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SUMMARY 

 

Moving towards a more sustainable energy generation system has been a main 

challenge of modern societies during the last decades. By minimizing the dependence on 

fossil fuels and associated anthropogenic impacts, it is possible to improve the 

sustainability level of anthropogenic activities. Researchers and policy makers confronts 

the challenge of developing strategies to restructure energy systems into more sustainable 

forms, which calls for advanced decision-support tools.  

With the quick economic and technology growth, several attempts have been put 

forward in order to define the concept of sustainability and select appropriate 

measurement tools. The balance of the three main dimensions of sustainable 

development proposed in Brundland Report [1] referred to the environmental, economic 

and social aspects of processes/products/systems. In the context of environmental 

performance, the question that still remains open is how to assess and quantify the 

environmental eco-efficiency level of a system. 

The concept of ‘eco-efficiency’, introduced in 1991 by the World Business 

Council for Sustainable Development (WBCSD), soon became a management 

philosophy geared toward sustainability. Eco-efficiency, which applies to all business 

aspects, links the economic and environmental performance of a system in order to 

enable the identification of the most efficient alternatives (i.e., those maximising profits 

whilst reducing the associated potential ecological damage). A well-established 

environmental engineering tool, Life Cycle Assessment (LCA) quantifies the impact 

produced in all of the phases in the life cycle of a system, product or service(i.e., from 

cradle to grave analysis) using specific environmental indicators.  

Environmental metrics can be based on environmental interventions (e.g., 

emissions, land use, extractions, etc.); midpoint impacts (e.g., global warming, 

ecotoxicity, acidification, water pollution, ozone depletion, etc.); or endpoints indicators, 
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which quantify the damage in human health (e.g., morbidity and mortality), ecosystem 

quality (e.g., biodiversity), and human affluence (e.g., landscape, natural resources, 

cultural heritage, etc.) 

Eco-efficiency can be assessed via data envelopment analysis (DEA), where data 

on inputs and outputs are based on nominal values that must be perfectly known in 

advance. From the observed data, DEA determines an efficient frontier containing the 

efficient units. Furthermore, for each unit deemed inefficient, DEA provided a set of 

target values (for inputs and outputs) that (if accomplished) would make the inefficient 

unit efficient.  

Unfortunately, in the context of eco-efficiency assessment, environmental scores 

are affected by numerous sources of uncertainty stemming from imprecise 

measurements, lack of data and/or modelling choices. Uncertainties are particularly 

significant in LCA studies [2], as they require large amounts of data from disperse 

facilities located in different parts of the product’s supply chain that might belong to 

different owners who might be reluctant to share this information (or even lack the 

necessary measurements).  

This doctoral thesis proposes novel methods for the assessment of LCA metrics 

and for uncertainty analysis that measure the environmental performance (eco-efficiency) 

of a system under uncertainty. Particularly, a toolkit of techniques including life cycle 

assessment, the Pedigree matrix, Monte Carlo Simulation and Data Envelopment 

Analysis are applied to assess the level of sustainability of a system. The main approach 

is applied to assess the environmental performance of energy production considering 

several uncertainties. 

The work compiled in this PhD dissertation comprises three main parts. The first 

chapter presents an introduction, an analysis of existing approaches, and a description of 

methods and tools applied during this thesis.  

The second part deals with the combined DEA+LCA technique for the 

assessment of environmental impacts provoked by energy production, considering how 
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uncertainties affect the results. This part explores the ecological performance (eco-

efficiency) of the electricity mix of the top European economies and allows identifying 

environmentally efficient and inefficient countries considering as undesirable inputs 

several environmental impacts associated with the production of 1 kWh (regarded as 

output). Furthermore, the method establishes targets for the inefficient countries that (if 

attained) would make them efficient. Our results provide valuable insight for 

governments and policy makers that aim to satisfy the electricity demand while 

minimizing the associated environmental damage. Furthermore, the DEA+LCA method 

has been extended to deal with the uncertainty, through the implementation of the 

Pedigree matrix approach and Monte Carlo simulation to enable the eco-efficiency 

assessment under uncertainty of a system. Additionally, the comparison between the 

deterministic case and the stochastic cases is made, showing the differences between 

them and highlighting the importance of the uncertainty assumption in sustainability 

analysis. 

Finally, the last part of this work provides the final conclusions and future work. 
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PART I: Introduction 

 

1. Introduction 

 

1.1 Preface 

 

Moving towards a more sustainable global development has become a major 

goal of modern societies that aim to ensure meeting the needs of present generations 

without compromising the ability of future generations to meet their own needs. The idea 

of sustainable development indicate “not absolute limits but limitations imposed by the 

present state of technology and social organization on environmental resources and by 

the ability of the biosphere to absorb the effects of human activities”[1]. Thus if social 

organization and technology can be both supervised and improved by governments, as 

the coordinator of human progress, to make way for a new era of economic growth, it is 

crucial that sustainability issues have an important role in the agenda. 

Furthermore, nowadays, due to the rapidly economic and technology growth, as 

well as the current environmental friendly trend, governments and worldwide companies 

face an unending challenge to continually evaluate and measure all aspects of economic 

and technological development, such as cost reductions, environmental pollution, and 

impacts damage, among other factors. For those countries/companies that have identified 

and recognized the need to embrace sustainable development, the understanding and 

implementation of practical indicators of sustainability is required. 

 

1.2 Sustainability development 

 

With the increase of human actions on the planet, the necessity of sustainability 

became a crucial objective for present society and future generations. Lindsey has 
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summarized an increasing significance of sustainability research reflected in a growing 

number of publications [3]. In fact, the perception of sustainability has been the focus of 

public attention for more than 40 years. Meadows et al. alerted in his book titled “The 

Limits to Growth” that our future development is limited by the depletion of natural 

resources and the growing world population [4].  As cited by Forrester et al.[5], three 

decades ago William Ruckelshaus (1989), the first administrator of the United States 

Environmental Protection Agency, had already requested: “Can we move nations and 

people in the direction of sustainability? Such a move would be a modification of society 

comparable in scale to only two other changes: the Agricultural Revolution of the late 

Neolithic and the Industrial Revolution of the past two centuries. These revolutions were 

gradual, spontaneous, and largely unconscious. This one will have to be a fully 

conscious operation, guided by the best foresight that science can provide. If we actually 

do it, the undertaking will be absolutely unique in humanity’s stay on Earth.” 

For the future development of society we have to look for a sustainable growth, 

as conceptualized by the World Commission on Environment and Development (WCED) 

in 1987, which first launched the concept of sustainable development in Our Common 

Future (also known as the Brundtland Report [1]). The aforementioned works gained 

public attention in shaping the sustainability and sustainable development concepts, as 

they explicitly addresses challenges such as the management of the following trade-offs: 

intra- versus intergenerational equity, earth limits versus population growth, and 

collective versus individual interests. 

Additionally, the critical objectives of sustainable development proposed by the 

European Commission [6] are: (1) reviving growth; (2) changing the quality of growth; 

(3) meeting essential needs for job, water, energy, food, and sanitation; (4) reorienting 

technology and managing risk; (5) ensuring a sustainable level of population; (6) 

reorienting international economic relations; (7) merging environmental and economics 

ion decision making; and (8) conserving and enhancing the resource base.  
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The presented objectives show the mainstream of sustainable development 

thinking represented by many international environmental agencies such as the World 

Wildlife Fund (WWF), UNEP [7], the US Agency for International Development, 

development agencies including World Bank, the Canadian and Swedish international 

development agencies such as the International Institute for Environmental and 

Development or the Worldwatch Institute. 

Generally, sustainability can be expressed as the ability to sustain [8], maintain 

[9] or continue [10] something over time. In technical term, this definition refers 

normally to the maintenance or continuation of some system or process over time [11]. 

Although sustainability is a relevant concept for society, economics, and the 

environment, with thousands of annually publications, its definition is still unclear. 

For instance, Hannon et al.[12]dispute that “the diffusion and popularity of the 

term sustainability with relatively little corresponding rigorous and grounded 

conceptualization may have created confusion over the basic concepts of sustainability”. 

In addition, they advise that “the lack of a unified and rigorous understanding of 

sustainability means that sustainability initiatives are often ineffectual”. Although their 

suggestion was made in a business context, it can be translated into society as a whole. 

Sustainability requires a multi-disciplinary approach[13], but unfortunately is 

still fractured due to disciplinary barriers [8], [11]. Sachs et al. [14]considered 

sustainable development as the great challenge of the 21stcentury. On the other hand, 

Vollenbroek[15] defined it as a balance between the feasible technologies, strategies of 

innovation and the policies of governments. As an illustration, there are many distinct 

research fields that study sustainable development in specialized areas, e.g., 

development, agriculture, industry, forestry, business, among others (See a more detailed 

description in Section 2.1). 

According to Lélé[16], the main weakness in mainstream formulation of 

sustainable development are: (i) the characterization of issues of poverty and 

environmental degradation; (ii) the mentioned unclear definition and conceptualization of 
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the aim of development, sustainability and participation; and (iii) the strategy used 

against the incomplete knowledge and uncertainty. In his critical review the authors 

concluded the need to understand the multiple aspects of sustainability and develop 

measures, benchmarks and principles to deal with them. On the other hand, the author 

mentioned the urgency to clarify the main definition of sustainability development and to 

accept the existence of structural, cultural and technological causes of both poverty and 

environmental degradation and to develop methodologies for sustainability assessment 

and optimisation.  

Several indicators have been put forward to quantify the sustainability level of a 

system. According to the Brundland Report [1], the sustainability concept refers to the 

balance of three basic aspects (dimensions) of sustainable development: economic, 

environmental and social. With the increase of environmental consciousness, stemming 

from legal and societal pressure, production processes have attempted to improve their 

ecological performance through process efficiency improvement and waste minimization. 

Hence, environmental, economic and social benefits are being recognized.On the other 

hand, Dyllick and Hockerts[17] have framed the three basic aspects (dimensions) of 

sustainability as the natural case (environmental), the business case (economic) and the 

societal case (social). 

As mentioned above, several attempts have been made to define the methods or 

indicators for manufacturing operations or processes in order to improve the 

sustainability level. For instance, the application of two out of the three dimensions of 

sustainability (economic and environmental) have been implemented by Saling et al.[18], 

as through the use of eco-efficiency metrics. On the other hand, a set of sustainability 

metrics have been proposed by the Global Reporting Initiative [19] to quantify industrial 

processes (brief description of other environmental metrics is given in section 1.2.1). The 

GRI, well known initiative that develops the guidelines for establishment of social, 

economic and environmental indicators of corporative activities, consists of 

recommendations and principles of standard reporting format. A total of seventy 
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indicators, introduced in detail in the indicator protocols [20], have been divided into 

different groups such as economic, environmental, employee, human rights and 

workplace related or social indicators, among others. 

Another authors suggested aggregating the indicators into a single score, thereby 

helping decision makers[21]–[24]. Other suggestions[25], [26], suitable with the 

common accepted indicators presented in the Global Reporting Initiative, can be also 

found in the literature. Afgan et al. [27] demonstrates that the decision-making process 

strongly relies on the preference given to the specific indicators in energy systems 

evaluation (e.g., acidification potential indicator in Eco99),while Azapagic et al. [25] 

presented useful indicators for the assessment of industrial system. 

Unfortunately, although aggregated indicators cover the three dimensions of 

sustainability, they do not allow the identification of the particular sustainability 

dimension that should be improved. On the other hand there is an open research question 

in the selection of the tools to measure sustainability. After the examination of three 

central steps of index formation: normalization, weighting and aggregation, Böhringer et 

al.[28] find that the normalization and weighting of indicators (associated generally with 

subject judgments) indicate a high degree of arbitrariness without mentioning or 

systematically assessing critical assumptions. With regards to aggregation, there are 

scientific rules which guarantee consistency and meaningfulness of composite 

indices[29], yet they are still subjective. 

 

1.2.1 Types of sustainability metrics 

 

The selection of suitable indicators or criteria is a crucial issue in sustainability 

exercise. Several different indicators have been defined besides standard economic, 

environmental and social aspects, including: technical issues[30], political aspects [31], 

technological issues[32], institutional aspects[33], community developments[34], or 
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recreational and tourism components [35][36], and indicators for renewable energy 

systems[37], among others.  

According to Schwarz et al.[38], there are five basic sustainable indicators: (i) 

material intensity, (ii) energy intensity, (iii) water consumption, (iv) toxic emissions, and 

(v) pollutant emissions. Complementary metrics can be developed if other areas of 

decision support are required. 

After an exhaustive analysis of published works on metrics (or indicators) for 

sustainability, the following issues stand out when obtaining coherent results. According 

to Martins et al.[39] either (i) the selected metrics are not exactly reflective of all three 

aspects of sustainability; (ii) they are too many and, therefore, are difficult to handle 

with; or (iii) both limitations apply. The loss of information in the analysis is the 

principal disadvantage of the use of an aggregated indicator. Consequently, a small set of 

quantifiable indicators to assess technological or policy changes is an appropriate option 

[38]. Currently, measurements that consider fewer factors are more versatile and useful 

for making comparisons between products or processes and therefore more helpful in the 

decision-making process. Hence, the selection of a suitable set of simple, generally 

applicable metrics and the construction of complementary metrics, if needed, are the 

crucial keys in sustainable analysis.  

On the other hand, the independency of the chosen indicator, being the 

requirement in the first selection step, makes easy any changes of description of some 

indicators or the manner they are calculated, in accordance with the characterization of 

data available, without influencing others. Economic indicators are usually based on 

either cost-benefit analysis (CBA) or life-cycle costing (LCC), whereas environmental 

metrics can be based on environmental interventions (e.g., emissions, extractions, land 

use, etc.); midpoint impacts (e.g., global warming, toxicity, acidification ozone depletion, 

etc.); or endpoints indicators. The latter aggregate damages in human health (e.g., 

morbidity and mortality), ecosystem quality(e.g., biodiversity), and human affluence 
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(e.g., as reflected in production functions, landscape, natural resources, cultural heritage, 

etc.) [40]. 

Thus, with the goal of providing an easy and clear method for the 

implementation of indicators or metrics, the following classification that considers the 

three dimensions of sustainability (Figure 1.1) has been proposed by Sikdar[41]. The 

three groups are: 

(1) One-dimensional (1D) indicators where only one aspect of sustainability is 

analysed: economic, social or environmental; 

(2) Two-dimensional (2D) indicators where two dimensions are 

simultaneously taken into account: socio-environmental, socio-economic, or economic-

environmental; and 

(3) Three-dimensional (3D) sustainability indicators where the three aspects 

of sustainability are considered simultaneously. 

