
Enabling the Use of Embedded
and Mobile Technologies for
High-Performance Computing

Author:
Nikola Rajović

Advisor:
Alex Ramirez

A THESIS SUBMITTED IN FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor per la Universitat Politècnica de Catalunya
Departament d’Arquitectura de Computadors

Barcelona, Spring 2017

To my family . . .

Моjоj породици . . .

Acknowledgements

During my PhD studies I received help and support from many people -
it would be strange if I did not. Thus I would like to thank professors
Mateo Valero and Veljko Milutinović for recognizing my interest in HPC and
introducing me to my advisor, professor Alex Ramirez. I would like to thank
him for trusting in me and giving me an opportunity to be a pioneer of HPC
on mobile ARM platforms, for guiding and shaping my work last five years,
for helping me understand what real priorities are, and for being pushy when
it was really needed.

In addition, thank you Carlos and Puzo for helping me to have a smooth
start of my PhD and for filling the gap when Alex was too busy.

Last two years of my PhD I have been working with Alex remotely, and I
would like to thank the local crew who helped me: professor Eduard Ayguade
for providing me with some very hard-to-get manuscripts and accepting to
be my "ponente" at the University; professor Jesus Labarta for thorough dis-
cussions about parallel performance issues and know-how lessons on demand;
Alex Rico for helping me deliver work for the Mont-Blanc project and for
friendly advices every so little; Filippo Mantovani for making sure I could
use the prototypes without outages and for filtering-out internal bureaucracy
issues.

In addition, I would like to acknowledge support from BSC Tools depart-
ment, especially Harald Servat and Judit Gimenez, who always managed to
find a free slot for me in their busy agenda.

Gabriele Carteni and Lluis Vilanova shared with me their Linux Guru
experience, which was extremely helpful during deployment of my first proto-
type - Tibidabo. Thank you guys! In addition, thank you Dani for bypassing
ticketing system and fixing issues related to our internal prototypes as soon
as I trigger them.

Thanks to prelectura committee and the constructive comments I re-
ceived, the quality of my PhD thesis manuscript was significantly improved.

Professor Nacho Navarro used to cheer me up many times with his down-
to-earth attitude, ideas and advices - I am sad that he cannot see me defend-
ing my thesis.

v

I shared my office with a lot of people, and I would like to thank them
for all the good and bad times.

I would like to thank all my Serbian friends I lived, used to hang around,
played basketball, or shared office with - thank you Браћала, Боки, Бране,
Радуловача, Уги, Зоки, Зуки, Влаjко, Мрџи, Павле, Вуjке, Перо, Пузо
. . .

Thanks to Rajović headquarters and their unconditional support for my
ideas, my PhD adventure finally ends with the writing of this Acknowledge-
ment. Knowing you are with me helped a lot!

Last but not least I would like to thank my darling, my Ivana, for the
patience, understanding and endless support. You are the true hero . . . and
thank you Uglješa, my son, for inspiring me with your smile

Author

My graduate work leading to these results was supported by the PRACE project (European Community
funding under grants RI-261557 and RI-283493), Mont-Blanc project (European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement no 288777), the Spanish Ministry of
Science and Technology through Computacion de Altas Prestaciones (CICYT) VI (TIN2012-34557), and
the Spanish Government through Programa Severo Ochoa (SEV-2011-0067).
Author has been financially supported throughout his studies with a grant from Barcelona Supercomputing
Center.

vi

Abstract

In the late 1990s, powerful economic forces led to the adoption of commodity
desktop processors in High-Performance Computing (HPC). This transfor-
mation has been so effective that the November 2016 TOP500 list is still
dominated by x86 architecture. In 2016, the largest commodity market in
computing is not PCs or servers, but mobile computing, comprising smart-
phones and tablets, most of which are built with ARM-based Systems on
Chips (SoC). This suggests that once mobile SoCs deliver sufficient perfor-
mance, mobile SoCs can help reduce the cost of HPC.

This thesis addresses this question in detail. We analyze the trend in
mobile SoC performance, comparing it with the similar trend in the 1990s.
Through development of real system prototypes and their performance anal-
ysis we assess the feasibility of building an HPC system based on mobile
SoCs. Through simulation of the future mobile SoC, we identify the missing
features and suggest improvements that would enable the use of future mo-
bile SoCs in HPC environment. Thus, we present design guidelines for future
generations mobile SoCs, and HPC systems built around them, enabling the
new class of cheap supercomputers.

vii

Contents

Front matter i
Dedication . iii
Acknowledgements . v
Abstract . vii
Contents . xi
List of figures . xvi
List of tables . xviii

1 Introduction 1
1.1 Microprocessors in Supercomputing 1
1.2 Energy Efficiency . 3
1.3 Mobile Processors Evolution 5

1.3.1 ARM Processors . 6
1.3.2 Embedded GPUs . 8

1.4 Contributions . 8

2 Related Work 11

3 Methodology 17
3.1 Hardware platforms . 17
3.2 Single core, CPU, and node benchmarks 18

3.2.1 Mont-Blanc benchmarks 18
3.3 System benchmarks and workloads 20
3.4 Power measurements . 22
3.5 Simulation methodology . 22
3.6 Tools . 24

3.6.1 Extrae . 24
3.6.2 Paraver . 25
3.6.3 Clustering tools . 25
3.6.4 Basic analysis tool . 25
3.6.5 GA tool . 25

ix

CONTENTS

3.7 Reporting . 26

4 ARM Processors Performance Assessment 27
4.1 Floating-Point Support Issue 27
4.2 Compiler Flags Exploration 28

4.2.1 Compiler Maturity . 29
4.3 Achieving Peak Floating-Point Performance 30

4.3.1 Algebra Backend . 31
4.4 Comparison Against a Contemporary x86 Processor 32

4.4.1 Results . 33
4.4.2 Discussion . 34

5 Tibidabo, The First Mobile HPC Cluster 37
5.1 Architecture . 37
5.2 Software Stack . 39
5.3 Evaluation . 40

5.3.1 Methodology . 40
5.3.2 Cluster Performance 40
5.3.3 Interconnect . 44

5.4 Comparison Against an X86-Based Cluster 45
5.4.1 Reference x86 System 47
5.4.2 Applications . 47
5.4.3 Power Acquisition . 47
5.4.4 Input Configurations 48
5.4.5 Results . 48

5.5 Projections . 51
5.6 Interconnect requirements . 57

5.6.1 Lessons Learned and Next Steps 58
5.7 Conclusions . 61

6 Mobile Developer Kits 63
6.1 Evaluation Methodology . 64
6.2 CARMA Kit: a Mobile SoC and a Discrete GPU 64

6.2.1 Evaluation Results . 65
6.3 Arndale Kit: Improved CPU Core IP and On-Chip GPU . . . 68

6.3.1 ARM Mali-T604 GPU IP 68
6.3.2 Evaluation Results . 69

6.4 Putting It All Together . 70
6.4.1 Comparison Against a Contemporary x86 Architecture 70

6.5 Conclusions . 75

x

CONTENTS

7 The Mont-Blanc Prototype 77
7.1 Architecture . 77

7.1.1 Compute Node . 78
7.1.2 The Mont-Blanc Blade 78
7.1.3 The Mont-Blanc System 79
7.1.4 The Mont-Blanc Software Stack 80
7.1.5 Power Monitoring Infrastructure 82
7.1.6 Performance Summary 83

7.2 Compute Node Evaluation . 84
7.2.1 Core Evaluation . 85
7.2.2 Node Evaluation . 85
7.2.3 Node Power Profiling 87

7.3 Interconnection Network Tuning and Evaluation 88
7.4 Overall System Evaluation . 90

7.4.1 Applications Scalability 90
7.4.2 Comparison With Traditional HPC 95

7.5 Scalability Projection . 97
7.6 Conclusions . 99

8 Mont-Blanc Next-Generation 101
8.1 Methodology . 101

8.1.1 Description . 102
8.1.2 Benchmarks . 104
8.1.3 Applications . 105
8.1.4 Base and Target Architectures 105
8.1.5 Validation . 105

8.2 Performance Projections . 106
8.2.1 Mont-Blanc Prototype 108
8.2.2 NVIDIA Jetson . 109
8.2.3 ARM Juno . 109
8.2.4 NG Node . 110

8.3 Power Projections . 111
8.3.1 Methodology . 111

8.4 Conclusions . 117

9 Conclusions 119
9.1 Future Work . 120

Back matter 121
List of publications . 121
Bibliography . 123

xi

List of Figures

1.1 Development of CPU architectures share in supercomputers
from TOP500 list. 2

1.2 Vector and commodity processors peak floating-point perfor-
mance developmenmt . 3

1.3 Server and mobile processors peak floating-point performance
development. 5

3.1 Methodology: power measurement setup. 22
3.2 An example of a Dimemas simulation where each row presents

the activity of a single processor: it is either in a computation
phase (grey) or in MPI communication (black). 24

4.1 Comparison of different compilers for ARM Cortex-A9 with
Dhrystone benchmark. 29

4.2 Comparison of different compilers for ARM Cortex-A9 with
LINPACK1000x1000 benchmark. 30

4.3 Exploration of the ARM Cortex-A9 double-precision floating-
point pipeline for FADD and FMAC instructions with mi-
crobenchmarks. 31

4.4 Performance of HPL on ARM Cortex-A9 for different input
matrix and block sizes. 32

4.5 Comparison between Intel Core i7-64M and ARM Cortex-A9
with SPEC CPU2006 benchmark suite. 35

5.1 Tibidabo prototype: physical view of the node card and the
node motherboard . 38

5.2 Tibidabo prototype: blade and rack physical view. 39
5.3 Tibidabo prototype: scalability of HPC applications. 41
5.4 Tibidabo prototype: power consumption breakdown of main

components on a compute node. 43
5.5 NVIDIA Tegra2 die photo. 43

xiii

LIST OF FIGURES

5.6 Interconnect measurements: influence of CPU performance on
achievable MPI bandwidth and latency. 46

5.7 Performance and energy to solution comparison between Tibid-
abo prototype and its contemporary x86 cluster with FEAST
application . 49

5.8 Performance and energy to solution comparison between Tibid-
abo prototype and its contemporary x86 cluster with HONEI_LBM
application . 50

5.9 Performance and energy to solution comparison between Tibid-
abo prototype and its contemporary x86 cluster with SPEC-
FEM3D_GLOBE application 51

5.10 Performance of HPL on ARM Cortex-A9 and Cortex-A15 at
multiple operating frequencies and extrapolation to frequen-
cies beyond 1 GHz. 53

5.11 Tibidabo prototype: projected speedup for the evaluated clus-
ter configurations. 56

5.12 Tibidabo prototype: projected energy efficiency for the evalu-
ated cluster configurations. 57

5.13 Tibidabo prototype: interconnection network impact on ex-
trapolated cluster upgrades. 58

6.1 Physical layout of the NVIDIA CARMA kit. 65
6.2 Evaluation of NVIDIA CARMA Kit: single core results. . . . 66
6.3 Evaluation of NVIDIA CARMA Kit: multi-threaded results. . 66
6.4 Architecture of the ARM Mali-T604 GPU. 68
6.5 Evaluation of the ARM Mali-T604 GPU. 70
6.6 Mobile platforms comparative evaluation: single core evaluation. 72
6.7 Mobile platforms comparative evaluation: single core evaluation. 73
6.8 Mobile platforms comparative evaluation: memory bandwidth 75

7.1 The Mont-Blanc prototype: compute node block scheme. . . . 78
7.2 The Mont-Blanc prototype: compute blade block scheme. . . . 79
7.3 The Mont-Blanc prototype: compute blade physical view. . . . 80
7.4 The Mont-Blanc prototype: physical view of the entire system. 81
7.5 The Mont-Blanc prototype: system interconnect topology. . . 81
7.6 The Mont-Blanc prototype: system software stack 82
7.7 Mont-Blanc vs MareNostrum III: core to core performance

comparison with Mont-Blanc benchmarks. 85
7.8 Mont-Blanc vs MareNostrum III: node to node performance

and energy comparison with Mont-Blanc benchmarks. 86

xiv

LIST OF FIGURES

7.9 The Mont-Blanc prototype: power profile demonstration of
different compute to hardware mappings for 3D-stencil com-
putation. 87

7.10 The Mont-Blanc prototype: inter-node bandwidth and latency
tuning . 89

7.11 The Mont-Blanc prototype: scalability and parallel efficiency
of MPI applications. 91

7.12 The Mont-Blanc prototype: illustration of the TCP/IP packet
loss effect on MPI parallel applications. 93

7.13 Performance degradation due to retransmissions: a) every mes-
sage is affected for selected nodes; b) random messages are
affected. 94

7.14 The Mont-Blanc prototype: illustration of computational noise
effect. 94

7.15 Mont-Blanc vs MareNostrum III comparison with MPI appli-
cations for the same number of MPI ranks. 96

7.16 The Mont-Blanc prototyoe: measured and simulated scalabil-
ity and parallel efficiency of MPI applications. 98

8.1 Illustration of the methodology for performance prediction of
potential Mont-Blanc prototype upgrades. 102

8.2 Computational phases performance modelling scheme. 103
8.3 Mont-Blanc benchmarks: execution cycles vs. operational fre-

quency on the Mont-Blanc node. 104
8.4 Example of computational bursts clustering analysis of CoMD

application. 107
8.5 Performance projection for CoMD application on the Mont-

Blanc prototype with different interconnect bandwidths and
latencies. 109

8.6 Performance projection for CoMD application on a hypotheti-
cal prototype powered by NVIDIA Jetson-like nodes with dif-
ferent interconnect bandwidths and latencies compared to the
Mont-Blanc prototype. 110

8.7 Performance projection for CoMD application on a hypotheti-
cal prototype powered by ARM Juno-like nodes with different
interconnect bandwidths and latencies compared to the Mont-
Blanc prototype. 110

8.8 Performance projection for CoMD on a hypothetical prototype
powered by NG Nodes with different interconnect bandwidths
and latencies compared to the Mont-Blanc prototype. 111

xv

LIST OF FIGURES

8.9 Achievable speedup of CoMD with upgraded node architec-
ture, using commodity 1Gb and 10Gb Ethernet. 112

8.10 ARM Cortex-A15 power consumption vs. operational fre-
quency: single and multi-core frequency sweep. 113

8.11 ARM Cortex-A57 power consumption vs. operational fre-
quency: single and multi-core frequency sweep. 113

8.12 Memory power consumption as a function of core frequency. . 114
8.13 Mont-Blanc prototype blade power breakdown while running

CoMD . 115
8.14 Power consumption comparison of alternative Mont-Blanc blades.116
8.15 Power consumption comparison of alternative Mont-Blanc sys-

tems. 117
8.16 Energy consumption comparison of alternative Mont-Blanc

systems. 118

xvi

List of Tables

1.1 Energy efficiency of several supercomputing systems from June
2016 Green500 list. 4

3.1 Methodology: list of parallel MPI applications and bench-
marks used for scalability, performance, and energy-efficiency
evaluations of mobile SoC clusters. 21

4.1 Experimental platforms: comparison of the ARM Cortex-A9
against its contemporary x86 processor. 33

4.2 Performance and energy-to-solution comparison between In-
tel Core i7-640M and ARM Cortex-A9 with Dhrystone and
STREAM benchmarks . 34

5.1 Estimation of performance and energy efficiency of potential
Tibidabo prototype upgrades 52

6.1 Platforms under evaluation . 71

7.1 The Mont-Blanc prototype: compute performance summary. . 83
7.2 Peak performance comparison of Mont-Blanc and MareNos-

trum III nodes. 84
7.3 List of Mont-Blanc benchmarks 84
7.4 The Mont-Blanc prototype: MPI applications used for scala-

bility evaluation. 90
7.5 Mont-Blanc vs MareNostrum III comparison with MPI appli-

cations targeting same execution time, using the same input
set. 97

8.1 List of target platforms used for performance and power pre-
dictions of the potential Mont-Blanc prototype upgrades. . . . 105

8.2 List of platforms used for methodology validation. 106
8.3 Methodology validation for HPL and CoMD on different taget

platforms. 106

xvii

LIST OF TABLES

8.4 Clustering statistics of CoMD computational bursts. Dura-
tions are in ms. 107

8.5 Performance model of CoMD application: clusters modeling
with kernels. 108

8.6 Performance model of CoMD application: per-cluster speedup
ratios for the target platforms. 108

8.7 Power consumption model of CoMD: list of used parameters
for different node architectures. 116

xviii

1
Introduction

In the domain of High-Performance Computing there is a continued need
for higher computational performance. Scientific grand challenges in engi-
neering, geophysics, bioinformatics, and other types of compute-intensive
applications require increasing of computing capabilities of supercomputers
in order to support growing complexity of problems and models. Over the
time, there were different approaches in increasing the required level of per-
formance due to new requirements, such as energy efficiency and economical
market conditions.

1.1 Microprocessors in Supercomputing

During the early 1990s, the supercomputing landscape was dominated by
special-purpose vector and Single Instruction Multiple Data (SIMD) archi-
tectures. Vendors such as Cray (vector, 41%), MasPar (SIMD,1 11%), and
Convex/HP (vector, 5%)2 designed and built their own HPC computer ar-
chitectures for maximum performance on HPC applications. During the mid
to late 1990s, microprocessors used in the workstations of the day, like DEC
Alpha, SPARC and MIPS, began to take over high-performance computing.
About ten years later, these RISC (Reduced Instruction Set Computing)
CPUs (Central Processing Units) were, in turn, displaced by the x86 CISC

1SIMD: Single-Instruction Multiple Data
2All figures are for vendor system share in the June 1993 TOP500 list [122].

1

1.1. MICROPROCESSORS IN SUPERCOMPUTING

1995 2000 2005 2010

Year

0

100

200

300

400

500

N
u

m
b

er
o

f
sy

st
em

s
in

T
O

P
5

0
0

x86

RISC

Vector/SIMD

Figure 1.1: Development of CPU architectures share in supercomputers from
TOP500 list. Special-purpose HPC replaced by RISC microproces-
sors, in turn displaced by x86. Data source: TOP500

(Complex Instruction Set Computing) architecture used in commodity PCs.
Figure 1.1 shows how the number of systems, of each of these types, has
evolved since the first publication of the TOP500 list in 1993 [122].

Building an HPC chip is very expensive in terms of research, design,
verification, and creation of photo-masks. This cost needs to be amortized
over the maximum number of units to minimize their final price. This is the
reason for the trend in Figure 1.1. The highest-volume commodity market,
which was until the mid-2000s the desktop market, tends to drive lower-
volume higher-performance markets such as servers and HPC.

The above argument requires, of course, that lower-end commodity parts
are able to attain a sufficient level of performance, connectivity and reliabil-
ity. To shed some light on the timing of transitions in the HPC world, we look
at the levels of CPU performance during the move from vector to commod-
ity microprocessors. Figure 1.2 shows the peak floating point performance of
HPC-class vector processors from Cray and NEC, compared with floating-
point-capable commodity microprocessors. The chart shows that commodity
microprocessors, targeted at personal computers, workstations, and servers
were around ten times slower, for floating-point operations, than vector pro-
cessors, in the period 1990 to 2000 as the transition in HPC from vector to
microprocessors gathered pace.

2

1.2. ENERGY EFFICIENCY

1975 1980 1985 1990 1995 2000
1e+02

1e+03

1e+04

M
F

L
O

P
S

Cray-1, Cray X-MP, Cray-2, Cray-3,Cray-C90
NEC SX-4, NEC SX-5
DEC Alpha EV4, Alpha EV5
Intel Pentiums
IBM P2SC
HP PA8200
Trendline Vector
Trendline Microprocessor

Figure 1.2: Vector and commodity processors peak floating-point performance
development. Data source: TOP500 list and various WWW sources.

The lower per-processor performance meant that an application had to
exploit ten parallel microprocessors to achieve the performance of a single vec-
tor CPU, and this required new programming techniques, including message-
passing programming models such as Message Passing Interface (MPI). Com-
modity components, however, did eventually replace special-purpose HPC
parts, simply because they were many times cheaper. Even though a system
may have required ten times as many microprocessors, it was still cheaper
overall.

As a consequence, a new class of parallel computers built on commodity
microprocessors and distributed memories, gained momentum. In 1997, the
ASCI Red supercomputer [89] became the first system to achieve 1 TFLOPS
performance in the High-Performance Linpack (HPL) benchmark by exploit-
ing 7,246 parallel Intel Pentium Pro processors [122]. Most of today’s HPC
systems in the TOP500 are still built on the same principle: exploit a massive
number of microprocessors, based on the same technology used for commod-
ity PCs. These systems represent 81% of the total systems in the June 2016
TOP500 list. Vector processors are almost extinct, although their technol-
ogy is now present in most HPC processors in the form of widening SIMD
extensions.

1.2 Energy Efficiency

Performance is not the single important metric for HPC systems. Super-
computers are large scale machines and as such have high power require-
ments [53]. Energy is increasingly becoming one of the most expensive re-
sources and it substantially contributes to the total cost of running a large su-
percomputing facility. In some cases, the total cost over a few years of opera-

3

1.2. ENERGY EFFICIENCY

Table 1.1: Energy efficiency of several supercomputing systems from Green500
list. Data source: Green500 list.

System Heterogeneous Architecture GFLOPS/W

Shoubu 4 PEZY-SC 6.6
Sunway TaihuLight 5 Sunway SW26010 260Cores Manycore 6
Sugon 4 NVIDIA Tesla K80 Kepler GPU 4.8
Inspur TS1000 4 NVIDIA Tesla K20 Kepler GPU 3
SANAM 4 AMD FireProS10000 GPU 2.97
Piz Dora 5 Intel Xeon E5-2695 v4 2.7
Shadow 4 Intel Xeon Phi 5110 2.4
Sequoia 5 IBM BlueGene/Q 2.2

tion can exceed the cost of the hardware infrastructure acquisition [66, 70, 71].
Let us quantitatively describe the magnitude of energy expenditure, assum-
ing the market electricity cost for an industry consumer in Spain, with a list
price of ∼0.1 e/KWh [51]. Running a supercomputer with the same per-
formance (93 PFLOPS) and power requirements (15.4 MW) as current June
2016 TOP500 list #1, Sunway TaihuLight supercomputer, in Spain would
cost ∼13.5 Me without VAT per year only in electricity costs.

Following performance development and power requirements, we can es-
timate that next milestone in supercomputers’ performance, 1 EFLOP (1000
PFLOP) should be reached by the year 2020, but the required power for
such a system will be up to ∼150 MW if the current energy efficiency is not
improved3. Such a requirement is not realistic because it would demand set-
ting a supercomputer facility next to an electricity production plant and the
electricity bill of such a machine would not be sustainable. A more realistic
power budget for an exascale machine is 20 MW [29], which would require an
energy efficiency of 50 GFLOPS/W. This is more than an order of magnitude
away from today’s most energy efficient system as listed in Table 1.1.

To illustrate our premise about the need for low-power processors, let us
reverse engineer a theoretical EFLOP supercomputer with a realistic power
budget of 20 MW. We build our system using cores with 16 GFLOPS (8
ops/cycle @ 2 GHz), assuming that single-thread performance will not im-
prove much beyond the performance we observe today. An Exaflop machine
would require 62.5 million of such cores, independently on how they are
packed together (multicore density, sockets per node). We also assume that
only 30-40% of the total power will be actually consumed by the cores, the
rest going to power supply losses, cooling infrastructure, interconnect, stor-

3For comparison, the total reported power of all supercomputers as per June 2016
TOP500 list is ∼225 MW

4

1.3. MOBILE PROCESSORS EVOLUTION

age and memory. That leads to a power budget of 6 MW to 8 MW for
62.5 million cores, which is 0.1 W to 0.13 W per core. Current high per-
formance processors integrating this type of cores require tens of watts at
2 GHz. However, mobile processors like ARM processors, designed for the
embedded mobile market, consume less than 0.9 W at that frequency [13],
and thus are worth exploring—even though they do not yet provide a suf-
ficient performance, they have a promising roadmap ahead – driven by the
new commodity market.

1.3 Mobile Processors Evolution

Nowadays we observe a situation very similar to the one we observed between
vector and commodity processors: low-power microprocessors targeted at
mobile devices, such as smartphones and tablets, integrate enough transistors
to include an on-chip floating-point unit capable of running typical HPC
applications.

1992 1996 2000 2004 2008 2012 2016
1e+02

1e+03

1e+04

1e+05

1e+06

M
F

L
O

P
S

DEC Alphas
Intel
AMD
NVIDIA Tegras
SAMSUNG Exynoses
HiSilicon Kirin 950
Mediatek Helio X20
Trendline Server
Trendline Mobile

Figure 1.3: Server and mobile processors peak floating-point performance devel-
opment. Data source: TOP500 list, Microprocessor Report and vari-
ous WWW sources.

Figure 1.3 shows the peak floating point performance of current HPC mi-
croprocessors from Intel and AMD, compared with new floating-point capable
mobile processors from NVIDIA and Samsung. The chart shows that mobile
processors are not faster than their HPC counterparts. In fact, they are still
ten times slower, but the trend shows that the gap is quickly being closed:
the recently introduced ARMv8 Instruction Set Architecture (ISA) not only
makes double-precision floating point (FP-64) a compulsory feature, but it
also introduces it into the SIMD instruction set. That means that ARMv8
processors, using the same micro-architecture as the ARMv7 Cortex-A15,

5

1.3. MOBILE PROCESSORS EVOLUTION

would have double the FP-64 performance at the same frequency. Further-
more, mobile processors are approximately 70 times cheaper4 than their HPC
counterparts, matching the trend that was observed in the past.

Given the trend discussed above, it is reasonable to consider whether the
same market forces that replaced vectors with RISC microprocessors, and
RISC processors with x86 processors, will replace x86 processors with mobile
phone processors. That makes it relevant to study the implications of this
trend before it actually happens.

1.3.1 ARM Processors

The ARM architecture presents a family of RISC computer processor Int-
electual Property (IP) cores mainly targeting embedded and mobile markets.
ARM itself does not produce processors, but licenses cores design as intellec-
tual property blocks to semiconductor manufacturers for further integration
into potential designs. This business model turns the ARM architecture
into the dominant cores architecture for embedded market. Official ARM
Holdings report for 2012 [9] claims over 95% market share for smartphones
and tablets. The predominant processor implementations in this share are
Cortex-A9 and Cortex-A15, both based on the ARMv7-a ISA.

ARM-based mobile solutions attracted our attention once cores started
implementing features that are desirable/compulsory for HPC. Previous
generations of ARM application cores (Cortex-A family, ARMv7 revision
of ISA) did not feature a floating-point unit capable of supporting through-
puts and latencies required for HPC. First Cortex-A core, Cortex-A8, is an
in-order core with an optional non-pipelined floating-point unit and in best
case can deliver one floating-point ADD instruction every ∼10 cycles, with
even smaller throughputs of MUL/FMAC instructions (FMAC—Fused Mul-
tiply Accumulate). In the best case, Cortex-A8 is capable of 0.105 GFLOPS
at 1 GHz in double-precision. In addition, it implements NEON [16] SIMD
floating-point unit which sadly supports only integer and single-precision
floating-point arithmetics and thus is unattractive HPC due to a lack of
double-precision support.

The follow-up core, namely the Cortex-A9, introduces out-of-order execu-
tion. It has an optional VFPv3 floating-point unit [17] and/or NEON SIMD

4We compare the official tray list price of an Intel Xeon E5-2670 [77] with the leaked
volume price of NVIDIA Tegra 3 [73]: $1552 vs. $21. A fairer comparison; i.e. of the same
price type, would be between the recommended list price for the Xeon with an Intel Atom
S1260 [75]: $1552 vs. $64 which gives the ratio of ∼24. The latter is, however, not a mobile
processor but a low-power server solution from Intel, and it serves only as a comparison
reference.

6

1.3. MOBILE PROCESSORS EVOLUTION

floating-point unit. The VFPv3 unit is pipelined and is capable of executing
one double-precision ADD operation per cycle, or one MUL/FMAC every two
cycles. Then, with one double-precision floating-point arithmetic instruction
per cycle (VFPv3), a 1 GHz Cortex-A9 provides a peak of 1 GFLOPS in
double-precision.

ARM Cortex-A15 [124] is the successor of Cortex-A9 core, implementing
the same ARMv7 ISA, with a more advanced microarchitecture implemen-
tation compared to ARM Cortex-A9. To begin with, VFPv3 unit is now
fully pipelined and the Cortex-A15 can execute one FMAC instruction every
cycle which leads to a peak performance of 2 GFLOPS at 1 GHz in double
precision. Also, this generation of cores introduces Error-Correcting Code
(ECC) protection in both L1 and L2 caches with ability to detect two and
correct one error. In addition, Cortex-A15 can scale to sixteen cores on chip
configuration, fully cache coherent, using ARM CoreLink CCN-504 [10, 33]
on-chip interconnect. Cortex-A15 also improves on maximum addressable
memory—even though it is 32-bit architecture and has a natural limit of
4 GB of addressable memory, it implements large physical address exten-
sions [18], which removes 4 GB barrier and provides for up to the 1 TB
of address space, with a limitation of 4 GB addressable memory per appli-
cation/process. Last but not least, Cortex-A15 brought a lift in maximum
operating frequency – microarchitecture and new technology nodes allowed
frequencies up to 2GHz.

At the time we begin our study, ARMv7-a ISA based mobile cores IP
were the state-of-the-art. Meanwhile, new 64-bit ARMv8 ISA based cores
started to appear. New 64-bit ARMv8 ISA improves some features that are
important for HPC. First, using 64-bit addresses removes the 4 GB memory
limitation per application, allowing proper sizing of HPC nodes’ memory.
Also, ARMv8 increases the size of the general purpose register file from 16 to
32 registers. This reduces register spilling and provides more room for com-
piler optimization. It also improves floating-point performance by extending
the NEON instructions with fused multiply-add and multiply-substract, and
cross-lane vector operations. More importantly, double-precision floating-
point is now part of NEON. All together,this provides a theoretical peak
double-precision floating-point performance of 4 FLOPS/cycle for a fully-
pipelined SIMD unit.

The first mobile core IP implementation of ARMv8 ISA is the ARM
Cortex-A57 [32]. It includes two NEON units, totalling 8 double-precision
FLOPS/cycle – this is 4 times better than ARM Cortex-A15 and equiva-
lent to Intel Sandy Bridge microarchitecture double-precision floating-point
throughput with Intel Advanced Vector Extensions (AVX). Its microarchi-
tecture allows for implementation of up to 2.5 GHz while staying within a

7

1.4. CONTRIBUTIONS

smartphone thermal envelope.

1.3.2 Embedded GPUs

Unlike the discrete GPUs for servers, a mobile GPU is integrated into a SoC,
which also includes a multi-core CPU, and multiple workload accelerators
and offload engines. Recently, modern mobile GPUs such as the Imagination
PowerVR [74], NVIDIA ULP (Ultra Low-Power) GeForce [100] or ARMMali-
T6xx [14] GPUs tend to integrate more computing units in a chip, thus
increasing the aggregate peak performance of a mobile SoC.

Like their predecessors, discrete desktop or server GPUs, they were not
programmable when we began our study by means of general purpose pro-
gramming models like CUDA or OpenCL. Instead, mobile GPU were pro-
grammed with OpenGL ES [96] being a low-level API not targeting general-
purpose computing and thus not very attractive. Recently, mobile GPU
vendors are starting to add support for programmability to their solutions.
The first OpenCL programmable and computing capable mobile GPU, ARM
Mali-T604, has the peak single-precision floating-point performance of 68
GFLOPS in single-precision arithmetic. ARM has also announced the next
generation mobile GPU, ARM Mali-T658 [15] which is supposed to deliver
four times more computing performance compared to its predecessor. In ad-
dition, NVIDIA launched two mobile SoCs with computing capable GPUs,
programmable by means of NVIDIA CUDA. These SoCs are Tegra K1 [45]
(based on Kepler GPU core architecture), and Tegra X1 [37] (based on
Maxwell GPU architecture), offering peak floating-point performance of 384
and 512 GFLOPS in single-precision respectively. What makes on-SoC mo-
bile GPUs attractive is the fact they share main memory with a host CPU,
thus avoiding explicit memory copies, and using pinned memory instead –
saving the energy on data movements.

1.4 Contributions

Our study of mobile processors and SoCs potential for HPC, documented in
this thesis, brings the following contributions to the scientific community:

• Evaluation of ARM mobile processors and SoCs in HPC environments,
and comparison to their contemporary x86 processor,

• Design and evaluation of the world first mobile SoCs powered HPC
cluster built from developer kits,

8

1.4. CONTRIBUTIONS

• Evaluation of mobile SoCs featuring next-generation core IP, and het-
erogeneous architectures with off and on-chip GPU accelerators,

• Design and thorough evaluation of the Mont-Blanc prototype, the next-
generation mobile SoCs powered HPC cluster built with off-the-shelf
HPC network and storage solutions, and contemporary system integra-
tion,

• Guidelines for the design of the next-generation mobile SoCs based
HPC system.

The flow of the thesis follows the timeline of our contributions, and is
organized as follows: In Chapter 2 we discuss the related work. Performance
of ARM Cortex-A9 and corresponding software stack tuning is discussed in
Chapter 4. With Chapter 5 we introduce the Tibidabo cluster – world first
mobile SoCs based HPC cluster. Here we present the evaluation, and anal-
ysis of energy-efficient computing potential of such a solution. Further, in
Chapter 6 we evaluate multiple mobile SoCs and assess the performance of
GPGPU (General-Purpose computation on Graphics Processing Unit) com-
puting towards making a selection of a mobile SoC for the Mont-Blanc proto-
type. The architecture, evaluation, performance analysis of the Mont-Blanc
prototype and comparison against a production level supercomputer is de-
picted in Chapter 7. In Chapter 8 we show a study that aims to give a
design guidelines for a next-generation mobile SoCs powered HPC systems.
Conclusions and future research directions are shown in Chapter 9.

