lay out of our operative power.

In order to address some of this restrictions, during our research we initiated yet two
other collecting and musical analysis endeavours, which are described in detail in the
current chapter. The Beatport Dataset (BP), described in Section 5.1.2, was born as an
attempt to enlarge the amount of available data, with a balancing criterion regarding
the distribution of modalities and genres. Moreover, the GiantSteps+ Dataset (GS+)
comprises a sub-collection of 500 fragments from the previously described GS dataset,
with detailed pitch-class annotations, occasional key changes, as well as morpholo-
gical descriptions of the tracks, and it is presented in Section 5.1.3. For both datasets,
we used an experimental labelling system, that is less restrictive that the typical bin-
ary tagging while maintaining a certain ‘reducibility’ to a binary vocabulary allowing
comparison with other methods. Although this annotation strategy was developed in

92See Knees et al. (2015) or Section 4.1.3 for details.
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the course of our analysis, for convenience we present it prior to the description of the
datasets, in Section 5.1.1.

As a natural consequence of our analytical endeavours, in Section 5.2 we attempt a
generalisation of the most characteristic tonal traces we found throughout our study,
making direct reference to specific tracks from one of the two collections described.
The advantage of presenting examples from these datasets is double. On the one
hand, the data is publicly and directly available, facilitating a deeper understanding
—and criticism— of the descriptions herein contained.93 In addition, the same au-
dio collections have been subject to computational analysis during the development
and assessment of our own key-finding methods, establishing an interesting dialogue
between music-theoretical and engineering inquisitions.

5.1 New Music Collections

5.1.1 A Lax Annotation Strategy for EDM Datasets

Throughout this dissertation we have made repeated reference to the likely unsuit-
ability of a binary modal vocabulary for almost any non-euroclassical music. This
has been substantiated in Chapter 2, where we described the various modal systems
operating in popular music, and the possibility of open-ended tonal practises in EDM.
Furthermore, the results of our preliminary evaluation in popular and electronic dance
musics support this claim, given their lowered performance when assessed under a
binary classifier. Questions about the suitability of euroclassical binary tags have been
raised in previous publications (e.g. Temperley, 2001; Gómez, 2006a) and addressed
specifically by Temperley & De Clercq (2013), by annotating their rock music col-
lection with keys as tonic-only tags. However, Temperley & De Clercq provide chord
annotations that can be parsed in various ways to obtain detailed modal implications.
A similar strategy was used in the Billboard dataset (Burgoyne et al., 2011), and is
essentially inherent to any corpus containing chord annotations instead of single key
labels. However, as suggested in Sections 1.2.1 and 2.4, chord sequences are charac-
teristic only of certain EDM subgenres, mostly those under the influence of disco and
pop, in flavours ranging from epic euroclassical progressions in trance music to highly
sophisticated jazz sequences in deep-house. Other styles, such as techno and its vari-
ants, or breakbeat-driven subgenres, can make use of single chords, or no chords at
all. Therefore, a strategy based on chord labels seemed a priori inappropriate to char-
acterise EDM as a whole, and, on the other hand, a single tonic-note annotation felt

93Amongst the materials accompanying this thesis we provide scripts to download the audio directly
from Beatport,94 as detailed in Appendix C.
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tonical

FIGURE 5.1: Modal arborescence in the Beatport dataset, from basic characterisation to complete
modal specification.

too sparse an indicator —although certainly the more appropriate for tracks with a
single tone— to characterise a complete EDM track or a loop hypermeasure.

Embarking in new analytical endeavours made us consider the utility of more de-
tailed annotations, accounting for deviant modal practises, tonal ambiguity, and tracks
without pitch or key at all, given the pitch scarceness found in some subgenres. In
order to meet these requirements, we designed an open-ended annotation framework
that could easily allow us to reduce the tags to a binary modal vocabulary —granting
a comparison with other methods— providing analytical information useful beyond
purely computational approaches.

Figure 5.1 shows the modal tree that we have used to develop our annotations, created
after observation of the most common traits in the two corpora analysed. From left to
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right, the figure represents a gradual increment of detail regarding pitch information
—except for the no-key ‘dead’ branch. As we have insinuated in Section 2.2.1, a first
differentiation between pitched and unpitched tracks could result useful when dealing
with some subgenres (level 1). Moreover, even when pitched elements are present
in a piece of music, it should not be taken for granted that the pitched materials are
going to convey a sense of tonicallity (level 2), although is the most likely scenario.
Level 3 presents the four principal labels in our proposed vocabulary, accounting for
excerpts expressing or not major or minor modalities, without defining other modal
peculiarities. These four tags should be seen as the most basic form of modal expres-
sion, as represented by a major or minor third interval over the tonic, by the absence
of it, or by the presence of other indicators, such as diminished triad, which still might
produce a sense of tonic-centre. The fourth level in the figure represents a finer modal
grain, providing differentiation between the diatonic modes and other types of scale.
It is perhaps worth noting that the tag ‘other’ can be further divided into locrian (the
diminished diatonic mode) but also one-tone configurations and in general, tracks
without a major or minor bias.

Our annotation strategy uses the labels in Figure 5.1, keeping the same tree structure
and vocabulary. It typically consist of a single row with one, two or three columns
—depending on the annotation detail and type— separated by either a space, a tab or
a comma. The first column contains the tonic pitch class. We have set the convention
to annotate atonal or atonical tracks with either an X or an hyphen (–). We included
an additional entry unknown to allow the annotator to denote cumbersome cases in
which any estimation would be little more than random. Furthermore, in order to be
able to signal tracks deviating from standard tuning reference, we append the special
characters ‘^’ and ‘_’ to indicate a raised or lowered pitch from the tuning reference.
In this way, although we typically discard this information in evaluation procedures,
we can easily notice these fragments, which could be considered ‘problematic’ in ap-
plied scenarios, such as harmonic mixing. After the tonic pitch class definition in the
first column, the basic mode indicator takes the second field ∈{major, minor, other}
(the ‘no-key‘ is redundant, since it is implied with the X label). At every next level,
new annotation detail can be added, whether specifying a particular mode, a mono-
tonic excerpt or an atonal track. Although there is no particular analytical motivation
to limit the vocabulary, for programmatic reasons we have limited it to the following
descriptors: aeolian, dorian, harmonic, ionian, locrian, major-[6, mixolydian, pentamaj,
pentamin, phrygian and phrygian-major.95 Figure 5.1 presents a few annotation ex-
amples according to this simple pattern.

95Computer code to analyse, parse and evaluate sound files and estimations according to this con-
vention is referenced in Appendix C.
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col. #1 col. #2 col. #3
tonic basic mode detailed mode
X
X atonical
C major
C]^ other
G_ minor phrygian
D[ minor harmonic
B[ other monotonic
unknown

TABLE 5.1: Examples of annotation labels for our corpora of EDM.

This annotation procedure, however, does not provide a specific means to deal with
modal ambiguity or tonal ambivalence, which in our view, constitute important as-
pects of tonality in EDM, as we will suggest shortly. At first, we thought about includ-
ing an additional ‘ambiguous’ label to help identifying tracks with open or multiple
interpretations. However, we resolved that considering ambiguity as a label on its
own would hinter the actual particularities of tonally ambiguous tracks, by assigning
them to the same placeholder. Therefore we decided to indicate ambiguous tracks by
annotating the main tonal forces involved in each track’s ambiguity, separated by the
reserved character ‘|’ (e.g A minor | C major, expressing bimodal ambivalence between
relative keys, or F minor | F major, indicating modal ambiguity over the same tonic
F). With this operation —allowing multiple annotations for a single fragment— we
gained some assets both in analytical and computational domains. First, we do not
see any practical, computational or theoretical advantage in providing an interpretive
disambiguation for clearly ambivalent or ambiguous passages. Even more, we think
that acknowledging the factors of ambiguity itself sheds more light over this express-
ive phenomenon, somehow neglected when attempting to disambiguate it —perhaps
too subjectively. Moreover, this has implications in our evaluation methodology, as
we can consider one or multiple annotations together, depending on the evaluation
objective.

This annotation framework crystallised while studying the annotations and analyses
described in the following blocks. As such, it has been used to convert and unify the
annotations and comments left by our collaborators into a unified labelling system,
computer-readable and humanly understandable.
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5.1.2 The Beatport Dataset

As we commented in the opening paragraphs of this chapter, the initial GS dataset
presented some methodological limitations, especially regarding the distribution of
items across genres and modalities, with 85% of its 600 tracks labelled as minor.
Although this ratio seems to adjust to real distributions, as it is also suggested by
the KeyFinder dataset (KFD) and previous experiments by Gómez (2006a, p. 131),
for research purposes, we wanted to obtain a more even distribution of major and
minor modalities. We decided that Beatport was a good candidate upon which develop
a new annotating strategy based on three related facts: (a) our previous experience
collecting the GS data had shown how easy was to obtain two-minute audio excerpts
from virtually the whole Beatport database, adding to thousands of tracks (b) with
correct metadata regarding artist names, titles and remixers. Furthermore, Beatport’s
catalogue seemed updated, (c) containing audio tracks in circulation at the time of
the download (January 2016), representing popular EDM subgenres at that moment.
Therefore we embarked on a new gathering process of 1,486 additional audio tracks
from Beatport, with accompanying metadata including artists, title, label, key, bpm,
and remix version, which where subsequently annotated by an external collaborator,
with additional labels and corrections from the author of this document.96

The approach to balance the new collection was based in Beatport’s own genre and
key tags. With a python script, we downloaded random entries mostly labelled as
‘major’ by Beatport, while keeping a balanced distribution across genres and tonic
notes. While we gave credit to the genre labelling, in the annotation process we
disregarded Beatport’s key labels, substituting them with manual annotations. Despite
our efforts to balance the new collection, we were left with only ≈ 29% of the total
tracks in major,≈ 62% in minor, and a smaller group of excerpts annotated either with
an hyphen (–), or ambiguous annotations, normally consisting of multiple labels.

As an additional asset of this new batch of annotations, we asked the annotator to
assess his ‘labelling confidence’ for each track, what could be seen as an indicator
of the variability in tonal complexity in EDM per se, and for which we predefined a
three-level scale, expressed in the following terms:

(2) Confident. The annotator thinks that other expert analyst would likely provide the
same label.

(1) Ambivalent. Although confident about his labelling, the annotator acknowledges
that the track is highly subjective and could be interpreted differently.

96The credit for the annotation process goes to Eduard Mas Marín.
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Manual Annotation

label confident ambivalent insecure SUM Beatport

major 366 33 3 402 (1,447)
minor 783 108 12 903 (39)
majmin 7 33 0 40
bimodal 21 27 1 49
other 5 6 6 17
no-key 0 1 72 73
unknown 0 0 2 2
SUM 1,182 208 96 1,486 (1,486)

TABLE 5.2: Distribution of BP tracks across confidences and additional labels. The initial Beatport
distribution is also shown.

(0) Insecure. The annotator has difficulties to make a decision about the track. How-
ever, in the annotation process of this collection, we asked the expert to produce
a label anyway.

Furthermore, we encouraged the annotator to write down his impressions and/or ad-
ditional descriptions regarding any particular track. Some of the comments left ex-
pressed doubts about the annotation decision (“tonic centre is clear, but difficult to
establish a particular modality”), or detailed a modality beyond the traditional major
or minor labels (“phrygian”, “mixolydian”). A few other comments indicate some
degree of modal ambiguity (“major and minor modes coexist in the track”, “50% G
major - 50% E minor feel”) or confirm key changes and their approximate timing
(“key changes in minute 1:20”).

By looking at the comments and confidence levels simultaneously, we managed to
write down additional —and occasional— modal information (for example, the pres-
ence of phrygian and mixolydian). However, most interestingly, we could isolate
difficult tracks, attempting to provide explanations regarding their difficulty. Across
the whole dataset, we found four main types of divergence with regard to the binary
major-minor classification, which can be broadly grouped into bimodal ambivalent
tracks, fragments with major/minor ambiguity (majmin), excerpts not suggesting any
particular key (no-key), and yet other entries conveying a clear tonal centre but not a
specific major or minor modality (other). Table 5.2 presents the distribution of the
items in the dataset according to these broad descriptors, along the three confidence
levels.
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FIGURE 5.2: Distribution of modalities across tonics in the Beatport dataset. Bi-tonical excerpts are
not included in the plot to preserve the ratio of items.

Additionally, the distribution of the dataset items by their tonic notes is shown in
Figure 5.2, where it can be seen that despite the effort to obtain a modally balanced
collection, over 60% of the total still represents minor tracks. On the other hand,
although there are visible peaks on C and F, the collection across multiple tonics is
relatively balanced. The ‘no-key’ entry is indicated as a new bar, concentrating around
5% of the total number of tracks, and the ambiguous label represents mainly major-
minor ambiguity. Tracks with a bi-tonical quality are not included in the figure, to
preserve the correct ratio of items.

As with the GS dataset, a second access to Beatport in July 2017, revealed that from
the 1,486 original downloaded tracks, 103 were already lacking the artist info page
with the associated metadata. However, all the audio files were still accessible us-
ing the original track’s id number. The new download operation redistributed slightly
the audio samples across genres. As have already commented in Section 4.1.4, the
‘Chill Out’ and ‘Electronica’ are now grouped in a single category (‘Downtempo /
Electronica’), and there are some new genres, such as ‘Big Room’ or ‘Trap / Fu-
ture House’. The effect of this redistribution is noticeable in Figure 5.3, in which
most genres are represented with an average of 94 tracks, except for the merge in
Downtempo-Electronica, doubling the items compared to all other subgenres. This
new label seems to contain items that are borderline-EDM, many of them, closer to
other types of popular music. This might be indicated by the prominence of major
tracks, which is clearly less common in all other subgenres. Last, the three entries at
the top of the figure represent newly created styles, stemming from containers such
as ‘House’ and ‘Hip-Hop.’
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FIGURE 5.3: Distribution of tracks by genre and mode in the BP dataset. The ‘ambiguous’ label
represents tonical tracks not included within the major or minor modes.