 

 

Fig.1.1 Three intersecting circles to illustrate the different dimensions of sustainability. 
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Ideally, the three dimensional metrics (3D) should be analysed first in order to 

assess the contribution of manufacturing systems/products to sustainable development. In 

some cases, when, after application of suitable changes, all the selected 3D metrics 

increase the efficiency of a system/product, we can assume that the enhanced process is 

more sustainable. On the other hand, if the outcomes are questionable, the 2D and 1D 

metrics should be considered for decision making. 

This procedure is only a suggestion about what metrics should be taken into 

account and in which order, but the final election of metrics depends on the system, type 

of analysis and decision makers. Hence, the types of metrics for a chemical process 

should be different from those suitable for other manufacturing systems, which may 

include other services or operations.  

Since the metrics should be very carefully chosen, it is crucial to select 

appropriate indicators according to the type of system under study. For instance, 

examples of 1D metrics are: “employment rate” (societal), “pollutant emissions” 

(environmental or ecological), and “gross domestic product (GDP)” (economic).  

Several efforts integrating social dimensions into life cycle format have been 

made in the past decade [42]–[44]. Social life cycle assessments differ from LCA in 

many aspects, for instance: geographically specific life cycle inventory, employment 

hours or regional characterisation factors. A key societal indicator such as housing, 

health care, education or necessities are regionally dependent and lead to polemics when 

they are measured and compared in order to obtain meaningful results.  

 

1.2.2 Eco-efficiency concept 

 

The concept of eco-efficiency is crucial in corporate environmental management 

and offers an appealing framework to carry out this task. A new concept can be traced 

back to 1970s as the concept of “environmental efficiency”. Eco-efficiency was 

introduced in the 1990s as a “business link to sustainable development”. Later, it was 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



27 

 

popularized by The World Business Council for Sustainable Development (WBCSD) for 

the business sector as a general management philosophy [45].  

Eco-efficiency attempts to increase the value through technology and process 

changes whilst progressively reducing resource intensity and ecological impact 

throughout the product or service's life. Specially, it has gained important attention 

because of the important role it plays in indicating how efficient a product or process is 

regarding to services and nature’s goods. More precisely, less waste and pollution 

emissions generation, improvement of production methods and tools, less virgin 

resources, water and energy consumption all together convert the 

businesses/processes/systems based on eco-efficiency principles into more profitable and 

competitive. 

Usually expressed as the ratio between the product value and its environmental 

burden, eco-efficiency has been applied to all business aspects, from purchasing and 

production to marketing and distribution. This ratio, called environmental productivity or 

incremental eco-efficiency [40], indicates the economic creation for a given ecological 

destruction. The main eco-efficiency aspects are:  

 To reduce: energy, water, virgin material use, and waste and pollution  

levels. 

 To increase the product or service value. 

 To incorporate the life cycle principles. 

 To expand the utility function and therefore product/service life regarding 

to its usefulness and recyclability at the end of their useful life.  

The eco-efficiency concept is an effective method for the business area to 

increase the economic cost with reduction of environmental impact, which has so far 

been used in many disciplines. According to Michelsen et al.[46], the eco-efficiency 

concept is a tool for measuring system progress and for communicating the economic 

and environmental performance of a product or process. On the other hand, Huppes et 
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al.[40], presents it as an instrument for sustainability analysis underlining the relation 

between environmental impact and economic value. . The main drawback when 

constructing eco-efficiency indicators is that there is a lack of accepted regulations or 

standards recognition, measurement, and disclosure of environmental information [47].  

Hence, the way in which the economic and environmental performance values 

are defined is a key point in eco-efficiency assessment. Environmental indicators provide 

decision makers an overview of important progress and relevant problem fields. 

According to Jasch[48], indicators are deemed as comprehensive and concise key data set 

in a vast sea of environmental information and have the following purposes: (i) overtime 

comparison and evaluation of environmental performance between firms, processes, 

systems, services or products; (ii) derivation and pursuit of environmental target, and (iii) 

the highlighting of optimization potentials, among others. 

According to Kuosmanen and Kortelainen[49], pressure indicators can be used 

to quantify the environmental performance (calculated by weighting the contribution of 

different pollutants to several damage categories), while the economic value added (the 

profit) can be applied to measure the economic performance. On the other hand, the 

environmental performance using life cycle assessment (LCA), proposed by Dyckhoff 

and Allen [50] quantify the impact caused in all the stages in the life cycle of a product or 

process (i.e., cradle to grave analysis). 

 

1.3 Life Cycle Assessment 

 

Life Cycle Assessment (LCA) is a well-established and quantitative technique 

for assessing the environmental aspects of product/systems that has gained wider interest 

in the recent years. This methodology evaluates various aspects associated with 

production and development of a product and its potential environmental impact 

throughout its entire life cycle (Figure 1.2), that is, from raw material acquisition, 
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processing, manufacturing, use, re-use and, finally, its disposal, following defined 

principles and guidelines [51]. 

LCA typically focuses on environmental impacts. Indeed, ISO documentation 

restricts LCA’s purview to environmental effects ([51], [52]) underlining resources use, 

human health and ecological consequences. The ISO 14040 standard [52] describes LCA 

as “compilation and evaluation of relevant inputs, outputs, potential environmental 

impacts of a product system at various points in its life cycle and interpretation of the 

results of the inventory analysis and impact assessment phases in relation to the 

objectives of the study”.  

 

 

 

Fig.1.2 Interpretation of Life Cycle Assessment. 

 The main applications of LCA are:  

(i) Identification of possibilities to improve the environmental aspects of  

products throughout their life cycle; 
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(ii) Informing decision-makers in industry, government or non-government 

organizations (e.g., strategic planning, priority setting, product or process 

design or redesign); 

(iii) The choice of significant indicators of environmental performance,  

including measurement methods, and 

(iv) Marketing (e.g., implementation of ecolabelling schemes, making an  

environmental claim, or producing an environmental product declaration). 

 

 

 

Fig.1.3 The phases of Life Cycle Assessment. 

 

The Life Cycle Assessment (LCA) application is typically divided into four 

phases as shown in Figure 1.3. 

1. Goal and scope definition: This first step determines which processes, 

environmental impacts and economic or social good provided by the goods or services in 

question, will be included in the analysis. It also fixes the frontiers of the study. 

2. Inventory analysis: Life Cycle Inventory (LCI) is the compilation of relevant 

energy and material and environmental inputs and outputs involved in the life cycle 
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assessment. This includes modeling, data collection and verification of input data (i.e., 

materials, energy…) and output data (i.e., air and water emissions or solid waste…). 

3. Life Cycle Impact Assessment (LCIA): the evaluation of the potential ecological 

damage associated with defined inputs and releases. The typical list of impact indicators 

contains: human toxicity, climate change, stratospheric ozone depletion, acidification, 

ecotoxicity, natural resources, among others. Various LCIA methodologies that differ in 

impacts categories and indicators selection can be applied (i.e., CML 2001, Eco-indicator 

99 or ReCiPe, among others). 

4. Interpretation: The interpretation of results aims to help decision-making so as to 

improve the human health and environmental impacts of products, processes, systems or 

activities. Measures derived from this phase can be used to modify the previous aspects, 

thus improving the environmental performance of the system. 

 However, these phases show some limitations. After a critical review of more 

than twenty software and twenty-five databases Zamagni et al.[53] concluded that each 

of the aforementioned stages have several inaccuracies. The authors identified that the 

current developments of life cycle approaches are oriented towards: 

(1) The improvement of the most debated issues such as system boundaries and 

allocation and 

(2) The understanding on how to extend the present LCA methodology into more 

comprehensive problems related to sustainability and development of these 

methods. 

 

The inventory and impact assessment phases typically focus on environmental 

aspects only, disregarding the economic and social dimension of sustainability. The 

authors suggested that future developments would involve other disciplines fields and 

expertise at several levels. Hence, the combination of environmental analysis with 

different disciplines could improve the sustainability assessment of products and 

processes. Nowadays, many authors underlay that this involvement could be useful to 
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reduce the uncertainty, the collection of more representative data or the improvement of 

system modeling. 

 

1.4 Uncertainty of LCA 

 

Uncertainty is one of the important issues, often mentioned as an increasingly 

accepted component of LCA, which complicates the interpretation of results. According 

to Huijbregts[54], there are three types of uncertainty: (i) parameter uncertainty, (ii) 

model uncertainty and (iii) uncertainty due to choices. 

Parameter uncertainty: Uncertainty of a large amount of data used in the 

inventory analysis and in the models which determine the weighting factors in the impact 

assessment also causes uncertainty in the outcome of an LCA. The main sources of 

parameter uncertainty are: imprecise measurements, incomplete or outdated 

measurements and lack of data. A comprehensive procedure for improving the LCA 

results considering major uncertainties is described by Weidema and Wesnæs [55], who 

estimate the imprecise and incomplete inventory data, both qualitatively and 

quantitatively. The authors recognize that uncertainty analysis is usually complex and 

hampered by a lack of knowledge on the uncertainty distributions and/or correlations 

between parameters. Several methods have been suggested in order to deal with 

parameters uncertainty in LCA outcomes such as [56]: 

 Parameter variation and scenario analysis; 

 Bootstrapping, Monte Carlo simulations and other sampling approaches; 

 Classical theory on the basis of probability distributions, tests of 

hypothesis, etc.; 

 Applying qualitative uncertainty techniques, for example, by relying on 

data quality indicators; 
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 Using conventional methods, like Bayesian analysis [57] or non-

parametric statistic or fuzzy set theory [58]; 

 Implementing analytical methods, using first order error propagation.  

 

The study of uncertainties in LCA studies typically focuses on parameter 

uncertainty. Some databases (e.g., the Ecoinvent inventory data) include probability 

distributions for almost all the data involved. The most widely used tools for LCA 

incorporate algorithms for handling uncertainties, including Monte Carlo analysis, while 

some programs permit the application of analytical approaches or fuzzy techniques. 

Model uncertainty: According to Huijbregts[54], some aspects are difficult or 

impossible to model within the present LCA structure. For example, the aggregation of 

emissions in the inventory analysis causes the loss of temporal and spatial attribution. 

Additionally, the assumption of linear behavior in the environmental interventions of 

ecological processes is neglected in the impact assessment phase [59]. Furthermore, the 

derivation of characterization factors computed using simplified environmental models 

introduces model uncertainty. 

Uncertainty due to choices: When implementing LCAs, choices are inevitable. 

These include the choice of the functional unit in the inventory analysis and/or allocation 

procedure and the choice of the weighting scheme. The standardization of procedures 

ISO[51] allows the reduction of uncertainties due to choices to a universally established 

level. In case of inability to apply the standard procedures, these uncertainties may be 

treated with a scenario analysis, which can display the results on LCA outcomes for 

different combinations of choices. 
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1.5 Data Envelopment Analysis 

 

Methods for measuring efficiency emerged in 1960s. As cited by Cook et 

al.[60], sixty years ago Farrell [61] stated in his paper on the measurement of productive 

efficiency: ‘‘The problem of measuring the productive efficiency of an industry is 

important to both the economic theorist and the economic policy maker. If the theoretical 

arguments as to the relative efficiency of different economic systems are to be subjected 

to empirical testing, it is essential to be able to make some actual measurements of 

efficiency. Equally, if economic planning is to concern itself with particular industries, it 

is important to know how far a given industry can be expected to increase its output by 

simply increasing its efficiency, without absorbing further resources.” 

Unfortunately, the principal reason of the failure of his attempts was the lack of 

success combining the calculations of the multiple inputs into any tangible measure of 

efficiency. For instance, the formation of an average productivity input ignoring all other 

inputs or the comparison between the weighted average of inputs with the output. 

Twenty years after Farrell’s idea, Charnes et al.[60 ] introduced and developed a 

powerful service management and benchmarking technique coined as data envelopment 

analysis (DEA) to assess the relative efficiency of multi-input multi-output production 

units. Originally developed to evaluate public and nonprofit organizations, this powerful 

methodology has been applied in many different research fields, including the assessment 

of the environmental performance of industrial plants, economic sectors, countries, and 

products, among others (see a more detailed description in Section 2.3). 

DEA estimates the relative efficiency of a number of homogeneous units, 

commonly defined as decision making units (DMUs). As a non-parametric linear 

programming method (LP), DEA assesses objectively the efficiency of a set of units (i.e., 

products/services). Non-parametric estimation means that it does not assume any specific 

functional form for data. The inputs and outputs have to be known and from those, DEA 

identifies a set of non-dominated units (i.e., efficient) [63] and for the ones found to be 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



35 

 

inefficient provides both an efficiency score and a set of target values that would make 

the unit efficient. The main advantages and information provided from DEA are: 

(1) The comparison of all units (i.e., branches, services provided) – directly against 

peers - without any assumption allows identifying the most efficient ones, while 

showing for the inefficient units, which improvements are required in order to 

become efficient. 

(2) DEA can handle multiple inputs and outputs calculating the amount and type of 

cost and resources savings that can be achieved by making the inefficient ones as 

efficient as the most efficient units. 

(3) While the inputs and outputs can have very different units, DEA identifies the 

specific changes in the inefficient units that can be implemented to achieve 

potential targets. 

(4) The information obtained about performance of service units can help decision 

makers or management understand which improvements in the productivity of 

inefficient units are required, providing insight into how reduce operating costs 

and increase profitability. 

 

As any other technique, DEA has some weaknesses. For example the results 

provided are very sensitive to the number of inputs and outputs (measurement error can 

cause significant problems), as well as the size of the sample (large problems can be 

computationally intensive)[64]. Errors in the data and the measurement of an efficiency 

score only relative to the best practice within a particular sample can both lead to lack of 

meaningful results. On the other hand, DEA estimates “the relative efficiency” of a DMU 

but avoids the absolute efficiency. For instance, although DEA can show how well the 

DMU is, in comparison with other peers, “the possible theoretical maximum” to achieve 

is not taken into account. Additionally, there are some difficulties in statistical hypothesis 

tests because of the nonparametric character of this technique. 
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1.6 Uncertainty of DEA 

 

In the standard DEA, data describing inputs and outputs are based on nominal 

values that must be perfectly known in advance (i.e., without uncertainty). From these 

observed data, DEA determines a convex frontier containing the efficient units. For each 

unit deemed inefficient, DEA establishes in turn a set of target values (for inputs and 

outputs) that, if attained, would make the inefficient unit efficient.  