9

2
Related Work

The landmark supercomputer1, ASCI Red [89], was the first top-tier system
to utilize the same processors as found in commodity desktop machines –
instead of powerful HPC-optimized vector processors. It integrad 7,246 Intel
Pentium Pro processors2, the first x86 commodity processors to support out-
of-order execution and SMP (Symmetric Multiprocessing) with up to four
processors natively. All components of the system were COTS (Commer-
cial Off-The-Shelf), except the proprietary network. This particular system
marked the beginning of the era of system designs based on the same princi-
ple: clusters of commodity PC processors; and the beginning of the end for
vector processors.

Another example of an HPC machine using technology from different
computing segments is the Roadrunner [27] supercomputer. It was based
on the Cell/B.E. processor, primarily designed for the Sony Playstation 3
game console. Roadrunner’s node was based on dual-core AMD Opteron
processors

It topped the Top500 list in June 2008 to be the first to break the
petaflop barrier. It uses IBM PowerXCell 8i [41] together with dual-core
AMD Opteron processors. The Cell/B.E. architecture emphasizes perfor-
mance per watt by prioritizing bandwidth over latency and favors peak com-
putation capabilities over simplifying programmability. In the June 2008

1From this moment on we will use the terms supercomputer and HPC system equally.
2Later the number of processors was increased to 9,632 and upgraded to Pentium II

processors

11

Green500 list, it held third place with 437.43 MFLOPS/W, behind two
smaller homogeneous Cell/B.E.-based clusters.

The Cell/B.E. represents an example of a consumer device technology3
used for HPC.

One of the first attempts to use low-power commodity processors in HPC
systems was GreenDestiny [129]. They relied on Transmeta TM5600 pro-
cessor, and although the proposal seemed good for a top platform in energy
efficiency, a large-scale HPC system was never produced. Also, its computing-
to-space ratio was leading at the time.

MegaProto systems [99] were another approach in this direction. They
were based on more advanced versions of Transmeta’s processors, namely
TM5800 and TM8820. This system was able to achieve good energy effi-
ciency for the time, reaching up to 100 MFLOPS/W using a system with
512 processors. Like its predecessor, MegaProto never made it into a com-
mercial HPC product.

There has been a proposal to use the Intel Atom family of processors
in clusters [126]. The platform is built and tested with a range of different
types of workloads, but those target data centers rather than HPC. One of
the main contributions of this work is determining the type of workloads for
which Intel Atom can compete in terms of energy-efficiency with commodity
Intel Core i7. A follow-up of this work [84] leads to the conclusion that a
cluster made homogeneously of low-power nodes (Intel Atom) is not suited
for complex database loads. They propose future research in heterogeneous
cluster architectures using low-power nodes combined with high-performance
ones.

The use of low-power processors for scale-out systems was assessed in a
study by Stanley-Marbell and Caparros-Cabezas [119]. They did a compara-
tive study of three different low-power architecture implementations: x86-64
(Intel Atom D510MO), Power Architecture e500 (Freescale P2020RDB) and
ARM Cortex-A8 (TI DM3730, BeagleBoard xM). The authors presented a
study with performance, power and thermal analyses. One of their findings
is that a single core Cortex-A8 platform is suitable for energy-proportional
computing, meaning very low idle power. However, it lacks sufficient comput-
ing resources to exploit coarse-grained task-level parallelism and be a more
energy efficient solution than the dual-core Intel Atom platform. They also
concluded that a large fraction of the platforms’ power consumption (up to
67% for the Cortex-A8 platform) cannot be attributed to a specific compo-
nent, despite the use of sophisticated techniques such as thermal imaging for
determining the power breakdown.

3Cell/B.E. used to power Sony Playstation 3 game console

12

The AppleTV cluster [56, 55] is an effort to assess the performance of
the ARM Cortex-A8 processor in a cluster environment running HPL. The
authors built a small cluster with four nodes based on AppleTV devices with
a 100MbE network. They achieved 160.4 MFLOPS with an energy efficiency
of 16 MFLOPS/W. Also, they compared the memory bandwidth against a
BeagleBoard xM platform and explained the performance differences due to
different design decisions in the memory subsystems. In our systems, we
employ more recent low-power core architectures and show how improved
floating-point units, memory subsystems, and an increased number of cores
can significantly improve the overall performance and energy efficiency, while
still maintaining a small power footprint.

The BlueGene family of supercomputers has been around since 2004 in
several generations [2, 3, 72]. BlueGene systems are composed of embed-
ded cores integrated on an Application Specific Integrated Circuit (ASIC)
together with additional architecture-specific fabrics. BlueGene/L, the first
such system, is based on the PowerPC 440, with a theoretical peak per-
formance of 5.6 GFLOPS. BlueGene/P increased the peak performance
of the computing card to 13.6 GFLOPS by using 4-core PowerPC 450.
BlueGene/Q-based clusters are one of the most power efficient HPC ma-
chines nowadays delivering around 2.1 GFLOPS/W. A BlueGene/Q com-
puting chip includes 16 4-way SMT in-order cores, each one with a 256-bit-
wide quad double-precision SIMD floating-point unit, delivering a total of
204.8 GFLOPS per chip on a power budget of around 55W (3.7 GFLOPS/W).

In parallel with our work, there have been multiple SoCs and commer-
cial solutions using embedded processors and targeting server market: the
Calxeda EnergyCore ECX-1000 [34], and AMD Opteron A1100 [4] are ARM
based, while the AMD SeaMicro SM10000-64 [46] and the Quanta Computer
S900-X31A [108] are based on the Intel Atom. All extend the embedded mul-
ticore with high bandwidth networks, for example 10GbE, and ECC memory
protection.

Meanwhile, Other companies have developed custom processors based on
the ARM architecture. Applied Micro (APM) X-Gene [6] is a server-class
SoC with eight 64-bit ARMv8 cores and four 10GbE links. Cavium, with
large experience in networking processors, designed ThunderX [38], another
server-class SoC with 48 ARMv8 cores and multiple 10/40GbE interfaces.
Qualcomm and Phytium also announced ARMv8 server SoCs with 24 [105]
and 64 [40] cores, respectively.

One of the most exciting ARMv8 server chip projects is the Vulcan SoC
from Broadcom [65]. It is a custom microarchitecture implementation of the
ARMv8 ISA. The Vulcan core is a 4-way SMT out-of-order CPU core, de-
signed to run at frequencies up to 3GHz. Compared to the other ARMv8

13

implementations, both ARM Cortex-A series and custom cores, it has two
floating-point units both supporting FMAC (Fused Multiply Accumulate) in
SIMD, for a total of 8 double-precision floating-point operations per cycle.
Moreover, the core can support up to 64 outstanding loads and 36 outstand-
ing stores – far more compared to the other ARM implementations. Given
its microarchitecture, it is aimed to be competitive with the server-class In-
tel Xeons. Sadly, this promising approach towards the ARMv8 server core
architecture has been shut-down recently after the acquisition of Broadcom
by another company.

Some successful deployments of some of these SoCs are already in place.
CERN has published a comparison of APM X-Gene compared to Intel Xeon
and IBM Power8 chips [1]. PayPal has deployed HP Moonshot servers with
APM X-Gene processors claiming half the price, one seventh of the power
consumption and 10x more nodes per rack compared to their traditional data
center infrastructure [43].

These efforts, however, target the server market and there are still no
large-scale demonstrators of such mobile-technology-based processors for HPC.
The Mont-Blanc prototype is thus the first demonstrator of an HPC cluster
with full HPC software stack running real scientific application, commodity
networking, and standard system integration. Our experiments demonstrate
the feasibility of the proposed alternative approach, assess system software
maturity and project its scalability at a larger scale.

Blem et al. [31] recently examined whether there were any inherent dif-
ferences in performance or energy efficiency between the ARM and x86 ISAs.
They brought once-more the RISC (ARM) vs. CISC (x86) debate, and found
that although current ARM and x86 processors are indeed optimised for dif-
ferent metrics, the choice of ISA had an insignificant effect on both power and
performance. We do not contradict this finding. We argue that whichever
architecture dominates the mobile industry will, provided the level of per-
formance demanded in the mobile space is sufficient, eventually come to
dominate the rest of the computing industry.

Li et al. [86] advocate the use of highly-integrated SoC architectures in
the server space. They performed a design space exploration, at multiple
technology nodes, for potential on-die integration of various I/O controllers,
including PCIe, NICs and SATA. They predicted that, for data centers at
the 16nm technology node, an SoC architecture would bring a significant
reduction in capital investment and operational costs. With our study, we
also advocate the use of SoCs, but for future HPC systems based on mobile
and embedded technology.

At the International Supercomputing Conference 2016, Fujitsu announced
their plains to produce a processor for the Post-K Exascale Supercomputer,

14

based on their own microarchitecture implementation of ARMv8 architecture
specification [39]. This supports our approach of using commodity technology
deployed in the mobile and embedded markets, in this case the ARMv8
architecture, for HPC.

15

3
Methodology

In this chapter we present the high-level methodology used in our research.
However, each chapter covers the specifics of the methodology in more details
if needed.

All results presented in this thesis were either gathered on real hardware
platforms, or have foundation in a design-space exploration with simulations.
One of the strengths of our work is that we build our simulation models
around real hardware platforms, and later extrapolate the results.

In this chapter we also list benchmarks used to evaluate the CPU per-
formance and energy efficiency, memory bandwidth and network bandwidth
across different platforms. Finally, we present the software tools we used to
aid our study as well.

3.1 Hardware platforms

Due to the specific nature of mobile SoCs there were/are not available hard-
ware platforms targeting HPC using this very technology. Thus, we opted to
use developer boards (as seen in Chapters 4,5,6) for conducting evaluations
of single mobile CPU core, single mobile GPU, single node benchmarking,
and comparison against x86-based cores and nodes. Additionally, developer
boards were used in initial phase of our work for porting and tuning HPC
software stack for ARM-based platform.

For large scale HPC studies requiring clusters, we had to deploy prototype

17

3.2. SINGLE CORE, CPU, AND NODE BENCHMARKS

clusters ourselves. Initially, this led to the in-house design and deployment of
256 nodes Tibidabo cluster prototype based on developer kits (see Chapter 5).
Although Tibidabo provided valuable insights, we continued our research
on a mobile SoC based system utilizing professional system integration and
featuring more advanced mobile and embedded technology. Thanks to the
Mont-Blanc project [94] we deployed and tuned the 1080 nodes Mont-Blanc
prototype (as seen in Chapter 7) which served as a proof-of-concept of mobile
technology based HPC, and as the testbed for specifying the next-generation
system design (see Chapter 8).

When comparing our prototype platforms and clusters against x86 based
machines, we used LiDOng cluster and MareNostrum III supercomputer as
reference platforms. Former was installed at TU Dortmund and the latter is
hosted by Barcelona Supercomputing Center.

3.2 Single core, CPU, and node benchmarks

Throughout this study we benchmark different mobile SoC powered plat-
forms and systems, and compare them against x86 based platforms and sys-
tems. Our initial study (see Chapter 4) in compiler maturity of mobile ARM
platforms uses Dhrystone and LINPACK1000x1000 benchmarks, where the
former represents integer and the latter is a floating-point benchmark. First
comparison of an ARM mobile core and an x86 core (see Chapter 4) is done
with the SPEC CPU2006 [68] – a well established industry grade benchmark
suite for comparing CPU cores having a good mix of both integer and floating-
point workloads (SPECINT and SPECFP). However, SPEC CPU2006 im-
posed a significant porting effort, and since we aimed to evaluate multiple
computing node architectures, some of which include computing accelerators
(GPU or DSP), we decided to design our own benchmark suite presented
in Section 3.2.1. For the purpose of characterization of memory systems we
employ STREAM benchmark [90] which measures achievable memory band-
width from the both single core and entire CPU (node) perspective.

3.2.1 Mont-Blanc benchmarks

Mont-Blanc benchmarks is a highly-portable suite of 11 benchmarks, writ-
ten in C, that stress different architectural features and cover a wide range
of algorithms employed in HPC applications. All microbenchmarks are de-
veloped in five versions. The serial version is used in single-core scenarios to
test the performance of a single CPU core. The multi-threaded version of
the benchmarks uses OpenMP programming model. For GPGPU comput-

18

3.2. SINGLE CORE, CPU, AND NODE BENCHMARKS

ing, both NVIDIA’s CUDA [102] and OpenCL versions exist. Mont-Blanc
benchmarks are developed in OmpSS [48] version as well, allowing full fully
exploitation of heterogeneous devices employing CPU and GPU for compu-
tations.

Here we present the full list of the Mont-Blanc benchmarks with a brief
description.

Vector Operation (vecop): This code takes two vectors of a given
size and produces an output vector of the same size by performing addition
on an element-by-element basis. This workload mimics the vector operations
often found in numerical simulations, and other computing intensive regular
codes.

Dense Matrix-Matrix Multiplication (dmmm): This code takes
two dense matrices and produces an output dense matrix that is the result of
multiplication of the two input matrices. Matrix multiplication is common
computation in many numerical simulations and the benchmark measures
the ability of the computing accelerator to exploit data reuse and computing
performance.

3D Stencil (3dstc): This code takes one 3D volume and produces
an output 3D volume of the same size. Each point in the output volume is
calculated as a linear combination of the point with the same coordinates in
the input volume and the neighboring points in each dimension, i.e., points
with the same coordinates as the input point plus/minus an offset in only
one dimension. This code evaluates the performance of strided memory ac-
cesses on the computing accelerator. Moreover, by allowing the number of
stencil points to be variable, different memory load/computation ratios can
be evaluated.

2D Convolution (2dcon): This code takes two input matrices, first
being an input image and the second representing a filter, and produces an
output image matrix of the same size as the input image. Each point in
the output matrix is calculated as a linear combination of the points in the
filter matrix and the points in the input sub-matrix of the same size as filter
matrix. Central coordinate of the sub-matrix corresponds to the coordinate
of the current output matrix point. Contrary to the 3D stencil computation,
neighboring points can include points with the same coordinates as the in-
put point plus/minus an offset in one or two dimensions. This code allows
measuring the ability of the computing accelerator to exploit spatial locality
when the code performs strided memory accesses.

Fast Fourier Transform (fft): This code takes one input vector and
produces an output vector of the same size by computing a one-dimensional
Fast Fourier Transform. This is computing intensive code that measures the
peak floating-point performance, as well as variable stride memory accesses.

19

3.3. SYSTEM BENCHMARKS AND WORKLOADS

Reduction (red): This code takes one input vector and applies the
addition operator to produce a single (scalar) output value. The amount
of data parallelism in this code decreases after each reduction stage. This
allows us to measure the capability of the computing accelerator to adapt
from massively parallel computation stages to almost sequential execution.

Histogram (hist): This code takes an input vector and computes the
histogram of values in the vector, using a configurable bucket size. This code
uses local privatization that requires a reduction stage which can become a
bottleneck on highly parallel architectures.

Merge Sort (msort): This code takes an input vector of any arbitrary
type, and produces a sorted output vector. It requires synchronization of
execution threads after each merge step, and serves as a good hint about the
performance of barrier instructions on the computing accelerator.

N-Body (nbody): This code takes a list describing a number of bodies
including their position, mass, and initial velocity, and updates these param-
eters with new values after a given simulated time period, based on gravita-
tional interference between the bodies. This code is used to characterize the
performance of irregular memory accesses on the computing accelerator.

Atomic Monte-Carlo Dynamics (amcd): This code performs a
number of independent simulations using the Markov Chain Monte Carlo
method. Initial atom coordinates are provided and a number of randomly
chosen displacements are applied to randomly selected atoms which are ac-
cepted or rejected using the Metropolis method. This code is embarrassingly
parallel with no data sharing across execution threads and is a measurement
of the peak performance the computing accelerator can achieve in absence of
inter-thread communication.

Sparse Vector-Matrix Multiplication (spvm): This code takes a
vector and a sparse matrix as inputs, and produces an output vector that is
the result of multiplication of the input matrix and vector. This code assigns
a different workload to each execution thread, and serves as a measurement
of the performance of the computing accelerator when load imbalance occurs.

3.3 System benchmarks and workloads

For the purpose of systems benchmarking, where a system represents a dis-
tributed memory cluster consisting of at least two nodes, we utilize MPI
benchmarks and applications.

Characterization of a node MPI capability in terms of achievable mes-
sage bandwidth and latency of a single node is done with Intel MPI bench-
marks [76]. More precisely, we used MPI PingPong benchmark which allows

20

3.3. SYSTEM BENCHMARKS AND WORKLOADS

for obtaining of bandwidth and latency figures for MPI data exchange be-
tween two processes as a function of the message size in two scheduling sce-
narios: intra-node – where MPI utilizes system interconnect, and inter-node
when shared memory is used as a communication medium.

Benchmarking scalability and performance of mobile SoC prototype clus-
ters, and comparison against a production level machines is done with full-
scale production MPI applications and with additional mini proxy-apps used
by US DoE (Department of Energy) and DoD (Deprtment of Defence) for
next-generation systems co-design. Porting of full-scale MPI application cre-
ated a significant effort, thus the choice of the applications was limited to
either those requiring the smallest possible effort, or applications ported and
provided by the Mont-Blanc project consortium. Further, in order to de-
termine floating-point performance and energy-efficiency of an HPC cluster
we employ HPL following the common benchmarking procedures. In the
Table 3.1 we list all test applications used in this work.

Table 3.1: Methodology: list of parallel MPI applications and benchmarks used
for scalability, performance, and energy-efficiency evaluations of mobile
SoC clusters.

Application Domain

Full-scale applications

Alya [128, 127] Biomedical Mechanics
BigDFT [30, 57] Electronic Structure
BQCD [97] Quantum Chromodynamics
GROMACS [28] Molecular Dynamics
FEAST [123] PDE solver
MP2C [120] Multi-Particle Collision Dynamics
PEPC [132] Particle Hydrodynamics
QuantumESPRESSO [59] Electronic Structure and Materials Modeling
SMMP [49, 50, 91] Molecular Thermodynamics

Benchmarks

HONEI_LBM [125] Fluid dynamics
HYDRO [44, 85] Hydrodynamics
HPL [47] Solver for dense n× n system of linear equations

Mini-apps

CoMD [52] Proxy for Molecular Dynamics
miniFE [69] Proxy for Finite Element Method
LULESH [82, 81] Proxy for Hydrodynamics

21

3.4. POWER MEASUREMENTS

3.4 Power measurements
Due to the heterogeneity of the hardware platforms we use, different power
measurements approaches were taken depending on the available measure-
ment points (probes) and power consumption data. Here we present the
power measurements setups we used for the majority of experiments through-
out this thesis. If needed, we further describe and explain the methodology
specifics in each chapter.

For the purpose of studies relying on the single-node mobile SoC developer
boards and x86 platforms, we measure the instantaneous power drawn from
the AC socket during the executions of interest. Power acquisition setup is
depicted in Figure 3.1.

Figure 3.1: Methodology: power measurement setup.

Power meter is set to measure voltage and current drawn from the AC
line. Current is measured in the return path of the circuit (low side). We
employ Yokogawa WT230 power meter [98] with a precision of 0.1%, and
it outputs RMS (Root-Means-Square) voltage/current pairs every ∼250ms.
Triggering of power measurements starts at Device Under Test (DUT) which
sends start/stop acquisition commands to the Power Acquisition Controller
(PAC) through SSH. The PAC, in turn, triggers acquisition cycle at the power
meter through RS232 interface. The PAC also stores power measurement
data collected every ∼250ms from the power meter. Power acquisition if
fully integrated and automated within benchmarking infrastructure.

3.5 Simulation methodology
In Chapter 5 and Chapter 8 we present design-space exploration for alterna-
tive mobile SoC powered HPC systems. We base our study on Dimemas [22],
in-house coarse grain trace-driven simulator of MPI applications which per-
forms high-level simulation of the execution of MPI applications on target

22

3.5. SIMULATION METHODOLOGY

cluster systems. Dimemas has been used to model the interconnect of the
MareNostrum supercomputer with an accuracy within 5% [110], and its
MPI communication model for collective communications has been validated
showing an error below 10% for the NAS benchmarks [60].

Dimemas uses a high-level model of computing nodes, modelled as SMP
(Symmetric Multi-Processing) nodes. At the same time it uses an analytical
model of the interconnect [60] to account for the effects of MPI communi-
cations. Dimemas allows for parametric studies, varying basic parameters
describing a target architecture, such as: number of cores per node, relative
core speed1, memory bandwidth2, latency of MPI communications through
shared memory, inter-node MPI bandwidth (network bandwidth) and inter-
node MPI latency. In our simulations we mostly altered number of cores per
node, relative core speed, inter-node MPI bandwidth and latency.

As an example, the Paraver [106] visualization of the input and output
traces of a Dimemas simulation are shown in Figure 3.2. The chart shows the
activity of the application threads (vertical axis) over time (horizontal axis).
Figure 3.2a shows the visualization of the original execution on Tibidabo,
and Figure 3.2b shows the visualization of the Dimemas simulation using a
configuration that mimics the characteristics of our machine (including the
interconnect characteristics) except for the CPU speed which is, as an ex-
ample, 4 times faster. As it can be observed in the real execution, threads
do not start communication all at the same time, and thus have compu-
tation in some threads overlapping with communication in others. In the
Dimemas simulation, where CPU speed is increased 4 times, computation
phases (in grey) become shorter and all communication phases get closer in
time. However, the application shows the same communication pattern and
communications take a similar time as that in the original execution. Due
to the computation-bound nature of HPL, the resulting total execution time
is largely shortened. However, the speedup is not close to 4x, as it is limited
by communications, which are properly simulated to match the behavior of
the interconnect in the real machine.

Apart from design-space exploration, we also use Dimemas together with
a state-of-the-art methodology [36, 111] to extract basic performance infor-
mations in order to estimate scalability of MPI applications beyond the num-
ber of cores present in our prototype cluster. In addition, using Dimemas we
can simulate bypassing of networking protocols (e.g. TCP/IP) and elimina-
tion of OS noise present in application traces, thus we can actually quantify

1This is what we call CPU speed ratio. It is a relative number showing the ratio
between the CPU speed of the target CPU compared to the one found in a cluster where
MPI application trace is collected.

2This is actually MPI bandwidth for intra-node communications

23

3.6. TOOLS

(a) Part of the original HPL execution on Tibidabo

(b) Dimemas simulation with hypothetical 4x faster computation cores

Figure 3.2: An example of a Dimemas simulation where each row presents the
activity of a single processor: it is either in a computation phase
(grey) or in MPI communication (black).

the impact of aforementioned phenomena on MPI applications performance
for future systems design.

3.6 Tools

In this section we present software tools we used to conduct our design-
space exploration studies and for analysis of MPI applications running on
our prototypes.

3.6.1 Extrae

Extrae [25] is a dynamic instrumentation package designed by Barcelona
Supercomputing Center, which generates applications execution traces for
post-mortem analysis. Extrae offers manual and automatic instrumentation,
where we use the former with serial benchmarks and the latter with parallel
MPI applications. Manual instrumentation requires altering and annotat-
ing the source code with Extrae hooks, while the automatic relies on the
linker pre-loading mechanism. Extrae captures time-stamped events, e.g.
entry/leave of a MPI function call, and provides support for gathering addi-
tional statistics such as performance counters values at each sampling point.
Combining time-stamps and performance counters, we get a complete picture
about applications performance running on our cluster prototypes.

24

3.6. TOOLS

3.6.2 Paraver

For sanity checks and analysis of Extrae traces we use Paraver [106] – a
powerful and flexible GUI data browser. It supports trace visualization in
terms of time-lines, and 2D and 3D histograms, allowing for detecting OS
and hardware issues and different imbalances found in parallel applications,
such as: CPU throttling due to overheating, OS noise, timeouts, and load
imbalance. We also use Paraver to analyze the output traces from Dimemas
simulations.

3.6.3 Clustering tools

We use BSC Clustering tool [24] in order to detect and cluster computing
phases found in applications’ traces by their respective performance counters
metric. In our work, we cluster computing phases in the Total number of
cycles vs IPC (Instructions Per Cycle) space. This allows us to model an
MPI application with increased accuracy, instead of assuming all computing
phases are equal (see Section 8.2).

3.6.4 Basic analysis tool

We use BSC Basic analysis tool [23] to extract fundamental parallel per-
formance parameters [111, 36] from an application execution trace. These
parameters are as follows: Load Balance efficiency reflecting the potential
parallel efficiency loss caused by imbalance in per process execution times;
Serialization efficiency reflecting imbalance caused by dependencies in the
code; Transfer efficiency which estimate the performance loss caused by ac-
tual data transfers. Combining these factors together we measure and extrap-
olate parallel efficiency beyond the process count present in an application
trace.

3.6.5 GA tool

GA tool is our metaheuristic optimizer that searches for a solution of overde-
termined systems of equations applying concepts of evolution with Genetic
Algorithms (GA) [62]. We use the tool as a part of the IBM’s proposed
analytical performance prediction methodology of parallel applications using
benchmarks [117]. The tool matches a performance counters statistics of a
computational phase to that of a serialized execution of multiple benchmarks
– in our case Mont-Blanc benchmarks.

25

3.7. REPORTING

3.7 Reporting
All benchmarking data gathered from real hardware represents the arith-
metic mean of execution times (or rates where appropriate) from at least
10 executions unless stated otherwise. There was no significant variability
observed between consecutive measurements thus the error bars were omit-
ted. Finally, due to the deterministic nature of Dimemas MPI simulations
(trace replay) each experiment configuration is executed exactly once and
the corresponding output is used for further analyses.

Unless stated otherwise, all power data is related to average power con-
sumption, while the energy is calculated as integral of instantaneous power
consumption over time3

3If the average power is the only available metric on the target platform, we multiply
it with execution time to get the energy expenditure.

26

4
ARM Processors Performance

Assessment

In this chapter we assess the performance of the ARM Cortex-A9 processor,
leader in mobile computing of the period 2010-2011, as a potential building
block of a mobile SoC based HPC system. We discuss the importance of
compiler maturity for systems where every percentile of performance mat-
ters. Further, we compare the ARM Cortex-A9 processor with its contempo-
rary power-optimized Intel Core-i7 M640 processor1, in order to establish a
meaningful reference between our target platform and a widely adopted core
architecture for PC’s and servers.

4.1 Floating-Point Support Issue

Mobile SoCs built around ARM core IP blocks allow for customizing the tar-
get design, depending on the workloads one wants to optimize the silicon for.
Historically, with ARMv5 ISA specification ARM introduced VFP (Vector
Floating Point), and since then one could opt to synthesize a processor with
or without a floating-point co-processor2. That hardware diversity would in
turn introduce a fragmentation in software support – in operating systems

1Both NVIDIA Tegra2 and Intel i7 M640 were released on Q1 2010
2With the ARMv8 architecture specification the floating-point unit is a mandatory

implementation feature.

27

4.2. COMPILER FLAGS EXPLORATION

and corresponding system libraries, and compiler targets. In the case of GCC
compiler, this indeed led to fragmentation and there were three different op-
tions for selecting whether a processor has a floating-point hardware or not,
and if arguments should be passed through floating-point registers or not.
This is specified with the GCC option -mfloat-abi which, for ARM targets,
takes one of the following three values and generates the code for proper
Application Binary Interface (ABI):

• soft - floating-point code is emulated – GCC inserts library-calls for
floating point operations. Passing the arguments to floating point func-
tions, both single and double precision, goes through integer registers.

• softfp - floating-point code is executed in hardware, but the calling
conventions stay the same as in the case of soft , using integer registers
for passing the arguments.

• hardfp - floating-point code is executed in hardware, and procedure
arguments are passed directly to floating-point registers.

One important fact to note is that, due to the calling conventions, soft
and softfp code can be intermixed.

4.2 Compiler Flags Exploration
For reasons of portability and huge diversity of embedded and mobile SoCs
based on ARM core IP, operating system images and compilers opt to pro-
vide the highest possible backward compatibility for different targets. For
this reason, Ubuntu operating system for ARM platforms that implement
floating-point co-processor used to ship GCC compiler package without de-
fault support for floating-point hardware. At the time of ARM Cortex-A9 ex-
ploration, operating system and libraries were built without hardfp support,
meaning that they were not particularly optimized to take the advantage of
the built-in floating-point hardware support by default. More precisely, they
supported softfp ABI which would enable hardware floating-point support,
but GCC v4.3.3 used to produce the code for soft ABI by default. Since
the soft and softfp ABIs are compatible, binaries would execute but the
performance penalty we discovered was significant due to the emulation of
floating-point operations.

For example, considering a simple multiply-accumulate kernel A = A +
(B×C), without any particular optimization, experiences 12× speedup when
the target ABI was changed from soft to softfp. This ABI change, with

28

4.2. COMPILER FLAGS EXPLORATION

armcc GCC 4.3.3 GCC 4.4.1 GCC 4.6.1

Compilers

0

500

1000

1500

2000

2500
D

M
IP

S

Figure 4.1: Comparison of different compilers for ARM Cortex-A9 with Dhrys-
tone benchmark. Every compiler uses highest available optimization
level, targeting reduction of execution time.

GCC option -mfloat-abi=softfp, and specifying correct revision of floating-
point hardware with -mfpu=vfpv3-d16, would force the compiler to generate
floating-point instructions in the place of library calls for emulation.

Further examination of GCC compiler documentation led to establish-
ment of the default minimum set of platform specific compiler flags: -march=armv7-
a -mcpu=cortex-a9 -mtune=cortex-a9 -mfloat-abi=softfp -mfpu=vfpv3-
d16 . From now on, this is considered default for ARM Cortex-A9 throughout
this thesis.

4.2.1 Compiler Maturity

Integer performance of ARM Cortex-A9 is claimed to be 2.5 DMIPS/Mhz
(Dhrystone MIPS) We wanted to both evaluate this claim, and evaluate the
maturity of GCC compiler suite in generating this type of code. Thus, we
evaluated the ARM Cortex-A9 core running at 1GHz3 with Dhrystone using
both armcc, ARM’s proprietary compiler, and GCC compilers.4

In Figure 4.1 we depict the achievable DMIPS scores when running Dhry-
stone binaries using four different compilers – armcc and three versions of
GCC compiler. GCC v4.3.3 is default package shipped with the Ubuntu dis-
tribution, while GCC v4.4.1 and v4.6.1 were compiled from the source. Dhry-
stone results clearly show that, despite performance advantage of armcc over
GCC v4.3.3, upgrading the compiler made GCC a competitive alternative
for integer codes.

Further, we looked into the quality of the generated floating-point code,
through reported GFLOPS, using C-port of the LINPACK 1000x1000 bench-

3Expected Dhrystone performance is 2500 DMIPS.
4It is well known fact that CPU vendors tend to have specific support in their compilers

to emit highly optimized code for well established benchmarks.

29

4.3. ACHIEVING PEAK FLOATING-POINT PERFORMANCE

armcc GCC 4.3.3 GCC 4.4.1 GCC 4.6.1

Compilers

0

20

40

60

80

100

120

140

M
F

L
O

P
S

Figure 4.2: Comparison of different compilers for ARM with LIN-
PACK1000x1000 benchmark. Every compiler uses highest available
optimization level targeting reduction of execution time.

mark [87]. It solves 1000x1000 general dense matrix problem Ax = b in
double-precision floating-point arithmetic. Again, we compare armcc with
multiple versions of GCC compilers. Figure 4.2 depicts achievable MFLOPS
using different compilers.

Results from this experiment are twofold: clearly, there is no advantage
in using armcc compiler for dense matrix codes such as LINPACK1000x1000,
and GCC compilers provide sufficient and even higher performance with such
codes – clearly showing that community is working towards supporting ARM
targets in GCC.

4.3 Achieving Peak Floating-Point Performance
In previous section we have shown that ARM Cortex-A9 could achieve ∼130
MFLOPS executing LINPACK1000x1000 benchmark. ARM Cortex-A9 core,
given its microarchitecture, has the following throughput of double-precision
floating-point instructions:

• FADD - addition, one every cycle,

• FMUL - multiplication, one every other cycle, and

• FMAC - fused multiply-accumulated, one every other cycle.

This means that ARM Cortex-A9, using VFP floating-point co-processor,
could achieve one FLOP/cycle. Since our test platform is running at 1GHz,
hence we would expect to get 1 GFLOPS peak double-precision performance
from underlying hardware.

In Figure 4.3 we evaluate the performance of Cortex-A9 floating-point
double-precision pipeline using in-house developed microbenchmarks. These

30

4.3. ACHIEVING PEAK FLOATING-POINT PERFORMANCE

4K 16K 32K 64K 100K 1M 10M 100M

Working set size

0.2

0.4

0.6

0.8

1.0
G

F
L

O
P

S

Microbenchmark

FPADD

FPMA

Figure 4.3: Exploration of the ARM Cortex-A9 double-precision floating-point
pipeline for FADD and FMAC instructions with microbenchmarks.
Peak double-precision performance is 1 GFLOPS @ 1 GHz.

benchmarks perform dense double-precision floating-point computation with
accumulation on arrays of a given size (input parameter) stressing the FADD
and FMAC instructions in a loop. We exploit data reuse by executing the
same instruction multiple times on the same elements within one loop iter-
ation. This way we reduce loop condition testing overheads and keep the
floating-point pipeline as utilized as possible. The purpose is to evaluate if
the ARM Cortex-A9 pipeline is capable of achieving the peak performance
of 1 FLOP per cycle. Our results show that the Cortex-A9 core achieves
the theoretical peak double-precision floating-point performance when the
microbenchmark working set fits in the L1 cache (32 KB). Further, as we
increase working set size beyond the size of L1 cache, FMAC instruction
pipeline cannot sustain the performance at the same rate as FADD pipeline
due to the higher pressure on the memory subsystem.

4.3.1 Algebra Backend

HPC applications usually depend on vendor provided algebraic backends,
helping in achieving optimal performance by efficiently utilizing on-chip re-
sources, because even the best compiler can not compete with the level of
performance possible from a hand-optimized library. In the case of the most
common HPC processor architecture today, x86, Intel provides MKL (Math
Kernel Library) which accelerates math processing routines. In addition to
linear algebra, it provides FFT, vector math and statistics functions.