5.1.3 The GiantSteps+ Dataset

If with the Beatport collection we wanted to obtain a larger and balanced collection
across genres and keys, the GiantSteps+ dataset (GS+) represents an effort to analyse,
with more degree of detail, the audio tracks already present in the GiantSteps dataset,
described in Chapter (sec. 4.1.3). In particular, we wanted to obtain finer modal in-
formation beyond the binary labelling, and in turn, contrast with an expert’s opinion
the labels extracted automatically.

For this endeavour, we chose a subsample of 500 tracks, based on two criteria. First,
we filtered out items for which we did not have the complete metadata, as obtained in
our second download (see Sections 5.1.2 and 4.1.4). Then, from the 540 remaining
tracks, we discarded the genres containing less than 10 items. This, in turn, removed a
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few tracks falling out of the umbrella of what is typically regarded as EDM, including
genres such as “Reggae / Dancehall / Dub”, “Funk / Soul / Disco”, “Hip-Hop / R&B”,
and “DJ Tools”, leaving us with the round number of 500 tracks distributed across 14
different genres.

With this collection of tracks, we implemented a different analysis strategy, annotat-
ing independently the tonic note and the detailed pitch-class set for each track (e.g.
{C:047

2

}).97 If a given pitch structure corresponded to a well-known scale pattern,
this additional label could be added in a separate field (for example, {A:0357

2

} is
typically referred to as A minor pentatonic). However, this operation was optional,
since we wanted to be able to extract modal labels in a later stage, directly from the
pitch-class annotations, in a programmatic fashion. In case key changes occurred,
these should be written down too, together with a time mark. Besides, just as with
the Beatport dataset, the annotator was asked to write down comments and impres-
sions on individual tracks, as well as to measure his degree of labelling confidence,
according to the threefold-scale described in the previous block.

One of the goals of this annotation strategy, based on pitch-class set description, was
to be able to parse the results in different ways, allowing us to study the data without
being overly conclusive beforehand. In this way, we could study the number of tracks
containing a tonic minor triad, or a leading tone degree (\7̂), independently from
pre-established modal labels, or infer the major-minor ambiguity by measuring the
presence of both thirds on each dataset. As a means to create the basic modal annota-
tions for this new collection (major, minor, majmin, other, or nokey), we looked for
simple tonal indicators in the annotated pitch-class sets. Our parsing methodology is
summarised in the following steps:

1. We converted the annotations from absolute format (e.g {C:c,d[,e[}) into separ-
ate tonic and ordered pc-set fields (C and {013}). This stage allowed us to study
the variability of scales and pitch cardinality (i.e. number of pitch classes) in
the corpus. Atonical passages were annotated with an ‘X’ character instead of
the tonic, followed by the pc-set in normal order (see Section 2.1.6).

2. We looked for characteristic subsets in the pc-sets, in order to group the an-
notations into the five broad modal categories defined (major, minor, majmin,
other and no-key). This step was achieved by looking for the major ({047}) or
minor triad ({037}) sets, or a combination of both ({0347}, majmin). In prin-
ciple, we assumed as ‘no-key’ all tracks without an annotated tonic, and gave
the provisional label ‘other’ to the remaining pc-sets containing a tonal centre

97The person responsible of the raw analyses of these 500 tracks is Daniel G. Camhi.
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without tonic major or minor triads (e.g. tracks with single tones or sets with
diminished chords).

3. Additionally, we looked for more specific modal definitions, by combining the
previous measures with other tonal indicators, such as leading tones or phrygian
lowered seconds, creating new labels that were appended to the basic modal
descriptor. These labels are not mutually exclusive, so a single entry could con-
tain a number of these if the pitch-class set matched different parsing rules. The
modal labels provided were ‘aeolian’, ‘dorian’, ‘harmonic’, ‘ionian’, ‘locrian’,
‘major-b6’, ‘mixolydian’, ‘pentamaj’, ‘pentamin, ‘phrygian’ and ‘phrygian-
major’, as defined in Section 5.1.1.

4. In a later stage, we checked manually the labels and assessed the comments left
at the time of the analysis, eventually assigning a pre-final key label to each
track based on these.

Last, we compared the obtained annotations with the original GS tags, in order to look
for potential inconsistencies between them. We knew beforehand that annotations
containing ‘other’, and ‘no-key’ labels would create a conflict with previous labels,
so we carried personally another listening test of these ambiguous tracks, making a
final decision based on our personal criterion (whether to keep the new labelling or
stick to the previous binary tag). After scrutiny of these difficult tracks, we checked all
other divergences between the two annotation batches, correcting the respective an-
notations in one or other set after aural inspection of the conflicting tracks. In this new
annotation batch, we took an ambiguity-friendly approach, using comments, estim-
ations and listening assessments to annotate possibly ambiguous tracks as explained
before (e.g. C minor | C major). However, all the corrections in the original GS data
contain one single annotation, in order to preserve the same formatting as before.

Dataset Statistics

As we advanced in Section 4.1.4, with these operations we managed to correct 63 la-
bels in the original GS dataset, most of them consisting in relative, parallels or neigh-
bouring errors. Regarding the new provisional tags, we re-labelled 106 tracks either
with corrections or additional labels, according to our analysis. The basic modal ratio
of the GS+ datasets is conveniently summarised in Table 5.3, arranged by confid-
ence level. Additionally, the distribution of items according to their genre labels and
modalities is shown in Figure 5.4, where it can be confirmed that this collection is
clearly biased toward house genres, partly as a effect of our filtering. Despite this,
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Manual Annotation

label confident ambivalent insecure SUM Beatport

major 40 4 2 46 (245)
minor 293 41 3 337 (245)
majmin 37 7 3 47
bimodal 38 3 0 41
other 18 7 1 26
no-key 2 1 0 3 (10)
unknown 0 0 0 0
SUM 428 63 9 500 (500)

TABLE 5.3: Distribution of tracks by confidence in the GS+ dataset.

however, it is interesting to observe that ambiguous tracks span through all repres-
ented genres, what suggests that modal ambivalence and/or tonal ambiguity could be
seen as characteristic of the meta-genre as a whole. Last, Figure 5.5 shows the dis-
tribution of items across tonic notes. After our revision there were only three atonal
tracks, although it is worth noting that the presence of purely major tracks (≈ 10%)
is comparable to the share of modally ambiguous entries, what likely reflects more
faithfully the complexity of tonal practises in EDM, compared to the original GS key
distribution.

As an additional experiment, during the analysis process, we asked our expert to fill in
a simple checklist for each track, containing 17 potentially characteristic identifiers of
various EDM subgenres. These include tonal indicators such as pedal tones, chord se-
quences or riffs, but also other textural marks, such as the presence of lead melodies,
vocals, glissandi, incidental effects or spoken voices. The global results of this simple
questionnaire are shown in Figure 5.6. All the tracks in the dataset contain pitch, and
almost all, drums. While the second trace is certainly characteristic of EDM, the in-
variable presence of pitch is surely due to the origin of the data, mostly coming from
the Beatport user forum to correct key labels and other online key estimation pools.
Over 40% of all the entries have a ‘pitch only’ section, likely belonging to a break
or build-up structure. In contrast, only a few tracks have drum breaks proper. 60%

of the fragments present a lead melody, which in half of the instances is apparently
vocal (≈ 30%). Typical tonal indicators, such as chord sequences, riffs, pedal tones
or arpeggios are individually situated under the 40%, with a likely presence compar-
able to other ‘difficult’ tonal effects, such as glissandi or incidental recordings. Key
changes occur in around 5% of the tracks.
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FIGURE 5.4: Distribution of tracks by genre and mode in the GS+ dataset. The ‘ambiguous’ label
represents tonical tracks not included within the major or minor modes.

The lower part of Figure 5.6 arranges the same information broken down by sub-
genre. All rows are normalised to show potential characteristics across various sub-
genres. The figure suggests that —although timidly— some of these textural and tonal
descriptors might help in differentiating subgenres, whilst others seem to characterise
EDM as a meta-label. For example, drum breaks or spoken voices do not seem char-
acteristics of the GS+ collection. Similarly, key changes are rare in the whole corpus.
Classic tonal indicators, such as chord sequences and riffs are present in trance and
house variants, whereas techno and minimal seem to favour static tonal structures,
such as pedal tones. Dubstep also shows some preference for arpeggios —which
do not seem all that characteristic of other subgenres— and prominent basslines, a
common feature with drum‘n’bass, deep-house and minimal. Regarding other tonal
effects, glissandi seem idiomatic of big-room and electro-house. Other atonal effects
clearly define the sonic world of minimal, electro-house and techno, although they
moderately appear across most other styles.
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FIGURE 5.5: Distribution of modalities across tonics in the GS+ dataset. Bi-tonical excerpts are not
included in the graphs to preserve the ratio of items. Ambiguous tracks refer to tracks with modal
ambiguity.

5.2 Generalising Tonal Practises in EDM

In this section, we elaborate on the analysis of the two datasets described, in and
attempt to distil some recurrent tonal aspects across various EDM subgenres. Since
our analyses have focused above all on key characterisation, what we discuss in this
section could be regarded as ‘timeless’ observations —still images of fragments of
music— defined by particular scales and vertical configurations, rather than by their
timely succession.

As already advanced in the Introduction, our strategy bears resemblance with what
Tagg has referred to as the ‘extended present’, roughly corresponding to the duration
of a hyper-metrical loop. However, if we think of the loop as an endless repetition or
variation of the same motif, the extended present, could somehow be regarded as an
‘intended infinity’, not in terms of texture or timbre —which are the principal drivers
of musical flow in EDM— but in terms of a constant tonal ground.

Therefore, we exclude from our digression larger temporal scales, such as the se-
quential arrangement of tracks or the DJ-set as a complete musical structure, where
a sense of key evolution proper could emerge in the succession of different tracks,
according or not to the regular customs of harmonic mixing. Our study of short-term
configurations is justified by two main reasons. First, the hypermetrical loop arrange-
ment of EDM tracks appear as the optimal container to study essential tonal config-
urations, upon which further enquiry could be conducted in the future. Moreover,
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normalised per subgenre.
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+

FIGURE 5.7: Various mixing configurations. We are particularly interested in the tonal effects produced
by overlaying records and other sonic sources.

computational tonal analysis is typically performed over short-time windows, and
this restriction seemed favourable to our interests in assessing computational models
of key estimation in EDM. Yet another important motivation for this self-imposed lim-
itation comes from our personal interest in studying the tonal implications of EDM’s
compositional and mixing configurations, as suggested by Figure 5.7. Although the
‘technique’ of harmonic mixing is mostly concerned with the emotional effect of the
sequential arrangement of keys —conceptually closer to modulation as a producer of
narrative— we are more attracted to the ambiguities presented by the simultaneous
overlay of records, combined or not with synthesisers and drum-machines, and in
general, in compositional approaches revolving around mixing and multi-tracking.

5.2.1 Key Changes

We start our investigation trying to confirm the general assumption that EDM typic-
ally lacks of the tonal directionality present in euroclassical music and the alternating
structuring found in popular musical styles. Although we had little expectation re-
garding modulation processes in EDM, analyses of both corpora confirmed —at least
in our two-minute excepts— that key changes do not seem all that common in this
music. The two collections described in this chapter add to a total of 70 tracks with
structural key changes (47 in BP and 23 in GS+), totalling to≈ 3.5% of the 1,986 files
(1, 486 + 500) analysed.

As Figure 5.8 illustrates, most of these key changes occur between nearby regions,
mainly relative, neighbour and parallel keys. Moreover, key changes do not seem
to proceed gradually, by pivoting or creating a tonally ambiguous time period before
confirmation, except perhaps, for tracks influenced by disco and other song traditions,
which are more susceptible to present ‘prepared’ key changes, with cadential implic-
ations or pivotal chords, such as in Roisin Murphy’s “Golden Era Disco Mix” by
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FIGURE 5.8: Key changes in the BP and GS+ datasets. Most changes are produced between relative
and/or neighbouring keys.

David Morales [3443052, house], where the global dynamics anticipate a modulation
process achieved via a pivotal chord.

As a general rule, however, if present, key changes tend to occur suddenly at the start
of a new hypermeter or after an atonal (unpitched) transition, typically accompanied
by drastic changes in instrumentation, texture and mood. For example, in “Objects
and Purpose” [814505, tech-house], Bronnt Industries Kapital create a temporary sus-
pension of the main theme in A major with a sudden interruption on a single tone F,
framed by two atonal instants, implying a total change of texture lasting for around
30 seconds. Similarly, in Skrillex’s “All Is Fair In Love” [5264038, dubstep], the key
change from E minor to E[ minor happens abruptly after a short spoken-voice interlude
of less than two seconds. However, in this example, the new key remains for the rest
of the fragment. In tracks like “The Happy Pill” by Uzie [3526370, electro-house],
the key change from D minor to B[ major is produced by the sudden disappearance
of an overly present bassline playing a repetitive phrygian motive d→e[→d, leaving
the harmonic-filler alone, playing arpeggios on a sustained B[maj chord. In these ex-
ample, the confirmation of the new key is not achieved via a cadence, or a particularly
characteristic pattern, but simply by accumulation of time in the new tonal situation.
After a few hypermetrical repetitions, the listener seems to forget the previous bass-
line in D minor phrygian, accepting the region of B[ major as the new tonal centre.
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pc-set tracks (%) tonic triad closest mode(s)

{023578

2

} 122 24.5 minor aeolian
{02357

2

} 29 5.8 minor aeolian and/or dorian
{023579

2

} 22 4.4 minor dorian
{03578

2

} 18 3.6 minor aeolian
{024579

3

} 18 3.6 major ionian
{0123578

2

} 13 2.6 minor aeolian-phrygian
{023578

23

} 13 2.6 minor aeolian-harmonic
{0357

2

} 10 2 minor minor pentatonic
{013578

2

} 9 1.8 minor phrygian
{023578} 7 1.4 minor aeolian

TABLE 5.4: The ten most frequent pc-sets in the GS+ dataset.