Unfortunately, environmental calculations are affected by numerous 

uncertainties stemming from imprecise measurements, lack of data and/or modelling 

choices. These uncertainties critically affect the outcome of LCA studies. Hence, these 

uncertainties should be accounted for in the analysis if meaningful results are sought. 

 

1.7 DEA + LCA framework 

 

In recently years, the combined use of LCA and DEA has developed 

significantly. Presented in 2009 by Lozano et al. the LCA+DEA methodology has 

attracted growing attention ever since. The LCA+DEA methodology has been applied in 

two different manners: (1) “five-step LCA+DEA method” that is recommended to 

undertake eco-efficiency verification through the quantification of environmental 

consequences [66]; and (2) “three-step LCA+DEA method” that estimate environmental 

impacts and parameters directly [67].  

 

1.7.1 Five-steps LCA + DEA method 

The combined approach of operational and environmental assessment of 

multiple inputs and outputs has been defined by Vázquez-Rowe et al. [68] in five steps 

(Figure 1.6): 
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(i) Description and development of the Life Cycle Inventory (LCI) for each 

unit of assessment (i.e., DMU). Data collection of inputs and outputs is 

required for the system assessed. 

(ii) The characterization of Life Cycle Impact Assessment (LCIA) for every 

unit (i.e., DMU) from the LCI data selected in the first step. 

(iii) The calculation of a efficiency score for each unit (DMU) and 

determination of targets by applying DEA to inputs/outputs from LCIs. 

(iv) LCIA of the target DMUs from the new LCI data obtained from the third 

step. As a result, the determination of potential environmental impacts 

associated with virtual units is achieved. 

(v) Quantification of the environmental consequences of operational 

inefficiencies (eco-efficiency verification). The comparison between 

potential environmental impacts for the virtual DMUs and those 

corresponding to the current DMUs quantifies the environmental damage 

generated by inadequate operational practices. 
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Fig.1.6. Representation of five-step LCA+DEA method 

 

1.7.2 Three steps LCA + DEA method 

A simplified alternative LCA+DEA method is composed of three steps [65]. 

The first two stages are similar to those in the five-step method. In the third phase, 

however, the estimation of targets for both inputs/outputs and potential environmental 

impacts is made. Hence, as opposed to the five-step method, the three-step alternative 

implements environmental impacts as inputs when resolving DEA. Hence, this method 

avoids the environmental characterization of targets DMUs. As shown in Figure 1.7, this 

approach consists of the following stages: 

(i) LCI for each of the units (DMUs). Data collection of inputs and outputs for the 

units being assessed. 

(ii) LCIA applied for each of the units (DMUs) from the first step. The environmental 

characterization of current DMUs is made. 

(iii) DEA applied to the LCIs from the first step and the characterization results 

obtained in the second phase. The environmental and operational impact 

efficiency of each unit (DMU) is determined and the target DMUs are 

established. In this stage, the comparison of the current and target values for each 

environmental category is calculated. 
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Fig.1.7. Representation of three-step LCA+DEA method. 

 

1.7.3 Illustrative example of the application of DEA + LCA methodology 

 

Based on the definitions of efficiency by Farrell (1957), technical efficiency 

means producing a given output with minimum amount of inputs or alternatively, 

producing the maximum amount of output from a given quantities of input. Hence, a 

firm/system/process is technically efficient when operates on its production frontier, 

reaching its maximum potential. 

These efficiency concepts can be illustrated by considering a single output 

(equal to 1) value for all DMUs being produced from two inputs, X1 and X2 (Figure 1.9). 

Red circles in the figure represent the efficient values, while blue circles depict the 

inefficient ones. The Pareto condition is that the efficient technologies cannot be 

improved in one DMU without worsening the other one. The efficient frontier is the 

“imaginary” line that links the efficient units on the convex envelope of the DMUs.  
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Fig. 1.8 A two input illustration of DEA projection. 

 

We find that DMUs A, B, C and D are efficient (equal to 1), while DMUs E, F, G, 

H and I are inefficient. For DMU E and G, the efficiency scores are 0.64 and 0.85, 

respectively, calculated as a ratio between the distances (e.g., efficiency of point E is the 

ratio between |OP| and |OE|). In case of DMU E, its projected (frontier) value is 

represented by point P, while point R denotes DMU G. In addition, the same 

proportionality reduction factor is used in each input of every inefficient DMU. 

As illustrated by this example, the deterministic assumption of DMUs is made 

and the radial projection is used (a detailed discussion about the influence of the 

projection is presented in section 4.4.1). The crucial key is what happens when the values 

assumed as deterministic, in fact, are stochastic: How should the efficiency be measured? 

We will deal with this issue through this thesis.  
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1.8 Main objectives and thesis outline 

 

In the current context of more sustainable development, improving the efficiency 

of European energy systems is an essential issue. 

The overall goal of this thesis is the application of Life Cycle Assessment and 

Data Envelopment Analysis as a useful tool in sustainability assessment and analysis of 

methods taking into account data uncertainty. In order to achieve this aims, the following 

objectives need to be accomplished: 

 To analyze and compare energy systems. 

 To consider the uncertainty in the input data. 

 

This thesis has been organized in order to introduce progressively the 

application of Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) into 

sustainability assessment. Figure 1.8 illustrates the outline of the thesis, which has been 

structured in three main parts. 

Part I includes the introductory view of the problem to be addressed (Chapter 1), 

a detailed state of the art of the techniques and applications used (Chapter 2), and the 

methods and tools used through this thesis (Chapter 3).  

Part II represents the combined applications of LCA and DEA methodologies to 

the case-studies. Chapter 4 aims to assess the environmental efficiency of the electricity 

mix of the top European economies via data envelopment analysis under deterministic 

conditions. Assuming the uncertain aspects of the environmental impacts, Chapter 5 

extends the approach to handle such uncertainties.  

Finally, in Part III, the main contributions of this thesis has been summarized 

and conclusions with future work remarks are presented. 
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Fig 1.8 Thesis outline 
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2. State of the art 

 

Our world is facing at present crucial environmental problems such a 

deterioration of environmental systems or a non-sustainable exploitation of natural 

resources that affect the quality of life. The need for collaboration between governments 

and companies (through legislation) is motivating our society into the adaptation of an 

environmentally friendlier attitude. 

Life Cycle Assessment and Data Envelopment Analysis are powerful tools 

which benchmark the systems/processes or products in order to obtain meaningful 

improvements. 

This chapter summarises major contributions made until now in the topics 

developed throughout this thesis. Notably, the most important works related to the 

improvement of sustainability using LCA and LCA+DEA are reviewed. 

 

2.1 Brief historical outline of sustainability development 

 

Enhancing the quality of life by improving the environmental, social and 

economic conditions for present and futures generations is the main aim of sustainable 

development.  

According to Linton et al.[70], although the first attempt toward sustainability 

can be found in many ancient cultures, recently many researches of philosophers and 

economists focus on its development [71]. The increase of awareness and the 

consideration of sustainability in the management literature continued in the 1990s, but 

the transition from the technical concept into mainstream took part with the publication 

of the Brundtland Report. 

Since the world commission on environment and development (WCED), 

entitled Our Common Future[1], the term sustainable development has gained world’s 
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attention as an strategy that links united environmental performance and development in 

order to enable the identification and to develop the policy for meeting the needs of 

future generations.  

The main research fields that considered sustainability until 2006 were [70]: 

Environmental science (more than 12000 papers); social science (more than 9000 

articles); engineering (8000 papers); Agriculture and Biological Science (6000 articles); 

Earth and Planetary Science (more than 5000 papers); Economics, Business, and 

Management (4000 publications); Energy and Medicine (more than 2000 each one); 

Chemical Engineering (2000) and Material Science (more than 1000 papers).  

As mentioned above, the sustainability development assessment has been 

applied in many distinct research fields such as:  

- Global and regional assessment such as a European strategies for sustainable 

development [72], sustainable urban development [73]; Mascarenhas et al.[74] 

developed sustainability indicators within regional context allowing local 

sustainability benchmarking and enhancing the analysis of a region whereas 

Polido et al.[75] applied it into European small island analysis. A conceptual 

framework proposed by Coelho et al.[76] developed a set of sustainability 

indicators for regional assessment in Portugal, while the indicators for analysis of 

local public services were suggested by Domingues et al.[77].  

- Universities or public institutions: Making higher education more sustainable was 

the purpose of the research proposed by Alghamdi et al. [78] [78], who 

investigated which indicators are crucial in the assessment of universities 

sustainability. The role and potential values of sustainability indicators has been 

analysed for high education [79] or public institutions [80].  

- Tourism sector: The role of indicators in tourism development and planning in the 

transition to sustainability [35]. 

- Energy sector: Several energy systems have been assessed in terms of sustainable 

development such as: hydrogen energy systems [27], geothermal energy [81]; 
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Chu et al.[82] described the challenges of our sustainable energy future 

considering both renewable and non-renewable energy systems; Bhowmik et 

al.[83] reviewed more than 200 studies in energy planning for sustainable 

development carried out during the last sixty years.  

- Transport sector: Ramanathan et al.[84] provided a review of the Indian transport 

sector using a scenario approach in order to achieve the goals of various policy 

options; while Garza-Reyes et al.[85] studied how to improve the transport 

operations in México. 

- Industry sector: Methods for sustainable development in the construction are 

discussed in [86] 

- Agriculture sector: The challenges for the next 50 years in agricultural 

sustainability and production practices are described in [87]. 

- Supply chain: Seuring et al.[88] reviews the literature on sustainable supply chain 

management, underlining that the research field is still dominated by 

green/environmental aspects whereas the three dimensions analysis is still rare. 

 

2.2 Life Cycle Assessment applied to sustainability 

 

The life cycle assessment is an internationally accepted method for evaluating the 

environmental impacts/effects of products, processes or materials. LCA evaluates the 

direct and indirect environmental burdens related with a product or activity in 

comparative analysis quantifying energy and material use and environmental 

performance at each stage of a product’s life cycle. This comprehensive view makes 

LCA unique and the best tool because it examines the full range of impacts over all 

product/process phase[89]. 
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2.2.1  Historical review of LCA methodology 

 

The concepts that later become ecological LCA first appeared in the 1960s[90]. 

Initial studies were uncomplicated and mostly restricted to calculating energy demand 

and solid wastes, with slight importance given to evaluating potential environmental 

impacts. 

According to [91], the study of environmental impact can be divided into three 

main parts: past, present and future.  

 

Past of LCA: 

In the past stage of LCA (1970-2000), two periods can be distinguished: 

1970-1990: Decades of conception, where environmental issues like energy efficiency, 

pollution control and solid waste become public attention. During the crisis oil of the 

early 1970s, expanded energy researches based on life cycle inventories were extended 

into industrial systems (Fava et al., 1992). In 1980s, principally private companies in 

Sweden, Switzerland and the USA implemented numerous studies following LCA 

principles [93];de Haes and Huppes, 1993). 

1990-2000: Decade of standardization, where the first LCA guides and handbooks 

appears. Also the first scientific publications started to appear in the most important 

journals. Until the early 1990s, several names were established to undertake an 

assessment of the material, energy or waste flows of product’s/process’s life cycle. Many 

researchers used terms such as ecobalance, environmental profile analysis or 

environmental analysis and environmental profiles. The Society of Environmental 

Toxicology and Chemistry (SETAC) started to play a leading and coordinating role in 

bringing LCA users and scientists together to collaborate on the improvement and 

standardization of LCA framework, terminology and methodology [95]. Parallel to 

SETAC, the International Organization for Standardization (ISO) has been involved in 

LCA since 1994. SETAC groups focused at the development and harmonization of 
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methods, while ISO adopted the formal task of standardization of methods and 

procedures. Currently, two international standards are established: 

 ISO 14040 [52]: “ Environmental management – Life cycle assessment - 

Principles and framework”; 

 ISO 14044 [51]: “Environmental management – Life cycle assessment - 

Requirements and guidelines”. 

During this decade, several well-known life cycle impact assessment method 

were developed, such as CML 1992 [96] or end point (Eco-indicator 99) approaches 

(Goedkoop et al., 2001).  

 

Present of LCA: 

2000-2010: Decade of elaboration: An increasing attention of LCA methodology could 

be noted in the first decade of the 21stcentury. An international Life Cycle Partnership, 

known as the Life Cycle Initiative was launched by the SETAC and United Nations 

Environmental Programme (UNEP) in 2002 [98]. The main goal was to formulate and 

promote the life cycle thinking into practice improving the data and indicators in 

European Policy (e.g., European Commission of the European Communities on 

Integrated Product Policy, IPP)[99]. Incorporated on the Prevention and Recycling of 

Waste[100] and in the thematic strategies on the Sustainable Use of Resources[101], life 

cycle thinking grew in importance and was promoted among the collaborators of 

IPP[99].  

 This period is characterized by a divergence in methods due to no common 

agreement on interpretation and standardization of LCA. Several methods have been 

developed such as allocation methods [54,102], dynamic LCA[103,104], risk-based LCA 

[104] or environmental input-output based LCA based on hybrid LCA[105], among 

others. Besides this, life cycle costing (LCC) [106], used by the U.S. Department of 

Defense in the 1960s [107] and social life cycle assessment (SLCA) [108] studies have 

been introduces and implemented that may have consistency issues with environmental 
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LCA in terms of calculation procedure, system boundaries, etc. Although several 

textbooks [90][109] have been published in order to clarify the LCA framework, the need 

of more specifications of types of externalities (in particular for social and economic 

impacts) and other techniques (analysing behaviour, price effect, rebound) lead to 

CALCAS (Co-ordination Action for innovation in Life Cycle Analysis for Sustainability) 

project. Introduced by the European Commission in 2006 for define and structure the 

varying fields of LCA approaches [110] finished with the establishment of a framework 

for Life Cycle Sustainability Analysis(LCSA). The LCSA links the life cycle assessment 

questions to the expertise required for addressing them, describing research programs and 

recognizing available models. During this decade, was made an effort to update and 

harmonize LCA data via the development of the Swiss Ecoinvent database, where more 

than 4000 products and services are available[111], among others. 

 Additionally, several attempts have been made in order to describe the 

appropriate LCA types (in goal and scope definition phases where the hypotheses or 

question are formulated). The most accepted are: attributional and consequential [112]. 

The difference between these is that the former focuses on the description of 

environmentally relevant physical flows to and from a life cycle and its subsystems while 

the latter aims to describe how the possible decisions change the environmentally 

relevant flows. 