On the other hand, ARM architecture used to lack such a support. Thus,
we had to rely on open-source portable libraries. For algebraic backend we
opted for ATLAS [131] – highly portable auto-tuned linear algebra software.
Auto-tuning process tries to determine cache hierarchy and its properties,
whether a platform has FMAC pipeline or separate FADD and FMUL pipes,

31

4.4. COMPARISON AGAINST A CONTEMPORARY X86 PROCESSOR

16 32 64 128 256 512

Block size

300

350

400

450

500

550

600

650

M
F

L
O

P
S

Matrix size

512

1024

2048

4096

8192

9728

Figure 4.4: Performance of HPL on ARM Cortex-A9 for different input matrix
and block sizes.

required level of loop unrolling, blocking factors – and in turn adjusts the
routines to underlying hardware. This is an iterative process, and it took 26
hours on ARM Cortex-A9 to explore full parameter space.5

A widely used benchmark for measuring floating-point performance of
HPC systems is HPL, which requires a BLAS (Basic Linear Algebra Sub-
programs) library backend. With Figure 4.4 we depict the performance of
HPL on ARM Cortex-A9, with the ATLAS library providing required BLAS
routines. Our results show that the best results on ARM Cortex-A9 proces-
sor core are achieved for the biggest possible inputs – which is in line with
reported HPL performance [47]. Importantly, Figure 4.4 clearly shows how
small values of block sizes affect the performance since the small values are
lowering data reuse from the highest levels of the memory hierarchy. Fi-
nally, ARM Cortex-A9 core achieves 625 MFLOPS, leading to 62.5% HPL
efficiency.

4.4 Comparison Against a Contemporary x86
Processor

In this section we present a comparison between an ARM Cortex-A9 platform
against a contemporary x86 processor, power optimized Intel Core-i7 M6406
(see Table 4.1).

For single core comparison of both performance and energy, we use Dhry-
stone [130], STREAM [90], and 17 benchmarks from SPEC CPU2006 [68]

5ATLAS is able to auto-tune itself in a shorter time. For example, auto-tuning for an
Intel Nehalem x86 platform took 22 minutes. This difference is due to a narrower search
space for a well established architecture. Support for ARM architecture within ATLAS
was limited to Cortex-A8, with NEON co-processor.

6Intel Nehalem microarchitecture.

32

4.4. COMPARISON AGAINST A CONTEMPORARY X86 PROCESSOR

Table 4.1: Experimental platforms: comparison of the ARM Cortex-A9 against
its contemporary x86 processor.

ARM Platform Intel Platform

SoC Tegra 2 Intel Core i7-640M
Architecture ARM Cortex-A9 (ARMv7-a) Nehalem
Core Count Dual core Dual core
Operating Frequency 1 GHz 2.8 GHz
Cache size(s) L1:32 KB I, 32KB D per core L1: 32KB I, 32KB D per core

L2: 1 MB I/D shared L2: 256 KB I/D per core
L3: 4 MB I/D shared

RAM 1 GB DDR2-667 8 GB DDR3-1066
32-bit single channel 64-bit dual channel

2666.67 MB/s per channel 8533.33 MB/s per channel
Compiler GCC 4.6.2 GCC 4.6.2
OS Linux 2.6.36.2 (Ubuntu 10.10) Linux 2.6.38.11 (Ubuntu 10.10)

benchmark suite7.
Both platforms, ARM Cortex-A9 developer kit and a power optimized

Intel Core i7 laptop, execute benchmarks with the same input set sizes in or-
der to establish fair comparison conditions. Both platforms run GNU/Linux
OS and use GCC v4.6 compiler. We measure power consumption at AC
socket connection point for both platforms, and calculate energy-to-solution
by integrating power samples. Due to the different natures of the laptop and
the development board, and in order to provide a fair comparison in terms
of energy efficiency, we measure only the power of components that are nec-
essary for execution of the benchmarks, so all unused devices are disabled.
On the ARM Cortex-A9 platform, we disable Ethernet during the bench-
marks execution. On the Intel Core-i7 platform, graphics output, sound
card, touch-pad, bluetooth, WiFi, and all USB (Universal Serial Bus) pe-
ripherals are disabled, and the corresponding modules are unloaded from the
kernel. Also, the hard drive is spun down, and the Ethernet is disabled dur-
ing the execution of the benchmarks. Multithreading could not be disabled,
but all experiments are single-threaded and we set their logical core affinity
in all cases. Benchmarks are compiled with -O3 level of optimization using
GCC v4.6.2 compiler suite on both platforms.

4.4.1 Results

In terms of performance, in all the tested single-core benchmarks, the Intel
Core i7 outperforms ARM Cortex-A9 core, as expected given the obvious
design differences.

Table 4.2 shows the comparison between two platforms. In the case of
7Software stack was immature and it was not possible to port entire benchmark suite.

33

4.4. COMPARISON AGAINST A CONTEMPORARY X86 PROCESSOR

Table 4.2: Performance and energy-to-solution comparison between Intel Core
i7-640M and ARM Cortex-A9 with Dhrystone and STREAM bench-
marks

Platform Dhrystone STREAM
perf energy perf (MB/S) energy (avg.)

(DMIPS) abs (J) norm copy scale add triad abs (J) norm
Intel Core i7 19246 116.8 1.056 6912 6898 7005 6937 481.5 1.059
ARM Cortex-A9 2213 110.8 1.0 1377 1393 1032 787 454.8 1.0

Dhrystone, Core i7 performs better by a factor of nine, but ARM platform
uses 5% less energy to execute the benchmark. If we factor these results for
the frequency difference, we get that ARM Cortex-A9 has 3.1× lower perfor-
mance/MHz. Similarly, in the case of STREAM, Core i7 provides five times
better performance but ARM platform uses 5% less energy to do the same
amount of memory intensive work. In this case, the memory bandwidth com-
parison is not just a core microarchitecture comparison because achievable
memory bandwidth is also dependant on the memory subsystem. However,
bandwidth efficiency metrics which shows the achieved bandwidth out of the
theoretical peak, shows to what extent the core, cache hierarchy, and on-chip
memory controller are able to exploit off-chip memory bandwidth. We use
the largest working set that could be fit into the both platforms, which is
800MB. Our results indicate that ARM Cortex-A9 platform is almost as bal-
anced as Intel Core-i7 (40.5 vs 50.6 % bandwidth efficiency) for the simple
copy kernel. However, in the case off add kernel, ARM Cortex-A9 drops its
bandwidth efficiency compared to Intel Core-i7 platform – 27 vs 41 %8.

In the case of SPEC CPU2006 suite (Figure 4.5), Intel Core i7 core is
significantly faster than ARM Cortex-A9 (up to 10 times), but at the same
time, ARM platform uses less power resulting in 1.2 times smaller energy-
to-solution (on average).

When frequency difference of the two platforms is factored out from the
performance, assuming linear scalability of performance with the frequency,
the difference in performance of the two platforms becomes smaller: Intel
Core i7 M640 core would be only up to 3.2 times faster.

4.4.2 Discussion

Experiments presented in this chapter indicate that an ARM Cortex-A9 core
is considered 3.2 times slower than an Intel Core i7 M640 core on per cycle
basis. This means that we need to compensate for the performance difference
utilizing higher mobile cores count, keeping the operating frequency intact.

8Similar trend is also observed for the triad kernel.

34

4.4. COMPARISON AGAINST A CONTEMPORARY X86 PROCESSOR

p
er

lb
en

ch

b
zi

p
2

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

h
2

6
4

re
f

o
m

n
et

p
p

a
st

ar

bw
a

ve
s

m
ilc

g
ro

m
a

cs

ca
ct

u
s

le
sl

ie
3

D

n
a

m
d

to
n

to

lb
m

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
ed

ex
ec

u
ti

o
n

ti
m

e
Intel Core i7 M640 ARM Cortex-A9

SPEC INT SPEC FP

(a) Performance

p
er

lb
en

ch

b
zi

p
2

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

h
2

6
4

re
f

o
m

n
et

p
p

a
st

ar

bw
a

ve
s

m
ilc

g
ro

m
a

cs

ca
ct

u
s

le
sl

ie
3

D

n
a

m
d

to
n

to

lb
m

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
a

lis
ed

E
n

er
g

y
to

S
o

lu
ti

o
n

Intel Core i7 M640 ARM Cortex-A9

SPEC INT SPEC FP

(b) Energy to solution

Figure 4.5: Comparison between Intel Core i7-640M and ARM Cortex-A9 with
SPEC CPU2006 benchmarks: a) execution time and b) energy-to-
solution results. All results are normalized to ARM Cortex-A9

This is why we decided to design and deploy a cluster of ARM Cortex-A9
processors, named Tibidabo, and to evaluate its capability to exploit more
cores in order to compensate for performance difference, and to investigate
whether we could still maintain advantage of energy-efficiency. We deal with
this topic in the following chapter.

35

5
Tibidabo, The First Mobile HPC

Cluster

In this chapter we present Tibidabo – the world first HPC cluster that we
designed, built, and deployed usgin mobile SoCs. We present its architecture,
software stack, and assess its performance and energy efficiency. Further, we
compare Tibidabo against a contemporary x86 based cluster when running
state-of-the-art PDE (Partial Differential Equations) solvers on the both.
Finally, we finish the study with the projections of the performance and
energy efficiency of future mobile SoCs powered systems.

5.1 Architecture
The computing chip in the Tibidabo cluster is the NVIDIA Tegra2 SoC,
which integrates a dual-core ARM Cortex-A91 running at 1 GHz and im-
plemented using TSMC’s 40nm LPG (Low-power triple Gate oxyde) perfor-
mance optimized process. NVIDIA Tegra2 features a number of application-
specific accelerators targeted at the mobile market, such as video and audio
encoder/decoder, and image signal processor, but none of these can be used
for general-purpose computation and only contribute as a SoC area overhead
in an HPC scenario. The GPU in Tegra2 does not support general program-
ming models such as CUDA or OpenCL, but only OpenGL ES and cannot

1Evaluated in the previous chapter.

37

5.1. ARCHITECTURE

(a) Q7 module (b) Q7 carrier board

Figure 5.1: Tibidabo prototype: physical view of a) the node card and b) the
node motherboard with a populated node card.

be used for HPC efficiently. However, more advanced GPUs actually sup-
port these programming models and a variety of HPC systems use them to
accelerate certain workloads.

NVIDIA Tegra2 is the central part of the Q7 module [115] (See Fig-
ure 5.1a). The module also integrates 1 GB of DDR2-667 memory, 16 GB of
eMMC storage, and exposes Tegra’s USB and PCIe interfaces to the carrier
board. Use of Q7 modules allows for a potential easy upgrade when next-
generation SoCs become available, and reduces the cost of replacement in
case of failure.

Each Tibidabo node is built using Q7-compliant carrier boards [116] (See
Figure 5.1b). Each board hosts one Q7 module, integrates one 1GbE NIC
(connected to Tegra2 through PCIe), one 100MbE NIC (connected to Tegra2
through USB), µSD card adapter and exposes other connectors and related
circuitry that are not required for our HPC cluster, but are required for em-
bedded software/hardware development (RS232, HDMI, USB, SATA, em-
bedded keyboard controller, compass controller, etc.).

These boards are organized into blades (See Figure 5.2a), and each blade
hosts 8 nodes and a shared Power Supply Unit (PSU). In total, Tibidabo
has 128 nodes and it occupies 42 U standard rack space: 32 U for compute
blades, 4 U for interconnect switches and 2 U for the file server.

38

5.2. SOFTWARE STACK

(a) Blade with 8 boards (b) Tibidabo rack

Figure 5.2: Tibidabo prototype: blade and rack physical view.

5.2 Software Stack

Tibidabo runs Ubuntu 10.10 on top of Linux Kernel 2.6.32.2. We use SLURM
for job management and scheduling. Regarding MPI runtime, Tibidabo re-
lies on MPICH v1.4.1. At the time of Tibidabo deployment only MPICH
reliably worked when integrated with SLURM. Applications that need alge-
braic backend rely on ATLAS library [131]. Those requiring an optimized
FFT backend, use FFTW [54]. We chose ATLAS and FFTW since there
were no existing vendor tuned libraries for the given purposes, as explained
in previous chapter. Despite the auto-tuning architecture of the both, we
had to port them to our chip architecture – to properly describe underly-
ing hardware, and to describe timer routines – in order to achieve the most
optimal performance.

39

5.3. EVALUATION

5.3 Evaluation

In this section we present a parallel performance and energy-efficiency eval-
uation of Tibidabo cluster. We also provide a break down of a single node
power consumption in order to understand which are the major power sinks
in our cluster design.

5.3.1 Methodology

For the measurement of energy efficiency (MFLOPS/W), we used Yokogawa
WT230 power meter [98] with an effective sampling rate2 of 10 Hz, a basic
precision of 0.1%, and RMS (Root-Means-Square) output values given as
voltage/current pairs. We repeat our runs to get at least an acquisition
interval of 10 minutes. The meter is connected to act as an AC supply bridge
and to directly measure power drawn from the AC line. We have developed
a measurement daemon that integrates with the OS and triggers the power
meter to start collecting samples when the benchmark starts, and to stop
when it finishes. Collected samples are then used to calculate the energy-to-
solution and energy efficiency. To measure the energy efficiency of the whole
cluster, the measurement daemon is integrated within the SLURM [133] job
manager, and after the execution of a job, power measurement samples are
included alongside the outputs from the job. In this case, the measurement
point is on the power distribution unit of the entire rack.

5.3.2 Cluster Performance

Our single-core performance evaluation presented in the previous chapter
shows that the ARM Cortex-A9 is ∼9 times slower than the Intel Core i7
640M at their maximum operating frequencies, which means that we need our
applications to exploit a minimum of 9 parallel processors in order to achieve
a competitive time-to-solution. More processing cores in the system means
a higher demand for scalability. In this section we evaluate the performance,
energy efficiency and scalability of the whole Tibidabo cluster.

Figure 5.3 shows the parallel speedup achieved by the (HPL) [47] bench-
mark and several other HPC applications. Following common practice, we
perform a weak scalability test for HPL and a strong scalability test for

2Internal sampling frequencies are not known. This is the frequency at which the
meter outputs new pairs of samples.

40

5.3. EVALUATION

4 8 16 32 64 96

Number of nodes

4
8

16

32

64

96
S

p
ee

d
-u

p
ideal
HPL
PEPC
HYDRO
GROMACS - small input
GROMACS - big input
SPECFEM3D

Figure 5.3: Tibidabo prototype: scalability of HPC applications.

the rest.3 We have considered several widely used MPI applications: GRO-
MACS [28], a versatile package to perform molecular dynamics simulations;
SPECFEM3D_GLOBE [83] that simulates continental and regional scale
seismic wave propagation; HYDRO, a 2D Eulerian code for hydrodynamics;
and PEPC [132], an application that computes long-range Coulomb forces
for a set of charged particles. All applications are compiled and executed
out-of-the-box, without any manual tuning of the respective source codes.

If the application could not execute on a single node due to large memory
requirements, we calculated the speedup with respect to the smallest number
of nodes that can handle the problem. For example, PEPC with the reference
input set requires at least 24 nodes, so we plot the results assuming that on
24 nodes the speedup is 24.

We have executed SPECFEM3D and HYDRO with an input set that is
able to fit into the memory of a single node, and they show good strong scaling
up to the maximum available number of nodes in the cluster. In order to
achieve good strong scaling with GROMACS, we have used two input sets,
both of which can fit into the memory of two nodes. We have observed
that scaling of GROMACS improves when the input set size is increased.
PEPC does not show optimal scalability because the input set that we can
fit in our cluster is too small to show the strong scalability properties of the
application [132].

HPL shows good weak scaling. In addition to HPL performance, we also
measure power consumption, so that we can derive the MFLOPS/W met-

3Weak scalability refers to the capability of solving a larger problem size in the same
amount of time using a larger number of nodes (the problem size is limited by the available
memory in the system). On the other side, strong scalability refers to the capability of
solving a fixed problem size in less time while increasing the number of nodes.

41

5.3. EVALUATION

ric used to rank HPC systems in the Green500 list. Our cluster achieves
120 MFLOPS/W (97 GFLOPS on 96 nodes - 51% HPL efficiency), com-
petitive with AMD Opteron 6128 and Intel Xeon X5660-based clusters, but
19x lower than the most efficient GPU-accelerated systems, and 21x lower
than Intel Xeon Phi (November 2012 Green500 #1). The reasons for the low
HPL efficient performance include lack of architecture-specific tuning of the
algebra library, and lack of optimization in the MPI communication stack for
ARM cores using Ethernet.

Single Node Power Consumption Breakdown

In this section we analyze the power of multiple components on a compute
node. The purpose is to identify the potential causes of inefficiency—on the
hardware side—that led to the results in the previous section.

We were unable to take direct power measurements of the individual com-
ponents in the Q7 card and carrier board, so we checked them in the provider
specifications for each of the components. The CPU core power consumption
is taken from the ARM website [8]. For the L2 cache power estimate, we use
power models of the Cortex-A9’s L2 implemented in 40nm and account for
long inactivity periods due to the 99% L1 cache hit rate of HPL (as observed
with performance counters reads). The power consumption of the NICs is
taken from the respective datasheets [78, 118]. For the DDR2 memory, we
use Micron’s spreadsheet tool [92] to estimate power consumption based on
parameters such as bandwidth, memory interface width, and voltage.

Figure 5.4 shows the average power breakdown of the major components
in a compute node over the total compute node power during an HPL run on
the entire cluster. As can be seen, the total measured power on the compute
node is significantly higher than the sum of the major parts. Other on-chip
and on-board peripherals in the compute node are not used for computa-
tion so they are assumed to be shut off when idle. However, the large non-
accounted power part (labeled as OTHER) accounts for more than 67% of the
total power. That part of the power includes on-board Low-Dropout (LDO)
voltage regulators, on-board multimedia devices with related circuitry, cor-
responding share of a blade PSU losses and on-chip power sinks. Figure 5.5
shows the Tegra2 chip die. The white outlined area shows the chip compo-
nents that are used by in an HPC cluster environment. This area is less than
35% of the total chip area. If the rest of the chip area is not properly power
and clock gated, it would leak power even though it is not being used, thus
also contributing to the OTHER part of the compute node power.

Although the estimations in this section are not exact, we actually overes-
timate the power consumption of some of the major components when taking

42

5.3. EVALUATION

Core1, 0.26 Core2, 0.26 L2 cache, 0.1

Memory, 0.7

Eth1, 0.9

Eth2, 0.5

Other, 5.68

Figure 5.4: Tibidabo prototype: power consumption breakdown of main compo-
nents on a compute node. ’Other’ fraction represents non-accounted
part including integration power-losses and unaccounted components
power sinks. The compute node power consumption while executing
HPL is 8.4 W. This power is computed by measuring the total cluster
power and dividing the power by the total number of nodes.

Figure 5.5: NVIDIA Tegra2 die photo: the area marked with white border line
comprises the on-chip mobile SoC components actually used in an
HPC scenario. It represents less than a 35% of the total chip area.
source [101]

43

5.3. EVALUATION

the power from the multiple data sources. We use either typical or maxi-
mum power consumption, whichever is available in components datasheets.
Therefore, our analysis shows that up to 16% of the power is spent on the
computation components: cores (including on-chip cache-coherent intercon-
nect and L2 cache controller), L2 cache, and memory. The remaining 84%
or more is then the overhead (or system glue) to interconnect those compu-
tation components with other computation components in the system. The
reasons for this significant power overhead is the small size of the compute
chip (two cores), and use of development boards targeted to embedded and
mobile software development.

The conclusions from this analysis are twofold. HPC-ready carrier boards
should be stripped-out of unnecessary peripherals to reduce area, cost and
potential power sinks/wastes. And, at the same time, the computation chips
should include a larger number of cores: less boards (nodes) are necessary
to integrate the same number of cores, and the power overhead of a single
compute chip is distributed among a larger number of cores. This way, the
power overhead should not be a dominant part of the total power but just a
small fraction.

5.3.3 Interconnect

In this section we present the evaluation of a Tibidabo node’s NIC, aiming to
discover whether a large overhead is introduced by the TCP/IP (Transmis-
sion Control Protocol/Internet Protocol) software stack. We therefore com-
pare TCP/IP with a direct communication Ethernet protocol called Open-
MX [61]. Open-MX is a high-performance implementation of the Myrinet
Express message-passing stack that works over ordinary Ethernet networks.
It integrates seamlessly with the OpenMPI and MPICH message passing
libraries.

Open-MX bypasses the heavyweight TCP/IP stack and reduces the num-
ber of memory copies as much as possible thus reducing latency, CPU load,
and cache pollution. For large messages, over 32KB, it uses rendezvous and
memory pinning to achieve zero copy on the sender side and single copy on
the receiver side. All actual communication management is implemented in
the user-space library, with a kernel driver that takes care of initialization,
memory registration, and passing and receiving raw Ethernet messages.

The latency and bandwidth results were measured using the PingPong
benchmark from the Intel MPI Benchmark suite [76]. The PingPong bench-
mark measures the time to exchange one message of a given size between two
MPI processes and reports bandwidth and latency. We map the processes on
two different nodes, measuring inter-node latency and bandwidth. Figure 5.6

44

5.4. COMPARISON AGAINST AN X86-BASED CLUSTER

shows the results, for (a,b) two SECO Q7 boards with Tegra 2 at 1GHz, (c,d)
two Arndale boards with Exynos 5 at 1.0GHz, and (e,f) two Arndale boards
at 1.4GHz. In all cases we used 1GbE links; on SECO boards the network
controller is connected via PCI Express and on Arndale it is connected via a
USB 3.0 port.

From Figure 5.6a, it can be seen that the latency of Tegra 2 with TCP/IP
is around 100µs, which is large compared to today’s top HPC systems. When
Open-MX is used, the latency drops to 65µs. Arndale running at 1GHz
shows a higher latency (Figure 5.6c), of the order of 125µs with TCP/IP and
93µs when Open-MX is used. When the frequency is increased to 1.4GHz
(Figure 5.6e), latencies are reduced by 10%.

Although the Exynos 5 provides better performance than Tegra 2, all
network communication has to pass through the USB software stack and this
yields higher latency, both with MPI and Open-MX. When the frequency
of the Exynos 5 SoC is increased, the latency decreases, which indicates
that a large part of the overhead is caused by software, rather than the
network controller and the network itself. Hence, it is crucial to reduce
this overhead either by using more agile software solutions, such as Open-
MX, or by introducing hardware support to accelerate the network protocol.
Some SoCs, such as Texas Instrument’s KeyStone II [121] already implement
protocol accelerators.

Figure 5.6 shows the effective network bandwidth achieved as a function
of the message size. The maximum bandwidth that can be achieved on the
1GbE link is 125 MB/s, and with MPI over TCP/IP none of the platforms
is achieving it. In this case Tegra 2 can achieve 65 MB/s, and Exynos 5 can
achieve 63 MB/s – utilizing less than 60% of the available bandwidth. When
Open-MX is employed, the situation improves significantly for Tegra 2, now
capable of reaching 117 MB/s – 93% of the theoretical maximum bandwidth
of the link. Due to the overheads in the USB software stack, Exynos 5 exhibits
smaller bandwidth than Tegra 2, but with an improvement over TCP/IP: 69
MB/s running at 1GHz and 75 MB/s running at 1.4GHz.

5.4 Comparison Against an X86-Based Clus-
ter4

In this section we present a study which aimed on comparing Tibidabo
against an x86-based production system in terms of performance and en-

4Parts of this section have previously been published as a result of collaboration be-
tween BSC, TU Dortmund and CNRS [66]

45

5.4. COMPARISON AGAINST AN X86-BASED CLUSTER

0 10 20 30 40 50 60

Message Size (Bytes)

0

20

40

60

80

100

120

L
a

te
n

cy
(u

s)

Tegra2 TCP/IP

Tegra2 OpenMX

(a) Tegra2 latency

1K 1M 16M

Message Size (Bytes)

0

20

40

60

80

100

120

B
a

n
d

w
id

th
(M

B
/

s)

Tegra2 TCP/IP

Tegra2 OpenMX

(b) Tegra2 bandwidth

0 10 20 30 40 50 60

Message Size (Bytes)

0

20

40

60

80

100

120

L
a

te
n

cy
(u

s)

Exynos5 TCP/IP 1.0GHz

Exynos5 OpenMX 1.0GHz

(c) Exynos5 @1GHz, latency

1K 1M 16M

Message Size (Bytes)

0

20

40

60

80

100

120

B
a

n
d

w
id

th
(M

B
/

s)
Exynos5 TCP/IP 1.0GHz

Exynos5 OpenMX 1.0GHz

(d) Exynos5 @1GHz, bandwidth

0 10 20 30 40 50 60

Message Size (Bytes)

0

20

40

60

80

100

120

L
a

te
n

cy
(u

s)

Exynos5 TCP/IP 1.4 GHz

Exynos5 OpenMX 1.4 GHz

(e) Exynos5 @1.4GHz, latency

1K 1M 16M

Message Size (Bytes)

0

20

40

60

80

100

120

B
a

n
d

w
id

th
(M

B
/

s)

Exynos5 TCP/IP 1.4 GHz

Exynos5 OpenMX 1.4 GHz

(f) Exynos5 @1.4GHz, bandwidth

Figure 5.6: Interconnect measurements: influence of CPU performance on achiev-
able MPI bandwidth and latency. All data acquired running MPI
Ping-Pong benchmark.

46

5.4. COMPARISON AGAINST AN X86-BASED CLUSTER

ergy consumption. For performance metrics we look into Time-to-solution,
whereas for energy we measure energy-to-solution – power integrated over
runtime.

5.4.1 Reference x86 System

The system we compare Tibidabo against represents a partition of LiDOng
system installed at TU Dortmund5. Each LiDOng node comprises a dual-
socket quad-core Intel Xeon X5550 processor running at 2.66GHz. Nodes are
populated with 16GB of DDR3 memory (eight 2GB memory DIMMs), and
feature two 1Gbit Ethernet NICs corresponding to two separate networks.
The first network is utilized for MPI, while the second network provides
access to storage through Lustre file system. The MPI network switches are
implemented as full crossbars.

5.4.2 Applications

For this comparative study we employ three PDE (Partial Differential Equa-
tions) applications, namely FEAST [123], HONEI_LBM, and SPECFEM3D_-
GLOBE[35]. FEAST is a PDE toolkit which provides finite-element dis-
cretization and multilevel solvers. For the purpose of this study, we do not
execute full applications but we employ FEAST as an application proxy
solving a standard Poisson problem. HONEI_LBM is a parallel Computa-
tional Fluid Dynamics (CFD) solver, built on top of the portable HONEI
libraries [125]. SPECFEM3D_GLOBE is a well known petascale-ready code
which simulates three-dimensional seismic wave propagation. Regarding the
floating-point precision, FEAST requires double precision, while HONEI_LBM
and SPECFEM3D_GLOBE run in single-precision.

5.4.3 Power Acquisition

Both systems’ power consumptions are monitored on a single node, exclud-
ing power spent on the network. In both systems we assume equal power
consumption distribution over the nodes taking a part of the same run. This
is obvious in the case of Tibidabo since we schedule 2 processes per node,
and the total number of MPI ranks is even.

Process scheduling on LiDOng is done in the same manner – if the MPI
process scheduling produces idle cores, they are equally distributed among
the nodes.

5This evaluation was conducted during 2012, current system specifications may have
changed due to upgrades.

47

5.4. COMPARISON AGAINST AN X86-BASED CLUSTER

5.4.4 Input Configurations

The Tibidabo cluster features only 1GB of memory per node, out of which
only ∼800MB could be utilized by user processes. Thus, the memory foot-
print of the input for both systems is constrained by the maximum achievable
input on Tibidabo. On the other side, LiDOng has 16GB of memory per
node, two sockets and eight cores, allowing for evaluation and comparison of
the different mappings of MPI processes on compute nodes. Executions on
Tibidabo are scheduled to use 2 cores per node, and we employ weak scaling
as we increase the number of processes (nodes). In the case of LiDOng, we
evaluate three different mappings regarding the scheduling of MPI processes
with constraints on memory and computing capacity, keeping the total input
size per configuration the same on both systems:

• M1: In this mapping both systems distribute the work utilizing the
same amount of per core memory, in turn leading to the same number
of MPI processes on the both systems. Note that this mapping does
not use all available cores on LiDOng nodes – it uses 6 out of 8.

• M2: LiDOng system utilizes maximum number of cores per node, and
the same number of nodes as in M1 mapping for each tested configura-
tion. This leads to the more processes compared to the M1 mapping.

• M3: This mapping fits the input to as few nodes of LiDOng as possi-
ble. Thus, this configuration yields smaller number of MPI processes
compared to both M1 nad M2 mapping.

5.4.5 Results

In this section we present performance and energy-to-solution comparative
figures of Tibidabo and LiDOng systems when running applications listed in
Section 5.4.2. Note that when reporting speedup it shows how many times is a
given execution faster on LiDOng compared to Tibidabo, and contrary when
reporting energy-to-solution – we show improvement of Tibidabo compared
to LiDOng in terms of energy savings.

48

5.4. COMPARISON AGAINST AN X86-BASED CLUSTER

6 12 24 48 96 192
Number of processes on Tibidabo

0
2
4
6
8

10
12
14
16

S
p

ee
d

u
p

o
f

L
iD

O
n

g
o

ve
r

T
ib

id
a

b
o

M1 M2 M3

(a) Speedup over Tibidabo.

6 12 24 48 96 192
Number of processes on Tibidabo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
n

er
g

y
to

so
lu

ti
o

n
im

pr
o

ve
m

en
t

o
ve

r
L

iD
O

n
g

M1 M2 M3

(b) Energy to solution improvement over LiDOng. Higher is better.

Figure 5.7: Performance and energy comparison between Tibidabo prototype and
its contemporary x86 cluster with FEAST application: a) speedup b)
energy.

The results of comparison of Tibidabo and LiDOng systems when run-
ning FEAST application are depicted in Figure 5.7. Performance wise (see
Figure 5.7a), LiDOng experiences speedup over Tibidabo in the range of 2 –
15×, depending on the input size and actual mapping on LiDOng. Highest
performance advantage is achieved with scenarios M2 and M3 – when the in-
put is scheduled on only one LiDOng node thus utilizing only shared memory
mechanism of OpenMPI (the smallest input, 8 processes). However, for the
largest input LiDOng is four times faster than Tibidabo with M2 mapping,
and only two times faster with M3 mapping. Energy wise (see Figure 5.7b,
Tibidabo is more energy efficient across all input sizes and mappings. Under
worst case running time Tibidabo manages to achieve 3% energy savings over
LiDOng. In the most favorable scenario for Tibidabo regarding runtime, M3
mapping on LiDOng and the biggest input, Tibidabo saves 16% of energy.
Finally, Tibidabo consumes less energy than LiDOng system for all inputs
and corresponding mappings listed in Section 5.4.4.

Looking into the results for HONEI_LBM, shown in Figure 5.8, results
exhibit similar trends. Performance wise (see Figure 5.8a), for the same
amount of memory per core, LiDOng is ∼4 times faster with all inputs.
However, in the case of M2 mapping LiDOng experiences 5× speedup across
all problem sizes. As we increase problem size, with M3 mapping LiDOng
shows almost no speedup over Tibidabo for big problem sizes. However,

49

5.4. COMPARISON AGAINST AN X86-BASED CLUSTER

6 12 24 48 96 192
Number of processes on Tibidabo

0

1

2

3

4

5

6

S
p

ee
d

u
p

o
f

L
iD

O
n

g
o

ve
r

T
ib

id
a

b
o

M1 M2 M3

(a) Speedup over Tibidabo.

6 12 24 48 96 192
Number of processes on Tibidabo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
n

er
g

y
to

so
lu

ti
o

n
im

pr
o

ve
m

en
t

o
ve

r
L

iD
O

n
g

M1 M2 M3

(b) Energy to solution improvement over LiDOng. Higher is better.

Figure 5.8: Performance and energy to solution comparison between Tibidabo
prototype and LiDOng with HONEI_LBM application: a) speedup
b) energy.

Tibidabo is more energy efficient across all configurations and inputs. The
biggest energy savings are achieved for the M1 mapping, and the smallest
for the M3 mapping: ranging from 3× to only 20% savings. The smallest
energy savings are achieved for the smallest input, while the biggest savings
are in place for the second biggest input.

SPECFEM3D_GLOBE reveals that there are even smaller differences
for different mappings. Note, however, that for the M2 mapping it was not
possible in this case due to the specific nature of the application. In the
case of the execution time, speedup of LiDOng over Tibidabo is almost twice
higher compared to the other two applications under evaluation. This has
implications on the energy to solution, since Tibidabo is not always more
energy efficient than LiDOng. The maximum energy savings of 50% are
achievable for the biggest inputs, when M1 mapping is used.

With our experiments we have shown that depending on the actual in-
put size and the number of computing processes, Tibidabo can offer even
performance, or can be as 15× slower compared to the x86-based computing
cluster on a set of PDE solvers. This performance difference is also reflected
to potential energy savings Tibidabo could offer, going from 0.8 – 3× com-
pared to aforementioned system. We have shown that Tibidabo becomes

50

5.5. PROJECTIONS

4 8 12 24 48 96 192
Number of processes on Tibidabo

0

5

10

15

20

25

S
p

ee
d

u
p

o
f

L
iD

O
n

g
o

ve
r

T
ib

id
a

b
o

M1 M3

(a) Speedup over Tibidabo.

4 8 12 24 48 96 192
Number of processes on Tibidabo

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

E
n

er
g

y
to

so
lu

ti
o

n
im

pr
o

ve
m

en
t

o
ve

r
L

iD
O

n
g

M1 M3

(b) Energy to solution improvement over LiDOng. Higher is better.

Figure 5.9: Performance and energy to solution comparison between Tibidabo
prototype and LiDOng with SPECFEM3D_GLOBE application: a)
speedup b) energy.

competitive in the case when one tries to minimize the number of nodes for
an execution – fitting the input size (memory requirement) of an application
to the smallest possible number of nodes.

