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NOTATIONS AND CONVENTIONS

By k we mean a fixed algebraic closure of the field k of characteristic p ≥ 0. We use ζn for a

fixed primitive n-th root of unity inside k when the characteristic of k is coprime with n.

A smooth curve C over k is a projective, non-singular and geometrically irreducible curve

defined over k, and it will be denoted by C/k or simply by C when understood. As usual

C, Aut(C) and g denote C ⊗k k, the automorphism group of C, and its geometric genus,

respectively. We assume, once and for all, that g ≥ 2.

The (coarse) moduli space of smooth curves over k of genus g is denoted by Mg. For a

finite non-trivial group G, we setMg(G) for the stratum of k-isomorphism classes of smooth

curves C of genus g, where G is isomorphic to a subgroup of Aut(C), and M̃g(G) for the

substratum of Mg(G) representing smooth curves C such that G ' Aut(C). In particular,

M̃g(G) ⊆Mg(G) ⊆Mg.

Let g ≥ 3 be an integer. We use the symbolMPl
g for the substratum ofMg, representing

smooth plane curves over k of genus g. Similarly, we define the substrata

MPl
g (G) :=MPl

g ∩Mg(G) and M̃Pl
g (G) := M̃g(G) ∩MPl

g .

Hence, M̃Pl
g (G) ⊆MPl

g (G) ⊆Mg(G) ⊆Mg.

The n − 1-dimensional projective space over an algebraically closed field L is denoted by

Pn−1
L , and its automorphism group is the projective general linear group PGLn(L). A projective

linear transformation A = (ai,j) of P2
L is often written as

[a1,1X + a1,2Y + a1,3Z : a2,1X + a2,2Y + a2,3Z : a3,1X + a3,2Y + a3,3Z],

where {X, Y, Z} are the homogenous coordinates of P2
L.

Definition. By a smooth k-plane curve C over k we mean a smooth curve over k, that is

k-isomorphic to a non-singular plane model FC(X, Y, Z) = 0 in P2
k
, where FC(X, Y, Z) is a
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homogenous polynomial of degree d ≥ 4 with coefficients in k. In this case, we say that C/k

admits a non-singular plane model of degree d over k.

We note that any other non-singular plane model for C over k has the form

Fφ−1C(X, Y, Z) = 0 for some φ ∈ PGL3(k), where Fφ−1C(X, Y, Z) := FC(φ(X, Y, Z)).

Moreover, the automorphism group Aut(Fφ−1C) of Fφ−1C(X, Y, Z) = 0 is a finite subgroup of

PGL3(k), and it is equal to φ−1Aut(FC)φ. For φ, ψ ∈ PGL3(k), the natural map of smooth

plane curves over k:

C
φ−1

−−→ φ−1C
ψ−1

−−→ ψ−1φ−1C = (φψ)−1C

corresponds to

{FC(X, Y, Z) = 0} φ−1

−−→ {Fφ−1C(X, Y, Z) = 0} ψ−1

−−→ {F(φψ)−1C(X, Y, Z) = 0}.

Given a smooth k-plane curve C over k, we say that C admits a non-singular plane model

over L with k ⊆ L ⊆ k, if there exists φ ∈ PGL3(k) with Fφ−1C(X, Y, Z) ∈ L[X, Y, Z], and

such that C ⊗k L and Fφ−1C(X, Y, Z) = 0 are isomorphic over L.

If a smooth k-plane curve C over k admits a non-singular plane model Fφ−1C(X, Y, Z) = 0

over k, then we call C a smooth plane curve over k, and we identify, by an abuse of notation,

C with the plane model Fφ−1C(X, Y, Z) = 0 and Aut(C) with Aut(Fφ−1C) as a fixed finite

subgroup of PGL3(k).

• The group of diagonal matrices in PGL3(k) is denoted by D(k), and by TX(k), we mean

its subgroup of all 3 × 3 projective linear matrices of the shape [λX : Y : Z] for some

λ ∈ k. Symmetrically, one defines TY (k) and TZ(k).

• The Hessian groups: The group Hess9 of order 9 generated by T := [Y : Z : X] and

S := diag(1, ζ3, ζ
2
3 ).

The group Hess18 of order 18 generated by R := [X : Z : Y ] and Hess9.

The group Hess36 of order 36 generated by Hess18 and

V :=


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 .
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The group Hess72 of order 72 generated by Hess36 and UV U−1, where U :=

diag(1, 1, ζ3).

The group Hess216 of order 216 generated by Hess72 and U .

• Alternating groups: The group A5 of order 60 generated by E1 := diag(1, ζ4
5 , ζ5), E2 :=

[X : Z : Y ], and

E3 :=


1 1 1

1 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

1 ζ5 + ζ−1
5 ζ2

5 + ζ−2
5

 .

The group A6 of order 360 generated by E1, E2, E3, and

E4 :=


1 ν1 ν1

2ν2 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

2ν2 ζ5 + ζ−1
5 ζ2

5 + ζ−2
5

 ,

where ν1 := 1
4
(−1 +

√
−15) and ν2 := 1

4
(−1−

√
−15).

• The Klein group: The group PSL2(F7) of order 168 generated by F1 :=

diag(ζ7, ζ
2
7 , ζ

4
7 ), F2 := [Y : Z : X], and

a′ b′ c′

b′ c′ a′

c′ a′ b′

 ,

where a′ := ζ4
7 − ζ3

7 , b
′ := ζ2

7 − ζ5
7 , and c′ := ζ7 − ζ6

7 .

• The image of the natural inclusion GL2(k) ↪→ PGL3(k) given by

A 7→

 1 0

0 A

 ,

is denoted by GL2,X(k). In the same way, we can define GL2,Y (k) and GL2,Z(k).

• Finally, the following subgroups of PGL3(k); S̃3 := 〈[X : Z : Y ], [Z : X : Y ]〉, G03 :=

〈[X : Z : Y ], [X : ζ3Y : Z]〉, and G05 := 〈[Z : Y : X], [X : Y : ζ5Z]〉 are also

considered.
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We write Gal(L/k) for the Galois group of L/k, where L is an extension of k inside k,

and also we consider left actions. The Galois cohomology sets of a Gal(L/k)-group G, where

L/k is Galois, are denoted by Hi(Gal(L/k), G) with i ∈ {0, 1} respectively. For the partic-

ular case L = k and k is perfect, we use Gk instead of Gal(k/k) and H1(k,G) instead of

H1(Gal(k/k), G).

We use the formal GAP library notations “GAP(n,m)” to refer the finite group of order n,

appearing in the mth position of the atlas for small finite groups [Gro].

The abbreviation “CSA” means a central simple algebra. The set of all Brauer equivalence

classes of CSAs over k is called the Brauer group of k and is denoted by Br(k). The set of

all equivalence classes of CSAs of dimension n2 over k modulo k-algebras isomorphisms is

denoted by Azkn. The n-torsion of Br(k) is Br(k)[n].
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INTRODUCTION

Smooth projective curves over a field k with non-trivial automorphism group are always of

deep interest in the literature. For instance, in algebraic geometry, the structure of the auto-

morphism groups of smooth curves of genus g ≥ 2 defined over an algebraically closed field

k is an old subject of research. One finds a lot of work trying to understand the different

strataMg(G) of the moduli spaceMg, representing smooth curves C of genus g which have

a finite non-trivial group G as a subgroup of automorphisms. We mention, for example, the

most famous universal bound, the so-called Hurwitz bound (see Theorem 1.1), given by Hur-

witz [Hur92] as an application of Riemann-Hurwitz formula, which turns out to be sharp for

infinitely many genera. Oikawa [Oik56, Theorem 1] and Arakawa [Ara00, Theorem 3] gave

even better upper bounds when the automorphism group fixes (not necessarily pointwise) finite

subsets of points on the curve. These bounds become very useful in our study of smooth plane

curves. Also, we may ask about irreducibility ofMg(G) as a subset of the moduli spaceMg

or even about the existence of universal families to recover information on its points. In arith-

metic geometry, Fermat and Klein curves are quite well known examples of smooth curves

with non-trivial automorphism group, and so many interesting arithmetic properties, see for

example [CHW17, CM88, FGL16, HS13, JSW07, LM08, MT03, Sch86, Shi88] for Fermat

curves, and [BN10, Elk99, Far10, KFR00, Tze04] for Klein curves. On the other hand, the

term dessin d’enfant, which appears in a set of notes in Alexander Grothendieck’s Esquisse

d’un Programme written and circulated in 1984 but not published until 1997, received so much

attention from the mathematical community during the last 30 years. In this sense, complex

smooth curves (i.e. compact Riemann surfaces) with many automorphisms are also of arith-

metic interests, viewed as dessins over a number field, see [MR194, JW16].

Following the philosophy of Diophantine equations theory, the simplest case is to consider

smooth plane curves over a field k of geometric genus g ≥ 3. That is, smooth projective
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curves C over k, which is k- isomorphic to the zero locus in P2
k of a homogenous polynomial

F (X, Y, Z) ∈ k[X, Y, Z] of degree d ≥ 4 without singularities. In particular, the curve C =

C ⊗k k has a g2
d-linear system that allows us to embed C

g2d
↪−→ P2

k
. By elementary algebraic

geometry (Riemann-Hurwitz formula, Bézout’s theorem,...etc), one can show that C is non-

hyperelliptic of genus g = (d− 1)(d− 2)/2. Furthermore, the g2
d-linear system is unique up to

conjugation in Aut(P2
k
) = PGL3(k), the 3-dimensional projective general linear group. Hence,

any two non-singular plane models (there are infinitely many) for C in P2
k

are isomorphic via

a change of variables in PGL3(k), and the corresponding automorphism groups are conjugate.

That is to say Aut(C) can always be viewed as a finite subgroup of PGL3(k), fixing a certain

non-singular plane model of C in P2
k
.

In the thesis, we study the stratification of smooth plane curves by their automorphism

groups, and we deal with both algebraic and arithmetic geometry aspects. We are going now to

detail a bit the study and the contributions resulted herein:

Automorphism groups and normal forms

The structure of the automorphism group is quite explicit for hyperelliptic curves ([BEMn87,

BGG93, Sha03, SS07]). For non-hyperelliptic curves, it seems that we still have a lack of

knowledge about the structure, except for some special cases. For example, the cases of low

genus ([Bre00, Hen76, KK86, KK90b, KK90a] and Hurwitz curves, i.e. smooth curves that

attains the Hurwitz bound. This in turns motivated us for more investigations in this direction,

and we restrict ourselves to the case of smooth plane curves of degree d ≥ 4.

Consider the stratumMPl
g (G) ⊂ Mg, consisting of the k-isomorphism classes of smooth

plane curves C of genus g = 1
2
(d − 1)(d − 2) ≥ 3 such that Aut(C) contains a subgroup

isomorphic to G. Similarly, we write M̃Pl
g (G) when Aut(C) is itself isomorphic to G, in

particular, M̃Pl
g (G) ⊆MPl

g (G).

The next two classical questions appears naturally for M̃Pl
g (G);

Question A. Let G be a finite non-trivial group. Which are the genera g ≥ 3 so that the strata

M̃Pl
g (G) 6= ∅, i.e. there exists a smooth plane curve C over k of genus g with Aut(C) ' G?
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For example, by the work of S. Crass in [Cra99, p.28], we know that M̃Pl
g (A6) 6= ∅ exactly for

g = 10, g = 55 and g = 406, where A6 is the alternating group of order 6.

Reversely, we might ask:

Question B. Fix an integer g ≥ 3. How does it look like the stratification by non-trivial

automorphism groups ofMPl
g , representing the k-isomorphism classes of smooth plane curve

C of genus g? More precisely, to describe the possible list of the finite non-trivial groups G,

for which M̃Pl
g (G) 6= ∅, and also to give families which helps to recover information on the

k-points of M̃Pl
g (G) or even ofMPl

g (G).

P. Henn in [Hen76] and Komiya-Kuribayashi in [KK79], obtained the answer for Question B

when g = 3 (or equivalently, when d = 4) and k has zero characteristic, see Theorem 2.2.1.

Definition C. We define the associated normal forms toMPl
g (G) to be a finite set of homoge-

nous equations in X, Y, Z, such that any k-point C of MPl
g (G) is k-isomorphic to a non-

singular plane model FC(X, Y, Z) = 0 through a specialization of the parameters in one of

these equations, and vice versa. Similarly, we define the associated normal forms to M̃Pl
g (G);

see Definition 2.4.

The recent work of Lercier-Ritzenthaler-Rovetta-Sisling in [LRRS14, §2] helps to under-

stand more (geometrically) the terminology of normal forms. In their language, the associated

normal forms to M̃Pl
g (G) is a geometrically complete family over k for M̃Pl

g (G).

In particular, for g = 3 the stratum M̃Pl
3 (G) is always described by a single normal form,

whenever it is non-empty. In general, we have an obvious union decomposition for M̃Pl
g (G)

defined in the following way: Fix an injective representation G
%
↪−→ PGL3(k). Next, define

%(MPl
g (G)) to be the component ofMPl

g (G), consisting of all k-points C ∈MPl
g (G) such that

%(G) acting as a subgroup of automorphisms of some non-singular plane model FC(X, Y, Z) =

0 for C in P2
k
. In the same way, one defines %(M̃Pl

g (G)) when %(G) is the full automorphism

group; see Definition 2.2. It is easy to see that %(M̃Pl
g (G)) is always given by a single normal

form, and moreover

M̃Pl
g (G) =

⊔
[%]∈AG

%(M̃Pl
g (G)),
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where AG denotes the set of all injective representations of G inside PGL3(k), modulo conju-

gation and [%] is the equivalence class of % in AG, see Lemma 2.2.4.

Using these notations, Henn, Komiya-Kuribayashi proved that any M̃Pl
3 (G) which is not

empty, coincides with %(M̃Pl
3 (G)) for some % ∈ AG. By the work of Cornalba [Cor87] and

Catanese [Cat12], it becomes sensible to think about any non-empty stratum %(M̃Pl
3 (G)) as a

subset of an irreducible set of smooth curves of genus g = 3, admitting Galois covers with a

prescribed ramification data (see §2.2). Thus, it is probably an irreducible subset of the moduli

spaceMg.

In chapter 2, we aim to give a wide study for M̃Pl
g (G), where we restrict k to have charac-

teristic p = 0 or p > 2g + 1 to ensure that p does not divide the order of the full automorphism

group. For instance, we prove:

Theorem D. Fix an integer g = (d − 1)(d − 2)/2 with d ≥ 4. We give a way to describe all

the pairs (%, G = Z/mZ), where Z/mZ is the cyclic group of order m > 1 and Z/mZ
%
↪−→

PGL3(k), such that %(MPl
g (G)) might be non-empty. Also, we associate a generic single

normal form for each pair (%, G = Z/mZ), where %(Z/mZ) acts on its members. In particular,

m should divide one of the integers: d(d− 1), d2 − 3d+ 3, (d− 1)2 or d(d− 2).

Theorem E. Let C be a smooth plane curve of degree d ≥ 5 over k. Suppose that there exists

an automorphism σ ∈ Aut(C) of exact order m = d(d− 1), d2− 3d+ 3, (d− 1)2 or d(d− 2).

Then,MPl
g (Z/mZ) is an irreducible set formed by a single point, such that one of the following

situations holds:

1. If σ has order d(d− 1), then Aut(C) = 〈σ〉 and C is k-isomorphic to

Xd + Y d +XZd−1 = 0.

Moreover,

M̃Pl
g (Z/d(d− 1)Z) =MPl

g (Z/d(d− 1)Z) = %(MPl
g (Z/d(d− 1)Z)),

with %(Z/d(d− 1)Z) = 〈diag(1, ζd−1
d(d−1), ζ

d
d(d−1))〉.
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2. If σ has order (d− 1)2, then Aut(C) = 〈σ〉 and C is k-isomorphic to

Xd + Y d−1Z +XZd−1 = 0.

Moreover,

M̃Pl
g (Z/(d− 1)2Z) =MPl

g (Z/(d− 1)2Z) = %(MPl
g (Z/(d− 1)2Z)),

with %(Z/(d− 1)2Z) = 〈diag(1, ζ(d−1)2 , ζ
(d−1)(d−2)

(d−1)2 )〉.

3. If σ has order d(d− 2), then C is k-isomorphic to

Xd + Y d−1Z + Y Zd−1 = 0

and when d 6= 6, we obtain

Aut(C) ' Hd := 〈σ, τ : τ 2 = σd(d−2) = 1, and τστ = σ−(d−1)〉.

Moreover,

M̃g(Hd) =MPl
g (Z/d(d− 2)Z) = %(MPl

g (Z/d(d− 2)Z)),

with %(Z/d(d− 2)Z) = 〈diag(1, ζd(d−2), ζ
−(d−1)
d(d−2) )〉.

4. If σ has order d2 − 3d+ 3, then C is k-isomorphic to the Klein curve

Kd : Xd−1Y + Y d−1Z + Zd−1X = 0

and

Aut(C) ' HKd := 〈σ, τ |σd2−3d+3 = τ 3 = 1 and στ = τσ−(d−1)〉.

Moreover,

M̃g(HKd) =MPl
g (Z/(d2 − 3d+ 3)Z) = %(MPl

g (Z/(d2 − 3d+ 3)Z)),

with %(Z/(d2 − 3d+ 3)Z) = 〈diag(1, ζd2−3d+3, ζ
−(d−2)

d2−3d+3)〉.

We also studied in section §2.4.2 the cases when C has an automorphism σ of exact order

`d, `(d− 1) `(d− 2) for some ` ≥ 2.
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In contrast to the degree d = 4 case, the stratum M̃Pl
g (G) for g = 1

2
(d − 1)(d − 2) with

d ≥ 5 may decompose into more than one component of the form %(M̃Pl
g (G)). For example,

we show:

Theorem F. For any odd degree d ≥ 5, the stratum M̃Pl
g (Z/(d − 1)Z) is a disjoint union

decomposition of at least two components %i(M̃Pl
g (G)), for i = 1, 2, where %i ∈ AG with

G = Z/(d− 1)Z. The same is true when d = 6 and G = Z/3Z, that is for M̃Pl
10(Z/3Z).

We go further, in section §4.1, by turning our attention to the Question B when d = 5. In

particular, we get:

Theorem G. A complete determination of the pairs (%,G), such that M̃Pl
6 (G) 6= ∅, is given.

The associated normal forms to each non-empty stratum is also provided.

In our way to do this, we observed a new interesting phenomenon, which does not appear

for g = 3: Let F%,G,g(X, Y, Z) = 0 be a normal form that describes the stratum %(MPl
g (G)).

One could expect that by adding restrictions to its parameters, one get bigger automorphism

groups until obtaining a zero-dimensional stratum. This happens for all the families of degree

d = 5 except for one. For this family each restriction in the parameters providing a bigger

automorphism group yields a singular curve. If this is the case for some %(MPl
g (G)), then we

call it final. This phenomenon can be explained very well by using the family of the canonical

models in Pg−1

k
as we will see later in section §4.2. Moreover, we prove:

Theorem H. For any integer g = 1
2
(d − 1)(d − 2) with d ≥ 5 and d ≡ 1 (mod 4),

the stratum %(MPl
g (Z/(d − 1)Z)) is non-zero dimensional final, where %(Z/(d − 1)Z) =

〈diag(1,−1, ζd−1)〉.

Plane-models fields of definition and Twists

Let k be a fixed algebraic closure of perfect field k. By a smooth k-plane curve C over k, we

mean a smooth projective curve C defined over k, such that C = C ⊗k k is a smooth plane

curve. We aim to study fields of definition for non-singular plane models of C and also of its
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twists over k by considering the embedding Aut(C) ↪→ PGL3(k) instead of the one given by

the canonical model, see [LG14, Chp. 1] or Appendix B.

Recall that the set of all twists of a quasi-projective variety V over k, denoted by Twistk(V ),

is in bijection with the first Galois cohomology set H1(Gal(k/k),Aut(V ⊗k k)). Furthermore,

from the work of Roé-Xarles in [RX14] and since C has a (unique) g2
d-linear system, then there

exists a Brauer-Severi surface D defined over k (i.e. a twist of P2
k), together with a k-morphism

g : C ↪→ D, such that g ⊗k k : C → P2
k

coincides with C
g2d
↪−→ P2

k
. Therefore, we have a natural

map of sets,

Σ : Twistk(C) = H1(Gal(k/k),Aut(C))→ Twistk(D) = H1(Gal(k/k),Aut(B×kk) = PGL3(k)).

This approach leads to two natural questions:

Question I. The first one, given a smooth k-plane curve C defined over a perfect field k, is it a

smooth plane curve over k?; and secondly, if the answer is yes, is every twist of C over k also

a smooth plane curve over k?,

For both questions the answer is no in general, it is not. The next result concerns the

negative general answer, where the full details can be found in chapter 3:

Theorem J. Let us consider Qf the splitting field of the irreducible polynomial f(t) = t3 +

12t2 − 64 over Q, and denote the roots of f by a, b, c in a fixed algebraic closure of Q. The

smooth plane curve over Qf

C : 64Z6 + abY 6 + aX6 + 8Y 3Z3 +
ab

8
X3Y 3 + aZ3X3 = 0,

has Q as a field of definition, but it does not admit a non-singular plane model over Q.

Also, we obtain results for the curves for which the above questions always have an affir-

mative answer:

Theorem K. Let C be a smooth k-plane curve of degree d ≥ 4 defined over a perfect field k.

Then, C is a smooth plane curve over k if one of the following conditions holds:

1. C has a k-rational point,
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2. the degree d is coprime with 3,

3. the 3-torsion Br(k)[3] of the Brauer group Br(k) of k is trivial.

Moreover, there always exists a field extension L/k inside k of index [L : k] dividing 3, such

that C ⊗k L is a smooth plane curve over L.

We proceed with the second part of Question I:

Theorem L. Assume that the curve C, or any of its twists over a perfect field k, is a smooth

plane curve over k. Then, we have an embedding of Gal(k/k)-groups for its automorphisms

group into PGL3(k). In particular, Σ−1([P2
k]) corresponds to the set of all twists of C, which

are smooth plane curves over k, where [P2
k] denotes the class of the trivial twist of P2

k. This

allows us to construct in chapter 3 (explicit) twists of C that are not smooth plane curves over

k, and living inside a non-trivial Brauer-Severi surface.

Now, assume that C is a smooth curve over k with a plane non-singular model over k such

that the image of Twistk(C) = H1(Gal(k/k),Aut(C)) under the map Σ is trivial. In such case,

all the twist admits a non-singular plane model over k. Therefore, to compute equations for the

twists it is enough to look for isomorphisms in GL3(k) instead of GLg(k). As in [LG14, LG17]

the elements to reach for solutions in GLg(k) or GL3(k) is quite hard except that we have a

control of the matrix that could appear. In this direction, we prove:

Proposition M. Let C : FC(X, Y, Z) = 0 be a smooth plane curve over a perfect field k.

Assume that Aut(FC) ⊆ PGL3(k) is a non-trivial cyclic group of order n (relatively prime

with the characteristic of k), generated by an automorphism α = diag(1, ζan, ζ
b
n) for some

a, b ∈ N.

Then all the twists of C are diagonal, i.e. the elements of Twistk(C) are given by non-

singular plane equations of the form FD−1C(X, Y, Z) = 0 with FD−1C(X, Y, Z) ∈ k[X, Y, Z]

and D is a 3× 3 projective linear matrix of diagonal shape.
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Complete and representative families

It is well known that the (coarse) moduli spacesMg are algebraic varieties whose geometric

points give a classification of isomorphism classes of smooth curves of genus g over k. The

existence of universal families for a moduli space helps to recover the information on its points

and allows to write down the attached objects to a point of this space. However, universal fam-

ilies do not exist for the moduli spaceMg. Lercier-Ritzenthaler-Rovetta-Sisling in [LRRS14,

§2] introduced three good substitutes for the notion of universal family in our case: complete,

finite and representative families. Among the three substitutes, the representative families (if

exist) are the best. The authors of [LRRS14] give explicit representative families over a perfect

field k of characteristic p = 0 or p ≥ 7 for all the different strataMPl
3 (G) of smooth k-plane

curves over k, except for G = Z/2Z. For the remaining situation, when |G| = 2, they prove

that representative families for the stratum of Z/2Z fail to exist even if k is a finite field.

In section 4.3, we start with the classification already obtained in section §4.1 for the differ-

ent strata of smooth k-plane curves of genus g = 6 of the form %(MPl
6 (G)). After, we mimic

the techniques in [LRRS14] to give explicit descriptions (when possible) for representative

families over a perfect field k. In particular, we prove:

Theorem N. Let k be a perfect field of characteristic p = 0 or p > 13. Then, any non-empty

stratum %(MPl
6 (G)) has a representative family over k. Furthermore, these families are explicit

for all strata, except when G = Z/5Z.

The field of moduli versus fields of definition

Let C be a smooth projective curve of genus g defined over a field k. The field of moduli of C,

denoted by kC , is the intersection over all fields of definition of the base extension C ⊗k k (see

Definition 5.1.2). There is another definition for the field of moduli, relative to a given field

extension L/k, which is commonly used (see Definition 5.1.3); Given a smooth curve C/L, the

field of moduli ML/k(C) of C relative to L/k is the fixed subfield of L by the subgroup

UL/k(C) := {σ ∈ Gal(L/k) |C isomorphic over L to σC}.
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Due to S. Koizumi [Koi72, Proposition 2.3-(ii)] we know that,Mk/k0
(C) is a purely inseparable

extension of kC , where k0 is the prime field of k.

In the case that C is a k-smooth plane curve of genus g ≥ 3, where k is a perfect field k of

characteristic p 6= 2, B. Huggins in [Hug05] showed that the field of moduli Mk/k(C) for C,

relative to the Galois extension k/k, is a field of definition if Aut(C) is not PGL3(k)-conjugate

to a diagonal subgroup of PGL3(k), one of the Hessian groups Hess∗ with ∗ ∈ {18, 36}, or

to a semidirect product of a finite diagonal subgroup of PGL3(k) and a non-trivial p-group

consisting entirely of elements of specific shapes. Moreover, an example of a smooth plane

curve over k that is not definable over its field of moduli is also given for each subcase, see

[Hug05, Chps. 6, 7].

Because of the above results, we were motivated in chapter 5 to answer the next question:

Question O. Let C be a smooth k-plane curve of genus g ≥ 3, where k is a field of characteris-

tic p = 0 or p > 2g+1, such that %(Aut(C)) ≤ PGL3(k) is made exclusively of diagonal 3×3

projective matrices, for some injective representation %. When Mk/k(C) is a field of definition

for C?

We introduce in chapter 5 further improvements of the work of B. Huggins in [Hug05],

relating to the particular situation in Question O. They can be used as a constructive source of

examples of smooth plane curves with diagonal automorphism groups, not definable over their

field of moduli.

Mainly, we show:

Theorem P. Let C be a smooth k-plane curve of genus g = 1
2
(d − 1)(d − 2) ≥ 3, where k

is a field of characteristic p = 0 or p > 2g + 1, such that %(Aut(C)) ≤ PGL3(k) is made

exclusively of diagonal 3× 3 projective matrices, for some injective representation %. Then,

1. if Aut(C) contains a non-homology of order n > 1 (see Definition 1.2.6), then the field of

moduli Mk/k(C) is always a field of definition, unless n divides one of the integers d, d− 1

or d(d− 2).

2. if Aut(C) does not contain a non-homology, then it is either cyclic of order dividing d or

d− 1, or it is isomorphic to Z/2Z× Z/2Z. Moreover, if Aut(C) is cyclic of order dividing
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d with d odd or dividing d− 1, then again Mk/k(C) needs to be a field of definition for C.

We also provide a geometrically complete family in each subcase where the field of moduli

might not be a field of definition. Finally, we construct (explicit) examples of smooth plane

curves over the complex field C, whose field of moduli relative to the Galois extension C/R is

R, but it is not a field of definition.

Contents of the chapters

We aim in chapter 1 to survey the most well known results in the literature about the classifi-

cation of automorphism groups of smooth plane curves over algebraically closed fields, which

will be useful for our purposes for smooth plane curves. The structure of this chapter is as fol-

lows: In section 1.1, we recall a (scheme theoretic) proof of the fact Aut(Pn−1

k
) = PGLn(k),

that is automorphisms of the n − 1-dimensional projective space Pn−1

k
are linear; Theorem

1.1.1. In particular, any isomorphism between two smooth plane curves of degree d ≥ 4 over

k is induced by a 3× 3 projective linear matrix; Theorem 1.1.5. Next, in section 1.2, we recall

the determination of the finite subgroups of PGL3(k), which is well understood in the subject.

We start with the classification made by H. Mitchell [Mit11], based entirely on geometrical

methods; Theorem 1.2.1. A detailed study of this geometric classification would lead to an ex-

tended version, including a very good description of all possible finite subgroups of PGL3(k);

Theorem 1.2.4. The notion of Galois points for smooth plane curves is presented in section 1.3.

As far as we know, it was first introduced by H. Yoshihara in 1996, see [Fuk09, MY00, Yos01].

Galois points (Definition 1.3.4) is a bit useful tool when one wants to compute the full automor-

phism group in some cases of smooth plane curves; Theorem 1.3.12. We end up this chapter

with section 1.4, where the classification of the automorphism groups of smooth plane curves

of degree d ≥ 4 over algebraically closed fields of zero characteristic is given by T. Harui,

in his unpublished paper in arXiv [Har13]; Theorem 1.4.4. The result still true for positive

characteristic p > (d− 1)(d− 2) + 1, as will be seen at the end of this section.

Dolgachev in [Dol12] determined the %′s and m′s for which %(MPl
3 (Z/mZ)) 6= ∅. The

defining equation of each non-empty %(MPl
3 (Z/mZ)) is also given. On the other hand, P.
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Henn in [Hen76] and Komiya-Kuribayashi in [KK79], provided the list of %′s and G′s such

that %(MPl
3 (G)) and %(M̃Pl

3 (G)) are non-empty. Moreover, the associated normal forms to

each non-empty M̃Pl
3 (G) are determined (Theorem 2.2.1). See also E. Lorenzo Garcı́a’s PhD

thesis [LG14, § 2.1 and § 2.2] and Lercier-Ritzenthaler-Rovetta-Sisling [LRRS14], in order to

fix some minor details. In section 2.1, we follow the same technique as Dolgachev [Dol12]

to give the list of %′s and m′s where %(MPl
g (Z/mZ)) 6= ∅, for any g ≥ 3; Theorem 2.1.3

and Corollary 2.1.6. We introduce in section 2.2 the concept of ES-irreducibility of M̃Pl
g (G),

motivated by the next observation occurred in Henn Table (Theorem 2.2.1): Given a finite non-

trivial group G such that M̃Pl
3 (G) 6= ∅, there exists a single normal form, that describes the

stratum M̃Pl
3 (G), up to PGL3(k)-conjugation. In this situation, we call the stratum M̃Pl

3 (G)

to be ES-Irreducible and so is any M̃Pl
g (G) satisfying this property (see Definition 2.2.6 for a

precise statement). This would be a weaker concept than the irreducibility of M̃Pl
g (G) inside

the moduli space Mg, in the sense that the number of ES-irreducible components is a lower

bound of the number of its irreducible components in Mg. We will show, in section 2.3,

examples of strata of the form M̃Pl
g (Z/mZ), which are not ES-Irreducible for infinitely many

genera g ≥ 6. Section 2.4 characterizes the stratum MPl
g (G) when G has elements of order

d2− 3d+ 3, (d− 1)2, d(d− 2), d(d− 1),md, or m(d− 1) with m ≥ 2, to be always defined by

a single normal form. In particular, M̃Pl
g (G), in this case, is ES-Irreducible, if it is non-empty.

The structure of chapter 3 is as follows. In section 3.1, we collect the most necessary results,

known in the literature, about central simple algebras (CSAs), and the connection with Brauer-

Severi varieties, which will be used in this chapter. For more details, we refer, for example, to

[Jah, GS06]. Section 3.2 is devoted to the study of the minimal field Lwhere there exists a non-

singular model over L for a smooth k-plane curve C defined over k, i.e. that C is L-isomorphic

to FQ−1C(X, Y, Z) = 0 for some Q ∈ PGL3(k) with FQ−1C ∈ L[X, Y, Z]. We prove that if

the degree of a non-singular k-plane model of C is coprime with 3, or C has a k-rational point

or the 3-torsion of the Brauer group of k is trivial (in particular, if k is a finite field), then the

curve C is a smooth plane over k (i.e. admits a k-model): Theorem 3.2.8 and Corollaries 3.2.1,

3.2.2. Moreover, we prove that a smooth plane model of C always exists in a finite extension

of k of degree dividing 3, see Theorem 3.2.4. Section 3.2 ends with an explicit example of a
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smooth Q-plane curve over Q which is not a smooth plane curve over Q; however, we construct

a smooth plane model over a degree 3 extension of Q. In Section 3.3, we assume that C is a

smooth plane curve over k. We obtain Theorem 3.3.2 characterizing the twists of C which are

also smooth plane curves over k. Moreover, we construct a family of examples over k = Q

for which a twist of C does not admit a non-singular plane model over Q. This construction is

not explicit because we do not provide equations of such twists. Section 3.4 details an explicit

example of a smooth Q(ζ3)-plane curve over Q(ζ3) having a twist that does not possess such

a model in the field Q(ζ3), where ζ3 is a primitive 3rd root of unity. Interestingly, we find the

already mentioned explicit equations for a non-trivial Brauer-Severi variety. In Section 3.5, we

study the twists for smooth plane curve C over k, such that Aut(C) is a cyclic group. We prove

that if Aut(FP−1C) is represented in PGL3(k) by a diagonal matrix, (where FP−1C(X, Y, Z) is

k-isomorphic to C) then all the twists are diagonal, i.e. of the form F(PD)−1C(X, Y, Z) = 0

with D a diagonal matrix, Theorem 3.5.2. We apply this result to some special families of

curves, see Corollary 3.5.4. We also construct an example of a curve C that being Aut(FP−1C)

cyclic (but not diagonal) has all the twists not diagonal.

Chapter 4, section 4.1 is devoted to the study of the stratification by automorphism group

of smooth k-plane curves of genus 6, i.e. the different strata ofMPl
6 , where k has characteristic

p = 0 or p > 2g + 1 = 13. A full description of the automorphism groups and the associated

normal forms is given in Theorem 4.1.12. The diagram in Figure 4.1 shows how looks like

the stratification by automorphism groups of non-singular plane quintic curves. In section 4.2,

we explain an interesting phenomenon, which appears in Figure 4.1; the existence of a final

stratum of plane curves whose dimension is not zero. By a final stratum we mean a stratum

not containing any other proper stratum. One could expect that by adding restrictions in the

parameters of a family defining a stratum with a given automorphisms group, one could get

bigger automorphism groups until obtaining a zero-dimensional stratum. This happens for all

the families except for one. For this family each restriction in the parameters providing a bigger

automorphism group yields a singular curve. We find an explanation for this fact: this family

can be embedded in a family of curves of genus 6 with the same automorphism group for which

we can carry out the previous operation without getting singular curves, the key point is they
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are not plane curves anymore: Proposition 4.2.1, Corollary 4.2.2. Moreover, we prove that

this may happen in general for higher genera: Theorem 4.2.4. In section 4.3, we refine the

classification given in Theorem 4.1.12, since it is not representative or even complete over k

(see Remark 4.3.4): Theorem 4.3.6. We end up this chapter with section 4.4, in which a full

description of the set Twistk(C) of twists of a smooth k-plane curve of genus 6 defined over k

can be found.

In chapter 5, we fix a non-singular plane model FC(X, Y, Z) = 0 over k for C in one of

the families mentioned in Theorem 2.1.3, and such that Aut(FC) ≤ PGL3(K) is diagonal,

that is made entirely of 3 × 3 projective matrices of diagonal shapes. We first show that if

Aut(FC) contains a non-homology of order n > 1 (Definition 1.2.6), then Mk/k(C) is always

a field of definition, unless n divides one of the integers d, d − 1 or d(d − 2). We also give a

geometrically complete family over k and describe the automorphism group in each subcase as

well: Theorem 5.4.4. Secondly, if Aut(FC) is made entirely of homologies, then it is either a

cyclic group of order dividing d or d − 1, or it is isomorphic to Z/2Z × Z/2Z: Lemma 5.4.8.

In the case that Aut(FC) is cyclic generated by an homology of order n > 1, that divides d

with d odd or divides d − 1, then again MK/K(C) needs to be a field of definition: Theorem

5.4.14 and Theorem 5.4.15. Otherwise, we construct explicit examples of smooth plane curves

over C, whose field of moduli relative to the Galois extension C/R is R, but it is not a field of

definition; Proposition 5.4.2, Theorem 5.4.6, Theorem 5.4.16 and Proposition 5.4.20.

Appendix A contains the tables of all cyclic subgroups of automorphisms and the associated

defining equations, obtained for low degrees through manipulating Theorem 2.1.3 in chapter 2.

In appendix B, we briefly explain the algorithm for computing Twistk(C) of a non-hyperelliptic

curve C of genus g ≥ 3 developed in [LG14, Chp.1] and [LG17]. Alternatively, we use the

modified algorithm resulted by chapter 3 to compute the twists over k for the smooth plane

curves defined over k by X5 + Y 5 +XZ4 = 0 and X5 + Y 4Z +XZ4 = 0 , where k is a field

of zero characteristic or positive characteristic > (5− 1)(5− 2) + 1 = 13. Finally, we generate

in appendix C the full list of geometric fibers for the stratum of smooth plane curves of genus

g = 6 with automorphism group Z/5Z, which are isomorphic over k.
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guiding my work during her several research visits to Universitat Autònoma de Barcelona. I
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CHAPTER

1
Automorphism groups of smooth plane

curves: A Literature review

It is classically well-known that the full automorphism group Aut(C) of a smooth curve C

of genus g ≥ 2 defined over k is a finite group (Schmid (1938), Iwasawa-Tamagawa (1951),

Roquette (1952), Rosentlich (1955), Garcia (1993)). Moreover, if k has characteristic zero

characteristic, then it has order at most 84(g − 1). This bound is known as the Hurwitz bound

[Hur92] on Aut(C):

Theorem 1.1 (Hurwitz (1892), Roquette (1970)). Let G be a subgroup of automorphisms of a

smooth curve C of genus g ≥ 2 over k of zero characteristic. Then |G| ≤ 84(g − 1), more

precisely
|G|
g − 1

= 84, 48, 40, 36, 30,
132

5
, or ≤ 24.

The same bound holds over positive characteristic p > g + 1, with one exception, namely

the hyperelliptic curve Y 2Zp−2 = Xp − XZp−1, which has p = 2g + 1 and 2p(p2 − 1)

automorphisms.

Such a bound turns out to be sharp for infinitely many genera [Mac61]. The lowest genus

example is the Klein quartic curve given by the equation X3Y + Y 3Z + Z3X = 0, whose au-

tomorphism group is the unique simple group of order 168 namely, the Klein group PSL2(F7).

On the other hand, if p | |Aut(C)|, then a much larger automorphism group compared to

g could happen as was first pointed out by P. Roquette in [Roq70]. For example, if C is

birational equivalent to a Hermitian curve H(q), i.e. to a smooth plane curve of the form

Y qZ + Y Zq − Xq+1 = 0 for some q = pn ≥ 3, then g = 1
2
(q2 − q) and |Aut(H(q))| =

1



q3(q3 + 1)(q2 − 1). More precisely, Aut(H(q)) is isomorphic to the projective unitary group1

denoted by PGU(3, q). Furthermore, any smooth curve C satisfying |Aut(C)| ≥ 16g4 is

birational equivalent to a Hermitian curve H(q) as was proved by Stichtenoth [Sti73a, Sti73b].

A substantial improvement of the last bound to 16g3 + 24g2 + g was a consequence of Henn

classification in [Hen78] and later on to 3(2g2 + g)(3 +
√

8g + 1) for the case of smooth plane

curves by Anbar-Bartoli-Fanali-Giulietti in [ABFG13].

§1.1 Linearity of isomorphism between smooth curves

Given an invertible (n+ 1)× (n+ 1) matrix φ = (aij) defined over k, the rule x′i :=
∑

j aijxj

determines an automorphism of the polynomial ring k[x0, ..., xn] and also an automorphism of

the n-dimensional projective space Pn
k
. One easily checks that λφ = (λaij) produces the same

action on Pn
k
, for any non-zero λ ∈ k. So one is led to consider the action of PGLn+1(k) =

GLn+1(k) / k
∗
, which acts faithfully as a subgroup of automorphisms of Pn

k
. The converse is

also true by the next result, see Example 7.1.1 in [Har77]:

Theorem 1.1.1. Any k-automorphism of Pn
k

is linear, i.e. it can be viewed as an element of

PGLn+1(k). In particular, Aut(Pn
k
) = PGLn+1(k).

Before we present the proof of Theorem 1.1.1, we need the following facts and terminolo-

gies: Given a sheaf of rings F on a topological space X and an open subset U of X , the set

Γ(U,F) := F(U) refers to the sections of F on U . When U = X then Γ(X,F) are the global

sections of F on X .

A ringed space is a pair (X,OX) consisting of a topological space X and a sheaf of rings

on X . A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f ]) of a continuous

map f : X → Y and a map f ] : OY → f∗OX of sheaves of rings on Y , where f∗OX is the

direct image sheaf on Y by f∗OX(V ) = OX(f−1(V )) for any open subset V ⊆ Y .

1A unital in P2
Fq2

is a set U of q3 + 1 points meeting every line in P2
Fq2

in either 1 or q + 1 points. It is called

classical if it is preserved by a cyclic linear collineation group of order q2 − q + 1. For more information on
unitals on projective planes, see for example [BE08, CEK00].

The linear collineation group preserving a classical unital U is called the projective unitary group. See for
example [Blo67, Hof72].

2



An invertible sheaf F on a ringed space (X,OX) is defined to be a locally freeOX-module

of rank 1. The Picard group of (X,OX), denoted by Pic(X), is the set of all isomorphism

classes of invertible sheaves on X .

Proposition 6.12 in [Har77] shows that in fact Pic(X) is a group under ⊗ of sheaves. A

morphism f : (X,OX)→ (Y,OY ) of ringed spaces always induces a group morphism

f ∗ : Pic(Y )→ Pic(X)

defined by the rule f ∗(F) = f−1(F) ⊗f−1OY OX , where f ∗(F) is called the inverse image of

the invertible sheaf F on Y under f .

Example 1.1.2 (The twisting sheaf of Serre). Any invertible sheaf on Pn
k

is of the form O(`)

for some ` ∈ Z, i.e. a twisting of O(1) by `, where O(1) is the twisted sheaf of Serre defined

on Pn
k
. The basic way to think about is that the global sections Γ(Pn

k
,O(`)) of O(`) on Pn

k
is

precisely the k-vector space of homogeneous polynomials of degree `. So we can use it to talk

about homogeneous polynomials in a more geometric way. We address the reader to [Har77,

II, §5] for more details.

Recall that two divisors D and D′ are said to be equivalent, written D ∼ D′ if D −D′ is a

principal divisor. The group Div(Pn
k
) of all divisors on Pn

k
divided by the subgroup of principal

divisors is called the divisor class group, and is denoted by Cl(Pn
k
).

Proof. (of Theorem 1.1.1) Let f be any automorphism of Pn
k
. Then f ∗ is an automorphism of

Pic(Pn
k
). We know form Corollaries 6.16 and 6.17 in [Har77] that Pic(Pn

k
)'Cl(Pn

k
)
deg
'Z. Con-

sequently, Cl(Pn
k
) is generated by a hyperplane, which in turns corresponds toO(1) as a gener-

ator of Pic(Pn
k
). Thus f ∗(O(1)) must be a generator of Pic(Pn

k
), hence it isomorphic to either

O(1) orO(−1), since any invertible sheaf on Pn
k

is of the formO(`) for some ` ∈ Z, see Exam-

ple 1.1.2. However,O(−1) has no global sections, butO(1) does, therefore f ∗(O(1)) = O(1).

In particular, f ∗ induces an automorphism of the k-vector space Γ(Pn
k
,O(1)). Furthermore,

the global sections x0, ..., xn of O(1) on Pn
k

forms a basis of Γ(Pn
k
,O(1)), see Proposition 5.13

and Theorem 5.19 in [Har77]. Thus, the pull-backs si := f ∗(xi) must be another basis of

the vector space Γ(Pn
k
,O(1)), and we may write si :=

∑
i aijxj , where (aij) is an invertible

3



(n+1)×(n+1) matrix over k. In this case, f is uniquely determined by the si, and it coincides

with the automorphism (aij) as an element of PGLn+1(k).

Definition 1.1.3. By a smooth plane curve C of degree d ≥ 4 over k, we mean a smooth

projective curve C that is k-isomorphic to a non-singular plane model FC(X, Y, Z) = 0 in P2
k
,

where FC(X, Y, Z) is a homogenous polynomial of degree d with coefficient in k. In this case,

C admits a g2
d-linear system allowing us to embed

C = C ⊗k k
g2d
↪−→ P2

k
,

where g is the genus of C.

Lemma 1.1.4. Let C
g2d
↪→P2

k
be a smooth plane curve of degree d ≥ 4 over k. Then, it is non-

hyperelliptic of genus g = (d− 1)(d− 2)/2.

Proof. Let H ∩C ⊂ P2
k

be a hyperplane section of C, i.e. H ∩C is the intersection of C with a

hyperplaneH in P2
k
. In particular, the canonical divisorKC ofC is equivalent to (d−3)(H∩C),

see [Har77, Example 8.20.3]. By Bézout’s theorem H ∩ C has degree exactly d. Therefore,

one reads Riemann-Hürwitz formula as

2g − 2 = deg(KC) = (d− 3)d,

that is g = (d− 1)(d− 2)/2.

Next, if f(x, y) = 0 is the affine equation of a smooth plane curve C of degree d ≥ 4, then

{xrys
fy
| 0 ≤ r + s ≤ d− 3

}
is a basis of the space of regular differentials on C. Therefore, the canonical map C → Pg−1

k

can be seen as the map

(x : y : 1) 7→ (xrys | 0 ≤ r + s ≤ d− 3).

In particular, when d = 4, this map is exactly the identity map, and hence is an embedding.

That is, a smooth plane curve C of degree d = 4 over k is non-hyperelliptic.

Now, assume that d ≥ 5 and C is hyperelliptic. Hence, it has a hyperelliptic involution ι

of order 2, which fixes exactly 2g + 2 = (d − 4)(d + 1) points on C. Thinking about ι, up
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to PGL3(k)-conjugation, as the automorphism [X : Y : −Z], gives at most d fixed points on

FC(X, Y, Z) = 0, since ι leaves invariant in P2
k
, the line Z = 0, the point (0 : 0 : 1) /∈ C

and no other points. That is, (d − 4)(d + 1) ≤ d, a contradiction!. Therefore, C must be

non-hyperelliptic.

Given a divisor D on C, the set of all rational functions g on C such that D + div(g) ≥ 0

forms a k-vector space L(D) of finite dimension `(D). If KC is the canonical divisor of k.

Then, Riemann-Roch theorem states that

`(D)− `(KC −D) = deg(D) + 1− g.

Theorem 1.1.5 (Theorem 1, [Cha78]). Any isomorphism between smooth plane curves of de-

gree d ≥ 4 over k is induced by a projective linear transformation of P2
k
. In particular, a

smooth plane curve C of degree d ≥ 4 over k has a unique g2
d linear system, up to PGL3(k)-

conjugation.

Proof. Let C be a smooth plane curve of degree d over k, and letH∩C be a hyperplane section

of C. We can assume through a g2
d-linear system that H ∩C = P1 + ...+Pd, for some pairwise

distinct points Pi of C. By Riemann-Roch theorem and Lemma 1.1.4, we obtain

`(H ∩ C)− `(KC −H ∩ C) = d+ 1− (d− 1)(d− 2)/2.

On the other hand, L(KC) is exactly the vector space of homogenous polynomials of degree

d − 3, so its dimension equals to
(
d−1

2

)
, see [Har77, Example 8.20.3]. Hence, the members of

L(KC), cutting out H ∩C are exactly polynomials with a fixed linear factor (recall that H ∩C

has degree d > d− 3, and lies on a line in P2
k
). Consequently, `(KC −H ∩ C) =

(
d−2

2

)
.

Next, let φ : C
′ → C be an isomorphism as in the theorem, where C

′
is a smooth plane

curve of degree d over k. It suffices to show that the divisor φ∗(H ∩ C) lies on a line in P2
k
,

or equivalently, hyperplane sections of C are mapped to hyperplane sections of C
′
. That is, φ

sends collinear points in P2
k

to collinear points2. Because φ∗(KC−H∩C) = KC′−φ
∗(H∩C),

2PGL3(k) sends collinear points of P2
k

to collinear points of P2
k
.
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then `(KC′ − φ
∗(H ∩ C)) = `(KC −H ∩ C). In particular,

`(KC′)− `(KC′ − φ
∗(H ∩ C)) =

(
d− 1

2

)
−
(
d− 2

2

)
= d− 2.

So there exist d − 2 points P ′1, ..., P
′
d−2 on φ∗(H ∩ C), such that any curve of degree d − 3

passing them will contain the whole φ∗(H ∩ C). Now, suppose that φ∗(H ∩ C) = P ′1 + ... +

P ′d−2 + P ′d−1 + P ′d is not on a line. Denote the line which joins P ′i and P ′j by Li,j with i 6= j.

Therefore, there is one point, say P ′1, which is not on Ld−1,d, and {P ′d−1, P
′
d} * L1,2. For

each 3 ≤ i ≤ d − 2, draw a line Li through P ′i , but missing the points P ′d−1 and P ′d. Then

L1,2L3...Ld−2 is a curve of degree d − 3 passing through P ′1, ..., P
′
d−2, but does not contain

φ∗(H ∩ C), a contradiction.

Corollary 1.1.6. Let C be a smooth plane curve of degree d ≥ 4 defined over an algebraically

closed field k of characteristic p ≥ 0. Then, Aut(C) is a finite subgroup inside PGL3(k), fixing

a certain non-singular plane model FC(X, Y, Z) = 0 of C in P2
k
.

Proof. Since C has genus g = (d − 1)(d − 2)/2 ≥ 3, the full automorphism group Aut(C)

is finite. Moreover, C is a smooth plane curve over k, then it has a g2
d-linear system, which

is also unique, up to conjugation in PGL3(k), from the proof of Theorem 1.1.5. In particu-

lar, Aut(C) admits an injective representation inside Aut(P2
k
) = PGL3(k), characterized by

leaving invariant a fixed non-singular plane model say, FC(X, Y, Z) = 0 in P2
k
.

Theorem 1.1.7. Let Ci, for i = 1, 2, be two isomorphic smooth non-hyperelliptic curves of

genus g over k, canonically embedded in Pg−1

k
. Then any isomorphism between the Ci is

linear. In particular, Aut(Ci) can be seen as a finite subgroup of PGLg(k).

Proof. The idea can be rephrased in terms of linear series, we refer for example to [HKT08,

Chp. 11]. Let Li, for i = 1, 2, denotes the canonical linear series of Ci respectively. By

Theorem 6.72-(i) in [HKT08], the canonical series is the unique series of dimension g − 1 and

order 2g − 2. Therefore, an isomorphism f : C1 → C2 can always be identified with its action

between the Li, see Theorem 11.18 and Lemma 11.19 in [HKT08]. In other words, f naturally

induces an isomorphism f̃ : K1 → K2 between the canonical models Ki for Ci in Pg−1

k
,

so it is linear. Consequently, Aut(Ci) is embedded, as a finite subgroup, into Aut(Pg−1

k
) =

PGLg(k).
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Remark 1.1.8. Let C be a smooth curve of genus g ≥ 2 defined over an algebraically closed

field k. The automorphisms of C are induced by automorphisms of the ringed space (C,OC),

where OC denotes the ring of regular functions of C. This coincides with the set of all k-

automorphisms of the algebraic rational function field k(C) of C, denoted by Gal(k(C)/k). In

particular, if C is a smooth plane curve of degree d ≥ 4, then Gal(k(C)/k) can be viewed as a

finite subgroup of PGL3(k) , by using Remark 1.1.6.

§1.2 Finite subgroups of the 3-dimensional projective general

linear group

Assume that C has a smooth plane model FC(X, Y, Z) = 0 of degree d ≥ 4 over k. That is,

the genus g = (d− 1)(d− 2)/2 ≥ 3. Also, the g2
d-linear system is unique, up to conjugation in

PGL3(k), see [HKT08, Lemma 11.28], thus we can think about Aut(C) as a finite subgroup

of PGL3(k).

The determination of the finite subgroups of PGL3(k) is quite well understood in the sub-

ject. For instance, we recall this one made by H. Mitchell [Mit11, §1-10], which is based

entirely on geometrical methods. H. Mitchell [Mit11] proved that G fixes a point, a line or

a triangle unless it is primitive3 and conjugate to some group in a specific list. However, as

a consequence of Maschke’s theorem in group representation theory, the first two cases are

equivalent, in the sense that if G fixes a point (resp. a line) then it also fixes a line not passing

through the point (resp. a point not lying the line). In particular, we have the next result, which

can also be read in its present form in [DI09, Theorem 4.8]:

Theorem 1.2.1. Let G be a finite subgroup of PGL3(k) such that p - |G|. Then G satisfies one

of the following conditions:

1. it fixes a line in P2
k

and a point Q off this line,

3A subgroup H of a group G is termed core-free if
⋂

x∈G xHx−1 is trivial. A group G is said to be primi-
tive if it has a core-free maximal subgroup.
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2. it fixes a triangle (i.e. a set of three non-concurrent lines),

3. it is conjugate to one of the finite primitive subgroups4 of PGL3(k) namely, the Klein group

PSL(2, 7), the icosahedral group A5, the alternating group A6, or to one of the Hessian

groups Hess∗ with ∗ ∈ {36, 72, 216}.

Definition 1.2.2. An element of PGL3(k) is called intransitive if it has the matrix shape
∗ ∗ 0

∗ ∗ 0

0 0 1

 .

We use the notation PBD(2, 1) for the subgroup of PGL3(k) of all intransitive elements. A

subgroup of PBD(2, 1) is also called intransitive.

Obviously, there is a natural map Λ : PBD(2, 1)→ PGL2(k) given by
∗ ∗ 0

∗ ∗ 0

0 0 1

 ∈ PBD(2, 1) 7→

 ∗ ∗
∗ ∗

 ∈ PGL2(k).

The next result gives the list of finite subgroups of the 2-dimensional projective general

linear group PGL2(k). See [Suz77, Chapter 3] and [Web98, §§71-74], or [Hug05, Lemma

2.2.1, I], for more details.

Theorem 1.2.3. Let k be a field of of characteristic p = 0 or p > 2. Any finite subgroup G of

PGL2(k), such that p = 0 or p > 0 with p - |G|, is conjugate to one of the following groups:

1. The cyclic group Z/nZ = 〈diag(ζn, 1)〉 of order n, n ≥ 1,

2. The dihedral group D2n = 〈diag(ζn, 1),

 0 1

1 0

〉 of order 2n, n > 1,

4See Theorem 1.2.4-(4) or the notations at the beginning of the memoir.
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3. The alternating group A4, consisting of the transformations ±1 0

0 1

 ,

 0 ±1

1 0

 ,

 ζν4 ζν4

1 −1

 ,

 ζν4 −ζν4

1 1

 ,

 1 ζν4

1 −ζν4

 ,

 −1 −ζν4

1 −ζν4


where ν = 1, 3,

4. The symmetry group S4, consisting of the transformations ζν4 0

0 1

 ,

 0 ζν4

1 0

 ,

 ζν4 −ζν+ν′

4

1 ζν
′

4

 ,

where ν, ν ′ = 0, 1, 2, 3,

5. The alternating group A5, consisting of the transformations ζν5 0

0 1

 ,

 0 ζν4

−1 0

 ,

 λζν5 ζν−ν
′

5

1 −λζ−ν′5

 ,

 λζν5 ζν−ν
′

5

1 −λζ−ν′5

 ,

where λ := 1
2
(−1 +

√
5), λ := 1

2
(−1−

√
5), and ν, ν ′ = 0, 1, 2, 3, 4.

The list of finite groups G of PGL3(k), where k has characteristic p = 0, are explicitly

given in [MBD61, Chapter VII]. Using Corollary 2.3.6 in [Hug05], one also obtains the list

when p > 2 is relatively prime with |G|. In particular, we have the next theorem, which is

Lemma 2.3.7, case I in [Hug05]:

Theorem 1.2.4. Let G be a finite subgroup of PGL3(k), where k has characteristic p 6= 2 such

that p - |G|. Then, G is conjugate to one of the following groups:

1. Type I: An intransitive subgroup of PGL3(k) whose natural image under Λ in PGL2(k) is

equal to one of the groups in Theorem 1.2.3,

2. Type II: A group generated by T := [Y : Z : X] and a finite group generated by the image

in PGL3(k) of diagonal matrices.

The group of order 9 generated by T and S := diag(1, ζ3, ζ
2
3 ) will be called Hess9,

3. Type III: A group generated by R := [X : Z : Y ] and a group of Type II.

The group generated by Hess9 and R will be called Hess18,
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4. Type IV: One of the Hessian groups; The group Hess36 of order 36 generated by Hess18 and

V :=


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 ,

the group Hess72 of order 72 generated by Hess36 and UV U−1, where U := diag(1, 1, ζ3),

or the group Hess216 of order 216 generated by Hess72 and U .

The alternating group A5 of order 60 generated by E1 := diag(1, ζ4
5 , ζ5), E2 := [X : Z :

Y ], and

E3 :=


1 1 1

1 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

1 ζ5 + ζ−1
5 ζ2

5 + ζ−2
5

 ,

or the alternating group A6 of order 360 generated by E1, E2, E3, and

E4 :=


1 ν1 ν1

2ν2 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

2ν2 ζ5 + ζ−1
5 ζ2

5 + ζ−2
5

 ,

where ν1 := 1
4
(−1 +

√
−15) and ν2 := 1

4
(−1−

√
−15).

The Klein group PSL2(F7) of order 168 generated by F1 := diag(ζ7, ζ
2
7 , ζ

4
7 ), F2 := [Y : Z :

X], and 
a′ b′ c′

b′ c′ a′

c′ a′ b′

 ,

where a′ := ζ4
7 − ζ3

7 , b
′ := ζ2

7 − ζ5
7 , and c′ := ζ7 − ζ6

7 .

Remark 1.2.5. Theorem 1.2.4 could be viewed as an extended version of the classification

given in Theorem 1.2.1. First, given any a line L ⊂ P2
k

and a point P ∈ P2
k
\ L, one can

consider a transformation A ∈ PGL3(k) that moves L to the reference line Z = 0 and the point

P to the reference point (0 : 0 : 1). In this way, any finite subgroup G of PGL3(k) that fixes a

line and a point off this line is conjugate to a group of Type I. Second, for any finite subgroup

G ⊂ PGL3(k) that fixes a triangle ∆, we may assume up to conjugation that ∆ has vertices
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(1 : 0 : 0), (0 : 1 : 0), and (0 : 0 : 1) respectively. In particular, such groups are classified

according to its action on the vertices, i.e with respect to a subgroup of the permutation group

〈[X : Z : Y ], [Y : Z : X]〉 modulo a finite group made entirely of diagonal matrices. So we

are again in Type I, Type II, or Type III. Finally, it is straightforward that the groups of Type IV

coincides with the finite primitive subgroups of PGL3(k) given in Theorem 1.2.1-(3).

Definition 1.2.6. By an homology of period n ∈ Z≥1 coprime with p, we mean a projective

linear transformation of the plane P2
k
, which acts, up to conjugation in PGL3(k), as

(X : Y : Z) 7→ (ζnX : Y : Z), (1.1)

where ζn is a primitive nth root of unity.

Such a transformation fixes pointwise a line (its axis) and a point off this line (its center).

For example, a homology in the canonical shape (1.1) has axis X = 0 and center (1 : 0 : 0).

One easily can see the following observation:

Lemma 1.2.7. Let σ ∈ PGL3(k) be a non-trivial planar projective transformation of finite

order coprime with p.

1. If σ is a homology, then the fixed points of σ consists entirely of its center and all points on

its axis. In particular, every triangle whose set of vertices is pointwise fixed by σ contains

its center as a vertex.

2. If σ is a non-homology, then it fixes exactly three points. In particular, there is a unique

triangle whose vertices are pointwise fixed by σ.

The following results turns out to be very useful in hand when one wants to determine the

automorphism group of a smooth plane curve over k. See [Mit11, Theorems 6,8, and 9] and

[Mit11, Theorem 4], respectively:

Theorem 1.2.8 (Mitchell, [Mit11]). Let G be a finite group of PGL3(k), where k has charac-

teristic p 6= 2 such that p - |G|. If G contains an homology of period n ≥ 4, then it fixes a

point, a line or a triangle. Moreover, the Hessian group Hess216 is the only finite subgroup of

PGL3(k) that contains homologies of period n = 3, and does not leave invariant a point, a

line or a triangle.
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Proposition 1.2.9 (Mitchell, [Mit11]). Let G be a finite group of PGL3(k), where where k has

characteristic p 6= 2 such that p - |G|. Inside G, a transformation, which leaves invariant the

center of an homology, must leave invariant its axis and vice versa.

§1.3 Galois points for smooth plane curves

Let K be an algebraic function field in one variable over k.

Definition 1.3.1 (see [Nam84]). The gonality Gon(K) of K, is the minimum of the degree

extension [K : k(t)] where t runs over the transcendental elements of K.

Definition 1.3.2 (see [MY00]). A maximal rational subfield Km of K is a maximal subfield

among the ones that are purely transcendental extensions of k. By Lüroth’s theorem, any

subfield K ′ satisfying k 6= K ′ ⊂ Km is rational.

A maximal rational subfield Km satisfying [K : Km] = Gon(K) is called a g-maximal

rational subfield of K.

Example 1.3.3. In the case where K = k(C) is the rational function field of a smooth plane

curve C over k of degree d ≥ 4, we have the following facts (see Theorem 5.3.17 in [Nam84]):

1. If Km is a g-maximal rational subfield of K, then [K : Km] = d− 1. The extension K/Km

is obtained by π∗P : k(L) ∼= k(P1
k
) ↪→ k(C), where πP is the projection from C to a line L

with a center P ∈ C.

2. If one considers a projection πP from C to a line L with a center P /∈ C, then we get an

extension of fields π∗P : k(L) ∼= k(P1
k
) ↪→ k(C) such that [k(C) : k(L)] = d. In this case,

k(L) is a maximal rational subfield of k(C), but not a g-maximal one.

In both cases, we get a maximal rational subfield. Therefore we may consider the natural point

projection map πP : C → P1
k

, i.e. for an arbitrary point Q ∈ C, the point πP (Q) is the

intersection point of L with the line PQ, joining P and Q.

The field extension does not depend on the line L, but on whether the point P ∈ P2
k

lies

on C or not, see [Yos01]. So the function field k(L) is denoted by KP , and the extension is

considered from a geometric point of view.

12



The notion of Galois points, as far as we know, was first introduced by H. Yoshihara in

1996, see [Fuk09, MY00, Yos01].

Definition 1.3.4. Following the notations above, a point P ∈ P2
k

is a Galois point for C, if the

function field extension π∗P : KP ↪→ K, induced by πP , is Galois.

A Galois point P is an inner (resp. outer) Galois point for C, if P ∈ C (resp. P /∈ C). The

number of inner (resp. outer) Galois points for C is denoted by δ(C) (resp. δ′(C)).

Example 1.3.5. Let C be the smooth plane curve over k defined byX3Z+Y 4 +Z4 = 0, where

k is a field of characteristic p 6= 2, 3. The point P := (1 : 0 : 0) is an P := (1 : 0 : 0) is

an inner Galois point for C. The natural point projection from P , πP : C → P1
k

is defined by

(X : Y : Z) ∈ C 7→ (Y : Z). So K/KP = k(x, y)/k(y) : x3 + y4 + 1 = 0 is cyclic extension,

in particular is Galois.

Example 1.3.6. Let C be the smooth plane curve defined by XpZ +XZp − Y p+1 = 0 over k,

where k is a field of characteristic p ≥ 3. The point P := (1 : 0 : 0) is an inner Galois point

for C, since K/KP = k(x, y)/k(y) : xp + x− yp+1 = 0 is an Artin-Schreier extension, which

is well-known to be Galois.

Example 1.3.7. Let C be the smooth plane curve of degree d ≥ 5 defined by Xd + Y d−1Z +

Y Zd−1 = 0 over k, where k is a field of characteristic p = 0 or p > (d − 1)(d − 2) + 1. The
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point P := (1 : 0 : 0) is the unique outer Galois point for C, see Proposition 2.4.10 and its

proof.

H. Yoshihara in [MY00, Yos01] classified the numbers δ(C) and δ′(C) when k has zero

characteristic. For positive characteristic p > 0, M. Homma in [Hom06] determined δ(C) and

δ′(C) when C is a Fermat curve of degree d = p` + 1. S. Fukasawa in [Fuk06, Fuk08, Fuk14b]

introduced the number δ(C) when p > 2 or d − 1 is not a power of 2, and δ′(C) when p -

d, d = p or d = 2` with p = 2. In [Fuk13], he investigated the remaining cases for δ(C)

and δ′(C). More precisely, a complete answer was given to the following problems: Find and

classify smooth plane curves of degree d = 2`+ 1 with ` ≥ 2, p = 2 and δ(C) = d. Second, let

p > 0, e ≥ 1, d = pe` with p - `. Then determine δ′(C) when (pe, `) /∈ {(p, 1), (2e, 1)}.