 

Future of LCA: 

2010-2020: Decade of Life Cycle Sustainability Analysis: The LCSA is considered the 

future of LCA approach. It extends the area of current LCA from primarily 

environmental impacts to cover all three dimensions of sustainability (economic, 

environmental and social). Additionally, it broadens the view from product-related 

(product level) questions to sector related questions (sector level) or economy-wide 

levels (economy level). On the other hand, the future LCA considers more relations in 

analysis approach (including physical relations and limitations for resources or land use, 
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economic and behavioural relations, etc.). Due to the intensive character of LCA data and 

that the lack of data can limit the conclusions; more efforts in databases development 

have been taken into account [56]. On the other hand, even though many efforts have 

been made in model development for specific types of impacts (e.g., impact assessment 

of land use including freshwater resources or of human health aspects are problematic), 

there is still a need to better method to make future assessments more comprehensive and 

more reliable. According to Finnveden et al.[56], further development of tools for 

consequential LCA, methods for assessment of impacts from water use, weighting 

methods, developments and maintenance of data bases should be a prioritised area in 

LCA. 

 

2.2.2  LCA application fields 

 

Since the first apparition in the 1960s, LCA methodology, applied for industrial 

products primarily has been adapted for the construction industry and has gained 

progressively acceptance. The pioneers sectors in LCA investigation were plastics, 

automobiles, detergents, and personal care products, followed by agriculture, gas 

extraction, mining and oil, construction/building sector, industry sector and recently by 

infrastructure industries (transport, electricity, gas and water supply and communication). 

Additionally, this method was recognized as one of the best tools for the development, 

balancing and integration of environmental policies[113].  

There are multiplied fields in which LCA can be implemented in the microscale 

areas as well as in macro-scale analysis, in private sector as well as in public 

organizations, in product engineering, among others. The largest applications are in the 

following areas: 

- Industry sector: there are many approaches applied to the LCA to determinate the 

consequences of biofuels generations (palm oil biodiesel production [114][115]; 

algae biomass production[116]; sugarcane bagasse for methanol production[117] 
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and alcohol industry[118], biodiesel production from microalgae [119], among 

others). There are many applications into industry analysis of particular country 

(e.g., Swedish [120]) or material production (such as steel[121], industry 

materials [122], cotton shopping bags [123] or wool textiles and clothing [124]). 

Jacquemin et al.[125]made the important review of past, present and future 

application of LCA in processing and manufacturing industry. 

- Building sector: LCA has been used in the building sector since 1990 and is an 

important tool for assessing buildings (Taborianski and Prado, 2004; Fava, 2006). 

The compilation of LCA studies, from 2000 to 2007 within the building sector 

can be found in [128]. More than ever, the differences between the LCA of 

building materials and components versus the LCA of all building life cycle has 

been discussed. In addition, the applications of LCA studies evaluating only the 

impacts of different construction materials and solutions have been reviewed by 

Khasreen et al. (2009). On the other hand, there were numerous studies published 

in which LCA was applied to analysis environmental impacts of residential and 

commercial buildings [130]. Recently, more than 100 publications of LCA for 

environmental evaluation of buildings and building related to industry and sector 

including construction products and systems have been summarized by Cabeza et 

al. (2014).  

- Urban settlement: Herfray et al.[132] applied LCA to study two settlements 

including all relevant impacts related to production of energy, water, materials, 

etc., and four stages of settlements life cycle: construction, operation, renovation 

and finally dismantling of the settlement. 

- Products: Roy et al.[133]reviewed LCA studies applied on several industrial food 

products. One of the important food products that have been studied by many 

researches is bread[134]–[136]. The research field included crop production 

method, milling technologies, bread production processes, packaging and 

cleaning phases. It is interesting that the production and manufacturing of the 
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packing elements in the cases of beer production[137], [138] accounts the most of 

the emissions. Additionally, LCA of other agricultural products the LCA was 

studied in order to improve its environmental performance such as: tomato 

ketchup[139]–[141], rice [142], sugar beet production [148,149], sugar 

industry[145] or potatoes[146], among others. 

The dairy industry was another important sector that has been studied in order to 

define the environmental impact caused in several European regions. Milk, as one 

of the most produced dairy product in Europe, has been examined to reduce the 

potential impact in system production [147]–[151]. Another important sector that 

causes a major impact on the environment and has been studied by several 

authors is livestock production. Vries et al.[152]reviewed 16 peer studies 

assessing the environmental impact of production of pork, chicken, beef, milk and 

eggs based on the type of LCA methodology selected. 

- Packaging and food management systems: an important source of environmental 

waste and the fundamental element of every food production are associated with 

the packaging phase. Several approaches have been reported in order to reduce 

environmental impacts ([152],[153]). On the other hand, the way to improve 

energy efficiency, reduce raw material use or water consumption is waste 

minimization[153]–[156]. 

According to Udo de Haes et al.[157], energy is a substantial part of 

environmental impacts that LCA analysis throughout full life-cycle of 

product/process/services. The three main connections between LCA and energy are: 

- Indeed the energy is involved in all life cycle stages: from inventory issues like 

extraction of raw materials, emissions of carbon dioxide, through production or 

transport stage, to impact assessment like climate change or depletion of 

resources. When the products or services are compared, the energy aspect should 

be always incorporated if appropriate quantitative results are expected. 
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- The separate analysis of only energetic aspects of a life cycle phase has been 

performed and developed earlier than LCA and is recognized as energy analysis. 

For instance, process analysis versus Input-output-based energy analysis can be 

compared with LCA[158] and some attempts to establish the connections 

between exergy analysis and LCA have been made[159]. 

- It is well-known that LCA can be applied into the analysis of energy systems. 

From the comparison of small scale products like two types of batteries, to the 

comparison of electricity generation structures of countries. For instance, an 

important field of research is the comparison of fossil fuels with biofuels[160]. 

 

At present, the LCA of energy systems represent an active domain of study. The 

completely review of renewable energy for electricity generation system was made by 

Varun et al.[161] including wind energy systems [162]–[164], solar photovoltaic 

system[165]–[168], solar thermal system[169]–[171], biomass system[172]–[174] and 

hydro power[175]–[177].One of the most promising renewables energy alternatives is the 

use of biomass (i.e., bioenergy). The growing interest, at both national and global levels 

provoked recent creation of policies and publication of several LCA bioenergy studies 

(94 studies from 1995 to 2010[178] in this field). On the other hand, Turconi et al.[179] 

reviewed more than 160 LCA case studies of electricity generation focused on non-fossil 

and fossil fuels including hard coal[180]–[183], lignite[187,189], natural gas[183]–[185], 

oil[183], [184], nuclear[186], [187], wind[163], [188], [189], solar[190], 

hydropower[175]–[177], and others energy sources. 

Recently, Mälkki et al.[191], synthesized the application of LCA for renewable 

and sustainable energy education by examining LCA as an investigation tool for 

evaluating the sustainability of renewable energy systems. 
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2.3 Data Envelopment Analysis framework 

 

Since the first publication in 1957 by Farrell[61] on The Measurement of 

Productive Efficiency, being the background for Data Envelopment Analysis (DEA), 

Charnes, Cooper and Rhodes developed a relative efficiency model known by the initials 

of its developers - CCR[192]. Thus DEA started being a useful method to measure 

efficiency of public sector organizations (using the same inputs to produce the same 

outputs by estimating the efficiency of homogeneous organizational units called DMUs). 

Among many application fields, DEA has been proposed to analyze environmental 

performance of industrial plants, economic sectors, countries, products, universities, 

metropolises, hospitals, public and commercial companies or energy production, among 

others. According to Emrouznejad et al.[193] the most popular research fields until 2007 

were: banking, education (including higher education), hospital and health care 

efficiency assessment. 

Additionally, 620 papers that use the DEA application into financial sector were 

reviewed by Kaffash et al.[194] examining the period time from 1985 to 2016 analyzing 

the diffusion of DEA in three categories: (1) banking groups, (2) money market funds, 

and (3) insurance groups. On the other hand, Fethi et al.[195] reviewed almost 200 

studies that used operational research and artificial intelligence techniques in the 

assessment of banking performance. Other important applications of DEA in banking 

sector have been developed by Othman et al.[196], Thanassoulis[197] or Golany et 

al.[198], among others. 

As mentioned above, DEA was applied in order to measure the efficiency in 

education sector or universities. For instance, the higher education 

institutions/universities were examined in different countries, like: Johnes[199] analyzed 

a set of more than 100 English institutions; Ng et al.[200] researched more than 80 

Chinese universities whereas Ramírez et al.[201] took a sample data of more than 300 

Colombian higher education institutions, among others. We can underlining the 
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following works: the measurement of performance efficiency of the academic 

departments[202], evaluation of secondary schools in Portugal[203], a review of DEA in 

secondary and tertiary education[204] and the estimation of the parameters assessing the 

performance and efficiency of university professors[205]. 

Eco-efficiency evaluation [206]was the other important research field where DEA 

has been applied jointly with the efficiency assessment of several power plants[207]–

[209]. 

Among other field where the DEA has been applied we can underline the 

following:  

- Airport assessment: Fasone et al.[210] presented a critical review of 

approximately 60 peer-reviewed publications on business performance 

measurement in the airport industry published during the last 15 years; 

- Water companies assessment: the estimation of potential cost savings at water 

companies [211]; the measurement of the efficiency of water and wastewater 

companies of 17 municipalities of Iran[212]; the measurement and assessing of 

several water utility companies in Chile ([213],[214]), Italy [215], Portugal[216], 

United Kingdom ([218],[219]), Australia[219]and USA[220], among others; 

- Hospital assessment: Several approaches have been published for assess health 

care and their contributions to local economies in various countries, like 

USA[221], [222], Brazil[223], China[224], Canada[225], Ghana[226] or 

Kenya[227], among others; 

- Resorts assessment: Besides several studies of hotels performance[228]–[230], or 

French ski resorts analysis[231]; 

- Park assessment: Various analysis assessing the efficiencyof several parks or 

industrial parks have been published[232]–[235]; 

- Supply chains assessment: Several DEA approaches have been published in order 

to examine buyer-supplier supply chain settings allowing efficiency evaluation 

[236]–[238]. 
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2.3.1 DEA studies of energy 

 

Since the first paper treated to energy efficiency issues and published in 1983 by 

Färe et al.[239], numerous studied employing DEA methods have been developed. 

Several approaches evaluated energy efficiency due to the implementation of DEA in 

developed economies such as the US[240], Japan[241], Canada[242], the APEC 

countries[243], among others. 

In the last decade, this tool has been employed to assess the efficiency and guide 

retrofit efforts towards an effective enhancement of the environmental performance. A 

literature survey on the application of DEA to energy and environmental (E&E) studies, 

presented by Zhou et al.[244] accumulates more than 100 publications in this field from 

1983 to 2006. On the other hand, a comprehensive review published by Mardani et al. 

[245] accounted 144 published papers between 2006 and 2015 of DEA application in 

energy efficiency. The analyzed papers can be segregated according to: 

- Country/regions energy efficiency analysis: Several regions have been assessed 

such as 30 regional industrial systems in China ([246],[247]) or its environmental 

efficiency[248], 95 countries[249], 47 Japanese regional industries [250] or 54 

Turkish provinces [251], among others. Additionally, the energy-environmental 

efficiency have been studied for 10 regions in Japan [252], 29 administrative 

regions of China [253], APEC countries [254], BRICS countries [255], 22 OECD 

countries [256] and the comparison of efficiency factors for energy technologies 

utilized by New York region [257] have been made.After DEA analysis of 23 

developing countries during the period of 1980-2005, Zhang et al.[258] 

concluded that Panama, Botswana and Mexico reveal the best energy efficiency, 

while Kenya, Philippines and Syria the worst. Recently, Li et al.[259] compared 

an electricity generation systems in sustainability analysis of 23 G20 countries 

between 2005 and 2014. The inputs indexes were generation capacity, cost and 

land use while the desirable outputs: total energy generation and job creation.  
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- Industrial sector: Among other approaches, we can underlay the following: the 

measurement of energy efficiency for French agricultural farms [260], the energy 

efficiency in steel and iron sector of Swedish production [261] or of Chinese 

production [262], the evaluation of farmers energy efficiency for Iranian potato 

production sector [263] and energy efficiency of 260 wheat farms [264]. 

- Energy sectors: District heating plants ([265], [266]), oil and gas industries [267], 

[268], 48 Iranian thermal power plants [269] and coal mines ([270], [271]). 

 

On the other hand, the DEA approaches based on renewable and sustainable 

energy can be classified as follows: 

- Countries: after analysis of 45 economies, Chien et al.[272] concluded that the 

increase of use of renewable energies simultaneously enhances its technical 

efficiency. Additionally, the environmental efficiency differs regarding to 

geographical region according to Woo et al.[273] which used DEA to assess 31 

OECD countries. Some results of sustainable energy analysis for countries are: 

the countries with high income represents the best performance in sustainable 

energy (analysis of 109 worldwide countries)[274]; the OECD countries have 

large opportunities in creation of more sustainable systems in agricultural 

production [275]; and US manufacturing eco-efficiency analysis is very sensitive 

to the energy use [276], among others.  

- Production and industrial sector: the results of sustainable and efficient energy 

consumption reveals that: the current corn production is not sustainable (analysis 

of 89 Iranian corn farmers)[277]; and the textile sector is the most efficient 

Brazilian sectors while metallurgical is the least one [278], among others. 

 

According to European countries in DEA analysis, the following approaches 

underlie in the last decade. In 2013, Bampatsou et al.[279] analysed 15 European (EU-

15) countries from 1980 to 2008 using cross-country comparison. The authors used 
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Technical Efficiency Index (which represents the GDP for a given level of total energy 

input) determined from energy mix (nuclear, fossil and non-fossil fuels energy) of each 

country studied. They repeated analysis before and after the integration of nuclear energy 

in the electricity mix of each country and concluded that nuclear energy has a negatively 

influence in the technical efficiency. Moreover, in 2015 Robaina-Alves et al.[280]used 

DEA for assessing the environmental and resource efficiency issues in 26 European 

countries. They used capital, labour, fossil fuels and renewable energy consumption as 

inputs and maximized GDP/GHG ratio as output. The results showed Ireland, Hungary 

Slovakia and Portugal as efficient countries while the least efficient were Denmark, 

Bulgaria and Romania. On the other hand, Chang [281] utilized DEA to develop an 

indicator to improve energy intensity by measuring the difference between the target 

level of energy intensity and the actual energy intensity. The author used three inputs 

(capital, labour and energy use) and one output (e.g., real GDP) for each one of 27 EU 

members and concluded that (i)energy intensity improvement does not fully depend on a 

decline in energy intensity and (ii) Denmark and Luxemburg were always located on 

“the best-practice energy frontier”. As you can see, some of the results point in different 

directions, depending on the approach followed. 