5.2.2 Common Diatonic Sets

In our analysis of the 500 fragments from the GS+, we found 166 unique pitch-class
sets. From these unique sets, the ten most common are listed in Table 5.4. The
predominance of aeolian-related modes is clear over all other diatonic modes, fol-
lowed in a much smaller number by dorian and ionian, and a few other variants of
minor modalities, supporting the claimed raise of minor modality in popular music
after the 1960’s (Schellenberg & Von Scheve, 2012), and conforming to the statistical
distributions reported in Section 4.1.3 (however, we should not forget that our ana-
lyses are carried on the GS collection, clearly biased towards minor modalities). In
any case, our analytical data confirms the predominance of the aeolian modality over
other minor types, resulting especially salient the almost total absence of the minor
harmonic mode, so characteristic of euroclassical praxis.

Figure 5.9 shows the pitch cardinality (i.e. the number of total pitch classes) distribu-
tion of the pitch-class sets in the GS+ collection. It can be easily seen how heptatonic
sets —including the diatonic modes— are by far the most frequent (209 items), fol-
lowed by hexatonic and octatonic collections. As shown in Table 5.4, 122 of such
heptatonic sets found correspond to aeolian scales, although other diatonic variants
are as well represented, including dorian (22), ionian (18), phrygian (9) a mixolydian
(5), adding to around 35% of the GS+ dataset. Besides, some of these modal qualities
can be conveyed with reduced pitch-class sets of three-to-six elements, by grouping
the elements of the tonic triad with other characteristic modal degrees. By looking at
smaller pc-sets, for example, we found 45 entries containing the elementary phrygian
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FIGURE 5.9: Cardinality distribution in the GS+ dataset, where it can be seen that most fragments in
the corpus clearly contain heptatonic pitch-class sets (i.e. diatonic modes).

set {0137}, and a few other entries with phrygian-major qualities, such as Mark
Broom’s “M28” [techno, 3339291], Dubfire’s “I Feel Speed” [435443, progressive-
house] or Excision’s “Headbanga” [3402886, dubstep]. Furthermore, the presence of
chromatic sets seems relatively frequent, with 12 tracks containing the highly chro-
matic set {012345}. Yet other 41 elements contain the chromatic minor-third cluster
{0123}, apparently characteristic of an aeolian mode with phrygian cadential resolu-
tions, as in Mathew Jonson’s - “Learning To Fly” [1964905, techno] or Tony B’s “Je
T’aime” [3995054, electronica].

5.2.3 Pitch Sparsity

One of the most interesting properties of reduced pitch-class sets is the varying degree
by which they convey tonical and modal groundings, occasionally presenting openess
to multiple interpretations. For example, the only pitched contents in The Chap’s
“Woop Woop” [298989, minimal] are shown in Figure 5.10, consisting in a repeat-
ing bassline with pitch-class set{69

3

} under a track otherwise populated with atonal
effects. In this track, the inferred modality must be decided upon very restricted ma-
terials, such as the minor third f]-a. Furthermore, the rhythmical and metrical balance
between both tones, creates a perfectly bimodal balancing, despite other elements
suggesting the A major region are virtually absent. Similarly, in Marco Carola’s “Play
it Loud!” [1681077, tech-house] the pitched elements are almost solely percussion.
However, a repetitive bass-layer presents a clear tonal centre in G, despite pitches are
heavily detuned and reduced to the major third pc-set {04}.
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FIGURE 5.10: Bassline transcriptions of The Chap’s “Woop Woop” [298989, minimal] (left) and
Marco Carola’s “Play It Loud” [1681085, tech-house] (right). These reduced pitch-class sets clearly
present some modal hints, despite their limited pitch content.

Besides the common major and minor classes, in Section 5.1.1 we introduced two ad-
ditional labels in order to characterise entries falling out of these binary classification
(‘other’ and ‘no-key’). Although ‘other’ is per-se an ambivalent word, we chose this
tag to denote tonical tracks that are clearly not major, nor minor. These tracks are
typically divided into two general groups, broadly consisting (a) ambivalent tracks
typically presenting reduced pitch-class sets without a clear indicator favouring any
major or minor scalar configuration, in which the more extreme case is represented
by a monotonic track, and (b) an explicit tendency composed of tracks with a tonic
diminished triad or a pseudo-locrian scale, presenting non-consonant structures. Sim-
ilarly, the ‘no-key’ label represents two other paths, grouped into (c) clearly atonal
tracks (i.e. unpitched), consisting typically of just percussive events; and (d) atonical
excerpts, presenting clear pitched materials without a sense of tonically, as epitomised
by serial music.

Amodal, Atonal, and Other Fragments

The most extreme case of pitch-sparsity can be traced in tracks where the only pitched
sound is the tone of a percussive instrument, as exemplified by Seba’s “Predator”
[5078640, drum‘n’bass], where an e[ tuned conga seems to provide the most im-
portant tonal cue to a track that otherwise contains reminiscences of a chromatically
ornamented Eb minor. Other examples include Arjun Vagale’s “Drohnen” [3003894,
techno] or Glitter’s “Dance Floor” [4840289, minimal] in C other monotonic and E
other monotonic (according to the nomenclature described at the beginning of this
chapter). We could use the term amodal to refer to these type of tracks, for they
simultaneously represent the greatest unambiguity regarding their tonal centre and
a highly ambivalent modality, since no specific scale can be inferred from a single
tone. As explained above, we include monotonic tracks in the more general con-
tainer of ‘other’, which agglutinates tracks with a clear tonic, but an open modality,
thus being quite versatile for harmonic mixing purposes. Besides monotonic tracks,
the amodal class typically comprises items with up to three pitch-classes, excluding
intervals characterising major or minor modes.



5.2 GENERALISING TONAL PRACTISES IN EDM 139

Francois Manzo’s“Decadence” [4372159, minimal] at first sounds like an atonal track,
presenting only percussive elements, and a low distorted voice in the background.
However, after repeated listening —the looping mechanism— one becomes aware
that two percussive instruments are indeed tuned, producing a slightly detuned per-
fect fifth all along the fragment, that ends up conveying a quite clear tonal centre.
Similarly, Fallhead’s “Field & Corridor” [Minimal, 923844] is essentially atonal and
mostly percussive, although a soft sense of tonicallity around A[ is produced by the
occasional appearance of short events tuned to this pitch across different octaves. In
“Fragment” by DatA [3400782, drum‘n’bass], the snare drum seems to be tuned to
b[, although this is literally all the pitch material in this excerpts until the appearance
of a tone cluster with sampled string instruments, towards the end of the fragment.

Most listeners would consider these examples simply as atonal (recall that we use this
term literally, in the acceptation proposed by Tagg (2014), to describe music made
without pitch). However, at the same time, there are subtle indicators of tonicallity in
the form of tuned percussive events, that due to the highly repetitive nature of these
musics, end up constituting a real tonal centre to these musics.

On the contrary, in our analyses we did not find characteristic atonical excerpts, and
even tracks containing pc-sets with a very high cardinality (10 to 12 pitch-classes)
still provide a sense of tonal centre (e.g. Gaiser’s “Some Slip” [2081732, minimal] or
“Beholder” by DJ Hidden [2725289, drum‘n’bass]).

Semitone and Tritone Ambivalence

As explained above, the ‘other’ label also includes samples centred around the dimin-
ished chord and/or the locrian mode, whose main characteristic interval is the tritone,
which other authors had previously associated to techno (Tagg, 1994; Spicer, 2004).

Considered individually, the tritone has the special quality of dividing the octave into
two equal parts, creating the only inversionally equivalent interval in an octave. This
places this interval in the special position of being the most neutral interval. Moreover,
the facts that the tritone it is neither physically —harmonically— related to other
musical intervals nor it feels melodically natural —singable— situate this interval at
the end of most modal practises. However, it is this interval’s neutrality what can be
used to create perfectly bimodal tracks (in the acceptation explained in Section 2.3.4,
and to which we return shortly). For example, in “Goatherd” by The Cow [breaks,
6235742] or “Rave On” by Electric Rescue [techno, 61578], the main pitch material
consist in alternating tritone basslines, presenting just two pitch classes {06}, making
absolutely unnecessary to favour one tonic note over other.
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FIGURE 5.11: Semitonal ambiguity in Ligeti’s Musica Ricercata II. This composition, presenting just
two notes a semitone apart, represent the quintessential play of semitonal ambiguity between upper
(\7̂→1̂) and lower leading tones ([2̂→1̂, shifting between one or another interpretation uniquely based
on the metrical organisation of short and long tones.

On the other hand, the semitone carries much narrative power. It is likely the most
powerful melodic interval —the closest note to another note. This relationship, has
been exploited in euroclassical music, situating the leading tone (\7̂) at the forefront
of euroclassical tonality. However, the power of the descending leading tone (sum-
marised in the phrygian [2̂) has been used as a melodic tension in music from the
Renaissance (e.g. Josquin’s Missa Pange Lingua) and flamenco traditions, although
is not a prominent interval in euroclassical music and other popular music styles.

A paradigmatic example to illustrate the double ambiguity of the semitone is conveyed
in the second number of Ligeti’s Musica Ricercata, shown in Figure 5.11, where
the semitonal play between the two notes seems to alternate the sense of tonicallity
between the only two notes of this excerpt, interpreted as upper (\7̂→1̂) and lower
([2̂→1̂) leading tones relations.98 This type of semitonal double-tonic is frequently
heard in dubstep and drum‘n’bass, where sometimes the only pitched elements are a
semitonal movement in the bass.

Both tritone and semitone intervals are expressed in the diatonic locrian mode, al-
though in EDM they tend to appear in sparser configurations. Take, for example,
the case of “Move it 2 The Drum” by Ambush [tech-house, 4311630], where the
{016} set (1̂, ˆ[2, ˆ[5) is used throughout. This particular pc-set, is sometimes used in
drum‘n’bass and dubstep (e.g. F3tch’s “Fuck Your Mum” [1787061]), either alone or
inserted in a larger pitch contexts, and has been referred to as the ‘viennese trichord’,
to express Webern’s preference for this pc-set, so deviant from consonant intervals.
However, in EDM, semitones and tritones are used tonically. Other examples of pieces
constructed around the tritone interval include “Rave On” by Electric Rescue [techno,
61578], Kaiza’s “Kaneda VIP” [drum‘n’bass, 556316] or “Goatherd” by The Cow
[breaks, 6235742]. Explicitly presenting a locrian mode are Louie Fresco’s “Owl
Night” [deep-house, 3298819] or Manel Díaz’s “Dopamine” [minimal, 5419394].

Moreover, in the GS+ analysis data, a total 86 items contain at least once the lowered
leading tone relationship ([2̂→1̂), especially in genres such as tech-house and techno.
Similarly, tritone relationships appear in 53 entries integrated within larger pc-sets,

98This composition has been made popular thanks to its inclusion in Kubrick’s Eyes Wide Shut.
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and mostly clustered in drum‘n’bass and tech-house. Regarding the ‘viennese tri-
chord’ mentioned above, it appears as a subset in another 23 tracks from the GS+,
showing that typically ‘dissonant’ interval patterns are frequent in some styles of
EDM, especially tech-house and drum‘n’bass.

5.2.4 Tonical and Modal Ambiguity

In previous section of this chapter, we have repeatedly referred to the tonal ambigu-
ity found in our recently analysed datasets. Although the types and means to present
such ambiguity are multiple, in our analysis we found two main tendencies, grouped
broadly into tonical ambivalence and modal ambiguity. The first group mostly com-
prises practises that can be characterised as bimodal or polyscalar, in the restricted
meanings introduced in Section 2.3.4, conveying the perception of more than one
tonal centres in the same fragment. The second group, in contrast, refers to excerpts
with a clear single tonal centre, however presenting ambiguous modalities, typic-
ally merging major and minor modes, as explained in Section 2.3.2. According to
Tables 5.2 and 5.3, the Beatport and GiantSteps+ datasets add to 87 tracks presenting
this major-minor modal ambiguity, plus another 90 items estimated as bimodal.

Modal Ambiguity

As we have repeatedly explained, we mostly refer to modal ambiguity to denote tracks
with a clear and single tonic, but an ambiguous modal definition. Therefore, this type
of ambiguity resembles some of the practises present in rock modality, as described
in Section 2.3. For example, (a) a melodic minor bassline could be harmonised with
major chords (as pointed by Everett, Moore and Stephenson). A similar effect could
be produced by (b) extremely saturated timbres from synthesisers, presenting rich
harmonic series that might show a clear major third in the spectrum and/or chroma-
gram. This, again, is assimilable Lilja (2009)’s claims about the modal ambiguity
introduced by power chords metal (see Section 2.3.2). And yet, another possibil-
ity consists in the usage of pitch-class sets containing both major and minor thirds,
normally sequentially arranged in melodic lines and/or pitch aggregates.

Tonical Ambivalence

A bimodal track is different from a key change in that it does not provide a directional
or sequential movement from one key to another, but it easily allows a non-conflictive
multiple interpretation of an excerpt as having two different tonal centres —a visual
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analogy to this phenomenon could be the figure-ground grouping in Gestalt psycho-
logy. As we have seen in Section 2.3.4, bimodality is often produced sequentially
by equivalent forces exerted by relative or neighbouring keys, although other likely
scenarios include loops with an oscillating movement between two notes or chords.