5.5 Projections

In this section we project what would be the performance and power con-
sumption of our cluster if we could have set up an HPC-targeted system
using the same low-power components. One of the limitations seen in the
Section 5.3.2 is that having only two cores per chip leads to significant power
consumption overheads due glueing them together in order to create a large-
scale system with a large number of cores. At the time of the production of
Tibidabo prototype Cortex-A9 was the leader in mobile computing. However,
during the evaluation of the Tibidabo prototype, Cortex-A15 was announced
as the highest performing processor in the ARM family, having features more
suitable for HPC. Therefore, in this section we evaluate cluster configurations
with higher multicore density (more cores per chip) and we also project what
would be the performance and energy efficiency if we could have used Cortex-
A15 cores instead. To complete the study, we evaluate multiple frequency
operating points to show how frequency affects performance and energy effi-

51

5.5. PROJECTIONS

Table 5.1: Estimation of performance and energy efficiency of potential Tibid-
abo prototype upgrades: core architecture, performance and power
model parameters, and results for performance and energy efficiency
of clusters with 16 cores per node.

Configuration # 1 2 3 4 5

CPU input parameters

Core architecture Cortex-A9 Cortex-A9 Cortex-A9 Cortex-A15 Cortex-A15

Frequency (GHz) 1.0 1.4 2.0 1.0 2.0
Performance over A91GHz 1.0 1.2 1.5 2.6 4.5
Power over A91GHz 1.0 1.1 1.8 1.54 3.8

Per node power figures for 16 cores per chip configuration [W]

CPU cores 4.16 4.58 7.49 7.64 18.85
L2 cache 0.8 0.88 1.44 Integrated with cores
Memory 5.6 5.6 5.6 5.6 5.6
Ethernet NICs 1.4 1.4 1.4 1.4 1.4

Aggregate power figures [W]

Per node 17.66 18.16 21.63 20.34 31.55
Total cluster 211.92 217.87 259.54 244.06 378.58

ciency.
For our projections, we use an analytical power model and the Dimemas

cluster simulator [22]. For more details on Dimemas simulator, please refer to
the Chapter 3. The input to our simulations is an execution trace obtained
from a 96 nodes HPL execution on the Tibidabo cluster.

Table 5.1 shows the parameters used to estimate the performance and
energy efficiency of multiple cluster configurations. For this analysis, we use
single-core HPL runs to measure the performance ratios among different core
configurations. The reasons to use HPL are twofold: it makes heavy use of
floating-point operations, as it happens in many HPC applications, and is
the reference benchmark used to rank HPC machines both on Top500 and
Green500 lists.

To project the performance scaling of HPL for Cortex-A9 designs clocked
at frequencies over 1 GHz, we execute HPL in one of our Tibidabo nodes
using two cores at multiple frequencies from 456 MHz to 1 GHz. Then, we
fit a 2nd order polynomial trend line on the performance points to project the
performance degradation beyond 1 GHz. Figure 5.10a shows a performance
degradation below 10% at 1 GHz compared to perfect scaling from 456 MHz.
The polynomial trend line projections to 1.4 and 2.0 GHz show a 14% and
25% performance loss over perfect scaling from 456 MHz respectively. A
polynomial trend line seems somewhat pessimistic if there are no fundamental
architectural limitations, so we can use these projections as a lower bound

52

5.5. PROJECTIONS

4
5

6

6
0

8

7
6

0

8
1

6

9
1

2

1
0

0
0

1
4

0
0

2
0

0
0

Frequencies (MHz)

0

1

2

3

4

5
S

p
ee

d
u

p
re

la
ti

ve
to

th
e

lo
w

es
t

o
p

er
a

ti
n

g
fr

eq
u

en
cy

Perfect

Cortex-A9

Linear fit

Poly fit

(a) Dual-core Cortex-A9

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

2
0

0
0

Frequencies (MHz)

0

1

2

3

4

5

S
p

ee
d

u
p

re
la

ti
ve

to
th

e
lo

w
es

t
o

p
er

a
ti

n
g

fr
eq

u
en

cy

Perfect

Cortex-A15

Linear fit

Poly fit

(b) Dual-core Cortex-A15

Figure 5.10: Performance of HPL on ARM Cortex-A9 and Cortex-A15 at mul-
tiple operating frequencies and extrapolation to frequencies beyond
1 GHz. Data points are normalized to the performance at the lowest
operating frequency.

for the performance of those configurations.
For the performance of Cortex-A15 configurations we perform the same

experiment on a dual-core Cortex-A15 test chip clocked at 1 GHz [11]. HPL
performance on Cortex-A15 is 2.6 times faster compared to our Cortex-A9
Tegra2 boards. To project the performance over 1 GHz we run HPL at
frequencies ranging between 500 MHz and 1 GHz and fit a 2nd order 2nd
order polynomial trend line on the results. The performance degradation
compared to perfect scaling from 500MHz at 2 GHz is projected to 14% (see
Figure 5.10b so the performance ratio over Cortex-A9 at 1 GHz is 4.5x. We
must say that these performance ratios of Cortex-A15 over Cortex-A9 are
for HPL, which makes heavy use of floating-point code. The performance
ratios of Cortex-A15 over Cortex-A9 for integer code are typically 1.5x at
1 GHz and 2.9x at 2 GHz (both compared to Cortex-A9 at 1 GHz). This
shows how, for a single compute node, Cortex-A15 is better suited for HPC
double-precision floating-point computation.

For the power projections at different clock frequencies, we are using a

53

5.5. PROJECTIONS

power model for Cortex-A9 based on 40nm technology as this is what many
Cortex-A9 products were using at the time of our study, and for the Cortex-
A15 on 28nm technology as this is the process that is used for most product
produced in 2013. The power consumption in both cases is normalized to
the power of Cortex-A9 running at 1 GHz. Then, we introduce these power
ratios in our analytical model to project the power consumption and energy
efficiency of the different cluster configurations. In all our simulations, we
assume the same number of total cores as in Tibidabo (192) and we vary
the number of cores in each compute node. When we increase the number
of cores per compute node, the number of nodes is reduced, thus, reducing
integration overhead and pressure on the interconnect (i.e. less boards, cables
and switches). To model this effect, our analytical model is as follows:

From the power breakdown of a single node presented in Figure 5.4, we
subtract the power corresponding to the CPUs and the memory subsystem
(L2 + memory). The remaining power in the compute node is considered to
be board overhead, and does not change with the number of cores. The board
overhead is part of the power of a single node, to which we add the power
of the cores, L2 cache and memory. For each configuration, the CPU core
power is multiplied by the number of cores per node. Same as in Tibidabo,
our projected cluster configurations are assumed to have 0.5 MB of L2 cache
per core and 500 MB of RAM per core—this assumption allows for simple
scaling to large numbers of cores. Therefore, the L2 cache power (0.1 W/MB)
and the memory power (0.7 W/GB) are multiplied both by half the number
of cores. The L2 core power for the Cortex-A9 configurations is also factored
for frequency, for which we use the core power ratio. The L2 in Cortex-A15
is part of the core macro, so the core power already includes the L2 power.

For both Cortex-A9 and Cortex-A15, the CPU macro power includes the
L1 caches, cache coherence unit and L2 controller. Therefore, the increase in
power due to a more complex L2 controller and cache coherence unit for a
larger multicore are accounted when that power is factored by the number of
cores. The memory power is overestimated, so the increased power due to the
increased complexity of the memory controller to scale to a higher number
of cores is also accounted for the same reason. Furthermore, a Cortex-A9
system cannot address more than 4 GB of memory so, strictly speaking,
Cortex-A9 systems with more than 4 GB are not realistic. However, we
include configurations for higher core counts per chip to show what would
be the performance and energy efficiency if Cortex-A9 included large phys-
ical address extensions as the Cortex-A15 does to address up to 1 TB of
memory [19].

54

5.5. PROJECTIONS

The power model is summarized in these equations:

Ppred =
ntc
ncpc

×
(
Pover

nnin
+ Peth + ncpc ×

(
Pmem

2
+ pr ×

(
PA91G +

PL2$

2

)))
(5.1)

Pover = Ptot − nnin × (Pmem + 2× PA91G + PL2$ + Peth) (5.2)

where Ppred represents the projected power of simulated clusters, while
ntc = 192 and nnin = 96 are constants and represent the total number of
cores and total number of nodes in Tibidabo respectively. ncpc is the number
of cores per chip. Pover represents the total Tibidabo cluster power overhead
(evaluated in Equation 5.2). Parameter pr defines the power ratio derived
from core power models and normalized to Cortex-A9 at 1 GHz. PA91G , Pmem,
PL2$ and Peth are constants defining a core, per core memory, per core L2
cache and per node Ethernet power consumptions in Tibidabo. Ptot = 808 W
is the average power consumption of Tibidabo while running HPL.

In our experiments, the total number of cores remains constant and is the
same as in the Tibidabo cluster (ntc = 192). We explore the total number
of cores per chip (ncpc) that, having one chip per node, determines the total
number of nodes of the evaluated system. Table 5.1 shows the resulting total
cluster power of the multiple configurations using 16 cores per chip, and a
breakdown of the power for the major components.

For the performance projections of the multiple cluster configurations,
we provide Dimemas with a CPU core performance ratio for each configu-
ration, and a varying number of processors per node. Dimeams produces
a simulation of how the same 192-core6 application will behave based on
the new core performance and multicore density, accounting for synchroniza-
tions and communication delays. Figure 5.11 shows the results. In all the
simulations we keep a network bandwidth of 1 Gb/s (1GbE) and a memory
bandwidth of 1400 MB/s (from the maximum memory bandwidth measured
with STREAM).

The results show that, as we increase the number of cores per node (at
the same time reducing the total number of nodes), performance does not
show further degradation with 1GbE interconnect until we reach the level
of performance of Cortex-A15. None of the Cortex-A15 configurations reach
its maximum speedup due to interconnect limitations. The configuration

6Out of 128 nodes with a total of 256 processors, 4 nodes are used as login nodes and
28 are unstable. There are two major identified sources for instabilities: cooling issues and
problems with the PCIe driver, which drops the network connection on the problematic
nodes.

55

5.5. PROJECTIONS

Cortex-A9
1 GHz

Cortex-A9
1.4 GHz

Cortex-A9
2 GHz

Cortex-A15
1 GHz

Cortex-A15
2 GHz

Platforms

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
p

ee
d

u
p

2 cores/chip

4 cores/chip

8 cores/chip

16 cores/chip

max speedup

Figure 5.11: Tibidabo prototype: projected speedup for the evaluated cluster
configurations. The total number of MPI processes is constant
across all experiments.

with two Cortex-A15 cores at 1 GHz scales worse because the interconnect
is kept the same as in Tibidabo. With a higher number of cores, we are
reaching 96% of the speedup of a Cortex-A15 at 1 GHz. Further performance
increase with Cortex-A15 at 2 GHz shows further performance limitation
due to interconnect communication—reaching 82% of the maximum possible
speedup (see Figure 5.11) with two cores and reaching 91% with sixteen.

Increasing computation density potentially improves MPI communication
because more processes communicate on chip rather than using the network,
and the memory bandwidth is larger than the interconnect bandwidth. Set-
ting a larger machine than Tibidabo, with faster mobile cores and a higher
core count, will require a faster interconnect. In Section 5.6 we explore the
interconnect requirements when using faster mobile cores.

The benefit of increased computation density (more cores per node) is ac-
tually the reduction of the integration overhead and the resulting improved
energy efficiency of the system (Figure 5.12). The results show that by in-
creasing the computation density, with Cortex-A9 cores running at 2 GHz we
can achieve an energy efficiency of 563 MFLOPS/W using 16 cores per node,
which is already 4.7× improvement over Tibidabo. The configuration with
16 Cortex-A15 cores per node has an energy efficiency of 1004 MFLOPS/W
at 1 GHz and 1046 MFLOPS/W at 2 GHz (8.7x improvement).

Using these models, we project the energy efficiency of our cluster if it
used higher performance cores and included more cores per node. How-
ever, all other features remain the same, so inefficiencies due to the use of
non-optimized development boards, lack of software optimization, and lack
of vector double-precision floating-point execution units is accounted in the

56

5.6. INTERCONNECT REQUIREMENTS

2 4 8 16

Number of cores per node

0

200

400

600

800

1000

1200
E

n
er

g
y

effi
ci

en
cy

(M
F

L
O

P
S

/
W

) Cortex-A9 @ 1 GHz
Cortex-A9 @ 1.4 GHz
Cortex-A9 @ 2 GHz

Cortex-A15 @ 1 GHz
Cortex-A15 @ 2 GHz

Figure 5.12: Tibidabo prototype: projected energy efficiency for the evaluated
cluster configurations.

model. Still, with all these inefficiencies, our projections show that such a
cluster would be competitive in terms of energy efficiency with Sandy Bridge
and GPU-accelerated systems in the June 2013 Green500 list7, showing a
promise for future ARM-based platforms actually optimized for HPC.

5.6 Interconnect requirements

Cluster configurations with higher-performance cores and more cores per
node, potentially impose a higher pressure on the interconnection network.
The result of increasing the node computation power while maintaining the
same network bandwidth is that the interconnect bandwidth-to-flops ratio
decreases. This may lead to the network becoming a bottleneck. To evaluate
this effect, we carried out simulations of the evaluated cluster configurations
using a range of network bandwidths (Figure 5.13a) and latency values (Fig-
ure 5.13b). The baseline for these results is the cluster configuration with
Cortex-A9 at 1 GHz, 1 Gb/s of bandwidth and 50 µs of latency.

The results in Figure 5.13a show that a network bandwidth of 1 Gb/s is
sufficient for the evaluated cluster configurations with Cortex-A9 cores and
the same size as Tibidabo. The Cortex-A9 configurations show a negligible
improvement with 10 Gb/s interconnects. On the other hand, configura-
tions with Cortex-A15 do benefit from an increased interconnect bandwidth:
the 1 GHz configuration reaches its maximum at 3 Gb/s, and the 2 GHz
configuration at 8 Gb/s.

7Here we refer to the homogeneous and heterogeneous systems placed from #40–50
and are based on Intel Xeon E5-2670 and NVIDIA Tesla 2090 GPUs

57

5.6. INTERCONNECT REQUIREMENTS

0.1 1 10

Network bandwidth (Gb/s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
el

a
ti

ve
p

er
fo

rm
a

n
ce Cortex-A9 1 GHz

Cortex-A9 1.4 GHz
Cortex-A9 2 GHz
Cortex-A15 1 GHz
Cortex-A15 2 GHz

(a) Bandwidth sensitivity

0 100 200 300 400 500

Latency (µs)

0

1

2

3

4

5

6

R
el

a
ti

ve
p

er
fo

rm
a

n
ce

Cortex-A9 1 GHz/1 GbE

Cortex-A9 1.4 GHz/1 GbE

Cortex-A9 2 GHz/1 GbE

Cortex-A15 1 GHz/1 GbE

Cortex-A15 2 GHz/1 GbE

Cortex-A9 1 GHz/10 GbE

Cortex-A9 1.4 GHz/10 GbE

Cortex-A9 2 GHz/10 GbE

Cortex-A15 1 GHz/10 GbE

Cortex-A15 2 GHz/10 GbE

(b) Latency sensitivity

Figure 5.13: Tibidabo prototype: interconnection network impact on extrapo-
lated cluster upgrades. Only configurations with 16 cores per node
are shown.

The latency evaluation in Figure 5.13b shows the relative performance
with network bandwidths of 1 Gb/s and 10 Gb/s for a range of latencies
with a 50 µs step. An ideal zero latency does not show a significant improve-
ment over 50 µs latency and increasing the latency with a factor of ten, has a
significant impact on the Cortex-A15 at 2 GHz configuration only. Therefore,
the latency of Tibidabo’s Ethernet network, although being larger than that
of specialized and custom networks used in supercomputing, is low enough
for all the evaluated cluster configurations which have the same size as Tibid-
abo. However, further evaluation is needed to study the effects of bandwidth
and latency sensitivity with an increased number of nodes. Our simulation
methodology did not allow us to explore this effect, but since recently, there
is a new simulation methodology aiming to support this kind of design-space
exploration [64].

5.6.1 Lessons Learned and Next Steps

In this chapter We have described the architecture of our Tegra2-based clus-
ter, the first attempt to build an HPC system using ARM processors. Our

58

5.6. INTERCONNECT REQUIREMENTS

performance and power evaluation shows that an ARM Cortex-A9 platform
is competitive with a mobile Intel Nehalem Core i7-640M platform in terms
of energy efficiency for a reference benchmark suite like SPEC CPU2006. We
have also demonstrated that, even without manual tuning, HPC applications
scale well on our cluster.

However, building a supercomputer out of commodity-of-the-shelf low-
power components is a challenging task because achieving a balanced design
in terms of power is difficult. As an example, the total energy dissipated at
the PCB (Printed Circuit Board) voltage regulators is comparable or even
higher than the energy spent on the CPU cores. Although the core itself
provides a theoretical peak energy efficiency of 2-4 GFLOPS/W, this design
imbalance results in the measured HPL energy efficiency of 120 MFLOPS/W.

In order to achieve system balance, we identified two fundamental im-
provements to put in practice. The first one is to make use of higher-end
ARM multicore chips like Cortex-A15, which provides an architecture more
suitable for HPC while maintaining comparable single-core energy efficiency.
The second one is to increase the computing density by adding more cores to
the chip. The recently announced ARM CoreLink CCN-504 cache coherence
network [10, 33] scales up to 16 cores and is targeted to high-performance
architectures such as Cortex-A15 and next-generation 64-bit ARM proces-
sors. In a resulting system which implements these design improvements,
the CPU cores power is better balanced with that of other components such
as the memory. Our projections based on ARM Cortex-A15 processors with
higher multicore integration density show that such systems are a promising
alternative to current designs built from high performance parts. For exam-
ple, a cluster of the same size as Tibidabo, based on 16-core ARM Cortex-A15
chips at 2 GHz would provide 1046 MFLOPS/W.

A well known technique to improve energy efficiency is the use of SIMD
units. As an example, BlueGene/Q uses 256-bit-wide vectors for quad double-
precision floating-point computations, and the Intel MIC (Many Integrated
Cores) architecture uses 512-bit-wide SIMD units. Both Cortex-A9 and
Cortex-A15 processors implement the ARMv7-a architecture which only sup-
ports single-precision SIMD computation. Most HPC applications require
calculations in double-precision so they cannot exploit the current ARMv7
SIMD units. The ARMv8 architecture specification includes double-precision
floating-point SIMD, so further energy efficiency improvements for HPC com-
putation are expected from ARMv8 chips featuring those SIMD units.

In all of our experiments, we run the benchmarks out of the box, and
did not manually tune any of those codes. Libraries and compilers include
architecture-dependent optimizations that, for the case of ARM processors,
target mobile computing. This leads to two different scenarios: the optimiza-

59

5.6. INTERCONNECT REQUIREMENTS

tions of libraries used in HPC, such as ATLAS or MPI, for ARM processors
are one step behind; and optimizations in compilers, operating systems and
drivers target mobile computing, thus trading-off performance for quality of
service or battery life. We have put together an HPC-ready software stack
for Tibidabo but we have not put effort in optimizing its several components
for HPC computation yet. Further energy efficiency improvements are ex-
pected when critical components such as MPI communication functions are
optimized for ARM-based platforms, or the Linux kernel is stripped-out of
the components/modules not used by HPC applications.

As shown in Figure 5.5, the Tegra2 chip includes a number of application-
specific accelerators that are not programmable using standard industrial
programming models such as CUDA or OpenCL. If those accelerators were
programmable and used for HPC computation, that would reduce the inte-
gration overhead of Tibidabo. The use of SIMD or SIMT (Single Instructions
Multiple Threads) programmable accelerators is widely adopted in supercom-
puters, such as those including general-purpose programmable GPUs (GPG-
PUs). Although the effective performance of GPGPUs is between 40% and
60%, their efficient compute-targeted design provides them with high energy
efficiency. GPUs in mobile SoCs are starting to support general-purpose
programming. One example is the Samsung Exynos5 [114] chip, which in-
cludes two Cortex-A15 cores and an OpenCL-compatible ARM Mali T-604
GPU [20]. This design, apart from providing the improved energy efficiency
of GPGPUs, has the advantage of having the compute accelerator close to
the general purpose cores, thus reducing data transfer latencies. Such an
on-chip programmable accelerator is an attractive feature to improve energy
efficiency in an HPC system built from low-power components.

Another important issue to keep in mind when designing such kind of
systems is that the memory bandwidth-to-flops ratio must be maintained.
Currently available ARM-based platforms make use of either memory tech-
nology that is behind compared to top-class standards (e.g., many platforms
still use DDR2, DDR3 memory instead of e.g. DDR4), or memory technology
targeting low power (e.g., LPDDR2, LPDDR3). For a higher-performance
node with a higher number of cores and including double-precision floating-
point SIMD units, current memory choices in ARM platforms may not pro-
vide enough bandwidth, so higher-performance memories must be adopted.
Low-power ARM-based products including DDR3 are already announced [34]
and the recently announced DMC-520 [10] memory controller enables DDR3
and DDR4 memory for ARM processors. These upcoming technologies are
indeed good news for low-power HPC computing. Moreover, package-on-
package memories which reduce the distance between the computation cores
and the memory, and increase pin density can be used to include several

60

5.7. CONCLUSIONS

memory controllers and provide higher memory bandwidth.
Finally, Tibidabo employs 1 Gbit Ethernet for the cluster interconnect.

Our experiments show that 1GbE is not a performance limiting factor for a
cluster of Tibidabo size employing Cortex-A9 processors up to 2 GHz and
for compute-bound codes such as HPL. However, when using faster mobile
cores such as Cortex-A15, a 1GbE interconnect starts becoming a bottleneck.
Current ARM-based mobile chips include peripherals targeted to the mobile
market and thus, do not provide enough bandwidth or are not compatible
with faster network technologies used in supercomputing, such as 10GbE or
Infiniband. However, the use of 1GbE is extensive in supercomputing—32%
of the systems in the November 2012 TOP500 list use 1GbE interconnects—,
and potential communication bottlenecks are in many cases addressable in
software [88]. Therefore, although support for a high-performance network
technology would be desirable for ARM-based HPC systems, using 1GbE
may not be a limitation as long as the communication libraries are optimized
appropriately for Ethernet communication and the communication patterns
in HPC applications are tuned appropriately keeping the network capabilities
in mind.

5.7 Conclusions

In this chapter we presented Tibidabo, the world’s first ARM-based HPC
cluster, for which we set up an HPC-ready software stack to execute HPC
applications widely used in scientific research such as SPECFEM3D and
GROMACS. Tibidabo was built using commodity off-the-shelf components
that are not designed for HPC. Nevertheless, our prototype cluster achieves
120 MFLOPS/W on HPL, competitive with AMD Operton 6128 and Intel
Xeon X5660-based systems. We identified a set of inefficiencies of our de-
sign given the components target mobile computing. The main inefficiency
is that the power taken by the components required to integrate small low-
power dual-core processors offsets the high energy efficiency of the cores
themselves. We perform a set of simulations to project the energy efficiency
of our cluster if we could have used chips featuring higher-performance ARM
cores and integrating a larger number of them together.

Based on these projections, a cluster configuration with 16-core Cortex-
A15 chips would be competitive with Sandy Bridge-based homogeneous sys-
tems and GPU-accelerated heterogeneous systems in the Green500 list.

We also explained the major issues and how they should evolve or be
improved for next clusters made from low-power ARM processors. These
issues include, apart from the aforementioned integration overhead, the lack

61

5.7. CONCLUSIONS

of optimized software, the use of mobile-targeted memories, the lack of
double-precision floating-point SIMD units, and the lack of support for high-
performance interconnects. Based on our recommendations, an HPC-ready
ARM processor design should include a larger number of cores per chip (e.g.,
16) and use a core microarchitecture suited for high-performance, like the
one in Cortex-A15. It should also include double-precision floating-point
SIMD units, support for multiple memory controllers servicing DDR3 or
DDR4 memory modules, and probably support for a higher-performance
network, such as Infiniband, although Gigabit Ethernet may be sufficient for
many HPC applications. On the software side, libraries, compilers, drivers
and operating systems need tuning for high performance, and architecture-
dependent optimizations for ARM processor chips.

Recent announcements show an increasing interest in server-class low-
power systems that may benefit HPC. The new 64-bit ARMv8 ISA improves
some features that are important for HPC. First, using 64-bit addresses re-
moves the 4GB memory limitation per application. This allows more memory
per node, so one process can compute more data locally, requiring less net-
work communication. Also, ARMv8 increases the size of the general-purpose
register file from 16 to 32 registers. This reduces register spilling and pro-
vides more room for compiler optimization. It also improves floating-point
performance by extending the NEON instructions with fused multiply-add
and multiply-substract, and cross-lane vector operations. More importantly,
double-precision floating-point is now part of NEON. All together, this
provides a theoretical peak double-precision floating-point performance of
4 FLOPS/cycle for a fully-pipelined SIMD unit.

These encouraging industrial roadmaps, together with research initia-
tives such as the EU-funded Mont-Blanc project [94], may lead ARM-based
platforms to accomplish the recommendations given in this paper in a near
future.

62

6
Mobile Developer Kits

In the previous chapter we have presented the performance of the Tibidabo
prototype cluster – the world first large scale designed, produced and de-
ployed from developer kits powered by mobile processor cores IP – ARM
Cortex-A9 processor. We have shown that due to its architecture it suffers
from small computational density per node, which in turn leads to low energy
efficiency. Also, we have shown that there is a significant power waste due to
best-effort system integration using developer kits instead of a professional
integration solutions. In order to increase the computational density of a
computing system built with commodity mobile and embedded low-power
devices, we can take three approaches: increase the number of cores-per-
chip, or/and leverage computational potential of accelerators e.g. GPUs,
and use the high-performance mobile processors IP - such as ARM Cortex-
A15 which was announced at the time of Tibidabo prototype deployment.
In this chapter we show how both off-chip and on-chip GPUs can increase
achievable performance of an HPC system node based on a mobile SoC. We
present evaluation of two different platforms powered by mobile SoCs – the
first integrates a compute capable discrete GPU, and the second one fea-
tures an on-chip compute capable GPU. Further, we show the improvement
of both performance and energy-efficiency of a high-performance mobile core
IP, ARM Cortex-A15, as a potential building block for an HPC node based
on mobile and embedded technology.

63

6.1. EVALUATION METHODOLOGY

6.1 Evaluation Methodology

During our study, we evaluated multiple computing node architectures, some
of which include compute accelerators, and in these cases the effort of port-
ing real world production-level applications with thousands of lines of code
was unaffordable. Hence, in order to evaluate these mobile platforms we de-
veloped and used a number of benchmarks that stress different architectural
features and cover a wide range of algorithms employed in HPC applications
(for more information please consult Chapter 3 Section 3.2.1). To get a com-
prehensive overview of mobile platforms, we measure both the performance
(execution time) and power consumption while executing the Mont-Blanc
benchmark suite 3.2.1.

6.2 CARMA Kit: a Mobile SoC and a Discrete
GPU

NVIDIA CARMA developer kit [104], is a platform that provides two com-
puting configurations - homogeneous and heterogeneous. The first one is
a quad-core ARM Cortex-A9 processor cluster, and the second one couples
this cluster with a mobile discrete GPU for computing acceleration. The
CARMA board (see Figure 6.1 has the same layout as the Tegra 2 platform
used for Tibidabo cluster node (see Figure 5.1b). The main improvement over
the Tibidabo node developer board is that it is based on the more powerful
NVIDIA Tegra 3 SoC [103] featuring quad-core ARM Cortex-A9 running at
1.3 GHz. Moreover, CARMA kit doubles the available memory with 2 GB
of DDR3 memory and features a single 1GbE NIC (interfaced through USB
to Tegra 3). It uses four PCIe 1.0 lanes, providing 1GB/s of bandwidth1, to
connect to a discrete mobile GPU.

The featured GPU in this configuration is the NVIDIA Quadro 1000M,
which is an entry-level laptop GPU, with 45 W of TDP (Thermal Design
Power). This GPU is not particularly well suited for applications that use
double-precision floating point since the ratio between single-precision and
double-precision floating-point instructions throughput is 1:8, meaning that
peak double-precision performance is 8 times lower than the peak single-
precision performance2. Tegra 3 itself brings some improvements in on-chip

1NVIDIA Quadro 1000M GPU supports PCIe 2.0 x16 totaling 8GB/s of bandwidth
to a host.

2NVIDIA GPUs that are commonly used in HPC systems, such as those based on
NVIDIA Fermi architecture, have a ratio of 1:2 between single and double-precision floating
point

64

6.2. CARMA KIT: A MOBILE SOC AND A DISCRETE GPU

Figure 6.1: Physical layout of the NVIDIA CARMA kit with the highlighted
computing elements.

accelerators performance, but like in the Tegra 2, they are not programmable
with CUDA, OpenCL or similar programming models. There is also a 5th
companion CPU core which in a typical mobile scenario runs latency insen-
sitive workloads (like background tasks), but this core cannot be used as a
computational resource in an HPC scenario since it is not exposed to the OS.

6.2.1 Evaluation Results

In this section we present performance (execution time) and energy figures
for the CARMA platform running Mont-Blanc benchmarks. We present the
results for two possible computing scenarios – with and without discrete GPU
accelerator, and compare the platform to NVIDIA Tegra 2 platform used as
the building block of the Tibidabo cluster. In the case of computing without
GPU accelerator, we evaluate both single core and multicore scenarios.

Although the core microarchitecture is the same in both Tegra 2 and
Tegra 3, the higher operating frequency of the latter is reflected in the re-
sulting performance: when evaluation the single core computing scenario
Tegra 3 provides 1.37× speedup compared to the Tegra 2 (see Figure 6.2a).
Since Tegra 3 offers slightly higher memory bandwidth (DDR3 vs DDR2 in
Tegra 2), even better performance is observed for those benchmarks that are
memory intensive and having simple access pattern, such as vecop, where the
performance on Tegra 3 improves beyond the clock speed difference. Regard-
ing the energy savings (see Figure 6.2b) Tegra 3 platform consumes 26% less
energy on average compared to the Tegra 2 platform.

Figures 6.3a and 6.3b show the performance and energy-to-solution re-
sults for all benchmarks using all the available CPU cores: two on Tegra 2
and four on Tegra 3. On average, Tegra 3 completes execution two times

65

6.2. CARMA KIT: A MOBILE SOC AND A DISCRETE GPU

hist

dm
m

m fft

3dst
c

m
so

rt

ve
co

p

am
cd

sp
vm

2dco
n

re
d

nbody
AVG

100

101

102

S
p

ee
d

u
p

1.3
7

52.4
5

Tegra2 Tegra3 Quadro 1000M

(a) performance

hist

dm
m

m fft

3dst
c

m
so

rt

ve
co

p

am
cd

sp
vm

2dco
n

re
d

nbody
AVG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
ed

E
n

er
g

y

0.7
4

0.1
5

Tegra2 Tegra3 Quadro 1000M

(b) energy

Figure 6.2: Evaluation of NVIDIA CARMA Kit: single core a) performance and
b) energy results. All data is normalized to NVIDIA Tegra 2 platform.

hist

dm
m

m fft

3dst
c

m
so

rt

ve
co

p

am
cd

sp
vm

2dco
n

re
d

nbody
AVG

100

101

102

S
p

ee
d

u
p

1.9
9

30.4
9

Tegra2 : 2th Tegra3 : 4th Quadro 1000M

(a) performance

hist

dm
m

m fft

3dst
c

m
so

rt

ve
co

p

am
cd

sp
vm

2dco
n

re
d

nbody
AVG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a

liz
ed

E
n

er
g

y

0.6
8

0.2
5

Tegra2 : 2th Tegra3 : 4th Quadro 1000M

(b) energy

Figure 6.3: Evaluation of NVIDIA CARMA Kit: multi-threaded a) performance
and b) energy results. All data is normalized to NVIDIA Tegra 2
platform.

66

6.2. CARMA KIT: A MOBILE SOC AND A DISCRETE GPU

faster. Although it uses twice the number of cores, Tegra 3 requires 67% of
the energy-to-solution on average. The larger number of cores in the Tegra 3
MPSoC roughly translates into a doubling of the computational power, but
a very small increment in the system power consumption. The power con-
sumed by the CPU cores accounts only for a fraction of the total platform
power budget, hence the power consumption of the whole board does not
increase linearly with the number of cores. This result shows that energy
efficiency benefits from increasing the multicore density as long as the work-
loads scale reasonably well. Only 3D stencil hass a worse energy-to-solution
when running on Tegra 3 compared to Tegra 2. This benchmark is very
memory intensive because only one stencil point is used thus the ratio of
floating point operations to memory operations is the lowest among all the
benchmarks. As a result, this code requires a very large number of accesses
that consume more power on Tegra 3 because of the higher frequency of the
memory clock.

Both Figure 6.2 and Figure 6.3 also show the performance of the CUDA
version of the benchmarks running only on the discrete GPU. These per-
formance and energy-to-solution results use all the processing cores in the
GPU, as we do not have a way to restrict the execution to a subset of the
cores. The GPU performance is, on average, 30x better than dual-core Tegra
2 and 15x better than quad-core Tegra 3. Energy-to-solution provided with
the discrete GPU also show benefits, saving on average 65% of energy with
respect to Tegra 2 and 49% with respect to Tegra 3. However, there are
two benchmarks which do not show energy savings – merge-sort and atomic
monte carlo dynamics (see Figure 6.3b). In these cases running the bench-
mark on the GPU takes more energy than using the Tegra 3 cores only, but
still less than Tegra 2. This shows that off-loading tasks to the discrete GPU
pays-off only if the achieved speedup is large enough to compensate for the
increased platform power consumption when running on the GPU compared
to using just the CPU.

Evaluation results are in line with our initial assumptions: increased mul-
ticore density of a mobile SoC shows improvement in performance (2% in our
case), and reduces energy-to-solution to 68% of the base case. Also, we have
successfully demonstrated that coupling a discrete GPU to a mobile SoC is
feasible, and also brings a significant performance improvement and energy
savings on parallel workloads – up to 30× for the former and up to 65% for
the latter.