Additionally, after the analysis of 87 worlds countries during 2004-2010, Pang et 

al.[282] concluded that the European countries were more efficient in terms of economic 

growth, emission reduction and energy conservation when compared with others world 

countries. 

 

2.4 Combined use of LCA and DEA 

 

Combined LCA and DEA methodology was introduced in 2009 [66] but formally 

presented in 2010 by Vázquez-Rowe et al. (2010)[67] to measure the environmental and 

operational performance of resembling entities. According to Vázquez-Rowe and 
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Iribarren (2015)[283], the five-step LCA+DEA method was found to be the approach 

most often selected by LCA+DEA practitioners. 

To date, this approach has been mainly applied to the primary sector such as: 

- Agriculture: Benchmarking of environmental impacts for best-performing 72 

Galician’s dairy farms [284]; analysis of 40 vine-growing exploitations belonging 

to the Rias Baixas appellation (NW Spain) [285]; identification and 

recommendation of improvement for a total of 94 soybean farms in Iran [286]; 

the estimation of technical efficiency of a 82 rice paddy fields for spring and 

summer growing seasons in Iran [287]; Recently, using the aforementioned DEA 

and LCA model, Soteriades et al.[288] calculated eco-efficiency scores for 185 

French specialized dairy farms; 

- Aquaculture: Direct link between operational and environmental efficiency 

illustrated with mussel cultivation in rafts case study [66]; 

- Fishing: Link between environmental and socioeconomic assessment of fishers 

using a Spanish coastal trawl fishery as an example [68]; intra- and inter 

assessment of fishing fleets in Galicia [289] or of Peruvian anchoveta fishery 

[290]; 

- Energy sector: Furthermore, the application of this approach in other sectors (e.g., 

the energy sector) has already been demonstrated [138]. Moreover, a group of 

113 wastewater treatment plants (WWTPs) located in regions across Spain have 

been analysed by Lorenzo-Toja et al. (2015)[291] determining the operational 

efficiency of each unit in order to obtain environmental benchmarks for 

inefficient plants. 

 

In addition, the first study focused on the implementation of social parameters into 

LCA + DEA approaches was attempted by Iribarren et al. in 2013. The authors 

concluded that labor (social indicator) is a suitable input in LCA+DEA studies but 

requires very cautious result interpretation. Moreover, the LCA+DEA method has been 
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implemented for 40 relevant socio-economic indicators [293] in order to improve this 

dimension for sustainability assessment and for assessment of sustainability efficiency 

[294] with the three dimensions of sustainability considered. 

On the other hand, the three-step LCA+DEA approach leads to a relatively rapid 

environmental benchmarking and allows the simultaneous benchmarking of operational 

issues [65]. The direct use of life cycle assessment indicators as DEA inputs accounts an 

important number of publications such as: 

- Agriculture: an analysis of 16 scenarios of Mahon-Menorca cheese production in 

order to determinate the most eco-efficient production technique [295]; the 

economic and environmental performance of the 56 Swiss dairy farms in the 

alpine area [296]; 

- Aquaculture: an environmental impact efficiency analysis of a set of 83 mussel 

cultivation rafts [65]; 

- Products/materials: a comparative eco-efficiency analysis of electronic devices 

[297]; eco-efficiency measure of a sample of electric/electronic products [298]; 

an assessment of construction materials in order to select the most eco-efficient 

exterior wall finish for a building [299]. 

 

 

2.5 The framework of uncertainty analysis of DEA 

 

DEA was initially formulated as a deterministic model, but there have been numerous 

developments that take into account uncertainties following a wide array of methods. 

These include, to name a few, fuzzy theory[300]–[302], stochastic frontier analysis 

(SFA) ([303], [304]), imprecise DEA (IDEA) [305], chance-constrained programming 

([306], [307]), bootstrapping([308], [309]), robust DEA approach[310] and Monte Carlo 

simulation ([237], [311]). Dyson et al. (2010)[312]examined five different DEA models 
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(SFA, chance-constrained, bootstrapping, IDEA and Monte Carlo simulation) to deal 

with uncertainty in DEA.  

Recently, the uncertainty analysis of DEA has been developed using the mainly 

following aforementioned methods: 

- Fuzzy theory: the sustainability performance assessment of the 33 U.S. food 

manufacturing sectors [313];the management of uncertainty in vendors section 

[314]; to measure transport systems [315]; 

- Imprecise DEA: to evaluate and rank the operational performance of firms of 

cement industry [316]; 

- Bootstrapping: productive efficiency of banks [317]; 

- Monte Carlo simulation: to measure the quality for health care provider and pay-

for-performance of USA nursing homes [318]; the application for Supply Change 

management[319]–[321]; to evaluate the relative technical efficiency of small 

health care areas [322]. 
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3. Methods and tools 

 

3.1 Introduction 

 

The major goal of sustainability assessment is the development and application of 

decision-support tools to help in the recognition, selection and environmental evaluation 

of products, processes and/or systems.  

The application of the combined use of LCA and DEA in sustainability described 

in this thesis is a complex task due to the many aspects that should be considered. In this 

chapter, the Data Envelopment Analysis used for the efficiency assessment analysis is 

illustrated and explained. First, the theoretical concepts of these tools are discussed, 

followed by the DEA under uncertainty approach with the characterization of 

uncertainty, solvers and databases. 

 

3.2 Decision making 

 

The decision-making approaches are usually classified as descriptive (concern with the 

identification of the observed nature of a problem) and normative (concern with the 

solution of a problem based on a set of rules)[323]. Among the former approaches 

distinguish forecasting based on future projections and simulation based on the analysis 

of behavior of a system with several degrees of accuracy to imitate a real system. On the 

other hand, the later uses mathematical programming based on the optimization of 

decision-making problems with real or integer variables within constraints or heuristic 

methods based on feasible approximate solutions without the guaranty of optimality. In 

this thesis we concentrate of mathematical programming methods. 
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3.3 Mathematical models 

 

A mathematical model can be defined as a representation or approximation of the 

behavior of real objects in mathematical terms. This model generally combines the 

following variables/equations: (i) the relevant information about balances (i.e., mass and 

energy), states (dynamic or stationary), etc. and (ii) Equations representing functional 

relationships, boundary conditions and other specifications. 

The mathematical model usually includes continuous and discrete variables in its 

formulations. According to Grossmann et al.[324], the general formulation of an 

optimization problem is presented in the following form: 

 

𝑚𝑖𝑛 𝑜𝑟𝑚𝑎𝑥 𝑓(𝑥)  Objective function 

subject to 

ℎ(𝑥) = 0   Equality constrains (e.g., process equation)  (3.1) 

𝑔(𝑥) ≤ 0    Inequality constraints (e.g., specifications) 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈ ℝ𝑛 Decision variables 

 

where: f(x), h(x) and g(x) represent scalar functions of vector x, being f(x) – the objective 

function (that can minimize or maximize cost, environmental impact, etc.). The 

independent decision variables (the components of vector x) can be discrete or 

continuous variables (e.g., storage amounts, prices, production levels, etc.). In 

optimization processes, the values of the aforementioned variables are determined. The 

mathematical form generally includes several restrictions for decision variables: 

equalitiesor inequalities constrains (e.g., mass balances, correlations between variables, 

production, purchase, etc.). The classification of mathematical problem due to its 

characteristics is explained in Table 3.1. 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



63 

 

Table 3.1. Type of mathematical problems according to the variables and functions 

included. 

Type of problem Vector x Functions f(x), h(x) and g(x) 

Linear Continuous Linear 

Non-linear Continuous At least one is non-linear 

Mixed integer linear At least one ofthe xi elements 

is integer (or binary) 

Linear 

Mixed integer non-

linear 

At least one of xi elements is 

integer (or binary) 

At least one is non-linear 

 

In this thesis, we focus on Data Envelopment Analysis, a tool that uses linear 

programming models. 

 

3.4 Optimization methods and tools 

 

The programming models can be classified as deterministic or probabilistic. As 

mentioned above, the former can be subdivided into four main mathematical classes: 

linear, nonlinear, mixed-integer linear and mixed-integer non-linear models whereas the 

latter can be subdivided into two classes: (1) where an unpredictable nature is involved 

(knowing or unknowing the probability distribution) and (2) those against an unfriendly 

opponent (e.g., two or multi person games). 

According to Daraio et al. [198], the linear programming theory is “a milestone 

of efficiency analysis”. The project SCOOP (Scentific Compiting of Optimum Programs, 

started in June 1947 by US Air Force, counted with the contribution of Dantzing[325], 

developed: (i) an initial mathematical model of the general linear programming problem 

and (ii) a general method of solution named the Simplex method. Since then, the simplex 

method which is the basic computational algorithm and linear programming initiated to 
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be the solution in efficiency analysis. On the other hand, Charnes and Cooper, after the 

contribution to theory and applications in the development of linear programming[326], 

popularized its utilization in DEA in the 1970s [62].  

 

3.4.1 Continuous optimization 

 

In order to solve the linear and nonlinear problems, continuous optimization is the 

common way. There are two most accepted methods to solve linear problems (LP): (i) 

simplex and (ii) interior points.  

In continuous optimization, the parameters used in order to solve linear problems 

are only the objective function, the continuous variables and linear constrains. 

 

3.4.1.1 Linear programming 

 

Linear programming (LP) method builds a model that can be applied to a broad 

class of decision making problems encountered in industry, engineering, 

management/government or economics. This method is considered with the simplest 

mathematical structure solving practical scheduling problems associated with the 

aforementioned areas. LP studies the behavior of all systems and distinguishes feature of 

operations research or management science. As cited by Dantzig[325], sixty years ago 

Herrmann and Magee, stated to considerate the operations as an entity and defined the 

subject matter studied as: “the combination of equipment used, the morale of participant 

and the physical properties of the output as an economic process”.  

Since 1940, the development of the applications of LP followed in different 

activities, such as input-output analysis[327], [328]or microeconomic production 

programming models[329], [330]. In these models, detected as the outputs and inputs of 

production units, the activities presented as intensity variables or coefficients of activity, 

form a sequence of linear inequalities, producing a piecewise linear frontier technology. 
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The description of the procedure of linear programming method: 

Suppose that the system under study (one actually existing or one only designed), 

that is, on what kind of activities will be implemented, what will be the size of these 

operations, is complex of a number of various factors, such as people, materials, 

technological equipment, money, supplies etc. Suppose that we are able to identify 

specific purpose of this system. Looking at it from the linear programing point of view 

consist in decomposing system into a number of certain elementary functions named 

activities (e.g., process of the raw material processing for a particular technology 

installation, process of raw material storage or product, the process of selling a product, 

etc). 

Each activity thought of as a kind of “black box”, is affected by several factors 

which flow into the inputs such as, men, raw materials and which flow out named 

outputs such as products of manufacture. Details of what happens to the inputs during the 

activity are not important in order to formulate the linear programming task, only the 

rates of flow into and out of the activity and are taken into account. Various forms of 

inputs and outputs are the items of activity. After determining a set of activities that 

composes a system, magnitudes that clearly define its intensity should be selected for 

each of them among its components (e.g., one of the inputs). These magnitudes are called 

generally decision variables. The quantity of each activity is named the activity level. 

The changes in the flows into and out of the activity change the activity level. 

Additionally, if the system is a linear programming model, the following 

assumptions must be satisfied: proportionality, nonnegativity, additivity and the objective 

function must be linear: 

 Proportionality: the quantities of contributions into and out of the activity are 

always proportional to the activity level. For instance, if the doubling of activity 

level is required, all the corresponding flows for the unit activity level need have 
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to be doubled. A change in a variable causes a proportionate change in that 

variable’s contribution to the value of the function.  

 Nonnegativity: the variables are required to be nonnegative. 

 Additivity: The system of activities should be complete. Precisely, it is requires 

that for each item, the total amount indicated by the system as a whole equals the 

sum of the amounts flowing into the different activities minus the sum of the 

amounts flowing out.  

 Linear Objective Function: the constraints and objective function are required to 

be linear. Linearity requires (i) the proportionality of the value of the objective 

function and the responses of each resources expressed by the constraints to the 

activity levels expressed in the variables, and (ii) the additivity of objective 

function and variables, that means that there are no interactions between the 

effects of different activities. 

Model building: the outline for the procedure of the formulation of the linear 

programming model based on the basic assumptions mentioned above is as follows: 

Step 1: The definition of Activity Set by the decomposition of the entire system under 

study into all of its elementary functions called activities and for each of them choose 

a unit of quantification or level of measurement. 

Step 2: The definition of Item Set by determination of a set of decision units that 

measure the consumption or production of activities. 

Step 3: The determination of input-output coefficients and exogenous flows that 

describe the system inside (inputs and outputs of the items between system) and 

outside. 

Step 4: The creation of linear objective function of system. 

LP technique uses a linear objective function subject to the linear equality and/or 

inequality constraints. The LP method finds a point, if such point exists, in a polytope 

with real-valued function defined in it, by examining all polytope vertices. The 
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intersection of halfspaces and hyperplanes of the constraints is a feasible region (Figure 

3.1).  

The set of mathematical relationships that characterizes the feasible region of the 

system is the result of the model building and is linear programming model. 

 

Fig. 3.1.Linear programming representation. 

 

All LP problems can be mathematically expressed as follows: 

 

𝑧 = 𝑓(𝑥1, … , 𝑥𝑛) = ∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

                                    (3.1) 

subject to  

𝑔𝑖(𝑥1, … , 𝑥𝑛) = ∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ,    𝑖 = 1,… ,𝑚

𝑛

𝑗=1

       (3.2) 
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where the coefficients𝑐𝑗, 𝑏𝑖 , 𝑎𝑖𝑗 , j=1,…,n, i=1,…,m are the parameters of the problem, 

while 𝑥𝑗 , j=1, …, n, are the decision variables. 

 

3.4.1.1.1 Simplex method 

 

There are several methods to solve the linear problems. The simplest one is a 

graphic method, but it’s practical application limits to problems with only two decision 

variables. The most used algorithm for solving LP problems is the simplex method, 

proposed in 1947 by George Dantzig[325]. The simplex method requires to convert LP 

problem into its standard form, where the object function is maximized, the variables are 

nonnegative and the constraints are equalities. The general expression of LP problem in 

standard form is presented as follows: 

 

max 𝑧 = 𝑓(𝑥1, … , 𝑥𝑛) =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

                                    (3.3) 

subject to  

∑𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 ,    𝑖 = 1,… ,𝑚

𝑛

𝑗=1

                                                   (3.4) 

𝑥1, … , 𝑥𝑛 ≥ 0                                                                              (3.5) 

 

Where 𝑏𝑖 ≥ 0,i=1,…,m.  