For example, “Fake Emotion” by Modeselektor [65102, electronica], presents a single
Cmaj6/Amin7 chord throughout the fragment, while the bassline alternates between a
and c with equivalent metrical weight. Furthermore, the vocal melody in this example
consists of a repetition of the same four notes in the same order (c→g→e→a), so that
the complete pc-set of all pitch layers adds to four notes only {0479}, which could be
easily be interpreted as a subset of either C pentatonic or A minor pentatonic. A similar
case is presented in the two remixes of “Alien Radio” [techno], which essentially con-
sist of a single bassline with relative tonics d-f. In one of the versions, a remix by Tony
Thomas [297059], the harmonic-filler plays a constant Fmaj chord, with occasional
appearances of the blue note a[, whereas in Darren Emerson’s mix [297065], the pitch
content of the track is essentially limited to the bassline. A example of bimodal chord
shuttle is provided by Speh’s “Reaching You” [3116337, drum‘n’bass]. Here, the
tonal material is reduced to an oscillating shuttle (Amin7↔Dmin7), and although the
hypermetrical cycle starts on Dmin, the few pitched interventions in the vocal layer
present an a-g-a movement that counterbalances the modality towards Amin. Further-
more, at least once in the except, the beat-layer is removed on Dmin and reentered in
Amin, creating a temporary sensation of hypermetrical shift towards A minor.

Yet, there is another possible bimodal configuration, vertical or polyscalar, by which
different tonal layers seem to present different scales, typically complementary (con-
sonant), but conveying two relatively clear tonics. Truth’s “Antent” typifies this ver-
tical bimodality, with a clear G] aeolian sequence as harmonic support (i→[VII→[VI)
over which a melody seems to tonicize a b with a B pentatonic scale. The two ele-
ments, listened independently, would be clearly perceived as conveying different ton-
ics. However, given they operate simultaneously —and that they are relative keys—
the ambivalence is guaranteed. A similar layering happens in Schatrax’s “Mispent
Years” [191347, house], shown in Figure 5.12, where the bass layer presents an or-
thodox sequence in E[ minor, whereas the melodic line would likely be heard in B[
minor, if detached from the other textural layers. As one last example, Tony Traxx’s
“Her Shoes” [5905170, deep house] represents a complex example of both types of
bimodality operating at the same time (it is actually a polytonal track). The keyboard
part plays a metrically balanced chord shuttle Emaj7↔C]maj7 over a bassline centred
on g]. Above this, a melody outlining a D] aeolian, counterbalances the tonal weight,
and creates the impression that the tonic is actually d]. However, the bassline and the
chord sequence, also make plausible an interpretation of either c] or g] as tonic notes.
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FIGURE 5.12: Main bass line and lead melody of Schatrax and Silicone Soul’s “Mispent Years (Silic-
one Soul Darkroom Dub)”. They have been rhythmically simplified for readability. Both layers could
be interpreted as being in E[ minor and B[ minor, respectively (note the different key signatures).

***

In this chapter we presented our study of tonal practises in EDM, based on the ana-
lysis of two new corpora, adding to nearly 2,000 fragments grouped across different
subgenres. We have introduced a novel annotation protocol that attempts to indic-
ate passages with tonical ambivalence and modal ambiguity, accordingly annotating
our corpora with these new labels. Furthermore, we attempted a general description
of tonal practises in EDM, presenting typical modal distributions in this meta-genre,
as well as other characteristic tonal effects, mostly originating in sparser pitch collec-
tions, and scalar and tonical ambiguity. In the following chapter, we discuss our meth-
ods for computational key estimations, which should be understood as an attempts to
incorporate some of the labels introduced along this chapter within the classification
vocabulary of key finding algorithms.





Chapter 6
Automatic Key Estimation in EDM

“To an ever greater degree the work of art reproduced
becomes the work of art designed for reproducibility.”

Walter Benjamin

In this chapter, we finally describe the approaches to automatic key estimation in EDM

audio tracks that were developed in the course of our research. As such, most parts
of this chapter are taken from two existing publications (Faraldo et al., 2016a, 2017),
although we offer additional and complementary supporting material, including more
detail of analysis and evaluation.

As we have seen in Chapter 5, EDM presents several tonal practices clearly differ-
entiated from other musical styles, such as the generalised absence of modulation,
the lesser importance of chords and harmony —except for genres with roots in song
traditions— and a tendency to pitch sparsity, manifested in reduced pitch-class sets
with with less than seven elements. The current chapter represents an attempt to
develop key estimation algorithms that take into account some of these tonal idio-
syncrasies, widening the classification vocabulary beyond the common binary output,
with the intention of bringing forward creative applications in the domain of applied
MIR, and as a means of obtaining music-theoretical insights. As we have reported in
previous chapters, the totality of existing methods addressing key estimation in EDM

remain within the euroclassical modal division into major and minor tracks, some-
thing that has proven unnecessarily constraining for most popular music styles, and
certainly for a good amount of electronic dance music, as we have tried to underline
at several points in this thesis.

We start our presentation with a few considerations about timbre in EDM, before de-
scribing the various stages of our proposed approaches. Our explanation is organised

145
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FIGURE 6.1: Log-spectrogram of four-second excerpts of musics from different styles: (a) Bach’s
“Prelude 1 in C BWV 846” from The Well-Tempered Clavier, rendered by Glenn Gould; (b) The Beatles
“Ticket to Ride”; and (c) DJ Hidden’s “The Narrators” remixed by Eye-D, an example of drum-and-bass
excerpted from the GS dataset.

in a linear fashion, by presenting the methods we have developed in within a chro-
nological narrative. We start describing our variations on HPCP calculation and other
low-level features. Then, we continue presenting our statistical profiles, along other
processing stages introduced at several points of the processing pipeline. We con-
clude the chapter with a final discussion of two of our methods in comparison with
existing state of the art algorithms.

6.1 Timbral Considerations of EDM

As we have seen, two of the sonically distinctive features of EDM are its sound all-
electronic and the central role played by percussion, over which other pitched ma-
terials and sound effects might be layered. These characteristics are reflected in the
spectral representation of EDM signals, where saturated synthesisers often turn into
complex spectral envelopes different from acoustic sources, and the ubiquity of per-
cussive sounds increase the likeliness of high-frequency components and fast transi-
ents. These rich spectra present important challenges to the extraction of pitch and
tonal information from audio, that should not be ignored in the design of key finding
algorithms for EDM.

Figure 6.1 shows log-frequency spectrograms of three musical excerpts belonging to
musics from different eras. All three spectrograms span a duration of four seconds
and were taken sixty seconds into the track, in order to avoid possible sparsity at
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FIGURE 6.2: Log-spectrogram of four-second excerpts of three EDM subgenres —dubstep, breaks and
minimal— (a) GroYen’s “Quietude”, (b) “The Guitar” by Romanto and Out of the Drum, and (c) Field
and Corridor’s “Fallhead”. The three tracks are taken from the Beatport dataset.

the beginning of the recording. Figure 6.1a shows an excerpt of the opening Prelude
from Bach’s The Well-Tempered Clavier cycle. This spectrum is relatively narrow,
since it is a recording of a solo polyphonic instrument —in this case, Glenn Gould’s
piano— but it shows quite clearly horizontal bursts of energy, corresponding to indi-
vidual musical tones and their harmonics. In contrast, Figure 6.1b presents the richer
spectrum of “Ticket to Ride”, a pop song by The Beatles’s from their album Help!.
A typical pop-rock sound can be inferred from it: the presence of a drum-kit creates
spikes that extend quickly and vertically through the spectrum; the lower end is pop-
ulated by the presence of a bass drum and a bass guitar; there are constant horizontal
lines representing chord strumming by rhythmic guitars; and serpentine lines show
the presence of vocals, with less stable tones and expressive oscillations. Therefore,
although presenting a considerably richer spectrum than the Bach example, we can
still infer from the spectrogram that pitch is still a prominent aspect of the music. By
looking at Figure 6.1c, however, we do not obtain such a clear impression about the
tonal aspects of the excerpt. In this drum‘n’bass example, from Eye-D’s remix of
“The Narrators”, the whole spectrum lacks horizontal lines suggesting the presence
of pitch. Furthermore, most of the energy concentrates in the lower end, possibly
mixing tonally relevant sounds with other expressive effects.

Additionally, Figure 6.2 shows three log-spectrograms from other EDM subgenres,
namely (a) dubstep, (b) breaks, and (c) minimal techno. All three spectra show a
concentration of energy in the lower end, with sudden changes in the spectral distri-
bution. The dubstep example shows the spectrum of a reverberated snare drum over
tuned percussive sounds, whereas the excerpt of Romanto’s “The Guitar” captures an
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ascending general glissando as part of a build-up section towards the drop. The ex-
ample of minimal consists in a notably percussive fragment with extremely short and
high-pitched events.

The items in Figure 6.2 represent extreme cases when it comes to hinting underlying
tonal structures. Generally, we can assume that many other genres, especially house
and its variants, are more likely to present typical distributions of spectral energy,
just as much as they recombine musical elements from previous traditions. However,
either as a matter of sparsity (as in minimal techno), timbral saturation (as in Progress-
ive House or Trance), or excess of activity in the lower end (drum‘n’bass, dubstep), it
seems that EDM presents some of the following distinctive spectral qualities:

The ubiquity of percussive sounds in EDM tends to flatten the spectrum, pos-
sibly masking regions with meaningful tonal content.

Similarly, tonal motion often concentrates on the lower register, where spectral
calculations normally offer less resolution.

Some types of EDM are characterised by tonal effects such as glissandi or
pitched percussive elements, that can be difficult to identify as quantised an-
d/or stable pitch units.

Extreme timbral saturation plays a role in some sub-genres, creating spectral
envelopes that might bear little resemblance with the ‘natural’ envelopes of
acoustic instruments.

Furthermore, pitch is no-longer a primary constituent of this music. Some
styles such as techno, minimal or drum‘n’bass could present little or no pitch
materials at all.

6.2 An Evaluation Method Receptive to Tonal Ambiguity

Prior to the presentation and discussion of the various stages of our methods and
their corresponding evaluation, we would like to introduce the evaluation strategy
applied in the following sections, which involves a small modification of the MIREX

evaluation method used in the preliminary evaluation (Section 4.3). Our intention
with this step, is to incorporate some of the more open-ended descriptions, regarding
bimodal excepts and major-minor ambiguity.

With this laxer evaluation, we consider as correct any estimation included within the
range of bimodal (e.g. C major | A minor) or modally ambiguous annotations (e.g. C
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major | C minor). We expect that this approach will slightly improve the performance
in all scenarios, including our algorithms and commercial applications intended for
EDM. On the other hand, for the purpose of comparison amongst the various solu-
tions, the method should not introduce significant differences. In any case, we con-
sider that this assessing methodology remains closer to the musical and perceptual
reality of tonal ambiguity, tolerant towards different although valid readings, rather
than imposing a disambiguation where this might not exist in reality. Additionally,
we incorporate the label ‘other’ accounting for passages where a major or minor mod-
ality can not be directly inferred from listening, and a ‘no-key’ classifier, describing
both atonical and/or unpitched excerpts.

Apart from recognising new labels (‘other’, ‘nokey’) and acknowledging ambiguity
positively, the method follows the MIREX weighting convention discussed in Sec-
tion 4.2.1, producing an overall global score. We could have weighted differently
the various types of errors, for example, giving more importance to parallel and re-
lative keys than to neighbour relationships, since the latter originate in harmonic/-
chordal tomality, whereas the scalar configuration of EDM (with aeolian and mixoly-
dian modal variants) seems to favour relative and parallel keys as closer than neigh-
bours). However, we apply the weighting system as presented in Table 4.2 in order to
compare the improved performance of our multi-modal labels with previous method-
ologies. After all, and despite the concrete figures obtained, the relevance of assessing
types of familiar errors lays in understanding where the tonal confusion of algorithms
—and our own tonal perception— might reside.

The power of this evaluation method necessarily relies in annotations providing a
greater detail of verbosity, which in the current work is only given by the Beatport
and GiantSteps Datasets. For all other test collections, the more restricted MIREX

scoring system should produce exactly the same results. Similarly, assessing ‘no-key’
and ‘other’ tracks with systems only capable of a binary vocabulary would carry no
additional advantage or information. In these cases, we exclude from the evaluation
the items labelled with these additional tags. In all cases, tracks labelled as ‘unknown’
are excluded automatically from the evaluation process.

6.3 The Basic System: EDMA and EDMM

In this section we describe our first approach to key estimation in EDM. Since the
academic context of this research has been provided by the Music Technology Group
at the Universitat Pompeu Fabra, it felt natural to take from previous developments
within the Group. Therefore, MTG’s audio analysis framework Essentia (Bogdanov
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FIGURE 6.3: Processing pipeline of our baseline algorithm for EDM, completely developed in Essentia,
with the approach by Gómez (2006b) as a reference model. We have coloured the processing stages to
which we have mostly contributed.

et al., 2013b), seemed an optimal starting point to test readily available technology,
providing a few remarkable advantages: (a) as a solid and actively maintained lib-
rary, Essentia contains an ever increasing state of the art methods for a variety of MIR

endeavours, including tonality related tasks; (b) it is implemented in C++, being fast
and efficient, and its particular data-flow design makes it ideal for prototyping. Fur-
thermore, (c) Essentia provides a Python interface, a language that is becoming the
standard in scientific computing, and (d) the HPCP and key detection method’s de-
veloped by Gómez (2006b) (see Section 3.3) was already implemented in the frame-
work, providing a convenient and solid ground for our initial experiments with EDM.99

6.3.1 General Description

Figure 6.3 provides an overview of our baseline system, developed in its entirety in
Essentia. A detailed description of this method is provided in Faraldo et al. (2016a).
This system should be seen as an elaboration of the method by Gómez (2006b), to
which we added specific key profiles, obtained from a subset of the KeyFinder data-
set (KDF), presented in Section 4.1.3. Besides, we incorporated a detuning correction
function, which is a simplification of the one proposed by Harte et al. (2006), which
proved highly successful in our experiments. In order to obtain the final global key es-
timation, we aggregated all the chromagrams from the analysed excepts, as proposed
by Gómez (2006b).