Summing up, we have the following classification theorem of smooth plane curves by the

numbers δ(C) and δ′(C):

Theorem 1.3.8 (Yoshihara, Homma, Fukasawa). Let C be a smooth plane curve of degree

d ≥ 4 over k, where k is a field of characteristic p ≥ 0. Then,

1. δ(C) = 0, 1, d or (d− 1)3 + 1. Furthermore, we have:

(a) δ(C) = (d − 1)3 + 1 if and only if p > 0, d = pe + 1 for some e ∈ N, and C is

isomorphic to the Fermat curve of degree d.

(b) δ(C) = d ≥ 5 if and only if p = 2, d = 2e + 1, and C is isomorphic to a curve defined

by

cY 2e+1 +
∏
α∈F2e

(X + αY + α2Z) = 0,

for some c ∈ k \ {0, 1}.

(c) δ(C) = d = 4 if and only if p 6= 2, 3 and C is isomorphic to the curve

X3Z + Y 4 + Z4 = 0.

2. δ′(C) = 0, 1, 3, 7 or (d− 1)4 − (d− 1)3 + (d− 1)2. More precisely,

(i) δ′(C) = (d− 1)4− (d− 1)3 + (d− 1)2 if and only if p > 0, d− 1 is a power of p, and

C is isomorphic to the Fermat curve of degree d.
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(ii) δ′(C) = 7 if and only if p = 2, d = 4, and C is isomorphic to the Klein quartic curve.

(iii) δ′(C) = 3 and three Galois points are not contained in a common line if and only if

p - d, d− 1 is not a power of p, and C is isomorphic to the Fermat curve of degree d.

(iv) δ′(C) = 3 and three Galois points are contained in a common line if and only if

p = 2, d = 4, and C is isomorphic to a plane curve defined by

(X2 +XZ)2 + (X2 +XZ)(Y 2 + Y Z) + (Y 2 + Y )2 + cZ4 = 0,

for some c ∈ k \ {0, 1}.

Remark 1.3.9. The assumption c 6= 0, 1 is to avoid singular points on C. For example, when

δ(C) = d ≥ 5, there are exactly d points on C∩{Y = 0}. Therefore, singular points should lie

on Y 6= 0. Moreover, by [Fuk13, Lemma 5], (X0 : 1 : Z0) is a singular point only if it is F2e-

rational such that c+h(X0, Y0) = 0, where h(X,Z) :=
∏

α∈F2e
(X+α+α2Z) = 0. However,

we have by [Fuk13, Lemma 6] that {h(X,Z) : X,Z ∈ F2e} = {0, 1}. Consequently, c = 0 or

1 are discarded.

As a consequence of Theorem 1.3.8, one has:

Theorem 1.3.10. (Yoshihara, Theorems 4,4’ and Propositions 5,5’, [Yos01]) LetC be a smooth

plane curve of degree d ≥ 4 over k, where k is a field of characteristic p = 0 or p > (d−1)(d−

2) + 1. Then δ′(C) = 0, 1, or 3, and moreover δ′(C) = 3 if and only if C is isomorphic to the

Fermat curve of degree d. On the other hand, if d = 4 then δ(C) = 0, 1, or 4, and similarly the

curve with δ(C) = 4 is unique and is isomorphic to Y Z3 +X4 + Y 4 = 0. On the contrary, for

d ≥ 5, one gets δ(C) = 0 or 1.

Remark 1.3.11. The full automorphism groups of smooth plane curves with at least two Galois

points have already been investigated. Fermat, Klein curves and the curve X3Z+Y 4 +Z4 = 0

are quite well understood and were studied by many authors (see for example [HKT08, Hur03,

KS96, Rit04]). The curve characterized by δ′(C) = 3 and three Galois points are contained in

a common line has automorphism group isomorphic to the symmetry group S4, while the curve

characterized by δ(C) = d ≥ 5 has automorphism group isomorphic to PGL2(F2e) provided

that e ≥ 2 (see [Fuk14a, Theorem 1, Theorem 2].
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Finally, we end up this subsection by proving the next statement, see [Har13, Lemma 3.7]:

Proposition 1.3.12 (Harui, [Har13]). Let C be a smooth plane curve of degree d ≥ 5 over k,

where k is a field of characteristic p = 0. A cyclic group G of automorphisms of C automor-

phisms of C has order at most d(d − 1). Furthermore, if G is generated by an homology with

center P , then |G| | d when P /∈ C (resp. d − 1 when P ∈ C). The equality |G| = d (resp.

|G| = d− 1) holds if and only if P is an outer (resp. inner) Galois point for C.

Oikawa [Oik56] and Arakawa [Ara00] gave, possibly stronger, upper bounds than Hurwitz

bound (Theorem 1.1) when G fixes finite subsets of C (not necessarily pointwise). As an

application of Riemann-Hurwitz formula, one gets the next results. We address the reader to

[Oik56, Theorem 1] and [Ara00, Theorem 3] or [Har13, Theorem 3.2] for the complete details.

Theorem 1.3.13. Let C be a smooth plane curve of genus g ≥ 3 defined over an algebraically

closed field of characteristic zero, and let G be a subgroup of Aut(C). Then

1. (Oikawa’s inequality) If G fixes a finite subset S of C with |S| = j ≥ 1, then |G| ≤

12(g − 1) + 6j.

2. (Arakawa’s inequality) If G fixes three distinct finite subsets Si (i = 1, 2, 3) of C with

|Si| = ji ≥ 1, then |G| ≤ 2(g − 1) + j1 + j2 + j3.

Proof. (of Proposition 1.3.12) We may assume, without loss of generality, that σ is a generator

of G, represented by a diagonal shape matrix. In particular, G fixes each of the three reference

lines L1 : X = 0, L2 : Y = 0, and L3 : Z = 0, and each of the three reference points

P1 := (1 : 0 : 0), P2 := (0 : 1 : 0), and P3 := (0 : 0 : 1). Set Si = C ∩Li for i = 1, 2, 3, hence

each Si is a non-empty subset of C of cardinality at most d, and is fixed by G.

We distinguish between the different situations of C ∩ V , where V = {P1, P2, P3}:

(i) If |C ∩ V | ≥ 2, say P1, P2 ∈ C, then at least one of the subsets S1 \ {P2}, S2 \ {P1} and

S3 \ {P1, P2} is non-empty with cardinality at most d − 1 (otherwise, S1 = {P2}, S2 =

{P1} and S3 = {P1, P2}. So L1 and L2 intersects C at P2 and P1, respectively with

multiplicity d. Hence the defining equation for C becomes Zd + XYG(X, Y, Z) = 0

for some homogenous polynomial of degree d − 2. But also L3 intersects C only at P1
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and P2, that is G(X, Y, Z) = XjY d−2−j for some 0 ≤ j ≤ d − 2, a contradiction to

non-singularity). One applies Arakawa’s inequality (Theorem 1.3.13) for such a subset

with the two subsets {P1}, {P2} to obtain

|G| ≤ 2(g − 1) + (d− 1) + 1 + 1 = (d− 1)2 < d(d− 1).

(ii) If |C ∩ V | = 1, say P1 ∈ C, then either S2 \ {P1} or S3 \ {P1} is a non-empty subset of

C with cardinality at most d− 1. Using Arakawa’s inequality (Theorem 1.3.13) again for

such a subset with the two subsets {P1} and S1, we then have

|G| ≤ 2(g − 1) + (d− 1) + 1 + d = d(d− 1).

(iii) If C ∩ V = ∅ then C : Xd + Y d + Zd + lower order terms. This implies that σ =

diag(ζmd , ζ
n
d , 1) for some integers m,n where 0 ≤ m,n ≤ d − 1. Hence σd = 1 and |G|

divides d, in particular, |G| ≤ d(d− 1).

Second, suppose that σ is a homology. Then, up to conjugation in PGL3(k), one can take

σ = diag(1, 1, ζ), where ζ is a root of unity. That is, its center is P3 := (0 : 0 : 1) and its axis

is L3 : Z = 0. Let πP3 : C → P1
k

: (X : Y : Z) 7→ (X : Y ) be the natural point projection

map from P3, and π : C → C/G be the natural quotient map. Hence

ψ : C/G→ P1
k

: G.(X : Y : Z) 7→ (X : Y )

is well-defined, and the following diagram is commutative

C

πP3

��

π // C/G

ψ

��

P1
k
.

In particular, |G| = deg(π) is a factor of deg(πP3), which is d − 1 if P3 ∈ C and d otherwise.

Furthermore, if |G| = deg(πP3), then πP3 coincides with the quotient map π, which implies

that P3 is a Galois point for C and G is the Galois group at P3.
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§1.4 The classification for smooth plane curves: Harui’s work

Proposition 1.4.1. Let C be a smooth curve of genus g ≥ 2 over k, where k is a field of

characteristic p ≥ 0. The stabilizer GP of a place P of the function field k(C) of C is always

of the form N o Z/mZ, such that

(i) if p = 0, then N is trivial.

(ii) if p > 0, then N is a nilpotent group consisting of all elements of GP whose order is a

power of p, and m is relatively prime to p.

Proof. We only sketch the proof, and we address the reader to Lemma 11.44 and Theorem

11.49 in [HKT08] for more details. Choose a uniformizer element z of k(C) at P . The key

point is that for every α ∈ GP , there exists a unique non-zero constant cα ∈ k, such that

ordP(α(z)− cαz) > 1. Moreover, cα is independant of the choice of the uniformizing element

z and any eigenvalue of α is a power of cα. The mapping φ : GP → k : α 7→ cα is a group

homomorphism. So GP/ ker(φ) is isomorphic to a finite multiplicative subgroup of k. Thus it

is cyclic of order m coprime with p, since any finite multiplicative subgroup of k is the group

of m-th roots of unity for a suitable m with gcd(m, p) = 1.

Now if α ∈ ker(φ), then any eigenvalue of α is equal to 1. Hence ker(φ) consists of all

those α, for which it associates a lower-triangular matrix Aα whose main diagonal consists

entirely of 1’s. Since any k-automorphism of k(C) is of finite order, we deduce that

• if p = 0, then Aα must be the identity matrix and thus α is the identity k-automorphism,

• if p > 0, then Aα has order a power of p , and ker(φ) is nilpotent, being isomorphic to a

subgroup of matrices of the shape Aα.

Corollary 1.4.2. Let C be a smooth curve of genus g ≥ 2 defined over k, where k is a field of

characteristic p ≥ 0. Any subgroup G of automorphisms of order coprime with p, that fixes a

point on C, is cyclic.
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Definition 1.4.3. For a non-zero monomial cX i1Y i2Zi3 with c ∈ k\{0}, its exponent is defined

to be max{i1, i2, i3}. For a homogenous polynomial F (X, Y, Z), the core of it is defined to be

the sum of all terms of F with the greatest exponent. Now, let C0 be a smooth plane curve

over k, a pair (C,H) with H ≤ Aut(C) is said to be a descendant of C0 if C is defined by a

homogenous polynomial whose core is a defining polynomial of C0 and H acts on C0 under a

suitable change of the coordinates system, i.e. H is conjugate to a subgroup of Aut(C0).

Recently, T. Harui, in his unpublished paper in arXiv [Har13], provided a classification of

the automorphism groups of smooth plane curves of degree d ≥ 4 over algebraically closed

fields of zero characteristic. We detail the statement and its proof next.

Theorem 1.4.4 (Harui, Theroem 2.1, [Har13]). Let k be a field of characteristic p = 0, and let

G be a subgroup of automorphisms of a smooth plane curve C over k of degree d ≥ 4. Then

one of the following situations holds:

1. G fixes a point on C and then it is cyclic.

2. G fixes a point not lying on C and we always think in the following commutative diagram,

with exact rows and vertical injective morphisms:

1 // k
∗

// PBD(2, 1) Λ // PGL2(k) // 1

1 // N //
?�

OO

G //
?�

OO

G′ //
?�

OO

1

where N is a cyclic group of order dividing the degree d and G′ is a subgroup of PGL2(k),

which is conjugate to a cyclic group Z/mZ of order m with m ≤ d − 1, a Dihedral group

D2m of order 2m with |N | = 1 or m|(d− 2), one of the alternating groups A4, A5, or to the

symmetry group S4.

3. G is conjugate to a subgroup of Aut(Fd), where Fd is the Fermat curve Xd +Y d +Zd = 0.

In particular, |G| divides Aut(Fd)| = 6d2, and (C,G) is a descendant of Fd.

4. G is conjugate to a subgroup of Aut(Kd), where Kd is the Klein curve curve XY d−1 +

Y Zd−1 + ZXd−1. In this case, |G| divides |Aut(Kd)| = 3(d2 − 3d + 3), and (C,G) is a
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descendant of Kd.

5. G is conjugate to a finite primitive subgroup of PGL3(k) mentioned before in Theorem

1.2.1-(3).

Proof. From Theorem 1.2.1 there are three cases:

(i) G fixes a line L ⊂ P2
k

and point P /∈ L. If P ∈ C then G is cyclic by Corollary 1.4.2,

and it has order at most d(d − 1) by Proposition 1.3.12. Otherwise, we can assume that

L : Z = 0 and P = (0 : 0 : 1) /∈ C, and thus G is an intransitive finite subgroup of

PGL3(k) by the virtue of Theorem 1.2.4, Type I. In particular, we can think about G in

a short exact sequence of the form 1−→N−→G Λ−→G′−→1, where N = Ker(Λ|G) and

G′ = Img(Λ|G). Here Λ is the natural embedding appeared in Definition 1.2.2. In other

words, N could be viewed as the part of G acting on the variable Z and fixing the other

variables, while G′ is the part acting on X, Y and fixing Z. This gives us the embedding

N ↪→ k
∗

and G′ ↪→ PBD(2, 1) in the statement. Moreover, every automorphism η in N

is represented by a unique diagonal matrix diag(1, 1, ζ) for some root of unity ζ . Thus

the embedding N ↪→ k
∗

: η 7→ ζ is injective, and N is isomorphic to a subgroup of

k
∗
. Hence N is cyclic generated by a homology η, and the assertion on the order of N

follows from Proposition 1.3.12. On the other hand, the possibilities for G′ as a subgroup

of PGL2(k) is given by Theorem 1.2.3. It remains to give an upper bound for m when

G′ is isomorphic to Z/mZ or D2m: In both cases, there exists an automorphism σ ∈ G

whose image σ′ := Λ(σ) is of order m. Up to a change of variables in PBD(2, 1),

in particular preserving the assumptions on the line L and the point P , we may take

σ = diag(α, β, 1) such that α
β

is a primitive mth root of unity. Recall that P1 = (1 : 0 : 0)

and P2 = (0 : 1 : 0) are the fixed points of σ on L, so when G′ ∼= Z/mZ, i.e. G = 〈η, σ〉,

then P1 and P2 are the fixed points by G on L. Moreover, in case of D2m, there must be

τ ∈ G such that τ ′ := Λ(τ) and σ′ generate G′ with τ ′2 = 1 and τ ′σ′τ ′ = σ′−1. That is

G = 〈η, σ, τ〉 and we may assume that τ = [γY : γX : Z].

Let C : F (X, Y, Z) = 0 be the defining equation for C with respect to the above assump-

tions, and ej the intersection multiplicity of C and L at Pj for j = 1, 2. We first note that
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e1 = e2 if G′ ∼= D2m, because of the automorphism τ . As a first insight we show the the

next observation:

Observation 1. If e1 ≥ 2 or e2 ≥ 2, then N is trivial.

Proof. Suppose that e1 ≥ 2, then C is defined by F (X, Y, Z) = Xd−1Z +

Xe1Y e2G(X, Y )+ lower order terms in X , where G(X, Y ) is a homogenous polyno-

mial in X, Y of degree d − e1 − e2, such that neither X nor Y is a factor of it. Since

η = diag(1, 1, ζ) is an automorphism of C, then F (η(X, Y, Z)) = λF (X, Y, Z) for some

λ ∈ k∗. Hence ζ = 1 and N is trivial. Similarly we deal the situation when e2 ≥ 2.

We need to treat each of the following subcases:

(a) C ∩ L ⊆ {P1, P2}: If G′ is isomorphic to Z/mZ, then G fixes each of P1 and P2

and at least one of them belongs to C. So G itself is cyclic and we go back to the

former situation at the beginning (Theorem 1.4.4-(1)). If G′ is isomorphic to D2m,

then e1 = e2 = d
2
≥ 2, and N is trivial by Observation 1. Furthermore, C is smooth

at P1 and P2, hence the defining equation of C becomes (Xd−1 + Y d−1)Z+ lower

order terms in X and Y . Since σ ∈ Aut(C), αd−1 = βd−1, and σ′d−1 = 1. Thus m

divides d− 1, in particular m ≤ d− 1.

(b) C ∩ L contains a point Q distinct from P1 and P2: We show the following observa-

tion:

Observation 2: The order m of σ′ divides d − e1 − e2. Moreover, if m = d then

(C,G) is a descendant of the Fermat curve Fd.

Proof. Suppose that σj fixes Q for some integer j ≥ 1. Then σj ∈ N , since it

fixes three points on L, namely, Q, P1 and P2, in particular it fixes L pointwise.

Therefore σ′j = 1 and m divides j. Moreover, it is obvious that σm fixes Q, then

the orbit of Q by H := 〈σ〉 equals |H/〈σm〉| = m. In other words, we can write

(C ∩L) \ {P1, P2} as a disjoint union of orbits of m points. Now, Bézout’s theorem

for C reads as d = e1 + e2 +
∑r

i=3 m · ei for some positive integers ei, hence m

divides d − e1 − e2. In particular, if m = d, then e1 = e2 = 0, and neither P1
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nor P2 lies on C. Hence the core of F (X, Y, Z) must be Xd + Y d + Zd, but also

G = 〈η, σ〉 when G′ ∼= Z/mZ and 〈η, σ, τ〉 when G′ ∼= D2m. In both situation the

core of F (X, Y, Z) is invariant under the action of G, which implies that (C,G) is

a descendant of the Fermat curve Fd.

It is clear now, by Observation 2, that when G′ ∼= Z/mZ then m ≤ d− 1 or (C,G)

is a descendant of the Fermat curve Fd. On the other hand, e1 = e2 when G′ ∼= D2m,

and moreover

• (C,G) is a descendant of the Fermat curve if e1 = e2 = 0.

• m|d− 2 if e1 = e2 = 1.

• m ≤ d− 4 and N is trivial if e1 = e2 ≥ 2.

That is to say, Theorem 1.4.4, (1), (2) and (3) follows in this case.

(ii) G fixes a trianlge ∆ and neither a line nor a point is leaved invariant byG. Up to projective

equivalence, we may assume that ∆ consists of the three reference lines L1 : X = 0, L2 :

Y = 0, and L3 : Z = 0. So the set of vericies of δ is V = {P1, P2, P3}, where G acts

transitively on V , by our assumptions that neither a line nor a point is leaved invariant

by G. Hence either C and V are disjoint or V ⊂ C. Also, each element of G gives a

permutation of the set {X, Y, Z} of the corrdinate functions, up to a constant.

In the case that C contains V , we denote by Ti the tanget line to C at Pi, for i = 1, 2, 3.

By the assumptions on G, these lines are not concurrent, pairwise distinct, and G fixes

the set {T1, T2, T3} and acts on it transitivley.

We treat each of the following subcases:

(a) C and V are disjoint: The core of F (X, Y, Z) should be Xd + Y d + Zd, and G is

then a subgroup of Aut(Fd). Hence (C,G) is a descendant of the Fermat curve in

this subcase.

(b) V ⊂ C and each of Ti’s, for i = 1, 2, 3, is an edge of ∆: We may assume that

T1 : Z = 0, T2 : X = 0, and T3 : Y = 0. Then the core of F (X, Y, Z) is
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XY d−1 + Y Zd−1 + ZXd−1, which is fixed by G. So (C,G) is a descendant of the

Klein curve Kd.

(c) V ⊂ C and non of Ti’s, for i = 1, 2, 3, is an edge of ∆: We show that this subcase

does not occur.

Let P ′i1 be the intersection point of Ti2 and Ti3 , where {i1, i2, i3} = {1, 2, 3}. Then

they are pairwise distinct because otherwise T1, T2, and T3 are concurrent and their

intersection point is fixed by G, a contradiction. Therefore, we have a triangle ∆′

fixed byG, whose edges are formed by T ′is and the set V ′ := {P ′1, P ′2, P ′3} represents

its vertices. We also note that V and V ′ are disjoint by assumption.

There is a natural group homomorphism ϕ : G→ S3 given by

σ = [αXi1 : βXi2 : γXi3 ] ∈ G 7→ (i1i2i3),

where α, β, γ ∈ k
∗

with {i1, i2, i3} = {1, 2, 3}, X1 = X,X2 = Y, and X3 = Z.

Since neither a line nor a point is fixed by G, Im(ϕ) is isomorphic to Z/3Z or S3.

Furthermore, any σ ∈ Ker(ϕ) is written in the shape diag(α, β, 1) ∈ PGL3(k).

Hence it fixes V pointwise, which implies that it fixes each Ti, for i = 1, 2, 3. In

particular, it fixes V ′ pointwise, and it follows by Lemma 1.2.7 that σ is trivial. We

then conclude that G is isomorphic to Im(ϕ), which is Z/3Z or S3. If G ∼= Z/3Z,

then it fixes a line, which conflicts our assumptions on G. On the other hand, if

G ∼= S3, then it is G is generated by σ = [Y : Z : X] and some τ of order 2 such

that τστ = σ−1. After a suitable change of coordinates, if necessary, we may take

τ = [ζ3Y : ζ−1
3 X : Z]. Thus G fixes the point (1 : ζ−1

3 : ζ3), which contradicts

again the restrictions on G.

(iii) G is conjugate to a finite primitive subgroup of PGL3(k). This leads us to the statement

(5) in Theorem 1.4.4.

This completes the proof.

We also need Theorem 2.3 in [Har13]:
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Theorem 1.4.5 (Harui, [Har13]). Let C be a smooth plane curve of degree d ≥ 5 with d 6= 6

over k, where k is a field of characteristic p = 0. Then |Aut(C)| ≤ 6d2.

Proof. Suppose first that Aut(C) is not primitive, then it fixes a line or a triangle, by Theorem

1.2.1. If it fixes a line L, then S := C ∩ L is a non-empty set of cardinality at most d, which is

also fixed by Aut(C). Apply Oikawa’s inequality (Theorem 1.3.13-(1)) to obtain that

|Aut(C)| ≤ 12(g − 1) + 6|S| ≤ 6d(d− 3) + 6d = 6d(d− 2) < 6d2.

Similarly, if Aut(C) a triangle ∆, then C ∩∆ is non-empty set of cardinality at most 3d, which

is fixed by Aut(C). So we have the same inequality |Aut(C)| ≤ 6d2 by the same argument

above.

Second, if Aut(C) is primitive, then |Aut(C)| ≤ 360. Hence |Aut(C)| ≤ 6d2 for any

d ≥ 8. If d = 5 or 7, then we still have the inequality |Aut(C)| ≤ 6d2 except for the pairs

(d, |Aut(C)|) = (5, 168), (5, 216), (5, 360) or (7, 360) again by Theorem 1.2.1. However,

these four exceptional cases do not occur following Theorem 1.1.

The previous results; Theorem 1.4.4, Theorem 1.4.5 still true when the characteristic p is

positive and big enough. For example, it does for p > (d − 1)(d − 2) + 1 = 2g + 1, and we

justify this next (see also Badr-Bars [BB16c, §6]):

Fix a prime p > 0 and let k be a field of characteristic p > 2. Consider a

smooth plane curve C of genus g = (d − 1)(d − 2)/2 ≥ 3 over k, and suppose that

|Aut(C)|, |Aut(Fd)|, |Aut(Kd)|, and d(d− 1) are relatively prime with p, and p ≥ 7, where

Fd and Kd are the Fermat curve and the Klein curve of degree d, respectively. Then the tech-

niques appeared in [Har13] hold.

Consider the p-torsion of the degree 0 Picard group of C, which is a finitely generated

Z/pZ-module of dimension γ. The integer γ is called the p-rank of C, and always γ ≤ g,

where g is the genus of C. For a point P of C, we mean by Aut(C)P , the subgroup of Aut(C)

fixing the place P .

Lemma 1.4.6. Assume that |Aut(C)P | is prime to p, for any point P of C and that the p-rank

of C is trivial. Then |Aut(C)| is prime to p.

24



Proof. Let σ ∈ Aut(C) be of order p. Then the extension k(C)/k(C)σ is a finite extension

of degree p, and is unramified everywhere (if it ramifies at a place P , then σ is an element

of Aut(C)P , which conflicts our assumption on |Aut(C)P |). Now, if γ = 0, i.e the p-rank

is trivial for C, then using Deuring-Shafarevich formula [HKT08, Theorem 11.62], we get

γ−1
γ′−1

= p, where γ′ is the p-rank for C/〈σ〉, which is not possible. Therefore such an extension

does not exist.

Lemma 1.4.7. Let C be a smooth plane curve of degree d ≥ 4 over k. If p > 2g + 1, then

Aut(C)P is coprime with p, for any point P of C.

Proof. By [HKT08, Theorem 11.78], the maximal order of the p-subgroup of Aut(C)P is at

most 4p
(p−1)2g2

. Hence, with g = 1
2
(d − 1)(d − 2) and assuming that p > 4pg2

(p−1)2
, we obtain the

result.

Lemma 1.4.8. Let C be a smooth curve of genus g ≥ 2 over an algebraically closed field k

of characteristic p > 0. Suppose that C has a separable unramified subcover Φ : C → C
′

of

degree p. Then, C
′
has genus ≥ 2, g ≡ 1(mod p) and γ ≡ 1(mod p). In particular, one needs

to restrict p < g, for the existence of such a subcover.

Proof. The Hurwitz formula for Φ gives the equality (2g − 2) = p(2g′ − 2), where g′ is the

genus of C
′
. First g′ 6= 0, 1, since g ≥ 2. So g′ ≥ 2 and g − 1 ≡ 0(mod p). Now, consider the

Deuring-Shafaravich formula, which could be read as γ − 1 = p(γ′ − 1) in such an unramified

extension, where γ′ the p-rank of C
′
. If γ = 1, then there is nothing to prove, and if γ > 1,

then the congruence is clear. Finally, the situation γ = 0 does not occur.

Corollary 1.4.9. Let C be a smooth plane curve of genus g = 1
2
(d − 1)(d − 2) ≥ 2 over k.

Suppose that the characteristic p satisfies p > (d−1)(d−2)+1 > g. Then Aut(C) is coprime

with p.

Proof. If σ ∈ Aut(C) is of order p, then k(C)/k(C)σ is a separable degree p extension, and by

Lemma 1.4.7, it is unramified everywhere. By Lemma 1.4.8, we conclude that such extensions

do not exist.
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CHAPTER

2
ES-Irreducibility vs “large” and “very

large” automorphisms groups

We consider, up to k-isomorphism, a smooth plane curveC of degree d ≥ 4 defined over k, that

is C ∈MPl
g with genus g = 1

2
(d− 1)(d− 2) ≥ 3. It corresponds to C a set of infinitely many

non-singular plane models in P2
k

of degree d, where any two of them are isomorphic over k and

their automorphism groups are PGL3(k)-conjugate. By the uniqueness of the linear series g2
d

([HKT08, Lemma 11.28]), any isomorphism φ between two such non-singular plane models

of C is given by an automorphism of the projective plane P2
k
, i.e. we can take φ ∈ PGL3(k),

by Theorem 1.1.5. In other words, if FC(X, Y, Z) = 0 is a non-singular plane model of C in

P2
k
, then any other non-singular plane model of C over k is given by an equation of the form

FC(φ(X, Y, Z)) = 0, for some change of variables φ ∈ PGL3(k). We use the notation

φC : Fφ−1C(X, Y, Z) := FC(φ(X, Y, Z)) = 0.

Hence Aut(FC) and Aut(Fφ−1C) are finite subgroups of PGL3(k), and Aut(Fφ−1C) =

φ−1 Aut(FC)φ.

Definition 2.1. Given a smooth plane curve C over k, any two non-singular plane models of

C over k are said to be k-projectively equivalent or k-isomorphic.

Now, let G be a finite non-trivial group. Recall that if C ∈MPl
g (G), then %(G) ≤ Aut(FC)

for some injective representation % : G ↪→ PGL3(k). Also, C ∈ M̃Pl
g (G) if and only if

%(G) = Aut(FC), for some %.
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Definition 2.2. Let % : G ↪→ PGL3(k) be an injective representation of a finite non-trivial

groupG inside PGL3(k). The stratum of smooth plane curvesC over k modulo k-isomorphism,

such that %(G) ≤ Aut(FC) for some non-singular plane model FC(X, Y, Z) = 0 of C over k,

is denoted by %(MPl
g (G)). Similarly, we define %(M̃Pl

g (G)) when %(G) = Aut(FC).

Remark 2.3. We note that if %i : G ↪→ PGL3(k), for i = 1, 2, are PGL3(k)-conjugated, then

%1(MPl
g (G)) = %2(MPl

g (G)).

Definition 2.4 (Normal forms). Given a finite non-trivial groupG, the associated normal forms

to the stratumMPl
g (G) is a finite set of homogenous equations {N1,G, . . . ,Nm,G} in X, Y, Z,

each one of them is equipped with parameters, under some algebraic restrictions, as the co-

efficients of its monomials. Moreover, any specialization of the parameters in k of an Ni,G

corresponds to some C ∈ MPl
g (G). Conversely, any C ∈ MPl

g (G) is k-isomorphic to a non-

singular plane model over k given by a specialization of the parameters in k of some Ni,G.

In the same way, one defines the associated normal forms to the stratum M̃Pl
g (G). However,

in this case, a specialization of the parameters of two distinct forms Ni1,G and Ni1,G gives two

non-singular plane models over k, which in turns relate to two non-isomorphic smooth plane

curves in M̃Pl
g (G), see Lemma 2.2.4.

Following the above notations, it becomes very natural to investigate the next question:

Question 2.5. For a fixed degree d, list the %′s and the groups G′s such that %(MPl
g (G)) is

non-empty. Next, determine the associated normal forms to the stratumMPl
g (G) for each such

G. The same problem is also rephrased for the different strata %(M̃Pl
g (G)) and for M̃Pl

g (G).

For a cyclic group Z/mZ of order m, Dolgachev in [Dol12] determined the %′s and m′s for

which %(MPl
3 (Z/mZ)) 6= ∅. The defining equation of each non-empty %(MPl

3 (Z/mZ)) is also

given. On the other hand, P. Henn in [Hen76] and Komiya-Kuribayashi in [KK79], provided

the list of %′s and G′s such that %(MPl
3 (G)) and %(M̃Pl

3 (G)) are non-empty. Moreover, the

associated normal forms to each non-empty M̃Pl
3 (G) are determined (Theorem 2.2.1). See

also E. Lorenzo’s PhD thesis [LG14, § 2.1 and § 2.2] and R. Lercier, et al. [LRRS14], in order

to fix some minor details.
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The structure of this chapter is as follows: In section 2.1, we follow the same technique

as Dolgachev [Dol12] to give the list of %′s and m′s where %(MPl
g (Z/mZ)) 6= ∅, for any

g ≥ 3; Theorem 2.1.3 and Corollary 2.1.6. Next, one sees in Henn Table (Theorem 2.2.1)

the following phenomenon, occurring for g = 3: Given a finite non-trivial group G such that

M̃Pl
3 (G) 6= ∅, there exists at most a single normal form, that describes the stratum M̃Pl

3 (G),

up to PGL3(k)-conjugation. This motivates us to define the concept of “ES-irreducibility” of

M̃Pl
g (G) in section 2.2. Roughly speaking, the stratum M̃Pl

g (G) is called ES-Irreducible if it is

defined by a single normal form (see Definition 2.2.6 for the precise statement). This would be

a weaker concept than the irreducibility of M̃Pl
g (G) inside the moduli spaceMg, in the sense

that the number of ES-irreducible components is a lower bound of the number of its irreducible

components inMg. In section 2.3, we show examples of non ES-Irreducible strata of the form

M̃Pl
g (Z/mZ) for infinitely many genera g ≥ 6. Finally, we characterize, in Section 2.4, the

stratumMPl
g (G), whereG has elements of order d2−3d+3, (d−1)2, d(d−2), d(d−1),md, or

m(d−1) with m ≥ 2, to be always defined by a single normal form. In particular, a non-empty

M̃Pl
g (G), in this case, is ES-Irreducible.

We shall deal with the following items:

2.1. Cyclic automorphism subgroups of smooth plane curves.

2.2. Union decomposition ofMPl
g (G) and “ES-irreducibility”.

2.3. Strata of smooth plane curves not ES-irreducible.

2.4 On smooth plane curves, admitting “large” or “very large” automorphisms.

The main results of sections §2.1 and 2.4 have been published in [BB16b], whereas those

of sections §2.2 and 2.3 have been published in [BB16c].

§2.1 Cyclic automorphism subgroups of smooth plane curves

Fix an integer g = 1
2
(d− 1)(d− 2) ≥ 3 and a finite non-trivial group G.

Lemma 2.1.1. Let C : F (X, Y, Z) be a smooth plane curve of degree d defined over k. Then

the defining equation F (X, Y, Z) = 0 must have degree at least d− 1 in each variable.

Proof. For example, if F (X, Y, Z) = 0 has degree ≤ d − 2 in Z, then F (X, Y, Z) =
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∑d−2
i=0 βiZ

iLd−i(X, Y ), where Ld−i(X, Y ) is a homogenous polynomial of degree d − i in

X and Y . Hence, (0 : 0 : 1) is a projective solution of the system

F (X, Y, Z) =
∂F

∂X
(X, Y, Z) =

∂F

∂Y
(X, Y, Z) =

∂F

∂Z
(X, Y, Z) = 0.

That is, it is a singular point of F (X, Y, Z) = 0.

Definition 2.1.2. Let FC(X, Y, Z) = 0 be a non-singular plane model of degree d over k for

C ∈ MPl
g , where k is a field of characteristic p = 0 or p > 2g + 1. Then, Aut(FC) =

%(Aut(C)), for some % : G ↪→ PGL3(k). If σ ∈ Aut(C) is an element of exact order m,

then by a change of variables in P2
k

(that is, changing the non-singular plane model of C to

a k-projectively equivalent one), we may assume that %(σ) acts on FC(X, Y, Z) = 0 as the

automorphism

(X : Y : Z) 7→ (X : ζamY : ζbmZ),

where ζm is a primitive mth root of unity in K and a, b are integers, such that 0 ≤ a < b < m.

Moreover, if ab 6= 0, thenm and gcd(a, b) are relatively prime (we can reduce to gcd(a, b) = 1)

and if a = 0, then gcd(b,m) = 1.

We write %a,b,m(Z/mZ) for 〈diag(1, ζam, ζ
b
m)〉 in PGL3(k). Furthermore, we call C of Type

m, (a, b) and C ∈ %a,b,m(MPl
g (Z/mZ)).

Our aim here is to investigate, which cyclic groups could appear inside Aut(C) and the as-

sociated normal forms to each case as well. Therefore, to determine all possible Typesm, (a, b),

for which the stratum %a,b,m(MPl
g (Z/mZ)) might be non-empty. We follow a similar approach

as Dolgachev in [Dol12], that deals with the same question for d = 4 (see also [Bar12, §2.1]).

Before we state our main result for this section, we need the following notations, which will

be used through the sequel.

Notations.

• We say that Type m, (a, b) is a generator of %(Z/mZ), for some % : Z/mZ ↪→ PGL3(k)

when %(Z/mZ) = %a,b,m(Z/mZ).

• Li,∗ is homogeneous polynomial in k[X, Y, Z] of degree i, such that the variable ∗ ∈

{X, Y, Z} does not appear.
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For simplicity, we also define the next index sets:

• S(u)m := {u ≤ j ≤ d− 1 | d− j ≡ 0 (mod m)};

• Sd,Xu m,(a,b) := {u ≤ i ≤ d− u | ai+ (d− i)b ≡ 0 (mod m)};

• Sd−1,X
u m,(a,b) := {1 ≤ i ≤ d− u | ai+ (d− 1− i)b ≡ 0 (mod m)};

• S(1)j,Xm,(a,b) := {0 ≤ i ≤ j | ai+ (j − i)b ≡ a (mod m)};

• S(2)j,Xm,(a,b) := {0 ≤ i ≤ j | ai+ (j − i)b ≡ 0 (mod m)};

• Sj,Ym,(a,b) := {0 ≤ i ≤ j | bi+ (d− j)a ≡ a (mod m)};

• Sj,Zm,(a,b) := {0 ≤ i ≤ j | ai+ (d− j)b ≡ a (mod m)};

• Γm := {(a, b) ∈ N2 | gcd (a, b) = 1, 1 ≤ a 6= b ≤ m− 1}.

• The three reference points in P2
k

are P1 := (1 : 0 : 0), P2 := (0 : 1 : 0) and P3 := (0 : 0 :

1), respectively.

Here u, j,m, d, a and b are all non-negative integers.

Theorem 2.1.3 (Badr-Bars, Theorem 7, [BB16b]). Let C ∈ MPl
g be a smooth plane curve of

degree d ≥ 4 over k, where k is a field of characteristic p = 0 or p > (d − 1)(d − 2) + 1,

such that Aut(C) is not trivial. Then, C ∈ %a,b,m(MPl
g (Z/mZ)) for some a, b,m as in the

list (1)− (6) below. Moreover, each component %a,b,m(MPl
g (Z/mZ)) is associated to a single

normal form F%a,b,m(X, Y, Z) = 0:

1. The curve C ∈ %m,0,1(MPl
g (Z/mZ)) with m|d− 1 and F%a,b,m(X, Y, Z) is defined by

Zd−1Y +
∑

j∈S(2)m

Zd−jLj,Z + Ld,Z .

2. The curve C ∈ %m,0,1(MPl
g (Z/mZ)) with m|d, and F%a,b,m(X, Y, Z) is given by the form

Zd +
∑

j∈S(1)m

Zd−jLj,Z + Ld,Z .
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3. All reference points lie on F%a,b,m(X, Y, Z) = 0: The curve C ∈ %m,a,b(MPl
g (Z/mZ))

with m | (d2− 3d+ 3) and (a, b) ∈ Γm, such that a = (d− 1)a+ b = (d− 1)b (mod m).

In this case,

F%a,b,m(X, Y, Z) := Xd−1Y + Y d−1Z + Zd−1X +
d−2∑
j=2

∑
i∈S(1)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

+
∑

i∈Sj,Y
m,(a,b)

αj,iX
j−iY d−jZi +

∑
i∈Sj,Z

m,(a,b)

γj,iX
j−iY iZd−j.

4. Exactly two of the reference points lie on F%a,b,m(X, Y, Z) = 0: One of the following

subcases occurs:

(4.1) C ∈ %m,a,b(MPl
g (Z/mZ)) for some m | d(d − 2) and (a, b) ∈ Γm, such that (d −

1)a+ b ≡ 0 (mod m) and a+ (d− 1)b ≡ 0 (mod m). Moreover, F%a,b,m(X, Y, Z)

is

Xd +Y d−1Z+Y Zd−1 +
d−1∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

∑
i∈Sd,X2 m,(a,b)

βd,iY
iZd−i,

(4.2) C ∈ %m,a,b(MPl
g (Z/mZ)) for some m|(d − 1)2, and (a, b) ∈ Γm, such that (d −

1)a+ b ≡ 0 (mod m) and (d− 1)b ≡ 0 (mod m). We thus have

F%a,b,m(X, Y, Z) := Xd +XZd−1 + Y d−1Z +
∑

i∈Sd,X2 m,(a,b)

βd,iY
iZd−i +

+
d−2∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

∑
i∈Sd−1,X

1 m,(a,b)

β(d−1),iXY
iZd−1−i,

(4.3) C ∈ %m,a,b(MPl
g (Z/mZ)) for some m|(d − 1) and (a, b) ∈ Γm. In this situation,

F%a,b,m(X, Y, Z) is defined by

Xd + X(Y d−1 + Zd−1 +
∑

i∈Sd−1,X
2 m, (a,b)

β(d−1),iY
iZd−1−i) +

+
∑

i∈Sd,X2 m, (a,b)

βd,iY
iZd−i +

d−2∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i.

5. Only one reference point lies on F%a,b,m(X, Y, Z) = 0: Then C ∈ %m,a,b(MPl
g (Z/mZ)),
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where m| d(d − 1) and (a, b) ∈ Γm, such that da ≡ 0 (mod m) and (d − 1)b ≡

0 (mod m). Moreover, F%a,b,m(X, Y, Z) reduces to

Xd + Y d +X(Zd−1 +
∑

i∈Sd−1,X
1 m, (a,b)

β(d−1),iY
iZd−1−i) +

+
d−2∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

∑
i∈Sd,X1 m, (a,b)

βd,iY
iZd−i.

6. None of the reference points lie onF%a,b,m(X, Y, Z) = 0: ThenC ∈ %m,a,b(MPl
g (Z/mZ))

with m|d and (a, b) ∈ Γm, and F%a,b,m(X, Y, Z) has the form

Xd + Y d + Zd +
d−1∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

∑
i∈Sd,X1 m, (a,b)

βd,iY
iZd−i.

Remark 2.1.4. We warn the reader because it may happen that a projective equation obtained

for some Type m(a, b), is not geometrically irreducible or is not smooth for any specialization

of the parameters. Hence, %a,b,m(MPl
g (Z/mZ)) is empty and should be discarded from the list.

Finally, for some reason, a repetition of monomials might happen in Theorem 2.1.3- case (3),

so one needs to unify those repeated terms, by renaming the parameters.

Proof. We show the result when k has characteristic p = 0. The same argument holds for

p > 2g + 1 = (d− 1)(d− 2) + 1, since this restriction implies that |Aut(C)| is coprime with

p, we address the reader to the discussion after Theorem 1.4.5.

Without loss of generality, we consider a non-singular plane model FC(X, Y, Z) = 0 of C

over k, such that the cyclic element order m acts as the diagonal matrix diag(1, ζam, ζ
b
m). In

other words, if σ is a generator of order m, then we can choose coordinates, so that %a,b,m(σ) is

represented by (X : Y : Z) 7→ (X : ζamY : ζbmZ), where a, b are integers with 0 ≤ a 6= b < m.

Moreover, one can assume that a < b with gcd(b,m) = 1 if a = 0, and with gcd(a, b) = 1,

otherwise.

Case I: Suppose first that a = 0 and write: FC(X, Y, Z) = λZd +
∑d−1

j=1 Z
d−jLj,Z + Ld,Z .

If λ = 0, then, by non-singularity (Lemma 2.1.1), L1,Z 6= 0 and (d − 1)b ≡ 0 (mod m).

Hence, m|d − 1 and we can take a generator (a, b) = (0, 1). By checking each monomial’s

invariance, we obtain that Lj,Z 6= 0 only if j ∈ S(2)m and we therefore recover Types m, (0, 1)
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of in Theorem 2.1.3, case (1), after transforming L1,Z to be Y through a change of the variables

X, Y , which in turns preserves the shape of %a,b,m(σ).

If λ 6= 0, then db ≡ 0 (mod m). From this we getm|d and (a, b) = (0, 1) is again generator

for each m. Also, we use the same argument as above, and we obtain Types m, (0, 1) of the

form Zd +
∑

j∈S(1)m
Zd−jLj,Z + Ld,Z , which proves Theorem 2.1.3, case (2).

Case II : Suppose that a 6= 0, then, necessarily,m > 2 and we distinguish between the different

subcases related to how many reference points lies on FC(X, Y, Z) = 0:

• If all reference points lie on FC(X, Y, Z) = 0, then the possibilities for the defining

equation are now:

C :
d−2∑
j=1

(Xd−jLj,X + Y d−jLj,Y + Zd−jLj,Z).

Because a 6= b with a 6= 0, we can reduce to

C : Xd−1Y + Y d−1Z + Zd−1X +
d−2∑
j=2

(Xd−jLj,X + Y d−jLj,Y + Zd−jLj,Z).

The first three factors implies that a = (d−1)a+b = (d−1)b (mod m), som|d2−3d+3.

The normal form in Theorem 2.1.3-(3) now follows, by checking monomials’ invariance

in each Lj,B. For example, rewrite Lj,X as
∑j

i=0 βj,iY
iZj−i, hence βj,i = 0, if m -

ai+ (j − i)b or equivalently i /∈ S(1)j,xm,(a,b)), since diag(1, ζam, ζ
b
m) ∈ Aut(FC).

• If two reference points lie on FC(X, Y, Z) = 0, then by re-scaling the matrix %a,b,m(σ)

and permuting the coordinates, we can assume that (1 : 0 : 0) /∈ {FC(X, Y, Z) = 0}.

The equation then isXd+Xd−2L2,X +Xd−3L3,X + ...+XLd−1,X +Ld,X = 0, since L1,x

is not invariant by %a,b,m(σ) because ab 6= 0. Moreover, Zd and Y d are not in Ld,X , as

(0 : 1 : 0) and (0 : 0 : 1) are in FC(X, Y, Z) = 0. Suppose first that Y d−1Z and Y Zd−1

are in Ld,X . Then (d−1)a+b ≡ 0 (mod m) and a+(d−1)b ≡ 0 (mod m). In particular,

m| d(d− 2) and for each such Type m, (a, b), the equation becomes

Xd + Y d−1Z + Y Zd−1 +
d−1∑
j=2

j∑
i=0

βj,iX
d−jyizj−i +

d−2∑
i=2

βd,iY
iZd−i = 0.

It is straightforward to see that if i /∈ S(2)j,xm,(a,b) (resp. i /∈ Sd,x2 m,(a,b)), then βj,i = 0
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(resp. βdi = 0). This shows Theorem 2.1.3, subcase (4.1). Second, assume that Y d−1Z ∈

Ld,X and Y Zd−1 /∈ Ld,X . Then, by non-singularity (Lemma 2.1.1), Zd−1 is in Ld−1,X ,

and (d− 1)a+ b ≡ 0 (mod m) and (d− 1)b ≡ 0 (mod m). Therefore, m| (d− 1)2, and

we get the equation

Xd + XZd−1 + Y d−1Z +
d−2∑
j=2

j∑
i=0

βj,iX
d−jY iZj−i

+
d−1∑
i=1

β(d−1),iXY
iZd−1−i +

d−2∑
i=2

βd,iY
iZd−i = 0.

Consequently, by monomials’ invariance, we conclude that

(i) if i /∈ S(2)j,xm,(a,b), then βj,i = 0,

(ii) if i /∈ Sd−1,x
1 m,(a,b), then β(d−1),i = 0,

(iii) if i /∈ Sd,x2 m,(a,b), then βd,i = 0,

and Theorem 2.1.3, subcase (4.2) is deduced.

Up to a permutation of Y and Z, it remains to consider the subcase, for which Y d−1Z and

Y Zd−1 are not in Ld,x. Again, by non-singularity, Zd−1 and Y d−1 must appear in Ld−1,X .

Consequently, (d − 1)b ≡ 0 (mod m) and (d − 1)a ≡ 0 (mod m), and thus m|(d − 1).

Hence, the defining equation is reduced to

Xd +XZd−1 +XY d−1 +
d−2∑
j=2

j∑
i=0

βj,iX
d−jY iZj−i

+
d−2∑
i=2

βd,iY
iZd−i +

d−2∑
i=1

β(d−1),iXY
iZd−1−i = 0.

Theorem 2.1.3, subcase (4.3) is now obvious by noticing that βj,i = 0 when m - ai +

(j − i)b.

• If one reference point lie on FC(X, Y, Z) = 0, then by normalizing the matrix %a,b,m(σ)

and permuting the coordinates, we may take (1 : 0 : 0), (0 : 1 : 0) /∈ {FC(X, Y, Z) = 0}.

We thus can write

C : Xd + Y d +Xd−2L2,X +Xd−3L3,X + ...+XLd−1,X + Ld,X = 0,

35



such that Zd /∈ Ld,X . By non-singularity (Lemma 2.1.1), we have Zd−1 ∈ Ld−1,X . In

particular, da ≡ 0 (mod m), (d − 1)b ≡ 0 (mod m), and m| d(d − 1). The above

equation turns out to be

Xd+Y d+XZd−1+
d−2∑
j=2

j∑
i=0

βj,iX
d−jY iZj−i+

d−1∑
i=1

βd,iY
iZd−i+

d−1∑
i=1

β(d−1),iXY
iZd−1−i = 0

From which we conclude Theorem 2.1.3, case (5).

• If none of the reference points lie in FC(X, Y, Z) = 0, then

C : Xd + Y d + Zd +
d−1∑
j=2

Xd−jLj,X + Ld,X = 0,

where L1,X does not appear, since ab 6= 0 and L1,X is not invariant under %a,b,m(σ).

Clearly, da = db = 0 (mod m) and therefore m|d. Moreover, we check monomials’

invariance to obtain

C : Xd + Y d + Zd +
d−1∑
j=2

∑
i∈S(2)j,X

m,(a,b)

βj,iX
d−jY iZj−i +

∑
i∈Sd,X1 m, (a,b)

βd,iY
iZd−i = 0.

This shows Theorem 2.1.3, case (6), and therefore completes the proof.

Remark 2.1.5. Theorem 2.1.3 and its proof lead to an algorithm for listing all cyclic groups

that could appear together with a normal form, for any arbitrary degree d ≥ 4. The detailed

implementation in SAGE is valid at the link http://mat.uab.cat/∼eslam/CAGPC.sagews. We

also refer the reader to Appendix A, for the complete determination of the different types ap-

pearing up to degree 9. In other words, to the possible non-trivial strata %m,a,b(MPl
g (Z/mZ)),

with their associated normal forms, once the degree is fixed.

We conclude from Theorem 2.1.3:

Corollary 2.1.6. Let H be a non-trivial cyclic subgroup of Aut(C), where C ∈ MPl
g with

d ≥ 4. Then, the order of H divides one of the integers

d− 1, d, d2 − 3d+ 3, (d− 1)2, d(d− 2), d(d− 1).

In particular, all automorphisms of C have orders at most d(d− 1).
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Corollary 2.1.7. Let G be a finite non-trivial group, embedded into PGL3(k) via some %, such

that %(MPl
g (G)) is non-empty, where g = 1

2
(d− 1)(d− 2) ≥ 3 and k has characteristic p = 0

or p > 2g + 1. Then, there exists a single normal form F%,G(X, Y, Z) = 0 of degree d over k,

which defines the stratum %(MPl
g (G)). The same is also true for the stratum %(M̃Pl

g (G)). In

this case, the single normal form is denoted by F%,G,∗(X, Y, Z) = 0.

Proof. Let σ ∈ G be an automorphism of maximal order m > 1. Up to PGL3(k)-conjugation,

we may take %(σ) diagonal diag(1, ζam, ζ
b
m), where 0 ≤ a < b and ζm a primitive mth root

of unity in K. One follows the same idea in the proof of Theorem 2.1.3, to associate a single

normal form F%(σ)(X, Y, Z) = 0 to the stratum %(MPl
g (〈σ〉)). For example, if 0 < a <

b < m and all reference points {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} satisfy the equation

F%(σ)(X, Y, Z) = 0, then we reduces to Theorem 2.1.3, case (3).

Now, to move from %(〈σ〉) to %(G), we assume an element τ of G, which does not belong

to 〈σ〉. Since %(τ) should retain invariant the equation F%(σ)(X, Y, Z) = 0, one obtains extra

algebraic relations between the parameters of F%(σ)(X, Y, Z). In this way, F%,G(X, Y, Z) is

constructed fromF%(σ)(X, Y, Z) by repeating the procedure for each such τ and gluing together

all the algebraic restrictions needed for non-singularity, irreducibility,...etc.

Similarly, we getF%,G,∗(X, Y, Z) fromF%,G(X, Y, Z). In fact, for a finite groupH such that

%(G) ≤ H ≤ PGL3(k), and for which there exists a smooth plane curve of genus g whose au-

tomorphism group is isomorphic toH , we need to apply the process above for the generators of

H not in %(G). Hence, we only need to consider a complement of certain algebraic constraints,

so that F%,G,∗(X, Y, Z) = 0 does not have a bigger automorphism group than H .

Remark 2.1.8. It could happen that two different specializations of F%,G in k give two non-

singular plane model over k for the same curve C ∈ %(MPl
g (G)). This happens if there

exists an isomorphism φ between the two models of C, such that φ−1%(G)φ = %(G), and

φ−1%(〈σ〉)φ = %(〈σ〉). If this is the case for some %(MPl
g (G)), then the family F%,G is said

to be geometrically complete over k for the stratum %(MPl
g (G)). Otherwise, it is called a ge-

ometrically representative over k for %(MPl
g (G)). The same holds for F%,G,∗. One can reads

[LRRS14] for more details (see also section §4.3 in chapter 4).
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§2.2 Union decomposition ofMPl
g (G) and “ES-irreducibility”

The motivation of this section comes from the well-known Henn table, which classifies

the strata of smooth non-hyperelliptic plane curves of genus 3 over C, by their automor-

phism groups and the associated normal forms: We use the formal GAP library notations

“GAP(n,m)” to refer the finite group of order n, appearing in the mth position of the atlas

for small finite groups [Gro]. We also use Z/mZ for the cyclic group of order m. The field k

is always of characteristic p = 0 or p a big enough prime.

Theorem 2.2.1 (P. Henn [Hen76] and Komiya-Kuribayashi [KK79]). The following table de-

termines completely the set of C-isomorphism classes of smooth plane quartic curves over C,

together with their automorphism groups:

Table 2.1: Henn’s Table

Aut(C) Model Restrictions

Z/2Z X4 +X2L2(Y, Z) + L4(Y, Z) L2(Y, Z) 6= 0, not below

Z/2Z× Z/2Z X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + cZ2X2 a 6= ±b 6= c 6= ±a
Z/3Z Z3Y +X(X − Y )(X − aY )(X − bY ) not below

Z/6Z Z3Y +X4 + aX2Y 2 + Y 4 a 6= 0

S3 X3Z + Y 3Z +X2Y 2 + aXY Z2 + bZ4 a 6= b, ab 6= 0

D4 X4 + Y 4 + Z4 + aX2Y 2 + bXY Z2 b 6= 0,± 2a√
1−a

Z/9Z X4 +XY 3 + Y Z3 −
GAP(16, 13) X4 + Y 4 + Z4 + aX2Y 2 ±a 6= 0, 2, 6, 2

√
−3

S4 X4 + Y 4 + Z4 + a(X2Y 2 + Y 2Z2 + Z2X2) a 6= 0, −1±
√
−7

2

GAP(48, 33) X4 + Y 4 +XZ3 −
GAP(96, 64) X4 + Y 4 + Z4 −

PSL2(F7) X3Y + Y 3Z + Z3X −

The algebraic restrictions for the parameters (in the last column) are taken so that the defining

equation is non-singular and has no bigger automorphism group. For example, the term “not

below” is equivalent to assume more restrictions, so that no larger automorphism group occurs.
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It appears in Table 2.1 the phenomenon: There exists a single normal form describing any of

the strata M̃Pl
3 (G), where G is one of the groups appearing in Henn Table. Roughly speaking,

if this phenomenon holds for some genus g, we say that the stratum M̃Pl
g (G) is ES-Irreducible

(or Strongly Equation Irreducible). This would be a weaker condition than the irreducibility

inside the moduli spaceMg.

In this language, we can formulate the main result in [Hen76] and Komiya-Kuribayashi

[KK79] as follows:

Theorem 2.2.2 (Henn, Komiya-Kuribayashi). If G is a non-trivial group that appears as the

full automorphism group of a smooth plane curve of genus g = 3 over C, then M̃Pl
3 (G) is

ES-Irreducible.

Remark 2.2.3. P. Henn in [Hen76], observed thatMPl
3 (Z/3Z) admits already two irreducible

equation components. The first component corresponds to %0,1,3(Z/3Z) = 〈diag(1, 1, ζ3)〉, and

is defined by the normal form

Z3Y + L4,Z = 0,

whereas the second corresponds to %1,2,3(Z/3Z) = 〈diag(1, ζ3, ζ
2
3 )〉. Its defining normal form

is

X4 +X(Y 3 + Z3) + αX2Y Z + βX(Y Z)2 = 0.

However, the second one has always a bigger automorphism group, the symmetry group S3.

Now, we introduce the precise definition of ES-Irreducibility of the stratum M̃Pl
g (G), see

Definition 2.2.6:

Denote by AG the quotient set {% : G ↪→ PGL3(k)}/ ∼, where %1 ∼ %2 if and only if

∃φ ∈ PGL3(k), such that %1(G) = φ−1%2(G)φ.

Clearly,MPl
g (G) =

⋃
[%]∈AG%(MPl

g (G)), where [%] is the equivalence class of % in AG.

Lemma 2.2.4. We have M̃Pl
g (G) =

⊔
[%]∈AG %(M̃Pl

g (G))

Proof. By definition, M̃Pl
g (G) =

⋃
[%]∈AG %(M̃Pl

g (G)). Moreover, C ∈ %1(M̃Pl
g (G)) ∩

%2(M̃Pl
g (G)) means that it has a non-singular plane model FC(X, Y, Z) = 0 over k such that

Aut(FC) = φ−1
1 %1(G)φ1 = φ−1

2 %2(G)φ2 for some φ1, φ2 ∈ PGL3(k). That is %1 ∼ %2 and the

union is disjoint.
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If C ∈ %1(MPl
g (G)) ∩ %2(MPl

g (G)) with [%1] 6= [%2] ∈ AG, and FC(X, Y, Z) = 0 is a non-

singular plane model over k of C, then Aut(FC) ≤ PGL3(k) should have two non-conjugate

subgroups isomorphic to G. A detailed study of the work of Blichfeldt [Bli10] would give the

list of Gs for which the decomposition MPl
g (G) =

⋃
[%]∈AG%(MPl

g (G)) may not be disjoint.

For instance, we address the reader to Example 2.2.5 below due to B. Huggins [Hug05]:

Example 2.2.5 (B. Huggins, Lemma 7.1.1, [Hug05]). Take m, r ∈ Z+ such that 2mr > 5 and

r is odd when m does. Let zc be the complex conjugate of z for any z ∈ C. Consider a binary

form G(X, Y ) ∈ C[X, Y ] \ R[X, Y ] given by

G(X, Y ) :=
r∏
i=1

(Xm − aiY m)(Xm + aciY
m),

for some a1, ..., ar ∈ C such that the next conditions hold: G(X, 1) has no repeated zeros,

the map [α : β] 7→ [β : α] does not map the zero set of G(X, Y ) into itself, for any root of

unity ζ we should have {ai,−1/aci} 6= {ζai,−ζ/aci}, and when n = 3, the map [α : β] 7→

[−α + (1 +
√

3)β : (1 +
√

3)α + β] does not map the zero set of G(X, Y ) into itself.

Now, the equation

FC(X, Y, Z) := Z2mr −G(X, Y ) = 0

defines a smooth plane plane curve C of degree d = 2mr > 5 over C, whose automorphism

group is PGL3(C)-conjugate to

〈diag(ζm, 1, 1), diag(1, ζm, 1), diag(1, 1, ζ2mr)〉.

Therefore, for m > 2, C ∈ %1(MPl
g (Z/mZ)) ∩ %2(MPl

g (Z/mZ)) where %1(Z/mZ) :=

〈diag(1, 1, ζm)〉 and %2(Z/mZ) := 〈diag(1, ζm, ζ
2
m)〉. In particular, [%1] 6= [%2] ∈ AG, since

diag(1, 1, ζm) and diag(1, ζm, ζ
2
m) are in different conjugacy classes of PGL3(k).

Fix a [%] ∈ AG, then we can associate infinitely many non-singular plane models over

k for C ∈ %(MPl
g (G)), which are pairwise k-isomorphic through a change of variables φ ∈

PGL3(k). However, it is suffices to work with the models such thatG is identified with %(G) ≤

PGL3(k), for some % in [%] ∈ AG as a subgroup of automorphisms. Under this restriction, C

is associated with a non-empty family of non-singular plane model over k, where any two
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of them are k-isomorphic via an isomorphism φ in the normalizer of %(G) in PGL3(k), i.e.

φ−1%(G)φ = %(G).

Second, Lemma 2.1.1 assures that the defining equation of any non-singular model of C

over k must have degree at least d−1 in each variable. Moreover, we use a change of variables,

so that a non-singular plane model, whenever it exists, has only monic monomials in its core

(Definition 1.4.3). Consequently, we reduce the situation to a set of k-projectively equivalent

non-singular plane models for C, such that %(G) retains invariant the defining equation of each

of them, and the core is formed entirely of monic monomial terms.

Definition 2.2.6. Write MPl
g (G) as

⋃
[%]∈AG%(MPl

g (G)), we define the number of the equa-

tion components ofMPl
g (G) to be the number of elements [%] ∈ AG such that %(MPl

g (G)) is

not empty. We say that MPl
g (G) is equation irreducible if it is not empty and MPl

g (G) =

%(MPl
g (G)) for a certain [%] ∈ AG. A similar notion arises for the stratum M̃Pl

g (G) =⊔
[%]∈AG%(M̃Pl

g (G)). We define the number of the strongly equation irreducible components

of M̃Pl
g (G) to be the number of the elements [%] ∈ AG such that %(M̃Pl

g (G)) is not empty. We

say that M̃Pl
g (G) is equation strongly irreducible (or simply, ES-irreducible) if it is not empty

and M̃Pl
g (G) = %(M̃Pl

g (G)), for some [%] ∈ AG.

Of course, if M̃Pl
g (G) is not ES-irreducible then it is not irreducible and the number of the

strongly equation irreducible components of M̃Pl
g (G) is a lower bound for the number of its

irreducible components insideMg.

To finish this section, we state some natural questions concerning the stratum %(MPl
g (G)),

and similar questions are also formulated for %(M̃Pl
g (G)) with different strata of the moduli

spaceMg:

Question 2.2.7. Is it true that, for all the elements C of %(MPl
g (G)), the corresponding Galois

covers C → C/G have a fixed ramification data?

We believe that the answer to this question for k = C (i.e. for the case of Riemann sur-

faces) should always be true from the work of Breuer [Bre00]. See also the next section 2.2.1

for the explicit Galois subcover and the ramification data of the strata %(MPl
6 (Z/8Z)) and

%(MPl
6 (Z/4Z)).
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Question 2.2.8. Is %(MPl
g (G)) an irreducible set when G is a cyclic group?

We note that when k = C, Cornalba [Cor87], for a cyclic group G of prime order, and

Catanese [Cat12], for a general order, obtained that the stratum of smooth, projective, genus

g curves with a cyclic Galois subcover of a group that is isomorphic to G and a prescribed

ramification is irreducible.

Concerning the irreducibility question, we prove in §2.4 that, if G has an element of order

(d − 1)2, d(d − 1), d(d − 2) or d2 − 3d + 3, then %(MPl
g (G)) has at most one element.

Therefore, it is irreducible. In the next subsection (§2.2.1), we deal with the irreducibility of

the ES-Irreducible stratumMPl
6 (Z/8Z), where the single normal form has only one parameter.

Moreover, Catanese, Lönne and Perroni in [CLP15, §2] define a topological invariant for

the strataMg(G), which is trivial if it is irreducible.

Question 2.2.9. Consider a non-trivial group G such that the set AG is given by one element

(see Example 2.2.10 below for such a groups). Is it a necessary condition that the topological

invariant in [CLP15, §2] is trivial in order to be irreducible? Is it true that the strataMPl
g (G)

are irreducible?

Example 2.2.10 (The Hessian group). The representations of the Hessian group Hess216 of

order 216 inside PGL3(k) are unique up to conjugation, see H. Mitchell [Mit11, p. 217]. For

example, Hess216 = 〈S, T, U, V 〉, where

S =


1 0 0

0 ζ3 0

0 0 ζ2
3

 , U =


1 0 0

0 1 0

0 0 ζ3

 , V =
1

ζ3 − ζ2
3


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 , T =


0 1 0

0 0 1

1 0 0

 .

Also, we consider the primitive Hessian subgroups of order 36, Hess36 (one of them is

〈S, T, V 〉), and the primitive subgroup of order 72, Hess72 = 〈S, T, V, UV U−1〉.

For the above fixed representation, there are exactly three primitive subgroups of order 36

(see [Gro06]), which are also normal in Hess72. Moreover, the Hessian subgroup Hess72 is

normal in Hess216. We recall, by Grove in [Gro06, §23,p.25] and by Blichfeldt in [Bli10] (see

also [HL88, §1] for the statement of Blichfeldt’s result of our interest) that any representation

of Hess216 corresponds geometrically to a certain subgroup fixing four triangles (having 18
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elements), and the alternating group A4 acting in such four triangles. Furthermore, any repre-

sentation of the primitive subgroups of order 36 or 72 is obtained by the group of 18 elements

fixing the four triangles together with certain permutations on the four triangles (equivalently,

with certain subgroups of A4). On the other hand, it follows, by Blichfeldt (see [HL88, §1, on

type (E),(F),(G)]), that such Hessian groups are represented in PGL3(k), up to conjugation,

with respect to the representation described above. Therefore, any injective representation

of Hess36 or Hess72 in PGL3(k) extends to an injective representation of Hess216, and more-

over the three different subgroups of Hess36 in any representation are conjugate to 〈S, T, V 〉.

Consequently, one concludes that the representations of Hess∗ with ∗ ∈ {36, 72, 216} inside

PGL3(K) forms a unique set up to conjugation.

Thus, for any of the Hessian groups Hess∗ with ∗ ∈ {36, 72, 216}, the stratum M̃Pl
g (Hess∗)

is ES-Irreducible, when it is not empty, since the set AHess∗ is trivial.