 

Each linear program is intimately connected into a dual linear program. We start first 

with the duality of the standard problem. The dual of the standard maximum problem 

(3.3)-(3.5) is defined to be the standard minimum problem as follows: 
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min 𝑤(𝑦1, … , 𝑦𝑚) =∑𝑏𝑖𝑦𝑖

𝑚

𝑖=1

                                    (3.6) 

subject to  

∑𝑎𝑖𝑗𝑦𝑖 = 𝑐𝑗,    𝑗 = 1,… , 𝑛

𝑚

𝑖=1

                                          (3.7) 

𝑦1, … , 𝑦𝑚 ≥ 0                                                                     (3.8) 

 

  

Koopmans and Shephard [329], [330] imposed convexity on the reference 

technology in his work, thus the DEA estimator depend on the convexity assumption. 

The programming model affirms the structure of frontier technology without requiring a 

special functional form by the envelopment of data points with linear segments. A simple 

means of calculating the distance to the frontier is provided by frontier technology and it 

is a maximum feasible radial expansion of specific activity. The interpretation of 

efficiency or performance as maximal-minimal proportionate feasible changes in an 

activity of given technology explains the measurement of the distance to the frontier and 

this explanation agrees with Farrell’s definition of efficiency measurement[61]. 

However, the first formulation of efficiency measurement as a linear programming 

problem took place later (1966) by Boles[331], Bressler[332], Seitz[333] and 

Sitorius[334] (the development of piecewise linear case) and by Timmer[335] who 

extended the piecewise log-linear case. 

Linear programming methods are utilized also in production analysis for 

nonparametric “tests”, which are the quantitative indicators, but not a real statistical test 

procedure. These techniques consist on the regulation of conditions and the behaviour of 

objectives. Additionally, a series of consistency “tests”, developed by Afriat[336] in 

1972, assumed an increase of more restrictive regulatory hypotheses on production 

technology. Theses “tests” are based on linear programming formulations. On the other 
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hand, Diewert et al.[337]proposed this series of tools as “a screening device in the 

construction of frontiers and efficiency measurement of data related to frontier 

construction”. 

 

3.4.2 Frontier analysis methods 

 

According to Simar and Wilson [338] the efficiency frontier models can be 

classified in accordance with the following criteria: 

1. The specification of the (functional) form for the frontier function: Parametric 

and nonparametric models; 

2. The presence of noise in the sample data: Deterministic and stochastic models; 

3. The type of data analyzed: cross-sectional and panel data models. 

 

Several models have been analyzed in the literature by the combination of the 

three criteria: 

 Parametric deterministic models. 

 Parametric statistic models. 

 Nonparametric deterministic models. 

 Nonparametric stochastic models. 

The parametric methods are based on statistical concepts. The model of 

dependence between studied values identifies which parameters are subject to estimation 

based on empirical data. A classic problem of parametric method is the model of 

production function. On the other hand, in the case of nonparametric methods, the basis 

for assessing efficiency is the ratio between its actual productivity to the highest possible 

productivity. The main advantage of nonparametric methods is the lack of need of 

behavioural assumptions for measuring technical efficiency[339]. Looking from a 

technical point of view, both the inputs and the outputs distance function can be applied 
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to measure the technical efficiency. The variation of the direction in which distance to the 

technology is calculated is the only difference. On the other hand, from the context of the 

study depends the way in which the frontier is assessed. If the external outputs are not 

under the decision makers control, the efficiency of inputs (the only elements controlled 

by managers) will be examined. 

The most common methods used in research works are the nonparametric 

(deterministic) frontier approach such as DEA (Data Envelopment Analysis), FDH (Free 

Disposal Hull) and the (parametric) stochastic frontier approach such as SFA (Stochastic 

Frontier Analysis). The FDH is used in the analysis of production efficiency or the 

evaluation of public funds spending due to the comparison of the individual performance 

to the limit production capacity. In this method the convexity assumption is not imposed 

and FDH method is treated as a special variant of the method DEA. 

 

3.4.2.1 Data Envelopment Analysis 

 

DEA method, originally proposed in 1978 by Charnes et al.[62], is a decision 

making technique based on linear programming for assessing the relative efficiency of a 

set of comparable units called DMUs (Decision Making Units). The initial inspiration for 

DEA was to examine the productive efficiency of similar institutions like public 

organizations (DMUs), but it has been extended to banks, cars, hospitals, schools, 

engineering components, among others. In order to securing relative comparisons, the 

evaluation of a group of DMUs is as follows: each other with each DMU have a certain 

degree of freedom in decision making. 

Let’s be n DMUs: DMU1, DMU2,…,DMUn. The following input and output items 

characterize each of these j=1,…,n DMU [340]: 

 For each input and output the data are assumed to be positive and 

available. 
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 The data that flow into and out and the election of DMUs should be 

selected very carefully in order to obtain appropriate results. 

 The preference of small input amounts and large output amounts is 

required. 

 There is no necessary for inputs and output measurement to be 

compatible. For instance, the units may be numbers of persons, cost 

amount or areas of wall space, etc. 

The basic model, known as the CCR model due to the initials of the developers, 

now is widely known as the constant return to scale (CRS) model. On the other hand, the 

other basic frontier model, known as BCC (Banker, Charnes and Cooper initials), 

represents the variable return to scale (VRS) model, which includes the convexity 

condition in its constraints, that is, an increase in inputs does not result in a proportional 

change in the outputs. According to the orientation, the basic envelopments of DEA 

model are presented in Figure 3.2. 

 

 

Fig. 3.2.The classification of basic envelopments DEA models 
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Some definitions and properties are defined before the description de CCR 

models.  

 

Assumption 3.1 (Nonnegativity) 

Given a vector (xj,yj) of a nonnegative inputs and outputs where j=1,..,n of n 

DMUs. The nonnegative assumption (called semipositive by Cooper et al. [341]) means 

that: for some j=1,…,n the following conditions are fulfilled: 𝑥𝑗 ≥ 0, 𝑥𝑗 ≠ 0 and 𝑦𝑗 ≥

0, 𝑦𝑗 ≠ 0. Thus, each DMU has at least one positive value in both input and output. 

 

Definition 3.1 (Activity)  

A pair (x,y), where semipositive input 𝑥 ∈ 𝑅𝑚
+  and semipositive output 𝑦 ∈ 𝑅𝑝

+ is called 

an activity. Note that m and s specify the number of vector dimensions space for inputs 

and outputs, respectively.  

 

Definition 3.2 (Production possibility set)  

The set of feasible activities is named the production possibility set and is denoted by P. 

𝑃 = {(𝑥, 𝑦): 𝑥𝜖𝑅𝑚
+  ;  𝑦𝜖𝑅𝑝

+;  𝑦 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥} 

An input-output pair (x,y) is called feasible if and only if (𝑥, 𝑦) ∈ 𝑃. 

 

The typical production set for the CCR model with the single input and single output 

case (the two dimensions are m=1 and p=1) is represented in Figure 3.3. As shown, the 

possibility set is determined by B point and the line connecting the origin and going 

through B is called the efficiency frontier.  
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Fig. 3.3.Representation of the production possibility set for point B. 

 

Model orientation 

There are two versions of CCR model: input-oriented and output-oriented. The 

former aims to minimize inputs satisfying at least the given outputs at the same time, 

while the later attempts to maximize outputs without needing more of any of the inputs 

values.  

We illustrate the difference between those two models via the following small-

scale example by considering the case of one input and one output (Table 3.2).  

 

Table 3.2.Explanatory example of one input and one output case. 

DMU input (x)  output (y) 

A 3 1 

B 4 4 

C 7 5 

D 5 3 

E 7 2 
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Fig. 3.4.The graphical representation of explanatory example. 

 

Table 3.2 shows five DMUs with one input and one output while the graphical 

representation of efficient frontier for the simplest version of CCR model is presented in 

Figure 3.4. The inputs and outputs of five hypothetical decision making units A, B, C, D 

and E have been depicted, which use one input x (in different quantities) in order to 

obtain one output y (with different levels). Among the studied DMUs, the unit B 

represents “the best” ratio between output and input, thus this unit is considered as a 

referent set for others DMUs. 

 The relative efficiency of unit B equals 1, whereas the relative efficiency of the 

remaining DMUs is calculated as a ratio between the studied units to the “best” unit. For 

instance, the relative efficiency of DMU A equals
𝑦𝐴

𝑥𝐴⁄
𝑦𝐵

𝑥𝐵⁄
. The line connecting unit B with 

the beginning of coordinate system determinates the efficient frontier. His gradient 

equals the efficiency value of unit B, that is,
𝑦𝐵
𝑥𝐵⁄ = 1.According to the model 

orientation, the following two cases can be applied for inefficient units in order to 

achieve efficiency: 
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 The input-oriented model (CCR-I):The unit A, which is inefficient, can achieve 

the relative efficiency equal 1, if producing 𝑦𝐴 units of product will reduce the 

input 𝑥𝐴 by q – p, that is, by reaching the point A’. The relative efficiency of unit 

A can be depicted as a ratio between the segments p and q. Thus, the ratio 
𝑝
𝑞⁄ =

𝑦𝐴𝑥𝐵/𝑦𝐵

𝑥𝐴
represents the relative efficiency score in input-oriented model. 

 The output-oriented model (CCR-O): The inefficient unit A, in order to achieve 

efficiency value 1, using the input 𝑥𝐴 should obtain the results about l – k higher 

(i.e., point A’’). The relative efficiency of unit A can be depicted as a ratio 

between the segments k and l. Thus, the ratio 𝑘 𝑙⁄ =
𝑦𝐴

𝑥𝐴𝑦𝐵/𝑥𝐵
 represents the 

relative efficiency score in output-oriented model. 

 

In DEA models with the constant return to scale assumption (CCR-models), the relative 

efficiency (θ) of any DMU is equivalent for input-oriented (CCR-I) and output-oriented 

(CCR-O) model (Table 3.3). 

 

Table 3.3.Results of explanatory example of one input and one output case. 

DMU input (x)  output (y) CCR-I (θ) CCR-O(θ) Reference Set 

A 3 1 0.333 0.333 B 

B 4 4 1.000 1.000 B 

C 7 5 0.714 0.714 B 

D 5 3 0.600 0.600 B 

E 7 2 0.286 0.286 B 

 

3.4.2.1.1. The Charnes, Cooper and Rhodes model 

 

As mentioned above, the most basic DEA model is CCR model, which was 

proposed by Charnes, Cooper and Rhodes in 1978. The original problem formulation for 

assessing efficiency was constructed as a task of fractional programming (FP), while the 
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solution procedure consists of linear programming (LP) usage for each of the units under 

assessment. 

Let xij be the observed magnitude of i – type input for entity j (where xij>0, i=1,…,m, 

j=1,…,n) and yrj – the observed magnitude of r – type output for entity j (where yrj>0, 

r=1,…,p, j=1,…,n). Suppose that DMUj is evaluated on any trial formed as DMUo where 

o ranges over 1,…,n. Therefore, the virtual input and output is created for each DMU 

with the corresponding weights (vi) and (ur), where: 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 =  𝑣1𝑥1𝑜 +⋯+ 𝑣𝑚𝑥𝑚𝑜  (3.6) 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑢1𝑦1𝑜 +⋯+ 𝑢𝑠𝑦𝑠𝑜  (3.7) 

Therefore, the commonly measure of efficiency is defined as a ratio of the weighted sums 

of the outputs (virtual output) and the weighted sums of the inputs (virtual inputs): 

 

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒐𝒖𝒕𝒑𝒖𝒕

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒊𝒏𝒑𝒖𝒕
      (3.8) 

 

The Charnes-Cooper-Rhodes (CCR) model is defined in the following structure for the 

chosen entity o. 

(FPo)     𝑚𝑎𝑥 𝜃 =
∑ 𝑢𝑟𝑦𝑟𝑜
𝑝
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1

 (3.9) 

Subject to 

∑ 𝑢𝑟𝑦𝑗
𝑝
𝑟=1

∑ 𝑣𝑖𝑥𝑗
𝑚
𝑖=1

≤ 1, ∀𝑗 = 1, 2,… , 𝑗𝑜, … , 𝑛  (3.10) 

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, … , 𝑝   (3.11) 

𝑣𝑖 ≥ 0, 𝑖 =  1,2, … ,𝑚   (3.12) 

As for the relative efficiency 𝜃 of one decision making unit o, the maximum in objective 

function (3.9) is desired and assuming the condition (3.10), the conclusion that 0 ≤ 𝜃 ≤

1 for each DMUo is obviously. Additionally, the weight values may vary from one DMU 

to another and the calculation of weights (vi) and (ur) maximizing the ratio of DMUo is 

the objective of each evaluated DMU. On the other hand, if the condition (3.10) is true 
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for every DMU, each of them belongs to the efficiency frontier or beyond it. When max 

𝜃 = 𝜃∗ = 1, that indicates the achievement of efficiency and means that DMUo is 

efficient. The case when 𝜃∗ < 1 means that DMUo is inefficient. 

 

The most used and widely known model is input-oriented CCR (in primal and dual form) 

despite the several modifications that have been developed. The CCR models assume 

that all DMUs operate under constant returns to scale (Property 3.1). In other words, an 

increase in the input values results in a proportional increase in the output levels.  

Property 3.1. (Constant returns to scale) 

If (x,y) is a feasible point, then for any positive t, (tx, ty)is also feasible. 

 

Input-oriented model 

The fractional problem (FPo) is nonconvex, nonlinear, has linear and fractional objective 

function and constrains and is being replaced by the following linear program (LPo). This 

two problems are equivalent (the theorem and its proof is demonstrated in Cooper et al. 

[340]). Thus, the input oriented CCR primal model is: 

 

(LPo)      max𝜃 = ∑ 𝑢𝑟𝑦𝑟𝑜
𝑝
𝑟=1   (3.13) 

Subject to         

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1 = 1    (3.14) 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑝
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0, (∀𝑗 = 1,… , 𝑛

𝑚
𝑖=1 )  (3.15) 

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, … , 𝑝   (3.16) 

𝑣𝑖 ≥ 0, i =  1,2, … ,m   (3.17) 

First, suppose that (𝜃∗, 𝑣∗, 𝑢∗) is an optimal solution of (LPo) where 𝑣∗ and 𝑢∗ 

represents values with constrains given in (3.16) and (3.17). The CCR-efficiency has been 

defined as follows: 
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Definition 3.3 (CCR-Efficiency) 

1. If 𝜃∗ = 1, then DMUo is CCR-efficient and exists at least one optimal solution 

(𝑣∗, 𝑢∗), where 𝑣∗ > 0 and 𝑢∗ > 0. 