6.3.2 DSP and HPCP Configuration

Before introducing our newly created profiles in the next subsection, in this block
we present a preliminary consideration of some low-level decisions, regarding the
spectral analysis and HPCP calculations, at which we mostly arrived by a mixture of
theoretical assumptions and heuristic experimentation.

99http://essentia.upf.edu/

http://essentia.upf.edu/
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As we have already said, we relied entirely on the HPCP implementation available in
Essentia. However, we performed substantial modifications in the default calculation
parameters, as shown in Table 6.1. For example, we used a hop size four times the
analysis window. We realised that this increment significantly speeded up the cal-
culation time, providing slightly better results than with a hop size equivalent to the
window size. Our explanation to this behaviour might be justified by the fact that a
hop size of 16,384 at 44,100 Hz represents 371.5 ms of audio, what is equivalent to a
single beat at a tempo of 161.5 BPM. This implies that even in faster EDM subgenres,
such as drum‘n’bass (with tempos between 150-170 BPM), the algorithm analyses 3 or
4 frames per bar, what seems to be sufficient for key estimation, assumed that chord
sequences are not a prominent feature of most EDM genres, and that tonal changes
tend to occur over longer periods of time. Regarding the peak picking configuration,
we reduced considerably the amount of peaks, upon the assumption that EDM tracks
would contain more peaks than other musical styles. Furthermore, we changed the
frequency range of our analysis, to accomodate low frequencies down to 25 Hz —to
include tuned bass-drum sounds in our analysis— and we cut the higher end at 3, 500
Hz, in order to get rid of an excessive presence of harmonic components beyond that
frequency. In this regard, we also reduced the contribution of the peaks in the signal
to the various HPCP bins from eight to four harmonics.

Regarding the key profile adaptation, we remind the reader that Gómez (2006b) ar-
rived at her final ‘polyphonic’ profiles by adding harmonic weights and chord com-
ponent contributions to originally symbolic models, as reflected in the lower part of
Table 6.1. In contrast, it can be seen how we reject a profile redistribution based on
chordal polyphony, on the assumption that a good deal of EDM is not based on chord
structures and could be regarded as essentially melodic.

Figure 6.4 shows the effect of the DSP and HPCP modifications on combined corpora
of popular music and EDM. All the experiments carried throughout this chapter as-
sume monaural audio files at a sampling frequency of 44,100 Hz. The ‘pop’ label
comprises the three popular music datasets described in Section 4.1 (BTL, BB, and
RS), whereas in the remainder of this section, the EDM evaluations are conducted
with the merged GS and BP datasets, excluding KFD to avoid likely overfitting effects,
given that our new key profiles are derived from a subset of this corpus, as it will be
detailed shortly. In this evaluation, we use the profiles by Temperley (1999), for they
are generally regarded as reliable profiles (although they are biased towards euroclas-
sical music, as we have seen). Additionally, we conduct the same evaluation with
the profiles proposed by Sha’ath (2011), which consist in heuristic modifications of
the profiles by Krumhansl & Kessler (see Chapter 3 for details and figures). As it
can be inferred from Figure 6.4, our low-level modifications have an impact in all the
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parameter defaults chosen value

spectral
window size (pt) 4,096 =

hop size (pt) 2,048 16,384
window shape blackman-harris hann

peak picking
peak threshold 0.00001 0.0001
max. peaks 10,000 60
frequency range (Hz) 40–5,000 25–3,500

HPCP

split frequency range 3 7

split frequency (Hz) 500 n/a
contribute first n harmonics 8 4
reference freq. (Hz) 440 =

size (bins) 36 =

weighting squared cosine cosine
weight size (semitones) 1.3 1.0
normalisation unit norm =

non-linear transform 7 =

key

polyphony 3 7

three-chords 3 7

n. harmonics 4 n/a
slope 0.6 n/a

TABLE 6.1: Basic configuration of our key estimation algorithm as described in Faraldo et al. (2016a),
compared to the default settings as described in Gómez (2006b) and/or implemented in Essentia.

scenarios evaluated. In the the pop music dataset, the improvement mostly implies a
shift from neighbour errors towards correctly classified instances, obtaining a better
weighted score with both key profiles. Regarding the EDM dataset, the situation is
comparable, although the profiles by Sha’ath visibly benefit from the modification
of the default low-level parameters. In any case, both profiles offer an impoverished
performance on EDM, when compared to the combined pop music dataset.

6.3.3 EDMA and EDMM

As explained in Chapter 3, one of the most important ingredients of a template-based
key finding system is the particular set of tonal hierarchies represented by the key
profiles. In order to improve the performance of our baseline key estimation system,
we extracted new major and minor profiles from a collection of audio files and an-
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FIGURE 6.4: Effect of DSP and HPCP configuration with the profiles by Temperley (1999) and Sha’ath
(2011) on combined datasets of pop and EDM.

notations gathered from the internet. Our main resource was Sha’ath’s KFD dataset,
from which we excluded entries belonging to other popular musical styles, adding
to around 20% of his annotations. We completed our training set with other online
sources described in Section 4.1.3, totalling to 925 complete EDM tracks. With this
collection, we performed two subsequent operations in order to obtain a new set of
profiles, summarised in the following paragraphs:

1. First, we extracted major and minor profiles, as the median vector of the av-
eraged chromagrams of the complete training set. Throughout this work we
refer to these profiles as EDMA. The resulting vectors are shown in Figure 6.5,
where it is perhaps worth noting the higher presence of the subtonic ([7̂) in both
modalities, indicating a prominent presence of mixolydian and aeolian, over the
classical ionian and minor harmonic distributions.

2. After the EDMA profile extraction, we performed some heuristic adjustments in
the minor profile, slightly raising the weight of the minor third ([3̂) and lower-
ing the [2̂. More radically, we flattened completely the major profile, forcing all
estimations into minor, based on the lower proportion of major tracks in EDM

corpora, as we have shown in previous chapters. These manually modified pro-
files are shown in Figure 6.5 (bottom).
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FIGURE 6.5: Key profiles derived from statistical analysis of the KFA dataset (EDMA, top) with further
manual adjustments (EDMM, bottom)

.

Figure 6.6 presents the estimation results of our method with the new EDMA and
EDMM profiles, using the HPCP configuration presented in Table 6.1. The most no-
ticeable effect is the drop in correctly classified instances with the EDMM in popular
music. This is a natural effect of the flat major profile, as indicated by the large per-
centage of parallel errors, given the larger proportion of tracks in major across the
popular music datasets. On the other hand, the effect of our modified HPCP calcula-
tion has a direct effect in the performance of both profiles in electronic dance music,
reflected in an increment of 0.15 points for both profiles, obtaining a timid improve-
ment over the profiles by Temperley and Sha’ath in Figure 6.4.
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FIGURE 6.6: Effect of low-level parameters in EDMA and EDMM profiles, tested on the combined
datasets of pop (left) and electronic dance music (right).

6.3.4 Spectral Whitening

Besides the new profile creation, we inserted a spectral whitening stage, in order to
flatten the spectrum according to its spectral envelope, increasing the weights of the
predominant peaks. The intention of this pre-processing step was to remove the po-
tentially distorting effect of equalisers, making that all the pitches across the selected
range contribute equally to the final HPCP. This technique has been previously used by
Gómez (2006a), and other authors have proposed similar solutions (Mauch & Dixon,
2010a; Müller & Ewert, 2010), as we noted in Section 3.3. For our convenience, a
spectral whitening function based on a method by Röbel & Rodet (2005) had been
previously implemented in Essentia, so we have taken full advantage of it.

Figure 6.7 shows the effect of applying a spectral whitening function prior to an HPCP

calculation. The left column shows 36-bin raw chromagrams, whereas the right side
illustrates the equivalent HPCP after a spectral whitening function. The audio content
corresponds to the first four seconds of “Far from the Tree”, by Bob Moses [5152629,
deep-house] (top) and Rektchordz’s “No Dice” [842552, breaks] (bottom).

6.3.5 Detuning Detection

As a last processing stage in our method, we inserted a simple function to detect audio
perceptually deviant from the standard tuning reference. Other authors have applied
a tuning estimation algorithm to detect the reference frequency of the analysed object
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FIGURE 6.7: Effect of spectral whitening on HPCP calculation, over two excerpts of EDM tracks. The
left column shows 36-bin raw chromagrams, whereas the right side illustrates the effect of spectral
whitening on the same audio fragments.

(e.g. Peeters, 2006b; Dressler & Streich, 2007). However, we wanted to keep a fixed
tuning reference of 440 Hz —considered the standard in many musical contexts—
and indicate lower and higher deviations from it, according to our annotation strategy
described in Section 5.1.1.

Our approach to detuning detection is a simplification of the method by Harte (2010),
explained in Section 3.3.4, relying on an HPCP resolution of 3 bins per semitone. This
allows to make corrections in the alignment of the main pitch-classes by rotating the
chromagram±1/3 semitone. Our system finds the highest peak in the averaged chro-
magram and shifts the spectrum ±1 bin, depending on this unique position. This cal-
culation is performed once per audio analysis, after the aggregation of all the chroma
vectors. The motivation behind such simple approach is grounded upon the fact that
all the key profiles discussed in Chapter 3 consistently present maxima in the tonic
(1̂) and/or the fifth degrees (5̂), the two most prominent scale degrees independently
from any modal configuration. Unlike other intervals, which show larger deviations
from the harmonic spectrum, the equally-tempered fifth deviates just 2 cents from the
perfect fifth from the harmonic series —as used in just intonation or pythagorean tun-
ing. Therefore, we have reasonable confidence to assume that the maximum peak of
the averaged chromagram will normally represent either one or another. For the same
reason, shifting the HPCP on a frame basis produces less satisfactory results, since it
is after accumulation energy concentrates more clearly in these bins.
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FIGURE 6.8: Evaluation of the effects of spectral whitening and detuning correction in the EDMA and
EDMM profiles. The first bar of each plot shows the results of our method without any of these steps, as
presented in the previous figure. The other bars show the effect of the two processing stages, plus their
combination.

Our method labels detuned tracks with a caret (^) or an underscore (_) accompanying
the tonic chroma (e.g. C_, G]^). Although for evaluation purposes we disregard this
additional information, it could be definitely useful in practical applications of key
finding for harmonic mixing endeavours, where a difference of half a semitone would
be disruptive enough, at least in terms of vertical mixing.

6.3.6 Evaluation of the Basic Method

Figure 6.8 shows the influence of the additional processing stages just described. The
left bar of each subplot presents the estimation results of EDMA without any of these
steps (just like in Figure 6.6). Other bars show the separate influence of the spectral
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whitening stage and the detuning correction function, as well as their combined op-
eration. The positive effect of spectral whitening is noticeable in all instances, with
the exception of the pop music dataset assessed with the EDMM profiles. The detun-
ing correction algorithm provides a timid improvement in the corpus of EDM, but its
operation is best observed in the output of EDMA on popular music, with an incre-
ment of ≈ 0.07 points over the simple version. It is known that The Beatles recorded
their Help! and Please Please Me albums almost entirely in a lower reference tuning,
according to Harte (2010), what could be behind this noticeable jump. Contrarily,
the presence of excerpts with deviant tuning references in the EDM datasets is scarce,
although the assumption of likely detuned fragments is not alien to EDM. At least, it
must be certainly common during live DJ sets, as a consequence of tempo-matching
operations, facilitated by the ±8% pitch/tempo control in professional vinyl-record
players, which can produce pitch shifting effect of ±1.5 semitones. The combin-
ation of both processing steps provides yet another small increment in all scenarios,
roughly adding up the contributions of each separate stage, given that each processing
function addresses specific and differentiated problematics.

A version of this method was submitted to the MIREX competition in 2016, obtaining
the best score in the GiantSteps dataset, as shown in Table 4.5. However, the res-
ults on the EDM collection discussed in this section differ from the ones reported in
previous publications Faraldo et al. (2016a,b). There is nothing worrying about this
divergence. Quite the opposite, the different results reflect the effect of some of the
operations performed so far. First, the merged BP and GS test collection neutralises
the strong bias towards minor modalities present in the GS and KFD datasets, used for
evaluation in our previous paper, what naturally counteracts the positive effect that
EDMM has on other corpora. Moreover, the results between EDMA and EDMM are al-
most identical thanks to one of the decisions involved in our evaluation methodology,
explained in Section 6.2. Since our evaluation method accepts double labels indic-
ating modal ambiguity (F major | F minor), what we observe in these results is not
a worsened performance of the EDMM model, but the valid judgement of tracks that
are ambiguously annotated as major and/or minor. And yet our analysis method does
not provide means to point at such modally ambiguous tracks, the evaluation proced-
ure compensates for that, suggesting that our merged EDM corpora indeed contain a
relevant number of modally mixed tracks. Besides, the overall performance of our
method is visibly lowered, given the greater tonal complexity of the Beatport dataset.

We would like to close this section reproducing the experiment in Faraldo et al.
(2016a), as a means to compare the effect of our evaluation method, measure the
challenges imposed by the new labels in the BP dataset, and assess the effect of the 63
corrections in the GS dataset reported in Sections 4.1.4 and 5.1.3. Figure 6.9 shows
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FIGURE 6.9: Evaluation of our method on BTL and GS datasets, replicating the experiment presented
in Faraldo et al. (2016a). The left plot shows the results according to the MIREX evaluation system,
whereas the graph on the right evaluates positively modally ambiguous tracks.

the results of our improved method with EDMA and EDMM with The Beatles and
GiantSteps datasets. The left graph shows the results according to a regular MIREX

evaluation. As expected, the performance of EDMM is poor in pop music, although
results in all other instances increase visible, achieving weighted scores of up to 0.76
points in both datasets. The ≈ 5% increment in the GS dataset —compared to our
published paper— are solely attributed to the relabelling of 63 items. The plot on the
right presents the exact same results, assessed with our ambiguity-friendly evaluation
method. As expected, the results for BTL do not present any variability, since the data
is annotated unambiguously as a single key. In contrast, the evaluation of the GS data
presents an increment of 0.05 points, due to the positive consideration of modally
ambiguous tracks.