Our aim interest in investigating whether the M̃Pl
g (G) is ES-irreducible or not, and the

classical result of Klein concerning the uniqueness (up to conjugation) of the finite subgroups

of PGL2(k), encourage us to ask the following question in group theory:

Question 2.2.11. Is it true that there exists a non-cyclic finite subgroup G of PGL3(k), such

that the set AG has at least two elements?

2.2.1 The strataMPl
6 (Z/8Z) and M̃Pl

6 (Z/8Z)

Let k be a field of characteristic p = 0 or p > 13. Consider an element C in the moduli space

M6, which has a non-singular plane model over k with an effective action of the cyclic group

of order 8, that is C ∈MPl
6 (Z/8Z). More concretely, we haveMPl

6 (Z/8Z) = %(MPl
6 (Z/8Z))

(we will justify this later in chapter 4) with %(Z/8Z) = 〈diag(1, ζ8,−1)〉, where ζ8 is an 8th

primitive root of unity in k. Furthermore, such a stratum is described over k by the single

normal form

F%,Z/8Z(X, Y, Z) := X5 + Y 4Z +XZ4 + βX3Z2 = 0

with a parameter β, taking values in k\{±2}, for non-singularity (see Table 4.1). Therefore,

we can always associate to C a non-singular plane model of the form X5 + Y 4Z + XZ4 +
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βCX
3Z2 = 0 over k for some βC 6= ±2. In the language of [LRRS14] (or see Remark

2.1.8 and section §4.3), the family F%,Z/8Z(X, Y, Z) = 0 is a geometrically complete over k

for MPl
6 (Z/8Z). However, it is not geometrically representative over k, since a curve in the

family F%,Z/8Z(X, Y, Z) = 0 with parameter β is isomorphic to the curve with parameter −β

through φ = diag(1, ζ−1
16 , ζ

4
16), where ζ16 is a primitive 16th primitive root of unity. So, for any

C ∈ MPl
6 (Z/8Z), there is at least two non-singular plane models of C over k in the family

F%,Z/8Z(X, Y, Z) = 0.

Now, let us compute all the non-singular plane models of the form X5 + Y 4Z + XZ4 +

βX3Z2 = 0, which can be associated to the fixed curve C: These models are obtained by a

change of the variables φ ∈ PGL3(k) such that φ−1〈diag(1, ζ8,−1)〉φ = 〈diag(1, ζ8,−1)〉, and

the new model has a similar defining equation of the form X5 + Y 4Z + XZ4 + β′X3Z2 = 0.

Without any loss of generality, we can suppose that φ−1 diag(1, ζ8,−1)φ = diag(1, ζ8,−1).

Hence, in order to have the same eigenvalues which are pairwise distinct, we may assume

that φ is a diagonal matrix, say φ = diag(1, λ2, λ3). Therefore, we get an equation of the

form X5 + λ4
2λ3Y

4Z + λ4
3XZ

4 + βCλ
2
3X

3Z2 = 0. So, we must have λ4
2λ3 = λ4

3 = 1, and

thus λ2
3 is 1 or −1. This means that the number of non-singular plane models isomorphic to

C ∈MPl
6 (Z/8Z) over k in the family F%,Z/8Z(X, Y, Z) = 0 is exactly two. In this case, we get

a map

f : F%,Z/8Z → A1
k
\ {−2, 2},

which is finite and has degree 2, where A1
k

is the affine line over k. Consequently, the map

g :MPl
6 (Z/8Z)→ A1

k
\ {−2, 2}/ ∼

C 7→ [βC ] = {βC ,−βC},

where a ∼ b ⇔ b = a or a = −b, is bijective. Moreover, as we will see in chapter 4,

X5 + Y 4Z +XZ4 + βX3Z2 = 0 has a larger group of automorphisms than Z/8Z if and only

if β = 0. Then, we still have a bijective map

g̃ : M̃Pl
6 (Z/8Z)→ A1

k
\ {−2, 0, 2}/ ∼

C 7→ [βC ] = {βC ,−βC}.
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For example, when k = C, the right hand side in both situations is irreducible.

On the other hand (about an example for Question 2.2.7), if we consider the Galois cyclic

cover of degree 8, given by the action of %(Z/8Z) on X5 + Y 4Z + XZ4 + βX3Z2 = 0, we

get that it ramifies at the points (0 : 1 : 0) and (0 : 0 : 1) with ramification index 8, and at the

four points (1 : 0 : h), where 1 + h4 + βh2 = 0 with ramification index 2, if β 6= ±2. Hence,

MPl
6 (Z/8Z) is inside the stratum of smooth curves of the moduli space M6, which have a

cyclic Galois subcover of degree 8 to a genus zero curve, and also ramify at six points (two of

them are with ramification index 8, and the other four points are with ramification index 4).

§2.3 Strata of smooth plane curves not ES-irreducible

We construct certain strata M̃Pl
g (G), which are not ES-Irreducible (see Definition 2.2.6). We

first ask for a groupG such that there exist at least two non-conjugated injective representations

%i : G ↪→ PGL3(k) with i = 1, 2, i.e. @φ ∈ PGL3(k) with φ−1%1(G)φ = %2(G) (more details

are included in the previous section §2.2). Because of the zoo of the groups that could appear for

smooth plane curves (Theorem 1.4.4), we only consider G, a cyclic group of order m. Second,

one needs to prove the existence of two smooth plane curves over k whose automorphism

groups are conjugate to %i(G), for each i = 1, 2 respectively.

In this section, we prove that the stratum M̃Pl
g (Z/(d − 1)Z) is not ES-irreducible, for any

odd degree d ≥ 5, and it has at least two irreducible components. In particular, when d = 5, we

will see in chapter 4 that G = Z/4Z is the only group such that M̃Pl
6 (G) is not ES-Irreducible.

Moreover, for even degree d, we prove that M̃Pl
10(Z/3Z) is not ES-irreducible. More generally,

we may conjecture, by our work in §2.4, that the stratum M̃Pl
g (Z/mZ) might be not be ES-

Irreducible only if m divides d or d− 1, which is true up to degree 9, at least. See the tables in

Appendix A.

The above construction of non-irreducible strata holds when k is a field of characteristic

p = 0 or p > (d− 1)(d− 2) + 1, by the virtue of the discussion at the end of chapter 1.
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2.3.1 The stratum M̃Pl
g (Z/(d− 1)Z)

Consider Table A.3. One finds find that MPl
6 (Z/mZ) is not empty only for m =

2, 3, 4, 5, 8, 10, 13, 15, 16, and 20. MoreoverMPl
6 (Z/mZ) = %(MPl

6 (Z/mZ)) when m 6= 4, 5,

where % is determined by %(Z/mZ) = 〈diag(1, ζam, ζ
b
m)〉. Hence, the strata M̃Pl

6 (Z/mZ), for

m 6= 4, 5, are expected to be ES-Irreducible, if they are non-empty.

Now, we consider the remaining situation M̃Pl
6 (Z/mZ) with m = 4 and 5: obviously, the

Type 5, (1, 2) always have a bigger automorphism group by permuting X and Z. Therefore,

there is at most one normal form, defining smooth plane curves over k of genus 6, whose

full automorphism group is isomorphic to Z/5Z (observe that the number of the conjugacy

classes of representations of Z/5Z in PGL3(k) is three). In particular, M̃Pl
6 (Z/5Z) is also

ES-Irreducible, when it is non-empty. More precisely, M̃Pl
6 (Z/5Z) = %(MPl

6 (Z/5Z)), where

%(Z/5Z) = 〈diag(1, 1, ζ5)〉. On the other hand, for the cyclic groups of order 4, we have: Type

4, (1, 3) is not irreducible, since it decomposes as X .G(X, Y, Z). Hence, it is singular, and

will be out of the scope of our purposes. Then, we obtainMPl
6 (Z/4Z) = %1(MPl

6 (Z/4Z)) ∪

%2(MPl
6 (Z/4Z)), where %1 corresponds to Type 4, (0, 1) and %2 to Type 4, (1, 2) respectively.

On Type 4, (0,1)

Consider the one parameter family C%1 of smooth plane curves over k defined by an equation

of the form: F%1(X, Y, Z) := X5 + Y 5 + XZ4 + βX3Y 2 = 0, where β 6= 0. Since η :=

diag(1, 1, ζ4) ∈ Aut(F%1) is an homology of order 4, with axis, the reference line L3 : Z = 0

and center, the reference point P3 = (0 : 0 : 1), then Aut(F%1) should fix a point, a line or a

triangle (Theorem 1.2.8).

If Aut(F%1) fixes a triangle and neither a line nor a point is leaved invariant, then

F%1(X, Y, Z) must be a descendant of the Fermat curve F5 : X5 + Y 5 + Z5 = 0 or the Klein

curve K5 : X4Y + Y 4Z +Z4X = 0 (we refer to the proof of Theorem 1.4.4). However, this is

impossible because 4 - |Aut(F5)|(= 150), and 4 - |Aut(K5)|(= 39). So Aut(F%1) should fix

a line and a point off that line. By Proposition 1.3.12, the center P3 is an inner Galois point for

F%1(X, Y, Z), and it is unique by Theorem 1.3.10. Therefore, it must be fixed by the full auto-

morphism group Aut(F%1). In particular, Aut(F%1) is cyclic, by Corollary 1.4.2, and the axis
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Z = 0 is also fixed due to Proposition 1.2.9. Consequently, any automorphism of F%1(X, Y, Z)

is of the shape 
∗ ∗ 0

∗ ∗ 0

0 0 1


and we reduce to diag(1, λ, µ), because of the term XZ4 and since β 6= 0. This in turns yields

λ5 = λ2 = µ4 = 1, so λ = 1 and t is a 4th root of unity. This shows that Aut(F%1) is

isomorphic to Z/4Z.

By the above discussion, we conclude:

Proposition 2.3.1. The substratum %1(M̃Pl
6 (Z/4Z)) is non-empty.

On Type 4, (1,2)

Similarly, we study the one parameter family C%2 of smooth plane curves over k defined by

F%2(X, Y, Z) := X5 + X(Y 4 + Z4) + βY 2Z3 = 0, where β 6= 0. The family admits a cyclic

subgroup of automorphisms generated by η̂ := diag(1, ζ4,−1). For the same reason as before,

i.e 4 - |Aut(K5)| and |Aut(F5)|, F%2(X, Y, Z) is not a descendant of the Fermat curve F5 or

the Klein curve K5. Moreover, Aut(F%2) is not conjugate to an icosahedral group A5, since it

contains no elements of order 4. Also, we exclude the groups: the Klein group PSL(2, 7), the

Hessian group Hess216, and the alternating group A6, using Theorem 1.4.5 for d = 5. Second,

the next lemma shows that Aut(F%2) is not conjugate to any of the Hessian subgroups Hess∗,

for ∗ = 36, 72, and hence it should fix a line and a point off this line:

Lemma 2.3.2. There is no smooth plane curveC over k of genus 6, whose automorphism group

is conjugate to Hess∗, for any ∗ ∈ {36, 72, 216}.

Proof. Let FC(X, Y, Z) = 0 be a non-singular plane model for C of degree 5 over k, and

suppose on the contrary that Aut(FC) is conjugate, through some φ ∈ PGL3(k), to Hess∗.

Then Aut(Fφ−1C) is given by the usual representation inside PGL3(k) of the above Hessian

groups. In particular, it has always the five automorphisms: [Z : Y : X], [X : Z : Y ], [Y :

X : Z], [Y : Z : X], and [X : ζ3Y : ζ2
3Z]. Because Fφ−1C(X, Y, Z) = 0 is invariant under

the action of [Z : Y : X], [X : Z : Y ], [Y : X : Z], and [Y : Z : X], it must be of the
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form: u(X5 + Y 5 + Z5) + a(X4Z +X4Y + Y 4X + Y 4Z + Z4X + Z4Y ) +G(X, Y, Z), for

some u, a ∈ k, and G(X, Y, Z) is a homogenous polynomial of degree at most three in each

variable. Now, acting by the fifth automorphism diag(1, ζ3, ζ
2
3 ), we get u = a = 0, which in

turns conflicts non-singularity.

Since τ̂ ∈ Aut(F%2) is a non-homology in its canonical form, i.e. diag(1, a, b) with 1, a, b

(resp. 1, a3, b3) are pairwise distinct, then the fixed line is one of the reference lines B = 0

with B ∈ {X, Y, Z} and the fixed point is one of the reference points, characterized by B 6= 0.

Equivalently, all automorphisms ofF%2(X, Y, Z) are of one of the shapes ϕ̂1 := [X : vY +wZ :

sY + tZ], ϕ̂2 := [vX + wZ : Y : sX + tZ], or ϕ̂3 := [vX + wY : sX + tY : Z].

If ϕ̂1 ∈ Aut(F%2), then s = 0 = w (Coefficients of Y 5 and Z5), and we have the same

conclusion for ϕ̂2 and ϕ̂3, by the coefficients of X3Y 2, Y 4Z and Z3X, Y Z4, respectively. So

any automorphism is diagonal say diag(1, λ, µ), hence λ4 = µ4 = λ2µ3 = 1, and λ = ζr4 , s =

ζr
′

4 , for (r, r′) ∈ {(0, 0), (2, 0), (1, 2), (3, 2)}. That is Aut(F%2) is isomorphic to Z/4Z, which

was to be shown.

The analogue of Proposition 2.3.1 is:

Proposition 2.3.3. The substratum %2(M̃Pl
6 (Z/4Z)) is non-empty.

Summarizing all the discussion made in this subsection, we can write:

Corollary 2.3.4. Suppose that the stratum M̃Pl
6 (Z/mZ) is non-empty. Then it is ES-Irreducible

if and only if m 6= 4. Furthermore, for m = 4, it has exactly two irreducible equation compo-

nents, and hence the number of its irreducible components is at least two.

Remark 2.3.5. For any element C in %1(MPl
6 (Z/4Z)), the Galois cover of degree 4 corre-

sponding to

{F%1(X, Y, Z) = 0} → {F%1(X, Y, Z) = 0}/〈diag(1, 1, ζ4)〉,

where F%1(X, Y, Z) := Z4Y + L5,Z , is ramified exactly at six points with ramification index

4: indeed, the fixed points of ηi, for i = 1, 2, 3, 4 in P2(k) are all the same set, where η =

diag(1, 1, ζ4). Therefore, we only need to consider the ramification points of η. In particular,

48



the ramification index is always 4. By Hurwitz formula, we get 10 = 4(2g0 − 2) + 3s, where

g0 is the genus of F%1(X, Y, Z)/〈diag(1, 1, ζ4)〉. Hence g0 = 0 and s = 6.

On the other hand, for any element C in %2(MPl
6 (Z/4Z)), the Galois cover

{F%2(X, Y, Z) = 0} → {F%2(X, Y, Z) = 0}/〈diag(1, ζ4,−1)〉,

where F%2(X, Y, Z) := X5 +X(Y 4 +Z4) + β2,0X
3Z2 + β3,2X

2Y 2Z + β5,2Y
2Z3, is ramified

at the points (0 : 1 : 0), and (0 : 0 : 1) with ramification index 4, and at the 4 points (1 : 0 : h),

where 1 + h4 + β2,0h
2 = 0 with ramification index 2 provided that β2,0 6= ±2. We exclude the

situation β2,0 = ±2 so that the defining equation is non-singular.

The above results, Propositions 2.3.1, 2.3.3 and Corollary 2.3.4, are generalized as follows:

Theorem 2.3.6. Let d ≥ 5 be an odd integer, and consider g = 1
2
(d− 1)(d− 2) as usual. Then

M̃Pl
g (Z/(d− 1)Z) is not ES-Irreducible, and it has at least two irreducible components.

Proof. The above argument for the concrete families of Type 4, (0, 1) and Type 4, (1, 2) still

valid, for any odd degree d ≥ 5, and the proof is quite similar. In other words, let F%1(X, Y, Z)

and F%2(X, Y, Z) be the two families of smooth plane curves over k of Type d − 1, (0, 1)

and Type d − 1, (1, 2) defined by the normal forms Xd + Y d + Zd−1X + βXd−2Y 2 = 0,

and Xd + X(Y d−1 + Zd−1) + βY 2Zd− 2 = 0 respectively, and such that β 6= 0. Then

Aut(F%1) and Aut(F%2) are non-conjugate cyclic groups of order d − 1, and generated by

η := diag(1, 1, ζd−1) and η̂ := diag(1, ζd−1, ζ
2
d−1), respectively. Therefore, they belong to two

different [%]′s.

On Type d− 1, (0,1): Again with an homology η of period d − 1 ≥ 4 inside Aut(F%1),

the group Aut(F%1) fixes a point, a line or a triangle (Theorem 1.2.8). Moreover, the center

P3 = (0 : 0 : 1) of η is an inner Galois point (Proposition 1.3.12), and also it is unique

(Theorem 1.3.10). Hence, it should be fixed by Aut(F%1), and its axis Z = 0 is then leaved

invariant (Proposition 1.2.9). So Aut(F%1) is cyclic (Corollary 1.4.2), and automorphisms of

F%1(X, Y, Z) = 0 are all of diagonal shapes diag(1, v, t), such that vd = td−1 = v = 1. This

shows that |Aut(F%1)| = d− 1.
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On Type d− 1, (1,2): First, Aut(F%2) fixes a line and a point off this line: No loss of

generality to assume d ≥ 7 (for d = 5, we refer Proposition 2.3.3). The alternating group A6

has no elements of order d−1 ≥ 6. The Klein group PSL(2, 7), which is the only simple group

of order 168 (up to isomorphism), has no elements of order≥ 8, and also there are no elements

of order 6 inside (for more details, we refer to [Vis]). Therefore, the primitive groups A5, A6,

and PSL(2, 7) do not appear as the full automorphism group. Furthermore, the elements of

the Hessian group Hess216
∼= GAP(216, 153) have orders 1, 2, 3, 4, and 6. Then Hess∗ with

∗ ∈ {36, 72, 216} do not appear as the full automorphism group, except possibly for d = 7.

On the other hand, d − 1 - 3(d2 − 3d + 3), thus F%2(X, Y, Z) = 0 is not a descendant of the

Klein curve Kd. Also, F%2(X, Y, Z) = 0 is not a descendant of the Fermat curve Fd, since

d− 1 - 6d2 (except for d = 7). Finally, it remains to deal with the degree d = 7 to exclude the

Hessian groups and being a descendant of the Fermat curve F7: By the same line of argument

as we did for Type 4, (1, 2), one shows that none of the Hessian groups could appear as the

automorphism group of a smooth plane curve of degree 7. Furthermore, automorphisms of F7

are of the shapes [X : ζa7Y : ζb7Z], [ζb7Z : ζa7Y : X], [X : ζb7Z : ζa7Y ], [ζa7Y : X : ζb7Z], [ζa7Y :

ζb7Z : X], [ζb7Z : X : ζa7Y ]. However, none of them is of order 6, and the claim follows.

Now, the full automorphism group should fix a line and a point off this line. Due to the

presence of η̂ in Aut(F%2), we obtain all automorphisms to be of one of the shapes [X :

vY + wZ : sY + tZ], [vX + wZ : Y : sX + tZ], or [vX + wY : sX + tY : Z]. If

[X : vY + wZ : sY + tZ] ∈ Aut(F%2), then s = w = 0 (coefficient of Y d and Zd), and

the same holds for [vX + wZ : Y : sX + tZ] (resp. [vX + wY : sX + tY : Z]) from the

coefficients ofXd−2Y 2, Y d−1Z (resp. Zd−2X2, Y Zd−1). Hence, all automorphisms reduces to

diagonal shapes say diag(1, v, s). Hence vd−1 = sd−1 = v2sd−2 = 1, and v = ζrd−1, s = ζr
′

d−1

with d− 1|2r − r′. Therefore, Aut(F%2) is cyclic of order d− 1.

2.3.2 The stratum M̃Pl
10(Z/3Z).

From Table A.4 of Appendix A, we get the following normal forms for %(MPl
10(Z/3Z)):
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Table 2.2: Normal forms for %(MPl
10(Z/3Z))

3, (0, 1) Z6 + Z3L3,Z + L6,Z

3, (1, 2) X5Y + Y 5Z + Z5X + µ1X
4Z2 + µ2X

2Y 4 + µ3Y
2Z4+

+µ4X
3Y 2Z + µ5XY

3Z2 + µ6X
2Y Z3

where µi, are parameters that assumes values in k, so that the associated plane model over k of

the respective stratum %(MPl
10(Z/3Z)) are non-singular.

On Type 3, (1,2)

Proposition 2.3.7. Let C ∈ MPl
10(Z/3Z), such that C admits a non-singular plane model

FC(X, Y, Z) = 0 over k of the form

X5Y +Y 5Z+Z5X+µ1X
4Z2+µ2X

2Y 4+µ3Y
2Z4+µ4X

3Y 2Z+µ5XY
3Z2+µ6X

2Y Z3 = 0.

Then, Aut(FC) should fix a line, a point or a triangle.

Proof. It suffices to show that Aut(FC) is not conjugate to any of the finite primitive subgroups

inside PGL3(k), and the result follows by Theorem 1.2.1. Before we go further, we recall that

S = diag(1, ζ3, ζ
2
3 ) is an automorphism.

Let S ′ ∈ Aut(FC) be of order 2 such that S ′SS ′ = S−1. Then S ′ must have the shape

[X : βZ : β−1Y ], [βY : β−1X : Z], or [βZ : Y : β−1X], for some β ∈ k \ {0}. However, non

of these transformations retains FC(X, Y, Z) = 0, hence Aut(FC) does not contain an S3 as a

subgroup. In particular, it is not conjugate to A5 or A6. Similarly, we exclude the Klein group

PSL(2, 7), since it contains an octahedral group of order 24 (but not an isocahedral group of

order 60), and because all elements of order 3 inside forms a single conjugacy class (we refer to

[Vis]). Lastly, if Aut(FC) is conjugate, through a transformation φ, to the Hessian group Hess∗

with ∗ ∈ {36, 72, 216}, then, we may assume φ−1Sφ = S, as we did not fix a plane model

over k for a smooth plane curve whose automorphism group is Hess∗. In particular, φ has the

shape; [Y : γZ : βX], [Z : γX : βY ], or [X : γY : βZ]. Clearly, non of them transforms

FC(X, Y, Z) = 0 to Fφ−1C(X, Y, Z) = 0 with {[X : Z : Y ], [Y : X : Z], [Z : Y : X]} ⊆

Aut(Fφ−1C). Therefore, Aut(FC) is not conjugate to Hess∗, for any ∗ ∈ {36, 72, 216}, and we

are done.
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Notation. Let A be the subset of k
3 \ {(0, 0, 0)}, consisting of all solutions of the following

system of polynomial equations

Ψ1(ς1, ς2, ς3) = 1, Ψ2(ς1, ς2, ς3) = Ψ3(ς1, ς2, ς3) = ζ4
9Ψ4(ς1, ς2, ς3),

where

Ψ1(ς1, ς2, ς3) := ς3ς
5
2 + (ς1ς

3
3 + 1)ς2 + ς5

3 ,

Ψ2(ς1, ς2, ς3) := ζ2
9

(
(5ζ3

9 + 1)ς3ς
5
2 + (5ζ6

9 + ζ3
9 + (2ζ6

9 + ζ3
9 + 3)ς1ς

3
3 )ς2 + (ζ6

9 + 5)ς5
3

)
,

Ψ3(ς1, ς2, ς3) := ζ5
9

(
(ζ6

9 + 5)ς3ς
5
2 + (5ζ3

9 + (3ζ6
9 + 2ζ3

9 + 1)ς1ς
3
3 + 1)ς2 + ζ3

9 (5ζ3
9 + 1)ς5

3

)
,

Ψ4(ς1, ς2, ς3) := ζ9

(
ζ4

9 (5ζ3
9 + 1)ς3ς

5
2 + ζ9(ζ6

9 + (ζ6
9 + 3ζ3

9 + 2)ς1ς
3
3 + 5)ς2 + ζ9(5ζ3

9 + 1)ς5
3

)
,

and ζ9 is a primitive 9th root of unity. Define (A)1 to be the set of all values that appear in the

1st coordinate of the 3-tuples in A, which (by a computation) is a finite subset of k
∗
.

Now, we state and prove the main result for this part:

Theorem 2.3.8. Consider C ∈ MPl
10(Z/3Z) that has a non-singular plane model

FC(X, Y, Z) = 0 over k of the form X5Y +Y 5Z+Z5X+µX2Y Z3 = 0 with µ /∈ (A)1∪{0}.

The full automorphism group of FC(X, Y, Z) = 0 is isomorphic to Z/3Z, and it is generated

by S : (X : Y : Z) 7→ (X : ζ3Y : ζ2
3Z).

Proof. A priori, Aut(FC) fixes a line and a point off that line or it fixes a triangle using Propo-

sition 2.3.7. We treat each of the two subcases:

(A) If it fixes a line and a point off this line, then the line must be one of the reference linesB =

0, with B ∈ {X, Y, Z}, and the point is one of the reference points, given by B 6= 0 (recall

that S is an automorphism, which is non-homology). Therefore, Aut(FC) is cyclic, since

all reference points lie on FC(X, Y, Z) = 0. In particular, any automorphism should be in

the normalizer of 〈S〉 in PGL3(k), which is generated by the set of all diagonal matrices

together with the set of all permutations of {X, Y, Z} in PGL3(k). Since µ 6= 0, all

automorphisms of FC(X, Y, Z) = 0 reduces to diagonal shapes. Moreover, if diag(1, v, t)

is an automorphism, then tv4 = 1 = t3, and t5 = v. Hence t = ζ2r
9 = ζr3 and v = ζ4r

9 = ζ2r
3

for some integer r, which implies that Aut(FC) = 〈S〉.
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(B) If it fixes a triangle and neither a line nor a point is leaved invariant, then FC(X, Y, Z) = 0

is a descendant of the Fermat curve F6 : X6 + Y 6 + Z6 = 0 or it is a descendant of the

Klein curveK6 : X5Y +Y 5Z+Z5X = 0. Moreover, Aut(FC) is conjugate to a subgroup

of one of the following groups (see [Har13, §5]):

Aut(F6) = 〈[ζ6X : Y : Z], [X : ζ6Y : Z], [Y : Z : X], [X : Z : Y ]〉,

Aut(K6) = 〈[Z : X : Y ], [X : ζ21Y : ζ−4
21 Z]〉,

respectively. We deal with each of these subcases:

(i) Suppose first that Aut(FC) is conjugate, through some φ, to a subgroup of Aut(F6).

It is enough to assume φ−1Sφ ∈ {S, [Y : Z : X], [Y : ζ6Z : X], [Y : ζ2
6Z :

X]} where ζ6 is a primitive 6th root if unity, since any automorphism of order 3 in

Aut(F6), which is not an homology, is conjugate to one of these inside Aut(F6).

If φ−1Sφ = S, then φ is again in the normalizer of 〈S〉 in PGL3(k). So, it belongs to

the subgroup generated by diagonal matrices and the symmetry group on {X, Y, Z}.

Obviously, non of them produces the core X6 + Y 6 + Z6 from FC(X, Y, Z) = 0.

If φ−1Sφ = [Y : νZ : X] for some ν ∈ {1, ζ6, ζ
2
6}, then φ has reduces to the shape

λ 1 λ2

ζ3λβ2 β2 ζ2
3λ

2β2

ζ2
3λβ3 β3 λ2ζ3β3

 ,

where λ3 = ν. We thus get Fφ−1C(X, Y, Z) of the form

Ψ1(µ, β2, β3)
(
ν2ζ3X

6 + Y 6 + ν4ζ2
3Z

6
)

+ lower terms.

Hence, Ψ1(µ, β2, β3) = 1, ν = ζ3, and Fφ−1C(X, Y, Z) has the form

X6 +Y 6 +Z6 +
(
Ψ2(µ, β2, β3)X5Y + Ψ4(µ, β2, β3)Y 5Z + Ψ3(µ, β2, β3)XZ5

)
+ . . .

Moreover, [Y : ζ2
6Z : X] is an automorphism of Fφ−1C(X, Y, Z) = 0, which is

impossible because µ /∈ (A)1. Therefore, FC(X, Y, Z) = 0 is not a descendant of

the Fermat curve F6.
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(ii) In the same way, if FC(X, Y, Z) = 0 is a descendant of the Klein curve K6 through

φ ∈ PGL3(k), then we may impose

φ−1Sφ ∈ {S, S−1, [ζr21Y : ζ−4r
21 Z : X], [ζ−4r

21 Z : X : ζr21Y ]}

with r = 0, 1, 2, and ζ21 is a primitive 21th root of unity. If φ−1Sφ = [ζr21Y : ζ−4r
21 Z :

X], then φ has the shape
λζ−r21 1 λ2ζ−r21

λζ−r21 ζ3β2 β2 λ2ζ−r21 ζ
2
3β2

λζ−r21 ζ
2
3β3 β3 λ2ζ−r21 ζ3β3

 ,

with λ3 = ζ−3r
21 . To get the core of the Klein curve, we, particularly, need to spe-

cialize the parameters µ, β2, β3, so that the monomials X6, Y 6, Z6X5Z, XY 5, and

Y Z5 disappear from Fφ−1C(X, Y, Z) = 0. This is impossible, unless µ = 0, which

is not the situation. Similarly, we exclude [ζ−4r
21 Z : X : ζr21Y ], and therefore, φ

is in the normalizer of 〈S〉, that also produces the core X5Y + Y 5Z + Z5X . In

this case, we get the defining equation µ0(X5Y + Y 5Z + Z5X) + µ1G(X, Y, Z),

for some G(X, Y, Z) ∈ {X2Y Z3, X3Y 2Z, XZ2Y 3}. In particular, Aut(Fφ−1C) ≤

〈[X : ζ21Y : ζ−4
21 Z]〉. Checking monomials’ invariance of Fφ−1C(X, Y, Z) under

this action, we only get the automorphisms [X : ζr
′

21Y : ζ−4r′

21 Z] with 7|r′, and the

automorphism group is Z/3Z.

On Type 3, (0,1)

Proposition 2.3.9. If C ∈MPl
10(Z/3Z) has a non-singular plane model FC(X, Y, Z) = 0 over

k of the form Z6+Z3L3,Z+L6,Z = 0, then Aut(FC) is conjugate to the Hessian group Hess216,

or it leaves invariant a point, a line or a triangle.

Proof. The result follows directly from Theorem 1.2.8, since U = diag(1, 1, ζ3) ∈ Aut(FC)

is an homology of period 3, and Hess216 is the only primitive group, which contains such

automorphisms and does not leave invariant a point, a line or a triangle.
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The main result of this part is stated below:

Theorem 2.3.10. The automorphisms group of any C ∈ MPl
10(Z/3Z), having a non-singular

plane model FC(X, Y, Z) = 0 over k of the form Z6 +X5Y +XY 5 +µX3Z3 = 0, with µ 6= 0

is cyclic of order 3, and generated by U : (X : Y : Z) 7→ (X : Y : ζ3Z).

Proof. First, assume a change of the variables φ such that φ−1Uφ = U . Then φ should be of

the shape 
∗ ∗ 0

∗ ∗ 0

0 0 1

 ,

and it is clear that {[Z : Y : X], [X : Z : Y ]} * Aut(Fφ−1C). In particular, Hess216 does not

occur as the full automorphism group, and Aut(FC) therefore fixes a point, a line or a triangle

(Proposition 2.3.9).

We treat each of the following subcases:

(A) First, assume that Aut(FC) fixes a line and a point off that line. If FC(X, Y, Z) = 0

admits a larger non cyclic automorphism group than Z/3Z, then Aut(FC) satisfies a short

exact sequence of the shape 1 → Z/3Z → Aut(FC) → G → 1, where G is conjugate to

Z/mZ with m ∈ {2, 3, 4}, D2m with m = 2, or 4, A4, S4, or to A5. For G, conjugate to

Z/3Z, A4, S4, or to A5, there exists, by Sylow’s theorem, a subgroupH of automorphisms

of FC(X, Y, Z) = 0 of order 9. Hence, H is Z/9Z or Z/3Z×Z/3Z, however non of them

happens: one easily excludes Z/9Z, since 9 - d − 1, d, (d − 1)2, d(d − 2), d(d − 1), or

d2−3d+3 with d = 6 (see Corollary 2.1.6). Moreover, ifH = Z/3Z×Z/3Z, then we have

an automorphism η of order 3, which commutes withU . So, η = [vX+wY : sX+tY : Z],

and from the monomials X6 and Z3Y 3, we obtain w = 0 = s, and v5t = vt5 = v3 = 1.

That is η ∈ 〈U〉, a contradiction.

By a similar argument, one shows thatG is not conjugate to Z/4Z, or D2m, because for any

GAP(6m, j), there must be an automorphism η of order 2 or 4, which also commutes with

U . On the other hand, if G is conjugate to Z/2Z, then there should be an automorphism η

of order 2 with ηUη = U−1. And, such an automorphism does not exist, as U and U−1 are

in different conjugacy classes in PGL3(k)
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Now, we conclude by the above discussion that Aut(FC) is cyclic (so, it is abelian). Hence,

it can not be of order> 3, since we then have to recognize our curve to be of Typem, (0, 1)

for some m, divisible by 3. By Table A.4 in Appendix A, this is not possible, and the

automorphism group is exactly Z/3Z.

(B) Second, if a triangle is fixed by Aut(FC), and neither a point nor a line is leaved invariant,

then as we mentioned earlier (Theorem 1.4.4), FC(X, Y, Z) = 0 is a descendant of the

Fermat sextic curve F6 or the Klein sextic curve K6. However the Klein curve is not

an option, as it does not have automorphisms of order 3 whose Jordan form looks like

an homology. Also, the set of automorphisms of order 3 of the Fermat curve, which are

homologies forms exactly two conjugacy classes in Aut(F6), represented by U and U2

respectively. But also U and U−1 are in different conjugacy classes of PGL3(k), therefore

FC(X, Y, Z) = 0 is a descendant of the Fermat curve through a change of variables φ,

with φ−1Uφ = U . Thus, φ = [α1X + α2Y : β1X + β2Y : Z], and Fφ−1C(X, Y, Z) = 0 is

given by the equation

ε0X
6+ε1Y

6+Z6+µ(α1X+α2Y )3Z3+ε2X
5Y +ε3X

4Y 2+ε4X
3Y 3+ε5X

2Y 4+ε6XY
5,

where ε0 := α1β1 (α4
1 + β4

1) (= 1), and ε1 := α2β2 (α4
2 + β4

2) (= 1). In particular,

(α1β1)(α2β2) 6= 0, and hence [X : λZ : δY ], [λZ : δY : X], [λY : δZ : X], and

[λZ : X : µY ] /∈ Aut(Fφ−1C), for any λ, µ ∈ k
∗

(for instance, due to the monomial

XY 2Z3). Furthermore, [λY : X : δZ] ∈ Aut(Fφ−1C) only if α1 = α2 and λ = δ3 = 1,

and Fφ−1C(X, Y, Z) becomes

Z6 + µα3
1(X + Y )3Z3 + α1(X + Y )(β1X + β2Y )

(
α4

1(X + Y )4 + (β1X + β2Y )4
)
.

Then β1 = β2, since we are assuming [Y : X : δZ] ∈ Aut(Fφ−1C). In this case, φ is

not invertible, a contradiction. Finally, if diag(1, ζr6 , ζ
r′
6 ) retains Fφ−1C(X, Y, Z) = 0, for

some integers 0 ≤ r, r′ < 6, then r = 0 and r′ is even (recall that α1α2 6= 0). So, being a

descendant of the Fermat curve yields also that Aut(Fφ−1C) is Z/3Z.
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Corollary 2.3.11. The stratum M̃Pl
10(Z/3Z) is not ES-Irreducible, and it has at least two irre-

ducible components.

§2.4 On smooth plane curves, admitting “large” or “very

large” automorphisms

There is a lot of interest on smooth curves having a large automorphism group: For k = C, a

smooth curve C ∈ Mg has large automorphism group if it has a neighborhood (with respect

to the complex topology) in Mg, such that any other smooth curve inside the neighborhood

has a smaller automorphism group. For such situations C admits a model defined over Q,

C/Aut(C) corresponds to the projective line and the Galois cover C → C/Aut(C) is a Belyi

morphism, in particular it is ramified exactly at 3 points. The last property of a Belyi morphism

that is ramified at three points and is a Galois cover, characterizes smooth curves with large

automorphism group. For more details, we refer to Wolfart [Wol97]. Another notion in the

literature for C to be of large automorphism group is when |Aut(C)| > 4(g−1). In particular,

for C ∈MPl
g , it means that |Aut(δ)| > 2(d2 − 3d+ 2)− 4. In this case C → C/Aut(C) is a

map from C to a projective line, which is ramified at 3 or 4 points, see [FK92, p.258-260].

The above definitions of large automorphism group are very restrictive to our proposes for

smooth plane curves C ∈MPl
g in this chapter.

Definition 2.4.1. We say that an automorphism η ∈ Aut(C) is “very large”, if its order is

d2 − 3d + 3, (d − 1)2, d(d − 2), or d(d − 1), and it is “large”, if its order is md, m(d − 1) or

m(d− 2) for some integer m ≥ 2.

We devote this section to studyMPl
g (G) when G has elements of “large” or “very large”

order. Recall that the irreducibility of the strata M̃Pl
g (Z/mZ) is a deep problem (see section

§2.2). In this section, we will show thatMPl
g (G) is irreducible when G has an element of order

(d− 1)2, d(d− 1), d(d− 2) or d2 − 3d+ 3, since the stratum in this case is a single point. On

the other hand, MPl
g (G) is ES-irreducible when G has an element of order md, m(d − 1) or

m(d− 2) for some integer m ≥ 2.
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2.4.1 Strata of smooth plane curves, having a “very large” automorphism

Take, as usual, a non-singular plane model FC(X, Y, Z) = 0 of degree d ≥ 4 for C ∈

MPl
g (Z/mZ) over k, where k is a field of characteristic p = 0 or p > 2g + 1. Assume

moreover that η ∈ Aut(FC) is of order m that acts on FC(X, Y, Z) = 0 as the automor-

phism (X : Y : Z) 7→ (X : ζamY : ζbmZ). In particular, m must divide one of the integers

d− 1, d, d2 − 3d+ 3, (d− 1)2, d(d− 2), or d(d− 1), by Corollary 2.1.6.

The stratumMPl
g (Z/d(d− 1)Z)

The following results (Proportions 2.4.2 and 2.4.3) are well-known in the literature, see for

example [Har13, Proposition 3.8] when k has characteristic p = 0 and the same result follows

by our discussion in chapter 1 when p > 2g + 1:

Proposition 2.4.2. For any d ≥ 5, C ∈ MPl
g (Z/d(d− 1)Z) if and only if FC(X, Y, Z) = 0 is

k-isomorphic toXd+Y d+XZd−1 = 0. In particular,MPl
g (Z/d(d−1)Z) is irreducible with a

single element. In fact,MPl
g (Z/d(d−1)Z) = %(MPl

g (Z/d(d−1)Z)), where %(Z/d(d−1)Z) =

〈diag(1, ζd−1
d(d−1), ζ

d
d(d−1))〉.

Proof. If C : Xd + Y d + XZd−1 = 0 is a non-singular plane model for C, then C ∈

MPl
g (Z/d(d − 1)Z), since diag(1, ζd−1

d(d−1), ζ
d
d(d−1)) is an automorphism of order d(d − 1).

Conversely, suppose that C ∈ MPl
g (Z/d(d − 1)Z) and fix a non-singular plane model

FC(X, Y, Z) = 0 for C. Since d(d − 1) does not divide any of the integers d − 1, d, d2 −

3d + 3, d(d − 2), and (d − 1)2, then FC(X, Y, Z) = 0 is k-projectively equivalent to

Type d(d − 1), (a, b) of the form Theorem 2.1.3-(5), for some (a, b) ∈ Γd(d−1), such that

da = 0 mod d(d − 1) and (d − 1)b ≡ 0 mod d(d − 1). In particular, we can take a = d − 1

and b = d as a generator of these types: indeed, a ≡ 0 mod d − 1 and b ≡ 0 mod d, and we

also have

diag(1, ζ
(d−1)m
d(d−1) , ζ

dm′

d(d−1)) = diag(1, ζd−1
d(d−1), ζ

d
d(d−1))

d(m′−m)+m.

Hence, the index sets S(2)j,Xm,(a,b), S
d,X
1 m,(a,b) and Sd−1,X

1 m,(a,b) are all the empty set, for all

j = 2, ..., d− 2: we justify this by the computations;
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S(2)j,Xd(d−1),(d−1,d) := {0 ≤ i ≤ j | (d− 1)i+ (j − i)d ≡ 0 mod d(d− 1)}

= {0 ≤ i ≤ j | dj − i ≡ 0 mod d(d− 1)}

= ∅, since 0 < dj − i < d(d− 1),

Sd,X1 d(d−1),(d−1,d) := {1 ≤ i ≤ d− 1 | (d− 1)i+ (d− i)d ≡ 0 mod d(d− 1)}

= {1 ≤ i ≤ d− 1 | d− i ≡ 0 mod d(d− 1)}

= ∅, since , 0 < d− i < d(d− 1),

Sd−1,X
1 d(d−1),(d−1,d) := {1 ≤ i ≤ d− 1 | (d− 1)i+ (d− 1− i)d ≡ 0 mod d(d− 1)}

= {1 ≤ i ≤ d− 1 | i ≡ 0 mod d(d− 1)}

= ∅.

Now, if we substitute in the normal form of Theorem 2.1.3, case (5), then one finds that

FC(X, Y, Z) = 0 reduces to Xd + Y d +XZd−1 = 0, which was to be shown first.

Proposition 2.4.3. The full automorphism group of C : Xd + Y d + XZd−1 = 0 with d ≥ 5 is

cyclic of order d(d− 1). Hence M̃Pl
g (Z/d(d− 1)Z) =MPl

g (Z/d(d− 1)Z) is also irreducible.

Proof. Since diag(1, ζd−1
d(d−1), ζ

d
d(d−1))

d ∈ Aut(C) is a homology of order d − 1, then its center

P3 = (0 : 0 : 1) is an inner Galois point of C (Proposition 1.3.12). Moreover, it is also

unique (Theorem 1.3.8). Therefore, it must be fixed by Aut(C), which implies that Aut(C)

is cyclic by the virtue of Corollary 1.4.2, and thus |Aut(C)| ≤ d(d − 1) by Corollary 2.1.6.

But also diag(1, ζd−1
d(d−1), ζ

d
d(d−1)) ∈ Aut(C) is of order d(d − 1). Consequently, Aut(C) =

〈diag(1, ζd−1
d(d−1), ζ

d
d(d−1))〉.

Remark 2.4.4. Recall that for d = 4, the automorphism group of C : X4 + Y 4 +XZ3 = 0 is

isomorphic to Z/4Z} A4, given by

{(κ, g) ∈ µ12 ×H : κ4 = χ(g)}/±1,

where µn is the group of nth roots of unity, H is the group A4 and χ is the character χ : H →

µ3 defined by χ(S) = 1 and χ(T ) = ζ3, where S, T are generators of H of order 2 and 3
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respectively with the representation H = 〈S, T |S2 = 1, T 3 = 1, ...〉, and ζ3 is a primitive

3rd-root of unity, see [Hen76] (or also [Bar12]).

Corollary 2.4.5. If G is a non-cyclic automorphism subgroup of a smooth plane curve of order

divisible by d(d − 1) with d ≥ 5, then it does not contain any automorphism of order order

d(d− 1).

The stratumMPl
g (Z/(d− 1)2Z)

Proposition 2.4.6. For d ≥ 4, C ∈ MPl
g (Z/(d − 1)2Z) if and only if it is k-isomorphic to

Xd + Y d−1Z + XZd−1 = 0. In particular, the stratumMPl
g (Z/(d − 1)2Z) is irreducible and

contains only a single element. More precisely,MPl
g (Z/(d− 1)2Z) = %(MPl

g (Z/(d− 1)2Z)),

where %(Z/(d− 1)2Z) = 〈diag(1, ζ(d−1)2 , ζ
(d−1)(d−2)

(d−1)2 )〉.

Proof. If C : Xd + Y d−1Z + XZd−1 = 0 is a non-singular plane model for C, then

C ∈MPl
g (Z/(d−1)2Z), since diag(1, ζ(d−1)2 , ζ

(d−1)(d−2)

(d−1)2 ) is an automorphism of order (d−1)2.

Conversely, suppose that C ∈ MPl
g (Z/(d − 1)2Z). Because (d − 1)2 - d − 1, d, d2 − 3d +

3, d(d − 2), and d(d − 1), we can consider, up to k-isomorphism, a non-singular plane model

FC = 0 of Type (d − 1)2, (a, b) of the form Theorem 2.1.3, subcase (4.2). In particular

(a, b) ∈ Γ(d−1)2 such that (d − 1)a + b ≡ 0 mod (d − 1)2, (d − 1)b ≡ 0 mod (d − 1)2,

and a = (d − 1)m − m′, b = (d − 1)m′ for some integers m and m′. Moreover,

diag(1, ζ
(d−1)m−m′
(d−1)2 , ζ

(d−1)m′

(d−1)2 ) = diag(1, ζ(d−1)2 , ζ
(d−1)(d−2)

(d−1)2 )(d−1)m−m′ . So we take a = 1 and

b = (d − 1)(d − 2) as a generator of such types of smooth plane curves. Consequently, the

index sets Sd,X2 (d−1)2, (a,b), S
d−1,X
1 (d−1)2, (a,b), and S(2)j,X(d−1)2, (a,b), for j = 2, ..., d− 2, become

all empty;

S(2)j,X(d−1)2, (a,b) := {0 ≤ i ≤ j | i+ (j − i)(d− 1)(d− 2) ≡ 0 mod (d− 1)2}

= {0 ≤ i ≤ j | j(d− 1)− di ≡ 0 mod (d− 1)2}

= ∅.

We get the last equality, because (d− 1)2 | j(d− 1)− di gives d− 1|i, and thus i = 0. This in
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turns implies that d− 1 | j, which is not possible as 0 < j < d− 1. Also, we we obtain

Sd,X2 (d−1)2, (a,b) := {2 ≤ i ≤ d− 2 | i+ (d− i)(d− 1)(d− 2) ≡ 0 mod (d− 1)2}

⊆ {2 ≤ i ≤ d− 2 | d− 1 | i}

= ∅,

Sd−1,X
1 (d−1)2, (a,b) := {1 ≤ i ≤ d− 1 | i+ (d− 1− i)(d− 1)(d− 2) ≡ 0 mod (d− 1)2}

= {1 ≤ i ≤ d− 1 | (d− 1)2 |di}

= ∅.

Lastly, we substitute into equation Theorem 2.1.3, subcase (4.2) to obtain the prescribed defin-

ing equation Xd + Y d−1Z +XZd−1 = 0, and we have done.

Proposition 2.4.7. The full automorphism group of C : Xd + Y d−1Z + XZd−1 = 0, for any

d ≥ 4 is cyclic of order (d − 1)2. Hence M̃Pl
g (Z/(d − 1)2Z) = MPl

g (Z/(d − 1)2Z) is also

irreducible.

Proof. Since diag(1, ζd−1, 1) ∈ Aut(C) is a homology of order d − 1, we can deduce that

Aut(C) is cyclic of order at most d(d − 1) and is also divisible by (d − 1)2 (one follows the

same argument for Proposition 2.4.3). Thus Aut(C) is exactly Z/(d− 1)2Z.

Corollary 2.4.8. If G is a non-cyclic subgroup of automorphisms of a smooth plane curve of

order divisible by (d − 1)2 with d ≥ 4, then it does not contain any automorphism of order

order (d− 1)2.

The stratumMPl
g (Z/d(d− 2)Z)

Definition 2.4.9. (central extension) Let N, E and G be three groups. We call G an extension

of E by N if there is a short exact sequence

1→ N → G→ E → 1

An extension is called a central extension if the subgroup N lies in the center of G.

The next result (Proposition 2.4.10) is [Har13, Proposition 6.2] when k has characteristic

p = 0, and the same is true when p > 2g + 1 by our discussion in chapter 1.
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Proposition 2.4.10. Consider the smooth plane curve C of degree d ≥ 4 defined by the form

C : Xd + Y d−1Z + Y Zd−1 = 0 over k. The full automorphism group Hd is completely

determined as follows:

1. For d 6= 4, 6, it is the central extension

〈σ, τ | σ2 = τ d(d−2) = 1 and στσ = τ−(d−1)〉

of the dihedral group D2(d−2) of order 2(d − 2) by Z/dZ. In particular, Aut(C) is of

order 2d(d− 2).

2. For d = 6, it is a central extension of S4 by Z/6Z, and its order is 144.

3. For d = 4, C is k-isomorphic to the Fermat quartic curve F4 : X4 +Y 4 +Z4 = 0. Hence

Aut(C) ∼= (Z/4Z)2 o S3.

Proof. For d = 4, the change of variables [X : Y + ζ4Z : Y − ζ4Z] transforms C : X4 +

Y 3Z + Y Z3 = 0 to X4 + 2(Y 4 − Z4) = 0, which is clearly the Fermat quartic curve, up to

a rescaling the variables Y and Z. The automorphism group in this case is already quite well

known, see [Hen76] or [Bar12].

For d ≥ 5, we have σ := diag(1, ζd(d−2), ζ
−(d−1)
d(d−2) ) ∈ Aut(C) of order d(d−2) > 2d. Hence

C can not be a descendant of the Fermat curve Fd. But also σd−2 ∈ Aut(C) is a homology of

order d with center P1 = (1 : 0 : 0) and axis L : X = 0. Thus P1 is an outer Galois point

for C (Proposition 1.3.12), and it is unique (Theorem 1.3.8). Therefore, P1 should be fixed by

Aut(C), and the same for the axis L : X = 0 (Proposition 1.2.9). So we Aut(C) is a subgroup

of PBD(2, 1), and we can think about it in a short exact sequence of the form

1−→Ker(Λ|Aut(C))−→Aut(C)
Λ−→ Im(Λ|Aut(C))−→1,

where Ker(Λ|Aut(C)) = 〈σd−2〉 by using Theorem 1.4.4-(2). Furthermore, Im(Λ|Aut(C)) con-

tains an D2(d−2) coming from the images of σ and τ := [X : Z : Y ]. Consequently

Im(Λ|Aut(C)) = D2(d−2), A4, S4 or A5, again by Theorem 1.4.4-(2).

If d = 6, then Im(Λ|Aut(C)) has a subgroup of order 8, and hence can not be A4. Moreover,

for some suitable α, β ∈ k∗, [αX : Y + βζ4Z : β−1Y − ζ4Z] ∈ PGL3(k) defines an automor-
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phism of C : X6 + Y Z5 + Y 5Z = 0, whose image in Im(Λ|Aut(C)) has order 3. In particular,

Im(Λ|Aut(C)) = S4, and Aut(C) is a central extension of S4 by Z/6Z.

Next assume that d ≥ 5 and d 6= 6. We apply Oikawa’s inequality (Theorem 1.3.13) to

the the set S := C ∩ L, which is a non-empty set of C of cardinality at most the degree d,

to obtain |Aut(C)| ≤ 6d(d − 2). Moreover, Λ(σ) ∈ Im(Λ|Aut(C)) is of order d − 2, and an

element of A4 or S4 (resp. A5) has order at most 4 (resp. 5). So if Im(Λ|Aut(C)) = A4 or

S4 (resp. A5), then d = 5 (resp. d ≤ 7). On the other hand, if Im(Λ|Aut(C)) = A5, then

60d = |Aut(C)| ≤ 6d(d − 2), which gives d ≥ 12, a contradiction to d ≤ 7. If d = 5 and

Im(Λ|Aut(C)) = S4, then 24 · 5 = |Aut(C)| ≤ 6 · 5 · 3, which is impossible. Lastly, if d = 5

and Im(Λ|Aut(C)) = A4, then 〈Λ(σ),Λ(τ)〉 = D6 must be a subgroup of A4 of index two, which

is also absurd. Consequently, Im(Λ) is conjugate to D2(d−2), and Aut(C) = 〈σ, τ〉.

Proposition 2.4.11. For d ≥ 4, C ∈ MPl
g (Z/d(d − 2)Z) if and only if it is k-isomorphic to

Xd + Y d−1Z + Y Zd−1 = 0. HenceMPl
g (Z/d(d− 2)Z) is irreducible and consists of a single

point ofMg. Furthermore, M̃Pl
g (Hd) =MPl

g (Z/d(d− 1)Z) = %(MPl
g (Z/d(d− 1)Z)), where

%(Z/d(d− 2)Z) = 〈diag(1, ζd(d−2), ζ
−(d−1)
d(d−2) )〉.

Proof. It suffices to prove the “only if” part, since the other parts are immediate consequences

of Proposition 2.4.10. Since d(d−2) does not divide d−1, d, d2−3d+3, (d−1)2 and d(d−1),

we may consider an FC(X, Y, Z) = 0 to be of Type d(d− 2), (a, b) defined by the normal form

Theorem 2.1.3, subcase (4.1). Hence (a, b) ∈ Γd(d−2) with (d− 1)a+ b ≡ 0 mod d(d− 2) and

a + (d − 1)b ≡ 0 mod d(d − 2). In particular, a = m and b = dm′ + m for some integers m

and m′, such that m and dm′+m are relatively prime and d− 2|m+m′. Consequently, m = 1

and m′ = d− 3 is a generator because

diag(1, ζd(d−2), ζ
d(d−3)+1
d(d−2) )m = diag(1, ζmd(d−2), ζ

dm′+m
d(d−2) ).

Therefore,

S(2)j,Xd(d−2), (1,d−3) := {0 ≤ i ≤ j | i+ (j − i) (d(d− 3) + 1) ≡ 0 mod d(d− 2)}

= {0 ≤ i ≤ j | j(d− 1)− di ≡ 0 mod d(d− 2)}

= ∅, ∀j = 2, ..., d− 2,
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as d(d− 2) | j(d− 1)− di gives d|j, a contradiction.

Sd,X2 d(d−2), (1,d−3) := {2 ≤ i ≤ d− 2 | i+ (d− i) (d(d− 3) + 1) ≡ 0 mod d(d− 2)}

⊆ {2 ≤ i ≤ d− 2 | d− 1− i ≡ 0 mod d− 2}

= ∅.

This implies that C is k-isomorphic to Xd + Y d−1Z + Y Zd−1 = 0.

The stratumMPl
g (Z/(d2 − 3d + 3)Z)

The next result is well-known in the literature, see for example [Har13, Propostion 3.5] when k

has characteristic p = 0, and the same is true when p > 2g + 1 by our discussion in chapter 1:

Proposition 2.4.12. The automorphism group of the Klein curve Kd : Xd−1Y + Y d−1Z +

Zd−1X = 0 of degree d ≥ 5 is a semidirect product of Z/3Z by Z/(d2 − 3d + 3)Z. More

precisely, it is isomorphic to

〈τ, σ| τ d2−3d+3 = σ3 = 1 and τσ = στ−(d−1) 〉.

In particular, Aut(Kd) is of order 3(d2 − 3d+ 3).

Proof. The group H := 〈σ, τ〉, where σ := [Z : X : Y ] and τ := diag(1, ζd2−3d+3, ζ
−(d−2)

d2−3d+3) is

a subgroup of Aut(Kd), which is a semidirect product of Z/3Z acting on Z/(d2 − 3d + 3)Z.

Hence |Aut(Kd)| is a multiple of |H| = 3(d2 − 3d + 3). On the other hand, Kd has exactly

three (d− 3)-inflection points namely the three reference points Pi, for i = 1, 2, 3, see [Kat01,

Lemma 2.3]. Therefore, these distinguished points constitute a set S of cardinality 3, which is

fixed by Aut(Kd). Using again Oikawa’s inequality (Theorem 1.3.13), we obtain |Aut(Kd)| ≤

12(g−1)+6.3 = 6(d2−3d+3). Now it remains to show that |Aut(Kd)| is odd: assume on the

contrary that Kd admits an involution η, then it fixes at least one of the three (d− 3)-inflection

points, say P3. Hence, the set {P1, P2} of the remaining two (d−3)-inflection points must also

be fixed, therefore η has the shape diag(α, β, 1) with (α, β) ∈ {(1,−1), (−1, 1), (−1,−1)}, or

[γY : γ−1X : Z] for some γ 6= 0. Obviously, non of these transformations retains Kd, and the

result follows.
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Remark 2.4.13. The automorphism group of the Klein quartic curve is isomorphic to

PSL2(F7), the unique simple group of order 168 (see [Hen76]). This completes the result

for all degrees d ≥ 4.

The next result should also be well-known in the literature, we write it for completeness:

Proposition 2.4.14. For d ≥ 5, C ∈MPl
g (Z/(d2 − 3d+ 3)Z) if and only if C is k-isomorphic

to the Klein curve Kd : Xd−1Y + Y d−1Z + Zd−1X = 0. HenceMPl
g (Z/(d2 − 3d + 3)Z) is

irreducible, being a set of a single point. Moreover,

M̃Pl
g (Aut(Kd)) =MPl

g (Z/(d2 − 3d+ 3)Z) = %(MPl
g (Z/(d2 − 3d+ 3)Z)),

where %(Z/(d2 − 3d+ 3)Z) = 〈diag(1, ζd2−3d+3, ζ
−(d−2)

d2−3d+3)〉.

Proof. Again we only need to show the “only if” statement, and the other parts are conse-

quences of Proposition 2.4.12. Since d2 − 3d + 3 - d − 1, d, d(d − 1), d(d − 2), (d − 1)2

for any d ≥ 5, then C has a non-singular plane model FC(X, Y, Z) = 0 over k of Type

d2 − 3d + 3, (a, b) of the form Theorem 2.1.3, case (3), for some (a, b) ∈ Γd2−3d+3, such

that a = (d − 1)a + b = (d − 1)b (mod d2 − 3d + 3). In particular, every solution is

of the shape a = m and b = (d2 − 3d + 3)m′ − (d − 2)m for some integers m and m′.

Because diag(1, ζd2−3d+3, ζ
−(d−2)

d2−3d+3)m = diag(1, ζmd2−3d+3, ζ
(d2−3d+3)m′−(d−2)m

d2−3d+3 ), we can take

a ≡ 1 mod d2 − 3d + 3 and b = −(d − 2) mod d2 − 3d + 3 as a generator of these types of

curves. Consequently, for all j = 2, ..., d− 2

S(1)j,Xd2−3d+3, (1,−(d−2)) := {0 ≤ i ≤ j | i− (j − i)(d− 2) ≡ 1 mod (d2 − 3d+ 3)}

= {0 ≤ i ≤ j | j(d− 2)− i(d− 1) + 1 ≡ 0 mod (d2 − 3d+ 3)}

= ∅.

The last equality comes from the fact |j(d− 2)− i(d− 1) + 1| < d2− 3d+ 3. Then j(d− 2)−

i(d− 1) + 1 = 0, which in turns gives d− 1|j − 1. This is impossible, as 0 < j − 1 < d− 1.
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Also,

Sj,Zd2−3d+3, (1,−(d−2)) := {0 ≤ i ≤ j | i+ (d− j)(d2 − 4d+ 5) ≡ 1 mod (d2 − 3d+ 3)}

= {0 ≤ i ≤ j | (d− j)(d− 2)− i+ 1 ≡ 0 mod (d2 − 3d+ 3)}

= ∅, since 0 < (d− j)(d− 2)− i+ 1 < d2 − 3d+ 3.

Sj,Yd2−3d+3, (1,−(d−2)) := {0 ≤ i ≤ j | − (d− 2)i+ (d− j) ≡ 1 mod (d2 − 3d+ 3)}

= ∅,

since |(d− j)− (d−2)i−1| < d2−3d+ 3, and if (d− j)− (d−2)i−1 = 0, then d−2|j−1,

a contradiction.

Therefore C is k-isomorphic to Xd−1Y + Y d−1Z + Zd−1X = 0. The full automorphism

group Aut(C) is then determined explicitly by Proposition 2.4.12.

2.4.2 Strata of smooth plane curves, having a “large” automorphism:

Galois points

In the previous subsection (§2.4.1) we showed that if m is “very large”, then the stratum

MPl
g (Z/mZ) is given, up to k-isomorphism, by a single point ofMg. Therefore, it is an irre-

ducible stratum. In general it is difficult, for an arbitrary m, to decide whetherMPl
g (Z/mZ) is

irreducible or not. We have seen in §2.2 a weaker concept than the irreducibility that we call ES-

irreducibility (see Definition 2.2.6). For instance, the strataMPl
g (Z/mZ) ES-irreducible when

m is “very large”. However, it is not true thatMPl
g (Z/mZ) is always ES-irreducible, and we

already have seen such examples in §2.3. In this case, the stratum, which is not ES-irreducible,

is also not irreducible subset ofMg.

Here we show that the stratum MPl
g (Z/mZ) for m “large” remains ES-irreducible, and

moreover we obtain further details about them. The cases where m is a multiple of d or d − 1

are strongly related to inner and outer Galois points (see §1.3 of chapter 1), which will help a

lot in determining, more precisely, the automorphism groups of these strata in some cases.

One can read Henn [Hen76] or Bars [Bar12] for the well-known results in the literature on

smooth plane quartic curves. So, we may assume that d ≥ 5.
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We are interested in smooth plane curves C ∈ MPl
g of an arbitrary, but a fixed degree

d ≥ 5, and whose automorphism groups contain homologies of period d (resp. d − 1). When

a homology η of period d or d − 1 is present inside Aut(C), the genus of C/〈η〉 is zero and

C has an outer (resp. inner) Galois point P (see Proposition 1.3.12). Moreover, τ(P ) remains

an outer (resp. inner) Galois point for C, for any τ ∈ Aut(C). Consequently, if C has, for

example, a unique inner Galois point, then it should be fixed by the full automorphism group

Aut(C). In particular, Aut(C) is cyclic when the characteristic p = 0 or sufficiently big (see

[HKT08, Lemma 11.44] and Corollary 1.4.9).

The stratumMPl
g (Z/m(d− 1)Z) for 2 ≤m ≤ d.

We start with the following observation:

Lemma 2.4.15. The stratumMPl
g (Z/m(d − 1)Z) with 2 ≤ m ≤ d is not empty only if d ≡ 0

or 1 mod m.

Proof. Since m(d− 1) does not divide d− 1, d, d2− 3d+ 3, and d(d− 2), it must then divides

d(d− 1) or (d− 1)2, by Corollary 2.1.6.

Proposition 2.4.16. For d ≥ 5 and 2 ≤ m ≤ d, such that d ≡ 0 mod m, C ∈MPl
g (Z/m(d−

1)Z) if and only if C has a non-singular plane model FC(X, Y, Z) = 0 over k of the form

Xd + Y d +XZd−1 +
∑

2≤mj≤d−2

βjX
d−mjY mj. (2.1)

In particular, Aut(C) is a cyclic group of order divisible by m(d− 1).

Proof. If C is a smooth plane curve of the form (2.1), then η := diag(1, ζd−1
m(d−1), ζ

m
m(d−1)) is an

automorphism of orderm(d−1). Hence, C ∈MPl
g (Z/m(d−1)Z). Moreover, FC(X, Y, Z) =

0 can not be a descendant of the Klein curve Kd, since m(d − 1) - 3(d2 − 3d + 3). Also

FC(X, Y, Z) = 0 is not a descendant of the Fermat curve Fd, as 2(d − 1) - 6d2, and m(d −

1) > 2d for m ≥ 3, while Aut(Fd) has elements of order at most 2d. On the other hand,

ηm = diag(1, 1, ζm
2

m(d−1)) is a homology of period d − 1 ≥ 4, with center P3 = (0 : 0 : 1) and

axis L3 : Z = 0. Therefore, the point (0 : 0 : 1) is an inner Galois point for C (Proposition

1.3.12), and it is unique (Theorem 1.3.8). Hence it should be fixed by the full automorphism
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group Aut(C). Consequently, Aut(C) is a cyclic group (Corollary 1.4.2) of order divisible by

m(d− 1).

Conversely, if C ∈ MPl
g (Z/m(d− 1)Z), then FC(X, Y, Z) = 0 can be taken to be of Type

m(d− 1), (a, b) of the form Theorem 2.1.3, case (5), because m(d− 1) - d− 1, d, d2 − 3d+

3, (d−1)2, and d(d−2). So (a, b) ∈ Γm(d−1) such that m(d−1)|da, and m(d−1)|(d−1)b. In

particular, a = (d−1)t and b = mt′ for some integers t and t′. If we consider any integer swith

t = s (mod m), then η(t′−s)(d−1)+t′ = diag(1, ζ
(d−1)t
m(d−1), ζ

mt′

m(d−1)), and we can take t = 1 = t′.

Thus we get

Sd,X1 m(d−1), (d−1,m) := {1 ≤ i ≤ d− 1 | (d− 1)i+ (d− i)m ≡ 0 mod m(d− 1)}

= {1 ≤ i ≤ d− 1 | (d− 1)i− (i− 1)m ≡ 0 mod m(d− 1)}

⊆ {1 ≤ i ≤ d− 1 | (i− 1) ≡ 0 mod d− 1}

= {1}.