67

6.3. ARNDALE KIT: IMPROVED CPU CORE IP AND ON-CHIP GPU

Arithmetic
Pipeline

Arithmetic
Pipeline Load/Store

Pipeline Texturing
Pipeline

Thread Issue

ARM Mali-T604

Job Scheduler

Memory Management Unit

Snoop Control Unit

L2 Cache
Thread Issue

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader Core

Figure 6.4: Architecture of the ARM Mali-T604 GPU.

6.3 Arndale Kit: Improved CPU Core IP and
On-Chip GPU

Arndale developer kit [21], released in 2012, comprises the Samsung Exynos 5250
embedded system-on-chip (SoC) and is equipped with 2 GB of DDR3L-1600
memory. The Samsung Exynos 5250 integrates a dual-core ARM Cortex-
A15, running at 1.7 GHz with 32 KB of private L1 instruction and data
cache, and 1 MB of shared L2 cache. The Cortex-A15 is improved over
the Cortex-A9 in terms of microarchitecture including, but not limited to,
higher number of outstanding cache misses, longer out-of-order pipeline, and
improved branch predictor [124]3. Alongside the CPU cores, the SoC fea-
tures a four-core ARM Mali-T604 GPU – OpenCL programmable on-chip
GPU. Until recently, the main focus of embedded GPUs was 2D and 3D
high-quality graphics, and the ARM Mali-T604 GPU is the first of the kind
to support general-purpose computing with OpenCL. We depict the archi-
tecture of ARM Mali-T604 in the following section.

6.3.1 ARM Mali-T604 GPU IP

Figure 6.4 depicts the architectural details of the ARM Mali-T604 GPU.
The GPU supports up to four shader cores, each having two arithmetic, one
load/store, and texturing pipeline. Each arithmetic pipe is capable of 17 ALU
(Arithmetic Logic Unit) operations, which in turn leads to 72.48 GFLOPS

3All these microarchitectural improvements allow for increased operating frequency of
the CPU.

68

6.3. ARNDALE KIT: IMPROVED CPU CORE IP AND ON-CHIP GPU

in single precision at 533 MHz45. The Job Manager, implemented in hard-
ware, abstracts the GPU core configuration from the driver and distributes
the computational tasks to maximize the GPU resource utilization. Unlike
desktop and server GPUs, ARM Mali-T604 shares the main memory with
the CPU thus avoiding explicit memory transfers which in turn saves the
energy on the data movements – this is facilitated with the help of Memory
Management Unit which maps memory from the CPU’s address space into
the GPU’s address space. The L2 cache is shared between the shader cores
and maintained coherent by the Snoop Control Unit.

6.3.2 Evaluation Results

In this section we introduce and discuss a performance and energy evaluation
of the on-SoC ARM Mali-T604 GPU. Figure 6.5 depicts the performance and
energy figures when utilizing different computing elements available on the
Samsung Exynos 5250 SoC – CPU cores and the GPU. Evaluation consists
of single-core (serial), dual-core (OpenMP) and GPU (OpenCL) executions.
We exercise double-precision data sets, and normalize all results to the single-
core executions on the ARM Cortex-A15 CPU..

Regarding the executions on the GPU, with OpenCL, four out of eight
benchmarks (spmv, vecop, red, and dmmm) show a performance improvement
below 2× over the single-core executions. Benchmarks hist and 3dstc experi-
ence a speedup of 3× and 3.4×. Furthermore, 2dcon and nbody benchmarks
show speedup of 9.6× and 10× respectively. Finally, compared to single-core
execution, multi-core and GPU executions achieve the following speedups on
average across the entire benchmarks set: multi-core 1.53× and GPU 4.04×.

Energy-to-solution results are depicted in Figure 6.5b. Multi-core execu-
tions are either even in terms of energy expenditure compared to single-core
execution (spmv and vecop), or offer up to 30% savings – the case of hist
benchmark. Further, all benchmarks executed on the GPU experience sig-
nificant energy savings compared to the single-core executions – ranging from
27% (dmmm) to 89% (nbody)OpenCL set show energy savings compared to
Serial versions - ranging from 5% (spvm) to 89% (nbody). On average, across
the entire benchmarks set, with the use of the GPU, we achieve 56% energy
savings.

The results we have shown clearly indicate that a mobile capable GPU,
like ARM Mali-T604, could offer performance and energy savings benefits

4FLOPS are calculated as follows: 7 from dot products, 1 from scalar addition, 4 from
vec4 addition, 4 from vec4 multiply, and 1 from scalar multiply.

5However, given the missing details regarding ALU internals, it is not clear how to
derive peak double-precision floating-point performance.

69

6.4. PUTTING IT ALL TOGETHER

spmv vecop hist 3dstc red nbody 2dcon dmmm AVG
0

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

10
.1

9.
6

1.5
3

4.0
4

Serial OpenMP OpenCL

(a) performance

spmv vecop hist 3dstc red nbody 2dcon dmmm AVG
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
ed

E
n

er
g

y 0.8
5

0.4
4

Serial OpenMP OpenCL

(b) energy

Figure 6.5: Evaluation of the ARM Mali-T604 GPU: a) performance and b) en-
ergy results.

compared to mobile CPU cores. The effort of application porting and tuning
is in line with the required effort for their server counterparts.

6.4 Putting It All Together

Results from previous sections, and Tibidabo prototype cluster (see Chap-
ter 5 look encouraging. That is why we decided to opt for building a next-
generation HPC cluster powered by mobile SoCs. In this section, we present
the results of comparing Tibidabo node, CARMA and Arndale kit, as poten-
tial building blocks for our next-generation cluster, against a contemporary
x86 microarchitecture based processor.

6.4.1 Comparison Against a Contemporary x86 Archi-
tecture

In this section we examine the performance, energy efficiency, and memory
bandwidth of single platforms powered by mobile SoCs. We chose devel-
oper boards with three different SoCs: NVIDIA Tegra 2 and Tegra 3, and
Samsung Exynos 52506. These SoCs cover two successive ARM processor
microarchitectures: NVIDIA Tegra 2 and Tegra 3 rely on ARM Cortex-A9

6Commercial name of this SoC is Samsung Exynos 5 Dual

70

6.4. PUTTING IT ALL TOGETHER

Table 6.1: Platforms under evaluation

SoC name NVIDIA Tegra 2 NVIDIA Tegra 3 Samsung Exynos 5250 Intel Core
i7-2760QM

CPU
Architecture Cortex-A9 Cortex-A9 Cortex-A15 SandyBridge
Max. frequency

(GHz)
1.0 1.3 1.7 2.4

Number of cores 2 4 2 4
Number of threads 2 4 2 8
FP-64 GFLOPS 2.0 5.2 6.8 76.8

GPU Integrated (graphics
only)

Integrated
(graphics only)

Integrated Mali-T604
(OpenCL)

Intel HD
Graphics 3000

Cache
L1 (I/D) 32K/32K private 32K/32K private 32K/32K private 32K/32K private
L2 1M shared 1M shared 1M shared 256K private
L3 - - - 6M shared

Memory controller
Number of

channels
1 1 2 2

Width (bits) 32 32 32 64
Max. frequency

(MHz)
333 750 800 800

Peak bandwidth
(GB/s)

2.6 5.86 12.8 25.6

Developer kit
Name SECO Q7 module +

carrier
SECO CARMA Arndale 5 Dell Latitude

E6420
DRAM size and

type
1 GB DDR2-667 2 GB DDR3L-1600 2 GB DDR3L-1600 8 GB DDR3-1133

Ethernet interfaces 1 Gb, 100 Mb 1 Gb 100 Mb 1 Gb

cores, capable of one Fused Multiply-Add (FMAC) operation every two cy-
cles, and the Samsung Exynos 5250 integrates ARM Cortex-A15, with a
single-cycle fully-pipelined FMAC unit. It is not only the CPU that makes
a difference between the aforementioned platforms, the memory subsystems
are also improved with each new generation. More insights about impor-
tant characteristics of the different SoCs and the corresponding hardware
platforms we use in our evaluation are shown in Table 6.1.

In addition, we include one laptop platform, which contains the same Intel
Sandy Bridge microarchitecture used in current state-of-the-art Intel Xeon
server processors.7 We chose the laptop as a platform for comparison since the
laptop integrates a set of features similar to those of mobile developer kits. In
order to achieve a fair comparison in energy efficiency between the developer
boards and the Intel Core i7 we boot the laptop directly into the Linux
Command Line Interface (CLI), and we further disable the screen in order to
reduce the non-essential power consumption. We give a quantitative measure
of the difference in performance between mobile SoCs and high-performance
x86 cores, which is driven by the different design points.

7We used a Sandy Bridge Intel Core i7. A server-class Intel Xeon also integrates Intel
QPI (Quick Path Interconnect) links and PCIe Gen3, but these are not relevant for single
node performance comparisons.

71

6.4. PUTTING IT ALL TOGETHER

0.0 0.5 1.0 1.5 2.0 2.5

Frequency (GHz)

0.50

1.00

2.00

4.00

8.00
S

p
ee

d
u

p
vs

T
eg

ra
2

@
1

G
H

z
Tegra 2

Tegra 3

Exynos 5250

Core i7-2760QM

(a) performance

0.0 0.5 1.0 1.5 2.0 2.5

Frequency (GHz)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
er

it
er

a
ti

o
n

en
er

g
y

vs
T

eg
ra

2
@

1
G

H
z

Tegra 2

Tegra 3

Exynos 5250

Core i7-2760QM

(b) energy

Figure 6.6: Mobile platforms comparative evaluation: single core evaluation of
a) performance and b) energy. All data is normalized to Tegra 2 @
1GHz.

Methodology

In our experiments, the problem size for the benchmarks is the same for all
the platforms, thus each platform has the same amount of work to perform
in one iteration. We set the number of iterations such that the total exe-
cution time is approximately for all platforms, and the benchmark runs for
long enough to get accurate energy consumption figures. We evaluate our
platforms with Mont-Blanc benchmarks for assessing the compute capability
of each platform, and we use STREAM benchmark for measuring effective
per-platform memory bandwidth.

Both power and performance are measured only for the parallel region of
the workload, excluding the initialization and finalization phases.8

Evaluation Results

Each frequency sweep data point, shown in Figure 6.6 and 6.7, represents
the average across all the benchmarks normalized to the baseline Tegra 2
platform running at its maximum frequency of 1GHz. Frequency points are
chosen from each platform’s available operating frequency points provided by
the cpufreq Linux utility. For performance results we show the speedup with
respect to the baseline, and for energy efficiency we normalize the results

8It was not possible to give a fair comparison of the benchmarks including initialization
and finalization,since the developer kits use NFS or µSD card storage whereas the laptop
uses its hard drive.

72

6.4. PUTTING IT ALL TOGETHER

0.0 0.5 1.0 1.5 2.0 2.5

Frequency (GHz)

0.50

1.00

2.00

4.00

8.00

16.00

S
p

ee
d

u
p

vs
T

eg
ra

2
@

1
G

H
z

Tegra 2

Tegra 3

Exynos 5250

Core i7-2760QM

(a) performance

0.0 0.5 1.0 1.5 2.0 2.5

Frequency (GHz)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
er

it
er

a
ti

o
n

en
er

g
y

vs
T

eg
ra

2
@

1
G

H
z

Tegra 2

Tegra 3

Exynos 5250

Core i7-2760QM

(b) energy

Figure 6.7: Mobile platforms comparative evaluation: multicore evaluation of a)
performance and b) energy. All data is normalized to Tegra 2 @
1GHz.

against the baseline.
Figure 6.6 shows the single-core CPU performance and energy efficiency

for each SoC as we vary the CPU frequency. We demonstrate that the per-
formance improves linearly, on average, as the frequency is increased.

Tegra 3 brings a 9% improvement in execution time over Tegra 2 when
they both run at the same frequency of 1GHz. Although the ARM Cortex-A9
core is the same in both cases, Tegra 3 has an improved memory controller
which brings a performance increase in memory-intensive benchmarks9. The
Arndale platform at 1 GHz shows a 30% improvement in performance over
Tegra 2, and 22% over Tegra 3, due to the improved ARM Cortex-A15 mi-
croarchitecture. Compared with the Intel Core i7 CPU, the Arndale platform
is only two times slower.

Averaged across all the benchmarks, the Tegra 2 platform at 1GHz con-
sumes 23.93 J to complete the work in one iteration. At the same frequency,
Tegra 3 consumes 19.62J, giving an improvement of 19%, and Arndale con-
sumes 16.95J, a 30% improvement. The Intel platform, meanwhile, consumes
28.57J, which is higher than all the ARM-based platforms.

When we run the CPUs at their highest operating frequencies, instead
of all at the frequency of 1GHz, the Tegra 3 platform becomes 1.36 times
faster than the Tegra 2 platform, and it requires 1.4 times less energy. The
Exynos 5 SoC from the Arndale platform brings additional improvements in
performance: it is 2.3 times faster than Tegra 2 and 1.7 times faster than

9Here we refer to vecop and 3dstc benchmarks from the Mont-Blanc benchmarks.

73

6.4. PUTTING IT ALL TOGETHER

Tegra 3. The Intel core at its maximum frequency is only 3 times faster than
the Arndale platform.

We can see that the generation change of the ARM cores has closed the
gap in performance with respect to their Intel counterparts. Our experiments
show that from the situation when Tegra 2 was 6.5 times slower we have
arrived to the position where Exynos 5 is now only 3 times slower than the
Sandy Bridge core.

Figure 6.7 depicts the results for the multi-core executions with OpenMP
version of the benchmarks. The benchmarks always use all the cores that
are available in the platform (two in Tegra 2, four in Tegra 3, two in Arndale
and four in Sandy Bridge). In all the cases, multicore execution has brought
improvements, both in performance and in energy efficiency, with respect to
the serial version of the benchmarks. In case of Tegra 2 and Tegra 3 platforms,
the OpenMP version uses 1.7 times less energy per iteration. Arndale exhibits
better improvement (2.25 times), while the Intel platform reduces energy to
solution 2.5 times.

In the single-core evaluation Intel platform, as a whole, was the least en-
ergy efficient platform, but in multicore scenario it became the most energy
efficient one due to an increased amount of power spent on computing ele-
ments (cores). Further, Tegra 3 with its four cores is more energy efficient
than Arndale platform, but Arndale is able to scale its operating frequency
beyond that of Tegra 3 and thus to offer higher-performance in turn.

Our energy efficiency results show that for all the platforms the SoC is
not the main power sink in the system. When we increase the frequency
of the CPU, its power consumption increases (at least) linearly with the
frequency, but we see that the overall energy efficiency improves. This leads
to the conclusion that the majority of the power is used by other components,
rather than CPU cores.

Memory Bandwidth With Figure 6.8 we depict the achievable memory
bandwidth of each platform, measured using the STREAM benchmark.

Our results show a significant improvement in memory bandwidth, ap-
proximately 4.5 times, between the Tegra platforms (ARM Cortex-A9) and
the Samsung Exynos 5250 (ARM Cortex-A15). This appears to be mostly
due to the better Cortex-A15 microarchitecture which also improves the num-
ber of outstanding memory requests [124], and due to an additional channel
in memory controller. Compared with the peak memory bandwidth, the
multicore results imply an efficiency of 62% (Tegra 2), 27% (Tegra 3), 52%
(Exynos 5250), and 57% (Intel Core i7-2760QM). These results show that
increase in computing capability of mobile platforms is also followed with a

74

6.5. CONCLUSIONS

Copy Scale Add Triad Copy Scale Add Triad
0.1

1

10

M
em

or
y

ba
nd

w
id

th
(G

B
/s

) Single core Multicore

Tegra2 Tegra3 Exynos5250 i7-2760QM

Figure 6.8: Mobile platforms comparative evaluation: memory bandwidth

proper increase in sustainable memory bandwidth. Finally, the ability of the
aforementioned mobile platforms to utilize the memory bandwidth is on pair
with the contemporary x86 architecture-based CPU.

6.5 Conclusions
In this chapter we have shown that there is a continuous improvement in the
performance that a mobile SoC could offer to High-Performance Computing..
Apart from improved core microarchitecture with the transition from ARM
Cortex-A9 to Cortex-A15, mobile SoCs’ GPUs became compute capable and
programmable by means of standard programming models for accelerators
like OpenCL and CUDA. These advances, as we have demonstrated, are
followed with an improvement in memory technology leading to increase of
memory bandwidth needed to sustain the compute performance of a mobile
SoC.

Evaluation results presented in this chapter, served as a guide for se-
lecting a chip for the next-generation mobile SoCs powered HPC prototype.
We selected Samsung Exynos 5250 since it offers an improved core microar-
chitecture improving both performance and energy efficiency, and integrates
an on-SoC GPU which could bring a significant performance boost for par-
ticular HPC kernels. In the next chapter, we present the architecture and
evaluate the Mont-Blanc prototype – an HPC system built with the afore-
mentioned Samsung Exynos 5250 SoC, commodity networking and storage,
using standard HPC system integration.

75

7
The Mont-Blanc Prototype

This thesis is tightly coupled with the Mont-Blanc project, which aims at
providing an alternative HPC system solution based on the current commod-
ity technology: mobile chips. As a demonstrator of such an approach, the
project designed, built and set-up a 1080-node HPC cluster made of Samsung
Exynos 5250 SoCs. The Mont-Blanc project established the following goals:
to design and deploy a sufficiently large HPC prototype system based on the
current mobile commodity technology; to port and optimize software stack
and enable its use for HPC; to port and optimize a set of HPC applications
to be run at this HPC system.

The contributions of this chapter are:

• A detailed description of the Mont-Blanc prototype architecture

• A thorough performance and power evaluation of the prototype, com-
paring it to a Tier-0 production system in Europe, the MareNostrum III
supercomputer.

• A set of recommendations for the next-generation HPC system built
around the Mont-Blanc approach.

7.1 Architecture
In this section we present the architecture of the Mont-Blanc prototype. We
highlight peculiarities of each building block as we introduce them.

77

7.1. ARCHITECTURE

7.1.1 Compute Node

The Mont-Blanc compute node is a Server-on-Module architecture. Fig-
ure 7.1 depicts the Mont-Blanc node card (Samsung Daughter Board or
SDB) and its components. Each SDB is built around a Samsung Exynos
5250 SoC integrating two ARM Cortex-A15 CPUs @ 1.7 GHz sharing 1 MB
of on-die L2 cache, and a mobile 4-core ARM Mali-T604 GPU @ 533MHz.
The SoC connects to the on-board 4 GB of LPDDR3-1600 RAM through
two 32-bit memory channels shared among the CPUs and GPU, providing a
peak memory bandwidth of 12.8 GB/s.

The node interconnect is provided by the ASIX AX88179 USB 3.0 to
1Gb Ethernet bridge, and an Ethernet PHY (Physical layer). An external
16 GB µSD card provides the boot-loader, OS system image, and local scratch
storage.

The node connects to the blade through a proprietary bus using a PCI-e
4x form factor edge connector (EMB connector).

EMB (PCIe 4x)

Samsung
Exynos
5250

USB3.0
to

1GbE

PHY

USB 3.0

1 GbE (1000BASE-T)

1 GbE (SGMII)

LPDDR3
8Gb

LPDDR3
8Gb

LPDDR3
8Gb

LPDDR3
8Gb

uSD
SDIO

PMIC
I2C

Figure 7.1: The Mont-Blanc prototype: compute node block scheme (not to
scale).

7.1.2 The Mont-Blanc Blade

Figure 7.2 describes the architecture of the Mont-Blanc blade, named Ether-
net Mother Board (EMB), depicted in Figure 7.3). The blade hosts 15 Mont-
Blanc nodes which are interconnected through an on-board 1GbE switch fab-
ric. The switch provides two 10GbE up-links. In addition, the EMB provides
management services, power consumption monitoring of SDBs, and blade

78

7.1. ARCHITECTURE

level temperature monitoring. The EMB enclosure is air-cooled through the
fans installed on the front side.

B
a
c
k
p

la
n

e

2
x
 S

F
P

+

NODE#10
Power

monitoring

NODE#5NODE#0

NODE#11NODE#6

NODE#7 NODE#12

NODE#1

NODE#2

NODE#13NODE#8NODE#3

NODE#14NODE#9NODE#4

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

Power
monitoring

1GbE/10GbE
Ethernet
Switch

PHY

..

..

.

10 GbE
(XAUI)

1 GbE
(SGMII)

x15

FPGA ..
.

Power
monitoring

x15BMC

Figure 7.2: The Mont-Blanc prototype: compute blade block scheme.

7.1.3 The Mont-Blanc System

The entire Mont-Blanc prototype system (shown in Figure 7.4) fits into two
standard 42U-19′′ racks. Each Mont-Blanc rack hosts up to four 7U Bullx
chassis which in turn integrate nine Mont-Blanc blades each. In addition,
racks are populated with two 2U 10GbE Cisco Nexus 5596UP Top-Of-the-
Rack (TOR) switches, one 1U prototype management 1GbE switch1, and
two 2U storage nodes.

System interconnect

The Mont-Blanc prototype implements two separate networks: the 1GbE
management network, and the 10GbE MPI network. The management net-
work is out of the scope of this paper, thus we depict the implementation of
the MPI interconnect only in Figure 7.5.

The first level of switching is provided inside the blades using a 1GbE
switch fabric providing two 10GbE up-links. Switching between the blades
occurs at the TOR switches with a switching capacity of 1.92 Tbps per switch.
The racks are directly connected with four 40GbE links.

1Not visible, mounted on the back.

79

7.1. ARCHITECTURE

Figure 7.3: The Mont-Blanc prototype: compute blade physical view.

Storage

The Lustre parallel filesystem is built on a Supermicro Storage Bridge Bay
based on x86-64 architecture, with a total capacity of 9.6 TB providing 2-
3.5 GB/s read/write bandwidth (depending on the disk zone). The storage
system is connected to the top-of-the-rack switches with four 10GbE links.

Cooling

Compute nodes are passively cooled using a top-mounted heatsink, while
blades provide active air-cooling through variable speed front-mounted fans
in a temperature control loop.

7.1.4 The Mont-Blanc Software Stack

The work done during the research phase of this thesis helped maturing the
HPC software stack on the ARM architecture. Today, working with the
Mont-Blanc prototype feels like working with any other HPC cluster.

The Mont-Blanc prototype nodes run Ubuntu 14.04.1 Linux on top of the
customized Linaro Kernel version 3.11.0 which enables user space driver for
OpenCL programming of the ARM Mali-T604 GPU. The rest of the software
stack components are shown in Figure 7.6.

A very relevant part of the Mont-Blanc software stack is the OmpSs

80

7.1. ARCHITECTURE

Figure 7.4: The Mont-Blanc prototype: physical view of the entire system.

TOR
switch

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

4x40 GbE

Storage
node

1
0

G
b

E
1

0
G

b
E

1
0

G
b

E
1

0
G

b
E

Storage
node

TOR
switch

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

Mont-Blanc
Chassis

18x10GbE
. . . .

. . . .

18x10GbE

Mont-Blanc
Chassis

2

2

2

B1

B2

B3

2

2

2

B4

B5

B6

2

2

2

B7

B8

B9

6 6 6

18x10GbE

Mont-Blanc Chassis

Figure 7.5: The Mont-Blanc prototype: system interconnect topology.

81

7.1. ARCHITECTURE

Compilers
GNU JDK Mercurium

Scientific libraries
ATLAS LAPACK SCALAPACK FFTW
BOOST clBLAS clFFT PETSc HDF5
Performance analysis Debugger

Extrae Paraver Scalasca Allinea DDT
Runtime libraries

Nanos++ OpenCL OpenMPI MPICH3
Cluster management

SLURM Nagios Ganglia
Hardware support Storage

Power monitor LustreFS
Operating System

Ubuntu

Figure 7.6: The Mont-Blanc prototype: system software stack

programming model [48], a forerunner of OpenMP support for tasks, provided
by the Mercurium compiler and the Nanos++ runtime complex. OmpSs
is a task-based programming model with explicit inter-task dataflow that
allows the runtime system to orchestrate out-of-order execution of the tasks,
selectively off-loading of tasks to the GPU when possible, or running them
on the CPU if the GPU is busy. Applications ported to OmpSs can make
simultaneous use of the CPU and the GPU, dynamically adapting to load
imbalance situations during execution [107].

7.1.5 Power Monitoring Infrastructure

The Mont-Blanc prototype provides a unique infrastructure to enable high-
frequency measurements of power consumption at the granularity of a single
compute node, scaling to the whole size of the prototype.

The Mont-Blanc system features a digital current and voltage meter in
the power supply rail to each SDB. An FPGA (Field-Programmable Gate
Array) on each EMB accesses the power sensors in each SDB via I2C (Inter
Integrated Circuit) interface and stores the averaged values every 1,120ms
in a FIFO buffer. The Board Management Controller (BMC) on the EMB
communicates with the FPGA to collect the power data samples from the
FIFO before storing them in its DDR2 memory along with a timestamp of the
reading. User access to the data is then provided by the BMC over the man-
agement Ethernet through a set of custom Intelligent Platform Management
Interface (IPMI) commands.

To provide application developers with power traces of their applications,
the power measurement and acquisition process is conveniently encapsulated
and automated in a custom-made system monitoring tool. The tool is de-

82

7.1. ARCHITECTURE

Table 7.1: The Mont-Blanc prototype: compute performance summary.

Compute Node
CPU GPU

Compute element 2×ARM Cortex-A15 1×ARM Mali-T604
Frequency 1.7 GHz 533 MHz
Peak performance (SP) 27.2 GFLOPS 72.5 GFLOPS
Peak performance (DP) 6.8 GFLOPS 21.3 GFLOPS
Memory (shared) 4 GB LPDDR3-800

Blade = 15×Node
Peak performance (SP) 408 GFLOPS 1.08 TFLOPS
Peak performance (DP) 102 GFLOPS 319.5 GFLOPS
Memory 60 GB

Chassis = 9×Blade
Peak performance (SP) 3.67 TFLOPS 9.79 TFLOPS
Peak performance (DP) 0.92 TFLOPS 2.88 TFLOPS
Memory 540 GB

System = 8×Chassis
Peak performance (SP) 29.38 TFLOPS 78.3 TFLOPS

Total (SP) 107.7 TFLOPS
Peak performance (DP) 7.34 TFLOPS 23 TFLOPS

Total (DP) 30.3 TFLOPS
Memory 4.32 TB

veloped with a focus on simplicity and scalability by respectively employing
MQTT [95], for lightweight transport messaging, and Apache Cassandra, a
scalable, distributed database for storing the acquired power data along with
other time-series based monitoring data.

7.1.6 Performance Summary

Table 7.1 shows the performance figures of the Mont-Blanc prototype. The
two Cortex-A15 cores provide a theoretical peak performance of 27.2 GFLOPS
in single-precision (SP) and 6.8 GFLOPS in double-precision (DP). The per-
formance discrepancy comes from the fact that the SIMD unit, denoted as
NEON, supports only SP floating-point (FP) operations, therefore DP FP
instructions execute in a scalar unit.

The on-chip quad-core Mali-T604 GPU provides 72.5 GFLOPS SP and
21.3 GFLOPS DP [7]. The overall node performance is 99.7 GFLOPS SP
and 28.1 GFLOPS DP.

Table 7.1 shows the peak performance at the blade, chassis and entire
system levels for CPU and GPU separately. The whole system has a peak
performance of 107.7 TFLOPS SP and 30.3 TFLOPS DP.

Due to the 32-bit nature of the SoC architecture, each node integrates
only 4 GB of memory. The high node integration density of 1080 nodes (2160
cores) in 56U (over 19 nodes per U) adds up to 4.32 TB of memory, and an

83

7.2. COMPUTE NODE EVALUATION

Table 7.2: Peak performance comparison of Mont-Blanc and MareNostrum III
nodes.

Mont-Blanc MareNostrum III
Frequency [GHz] 1.7 2.6
sockets 1 2

Peak FP-64 [GFLOPS]
CPU
6.8

GPU
21.3

CPU
332.8

GPU
-n/a-

Memory BW [GB/s] 12.8 51.2
Network BW [Gb/s] 1 40
Intersocket BW [GB/s] -n/a- 32

Tag Full name

2dc 2D convolution
amcd Markov Chain Monte Carlo method
dmm Dense matrix-matrix multiplication
hist Histogram calculation
ms Generic merge sort
nbody N-body calculation
3ds 3D volume stencil computation
fft One-dimensional Fast Fourier Transform
red Reduction operation
vecop Vector operation

Table 7.3: List of Mont-Blanc benchmarks

aggregate 13.8 TB/s memory bandwidth.

7.2 Compute Node Evaluation

In this section, we present a comparison between the Samsung Exynos 5250
SoC2 used in the Mont-Blanc prototype, and its contemporary 8-core In-
tel Xeon E5-2670 3 server processor running at 2.6 GHz and used in the
MareNostrum III supercomputer [26]. The MareNostrum node is a dual-
socket implementation, using DDR3-1600 memory DIMMs. For a side-by-
side peak performance comparison of Mont-Blanc and MareNostrum nodes
please consult Table 7.2.

Methodology: We present and discuss both core to core, and node to
node performance and energy figures when executing the Mont-Blanc bench-
mark suite [109] (see Table 7.3). We report performance (execution time) and
energy differences by normalizing to that of MareNostrum. We obtain node
power using the power monitoring infrastructure of the Mont-Blanc proto-
type (see Section 7.1.5) , and the node energy consumption in MareNostrum
provided through LSF job manager.

2Introduced in Q3 2012
3Introduced in Q1 2012

84

7.2. COMPUTE NODE EVALUATION

7.2.1 Core Evaluation

In Figure 7.7, we present the performance comparison on a core-to-core basis
between the Mont-Blanc prototype and MareNostrum supercomputer. This
comparison, using single-threaded benchmarks, gives a sense of the perfor-
mance difference between both cores without the interference of scheduling
and synchronization effects of parallel applications.

Across the benchmark suite, Mont-Blanc is from 2.2 to 12.7 times slower.
The Cortex-A15 core underperforms the Intel SandyBridge mainly due to:
the lack of SIMD DP FP extensions (vectorization observed in dmm, 3ds,
fft, red, vecop); lower per socket memory bandwidth (12.8 vs 51.2 GB/s);
and limited memory subsystem resources geared towards low power4 (more
off-chip accesses observed in 2dc, amcd, hist, nbody). On average, across the
entire suite, a Mont-Blanc core is 4.3x slower than MareNostrum.

2dc amcd dmm hist ms nbody 3ds fft red vecop gMean
0

1

2

3

4

5

6

7

8

E
xe

cu
ti

o
n

ti
m

e
n

o
rm

a
liz

ed
to

M
ar

eN
o

st
ru

m

12
.7

Mont-Blanc 1core

Figure 7.7: Mont-Blanc vs MareNostrum III: core to core performance compari-
son with Mont-Blanc benchmarks.

7.2.2 Node Evaluation

In Figure 7.8, we compare performance and energy consumption on a node-
to-node basis between the Mont-Blanc prototype and the MareNostrum III
supercomputer.

Given the characteristics of the Mont-Blanc SoC and its software stack, we
evaluate three different computing scenarios: homogeneous CPU computing
with OpenMP (blue bars), heterogeneous CPU + GPU with OpenCL (red
bars), and heterogeneous with OmpSs (violet bars).

4Intel Xeon E5-2670 features 20 MB of third level cache.

85

7.2. COMPUTE NODE EVALUATION

2dc dmm hist nbody 3ds red vecop gMean
0

10

20

30

40

50

E
xe

cu
ti

o
n

ti
m

e
n

o
rm

a
liz

ed
to

M
ar

eN
o

st
ru

m

72
.2

83
.9

Mont-Blanc OpenMP

Mont-Blanc OpenCL

Mont-Blanc OmpSs+OpenCL

(a) performance

2dc dmm hist nbody 3ds red vecop gMean
−100

−50

0

50

100

150

200

250

300

R
el

a
ti

ve
en

er
g

y
d

iff
er

en
ce

to
M

ar
eN

o
st

ru
m

[%
]

496
579

Mont-Blanc OpenMP

Mont-Blanc OpenCL

Mont-Blanc OmpSs+OpenCL

(b) energy

Figure 7.8: Mont-Blanc vs MareNostrum III: node to node a) performance and
b) energy comparison with Mont-Blanc benchmarks. Computational
resources of the Mont-Blanc are used as follows: OpenMP - two CPU
cores, OpenCL - GPU, OmpSS + OpenCL - one CPU core + GPU.

Comparing CPU-only computing, a dual-core Mont-Blanc node is 18x
slower than a 16-core MareNostrum node. When using OpenCL to off-load
all compute tasks to the GPU, Mont-Blanc is 14x slower than MareNostrum.
Finally, using OmpSs to exercise both the GPU and the CPU, we significantly
reduce the gap to only 9x across the benchmark suite.

Energy wise, when using only CPUs with OpenMP, a Mont-Blanc node
consumes 5% more energy compared to a MareNostrum node. As we close the
performance gap, Mont-Blanc nodes become more energy efficient on average:
from consuming 20% less energy when using only GPU, to consuming 45%
less energy when using both GPU and CPU cores.

Our results show that, when using the embedded GPU, Mont-Blanc
can be significantly more energy-efficient than an homogeneous cluster like
MareNostrum III. However, Mont-Blanc needs applications to scale to 10-
15x more nodes in order to match performance, and interconnection network
performance is critical in that case.

86

7.2. COMPUTE NODE EVALUATION

7.2.3 Node Power Profiling

Energy has two dimensions: power and time. Execution time depends on
how the application performs on the underlying architecture. Power depends
on how much the application stresses compute resources, processor physical
implementation and SoC power management. The power monitoring infras-
tructure in the Mont-Blanc prototype (Section 7.1.5) helps the user reason
about both factors. Comparing the power of different mappings5 (CPU,
GPU, or CPU+GPU), the user can estimate the speedup required to com-
pensate the power differences and run the system at the best energy efficiency
point.

Figure 7.9 shows a high sampling rate power profile of one Mont-Blanc
node for different mappings of the execution of the 3D-stencil benchmark.
The different mappings include one CPU core (sequential), dual core (OpenMP),
GPU (OpenCL), and GPU + 1 CPU (OmpSs).