2. Otherwise, DMUo is CCR-inefficient. 

The (LPo) model is linear and is associated with dual model (as mentioned in 

3.4.1.1 that each linear programming model is connected with his dual form and can be 

solved by simplex method) as follows: 

 

(𝐷𝐿𝑃𝑜)  min  𝜃 − 𝜀 (∑𝑠𝑟
+

𝑝

𝑟=1

+∑𝑠𝑖
−

𝑚

𝑖=1

)            (3.18) 

Subject to 

∑𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜(∀𝑟 = 1,… , 𝑝)             (3.19)

𝑛

𝑗=1

 

𝜃𝑥𝑖𝑜 −∑𝜆𝑗𝑥𝑖𝑗 − 𝑠𝑖
− = 0    (∀𝑖 = 1,… ,𝑚)     (3.20)

𝑛

𝑗=1

 

𝜆𝑗 , 𝑠𝑟
+, 𝑠𝑖

−  ≥ 0    ∀𝑗 = 1, … , 𝑛                                 (3.21) 

Where the 𝑠− values (slack) represents the input excesses while the 𝑠+ values (slack) are 

the output shortfalls in (3.19) and (3.20), respectively. 

The concept of DEA is explained in the dual CCR model (DLPo). For each 

inefficient unit, the hypothetical composite of existing and efficient units is constructed, 

where the efficient DMUs and the segments that interconnect them form the efficient 

frontier. In the input-oriented model, the inefficient units envelope below the frontier 

while in output-oriented – it is located above the frontier.  
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Definition 3.4 (CCR-Efficiency, Radial Efficiency, Technical Efficiency) 

Due to the association between (LPo) and (DLPo) and duality theorem, DMUo is 

called CCR-efficient if and only if for an optimal solution (𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗) the following 

conditions must be satisfied (if full efficiency is to be attained): 

(i) 𝜃∗ = 1 

(ii) 𝑠+∗ = 𝑠−∗ = 0 (zero-slack) 

 

The first condition refers to radial or technical efficiency due toif 𝜃∗ < 1, then all the 

inputs can be reduced at the same time without the alternation of the proportion in which 

they are used. Thus, (1 − 𝜃∗) represents the maximal proportionate reduction admitted 

by production possibility set. Any additional reductions connected with nonzero slack 

condition will inevitably change the input proportions.  

Additionally, the CCR-efficiency concept given in Definition 3.3 is equivalent to 

that given in Definition 3.4 (The proof of this theorem is demonstrated in Cooper et 

al.[340]). 

However, if only the first condition (i) is satisfied, then it refers to weak efficiency 

term. Furthermore, the two conditions (i) and (ii) describe the Pareto-Koopmans or 

strong definition of efficiency. 

 

Definition 3.5 (Pareto-Koopmans Definition of Efficiency)[329]The performance of a 

DMU is efficient if and only if it is not possible to improve any input or output without 

worsening any other input or output. 

Hence, the dual problem if the full efficiency is required is: 

(𝐷𝐿𝑃𝑜 − 𝑓𝑢𝑙𝑙  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)  min  𝜃             (3.22) 

Subject to 

∑𝜆𝑗𝑦𝑟𝑗 − 𝑦𝑟𝑜 ≥ 0      (∀𝑟 = 1,… , 𝑝)           (3.23)

𝑛

𝑗=1
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𝜃𝑥𝑖𝑜 −∑𝜆𝑗𝑥𝑖𝑗 ≥ 0    (∀𝑖 = 1,… ,𝑚)      (3.24)

𝑛

𝑗=1

 

𝜆𝑗  ≥ 0    ∀𝑗 = 1,… , 𝑛                                     (3.25) 

 

Decision variable λj  represents the weight for DMUj. Note that a DMU is 

inefficient if a composite DMU (linear combination of units in the set) can be recognized 

which maintains at least the same output level while utilizing less input than the test 

DMU. The dual problem (DLPo full efficiency) provides as output the necessary 

improvements required in the inefficient unit's input to make it efficient. An inefficient 

DMU can be made more efficient by projection into the efficiency frontier. Efficiency 

can be improved through reduction of inputs. The existing gap from any inefficient DMU 

to the efficiency frontier shows the extent to which the DMU should be further improved 

to reach the optimal efficiency level. Hence, more precisely, the input reduction required 

for a DMU to become efficient, corresponds to the difference between the current input 

value in the inefficient unit, and the input value in the aggregated DMU obtained as a 

linear combination of the efficient units selected by the dual problem. Note that the 

variables of the dual problem represent the linear coefficients of such combination of 

efficient units. Each composite unit represents hypothetical targets for future attainment, 

which could be a useful guide for decision and policy-makers. Further details on this 

issue can be found elsewhere [341].  

 

3.4.2.1.2. The Banker Charnes Cooper model 

 

The most relevant extension of the CCR-model is BCC (Banker-Charnes-Cooper) model, 

developed by Banker et al.[192] in 1984. The only difference between CCR and BBC 

model is that the latter includes the convexity condition (i.e.,∑ 𝜆𝑗, 𝜆𝑗 ≥ 0, ∀𝑗
𝑛
𝑗=1 ). 
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Suppose that we have n DMUs (decision making units) where: each DMUj, 

j=1,…,n produces the same s outputs in different amounts (𝑦𝑟𝑗 ;  𝑟 = 1, . . , 𝑝) consuming 

the same m inputs in different amounts (𝑥𝑖𝑗 ;  𝑖 = 1, . . , 𝑚). The efficiency of a specific 

DMUo for the input-oriented BCC model can be presented as the solution of the 

following linear program: 

(BBCo)      max𝜃 = ∑ 𝑢𝑟𝑦𝑟𝑜 − 𝑢0
𝑝
𝑟=1   (3.26) 

Subject to 

∑ 𝑣𝑖𝑥𝑖𝑜
𝑚
𝑖=1 = 1     (3.27) 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑝
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗 − 𝑢0 ≤ 0, (∀𝑗 = 1,… , 𝑛

𝑚
𝑖=1 )  (3.28) 

𝑢𝑟 ≥ 0, 𝑟 = 1, 2, … , 𝑠    (3.29) 

𝑣𝑖 ≥ 0, i =  1,2, … ,m;  𝑢0 free in sign  (3.30) 

where𝑥𝑖𝑗 and 𝑦𝑟𝑗(being nonnegative) are the inputs and outputs of the jth DMU, while 𝑣𝑖 

and 𝑢𝑟 represent the input and output weights. For the DMUo, 𝑥𝑖𝑜 and 𝑦𝑟𝑜 are the 

corresponding inputs and outputs.  

The free variable 𝑢0, associated with the constraint ∑ 𝜆𝑗 = 1
𝑛
𝑗=1  is the unique 

difference between the CCR and BCC models and does not appear in the CCR. 

The dual form of this linear program (BBCo) is expressed as follows: 

(𝐵𝐶𝐶𝑜 − 𝑑𝑢𝑎𝑙)  min  𝜃 − 𝜀 (∑𝑠𝑟
+

𝑝

𝑟=1

+∑𝑠𝑖
−

𝑚

𝑖=1

)            (3.31) 

Subject to 

∑𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜(∀𝑟 = 1,… , 𝑝)                           (3.32)

𝑛

𝑗=1

 

𝜃𝑥𝑖𝑜 −∑𝜆𝑗𝑥𝑖𝑗 − 𝑠𝑖
− = 0    (∀𝑖 = 1,… ,𝑚)                   (3.33)

𝑛

𝑗=1

 

∑𝜆𝑗 = 1                                                                               (3.34)

𝑛

𝑗=1
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𝜆𝑗 , 𝑠𝑟
+, 𝑠𝑖

−  ≥ 0    ∀𝑗 = 1, … , 𝑛                                           (3.35) 

 

Definition 3.6 (BCC-Efficiency) 

1. If 𝜃𝐵
∗ = 1, then DMUo is BCC-efficient and exists at least one optimal 

solution (𝑣∗, 𝑢∗), where 𝑣∗ > 0and 𝑢∗ > 0. 

2. Otherwise, DMUo is BCC-inefficient. 

Definition 3.7 (BCC-Full Efficiency) 

If for an optimal solution (𝜃𝐵
∗ , 𝜆∗, 𝑠−∗, 𝑠+∗) obtained from the (BCCo) and (BCCo-

dual) models the following conditions are satisfied:  

(i) 𝜃𝐵
∗ = 1 

(ii) 𝑠+∗ = 𝑠−∗ = 0 (zero-slack) 

Then the DMUo is called BBC-full efficient, otherwise it is BBC-inefficient.  

 

Hence, the dual problem if the full efficiency is required is: 

 

(𝐵𝐵𝐶𝑜 − 𝑓𝑢𝑙𝑙  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)  min  𝜃             (3.36) 

Subject to 

∑𝜆𝑗𝑦𝑟𝑗 − 𝑦𝑟𝑜 ≥ 0      (∀𝑟 = 1,… , 𝑝)           (3.37)

𝑛

𝑗=1

 

𝜃𝑥𝑖𝑜 −∑𝜆𝑗𝑥𝑖𝑗 ≥ 0    (∀𝑖 = 1,… ,𝑚)         (3.38)

𝑛

𝑗=1

 

∑𝜆𝑗 = 1                                                              (3.39)

𝑛

𝑗=1

 

𝜆𝑗  ≥ 0    ∀𝑗 = 1,… , 𝑛                                        (3.40) 

 

The output-oriented models for both CCR and BBC models are presented in Table 3.4. 
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Table 3.4.Output- oriented models for CCR and BBC. 

Model CCR – primal Model BCC – primal 

(𝐶𝐶𝑅 − 𝑂𝑜)  min 𝜂 =∑𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1

 

Subject to   

∑𝑢𝑟𝑦𝑟𝑜

𝑝

𝑟=1

= 1 

∑𝑢𝑟𝑦𝑟𝑗

𝑝

𝑟=1

−∑𝑣𝑖𝑥𝑖𝑗 ≤ 0, (∀𝑗 = 1, … , 𝑛

𝑚

𝑖=1

) 

𝑢𝑟 ≥ 0, 𝑟 = 1, 2,… , 𝑝 

𝑣𝑖 ≥ 0, i =  1,2, … ,m 

(𝐵𝐶𝐶 − 𝑂𝑜) min𝜂𝐵 =∑𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1

−𝑢0 

Subject to 

∑𝑢𝑟𝑦𝑟𝑜

𝑝

𝑟=1

= 1 

∑𝑢𝑟𝑦𝑟𝑗

𝑝

𝑟=1

−∑𝑣𝑖𝑥𝑖𝑗 + 𝑢0 ≤ 0, (∀𝑗

𝑚

𝑖=1

= 1,… , 𝑛) 

𝑢𝑟 ≥ 0, 𝑟 = 1, 2,… , 𝑝 

𝑣𝑖 ≥ 0, i =  1,2, … ,m;  𝑢0 free in sign 

Model CCR – dual Model BCC – dual 

 

(𝐶𝐶𝑅 − 𝑂𝑜 𝑑𝑢𝑎𝑙)max  𝜂 

Subject to 

∑𝜆𝑗𝑦𝑟𝑗 − 𝜂𝑦𝑟𝑜 ≥ 0    (∀𝑟 = 1, … , 𝑝)

𝑛

𝑗=1

 

𝑥𝑖𝑜 −∑𝜆𝑗𝑥𝑖𝑗 ≥ 0    (∀𝑖 = 1, … ,𝑚)

𝑛

𝑗=1

 

𝜆𝑗  ≥ 0    ∀𝑗 = 1,… , 𝑛  

 

(𝐵𝐶𝐶 − 𝑂𝑜 𝑑𝑢𝑎𝑙)max  𝜂𝐵 

Subject to 

∑𝜆𝑗𝑦𝑟𝑗 − 𝜂𝐵𝑦𝑟𝑜 ≥ 0    (∀𝑟 = 1,… , 𝑝)

𝑛

𝑗=1

 

𝑥𝑖𝑜 −∑𝜆𝑗𝑥𝑖𝑗 ≥ 0    (∀𝑖 = 1,… ,𝑚)

𝑛

𝑗=1

 

∑𝜆𝑗 = 1

𝑛

𝑗=1

 

𝜆𝑗  ≥ 0    ∀𝑗 = 1,… , 𝑛 

Note, that for the CCR- model, an optimal solution of output-oriented model 

relates to that of input-oriented model as follows: 𝜂∗ = 1 𝜃∗⁄ . 
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It is important to remark that DEA is primarily a diagnostic tool and does not 

prescribe any reengineering strategies to make inefficient units efficient. 

 

3.4.2.1.3. Explanatory example between CCR and BCC model (1input and 1 output) 

 

In order to clarify the differences between the two models presented above and 

the two orientation cases, we use the same explanatory example introduced in Table 3.2. 

The example represents five different DMUs, each one with one input and one output 

(Fig. 3.5). The thinnest line on Figure 3.5 that links point B from the origin is the 

efficient frontier of the CCR model. On the other hand, the bold line that connects A, B 

and C represents the frontiers of the BBC model. The area below the efficiency frontier 

that includes observed and possible activities jointly with a shortfall in outputs and/or 

excess of inputs when comparing to the frontiers is the production possibility set. 

Additionally, B is CCR-efficient whereas A, B and C are BCC-efficient and all point 

leading on the solid line connecting them are also BCC-efficient. 

 

 

Fig. 3.5.The graphical representation of explanatory example between CCR and BCC 

models. 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



86 

 

The CCR- efficiency of point E for the input-oriented model is evaluated by  

𝜃 =
𝑃𝑄

𝑃𝐸
=
2

7
= 0.285        (3.50) 

While the BCC-efficiency is higher with value 

𝑃𝐸′

𝑃𝐸
=
3.35

7
= 0.478    (3.51) 

On the other hand, the CCR efficiency for output-oriented model is calculated by  

𝜃∗ =
𝑅𝑆

𝐸𝑆
=
7

2
= 3.5  (3.52) 

While the BCC-efficiency is smaller and equals 

𝑆𝐸′′

𝑆𝐸
=
5

2
= 2.5   (3.53) 

This means that for the point E the increase of output from the observed value to achieve 

efficiency equals: (Eq. 3.53) 2.5 × 2 = 5 units for BBC model and (Eq. 3.52) 3.5 × 2 =

7 units for CCR model. Additionally, as mentioned before, there is a relationship 

between input and output-oriented for CCR model, that is the output efficiency could be 

obtained from input efficiency value (
1

0.285
=

1

𝜃∗
= 𝜂∗ = 3.5). Note that this “reciprocal 

relation” between input and output efficiencies is available only for CCR model, but not 

for BBC models. The efficiency values for both DEA models and both input and output 

oriented cases are presented in Table 3.5.  