But also m(d − 1) does not divide (d − 1)(m + 1), so 1 /∈ Sd,X1 m(d−1), (d−1,m), and

Sd,X1 m(d−1), (d−1,m) = ∅. Similarly, we conclude that Sd−1,X
1 m(d−1), (d−1,m) = ∅. Furthermore,

S(2)j,Xm(d−1), (d−1,m) := {0 ≤ i ≤ j | (d− 1)i+ (j − i)m ≡ 0 mod m(d− 1)}

⊆ {0 ≤ i ≤ j | d− 1|j − i}

= {j}

By assumption, η ∈ Aut(FC), therefore S(2)j,Xm(d−1), (d−1,m) = ∅ when m - j, and {j},

otherwise. We substitute into equation Theorem 2.1.3, case (5) in order to obtain the defining

form (2.1).

Proposition 2.4.17. For d ≥ 5 and 2 ≤ m ≤ d, such that d ≡ 1 mod m, C ∈MPl
g (Z/m(d−

1)Z) if and only if C has a non-singular plane model FC(X, Y, Z) = 0 over k of the form

Xd + Y d−1Z +XZd−1 +
∑

2≤mj≤d−2

βjX
d−mjZmj (2.2)

In this case, Aut(C) is again cyclic of order divisible by m(d− 1).

Proof. We first modify η of Proposition 2.4.16 to be diag(1, ζm(d−1), ζ
(m−1)(d−1)
m(d−1) ). Then, fol-
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lowing the same technique, one deduces that smooth plane curves C of the form (2.2) are in the

stratumMPl
g (Z/m(d− 1)Z), and also the full automorphism group is cyclic of order divisible

by m(d− 1).

Conversely, C ∈ MPl
g (Z/m(d − 1)Z) with d ≡ 1 mod m implies that FC(X, Y, Z) = 0

is of Type m(d − 1), (a, b) of the form Theorem 2.1.3, subcase (4.2). In particular, (a, b) ∈

Γm(d−1), such that m(d − 1) | (d − 1)a + b, (d − 1)b. Hence a = mt − t′ and b = (d − 1)t′

for some integers t and t′. Similarly, it suffices to assume t = 1 and t′ = m − 1, since

ηmt−t
′
= diag(1, ζam(d−1), ζ

b
m(d−1)). Thus

Sd−1,X
1 m(d−1), (a,b) := {1 ≤ i ≤ d− 1 | i+ (d− 1− i)(m− 1)(d− 1) ≡ 0 mod m(d− 1)}

= {1 ≤ i ≤ d− 1 |m(d− 1) |i}

= ∅,

Sd,X2 m(d−1), (a,b) := {2 ≤ i ≤ d− 2 | i+ (d− i)(m− 1)(d− 1) ≡ 0 mod m(d− 1)}

= {2 ≤ i ≤ d− 2 |m(d− 1)|di− (d− 1)}

⊆ {2 ≤ i ≤ d− 2 | d− 1|di}

= ∅.

Lastly, for all 2 ≤ j ≤ d− 2,

S(2)j,X m(d−1), (a,b) := {0 ≤ i ≤ j | i+ (j − i)(m− 1)(d− 1) ≡ 0 mod m(d− 1)}

= {0 ≤ i ≤ j | di− j(d− 1) ≡ 0 mod m(d− 1)}

⊆ {0 ≤ i ≤ j | d− 1|di}

= {0}.

Notice that i = 0 gives m|j, so, we obtain the form (2.2) after we substitute into Theorem

2.1.3, subcase (4.2).

The following corollaries are consequences of Propositions 2.4.16 and 2.4.17:

Corollary 2.4.18. The stratumMPl
g (Z/m(d − 1)Z), with 2 ≤ m ≤ d and d ≥ 5 are either

empty or ES-irreducible, given by a single normal form.
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Corollary 2.4.19. The full automorphism group of any C ∈ MPl
g (Z/m(d − 1)Z), for some

2 ≤ m ≤ d is cyclic and always contains a homology of period d − 1. In particular, C has a

unique inner Galois point.

Remark 2.4.20. The converse of Corollary 2.4.19 is also true. That is to say, if C is a smooth

plane curve of degree d ≥ 5, such that Aut(C) contains a homology η of order d − 1, then

C has an inner Galois point (Proposition 1.3.12), and moreover it is unique (Theorem 1.3.8).

This point should be fixed by Aut(C), which in turns implies that Aut(C) is cyclic (Corollary

1.4.2).

The stratumMPl
g (Z/mdZ) for 2 ≤m ≤ d− 1.

Lemma 2.4.21. The stratumMPl
g (Z/mdZ) with 2 ≤ m ≤ d− 1 is not empty only if d = 1 or

2 mod m.

Proof. The result follows again by Corollary 2.1.6, since md is not a divisor of d− 1, d, d2 −

3d+ 3, and (d− 1)2.

Proposition 2.4.22. For d ≥ 5 and 3 ≤ m ≤ d − 1, such that d ≡ 1 mod m, C ∈

MPl
g (Z/mdZ) if and only if C has a non-singular plane model FC(X, Y, Z) = 0 over k of

the form

Xd + Y d +XZd−1 +
∑

2≤mj≤d−2

βjX
d−mjZmj (2.3)

In this case, Aut(FC) should fix a line in P2(k) and a point off this line. In particular, all

automorphisms of FC(X, Y, Z) = 0 are of the shape
∗ 0 ∗

0 1 0

∗ 0 ∗

 .

Proof. Any smooth plane curve C of the form (2.3) is in MPl
g (Z/mdZ), since η :=

diag(1, ζmmd, ζ
d
md) ∈ Aut(FC) is of order md. Moreover ηm is a homology of period d > 4

with center P2 = (0 : 1 : 0) and axis L2 : Y = 0. Therefore, Aut(C) fixes a projective line and

a point off that line or it fixes a triangle (Theorem 1.2.8). Suppose first that it fixes a triangle
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and neither a point nor line is leaved invariant, then FC(X, Y, Z) = 0 must be a descendant of

the Fermat curve Kd or the Klein curve Kd, which is impossible, as md - 3(d2 − 3d + 3), and

automorphisms of Fd have orders at most 2d < md. Consequently, a line and a point off that

line is leaved invariant. Furthermore, P2 is an outer Galois point for C (Proposition 1.3.12),

and it is unique due to Theorem 1.3.10 and because C is not k-isomorphic to the Fermat curve

Fd. Hence such a point should be fixed by Aut(FC), and so does the axis Y = 0 (Proposition

1.2.9). So we deduce the shapes of automorphisms of FC(X, Y, Z) = 0.

Conversely, one may follow the same line of argument, that we did in Proposition 2.4.16 to

conclude that C is of Typemd, (mt, dt′) of the form Theorem 2.1.3, case (5), and to also figure

out that we can assume t = 1 = t′ as a generator, since η(t′−s)d+t = diag(1, ζmtmd, ζ
dt′

md), for any

s satisfying t = s mod m. In particular, the index sets Sd,X1 md,(m,d) and Sd−1,X
1 md,(m,d) are

empty, and moreover i ∈ S(2)j,Xmd,(m,d), for some j if and only if md|mi− (j − i)d, thus d|i

and i = 0. Then S(2)j,Xmd,(m,d) 6= ∅ only if m|j, which completes the proof.

Remark 2.4.23. For m = 2, Proposition 2.4.22 still true with the same proof, if we assume

that FC(X, Y, Z) = 0 is not a descendent of the Fermat curve Fd of degree d.

There is a similar statement to the previous results when d ≡ 2 mod m. We only state the

result, since the proof can be obtained through similar techniques:

Proposition 2.4.24. For d ≥ 5 and 2 ≤ m ≤ d − 1, with d ≡ 2 mod m, C ∈ MPl
g (Z/mdZ)

if and only if C has a non-singular plane model FC(X, Y, Z) = 0 over k of the form

Xd + Y d−1Z + Y Zd−1 +
∑

2≤i≡1 mod m≤d−2

βiY
iZd−i = 0. (2.4)

In such a case, FC(X, Y, Z) = 0 is a descendant of the Fermat curve Fd (only if m = 2),

or Aut(FC) fixes a line and a point off this line. So, for m > 2, all automorphisms of

FC(X, Y, Z) = 0 have the shapes 
1 0 0

0 ∗ ∗

0 ∗ ∗


Remark 2.4.25. Unfortunately, it might happen here that different kinds, i.e. non-cyclic, of

groups occurs as the full automorphism of C ∈ MPl
g (Z/mdZ). For example, when d = 6 and
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m = 2, the defining equation for the stratumMPl
10(Z/12Z) reduces to

X6 + Y 5Z + Y Z5 + β6,3Y
3Z3.

In particular, diag(1, ζ12, ζ
7
12) is an automorphism of order 12, but the automorphism group is

not cyclic, since we have the extra automorphism [X : Z : Y ].

Now, we end up this part with the following corollaries:

Corollary 2.4.26. The strataMPl
g (Z/mdZ), for 2 ≤ m ≤ d − 1 and d ≥ 5, are either empty

or ES-irreducible.

As we mentioned earlier that if Aut(C) contains a homology of period d then C has an

outer Galois point. Moreover, if C is isomorphic to the Fermat curve of degree d, then it has

two more outer Galois points and it is unique, otherwise. See Theorem 1.3.8 and Proposition

1.3.12 for more details. Finally, we conclude:

Corollary 2.4.27. For any C ∈ MPl
g (Z/mdZ) with 3 ≤ m ≤ d− 1, Aut(C) always contains

a homology of period d. In particular, C has a unique outer Galois point.

2.4.3 More cases: The stratumMPl
g (Z/m(d− 2)Z)

We investigate the finite groups G that contain cyclic subgroups of order m(d − 2), and for

which the stratumMPl
g (G) is non-empty. This question is completely solved when g = 3 (see

[Hen76]) and we solve it in chapter 4 when g = 6. Therefore, we take d ≥ 6 and m ≥ 2.

Lemma 2.4.28. The stratumMPl
g (Z/m(d − 2)Z), for d ≥ 6 and m ≥ 2 is non-empty only if

d ≡ 0 mod m.

Proof. Since d ≥ 6 > 2 + 2
m−1

, then m(d− 2) > d, and m(d− 2) does not divide d and d− 1.

Moreover, (d−1)2 ≡ 1 mod d−2, d2−3d+ 3 ≡ 1 mod d−2, and d(d−1) ≡ d mod d−2,

so m(d − 2) does not divide (d − 1)2, d(d − 1), and d2 − 3d + 3. Using Corollary 2.1.6, we

deduce the result.

We first treat the situation when m is even:
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Proposition 2.4.29. For any even integer m ≥ 2, dividing the degree d ≥ 6, any C ∈

MPl
g (Z/m(d− 2)Z) has a non-singular plane model FC(X, Y, Z) = 0 over k of the form

Xd + Y d−1Z + Y Zd−1 +

b d
2m
c∑

j=1

βjX
d−2mj(Y Z)mj = 0 (2.5)

In particular,MPl
g (Z/m(d− 2)Z) is ES-irreducible, in this case.

Proof. It suffices to prove the result for MPl
g (Z/2(d − 2)Z), since MPl

g (Z/m(d − 2)Z) ⊆

MPl
g (Z/2(d− 2)Z): indeed, if η is an automorphism of C of order m(d− 2), then η

m
2 is also

an automorphism, but it is of order 2(d− 2).

It follows, by Lemma 2.4.28, that FC(X, Y, Z) = 0 is considered to be of Type 2(d −

2), (a, b) of the form Theorem 2.1.3, subcase (4.1), for some (a, b) ∈ Γ2(d−2) such that 2(d−1)

is dividing both (d − 1)a + b, and a + (d − 1)b. First, we show that a = 1 and b = d − 3 is a

generator of these types of curves: We already have (1, d− 3) ∈ Γ2(d−2), and moreover 2|a− b

and d − 2|a + b. So we can write a = t + (d−2
2

)t′, and b = −t + (d−2
2

)t′, for some integers t

and t′. In particular, we get 2| ± t+ (d
2
)t′, and

diag(1, ζ2(d−2), ζ
d−3
2(d−2))

t+( d−2
2

)t′ = diag(1, ζa2(d−2), ζ
b
2(d−2)),

which proves the claim on a and b. Second, the associated sets Sd,X2 2(d−2),(1,d−3) and

S(2)j,X2(d−2),(1,d−3) for j = 2, ..., d− 1 are computed as follows:

Sd,X2 2(d−2),(1,d−3) := {2 ≤ i ≤ d− 2 | i+ (d− i)(d− 3) ≡ 0 mod 2(d− 2)}

⊆ {2 ≤ i ≤ d− 2 | 2(i− 1) ≡ 0 mod (d− 2)}

= {1

2
d},

since 0 < 2(i− 1) < 2(d− 2), and thus 2(i− 1) = d− 2. Moreover, we have

S(2)j,X2(d−2),(1,d−3) := {0 ≤ i ≤ j | i+ (j − i)(d− 3) ≡ 0 mod 2(d− 2)}

⊆ {0 ≤ i ≤ j | j − 2i ≡ 0 mod (d− 2)}.

But |j − 2i| ≤ d− 1, therefore j − 2i = 0 or ±(d− 2). In particular, S(2)j,X2(d−2),(1,d−3) = ∅,

if j is odd and { j
2
, j±(d−2)

2
}, if j is even. Furthermore, always 0 ≤ i ≤ j, thus when j is even
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and < d − 2, S(2)j,X2(d−2),(1,d−3) = { j
2
}, and when j = d − 2, S(2)d−2,X

2(d−2),(1,d−3) =

{0, d−2
2
, d− 2}. Consequently, we obtain the normal form

Xd + Y d−1Z + Y Zd−1 +X2
(
βd−2,0Z

d−2 + β0,d−2Y
d−2
)

+
∑

j=2,4,...,d−2,d

βjX
d−j(Y Z)

j
2 = 0.

Now, βd−2,0 = β0,d−2 = 0, because diag(1, ζ2(d−2), ζ
d−3
2(d−2)) ∈ Aut(FC). Also βj = 0, if

2m - j. To deal with the case when m > 2 even, one just need to impose more restrictions on

the parameters βj , appearing in (2.5), to ensure that C is also of Type m(d− 2), (a, b).

The full automorphism group ofC ∈MPl
g (Z/m(d−2)Z), with an evenm ≥ 2, is described

by the next proposition1:

Proposition 2.4.30. Let G be a finite subgroup of PGL3(k), then for an even m ≥ 2, dividing

d ≥ 6, C ∈MPl
g (Z/m(d− 2)Z) ∩ M̃Pl

g (G) only if one of the following situations occurs:

1. d = 6 and G is isomorphic to a central extension of S4 by Z/6Z. So G is of order 144,

and M̃Pl
g (G) is irreducible set of one element, defined by X6 + Y 5Z + Y Z5 = 0.

2. d > 6 and G is isomorphic to 〈σ, τ |τ 2 = σd(d−2) = 1, τστ = σ−(d−1)〉, a central

extension of order 2d(d − 2) of the dihedral group D2(d−2) of order 2(d − 2) by Z/dZ.

Again, M̃Pl
g (G) is an irreducible set of one element given by the equationXd+Y d−1Z+

Y Zd−1 = 0.

3. G is a central extension of a dihedral group D2s of order 2s by a cyclic group N of order,

dividing d and also divisible by m, such that s = d−2
2

if 4 - d − 2, and s = d − 2

otherwise. Furthermore, we can think about G as an intransitive subgroup of PGL3(k),

whose elements are all of the shape 
1 0 0

0 ∗ ∗

0 ∗ ∗

 ,

1The statement rectifies [BB16b, Proposition 36, (3)-(5)] due to some small gaps.
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which contains a subgroup isomorphic to

〈σ, τ | τ 2 = σm(d−2) = 1 and τστ = σ−(m−1)(d−2)−1〉,

with σ = diag(1, ζm(d−2), ζ
d−3
m(d−2)) and τ = [X : Z : Y ]. Finally, any element of M̃Pl

g (G)

has a non-singular plane model through the form (2.5) of Proposition 2.4.29 such that

βj 6= 0, for some j ∈ {1, ..., b d
2m
c}.

Proof. By Proposition 2.4.29, it suffices to study the normal form defined by equation (2.5).

If βj = 0 for all j = 1, ..., b d
2`
c, then the form reduces to Xd + Y d−1Z + Y Zd−1 = 0. The

full automorphism group in such case is well-known by Proposition 2.4.10, which proves (1)

and (2). Second, suppose that βj 6= 0, for some j. We note that the form (2.5) of Proposition

2.4.29 admits always a bigger automorphism group through permuting the variables Y and

Z. More precisely, 〈σ, τ | τ 2 = σm(d−2) = 1, and τστ = σ−(m−1)(d−2)−1〉 is a subgroup of

automorphisms, where σ = diag(1, ζm(d−2), ζ
d−3
m(d−2)) and τ = [X : Z : Y ]. Consequently,

Aut(C) is not cyclic, since 〈η, η′〉 does. Also FC(X, Y, Z) = 0 is not a descendant of the

Klein curve Kd because |〈σ, τ〉| - 3(d2 − 3d + 3). Moreover, Aut(FC) is not conjugate to any

of the finite primitive subgroups of PGL3(k), because m(d − 2) ≥ 8 and non of these groups

contains elements of order> 7 (in fact, the Klein group PSL(2, 7) is the only one with elements

of order 7). On the other hand, FC(X, Y, Z) = 0 is not a descendant of the Fermat curve Fd,

since m(d− 2) > 2d, for all even m > 2, and automorphisms Fd have orders at most 2d, also

for m = 2, |〈σ, τ〉| = 4(d− 2) does not divide |Aut(Fd)| = 6d2 (recall that d ≥ 6 and is even).

We therefore conclude by the above discussion that Aut(FC) should fix a line and a point

off this line, moreover the fixed point does not belong to FC(X, Y, Z) = 0 (otherwise, Aut(FC)

is cyclic). Through the subgroup 〈σ, τ〉 of automorphisms of FC(X, Y, Z) = 0, we obtain that

the line must be X = 0, and the point is (1 : 0 : 0). In particular, all automorphisms of

FC(X, Y, Z) = 0 are of the shape 
1 0 0

0 ∗ ∗

0 ∗ ∗

 ,
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and we can think about Aut(FC) in a short exact sequence

1→ N → Aut(FC)→ Λ(Aut(FC))→ 1

withN = 〈diag(ζ`, 1, 1)〉, a cyclic group of order `, dividing d, and Λ(Aut(FC)) is conjugate to

a cyclic group Z/sZ of order s ≤ d− 1, a Dihedral group D2s of order 2s with s|(d− 2) (recall

that diag(−1, 1, 1) ∈ N ), one of the alternating groups A4, A5, or to the symmetry S4. As

mentioned earlier, we just need to consider the case when m = 2, sinceMPl
g (Z/m(d−2)Z) ⊆

MPl
g (Z/2(d − 2)Z). Hence Λ(Aut(C)) contains the elements Λ(τ) = [Z : Y ] of order 2 and

Λ(σ) = diag(1, ζd−4
2(d−2)) of order n = d−2

gcd(d−2, d−4
2

)
(hence n = d−2

2
if 4 - d− 2, and n = d− 2,

otherwise). In particular, Λ(Aut(FC)) always contains a dihedral subgroup of order d− 2 ≥ 6,

when 4 - d − 2 and 2(d − 2) ≥ 8, when 4|d − 2. Then it is not isomorphic to Z/mZ and A4.

Furthermore, for d 6= 6, 8 we exclude the group S4 and, for d 6= 8, 12, we also exclude A5. In

this case, i.e, when d 6= 6, 8, 12, Λ(Aut(FC)) is conjugate to D2s where s = d−2
2

, if 4 - d − 2,

and s = d − 2. That is |Aut(FC)| = 2s|N | is divisible by |〈σ, τ〉| = 2m(d − 2), hence m

divides |N |.

Finally, we claim to show that Λ(Aut(FC)) is not conjugate to S4 and A5, for d = 6, 8, 12:

We first mention that our dihedral group D2s, if exists inside S4 or A5, forms a single conjugacy

class in S4 and A5 respectively. In other words, it could only be isomorphic to an D8 inside

S4, when d = 6, D6 inside S4 or A5, when d = 8, and to D10 inside A5, when d = 12. In

all situations, it is unique up to conjugation inside S4 and A5, respectively. So, up to change

of the variables Y and Z in 〈diag(1, ζ2s), [Z : Y ]〉, we may consider S4 and A5, if happens,

to be the same as in Lemma 2.2.1, (d)-(e) of [Hug05]. We refer to [Hug05, Lemma 2.2.1

and Lemma 2.2.3] for the details. Consequently, if the defining equation for some curve C

contains a monomial Xd−2mj(Y Z)mj for some j with d− 2mj > 0, then all automorphisms of

FC(X, Y, Z) = 0, when restricting on Y and Z are of the shapes diag(λ, µ) or [λZ : µY ]. So

Λ(Aut(FC)) 6= S4, A5, in this case. Otherwise, by [Hug05, Lemma 6.2.1, (d)-(e)], we always

ask for the binary form λY d−1Z +λd−1Y Zd−1 +λ
d
2 (Y Z)

d
2 , where λ is a 2s-th root of unity, to

be in the ideal generated by
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• For Λ(Aut(FC)) = S4 :

Y 12 − 33Y 8Z4 − 33Y 4Z8 + Z12, Y 8 + 14Y 4Z4 + Z8, Y Z(Y 4 − Z4),

• For Λ(Aut(FC)) = A5 :

Y Z(Y 10 + 11Y 5Z5 − Z10),

−(Y 20 + Z20) + 228(Y 15Z5 − Y 5Z15)− 494Y 10Z10,

(Y 30 + Z30) + 522(Y 25Z5 − Y 5Z25)− 10005(Y 20Z10 + Y 20Z10).

For d = 6, we have the monomial (XY Z)2, so both groups are already excluded. For d = 8

and 12, it is not possible to express the polynomial λY d−1Z + λd−1Y Zd−1 + λ
d
2 (Y Z)

d
2 as an

element of the ideals above. Hence, both groups can not also occur for d = 8 and 12.

This completes the proof.

As a corollary of Proposition 2.4.30, we have:

Corollary 2.4.31. The stratum M̃Pl
g (Z/m(d − 2)Z), for any even integer m ≥ 2 is always

empty.

Now, we handle the situation when d ≡ 0 mod m and m > 2 is odd:

Proposition 2.4.32. For any odd integer m > 2, dividing the degree d ≥ 6, any C ∈

MPl
g (Z/m(d− 2)Z) has a non-singular plane model FC(X, Y, Z) = 0 over k of the form

Xd + Y d−1Z + Y Zd−1 +
t∑

j=1

βjX
d−2mj(Y Z)mj = 0, (2.6)

where t = d
2m

when d is even, and t = bd−1
2m
c, otherwise. In this case, the stratum

MPl
g (Z/m(d− 2)Z) is ES-irreducible.

Proof. Similarly, as Proposition 2.4.29, we consider an FC(X, Y, Z) = 0 to be of Type

m(d− 2), (a, b) of the form Theorem 2.1.3, subcase (4.1), for some (a, b) ∈ Γm(d−2) such that

m(d−1)|(d−1)a+b, a+(d−1)b. In particular, 2a = (d−2)t′0+mt0 and 2b = (d−2)t′0−mt0,

for some integers t0 and t′0, and we distinguish between whether d is even or odd as fol-

lows: If d is even, then so is t0 and a = mt + (d−2
2

)t′, b = −mt + (d−2
2

)t′, for some in-

tegers t and t′. Moreover, m divides d
2
t′, since m(d − 2)|(d − 1)a + b and consequently,
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diag(1, ζm(d−2), ζ
(m−1)(d−2)−1
m(d−2) )mt+( d−2

2
)t′ = diag(1, ζam(d−2), ζ

b
m(d−2)). Therefore, we set a = 1

and b = (m − 1)(d − 2) − 1 as a generator of these curves. As usual, it remains to deter-

mine the index sets Sd,X2 m,(a,b) and S(2)j,Xm,(a,b), for j = 2, ..., d − 1. In fact, these sets are

the same as those of Proposition 2.4.29, and the rest will be typical, except possibly we use

the automorphism diag(1, ζm(d−2), ζ
−(d−1)
m(d−2)) instead of diag(1, ζm(d−2), ζ

d−3
m(d−2)), to obtain the

prescribed equation in the statement. If d is odd then t0 and t′0 have the same parity, thus a =

mt0+t′0(d−2)

2
, b =

−mt0+t′0(d−2)

2
. Moreover, 2|±t0+ d

m
t′0, sincem(d−2)|(d−1)a+b, a+(d−1)b,

and in particular, we can replace t0 by 2t − ( d
m

)t′0, for some integer t. So ζbm(d−2) = ζ
−(d−1)a
m(d−2) ,

and diag(1, ζm(d−2), ζ
−(d−1)
m(d−2))

a = diag(1, ζam(d−2), ζ
b
m(d−2)). Hence, we can set again a = 1 and

b = (m − 1)(d − 2) − 1 as a generator. Finally, the sets Sd,X2 m,(a,b) and S(2)j,Xm,(a,b), for

j = 2, ..., d− 1 are given below:

Sd,X2 m,(a,b) := {2 ≤ i ≤ d− 2 | i+ (d− i)((m− 1)(d− 2)− 1) ≡ 0 mod m(d− 2)}

⊆ {2 ≤ i ≤ d− 2 | 2(i− 1) ≡ 0 mod (d− 2)}

= ∅.

The last equality follows because 0 < 2(i − 1) < 2(d − 2), so 2(i − 1) = d − 2, which is not

possible since d is odd. On the other hand, for 2 ≤ j ≤ d− 1

S(2)j,Xm,(a,b) := {0 ≤ i ≤ j | i+ (j − i)((m− 1)(d− 2)− 1) ≡ 0 mod m(d− 2)}

= {0 ≤ i ≤ j | (d− 1)j − di ≡ 0 mod m(d− 2)}

⊆ {0 ≤ i ≤ j | j − 2i ≡ 0 mod (d− 2)}

Because |j − 2i| ≤ j ≤ d− 1, then j − 2i = 0,±(d− 2), and so

S(2)j,Xm,(a,b) ⊆


∅, if j ∈ {1, 3, ..., d− 4}

{0, d− 2}, if j = d− 2

{ j
2
} otherwise

In particular, we obtain the normal form

Xd + Y d−1Z + Y Zd−1 +X2
(
αZd−2 + βY d−2

)
+

∑
j=2,4,...,d−1

βjX
d−j(Y Z)

j
2 = 0,
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for which we need to impose more the condition diag(1, ζm(d−2), ζ
−(d−1)
m(d−2)) ∈ Aut(C). Then

α = β = 0, and moreover βj = 0 when m - j
2
. Lastly, rename j to be 2mj in order to get the

mentioned defining equation.

This completes the proof.

The full automorphism groups of the elements inside MPl
g (Z/m(d − 2)Z), for an odd

m > 2, that divides d ≥ 6 are also investigated2:

Proposition 2.4.33. Let G be a finite subgroup of PGL3(k), then for an odd m > 2, dividing

d ≥ 6, C ∈MPl
g (Z/m(d− 2)Z) ∩ M̃Pl

g (G) only if one of the following situations occurs:

1. d = 6 and G is isomorphic to a central extension of S4 by Z/6Z. So G is of order 144,

and M̃Pl
g (G) is irreducible set of one element, defined by X6 + Y 5Z + Y Z5 = 0.

2. d > 6 and G is isomorphic to 〈σ, τ |τ 2 = σd(d−2) = 1, τστ = σ−(d−1)〉, a central

extension of order 2d(d − 2) of the dihedral group D2(d−2) of order 2(d − 2) by Z/dZ.

Again, M̃Pl
g (G) is irreducible set of one element given by the equation Xd + Y d−1Z +

Y Zd−1 = 0.

3. m 6= 3 or d > 6, and G is a central extension of D2s by a cyclic group N of order

dividing d and also divisible by m, such that s = d−2
2

if 4 - d − 2, and s = d − 2

otherwise. Furthermore, we can think about G as an intransitive subgroup of PGL3(k),

whose elements are all of the shape 
1 0 0

0 ∗ ∗

0 ∗ ∗

 ,

which contains a subgroup isomorphic to

〈σ, τ | τ 2 = σm(d−2) = 1 and τστ = σ−(m−1)(d−2)−1〉,

2The statement is a refined version of [BB16b, Proposition 39]. The proof is even simpler, especially when
we treat the case m = 3 and d = 6, such that C is a descendant of the Fermat curve.
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with σ = diag(1, ζm(d−2), ζ
d−3
m(d−2)) and τ = [X : Z : Y ]. Finally, any element of M̃Pl

g (G)

has a non-singular plane model through the form (2.6) of Proposition 2.4.32 such that

βj 6= 0, for some j ∈ {1, ..., t}.

Proof. One applies the first part of our argument for Proposition 2.4.30, to conclude the fol-

lowing:

• Case (1) and (2) are equivalent to the situation when βj = 0 for all j ∈ {1, 2, ..., t}.

• The normal form (2.6), always admits a bigger automorphism group 〈σ, τ〉 of order

2m(d − 2), generated by σ := diag(1, ζm(d−2), ζ
d−3
m(d−2)) and τ := [X : Z : Y ]. In

particular, Aut(C) is not cyclic.

• C is not a descendant of the the Klein curve and also Aut(C) is not conjugate to any of

the finite primitive groups inside PGL3(k).

• If m 6= 3 or d > 6, then C is not a descendant of the Fermat curve Fd, as well.

Therefore, when m 6= 3 or d 6= 6, we can think again about Aut(FC) in a short exact sequence

1→ N → Aut(FC)→ Λ(Aut(FC))→ 1, where Λ(Aut(FC)) contains again Λ(τ) = [Z : Y ]

and Λ(σ) = diag(1, ζd−4
m(d−3)). So we follow the same line of discussion in order to deduce (3)

of Proposition 2.4.33.

Finally, we treat the case when m = 3 and d = 6, and FC(X, Y, Z) = 0 is a descendant

of the Fermat curve F6 : X6 + Y 6 + Z6 = 0, through a projective linear transformation

φ ∈ PGL3(k): The normal form reduces to C : X6 + Y 5Z + Y Z5 + βY 3Z3 = 0. Recall that

σ4 = diag(1, ζ3, 1) is an automorphism for FC(X, Y, Z) = 0 of order 3, which is a homology.

It is also know that homologies of order 3 in Aut(F6) forms two conjugacy classes represented

by σ4 and σ8 respectively. Moreover, both σ4 and σ8 lies in a different conjugacy classes in

PGL3(k). Therefore, we may assume φ−1σ4φ = σ4, thus φ = [X : µ2Y + µ3Z : γ2Y + γ3Z]

and FC(X, Y, Z) = 0 is transformed to Fφ−1C(X, Y, Z) = 0 of the form

X6 + ν0Y
6 + ν1Z

6 +G(Y, Z),

where ν0 := γ2µ2 (γ4
2 + βµ2

2γ
2
2 + µ4

2) = 1 and ν1 := γ3µ3 (γ4
3 + βµ2

3γ
2
3 + µ4

3) = 1. In par-

ticular, (γ2µ2)(γ3µ3) 6= 0 and [ζb6Y : ζa6X : Z], [ζb6Z : Y : ζa6X] /∈ Aut(CP ). However,
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|Aut(Fφ−1C)| > 3 and σ4 ∈ Aut(Fφ−1C), so it follows by the next observation (see [Har13,

Proposition 3.3 and Lemma 6.5]), that Fφ−1C is the Fermat curve itself, a contradiction.

Observation 3: Let (C,G) be a descendant of the Fermat curve Fd of degree d ≥ 4, where

G = Aut(C). Then there exists a commutative diagram

1 // Z/dZ× Z/dZ // Aut(Fd)
%

// S3
// 1

1 // Ker(%|G) //
?�

OO

G //
?�

OO

Im(%|G) //
?�

OO

1

Denote by η1, η2 and η3 the three automorphisms diag(ζd, 1, 1), diag(1, ζd, 1) and diag(1, 1, ζd)

respectively. Hence, if G contains two of the three η′is, then it contains the other and C is

projectively equivalent to the Fermat curve Fd. If | Im(%|G)| ≥ 3 and G contains one of the η′is,

then it contains all of them and again C is k-projectively equivalent to Fd.

Proof. Using a quite similar argument like the one made for the Klein curve (Proposition

2.4.12), one shows that Aut(Fd) is a semidirect product of S3 = 〈[Y : Z : X], [X : Z : Y ]〉

acting on Z/dZ × Z/dZ = 〈diag(ζd, 1, 1), diag(1, ζd, 1)〉 (or see [Har13, Proposition 3.3]

for the complete details). In particular, Aut(Fd) lives in a short exact sequence of the form

1 → Z/dZ × Z/dZ → Aut(Fd) → S3 → 1, from which the mentioned diagram comes

from. On the other hand, it is obvious that any two of the η′is generate the third one. There-

fore, if G contains at least two of them, then it must have the other one, and moreover, if

FC(X, Y, Z) = 0 is a plane model of C over k whose core is Xd + Y d + Zd, then it must be

invariant under the action of ηi, for i = 1, 2, 3. This only can happen when FC(X, Y, Z) = 0

is the Fermat curve itself. Lastly, if | Im(%|G)| ≥ 3 and G contains one of the η′is say

η1, then Im(%|G) is isomorphic to either Z/3Z or S3, and thus G must contain an element

of order 3. We may assume it to be of the shape [ζadY : ζbdZ : X], for some integers

0 ≤ a, b < d Thus η−a1 [ζadY : ζbdZ : X] = [Y : ζbdZ : X] ∈ G, which in turns gives

η−b1 [Y : ζbdZ : X]2η−b1 = [Z : X : Y ] ∈ G. In particular, [Z : X : Y ]η1[Z : X : Y ] = η2 ∈ G,

and C is again k-projectively equivalent to the Fermat curve Fd.

This finishes the proof.
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CHAPTER

3
Fields of definition of non-singular plane

models of smooth curves

Given a smooth curve C defined over a field k that admits a non-singular plane model of

degree d ≥ 4 over ksep, a fixed separable algebraic closure of k, it does not necessarily have a

non-singular plane model defined over the field k. We determine under which conditions this

happens and we show an example of such phenomenon: a curve defined over k admitting plane

models but none defined over k. Now, even assuming that such a smooth plane model exists,

we wonder about the existence of non-singular plane models over k for its twists:

Definition 3.1. Let V be a smooth quasi-projective variety over k. A variety V ′ defined over k

is called a twist of V over k if there is a ksep-isomorphism

φ : V ′ := V ′ ⊗k ksep → V := V ⊗k ksep.

A twist V ′ is called trivial if V and V ′ are k-isomorphic. The set of all twists of V modulo

k-isomorphisms is denoted by Twistk(V ).

Example 3.2 (Example 2, [MT10]). Consider the Fermat quartic curve

C : X4 + Y 4 + Z4 = 0.

Over the field k = F13, it has 32 points, while the curve

C ′ : X4 + 4Y 4 −X2Y 2 + 7Z4 = 0

has 8 points. Therefore, C and C ′ are not F13-isomorphic. However, they do over F13(α) where
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α ∈ F13 such that α2 = 2, through the isomorphism

φ : (X : Y : Z) 7→ (X + αY : X − αY : Z).

That is C ′ is a twist of C over F13, which is non-trivial.

We characterize twists possessing such models and we also show an example of a twist not

admitting any non-singular plane model over k. As a consequence, we get explicit equations

for a non-trivial Brauer-Severi surface. Finally, we obtain a theoretical result to describe all the

twists of smooth plane curves with cyclic automorphism group having a model defined over k

whose automorphism group is generated by a diagonal matrix.

The structure of this chapter is as follows. In section 3.1, we collect the most necessary

results, known in the literature, about central simple algebras (or briefly CSA’s), and the con-

nection with Brauer-Severi varieties, which will be used in this chapter. For more details, we

refer, for example, to [GS06, Jah].

Definition 3.3. By a smooth ksep-plane curve C over k, we mean a smooth curve over k ad-

mitting a non-singular plane model FC(X, Y, Z) = 0 over ksep of degree d ≥ 4. We say that C

is a smooth plane curve over k if C as a smooth curve defined over k is also k-isomorphic to a

non-singular plane model F (X, Y, Z) = 0 in P2
k.

Section 3.2 is devoted to the study of the minimal field L where there exists a non-singular

model over L for a smooth ksep-plane curve C defined over k, i.e. that C is L-isomorphic to

FQ−1C(X, Y, Z) = 0 for some Q ∈ PGL3(ksep) with FQ−1C ∈ L[X, Y, Z]. We prove that if the

degree of a non-singular ksep-plane model of C is coprime with 3, or C has a k-rational point

or the 3-torsion of the Brauer group of k is trivial (in particular, if k is a finite field), then the

curve C is a smooth plane over k (i.e. admits a k-model): Theorem 3.2.8 and Corollaries 3.2.1,

3.2.2. Moreover, we prove that a smooth plane model of C always exists in a finite extension

of k of degree dividing 3, see Theorem 3.2.4. Section 3.2 ends with an explicit example of a

smooth Q-plane curve over Q which is not a smooth plane curve over Q; however, we construct

a smooth plane model over a degree 3 extension of Q. In Section 3.3, we assume that C is a

smooth plane curve over k. We obtain Theorem 3.3.2 characterizing the twists of C which are

84



also smooth plane curves over k. Moreover, we construct a family of examples over k = Q

for which a twist of C does not admit a non-singular plane model over Q. This construction is

not explicit because we do not provide equations of such twists. Section 3.4 details an explicit

example of a smooth Q(ζ3)-plane curve over Q(ζ3) having a twist that does not possess such

a model in the field Q(ζ3), where ζ3 is a primitive 3rd root of unity. Interestingly, we find the

already mentioned explicit equations for a non-trivial Brauer-Severi variety. In Section 3.5, we

study the twists for smooth plane curve C over k, such that Aut(C) is a cyclic group. We prove

that if Aut(FP−1C) is represented in PGL3(ksep) by a diagonal matrix, (where FP−1C(X, Y, Z)

is k-isomorphic to C) then all the twists are diagonal, i.e. of the form F(PD)−1C(X, Y, Z) = 0

with D a diagonal matrix, Theorem 3.5.2. We apply this result to some special families of

curves, see Corollary 3.5.4. We also construct an example of a curve C that being Aut(FP−1C)

cyclic (but not diagonal) has all the twists not diagonal.

We shall deal with the following items:

3.1. Brauer-Severi varieties and Central simple algebras.

3.2. The field of definition of a non-singular plane model.

3.3. On twists of plane models defined over k.

3.4. An explicit non-trivial Brauer-Severi variety.

3.5. Twists of smooth plane curves with diagonal cyclic automorphism group.

The main results in this chapter are resulted into the arXiv preprint [BBLG16].

§3.1 Brauer-Severi varieties and Central simple algebras

We aim to collect the most necessary results, known in the literature, about central simple

algebras (CSA’s), and the connection with Brauer-Severi varieties, which will be used in this

chapter. For more details, we refer, for example, to [GS06, Jah].

The connection between CSA and Brauer-Severi varieties was first observed by E. Witt

in [Wit35] and H. Hasse, in the particular case of quaternion algebras and plane conics. To

that connection in its general form there are several approaches; the most elementary one was

promoted by J.-P. Serre in his books Corps locaux [Ser68, X, §5 and §6] and Cohomologie
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Galoisienne [Ser94, Remarque III.1.3.1]. This approach is based on non-abelian group coho-

mology. The main observation is that CSA’s of dimension n2 over a field k as well as (n− 1)-

dimensional Brauer-Severi varieties over k can both be described by classes in one and the

same cohomology set H1(Gal(ksep/k),PGLn(ksep)), see Definition 3.1.18.

Definition 3.1.1. A central simple algebra (or simply CSA) over a field k is a finite dimensional

associative algebra over k, which is simple, i.e contains no non-trivial (two sided) ideal and the

multiplication operation is not uniformly zero , and for which the center is exactly k.

Remark 3.1.2. Any simple algebra can be viewed as a CSA over its center. A division algebra

is a CSA such that all non-zero elements are invertible, see [GS06, Example 2.1.1].

Theorem 3.1.3 (Wedderburn). Given a CSAA over k, there exists a division ringD over k and

a positive integer n, such that A is isomorphic to Mn(D). Moreover the division algebra D is

unique up to isomorphism.

Corollary 3.1.4. The dimension of any CSA over k is always a square.

Definition 3.1.5. The degree of a CSA, A over k is defined to be the square root of dimk(A).

Definition 3.1.6. Let A be a CSA over k, a field extension L/k is said to be a splitting field of

A if AL := A⊗k L ∼= Mn(L) for some n, and we say that L/k splits A. For any CSA A, there

exists a finite Galois extension k ⊂ L that splits A.

Example 3.1.7 (Example 4.2, [Ten09]). L = k is always a splitting field of any CSA A over a

field k.

Theorem 3.1.8 (Theorem 4.4, [Ten09]). Let A be a CSA over k of degree n. If L/k is a field

extension of k of index n that is contained in A, then L splits A.

Wedderburn’s Theorem gives a strict relation between central simple algebras and division

algebras, and suggests the introduction of the following relation: Two central simple algebras

A and B over the same field k are equivalent if there are positive integers m, n such that

Mm(A) ∼= Mn(B). Equivalently, A and B are equivalent if A and B are matrix algebras over

the same division algebra. The equivalence class of the central simple algebra A over k is

denoted by by [A], and is called a Brauer class.
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Definition 3.1.9. Let L/k be a finite Galois extension, the set of all Brauer equivalence classes

of central simple algebras over k, which split by L, is denoted by Br(L/k), and is called the

Brauer group of k relative to L. While, the union of the sets Br(L/k), for all finite Galois

extension is denoted by Br(k), and is called the Brauer group of k.

By Remarks 2.4.7 in [GS06], we know that Br(L/k) classifies division algebras splits by L,

up to isomorphism, since each Brauer equivalence class contains a unique (up to isomorphism)

division algebra. So, by Wedderburn’s Theorem, if A and B are two Brauer equivalent k-

algebras of the same dimension, thenA ∼= B. Moreover, the sets Br(L/k) and Br(k), equipped

with the tensor product of k-algebras, are abelian groups, see Proposition 2.4.8 in [GS06].

Example 3.1.10. In the following cases, every division algebra over a field k is k itself, so that

the Brauer group Br(k) is trivial:

(i) k is an algebraically closed field (Example 3.1.7).

(ii) k is a finite field (Wedderburn’s Little theorem), see [Ser79, page 162].

(iii) k is the function field of an algebraic curve over an algebraically closed field (Tsen’s

Theorem, see [GS06, Theorem 6.2.8]). More generally, the Brauer group vanishes for

any quasi-algebraically closed field.

(iv) k is an algebraic extension of Q, containing all roots of unity, see [Ser79, page 162].

Example 3.1.11. The Brauer group Br(R) is the cyclic group of order two. There are just two

non-isomorphic real division algebras with center R: R itself and the quaternion algebra H.

Since H⊗H ∼= M4(R), the class of H has order two in the Brauer group.

Example 3.1.12. Let k be a local field, meaning that k is complete under a discrete valuation

with finite residue field. Then Br(k) is isomorphic to Q/Z, see [Ser79, page 193].

Definition 3.1.13. The n-torsion Br(k)[n] of the Brauer group Br(k) is the set of all elements

of Br(k) of order, at most n.

Definition 3.1.14. The period of a CSA A over k is defined to be its order as an element of

the Brauer group Br(k). Define the index of A to be the degree of the division algebra that is

Brauer equivalent to A.
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We particularly have:

Corollary 3.1.15 (e.g. [dJ04]). The period of a CSA over k divides its index, and hence is finite.

For any natural number n ∈ N, we consider the set Azkn of all CSA’s of dimension n2 over

k, modulo k-algebras isomorphism. Similarly, one constructs the set AzL/kn of all isomorphism

classes of CSA’s of dimension n2 over k, which splits by L, for any field extension L/k. In

particular,

Azkn =
⋃
L/k

AzL/kn .

Theorem 3.1.16. For n ∈ N, and a finite Galois extension L/k, there is a natural bijection of

pointed sets

aL/kn : AzL/kn ↔ H1(Gal(L/k),PGLn(L)).

Moreover, this is inflated to a unique natural bijection

akn : Azkn ↔ H1(Gal(ksep/k),PGLn(ksep)),

such that akn|
Az
K/k
n

= a
K/k
n , for each finite Galois extension K/k inside ksep.

The bijections aL/kn are defined in the following way: Given a CSA A ∈ AzL/kn and an

isomorphism φ : A⊗k L→Mn(L), the class of A is mapped to the class of the 1-cocylce

f(σ) := φ ◦ σ ◦ φ−1 ◦ σ−1 ∈ AutL(Mn(L)) = PGLn(L), for σ ∈ Gal(L/k).

In particular, one gets the following commutative diagram

A⊗k L
φ

//Mn(L)

A⊗k L

σ

OO

φ
//Mn(L)

f(σ)◦σ

OO

The inverse map associates to each 1-cocycle f ∈ Z1(Gal(L/K),PGLn(L)), the k-subalgebra

of Mn(L) given by

{M ∈Mn(L) | f(σ) ◦ σM = M for all σ ∈ Gal(L/k)}.
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Definition 3.1.17. (G-sets) Let G be a finite group. A G-set E is a set equipped with a G-

operation from the left. We will use the notation gx := g ·x for x ∈ E and g ∈ G. A morphism

of G-sets, or simply a G-morphism, is a map ι : E → F of G-sets such that the diagram

G× F · // F

G×k E

id×ι

OO

· // E

ι

OO

commutes.

Given a G-set E, one puts H0(G,E) := EG, i.e. the zeroth cohomology set of G with

coefficients in E is just the subset of G-invariants in E. If E is a G-group then H0(G,E) is a

group.

Definition 3.1.18. If A is a G-group then a cocycle from G to A is a map a : g ∈ G 7→ ag ∈ A,

such that agg′ = ag · gag′ for each g, g′ ∈ G. Two cocycles a, a′ are cohomologous if there

exists some b ∈ A where a′g = b−1 · ag · gb for every g ∈ G. This is an equivalence relation and

the quotient set, the first cohomology set of G with coefficients in A, is denoted by H1(G,A).

This is a pointed set as the map g 7→ e defines a cocycle, the so-called trivial cocycle.

Definition 3.1.19. (The inflation map) Let h : G′ → G be a homomorphism of finite groups.

Then, for an arbitrary G-set E, one has a natural pull-back map h∗ : H0(G,E) → H0(G′, E).

If E is a G-group then the pull-back map is a group homomorphism. For an arbitrary G-group

A there is the natural pull-back map h∗ : H1(G,A) → H1(G′, A), which is a morphism of

pointed sets1. If h is the canonical projection on a quotient group then infG
′

G := h∗ is called

the inflation map. The composition of infG
′

G with some extension of the G′-set E (the G′-group

A) is usually called the inflation, as well. We simply use the notation inf if G and G′ are well

understood.

Remark 3.1.20. Non-abelian group cohomology Hi(G,A), for i = 1, 2, can be extended to the

case where G is a profinite group and A is a discrete G-set (respectively G-group) on which G

1The image h∗(a) of a ∈ H1(G,A) is defined by g′ ∈ G′ 7→ ah(g′)
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operates continuously. Put

Hi(G,A) := lim−→
G′

Hi(G/G′, AG
′
)

where the direct limit is taken over the inflation maps and G′ runs through the normal open

subgroups G′ of G such that the quotient G/G′ is finite.

The bijection akn, in Theorem 3.1.16 above, is then obtained from the bijections aL/kn using the

inflation map. We address the reader to Theorem 3.6 and Corollary 3.8 in [Jah] and Theorem

5.4 in [Ten09], for the complete details.

3.1.1 Cyclic algebras

Definition 3.1.21. Let L/k be a cyclic extension of degree n, that is, A Galois cyclic field

extension of k. Fix a character χ : Gal(L/k)
'−→Z/nZ, i.e. choose a specific generator σ of

Gal(L/k) characterized by χ(σ) = 1. Given a ∈ k∗, we consider a k-algebra (χ, a) as follows:

As an additive group, (χ, a) is an n-dimensional vector space over L with basis 1, e, . . . , en−1:

(χ, a) :=
⊕

0≤i<n

Lei.

Multiplication is given by the relations: e . λ = σ(λ) . e for λ ∈ L, and en = a.

Some computations shows that (χ, a) becomes a CSA of dimension n2 over k. Moreover,

by the proof of Theorem 2.2 in [Ten09], the map φ : (χ, a)⊗k L→Mn(L) defined by

φ(e⊗ 1) :=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

a 0 0 . . . 0 0


and

φ(λ⊗ 1) := diag(λ, σ(λ), ..., σn−1(λ)), for λ ∈ L

is an isomorphism of L-algebras. That is (χ, a) splits by L. It is called the cyclic algebra
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associated to the character χ and the element a ∈ k.

Example 3.1.22 (Example 5.5, [Ten09]). Let L/k be a cyclic extension of degree n with

Gal(L/k) = 〈σ〉. Then an element of H1(Gal(L/k),PGLn(L)) represented by a 1-cocycle

f : Gal(L/k)→ PGLn(L) is completely determined by the value of f(σ), which is subject to

f(σ) · σ(f(σ)) · σ2

(f(σ)) · . . . · σn−1

(f(σ)) = 1. (3.1)

For instance, let a ∈ k∗ and consider the matrix

Ca :=



0 0 . . . 0 a

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0


.

Define a 1-cocycle f by setting f(σ) = Ca modL∗. Hence

f(σ) · σ(f(σ)) · σ2

(f(σ)) · . . . · σn−1

(f(σ)) = Cn
a modL∗ = aI modL∗ = I modL∗,

where I is the identity matrix. That is, the condition (3.1) is indeed verified. Moreover, ac-

cording to Theorem 3.1.16, the k-algebra corresponds to this 1-cocycle is the set of matrices of

M ∈ Mn(L) satisfying f(σi) ◦ σiM = M ⇔ Ci
a
σiM C−ia = M for all i, which amounts to

Ca
σM C−1

a = M . Clearly, I, Ca, ..., Cn−1
a satisfy the latter identity. Moreover, since conjuga-

tion by Ca is “almost a cyclic permutation”, it is not difficult to verify that the matrices

Sb := diag(b, σ(b), ..., σn−1b), for b ∈ L

also satisfy the identity as well. That is, SbCa = Ca
σSb = CaSσ(b), or equivalently,

Sσ−1(b)Ca = CaSb, for all b ∈ L. Therefore, A :=
⊕

0≤i<n SbC
i
a is a k-subalgebra of the cor-

rect dimension n2, hence it must be the algebra defined by the 1-cocycle f above. Obviously, A

is isomorphic to (χ, a), the cyclic algebra given by a and the character χ(σ) = −1 modn.

Theorem 3.1.23 (Wedderburn, Theorem III, [Wed21]). The elements of Azk3 are given by cyclic

algebras of the form (χ, a) with n = 3. In particular, each of them splits by a cyclic cubic
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extension L of k.

Remark 3.1.24. Using the inflation map in Galois cohomology ([Jah, Lemma 3.7]), one de-

duces a bijection can be given by

(χ, a) ∈ Azk3 7→ inf(f : σ 7→ Ca) ∈ H1(Gal(ksep/k),PGL3(ksep)).

Proposition 3.1.25 (e.g. §2.1, [Han07]). We have (χ, a) ∈ Azk3 is the trivial CSA if and only if

a is the norm of an element of L.

3.1.2 Brauer-Severi varieties

Definition 3.1.26. A Brauer-Severi variety D over k of dimension n is a smooth projective

variety, such that the base extension D = D ⊗k ksep is ksep-isomorphic to the n-dimensional

projective space Pnksep over ksep. In other words, it is a twist of Pnk over k (Defintion 3.1).

The set of all isomorphism classes of Brauer-Severi varieties of dimension n over k is

denoted by BSkn.

The next result is [Jah, Corollary 4.7] (see also section §3.3 for the general statement for

quasi-projective varieties):

Corollary 3.1.27. The set BSkn is in bijection with H1(Gal(ksep/k),PGLn+1(ksep)).

Remark 3.1.28. By Corollary 3.1.15, Example 3.1.22, Theroem 3.1.23 and Corollary 3.1.27,

one deduces that a Brauer-Severi surface corresponds to a CSA of dimension 9 and period

dividing 3. Hence, to an element of Br(k)[3].

Moreover, we have by F. Severi, cf. J.-P. Serre [Ser68, X, §6, Excercise 1]:

Proposition 3.1.29 (Severi). A Brauer-Severi variety of dimension n over k, with a k-rational

point is isomorphic over k to Pnk , i.e. it is a trivial twist of Pnk .

J. Roé and X. Xarles in [RX14, Corollary 6] proved the following result:

Theorem 3.1.30 (Roé-Xarles). Let C be a smooth ksep-plane curve defined over k of degree

d ≥ 4, and let Υ : C ↪→ P2
ksep be a morphism given by (the unique) g2

d-linear system over ksep.
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Then there exists a Brauer-Severi variety D (of dimension two) defined over k, together with a

k-morphism g : C ↪→ D, such that g ⊗k ksep : C → P2
ksep is equal to Υ.

The idea of the proof of Theorem 3.1.30, that is also used in the next section (§3.2.1), is: A

ksep-plane model of the curve C defines a 1-cocycle f ∈ H1(Gal(ksep/k),PGL3(ksep)) by the

g2
d-linear series over ksep. Therefore, the corresponding twist ιf : P2

ksep → D ⊗k ksep, maps the

ksep-plane model of C into a smooth curve defined over k, which lives inside the Brauer-Severi

variety D over k.

§3.2 The field of definition of a non-singular plane model

This section is devoted to the study of the minimal field L where there exists a non-singular

model over L for a smooth ksep-plane curve C defined over k, i.e. that C is L-isomorphic to

FQ−1C(X, Y, Z) = 0 for some Q ∈ PGL3(ksep) with FQ−1C ∈ L[X, Y, Z].

One deduces some remarkable consequences from Theorem 3.1.30:

Corollary 3.2.1. Let C be a smooth ksep-plane curve over k. Assume that C has a k-rational

point, i.e. C(k) is not-empty. Then C admits a non-singular plane model over k.

Proof. By Proposition 3.1.29, a Brauer-Severi variety over k of dimension n with a k-rational

point is isomorphic over k to Pnk . Therefore, by Theorem 3.1.30, the map g : C/k → D ∼= P2
k,

which is defined over k, gives a non-singular plane model for C over k.

Corollary 3.2.2. Let k be a field for which Br(k)[3] is trivial. Hence, any smooth ksep-plane

curve C over k admits a non-singular plane model over k, and so does every twist of C over k.

Proof. We mention earlier (Remark 3.1.28) that a non-trivial Brauer-Severi surface over k cor-

responds to a non-trivial 3-torsion element of Br(k). Therefore, if Br(k)[3] is trivial, then the

g2
d-system factors through g : C/k ↪→ P2

k and, by Theorem 3.1.30, all is defined over k. In

particular, a non-singular plane model of C (hence, of any of its twists) over k exists.

Example 3.2.3. It is well-known that Br(k)[3] is trivial when k = Fq and k = R. In particular,

any smooth ksep-plane curve over such a field k always has a non-singular plane model over k.
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Theorem 3.2.4. Let C be a smooth ksep-plane curve defined over k, then it admits a non-

singular plane model over an L such that [L : k] | 3, i.e. ∃P ∈ PGL3(ksep) for which

FP−1C(X, Y, Z) ∈ L[X, Y, Z] and such that C and FP−1C(X, Y, Z) = 0 are L-isomorphic.

Proof. First, we have a k-morphism of C to a Brauer-Severi surface D over k (Theorem

3.1.30). Second, by Theorem 3.1.16 and Theorem 3.1.23, D corresponds to an element of

Azk3, i.e. a central simple algebra over k of dimension 9 that splits (if it is not trivial) by

a degree 3 Galois extension L/k. Moreover, D ⊗k L corresponds to the trivial element in

H1(Gal(ksep/L),PGL3(ksep)). In particular, D ⊗k L ∼= P2
L over L, and

g ⊗k L : C ⊗k L ↪→ P2
L

are all defined over L. In this way, we obtain a non-singular plane model of C over L. Third,

any non-singular plane models of C over ksep is of the form FP−1C(X, Y, Z) = 0 for some

P ∈ PGL3(ksep), so one gets the second part of the statement.

Let D be a Brauer-Severi variety of dimension n − 1 over k. By Corollary 3.1.27, it cor-

responds to an element of H1(k, PGLn(ksep)), hence to a CSA of dimension n2 by Theorem

3.1.16. Therefore, we always can identify D with its image in the the Brauer group Br(k).

Now, if V be an algebraic variety over k. The natural inclusion k ⊂ k(V ), where k(V ) is

the algebraic function field of V , induces a map

Br(k)
rV−→Br(k(V ))

given by mapping the class of a Brauer-Severi D over k to the class of the variety D ⊗k k(V ).

In particular, this applies to V = D. In this case, the base extension D ⊗k k(D) has a k(D)-

rational point coming from the generic point of D. Hence, by Châtelet’s theorem (Theorem

5.1.3 in [GS06]), the class of D in Br(k) lies in the kernel of the map rD. The following

famous theorem shows that this construction already describes the kernel.

Theorem 3.2.5 (Amitsur, Theorem 5.4.1, [GS06]). Let D be a Brauer-Severi variety defined

over a field k. Then, the kernel of the restriction map Br(k)
rD−→Br(k(D)) is a cyclic group

generated by the class of D in Br(k).
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Theorem 3.2.6 (Lichtenbaum, Theorem 5.4.10, [GS06]). Let D be a Brauer-Severi variety

over k. Then, there is an exact sequence

0 −→ Pic(D) −→ Pic(D ⊗k ksep) ∼= Z δ−→Br(k)
rD−→Br(k(D)). (3.2)

The map δ sends 1 to the Brauer class corresponding to D. Here Pic(D) is the Picard group

of D.

Corollary 3.2.7 (Remark 5.4.11, [GS06]). If the class of D has order ` in the Brauer group,

then there is a divisor class of degree ` on D. The associated linear system defines the `-

dimensional embedding of D over a splitting field L.

The following result is a particular case of an argument by J. Roé and X. Xarles in [RX14]

following Châtelet [Ch4]:

Theorem 3.2.8 (Roé-Xarles). Let C be a smooth ksep-plane curve defined over k of degree d

coprime with 3. Then C is a smooth plane curve over k.

Proof. Recall that a Brauer-Severi surface D over k corresponds to a CSA of period dividing

3, hence its class in the Brauer group Br(k) has order dividing 3, say m. On the other hand,

by Theorem 3.2.6 and Corollary 3.2.7, there exists a divisor class on D of the same order m,

which generates Pic(D). Now, let C be a curve over k in Pic(D) such that C = C ⊗k ksep

has a non-singular plane model of degree d. Then its image in Pic(D ⊗k ksep) ∼= Z equals

d. Consequently, if d is coprime with 3, then so does m and hence m = 1. That is, D is the

projective plane P2
k.

We address the reader to [RX14, Theorem 13] for a more general statement on hypersur-

faces in Brauer-Severi varieties.

Corollary 3.2.9. Let C be a smooth ksep-plane curve defined over k of degree d coprime with

3. Then, any twist C ′ ∈ Twistk(C) is a smooth plane curve over k.

Proof. By our assumption, any twist of C over k is also a smooth ksep-plane curve of degree

d, coprime with 3. Then a non-singular plane model over k exists for each twist, by using

Theorem 3.2.8.
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3.2.1 An example of a smooth Q-plane curve over Q, which is not a

smooth plane curve over Q

Following the proof of Theorem 3.1.30, in order to construct a smooth ksep-plane curve C over

k, which is not a smooth plane curve over k, we need to construct a non-trivial 1-cocycle in

H1(Gal(ksep/k),PGL3(ksep)) corresponding to C.

Theorem 3.2.10 (Weil, [Wei56]). Let C be a smooth curve defined over a field F , and let F/K

be a Galois extension. Suppose that for every σ ∈ Gal(F/K), there exists an F -isomorphism

φσ : σC 7→ C such that

φσ ◦ σφτ = φστ for all σ, τ ∈ Gal(F/K).

Then there exists a curve C ′ over K and an F -isomorphism φ : C ′ ⊗K F → C such that

φσ ◦ σφ = φ for all σ ∈ Gal(F/K).

We now construct the example: let us consider Qf , the splitting field of the polynomial

f(t) = t3 + 12t2− 64. It is an irreducible polynomial and the discriminant of f is (2632)2, then

Gal(Qf/Q) ∼= Z/3Z, moreover, as we can check with SAGE [ea], the discriminant of the field

Qf is a power of 3, and the prime 2 becomes inert in Qf . Let us denote the roots of f by a, b, c

in a fixed algebraic closure of Q, and let us call σ the element in the Galois group that acts by

sending a→ b→ c.

Definition 3.2.11. (Fields of definition) Given a smooth curve C/F over F , then C is defined

over k ⊂ F if and only if there is a curve C ′/k defined over k, that is isomorphic over F to C.

In such case, K is called a field of definition of C.

Proposition 3.2.12. The smooth plane curve over Qf

C : 64Z6 + abY 6 + aX6 + 8Y 3Z3 +
ab

8
X3Y 3 + aZ3X3 = 0,

has Q as a field of definition, but it does not admit a non-singular plane model over Q.
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Proof. The matrix

φ =


0 0 2

1 0 0

0 1 0


defines an isomorphism φ : σC → C, satisfying the Weil’s cocycle condition (Theo-

rem 3.2.10): φσ3 = φ3
σ = 1. We therefore obtain that the curve is defined over Q, and

that there exists an isomorphism ϕ0 : CQ → C, where CQ is a rational model such that

φ = ϕ0 ◦ σϕ−1
0 ∈ PGL3(Q). The assignation φτ := ϕ0 ◦ τϕ−1

0 defines an element of

H1(Gal(Qf/Q),PGL3(Qf )). By Proposition 3.1.25, this cohomology element is non-trivial,

since 2 is not a norm of an element of Qf (recall that 2 is inert in Qf ). Therefore ϕ0 is not given

by an element of PGL3(Qf ), or of PGL3(Q) because the cohomology class by the inflation

map is not trivial, as well. Thus the curve C over Q does not admit a non-singular plane model

over Q, as if there is a non-singular plane model over Q, such a model would be of the form

F(PQ)−1C(X, Y, Z) = 0, for some P ∈ PGL3(Q) where FQ−1C(X, Y, Z) = 0 a non-singular

model over Qf , hence ϕ0 would be given by P ∈ PGL3(Q), a contradiction.

Remark 3.2.13. We have just seen an example of a curve defined over a field k, not admitting

a particular model (a plane one) over the same field. For hyperelliptic models, we find such

examples after Proposition 4.14 in [LR12]. In [Hug05, chapters 5,7], there are also examples

of hyperelliptic curves and smooth plane curves where the field of moduli is not a field of

definition, so, in particular, there are not such models defined over the fields of moduli.

§3.3 On twists of smooth plane curves over k

Let C be a smooth curve over a field k and let Twistk(C) be the set of isomorphism classes of

twists of C over k. One can read chapter III of [Ser94] for a proof of the following theorem:

Theorem 3.3.1. Let V be a quasi-projective algebraic variety over k. The set Twistk(V ) is

in one to one correspondence with the first Galois cohomology set H1(Gal(ksep/k),Aut(V ))

given by [V ′] 7→ ξ : τ 7→ ξτ := φ ◦ τφ−1, for τ ∈ Gal(ksep/k), where

φ : V ′ = V ′ ⊗k ksep → V = V ⊗k ksep
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is a fixed ksep-isomorphism.

Given a cocycle ξ ∈ H1(Gal(ksep/k),Aut(C)), the idea behind the computation of equa-

tions for the twist, is finding a Gal(ksep/k)-modulo isomorphism between the subgroup gener-

ated by the image of ξ in Aut(C) and a subgroup of a general linear group GLn(ksep). After

that, by making explicitly Hilbert’s Theorem 90, we can compute an isomorphism φ : C ′ → C,

and hence, we obtain equations for the twist. For non-hyperelliptic curves, see a descrip-

tion in [LG14] (or Appendix B), the canonical model gives a natural Gal(ksep/k)-inclusion

Aut(C) ↪→ PGLg(k
sep), but we can go further, the action gives a Gal(ksep/k)-inclusion

Aut(C) ↪→ GLg(k
sep) which allows us to compute the twists. For hyperelliptic curves, we

refer to [LLG16], where an efficient algorithm to compute equations of twists of hyperelliptic

curves of arbitrary genus over any separable field (of characteristic different from 2) is given.

In this section, we assume that C is a smooth plane curve over k, that is, that C is given by

an equation FC(X, Y, Z) = 0 with FC(X, Y, Z) ∈ k[X, Y, Z]. We give a characterization of

the twists of C which are also smooth plane curves over k.

Theorem 3.3.2. Let C be a smooth plane curve over k and identify it with a fixed non-singular

plane model FC(X, Y, Z) = 0 with FC [X, Y, Z] ∈ k[X, Y, Z]. Then there exists a natural map

Σ : H1(Gal(ksep/k),Aut(FC))→ H1(k,PGL3(ksep)),

defined by the inclusion Aut(FC) ⊆ PGL3(ksep) as Gk-groups. The kernel of Σ is the set of all

twists of C that are smooth plane curves over k. Moreover, any such twist is obtained through

an automorphism of P2
ksep , that is, the twist is k-isomorphic to

FM−1C(X, Y, Z) := FC(M(X, Y, Z)) ∈ k[X, Y, Z],

for some M ∈ PGL3(ksep).