6.4 A Method Addressing Difficult Tracks

In a second publication (Faraldo et al., 2017), we wanted to address some of the short-
comings of our basic approach. In particular, we intended to solve the bias towards
minor modalities introduced by the EDMM profiles, and obtain additional insights re-
garding ambiguously modal tracks. With this goal, we modified slightly the basic
processing pipeline outlined in Figure 6.3, inserting a high-pass filter prior to the
time-to-frequency conversion, and a chromagram gating function, in order to obtain
profiles without tonal noise in modally irrelevant degrees. These new processing steps
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FIGURE 6.10: Processing pipeline of our key-finding algorithm with two additional steps. A high-pass
filter to attenuate low-frequency percussive components, and a gating function to discard ‘tonal’ noise.

are shown in Figure 6.10. Additionally, we created new tonality profiles based on the
Beatport dataset, which provided a relatively balanced distribution across major and
minor keys. Furthermore, we attempted to obtain additional modal profiles, reflecting
distributions with major-minor ambivalence and other ‘amodal’ configurations, with
a clear tonic by no specific modal sensation.

6.4.1 High-Pass Filtering

As we have just noted, in our second published experiment we inserted a 3rd order IIR

high-pass filter prior to the spectral transformation. Figure 6.11 shows the effect of
adding this filtering stage to the improved algorithm presented in the previous section
(EDMA), with the filter’s cut-off frequency at 100, 200 and 250 Hz. It can be seen that
a timid increment of nearly 1% is produced in the correctly classified instances when
setting the cut-off frequency at 100 Hz —although this is not reflected in the weighted
scores.100

In order to avoid possible overfitting effects, our evaluations throughout this section
are carried on an EDM test collection comprising the GS and KFD datasets, excluding
the BP set —used for profile extraction. The popular music dataset, on the other hand,
remains identical. The baseline results for the remainder of this argumentation are
provided in the first bar in Figure 6.11, where the improved EDMA method recently
described is used as a reference for further variations. As it can be observed, while
these preliminary results align with those presented in Figure 6.8, the results on EDM

diverge, given the modification of the evaluation test collection, and reflecting the

100In our original publication, however, the cut-off frequency was set to 200 Hz. The difference
between both sources is an effect of the narrative chosen for this chapter. Whereas in Faraldo et al.
(2017) we experimented directly with the key profiles introduced in the next block, in this dissertation
we favour a sequential narration, building our method upon steps presented in previous sections.
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FIGURE 6.11: Effect of high-pass filtering at various cut-off frequencies, over the improved EDMA

method described in the previous section.

positive effect of removing the challenging BP set, to which our method is not yet
prepared. In Section 6.5 we present a more thorough evaluation of our best performing
methods across all individual datasets, allowing a more mindful assessment of the
performance of our algorithms compared to existing state of the art solutions.

6.4.2 BRAW and BGATE

With the intention to obtain more balanced profiles for major and minor modalities,
we repeated the median profile extraction operation on a subset of BP. More precisely,
we gathered a collection of 600 tracks —half major, half minor— with a confident
level of annotation, and estimated correctly with other tonality profiles, including
the Krumhansl & Kessler probe tone weightings, the modifications introduced by
Temperley (1999), and our own EDMA pair. The resulting two profiles, to which we
refer as BRAW, are shown in Figure 6.12 (top). Since this profile extraction operation
involved ‘controlled’ audio files, with a confident performance across various profiles
in the literature, tonal hierarchies manifest clearly in the major profiles, with almost
a constant weight —just below 0.2— for all chromatic, non-tonal degrees. On the
contrary, the tonal hierarchy is not evident in the minor BRAW profile, where besides
the tonic diad 1̂-5̂, weights are distributed with small differences between them.

In order to compensate this differences, we derived a second distribution from BRAW,
by zeroing the weights of non-modal degrees, as ‘suggested’ by the major braw profile
([2̂, [3̂, ]4̂, [6̂ in major; [2̂, ]4̂, \6̂ in minor). With this operation, we obtained the new
BGATE key profiles, shown at the bottom of Figure 6.12.
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FIGURE 6.12: Major and minor key profiles obtained from a sub-collection of the BP dataset (BRAW),
and with zeroed non-diatonic degrees (BGATE).

The creation process of the BGATE profiles, naturally insinuated an analogous oper-
ation in the chromagram calculation, where we inserted a HPCP thresholding func-
tion just before the detuning detection stage. This ‘tonal noise gate’, simply zeroes
the bins with a total energy below a selected threshold in the averaged chromagram,
ideally obtaining chromagrams closer to theoretical tonal hierarchies. We set the ini-
tial threshold value to 0.2, according to the weights of the chromatic degrees in the
major BRAW profile.

Figure 6.13 shows the estimation evaluation results of these two new profiles, with
and without the tonal gating function, with a threshold set to 0.2. Regarding pop
music, the EDMA profiles seem to work just as good as the new profiles, which only
offer a small improvement when using the BGATE profiles without the tonal noise
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FIGURE 6.13: Evaluation of our method with the newly created BRAW and BGATE profiles, with and
without the chromagram gating function.

gate. Similarly, the improvement on the electronic dance music data is only visible
with the BGATE profiles, with a comparable performance between the raw aggregated
chromagram and the gated one. To assess the performance of the gated chromagram
we experimented with various other thresholds (0.2, 0.25, 0.3, 0.4 and 0.5), obtaining
progressively lower scores, concluding that the chromagram gating function provides
a neutral effect at best. Therefore, in subsequent evaluations we prescind from this
audio processing stage.

6.4.3 Additional Profiles for Ambiguous EDM Tracks

In addition to the two newly created profiles, in our original paper (Faraldo et al.,
2017), we obtained a third profile from a group of difficult minor tracks estimated
wrongly as major with the BGATE profiles, in order to minimise parallel errors. This
additional profile is shown in Figure 6.14 (‘majmin’). However, as we have seen
in Chapter 5, these ‘difficult’ tracks are most likely modally ambiguous tracks (and
not simply items in minor), presenting a clear tonic but a certain degree of openness
regarding their principal modal sign. Therefore, in this work we have labelled these
tracks with the ‘majmin’ string (e.g. A minor | A major), highlighting the modal
ambiguity of these tracks in line with our annotation methodology.

Similarly, we added a simple profile with energy concentrating on the first and fifth
degrees, leaving all other chromas neutrally at zero (Figure 6.14, ‘other’). With this
profile we intended to detect tracks that do not convey a major neither minor modality,
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FIGURE 6.14: Additional profiles accounting for tonically clear but modally ambiguous distributions.

likely monotonic fragments. As one last step, we heuristically set a confidence estim-
ation threshold (0.5), below which, tracks are assigned the ‘no-key’ label, without
further specification or labelling.

Figure 6.15 shows the results of applying these multiple-profile methods to our two
test collections. From left to right, bars in each plot represent an accumulation of (a)
the binary method (BGATE2), with (b) one additional profile to detect major-minor
ambiguous tracks, (c) plus an extra monotonic profile to discover amodal tracks, and
last, (d) a correlation confidence threshold to produce ‘no-key’ labels. In the following
paragraphs, we refer to this variation with two additional profiles and the ‘no-key’
confidence as the BGATE+ method.

The pop music test collection seems unaffected by the addition of new modal labels,
what might at least indicate that the newly introduced profiles do no produce a neg-
ative effect in musics with a clear major or minor modality. This can be better seen
in the modal confusion matrix of Figure 6.16, where the four possible modal labels
‘major’ (I), ‘minor’ (i), ‘other’ (1) and ‘no-key’ (X) are measured across all possible
estimations. The matrix shows that the BGATE+ produced only two ‘no-key’ estim-
ations, corresponding to “Nuthin’ but a G Thang” by Dr. Dre and Snoop Dog (RS),
—perhaps due to its predominantly spoken rap texture— and The Police’s “Don’t
Stand so Close to Me” (BB), possibly as a negative effect of the alternating semitone
modulation (E[ minor ↔ D major) between verse and chorus in the aggregated chro-
magram. Regarding modally undefined tracks, the estimated errors seem to point
vaguely to rap-oriented songs, such as “Brass Monkey” by the Beasty Boys (BB) or
Eminem’s “Lose Yourself”, from the BB and RS datasets, respectively. Other errors
could be produced by music with little harmonic change or with melodies insistently
centred on a single note (e.g. “Born to Cry”, by Dyon).
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FIGURE 6.15: Evaluation of our method with the newly created BRAW and BGATE profiles, with and
without the chromagram gating function.

Regarding EDM, on the other hand, the addition of new labels progressively lowers
the performance of the algorithm. This can be timidly seen in Figure 6.15, although
it is more clear in the relative confusion matrix shown in Figure 6.17. We have incor-
porated the Beatport dataset in these visualisation, since most of the difficult tracks
with diverse labelling belong to this collection. This relative confusion matrix shows
how the new labels mostly fail when attempting to classify existing tracks. For ex-
ample, our method only managed to correctly assign a ‘no key’ label to 5 tracks101,
whereas all other atonal labels are wrongly assigned to the tonical classes. Regard-
ing the ‘other’ modal variants, only 13 items have been correctly placed compared
to the 44 taken as minor and 4 estimated as no-key tracks. This, at least, suggests
paths to continuing this work in various areas. On the one hand, our methodology
with simple additional profiles and atonal confidence threshold seems clearly insuf-
ficient to address the degree of tonal complexity presented by many EDM samples.
A possible solution would be to extract profiles from shorter fragments, aligned with
hypermetrical units, what could in turn provide an idea of tonal change besides the
global estimation. We believe that this approach could reduce the negative effect of
chroma aggregation, which seems to create far to noisy profiles in at least some of the
difficult tracks. On the other hand the Beatport dataset might need further inspection
of items with ‘no-key’ and ‘other’ labels establishing different tonal subclasses, for
example, based on additional modal details (e.g. monotonic, locrian, whole-tone, et
cetera), and perhaps based on style differentiation, in order to define clearer groups of
tonal behaviour within EDM tracks.

1014372159, 298989, 765583, 923844, 3400782.
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6.5 Final Evaluation

In this last section, we present the results of several algorithms on the various data-
sets used throughout this dissertation, including euroclassical music (WTC), West-
ern popular music (BB, BTL, RS), as well as electronic dance music (KFD, GS, BP).
The algorithms compared include relevant solutions tailored to EDM (Mixed-in-Key,
Traktor, and KeyFinder), which have been introduced in our preliminary evaluation
in Section 4.3. They are shown here to facilitate comparability with our two latter key
finding algorithms, namely the binary classifier BGATE2 and the multi-profile method
BGATE+, which provides additional modal verbose and ‘no key’ labels. However, it
is worth noting that this last solution only shows meaningful figures when evaluated
with the laxer methodology, assessing the ambiguously estimated tracks with the third
‘majmin’ profile (Figure 6.14), or with annotated collections that incorporate atonal
and other modal labels (BP and GS+). From all other methods tested, only MIK is
able to produce additional labels for atonal/atonical tracks. For this reason, we have
excluded from this general evaluation tracks labelled as ‘other’ or ‘no key’ in the
GiantSteps+ and Beatport test collections, in order to perform a fairer comparison
between all the algorithms.

Table 6.2 shows the evaluation results for each chosen algorithm on each test collec-
tion. Besides correctly classified items, the table indicates the percentage of correctly
identified tonic and mode, as well as the typical regional errors. This figure uses
the strict evaluation method described in Section 4.2, which is normally used in the
MIREX yearly comparison. Additionally, Table 6.3 presents the evaluation results
with our laxer evaluation method presented in Section 6.2 on the BP and GS+ data-
sets, since are the only two collections that allow the positive assessment fo modal
and tonical ambiguity, even when these are not obtained in the estimation process.
Results for BGATE2 in all other datasets are also presented in this table, assessing
the performance of the manor-minor labels obtained with this method. Furthermore,
Figure 6.18 presents the summarised results for each algorithm grouped by genre.

A first observation stemming from Table 6.3, which came with no little surprise, is
that our methods provide the highest marks in all non-EDM datasets. This is spe-
cially clear in the WTC dataset, where BGATE+ presents an identical performance to
BGATE2, without relative or parallel errors. The popular music datasets, on the other
hand, show lower scores in general, likely due to the higher timbral complexity of
these musics. However, our binary method still outperforms all other algorithms,
with correctly estimated keys ranging from 68.2% in BTL to 78% in the RS dataset,
with global scores of .76 and .825 points, respectively. Our multi-profile method vis-
ibly drops its performance in these collections, due to the strict evaluation method,
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and the reduced major/minor vocabulary shown in this table. However, when assess-
ing major-minor ambiguity, as shown in Table 6.2, this latter method surpasses the
performance of our binary method, with 78% (BB), 70% (BTL), and 80% (RS) cor-
rectly estimated keys. This good performance echoes the claims by Temperley &
De Clercq (2013), calling for annotation —and evaluation— methods tailored to the
modal idyosincracies of popular music. Moreover, it could indicate that our excess-
ive care in addressing modal and tonical ambiguity does indeed produces a positive
effect in musics where these practises are well documented, as shown in Section 2.3.
However, the much lower results of our algorithms in EDM, might suggest that these
types of ambiguity occur in electronic dance music as part of a larger battery of tonal
practises, not reducible to modal ambiguity.