0 200 400 600 800 1000 1200 1400 1600 1800

Runtime [s]

5

6

7

8

9

10

11

12

P
o

w
er

[W
]

Compute resources

1 core
2 cores
GPU
GPU + 1 core

Figure 7.9: The Mont-Blanc prototype: power profile demonstration of different
compute to hardware mappings for 3D-stencil computation. Note:
markers are only to distinguish lines, not sampling points.

The node idle power is 5.3W. This includes the static power of all the
components given that frequency scaling is disabled for benchmarking pur-
poses. The average power consumption when running on one and two CPU
cores is 7.8W and 9.5W respectively. This includes the power consumption
of the SoC, memory subsystem and network interface.

Node power when using the GPU and the GPU + 1 CPU is 8.8W and
11W, respectively. When running on the GPU alone, one of the cores is still
active as a helper thread that synchronously launches kernels to the GPU
and therefore blocks until they complete. When running OmpSs on the GPU

5Counting only elements contributing to the computing.

87

7.3. INTERCONNECTION NETWORK TUNING AND EVALUATION

+ 1 CPU, one of the cores is the GPU helper and the other one runs a worker
thread and contributes to computation, thus adding that extra power.

Our results show that the extra power required by OmpSs because of
adding one core to GPU computation outweighs the performance improve-
ment, leading to 15% higher energy to solution in the 3D stencil benchmark
(as we show in Figure 7.8).

From our results with other benchmarks, node power varies across differ-
ent workloads although it remains in the same range seen in Figure 7.9. The
maximum power seen for executions with two CPU cores is 14W, and 13.7W
for executions with the GPU plus one CPU core.

The above shows the relevance of the power measurement infrastructure
in the Mont-Blanc prototype. It allows us to explain where and how the
power is being spent, even at high frequencies. The ability to visualize power
over time is even more valuable for applications showing different phases that
may benefit of different CPU-GPU mappings. This way, the user can identify
the best mapping for each application phase.

In systems without a power profile (which just provide the total job en-
ergy consumption), such analysis requires a less accurate and time-consuming
trial-and-error approach looking at power deltas over multiple runs of differ-
ent configurations.

7.3 Interconnection Network Tuning and Eval-
uation

In this section, we quantify the latency and bandwidth of the Mont-Blanc
interconnection network. Since the Mont-Blanc interconnect is implemented
using a lossy Ethernet technology, it is of paramount importance that every
layer is properly tuned. Thus, we discuss the improvements in different
parts of the interconnect stack which in turn affect the overall interconnect
performance.

In Figure 7.10, we present both bandwidth and latency measurements ob-
tained from the Mont-Blanc prototype using the Intel MPI PingPong bench-
mark. We present four curves per graph, each corresponding to incremental
improvements on the node network interface.

88

7.3. INTERCONNECTION NETWORK TUNING AND EVALUATION

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

Message size [bytes]

0

20

40

60

80

100
B

a
n

d
w

id
th

[M
B

/
s]

Initial

Updated driver

Updated driver + OpenMX

Updated driver + patched kernel

(a) Bandwitdh

20 21 22 23 24 25 26 27 28 29 210

Message size [bytes]

0

50

100

150

200

L
a

te
n

cy
[u

S
]

Initial

Updated driver

Updated driver + OpenMX

Updated driver + patched kernel

(b) Latency

Figure 7.10: The Mont-Blanc prototype: inter-node bandwidth and latency tun-
ing. The figure illustrates different optimizations of the network
subsystem and how they reflect on the resulting achievable band-
width and latency. All data was gathered using MPI Ping-Pong
benchmark.

After the initial deployment of the Mont-Blanc prototype we measured
achievable MPI throughput and latency of 80 MB/s and 156 µs respectively
(blue line). The results were obtained using the NIC driver built-into the
Linux Kernel.

We updated the driver using a proprietary version provided by the USB-
to-GbE bridge maker6, achieving significant improvements in both through-
put and latency for small messages: up to 3.4x better throughput for mes-
sages under 64KB, and only 88µs latency for zero-sized messages (red line).
However, bandwidth for larger messages stayed the same as in the initial
configuration. The new driver provides a configurable wait interval between
the consecutive bulk transfers on the USB bus, which we reduced to the bare
minimum.

Additionally, we did a back-port of a Linux Kernel patch [93] which im-
proved throughput in USBNET driver for USB 3.0 compliant devices. This
patch improved throughput for messages larger than 64 KB, achieving a

6ASIX chip AX88179

89

7.4. OVERALL SYSTEM EVALUATION

maximum throughput of 100 MB/s (green line). For reference purposes, the
same benchmark run on a server class x86_86 system (with integrated 1GbE
NIC) achieves 112.5 MB/s and a 46.5µs latency [80], so we achieve 89% of
the potential bandwidth, but our latency is still 1.9x higher.

Most of the ping-pong latency is due to the TCP/IP protocol stack, which
runs on the ARM Cortex-A15 CPU. We also deployed the Open-MX [61]
protocol stack (a free implementation of the Myricom protocol) to replace
TCP/IP. The lighter-weight protocol reduced latency for small messages to
65 µs, that also increased bandwidth for messages under 32 KB. However, it
degraded the throughput for the larger message sizes (violet line).

Since most MPI application will exchange large messages, we prefer to
optimize bandwidth over latency and select the proprietary driver + patched
USBNET kernel for the stable network configuration of the prototype.

7.4 Overall System Evaluation

In this section, we evaluate the Mont-Blanc cluster using full-scale, produc-
tion MPI applications, as listed in Table 7.4, plus three reference mini-apps
used by US DOE National Labs [42]. All test applications use OpenMPI,
and run on the CPU only.

Table 7.4: The Mont-Blanc prototype: MPI applications used for scalability eval-
uation.

Application Domain

BigDFT [30], [57] Electronic Structure
BQCD [97] Quantum Chromodynamics
MP2C [120] Multi-Particle Collision Dynamics
QuantumESPRESSO [59] Electronic Structure and Materials Modeling
SMMP [49, 50, 91] Molecular Thermodynamics
Alya [128, 127] Biomedical Mechanics
CoMD [52] Proxy for Molecular Dynamics
LULESH [82, 81] Proxy for Hydrodynamics
miniFE [69] Proxy for Finite Element Method

7.4.1 Applications Scalability

In Section 7.2.2, we show that a Mont-Blanc node is 18x slower than a
MareNostrum III node when using only the CPU cores. This means we
should linearly scale a workload to 18x more compute nodes to achieve equiv-
alent performance.

90

7.4. OVERALL SYSTEM EVALUATION

In Figure 7.11, we show both strong and weak scaling figures for MPI
applications on the Mont-Blanc prototype. Each graph is accompanied with
the corresponding parallel efficiency graph in order to provide more details
about the application’s scalability. Note that 16 Mont-Blanc nodes already
span 2 EMB blades, and 32 nodes span 3 blades. Also, most applications had
their baseline run with more than one node due to the 4GB/node DRAM
limitation.

1 10 100 1000 2000

MPI ranks

100

101

102

103

S
ca

la
b

ili
ty

BQCD
ALYA
BigDFT
SMMP
COMD
LULESH
QE
miniFE
ideal

(a) Strong scaling.

1 10 100 1000 2000

MPI ranks

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

a
lle

l
effi

ci
en

cy

BQCD
ALYA
BigDFT
SMMP
COMD
LULESH
QE
miniFE

(b) Strong efficiency.

1 10 100 1000 2000

MPI ranks

100

101

102

103

S
ca

la
b

ili
ty

MP2C
SMMP
COMD
LULESH
QE
miniFE
ideal

(c) Weak scaling.

1 10 100 1000 2000

MPI ranks

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

a
lle

l
effi

ci
en

cy

MP2C
SMMP
COMD
LULESH
QE
miniFE

(d) Weak efficiency.

Figure 7.11: The Mont-Blanc prototype: scalability and parallel efficiency of MPI
applications.

Strong scaling for miniFE quickly degrades starting at 32 nodes. Parallel

91

7.4. OVERALL SYSTEM EVALUATION

efficiency drops to 50%, and performance flattens, and even degrades at 512
nodes. BQCD and QE also exhibit quick strong scaling degradation, but still
run at more than 50% efficiency on 64 nodes. The rest of the applications
scale linearly to hundreds of nodes, with 4 of them still running at more than
50% efficiency at the full scale of the system.

Our results show that it is reasonable to scale applications to 16 nodes in
order to compensate for the difference to a MareNostrum III node. However,
not all applications will scale further to compensate for multiple MareNos-
trum III nodes.

Weak scaling results are much better. Most of the applications still run
at more than 70% efficiency at the maximum problem size. Notably, CoMD
and SMMP run at more than 90% efficiency, but QE and MP2C degrade to
60% efficiency.

Detailed performance analysis reveals the causes for lack of scalability:
besides the low bandwidth / high latency 1GbE network, the system suf-
fers from lost packets in the interconnect, each incurring at least one Re-
transmission Time-Out (RTO), and load imbalance introduced by scheduler
preemptions.

Lost Packets

In Figure 7.12, we show an execution profile for the real CoMD run, and
a Dimemas [22] simulated run eliminating network retransmissions. Both
traces have the same time scale.

The simulated profile shows that the native execution suffered from many
lost packets (most communications suffer from at least 1 retransmission),
thus reducing performance by 1.47x. This is of course application depen-
dent, and depends on the communication patterns, message sizes, volume of
communication, etc.

Further analysis of the duration of MPI send operations shows that CoMD
experiences multiple retransmissions per packet, with and average MPI send
duration of 158ms (compared to 50ms optimum), and often reaching 400ms.

Figure 7.13a shows the performance degradation as a function of how
many nodes experience a retransmission penalty on every message they send.
The results show that the penalty is linear with respect to the retransmission
delay. But more important, the results show that as soon as one node has to
retransmit, the whole applications pays almost the full penalty.

Figure 7.13b shows the performance degradation as a function of how
many messages need to be retransmitted (by any node). The results show
that the penalty is linear with the retransmission delay and the retransmis-
sion probability. Both results combined indicate that it is important to avoid

92

7.4. OVERALL SYSTEM EVALUATION

(a) Packet loss in place.

(b) No packet loss.

Figure 7.12: The Mont-Blanc prototype: illustration of the TCP/IP packet loss
effect on MPI parallel applications: a) trace with, and b) without
packet loss. Trace without packet loss is replayed with the Dimemas
simulator in order to remove TCP/IP retransmissions and corre-
sponding timeouts. The X axis represents time, the Y axis repre-
sents the process number.

retransmissions in the whole system, or to cluster retransmissions in time,
because as soon as one node has to retransmit, it does not matter if others
also have to retransmit. For example, a glitch in a switch that causes all
nodes connected to it to retransmit would have a similar penalty to a glitch
in the NIC of one of the nodes, forcing it alone to retransmit.

To minimize the penalty of retransmissions, we reduce the RTOmin pa-
rameter in the TCP/IP stack from the default 200ms to 5ms (the lowest
possible in our system). While the lowering of RTOmin parameter reduces
retransmission penalties, it would be desirable implementing Retransmission
Early Detection (RED) to reduce the effects of retransmissions. However,
packet loss does not exclusively happen at switch buffers, but we also ob-
served nodes can drop packets. In addition, our blade switches which forward
most of the network traffic do not support Explicit Congestion Notification
(ECN) markings, thus not being able to control transmission rates.

Pre-emptions

Figure 7.14 shows a histogram of the duration of computational phases in
the real CoMD execution. The gradient color shows the total time spent
in computation phase of a given duration (green/light is low, blue/dark is
high).

93

7.4. OVERALL SYSTEM EVALUATION

0 5 10 15 20 25 30 35

nodes experiencing retransmission

0

20

40

60

80

100

120

140
P

er
fo

rm
a

n
ce

d
eg

ra
d

a
ti

o
n

[%
]

RTO duration
5 ms

10 ms

50 ms

100 ms

200 ms

400 ms

(a)

0 5 10 15 20 25 30 35 40 45

[%] Probability of retransmission per send

0

20

40

60

80

100

P
er

fo
rm

a
n

ce
d

eg
ra

d
a

ti
o

n
[%

]

RTO duration
5 ms

10 ms

50 ms

100 ms

200 ms

400 ms

(b)

Figure 7.13: Performance degradation due to retransmissions: a) every message
is affected for selected nodes; b) random messages are affected.

5.0 270.0 400.0 500.0

Duration [ms]

0001

0256

0512

0768

1080

P
ro

ce
ss

n
u

m
b

er

Figure 7.14: The Mont-Blanc prototype: illustration of computational noise ef-
fect. Figure shows the 2D Histogram of computational phases du-
ration of representative CoMD application execution. X axis repre-
sents bins of durations, Y axis represents process number. Gradient
coloring: green-blue. Coloring function: logarithmic.

The figure shows two main regions of 5ms and 270ms durations. We
match the 5ms regions to the TCP/IP retransmissions (matching the 5ms
RTO setting, and confirming that many processes suffer retransmissions).
Then, the remaining time is spent in 270ms regions, matching the duration

94

7.4. OVERALL SYSTEM EVALUATION

of one inner iteration of the application. Beyond the 270ms boundary, we
identify a set of outliers taking significantly more time (marked with red
polygons).

Checking the IPC (Instructions per Cycle) of these computation phases,
we confirm that the divergence in execution time is not related to load imbal-
ance in the application. There are external factors introducing this variation.
We attribute them to scheduler preemptions, and from now on treat them as
OS noise in the discussions to come.

Further simulations of different noise injection frequencies and noise du-
ration indicate that the performance impact of OS noise is linear with the
probability of noise being injected, and the ratio for the noise duration to the
computational burst. That is, applications with short computational bursts
are more prone to suffer OS noise performance degradation than applications
with long computational bursts.

7.4.2 Comparison With Traditional HPC

Figure 7.15 shows a comparison between Mont-Blanc and MareNostrun III
when using the same number of MPI ranks (same number of cores). Since
applications are not completely malleable in the number of MPI ranks they
can use, the reported number of cores is different for each application, ranging
from 257 to 1536.

Our results show that Mont-Blanc is 3.5× slower on average (matching
the Mont-Blanc benchmarks evaluation in Section 7.2.1), and requires 9% less
energy to run the applications. However, none of the applications is optimized
to use the GPU or OmpSs. On the basis of the results in Section 7.2, we
would expect Mont-Blanc to result in better energy efficiency once the GPU
is used alongside the CPU.

Table 7.5 shows a comparison of the Mont-Blanc prototype and MareNos-
trum III when aiming to equalize their execution times. For this experiment
we exercise the strong-scaling capability of applications on the Mont-Blanc
prototype, so we keep the input set constant and increase the number of MPI
ranks to get the same execution time as on MareNostrum III with 64 MPI
ranks (4 nodes).

95

7.4. OVERALL SYSTEM EVALUATION

SMMP
1024

MP2C
512

ALYA
1500

COSMO
257

COMD
1331

LULESH
1331

MINIFE
1536

gMean
0

1

2

3

4

5

E
xe

cu
ti

o
n

ti
m

e
n

o
rm

a
liz

ed
to

M
ar

eN
o

st
ru

m

4.06

1.43

4.59 4.70

3.57
3.86

3.26
3.44

MPI ranks ⇒

(a) performance

SMMP
1024

MP2C
512

ALYA
1500

COSMO
257

COMD
1331

LULESH
1331

MINIFE
1536

gMean
−35

−30

−25

−20

−15

−10

−5

0

5

10

R
el

a
ti

ve
en

er
g

y
d

iff
er

en
ce

to
M

ar
eN

o
st

ru
m

[%
]

0.39

-30.59

0.01

7.16
8.92

-29.83

-10.81
-9.20

MPI ranks ⇒

(b) energy

Figure 7.15: Mont-Blanc vs MareNostrum III comparison with MPI applications
for the same number of MPI ranks: a) performance (execution time)
and b) energy comparison. Each application feature its own number
of MPI ranks. In both cases lower is better for Mont-Blanc.

96

7.5. SCALABILITY PROJECTION

Table 7.5: Mont-Blanc vs MareNostrum III comparison with MPI applications
targeting same execution time, using the same input set.

CoMD miniFE
MNa MBb MN MB

MPI ranks 64 240 64 224
Execution time [s] 70.72 68.05 71.66 72.19
Avg. power [W] 992 1083 1065 1034
Energy [Wh] 195 205 212 207
rack units 8 7 8 7
a MareNostrum III
b Mont-Blanc

Our results show that Mont-Blanc needs 3.5–3.75 more MPI ranks to
match the MareNostrum III execution time. This is consistent with the 3.5×
slowdown observed for constant number of MPI ranks, and shows similar
scalability on both systems. In terms of energy consumption, both systems
consume approximately the same amount of energy. Regarding rack space,
Mont-Blanc requires 7 rack units (1 BullX chassis, 9 blades x 15 nodes, 270
cores), while MareNostrum III requires 8 rack units (4 2U nodes).

We conclude that, when using only the CPUs, Mont-Blanc and MareNos-
trum III are equally energy efficient when targeting equal execution time
(performance) on both systems.

7.5 Scalability Projection

The results in Section 7.4 show that the scalability of the Mont-Blanc proto-
type is affected by the choice of interconnect technology (Ethernet via USB),
and potential load imbalance (introduced by the system, or intrinsic to the
application). Further, in Section 7.4.2, we revealed a need for good parallel
scalability to compensate for lower per node performance compared against
the MareNostrum III supercomputer. These issues conceal the potential of
the Mont-Blanc approach at scale.

To unveil the scalability of the prototype architecture to larger systems,
we employ a state-of-the-art modeling methodology [36, 111] that allows us
to project scalability of the current deployment once certain issues have been
fixed.

To validate our hypothesis about factors preventing applications to scale,
we simulate weak scaling scenarios where we have removed network retrans-
missions, OS preemptions, and improved load balance in the application.

97

7.5. SCALABILITY PROJECTION

We remove retransmissions by having the Dimemas simulator assume that
messages are always delivered. We remove OS preemptions by recomputing
the CPU burst durations using the cycle counter (multiplying by the cycle
time). Since the cycle counter is virtualized, it does not count while the
application is preempted. To simulate a better load balance, we evenly re-
distribute the instruction count in a computation phase across all the MPI
ranks, and compute the burst duration using the average IPC for the com-
pute phase. Finally, we also simulate an ideal network (lossless, zero latency,
infinite bandwidth) to determine if a better (hardware-supported) network
would improve the system.

101 102 103 104 105 106

Processes

101

102

103

104

105

S
ca

la
b

ili
ty

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(a) CoMD scalability.

101 102 103 104 105 106

Processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar

a
lle

l
effi

ci
en

cy

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(b) CoMD efficiency.

101 102 103 104 105 106

Processes

100

101

102

103

104

105

S
ca

la
b

ili
ty

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(c) LULESH scalability

101 102 103 104 105 106

Processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar

a
lle

l
effi

ci
en

cy

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(d) LULESH efficiency.

101 102 103 104 105 106

Processes

100

101

102

103

104

105

S
ca

la
b

ili
ty

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(e) miniFE scalability

101 102 103 104 105 106

Processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar

a
lle

l
effi

ci
en

cy

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(f) miniFE efficiency.

Figure 7.16: The Mont-Blanc prototype: measured and simulated scalability and
parallel efficiency. Simulated configurations are as follows: s w/o
TCP/IP retransmissions; l w/o TCP/IP retransmissions and pre-
emptions; © w/o TCP/IP retransmissions + balanced load; 6 w/o
TCP/IP retransmissions, preemptions, and with ideal network pa-
rameters.

98

7.6. CONCLUSIONS

Figure 7.16 shows the results of estimation of parallel scalability and
efficiency for up to 1 million MPI ranks. The baseline setup (blue curve)
shows that none of the 3 simulated applications scale beyond 100K MPI ranks
with an efficiency over 50%. If we consider that the whole MareNostrum III
system has 3,056 nodes (48.9K processors), and that Mont-Blanc is 3.5x
slower at the same number of MPI ranks, a Mont-Blanc system with 50K
nodes would be 1.75x slower than MareNostrum III, consume the same energy
(but less power), and use 12.5% less space.

However, removing only the network packet loss (red line, triangle) al-
ready shows a significant improvement for CoMD, now scaling well to 30K
processes and still improving performance up to 100K processes. LULESH
and miniFE do not seem to be heavily affected by the lossy network.

When we eliminate both the retransmissions, and the OS preemptions
(purple line, circle), CoMD does not exhibit a significant improvement. It
is clear that its scalability was dominated by the retransmissions. However,
LULESH and miniFE show some improvement, that indicates that serializa-
tion introduced by OS noise was causing significant damage.

If we go one step further, and look at the ideal network simulations (or-
ange line), we observe that none of the three applications is limited by net-
work performance (after we remove the retransmissions and OS noise). At
this point, we have obtained a scalability improvement of 7x for CoMD, 1.2x
for LULESH, and 1.1x for miniFE, most of it due to using a lossless network.

Further analysis reveals that load imbalance is the biggest issue affecting
scalability of the prototype (green line). Improvement of load balance has
a visible impact on all three applications, with LULESH and miniFE being
the most affected (notably, the two that were less sensitive to the network
performance).

Improving the load balance in the application is beyond the capabilities
of the hardware, and while it will affect Mont-Blanc systems and traditional
systems like MareNostrum III in a similar way, Mont-Blanc needs to scale to
a higher number of processes to compensate for the slower compute nodes,
making it the most critical aspect of application development.

7.6 Conclusions

In this chapter, we have presented in detail the architecture of the Mont-
Blanc prototype, and compared it to a production supercomputer. Our re-
sults show that Mont-Blanc is 3.5× slower than MareNostrum III for the
same number of MPI processes. However applications can weak scale to
3.5× more nodes to compensate for that, and still run in approximately the

99

7.6. CONCLUSIONS

same time and same energy. Since applications must scale to a higher number
of nodes, load balancing is a critical design issue for the applications.

Cost savings due to the use of commodity embedded SoCs in Mont-Blanc
is impossible to evaluate at this point. The Mont-Blanc prototype is domi-
nated by Non-Recurring Engineering (NRE) costs, while the cost of MareNos-
trum III is the result of a negotiation and a competitive bid.

However, we do not necessarily advocate for using off-the-shelf mobile
processors like the Exynos 5250, just like we do not use off-the-shelf desktop
i7 cores for MareNostrum III. We advocate for building workload-specific
SoCs based on the IP developed for the embedded and mobile segments,
adding the missing features required by HPC, such as a lossless network (as
indicated by our results in Section 7.5), ECC memory protection, and the
set of accelerators that the workload will exploit. Just like the Intel Xeon
used in MareNostrum III builds on the desktop i7 SandyBridge processor.

From the time when Mont-Blanc specifications were fixed, there have
been many developments in the embedded computing space: increased mul-
ticore counts (4 and 8 cores per SoC), 64-bit ARM processors (Cortex-A72
and Cortex-A57), CUDA capable embedded GPUs (NVIDIA Tegra K1 and
X1 SoCs), and on-chip PCIe controllers are all available. Our projections
simulating CoMD, LULESH, and miniFE on an upgrade of the Exynos 5250
dual-core Cortex-A15 @ 1.7 GHz to the Tegra X1 quad-core Cortex-A57 @
1.9 GHz show a 1.6-1.7× performance improvement while still relying only
on the CPUs.

Based on our analysis in this chapter, a next-generation Mont-Blanc sys-
tem should have a lossless interconnection network, and a higher per-node
core count to better amortize shared infrastructure costs such as cooling and
power supply. Then, the burden falls on the applications, which should fully
utilize the SoC resources, such as the embedded GPU7, and focus on load
balancing to scale to a higher number of lower-performance nodes.

Under these conditions, Mont-Blanc type systems would offer equivalent
performance to contemporary systems, while potentially saving 45% energy.

7The use of OpenCL for HPC code acceleration has not ramped up since 2013 when
the ARM Mali GPU was selected for the Mont-Blanc prototype. CUDA and OpenMP
with SIMD annotations seem to be the preferred way to use HPC accelerators today.

100

8
Mont-Blanc Next-Generation

The purpose of this application-driven study is to identify bottlenecks of
the Mont-Blanc prototype design and to propose a set of design recommen-
dations for next generation systems. In addition, we would like to project
the performance and power, if we could have used more recent and future
commodity mobile/embedded hardware building blocks. We consider 32-bit
ARM SoCs that were not available to the project consortium in time to enter
the final prototype design cycle. In addition, we show predictions for systems
built with 64-bit ARM based mobile SoCs that appeared at the final phase
of the project. At the end, we give an estimate looking into the future, by
extrapolating power and performance envelopes for systems built around the
recently announced 64-bit ARM Cortex-A72 processor core IP.

8.1 Methodology

For this study we rely on execution traces of MPI applications taken on
the Mont-Blanc prototype. To predict application performance, while doing
design space exploration, we apply a methodology similar to the one used in
a previous work [63]. We extend this methodology with an adaptation of the
work of IBM [117] that allows for performance prediction of compute phases
using a linear combination of benchmarks, instead of doing fully detailed
instruction trace simulations.

101

8.1. METHODOLOGY

MPI APPLICATION

EXECUTION WITH
EXTRAE TRACING

TRACE

CPU BURSTS
CLUSTERING

#1 #2 #3 #N

MATCH BURSTS
TO MB-BENCHMARKS

CLUSTER SIMULATION

APP TIMING

...

EXTRAE

PARAVER

CLUSTERING
SUITE

GENETIC ALGORITHM
SUITE

DIMEMAS

1

2

3

4

5

CLUSTERED
BURSTS

Figure 8.1: Illustration of the methodology for performance prediction of poten-
tial Mont-Blanc prototype upgrades.

8.1.1 Description

Figure 8.1 depicts the performance prediction methodology. The basic idea is
to estimate the performance of a real application on a target machine based
on the performance of a set of kernels. The premise is that the real, full
size, MPI application cannot be executed in the target platform, whereas the
kernels do. Moreover, a detailed instruction-level simulation of the real appli-
cation on a target machine model would be too time consuming. We execute
both the kernels and the real applications on a base machine (in our case, the
Mont-Blanc prototype), and discover which kernels are representative (and
with which weights) of each part of the real application. Then, we run the
kernels on the target machine and measure their performance. Using the
representative kernel performance on the target machine (and their weights)
we project the performance for the real application running on the target ma-
chine. As an input we take an MPI application execution trace which holds
information about the duration of each computational part (CPU burst),
MPI calls and their corresponding communication patterns. In addition, we
record the available performance counters data for each CPU burst. Having
performance counters data allows for CPU burst classification and grouping
by similarity (clustering). We perform clustering on all the CPU bursts, e.g.
by grouping bursts with the same performance counters statistics and du-

102

8.1. METHODOLOGY

Benchmarks
performance

counters

Clustered bursts
performance

counters

FROM BASE PLATFORM

GA-TOOL BURSTS
MODELING

Clustered bursts
models

Benchmarks
timings

FROM
TARGET PLATFORM

TIMING RECONSTRUCTION
AND RATIOS CALCULATION

Clustered bursts
speed-up

ratios

FROM CLUSTERED APPLICATION TRACE

TO DIMEMAS SIMULATION

Figure 8.2: Computational phases performance modelling scheme.

ration, resulting in a few burst types. Then, we map each burst type into
a linear combination of kernels using a tool developed within the project.
Once the mapping is done, we can reconstruct the per burst type execution
time using the execution time of the kernels. With the new execution time
we calculate per burst type speedup ratios with respect to the base machine
that are fed into the Dimemas cluster simulator. Dimemas replays the entire
MPI application execution using the speedup ratios and network parameters.

Burst Mapping

In Figure 8.2 we show the procedure of mapping a burst to a set of kernels and
how to compute the speedup ratio for Dimemas simulation. Each burst type
from an MPI application is modelled as a linear combination of kernels by
matching the burst performance counters statistics to the linear combination
of performance counters statistics of kernels. We do this on the base platform,
in this case, the Mont-Blanc prototype. Having this model for each burst
type, we reconstruct its execution time on the target platform by multiplying
the execution times of the corresponding kernels on the target platform with
their corresponding weights obtained on the base machine. Once we have
the execution time of each burst type on both base and target machines, we
compute the corresponding speedup ratio (base exectime/target exectime)
and feed it into Dimemas.

103

8.1. METHODOLOGY

3dst amcd hist msrt nbdy red spmv veop dmm fft 2dcon

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
N

o
rm

a
liz

ed
ex

ec
u

ti
o

n
cy

cl
es

500 MHz
800 MHz

1000 MHz
1200 MHz

1400 MHz
1600 MHz

Figure 8.3: Mont-Blanc benchmarks: execution cycles vs. operational frequency
on the Mont-Blanc node. This figure shows compute/memory bound
nature of the workloads. Compute bound benchmarks have all bars
of the same height, while the memory bound ones increase the height
with frequency. Per benchmark data is normalized to the execution
at 500 MHz.

8.1.2 Benchmarks

As the benchmark suite, we employ the Mont-Blanc benchmarks, developed
for the purpose of our research. The Mont-Blanc benchmarks cover a mix of
benchmarks commonly found in HPC applications. Their behaviour covers
the compute and memory-bound characteristics of applications. Figure 8.3
depicts the compute/memory bound nature of the Mont-Blanc benchmarks
while sweeping the operating frequency of the Mont-Blanc prototype node.
In an ideal situation increase in frequency should be followed by the corre-
sponding increase in the performance (reduction of execution time) equal to
the ratio of the frequency increase. Five benchmarks show memory-bound
behaviour, as it is observed by monotonic increase in the number of execu-
tion cycles1. Compute-bound kernels require the same number of cycles at
different core frequencies, as memory speed (which remains unchanged) is
irrelevant for them. This means the speedup is equal to the frequency in-
crease. Vector operation (vecop) is the extremely memory-bound case: when
frequency is increased by a factor of 3.2, the number of cycles increases by a
factor of 1.7, achieving a speedup of just 1.88 compared to the base case of
500 MHz. In addition to the Mont-Blanc benchmarks, we extend our bench-
marks set with the STREAM suite (copy, scale, add, triad), well-known as
memory characterization kernels.

1Increase in the number of execution cycles does not necessarily means longer execution
time due to the shorter cycle time with an increased operating frequency.

104

8.1. METHODOLOGY

Table 8.1: List of target platforms used for performance and power predic-
tions of the potential Mont-Blanc prototype upgrades.

Platform Core type Frequency Cores per SoC

Mont-Blanc ARM Cortex-A15 1.7 GHz 2
NVIDIA Jetson ARM Cortex-A15 2.3 GHz 4

ARM Juno ARM Cortex-A57 1.1 GHz1 4
NG2Node ARM Cortex-A72 2.5 GHz 8

1 We extrapolate operating frequency to 2.3 GHz in our study.
2 Next Generation

8.1.3 Applications

Our performance and power consumption prediction methodology requires
collecting the execution and power traces from the Mont-Blanc prototype.
Due to stability issues with the prototype we have only a few small appli-
cation traces that are too small for a large-scale study. At the moment of
writing about this study, we managed to get one large trace from the CoMD
proxy application [58] with 1080 processes running on 540 nodes (half of the
Mont-Blanc prototype), and we use it to conduct our study.

8.1.4 Base and Target Architectures

In this study we utilize the Mont-Blanc prototype to build extrapolation
models, from both performance and power perspectives. We analyze what
could have been the Mont-Blanc prototype and how it could look like in the
near future. Here we focus on strictly homogeneous designs - all cores being
of the same type and without GPU acceleration. We also investigate the
effects of interconnect bandwidth and latencies on a per application basis.
Table 8.1 lists the platforms we use in our study, covering both existing and
hypothetical systems. Our performance projections assume the same number
of cores on the all systems, therefore configurations with more cores per SoC
have a proportionally lower number of nodes.

8.1.5 Validation

In order to show the error margins of our methodology for modelling single
MPI process bursts, we present validation results against three platforms
listed in Table 8.2 for HPL and the CoMD proxy application [58]. CoMD
has two representative burst types and we list validation results for the both.

105

8.2. PERFORMANCE PROJECTIONS

Table 8.2: List of platforms used for methodology validation.

Platform SoC CPU Frequency

MB-Node (base) Exynos 5250 Cortex-A15 1.7 GHz
NVIDIA Jetson Tegra K1 Cortex-A15 2.3 GHz
NVIDIA Carma Tegra 3 Cortex-A9 1.3 GHz
Raspberry Pi 2 BCM2836 Cortex-A7 0.9 GHz

Table 8.3: Methodology validation for HPL and CoMD on different target plat-
forms. All data is normalized to the Mont-Blanc node.

MB-Node Jetson Carma RPi2

Workload Relative error [%]

HPL 0.00 3.12 7.42 3.55
CoMD Cluster 1 0.00 1.31 17.47 22.61
CoMD Cluster 2 0.00 1.48 20.81 23.07

Table 8.3 presents the performance prediction results on the aforemen-
tioned platforms. Errors are calculated compared to real execution times. In
the case of HPL, the method keeps the prediction error below 10 % across all
the platforms, even though we exploit different CPU architectures – starting
with an out-of-order CPU (Cortex-A15) and ending with an in-order CPU
(Cortex-A7). In the case of CoMD application bursts, prediction error is
negligible when modelling execution time on the Jetson platform, whilst for
Carma and RPi2 has an acceptable level of 20%. These results are within
the margins reported by IBM [117]. We have to underline that all errors
produce optimistic predictions - we always predict faster, predicting shorter
execution time.

8.2 Performance Projections

In this section, we present performance projections for CoMD application
running on alternative node platforms and their related configurations listed
in Table 8.1. We show the results obtained when varying different system
parameters such as core types, number of cores in an SoC, and network
parameters - bandwidth and latency.

Table 8.4 shows that, given the total execution time, there are two pre-
dominant clusters, namely Cluster 1 and Cluster 2, taking 99% of the total
computation time together. To simplify the analysis, we incorporate Cluster

106

8.2. PERFORMANCE PROJECTIONS

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
IPC

0

1

2

3

4

5

6

To
ta

l c
yc

le
s

1e8
Cluster Analysis Results of trace 'CoMD.chop1.prv'

DBSCAN (Eps=0.01, MinPoints=4)
Noise
Cluster 1
Cluster 2
Cluster 3
Cluster 4

Figure 8.4: Example of computational bursts clustering analysis of CoMD appli-
cation.