Proof. The map is clearly well-defined. Second if a twist C ′ admits a non-singular plane model

FC′(X, Y, Z) = 0 over k, then FC′(X, Y, Z) = 0 and FC(X, Y, Z) = 0 are isomorphic through

an M ∈ PGL3(ksep), since any isomorphism between two non-singular plane curves of degrees

> 3 is given by a linear transformation in P2
ksep . Hence, the corresponding 1-cocycle σ 7→
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M ◦ σM−1 ∈ Aut(FC) becomes trivial in H1(Gal(ksep/k),PGL3(ksep)). Conversely, if the

image of a twist C ′ of C over k under Σ is trivial, then it must be given by a ksep-isomorphism

ϕ : FC → C ′ that is defined by some Mφ ∈ PGL3(ksep). Such an Mφ produces a non-

singular plane model over k for C ′. In this case, both C ′ and its model are k-isomorphic by

definition.

Remark 3.3.3. We can reinterpret the map Σ in Theorem 3.3.2 as the map that sends a twist

C ′ to the Brauer-Severi variety D in Theorem 3.1.30.

Remark 3.3.4. In order to define a natural map Σ′ : Twistk(C) →

H1(Gal(ksep/k),PGL3(ksep)) for a smooth ksep-plane curve C over k, we need that

Aut(C) has a natural inclusion in PGL3(ksep) as Gal(ksep/k)-groups. For instance, this is

possible when there exists P ∈ PGL3(ksep) where FP−1C(X, Y, Z) ∈ k[X, Y, Z]. Indeed, in

this situation the inclusion Aut(FP−1C) ⊆ PGL3(ksep) is of Gal(ksep/k)-groups and defines a

map

Twistk(C) = H1(Gal(ksep/k),Aut(FP−1C))→ H1(k,PGL3(ksep)).

Remark 3.3.5. Consider a smooth plane curve C defined over k of degree d coprime with 3 or

such that Br(k)[3] is trivial. Then Σ in Theorem 3.3.2 is the trivial map by Corollary 3.2.9 and

Corollary 3.2.2.

Remark 3.3.6. Theorem 3.3.2 can be used to improve the algorithm for computing twists for

non-hyperelliptic curves, see [LG17] or [LG14, Chp.1], for the special case of non-singular

plane curves. If Σ is trivial in Theorem 3.3.2, then we can work with matrices in GL3(ksep)

instead of in GLg(k
sep).

We use this improvement to compute the twists of some particular families of smooth plane

curves over k, in section §3.5.

3.3.1 Twists of a smooth plane curve over k which are not smooth plane

curves over k

We construct a family of smooth plane curves over Q but some of its twists are not smooth

plane curves over Q. This construction is not explicit in the sense that we do not construct
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the equations of the twist and the Brauer-Severi surface where the twist lives (Remark 3.3.3).

Nevertheless, in the next section (§3.4), we provide an explicit concrete construction giving

defining equations.

Consider the family Cα0,a of Q-plane curves defined by the equation

Cα0,a : X6 +
1

α2
0

Y 6 +
1

α4
0

Z6 +
a

α3
0

(α2
0X

3Y 3 + α0X
3Z3 + Y 3Z3) = 0,

with α0, a ∈ Q such that a 6= −10,±2,−1, 0, 1
2
(−1±

√
5).

Proposition 3.3.7. Let C be a Q-plane curve in the family Cα0,a as above (in particular,

it corresponds to a certain α0, a ∈ Q). Then C is a smooth Q-plane curve with au-

tomorphism group isomorphic to GAP(54, 5), which is generated by the automorphisms

diag(1, ζ3, ζ
2
3 ), diag(1, 1, ζ3), [α−1

0 Z : X : Y ] and [ 3
√
α0X : Z : 3

√
α2

0Y ].

Proof. For simplicity, we work with the Q-isomorphic model φC obtained by a change of

variables of the shape φ := [X : 3
√
α0Y : 3

√
α2

0Z]. Hence φC is defined by the equation

F (X, Y, Z) := X6 + Y 6 + Z6 + a(X3Y 3 +X3Z3 + Y 3Z3) = 0.

We first show that φC is smooth. Since a 6= ±2, the polynomial F (X, 0, Z) = X6 + Z6 +

aX3Z3 has no repeated zeros, in particular the system F (X, 0, Z) = FX(X, 0, Z) = 0 has

no solutions. On the other hand, a point (X0 : 1 : Z0) ∈ P2
Q with X0Z0 6= 0 satisfies

F (X0, 1, Z0) = FX(X0, 1, Z0) = FZ(X0, 1, Z0) = 0 only if a3 + 2a2 − 1 = 0, which conflicts

our assumption that a 6= −1, 1
2
(−1 ±

√
5). Moreover, if X0 = 0 or Z0 = 0, then a2 − 4 = 0,

which is also absurd.

Second, we prove the claim on Aut(C). Let G be the subgroup of automorphisms of

F (X, Y, Z) = 0 generated by S := diag(1, ζ3, ζ
2
3 ), U := diag(1, 1, ζ3), T := [Z : X :

Y ],and W := [X : Z : Y ]. Thus G is conjugate to GAP(54, 5), since SU = US, ST =

TS, WSW = S−1, UT = STU, WTW = T−1 and WUW = SU . Consequently, Aut(C)

is not conjugate to any of the following groups: a cyclic group, the Klein group PSL(2, 7), the

icosahedral group A5, the alternating group A6 , the Hessian groups Hess∗ with ∗ ∈ {36, 72}.

Also F (X, Y, Z) = 0 can not be a descendant of the Klein curve K6 of degree 6, since |G| does

not divide |Aut(K6)| = 63. Furthermore, G fixes no points in the projective plane P2
Q, then
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so does Aut(C). Therefore, by the aid of Theorem 1.4.4, we just need to investigate whether

F (X, Y, Z) = 0 is a descendant of the Fermat curve F6 of degree 6 or Aut(FφC) is conjugate to

the Hessian group Hess216. We saw in Example 2.2.10 that the representations of Hess216 forms

a unique set, up to conjugation in PGL3(Q). Hence there is no loss of generality to suppose

that this fixed representation in Example 2.2.10 acts on F (X, Y, Z) = 0. More generally,

any non-singular plane curve of degree 6 whose automorphism group is the Hessian group

Hess216 = 〈S, T, U, V 〉 should be of the form X6 +Y 6 +Z6 + a′(X3Y 3 +X3Z3 +Y 3Z3) = 0

for some a′ ∈ Q, since its defining equation must be invariant under the action of [Z : Y :

X], [X : Z : Y ], [Y : X : Z], [Y : Z : X] and diag(1, ζ3, ζ
2
3 ). Now,

V =


1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 ∈ Aut(φC)

only if a = −10, which is not allowed by our assumptions on a. Next, one can easily check

that Aut(F6) is isomorphic to GAP(216, 92), thus it contains a unique subgroup of order 54,

up to conjugation inside Aut(F6) itself. Therefore, we may assume that F (X, Y, Z) = 0

is a descendant of the Fermat curve F6 through a projective transformation ψ ∈ PGL3(Q)

such that ψ−1Gψ = G. Then again the transformed equation should be of the form C ′ :

X6 + Y 6 + Z6 + a′(X3Y 3 + X3Z3 + Y 3Z3) for some a′ ∈ Q. In particular, F (X, Y, Z) = 0

admits no more automorphisms in Aut(F6) (recall that a 6= 0).

This shows the result.

Theorem 3.3.8. Consider the subfamily Cp,a of smooth plane curves over Q given by

Cp,a : X6 +
1

p2
Y 6 +

1

p4
Z6 +

a

p3
(p2X3Y 3 + pX3Z3 + Y 3Z3) = 0,

with a ∈ Q \ {−10,±2,−1, 0} and p ≡ 3 or 5 (mod 7) a prime number. Given p and a

as before, or equivalently a smooth plane curve C over Q in Cp,a, then there exists a twist

C ′ ∈ TwistQ(C) which does not admit a non-singular plane model over Q.

Proof. Consider the Galois extension M/Q with M = Q(cos(2π/7), ζ3, 3
√
p), where all

the automorphisms of Aut(C) are defined (Proposition 3.3.7). Let σ be a generator of
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the cyclic Galois group Gal(Q(cos(2π/7))/Q). We define a 1-cocycle on Gal(M/Q) ∼=

Gal(Q(cos(2π/7))/Q) ⊗ Gal(Q(ζ3, 3
√
p)/Q) to Aut(C) by mapping (σ, id) 7→ [Y : Z : pX]

and (id, τ) 7→ id. This defines an element of H1(Gal(M/Q),Aut(C)). It remains to show that

its image under Σ is not trivial inside H1(Gal(M/Q),PGL3(M)), and the conclusion is then an

immediate consequence of Theorem 3.3.2: By Theorem 3.1.16, H1(Gal(M/Q),PGL3(M))

is the set of CSA’s over Q of dimension 9. Moreover, each of these algebras splits by

a degree 3 field extension of Q inside M , by the virtue of Example 3.1.22. We know

from [Was82, Theorem 2.13] that (p) is prime in Q(cos(2π/7))/Q, hence p is not a norm

of an element of Q(cos(2π/7)). In particular, the image of our 1-cocycle is not trivial

H1(Gal(Q(cos(2π/7))/Q),PGL3(Q(cos(2π/7)))) (it is trivial if and only if p is a norm of

an element of Q(cos(2π/7))/Q). Then so does its image in H1(Gal(M/Q),PGL3(M)), which

was to be shown.

§3.4 An explicit non-trivial Brauer-Severi variety

This section details, following the ideas in §3.3, an explicit example of a smooth plane curve

over Q(ζ3) having a twist that does not possess such a model in the field Q(ζ3), where ζ3 is a

primitive 3rd root of unity. Interestingly, we find the already mentioned explicit equations for

a non-trivial Brauer-Severi variety. As far as we know, this is the first time that this kind of

equations are exhibited.

Let us consider the curve Ca : X6 + Y 6 + Z6 + a(X3Y 3 + Y 3Z3 + Z3X3) = 0 defined

over a number field k ⊇ Q(ζ3) where a ∈ k. For a ∈ k \ {−10,±2,−1, 0, 1
2
(−1 ±

√
5)}, it

is a non-hyperelliptic, smooth plane curve of genus g = 10 and its automorphism group is the

group of order 54 determined in the previous section (Proposition 3.3.7).

The algorithm in [LG17], allows us to compute all the twists of Ca, previous computation

of its canonical model in P9
k
. We follow such algorithm, since this time we will see that Σ is

not trivial, so we cannot use the improvements in Remark 3.3.6.
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3.4.1 A canonical model of Ca in P9
k

Let us denote by αi, i ∈ {1, ..., 6}, the six different roots of the polynomial T 6 + aT 3 + 1 = 0,

and define the points on Ca: Pi = (0 : αi : 1), Qi = (αi : 0 : 1) and ∞i = (αi : 1 : 0)

for i ∈ {1, ..., 6}. The divisor of the function x = X/Z is div(x) =
∑
Pi −

∑
∞i and

the function y = Y/Z is div(y) =
∑
Qi −

∑
∞i. The ramification data of the morphism

x : (X0 : Y0 : 1) ∈ Ca 7→ (Y0 : 1) ∈ P1
k

gives the zeros of dx, and the poles of dx are exactly

these of x but with order increased by 1. Since x is ramified at P = (X0 : Y0 : 1) ∈ Ca if and

only if Fy(x, y, 1) = 0 at P . Equivalently, if T 6 + a(X3
0 + 1)T 3 + X6

0 + aX3
0 + 1 = 0 has

double roots. That is, if X6
0 + aX3

0 + 1 = 0 or 4(X6
0 + aX3

0 + 1) = a2(X3
0 + 1)2. Let us denote

by βi, i ∈ {1, ..., 6}, the six different roots of the polynomial T 6 + 2a
a+2

T 3 + 1 = 0 and denote

by Vij = (βi : ζj+1
3

3

√
−a

2
(β3

i + 1) : 1) where j ∈ {1, 2, 3}. We finally get

div(dx) = 2
∑

Qi +
∑

Vi,j − 2
∑
∞.

In particular, dx is not a regular differential on Ca. However, any of the differentials ωi, for

i = 1, 2, ..., 10, where

ω1 =
xdx

y(2y3 + a(x3 + 1))
, ω2 =

x2

y
ω1, ω3 =

y2

x
ω1, ω4 =

1

xy
ω1

ω5 = xω1, ω6 =
y

x
ω1, ω7 =

1

y
ω1, ω8 = yω1, ω9 =

x

y
ω1, ω10 =

1

x
ω1.

is regular on Ca, since div(2y3 + a(x3 + 1)) =
∑
Vi,j − 3

∑
∞i. We list the divisors of these

differentials below.

div(ω1) =
∑

Pi +
∑

Qi +
∑
∞i, div(ω2) = 3

∑
Pi, div(ω3) = 3

∑
Qi,

div(ω4) = 3
∑
∞i, div(ω5) = 2

∑
Pi +

∑
Qi, div(ω6) = 2

∑
Qi +

∑
∞i,

div(ω7) =
∑

Pi + 2
∑
∞i, div(ω8) =

∑
Pi + 2

∑
Qi, div(ω9) = 2

∑
Pi +

∑
∞i,

div(ω10) =
∑

Qi + 2
∑
∞i.

The space of regular differential on Ca is isomorphic to the space of cubic tangents to Ca with

basis {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}. In particular, {ωi}i forms a basis of the space of the

103



regular differentials on Ca, since it coincides with the set

{(1/Fy)dx, (x/Fy)dx, (y/Fy)dx, ..., (x3/Fy)dx, (x
2y/Fy)dx, (xy

2/Fy)dx, (y
3/Fy)dx}.

Lemma 3.4.1. The ideal of the canonical model of Ca in P9
k
[ω1, ..., ω10] is generated by the

polynomials

ω4ω9 = ω2
7, ω4ω6 = ω2

10, ω4ω1 = ω7ω10, ω4ω5 = ω9ω10, ω4ω8 = ω6ω7, ω4ω2 = ω7ω9, ω4ω3 = ω6ω10,

ω3ω10 = ω2
6, ω2ω7 = ω2

9, ω6ω9 = ω2
1, ω3ω5 = ω2

8, ω2ω3 = ω5ω8, ω2ω8 = ω2
5,

ω2
2 + ω2

3 + ω2
4 + a(ω5ω8 + ω6ω10 + ω7ω9) = 0.

We denote by Ca this canonical model.

Proof. If ω4 6= 0, then the des-homogenization of this ideal with respect to ω4 gives the affine

curve Ca for Z = 1. If ω4 = 0, then ω7 = ω10 = 0, so ω6 = ω9 = 0 and ω1 = 0, so if ω3 6= 0

we recover the part at infinity (Z = 0) of Ca. If ω4 = ω3 = 0, then all the variables are equal

to zero which produces a contradiction.

To check that it is non-singular, we need to see if the rank of the matrix of partial derivatives

of the previous generating functions has rank equal to 8 = dim(P9
k
) − dim(C) at every point,

that is, that the tangent space has codimension 1. If ω4 6= 0, then the partial derivatives of the

first seven equation plus the last one produce linearly independent vectors in the tangent space.

If ω4 = 0, we have already seen that ω3 6= 0 and by equivalent arguments, neither it is ω2. Then

the 6th, 7th, 8th, 9th equations plus the last four equations produce 8 linearly independent

vectors.

Remark 3.4.2. The canonical ideal for a non-hyperellipticC is generated, at worst, by quadrics

and cubics. In fact, cubics are only needed for trigonal curves and plane curves of degree 5, see

[Swi11, page 3].

Remark 3.4.3. The canonical embedding of Ca in Pg−1

k
= P9

k
coincides with the composition

of the g2
d-linear system of Ca with the Veronese embedding given by:

P2
k
↪→ P9

k
: (x : y : z)→ (xyz : x3 : y3 : z3 : x2y : y2z : z2x : xy2 : x2z : yz2).
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In particular, we get that the ideal defining the projective space P2
k

in P9
k

by the Veronese

embedding is generated by the polynomials defined in Lemma 3.4.1 after removing the last

one.

This is true in general for any smooth plane curves C over k of degree d ≥ 4. Because

the sheaves Ω1(C) and O(d − 3)|C are isomorphic (e.g. [Har77, Example 8.20.3]), then

H0(P2,O(d − 3)) −→ H0(C,Ω1) is an isomorphism. That is, the canonical embedding of

C is isomorphic to the composition C ι−→P2
k

Verd−3−→ Pg−1
k , where ι comes from the (unique) g2

d-

linear system and Verd−3 is the (d− 3)-Veronese map, all are defined over k.

3.4.2 The automorphism group of Ca in P9
k

Let us consider the automorphisms of the curve Ca given byR = [Y : X : Z], T = [Z : X : Y ]

and U = diag(1, 1, ζ3). By Lemma 3.3.7, we easily check that Aut(Ca) = 〈R, T, U〉. For

instance, W := [X : Z : Y ] = TRT−1 ∈ 〈R, T, U〉 and S := diag(1, ζ3, ζ
2
3 ) = U2WUW ∈

〈R, T, U〉. Thus 〈R, T, U〉 ≤ Aut(Ca) = GAP(54, 5) = 〈S, U, T,W 〉 ≤ 〈R, T, U〉.

Second, we obtain that the pullbacks R∗(ω1) = −ω1, T
∗(ω1) = ω1 and U∗(ω1) = ζ2

3ω1.

So, in the canonical model, these automorphisms look like

R→ −R :=



1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0


, T → T :=



1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0



and U → ζ2
3 diag(1, ζ2

3 , ζ
2
3 , ζ

2
3 , ζ

2
3 , 1, ζ3, ζ

2
3 , 1, ζ3) := ζ2

3U . We define the faithful linear represen-

tation Aut(Ca) ↪→ GL10(k) by sending R, T, U → R, T ,U . Moreover, it preserves the action

of the Galois group Gk.
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3.4.3 An explicit twist over k = Q(ζ3) of Ca without a non-singular plane

model over k

Now, let us consider the curve Ca defined over k = Q(ζ3), and the field extension L = k( 3
√

7)

with Galois group Gal(L/k) = 〈σ〉 ∼= Z/3Z, where σ( 3
√

7) = ζ3
3
√

7. We define the cocycle

ξ ∈ Z1(Gk,Aut(Ca)) ↪→ Z1(Gk,PGL10(k)) given by ξσ = T U .

Lemma 3.4.4. The image of the cocycle ξ by the map

Σ : H1(k,Aut(Ca))→ H1(k,PGL3(k))

is not trivial.

Proof. By construction, the image of the cocycle ξ in H1(k,PGL3(k)) coincides with the infla-

tion of the cocycle in H1(Gal(L/k),PGL3(L)) where ξσ = TU . Now by Theorem 3.1.16 we

conclude, since ζ3 is not a norm in L/k (no new primitive root of unity appears in L than k and

ζ3 is not a norm of an element of L).

In order to compute equations defining the twist C ′a associated to the cocycle ξ (and the

Brauer-Severi surface that contains such a twist), we need to find a matrix φ ∈ PGL10(k) such

that ξσ = φ ◦ σφ−1. We can then take

φ =



1 0 0 0 0 0 0 0 0 0

0 3
√

7
3
√

72 7 0 0 0 0 0 0

0 3
√

7 ζ3
3
√

72 7ζ23 0 0 0 0 0 0

0 3
√

7 ζ23
3
√

72 7ζ3 0 0 0 0 0 0

0 0 0 0 1 3
√

7 ζ3
3
√

72 0 0 0

0 0 0 0 1 ζ3
3
√

7
3
√

72 0 0 0

0 0 0 0 ζ3
3
√

7
3
√

72 0 0 0

0 0 0 0 0 0 0 1 ζ3
3
√

7 ζ3
3
√

72

0 0 0 0 0 0 0 ζ3 ζ3
3
√

7
3
√

72

0 0 0 0 0 0 0 ζ3
3
√

7 ζ3
3
√

72


Lemma 3.4.5. Let f0, f1, f2 ∈ k[x1, ..., xn], and define g0 = f0 + 3

√
7f1 +

3
√

72f2, g1 = f0 +

ζ3
3
√

7f1 + ζ2
3

3
√

72f2, g2 = f0 + ζ2
3

3
√

7f1 + ζ3
3
√

72f2. Then the ideals in L[x1, ..., xn] generated

by 〈g0, g1, g2〉 and 〈f0, f1, f2〉 are equal.
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Proof. Clearly, we have the inclusion 〈g0, g1, g2〉 ⊆ 〈f0, f1, f2〉. The reverse inclusion can

be checked by writing 3f0 = g0 + g1 + g2, (ζ3 − 1) 3
√

7f1 = g1 − ζ3g2 + (ζ3 − 1)f0 and
3
√

72f2 = g0 − f0 − 3
√

7f1.

Proposition 3.4.6. The equations in P9
k

of the non-trivial Brauer-Severi surface B over k con-
structed as in Theorem 3.3.2 from the cocycle ξ above are

ω1ω2 = ζ3ω5ω9 + ζ3ω6ω8 + 7ζ3ω7ω10, ω2
2 − 7ω3ω4 = ζ3ω5ω10 + ζ3ω7ω8 + ζ3ω6ω9,

ω1ω3 = ω5ω10 + ζ2ω7ω8 + ζ3ω6ω9, 7ω2
3 − 7ζ3ω2ω4 = ω5ω9 + ζ23ω6ω8 + 7ζ3ω7ω10,

7ω1ω4 = ζ3ω5ω8 + 7ω6ω10 + 7ζ23ω7ω9, 49ω2
4 − 7ζ23ω2ω3 = ω5ω8 + 7ζ3ω6ω10 + 7ζ23ω7ω9,

ω2
5 + 14ζ3ω6ω7 = 7ζ3ω2ω10 + 7ω4ω8 + 7ζ3ω3ω9, ω2

5 − 7ζ3ω6ω7 = 7ω2ω10 + 7ω4ω8 + 7ζ23ω3ω9,

ω2
6 + 2ζ3ω5ω7 = ζ3ω2ω9 + ω3ω8 + 7ζ3ω4ω10, ω2

6 − ζ3ω5ω7 = ω2ω9 + ζ3ω3ω8 + 7ζ3ω4ω10,

7ω2
7 + 2ζ3ω5ω6 = ζ3ω2ω8 + 7ζ23ω3ω10 + 7ζ23ω4ω9, 7ω2

7 − ζ3ω5ω6 = ω2ω8 + 7ω3ω10 + 7ζ23ω4ω9,

ω2
8 + 14ζ3ω9ω10 = 7ζ23ω2ω7 + ω4ω5 + 7ζ23ω3ω6, ω2

8 − 7ζ23ω9ω10 = 7ζ23ω2ω7 + 7ζ23ω4ω5 + 7ω3ω6,

ω2
9 + 14ζ23ω8ω10 = ζ3ω2ω6 + ζ23ω3ω5 + 7ζ3ω4ω7, ω2

9 − 7ζ23ω8ω10 = ζ23ω2ω6 + ζ3ω3ω5 + 7ζ3ω4ω7,

7ω2
10 + 2ζ23ω8ω9 = ζ23ω2ω5 + 7ω3ω7 + 7ω4ω6, 7ω2

10 − ζ23ω8ω − 9 = ζ23ω2ω5 + 7ζ23ω3ω7 + 7ω4ω6,

Proof. We only need to plug the equations of the isomorphism φ into the equations defining

Ca. We will get equations for C ′a. However, even defining a curve over k, these equations are

defined over L = k( 3
√

7). In order to get generators of the ideal defined over k, we need to

apply Lemma 3.4.5.

In order to get the equations of the twisted curve, we only need to add the equation that we

get by plugging φ in ω2
2 + ω2

3 + ω2
4 + a(ω5ω8 + ω6ω10 + ω7ω9) = 0, and apply Lemma 3.4.5

again.

Proposition 3.4.7. The curve C ′a is a twist over k of the curve Ca for a ∈ k \

{−10,±2,−1, 0, 1
2
(−1 ±

√
5)} which does not admits a non-singular plane model over k,

i.e. is not a smooth plane curve over k, and the defining equations of C ′a in P9 are the ones

given in Proposition 3.4.6 plus the extra equation:

ω2
2 + 14ω3ω4 + a(ω2

2 − 7ω3ω4) = 0
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§3.5 Twists of smooth plane curves with diagonal cyclic auto-

morphism group

In this section, we prove a theoretical result, by which we obtain directly all the twists for

smooth plane curves C over a perfect field k having the extra property: C is isomorphic

over k to a plane k-model FC(X, Y, Z) = 0, such that Aut(FC) is cyclic and generated

by an automorphism ψ ∈ PGL3(k) of diagonal shape. In this case, we show that any

twist in Twistk(FC(X, Y, Z) = 0) is represented by a non-singular plane model of the form

Fφ−1C(X, Y, Z) = 0 for some diagonal φ ∈ PGL3(k). We apply this result to some particu-

lar families of smooth plane curves over k with large automorphism group, different from the

Fermat curve and the Klein curve, see section §2.4 of chapter 2 for such families.

The condition that ψ is a diagonal matrix is necessary, and we will provide examples when

ψ is not diagonal, such that not all the twists are diagonal ones.

Definition 3.5.1. Consider a smooth plane curve C over k given by FC(X, Y, Z) = 0. We say

that [C ′] ∈ Twistk(C) is a diagonal twist of C, if there exists an M ∈ PGL3(k) and a diagonal

D ∈ PGL3(k), such that C ′ is k-isomorphic to F(MD)−1C(X, Y, Z) = 0.

3.5.1 Diagonal cyclic automorphism group: all twists are diagonal

Theorem 3.5.2. Let C : FC(X, Y, Z) = 0 be a smooth plane curve over a perfect field k.

Assume that Aut(FC) ⊆ PGL3(k) is a non-trivial cyclic group of order n (relatively prime

with the characteristic of k), generated by an automorphism ψ = diag(1, ζan, ζ
b
n) for some

a, b ∈ N.

Then all the twists in Twistk(C) are given by plane equations of the form

FD−1C(X, Y, Z) = 0 with FD−1C(X, Y, Z) ∈ k[X, Y, Z] and D is a diagonal matrix. In par-

ticular, the map Σ is trivial.

Proof. We just need to notice that the embedding Aut(C) ↪→ PGL3(k) factors through GL3(k).

Thus the map Σ in Theorem 3.3.2 factors as follows:

Σ : H1(k,Aut(FC))→ H1(k,GL3(k))→ H1(k, PGL3(k)).
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Moreover, H1(k,GL3(k)) = 1, so the map Σ is trivial. By Theorem 3.3.2 any twist has a non-

singular plane model FP−1C(X, Y, Z) = 0 over k, for some P ∈ PGL3(k). Since P ◦ σ(P−1) ∈

Aut(FC) = 〈diag(1, ζan, ζ
b
n)〉 for any σ ∈ Gk, then σP = P ◦ diag(1, v, w) for some n-th roots

of unity v, w. Writing P = (ai,j), one easily deduces that σ(ai,j) = ujai,j with u1 = 1, u2 =

v, u3 = w. Consequently, for any fixed integer j, we have σ(ai,j)a
−1
i,j = σ(ai′,j)a

−1
i′,j . That is

ai,ja
−1
i′,j is aGk-invariant, which in turns gives that ai,j = miai′,j for somemi ∈ k. In particular,

P reduces to MD for some D a diagonal projective 3 × 3 matrix and M ∈ PGL3(k). This

proves that all the twists are diagonal. However, the plane model F(MD)−1C(X, Y, Z) = 0 over

k is k-isomorphic through M to FD−1C(X, Y, Z) = 0. Hence FD−1C(X, Y, Z) = 0 defines a

non-singular plane model over k for the twist.

Remark 3.5.3. More generally, suppose that C is a smooth plane curve over k, identified with

FC(X, Y, Z) = 0, and having a twist [C ′] ∈ Twistk(C) with a non-singular plane model

FQ−1C(X, Y, Z) = 0 over k for some Q ∈ PGL3(k), such that Aut(FQC) = 〈diag(1, ζan, ζ
b
n)〉.

Then, any other twist [C ′′] ∈ Twistk(C) is represented by a model F(QD)−1C(X, Y, Z) = 0

over k through some diagonal D ∈ PGL3(k).

Now, we apply Theorem 3.5.2 to some particular smooth plane curves of degree d ≥ 5

with cyclic automorphism group in order to obtain all of their twists: let k be a perfect field of

characteristic p = 0 or p > (d− 1)(d− 2), and consider the smooth k-plane curves

C : Xd + Y d +XZd−1 = 0,

C ′ : Xd + Y d−1Z +XZd−1 = 0.

Both curves are defined over k with cyclic diagonal automorphism groups of orders d(d−1) and

(d − 1)2, generated by diag(1, ζd−1
d(d−1), ζ

d
d(d−1)), and diag(1, ζ(d−1)2 , ζ

(d−1)(d−2)

(d−1)2 ) respectively

(see subsection §2.4.1). Furthermore, applying the Theorem, we obtain:

Corollary 3.5.4. Let k be a perfect field of characteristic p = 0 or p > (d− 1)(d− 2) + 1. For

d ≥ 5, any twist of C : Xd + Y d + XZd−1 = 0 over k is given by Xd + aY d + bXZd−1 = 0

for some a, b ∈ k∗. Moreover, two twists {a, b} and {a′, b′} are k-isomorphic if and only if

a = a′ mod k∗
5

and b = b′ mod k∗
4
.
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Similarly, for C ′ : Xd + Y d−1Z + XZd−1 = 0, any twist is given by Xd + aY d−1Z +

bXZd−1 = 0 for some a, b ∈ k∗, where the twist {a, b} and {a′, b′} are k-isomorphic if and

only if a′ = M4a, b′ = MN4b for some M,N ∈ k∗.

Proof. By Theorem 3.5.2, any twist of C has a non-singular plane model over k, which can

be obtained through a diagonal change of variables in PGL3(k) of the shape diag(1, λ, µ).

Hence, one could think about the defining equation as Xd + λdY d + µd−1XZd−1 = 0 such

that λd, µd−1 ∈ k. So λ = d
√
a and µ = d−1

√
b for some a, b ∈ k∗, and the defining equation

for the twist is Xd + aY d + bXZd−1 = 0. On the other hand, two twists {a, b} and {a′, b′}

are equivalent if and only if there exists an ψ ∈ PGL3(k) and an automorphism α of C such

that α ◦ φ = φ′ ◦ ψ, where φ = diag(1, d
√
a, d−1
√
b) and φ = diag(1, d

√
a′, d−1

√
b′), see Remark

1.3.1 in [LG14]. This is equivalent to write ψ = diag(1, q, q′) for some q, q′ ∈ k∗, such that

a′ = aM5 and b′ = bN ′4 for some M,N ∈ k∗, which was to be shown in this situation.

In the same way, one shows the result for C ′.

3.5.2 Aut(C) cyclic does not imply diagonal twists

Let C be a smooth plane curve over k, a field of characteristic p ≥ 0, and identify C with its

model FC(X, Y, Z) = 0 over k. Suppose also that Aut(FC) ⊆ PGL3(k) is a cyclic group of

order n, generated by a matrix σ, such that the conjugacy class of σ in PGL3(k) contains no

elements of a diagonal shape. Then the twists of C mapped to zero by Σ (i.e., those ones that

admits a smooth plane curve over k), are not necessarily represented by diagonal twists.

Proposition 3.5.5. Let C be the smooth plane curve over Q by:

FC(X, Y, Z) = X4Y + Y 4Z +XZ4 + (X3Y 2 + Y 3Z2 +X2Z3) = 0.

Then Aut(FC) = Z/3Z, and generated by [Y : Z : X] in PGL3(Q).

Proof. Because σ := [Y : Z : X] ∈ Aut(FC) is of order 3, then Aut(FC) is conjugate to one

of the automorphism groups appearing in [BB16a, Table 2] (or see Table 4.2 in subsection §4.1

of the next chapter), with 3 dividing its order.
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Assume first that τ ∈ Aut(FC) is of order 2 with τστ = σ−1. For simplicity, we consider

the Q-equivalent model FP−1C(X, Y, Z) = 0 defined by

4X5+20X3Y Z+
(

(−5− 9i
√

3)Y 3 + (−5 + 9i
√

3)Z3
)
X2−6XY 2Z2−4Y Z(Y 3+Z3) = 0,

which is obtained via the change of variables P of the shape
1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3

 .

Hence P−1σP = diag(1, ζ3, ζ
2
3 ) ∈ Aut(FP−1C), and P−1τP ∈ Aut(FP−1C) should be [X :

aZ : a−1Y ] for some a ∈ Q. One easily checks that FP−1C(X, Y, Z) = 0 can not have

automorphisms of this shape. Consequently, the symmetry group S3 = 〈η, ρ〉 does not happen

as a bigger subgroup of automorphisms. Then so are GAP(30, 1) and GAP(150, 5) in [BB16a,

Table 2], since both groups contain an S3 and a single conjugacy class of elements of order 3.

Second, any automorphism of order 3 of the GAP(39, 1) in [BB16a, Table 2] is conju-

gate to either σ or σ−1. Therefore, if Aut(FC) is conjugate, through some P ∈ PGL3(Q), to

GAP(39, 1), then we may suppose that P−1σP = σ. Thus P reduces to
1 0 0

0 ζ3 0

0 0 ζ2
3


s

α1 α2 α3

α3 α1 α2

α2 α3 α1

 ∈ PGL3(Q),

for some s ∈ {0, 1, 2}, and the transformed defining equation of FP−1C(X, Y, Z) must

be X4Y + Y 4Z + Z4X = 0. For s = 0, we need to terminate the coefficients of

Y 5, Y 4X, Y 3X2, Y 3Z2, and Y 3XZ, which conflicts the assumption that P is invertible. For

s = 1 or 2, we impose that the monomials X5, Y 5 and Z5 do not appear, so P is of diagonal

shape and FP−1C(X, Y, Z) = 0 is not X4Y + Y 4Z + Z4X = 0. Consequently, Aut(FC) is not

conjugate to GAP(39, 1).

By all the above argument, we conclude by Table 4.2 that Aut(FC) must be of order 3.

Proposition 3.5.6. Let C be the smooth plane curve over Q as before (Proposition 3.5.5). Then

C admits a twist over Q, which is not diagonal.
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Proof. The defining equation FC(X, Y, Z) = 0 has degree 5, coprime with 3. Then, by Corol-

lary 3.2.9, any twist of C = C ⊗Q Q is also a smooth plane curve over Q.

We construct the twist following the algorithm in [LG17] (see Appendix B) and Theorem

3.3.2 because Σ is trivial: By Proposition 3.5.5, all automorphisms of are defined over K = Q,

and the twisted product Γ = Aut(C)oGal(K/k) ' Z/3Z. That is, for each cyclic field exten-

sion L/Q of degree 3, there exist (exactly two) non-trivial twists of the curve FC(X, Y, Z) = 0

over k, which have L as their splitting field. Since the set of such extensions is not empty, the

curve C has a non-trivial twist. However, it is easy to check, that a twist of FC(X, Y, Z) = 0

through a diagonal isomorphism D ∈ PGL3(Q) is always the trivial one. Therefore, any non-

trivial twist of C must be a non-diagonal twist.

Remark 3.5.7. By our discussion in [BB16c, §6] (or see section §1.4), Proposition 3.5.5 ex-

tends to any perfect field k of characteristic p > 13. And, we ask for ζ3 /∈ k in order to construct

a non-trivial twist as in Proposition 3.5.6. Degree 5 is the smallest degree for which such an

example exists, see [LG14] to discard degree 4 exceptions.

Remark 3.5.8. In Appendix B, we apply the algorithm in [LG17] to the simplest degree 5

examples. This shows the improvements of Theorem 3.5.2 and Corollary 3.5.4 to compute the

twists inside P2
k

not in Pg−1

k
.
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CHAPTER

4
Arithmetic aspects of smooth plane

curves of genus 6

Let k be a fixed algebraic closure of a field k of characteristic p ≥ 0. By a smooth k-plane

curve C of genus g, we mean a smooth projective curve C that admits a non-singular plane

model {FC(X, Y, Z) = 0} ⊆ P2
k

over k of degree d, in this case, the genus g equals 1
2
(d −

1)(d − 2). The first genus for which there exist smooth k-plane curves are: 0, 1, 3, 6, ... The

curves of genus 0 are isomorphic to the projective line, and the curves of genus 1 are elliptic

ones, which are quite well understood. For genus 3, we always get plane quartic curves, and

different arithmetics properties have been investigated by many people around. We mention,

for example, a classification up to isomorphism with good properties that can be found in

[LRRS14, LG14], or the study of their twists in [LG14, LG16]. For genus 6, the dimension of

the (coarse) moduli spaceM6 of smooth curves of genus g = 6 over k is equal to 3g− 3 = 15.

The stratumMPl
6 of smooth k-plane curves of genus 6 has dimension equal to 21 − 9 = 12,

since there are 21 monic monomial of degree 5 in 3 variables and all the isomorphisms are given

by projective matrices of size 3 × 3. In particular, this dimension is larger than the dimension

of the hyperelliptic locus, which is 2g − 1 = 11.

The existence of universal families for a moduli space helps to recover the information on

its points and allows to write down the attached objects to a point of this space. It becomes

difficult to deal with a moduli space when a universal family does not exist. R. Lercier, C.

Ritzenthaler, F. Rovetta and J. Sijsling in [LRRS14, §2] introduced three good substitutes for

the notion of universal family: complete, finite and representative families.

The aim of this chapter is to study the existence of a so-called representative classification
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for the different strata inMPl
6 by their automorphism group. In particular, we look for complete

and representative families over k, which tends to be suitable substitutes to universal families

of (coarse) moduli spaces, especially when the spaces have no extra structures.

The structure of this chapter is as follows. Section 4.1 is devoted to the study of the strat-

ification by automorphism group of smooth k-plane curves of genus 6, i.e. the different strata

ofMPl
6 , where k has characteristic p = 0 or p > 2g + 1 = 13. A full description of the au-

tomorphism groups and the associated normal forms is given in Theorem 4.1.12. The diagram

in Figure 4.1 shows how looks like the stratification by automorphism groups of non-singular

plane quintic curves. In section 4.2, we explain an interesting phenomenon, which appears in

Figure 4.1; the existence of a final stratum of plane curves whose dimension is not zero. By

a final stratum we mean a stratum not containing any other proper stratum. One could expect

that by adding restrictions in the parameters of a family defining a stratum with a given au-

tomorphisms group, one get bigger automorphism groups until obtaining a zero-dimensional

stratum. This happens for all the families except for one. For this family each restriction in

the parameters providing a bigger automorphism group yields a singular curve. We find an

explanation for this fact: this family can be embedded in a family of curves of genus 6 with the

same automorphism group for which we can carry out the previous operation without getting

singular curves, the key point is they are not plane curves anymore: Proposition 4.2.1, Corol-

lary 4.2.2. Moreover, we prove that this may happen in general for higher genera: Theorem

4.2.4. In section 4.3, we refine the classification given in Theorem 4.1.12, since it is not repre-

sentative or even complete over k (see Remark 4.3.4): Theorem 4.3.6. We end up this chapter

with section 4.4, in which a full description of the set Twistk(C) of twists of a smooth k-plane

curve of genus 6 defined over k can be found.

We shall deal with the following items:

4.1. Stratification by automorphism group ofMPl
6 .

4.2. Final families: A canonical interpretation.

4.3. Complete and representative families.

4.4. Twists of smooth pane curves of genus 6.

The main results of section §4.1 have been published in [BB16a]. The results of sections
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§4.2 and §4.3 are resulted into the manuscript [BLG17].

§4.1 Stratification by automorphism group ofMPl
6

Given any finite non-trivial group G, it is classically known from Greenberg [Gre74, Theorem

4] that one can construct a Riemann surface R whose conformal automorphism group Aut(R)

is isomorphic to G.

This section is concerned with the following question:

Question 4.1.1. Let k be a field of characteristic p ≥ 0. Once the genus g ≥ 3 is fixed,

determine the finite non-trivial groups G (up to isomorphism), for which the stratum M̃Pl
g (G)

over k is non-empty. That is, the groups G such that there exists a smooth k-plane curve C of

genus g whose automorphism group is isomorphic to G.

Henn in [Hen76] and Komiya-Kuribayashi in [KK79] solved the question for g = 3 over

the complex field C. We solve it for g = 6, in order to get a compact table as Henn Table

(Theorem 2.2.1), but for smooth k-plane curves of degree 5.

We start with the next result, which is a consequence of Theorem 1.4.5 for characteristic

p = 0, and the discussion after, at the end of chapter 1, for p > 13:

Corollary 4.1.2. Let C be a smooth k-plane curve of degree d = 5, where k is a field of

characteristic p = 0 or p > 13. Then, the full automorphism group Aut(C) of C (seen as

a smooth plane curve over k) is not conjugate to the Hessian group Hess216, the Klein group

PSL(2, 7) and the alternating group A6.

Starting with the results in section §2.4, we conclude:

Corollary 4.1.3. Let C be a smooth k-plane curve of degree d = 5, where k is a field of

characteristic p = 0 or p > 13. Then, we have (up to k-isomorphism):

1. The cyclic group ρ(Z/20Z) = 〈diag(1, ζ4
20, ζ

5
20)〉 appears as Aut(C) inside PGL3(k),

where C is k-isomorphic to X5 + Y 5 +XZ4 = 0.

2. The cyclic group ρ(Z/16Z) = 〈diag(1, ζ16, ζ
12
16 )〉 appears as Aut(C) inside PGL3(k),

where C is k-isomorphic to X5 + Y 4Z +XZ4 = 0.
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3. The group GAP(30, 1) = 〈σ, τ | τ 2 = σ15 = (τσ)2σ3 = 1〉 appears as Aut(C) inside

PGL3(k) with σ := diag(1, ζ15, ζ
11
15 ) and τ := [X : Z : Y ]. In this case, C is k-

isomorphic to X5 + Y 4Z + Y Z4 = 0.

4. The group GAP(39, 1) = 〈τ, σ|σ13 = τ 3 = 1, στ = τσ3〉 appears as Aut(C) inside

PGL3(k) with σ := diag(1, ζ13, ζ
10
13 ) and τ := [Y : Z : X]. Moreover, C is k-isomorphic

to the Klein curve X4Y + Y 4Z + Z4X = 0.

5. The cyclic group ρ(Z/8Z) = 〈diag(1, ζ8,−1)〉 appears as Aut(C) inside PGL3(k),

where C is k-isomorphic to X5 + Y 4Z +XZ4 + β2,0X
3Z2, for some β2,0 6= 0,±2.

Before we prove Corollary 4.1.3, we reproduce here Table A.3, representing the different

types of cyclic subgroups of automorphisms of smooth k-plane curves of degree 5, which was

a consequence of the work in chapter 2.

Table 4.1: degree 5

Type: m, (a, b) F (X, Y, Z)

20, (4, 5) X5 + Y 5 +XZ4

16, (1, 12) X5 + Y 4Z +XZ4

15, (1, 11) X5 + Y 4Z + Y Z4

13, (1, 10) X4Y + Y 4Z + Z4X

10, (2, 5) X5 + Y 5 +XZ4 + β2,0X
3Z2

8, (1, 4) X5 + Y 4Z +XZ4 + β2,0X
3Z2

5, (1, 2) X5 + Y 5 + Z5 + β3,1X
2Y Z2 + β4,3XY

3Z

5, (0, 1) Z5 + L5,Z

4, (1, 2) X5 +X
(
Z4 + Y 4

)
+ β2,0X

3Z2 + β3,2X
2Y 2Z + β5,2Y

2Z3

4, (0, 1) Z4Y + L5,Z

3, (1, 2) X5 + Y 4Z + Y Z4 + β2,1X
3Y Z +X2

(
β3,0Z

3 + β3,3Y
3
)

+ β4,2XY
2Z2

2, (0, 1) Z4L1,Z + Z2L3,Z + L5,Z

Proof. (of Corollary 4.1.3) One just needs to apply Propositions 2.4.3, 2.4.7, 2.4.11, 2.4.14,

and 2.4.17 when d = 5, by the aid of Table 4.1.
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It remains, for the last case, to observe that if Aut(C) is bigger, then it is always cyclic

(Proposition 2.4.17 when d = 5 and m = 2), and then should be the cyclic group of order

16 (Table A.3 above). Therefore, β2,0 6= 0 is the only restriction to impose, so that the curve

has automorphism group exactly Z/8Z. While the restrictions β2,0 6= ±2 comes form non-

singularity.

4.1.1 Automorphism groups having small cyclic subgroups

By the aid of Corollary 4.1.3, it remains to describe Aut(C), where C is a smooth k-plane

curve of degree 5, which appears in Table 4.1 and such that the maximal order for any element

inside Aut(C) is exactly 2d = 10 or at most d = 5.

Proposition 4.1.4. Let C be a smooth k-plane curve of degree 5, with σ ∈ Aut(C) of order

10 as an automorphism of maximal order. Then, we reduce up to k-isomorphism to C : X5 +

Y 5 +XZ4 + β2,0X
3Z2 = 0 for some β2,0 6= 0, and σ acts on C as diag(1, ζ2

10,−1). Moreover,

one of the following subcases occurs:

1. If β2
2,0 = 20, then C is k-isomorphic to the Fermat curve F5 : X5 + Y 5 + Z5 = 0 and

Aut(C) is isomorphic to GAP(150, 5).

2. If β2
2,0 6= 20, then Aut(C) is isomorphic to Z/10Z, and we can think about C as a

descendant of the Fermat curve of the form

CP : X5 + Y 5 + Z5 + u
(
ξ6

10Y
4Z + Y Z4

)
+ u′

(
ξ2

10Y
3Z2 + Y 2Z3

)
= 0,

for some (u, u′) ∈ k2 \ {(0, 0)}.

Proof. Since the maximal order is 10, we have by, Table 4.1, a non-singular k-plane model of

C via the normal form X5 + Y 5 + XZ4 + β2,0X
3Z2 = 0 for some β2,0 6= 0. In particular, σ

acts on such a model as the automorphism diag(1, ζ2
10,−1). We know, by Proposition 2.4.22

and the Remark after it, that if C is not a descendant of the Fermat curve, then Aut(C) fixes

the line Y = 0 and the point (0 : 1 : 0).

Assume first that C is not a descendent of the Fermat quintic curve. Then, by Theorem

1.4.4, Aut(C) satisfies a short exact sequence 1 → Z/5Z → Aut(C) →Λ G → 1, where
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Z/5Z is generated by σ2, and G (as a subgroup of PGL2(k)) contains Λ(σ) = diag(1,−1) of

order 2. Then G is PGL2(k)-conjugate to Z/2Z,Z/4Z, S3,A4, S4, or to A5. However, Z/5Z is

contained in the center of Aut(C) (Theorem 1.4.4-(2)), so if G has an element Λ(τ) of order

3 or 4, then so does Aut(C), since τ must be of order divisible by 3 or 4, respectively. In

particular, Aut(C) has an element of order 15 or 20, which contradicts the maximality of the

order of σ. Therefore, G = Z/2Z and |Aut(C)| = 10, in other words, Aut(C) = Z/10Z.

Secondly, if C is a descendant of the Fermat curve of degree 5, then this happens through a

change of variables P ∈ PGL3(k), such that

P−1σP ∈ {[X : ζ2b
10Z : ζ2a

10Y ], [ζ2a
10Y : X : ζ2b

10Z], [ζ2b
10Z : ζ2a

10Y : X] | 5 - (a+ b)}.

In any of these situations, we always obtain a Fermat descendant of the form

CP : X5 + Y 5 + Z5 + u(ζa
′

10A
4B + AB4) + u′(ζb

′

10A
3B2 + A2B3) = 0,

where {A,B} ⊂ {X, Y, Z}. Furthermore, CP is the Fermat curve only if β2
2,0 = 20, and

Aut(CP ) is cyclic of order 10 otherwise. For example, if P−1σP = λ[X : ζ2b
10Z : ζ2a

10Y ], then

λ = ζ2
10, 5|a+ b+ 2, and P reduces to

0 ζ2a+2
10 α3 α3

1 0 0

0 −ζ2a+2
10 γ3 γ3

 ∈ PGL3(k).

Therefore, C is transformed into CP of the form

X5 + Y 5 + Z5 + u(ζ
6(a+1)
10 Y 4Z + Y Z4) + u′(ζ

2(a+1)
10 Y 3Z2 + Y 2Z3) = 0,

by setting α3(α4
3 + β2,0γ

2
3α

2
3 + γ4

3) = 1. Now, CP is the Fermat curve only if u = u′ = 0, or

equivalently, 5α4
3+β2,0γ

2
3α

2
3−3γ4

3 = 5α4
3−β2,0γ

2
3α

2
3+γ4

3 = 0. Thus β2
2,0 = 20 (for instance, one

can take α3 = − (−1)3/5

24/5
, and γ3 = (−1)3/5 4√5

24/5
when β2,0 = 2

√
5, and α3 = 1

24/5
, and γ3 = − i 4√5

24/5

when β2,0 = −2
√

5). Otherwise, i.e. u 6= 0 or u′ 6= 0, one may assume that a = 0 and b = 3,

since any [X : ζ2b
10Z : ζ2a

10Y ] ∈ Aut(CP ) is conjugate inside Aut(F5) to [X : ζ6
10Z : Y ] through

diag(1, ζt10, ζ
s
10) for some integers s and t. Hence CP admits no more automorphisms inside

Aut(F5) and Aut(CP ), as a subgroup of Aut(F5), is again cyclic of order 10. Finally, we note
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that, for any other value of P−1σP , one can reduce to some concrete (a, b) and obtain exactly

the same system to solve involving β2,0 as before. Thus, we always get the same conclusion as

above.

Remark 4.1.5. Recall that Aut(F5) is generated by η1 := [X : Z : Y ], η2 := [Y : Z :

X], η3 := diag(ζ5, 1, 1), and η4 := diag(1, ζ5, 1) of orders 2, 3, 5, and 5 respectively. Moreover,

(η1η2)2 = (η1η3)(η3η1)−1 = (η3η4)(η4η3)−1 = η1η
2
4η1(η3η4)−3 = η2η3η

−1
2 (η3η4)−4 = 1.

Consequently Aut(F5) = GAP(150, 5).

The following lemma is very useful to discard all the groups, that contains a Z/2Z×Z/2Z,

for smooth plane curves of degree 5.

Lemma 4.1.6. Let k be a field of characteristic p = 0 or p > 13. Then there is no smooth k-

plane curve C of degree 5, with Z/2Z×Z/2Z ≤ Aut(C). In particular, the full automorphism

group Aut(C) is not isomorphic to any of the groups: Z/2Z× Z/2Z, A4, S4 and A5.

Proof. By Theorem 1.2.1 and Theorem 1.4.4, the group Z/2Z×Z/2Z inside PGL3(k), which

gives invariant a smooth plane curve C of degree d, should fix a point not lying on C, or C is

a descendant of either the Fermat or the Klein curve. For d = 5, it could not be a descendant

of the Fermat curve and the Klein curve, since 4 is not a divisor of |Aut(F5)| = 150 and

|Aut(K5)| = 39. Therefore, the automorphism subgroup Z/2Z× Z/2Z fixes a point not lying

in C. Moreover, 2 - d, so we can think about it in a short exact sequence (see Theorem 1.4.4

and its proof):

1→ N = 1→ H → H → 1,

where H is conjugate to Z/2Z × Z/2Z inside PGL2(k). We can also assume that H acts

only on the variables Y, Z because N is the subgroup of Aut(C) acting on X . Now, if σ, τ ∈

H ⊆ PGL2(K) are of order two, such that στ = τσ, then we can suppose, up to a change

of variables of P2
k
, that σ = diag(1,−1) and τ = [aY + bZ : cY − aZ] 6= σ. Consequently,

C has a model of Type 2, (0, 1). However, all possible τ does not retain invariant the equation

of Type 2, (0, 1), for any choice of the parameters, and the result follows: indeed, τ commutes

with σ, therefore τ = diag(−1, 1) or [bZ : cY ], with bc 6= 0. Hence C has the expressions:
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Z4L1,Z +Z2L3,Z +L5,Z and Y 4L1,Y +Y 2L3,Y +L5,Y , simultaneously. In particular, it reduces

to the form X ·G(X, Y, Z), a contradiction to irreducibility.

Now, we handle the situation for smooth k-plane curves of degree 5, whose automorphism

groups has an automorphism of order 5 (resp. order 4), as an element of maximal order.

Proposition 4.1.7. Let k be a field of characteristic p = 0 or p > 13. Suppose that C is

a smooth k-plane curve of degree 5, with an automorphism σ of maximal order 5. Then we

reduce, up to k-isomorphism, to one of the following subcases:

1. Aut(C) = Z/5Z, and C is of Type 5, (0, 1) of the form Z5 + L5,Z = 0,

2. Aut(C) = D10, generated by σ := diag(1, ζ5, ζ
2
5 ) and τ := [Z : Y : X]. Moreover,

C is defined by the form X5 + Y 5 + Z5 + β3,1X
2Y Z2 + β4,3XY

3Z = 0 for some

(β3,1, β4,3) ∈ k2 \ {(0, 0)}.

Proof. We investigate smooth k-plane curves of Type 5, (a, b), which appear in Table 4.1:

(A) Type 5, (1, 2) : First Aut(C) is not conjugate to Hess∗ with ∗ = 36, 72, and also C is not a

descendant of of the Klein curve, since Hess∗ and Aut(K5) do not have elements of order

5. On the other hand, C always admits a larger automorphism group isomorphic to D10,

through the extra automorphism τ = [Z : Y : X], in particular, it is not cyclic. Moreover,

we use Lemma 4.1.6 to discard A5. Consequently, Aut(C) fixes a line and a point off this

line, or C is a descendant of the Fermat curve F5 of degree 5.

We treat each of these subcases:

(i) If Aut(C) fixes a line and a point off this line, then it should be the line Y = 0, and

the point is (0 : 1 : 0), since 〈σ, τ〉 ≤ Aut(C). Hence we reduce to automorphisms

of the shapes 
α1 0 α3

0 1 0

γ1 0 γ3

 ∈ PGL3(k).

From the coefficients of Y 3Z2, Y 3X2 (resp. X4Y, Y Z4), we must have α1 = γ3 = 0

(resp. α3 = γ1 = 0). Moreover, α5
3,1 = γ5

1,3 = 1 and α3,1γ1,3 = 1, or (α3,1γ1,3)2 = 1,

120



since (β3,1, β4,3) 6= (0, 0). This implies that |Aut(C)| = 10, and then is exactly the

dihedral group D10.

(ii) If C is a descendant of the Fermat curve F5, through a change of variables P ∈

PGL3(k), and neither a line nor a point is leaved invariant, then we may impose

P−1σP = σ, since automorphisms of the Fermat curve of order 5, which are not

homologies forms a single conjugacy class of Aut(F5). So P has one of the shapes

diag(1, λ, µ), [Y : λZ : µX], or [Z : λX : µY ]. However, it is straightforward to

verify that CP has no more automorphisms in Aut(F5) than P−1〈σ, τ〉P . So again

Aut(C) = D10.

(B) Type 5, (0, 1) : In this case, we have a homology σ = diag(1, 1, ζ5) ∈ Aut(C) of order

d = 5, with center (0 : 0 : 1) and axis Z = 0. Then, by Proposition 1.3.12, (0 : 0 : 1) is an

outer Galois point for C, moreover it is unique, since C is not k-isomorphic to the Fermat

curve (recall that any automorphism of C has order ≤ 5). Thus, it should be fixed by

Aut(C). Consequently, Aut(C) fixes also the line Z = 0 (Proposition 1.2.9). Therefore,

Aut(C) satisfies a short exact sequence (Theorem 1.4.4-(2))

1→ N → Aut(C)→ G→ 1,

where N is cyclic of order dividing 5, and G is conjugate to Z/mZ, D2m, A4, S4, or to A5

with m ≤ d − 1(= 4), and moreover m | d − 2(= 3) or N is trivial, when G = D2m. If

N is trivial, then G = A5, since it is the only option with elements of order 5 are present

inside. Hence, Z/2Z × Z/2Z is a subgroup of Aut(C), a contradiction to Lemma 4.1.6.

Thus N = Z/5Z. Moreover, for any value of G (except possibly {1}, Z/2Z, Z/4Z and

A4 such that Aut(C) = D10, GAP(20, 3), A5), there are automorphisms of order greater

than 5, which conflicts our assumption. Again, by Lemma 4.1.6, we exclude G = A4.

Furthermore, one verifies that there exists no τ ∈ Aut(C) of order 2, such that τστ = σ−1,

that is G 6= Z/2Z. Also, there are no τ ∈ Aut(C) of order 4, such that (τσ)2 = 1 and

στσ−1 = τσ. Thus G 6= Z/4Z, and Aut(C) is cyclic of order 5.

This completes the proof.
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Proposition 4.1.8. Let k be a field of characteristic p = 0 or p > 13. Suppose that C

is a smooth k-plane curve of degree 5, with an automorphism σ of maximal order 4. Then

Aut(C) = 〈σ〉 and we reduce, up to k-isomorphism, to one of the following situations:

1. σ acts on C as the automorphism diag(1, 1, ζ4), and C is defined by an equation of

the form Z4Y + L5,Z(X, Y ) = 0, such that L5,Z(X, ζmY ) 6= ζnmL5,Z(X, Y ) for any

(m,n) ∈ {(8, 1), (16, 1), (20, 4)},

2. σ acts on C as the automorphism diag(1, ζ4,−1), and C is defined by X5 + X(Y 4 +

Z4) + β2,0X
3Z2 + β3,2X

2Y 2Z + β5,2Y
2Z3 = 0 for some β5,2 6= 0.

Proof. We study the two Types 4, (a, b) mentioned in Table 4.1: In both cases, C can not

be a descendant of the Fermat curve F5 or the Klein curve K5, since 4 does not divide

|Aut(F5)| = 150 and |Aut(K5)| = 39. Also, Aut(C) 6= A5, because it has no elements

of order 4. Therefore, Aut(C) is conjugate to one of the Hessian subgroups Hess∗, with ∗ = 36

or 72, or it fixes a line and a point off this line (Theorem 1.4.4 and Corollary 4.1.2). Moreover,

for the last case, we need to consider a short exact sequence 1→ N = 1→ Aut(C)→ G→ 1,

where G must contain an element of order 4. So G could only be conjugate to Z/4Z, or D8

(Lemma 4.1.6).

We treat now each of the subcases:

(A) Type 4, (0, 1): Similarly to Type d − 1, (0, 1) in chapter 2, §2.3.1, there is a unique inner

Galois point for C, and hence it should be fixed by Aut(C). Consequently, Aut(C) is

cyclic. The algebraic restrictions on the binary form L5,Z are to avoid C to be with larger

cyclic automorphism group, more precisely, to be of Type 8, (1, 4), Type, 16, (1, 12), or

Type 20, (4, 5).

(B) Type 4, (1, 2): Clearly β5,2 6= 0, or C decomposes to X.G(X, Y, Z) = 0, in particular

it is singular. Second, we claim to show that non of Hess∗ for ∗ = 36, 72 occurs as the

automorphism group of a smooth k-plane curve of degree 5: We know that both groups

contain reflections, but no four groups, hence all reflections in the group will be conju-

gate to [Z : Y : X], see [Mit11, Theorem 11]. Therefore, we can take P ∈ PGL3(k)

with P−1σ2P = [Z : Y : X], where Aut(CP ) ↪→ PGL3(k) is described by the
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usual representation of the above Hessian groups. In particular, Aut(CP ) always have

the five automorphisms: [Z : Y : X], [X : Z : Y ], [Y : X : Z], [Y : Z : X],

and diag(1, ζ3, ζ
2
3 ). Since the defining equation for CP is invariant under the action of

[Z : Y : X], [X : Z : Y ], [Y : X : Z], and [Y : Z : X], CP is defined by an equation of

the form u(X5 +Y 5 +Z5)+a(X4Z+X4Y +Y 4X+Y 4Z+Z4X+Z4Y )+H(X, Y, Z),

for some u, a ∈ K and H(X, Y, Z), a homogenous polynomial of degree 5, such that the

degree of any of the variables is at most three. Then consider the action of diag(1, ζ3, ζ
2
3 )

to get u = 0 and a = 0, a contradiction to non-singularity (Lemma 2.1.1). This shows the

claim.

On the other hand, because N is trivial and σ ∈ Aut(C) is a non-homology, we can

suppose that the fixed line is X = 0 and the point is (1 : 0 : 0). That is, all automorphisms

of C are of the shape [X : vY +wZ : sY + tZ] ∈ PGL3(K). One checks that there is no

automorphism τ of this shape of order 2, with τστ = σ−1. Hence Aut(C) is not conjugate

to D8, and therefore it is the cyclic group of order 4.

This finishes the proof.

Now it remains the study of smooth k-plane curves C of degree 5, such that their automor-

phisms are of orders at most 3. So Aut(C) is not conjugate to A5 and Hess∗ with ∗ = 36, 72,

since in each case, automorphisms of order > 3 exist. Therefore Aut(C) fixes a line and a

point off this line, or it is conjugate to a subgroup of Aut(F5) or Aut(K5).

Proposition 4.1.9. Let k be a field of characteristic p = 0 or p > 13, and let C be a smooth

k-plane curve of degree 5 of Type 3, (1, 2), such that automorphisms of C have orders, at most

3. Then C is defined by the normal form

X5 + Y 4Z + Y Z4 + β2,1X
3Y Z +X2(β3,0Z

3 + β3,3Y
3) + β4,2XY

2Z2 = 0.

Moreover, Aut(C) = Z/3Z = 〈diag(1, ζ3, ζ
2
3 )〉 when β3,0 6= β3,3, and Aut(C) = S3 via the

extra automorphism [X : Z : Y ] otherwise.

Proof. Because |Aut(K5)| = 3 · 13, then if C is a descendant of the Klein curve K5, then

Aut(C) is exactly a Z/3Z inside Aut(K5), since otherwise an automorphism of C of order
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> 3 should exist by Sylow’s theorem. Second, if C is a descendant of the Fermat curve F5,

then Aut(C) is a Z/3Z or S3 inside Aut(F5): indeed, |Aut(F5)| = 2·3·52, hence any subgroup

of order > 3 is conjugate to S3 (remark that Aut(F5) has no elements of order 6), or it contains

elements of order 5 > 3. Moreover, if Aut(C) = S3, then there exists τ ∈ Aut(C) of order 2

such that τστ = σ−1. This reduces τ to be of the shape [X : βZ : β−1Y ], which retains the

defining equation for C if and only if β3 = 1 and β3,0 = β3,3. Third, if Aut(C) fixes a line and

a point of this line, then (Theorem 1.4.4-(2) and Lemma 4.1.6) Aut(C) satisfies a short exact

sequence of the form 1→ N = 1→ Aut(C)→ G→ 1, where G is conjugate to Z/3Z or S3,

which was to be shown.

Proposition 4.1.10. Let k be a field of characteristic p = 0 or p > 13, and let C be a smooth k-

plane curve of degree 5 of Type 2, (0, 1), such that any automorphism of C has order, at most 2.

ThenC is k-isomorphic toZ4Y +Z2L3,Z+L5,Z = 0, and Aut(C) = Z/2Z = 〈diag(1, 1,−1)〉.

Proof. Clearly C is not a descendant of the Klein curve, since |Aut(K5)| = 39 is odd. Also,

if it is a descendant of the Fermat curve, then Aut(C) is a Z/2Z in Aut(F5), as |Aut(F5)| =

2 · 3 · 52, so subgroups of order > 2 obviously have elements of order > 2. Lastly, if Aut(C)

fixes a line and a point off this line, then we think about it in a short exact sequence 1→ N =

1→ Aut(C)→ G→ 1, where G contain an element of order 2 and no higher orders happens.

Therefore Aut(C) should be Z/2Z, or Z/2Z× Z/2Z. However, we exclude the latter case by

Lemma 4.1.6.

We need to assure the existence of a smooth k-plane curve C, through some specializations

of the parameters, for which the maximal order of its automorphisms is exactly m, for m ≤ 5.

This is some sort of tedious computations, since we do not know a priori the dimension of the

strata M̃6(G). We already saw the situation when m = 4 in chapter 2, §2.3, also when m = 3

and G = Z/3Z. To treat the case when m 6= 4, we can apply similar arguments, which will

not be reproduced here (nevertheless, we know all the possible groups and the representations

that could appear such that m divides their orders). This in turns simplifies the computations,

in order to conclude:

Lemma 4.1.11. Let k be a field of characteristic p = 0 or p > 13. Consider a degree 5
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homogenous equation F (X, Y, Z) = 0 over k, associated to some Type m, (a, b) in Table 4.1,

where m ≤ 5 and m 6= 4. Then, there exists a smooth k-plane curve C obtained by a concrete

specialization of the parameters, such that all of its automorphisms are of order, at most m.

Moreover, for Type 3, (1, 2), we have smooth k-plane curves with this property, where some of

them satisfy β3,0 6= β3,3 and others also satisfy β3,0 = β3,3.

4.1.2 How looks like the stratification by automorphism groups?

We sum up all the results obtained previously in section §4.1.

Theorem 4.1.12 (Badr-Bars, [BB16a]). Let k be a fixed algebraic closure of a field k of char-

acteristic p with p = 0 or p > 13. The following table gives the complete list of automor-

phism groups of non-singular plane curves of degree 5 over k, along with normal forms (or

geometrically complete families over k using Remark 2.1.8 and Definition 4.3.2) for the as-

sociated strata. We denote by Li,B a homogeneous polynomial of degree i in the variables

{X, Y, Z} \ {B}.