Our two solutions provide worse classification results in all EDM datasets. This is
clearly the case with kfd, where BGATE2 obtains a 62% of correctly classified items,
three perceptual points below Traktor with the strict evaluation shown in Table 6.2.
Regarding the GS+ dataset, our algorithm provides a performance close to both Trak-
tor and KeyFinder, scoring just above them (69.9). Mixed-In-Key clearly outperforms
all other algorithms in all EDM test collections, with an increment of performance
between 5% and 10% depending on the dataset. In any case, the difficulty posed by
the Beatport dataset is apparent in the tables, where all the tested solutions offer a
performance lowered in 10 − −15% compared to the other two datasets. The results
with the laxer evaluation method, in Table 6.3 present the same performance ranking,
although scores are visibly raised for all methods. According to this methodology
MIK classifies correctly ≈ 85% of the total instances in the GS dataset, although BP

still presents important challenges. It is interesting to observe that most errors in EDM

datasets concentrated in parallel modal mislabelling, one of the issues that we have
tried to address both with a different evaluation strategy and one additional profile.
This noticeable in the drop in this type of error shown in Table 6.3.

To conclude, Figure 6.18 summarises the results discussed, organised and aggregated
by genre. As as have reported, our method outperforms all other algorithms tested
regarding euroclassical and popular music, possibly at the cost of being the solutions
at the end of the line in electronic dance music datasets, contrary to our initial inten-
tions. This leaves room for reflection and revision, both of the annotated datasets and
our observations about tonality in EDM, as much as the computational methodology
regarding tonal extraction in this in all senses challenging meta-genre.
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correct items typical errors

set method tonic mode key fifth relative parallel other score

WTC

BGATE2 .8541 .9791 .8541 .1250 .0 .0 .0208 .9167
BGATE+ .8541 .9791 .8541 .1250 .0 .0 .0208 .9167
KFA .5 .7604 .5 .2604 .1146 .0 .125 .6646
MIK .8125 .8958 .8021 .0937 .0625 .0104 .0312 .8698
TK .8125 .8542 .8125 .0417 .125 .0 .0208 .8708

BB

BGATE2 .8256 .8688 .7712 .0784 .0416 .0544 .0544 .8338
BGATE+ .8224 .7936 .7024 .0752 .0416 .1200 .0608 .7764
KFA .648 .6416 .5488 .0832 .1760 .0992 .0928 .6630
MIK .7936 .784 .7072 .0656 .704 .864 .704 .7784
TK .768 .7456 .6688 .0640 .0832 .0992 .0848 .7456

BTL

BGATE2 .7542 .8603 .6816 .1061 .0503 .0726 .0894 .7642
BGATE+ .7542 .7765 .6033 .1006 .0503 .1508 .0949 .6989
KFA .5754 .6201 .4693 .1117 .1899 1061 1229 .6033
MIK .7542 .7542 .6425 .0726 .0838 .1117 .0894 .7263
TK .6871 .6704 .5642 .0670 .1117 .1323 .1341 .6559

RS

BGATE2 .84 .89 .780 .055 .020 .060. .0850 .8255
BGATE+ .83 .745 .650 .040 .020 .180. .110 .712
KFA .675 .655 .535 .0750 .110 .140 .140 .6335
MIK .805 .795 .705 .045 .055 .100 .095 .764
TK .745 .745 .645 .060 .060 .100 .135 .713

KFD

BGATE2 .7024 .7725 .6202 .0902 .0581 .0821 .1493 .6992
BGATE+ .7014 .7304 .5932 .0851 .0571 .0821 .1563 .6745
KFA .7084 .8737 .6663 .1062 .0341 .0421 .1513 .7381
MIK .7575 .8677 .7054 .0802 .0331 .0521 .1293 .7658
TK .7064 .8206 .6543 .0912 .0541 .0521 .1483 .7265

BP

BGATE2 .6669 .5902 .5093 .0818 .0638 .2016 .1435 .6097
BGATE+ .6588 .5700 .4978 .0768 .0538 .2044 .1671 .5932
KFA .6192 .6480 .5172 .1133 .0645 .1427 .1621 .6218
MIK .6891 .6938 .6105 .0825 .0603 .1241 .1227 .6946
TK .5962 .6460 .5186 .1090 .0933 .1169 .1621 .6245

GS+

BGATE2 .7583 .7383 .6995 .0597 .0615 .1002 .0791 .7678
BGATE+ .7550 .6933 .6625 .0562 .0562 .1336 .0913 .7342
KFA .7250 .780 .6872 .0984 .0527 .0773 .0844 .7677
MIK .7883 .80 .7557 .0650 .0404 .0756 .0633 .8155
TK .7317 .7383 .6960 .0597 .0756 .0756 .0931 .7636

TABLE 6.2: Comparative results of our two methods BGATE2 (with binary output) and BGATE+ (with
multiple labels) along three commercial applications in all test datasets used throughout this thesis,
comprising euroclassical music (WTC), popular music (BB, BTL, RS) and EDM (KFD, BP, GS+), using a
strict, single-mode evaluation method.
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correct items typical errors

set method tonic mode key fifth relative parallel other score
WTC BGATE+ .8541 .9791 .8541 .1250 .0 .0 .0208 .9167
BB BGATE+ .8224 .8784 .7808 .0816 .0416 .0416 .0544 .8424
BTL BGATE+ .7541 .8771 .7039 .1006 .0503 .0503 .0950 .7793
RS BGATE+ .83 .9 .8000 .0450 .0200 .0300 .1050 .8345
KFD BGATE+ .7014 .7525 .6142 .0872 .0581 .0871 .1533 .6927

BP

BGATE2 .6790 .6144 .5344 .0832 .0538 .1894 .1391 .6300
BGATE+ .6689 .5982 .5287 .0796 .0524 .1843 .1549 .6211
KFA .6299 .6669 .5380 .1148 .0559 .1334 .1578 .6389
MIK .6972 .7126 .6298 .0839 .0545 .1133 .1184 .7108
TK .6083 .6689 .5402 .1133 .0846 .1083 .1535 .6439

GS+

BGATE2 .795 .805 .7856 .0439 .0457 .0527 .0720 .8318
BGATE+ .7900 .795 .7821 .0422 .0439 .0597 .0808 .8265
KFA .7583 .8483 .7645 .0949 .0334 .0351 .0721 .8290
MIK .8217 .8783 .8471 .0562 .0211 .0193 .0562 .8854
TK .7650 .8100 .7750 .0580 .0597 .0316 .0756 .8283

TABLE 6.3: Comparative results of our two methods BGATE2 and BGATE+ along three commercial
applications in our newly created EDM datasets (BP, GS+), with modally ambiguous annotations. The
evaluation is performed used our laxer evaluation method proposed in Section 6.2. Additionally, we
present the results of the BGATE+ method on all other datasets, since this method annotates modal
ambiguity based on a third additional profile.

***

In this chapter we have presented our variations on template-matching automatic key
finding algorithms, attempting to improve the performance in the specific domain of
electronic dance music. As we have seen in previous chapters, this meta-genre im-
poses quite specific challenges, from signal processing parameters to addressing par-
ticular musical characteristics. We have tried to incorporate some of the knowledge
distilled from Chapter 5, specially regarding the recognition of modally ambiguous
tracks. However, this endeavour tends to introduce new effects that lower the perform-
ance regarding the simpler modal categories. All in all, we did not manage to obtain
a balance between correct classification and finer modal detail, as was intended, and
our methods perform below the current state of the art, provided by commercial ap-
plications. On the other hand, the final evaluation revealed that our methods seem to
accomodate well to other musical genres, such as euroclassical and popular music.
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Chapter 7
Conclusion

By going farther, make your way
Till looking back at where you’ve wandered,

You look back on that path you may
Not set foot on from now onward.

Antonio Machado, Fields of Castile (1912)

Throughout this dissertation, I have described the main research path explored dur-
ing my doctorate research, accomplished in the course of four years at the Music
Technology Group from Universitat Pompeu Fabra, in Barcelona. As stated in the
Introduction, the operational frame of my research was given by the GiantSteps pro-
ject, a collective international effort to bring the powers of computational knowledge-
extraction and summarisation into the reality of practising EDM makers. Throughout
its existence, the project produced outcomes in areas such as MIR, human-computer
interaction, or knowledge visualisation, as materialised in the work of consortium
partners102 and fellow doctorandi, who had explored aspects of timbre and concat-
enative synthesis (Ó Nuanáin et al., 2017) and rhythmic spaces (Gómez-Marín et al.,
2016). My study, on the other hand, revolved around the identification of tonal prac-
tises in EDM, in order to implement better informed algorithms for tonality estimation,
an endeavour that is received with interest across DJ’s and producers circles. Surely
the combination of my personal interests, my academic background as a musician,
and my obvious limitations with information retrieval expertise, have made this thesis
exactly what it is. However, I have tried to compensate my weaknesses with a solid
music-theoretical background on tonality, documenting and evidencing the need to

102http://www.giantsteps-project.eu/#/downloads/deliverables
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study tonal practises within the musical contexts in which they are developed. Sim-
ilarly, I have shown how the available test datasets and evaluation strategies seem
to neglect this assumption, by borrowing models from euroclassical tonality without
much questioning. I have underlined the importance of understanding, from percep-
tual, interpretive and aesthetic viewpoints the importance of tonal ambiguity in mu-
sical discourse —something that is also not reflected in current evaluation methods—
proposing means to address this issue in data recollection strategies and evaluation
methods. In this respect, this study contributes two datasets comprising over 2,000
audio excerpts with tonal annotation in varying degrees of detail, what we regard as
an important contribution on its own, with a prospective effect in the work of fellow
researchers on the areas of tonality estimation and or electronic dance music. I have
provided musical analyses and insights of what I found to be the most relevant traces
in pitch configurations in EDM, some of which have a straightforward applicability in
key estimation methods aimed at electronic dance music. I have also presented my
own key estimation algorithms, mostly adapting existing methodologies, proving that,
even with the more modest implementations, taking into account the particularities of
the meta-genre, improves considerably the performance of the algorithms.

To wrap this dissertation up, in the following section I summarise in more detail the
main contents of each chapter, emphasising the original contributions stemming from
this research. Section 7.2, additionally, points at potential lines of work, both in the
fields of musical analysis, and in computational key estimation.

7.1 Summary and Contributions

I started this thesis by declaring my motivations and research goals, for which I tried
to present EDM as an interesting musical domain, posing specific challenges both to
the music analyst and the MIR engineer. Furthermore, I stressed the significance of
automatic key estimation among EDM practitioners, trying to underline the fact that,
despite a common preconception of this music as tonally uninteresting, there are po-
tential indicators of idiosyncratic configurations. These most likely stem from mixing
and compositional techniques centred on multi-track sequencers, and I declared my
intention to study their potential effect in configuring novel tonal arrangements, and
to implement tonality estimation methods taking advantage of them.

Chapters 2 and 3 presented the theoretical foundations of the dissertation, covering
aspects of music theory and computational key estimation, respectively. In Funda-
mentals of Tonality (Chapter 2), I presented basic tonal terminology, that in varying
degrees, has been used throughout this dissertation. I reviewed the basic workings
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of tonality in euroclassical music, what is typically assumed as the ‘measure’ for any
other tonal practises, and on which a great amount of literature is available, However,
I also tried to provide insights into popular music theory —an area of study which
has been increasingly attended in the past 20 years— highlighting the aspects that
situate popular music modality in a clearly differentiated space from euroclassical
binary tonality. I have also provided a summary of the coverage on tonality in EDM

research, underlining the vagueness with which the topic is normally addressed in
scholar literature, perhaps with the exception of the single publication by Wooller &
Brown (2008). Furthermore, I introduced the musical effect referred to as harmonic
mixing —one of the direct applications of key estimation systems amongst DJ’s and
producers— which is typically thought of in sequential terms (very much like modu-
lation) to provide a dramatic tensional curve to large mixes or DJ sets, and for which
all existing applications provide a simple binary vocabulary (e.g. based on minor and
major modes), offering no insight into other potentially significant tonal marks.

Complementarily, in Tonality and Computers I addressed the area of computational
key estimation, with a short introduction to its perceptual reality, and to how it has
been modelled in cognitive psychology, mostly as statistical tonal hierarchisation
through exposure to music (Krumhansl, 1990). I presented a short discussion on
early computational methods for key finding on symbolic musical representations,
before entering into the main body of the chapter, discussing the particularities of key
estimation procedures from audio signals, covering aspects of signal processing and
focusing on template-matching approaches. This way, I intended to set the basis for
our my computational methods for key identification, in line with the notion of tonal
hierarchies in music theory and music psychology.

After establishing the scientific basis of our research, Chapter 4 stood as the cent-
ral turning point in the thesis, introducing the methodological ground over which we
propose our first contributions. We started the chapter reporting on existing musical
collections for computational tonality estimation, comprising euroclassical, popular
and electronic dance music styles, showing that, with the exception of the corpora by
Temperley & De Clercq (2013) and Burgoyne et al. (2011), mostly aimed at chord
recognition endeavours, all other datasets with explicit key information follow a bin-
ary major-minor modal system. We also described typical evaluation methodologies,
normally based upon weighted rating of keys estimated correctly or in tonally neigh-
bour regions, offering a critique of the MIREX evaluation system, which is decidedly
biased towards euroclassical music, as evidenced by the inclusion of new datasets in
the competition. I observed that there has not been much activity in the task, probably
due to the lack of challenging datasets, a situation that it is apparently changing in
recent years. Furthermore, we proposed a revision of assumptions in simple evalu-
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ation methods, regarding the quality and duration of tracks, as well the weighting of
flat-side neighbouring keys. The two main contributions of this chapter include the
creation of a new EDM key dataset and a preliminary evaluation of existing methods
and collections, as condensed in the following points:

(1) The GiantSteps Key Dataset, a collection of 600 two-minute excerpts, compris-
ing over 15 different EDM subgenres, with a global key annotation per track,
obtained with an automated approach based of html parsing of web fora, and
multiple user annotations.