Table 8.4: Clustering statistics of CoMD computational bursts. Durations are in
ms.

Cluster Name Density Tot. Duration Avg. Duration % Total Duration

Noise 6 1 188 198 0.0233
Cluster 1 10793 2 759 066 255 54.386
Cluster 2 9713 2 310 236 237 45.539
Cluster 3 6 1 628 271 0.03
Cluster 4 4 995 248 0.02

3 into Cluster 1, and Cluster 4 into Cluster 2 given their similarities.
Table 8.5 presents the clusters performance models obtained using the

methodology described in the Section 8.1. Each cluster is modelled by a
set of benchmarks. In this case, both clusters map to Atomic Monte-Carlo
Dynamics (amcd) and 2D Convolution (2dcon) benchmarks. Using these
benchmarks and corresponding weights, we project the performance for the
target platforms in Table 8.1 and show the resulting per cluster speedup
ratios in Table 8.6.

ARM Juno is a test platform built with test technology node meant for
early CPU IP technology adopters. The Cortex-A57 cores in this platform
have the same architecture but operate at a lower frequency than that of
a real mobile SoC product implementation. Then, we extrapolated ARM
Juno’s operating frequency from 1.1 to 2.3 GHz by a linear factor equal to

107

8.2. PERFORMANCE PROJECTIONS

Table 8.5: Performance model of CoMD application: clusters modeling with ker-
nels.

ClusterID # Kernels Weights

Cluster 1 amcd 2dcon 0.156 0.1002
Cluster 2 amcd 2dcon 0.138 0.1015

Table 8.6: Performance model of CoMD application: per-cluster speedup ratios
for the target platforms.

Platform Core type Frequency Per cluster speedup ratios

Mont-Blanc ARM Cortex-A15 1.7 GHz 1.0, 1.0
NVIDIA Jetson ARM Cortex-A15 2.3 GHz 1.322, 1.319

ARM Juno ARM Cortex-A57 2.3 GHz 1.50948, 1.5051
NG Node ARM Cortex-A72 2.5 GHz 3.5, 3.5

the frequency increase, and applied it to the per cluster speedup ratios. This
way, we can predict performance for ARM Cortex-A57 CPU implementations
on a real mobile SoC implementations such as Samsung Exynos 5433 and
Qualcomm Snapdragon 810, from the studies on the ARM Juno board.

For the projections for a NG Node, we use publicly available perfor-
mance numbers [12] for the highest-performance ARM’s CPU core IP – ARM
Cortex-A72 core. The public ratio claimed by ARM is a speedup of 3.5 over
ARM Cortex-A15 on average. We use this ratio for our study, since there
were no existing mobile SoC developers platforms featuring this processor at
our disposal.

8.2.1 Mont-Blanc Prototype

Figure 8.5 shows the sensitivity to interconnect bandwidth and latency of
the CoMD applicatin running on the Mont-Blanc prototype. The measured
node bandwidth of Mont-Blanc prototype is 640Mb/s with a latency of 145µs,
which is far from optimal in both cases. It is evident that reaching the the-
oretical 1Gb/s bandwidth would improve the performance of CoMD of ap-
proximately 8% in this configuration. A further increase in bandwidth would
saturate at 32% performance improvement at 3.2Gb/s of network bandwidth.
Further, analysis reveals that CoMD is latency insensitive on the Mont-Blanc
platform.

108

8.2. PERFORMANCE PROJECTIONS

0.01 0.1 1 10 40

Link bandwidth [Gb/s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
S

p
ee

d
u

p
vs

M
o

n
t-

B
la

n
c

pr
o

to
ty

p
e

Mont-Blanc

Latencies
1 us

5 us

10 us

50 us

100 us

150 us

200 us

1.336
1.338
1.340
1.342
1.344
1.346

CoMD 1080 processes, 540 nodes, 2 cores per node, Mont-Blanc, ARM Cortex-A15 @ 1.7GHz

Figure 8.5: Performance projection for CoMD application on the Mont-Blanc
prototype with different interconnect bandwidths and latencies.

8.2.2 NVIDIA Jetson

Figure 8.6 shows the speedup of CoMD on a hypothetical Mont-Blanc proto-
type powered by Jetson-like nodes, while sweeping interconnect bandwidth
and latency. Note that the results are normalized to the execution on the
real Mont-Blanc prototype architecture.

Interconnect parameters measurement on the Jetson platform shows a
sustained interconnect bandwidth of 960Mb/s while providing a latency of
50µs. A one-to-one replacement of the Mont-Blanc node for a Jetson-like
node would improve the performance of CoMD by 35%. If we could further
improve interconnect elements of such a platform, mainly bandwidth, we
could achieve a 72% performance increase compared to the Mont-Blanc pro-
totype. We would need approximately 5Gb/s of sustained node bandwidth
to achieve this level of performance.

8.2.3 ARM Juno

Figure 8.7 shows the performance prediction for CoMD in a hypothetical pro-
totype powered by nodes with four-core Cortex-A57 SoCs running at 2.3GHz.
Using a more advanced core IP technology further improves performance. As-
suming the same bandwidth as in the Jetson platform, we could achieve a
42% performance increase over the base line Mont-Blanc prototype. With a
better interconnect, a maximum of 96% performance improvement could be
achieved with an interconnect bandwidth of approximately 6.5Gb/s.

109

8.2. PERFORMANCE PROJECTIONS

0.01 0.1 1 10 40

Link bandwidth [Gb/s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p

ee
d

u
p

vs
M

o
n

t-
B

la
n

c
pr

o
to

ty
p

e

Jetson
Latencies

1 us

5 us

10 us

50 us

100 us

150 us

200 us

1.736
1.738
1.740
1.742
1.744
1.746
1.748

CoMD 1080 processes, 270 nodes, 4 cores per node, NVIDIA Jetson, ARM Cortex-A15 @ 2.3GHz

Figure 8.6: Performance projection for CoMD application on a hypothetical pro-
totype powered by NVIDIA Jetson-like nodes with different intercon-
nect bandwidths and latencies compared to the Mont-Blanc proto-
type.

0.01 0.1 1 10 40

Link bandwidth [Gb/s]

0.0

0.5

1.0

1.5

2.0

S
p

ee
d

u
p

vs
M

o
n

t-
B

la
n

c
pr

o
to

ty
p

e

Latencies
1 us

5 us

10 us

50 us

100 us

150 us

200 us

1.955

1.960

1.965

1.970

1.975

CoMD 1080 processes, 270 nodes, 4 cores per node, ARM Juno, ARM Cortex-A57 @ 2.3GHz

Figure 8.7: Performance projection for CoMD application on a hypothetical pro-
totype powered by ARM Juno-like nodes with different interconnect
bandwidths and latencies compared to the Mont-Blanc prototype.

8.2.4 NG Node

Figure 8.8 shows the performance prediction for CoMD running on a hy-
pothetical platform featuring hypothetical nodes with eight of the recently-
announced ARM Cortex-A72 cores. If we choose a 1Gb/s interconnect band-
width, we could not use the full potential of such a platform. We would gain
just a 150% speedup over the baseline Mont-Blanc prototype. To fully un-
leash the platform’s potential, we should integrate a 10Gb/s interconnect
interface, such as 10Gb Ethernet, and potentially achieve a 4x performance

110

8.3. POWER PROJECTIONS

improvement over the Mont-Blanc prototype.

0.01 0.1 1 10 40

Link bandwidth [Gb/s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p

ee
d

u
p

vs
M

o
n

t-
B

la
n

c
pr

o
to

ty
p

e

Latencies
1 us

5 us

10 us

50 us

100 us

150 us

200 us

4.00
4.02
4.04
4.06
4.08
4.10

CoMD 1080 processes, 135 nodes, 8 cores per node, NG Node, ARM Cortex-A72 @ 2.5GHz

Figure 8.8: Performance projection for CoMD on a hypothetical prototype pow-
ered by NG Nodes with different interconnect bandwidths and laten-
cies compared to the Mont-Blanc prototype.

To make a summary of the interconnect bandwidth effect and a com-
parison of the different target platforms for CoMD performance, Figure 8.9
shows per platform application execution speedup compared to the existing
Mont-Blanc prototype. The different platform performances are shown for
the case when we could fully utilise the capacity of 1Gb and 10Gb Ethernet
interconnects. Using 10 Gb Ethernet improves application performance for
every configuration compared to 1 Gb Ethernet. The improvement grows as
we increase per node compute capability, by either increasing the number
of cores per node and/or improving cores IP. For future systems, based on
ARM Cortex-A72 cores and using commodity interconnect technology, 10
Gb Ethernet is a real necessity in order to achieve a balanced system design.

8.3 Power Projections

In this section, we present power projections for the target platforms listed
in Table 8.1. We show results when varying different system parameters such
as core types, number of cores in a SoC and network parameters.

8.3.1 Methodology

For the purpose of power projections we use the Mont-Blanc prototype sys-
tem architecture as the base case. More precisely, we build a system power

111

8.3. POWER PROJECTIONS

Mont-Blanc
prototype

NVIDIA
Jetson

ARM
Juno

NG
node

Platforms

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p

ee
d

u
p

vs
M

o
n

t-
B

la
n

c
pr

o
to

ty
p

e

1.13
1.40 1.51

2.51

1.34

1.74
1.96

4.051Gb Ethernet

10Gb Ethernet

CoMD 1080 MPI processes, 150µs interconnect latency

Figure 8.9: Achievable speedup of CoMD with upgraded node architecture, using
commodity 1Gb and 10Gb Ethernet.

model around the Mont-Blanc architecture, taking into account power con-
sumption from as many hardware components as possible.

In the prototype, we can measure power consumption on a per blade and
per node basis. Thus, we do not have mechanisms to track power with finer
granularity. For Ethernet controllers and voltage regulators, we use power
figures provided in the components’ datasheets. For CPU and memory, we
use power consumption numbers obtained from a similar platform with power
sensors for those components.

CPU and Memory Power

We use the Hardkernel Odroid-XU3 board [67] which integrates the Samsung
Exynos 5422 SoC [112] and offers power probes for CPUs and memory. The
SoC integrates ARM Cortex-A15 and ARM Cortex-A7 both in quad core
configurations, and 2 GB of LPDDR3. Figure 8.10 shows how power con-
sumption varies with frequency and number of cores while running CoMD
with one, two, and four processes. Sweeping the frequency allows for extrap-
olation of power figures beyond the available frequencies of the Odroid-XU3
board.

From the graph, we deduce a power of 2.51 W at 1.7 GHz for a dual core
configuration of the Mont-Blanc node CPU. We use this figure in the power
breakdown to build the node and system power models.

To model CPU power consumption of the Jetson platform, we extrapolate
the power consumption shown in Figure 8.10 with a exponential fitting curve.
From the graph We read the power consumption of 11.287W at 2.3 GHz and
use this in our projections with the Jetson platform.

112

8.3. POWER PROJECTIONS

500 1000 1500 2000

Frequency (MHz)

0

2

4

6

8

10

12
P

o
w

er
co

n
su

m
p

ti
o

n
(W

)
1 core

2 core

4 core

exponential fit 1 core

exponential fit 2 core

exponential fit 4 core

Figure 8.10: ARM Cortex-A15 power consumption vs. operational frequency:
single and multi-core frequency sweep.

For the Juno powered system, with a quad core ARM Cortex-A57 CPU,
we use CPU power figures obtained from a 3rd party benchmarking web-
site [5]. The authors had an access and benchmarked a mobile platform
(tablet) integrating a Samsung Exynos 7 Octa (5433) with an octa-core con-
figuration [113] - quad core ARM Cortex-A57 and quad core ARM Cortex-
A53 CPUs. Figure 8.11 shows those numbers. We again extrapolate power
consumption beyond the maximum frequency to project the power consump-
tion for a quad-core ARM Cortex-A57 CPU on the Juno platform. At 2.3
GHz we read 13.526 W for the quad-core ARM Cortex-A57 CPU integrated
on the Samsung Exynos 7 Octa mobile SoC and use this in our projections
with the Juno platform.

800 1000 1200 1400 1600 1800 2000 2200

Frequency (MHz)

0

2

4

6

8

10

12

14

P
o

w
er

co
n

su
m

p
ti

o
n

(W
)

1 core

2 core

4 core

exponential fit 1 core

exponential fit 2 core

exponential fit 4 core

Figure 8.11: ARM Cortex-A57 power consumption vs. operational frequency:
single and multi-core frequency sweep.

Memory For memory power consumption estimation, we repeat the same
previous experiments as for the Cortex-A15 CPU power on the ODROID-
XU3 board. Figure 8.12 depicts how memory power consumption varies with

113

8.3. POWER PROJECTIONS

different core operating frequencies, in both single and multi-core configura-
tions. There is a linear relationship between core frequency and memory
power. This makes sense as faster cores imply a higher memory load. The
slope of the increase may vary when reaching a point of memory congestion,
as it seems to be the case for four cores at high frequency2.

For a dual-core configuration at 1.7 GHz (as in the Mont-Blanc proto-
type), we measure 53.4 mW of memory power consumption. In the Mont-
Blanc prototype, we have double the memory capacity compared to the
ODROID-XU3, so we multiply this number by a factor of two and use it
for the power breakdown shown in the next section.

500 1000 1500 2000 2500

Frequency (MHz)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
o

w
er

co
n

su
m

p
ti

o
n

(W
)

1 core

2 core

4 core

linear fit 1 core

polynomial fit 2 core

polynomial fit 4 core

Figure 8.12: Memory power consumption as a function of core frequency.

In the case of Jetson- and Juno-like nodes, we take the power consumption
from a quad-core execution, extrapolated to 2.3GHz, and multiply it by the
factor of four to account for the increased memory capacity. Note that we
assume 2GB of memory per core as we increase the number of cores, as it a
standard in the present HPC systems.

Finally, for NG Node configuration, we use the extrapolated memory
power consumption for a quad-core SoC at 2.5GHz, multiplied by a factor of
8 to account for the increased memory capacity.

Blade Power Breakdown

The average measured power of a Mont-Blanc prototype blade when running
CoMD with 1080 MPI processes is 235.98W. In the Figure 8.13 we show the
power breakdown for the different components using our model. The 1080
MPI processes are scheduled on 540 nodes occupying 36 blades in total.

We build a blade power model after the blade power breakdown, as fol-
lows:

2This is the reason why we fit dual and quad-core results with polynomials of the 2nd

and 3rd order respectively.

114

8.3. POWER PROJECTIONS

Blade OTHER (38%)

Node CPUs (16%)

Node MEM (1%)

Node ETH (7%)

Node DC Losses (9%)

Node OTHER (29%)

Figure 8.13: Mont-Blanc prototype blade power breakdown while running CoMD
on 540 nodes, 2 MPI processes per node. Total blade average power
consumption is 235.98 W.

Pblade = Pbov +
Nnpb

ηDC

× (Pnov + pcpu + pmem + peth) (8.1)

where Pbov (blade overhead) is a constant representing part of the blade
power consumption we were unable to determine further, including cooling
fans and network switch. We keep this parameter fixed across the experi-
ments. Nnpb is a constant representing the number of nodes per blade. ηDC is
a constant modelling per node main linear voltage regulator efficiency. Pnov

(node overhead) models part of the node power we were unable to breakdown
further, and is kept constant across the experiments. Variables pcpu, pmem,
and peth model CPU cores, memory and Ethernet controller average power
consumption.

Finally, we model the entire system with the following equation:

Ptotal = nblades × Pblade =
NPMPI

Nnpb × ncpn

× Pblade (8.2)

where NPMPI is a constant representing the total number of MPI pro-
cesses within an application execution. Nnpb is the same constant we use in
Equation 8.1. The variable ncpn holds the information about the number of
cores per SoC (or node, since we assume a single socket node architecture).

Power Prediction Parameters Table 8.7 presents the list of parameters
we use to calculate Equation 8.1 and Equation 8.2 in order to project average
power consumption and potential energy savings when running CoMD on the
target platforms listed in Table 8.1

115

8.3. POWER PROJECTIONS

Table 8.7: Power consumption model of CoMD: list of used parameters for dif-
ferent node architectures.

Platforms

Parameter Mont-Blanc NVIDIA Jetson ARM Juno NG Node

ncpn 2 4 4 8
pcpu [W] 2.51 11.287 13.526 6.508
pmem [mW] 106.8 464.8 464.8 1089.3

NPMPI 1080
Nnpb 15
ηDC 0.85

Pbov [W] 89.49
Pnov [W] 4.54
peth [W] {1.15, 5.1 [79]} for {1GbE, 10GbE}

Results

In this section, we present power and energy figures for alternative Mont-
Blanc node designs and 10GbE interconnect technology. Figure 8.14 shows a
comparison between power consumption of hypothetical Mont-Blanc blades
built around the platforms listed in Table 8.1. All the alternative blades
experience an increase in power consumption due to increased multi-core
density and improved interconnect technology.

Mont-Blanc
prototype

NVIDIA
Jetson

ARM
Juno

NG
node

Platforms

0

100

200

300

400

500

600

P
o

w
er

co
n

su
m

p
ti

o
n

[W
]

236.08

397.29
436.80

323.97
305.79

466.99
506.50

393.68

1Gb Ethernet

10Gb Ethernet

CoMD 1080 MPI processes, blade power consumption

Figure 8.14: Power consumption comparison of alternative Mont-Blanc blades.

The increase in blade power consumption does not necessary lead to an

116

8.4. CONCLUSIONS

increased power consumption of the whole system, for the same total number
of cores. Figure 8.15 depicts this behaviour. As the number of cores per node
is increased, the number of blades is reduced. This way, savings are achieved
by reducing the total power overheads of the blades. One interesting case
is the Jetson platform which shows that with an increase in the number of
cores from two to four, followed by an increase in their operating frequency
from 1.7 to 2.3 GHz, and doubling the memory capacity to 8GB, we could
afford to integrate 10 Gb Ethernet and stay within the same power budget
of the current Mont-Blanc prototype. However, if the power consumption is
the major concern, we should consider the NG Node which could potentially
reduce power consumption by 59% for the same number of cores as in the
Mont-Blanc prototype.

Mont-Blanc
prototype

NVIDIA
Jetson

ARM
Juno

NG
node

Platforms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
o

w
er

n
o

rm
a

liz
ed

to
th

e
M

o
n

t-
B

la
n

c
pr

o
to

ty
p

e

1.00

0.84
0.93

0.34

1.30

0.99
1.07

0.42

1Gb Ethernet

10Gb Ethernet

CoMD 1080 MPI processes, system power consumption

Figure 8.15: Power consumption comparison of alternative Mont-Blanc systems.

At the end, we show energy consumption comparison in Figure 8.16. As
expected, all the alternative configurations consume less energy than the
Mont-Blanc prototype. In terms of energy consumption NVIDIA Jetson and
ARM Juno platforms are almost even. However, the Juno alternative could
achieve potentially better speedup compared to Jetson - 1.96 vs 1.74. The
NG Node alternative would be the best choice given both energy consumption
and speedup over the Mont-Blanc prototype. It could achieve 88% energy
savings and 4.05× speedup over the base case, for the same number of cores
and the same system integration.

8.4 Conclusions
From the performance and power projection studies we can draw a couple of
guidelines for next generation systems design.

117

8.4. CONCLUSIONS

Mont-Blanc
prototype

NVIDIA
Jetson

ARM
Juno

NG
node

Platforms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n

er
g

y
n

o
rm

a
liz

ed
to

th
e

M
o

n
t-

B
la

n
c

pr
o

to
ty

p
e

1.00

0.68 0.69

0.15

1.09

0.64 0.62

0.12

1Gb Ethernet

10Gb Ethernet

CoMD 1080 MPI processes, system energy consumption

Figure 8.16: Energy consumption comparison of alternative Mont-Blanc systems.

The performance study shows that each generation of mobile cores keeps
improving the performance. We have shown that using the current most
commonly used mobile cores IP, namely ARMCortex-A57, we could achieve a
performance improvement over the Mont-Blanc prototype system by a factor
of 1.96. Even more promising are the current state-of-the-art mobile IP cores,
namely ARM Cortex-A72, which would further improve the performance of
an HPC cluster built around mobile SoCs by a factor of 4.05 over the Mont-
Blanc prototype.

In line with the performance study is the power projection study, showing
that the new silicon processes which allow for higher per SoC core count,
together with new core types, improve on the overall system energy efficiency.
Increasing core count from two to eight and using current state-of-the-art
mobile cores, could potentially save 88% of the energy compared to a current
Mont-Blanc prototype.

However, all those CPU performance improvements require improvement
on the side of interconnect. As we have demonstrated there is a need for
higher bandwidth interconnect technologies as 1 Gb Ethernet would not suf-
fice. More precisely, we have to provide at least 10 Gb of per node bandwidth
for the systems built with the current state-of-the-art CPU core IPs in order
to have a balanced system. Relying on the commodity networking technol-
ogy, 10 Gb Ethernet would be a viable candidate for the node interconnect.

118

9
Conclusions

In this thesis we have shown that building HPC systems using mobile SoCs,
capable of running production level HPC applications is feasible. However,
due to a lower per socket performance and limited I/O resources of a mobile
SoC, there are significant challenges. Throughout our work, one can notice
the evolution of mobile SoCs – both in terms of compute performance and
available memory bandwidth which needs to closely follow the performance
increase.

One of the findings is that mobile SoCs need to offer 4× higher aggregate
performance in order to match a production level supercomputer. This can
be achieved using higher core count i.e. eight, next-generation IP cores, and
exploiting on-chip GPUs for accelerating the computation.

Further, in order to interconnect them together, they need to provide
low-latency high-bandwidth interfaces. USB3.0 is not suitable for HPC since
it introduces an additional level of latency, but it however the most common
peripheral interface found in mobile SoCs. Currently, the only viable solution
for this purpose if the use of PCIe, as found in most NVIDIA Tegras SoCs.

Unlike server processors, mobile SoCs do not provide a support for multi-
socket systems. Technology such as Intel QPI, AMD HyperTransport, would
be beneficial for mobile SoCs - allowing for multisocket solutions.

Sizing the memory system to a rule-of-a-thumb specification of 2-4 GB/core
is finally possible with the 64-bit ARM architecture. But, providing enough
of memory bandwidth would be a challenging task, since it requires addi-
tional memory channels. Also, those memory channels have to support ECC

119

9.1. FUTURE WORK

since it is of a paramount importance for high-performance systems.
The bright side is the software eco-system. When we began our study

with mobile SoCs, the HPC software stack for ARM platform was almost
non-existent. Today ARM provides a set of HPC optimized libraries, just
like Intel and other HPC vendors do. This is already recognized by Fu-
jitsu who recently, as of the latest ISC’16 conference, revealed their plans
on building exascale supercomputer based on ARMv8 ISA, while relying on
their proprietary microarchitecture.

It is unlikely that mobile SoC will takeover the lead from well established
HPC architectures but, there is a opportunity for the next-generation de-
partments size machines be built from mobile SoCs. In order this to happen,
all flaws must be addressed, and there is enough space to balance cost vs
performance in mobile domain.

9.1 Future Work
A logical next step in this study is to actually make a case for HPC-ready
mobile SoC, and software eco-system. Author’s vision is as follows:

• Exploring the possibility of using heterogeneous multicore to offload
OS, runtime, and interrupt handling to designated low-power low-
performance cores – making a case for big.Little platform use for HPC.

• Even further exploration of heterogeneity in mobile SoCs, and enable
programmability of on-chip accelerators beyond the GPU i.e. DSPs.

• Taking the advantage of dark-silicon and conduct a design space ex-
ploration for integrating the bare minimum set of on-chip resources to
support efficient HPC.

• Enabling multi-mode operation of an HPC-ready mobile SoC – explo-
ration of resource managements techniques, both in hardware and soft-
ware, in order to enable the proper operation depending on the need,
and power and thermal budget.

120

List of publications

Main contributions:

• N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O. Vilarrubi, C. Gomez,
L. Backes, D. Nieto, H. Servat, X. Martorell, J. Labarta, E. Ayguade,
C. Adeniyi-Jones, S. Derradji, H. Gloaguen, P. Lanucara, N. Sanna, J.-
F. Mehaut, K. Pouget, B. Videau, E. Boyer, M. Allalen, A. Auweter,
D. Brayford, D. Tafani, V. Weinberg, D. Brömmel, R. Halver, J. H.
Meinke, R. Beivide, M. Benito, E. Vallejo, M. Valero, and A. Ramirez,
The Mont-Blanc prototype: An Alternative Approach for
HPC Systems, In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC’16,
Salt Lake City, UT, USA, 2016, IEEE/ACM.

�Nominated for The Best Paper Award.

• N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez.
Tibidabo: Making the case for an ARM-based HPC system.
Future Generation Computer Systems, vol. 36, pp. 322 – 334, 2014,
Elsevier.

• N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, Supercomputing with Commodity CPUs: Are Mo-
bile SoCs Ready for HPC? In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC’13, Denver, CO, USA, 2013, IEEE/ACM.

�Winner of The Best Student Paper Award.

• N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez.
The Low-power Architecture Approach Towards Exascale Com-
puting. Journal of Computational Science, vol. 4, no. 6, pp. 439 – 443,
2013, Elsevier

121

LIST OF PUBLICATIONS

• N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and A. Ramirez.
Experiences with Mobile Processors for Energy Efficient HPC.
In Proceedings of the Conference on Design, Automation and Test in
Europe, DATE’13, Grenoble, France, 2013. EDA Consortium.

• N. Rajovic, N. Puzovic, L. Vilanova, C. Villavieja, and A. Ramirez.
The Low-power Architecture Approach Towards Exascale Com-
puting.
In Proceedings of the Second Workshop on Scalable Algorithms for Large-
scale Systems, ScalA’11, Seattle, WA, USA, 2011. ACM.

Related side publications:

• I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez.
Energy Efficient HPC on Embedded SoCs: Optimization Tech-
niques for ARM Mali GPU.
In Proceedings of International Parallel and Distributed Processing Sym-
posium, IPDPS’14, Phoenix, AZ, USA, 2014, IEEE.

• D. Göddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Rajovic,
N. Puzovic, and A. Ramirez.
Energy efficiency vs. performance of the numerical solution
of PDEs: An application study on a low-power ARM-based
cluster.
Journal of Computational Physics, vol. 237, pp. 132 – 150, 2013, Else-
vier.

122

Bibliography

[1] Abdurachmanov, D., Bockelman, B., Elmer, P., Eulisse, G., Knight,
R., and Muzaffar, S. Heterogeneous high throughput scientific computing with
APM X-gene and Intel Xeon Phi. In Journal of Physics: Conference Series (2015),
vol. 608, IOP Publishing, p. 012033. [page 14]

[2] Adiga, N. R., Almási, G., Almasi, G. S., Aridor, Y., Barik, R., Beece,
D., Bellofatto, R., Bhanot, G., Bickford, R., Blumrich, M., et al. An
overview of the BlueGene/L supercomputer. In Supercomputing, ACM/IEEE 2002
Conference (2002), IEEE. [page 13]

[3] Alam, S., Barrett, R., Bast, M., Fahey, M. R., Kuehn, J., McCurdy, C.,
Rogers, J., Roth, P., Sankaran, R., Vetter, J. S., Worley, P., and Yu,
W. Early evaluation of IBM BlueGene/P. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (2008), IEEE Press. [page 13]

[4] AMD. AMD Opteron A1100 SoC Series. https://web.archive.org/web/
20161127212702/https://www.amd.com/Documents/A-Hierofalcon-Product-B
rief.pdf. [page 13]

[5] Anandtech. Cortex-A57 - Performance and Power - ARM A53/A57/T760 inves-
tigated - Samsung Galaxy Note 4 Exynos Review. http://www.anandtech.com/sh
ow/8718/the-samsung-galaxy-note-4-exynos-review/6. Accessed: 2015-06-09.
[page 113]

[6] Applied Micro. APM “X-Gene” Launch Press Briefing. https:
//web.archive.org/web/20120813151248/http://www.apm.com/global/x-g
ene/docs/X-GeneOverview.pdf, 2012. [page 13]

[7] ARM Connected Community. What is exact double precision performance
for Mali T628 MP6 (Arndale Octa Board)? https://web.archive.org/web/
20160303143357/https://community.arm.com/message/18218, 4 2014. [page 83]

[8] ARM Ltd. ARM Announces 2GHz Capable Cortex-A9 Dual Core Processor Im-
plementation. http://www.arm.com/about/newsroom/25922.php. [page 42]

[9] ARM Ltd. ARM Holding Annual Report & Accounts 2012. http:
//phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MTczODc5fEN
oaWxkSUQ9LTF8VHlwZT0z&t=1. [page 6]

[10] ARM Ltd. CoreLink CCN-504 Cache Coherent Network. http:
//www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cac
he-coherent-network.php. [pages 7, 59, and 60]

123

https://web.archive.org/web/20161127212702/https://www.amd.com/Documents/A-Hierofalcon-Product-Brief.pdf
https://web.archive.org/web/20161127212702/https://www.amd.com/Documents/A-Hierofalcon-Product-Brief.pdf
https://web.archive.org/web/20161127212702/https://www.amd.com/Documents/A-Hierofalcon-Product-Brief.pdf
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
https://web.archive.org/web/20120813151248/http://www.apm.com/global/x-gene/docs/X-GeneOverview.pdf
https://web.archive.org/web/20120813151248/http://www.apm.com/global/x-gene/docs/X-GeneOverview.pdf
https://web.archive.org/web/20120813151248/http://www.apm.com/global/x-gene/docs/X-GeneOverview.pdf
https://web.archive.org/web/20160303143357/https://community.arm.com/message/18218
https://web.archive.org/web/20160303143357/https://community.arm.com/message/18218
http://www.arm.com/about/newsroom/25922.php
http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MTczODc5fENoaWxkSUQ9LTF8VHlwZT0z&t=1
http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MTczODc5fENoaWxkSUQ9LTF8VHlwZT0z&t=1
http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MTczODc5fENoaWxkSUQ9LTF8VHlwZT0z&t=1
http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php
http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php
http://www.arm.com/products/system-ip/interconnect/corelink-ccn-504-cache-coherent-network.php

BIBLIOGRAPHY

[11] ARM Ltd. CoreTile ExpressTMA15×2 A7×3 Technical Reference Manual.
https://web.archive.org/web/20160509134259/http://infocenter.arm.c
om/help/topic/com.arm.doc.ddi0503h/DDI0503H_v2p_ca15_a7_tc2_trm.pdf.
[page 53]

[12] ARM Ltd. Cortex-A72 processor. http://www.arm.com/products/processors/
cortex-a/cortex-a72-processor.php. Accessed: 2015-06-09. [page 108]

[13] ARM Ltd. Cortex-A9 Processor. http://www.arm.com/products/processors/
cortex-a/cortex-a9.php. [page 5]

[14] ARM Ltd. Mali Graphics plus GPU Compute. http://www.arm.com/products/m
ultimedia/mali-graphics-plus-gpu-compute/index.php. [page 8]

[15] ARM Ltd. Mali-T658. http://www.arm.com/products/mali-t658.php. [page 8]

[16] ARM Ltd. The ARM R© NEONTMgeneral purpose SIMD engine. http://www.ar
m.com/products/processors/technologies/neon.php. [page 6]

[17] ARM Ltd. VFPv3 Floating Point Unit. http://www.arm.com/products/proce
ssors/technologies/vector-floating-point.php. [page 6]

[18] ARM Ltd. Virtualization Extensions and Large Physical Address Exten-
sions. http://www.arm.com/products/processors/technologies/virtualizat
ion-extensions.php. [page 7]

[19] ARM Ltd. Virtualization Extensions and Large Physical Address Exten-
sions. http://www.arm.com/products/processors/technologies/virtualizat
ion-extensions.php. [page 54]

[20] ARM Ltd. Mali-T604 GPU Architecture. http://www.arm.com/products/multi
media/mali-graphics-plus-gpu-compute/mali-t604.php, 2013. [page 60]

[21] Samsung Exynos 5 Dual Arndale Board. http://www.arndaleboard.org/, 2013.
[page 68]

[22] Badia, R. M., Labarta, J., Gimenez, J., and Escale, F. Dimemas: Predicting
mpi applications behavior in grid environments. In Workshop on Grid Applications
and Programming Tools (GGF8) (2003), vol. 86, pp. 52–62. [pages 22, 52, and 92]

[23] Barcelona Supercomputing Center. Basic analysis suite. https://ftp.tool
s.bsc.es/basicanalysis/basicanalysis-0.2-revised.tar.gz. [page 25]

[24] Barcelona Supercomputing Center. Clustering suite. https://ftp.tool
s.bsc.es/clusteringsuite/ClusteringSuite-2.6.6-linux-x86-64.tar.gz.
[page 25]

[25] Barcelona Supercomputing Center. Extrae tracing infrastructure. https:
//tools.bsc.es/extrae. [page 24]

[26] Barcelona Supercomputing Center. MareNostrum III (2013) System Ar-
chitecture. https://web.archive.org/web/20160303114630/https://www.bsc.
es/marenostrum-support-services/mn3. [page 84]

[27] Barker, K. J., Davis, K., Hoisie, A., Kerbyson, D. J., Lang, M., Pakin,
S., and Sancho, J. C. Entering the petaflop era: The architecture and perfor-
mance of roadrunner. In 2008 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis (Nov 2008), pp. 1–11. [page 11]