Case G %(G) F%(G)(X,Y, Z)

1 GAP(150, 5) [ζ5X : Y : Z], [X : ζ5Y : Z] X5 + Y 5 + Z5

[X : Z : Y ], [Y : Z : X]

2 GAP(39, 1) [X : ζ13Y : ζ1013Z], [Y : Z : X] X4Y + Y 4Z + Z4X

3 GAP(30, 1) [X : ζ15Y : ζ1115Z], [X : Z : Y ] X5 + Y 4Z + Y Z4

4 Z/20Z [X : ζ420Y : ζ520Z] X5 + Y 5 +XZ4

5 Z/16Z [X : ζ16Y : ζ1216Z] X5 + Y 4Z +XZ4

6 Z/10Z [X : ζ210Y : ζ510Z] X5 + Y 5 +XZ4 + β2,0X3Z2

7 D10 [X : ζ5Y : ζ25Z], [Z : Y : X] X5 + Y 5 + Z5 + β3,1X2Y Z2 + β4,3XY 3Z

8 Z/8Z [X : ζ8Y : ζ48Z] X5 + Y 4Z +XZ4 + β2,0X3Z2

9 S3 [X : ζ3Y : ζ23Z] X5 + Y 4Z + Y Z4 + β2,1X3Y Z + β3,3X2
(
Z3 + Y 3

)
+

[X : Z : Y ] +β4,2XY 2Z2

10 Z/5Z [X : Y : ζ5Z] Z5 + L5,Z

11 Z/4Z [X : ζ4Y : ζ24Z] X5 +X
(
Z4 + Y 4

)
+ β2,0X3Z2 + β3,2X2Y 2Z + β5,2Y 2Z3

12 Z/4Z [X : Y : ζ4Z] Z4L1,Z + L5,Z

13 Z/3Z [X : ζ3Y : ζ23Z] X5 + Y 4Z + Y Z4 + β2,1X3Y Z+

+X2
(
β3,0Z3 + β3,3Y 3

)
+ β4,2XY 2Z2

14 Z/2Z [X : Y : ζ2Z] Z4L1,Z + Z2L3,Z + L5,Z

15 {1} [X : Y : Z] L5(X,Y, Z)

Table 4.2: Geometrically complete families over k
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The algebraic restrictions on the coefficients, so that each family is smooth, geometrically

irreducible, and has no larger automorphism group are not given for seek of simplicity.

Table 4.2 can be seen as the Henn Table (Theorem 2.2.1), but for smooth k-plane curves

of degree 5. The following diagram shows how looks like the stratification by automorphism

groups of non-singular plane quintic curves (we will justify the computation of the dimensions

later):

Z/16Z Z/20Z GAP (150, 5) GAP (30, 1) GAP (39, 1) dim 0

Z/8Z

OO

Z/10Z

OO

dim 1

Z/5Z

OO

AA

D10

OO

dim 2

Z/4Z

OO

HH

Z/4Z S3

OO``

dim 3

Z/3Z

gg

OO

dim 4

Z/2Z

ee

VV

OO

BB

dim 7

{1}

VV

OO

55

dim 12

Figure 4.1: Stratification by automorphisms group

Remark 4.1.13. Table 4.2 confirms that G = Z/4Z is the only group, such that M̃Pl
6 (G) is not

ES-irreducible, as we mentioned before in chapter 2, §2.3. In other words, for Z/4Z, we obtain

two ρ’s, where their normal forms Fρ(X, Y, Z) = 0 are not k-isomorphic, and corresponds to a

disjoint decomposition of M̃Pl
6 (Z/4Z).

§4.2 Final families: A canonical interpretation

We can see in Figure 4.1 a phenomenon that does not happen for degree 4. We define a fi-

nal stratum by automorphism groups to be a stratum that does not properly contain any other
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stratum. There is a final stratum in MPl
6 of dimension greater than zero. This may sound

odd since we could expect that by adding conditions in the parameters we would get bigger

automorphisms groups. However, we will see that this is a normal situation for higher degrees.

4.2.1 A canonical interpretation

The family for the stratum with ρ(G) = 〈diag(1, ζ4,−1)〉 can be described by the equation1

SA,B,C : X5 + AX3Z2 +BX2Y 2Z + CXY 4 +XZ4 + Y 2Z3 = 0.

This stratum has dimension 3 and it is a final stratum: no restriction of the parameters give a

larger automorphism group. Now, it is easy to see that making A = B = C = 0 we get a larger

automorphism group. For instance, we get the new automorphism diag(1, ζ8, ζ4). However, the

plane curve defined by this equation is singular.

We next show an explanation of this final stratum not having dimension zero. We will regard

the family SA,B,C in MPl
6 inside a family in M6 that is not final. When we add restrictions

there, we get extra symmetries and the curve is not plane anymore.

Let us start by computing the family KA,B,C of canonical models of SA,B,C in Pg−1

k
= P5

k
.

We define the functions x = X/Z and y = Y/Z.

div(x) = 2(0 : 0 : 1) + 2(0 : 1 : 0)−
4∑
s=1

(ζs4
4
√
−C : 1 : 0)

:= 2P + 2Q−
4∑
i=1

Ri,

div(y) = (0 : 0 : 1)− (0 : 1 : 0)−
4∑
s=1

(ζs4
4
√
−C : 1 : 0) + (1 : 0 : ±

√
−A±

√
A2−4

2
)

:= P −Q−
4∑
i=1

Ri +
4∑
i=1

Ti.

In order to compute div(dx), we work with the affine form

F (x, y, 1) = x5 + Ax3 +Bx2y2 + Cxy4 + x+ y2.

1One starts with the defining family equation in Table 4.1, case 11. By non-singularity, the coefficient of
Y 2Z3 must be non-zero, so we can re-scale Y to get SA,B,C .
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The differential dx is an uniformizer for all points except for P and the Ti’s because the tangent

space to the curve at these points have equation x− α for some α ∈ k(A,B,C) (we have used

d(x− α) = dx). Then, for those points, we have to work with the expression

dx = − y(2Bx2 + 4Cxy2 + 2)

5x4 + 3Ax2 + 2Bxy2 + Cy4 + 1
dy.

We finally get

div(dx) = P +Q+
4∑
i=1

Ri +
4∑
i=1

Ti,

and a basis of regular differentials is given by

ω0 =
dx

y
, ω1 =

xdx

y
, ω2 = dx,

ω3 =
x2dx

y
, ω4 = xdx, ω5 = ydx.

Proposition 4.2.1. The ideal of the canonical model of SA,B,C in P5[ω0, ..., ω5] is generated by

the polynomials

ω0ω3 = ω2
1, ω0ω4 = ω1ω2, ω0ω5 = ω2

2, ω
2
4 = ω3ω5, ω1ω5 = ω2ω4, ω1ω4 = ω2ω3,

ω1ω
2
3 + Aω3

1 +Bω0ω
2
4 + Cω2ω4ω5 + ω2

0ω1 + ω2
0ω5 = 0,

ω3
3 + Aω0ω

2
3 +Bω1ω3ω5 + Cω3ω

2
5 + ω2

0ω3 + ω0ω1ω5 = 0,

ω4ω
2
3 + Aω0ω3ω4 +Bω2ω3ω5 + Cω4ω

2
5 + ω2

0ω4 + ω0ω2ω5 = 0.

We denote it by KA,B,C .

Proof. If ω0 6= 0, then the des-homogenization of this ideal with respect to ω0 gives

ω5
1 + Aω3

1 +Bω2
1ω

2
2 + Cω1ω

4
2 + ω4

1 + ω2
2,

and we recover the affine curve SA,B,C for Z = 1. If ω0 = 0, then ω1 = ω2 = 0, ω3ω4 = ω2
5 ,

ω3(ω2
3 + ω2

5) = 0 and we recover the points at infinity for SA,B,C : Q, Ri’s.

To check that it is non-singular, we need to see if the rank of the matrix of partial derivatives

of the previous generating functions has rank equal to dim(P5) − dim(KA,B,C) = 4 at every

point, that is, the tangent space has codimension 4. If ω 6= 0, the partial derivatives of the first

three equations plus the equation in the second line produce 4 linearly independent vectors in
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the tangent space. If ω0 = 0, then ω5 is non-zero, and, the 3rd, 4th, and the 6th equations

plus the equation in the last line provide 4 linearly independent vectors. Moreover, this is

independent of the choice of the parameters A,B,C.

Corollary 4.2.2. If we specialize the parameters to A = B = C = 0, then we get a smooth

curve of genus 6, whose full automorphism group has order multiple of 8 and contains

diag(ζ7
8 , ζ

5
8 , ζ

6
8 , ζ

3
8 , ζ

4
8 , ζ

5
8 ).

This curve does not admit a non-singular plane model over k. So the 11th stratum of plane

curves of genus 6 in Table 4.2 that is final as a plane stratum, is indeed living inside a stratum

of smooth curves of genus 6 which is not final.

Proof. We only need to check that the curve K0,0,0 is not isomorphic to any one in the family

8th in Table 4.2 with automorphism group Z/8Z. In order to check that we just look at the

automorphism [X : ζ8Y : −Z] of order 8 in this family acting in its canonical model. We

mimic the previous computations and we get the matrix diag(ζ5
8 , ζ

6
8 , ζ8, ζ

7
8 , ζ

2
8 , ζ

5
8 ). The group

generated by this matrix is clearly non conjugated to the group generated by the one in the

statement of the corollary. So, the curve K0,0,0 does not have a smooth plane model.

We reinterpret the existence of these special kind of families of plane curves in terms of grd

linear series as follows: suppose that C is such a family describing a stratum of plane curves,

and let D be a divisor in Div(C) that defines a g2
d linear series for C. In particular, D is of

degree d, and the vector space L(D) has dimension 2. For some specializations of the param-

eters in the canonical family K, given by the canonical embedding Φ : C ↪→ Pg−1(k), one

gets more automorphisms. Hence more symmetries in the defining equations, which in turns

produce more meromorphic functions with poles bounded above by D = Φ(D). Therefore,

dim(L(D)) > 2, and we do not get a smooth k-plane model anymore.

In our example the divisor D generating the gd2-linear system is D = Q +
∑4

i=1 Ri, and

L(D) is generated by 1, ω1

ω0
, ω2

ω0
. For the special choice of the parameters A = B = C = 0,

we get D = 5Q and L(D) contains the linearly independent functions 1, ω1

ω0
, ω2

ω0
, ω3

ω0
, so the

(projective) dimension of L(D) is greater than 2 and it does not define a gd2 linear system
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anymore. This why, for this choice of the parameters we do not get a smooth plane model

anymore, and it is due to the extra symmetries of the curve.

4.2.2 Non-zero dimensional final strata for higher odd degrees

In this subsection we show examples of non-zero dimensional final strata inMPl
g for infinitely

many g’s. Throughout this subsection, k has characteristic p = 0 or p > 2g + 1.

To prove that they are final strata, that is, that there cannot be more automorphisms, we use

similar techniques to the ones used in section §2.3. In particular, we need the next Theorem,

which follows when one combines Theorem 1.2.1, and the proof of Theorem 1.4.4

Theorem 4.2.3 (Mitchell, Harui). Let G be a subgroup of automorphisms of a smooth k-plane

curve C of degree d ≥ 4. Then one of the following situations holds:

1. G fixes a line and a point off this line.

2. G fixes a triangle and neither line nor a point is leaved invariant. In this case, (C,G)

is a descendant of the the Fermat curve Fd : Xd + Y d + Zd = 0 or the Klein curve

Kd : XY d−1 + Y Zd−1 + ZXd−1 = 0.

3. G is conjugate to a finite primitive subgroup of PGL3(k) namely, the Klein group

PSL(2, 7), the icosahedral group A5, the alternating group A6, the Hessian group Hess∗

with ∗ ∈ {36, 72, 216}.

We prove:

Theorem 4.2.4. Let C be a family of smooth k-plane curves of an odd degree d ≥ 7 with

d ≡ 1 (mod 4), defined by an equation of the form

Xd +XY d−1 + aXZd−1 + Y (d+1)/2Z(d−1)/2 +

+
∑
j odd

1 ≤ j ≤ (d− 3)/2

bjX
(d+1)/2−jY jZ(d−1)/2 +

∑
j even

2 ≤ j ≤ d− 3

cjX
d−jY j = 0.

Then, it is a non-zero dimensional final stratum with automorphism group 〈diag(1,−1, ζd−1)〉.
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Proof. We first note that η : (X : Y : Z) 7→ (X : −Y : ζd−1Z) defines an automorphism of C

of order d− 1, and also a 6= 0 by non-singularity. Because η2 = diag(1, 1, ζ(d−1)/2) ∈ Aut(C)

is a homology of period (d − 1)/2 ≥ 3, then by Theorem 1.2.8, Aut(C) is conjugate to the

Hessian group Hess216 or it fixes a point, a line, or a triangle.

Any element of Hess216 has order at most 6. Hence if Aut(C) is the Hessian group then

d = 7. However, applying the same argument that we did for Lemma 2.3.2, we deduce that

there exists no smooth k-plane curve of degree 7, whose automorphism group is conjugate to

Hess216. That is, Aut(C) fixes a point, a line, or a triangle. On the other hand, C can not be a

descendant of the Klein curve Kd, since d − 1 does not divide |Aut(Kd)| = 3(d2 − 3d + 3).

Similarly, it is not a descendant of the Fermat curve, except possibly if d = 7. Fix d = 7,

and recall that the automorphisms of F7 : X7 + Y 7 + Z7 = 0 are of the shapes [X : ζs7Y :

ζt7Z], [ζs7Z : ζt7Y : X], [X : ζs7Z : ζt7Y ], [ζs7Y : X : ζt7Z], [ζs7Y : ζt7Z : X], or [ζs7Z : X : ζt7Y ]

for some integers s, t. Non of these transformations has order 6, so C with d = 7 is not a

descendant of the Fermat curve F7 of degree 7. Consequently, Aut(C) in PGL3(k) must fix a

line and a point off this line. In particular, the fixed line is one of the reference lines B = 0

with B ∈ {X, Y, Z}, and the point is one of the reference points Pi, for i = 1, 2, 3, since

η ∈ Aut(C) does. Consequently, all automorphisms of C are all of one of the next shapes;

[X : vY + wZ : sY + tZ], [vX + wZ : Y : sX + tZ], or [vX + wY : sX + tY : Z]. In any

case, we always get s = w = 0 through the term Y (d+1)/2Z(d−1)/2, and since Y d, Zd does not

appear in the defining equation for C. Consequently, any automorphism of C is diagonal, say

diag(1, λ, µ), where λd−1 = µd−1 = λ(d+1)/2µ(d−1)/2 = 1. So λ = ±1 and µ = ζ2s+1
d−1 for some

integer s. In other words, |Aut(C)| = d− 1 and Aut(C) = 〈diag(1,−1, ζd−1)〉.

Finally, we show that our family is final. Given a smooth plane curve C over k of an odd

degree d ≥ 7 with d ≡ 1 (mod 4), such that diag(1,−1, ζd−1) is an automorphism, then C must

be defined by an equation of the form

Xd +XY d−1 + XZd−1 +

+
∑
j odd

1 ≤ j ≤ (d + 1)/2

bjX
(d+1)/2−jY jZ(d−1)/2 +

∑
j even

2 ≤ j ≤ d− 3

cjX
d−jY j = 0.
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By non-singularity, we must have b(d+1)/2 6= 0, or C decomposes as X · G(X, Y, Z) for some

homogenous polynomial of degree d − 1, and it becomes singular. Now, rescale the varaible

Z in order to make Y (d+1)/2Z(d−1)/2 has coefficient 1, and rename the parameters after to get a

non-singular plane model in the family of Theorem 4.2.4.

§4.3 Complete and representative families

R. Lercier, C. Ritzenthaler, F. Rovetta and J. Sijsling in [LRRS14] explicitly constructed normal

forms, which are complete and representative families over k (Definition 4.3.2) for smooth

plane quartics with automorphism group of order > 2. These kind of families are used to

determine unique representatives for the isomorphism classes of smooth plane quartics over

finite fields. We also refer to the PhD thesis [LG14, Ch. 2] for such families of smooth plane

quartic curves over number fields. We start with a classification already obtained in section

§4.1 and we mimic the techniques in [LRRS14] and [LG14].

First, for convenience, we recall the definitions of complete and representative families over

a field k of characteristic p = 0 or p > 2g + 1. For more details, see [LRRS14, §2].

Definition 4.3.1. Let S be a scheme over k. A family of smooth curves of genus g ≥ 2 over

S is a morphism of schemes C → S that is proper and smooth with geometrically irreducible

fibers of dimension 1 and genus g.

Definition 4.3.2. [complete, finite, representative family] Let C be a family of smooth curves

over a scheme S over k, and assume that each geometric fiber of C corresponds to a point of

a fixed stratum S ⊆ Mg. We then get a morphism fC : S → S over k. The family C → S

is complete (resp. representative) over k for the stratum S if fC is surjective (resp. bijective)

on F -points for every algebraic extension F/k. If the family is complete over k and all the

fibers of fC are finite and with bounded cardinality, we say that the family is finite over k. In

particular, if a family is finite, the dimension of the family is equal to the dimension of the

scheme S.

The family C → S is geometrically complete (representative) over k if it is complete (rep-

resentative) after extending the scalers to k.
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Lemma 4.3.3 (Lemma 2.2, [LRRS14]). If a family defined over a perfect field k is geometri-

cally representative, then it is representative and complete over k. In this case, all the curves

in the family are defined over the field of moduli (see section §5.1), since they cannot be iso-

morphic to its conjugates.

Remark 4.3.4. In the above sense, the families given in Theorem 4.1.12 are not necessarily

representative or even complete over a field k of characteristic p = 0 or p > 13. For example,

the smooth plane curve C defined over Q by

C : X5 + Y 5 +
1

2
XZ4 +X3Z2 = 0

is isomorphic through φλ = diag(1, 1, λ 4
√

2), where λ = 1 or ζ4, to

X5 + Y 5 +XZ4 ±
√

2X3Z2 = 0,

respectively. In particular, it has two representatives in Table 4.2 with automorphism group

isomorphic to Z/10Z. However, non of them is defined over Q.

We start with the families in Theorem 4.1.12, which are geometrically complete over k

for each of the strata %(M̃Pl
6 (G)). Isomorphisms between two curves in the same family, in

particular with identical automorphism group %(G) in PGL3(k), are clearly given by 3 × 3

projective matrices in the normalizer N%(G)(k) over k.

Theorem 4.3.5. Let %(G) be one of the automorphism groups given by Theorem 4.1.12, such

that M̃Pl
6 (%(G)) is not 0-dimensional. The normalizer N%(G)(k) of %(G) in PGL3(k) is gener-

ated by:

• N{1}(k) = PGL3(k);

• N%(Z/2Z)(k) = GL2,Z(k);

• N%(Z/3Z)(k) = 〈D(k), S̃3〉;

• N%(Z/4Z)(k) = GL2,Z(k);

• N%(Z/4Z)(k) = 〈D(k), [Z : Y : X]〉;

• N%(Z/5Z)(k) = GL2,Z(k);

• N%(S3)(k) = 〈TX(k), G03〉;

• N%(Z/8Z)(k) = 〈D(k), [Z : Y : X]〉;

• N%(D10)(k) = 〈TY (k), G05〉 ;

• N%(Z/10Z) = D(k).
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Proof. The Theorem is a straightforward implication from the well-known result that says that

two non-singular matrices commute if and only if there is a common basis in which both of

them diagonalize or one is a multiple of the identity. As an example, we prove the cases

%(Z/3Z) and %(S3) simultaneously, and the remaining situations are proven in the same way:

if φ ∈ N%(Z/3Z)(k), then φ−1 diag(1, ζ3, ζ
2
3 )φ = diag(1, ζ3, ζ

2
3 ), or diag(1, ζ2

3 , ζ3). Hence, φ is

diagonal or a permutation of the variables, up to a re-scaling. In particular, φ is a product of

an element of D(k) and an element of S̃3, which gives the situation for %(Z/3Z). On the other

hand N%(S3)(k) ⊆ N%(Z/3Z)(k). Furthermore, if φ ∈ N%(Z/3Z)(k) such that φ−1[X : Z : Y ]φ is

of order 2 in %(S3) = 〈diag(1, ζ3, ζ
2
3 ), [X : Z : Y ]〉, then

φ ∈ {diag(a, ζr3 , 1), [aX : ζr3Z : Y ] | a ∈ k and 0 ≤ r ≤ 2}.

Rewriting diag(a, ζr3 , 1) as diag(a, 1, 1) diag(a, ζ3, 1)r, and [aX : ζr3Z : Y ] as

diag(a, ζr3 , 1)[X : Z : Y ], gives the conclusion for %(S3).

Theorem 4.3.6 (Representative families). The following table shows representative families

over a perfect field k of characteristic p = 0 or p > 13, for each stratum of smooth k-plane

curves of genus 6, with non-trivial automorphism group of order 6= 5. For M̃Pl
6 (%(Z/5Z)) a

geometrically complete family is shown.

Case G Fρ(G)(X;Y ;Z) Parameters restrictions

1 GAP(150, 5) X5 + Y 5 + Z5 -

2 GAP(39, 1) X4Y + Y 4Z + Z4X -

3 GAP(30, 1) X5 + Y 4Z + Y Z4 -

4 Z/20Z X5 + Y 5 +XZ4 -

5 Z/16Z X5 + Y 4Z +XZ4 -

6 Z/10Z X5 + Y5 + aXZ4 + X3Z2 a 6= 0, 1/4

7 D10 Y5 + a(X5 + Z5) + X2YZ2 + bXY3Z, a 6= 0, b 6= 1

Y5 + c(X5 + Z5) + XY3Z c3 6= −335−5

8 Z/8Z X5 + Y4Z + aXZ4 + X3Z2 a 6= 0, 1/4

9 S3 a3X5 + Y4Z + YZ4 + a2X3YZ + abX2
(
Z3 + Y3

)
+ cXY2Z2, n.s

d2X5 + Y4Z + YZ4 + dX2
(
Z3 + Y3

)
+ eXY2Z2, n.s

f4X5 + Y4Z + YZ4 + fXY2Z2 f 6= 0,− 3125
16

10 Z/5Z Z5 + XY(X + Y)(X + aY)(X + bY) ab(a− 1)(b− 1)(a− b) 6= 0, n.b

11 Z/4Z X5 + X3Z2 + Y2Z3 + aX2Y2Z + X(bY4 + cZ4), bc 6= 0, c 6= − 7
20

X5 + X2Y2Z + X(dY4 + eZ4) + Y2Z3, de 6= 0

X5 + f(Y2Z3 + X(Y4 + Z4)) f3 6= −( 3
4

)3, 0

134



12 Z/4Z X5 + c(X3Y2 + aX2Y3 + bcXY4 + c2Y5 + Z4Y) n.s, n.b

X5 + s(XY4 + Y5 + Z4Y)

X5 + e(X2Y3 + fXY4 + eY5 + Z4Y),

X5 + g(X2Y3 + XY4 + Z4Y)

13 Z/3Z a3X5 + Y4Z + YZ4 + a2X3YZ + aX2
(
bY3 + cZ3

)
+ dXY2Z2,

e2X5 + Y4Z + YZ4 + X2
(
eY3 + fZ3

)
+ gXY2Z2, n.s, e 6= f

h2X5 + Y4Z + YZ4 + hX2Z3 + sXY2Z2, n.s

t2X5 + Y4Z + YZ4 + tX2Z3 t 6= 0, 3125
1024

14 Z/2Z Z4Y + Z2(X3 + XY2 + aY3) + L5,Z n.s, n.b

Table 4.3: Representative families over k

The families that are modified respect to the ones in Table 4.2 are highlighted. The auto-

morphism groups remain the same one than in Table 4.2.

The parameters restrictions come from avoiding singular equations and larger automor-

phism groups. We use the abbreviations “n.s” and “n.b” for non-singularity and no bigger

automorphism group, when it is tedious to write down the restrictions.

Proof. Clearly, the zero dimensional strata families are representative over k, since each repre-

sents a single point in the (coarse) moduli spaceM6. For the rest of cases, except for the case

with G ' Z/5Z (see section 4.3.1), we will use the same techniques used in [LRRS14] and

[LG14].

(i) The cases G ' Z/10Z and Z/8Z. We first see that the family for Z/10Z is geometri-

cally complete, since the matrix φ = daig(1, 1, 1/
√
β2,0) gives an isomorphism between

this family and the one in Theorem 4.1.12. Next, since the automorphism group is made

of diagonal matrices with different eigenvalues, any isomorphism between two curves in

this family should also be given by a diagonal matrix, see Theorem 4.3.5. It is easy to

check that such isomorphism should look like daig(1, ζε5, α), but then α2 = 1 and we get

an automorphism. In particular, a curve in the new family is only isomorphic to itself, not

to its conjugates, so the family is complete and representative.

Symmetrically, one treat the situation when G ' Z/8Z.

(ii) The case G ' D10: We start with the more general family than in Theorem 4.1.12: aY 5+

b(X5 + Z5) + cXY 3Z + dX2Y Z2 = 0. We know a, b 6= 0 to avoid getting the singular
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points (1 : 0 : 0) and (0 : 1 : 0). So, after rescaling and renaming variables, we obtain the

geometrically complete family: X5 + Y 5 + Z5 + aXY 3Z + bX2Y Z2 = 0.

If b = 0, then a 6= 0 to avoid having a bigger automorphism group, so again, after

rescaling and renaming variables, we can work with the family: Y 5 + c(X5 + Z5) +

XY 3Z = 0. Now, it is easy to check that all the matrices in Nρ(D10) (see Theorem 4.3.5)

carrying equations in this family into equations again in the family, leave the equation

invariant. In other words, a curve with parameter a in this family is only isomorphic to

itself, which implies that the component in the family is representative over k.

If b 6= 0, we work with the family Y 5 + a(X5 + Z5) + bXY 3Z + X2Y Z2 = 0. Again

any matrix in Nρ(D10) leaving the family invariant, fixes each equation.

So, the family given by these two components is representative over k for the stratum with

D10.

(iii) The cases G ' S3 and Z/3Z. By Theorem 4.1.12, the family X5 + Y 4Z + Y Z4 +

a1X
3Y Z + a2X

2
(
Z3 + Y 3

)
+ a3XY

2Z2 = 0 is geometrically complete over k when

G ' S3. One easily checks that it it is not geometrically representative. Moreover, at

least one of the a′is is non-zero or we get a larger automorphism group isomorphic to

GAP(30, 1). We split up into three disjoint subfamilies by the rule: if a 6= 0, then we

use the isomorphism diag(a3
1, 1, 1) and after rename the parameters to get the subfamily

a3X5 + Y 4Z + Y Z4 + a2X3Y Z + abX2
(
Z3 + Y 3

)
+ cXY 2Z2 = 0. It is geometrically

representative over k, since a curve in the subfamily is only isomorphic to itself using

Theorem 4.3.5. Similarly, we obtain the subfamily d2X5 + Y 4Z + Y Z4 + dX2
(
Z3 +

Y 3
)

+ eXY 2Z2 = 0 when a1 = 0 and a2 6= 0, and f 4X5 + Y 4Z + Y Z4 + fXY 2Z2 = 0

when a1 = a2 = 0 and a3 6= 0.

The stratum of Z/3Z is handled in the same way.

(iv) The cases G ' Z/4Z. As above, we need to split up the stratum into different pieces.

For the one with automorphism group isomorphic to Z/4Z in case 11, the 3rd component

was originally given by X5 + X(hY 4 + Z4) + Y 2Z3 = 0, and on which the normalizer

(see Theorem 4.3.5) acts non-trivially. More precisely, the geometric fibers over ±h are
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isomorphic via φ = diag(1,±
√
ζ4,±ζ4). So one asks to trivialize the action in order

to obtain a geometrically representative family over k. Equivalently, we need to solve a

Galois descent problem by descending our subfamily to K := k(h2), the fixed subfield

of L := k(h) under the automorphism σ : h 7→ −h. This could be easily done through

the change of variables diag(1, 4
√
h,
√
h) to get the prescribed component in the Theorem,

after renaming the parameter.

The stratum of Z/4Z in case 12 is handled in the same way, but we ask to solve more than

one Galois descent problem: First, X5 +a1X
3Y 2 +a2X

2Y 3 +a3XY
4 +a4Y

5 +Z4Y = 0

is geometrically complete over k, where a3 or a4 is not zero (by non-singularity). Second,

we split up as follows: If a1 6= 0, re-scale Y and Z, and rename the parameters to obtain

the subfamilyX5+X3Y 2+aX2Y 3+bXY 4+cY 5+Z4Y = 0. It is not geometrically rep-

resentative over k, since the isomorphism diag(1,−1, ζ8) produces isomorphic geometric

fibers over (a, b, c) and (−a, b,−c). Change the variables by φ = diag(1, c, 4
√
c) to get the

familyX5+c2X3Y 2+(ac)c2X2Y 3+bc4XY 4+c6Y 5+c2Z4Y = 0 overK := k(c2, b, ac),

a fixed subfield of L := k(a, b, c) under the action of the automorphism a 7→ −a, b 7→ b,

and c 7→ −c. In particular, it is geometrically representative over k, and we rename the

parameters to get the component X5 + c(X3Y 2 + aX2Y 3 + bcXY 4 + c2Y 5 +Z4Y ) = 0.

Now we distinguish between the following subcases when a1 = 0: if a2 = 0, then,

necessarily, a3a4 6= 0, or we have a larger automorphism group through the extra auto-

morphism diag(1, ζ−1
5 , ζ20) or diag(1, ζ−1

4 , ζ16) respectively. Therefore, after re-scaling

Y, Z and renaming the parameters, the subfamily X5 + XY 4 + dY 5 + Z4Y = 0 is a

geometrically complete subfamily over k with isomorphic geometric fibers over d and

ζs4d for any integer 0 ≤ s ≤ 3. In this case, we descend to K := k(d4) via the iso-

morphism φ = diag(1, d−1,
4
√
d−3), and we get a geometrically representative over k for

our substratum defined by X5 + s(XY 4 + Y 5 + Z4Y ) = 0. If a2 6= 0, the subfamily

X5 +X2Y 3 + cXY 4 + dY 5 + Z4Y = 0 is geometrically complete over k, with isomor-

phic geometric fibers over (c, d) and (ζs3c, ζ
−s
3 d) through diag(1, ζs3 , ζ

−s
12 ). Use the isomor-

phism φ = diag(1, d,
4
√
d2), for d 6= 0, in order to solve the Galois descent problem to get

a subfamily overK := k(cd, d3). In particular,X5+e(X2Y 3+fXY 4+eY 5+Z4Y ) = 0,
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is therefore geometrically representative over k. Lastly, if d = 0 (thus c 6= 0), we

use the isomorphism φ = diag(1, c−1,
√
c−2), and we obtain a family over k(c3) by

X5 + g(X2Y 3 + XY 4 + Z4Y ) = 0, which is geometrically representative over k. This

completes the discussion for these strata.

(v) The case G ' Z/2Z. The family Z4Y + Z2(X3 +XY 2 + aY 3) + L5,Z = 0 is geomet-

rically complete over k for M̃Pl
6 (%(Z/3Z)) (and finite, so the dimension of these stratum

is 7). It is even geometrically representative over k: assume that we have an isomorphism

between two curves in the family. Then Z → Z and Y → bY andX → eX+fY . Hence,

X3 +XY 2 +aY 3 → e3X3 +3e2fX2Y +(3ef 2 +eb2)XY 2 +(f 3 +fb2 +ab3)Y 3, which

means e3/b = 1, f/b = 0 and eb = 1, so the isomorphism is an automorphism.

4.3.1 The stratum for G ' Z/5Z

Before proving the last part of Theorem 4.3.6, we need some previous results.

Lemma 4.3.7. The family C(a,b) : Z5 +XY (X+Y )(X+aY )(X+bY ) = 0 is a geometrically

complete family over k for the stratum of smooth k-plane curves of genus 6, with automorphism

group isomorphic to Z/5Z. In particular, the associated scheme has dimension 2.

Proof. The family Z5 +L5,Z = 0 is a geometrically complete family over k for the stratum, by

Theorem 4.1.12. Moreover, L5,Z should factored in k[X, Y ] into pairwise distinct linear factors,

otherwise, it will be singular. Now, up to k-isomorphism, we change X and Y , separately, to

make one of the factors equals to X = 0 and another to Y = 0. Second, re-scale X, Y and Z

simultaneously to get the factor (X + Y ) in the factorization of L5,Z . Now, we can write the

family as C(a,b) : Z5 + XY (X + Y )(X + aY )(X + bY ) = 0. This family is geometrically

complete over k for M̃Pl
6 (%(Z/5Z)), and finite (we justify this next), so the dimension is 2.

Isomorphisms from the curve C(a,b) to another curve in this family come from transforma-

tions α β

γ δ

 : t 7→ αt+ β

γt+ δ
,
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sending the set {0, 1,∞, a, b} to a set {0, 1,∞, c, d}. The set T of such transformations is a

group and it is isomorphic to S5. Moreover, it is generated by

τ1(a, b) = (a,
a(b− 1)

b− a
), τ2(a, b) = (

1

b
,
a

b
), τ3(a, b) = (b, a).

The latest does not properly define a transformation of the curve in the family since switching

the parameters a, b does not change the equation. The first two satisfy the relations τ 2
1 = τ 3

2 =

(τ1τ2)5 = 1 generating a group isomorphic to A5.

The family defined in this way C→ S is finite and the fibers of fC : S→ S have cardinality

120. Another way of checking the cardinality is starting with a generic curve Z5 +
∏5

i=0(X +

αiY ) and counting the (5 · 4 · 3) · 2 ways of choosing the 3 roots going to∞, 0, 1 and getting

the parameters a and b. See Appendix C.

The family C(a,b) is defined over k(a, b). We are ideally looking for a family (with two

parameters since we know the dimension is two) defined over L = k(a, b)T . Hence, we look

for the Galois descent from k(a, b) to L. This the idea behind the ad-hoc method used in

[LRRS14], see the proof of [LRRS14, Theorem 3.3].

The following asserts that the analogue of Lüroth’s theorem [Har77, Chapter IV, 2.5.5]

holds in dimension 2.

Theorem 4.3.8 (Chapter V, Theorem 6.2 and Remark 6.2.1, [Har77]). Let L/K be a subfield

extension of a purely transcendental extension K(a, b)/K, where K is an algebraically closed

field. If K(a, b) is a finite separable extension of L, then L is also a pure transcendental

extension of K.

We can now prove:

Claim. There exists a representative family over k, for the stratum M̃Pl
6 (%(Z/5Z)) of

smooth k-plane curves of genus 6, and the proof of Theorem 4.3.6 is finished.

Proof. Consider the family C(a,b), which is geometrically complete over k (see Lemma 4.3.7).

It is defined over k(a, b), or to be more precise, it is already defined over the subextension

k(c, d) where c = a + b and d = ab. We want to descend it to the invariant subfield L under

the action of the symmetric group S5 on k(a, b), or equivalently of A5 on k(c, d). In this way,
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we will get a representative family over k: if such a family exists, it is purely transcendental of

dimension 2 by Theorem 4.3.8, and hence given by 2 parameters.

On the other hand, Weil’s cocycle criterion [Wei56] (see Theorem 3.2.10) states that if there

exists a family of isomorphisms

{φσ : σC(a,b) → C(a,b)}σ∈Gal(k(a,b)/L),

satisfying the cocycle condition φσ1σ2 = φσ1
σ1φσ2 for all σ1 and σ2, then there exist a descend

of the curve C(a,b) over L. That is an isomorphism φ : C → C(a,b) of smooth curves, satisfying

φ ◦ σφ−1 = φσ and where C is defined over L = k(α, β)T .

The Galois group Gal(k(a, b)/L) = S5 and generated by τ1, τ2 and τ3. We define

φτ1 = [λ(−X + Y ) : λ(−1
a
X + Y ) : Z], φτ2 = [ 5

√
bX :

5√
b
b
Y : Z] and φτ3 = [X : Y : Z] where

λ = 5
√

(a− 1)−2(a− b)−1a3, and the family {φσ}σ∈Gal(k(a,b)/L) by extending with the cocy-

cle condition. This gives a well-defined family of isomorphisms satisfying the Weil cocycle

condition. Hence, the mentioned descend C exists.

A priori, the curve C does not need to be a smooth plane curve over L, even if the iso-

morphisms φσ are (projective) matrices and C(a,b) are smooth plane curves, see Proposition

2.19 in [BBLG16]. But, Theorem 3.2.8 says that a smooth L-plane curve defined over L has

a non-singular plane model over L when the degree is coprime to 3, so even we can find a

non-singular plane model of C over L.

Remark 4.3.9. In this case, we conclude that the isomorphism φ is also defined by a matrix,

since all matrices φσ can be seen, not only as matrices in PGL3(k(a, b)), but as matrices in

GL2(k(a, b)), since all of them will have the shape
∗ ∗ 0

∗ ∗ 0

0 0 1

 .

Now, Hilbert’s Theorem 90 implies the existence of a matrix φ satisfying φ ◦ σφ−1 = φσ.

Indeed, we can construct an explicit matrix φ by taking a sufficiently general matrix M , and
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making Hilbert’s Theorem 90 explicit:

φ =
∑

τ∈Gal(k(a,b)/L)

φτ
τM,

The meaning of a sufficiently general matrix M is that the matrix φ constructed in that way is

invertible. It is a straightforward computation to check that φσ = φ ◦ σφ−1.

4.3.2 Detecting representatives in the list

Given a smooth k-plane curve C of genus 6 with known non-trivial automorphism group, we

can find its representative over k in the classification in Theorem 4.3.6 by using the remarks

at the end of chapter 2 in [LG14]. Roughly speaking, if φ : Ĉ → C is an isomorphism

between C and its representative Ĉ in the list, then Aut(Ĉ) = φ−1 Aut(C)φ. The idea is to

find a suitable projective 3 × 3 matrix φ such that the equality holds. Moreover, the families

provided in Theorem 4.3.6 are geometrically representative over k, that is a curve in the family

is only isomorphic to itself, not to its conjugates. Therefore, if C is defined over k, then

its representative must be defined over k as well, by the virtue of Weil’s criterion of decent

(Theorem 3.2.10).

(i) G ' Z/2Z,Z/4Z (case 11), or Z/5Z: Let η be a generator of Aut(C), then it is con-

jugate in PGL3(k) to diag(1, 1, ζn) with n = 2, 4 or 5 respectively. Let υ1, υ2 be two

eigenvectors of η with respect to the two equal eigenvalues, and let υ3 be an eigenvector

of η with respect to the other eigenvalue. We can take

φ = (λ1υ1 + λ2υ2 |λ3υ1 + λ4υ2 | υ3) .

It now remains to adjust the scalers λi so that Ĉ is defined over k.

(ii) G ' Z/3Z,Z/4Z (case 12), Z/8Z,Z/10Z,Z/16Z,Z/20Z: A generator η of G is

PGL3(k)-conjugate to diag(1, a, b), for some a, b, where 1, a, b are pairwise distinct. Let

υi for i = 1, 2, 3 be three eigenvectors associated to the three distinct eigenvalues. Thus,

we can take

φ = (λ1υ1 |λ2υ2 | υ3) ,
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and then choose the scalers λ′is properly to get Ĉ defined over k.

(iii) G ' S3,D10,GAP(30, 1) or GAP(39, 1): consider an element η of G of order 3 when

G ' S3 and 15 when G ' GAP(30, 1). Then, as the previous case, η is PGL3(k)-

conjugate to diag(1, a, b), for some a, b, such that 1, a, b are pairwise distinct. Moreover,

we can take

ϕ = (λ1υ1 |λ2υ2 | υ3) ,

where υi, for i = 1, 2, 3, denotes a three eigenvectors associated to the three distinct

eigenvalues. Since elements of order 2 in G forms a single conjugacy classes, we may

further assume that φ−1[X : Z : Y ]φ = η′ where Aut(C) = 〈η, η′〉, and such that Ĉ

is defined over k. We follow the same method for G ' D10, by modifying η to be of

order 5 and replacing [X : Z : Y ] with [Z : Y : X]. Lastly, for G ' GAP(39, 1), η

has order 13 and [X;Z;Y ] is replaced with either [Y : Z : X] or [Z : X : Y ], because

elements of order 3 in GAP(39, 1) forms two conjugacy classes represented by P and

P−1 respectively.

(iv) G ' GAP(150, 5): ∃! element of order 2 (resp. order 3), up to conjugation in Aut(C), say

η1 (resp. η2). This η1 (resp. η2) is PGL3(k)-conjugate to [X : Z : Y ] (resp. [Y : Z : X]).

Also, there exist two homologies η3 and η4 of order 5 in Aut(C), which are conjugate to

diag(ζ5, 1, 1), and diag(1, ζ5, 1) respectively. Moreover,

(η1η3)(η3η1)−1 = (η3η4)(η4η3)−1 = η1η
2
4η1(η3η4)−3 = η2η3η

−1
2 (η3η4)−4 = 1.

Let υ1 be an eigenvector of η1 associated to the eigenvalue different from the other two.

Similarly, υ3 for η3 and υ4 for η4. Thus

ϕ = (λ3υ3 |λ4υ4 |µ1υ1 + µ4υ4) .

Secondly, adjust the scalers so that φ−1η2φ = [Y : Z : X], and Ĉ is defined over k.

Example 4.3.10. Consider the smooth plane curve C defined over k by the equation

C : 2Y 5+Y 3(X−Z)2−Y 2(X+Z)3+4Y (X+Z)2(X2+XZ+Z2)−4XZ(X+Z)(X−Z)2 = 0
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It is clear that [Z : Y : X] is an automorphism. For simplicity, we assume that C has no more

automorphisms. Since υ1 := (1 : 0 : 1), υ2 := (0 : 1 : 0) are two eigenvectors associated to

the eigenvalue 1, and υ3 := (1 : 0 : −1) is an eigenvector associated to the eigenvalue −1, we

may take φ of the shape 
λ1 λ3 1

λ2 λ4 0

λ1 λ3 −1

 ∈ PGL3(k).

We then need to adjust the scalers to get something of the form

Z4Y + Z2(X3 +XY 2 + aY 3) + L5,Z .

For instance, if λ1 = 0, then λ3 6= 0, by invertibility of φ. Hence, the transformed equation

using the reduced φ in this situation becomes

32λ3Z
4Y + Z2(−32λ3

3Y
3 + 16λ2

3(λ2X + λ4Y )Y 2 + 4(λ2X + λ4Y )3) + L5,Z = 0.

Thus, λ2 6= 0 in order to get the monomial X3Z2, and also λ4 = 0 to avoid the monomial

X2Y Z2. Consequently, we get

Z4Y + Z2(−λ2
3Y

3 +
λ2λ3

2
XY 2 +

λ3
2

8λ3

X3) + L5,Z = 0.

In particular, we ask for λ2 and λ3 in k such that λ2λ3 = 2 and λ3
2 = 8λ3. So, φ should be

φ =


0 1 1

2 0 0

0 1 −1

 ,

and the representative of C over k in Theorem 4.3.6 turns out to be

Ĉ : Z4Y + Z2(X3 +XY 2 − Y 3) +X(2X4 −XY 3 + 3Y 4) = 0.

§4.4 Twists of smooth plane curves of genus 6

Let C be a smooth k-plane curve of degree 5, and assume that k is a perfect field of zero

characteristic or p > 13. We compute equations of all twists of C over k, except for the Fermat
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and the Klein curves 2, by using the parameterizations obtained in Theorem 4.3.6. However,

we do not give a big emphasize computing them modulo k-equivalence for the cases with non-

cyclic automorphism group 3. The idea is that we can find an unique non-singular plane model

F (X, Y, Z) = 0 over k in one of these families (in Theorem 4.3.6), representing C = C ⊗k k,

in particular Aut(C) equals to one of the fixed group representations %(G) in Theorem 4.1.12.

However, C descends to k also as a smooth plane curve over k (Theorem 3.2.8), then so does

F (X, Y, Z) = 0. In particular, it is isomorphic to its conjugates, which is not possible, since

the families in Theorem 4.3.6 are geometrically representative over k (in particular, a curve in

the family is only isomorphic to itself). Consequently, F (X, Y, Z) = 0 should be defined over

k by the virtue of Weil’s criterion of decent (Theorem 3.2.10). In other words, computing the

twists of F (X, Y, Z) = 0 over k is the same as computing them for C over k.

For computing equations for twists, we mainly use the improved method in [LG14] and

[LG17], given in chapter 3 for smooth plane curves. For some families, we directly use Theo-

rem 3.5.2, and for the other cases, the following observation is useful:

Remark 4.4.1 (Remark 3.3, [LG16]). Let Ci/k for i ∈ {1, 2} be two curves such that there

exists an inclusion of automorphism groups ι : Aut(C1) → Aut(C2), compatible with the

action of Gk, that is, such that σ(ι(α)) = ι(σ(α)) for all σ ∈ Gk and all α ∈ Aut(C1).

Then, there is a natural inclusion of the set of cocycles of the first Galois cohomology groups

Z1(Gk,Aut(C1)) ↪→ Z1(Gk,Aut(C2)). The inclusion does not lift to an inclusion of cohomol-

ogy sets

In what follows, we use
√̀
α to denote a fixed `-th root of α ∈ k in the algebraic closure k

of k, where we assumed all the time that k is perfect.

2For both cases we only inspect how are the twists following what is done in Fermat and Klein quartics.

3A reader who is interested to get a complete classification of twists for non-cyclic cases may mimic the
techniques [LG14] for genus 3 curves. Our aim is just to measure how much our representative classification in
Theorem 4.3.6 would be helpful to compute the twists.
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4.4.1 Cyclic cases

We deduce by Theorem 3.5.2 that the set Twistk(C) is made exclusively of diagonal twists, for

any when Aut(C ⊗k k) is cyclic. We detail the description for each such subcase.

Proposition 4.4.2. Let C/k be a smooth k-plane curve of genus 6. Hence,

1. if Aut(C ⊗k k) ' Z/20Z, then from Theorem 4.3.6 C is k-isomorphic to X5 + Y 5 +

XZ4 = 0. In particular, any twist for C over k is given by φ = diag(1, 5
√
m, 4
√
n), and

has the form

X5 +mY 5 + nXZ4 = 0,

for some m,n ∈ k∗. Two twists {m,n} and {m′, n′} are equivalent if and only if m =

m′ mod k∗
5

and n = n′ mod k∗
4
.

2. if Aut(C ⊗k k) ' Z/16Z, then from Theorem 4.3.6 C is k-isomorphic to X5 + XZ4 +

Y 4Z = 0. In particular, any twist for C over k is given by φ = diag(1, 4
√
n/ 4
√
m, 4
√
m),

and has the form

X5 +mXZ4 + nY 4Z = 0,

for some m,n ∈ k∗. The twists {m,n} and {m′, n′} are equivalent if and only if m′ =

q4m, n′ = qq′4n for some q, q′ ∈ k∗.

3. if Aut(C ⊗k k) ' Z/10Z, then from Theorem 4.3.6 C is given by a single choice of the

parameter a in k of the family X5 + Y 5 + aXZ4 + X3Z2 = 0. In particular, any twist

for C over k is given by φ = diag(1, 5
√
m,
√
nm), and has the form

X5 +mY 5 + a(nm)2XZ4 + nmX3Z2 = 0,

for some m,n ∈ k∗. The twists {m,n} and {m′, n′} are equivalent if and only if m′ =

q5m and n′ = q−5q′2n for some q, q′ ∈ k∗.

4. if Aut(C ⊗k k) ' Z/8Z, then from Theorem 4.3.6 C is given by a single choice of the

parameter a in k of the family X5 + Y 4Z + aXZ4 +X3Z2 = 0. In particular, any twist
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for C over k is given by φ = diag(1, 4
√
n/
√
m,
√
m), and has the form

X5 + nY 4Z + am2XZ4 +mX3Z2 = 0,

for some m,n ∈ k∗. Two twists {m,n} and {m′, n′} are equivalent if and only if m′ =

q2m and n′ = qq′4n for some q, q′ ∈ k∗.

5. if Aut(C ⊗k k) ' Z/5Z, then from Theorem 4.3.6 C is given by a choice of the parame-

ters a, b in k, not necessarily unique, of the family Z5+XY (X+Y )(X+aY )(X+bY ) =

0. In particular, any twist for C over k is given by φ = diag(1, 1, 5
√
m), and has the form

mZ5 +XY (X + Y )(X + aY )(X + bY ) = 0,

for some m ∈ k∗. Two twists {m} and {m′} are equivalent if and only if m′ =

m mod k∗
5
.

6. if Aut(C ⊗k k) ' Z/4Z as case 11 in Theorem 4.3.6, then from Theorem 4.3.6 C is

k̄-isomorphic to a non-singular plane model, for a single choice of the parameters, in

one of the following families

X5 +X3Z2 + Y 2Z3 + aX2Y 2Z +X(bY 4 + cZ4),

X5 +X2Y 2Z +X(dY 4 + eZ4) + Y 2Z3,

X5 + f(Y 2Z3 +X(Y 4 + Z4)), respectively.

Moreover, any twist for C over k is given by φ = diag(1,
√
n/
√
m,
√
m), and has the

form

X5 +mX3Z2 +mnY 2Z3 + anX2Y 2Z +X(b(n2/m)Y 4 + cm2Z4),

X5 + nX2Y 2Z +X(d(n2/m)Y 4 + em2Z4) +mnY 2Z3,

X5 + f(mnY 2Z3 +X((n2/m)Y 4 +m2Z4)), respectively,

for some m,n ∈ k∗. The twists {m,n} and {m′, n′} are equivalent if and only if m′ =
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mq2, n′ = nqq′2 for some q, q′ ∈ k∗.

7. if Aut(C ⊗k k) ' Z/4Z as case 12 in Theorem 4.3.6, then from Theorem 4.3.6 C is

k̄-isomorphic a non-singular plane model, for a single choice of the parameters, in one

of the following families

X5 + c(X3Y 2 + aX2Y 3 + bcXY 4 + c2Y 5 + Z4Y ),

X5 + e(X2Y 3 + fXY 4 + eY 5 + Z4Y ),

X5 + s(XY 4 + Y 5 + Z4Y ),

X5 + g(X2Y 3 +XY 4 + Z4Y ), respectively.

In this case, any twist for C over k is given by φ = diag(1, 1, 4
√
m), and has the form

X5 + c(X3Y 2 + aX2Y 3 + bcXY 4 + c2Y 5 +mZ4Y ),

X5 + s(XY 4 + Y 5 +mZ4Y ),

X5 + e(X2Y 3 + fXY 4 + eY 5 +mZ4Y ),

X5 + g(X2Y 3 +XY 4 +mZ4Y ), respectively.

Two twists {m} and {m′} are equivalent if and only if m′ = m mod k∗
4
.

8. if Aut(C ⊗k k) ' Z/3Z, then from Theorem 4.3.6 C is k̄-isomorphic to a non-singular

plane model, for a single choice of the parameters, in one of the following families

a3X5 + Y 4Z + Y Z4 + a2X3Y Z + aX2
(
bY 3 + cZ3

)
+ dXY 2Z2,

e2X5 + Y 4Z + Y Z4 +X2
(
eY 3 + fZ3

)
+ gXY 2Z2,

h2X5 + Y 4Z + Y Z4 + hX2Z3 + sXY 2Z2,

t2X5 + Y 4Z + Y Z4 + tX2Z3, respectively.
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Thus any twist for C over k is given by φ = diag(1, 3
√
m,

3
√
m2), and has the form

a3X5 +m2Y 4Z +m3Y Z4 + a2mX3Y Z + amX2
(
bY 3 + cmZ3

)
+ dm2XY 2Z2,

e2X5 +m2Y 4Z +m3Y Z4 +mX2
(
eY 3 + fmZ3

)
+ gm2XY 2Z2,

h2X5 +m2Y 4Z +m3Y Z4 + hm2X2Z3 + sm2XY 2Z2,

t2X5 +m2Y 4Z +m3Y Z4 + tm2X2Z3, respectively,

for some m ∈ k∗. Two twists {m} and {m′} are equivalent if and only if m′ =

m mod k∗
3
.

9. if Aut(C ⊗k k) ' Z/2Z, then from Theorem 4.3.6 C is k̄-isomorphic to a non-singular

plane model, for a single choice of the parameters, in the family Z4Y +Z2(X3 +XY 2 +

aY 3) + L5,Z = 0. Any any twist for C over k is given by φ = diag(1, 1,
√
m), and has

the form

m2Z4Y +mZ2(X3 +XY 2 + aY 3) + L5,Z = 0,

for some m ∈ k∗. Two twists {m} and {m′} are equivalent if and only if m′ =

m mod k∗
2
.

Proof. For any of the above cases, twists of C over k are all diagonal of the shape

diag(1, λ, µ) ∈ PGL3(k). We just need to adjust the scalers λ, µ ∈ k properly, so that the

transformed equation for C under φ is defined over k.

We show, for example, the 6th case when Aut(C ⊗k k) ' Z/4Z. By Theorem 4.3.6, we

get C in one of the following families

X5 +X3Z2 + Y 2Z3 + aX2Y 2Z +X(bY 4 + cZ4),

X5 +X2Y 2Z +X(dY 4 + eZ4) + Y 2Z3,

X5 + f(Y 2Z3 +X(Y 4 + Z4)), respectively,

for a single choice of the parameters. By non-singularity, we know that XY 4 and XZ4 occurs

with non-zero coefficients. Hence λ4, µ4 ∈ k, and moreover λ2µ3 ∈ k by the aid of the

term Y 2Z3. Consequently, µ =
√
m and λ = 4

√
n2/m =

√
n/
√
m for some n,m ∈ k∗.
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Next, substitute into the above equations to obtain the defining form for the twist over k as

in the statement. Finally, two twists {m,n} and {m′, n′} are equivalent if and only if there

exists an ψ ∈ PGL3(k) and an automorphism α of C such that α ◦ φ = φ′ ◦ ψ, where φ =

diag(1,
√
n/
√
m,
√
m) and φ = diag(1,

√
n′/
√
m′,
√
m′), see Remark 1.3.1 in [LG14]. This

is equivalent to write ψ = diag(1, q, q′) for some q, q′ ∈ k∗, such that m′ = mq2 and n′ =

nq2q′, which was to be shown in this situation.

In the same way, one can treats any of the other cases.

4.4.2 Non-cyclic cases

We handle the situation for which the automorphism group of C ⊗k k is not cyclic.

Proposition 4.4.3. Let C/k be be a smooth k-plane curve of genus 6 such that Aut(C⊗k k) '

GAP(30, 1). From Theorem 4.3.6 C is k-isomorphic to X5 + Y 4Z + Y Z4 = 0, and the set

Twistk(C) is formed by twists of one of the following form:

1. Almost-diagonal twists of the form

X5+2rY 5+6smY 4Z+4mrY 3Z2−2sm2Y 2Z3−6rm2Y Z4−2sm3Z5 = 0, r, s,m ∈ k.

2. Diagonal twists of the form

X5 +mY 4Z +m3Y Z4 = 0, m ∈ k∗.

Proof. By Lemma B.1, we know that every twist of C is given by an isomorphism φ of the

shape [X : a11Y + a12Z : a21Y + a22Z] : C ′ → C, where we can assume that a11a21 6= 0,

and then we write a11 = α, a12 = αβ, a21 = γ and a22 = γδ. Making the substitution
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Y → α(Y + βZ) and Z → γ(Y + δZ) in the equation of C, we get

AB ∈ k

ABM + 3AH ∈ k

4AHM − 2ABN ∈ k

4AHM2 − 4ABMN + AHN ∈ k

AHM3 − ABNM2 + 2AHNM − 3ABN2 ∈ k

AHM2N − ABMN2 − AHN2 ∈ k

where A = αγ, B = α3 + γ3, H = α3β + γ3δ, M = β + δ and N = βδ. A computations

shows that M,N,AH,AB ∈ k. In particular, β and δ are the two roots of a polynomial of

degree 2 over k. If β and δ are both k-rational numbers, then we get a diagonal twist of the

form X5 +mY 4Z+m3Y Z4 through φ = diag(1, 15
√
m,

15
√
m11), for some m ∈ k∗. Otherwise,

we can assume β =
√
m = −δ, and we get α4γ + αγ4 ∈ k and (α4γ − αγ4)

√
m ∈ k. Hence,

α4γ = r+s
√
m and αγ4 = r−s

√
m for some r, s ∈ k. We therefore obtain an almost-diagonal

twist as in the statement, since

α = 15

√
(r + s

√
m)4

r − s
√
m

, and γ = 15

√
(r − s

√
m)4

r + s
√
m

.

Proposition 4.4.4. Let C/k be a smooth k-plane curve of genus 6 such that Aut(C⊗k k) ' S3.

From Theorem 4.3.6 C is k-isomorphic to a curve in one of the next families for a single choice

of the parameters

a3X5 + Y 4Z + Y Z4 + a2X3Y Z + abX2
(
Z3 + Y 3

)
+ cXY 2Z2 = 0,

d2X5 + Y 4Z + Y Z4 + dX2
(
Z3 + Y 3

)
+ eXY 2Z2 = 0,

f 4X5 + Y 4Z + Y Z4 + fXY 2Z2 = 0.

The set of twists Twistk(C) is formed by twists of one of the following forms:
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1. Diagonal twists defined by an equation of the form

a3X5 +m2(Y 4Z +mY Z4 + a2m−1X3Y Z + abX2
(
Z3 +m−1Y 3

)
+ cXY 2Z2) = 0,

d2X5 +m2(Y 4Z +mY Z4 + dX2
(
Z3 +m−1Y 3

)
+ eXY 2Z2) = 0,

f 4X5 +m2(Y 4Z +mY Z4 + fXY 2Z2) = 0, respectively.

through φ = diag(1, 3
√
m,

3
√
m2), for m ∈ k∗.

2. Almost-diagonal twists parameterized by elements A,B,m ∈ k such that there exist

N ∈ k with A2 −mB2 = N3, where we can take an isomorphism

φ =


1 0 0

0 3
√
A+B

√
m

√
m 3
√
A+B

√
m

0 3
√
A−B

√
m −

√
m 3
√
A−B

√
m

 .

Therefore, an almost-diagonal twist {A,B,m,N} is defined by an equation of the form

2N(Y 2 −mZ2)
(
mBZ(3Y 2 +mZ2) + A(Y 3 + 3mZ2Y )

)
+ cN2(Y 2 −mZ2)2X+

+2ab
(
mBZ(3Y 2 +mZ2) + A(Y 3 + 3mZ2Y )

)
X2 + a2N(Y 2 −mZ2)X3 + a3X5 = 0,

d2X5 + 2d
(
mBZ(3Y 2 +mZ2) + A(Y 3 + 3mY Z2)

)
X2 + eN2(Y 2 −mZ2)2X+

+2N(Y 2 −mZ2)
(
mBZ(3Y 2 +mZ2) + A(Y 3 + 3mZ2Y )

)
= 0,

2N(Y 2 −mZ2)
(
mBZ(3Y 2 +mZ2) + A(Y 3 + 3mZ2Y )

)
+

+f 4X5 + fN2(Y 2 −mZ2)2X = 0, respectively.

Proof. Since Aut(C ⊗k k) ≤ GAP(30, 1), we can apply Remark 4.4.1. In particular, by

Proposition 4.4.3, any twist C ′ of C over k is either a diagonal twist of the shape φ =

diag(1, 15
√
q, 15
√
q11) or it is an almost-diagonal twist of the shape

φ =


1 0 0

0 15

√
(r+s

√
m)4

r−s
√
m

√
m 15

√
(r+s

√
m)4

r−s
√
m

0 15

√
(r−s

√
m)4

r+s
√
m

−
√
m 15

√
(r−s

√
m)4

r+s
√
m

 ,
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where m, q ∈ k∗. Consider, for example, C of the form

f 4X5 + Y 4Z + Y Z4 + fXY 2Z2 = 0.

When C ′ is a diagonal twist, the monomial term XY 2Z2 restricts q ∈ k∗
5 and the twist

reduces to φ = diag(1, 3
√
m,m

3
√
m2) for some m ∈ k∗, which in turns is equivalent to φ =

diag(1, 3
√
m,

3
√
m2) in the statement.

When C ′ is almost-diagonal, the coefficient of XY 4 in C ′ is f 5
√

(r2 −ms2)2 should be in

k∗. Therefore, r±s
√
m = (A±B

√
m)5 for someA,B ∈ k. Moreover, the termX(Y 2−mZ2)2

occurs inC ′ with coefficient f 3
√

(A2 −B2m)2. Consequently,A2−B2m ∈ k∗3 , and we deduce

the result in this situation.

In the same way, we can handle the remaining situations when C lies in any of the other

components.

Proposition 4.4.5. LetC/k be a smooth k-plane curve of genus 6 such that Aut(C⊗kk) ' D10.

From Theorem 4.3.6 C is k-isomorphic to a curve in one of the two next families for a single

choice of the parameters

Y 5 + a(X5 + Z5) +X2Y Z2 + bXY 3Z = 0

Y 5 + c(X5 + Z5) +XY 3Z = 0.

The set of twists Twistk(C) is then formed by twists of one of the following forms:

1. Diagonal twists of the form

Y 5 + a(mX5 +m−1Z5) +X2Y Z2 + bXY 3Z = 0

Y 5 + c(mX5 +m−1Z5) +XY 3Z = 0 respectively.

2. Almost-diagonal twists parameterized by elementsA,B,m ∈ k such that there existsN ∈ k
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with A2 −mB2 = N5, where an equation is given by

2aAX5 +X4(N2Y + 10amBZ) + 20amAX3Z2 + 2mX2Z2(10amBZ −N2Y ) + bcX2Y 3+

+10am2AXZ4 + Z2(2am3BZ3 + (mN)2Y Z2 − bmNY 3) + Y 5 = 0,

2c(AX5 + 5mBX4Z + 10mAX3Z2 + 10m2BX2Z3 + 5m2AXZ4 +m3BZ5) + Y 5+

+N(X2 −mZ2)Y 3 = 0 respectively.

Proof. We know from Lemma B.1, that any twist of C is given by an isomorphism φ of the

shape [a11X + a13Z : Y : a31X + a33Z] : C ′ → C. Now, we can proceed exactly as in

Proposition 4.4.3. In particular, C ′ is either a diagonal twist coming from an isomorphism of

the shape φ = diag( 5
√
α, 1, 5

√
β) or it is an almost-diagonal twist by an isomorphism

φ =


5
√
A+B

√
m 0

√
m 5
√
A+B

√
m

0 1 0

5
√
A−B

√
m 0 −

√
m 5
√
A−B

√
m

 .

Moreover, the monomial terms XY 3Z and X2Y Z2 restricts α = m,β = m−1 for some m ∈

k∗, when C ′ is a diagonal twist, and A2 −mB2 ∈ k∗5 when C ′ is almost-diagonal.

The Klein and the Fermat curves

In this part, we inspect the determination of the set of twists of a smooth k-plane curve C/k of

genus 6 such that Aut(C ⊗k k) ' GAP(39, 1) or GAP(150, 5).

Here we detail our inspections for each case;

(A) If Aut(C ⊗k k) ' GAP(39, 1), then C is k-isomorphic to the Klein quintic

CK : X4Y + Y 4Z + Z4X = 0.

It is remarkable, that the study of the twists of the Klein quartic is considerably more

complicated than the study of the twists of the Klein quintic. The explanation is that in

the degree 5 case, we do not have the extra involution s (see Section 6 in [LG16]) in the

automorphism group. As a consequence of this simplicity, is that the splitting field L of a

twist of CK over k always contains a unique cyclic extension of L0/k of degree 3, that is
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L0 = k(α, β, γ) where α, β, γ are the three roots of a cubic polynomial over k. Moreover,

there are exactly two non-equivalent twists with the same splitting field L. Therefore,

one expects the set of twists Twistk(CK) to be in two-to-one correspondence with cyclic

Galois extensions of k of degree 3: k(α, β, γ), where α, β, γ are the three roots of a cubic

polynomial over k such that αβγ ∈ k∗13 .

Furthermore, if one follows the same method in [LG17, Proposition 4.1] and [LG16, Sec-

tion 6], for the Klein quartic curve, and mimic the techniques there, then it is also expected

that any twist comes with splitting field L = k(ζ13, 13
√
α, 13
√
β, 13
√
γ) with αβγ ∈ k∗13 . In

particular, we can always take an isomorphism φ : C ′K → CK of the shape
13
√
α α 13

√
α α2 13

√
α

13
√
β β 13

√
β β2 13

√
β

13
√
γ γ 13

√
γ γ2 13

√
γ

 ,

to get a representative twist C ′K of CK over k with splitting field L. The other twist is

obtained by switching α, β, γ by α12, β12, γ12.

(B) Let C/k be a smooth k-plane curve of genus 6 such that Aut(C ⊗k k) ' GAP(150, 5).

Then, C is k-isomorphic to the Fermat quintic

CF : X5 + Y 5 + Z5 = 0.

Definition 4.4.6 (Definition 4.7, [LG16]). The set Poln3 (k) is defined to be the set of separable

polynomials of degree 3 with coefficients in k and whose independent coefficient is in−1 ·k∗n,

i.e. equals to −α for some α ∈ k∗n .

Given P (T ) = (T − α)(T − β)(T − γ) ∈ Pol10
3 (k), we can attach to it the twist

C ′ :
∑

i1 + i2 + i3 = 5

i1, i2, i3 ≥ 0

(
5

i1

)(
5− i1
i2

)
S1+i2+2i3X

i1Y i2Zi3 = 0, (4.1)
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where Sj = αj + βj + γj for j ∈ N, and the isomorphism φ : C ′ → CF is given by

φ =


5
√
α α 5

√
α α2 5

√
α

5
√
β β 5

√
β β2 5

√
β

5
√
γ γ 5

√
γ γ2 5

√
γ

 .

whose splitting field is L = k(ζ5, 5
√
α, 5
√
β, 5
√
γ).