(2) A preliminary evaluation of existing key estimation algorithms, including com-
mercial applications tailored to EDM, supporting the study of tonal idiosyn-
crasies in electronic dance music, and the development of better informed al-
gorithms. This preliminary evaluation showed that the current state of the
art is able to classify correctly around 70% of EDM instances (compared to
the 90% achieved over euroclassical music) leaving considerable room for im-
provement.

After presenting the basic methodological framework, Chapters 5 and 6 condensed
the principal contributions of this dissertation. In A Study of Tonal Practises in EDM,
I described two additional datasets, in an attempt to balance existing collections with
better and more numerous labels, and a finer degree of tonal detail. Furthermore, tak-
ing from these two EDM musical collections, we elaborated a study of tonal practises
in EDM, based on a simple taxonomy of likely tonal configurations, that was proposed
as a simple annotation method for EDM tracks, although of potential utility beyond the
reach of the meta-genre. The main contributions of Chapter 5 are summarised as fol-
lows:

(3) A lax annotation framework giving account of tonically ambiguous and modally
ambivalent fragments, especially useful to describe music with bimodal open-
ness and other popular music modal features, availing finer modal descriptions
while being easily parseable by computer.

(4) Two new manually annotated datasets, obtained with the help of two external col-
laborators, fully reformatted and revised, adding to more than 2,000 excerpts of
EDM audio snippets, with varying degrees of modal annotations, key changes,
and pitch-class set descriptions, spanning over 15 subgenres of EDM.

(5) A study of tonal practises based on the newly curated collections, focusing on
global characterisation of musical fragments, in resonance with what Tagg
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called the extended present, providing evidence of the expressive role of tonal
ambiguity in electronic dance music, as well as presenting simple statistics of
its main modal scales, pitch cardinalities and tonal distributions.

In Chapter 6, additionally, we explained the key estimation methods developed in the
course of our research, revolving around the creation of specific tonality profiles for
EDM, based on the statistical analysis of some of the corpora described in previous
chapters. These include,

(6) Two iterations on binary tonality profiles as described in Faraldo et al. (2016a)
and Faraldo et al. (2017), providing binary classification into major and minor
modes, offering a visible improvement over previous methods for global key
estimation on EDM, and getting a performance ratio just below state of the art
commercial applications.

(7) One additional approach based on multiple profiles, trying to give account of
major-minor ambiguous fragments and other difficult tracks with a four-profile
system, providing additional labelling of atonal or atonical tracks (no-key).

(8) A laxer evaluation method, aligned with the annotation framework presented in
the previous chapter, which regards multiple interpretation as valid indicators
of the inherently characteristic ambiguous modality of EDM which, in turn,
provides further verbose details that could be used to inform musicological ana-
lysis and harmonic mixing endeavours.

As a complement to the work reported in the body of the dissertation, I have prepared
three appendices with additional information. In Appendix A, I list the publications
stemming from the research described. Appendix B presents a convenient summary
of the typesetting conventions used throughout the thesis, and is intended as a refer-
ence guide while consulting or reading the manuscript. However, most importantly,
Appendix C describes the additional materials created in the course of my research,
including audio datasets, musical analyses, parsing tools for annotation and evalu-
ation, as well as our key estimation methods.

7.2 Future Work

A detailed list of all the experiments and analyses I would have liked to undertake
would probably take as many pages as my report in previous chapters. However, time
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and human capacity are limited, and I regard the contents of this thesis as humble
research, upon which other lines of investigation could be drawn.

Regarding tonal analysis of EDM, for example, I feel I have only touched the surface
of what could have been studied, given the practical orientation of my enquiry towards
computational key determination. However, although my endeavour has proven use-
ful for this purpose, tonality analysis proper should account for actual time, and con-
sider pitch relationships embodied within metrical, timbral, structural and emotional
marks. Furthermore, my analyses avoided any large scale structural implications,
whether regarding complete audio tracks or full DJ sets, the actual place where a lot
of the musical, narrative and emotional powers of EDM unfolds. Besides, a tonality
study of EDM should probably proceed by subgenres, since there are styles that clash
almost frontally, regarding their tonal configuration. Although I have tried to focus
on practises mostly disconnected from song-oriented styles, truth is that these differ-
ences should be further acknowledged and studied. In any case, any genuine line of
investigation should necessarily integrate the makers (and possibly the dancers too),
to their discourses and working methodologies, in order to establish a dialogue with
real creative processes, eventually assessing the relevance of the type of claims made
throughout this work.

On the other hand, my approaches to computational key estimation should be taken
as a timid attempt to provide evidence about the utility of integrating expert music-
theoretical with engineering approaches to information extraction. In this line, a meth-
odology based on hypermetrical key-detection could bridge the gap between local
and global estimations, paving the way for studies of tonal structure in larger musical
units, and eventually improving the performance of the methods presented in EDM.
Recent research suggests that end-to-end systems might be the ultimate approach to
computational tonality induction (e.g. Korzeniowski & Widmer, 2016, 2017). How-
ever, machine learning methodologies still need the degree of modal specification that
I was seeking to provide, so perhaps this could constitute a natural continuation of the
research contained herein.

At this point my narration reaches its end. As such, it constitutes a durable trace of my
four years at the Music Technology Group, where I have learnt uncountable things.
From the projects, from the methods, and especially, from the people I have met in
this period. Some of the things I have learnt will stay with me for a long time, and
they will hopefully manifest transmuted into different realities, knowledge, music and
research. As for the rest of humanity, I wish this was not done completely in vain.

Barcelona, 13th December, 2017

Ángel Faraldo
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Appendix B
Musical Typesetting Conventions

Throughout the course of our explanation, reference to various musical objects could
be ambivalent. For example, the letter ‘A’ in a sentence, could be interpreted as an
indefinite article, a single note name, a major triad chord or a musical key. With the
intention of minimising this possible ambivalence while keeping the readability flow,
we have strictly applied the following typesetting conventions throughout the text:

Single pitches and chroma names are written in lower case sans-serif letters
(a–g) followed by a flat ([) or sharp (]) alteration if needed.

Octave indexes follow the pitch letter as a subscript.

Reference tuning standard pitch is a4.

Pitch-class integers are spelled in duodecimal notation (0–9,

2

,

3

), to facilitate
the synthetic expression and manipulation of pitch-class sets. Pitch class 0
represents the chroma c, and subsequent integers correspond to a chromatic
raise completing all twelve semitones in an octave.

Pitch-class sets and note aggregates are represented as a single string in curly
brackets, without spaces or commas between the different components, e.g.
{0237

23

}, {ceg}.

Keys are written in sans-serif upper case letters (A–G), followed by an alteration
if needed, and a modal label after a single space, e.g. A minor harmonic, B[
mixolydian.

Similarly, chord names are capitalised, and followed by a chord-type shorthand
without spaces (e.g. B[7, C]maj9). In order to minimise confusion with keys
and single pitches, contrary to frequent conventions, major and minor chords
are always capitalised and followed by their type label (Gmaj, A[min).
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Most of the times, we refer to melodic sequences or chord progressions in relative
terms, without referencing the specific key of a passage. Relative notation has the ad-
vantage of adding a level of abstraction to particular renditions of musical sequences.
Sometimes, writers make relative notation mode-dependent, using the same degree
labels or numbers to represent different intervalic relations depending on the mode
(e.g. Moore, 1992, 1995). However, in order to avoid confusion between different
modes and relative notations, we adopt what has been referred to as the ‘ionian refer-
ence model’ (e.g. Tagg, 2014), which takes this scale pattern as the labelling reference
for all other relative degrees:

Relative scale degrees and compound intervals are specified with circumflex
accents over Arabic numerals. Degrees corresponding to a ionian scale are
written without an alteration, comprising major and perfect intervals (e.g. 1̂,
3̂). On the other hand, minor and diminished intervals are indicated with a
flat symbol preceding the degree label (e.g. minor third = [3̂, diminished fifth
= [5̂); augmented intervals are written with a sharp symbol (e.g. augmented
fourth = ]4̂).

Similarly, relative chord functions are written as Roman numerals in sans-serif
font, preceded by an alteration to indicate non-ionian degrees (i.e. minor and
altered intervals). Major chord functions are capitalised, whereas minor degrees
are written in lower case, since there is no room left for ambiguity (e.g. I, ii,
]IV, [VII).
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Datasets and Other Resources

In the course of our research, we have generated a number of additional resources,
such as the described datasets and the various methods to perform key estimation
and evaluation, representing the material traces of our study, and a necessary comple-
ment to it. For this reason, this Appendix describes and points at the available online
resources referenced at various points in the thesis, mostly intended to promote exper-
imental reproducibility, encouraging further research in computational and musicolo-
gical analysis of electronic dance music. Furthermore, the musical analytical insights
presented in Chapter 5 are entirely conducted on excerpts from our contributing data-
sets, constituting a valuable complement to the text, what might stand as a reason on
its own to download the corresponding audio files.

C.1 Available Datasets

Throughout this dissertation, we make reference to three EDM datasets, namely, the
GiantSteps Key Dataset (GS), the Beatport dataset (BP) and the GiantSteps+ dataset
(GS+). Although the data from the three collections is highly similar, each collec-
tion presents a slightly diverging approach, and for that reason, they are published
separately.

The GiantSteps Key Dataset

The GiantSteps Key Dataset comprises 604 single key annotations from two-minute
EDM excerpts from Beatport,103 an online music store for DJ’s and producers, ob-
tained with a semi-automated procedure. This dataset was originally published in

103https://www.beatport.com
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2015, together with a corpus of tempo annotations from the same source. This effort is
best explained in Knees et al. (2015), which is the preferred reference when using this
dataset. The data is available as a Github repository (https://github.com/GiantSteps/
giantsteps-key-dataset), including the key annotations and scripts to download the
linked audio files. Additionally, Johannes Kepler University in Linz, provides an
alternate download portal, including some simple benchmarking with various com-
mercial and research algorithms (http://www.cp.jku.at/datasets/giantsteps/).

The Beatport EDM Key Dataset

The Beatport EDM key dataset includes 1,486 additional samples from Beatport, with
key annotations, comments and confidence levels generously provided by Eduard Mas
Marín, and thoroughly revised and expanded according to our annotation framework
by the author of this document.

The Beatport dataset contains the key annotations corresponding to the individual au-
dio files, plus a script to download the audio and liked metadata directly from the
Beatport website. Additionally, we provide an excel spreadsheet document with the
relevant accompanying metadata, the raw and modified key labels and additional com-
ments, which can be parsed in order to filter the data and generate annotations in
various ways, as we explain in the next section.

The Beatport EDM Key Dataset is published with a unique Digital Object Identifier
(DOI), 10.5281/zenodo.1101082, as an open access resource in Zenodo,104 a research
data repository supported by the European Union. Parts of this dataset had been pre-
viously published in a Github repository.105 However, we hardly encourage potential
users to download the current updated version. If this dataset is used in further re-
search, we would appreciate the citation of the current doctoral dissertation.

The GiantSteps+ EDM Key Dataset

The third dataset discussed consists in a revision of 500 items from the original Giant-
Steps Key Dataset, with updated genre information and metadata, 63 corrections to
the initial key annotations, plus more detailed analyses including key changes, pitch-
class set information, additional modal labels, comments and confidence levels. This
additional analytical information is provided as an excel spreadsheet. As with the
Beatport Key Dataset, we also provide key annotations and scripts to download the
audio files directly from Beatport. The GS+ dataset is hosted in Zenodo, with DOI

104https://zenodo.org/
105https://github.com/GiantSteps/giantsteps-mtg-key-dataset

https://github.com/GiantSteps/giantsteps-key-dataset
https://github.com/GiantSteps/giantsteps-key-dataset
http://www.cp.jku.at/datasets/giantsteps/
https://zenodo.org/
https://github.com/GiantSteps/giantsteps-mtg-key-dataset
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0.5281/zenodo.1095691. Although the initial GS dataset has been published before-
hand, we encourage researchers to switch to this updated version, and correspond-
ingly, reference the current work.

C.2 Additional Computational Resources

Throughout our research we developed computational tools to analyse, parse, eval-
uate and summarise our data, besides regular and widespread research-oriented lib-
raries. We performed almost the totality of our research in the python programming
language, with the sole exception of a few classes in C++ implementing our key es-
timation methods in MTG’s Essentia framework, where parts of our research included
as part of the official repository.106 Most of our computational efforts have been con-
densed in a fully operational python library, MIRAN, comprising various modules that
can be normally used within the python programming language, as well as simple
command line programs to perform recurrent operations.

The various modules include (a) functionality to download tracks and stems from
Beatport, (b) evaluation definitions including the MIREX standard and our proposed
methodologies, (c) various formatting functions to convert annotation formats across
the most popular EDM key estimation software, (d) the key estimation algorithms de-
scribed in Chapter 6, (e) utilities to parse excel spreadsheets, MIDI files and vectors,
in order to facilitate the parsing and analysis of the data contained in our accompany-
ing datasets and (f) plotting functions, to obtain key distribution, tonality profiles and
confusion matrices like the ones inserted throughout this document.

The provided command-line programs automate some common tasks, such as (a)
downloading online audio data, (b) performing key detection and (c) evaluation, (d)
finding hyper-meters in audio files, and other utilities to format annotations accord-
ing to various criteria, analyse MIDI datasets —not discussed in this dissertation—
process large amounts of data using vamp-plugins or convert between different audio
formats.

The miran toolbox (DOI 10.5281/zenodo.1101111) can be downloaded directly from
GitHub (https://github.com/angelfaraldo/miran), where library dependencies and in-
stallation instructions are also specified.

106essentia.upf.edu

https://github.com/angelfaraldo/miran
essentia.upf.edu
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