124

https://web.archive.org/web/20160509134259/http://infocenter.arm.com/help/topic/com.arm.doc.ddi0503h/DDI0503H_v2p_ca15_a7_tc2_trm.pdf
https://web.archive.org/web/20160509134259/http://infocenter.arm.com/help/topic/com.arm.doc.ddi0503h/DDI0503H_v2p_ca15_a7_tc2_trm.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a72-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a72-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/multimedia/mali-graphics-plus-gpu-compute/index.php
http://www.arm.com/products/multimedia/mali-graphics-plus-gpu-compute/index.php
http://www.arm.com/products/mali-t658.php
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/vector-floating-point.php
http://www.arm.com/products/processors/technologies/vector-floating-point.php
http://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://www.arm.com/products/multimedia/mali-graphics-plus-gpu-compute/mali-t604.php
http://www.arm.com/products/multimedia/mali-graphics-plus-gpu-compute/mali-t604.php
https://ftp.tools.bsc.es/basicanalysis/basicanalysis-0.2-revised.tar.gz
https://ftp.tools.bsc.es/basicanalysis/basicanalysis-0.2-revised.tar.gz
https://ftp.tools.bsc.es/clusteringsuite/ClusteringSuite-2.6.6-linux-x86-64.tar.gz
https://ftp.tools.bsc.es/clusteringsuite/ClusteringSuite-2.6.6-linux-x86-64.tar.gz
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
https://web.archive.org/web/20160303114630/https://www.bsc.es/marenostrum-support-services/mn3
https://web.archive.org/web/20160303114630/https://www.bsc.es/marenostrum-support-services/mn3

BIBLIOGRAPHY

[28] Berendsen, H., van der Spoel, D., and van Drunen, R. Gromacs: A message-
passing parallel molecular dynamics implementation. Computer Physics Communi-
cations 91, 1 (1995), 43–56. [pages 21 and 41]

[29] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., nneau,
M. D., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler,
S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely,
A., Sterling, T., Williams, R. S., Yelick, K., and Kogge, P. Exascale Com-
puting Study: Technology Challenges in Achieving Exascale Systems. In DARPA
Technical Report (2008). [page 4]

[30] The BigDFT Scientific Application. http://bigdft.org/, 2015. [pages 21 and 90]

[31] Blem, E., Menon, J., and Sankaralingam, K. Power Struggles: Revisiting
the RISC vs. CISC Debate on Contemporary ARM and x86 Architectures. In
19th IEEE International Symposium on High Performance Computer Architecture
(HPCA 2013) (2013). [page 14]

[32] Bolaria, J. Cortex-A57 Extends ARM’s Reach. Microprocessor Report (Nov.
2012), 1–5. [page 7]

[33] Byrne, J. ARM CoreLink Fabric Links 16 CPUs. Microprocessor Report (Oct.
2012), 1–3. [pages 7 and 59]

[34] Calxeda. Calxeda Quad-Node EnergyCard. http://web.archive.org/web/
20131029200758/http://www.calxeda.com/wp-content/uploads/2012/06/Ener
gyCard-Product-Brief-612.pdf. [pages 13 and 60]

[35] Carrington, L., Komatitsch, D., Laurenzano, M., Tikir, M. M., Michéa,
D., Le Goff, N., Snavely, A., and Tromp, J. High-frequency simulations
of global seismic wave propagation using specfem3d_globe on 62k processors. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing (2008), IEEE
Press, p. 60. [page 47]

[36] Casas, M., Badia, R. M., and Labarta, J. Automatic analysis of speedup of
MPI applications. In Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS 2008 (2008), pp. 349–358. [pages 23, 25, and 97]

[37] Case, L. Tegra X1 Doubles GPU Performance. Microprocessor Report (Jan. 2015).
[page 8]

[38] Cavium. ThunderXTM. https://web.archive.org/web/20160310114848/http:
//www.cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf, 2013. [page 13]

[39] Cepulis, D. ISC16 Recap - Fujitsu Takes the Stage. https://community.arm.co
m/groups/processors/blog/2016/06/27/isc16-recap-fujitsu-takes-the-s
tage. [page 15]

[40] Charles Zhang, Phytium Technology Co., Ltd. Mars: A 64-core ARMv8
Processor. https://web.archive.org/web/20160310155325/http://www.hotchi
ps.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.
24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf,
2015. [page 13]

[41] Chen, T., Rghavan, R., Dale, J., and Iwata, E. Cell Broadband Engine
Architecture and its first implementation—A performance view. IBM Journal of
Research and Development 51, 5 (sep 2007), 559 –572. [page 11]

125

http://bigdft.org/
http://web.archive.org/web/20131029200758/http://www.calxeda.com/wp-content/uploads/2012/06/EnergyCard-Product-Brief-612.pdf
http://web.archive.org/web/20131029200758/http://www.calxeda.com/wp-content/uploads/2012/06/EnergyCard-Product-Brief-612.pdf
http://web.archive.org/web/20131029200758/http://www.calxeda.com/wp-content/uploads/2012/06/EnergyCard-Product-Brief-612.pdf
https://web.archive.org/web/20160310114848/http://www.cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
https://web.archive.org/web/20160310114848/http://www.cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
https://community.arm.com/groups/processors/blog/2016/06/27/isc16-recap-fujitsu-takes-the-stage
https://community.arm.com/groups/processors/blog/2016/06/27/isc16-recap-fujitsu-takes-the-stage
https://community.arm.com/groups/processors/blog/2016/06/27/isc16-recap-fujitsu-takes-the-stage
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf
https://web.archive.org/web/20160310155325/http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.321-64core-Zhang-phytium-v1.0.pdf

BIBLIOGRAPHY

[42] Coral collaboration benchmark codes. https://asc.llnl.gov/CORAL-benchmark
s/, 2013. [page 90]

[43] Data Center Knowledge. PayPal Deploys ARM Servers in Data Centers.
https://web.archive.org/web/20160310160416/http://www.datacenterknow
ledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-cen
ters/, 2015. [page 14]

[44] de Verdière, G. Hydrobench. https://github.com/HydroBench/Hydro, 2014.
[page 21]

[45] Demler, M. Tegra K1 Adds PC Graphics to Mobile. Microprocessor Report (Jan.
2014). [page 8]

[46] Dhodapkar, A., Lauterbach, G., Lie, S., Mallick, D., Bauman, J., Kan-
thadai, S., Kuzuhara, T., Shen, G., Xu, M., and Zhang, C. SeaMicro
SM10000-64 server: Building datacenter servers using cell phone chips. In 2011
IEEE Hot Chips 23 Symposium (HCS) (Aug 2011), pp. 1–18. [page 13]

[47] Dongarra, J., Luszczek, P., and Petitet, A. The LINPACK Benchmark:
past, present and future. Concurrency and Computation: Practice and Experience
15, 9 (2003), 803–820. [pages 21, 32, and 40]

[48] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Mar-
torell, X., and Planas, J. Ompss: a proposal for programming heterogeneous
multi-core architectures. Parallel Processing Letters 1, 2 (2011), 173–193. [pages 19
and 82]

[49] Eisenmenger, F., Hansmann, U. H. E., Hayryan, S., and Hu, C.-K. [SMMP]
A modern package for simulation of proteins. Computer Physics Communications
138, 2 (2001), 192–212. [pages 21 and 90]

[50] Eisenmenger, F., Hansmann, U. H. E., Hayryan, S., and Hu, C.-K. An
enhanced version of SMMP—open-source software package for simulation of proteins.
Computer Physics Communications 174, 5 (2006), 422–429. [pages 21 and 90]

[51] Energy Price Statistics. https://web.archive.org/web/20160906232718/http:
//ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price_
statistics. [page 4]

[52] ExMatEx. CoMD Proxy Application. http://www.exmatex.org/comd.html.
[pages 21 and 90]

[53] Feng, W.-c., and Cameron, K. The green500 list: Encouraging sustainable
supercomputing. Computer 40, 12 (2007). [page 3]

[54] Frigo, M., and Johnson, S. G. FFTW: An adaptive software architecture for
the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing
(1998), vol. 3, IEEE, pp. 1381–1384. [page 39]

[55] Fürlinger, K., Klausecker, C., and Kranzlmüller, D. The appletv-
cluster: Towards energy efficient parallel computing on consumer electronic devices.
Whitepaper, Ludwig-Maximilians-Universitat (2011). [page 13]

126

https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
https://web.archive.org/web/20160310160416/http://www.datacenterknowledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-centers/
https://web.archive.org/web/20160310160416/http://www.datacenterknowledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-centers/
https://web.archive.org/web/20160310160416/http://www.datacenterknowledge.com/archives/2015/04/29/paypal-deploys-arm-servers-in-data-centers/
https://github.com/HydroBench/Hydro
https://web.archive.org/web/20160906232718/http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price_statistics
https://web.archive.org/web/20160906232718/http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price_statistics
https://web.archive.org/web/20160906232718/http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price_statistics
http://www.exmatex.org/comd.html

BIBLIOGRAPHY

[56] Fürlinger, K., Klausecker, C., and Kranzlmüller, D. Towards energy
efficient parallel computing on consumer electronic devices. In Information and
Communication on Technology for the Fight against Global Warming. Springer, 2011,
pp. 1–9. [page 13]

[57] Genovese, L., Videau, B., Ospici, M., Deutsch, T., Goedecker, S., and
Méhaut, J.-F. Daubechies Wavelets for High Performance Electronic Structure
Calculations: the BigDFT Project. In Compte-Rendu de l’Académie des Sciences,
Calcul Intensif. (2010), Académie des Sciences. [pages 21 and 90]

[58] Germann et al, T. C. Codesign Molecular Dynamics (CoMD) Proxy App Deep
Dive. Exascale Research Conference (2011). [page 105]

[59] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni,
C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso,
A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann,
U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari,
N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto,
L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smo-
gunov, A., Umari, P., and Wentzcovitch, R. M. QUANTUM ESPRESSO:
a modular and open-source software project for quantum simulations of materials.
Journal of Physics: Condensed Matter 21, 39 (2009), 395502. [pages 21 and 90]

[60] Girona, S., Labarta, J., and Badia, R. M. Validation of Dimemas Commu-
nication Model for MPI Collective Operations. In Proceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface (2000), pp. 39–46. [page 23]

[61] Goglin, B. Design and implementation of Open-MX: High-performance message
passing over generic Ethernet hardware. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on (2008), IEEE, pp. 1–7. [pages
44 and 90]

[62] Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.
[page 25]

[63] Gonzalez, J., Gimenez, J., Casas, M., Moreto, M., Ramirez, A., Labarta,
J., and Valero, M. Simulating whole supercomputer applications. IEEE Micro
(2011), 32–45. [page 101]

[64] Grass, T., Allande, C., Armejach, A., Rico, A., Ayguadé, E., Labarta,
J., Valero, M., Casas, M., and Moreto, M. Musa: A multi-level simulation
approach for next-generation hpc machines. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(2016), SC ’16, pp. 45:1–45:12. [page 58]

[65] Gwennap, L. Broadcom Bares Muscular ARM: Quad-Issue ARMv8 CPU Targets
Xeon-Class Performance. Microprocessor Report (Oct. 2013), 1–4. [page 13]

[66] Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N.,
Puzovic, N., and Ramirez, A. Energy efficiency vs. performance of the numerical
solution of pdes: An application study on a low-power arm-based cluster. Journal
of Computational Physics 237 (2013), 132 – 150. [pages 4 and 45]

127

BIBLIOGRAPHY

[67] Hardkernel. ODROID-XU3. https://web.archive.org/web/20160324175751/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=
G140448267127. Accessed: 2016-04-25. [page 112]

[68] Henning, J. L. SPEC CPU2006 benchmark descriptions. SIGARCH Comput.
Archit. News 34, 4 (Sept. 2006), 1–17. [pages 18 and 32]

[69] Heroux, M. A., Doerfler, D. W., Crozier, P. S., Willenbring, J. M.,
Edwards, H. C., Williams, A., Rajan, M., Keiter, E. R., Thornquist,
H. K., and Numrich, R. W. Improving performance via mini-applications. Sandia
National Laboratories, Tech. Rep. SAND2009-5574 3 (2009). [pages 21 and 90]

[70] HPCwire. New Mexico to Pull Plug on Encanto, Former Top5 Su-
percomputer. https://web.archive.org/web/20160602162230/http:
//www.hpcwire.com/2012/07/12/new_mexico_to_pull_plug_on_encanto_f
ormer_top_5_supercomputer, 7 2012. [page 4]

[71] HPCwire. Requiem for Roadrunner. https://web.archive.org/web/
20130511112654/http://www.hpcwire.com/hpcwire/2013-04-01/requiem_
for_roadrunner.html, 4 2013. [page 4]

[72] IBM Systems and Technology. IBM System Blue Gene/Q Data Sheet, Novem-
ber 2011. [page 13]

[73] IHS iSuppli News Flash. Low-End Google Nexus 7 Carries $152 BOM,
Teardown Reveals. https://web.archive.org/web/20160527073453/https:
//technology.ihs.com/408150/low-end-google-nexus-7-carries-152-bom-t
eardown-reveals. [page 6]

[74] Imagination Technologies Limited. PowerVR Graphics. http://www.imgtec
.com/powervr/powervr-graphics.asp. [page 8]

[75] Intel. Intel ATOM S1260. https://web.archive.org/web/20160601151758/ht
tp://ark.intel.com/products/71267/Intel-Atom-Processor-S1260-1M-Cac
he-2_00-GHz. [page 6]

[76] Intel. Intel MPI Benchmarks 3.2.4. http://software.intel.com/en-us/articl
es/intel-mpi-benchmarks. [pages 20 and 44]

[77] Intel. Intel Xeon Processor E5-2670. https://web.archive.org/web/
20160601144459/http://ark.intel.com/products/64595/Intel-Xeon-Pro
cessor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI. [page 6]

[78] Intel. Intel R© 82574 GbE Controller Family. https://web.archive.org/web/
20160315003153/http://www.intel.com/content/dam/doc/datasheet/82574l
-gbe-controller-datasheet.pdf. [page 42]

[79] Intel. Intel R© 82599 10 Gigabit Ethernet Controller: Datasheet. http:
//www.intel.com/content/dam/www/public/us/en/documents/datasheets/
82599-10-gbe-controller-datasheet.pdf. Accessed: 2015-06-09. [page 116]

[80] Kandadio, S. N., and He, X. Performance of HPC Applications over Infiniband,
10 Gb and 1 Gb Ethernet. http://www.chelsio.com/assetlibrary/whitepapers
/HPC-APPS-PERF-IBM.pdf. [page 90]

128

https://web.archive.org/web/20160324175751/http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
https://web.archive.org/web/20160324175751/http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
https://web.archive.org/web/20160324175751/http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
https://web.archive.org/web/20160602162230/http://www.hpcwire.com/2012/07/12/new_mexico_to_pull_plug_on_encanto_former_top_5_supercomputer
https://web.archive.org/web/20160602162230/http://www.hpcwire.com/2012/07/12/new_mexico_to_pull_plug_on_encanto_former_top_5_supercomputer
https://web.archive.org/web/20160602162230/http://www.hpcwire.com/2012/07/12/new_mexico_to_pull_plug_on_encanto_former_top_5_supercomputer
https://web.archive.org/web/20130511112654/http://www.hpcwire.com/hpcwire/2013-04-01/requiem_for_roadrunner.html
https://web.archive.org/web/20130511112654/http://www.hpcwire.com/hpcwire/2013-04-01/requiem_for_roadrunner.html
https://web.archive.org/web/20130511112654/http://www.hpcwire.com/hpcwire/2013-04-01/requiem_for_roadrunner.html
https://web.archive.org/web/20160527073453/https://technology.ihs.com/408150/low-end-google-nexus-7-carries-152-bom-teardown-reveals
https://web.archive.org/web/20160527073453/https://technology.ihs.com/408150/low-end-google-nexus-7-carries-152-bom-teardown-reveals
https://web.archive.org/web/20160527073453/https://technology.ihs.com/408150/low-end-google-nexus-7-carries-152-bom-teardown-reveals
http://www.imgtec.com/powervr/powervr-graphics.asp
http://www.imgtec.com/powervr/powervr-graphics.asp
https://web.archive.org/web/20160601151758/http://ark.intel.com/products/71267/Intel-Atom-Processor-S1260-1M-Cache-2_00-GHz
https://web.archive.org/web/20160601151758/http://ark.intel.com/products/71267/Intel-Atom-Processor-S1260-1M-Cache-2_00-GHz
https://web.archive.org/web/20160601151758/http://ark.intel.com/products/71267/Intel-Atom-Processor-S1260-1M-Cache-2_00-GHz
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://web.archive.org/web/20160601144459/http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
https://web.archive.org/web/20160601144459/http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
https://web.archive.org/web/20160601144459/http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
https://web.archive.org/web/20160315003153/http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
https://web.archive.org/web/20160315003153/http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
https://web.archive.org/web/20160315003153/http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf

BIBLIOGRAPHY

[81] Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B. L., Cohen, J., De-
Vito, Z., Haque, R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz,
M., and Still, C. Exploring Traditional and Emerging Parallel Programming
Models using a Proxy Application. In 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing (Boston, USA, May 2013). [pages 21 and 90]

[82] Karlin, I., Keasler, J., and Neely, R. Lulesh 2.0 updates and changes. Tech.
Rep. LLNL-TR-641973, Lawrence Livermore National Laboratory, August 2013.
[pages 21 and 90]

[83] Komatitsch, D., and Tromp, J. Introduction to the spectral element method
for three-dimensional seismic wave propagation. Geophysical Journal International
139, 3 (1999), 806–822. [page 41]

[84] Lang, W., Patel, J., and Shankar, S. Wimpy node clusters: What about
non-wimpy workloads? In Proceedings of the Sixth International Workshop on Data
Management on New Hardware (2010), ACM, pp. 47–55. [page 12]

[85] Lavallée, P.-F., de Verdière, G. C., Wautelet, P., Lecas, D., and Du-
pays, J.-M. Porting and optimizing hydro to new platforms and programming
paradigms–lessons learnt, 2012. [page 21]

[86] Li, S., Lim, K., Faraboschi, P., Chang, J., Ranganathan, P., and Jouppi,
N. P. System-level integrated server architectures for scale-out datacenters. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture (2011), ACM, pp. 260–271. [page 14]

[87] The LINPACK 1000x1000 benchmark program. http://www.netlib.org/benchma
rk/linpackc. [page 30]

[88] Marjanović, V., Labarta, J., Ayguadé, E., and Valero, M. Overlapping
communication and computation by using a hybrid mpi/smpss approach. In Proceed-
ings of the 24th ACM International Conference on Supercomputing (2010), ACM,
pp. 5–16. [page 61]

[89] Mattson, T., and Henry, G. An Overview of the Intel TFLOPS Supercomputer.
Intel Technology Journal 2, 1 (1998). [pages 3 and 11]

[90] McCalpin, J. D. Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (Dec. 1995), 19–25. [pages 18 and 32]

[91] Meinke, J. H., Mohanty, S., Eisenmenger, F., and Hansmann, U. H. E.
[SMMP] v. 3.0—Simulating proteins and protein interactions in Python and Fortran.
Computer Physics Communications 178, 6 (2008), 459–470. [pages 21 and 90]

[92] Micron. DDR2 SDRAM System-Power Calculator. https://web.archive.or
g/web/20100513031210/http://micron.com/support/dram/power_calc.html.
[page 42]

[93] Ming Lei. USBNET: increase max rx/tx qlen for improving USB3 throuput.
https://web.archive.org/web/20160308154732/https://github.com/torvald
s/linux/commit/452c447a497dce3c9faeb9ac7f2e1ff39232876b, 2013. [page 89]

[94] The Mont-Blanc project website. http://montblanc-project.eu. [pages 18 and 62]

129

http://www.netlib.org/benchmark/linpackc
http://www.netlib.org/benchmark/linpackc
https://web.archive.org/web/20100513031210/http://micron.com/support/dram/power_calc.html
https://web.archive.org/web/20100513031210/http://micron.com/support/dram/power_calc.html
https://web.archive.org/web/20160308154732/https://github.com/torvalds/linux/commit/452c447a497dce3c9faeb9ac7f2e1ff39232876b
https://web.archive.org/web/20160308154732/https://github.com/torvalds/linux/commit/452c447a497dce3c9faeb9ac7f2e1ff39232876b
http://montblanc-project.eu

BIBLIOGRAPHY

[95] The MQTT Protocol. http://mqtt.org, 2014. [page 83]

[96] Munshi, A., Ginsburg, D., and Shreiner, D. OpenGL ES 2.0 programming
guide. Pearson Education, 2008. [page 8]

[97] Nakamura, Y., and Stüben, H. BQCD-Berlin quantum chromodynamics pro-
gram. arXiv preprint arXiv:1011.0199 (2010). [pages 21 and 90]

[98] Nakanishi, H., Nishigaki, N., Tachibana, K., and Shinagawa, T.
WT210/WT230 Digital Power Meters. https://web.archive.org/web/
20130728084210/http://c418683.r83.cf2.rackcdn.com/uploaded/WT210.pdf,
2003. [pages 22 and 40]

[99] Nakashima, H., Nakamura, H., Sato, M., Boku, T., Matsuoka, S., Taka-
hashi, D., and Hotta, Y. Megaproto: 1 tflops/10kw rack is feasible even with only
commodity technology. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC
2005 Conference (2005), IEEE, pp. 28–28. [page 12]

[100] NVIDIA. NVIDIA Tegra mobile processor. http://www.nvidia.com/object/te
gra-4-processor.html. [page 8]

[101] NVIDIA. Tegra2 die photo. https://web.archive.org/web/20160503180038/
http://images.anandtech.com/reviews/gadgets/LG/Optimus2X/SoC.jpg.
[page 43]

[102] NVIDIA. Compute Unified Device Architecture Programming Guide. [page 19]

[103] NVIDIA. Variable SMP (4-PLUS-1
TM

) – A Multi-Core CPU Architecture for Low
Power and High Performance. White Paper (2011). [page 64]

[104] NVIDIA. CARMA - CUDA R© Development Kit For ARM R©. http://www.nvidia
.com/object/carma-devkit.html, 2012. [page 64]

[105] PCWorld. Qualcomm enters server CPU market with 24-core ARM
chip. http://www.pcworld.com/article/2990868/qualcomm-enters-server-c
pu-market-with-24-core-arm-chip.html, 2015. [page 13]

[106] Pillet, V., Labarta, J., Cortes, T., and Girona, S. Paraver: A tool to
visualize and analyze parallel code. In Proceedings of WoTUG-18: Transputer and
occam Developments (1995), vol. 44, pp. 17–31. [pages 23 and 25]

[107] Planas, J., Badia, R. M., Ayguade, E., and Labarta, J. Self-adaptive ompss
tasks in heterogeneous environments. In Parallel & Distributed Processing (IPDPS),
2013 IEEE 27th International Symposium on (2013), IEEE, pp. 138–149. [page 82]

[108] Quanta. STRATOS S900 Series, S900-X31A: Extremely Low Power, High Density
3U Microserver. http://www.qct.io/index.php?route=account/download/down
load&order_download_id=40. [page 13]

[109] Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N., and Ramirez,
A. Experiences with mobile processors for energy efficient HPC. In Proceedings of the
Conference on Design, Automation and Test in Europe (2013), EDA Consortium,
pp. 464–468. [page 84]

[110] Ramirez, A., Prat, O., Labarta, J., and Valero, M. Performance Impact
of the Interconnection Network on MareNostrum Applications. In 1st Workshop on
Interconnection Network Architectures: On-Chip, Multi-Chip (2007). [page 23]

130

http://mqtt.org
https://web.archive.org/web/20130728084210/http://c418683.r83.cf2.rackcdn.com/uploaded/WT210.pdf
https://web.archive.org/web/20130728084210/http://c418683.r83.cf2.rackcdn.com/uploaded/WT210.pdf
http://www.nvidia.com/object/tegra-4-processor.html
http://www.nvidia.com/object/tegra-4-processor.html
https://web.archive.org/web/20160503180038/http://images.anandtech.com/reviews/gadgets/LG/Optimus2X/SoC.jpg
https://web.archive.org/web/20160503180038/http://images.anandtech.com/reviews/gadgets/LG/Optimus2X/SoC.jpg
http://www.nvidia.com/object/carma-devkit.html
http://www.nvidia.com/object/carma-devkit.html
http://www.pcworld.com/article/2990868/qualcomm-enters-server-cpu-market-with-24-core-arm-chip.html
http://www.pcworld.com/article/2990868/qualcomm-enters-server-cpu-market-with-24-core-arm-chip.html
http://www.qct.io/index.php?route=account/download/download&order_download_id=40
http://www.qct.io/index.php?route=account/download/download&order_download_id=40

BIBLIOGRAPHY

[111] Rosas, C., Giménez, J., and Labarta, J. Scalability prediction for fundamental
performance factors. Supercomputing frontiers and innovations 1, 2 (2014). [pages
23, 25, and 97]

[112] Samsung. Exynos 5 Octa (5422). https://web.archive.org/web/
20140727080227/http://www.samsung.com/global/business/semiconducto
r/product/application/detail?productId=7978&iaId=2341. [page 112]

[113] Samsung. Samsung Exynos 7 Octa. http://www.samsung.com/global/busines
s/semiconductor/minisite/Exynos/w/solution.html#?v=7octa. [page 113]

[114] Samsung. Samsung Exynos5 Dual White Paper. https://web.archive.org/we
b/20151026121220/http://www.samsung.com/global/business/semiconducto
r/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos
_5_Dual_WP.pdf. [page 60]

[115] SECO. QuadMo747-X/T20. https://web.archive.org/web/20120613172914/
http://www.seco.com/en/item/quadmo747-x_t20. [page 38]

[116] SECO. SECOCQ7-MXM. https://web.archive.org/web/20120524090006/ht
tp://www.seco.com/en/item/secocq7-mxm. [page 38]

[117] Sharkawi, S., Desota, D., Panda, R., Indukuru, R., Stevens, S., Taylor,
V., and Wu, X. Performance projection of hpc applications using spec cfp2006
benchmarks. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2009). [pages 25, 101, and 106]

[118] SMSC. LAN9514/LAN9514i: USB 2.0 Hub and 10/100 Ethernet Con-
troller. https://web.archive.org/web/20110716100101/http://www.smsc.com
/media/Downloads_Public/Data_Sheets/9514.pdf. [page 42]

[119] Stanley-Marbell, P., and Cabezas, V. C. Performance, power, and thermal
analysis of low-power processors for scale-out systems. In IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW)
(2011), pp. 863–870. [page 12]

[120] Sutmann, G., Westphal, L., and Bolten, M. Particle based simulations of
complex systems with mp2c : Hydrodynamics and electrostatics. AIP Conference
Proceedings 1281, 1 (2010), 1768–1772. [pages 21 and 90]

[121] Texas Instruments. AM5K2E04/02 Multicore ARMKeyStone II System-on-Chip
(SoC) Data Manual. https://web.archive.org/web/20160530133009/http://ww
w.ti.com/lit/ds/symlink/am5k2e04.pdf, November 2012. [page 45]

[122] TOP500. Top500 R©supercomputer cites. http://www.top500.org/. [pages 1, 2,
and 3]

[123] Turek, S., Göddeke, D., Becker, C., Buijssen, S. H. M., and Wobker,
H. Feast—realization of hardware-oriented numerics for hpc simulations with finite
elements. Concurrency and Computation: Practice and Experience 22, 16 (2010),
2247–2265. [pages 21 and 47]

[124] Turley, J. Cortex-A15 "Eagle" flies the coop. Microprocessor Report (Nov. 2010),
1–7. [pages 7, 68, and 74]

131

https://web.archive.org/web/20140727080227/http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
https://web.archive.org/web/20140727080227/http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
https://web.archive.org/web/20140727080227/http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/w/solution.html#?v=7octa
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/w/solution.html#?v=7octa
https://web.archive.org/web/20151026121220/http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
https://web.archive.org/web/20151026121220/http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
https://web.archive.org/web/20151026121220/http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
https://web.archive.org/web/20151026121220/http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
https://web.archive.org/web/20120613172914/http://www.seco.com/en/item/quadmo747-x_t20
https://web.archive.org/web/20120613172914/http://www.seco.com/en/item/quadmo747-x_t20
https://web.archive.org/web/20120524090006/http://www.seco.com/en/item/secocq7-mxm
https://web.archive.org/web/20120524090006/http://www.seco.com/en/item/secocq7-mxm
https://web.archive.org/web/20110716100101/http://www.smsc.com/media/Downloads_Public/Data_Sheets/9514.pdf
https://web.archive.org/web/20110716100101/http://www.smsc.com/media/Downloads_Public/Data_Sheets/9514.pdf
https://web.archive.org/web/20160530133009/http://www.ti.com/lit/ds/symlink/am5k2e04.pdf
https://web.archive.org/web/20160530133009/http://www.ti.com/lit/ds/symlink/am5k2e04.pdf
http://www.top500.org/

BIBLIOGRAPHY

[125] van Dyk, D., Geveler, M., Mallach, S., Ribbrock, D., Göddeke, D.,
and Gutwenger, C. Honei: A collection of libraries for numerical computations
targeting multiple processor architectures. Computer Physics Communications 180,
12 (2009), 2534–2543. [pages 21 and 47]

[126] Vasudevan, V., Andersen, D., Kaminsky, M., Tan, L., Franklin, J., and
Moraru, I. Energy-efficient cluster computing with fawn: Workloads and im-
plications. In Proceedings of the 1st International Conference on Energy-Efficient
Computing and Networking (2010), ACM, pp. 195–204. [page 12]

[127] Vázquez, M., Arís, R., Aguado-Sierra, J., Houzeaux, G., Santiago, A.,
López, M., Córdoba, P., Rivero, M., and Cajas, J. C. Selected Topics of
Computational and Experimental Fluid Mechanics. Springer International Publish-
ing, Cham, 2015, ch. Alya Red CCM: HPC-Based Cardiac Computational Mod-
elling, pp. 189–207. [pages 21 and 90]

[128] Vazquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J.,
Aris, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., et al. Alya:
towards exascale for engineering simulation codes. arXiv preprint arXiv:1404.4881
(2014). [pages 21 and 90]

[129] Warren, M. S., Weigle, E. H., and Feng, W.-C. High-density computing:
A 240-processor beowulf in one cubic meter. In Supercomputing, ACM/IEEE 2002
Conference (Nov 2002), pp. 61–61. [page 12]

[130] Weicker, R. Dhrystone: a synthetic systems programming benchmark. Commu-
nications of the ACM 27, 10 (1984), 1013–1030. [page 32]

[131] Whaley, R. C., and Dongarra, J. Automatically tuned linear algebra soft-
ware. In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (1998).
[pages 31 and 39]

[132] Winkel, M., Speck, R., Hübner, H., Arnold, L., Krause, R., and Gibbon,
P. A massively parallel, multi-disciplinary barnes–hut tree code for extreme-scale
n-body simulations. Computer Physics Communications 183, 4 (2012), 880 – 889.
[pages 21 and 41]

[133] Yoo, A. B., Jette, M. A., and Grondona, M. SLURM: Simple Linux Utility
for Resource Management. In Job Scheduling Strategies for Parallel Processing: 9th
International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised
Paper (2003), Springer, pp. 44–60. [page 40]

132

	Front matter
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables

	1 Introduction
	1.1 Microprocessors in Supercomputing
	1.2 Energy Efficiency
	1.3 Mobile Processors Evolution
	1.3.1 ARM Processors
	1.3.2 Embedded GPUs

	1.4 Contributions

	2 Related Work
	3 Methodology
	3.1 Hardware platforms
	3.2 Single core, CPU, and node benchmarks
	3.2.1 Mont-Blanc benchmarks

	3.3 System benchmarks and workloads
	3.4 Power measurements
	3.5 Simulation methodology
	3.6 Tools
	3.6.1 Extrae
	3.6.2 Paraver
	3.6.3 Clustering tools
	3.6.4 Basic analysis tool
	3.6.5 GA tool

	3.7 Reporting

	4 ARM Processors Performance Assessment
	4.1 Floating-Point Support Issue
	4.2 Compiler Flags Exploration
	4.2.1 Compiler Maturity

	4.3 Achieving Peak Floating-Point Performance
	4.3.1 Algebra Backend

	4.4 Comparison Against a Contemporary x86 Processor
	4.4.1 Results
	4.4.2 Discussion

	5 Tibidabo, The First Mobile HPC Cluster
	5.1 Architecture
	5.2 Software Stack
	5.3 Evaluation
	5.3.1 Methodology
	5.3.2 Cluster Performance
	5.3.3 Interconnect

	5.4 Comparison Against an X86-Based ClusterParts of this section have previously been published as a result of collaboration between BSC, TU Dortmund and CNRS goddeke2013energy
	5.4.1 Reference x86 System
	5.4.2 Applications
	5.4.3 Power Acquisition
	5.4.4 Input Configurations
	5.4.5 Results

	5.5 Projections
	5.6 Interconnect requirements
	5.6.1 Lessons Learned and Next Steps

	5.7 Conclusions

	6 Mobile Developer Kits
	6.1 Evaluation Methodology
	6.2 CARMA Kit: a Mobile SoC and a Discrete GPU
	6.2.1 Evaluation Results

	6.3 Arndale Kit: Improved CPU Core IP and On-Chip GPU
	6.3.1 ARM Mali-T604 GPU IP
	6.3.2 Evaluation Results

	6.4 Putting It All Together
	6.4.1 Comparison Against a Contemporary x86 Architecture

	6.5 Conclusions

	7 The Mont-Blanc Prototype
	7.1 Architecture
	7.1.1 Compute Node
	7.1.2 The Mont-Blanc Blade
	7.1.3 The Mont-Blanc System
	7.1.4 The Mont-Blanc Software Stack
	7.1.5 Power Monitoring Infrastructure
	7.1.6 Performance Summary

	7.2 Compute Node Evaluation
	7.2.1 Core Evaluation
	7.2.2 Node Evaluation
	7.2.3 Node Power Profiling

	7.3 Interconnection Network Tuning and Evaluation
	7.4 Overall System Evaluation
	7.4.1 Applications Scalability
	7.4.2 Comparison With Traditional HPC

	7.5 Scalability Projection
	7.6 Conclusions

	8 Mont-Blanc Next-Generation
	8.1 Methodology
	8.1.1 Description
	8.1.2 Benchmarks
	8.1.3 Applications
	8.1.4 Base and Target Architectures
	8.1.5 Validation

	8.2 Performance Projections
	8.2.1 Mont-Blanc Prototype
	8.2.2 NVIDIA Jetson
	8.2.3 ARM Juno
	8.2.4 NG Node

	8.3 Power Projections
	8.3.1 Methodology

	8.4 Conclusions

	9 Conclusions
	9.1 Future Work

	Back matter
	List of publications
	Bibliography