Now, if we mimic the computations in [LG14, §3.1] or [LG16, §4], for the Fermat quartic

curve, and apply Lemma B.1, then it becomes expected that any other twist of CF lies in one

of the two categories:

(i) A diagonal twist of the form aX5 + bY 5 + Z5 = 0 via an isomorphism φ =

diag( 5
√
a, 5
√
b, 1) where 1 6= a 6= b 6= 1. After right multiplication by a suitable ratio-

nal matrix, say 
1 qa (qa)2

1 qb (qb)2

1 q q2


with q = (ab)3, we obtain the equivalent twist given by the isomorphism

φ =


5
√
a qa 5

√
a (qa)2 5

√
a

5
√
b qb 5

√
b (qb)2 5

√
b

1 q q2

 =


5
√
qa qa 5

√
qa (qa)2 5

√
qa

5
√
qb qb 5

√
qb (qb)2 5

√
qb

5
√
q q 5

√
q q2 5

√
q

 ,

which has the form (4.1) with α = qa, β = qb, and γ = q. Thus, it corresponds to

P (T ) = (T − α)(T − β)(T − γ) ∈ Pol10
3 (k).

(ii) An almost-diagonal twist given by an isomorphism

φ =


5
√
c
√
m 5
√
c 0

5
√
c −

√
m 5
√
c 0

0 0 1

 ,

where c = a + b
√
m and c = a − b

√
m and m ∈ k∗. We can assume that b 6= 0, after
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right multiplication, if necessary, by the rational matrix
1 m 0

1 1 0

0 0 1

 .

We take the equivalent twist

φ =


5
√
qc qc 5

√
qc (qc)2 5

√
qc

5
√
qc qc 5

√
qc (qc)2 5

√
qc

5
√
q q 5

√
q q2 5

√
q

 ,

where q = (a2− b2m)3, which is again of the form (4.1) with α = qc, β = qc, and γ = q.

Thus, it corresponds to P (T ) = (T − α)(T − β)(T − γ) ∈ Pol10
3 (k).
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CHAPTER

5
The field of moduli and fields of

definition for smooth plane curves

Let C be a smooth plane curve of genus g ≥ 3 over k, where k is a perfect field of characteristic

p = 0 or p > 2g + 1. The field of moduli of C, relative to the Galois extension k/k, is denoted

by Mk/k(C) (see Definition 5.1.3). It has been proven by B. Huggins, in her PhD [Hug05],

that Mk/k(C) is always a field of definition for C unless Aut(C) is PGL3(k)-conjugate to a

diagonal subgroup of PGL3(k), or to one of the Hessian groups Hess∗ with ∗ ∈ {18, 36}.

We aim in this chapter to investigate the next question:

Question. Given a smooth plane curve C over k such that Aut(C) is PGL3(k)-conjugate to

a diagonal subgroup of PGL3(k), when the field of moduli Mk/k(C) needs to be a field of

definition?

To answer this question, we fix a non-singular plane model FC(X, Y, Z) = 0 over k forC in

one of the families of Theorem 2.1.3, such that Aut(FC) ≤ PGL3(k) is diagonal, that is made

entirely of 3×3 projective matrices of diagonal shapes. We first show that if Aut(FC) contains

a non-homology of order n > 1 (Definition 1.2.6), then Mk/k(C) is always a field of definition,

unless n divides one of the integers d, d−1 or d(d−2). We also give a geometrically complete

family over k and describe the automorphism group in each subcase as well; see Theorem 5.4.4.

Secondly, if Aut(FC) is made entirely of homologies, then it is either a cyclic group of order

dividing d or d − 1, or it is isomorphic to Z/2Z × Z/2Z; see Lemma 5.4.8. In the case that

Aut(FC) is cyclic generated by an homology of order n > 1, dividing d with d odd or divides

d− 1, then again Mk/k(C) is a field of definition; see Theorem 5.4.14 and Theorem 5.4.15. In
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the remaining situations, we construct explicit examples of smooth plane curves over C, whose

field of moduli relative to the Galois extension C/R is R, but it is not a field of definition; see

Proposition 5.4.2, Theorem 5.4.6, Theorem 5.4.16 and Proposition 5.4.20.

We shall deal with the following items:

5.1. The field of moduli and fields of definition.

5.2. Débes-Emsalem: The canonical model for C/Aut(C).

5.3. On the field of moduli of smooth curves with odd signature.

5.4. Smooth plane curves with diagonal automorphism groups.

§5.1 The field of moduli and fields of definition

Definition 5.1.1. (Fields of definition) Let k ⊆ L ⊆ L be fields, where L is a fixed algebraic

closure of L. Given a smooth curve C/L, then C is defined over k if and only if there is a curve

C ′/k that is isomorphic over L to C. In such case, k is called a field of definition of C.

We say that C is definable over k if there is a curve C ′/k such that C and C ′ are isomorphic,

viewed as smooth curves over L.

Definition 5.1.2. (The field of moduli) Let C/k be a smooth curve over k. The field of moduli

of C, denoted by kC , is the intersection of all fields of definition of C := C ⊗k k.

There is another definition for the field of moduli which is commonly used and is defined

relative to a given field extension L/k:

Definition 5.1.3 (Definition 1.2, [AQ12]). Let C/L be a smooth curve and let L/k be a field

extension. The field of moduli of C relative to the extension L/k, denoted by ML/k(C), is the

subfield of L fixed by the subgroup

UL/k(C) := {σ ∈ Gal(L/k) : C ∼=L
σC}.

We recall Weil’s condition of decent, which gives necessary and sufficient conditions for a

field k to be a field of definition for C:

Theorem 5.1.4 (Weil, [Wei56]). Let C be a smooth curve defined over a field L, and let L/k

be a Galois extension. Suppose that for every σ ∈ Gal(L/k), there exists an L-isomorphism
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φσ : σC 7→ C such that

φσ ◦ σφτ = φστ for all σ, τ ∈ Gal(L/k).

Then, one gets a curve C ′ over k and an L-isomorphism ϕ : C ′⊗k L→ C such that φσ ◦ σϕ =

ϕ, for all σ ∈ Gal(L/k).

If Aut(C) is trivial, then Weil’s condition of descent becomes trivially true and so the field

of moduli needs to be a field of definition. On the other hand (see for example the Introduction

in [DE99]), a smooth curve C/k of genus g = 0 is ksep-isomorphic to the projective line P1,

which is defined over the prime field k0 of k. Moreover, if g = 1, the field of moduli is k0(j),

where j is the modular invariant of C, and it is known that for characteristic p 6= 2, 3, C is

ksep-isomorphic to a model defined over k(j) (see [Sil09, Chp. III, Proposition 1.4]).

The real difficulty happens for g ≥ 2 and non-trivial automorphism groups, since the Weil’s

criterion of decent is not easily checked.

Proposition 5.1.5 (Débes-Emsalem, Proposition 2.1, [DE99]). Let C be a smooth curve over

L and let L/k be a Galois extension. The group UL/k(C) is a closed subgroup of Gal(L/k)

with respect to the Krull topology. In particular,

UL/k(C) = Gal(L/ML/k(C)).

The field of moduli ML/k(C) of C relative to the extension L/k is contained in each field of

definition of C between k and L. Hence if the field of moduli is a field of definition, it is the

smallest field of definition between k and L. Finally, if F := ML/k(C), then the field of moduli

of C relative to the extension L/F is exactly F .

Remark 5.1.6. The final observation of Proposition 5.1.5 that the field of moduli relative to the

extension L/ML/k(C) equals ML/k(C) generally allows one to reduce to the situation where

the base field k is the field of moduli of the given curve C, relative to L/k, by extending the

scalars from k to ML/k(C).

Due to S. Koizumi [Koi72, Proposition 2.3-(ii)], Theorem 1.5.8 in [Hug05] shows that,

Mk/k0
(C) is a purely inseparable extension of kC , where k0 is the prime field of k.
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Corollary 5.1.7 (Corollary 1.5.9, [Hug05]). Let C be a smooth curve over a field k. Then, C

is definable over a finite separable extension of its field of moduli kC .

The main relation between the field of moduli in Definition 5.1.2 and Definition 5.1.3 is the

following theorem:

Theorem 5.1.8 (B. Huggins, Theorem 1.6.9, [Hug05]). Let C be a smooth curve over a field

k. Then, C is definable over its field of moduli kC if and only if given any algebraically closed

field F ⊇ k, and any subfield L ⊆ F with F/L Galois, C ⊗k F can be defined over its field of

moduli MF/L(C), relative to the extension F/L.

5.1.1 The field of moduli for smooth plane curves

Definition 5.1.9. (Diagonal groups) The group of all 3×3 projective linear matrices of diagonal

shapes over an algebraically closed field k of characteristic p ≥ 0 is denoted by D(k). A finite

non-trivial group G is called diagonal if it can be viewed as a subgroup of D(k), i.e. if there is

an injective representation % : G ↪→ D(k).

Example 5.1.10. Of course, cyclic groups of order relatively prime with the characteristic p

are diagonal. The converse is not true, for example, the group

〈diag(−1, 1, 1), diag(1,−1, 1)〉

is diagonal, but not cyclic, since it is isomorphic to Z/2Z× Z/2Z.

It has been proven in [Hug05] the next result for smooth plane curves:

Theorem 5.1.11 (B. Huggins, Theorem 6.4.8, [Hug05]). Let k be a perfect field of charac-

teristic p not equal to 2, and let C be a smooth plane curve of genus g ≥ 3 defined over k.

The field of moduli Mk/k(C) of C, relative to the Galois extension k/k, is a field of definition,

unless Aut(C) is PGL3(k)-conjugate to a diagonal subgroup of PGL3(k), or to one of the

Hessian groups Hess∗ with ∗ ∈ {18, 36}, or to a semidirect product B o A for some finite

diagonal subgroup A of PGL3(k) and a non-trivial p-group B consisting entirely of elements
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of the shape 
1 0 0

α 1 0

β γ 1

 .

Remark 5.1.12. We are interested in smooth plane curves C over k, where k is a perfect field

of characteristic p = 0 or p > 2g + 1. In particular, Aut(C) has order coprime with p (see

section §1.4 in chapter 2). Thus, by Theorem 5.1.11, one just needs to study the cases where

the automorphism group is diagonal or PGL3(k)-conjugate to Hess18 or Hess36.

On the stratumMpl
g (Hess∗)

Recall that Hess18 = 〈S, T,R〉, where S := diag(1, ζ3, ζ
2
3 ), T := [Y : Z : X] and R := [X :

Z : Y ], and Hess36 = 〈Hess18, V 〉 where V := [X+Y +Z : X+ζ3Y +ζ2
3Z : X+ζ2

3Y +ζ3Z].

Lemma 5.1.13. The Hessian groups Hess∗, for ∗ ∈ {18, 36} above are not diagonal in the

sense of Definition 5.1.9.

Proof. Assume on Hess∗ is PGL3(k)-conjugate to a diagonal subgroup G ≤ PGL3(k). By

definitionG should contain a non-homology φ of order 3, and we may write it as diag(1, ζ3, ζ
2
3 ).

Moreover, there should be another element ψ of order 3, such that ψφ = φψ. Hence ψ should

be of the shape {[Y : Z : X], [Z : X : Y ]} modulo D(k). Thus ψ /∈ D(k), which contradicts

the assumption on G.

Consider the stratum Mpl
g (Hess18) of smooth plane curves C defined over k such that

Hess18 ≤ Aut(C). A geometrically complete family over k (Definition 4.3.2) is given be-

low:

Proposition 5.1.14. Let k be a perfect field of characteristic p = 0 or p > 2g+ 1. The stratum

Mpl
g (Hess18) is not empty only if the degree d is divisible by 3. In this case, the family

d/3∑
m,n ∈ N

2m + n = 0

αm,n(X3 + Y 3 + Z3)(d/3)−(2m+n)((XY )3 + (Y Z)3 + (XZ)3)m(XY Z)n = 0,(5.1)

with α0,0 6= 0 is geometrically complete over k forMpl
g (Hess18).
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Remark 5.1.15. We note thatMpl
g (Hess36) ⊆ Mpl

g (Hess18). Therefore, if there is a smooth

curve C ∈ Mpl
g (Hess36), then it is defined by an equation of the form (5.1), probably with

more algebraic restrictions on the parameters aj, bj, cj via the extra automorphism V . That is,

the family (5.1) would define a geometrically complete family over k forMpl
g (Hess36) as well.

Proof. (of Proposition 5.1.14) Since Hess18 contains an element of order 3, which is not a

homology, we may consider a non-singular plane model FC(X, Y, Z) = 0 over k of degree d,

such that φ := diag(1, ζ3, ζ
2
3 ) ∈ Aut(FC)(≤ Hess∗). In particular, any monomial term in the

defining equation for FC(X, Y, Z) = 0 should be of in the ideal

〈X, Y 3, Z3, Y Z〉 ⊆ k[X, Y, Z].

That is, each monomial term of FC(X, Y, Z) is of the form XsY 3tZ3u(Y Z)d−(s+3t+3u), for

some s, t, u ∈ N. Moreover, there should be two automorphisms ψ and ϑ of orders 3 and 2

respectively, such that ψφψ−1 = φ and ϑφϑ = φ−1. Some computations shows that there must

be D,D′ ∈ D(k), j ∈ {1, 2} and A ∈ {[X : Z : Y ], [Y : X : Z], [Z : Y : X]}, where

ψ = DT j and ϑ = D′A. Thus we may take ψ = T = [Y : Z : X] and ϑ = R = [X : Z : Y ].

The defining equation FC(X, Y, Z) = 0 is then formed by terms in the ideal

〈X3 + Y 3 + Z3, XY Z, (XY )3 + (Y Z)3 + (XZ)3〉.

By non-singularity, FC(X, Y, Z) should have degree ≥ d − 1 in each variable. Consequently,

the core of FC(X, Y, Z) is Xd + Y d + Zd and 3 | d, since 〈S, T,R〉 ≤ Aut(C). Thus the form

(5.1) is geometrically complete over k.

B. Huggins in [Hug05, Chp. 7, §2 and 3] constructed examples of smooth plane curves of

genus 10 not definable over their field of moduli, and whose automorphism groups conjugate

to Hess∗, for ∗ = 18, 36.

Definition 5.1.16. A quaternion extension of a field K is a Galois extension F/K such that

Gal(F/K) is isomorphic to the quaternion group of order 8.

Definition 5.1.17 (Lemma 7.2.3, [Hug05]). A field K is of level 2 if −1 is not a square in K,

but it is a sum of two squares in K.
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Lemma 5.1.18 (Lemma 7.2.3, [Hug05]). LetK be a field of level 2. Then, for u, v ∈ K∗\(K∗)2

such that uv /∈ (K∗)2, K(
√
u,
√
v) is embeddable into a quaternion extension of K if and only

if −u is a norm from K(
√
−v) to K (i.e. −u = x2 + vy2 for some x, y ∈ K).

For instance, the field K := Q(ζ3) is of level 2, since (ζ2
3 )2 + ζ2

3 = −1 and
√
−1 /∈ K.

It is easily shown that ±2 are not norms from K(
√
−13) to K. So neither K(

√
2,
√

13) nor

K(
√
−2,
√

13) are embeddable into a quaternion extension of K.

Now fix K to be the field Q(ζ3), and define the following:

\ := XY Z,

[ := X3 + Y 3 + Z3,

] := (XY )3 + (Y Z)3 + (XZ)3.

Suppose that α1, α2, α3, u, v ∈ Q∗, such that L := K(
√
u,
√
v) is a Z/2Z×Z/2Z extension of

K that can not be embedded into a quaternion extension of K. Let

c\2 := α1ζ3

√
u+ α2

√
v + α3ζ

2
3

√
uv,

c\[ := α1ζ
2
3

√
u+ α2

√
v + α3ζ3

√
uv,

c[2 := α1

√
u+ α2

√
v + α3

√
uv − 1

12
.

Theorem 5.1.19 (B. Huggins, Lemma 7.2.5 and Proposition 7.2.6, [Hug05]). Following the

above notations, let

F√u,√v(X, Y, Z) := c\2\
2 − 6c\[\[− 18c[2[

2 + ].

Then the equation F√u,√v(X, Y, Z) = 0 such that F√u,√v(X, 1, 1) is square free, defines a

smooth plane curve C over Q, with automorphism group Hess18. The field of moduli MQ/Q(C)

is Q(ζ3), but it is not a field of definition.

Remark 5.1.20. It has been mentioned by B. Huggins [Hug05, page 136] that smooth plane

curves C over C with automorphism group Hess18 are always definable over its field of moduli,

relative to C/R.

Theorem 5.1.21 (B. Huggins, Lemma 7.3.2 and Proposition 7.3.3, [Hug05]). Following the
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above notations. For a = αi ∈ C with α ∈ R∗, the equation

Fa(X, Y, Z) := ]− 18\2 + (a− 1

12
)[2 − 6a\[ = 0

gives a smooth plane curve C over C, with automorphism group Hess36. Moreover, the field of

moduli MC/R(C) = R, and it is not a field of definition.

§5.2 Débes-Emsalem: The canonical model for C/Aut(C)

Let C be a smooth curve of genus g ≥ 2 with non-trivial automorphism group over k, where

k is a perfect field of characteristic p = 0 or p > 2g + 1. Using Proposition 5.1.5 and Remark

5.1.6, we may take k as the field of moduli Mk/k(C) of C, relative to the Galois extension

k/k. Consider a family of k-isomorphisms {φσ : σC → C}σ∈Gk . Each isomorphism φσ

induces an isomorphism φ̃σ : σC/Aut(σC)→ C/Aut(C) such that the following diagram is

commutative:

σC

σπ

��

φσ
// C

π

��

σC/Aut(σC)
φ̃σ

// C/Aut(C)

Next we compose with the canonical isomorphism iσ : σ(C/Aut(C)) → σC/Aut(σC), that

sends

σP . σ(Aut(C)) ∈ σ(C/Aut(C)) 7→ σP . Aut(σC) ∈ σC/Aut(σC),

to get a family of isomorphisms {φσ := iσ ◦ φ̃σ : σ(C/Aut(C))→ C/Aut(C)}σ∈Gk , satisfy-

ing the Weil’s cocycle condition of descent (see [DE99, Theorem 3.1]). Therefore, by Theorem

5.1.4, there exists a k-modelBk ofC/Aut(C), and an isomorphism θ : Bk⊗kk → C/Aut(C)

over k, such that θ ◦ σθ−1 = φσ. In other words, we obtain the next commutative diagram (Fig-

ure 5.1) The model Bk is called the canonical model of C/Aut(C) over k.

Proposition 5.2.1 (Débes-Emsalem, Corollary 4.3-(c), [DE99]). Following all the above no-

tations. The curve C is definable over its field of moduli k, if the canonical model Bk has a

k-point.
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σC

σπ

��

φσ
// C

π

��

σ(C/Aut(C))
φσ // C/Aut(C)

Bk ⊗k k
σθ

gg

θ
88

Figure 5.1: The canonical model for C/Aut(C)

§5.3 On the field of moduli of smooth curves with odd signa-

ture

Definition 5.3.1 (signature). Let Φ : C → C/G be a branched Galois covering between smooth

curves defined over an algebraically closed field, where G is a finite group. Let y1, ..., yr be

its branch points, that is Φ−1(yi) has cardinality < |G|. The signature of Φ is defined as

(g0;m1, ...,mr), where g0 is the genus of C/G and mi is the ramification index of any point in

Φ−1(yi). The branch divisor of Φ, denoted by D(Φ) is the divisor of C/Aut(C) defined by

D(Φ) :=
∑r

i=1mi . yi.

R. Hidalgo [Hid12] considered complex curves C such that the natural cover πC : C →

C/Aut(C) has signature of the form (0;m1,m2,m3,m4), proving that C can be defied over

its field of moduli if m4 /∈ {m1,m2,m3}. Artebani-Quispe in [AQ12] extended such a result

to smooth curves of odd signature:

Definition 5.3.2 (odd Signature). A smooth curve C defined over an algebraically closed field

of genus g ≥ 2 has odd signature if the signature of the natural covering πC : C → C/Aut(C)

is of the form (0;m1, ...,mr) where some mi appears exactly an odd number of times.

Theorem 5.3.3 (Artebani-Quispe, Theorem 2.5, [AQ12]). Let C be a smooth curve of genus

g ≥ 2 defined over an algebraically closed field F . Let L be a subfield of F , such that F/L is

Galois. If C is an odd signature curve, then MF/L(C) is a field of definition for C.
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To prove Theorem 5.3.3, we need some well-known results, we refer, for example, to

Lemma 2.3 and Lemma 2.4 in [AQ12]:

Lemma 5.3.4. Let B be a smooth curve of genus 0 defined over an infinite field L, and suppose

thatB has an L-rational divisorD of odd degree. ThenB has infinitely many L-rational points.

Lemma 5.3.5. Given a Galois branched covering Φ : C → C/G defined over an algebraically

closed field F , we have D(σΦ) = σ(D(Φ)) for any σ ∈ Gal(F/L).

Proof. (of Theorem 5.3.3) By Proposition 5.1.5 and Remark 5.1.6, we may assume that

MF/L(C) = L. Following the notations of section §5.2, we set Φ := θ−1 ◦ πC . Since Φσ

is an isomorphism, D(Φ) = D(σΦ) = σ(D(Φ)) for any σ ∈ Gal(F/L), by the aid of Lemma

5.3.5. That is, D(Φ) is an L-rational divisor of C/Aut(C). Moreover, θ is an isomorphism,

so D(Φ) = θ−1(D(πC)). In particular, Φ and πC have the same signature. Because Φ has an

odd signature, then we can take yi1 , ..., yi2s+1 to be the points on the support of D(Φ) with the

same coefficient say mj . The divisor yi1 + ... + yi2s+1 is an L-rational divisor of C/Aut(C)

of odd degree. If L is infinite, then Lemma 5.3.4 implies that B has an L-rational point and C

can be defined over L by Corollary 5.2.1. Otherwise, the result follows by Corollary 1.6.6 in

[Hug05].

From Theorem 5.1.8 and Theorem 5.3.3, it follows:

Theorem 5.3.6 (Artebani-Quispe, Theorem 0.1, [AQ12]). Let C be a smooth curve of genus

g ≥ 2 defined over a field k. If C ⊗k k is an odd signature curve, then C is definable over kC .

Remark 5.3.7. A smooth curve C defined over C is called pseudo-real if the field of moduli,

relative to the extension C/R, is R, but it is not a field of definition. The idea of having odd

signature is used among other techniques by Artebani-Quispe-Reyes, in [AQR17], to show that

a smooth plane curve C of genus 6 over C is pseudo-real, only if Aut(C) is isomorphic to

Z/2Z or Z/4Z. However, by Theorem 4.3.6, we know that representative families over R exist

for these two particular stratum. Hence, Lemma 4.3.3 implies that the field of moduli relative

to C/R is always a field of definition. That is smooth plane curves over C of genus 6, which

are pseudo-real, do not exist.
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§5.4 Smooth plane curves with diagonal automorphism group

Let C : F(X, Y, Z) = 0 be a family of smooth k-plane curves associated to the stratum

%(M̃Pl
g (G)) ( see Definition 2.2), where k is a perfect field of characteristic p = 0 or p > 2g+1.

Isomorphisms between smooth k-plane curves in the same family C (in particular with identical

automorphism group %(G) ≤ PGL3(k)) are given be elements in the normalizer N%(G)(k) of

their automorphism group in PGL3(k). Thus the following lemma is useful for computations:

Lemma 5.4.1 (Normalizer). Let % : G ↪→ PGL3(k) be a diagonal finite non-trivial group, such

that p - |G| when p > 0. Hence

1. If %(G) contains a non-homology φ = diag(ζan, ζ
b
n, 1), then N%(G)(k) = 〈D(k), H〉 for

some H ≤ S̃3

2. If %(G) is generated by an homology φ = diag(1, 1, ζn) for some n ∈ Z≥2, then

N%(G)(k) = GL2,Z(k).

Proof. Using Lemma 1.2.7 and the assumption that %(G) is diagonal, we deduce that there is

always a unique set V , which is fixed pointwise by %(G). It is {P1 = (1 : 0 : 0), P2 = (0 :

1 : 0), P3 = (0 : 0 : 1)} when a non-homology is present inside %(G), while it is formed by

all points of the line L3 : Z = 0 and the point P3 otherwise. Therefore, V is also fixed by

N%(G)(k), and the computations becomes too straightforward.

We motivate this section by the next example due to B. Huggins in [Hug05]. Takem, r ∈ N

such that 2mr > 5 and r is odd when m does. Let zc be the complex conjugate of z for any

z ∈ C. Consider a binary form G(X, Y ) ∈ C[X, Y ] \ R[X, Y ] given by

G(X, Y ) :=
r∏
i=1

(Xm − aiY m)(Xm + aciY
m),

for some a1, ..., ar ∈ C such that the next conditions hold: G(X, 1) has no repeated zeros,

the map [α : β] 7→ [β : α] does not map the zero set of G(X, Y ) into itself, for any root of

unity ζ we should have {ai,−1/aci} 6= {ζai,−ζ/aci}, and when m = 3, the map [α : β] 7→

[−α + (1 +
√

3)β : (1 +
√

3)α + β] does not map the zero set of G(X, Y ) into itself.
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Proposition 5.4.2 (B. Huggins, Chapter 7, §1, [Hug05]). Following the above notations, let C

be a smooth plane curve of degree > 5 defined over C by an equation of the form

FC(X, Y, Z) := Z2mr −G(X, Y ) = 0

Then, the automorphism group Aut(FC) is diagonal and equals

〈diag(ζm, 1, 1), diag(1, ζm, 1), diag(1, 1, ζ2mr)〉.

Moreover, the field of moduli MC/R(C) is R, but it is not a field of definition.

5.4.1 Diagonal automorphism groups, containing a non-homology

Consider the moduli spaceMg of smooth plane curves C of genus g = 1
2
(d − 1)(d − 2) ≥ 3

defined over k, where k is a perfect field of characteristic p = 0 or p > 2g + 1.

Definition 5.4.3. For arbitrary integer n ≥ 2, let (M̃Pl
g )

nh

n,diag
be the substratum of Mg of

smooth plane curves C, satisfying

1. Aut(C) is diagonal, i.e. %(Aut(C)) ≤ D(k) for some injective representation %.

2. Aut(C) contains a non-homology of maximal order n > 1. Being maximal means that

any other non-homology in Aut(C) is of order at most n.

Fix a non-singular plane model FC(X, Y, Z) = 0 of C over k of degree d, where

Aut(FC) = %(Aut(C)). Hence N%(Aut(C))(k) equals 〈D(k), H〉 for some H ≤ S̃3, by Lemma

5.4.1-(1). Now we state our main result for this section, improving the results of B. Huggins

(Theorem 5.1.11) for smooth plane curves that possess a diagonal automorphism group.

Theorem 5.4.4. Following the above notations, let k be a perfect field of characteristic p = 0

or p > 2g + 1, C ∈ (M̃Pl
g )

nh

n,diag
, and moreover assume that Mk/k(C) = k. Then, k is always

a field of definition for C, except possibly when one of the following cases occur:

1. First, n|d and FC(X, Y, Z) = 0 is defined over k by an equation of the form

Xd + Y d + Zd +
d−1∑
j=2

(
Xd−j

∑
i∈S(2)j,X

n,(a,b)

βj,iY
iZj−i)+

∑
i∈Sd,X1 n, (a,b)

βd,iY
iZd−i = 0.
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In particular, Aut(FC) ≤ 〈diag(ζd, 1, 1), diag(1, ζd, 1), diag(1, 1, ζd)〉, and so any au-

tomorphism of C is of order dividing the degree d.

2. Second, n|d− 1 and FC(X, Y, Z) = 0 is defined over k by an equation of the form

Xd + X
(
Zd−1 + Y d−1 +

∑
r1, r2 ∈ N

2r1 + r2n = d− 1

(Y Z)r1
(
αr1,r2Y

r2n + βr1,r2Z
r2n
))

+

+
d−2∑
j=2

∑
r5, r6 ∈ N

2r5 + r6n = j

Xd−j(Y Z)r5
(
µr5,r6Y

r6n + λr5,r6Z
r6n
)

+

+
∑

r3, r4 ∈ N

2r3 + r4n = d

(Y Z)r3
(
γr3,r4Y

r4n + δr3,r4Z
r4n
)

= 0.

with γr3,r4δr3,r4 6= 0 and γ2
r3r4
6= νδ2

r3,r4
for some r3, r4, where ν is a (d − 1)/n-th root

of unity ν. Moreover, αr1r2 = 0 iff βr1r2 = 0, γr3r4 = 0 iff δr3r4 = 0 and µr5r6 = 0 iff

λr5r6 = 0. In this case, Aut(FC) = 〈diag(1, ζn, ζ
−1
n )〉.

3. Third, n = mm′ for some positive integers m and m′ > 1 such that m | d and m′ | d− 2,

where FC(X, Y, Z) = 0 is defined over k by an equation of the form

Xd + Y d−1Z + Y Zd−1 +

+
∑

i, j, `j ∈ N

m | 2i + jm′

βjX
d−2i−jm′(Y Z)i(Y jm′ + ζ

jm′`j
2(d−2)Z

jm′) = 0,

such that βj 6= 0 for some j. Moreover, Aut(FC) = 〈diag(1, ζn, ζ
−(d−1)
n )〉.

Proof. Since we have a non-homology inside Aut(C), it suffices to consider C of Type n, (a, b)

for some n as in Theorem 2.1.3, cases (3)-(6). Hence, for all situations, except when n | d with

respect to case (6) in Theorem 2.1.3, we have at least one of the P ′is, the three reference points,

lies on FC(X, Y, Z) = 0. But also Aut(FC) is made entirely of diagonal 3 × 3 projective

matrices by assumptions, so Aut(FC) fixes a point on FC(X, Y, Z) = 0. Therefore, it is cyclic

(Corollary 1.4.2), generated by some diag(1, ζan, ζ
b
n) with ab 6= 0. For C in the family of

Theorem 2.1.3, case (6), non of the reference points lies on FC(X, Y, Z) = 0. In such case,

Aut(FC) does not need to be cyclic, see for example, Proposition 5.4.2. More concretely, the
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core of the defining equation for C isXd+Y d+Zd, thus Aut(FC) (being diagonal) lives inside

〈diag(ζd, 1, 1), diag(1, ζd, 1), diag(1, 1, ζd)〉,

which shows the result in the statement of Theorem 5.4.4-(1).

On the other hand, the idea of the proof applied to the different families in Theorem 2.1.3,

cases (3)-(5) is to study the action of the normalizer NAut(FC)(k) ≤ 〈D(k), S̃3〉 (Lemma 5.4.1).

Once we are able to reduce to a situation where there exists a set of isomorphisms

(σFC)(X, Y, Z) = 0
φσ−→FC(X, Y, Z) = 0,

for σ ∈ Gk, living in D(k), we deduce that the canonical model Bk over k for C/Aut(C) has

k-points, and therefore k is a field of definition of C, by using Proposition 5.2.1.

We distinguish between the following cases appeared in Theorem 2.1.3, (3)-(5):

(I) Theorem 2.1.3-(3): This case is distinguished by involving all reference points Pi, for

i = 1, 2, 3, lying on FC(X, Y, Z) = 0. Moreover, C is of Type n, (a, b) for some

(a, b) ∈ Γn such that n | (d2 − 3d + 3) and a ≡ (d − 1)a + b ≡ (d − 1)b (mod n). We

may take a ≡ 1 (mod n) and b ≡ −(d − 1) (mod n) as a generator of %(Z/nZ), since

we have b ≡ −(d− 1)a (mod n), and so

diag(1, ζan, ζ
b
n) = diag(1, ζn, ζ

−(d−1)
n )a ∈ 〈diag(1, ζn, ζ

−(d−1)
n )〉.

The defining equation in this case has core Xd−1Y + Y d−1Z + Zd−1X , hence the ac-

tion of 〈D(k), S̃3〉 is trivial except possibly an isomorphism of 〈D(k), [Y : Z : X]〉.

However, [Y : λZ : µX] /∈ NAut(FC)(k), since otherwise diag(1, ζd−1
n , ζdn) ∈

Aut(FC) = 〈diag(1, ζn, ζ
−(d−1)
n )〉. That is, 2(d − 1) ≡ 0 (mod n), and n should di-

vide gcd(2(d − 1), d2 − 3d + 3) = 1, a contradiction. Therefore, by Lemma 5.4.1, the

normalizer NAut(FC)(k) ≤ D(k). In particular, we always can take

(σFC)(X, Y, Z) = 0
φσ−→FC(X, Y, Z) = 0

in D(k).

Next, the three reference points P ′is are common k-points of FC(X, Y, Z) = 0 and
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(σFC)(X, Y, Z) = 0, which also pointwise fixed by Aut(FC) = Aut(σFC), and φ′σs,

since all are 3 × 3 projective matrices of diagonal shapes. Following the notations of

section 5.2, the images P i := π(Pi) = (σπ)(Pi) become k-points of FC/Aut(FC) and

σ(FC/Aut(FC)) simultaneously, and also pointwise fixed by the isomorphism φσ via

the commutativity of Figure (5.1). Hence, each of the points θ−1(P i) ∈ Bk ⊗k k, for

i = 1, 2, 3 satisfies

θ−1(P i) = (σθ−1 ◦ φσ)(P i) = (σθ−1)(P i) = σ(θ−1(σ
−1

P i)) = σ(θ−1(P i)),

for all σ ∈ Gk. In particular, they are k-points of Bk ⊗k k, and so of Bk.

(II) Theorem 2.1.3-(4): In this situation, the two reference points P2 and P3 lie on C :

FC(X, Y, Z) = 0, where C is of Type n, (a, b) for some (a, b) ∈ Γn, according to

one of the following subcases:

(i) Theorem 2.1.3-(4.1): C is of Type n, (a, b) for some n | d(d − 2), such that (d −

1)a+ b ≡ 0 (mod n) and a+ (d− 1)b ≡ 0 (mod n). Since

diag(1, ζan, ζ
b
n) = diag(1, ζan, ζ

−(d−1)a
n ) = diag(1, ζn, ζ

−(d−1)
n )a,

we can take a ≡ 1 (mod n) and b ≡ −(d − 1) (mod n) as a generator of these

curves. Moreover, if we write n = mm′ for some m | d and m′ | d − 2, then

m′ > 1 (otherwise, n | d, and the automorphism diag(1, ζn, ζ
−(d−1)
n ) reduces to

diag(1, ζn, ζn), i.e. it is a homology, a contradiction). Therefore, diag(ζm, 1, 1) and

diag(1, ζm′ , ζ
−1
m′ ) are also automorphisms of Aut(FC). This in turns restricts the

defining equation F%a,b,m(X, Y, Z) = 0 in Theorem 2.1.3-(4.1) to be

Xd + Y d−1Z + Y Zd−1 +
∑
i, j ∈ N

m | 2i + jm′

Xd−2i−jm′(Y Z)i(αi,jY
jm′ + βi,jZ

jm′) = 0.

A priori, one does not need to worry about smooth curves in this family, which are

isomorphic to their conjugates through a family of isomorphisms in D(k) (in such

a situation, k is a field of definition, since the canonical model has k-points arising

from the two reference points P2 and P3 on F%a,b,m(X, Y, Z) = 0). So, we just pay
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our attention to the subfamily C0 : F0,C(X, Y, Z) = 0, where [X : λZ : µY ] (or

equivalently, [X : Z : Y ]) may act non-trivially and might contains smooth curves

not having k as a field of definition. This subfamily is characterized by the next

property: For any i, j ∈ N, αi,j = 0 iff βi,j = 0, and also αi0,j0βi0,j0 6= 0 for some

i0, j0 ∈ N. For each i, j ∈ N with m | 2i + jm′, we define the subfamily C(i,j)

0 by

the equation F (i,j)

0,C (X, Y, Z) = 0 of the form

Xd + Y d−1Z + Y Zd−1 + Xd−2i−jm′(Y Z)i(ajY
jm′ + bjZ

jm′) +

+
∑

i′, j′ ∈ N

m | 2i′ + j′m′

Xd−2i′−j′m′(Y Z)i
′
(aj′Y

j′m′ + bj′Z
j′m′) = 0,

with ajbj 6= 0, aj 6= bj , and aj′ = 0 iff bj′ = 0. This gives us a union decomposition

for the family C0 as
⋃
i,j C

(i,j)

0 . Furthermore, the action of [X : Z : Y ] on the

component F (i,j)

0,C (X, Y, Z) = 0 can always be trivialized when bj 6= −aj , through

the isomorphism

φi,j =


1 0 0

0 aj bj

0 bj aj

 : φi,j{F (i,j)

0,C (X, Y, Z) = 0} → {F (i,j)

0,C (X, Y, Z) = 0}.

To see this we notice that [X : Z : Y ] acts non-trivially on F (i,j)

0,C (X, Y, Z) = 0 iff

it does for the family

Xd + Y d−1Z + Y Zd−1 +Xd−2i−jm′(Y Z)i(ajY
jm′ + bjZ

jm′) = 0.

Moreover, φi,j satisfies the Weil’s cocycle condition of descent

[X : Z : Y ] ◦ σ0φi,j = φi,j,

where σ0 is the automorphism of k(aj, bj) mapping aj 7→ bj and bj 7→ aj . The new

component

φi,jC(i,j)

0 : F (i,j)

0,C (φ−1
i,j (X, Y, Z)) = 0

for the transformed family φi,jC0 : F0,C(φ
−1
i,j (X, Y, Z)) = 0, which has less isomor-
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phic geometric fibers, satisfies the property that any of its curves φi,jFC(X, Y, Z) =

FC(φ−1
i,j (X, Y, Z)) = 0 is isomorphic to its conjugates (σFC)(σφ−1

i,j (X, Y, Z))) = 0

through φ̂σ = σφ−1
i,j ◦ φσ ◦ φi,j for some φσ ∈ D(k). Furthermore, σ(

aj
bj

) must

be either aj
bj

or bj
aj

, since the two points P i,j
2 := φ−1

i,j (P2) = (0 : 1 :
−bj
aj

) and

P i,j
3 := φ−1

i,j (P3) = (0 : 1 :
−aj
bj

) are the only points of FC(φ−1
i,j (X, Y, Z)) = 0,

which are fixed by Aut(φi,jFC) = φ−1
i,j ◦ Aut(FC) ◦ φi,j (recall that Aut(FC) is

diagonal, containing a non-homology by assumption. Thus P2 and P3 are the fixed

points of Aut(FC) on FC(X, Y, Z) = 0). But if φσ = diag(1, λσ, µσ) acts on

F (i,j)
0,C (X, Y, Z) = 0, then λd−1

σ µσ = λσµ
d−1
σ = 1, σ(aj) = (λσµσ)iλjm

′
σ aj and

σ(bj) = (λσµσ)iµjm
′

σ bj . Hence σ(
aj
bj

) = (
aj
bj

)ζ
jm′`j
d−2 , for some integer `j . Con-

sequently, if b2
j 6= a2

jζ
jm′`j
d−2 , we always get a k-point on the canonical model of

φi,jFC/Aut(φi,jFC). For example, the two points θ−1(P i,j
2 ) and θ−1(P i,j

2 ) are such

k-points, where P i,j
2 and P i,j

2 are the images of P i,j
2 and P i,j

3 under the action of π.

We justify this for P i,j
2 and similarly for P i,j

3 ;

θ−1(P i,j
2 ) = (σθ−1 ◦ φσ)(P i,j

2 ) = (σθ−1)(P i,j
2 ) = σ(θ−1(σ

−1

P i,j
2 )) = σ(θ−1(P i,j

2 ),

for any σ ∈ Gk. Finally, we conclude by our discussion that curves C in the

original family, which might not be definable over their field of moduli are in one

of the components C(i,j)

0 where b2
j = a2

jζ
jm′`j
d−2 . This reduced the equation to

Xd + Y d−1Z + Y Zd−1 +

+
∑

i, j, `j ∈ N

m | 2i + jm′

βjX
d−2i−jm′(Y Z)i(Y jm′ + ζ

jm′`j
2(d−2)Z

jm′) = 0,

such that βj 6= 0 for some j. However, the canonical model always has the two

points θ−1(P i,j
2 ) and θ−1(P i,j

2 ), where

σ{θ−1(P i,j
2 ), θ−1(P i,j

2 )} = {θ−1(P i,j
2 ), θ−1(P i,j

2 )},

for all σ ∈ Gk. In particular, both points are definable over at most a quadratic

extension of k. This shows case (3) in the statement of the theorem.
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(ii) Theorem 2.1.3-(4.2): C is of Type n, (a, b) for some n | (d − 1)2 with (d − 1)a +

b ≡ 0 (mod n) and (d − 1)b ≡ 0 (mod n). Obviously, the core Xd + XZd−1 +

Y d−1Z is not retained by any permutation of the coordinates functions {X, Y, Z}.

So the group S̃3 gives no non-trivial isomorphic geometric fibers in the family. In

particular, FC(X, Y, Z) = 0 is isomorphic to its conjugates through isomorphisms

in D(k), by using again Lemma 5.4.1. Similarly as before, the canonical model Bk

for FC/Aut(FC) over k has at least two k-points, which shows the result in this

subcase.

(iii) Theorem 2.1.3-(4.3): C is of Type n, (a, b) for some n | (d − 1). We observe that

curves in such a family are classified to be of one of the types: Type n, (1, b),

Type n, (a, 1) for some a, b ∈ {2, 3, ..., n − 1}, or Type mm′, (m′,m) where

m,m′ > 1 are relatively prime. Indeed, if gcd(a, n) = 1 (resp. gcd(b, n) = 1),

then ab′ ≡ 1 (mod n) (resp. a′b ≡ 1 (mod n)) for some b′ (resp. a′). So, rename

ζn := ζan (resp. ζbn), and b := bb′ (resp. a := aa′) to obtain diag(1, ζan, ζ
b
n) =

diag(1, ζan, ζ
bb′a
n ) (resp. diag(1, ζba

′a
n , ζbn)) := diag(1, ζn, ζ

b
n) (resp. diag(1, ζan, ζn)),

and we get FC(X, Y, Z) = 0 of Type n, (1, b) or Type n, (1, a). Otherwise

gcd(a, n), gcd(b, n) > 1 and diag(1, ζan, ζ
b
n) = diag(1, ζa

′
m , ζ

b′

m′), where m :=

n
gcd(a,n)

, m′ = n
gcd(b,n)

, a′ = a
gcd(a,n)

, and b′ = b
gcd(b,n)

. Thus m, a′ and m′, b′

are relatively prime. Rename ζa′m := ζm and ζb′m′ := ζm′ to recover the last types.

On the other hand, the geometrically complete family over k, defining the whole

stratum in this subcase has core Xd + X(Zd−1 + Y d−1), which restricts the nor-

malizer NAut(FC)(k) to be a subgroup of 〈D(k), [X : Z : Y ]〉, by the aid of Lemma

5.4.1. Therefore, we just need to characterize those curves in the family, for which

the action of [X : λZ : µY ] ∈ PGL3(k) is not trivial, since otherwise we can

take {φσ} ⊂ D(k), which in turns gives an existence of k-points on the canoni-

cal model Bk over k for FC/Aut(FC), using the same discussions as before. By

non-singularity, the index set Sd,X2 n,(a,b) is non-empty or the curve is reduced to

X.G(X, Y, Z). Moreover, if [X : λZ : µY ] provides isomorphic geometric fibers

in the family, then d − i ∈ Sd,X2 n,(a,b) whenever an i does. We treat the situation
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for the different types mentioned earlier in our substratum:

ForFC(X, Y, Z) = 0 of Typemm′, (m′, m) withm andm′ relatively prime, i(m′−

m) +m ≡ 0 (mod mm′) and i(m′ −m)−m′ ≡ 0 (mod mm′). Hence m+m′ ≡

0 (mod mm′), which is not possible. For FC(X, Y, Z) = 0 of Type n, (1, b), we

get −i(b − 1) + b ≡ 0 (mod n) and i(b − 1) + 1 ≡ 0 (mod n). Hence b ≡

−1 (mod n), 2i ≡ 1 (mod n). Consequently, Aut(FC) = 〈diag(1, ζn, ζ
−1
n )〉, and

the defining equation, in Theorem 2.1.3-(4.3), for FC(X, Y, Z) = 0 is reduced to

the prescribed form in the statement of Theorem 5.4.4-(2). Lastly, the restrictions

on the parameters arises from the fact that [X : λZ : µY ] acts non-trivially on

FC(X, Y, Z) = 0. Similarly, we handle the situation for Type n, (a, 1).

(III) Theorem 2.1.3-(5): We get C of Type n, (a,b) for some n | d(d − 1) and (a, b) ∈ Γn,

such that da ≡ 0 (mod n) and (d − 1)b ≡ 0 (mod n). Moreover, exactly one reference

point lies on FC(X, Y, Z) = 0. If we look at the core Xd + Y d + XZd−1 of the family

describing our stratum, and noticing that 1 /∈ Sd,X1 , then we recognize that the action

of the normalizer NAut(FC)(k) is trivial except possibly an element of D(k), see Lemma

5.4.1. Hence, as we explain many times, one obtains a k-point on the canonical model

for FC/Aut(FC), and C is definable over k, its field of moduli.

This completes the proof.

Remark 5.4.5. Suppose that a smooth plane curve C over k, as in Theorem 5.4.4, descends

to its field of moduli k, relative to the extension k/k, where k is perfect. Then there is no

guarantee, in this case, that the curve C has a non-singular plane model over k. This is not true

in general, however it does when the degree d is coprime with 3, the curve has a k-point, or the

3-torsion Br[3](k) of the Brauer group Br(k) is trivial; Corollaries 3.2.1, 3.2.2 and Theorem

3.2.8.

The general question concerning the existence of non-singular plane models over fields of

definition of a smooth plane curve C over k has already been addressed in chapter 3 of this

memoir.

We already have seen an example of (1) at the beginning of this section (Proposition 5.4.2
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with m, r > 2). We construct next an explicit example for case (2) in Theorem 5.4.4:

Theorem 5.4.6. For any degree d = nm + 1 with n > 10 even and 4 - nm, let C be a smooth

plane curve over C of degree d defined by an equation FC(X, Y, Z) = 0 of the form

Xd +
∑

r3, r4 ∈ N

2r3 + r4n = d

(Y Z)r3
(
γr3,r4Y

r4n + (−1)r3γr3,r4Z
r4n
)

+

+
d−2∑
j=2

∑
r5, r6 ∈ N

2r5 + r6n = j

Xd−j(Y Z)r5
(
µr5,r6Y

r6n + (−1)r5µr5,r6Z
r6n
)

+

+ X
(
Zd−1 + Y d−1 +

∑
r1, r2 ∈ N

2r1 + r2n = d− 1

(Y Z)r1
(
αr1,r2Y

r2n + (−1)r1αr1,r2Z
r2n
))

= 0,

such that γr3,r4 6= 0, (−1)r3 , (−1)r3ζjd−1γr3,r4 for some r3, r4 ∈ N with 2r3 + r4n = d and

gcd(r4,m) = 1. Then Aut(FC) is cyclic, generated by diag(1, ζn, ζ
−1
n ). Moreover, the field of

moduli MC/R(C) is R, but it is not a field of definition.

Remark 5.4.7. The non-singularity restrictions for FC(X, Y, Z) = 0 are too tedious to be

explicitly written down. However, we warn the reader that a plane curve over C defined by

such a form, which is also smooth, may not exist.

Proof. (of Theorem 5.4.6) Since diag(1, ζn, ζ
−1
n ) is an automorphism of FC(X, Y, Z) = 0

of order n > 10, Aut(FC) can not be conjugate to any of the finite primitive subgroups of

PGL3(C) mentioned in Theorem 4.2.3-(3). Moreover, (FC , G) is not a descendant of the Fer-

mat curve Xd + Y d + Zd = 0 or the Klein curve Xd−1Y + Y d−1Z + Zd−1X = 0 with

G = Aut(FC), because n = d−1
m

does not divide any of the integers 6d2 and 3(d2 − 3d + 3).

Consequently, we can think about Aut(FC) in a short exact sequence (Theorem 1.4.4) of the

form

1 // C∗ // GL2,Z(C) Λ // PGL2(C) // 1

1 // H //
?�

OO

Aut(FC) //
?�

OO

G //
?�

%

OO

1

where H is a cyclic group of order dividing the degree d, and G is conjugate to one of the
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following group: Z/tZ, D2t with t ≤ d − 1, A4, A5 or to S4. Furthermore, H can be thought

as the subgroup of automorphisms of FC(X, Y, Z) = 0 acting trivially on Y and Z, whereas G

acts trivially on X . Hence H is trivial because of the core Xd +X(Y d−1 +Zd−1) of the defin-

ing equation for FC(X, Y, Z) = 0. Also, G always has the element %(diag(1, ζn, ζ
−1
n )) =

diag(ζ2
n, 1) of order n

gcd(n,2)
> 5, so it should be cyclic or dihedral. In both cases,

〈diag(1, ζn, ζ
−1
n )〉 is normal in Aut(C), and therefore Aut(FC) ≤ 〈D(C), [X : Z : Y ]〉 us-

ing Lemma 5.4.1. More concretely, any automorphism of FC(X, Y, Z) = 0 is of the shape

diag(1, ζfd−1, ζ
f ′

d−1) or [X : ζf
′

d−1Z : ζfd−1Y ] for some 0 ≤ f, f ′ < d − 1. The condition

γr3,r4 6= 0, (−1)r3 , (−1)r3ζjd−1γr3,r4 for some r3 and r4 ensures that Aut(FC) is diagonal.

Hence it is cyclic, since it fixes the two reference points P2 and P3 on FC(X, Y, Z) = 0.

Lastly the same kind of argument as we did in the proof of Theorem 5.4.4-(II) works for

FC(X, Y, Z) = 0, and one deduces that Aut(FC) = 〈diag(1, ζns, ζ
−1
ns )〉 for some s dividing

m (recall that d− 1 = nm). So, the monomial terms in defining equation for C are in the ideal

(X, Y Z, Y s, Zs). However, the restriction gcd(r4,m) = 1 for some r4 restricts s = 1, and thus

Aut(FC) is generated by diag(1, ζn, ζ
−1
n ).

On the other hand, FC(X, Y, Z) = 0 is isomorphic to its complex conjugate

(σFC)(X, Y, Z)) through the isomorphism φ = [X : −Z : Y ]. Hence R is the field of moduli

of FC(X, Y, Z) = 0, relative to C/R. Moreover, any isomorphism φ′ : (σFC)(X, Y, Z) →

FC(X, Y, Z) is of the shape η ◦ φ for some η ∈ Aut(FC). That is φ′ = [X : −ζ−fn Z : ζfnY ]

for some integer 0 ≤ f < n. One easily checks that such a φ′ does not satisfy Weil’s co-

cycle condition of descent (φ′ ◦ φ′ = 1), since nm is not divisible by 4: indeed, φ′ ◦ φ′ =

diag(−1, ζ2f
n , ζ

−2f
n ), so we ask for ζ2f

n = −1, which in turns gives 4f = 0, n, 2n, or 3n. Since

4 - n, φ′ = [X : −Z : Y ] or [X : Z : −Y ], and φ2 6= 1 in both situations. Consequently R is

not a field of definition for C.

5.4.2 Diagonal automorphism groups containing only homologies

The following lemma classifies the diagonal groups in PGL3(k), which are made entirely of

homologies. Here k is a perfect field of characteristic p ≥ 0.

Lemma 5.4.8. Let % : G ↪→ PGL3(k) be a diagonal finite non-trivial group, such that p - |G|
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when p > 0. If %(G) is made entirely of homologies (Definition 1.2.6), then %(G) is either

cyclic or it is conjugate to Z/2Z× Z/2Z := 〈diag(1,−1, 1), diag(1, 1,−1)〉.

Proof. Assume that %(G) 6= 〈diag(1,−1, 1), diag(1, 1,−1)〉. Hence there must be an homol-

ogy φ ∈ %(G) of order m > 2, since 〈diag(1,−1, 1), diag(1, 1,−1)〉 is the unique non-trivial

diagonal subgroup whose elements have orders at most 2. There is no loss of generality to

assume that φ = diag(1, 1, ζm), in particular its axis is the reference line L3 : Z = 0 and its

center is the reference point P1 = (1 : 0 : 0). If %(G) \ 〈φ〉 = ∅, then %(G) is cyclic and

there is nothing to prove further. Otherwise, we can take ψ ∈ %(G) \ 〈φ〉. Moreover, if ψ

has a different axis from L3, then φsψ ∈ %(G) is a non-homology for a suitable choice of the

integer s because m > 2: For example, write ψ as diag(1, ζm′ , 1) for some integer m′ > 1,

hence φsψ = diag(1, ζm′ , ζ
s
m). So when m 6= m′, we can take s = 1, and s = 2 otherwise. In

both cases, φsψ is a non-homology in %(G), which conflicts our assumption that %(G) is made

entirely of homologies (Definition 1.2.6). Therefore, all elements of %(G) admit the same axis

and the same center, i.e. each is of the shape diag(1, 1, ζn) for some n ∈ N. Consequently,

%(G) is contained in the cyclic group generated by diag(1, 1, ζn0), where n0 is the least common

multiple of the orders of the elements of %(G). Thus %(G) is cyclic.

Definition 5.4.9. The substratum of Mg, representing smooth plane curves C of genus g =

(d−1)(d−2)
2

≥ 3 over k, whose automorphism group Aut(C) is cyclic generated by an homology

of a fixed order n > 1, is denoted by (̃MPl
g )

h

n,diag
.

As usual, fix a non-singular plane model FC(X, Y, Z) = 0 of C over k of degree d, such

that Aut(FC) = 〈diag(1, 1, ζn)〉. Hence NAut(FC)(k) equals GL2,Z(k), by Lemma 5.4.1-(2).

A necessary condition on n so that the stratum (̃MPl
g )

h

n,diag
might be non-empty is con-

cluded directly from Theorem 2.1.3-(1), (2), where we follow the notations and conventions of

chapter 2:

Proposition 5.4.10. The stratum (̃MPl
g )

h

n,diag
is non-empty only if n divides d or d− 1. More-

over, the family

C1 : Zd +
∑

j∈S(1)n

Zd−jLj,Z + Ld,Z = 0, (5.2)
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is geometrically complete over k when n|d, whereas the family

C2 : Zd−1Y +
∑

j∈S(2)n

Zd−jLj,Z + Ld,Z = 0, (5.3)

does when n|d − 1. That is, for any C ∈ (̃MPl
g )

h

n,diag
, an FC(X, Y, Z) = 0 with

〈diag(1, 1, ζn)〉 ≤ Aut(FC) is given by a specialization of the parameters in (5.2) or (5.3)

over k.

Remark 5.4.11. By non-singularity, the homogenous binary form Ld,Z(X, Y ) in Proposition

5.4.10 can not have any repeated linear factors for any specializations of the parameters in

k; otherwise, we may assume (up to k-equivalence) that the repeated factor is X = 0, and

Ld,Z(X, Y ) reduces to X2Ld−2,Z(X, Y ). But also d − 1 /∈ S(u)n for u = 1, 2, since n > 1.

Hence FC(X, Y, Z) = 0 in the family is defined by Z2G(X, Y, Z) + X2Ld−2,Z(X, Y ) = 0,

which in turns implies singularity at the reference point P2 = (0 : 1 : 0).

Curves of (̃MPl
g )

h

n,diag
having odd signature

We characterize the situation when the stratum (̃MPl
g )

h

n,diag
contains smooth plane curves over

k of odd signature.

Proposition 5.4.12. A smooth curve C ∈ (̃MPl
g )

h

n,diag
has an odd signature if and only if either

d is odd and n = d, or d is even and n = d − 1. In this case, i.e. when C is of odd signature,

FC(X, Y, Z) = 0 is given, up to k-isomorphism, by a specialization of the parameters of the

form Zd + Ld,Z = 0 when n = d for an odd d, and Zd−1Y + Ld,Z = 0 when n = d− 1 for an

even d.

Proof. By Remark 5.4.11, we know that the binary form Ld,Z factors into d distinct factors

associated to d distinct roots, say (ai : bi) ∈ P1(k), for i = 1, 2, ..., d. Since Aut(FC) =

〈diag(1, 1, ζn)〉, the covering πFC : FC 7→ FC/Aut(FC) is ramified exactly at the d points

{(ai : bi : 0)} when n|d, plus the extra point P3 = (0 : 0 : 1) when n|d−1. This gives d branch

points (resp. d + 1) each is of ramification index n when n|d (resp. n|d − 1). Consequently,

FC(X, Y, Z) = 0 has odd signature only if n|d and d odd or if n|d − 1 and d even. The
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Riemann-Hurwitz formula reads as

(d− 1)(d− 2)− 2 = n(2g0 − 2 + d(1− 1

n
)),

when n|d and d odd, and as

(d− 1)(d− 2)− 2 = n(2g0 − 2 + (d+ 1)(1− 1

n
)),

when n|d− 1 and d even, where g0 is the geometric genus of the quotient curve FC/Aut(FC).

Setting g0 = 0 and solving for n, we obtain n = d (resp. n = d − 1). This proves the ”if and

only if” statement.

Lastly, for n = d (resp. n = d − 1), the index set S(1)d = {1 ≤ j ≤ d − 1 : d − j ≡

0 mod d} (resp. S(2)d−1 = {2 ≤ j ≤ d− 1 : d− j ≡ 0 mod d− 1}) is obviously empty.

The stratum (̃MPl
g )

h

n,diag
with n| d− 1

Suppose that the stratum (̃MPl
g )

h

n,diag
is non-empty for some fixed integer n > 1 with n|d− 1.

Let C ∈ (MPl
g )

h

n,diag
, and moreover assume that k is perfect of characteristic p = 0 or p >

2g+1. We will see that when k = Mk/k(C), then k becomes a field of definition of C. The idea

is to split up the family C2, of Proposition 5.4.10, into at most four components with an extra

property. We then show that the canonical model Bk for FC/Aut(FC) always has a k-rational

point, and the field of moduli k therefore is a field of definition, by the aid of Proposition 5.2.1.

Proposition 5.4.13. Consider the subfamilies C(s)
2 of C2, for each s = 1, 2, 3, 4, which is given

by

C(1)
2 : Zd−1Y +

∑
j∈S(2)n

Zd−jLj,Z +Xd +Xd−2Y 2 +
d∑
j=3

ajX
d−jY j = 0,

C(2)
2 : Zd−1Y +

∑
j∈S(2)n

Zd−jLj,Z +Xd + Y d +
d−1∑
j=3

ajX
d−jY j = 0,

C(3)
2 : Zd−1Y +

∑
j∈S(2)n

Zd−jLj,Z +Xd +XY d−1 +
d−2∑
j=3

ajX
d−jY j = 0,

C(4)
2 : Zd−1Y +

∑
j∈S(2)n

Zd−jLj,Z +Xd−1Y +
d∑
j=3

ajX
d−jY j = 0.
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Then
⋃4
s=1 C

(s)
2 defines a geometrically complete over k for the stratum (̃MPl

g )
h

n,diag
when n|d−

1. Moreover, the index set S(2)n is always empty when n = d−1, and the stratum (̃MPl
g )

h

d−1,diag

is only described via the three components C(s)
2 , for s = 1, 2, 3.

Proof. By non-singularity, Xd or Xd−1Y should appear in Ld,Z . Hence, up to rescaling the

variable X and then renaming the parameters, we can split up C2, in Proposition 5.4.10, into

two components defined by the forms

1st : Zd−1Y +
∑

j∈S(2)n

Zd−jLj,Z +Xd−1Y + a2X
d−2Y 2 + ...+ ad−1XY

d−1 + adY
d = 0,

2nd : Zd−1Y +
∑

j∈S(2)n

Zd−jLj,Z +Xd + a1X
d−1Y + ...+ ad−1XY

d−1 + adY
d = 0.

We always can assume a2 = 0 in the first component, by a change of variables of the shape

X 7→ X − a2
d−1

Y and then renaming the parameters. This in turns gives the fourth component

C(4)
2 in the statement. Similarly, we may take a1 = 0 in the second component via X 7→

X − a1
d
Y and renaming after. Moreover, if a2 = 0, then we split it up with respect to Y d, if it

appears or not (if it does not appear, then XY d−1 does, by non-singularity). Therefore, we get

the substrata C(2)
2 and C(3)

2 , up to rescaling Y and Z. Finally, for a 6= 0, we rescale Y and Z to

get C(1)
2 .

A priori, the index set S(2)n is empty if and only if diag(1, 1, ζd−1) ∈ Aut(C2). In this case,

n = d− 1 and the subfamily C(4)
2 is not irreducible anymore, since it factors as Y.G(X, Y, Z).

For this reason we exclude C(4)
2 .

The main result for this subsection is now stated:

Theorem 5.4.14. Following the above notations, let k be a perfect field of characteristic p = 0

or p > (d− 1)(d− 2) + 1 with d ≥ 4. Let C ∈ (̃MPl
g )

h

n,diag
with n, g > 1 such that n divides

d− 1. If k = Mk/k(C), then it is also a field of definition for C.

Proof. It suffices to consider an FC(X, Y, Z) = 0 in the family
⋃4
s=1 C

(s)
2 (Proposition 5.4.13),

since it is a geometrically complete family over k for our stratum. Because of the mono-

mial term Zd−1Y in the defining equation FC(X, Y, Z) = 0, the action of the normalizer

NAut(FC)(k), which is GL2,Z(k) by Lemma 5.4.1, is possibly not trivial only for an isomor-

phism of the shape [αX + βY : γY : Z]. Moreover, the components C(s)
2 , for s = 1, 2, 3, 4,
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are well-defined up to k-isomorphism, which means that even [αX + βY : γY : Z] does not

define an isomorphism between two curves in two distinct components. Now, it is straight-

forward to check that β = 0 in any case, so FC(X, Y, Z) = 0 is isomorphic to its conjugates

{σ(FC)(X, Y, Z) = 0}σ∈Gk through a set of isomorphisms {φσ} ⊂ D(k), i.e φσ is diagonal:

For example, consider an FC(X, Y, Z) = 0 in the subfamily C(1)
2 . Since Xd−1Y does not be-

long to the defining equation for FC(X, Y, Z) = 0, we must impose dαd−1β = 0. Because

[αX + βY : γY : Z] is invertible, then β = 0, which was to be shown.

Hence, as explained previously in section §5.4.1, the reference point P3 = (0 : 0 : 1) on

FC(X, Y, Z) = 0 shall produce a k-point on the canonical model Bk for FC/Aut(FC) over k.

Thus k is a field of definition for C by Proposition 5.2.1.

The stratum (̃MPl
g )

h

n,diag
with n| d and d odd

Theorem 5.4.15. Let C ∈ (̃MPl
g )

h

n,diag
, where n > 1 is a fixed integer dividing the odd degree

d ≥ 5. As usual, assume that Mk/k = k and k is perfect of characteristic p = 0 or p > 2g + 1.

Then k is a field of definition for C.

Proof. By Theorem 5.3.3 and Proposition 5.4.12, one gets the result when C ∈ (̃MPl
g )

h

d,diag
,

i.e. when n = d. Therefore, we take 1 < n < d divides d. Since the automorphism group

Aut(FC) = 〈diag(1, 1, ζn)〉, we get by Proposition 5.4.10 that the family

C ′1 : Zd +
∑

1≤f≤ d
n
−1

Zd−fnLfn,Z + Ld,Z = 0,

such that Lfn,Z 6= 0 for some 1 ≤ f ≤ d
n
− 1, is a geometrically complete family over k for

(̃MPl
g )

h

n,diag
. Moreover, the normalizer NAut(FC)(k) = GL2,Z(k) by using Lemma 5.4.1.

We first show the next observation:

Observation. Denote by C ′1,0 the family defined by Zd + Ld,Z = 0. Then, for any σ ∈ Gk and

any isomorphism φσ : σC ′1,0 → C ′1,0, there always exists an ησ ∈ 〈diag(ζ−1
d , ζ−1

d , 1)〉 and an

isomorphism φ̃σ : σC ′1 → C ′1 such that ησ ◦ φσ and φ̃σ, as elements of GL2,Z(k), give the same

action on C ′1.

Proof. Clearly an element φ ∈ GL2,Z(k), which acts non-trivially on the family C ′1,0, acts
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also non-trivially on the family C ′1. The converse still true, unless φ ∈ 〈diag(ζ−1
d , ζ−1

d , 1)〉.

Therefore, the number of geometric fibers, which are isomorphic and given by the action of

GL2,Z(k) on the family C ′1,0 is exactly the same number of isomorphic geometric fibers of

the family C ′1 arisen by the action of GL2,Z(k) \ 〈diag(ζ−1
d , ζ−1

d , 1)〉. Consequently, for any

σ ∈ Gk, the action of any isomorphism φσ : σC ′1,0 → C ′1,0 can always be extended to an action

φ̃σ : σC ′1 → C ′1. In particular, the composition φ̃σ ◦ φ−1
σ acts trivially on Zd + Ld,Z = 0, that is

φ̃σ ◦ φ−1
σ = ησ ∈ 〈diag(ζ−1

d , ζ−1
d , 1)〉.

Next, by the virtue of Theorem 5.3.3 and Proposition 5.4.12, we may consider a family

of isomorphisms {φσ : σC ′1,0 → C ′1,0}σ∈Gk , satisfying the Weil’s cocycle criterion of descent

(Theorem 5.1.4). Using the above observation, we also have a set of isomorphism {φ̃σ :=

ησ ◦ φσ : σC ′1 → C ′1}σ∈Gk , where ησ := diag(ε−1
σ , ε−1

σ , 1) for some dth root of unity εσ. Hence,

it satisfies

(σLfn,Z)(X, Y ) = Lfn,Z(φ̃σ(X, Y )) = ε−fnσ Lfn,Z(φσ(X, Y )),

for all σ ∈ Gk, and all 1 ≤ f ≤ d
n
− 1. Take any σ, τ ∈ Gk, then

Lfn,Z(φ̃στ (X, Y )) = (στLfn,Z)(X, Y ) = σ(τLfn,Z)(X, Y ) =σ (ε−fnτ Lfn,Z(φτ (X, Y )))

= σ(ε−fnτ ) σ(Lfn,Z)(σφτ (X, Y )) := σ(ε−fnτ ) σ(Lfn,Z)(X ′, Y ′)

= σ(ε−fnτ )ε−fnσ Lfn,Z(φσ(X ′, Y ′))

= (εσ σ(ετ ))
−fnLfn,Z((φσ ◦ σφτ )(X, Y ))

= Lfn,Z(((ησ ◦ σητ ) ◦ (φσ ◦ σφτ ))(X, Y ))

= Lfn,Z(((ησ ◦ φσ) ◦ (σητ ◦ σφτ ))(X, Y ))

= Lfn,Z((φ̃σ ◦ σφ̃τ )(X, Y )).

So the family {φ̃σ}σ∈Gk satisfies the Weil’s condition of descent, and k is a field of definition

for C ′1.

The stratum (̃MPl
g )

h

n,diag
with n | d and d even

There is no smooth plane curve C of degree 4 over k with automorphism group conjugate to

〈diag(1, 1, ζ4)〉. Hence, the stratum (̃MPl
3 )

h

4,diag is empty, and we have nothing to say in this
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case. See P. Henn [Hen76] or F. Bars [Bar12] for more details.

The next result shows an example of a smooth plane curve in the stratum (̃MPl
g )

h

d,diag
over

C, for any even degree d = 2(2s + 1) ≥ 6, whose field of moduli is R, relative to the Galois

extension C/R. However, it is not a field of definition for C.

Theorem 5.4.16. For an arbitrary, but a fixed even degree d of the form 2(2s + 1) ≥ 6, the

stratum (̃MPl
g )

h

d,diag
is non-empty, in the sense that, there exists a smooth plane curve C of

genus g = 1
2
(d − 1)(d − 2) over C with automorphism group 〈diag(1, 1, ζd)〉. Moreover, the

field of moduli MC/R(C) is R, but it is not a field of definition.

In particular, representative families over R do not exist for the stratum (̃MPl
g )

h

d,diag
.

Proof. For example, take C to be a smooth plane curve over C defined as Proposition 5.4.2

with m = 1 and r = 2s + 1. Then, Aut(C) = 〈diag(1, 1, ζd)〉. Also R is the field of moduli

for C, relative to C/R, but it is not a field of definition.

On the other hand, if a representative family over k exist for some stratum of Mg, then

the field of moduli needs to be a field of definition for every curve C in this stratum (Lemma

4.3.3). Thus by the above counter example, we deduce that such a family over R does not exist

for (̃MPl
g )

h

d,diag
.

It remains yet the study of (̃MPl
g )

h

n,diag
when the degree d ≥ 4 is even and n divides d

properly. In this case, the field of moduli does not need to be a field of definition as well. The

first example appears for genus 3 curves, and we refer to the work of Artebani-Quispe, [AQ12,

§4, Lemma 4.2, Proposition 4.3], for a smooth plane quartic curve over C, not definable over its

field of moduli R, and whose automorphism group is the cyclic one of order 2. We generalize

this example taking into account the next example.

For an arbitrary, but a fixed integer d = 4m ≥ 12, consider a plane curve C over C defined

by an equation of the form

FC(X, Y, Z) := Zd + Z
d
2 g(X, Y )− f(X, Y ) = 0, (5.4)
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where

g(X, Y ) :=

d
4∏
i=1

(X − aiY )(X +
1

ai
Y )

f(X, Y ) :=

d
2∏
i=1

(X − biY )(X +
1

bci
Y ),

such that ai ∈ R∗ for all 1 ≤ i ≤ d
4
, hence g(X, Y ) is a binary form in R[X, Y ]. Assume

also that f(X, Y ) and g(X, Y ) has no repeated zeros. We also choose the a′is in the way

that g(X, Y ) is not ψC-invariant or ψa,b-invariant for any ψc : (X : Y ) 7→ (Y : cX) and

ψa,b : (X : Y ) 7→ (X + aY : bX − Y ) in PGL2(C).

Remark 5.4.17. The last condition on the zero set of g(X, Y ), not to be invariant under any ψC

or ψa,b, is not strong. One just need to impose finitely many conditions on the a′is: For instance,

an ψC acts as a product of pairwise disjoint 2-cycles on the set {(ai : 1)}i since it has order 2

in PGL2(C). So if ψC : (as : 1) ↔ (at : 1) (resp. (−1/at : 1)) for some s, t, then c = as/at

(resp. −at/as). Therefore, it suffices to choose the a′is such that {ai, −1
ai
}i 6= { ±atasai

, ∓atai
as
}i for

any s, t. In this case, g(X, Y ) is not ψc-invariant for any ψc ∈ PGL2(C).

The action of an ψa,b is treated in the same way. However, it is a bit more tedious.

Lemma 5.4.18. A plane curve defined by an equation of the form (5.4) over C as above is

always smooth.

Proof. Since FC(X, 0, Z) = Zd + (XZ)
d
2 −Xd = 0 has no repeated zeros, the common zeros

of FC(X, 0, Z) and (FC)X(X, 0, Z) do not exist. Moreover, (FC)X(X, 1, Z) = Z
d
2 g′(X, 1) −

f ′(X, 1) and (FC)Z(X, 1, Z) = d
2
Z

d
2
−1(2Z

d
2 + g(X, 1)). But f(X, Y ) is square free, then

(X : 1 : 0) gives no singular points on FC(X, Y, Z) = 0. Furthermore, if we substitute

g(X, 1) = −2Z
d
2 into FS(X, 1, Z) = ∂FS

∂X
(X, 1, Z) = 0, we get that S is singular only if

f(X, 1)g′(X, 1)2 = −f ′(X, 1)2, that is when f(X, 1) has repeated zeros, a contradiction. So

the equation is smooth.

Proposition 5.4.19. The stratum (̃MPl
g )

h

d
2
,diag

is not empty for any d = 4m ≥ 12. That is, there

exist a smooth plane curve over C of degree d = 4m ≥ 12, for any m ∈ Z≥1, such that its

automorphism group is cyclic of order d
2
, generated in PGL3(C) by diag(1, 1, ζ d

2
).
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Proof. Consider a plane curve C of degree d, given by an equation FC(X, Y, Z) = 0 of the

form (5.4) over C as above. Hence C is smooth by Lemma 5.4.18.

Second we show the claim on Aut(FC) to be the cyclic group 〈diag(1, 1, ζ d
2
)〉 under a

suitable choice of the b′is. Obviously, ψ := diag(1, 1, ζd/2) ∈ Aut(FC) is a homology of order

d/2 ≥ 4. Therefore, Aut(FC) fixes a point, a line or a triangle, by Theorem 1.2.8. In particular,

it is not conjugate to any of the finite primitive group mentioned in Theorem 4.2.3-(iii). Now,

we treat each of the following subcases:

(i) A line L ⊂ P2
C and a point P /∈ L are leaved invariant: By Theorem 1.4.4, we can think

about Aut(FC) in a short exact sequence

1 // C∗ // GL2,Y (C) Λ // PGL2(C) // 1

1 // 〈ψ〉 //
?�

OO

Aut(FC) //
?�

OO

G //
?�

OO

1

whereG is conjugate to a cyclic group Z/mZ of orderm ≤ d−1, a Dihedral group D2m of

order 2m with m|(d− 2), one of the alternating groups A4, A5, or to the symmetry group

S4. Any such G, which is not cyclic, contains an element of order 2. Let ψ′ ∈ Aut(FC)

such that %(ψ′) has order 2. Then, %(ψ′) has the shape ψc or ψa,b for some a, b, c ∈ C\{0},

which is absurd by our assumptions on g(X, Y ). Consequently, G = %(Aut(FC)) is

cyclic, generated by the image of a specific ψG ∈ GL2,Y (C). This would lead to a

polynomial expression of b′is in terms of the a′is, hence we still have infinitely many

possibilities to choose the b′is such that f(X, Y ) not 〈%(ψG)〉-invariant. In particular,

|G| = 1 and Aut(FC) is PGL3(C)-conjugate to 〈diag(1, 1, ζd/2)〉.

(ii) A triangle ∆ is fixed by Aut(FC) and neither a line nor a point is leaved invariant: It

follows by Theorem 1.4.4 and its proof that (FC ,Aut(FC)) must be a descendant of the

Fermat curve Fd : Xd+Y d+Zd = 0 or the Klein curveKd : Xd−1Y +Y d−1Z+Zd−1X =

0. Since d/2 does not divide |Aut(Kd)| = 3(d2 − 3d + 3), (FC ,Aut(FC)) is not a

descendant of Kd. Hence ∃P ∈ PGL3(C) such that H := P−1 Aut(FC)P is a subgroup

of Aut(Fd), which is a semidirect product of S3 = 〈T := [Y : Z : X], R := [X : Z : Y ]〉

186



acting on (Z/dZ)2 = 〈diag(ζd, 1, 1), diag(1, ζd, 1)〉, see [Har13, Proposition 3.3]. That

is, any element of H has the shape DRiT j , for some 0 ≤ i ≤ 1 and 0 ≤ j ≤ 2 and

D ∈ D(k). It is straightforward to check that any DT j and DRT j with j 6= 0 has order

3 < d
2
. Thus P−1ψP ∈ D(k), and then we may assume that P in the normalizer of

〈ψ〉, up to a change of variables in Aut(Fd). In this case, we can think about H in the

commutative diagram

1 // (Z/dZ)2 // Aut(Fd)
%

// S3
// 1

1 // Ker(%|H) = 〈ψ〉 //
?�

OO

H //
?�

OO

G := Im(%|H) //
?�

OO

1

We note that Z in the transformed defining equation through P appears exactly as the

original equation. Hence G is at most cyclic of order 2, since P−1 Aut(FC)P should

have an element of the shape [ζsdY : ζtdZ : X] or [ζsdZ : ζtdX : Y ] for some integers

s, t otherwise, which is not possible. For the same reason, G is then generated by an

%([ζsdY : ζtdX : Z]), and again it enough to restrict f(φ(X, Y )) not to be 〈%([ζsdY : ζtdX :

Z])〉-invariant, where φ is the restriction of P on the ideal (X, Y ).

Proposition 5.4.20. Let C be a smooth plane curves defined over C by an equation

FC(X, Y, Z) = 0 of degree d = 4m ≥ 12 withm odd, of the form (5.4) as in Lemma 5.4.18 and

Proposition 5.4.19 with the extra condition
∏ d

2
i=1 bi ∈ R. Then C ∈ (̃MPl

g )
h

d
2
,diag

, moreover the

field of moduli for C relative to the Galois extension C/R is R, but it is not a field of definition.

Proof. Such a curve is isomorphic to its complex conjugate (FC)(X, Y, Z) = 0 through φ :=

[−Y : X : ζd].Hence R is the field of moduli for C relative to C/R. However, it is not a field of

definition forC. To see this, let φ′ : σFC → FC be any isomorphism. Then φ◦φ′−1 ∈ Aut(FC),

and so φ′ = φ◦diag(1, 1, ζ d
2
)r for some integer 0 ≤ r < d

2
. Any such φ′ does not satisfy Weil’s

condition of descent (Theorem 5.1.4): φ′◦φ′ = 1, since φ′◦φ′ = diag(1, 1,−1) 6= 1. Therefore

R is not a field of definition for C.

187



On the stratumMpl
g (Z/2Z× Z/2Z)

The following generalizes Lemma 4.1.6:

Proposition 5.4.21. Smooth plane curve C over k of odd degree d ≥ 5 with Z/2Z× Z/2Z ≤

Aut(C) do not exist, where k is a field of characteristic p = 0 or p > (d−1)(d−2)+1. Hence

Aut(C) is not conjugate to any of the groups Z/2Z× Z/2Z, A4, S4 or A5 inside PGL3(k).

Proof. Following the work of H. Mitchell [Mit11] and T. Harui [Har13], the group Z/2Z ×

Z/2Z ⊂ PGL3(k), giving invariant a smooth plane curve C of degree d ≥ 4, should fix a point

not lying on C or C must be a descendant of the Fermat curve Fd : Xd + Y d + Zd = 0 or

the Klein curve Kd : Xd−1Y + Y d−1Z + Zd−1X = 0. But also, for an odd degree d ≥ 5,

4 does not divide |Aut(Fd)| = 6d2 and |Aut(Kd)| = 3(d2 − 3d + 3). In particular, C can

not be a descendant of Fd or Kd, and we can think about Z/2Z × Z/2Z, in a short exact

sequence of the form 1 → N = 1 → H → H → 1, where H is PGL2(k)-conjugate to

Z/2Z × Z/2Z (Theorem 1.4.4). Let H = 〈η1, η2〉 ≤ PGL2(k) acts on the variables Y, Z,

then we can assume, up to conjugation of groups in PGL2(k), that η1 = diag(1,−1) and

η2 = [aY + bZ : cY − aZ]. Because η1η2 = η2η1, we get η2 = diag(−1, 1) or [bZ : cY ]

for some bc 6= 0. Being of Type 2, (0, 1) with 2 - d, C should have defining equation of the

form Zd−1L1,Z + Zd−3L3,Z + ... + Z2Ld−2,Z + Ld,Z = 0, and Y d−1L1,Y + Y d−3L3,Y + ... +

Y 2Ld−2,Y +Ld,Y = 0 simultaneously. This reduces C toX .G(X, Y, Z) for some homogenous

polynomial of degree d − 1, a contradiction to non-singularity. So such a smooth curve does

not exist. The second part is clear, since any of these group contains a subgroup isomorphic to

Z/2Z× Z/2Z.

Now, fix an injective representation % : Z/2Z× Z/2Z ↪→ PGL3(k) with

%(Z/2Z× Z/2Z) = 〈diag(1,−1, 1), diag(1, 1,−1)〉,

and let d ≥ 4 be an even integer.

Proposition 5.4.22. Let C be a smooth plane curve of even degree d ≥ 4, such that %(Z/2Z×

Z/2Z) acts on a non-singular plane model FC(X, Y, Z) = 0 ofC over k, i.e. C ∈Mpl
g (Z/2Z×
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Z/2Z), where k is a field of characteristic p = 0 or p > (d−1)(d−2)+1. Then FC(X, Y, Z) =

0 is given by a specialization in k of the parameters αs,t,u ∈ k of the family defined by Xd +

Y d + Zd +
∑

s,t,u αs,t,u(X
sY tZu)2 = 0, where the sum is taken over 0 ≤ s, t, u ≤ d−2

2
with

s+ t+ u = d
2
.

For d = 4, %(Z/2Z×Z/2Z) appears as the full automorphism group of some smooth plane

curves of genus g = 3 over k. The family

Ca,b,c : X4 + Y 4 + Z4 + aX2Y 2 + bX2Z2 + cY 2Z2 = 0,

with a2, b2, c2 are pairwise distinct, and a2 + b2 + c2 − abc, a2, b2, c2 6= 4 is geometrically

complete over k for the stratum M̃pl
3 (Z/2Z×Z/2Z), where k is perfect of characteristic p = 0

or p > (d− 1)(d− 2) + 1.

Let G be the group acting on the triples (a, b, c) ∈ C3, generated by

g1(a, b, c) := (b, a, c), g2(a, b, c) := (b, c, a), g3(a, b, c) := (−a,−b, c), g4(a, b, c) := (a,−b,−c).

E. W. Howe [How01, Proposition 2] observed that any isomorphism between Ca,b,c and Cg(a,b,c),

for g ∈ G, is defined over Q(i). Moreover, if F is a subfield of C containing Q(i), then Ca,b,c

is isomorphic to Ca′,b′,c′ if and only if g(a, b, c) = (a′, b′, c′) for some g ∈ G (Proposition 4.4 in

[AQ12]).

Theorem 5.4.23 (Artebani-Quispe, §4, [AQ12]). Following the notations above, let Ca,b,c be a

smooth plane curve over k in the family Ca,b,c. Then

(i) If k = R is the field of moduli for Ca,b,c, relative to C/R, then it is also a field of definition.

(ii) If F/k is a Galois extension with Q(i) ⊂ F ⊂ C and a, b, c ∈ F , then the field of moduli

for Ca,b,c, relative to F/k is k(abc, a2 + b2 + c2, a4 + b4 + c4).

(iii) If F/k is a general Galois extension with a, b, c ∈ F , then Ca,b,c is isomorphic to Ca′,b′,c′

over F if and only if g(a, b, c) = (a′, b′, c′) for some g ∈ 〈g1, g2〉. Moreover, the field of

moduli for Ca,b,c, relative to F/k equals k(a+ b+ c, a2 + b2 + c2, a3 + b3 + c3).

(iv) Any σ ∈ Gal(Q(a, b, c)/Q(abc, a2 + b2 + c2, a4 + b4 + c4) acts as some gσ ∈ G. Hence
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we have a natural injective homomorphism of groups

ψ : Gal(Q(a, b, c)/Q(abc, a2 + b2 + c2, a4 + b4 + c4)→ G : σ 7→ gσ.

Moreover, if Q(i) ⊂ Q(a, b, c) and Im(ψ) ⊂ 〈g1, g2〉, then the field of moduli Q(abc, a2 +

b2 + c2, a4 + b4 + c4) for Ca,b,c relative to the Galois extension Q(a, b, c)/Q(abc, a2 + b2 +

c2, a4 + b4 + c4) is a field of definition.
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APPENDIX

A
Types of cyclic groups of automorphisms

for low degrees

We list down all cyclic subgroups of automorphisms and the associated defining equations,

obtained for low degrees through manipulating Theorem 2.1.3 in Chapter 2. In other words, we

determine the possible Type m, (a, b), for which the locus ρm,a,b(MPl
g (Z/mZ)) might be non-

empty, and we also associate a normal form F%a,b,m(X, Y, Z) = 0 describing the corresponding

stratum.

For a fixed degree d, there is no relation between the notations for the parameters from one

family to another: For example, we use, by an abuse of notation, βi,j as the parameter of the

monomial Xd−jY iZj−i in any normal form.

It might happen that two families Type m, (a, b) and Type m, (a′, b′) are isomorphic

through a permutation of the variables, or F%a,b,m(X, Y, Z) = 0 always decomposes as

X .G%a,b,m(X, Y, Z) = 0. Compiling the code in SAGE and removing such situations yields

the next tables (see the programm in http://mat.uab.cat/∼eslam/CAGPC.sagews)

Table A.1: degree 4

Type m, (a, b) F (X,Y, Z)

12, (3, 4) X4 + Y 4 +XZ3

9, (1, 6) X4 + Y 3Z +XZ3

8, (1, 5) X4 + Y 3Z + Y Z3

7, (1, 5) X3Y + Y 3Z + Z3X

6, (3, 4) X4 + Y 4 +XZ3 + β2,2X2Y 2

4, (1, 2) X4 + Y 4 + Z4 + β2,0X2Z2 + β3,2XY 2Z

4, (0, 1) Z4 + L4,Z
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Table A.2: degree 4 (continued)

3, (1, 2) X4 +X
(
Z3 + Y 3

)
+ β2,1X2Y Z + β4,2Y 2Z2

3, (0, 1) Z3Y + L4,Z

2, (0, 1) Z4 + Z2L2,Z + L4,Z

Table A.3: degree 5

Type: m, (a, b) F (X,Y, Z)

20, (4, 5) X5 + Y 5 +XZ4

16, (1, 12) X5 + Y 4Z +XZ4

15, (1, 11) X5 + Y 4Z + Y Z4

13, (1, 10) X4Y + Y 4Z + Z4X

10, (2, 5) X5 + Y 5 +XZ4 + β2,0X3Z2

8, (1, 4) X5 + Y 4Z +XZ4 + β2,0X3Z2

5, (1, 2) X5 + Y 5 + Z5 + β3,1X2Y Z2 + β4,3XY 3Z

5, (0, 1) Z5 + L5,Z

4, (1, 2) X5 +X
(
Z4 + Y 4

)
+ β2,0X3Z2 + β3,2X2Y 2Z + β5,2Y 2Z3

4, (0, 1) Z4Y + L5,Z

3, (1, 2) X5 + Y 4Z + Y Z4 + β2,1X3Y Z +X2
(
β3,0Z3 + β3,3Y 3

)
+ β4,2XY 2Z2

2, (0, 1) Z4L1,Z + Z2L3,Z + L5,Z

Table A.4: degree 6

Type: m, (a, b) F (X,Y, Z)

30, (5, 6) X6 + Y 6 +XZ5

25, (1, 20) X6 + Y 5Z +XZ5

24, (1, 19) X6 + Y 5Z + Y Z5

21, (1, 17) X5Y + Y 5Z +XZ5

15, (5, 6) X6 + Y 6 +XZ5 + β3,3X3Y 3

12, (1, 7) X6 + Y 5Z + Y Z5 + β6,3Y 3Z3

10, (5, 6) X6 + Y 6 +XZ5 + β2,2X4Y 2 + β4,4X2Y 4

8, (1, 3) X6 + Y 5Z + Y Z5 + β4,2X2Y 2Z2

7, (1, 3) X5Y + Y 5Z +XZ5 + α4,2X2Y 2Z2

6, (1, 2) X6 + Y 6 + Z6 + β3,0X3Z3 + β4,2X2Y 2Z2 + β5,4XY 4Z

6, (1, 3) X6 + Y 6 + Z6 + β2,0X4Z2 + β6,3Y 3Z3 +X2
(
β4,0Z4 + β4,3Y 3Z

)
6, (0, 1) Z6 + L6,Z

5, (1, 2) X6 +XZ5 +XY 5 + β3,1X3Y Z2 + β4,3X2Y 3Z + β6,2Y 2Z4

5, (1, 4) X6 +XZ5 +XY 5 + β2,1X4Y Z + β4,2X2Y 2Z2 + β6,3Y 3Z3

5, (0, 1) Z5Y + L6,Z

4, (1, 3) X6 + Y 5Z + Y Z5 + β6,3Y 3Z3 + β2,1X4Y Z +X2
(
β4,0Z4 + β4,2Y 2Z2 + β4,4Y 4

)
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Table A.5: degree 6 (continued)

3, (1, 2) X5Y + Y 5Z +XZ5 + α2,0X2Y 4 + α3,2XY 3Z2 + β2,0X4Z2 + β3,2X3Y 2Z + γ2,2Y 2Z4

+γ3,1X2Y Z3

3, (0, 1) Z6 + Z3L3,Z + L6,Z

2, (0, 1) Z6 + Z4L2,Z + Z2L4,Z + L6,Z

Table A.6: degree 7

Type: m, (a, b) F (X,Y, Z)

42, (6, 7) X7 + Y 7 +XZ6

36, (1, 30) X7 + Y 6Z +XZ6

35, (1, 29) X7 + Y 6Z + Y Z6

31, (1, 26) X6Y + Y 6Z +XZ6

21, (3, 7) X7 + Y 7 +XZ6 + β3,0X4Z3

18, (1, 12) X7 + Y 6Z +XZ6 + β3,0X4Z3

14, (2, 7) X7 + Y 7 +XZ6 + β2,0X5Z2 + β4,0X3Z4

12, (1, 6) X7 + Y 6Z +XZ6 + β2,0X5Z2 + β4,0X3Z4

9, (1, 3) X7 + Y 6Z +XZ6 + β3,0X4Z3 + β5,3X2Y 3Z2

7, (1, 2) X7 + Y 7 + Z7 + β4,1X3Y Z3 + β5,3X2Y 3Z2 + β6,5XY 5Z

7, (1, 3) X7 + Y 7 + Z7 + β3,1X4Y Z2 + β5,4X2Y 4Z + β6,2XY 2Z4

7, (0, 1) Z7 + L7,Z

6, (1, 2) X7 +XZ6 +XY 6 + β3,0X4Z3 + β4,2X3Y 2Z2 + β5,4X2Y 4Z + β7,2Y 2Z5

6, (2, 3) X7 +XZ6 +XY 6 + β2,0X5Z2 + β3,3X4Y 3 + β4,0X3Z4 + β5,3X2Y 3Z2

+β7,3Y 3Z4

6, (0, 1) Z6Y + L7,Z

5, (1, 4) X7 + Y 6Z + Y Z6 + β2,1X5Y Z + β4,2X3Y 2Z2 + β6,3XY 3Z3

+X2
(
β5,0Z5 + β5,5Y 5

)
4, (1, 2) X7 + Y 6Z +XZ6 + β2,0X5Z2 + β3,2X4Y 2Z + β5,2X2Y 2Z3 + β6,4XY 4Z2

β7,2Y 2Z5 +X3
(
β4,0Z4 + β4,4Y 4

)
3, (1, 2) X7 +XZ6 +XY 6 + β2,1X5Y Z + β4,2X3Y 2Z2 + β6,3XY 3Z3 + β7,2Y 2Z5

+β7,5Y 5Z2 +X4
(
β3,0Z3 + β3,3Y 3

)
+X2

(
β5,1Y Z4 + β5,4Y 4Z

)
3, (0, 1) Z6Y + Z3L4,Z + L7,Z

2, (0, 1) Z6Y + Z4L3,Z + Z2L5,Z + L7,Z

Table A.7: degree 8

Type: m, (a, b) F (X,Y, Z)

56, (7, 8) X8 + Y 8 +XZ7

49, (1, 42) X8 + Y 7Z +XZ7

48, (1, 41) X8 + Y 7Z + Y Z7

43, (1, 37) X7Y + Y 7Z +XZ7

28, (7, 8) X8 + Y 8 +XZ7 + β4,4X4Y 4
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Table A.8: degree 8 (continued)

24, (1, 17) X8 + Y 7Z + Y Z7 + β8,4Y 4Z4

16, (1, 9) X8 + Y 7Z + Y Z7 + β8,5Y 5Z3 + β8,3Y 3Z5

14, (7, 8) X8 + Y 8 +XZ7 + β2,2X6Y 2 + β4,4X4Y 4 + β6,6X2Y 6

12, (1, 5) X8 + Y 7Z + Y Z7 + β8,4Y 4Z4 + β4,2X4Y 2Z2

8, (1, 2) X8 + Y 8 + Z8 + β4,0X4Z4 + β5,2X3Y 2Z3 + β6,4X2Y 4Z2 + β7,6XY 6Z

8, (1, 3) X8 + Y 8 + Z8 + β4,2X4Y 2Z2 + β8,4Y 4Z4 +X2
(
β6,1Y Z5 + β6,5Y 5Z

)
8, (1, 4) X8 + Y 8 + Z8 + β2,0X6Z2 + β4,0X4Z4 + β5,4X3Y 4Z + β6,0X2Z6

+β7,4XY 4Z3

8, (0, 1) Z8 + L8,Z

7, (1, 2) X8 +XZ7 +XY 7 + β4,1X4Y Z3 + β5,3X3Y 3Z2 + β6,5X2Y 5Z + β8,2Y 2Z6

7, (1, 3) X8 +XZ7 +XY 7 + β3,1X5Y Z2 + β5,4X3Y 4Z + β6,2X2Y 2Z4 + β8,5Y 5Z3

7, (1, 6) X8 +XZ7 +XY 7 + β2,1X6Y Z + β4,2X4Y 2Z2 + β6,3X2Y 3Z3 + β8,4Y 4Z4

7, (0, 1) Z7Y + L8,Z

6, (1, 5) X8 + Y 7Z + Y Z7 + β2,1X6Y Z + β4,2X4Y 2Z2 + β8,4Y 4Z4

+X2
(
β6,0Z6 + β6,3Y 3Z3 + β6,6Y 6

)
4, (0, 1) Z8 + Z4L4,Z + L8,Z

3, (1, 2) X8 + Y 7Z + Y Z7 + β8,4Y 4Z4 + β2,1X6Y Z + β4,2X4Y 2Z2

+X5
(
β3,0Z3 + β3,3Y 3

)
+X3

(
β5,1Y Z4 + β5,4Y 4Z

)
+X2

(
β6,0Z6 + β6,3Y 3Z3 + β6,6Y 6

)
+X

(
β7,2Y 2Z5 + β7,5Y 5Z2

)
2, (0, 1) Z8 + Z6L2,Z + Z4L4,Z + Z2L6,Z + L8,Z

Table A.9: degree 9

Type: m, (a, b) F (X,Y, Z)

72, (8, 9) X9 + Y 9 +XZ8

64, (1, 56) X9 + Y 8Z +XZ8

63, (1, 55) X9 + Y 8Z + Y Z8

57, (1, 50) X8Y + Y 8Z +XZ8

36, (4, 9) X9 + Y 9 +XZ8 + β4,0X5Z4

32, (1, 24) X9 + Y 8Z +XZ8 + β4,0X5Z4

24, (8, 9) X9 + Y 9 +XZ8 + β3,3X6Y 3 + β6,6X3Y 6

21, (1, 13) X9 + Y 8Z + Y Z8 + β6,3X3Y 3Z3

19, (1, 12) X8Y + Y 8Z +XZ8 + α6,3X3Y 3Z3

18, (2, 9) X9 + Y 9 +XZ8 + β2,0X7Z2 + β4,0X5Z4 + β6,0X3Z6

16, (1, 8) X9 + Y 8Z +XZ8 + β2,0X7Z2 + β4,0X5Z4 + β6,0X3Z6

12, (4, 9) X9 + Y 9 +XZ8 + β3,3X6Y 3 + β4,0X5Z4 + β6,6X3Y 6

+β7,3X2Y 3Z4

9, (1, 2) X9 + Y 9 + Z9 + β5,1X4Y Z4 + β6,3X3Y 3Z3 + β7,5X2Y 5Z2

+β8,7XY 7Z

9, (1, 3) X9 + Y 9 + Z9 + β3,0X6Z3 + β5,3X4Y 3Z2 + β6,0X3Z6 + β7,6X2Y 6Z

+β8,3XY 3Z5

9, (0, 1) Z9 + L9,Z
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Table A.10: degree 9 (continued)

8, (1, 2) X9 +XZ8 +XY 8 + β4,0X5Z4 + β5,2X4Y 2Z3 + β6,4X3Y 4Z2 + β7,6X2Y 6Z

+β7,6X2Y 6Z + β9,2Y 2Z7

8, (1, 4) X9 +XZ8 +XY 8 + β2,0X7Z2 + β4,0X5Z4 + β5,4X4Y 4Z + β6,0X3Z6

+β7,4X2Y 4Z3 + β9,4Y 4Z5

8, (1, 6) X9 +XZ8 +XY 8 + β3,2X6Y 2Z + β4,0X5Z4 + β6,4X3Y 4Z2 + β7,2X2Y 2Z5

+β9,6Y 6Z3

8, (0, 1) Z8L1,Z + L9,Z

7, (1, 6) X9 + Y 8Z + Y Z8 + β2,1X7Y Z + β4,2X5Y 2Z2 + β6,3X3Y 3Z3

+β8,4XY 4Z4 +X2
(
β7,0Z7 + β7,7Y 7

)
6, (2, 3) X9 + Y 9 +XZ8 + β2,0X7Z2 + β3,3X6Y 3 + β4,0X5Z4 + β5,3X4Y 3Z2

+β7,3X2Y 3Z4 + β7,3Y 3Z6 + β8,6Y 6Z3 +X3
(
β6,0Z6 + β6,6Y 6

)
4, (1, 2) X9 +XZ8 +XY 8 + β2,0X7Z2 + β3,2X6Y 2Z + β5,2X4Y 2Z3+

+β8,4XY 4Z4 + β9,2Y 2Z7 + β9,6Y 6Z3 +X5
(
β4,0Z4 + β4,4Y 4

)
+X3

(
β6,0Z6 + β6,4Y 4Z2

)
+X2

(
β7,2Y 2Z5 + β7,6Y 6Z

)
4, (0, 1) Z8Y + Z4L5,Z + L9,Z

3, (1, 2) X8Y + Y 8Z +XZ8 + α2,0X2Y 7 + β5,3X4Y 3Z2 + α5,3X2Y 4Z3

+α3,2XY 6Z2 + γ5,2X3Y 2Z4 + β6,2X3Y 2Z4 + α6,2X4Y 3Z2 + β7,4X2Y 4Z3

+β2,0X7Z2 + β3,2X6Y 2Z + γ2,2Y 2Z7 +
(
β4,1Y Z3 + β4,4Y 4

)
X5

+γ3,1X2Y Z6 +
(
α4,1X3Z + α4,4Z4

)
Y 5 +

(
γ4,0X4 + γ4,3XY 3

)
Z5

3, (0, 1) Z9 + Z6L3,Z + Z3L6,Z + L9,Z

2, (0, 1) Z8L1,Z + Z6L3,Z + Z4L5,Z + Z2L7,Z + L9,Z
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APPENDIX

B
The algorithm on twist for smooth

curves: Explicit examples

The algorithm for computing Twistk(C) of a non-hyperelliptic curve C of genus g ≥ 3 devel-

oped in [LG14, Chp.1] and [LG17] has three main steps:

(i) Find a canonical model: Take a basis of the space of the regular differentials Ω1(C), and

compute a canonical model C over k via a canonical embedding C ↪→ Pg−1 that we can

take also defined over k. Hence, C and C belong to the same class in Twistk(C) and

Twistk(C) = Twistk(C). Furthermore, the automorphism group Aut(C) can be naturally

viewed as a subgroup of PGLg(k). Also, any isomorphism φ : C ′ → C can be also

viewed as a matrix in PGLg(k).

(ii) Galois embedding problem (see for example [NSW08, §9.4]): Given a field k and a finite

group G, one may ask the following question, the so called Inverse Galois problem: does

there exist a Galois extension F/k such that Gal(F/k) ' G? The Galois embedding

problem is a generalization of this. It asks whether a given Galois extension K/k can

be embedded into another Galois extension F/k in such a way that the restriction map

between the corresponding Galois groups is given in advance. In other words, a Galois

embedding problem is a diagram:

Gal(F/k)

π
����

G
f
// Gal(K/k) // 1

where π is the natural projection and f is an epimorphism. A solution to this embedding
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problem is a morphism ψ : Gal(F/k)→ G such that next diagram is commutative:

Gal(F/k)

ψ

��

π

����

G
f
// Gal(K/k) // 1

A solution is called proper if it is surjective.

Now given a smooth curve C over a field k, let K be the field over which all the au-

tomorphisms of C are defined. Denote by Γ the twisted product Aut(C) o Gal(K/k),

where Gal(K/k) acts naturally on Aut(C) and the multiplication rule is (η, σ)(ρ, τ) =

(η σρ, στ).

A group homomorphism ψ : Gk → Γ is said to be an epi2-morphism if the composition

π◦ψ : Gk → Γ→ Gal(K/k) is surjective, where π is the natural projection on the second

component of Γ. It is known that the set Twistk(C) is in one-to-one correspondence with

the set

H̃om(Gk,Γ) := {ψ : Gk → Γ : ψ epi2 −morphism}/ ∼,

where two epi2-morphisms ψ and ψ′ are equivalent if there exists (ϕ, 1) ∈ Γ such that

ψ′(σ) = (ϕ, 1)◦ψ(σ)◦(ϕ, 1)−1 for all σ ∈ Gk, and we write ψ ∼ ψ′. This correspondence

sends a twist φ : C ′ → C to ψφ : Gk → Γ : σ 7→ (φ ◦ σφ−1, π(σ)).

Let ψ ∈ H̃om(Gk,Γ) and let L be its splitting field. We have ψ(Gal(K/K)) '

Gal(L/K) and ψ(Gk) ' Gal(L/k). Then ψ can be seen as a proper solution to the

Galois embedding problem:

Gk

ψ

���� ����

1 // ψ(Gal(K/K)) // ψ(Gk)
π // Gal(K/k) // 1

As it was noticed in [LG14, §1.1], Gal(L/k) ' Im(ψ) ≤ Γ and Gal(L/K) '

ψ(Gal(K/K)) ≤ Aut(C) o {1}. Hence, in order to compute H̃om(Gk,Γ) we should

200



compute all the pairs (G,H) where G ≤ Γ, H = G ∩ Aut(C) o {1} and [G : H] =

|Gal(K/k)| up to conjugacy by elements (ϕ, 1) ∈ Γ. Then, we will find all proper solu-

tions (and thus the corresponding splitting fields L) to the Galois embedding problems:

Gk

ψ

���� ����

1 // H // G
π// Gal(K/k) // 1

Every such a solution can be lifted to a solution to the Galois embedding problem:

Gk

ψ

���� ����

1 // Aut(C) �
�

// Γ π// Gal(K/k) // 1

Conversely, every solution ψ of the above embedding problem provides a twist over k of

C.

(iii) Explicit equation of Twists: the idea behind the computation of equations for the twist, is

finding a Gk-modulo isomorphism between the subgroup in Aut(C) associated to a pair

(G,H) as above and a subgroup of a general linear group GLn(k). After that, by making

explicitly Hilbert’s Theorem 90, we can compute an isomorphism φ : C ′ → C, and hence,

we obtain equations for the twist.

Assume that C is a smooth curve over k with a plane non-singular model over k such that Σ

in Theorem 3.3.2 is trivial, in such case all the twist admits a plane non-singular model over

k, see Theorem 3.3.2. Now instead of computing a canonical model of C, we can consider

a plane model over k associated to C, modifying point (i) of the algorithm. The point (ii) is

independent of the embedding of C inside a projective space. In point (iii), the algorithm of

[LG17] requires to investigate the solutions in GLg(k) using [LG14, Lemma 1.1.3]. Now, in

the modified algorithm, it is enough to look for solutions in GL3(k). As in [LG14, LG17] the

elements to reach for solutions in GLg(k) or GL3(k) is quite hard except that we have a control
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of the matrix that could appear. For example, we can apply the next result in some situations,

which can ne proved in the same way as Lemma 2.2.2 in [LG14] for g = 3:

Lemma B.1. Assume that C is a smooth curve over k with a plane non-singular model over k

such that Σ in Theorem 3.3.2 is trivial. Let ξ ∈ H1(k,Aut(C)) be a cocycle with splitting field

L. Assume that the elements of ξ(Gal(L/k)), as matrices in GL3(L), have the form as block

matrices  A 0

0 a

 (B.1)

where A ∈ GL2(L) and a ∈ L. Then, there exists an isomorphism φ : C ′ → C associated to

ξ has the form as the block matrix (B.1). In the particular case, in which ξ(Gal(L/k)) is made

of diagonal matrices, we can take φ : C ′ → C also a diagonal matrix.

We use the above modified algorithm to compute the twists over k for the smooth plane

curves defined over k by X5 + Y 5 +XZ4 = 0 and X5 + Y 4Z +XZ4 = 0 , where k is a field

of zero characteristic or positive characteristic > (5− 1)(5− 2) + 1 = 13. Here we recover the

result obtained for these curves in Theorem 3.5.4.

Example B.2. Let C be the smooth plane curve X5 + Y 5 +XZ4 = 0 over a field k of charac-

teristic p = 0 or p > 13. The full automorphism group Aut(C) ' GAP(20, 2) is generated by

S := diag(1, 1, ζ4) and T := diag(1, ζ5, 1), so it is defined over K = k(ζ4, ζ5).

We assume the generic case in which ζ4, ζ5 /∈ k. Then [K : k] = 8 and the Galois group

Gal(K/k) is generated by τ1 : ζ4 7→ −ζ4, ζ5 7→ ζ5 and τ2 : ζ4 7→ ζ4, ζ5 7→ ζ2
5 of order 2 and 4

respectively where τ2τ1 = τ1τ2. In particular, Gal(K/k) ' GAP(8, 2).

The group Gal(K/k) acts naturally on Aut(C) as follows: τ1 : S 7→ S3, T 7→ T and

τ2 : S 7→ S, T 7→ T 2. The twisted product Γ := Aut(C) o Gal(K/k) is isomorphic to

GAP(160, 207), and generated by the elements ϑ1 := (ST, 1), ϑ2 := (1, τ1) and ϑ3 := (1, τ2),

where ϑ20
1 = ϑ2

2 = ϑ4
3 = 1, ϑ2ϑ1ϑ2 = ϑ11

1 , ϑ1ϑ3 = ϑ3ϑ
13
1 and ϑ2ϑ3ϑ2 = ϑ3.

The degree of the defining equation of C is coprime with 3, thus, by Corollary 3.2.9, every

twist of C has a non-singular plane model over k. Consequently, by Theorem 3.3.2, the map

Σ is trivial. In particular, we only look for solutions of the Galois embedding problems inside

GL3(k) not in GL6(k). One finds that all the twists of C over k are covered by diagonal

202



matrices, and they are of the form aX5 +Y 5 +bXZ5 for some a, b ∈ k through an isomorphism

of the shape diag(α, 1, β) in GL3(k).

The Galois embedding problems for C are given by the pairs (G,H) appears in the 2nd

and the 3rd columns of Table B.1 in GAP notations. This means that a twist ϕ : C ′ → C

over k has a splitting field L such that Gal(L/k) ' G and Gal(L/K) ' H for some pair

(G,H) in the list. The pairs (G,H) can be generated via a slight modification of [LG14, Table

5.5] in MAGMA [BCP97]. A set of generators of both G and H are given in the 4th, 5th and

6th columns: G is generated by the elements h o 1 ∈ H o 1 and gi o τi with i = 1, 2. The

integer n(G,H) that appears in the 7th column is the number of non-equivalent twists of C with

the same splitting field L. By the aid of [LG14, Proposition 4.1], we find solutions to these

Galois embedding problems as described in the 8th column. In the remaining part of the table,

we give the associated set of non-equivalent twists which are defined by equations of the form

aXd + Y d + bXZd−1 = 0 through an isomorphism of the shape diag(α, 1, β) whose splitting

field is L.

We thus collect the computations into the following result:

Theorem B.3. Following all the above notations, the set Twistk(C) is completely determined

by Table B.1 and Table B.2 below.

Table B.1: The pairs (G,H), and Twists

ID(G) ID(H) gen (H) g1 g2 n(G,H) L a b

1

GAP(8, 2) GAP(1, 1) 1

S 1

1 K 1

−4

2 S S2 −100

3 1 S2 25

4 1 1 1

5 GAP(16, 10)

GAP(2, 1) S2

S 1

2

K(
√
n)

1

−4rn2

6 GAP(16, 3) S S
K(

4
√

5n2)
−20rn2

7 GAP(16, 3) 1 S 5rn2

8 GAP(16, 10) 1 1 K(
√
n) rn2

9

GAP(40, 12) GAP(5, 1) T

1 S2

4 K( 5
√
m) ms

25ms

10 1 1 ms

11 S S2 −100ms

12 S 1 −4ms
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Table B.2: The pairs (G,H), and Twists (continued)

ID(G) ID(H) gen (H) g1 g2 n(G,H) L a b

13 GAP(32, 25) GAP(4, 1) S 1 1 8 K( 4
√
n) 1 (−4)j1 (25)j2n2j3+1

14 GAP(80, 50)

GAP(10, 2) S2, T

S 1

8

K(
√
n, 5
√
m)

ms

−4rn2ms

15 GAP(80, 34) 1 S
K(

4
√

5n2, 5
√
m)

125rn2ms

16 GAP(80, 34) S S −500rn2ms

17 GAP(80, 50) 1 1 K(
√
n, 5
√
m) rn2ms

18 GAP(160, 207) GAP(20, 2) S, T 1 1 32 K( 4
√
n, 5
√
m) ms (−4)j1 (25)j2n2j3+1ms

We obtain the equation of the twist via the isomorphism diag(α, 1, β), where α = 5
√
a and

β = 4
√
b for the cases (1)-(8), β = 4

√
b
ms

5
√
ms for the cases (9)-(12) and β = 4

√
b 5
√
ms for the

cases (13)-(18), for some n ∈ k \ k2 and m ∈ k \ k5, with s ∈ {1, 2, 3, 4}, r ∈ {1, 25} and

ji ∈ {0, 1}, for i = 1, 2, 3.

Proof. As an example, we show the computations for the 9th case. Let m be an element of

k \ k5, and set L := K( 5
√
m). Then L/k is a Galois extension with Galois group isomorphic

to GAP(40, 12): we have Gal(L/k) = 〈h0, h1, h2〉 where h0 : ζ5 7→ ζ5, ζ4 7→ ζ4,
5
√
M 7→

ζ5
5
√
M, h1 : ζ5 7→ ζ5, ζ4 7→ −ζ4,

5
√
M 7→ 5

√
M , and h2 : ζ5 7→ ζ2

5 , ζ4 7→ ζ4,
5
√
M 7→ 5

√
M . In

particular, h5
0 = h2

1 = h4
2 = 1, moreover h1h2 = h2h1, h1h0h1 = h0, and h0h2 = h2h

3
0.

Hence Gal(L/k) ' GAP(40, 12). This proves that solutions to this Galois embedding

problems already exist. Second we are looking for isomorphisms ϕs = diag(αs, 1, βs),

for s = 1, 2, 3, 4 whose splitting field is L and produce the defining equations for the

four non-equivalent twists over k. This can be done by applying the 1-cocylce condition:

ϕs ◦ h1,2ϕ−1
s = g1,2. Therefore, we can take ϕs = diag( 5

√
ms, 1,

√
5 5
√
ms), and the twists

are defined by msX5 + Y 5 + 25msXZ4 = 0, for s = 1, 2, 3 and 4.

Example B.4. Consider the smooth plane curveC defined over a field k of characteristic p = 0

or p > 13 by the equation X5 + Y 4Z + XZ4 = 0. The full automorphism group Aut(C) is

isomorphic to GAP(16, 1), and is generated by S := diag(1, ζ16, ζ
12
16 ). Assuming that ζ16 /∈ k,

then K = k(ξ16) and [K : k] = 8. Moreover, Gal(K/k) is generated by τ1 : ζ16 7→ ζ3
16 (of

order 4) and τ2 : ζ16 7→ ζ7
16 (of order 2) with τ2τ1τ2 = τ1, in particularGal(K/k) is isomorphic

GAP(8, 2). The action of Gal(K/k) on Aut(C) is defined by τ1(S) = S3 and τ2(S) = S7.

Now, the group Γ := Aut(C) o Gal(K/k) is generated by the elements ϑ1 := (s, 1), ϑ2 :=
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(1, τ1) and ϑ3 := (1, τ2) of orders 16, 4 and 2 respectively. Thus

Γ ∼= 〈ϑ1, ϑ2, ϑ3 |ϑ16
1 = ϑ4

2 = ϑ2
3 = 1, ϑ2ϑ1 = ϑ3

1ϑ2, ϑ3ϑ1ϑ3 = ϑ7
1, ϑ3ϑ2ϑ3 = ϑ2〉 = GAP(128, 913),

where Aut(C) is identified with lat[42] inside the subgroups lattice of Γ.

Similarly, as the previous example, the computations can be collected into the following

result:

Theorem B.5. Following all the above notations, the set Twistk(C) is completely determined

by the following tables: The pairs (G,H) and their splitting fields as solutions of the associated

Galois embedding problems are included in the next table.

Table B.3: The pairs (G,H) and their splitting fields

ID(G) ID(H) gen (H) g1 g2 n(G,H) L

1
GAP(8, 2) GAP(1, 1) 1

1 1
1 K

2 S8 1

3 GAP(16, 5)

GAP(2, 1) S8

S S3

2

K( 16
√
−n8)

4 GAP(16, 10) 1 1 K(
√
n)

5 GAP(16, 6) S3 S5 K( 16
√
−16n8)

6 GAP(16, 3) S2 S2 K(
4
√

2n2)

7 GAP(32, 9)

GAP(4, 1) S4

S2 S8

4

K(
16
√

4n4)

8 GAP(32, 25) 1 1 K( 4
√
n)

9 GAP(32, 38) S S3 K( 16
√
−n4)

10 GAP(32, 11) S S5 K( 16
√
−4n4)

11 GAP(64, 41)

GAP(8, 1) S2

S2 S

8

K( 16
√
−2n2)

12 GAP(64, 42) S 1 K(
16
√

2n2)

13 GAP(64, 123) 1 1 K( 8
√
n)

14 GAP(64, 125) S S K( 16
√
−n2)

15 GAP(128, 913) GAP(16, 1) S 1 1 16 K( 16
√
n)

The equations of each twist of C over k is defined by an equation of the form X5 +aY 4Z+

bXZ4 for some a, b ∈ k through an isomorphism of the shape diag(1, λ, µ).
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Table B.4: Equations of Twists

ID(G) n(G,H) a b λ µ

1
GAP(8, 2) 1

1
1

1
1

2 4
√

2

3 GAP(16, 5 >

2

−n2,−4n2 −1 ζ716
16
√
−n8,−ζ316

√
2 16
√
−n8 ζ−6

16

4 GAP(16, 10 > n2, 4n2 1
√
n,
√

2
√
n 1

5 GAP(16, 6 > −2n2,−8n2 −1 ζ4
16
√
−16n8,−

√
2 16
√
−16n8, γ = ζ4,−

√
2 ζ616

6 GAP(16, 3 > −2n2,−8n2 1 ζ516
4
√

2n2, ζ516
√

2
4
√

2n2 ζ4

7
GAP(32, 9 >

4

2n, 4n3

4
ζ4

16
√

4n4, ζ4(
16
√

4n4)3
√

2

8n, n3 4
√
−4

16
√

4n4,
4√−4(

16√
4n4)3

2
−
√

2

8
GAP(32, 25 >

n, n3

1
4
√
n, ζ4

4
√
n3 1

4n, 4n3 (1− ζ4) 4
√
n, (1 + ζ4)

4
√
n3 −1

9
GAP(32, 38 >

n, n3

-1
ζ716

16
√
−n4, ζ216( 16

√
−n4)3 ζ216

4n, 4n3 (ζ316 − ζ716) 16
√
−n4, ζ4

√
2( 16
√
−n4)3 −ζ216

10
GAP(32, 11 >

2n, 4n3

-4
i 16
√
−4n4, ζ316( 16

√
−4n4)3 −ζ4 4

√
−4

8n, n3 4
√
−4 16
√
−4n4,

ζ316
4√−4(

16
√
−4n4)3

2
ζ4

4
√
−4

11

GAP(64, 41 >

8

4, 8n2

−2n2
1
n

( 16
√
−2n2)7, (1− ζ4)( 16

√
−2n2)3 ( 16

√
−2n2)4

1, 2n2 1
2n

4
√
−4( 16

√
−2n2)7, ( 16

√
−2n2)3 −( 16

√
−2n2)4

2n, 4n3

−8n2 ζ716
16
√
−2n2, ζ16( 16

√
−2n2)5

√
2( 16
√
−2n2)4

8n, n3 ζ16
4
√
−4 16
√
−2n2, 1

2
ζ16

4
√
−4( 16

√
−2n2)5 −

√
2( 16
√
−2n2)4

12

GAP(64, 42 >

4, 8n2

2n2
1
n
ζ216(

16
√

2n2)7, (1− ζ4)(
16
√

2n2)3 −(
16
√

2n2)4

1, 2n2 1
2n
ζ216

4
√
−4(

16
√

2n2)7, (
16
√

2n2)3 (
16
√

2n2)4

2n, 4n3

8n2
16
√

2n2, (
16
√

2n2)5
√

2(
16
√

2n2)4

8n, n3 4
√
−4

16
√

2n2, 1
2

4
√
−4(

16
√

2n2)5 −
√

2(
16
√

2n2)4

13

GAP(64, 123 >

8

n, n2

n2

8
√
n, ( 8
√
n)3

( 8
√
n)4

n3, 1 ( 8
√
n)5, 1

n
( 8
√
n)7

4n, 4n2 4
√
−4 8
√
n, 4
√
−4( 8
√
n)3

−( 8
√
n)4

4n3, 4 4
√
−4( 8
√
n)5, 1

n
4
√
−4( 8
√
n)7

14

GAP(64, 125 >

n, n2

−n2

ζ316
16
√
−n2, ζ216( 16

√
−n2)3

( 16
√
−n2)4

n3, 1 ζ16( 16
√
−n2)5, 1

n
( 16
√
−n2)7

4n, 4n2 ζ316
4
√
−4 16
√
−n2, 4

√
−4( 16

√
−n2)3

−( 16
√
−n2)4

4n3, 4 ζ16
4
√
−4( 16

√
−n2)5, 1

n
4
√
−4( 16

√
−n2)7

15

GAP(128, 913 > 16

rn, rn2 n3 γ 16
√
n, γ

16
√
n5

(−1)r−1 16
√
n12

γ
16
√
n9, γ

16√
n13

n

rn3, r n
γ = 1 for r = 1

(−1)r−1 16
√
n4

γ = 4
√
−4 for r = 4
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APPENDIX

C
Isomorphic geometric fibers for the

stratum M̃Pl
6 (Z/5Z)

We saw in section §4.3 that the family C(a,b) defined byZ5+XY (X+Y )(X+aY )(X+bY ) = 0

is geometrically complete over k for the stratum M̃Pl
6 (Z/5Z), where k is a field of characteristic

p = 0 or p > 13. Isomorphisms from the curve C(a,b) to another curve in this family come from

transformations α β

γ δ

 : t 7→ αt+ β

γt+ δ
,

sending the set {0, 1,∞, a, b} to a set {0, 1,∞, c, d}. The set T of such transformations is a

group and it is isomorphic to S5. Moreover, it is generated by

τ1(a, b) = (a,
a(b− 1)

b− a
), τ2(a, b) = (

1

b
,
a

b
), τ3(a, b) = (b, a).

The latest does not properly define a transformation of the curve in the family since switching

the parameters a, b does not change the equation. The first two satisfy the relations τ 2
1 = τ 3

2 =

(τ1τ2)5 = 1 generating a group isomorphic to A5. We generate here the full list of geometric

fibers over (a, b), which are isomorphic over k. For each situation (a′, b′), we associate an

isomorphism between the fibers (a, b) and (a′, b′). The 5th column determine the order of the

field automorphism σi : (a, b) 7→ (a′, b′).
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Table C.1: Isomorphic fibers

a′ b′ φσi O(σi : (a, b) 7→ (a′, b′))

1 1
a

b
a diag(1, 1

a
, 1

5√a )
2

2 b
a

1
a

3

3 1
b

a
b diag(1, 1

b
, 1

5√
b
)

3

4 a
b

1
b

2

5 a
a−1

b
b−1 [X : −(X + Y ) : 5

√
(1− a)(1− b)Z]

2

6 b
b−1

−a
1−a 2

7 1
1−a

b
b−a [X : −1

a
(X + Y ) : 5

√
(a−1)(a−b)

a3
Z]

3

8 b
b−a

1
1−a 4

9 1
1−b

a
a−b [X : −1

b
(X + Y ) : 5

√
(b−1)(b−a)

b3
Z]

4

10 a
a−b

1
1−b 3

11 a−1
a

(1−a)b
(1−b)a

[X : −X + ( 1−a
a

)Y :
5
√
−(1−a)2(1−b)

a
Z]

3

12 (1−a)b
(1−b)a

a−1
a

4

13 b−1
b

(1−b)a
(1−a)b

[X : −X + ( 1−b
b

)Y :
5
√
−(1−b)2(1−a)

b
Z]

4

14 (1−b)a
(1−a)b

b−1
b

3

15 1− a (a−1)b
a−b [X : −1

a
(X + (1− a)Y ) :

5
√
−(1−a)2(a−b)

a3
Z]

2

16 (a−1)b
a−b 1− a 3

17 b−a
b

a−b
b(a−1) [X : −1

a
(X + ( b−a

a
)Y ) :

5
√

(1−a)(a−b)2
a4

Z]
2

18 a−b
b(a−1)

b−a
b

4

19 1− b (1−b)a
a−b [X : −1

b
(X + (1− b)Y ) :

5
√

(1−b)2(a−b)
b3

Z]
3

20 (1−b)a
a−b 1− b 2

21 a−b
a

b−a
a(b−1) [X : −1

b
(X + (a−b

b
)Y ) :

5
√

(1−b)(a−b)2
b4

Z]
4

22 b−a
a(b−1)

a−b
a

2

23 1
a

1
b [Y : X :

5
√
abZ]

2

24 1
b

1
a

2

25 a a
b [Y : 1

a
X : 5

√
b
a3
Z]

2

26 a
b

a 6

27 b b
a [Y : 1

b
X : 5

√
a
b3
Z]

6

28 b
a

b 2

29 a−1
a

b−1
b [Y : −(X + Y ) :

5
√
abZ]

3

30 b−1
b

a−1
a

6

31 1− a b−a
b [Y : −1

a
(X + Y ) : 5

√
b
a3
Z]

4

32 b−a
b

1− a 5

33 1− b a−b
a [Y : −1

b
(X + Y ) : 5

√
a
b3
Z]

5

34 a−b
a

1− b 4

35 a
a−1

a(1−b)
b(1−a) [Y : 1−a

a
X − Y : 5

√
(ab)(a−1

a
)4Z]

4

36 a(1−b)
b(1−a)

a
a−1

5

37 b
b−1

b(1−a)
a(1−b) [Y : 1−b

b
X − Y : 5

√
(ab)( b−1

b
)4Z]

5

38 b(1−a)
a(1−b)

b
b−1

4

39 1
1−a

b−a
b(1−a) [Y : 1

a
((a− 1)X − Y ) :

5
√
b(1−a)4
a3

Z]
3

40 b−a
b(1−a)

1
1−a 4

41 b
b−a

b(a−1)
a−b [Y : 1

ab
((a− b)X − bY ) : 5

√
(a−b)4
(ab)3

Z]
6

42 b(a−1)
a−b

b
b−a 5

43 1
1−b

a−b
a(1−b) [Y : b−1

b
(X + ( 1

1−b )Y ) :
5
√
a(1−b)4
b3

Z]
4

44 a−b
a(1−b)

1
1−b 3

208



Table C.2: Isomorphic fibers (continued)

a′ b′ φσi O(σi : (a, b) 7→ (a′, b′))

45 a
a−b

a(1−b)
a−b [Y : b−a

ab
(X + ( a

a−b )Y ) : 5

√
(a−b)4
(ab)3

Z]
5

46 a(1−b)
a−b

a
a−b 6

47 1
1−a

1
1−b [X + Y : −X : 5

√
(a− 1)(1− b)Z]

3

48 1
1−b

1
1−a 6

49 a
a−1

a
a−b [X + Y : −1

a
X : 5

√
(1−a)(a−b)

a3
Z]

4

50 a
a−b

a
a−1

5

51 b
b−a

b
b−1 [X + Y : −1

b
X : 5

√
(1−b)(b−a)

b3
Z]

4

52 b
b−1

b
b−a 5

53 1− a 1− b
[X + Y : −Y : 5

√
−1Z]

2

54 1− b 1− a 2

55 a−1
a

a−b
a [X + Y : −1

a
Y : 5

√
−1
a
Z]

3

56 a−b
a

a−1
a

4

57 b−1
b

b−a
b [X + Y : −1

b
Y : 5

√
−1
b
Z]

4

58 b−a
b

b−1
b

3

59 b−a
a(b−1)

1
a

[X + Y : −(X + 1
a
Y ) :

5
√

(a−1)2(1−b)
a

Z]
5

60 1
a

b−a
a(b−1)

4

61 1
b

a−b
b(a−1)

[X + Y : −(X + 1
b
Y ) :

5
√

(b−1)2(1−a)
b

Z]
5

62 a−b
b(a−1)

1
b

4

63 a
a(b−1)
b−a [X + Y : −1

a
X − Y :

5
√

(a−1)2(a−b)
a3

Z]
2

64
a(b−1)
b−a a 6

65
a(1−b)
b(1−a)

a
b [X + Y : −( 1

a
X + 1

b
Y ) :

5
√

(a−1)2(a−b)
a3b

Z]
5

66 a
b

a(1−b)
b(1−a) 6

67
b(a−1)
a−b b

[X + Y : −1
b
X − Y :

5
√

(b−1)2(b−a)
b3

Z]
2

68 b
b(a−1)
a−b 6

69 b
a

b(1−a)
a(1−b) [X + Y : −( 1

b
X + 1

a
Y ) :

5
√

(b−1)(b−a)2
ab3

Z]
5

70
b(1−a)
a(1−b)

b
a

6

71 1− a a−1
b−1 [X + (1− a)Y : −X : 5

√
(1− a)2(b− 1)Z]

4

72 a−1
b−1

1− a 5

73 b−1
a−1

1− b
[X + (1− b)Y : −X : 5

√
(a− 1)(1− b)2Z]

4

74 1− b b−1
a−1

5

75 a−1
a

a−1
a−b [X + a−1

a
Y : −1

a
X :

5
√

(a−1)2(b−a)
a4

Z]
3

76 a−1
a−b

a−1
a

4

77 a−b
a

a−b
a−1 [X + a−b

a
Y : −1

a
X :

5
√

(1−a)(a−b)2
a4

Z]
6

78 a−b
a−1

a−b
a

5

79 b−1
b−a

b−1
b [X + b−1

b
Y : −1

b
X :

5
√

(b−1)2(a−b)
b4

Z]
3

80 b−1
b

b−1
b−a 4

81 b−a
b−1

b−a
b [X + b−a

b
Y : −1

b
X :

5
√

(1−b)(b−a)2
b4

Z]
6

82 b−a
b

b−a
b−1

5

83 a a−b
1−b [X + aY : −(X + Y ) : 5

√
(1− a)2(1− b)Z]

2

84 a−b
1−b a 6

85 b−a
1−a b

[X + bY : −(X + Y ) : 5
√

(1− a)(1− b)2Z]
2

86 b b−a
1−a 6
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Table C.3: Isomorphic fibers (continued)

a′ b′ φσi O(σi : (a, b) 7→ (a′, b′))

87 1−b
a−b

1
a [X + 1

a
Y : −1

a
(X + Y ) :

5
√

(1−a)2(a−b)
a4

Z]
5

88 1
a

1−b
a−b 4

89 b
a

b−1
a−1 [X + b

a
Y : −1

a
(X + Y ) :

5
√

(a−1)(a−b)2
a4

Z]
5

90 b−1
a−1

b
a

6

91 1
b

a−1
a−b [X + 1

b
Y : −1

b
(X + Y ) :

5
√

(1−b)2(b−a)
b4

Z]
5

92 a−1
a−b

1
b

4

93 a−1
b−1

a
b [X + a

b
Y : −1

b
(X + Y ) :

5
√

(b−1)(b−a)2
b4

Z]
5

94 a
b

a−1
b−1

6

95 1
1−a

1−b
1−a [X + Y

1−a : Y
a−1

: 1
5√a−1

Z]
3

96 1−b
1−a

1
1−a 4

97 1
1−b

a−1
b−1 [X + Y

1−b : Y
b−1

: 1
5√b−1

Z]
4

98 a−1
b−1

1
1−b 3

99 a−b
a−1

a
a−1 [X + aY

a−1
: Y
1−a : 1

5√1−a
Z]

3

100 a
a−1

a−b
a−1

2

101 a
a−b

a−1
a−b [X + aY

a−b : Y
b−a : 1

5√b−a
Z]

2

102 a−1
a−b

a
a−b 4

103 b
b−1

a−b
1−b [X + bY

b−1
: Y
1−b : 1

5√1−b
Z]

3

104 a−b
1−b

b
b−1

2

105 1−b
a−b

b
b−a [X + bY

b−a : Y
a−b : 1

5√a−b
Z]

2

106 b
b−a

1−b
a−b 4

107 b−1
b−a

a(1−b)
a−b [X +

a(1−b)Y
a−b : −X +

(b−1)Y
a−b : 5

√
(1−b)2(1−a)2

a−b Z]
5

108
a(1−b)
a−b

b−1
b−a 6

109
b(1−a)
b−a

a−1
a−b [X +

b(1−a)Y
b−a : −X +

(a−1)Y
b−a : 5

√
(1−b)2(1−a)2

b−a Z]
5

110 a−1
a−b

b(1−a)
b−a 6

111 a−b
a(1−b)

a−b
1−b [X + a−b

a(1−b)Y : −1
a
X + b−a

a(1−b)Y : 5

√
(a−b)2(a−1)2

a4(1−b) Z]
5

112 a−b
1−b

a−b
a(1−b) 6

113 1−a
1−b

b(1−a)
a(1−b) [X +

b(a−1)
a(b−1)

Y : −1
a
X + 1−a

a(b−1)
Y : 5

√
(a−b)2(a−1)2

a4(b−1)
Z]

2

114
b(1−a)
a(1−b)

1−a
1−b 4

115 b−a
1−a

b−a
b(1−a) [X + b−a

b(1−a)Y : −1
b
X + a−b

b(1−a)Y : 5

√
(b−a)2(b−1)2

b4(1−a) Z]
5

116 b−a
b(1−a)

b−a
1−a 6

117
a(1−b)
b(1−a)

1−b
1−a [X +

a(b−1)
b(a−1)

Y : −1
b
X + 1−b

b(a−1)
Y : 5

√
(b−a)2(b−1)2

b4(a−1)
Z]

2

118 1−b
1−a

a(1−b)
b(1−a) 4

119 a b
diag(1, 1, 5

√
−1)

1

120 b a 2
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of classical unitals, Arch. Math. (Basel) 74 (2000), no. 1, 1–5. MR 1728355

[Ch4] F. Châtelet, Variations sur un thème de H. Poincaré, NUMDAM, 1944. MR
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