 

Table 3.5. Results of explanatory example for the CCR and BBC models 

DMU input (x)  output (y) CCR-I (θ) CCR-O(η) BCC-I (θB) BCC-O (ηB) 

A 3 1 0.333 0.333 1.000 1.000 

B 4 4 1.000 1.000 1.000 1.000 

C 7 5 0.714 0.714 1.000 1.000 

D 5 3 0.600 0.600 0.750 0.690 

E 7 2 0.286 0.286 0.464 0.400 

Note that generally the CCR-efficiencies are lower than BBC-efficiencies. 
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3.5 Uncertainty approaches 

 

Despite the fact that many relevant advances in optimization tools have been 

made during the last decades, the complexity of models when several sources of 

uncertainty are considered in the study produces important problems to the decision 

makers in order to ensure the solution. The variability of parameters, like manufacturing 

time or conditions of reaction; uncertainty in prices, demand or resources; and other 

external uncertainties (e.g., different types of errors) are one of the principal challenges 

nowadays. 

The sources of uncertainty can be classified as [342]: (i) exogenous such as 

supply, demand, etc., and (ii) endogenous such as capacity, yield, etc. On the other hand, 

one of the classifications of the approaches treated the problems under uncertainty are 

reactive and preventive procedures[343]. Reactive approaches consist of modifications of 

deterministic model in order to obtain the reaction and response to the uncertain events. 

Some of the reactive approaches that tackle with uncertainty are the Model Predictive 

Control and the multi-programming, among others. On the other hand, the preventive 

approaches incorporate the uncertainty parameters and for all possible cases find a good 

solution. The main advantage of this approach is that for all considered scenarios, a 

feasible solution is achieved. The most relevant techniques are: (i) Stochastic 

programming, (ii) Chance-constrained programming, (iii) robust optimization, and (iv) 

fuzzy programming, among others. 

 

3.5.1 Data Envelopment Analysis with uncertainty 

 

The main tool in preventive technique that handles with the uncertainty is 

stochastic programming. This technique is based on the optimization of the expected 

performance metrics such as maximizing the expected profits or minimizing the 

environmental impact or expected costs. Due to being a scenario-based method, the 
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uncertain parameters are included as random scenarios (e.g., impact values, demand, 

price, etc.) with the probability distribution of each of them[344]. The goal is to obtain 

the optimal expected decisions/values and to analysis how changes the efficiency with 

the influence of some uncertain assumptions. 

In the model detailed in 3.4.2.1, the inputs and outputs are assumed to take 

nominal variables. Let us now consider the case in which they are stochastic variables 

modelled via specific probability functions. To account for this, a stochastic model 

(3.54)-(3.58) is formulated taking the deterministic formulation (3.13)-(3.17) as a basis 

(the input-oriented CCR model). Consider t scenarios belonging to the set of scenarios S, 

each corresponding to a different materialization s of the uncertain parameters (s=1,…,t; 

𝑠 ∈ 𝑆), that is, inputs and outputs take different values in each scenario. For each such 

scenario, we aim to quantify the efficiency of n DMUs, each with m inputs and p outputs. 

We use the following notation: variable 𝑢𝑟𝑠 is the weight associated with the r-th output 

in scenario s, variable 𝑣𝑖𝑠 represents the weight given to the i-th input in scenario s, 

parameter 𝑥𝑖𝑗𝑠 is the amount of input i utilized by 𝐷𝑀𝑈𝑗in scenario s, and parameter 𝑦𝑟𝑗𝑠 

is the amount of output r produced by 𝐷𝑀𝑈𝑗in scenario s, wherein 𝑖 = 1,… ,𝑚;  𝑗 =

1, … , 𝑛; 𝑟 = 1, … , 𝑝; 𝑠 = 1,… , 𝑡. Assuming that 𝑥𝑖𝑗𝑠 ≥ 0,𝑦𝑟𝑗𝑠 ≥ 0 and for the test object 

with index j’, the relative efficiency score in scenario s of DMU j’ (𝜃𝑗′𝑠) is given by the 

following LP model defined for every scenario: 

𝜃𝑗′𝑠 = max∑ 𝑢𝑟𝑦𝑟𝑗′𝑠
𝑝
𝑟=1   (3.54) 

Subject to 

∑ 𝑣𝑖𝑥𝑖𝑗′𝑠
𝑚
𝑖=1 = 1    (3.55) 

∑ 𝑢𝑟𝑦𝑟𝑗𝑠
𝑝
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗𝑠

𝑚
𝑖=1 ≤ 0, ∀𝑗 (3.56) 

𝑢𝑟𝑠 ≥ 0, ∀𝑟, 𝑠    (3.57) 

𝑣𝑖𝑠 ≥ 0,   ∀𝑖, 𝑠    (3.58) 

This model is known as input-oriented CCR DEA [62]. By running the above 

model for each DMU and scenario, we can obtain the relative efficiency score of each 
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DMU for each possible outcome of the uncertain parameters. For every inefficient DMU 

and scenario, we can in turn determine the corresponding improvement targets by 

projecting such unit onto the efficient frontier. This is done by solving the following dual 

problem defined for every scenario: 

 

min𝜃𝑗′𝑠 (3.59) 

Subject to 

∑ 𝜆𝑗𝑠𝑦𝑟𝑗𝑠
𝑛
𝑗=1 − 𝑦𝑟𝑗′𝑠 ≥ 0    ∀𝑟       (3.60) 

𝜃𝑗′𝑠𝑥𝑖𝑗′𝑠 − ∑ 𝜆𝑗𝑥𝑖𝑗𝑠
𝑛
𝑗=1  ≥ 0   ∀𝑖 (3.61) 

𝜆𝑗𝑠 ≥ 0, ∀𝑗, 𝑠,  𝜃𝑗′𝑠 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (3.63) 

 

Decision variable 𝜆𝑗𝑠 represents the weight for 𝐷𝑀𝑈𝑗 defined as peer of j’ in scenario s. 

Note that a DMU is inefficient if a composite DMU (linear combination of units in its 

peer group) can be recognized which maintains at least the same output level while 

utilizing less input than the DMU tested. The dual problem (3.59)-(3.63) provides as 

output the necessary improvements required in the inefficient unit’s input to make it 

efficient. An inefficient DMU can be made more efficient by projection onto the 

efficiency frontier. Further details on this issue can be found elsewhere [341]. As 

mentioned above, DEA is primarily a diagnostic tool and does not prescribe any 

reengineering strategies to make inefficient units (technologies) efficient. Note that the 

same transformation from deterministic values to stochastic ones can be done for BBC 

model and for all orientation cases. 

3.5.1.1 Monte Carlo sampling 

 

The Monte-Carlo sampling method consists of a repeated random sampling of 

uncertain parameters and has many applications such as: simulation, optimization, 

regression, probability distribution and risk analysis, etc. 
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Jens Krüger[345] presented the Monte Carlo approach for old and new frontier 

methods for the measurement of efficiency. Several situations with different return to 

scale regimens were studied and concluded that the stochastic frontier analysis(SFA) and 

data envelopment analysis (DEA) should be cross-checked first before the use of new 

methods in efficiency analysis. 

The first study that initiated a unstopped stream of Monte Carlo method 

application for efficiency analysis was proposed in 1987 by Banker et al.[346].Some of 

the further studies are presented in this section in chronological order. 

 Later, in 1993, Banker et al.[347] compared de DEA and SFA models for samples 

size of 25, 50, 100 and 200 and measurement errors. The results showed that DEA 

performs better for the smallest size. Three years later, Banker et al.[348] using 

deviations as error measure concluded that DEA under VRS performs better than DEA 

under CRS. The weakness of this approach was very low number of 25 Monte-Carlo 

simulations. 

Moreover, after the analysis of five different DEA models (SFA, chance-

constrained, bootstrapping, IDEA and Monte Carlo simulation) to deal with uncertainty 

in DEA, Dyson et al.[312] concluded that Monte Carlo simulation is an effective 

approach to handle uncertainties in DEA, yet it is computationally greedy. They used 

100, 200, 500, 1000 and 2000 replications and concluded that with more than 500 

replications, the study is reliable. 

In this thesis, Monte Carlo simulation has been used in scenario generation for 

stochastic DEA model. The use of Monte-Carlo sampling method in this thesis helps in 

obtaining the replications of environmental impacts in uncertainty analysis of DEA.The 

procedure of Monte Carlo simulation requires the parameters based on the following 

variables: 

(i) The value – arithmetical mean amount. 

(ii) The distribution function – the type of uncertainty distribution. 

(iii) The uncertainty type – for the measurement of dispersion. 
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According to Huijbregts et al.[349], an increase of the incorporation of 

uncertainty information for LCA provoked that the representation of statistical 

distribution became ambiguous. The most used distribution are: i) the uniform, ii) the 

triangular, iii) the normal or Gaussian and iv) the lognormal. The authors described the 

relationship between the mathematical formulations, their representation in Ecoinvent 

databases and in CMLCA software (which is an advanced tool that includes analysis 

under uncertainty via Monte Carlo method). 

In this thesis, the lognormal distribution have been used for Monte Carlo 

simulation with uncertainty level calculated from the Weidema model for LCA impacts 

retrieved from the Ecoinvent database. 

 

3.5.1.2 Data quality management (Weidema model) 

 

The Weidema model has been used to measure the type of uncertainty for Monte 

Carlo simulation. The Pedigree matrix approach ([55], [350]) allows translating quality 

indicators into quantitative information. This methodology relies on the assumption that 

the uncertain parameters can be described using lognormal distributions [351]. Data 

sources can be expressed according to[55]: uncertainty (spread and pattern of 

distribution), reliability (different methods used for calculations, measurement and 

quality control data), completeness (number of data collection points, periods and their 

representativeness of the total population), age (year of the original measurement), the 

geographical area and the technological level for which the data is representative. Thus, 

the five general items in which the data is assessed are: “reliability”, “completeness”, 

“temporal correlation”, “geographical correlation” and “further technological 

correlation” (see Table 3.6). Each characteristic of the data is divided into five quality 

levels with a score between one and five.  

Accordingly, a set of five indicator scores is attributed to each individual input 

and output exchange (except the reference products), reported in a data source.  
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Tabe 3.6.Pedigree matrix used to assess the quality of data sources, modified from [55][350]. 

Indicator score  1 2 3 4 5 (default)  

Reliability  Verified data based on 

measurements  

Verified data partly based on 

assumptions or non-verified data 

based on measurements 

Non-verified data partly 

based on qualified estimates  

Qualified estimate (e.g., 

by industrial expert)  

Non-qualified estimate  

Completeness  Representative data from all 

sites relevant for the market 

considered, over an 

adequate period to even out 

normal fluctuations  

Representative data from >50% of 

the sites relevant for the market 

considered, over an adequate 

period to even out normal 

fluctuations  

Representative data from 

only some sites (<<50%) 

relevant for the market 

considered or >50% of sites 

but from shorter periods  

Representative data from 

only one site relevant for 

the market considered or 

some sites but from 

shorter periods  

Representativeness unknown or 

data from a small number of sites 

and from shorter periods  

Temporal 

correlation  

Less than 3 years of 

difference to the time period 

of the dataset  

Less than 6 years of difference to 

the time period of the dataset  

Less than 10 years of 

difference to the time period 

of the dataset  

Less than 15 years of 

difference to the time 

period of the dataset  

Age of data unknown or more 

than 15 years of difference to the 

time period of the dataset  

Geographical 

correlation  

Data from area under study  Average data from larger area in 

which the area under study is 

included  

Data from area with similar 

production conditions  

Data from area with 

slightly similar 

production conditions  

Data from unknown or distinctly 

different area (North America in-

stead of Middle East, OECD-

Europe instead of Russia)  

Further 

technological 

correlation  

Data from enterprises, 

processes and materials 

under study  

Data from processes and materials 

under study (i.e., identical 

technology) but from different 

enterprises  

Data from processes and 

materials under study but 

from different technology  

Data on related 

processes or materials  

Data on related processes on 

laboratory scale or from different 

technology  

Sample size > 100, continous 

measurement, balance of 

purchased products 

> 20 >10, aggregated in 

environental report 

>= 3 unknown 
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Table 3.7 represents the example of data quality indicators for German electricity 

production. In this example, the use of hard coal plants is reported for production of 1 

kWh of energy. After the investigation of background of this data in Ecoinvent database, 

is pedigree can be quantified as follows: (1,1,1,1,1). The explanation of each indicator is 

shown in Table 3.6. 

 

Table 3.7.The example of determining data quality indicators 

Data quality indicator 

for electricity production 

of hard coal (Germany) 

Score Explanation 

Reliability 1 

The data source are official German impact values 

obtained from the constructed hard coal power 

plant ready to produce electricity including 

analysis from grave : the reception of hard coal and 

operating materials at power plant gate to cradle, 

i.e. including all upstream activities. 

Completeness 1 
The data are determined for Germany hard power 

plants for the period 1980-2015. 

Temporal correlation 1 The data period are from 1980 to 2015 

Geographical correlation 1 
The information values have been derived from 

German data. 

Further technological 

correlation 
1 

This dataset represents the production of high 

voltage electricity in an average hard coal power 

plant in Germany. 

 

The method of uncertainty measurement using Pedigree Matrix is next presented. 
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To generate a given number of scenarios, two parameters of the distribution (mean and 

standard deviation) are required. The nominal value of the impact retrieved from 

EcoInvent provides the expected value of the distribution, which can then be used 

together with the standard deviation to obtain the mean parameter. On the other hand, the 

outcome of the Pedigree matrix is used to determine the standard deviation. First, the 

geometric standard deviation is calculated as follows: the variance 𝜎𝑔
2 is computed using 

the Pedigree Matrix (eq. 3.64) by answering questions regarding the reliability (𝑈1), 

completeness (𝑈2), temporal correlation (𝑈3), geographical correlation (𝑈4), further 

technological correlation (𝑈5), and sample size (𝑈6) of the LCI data (see Table 3.8). 

Parameter 𝑈𝑏 is an uncertainty factor that depends on the environmental burden (see 

Table 3.9). 

𝜎𝑔
2 =

exp(√(𝑙𝑛𝑈1)2 + (𝑙𝑛𝑈2)2 + (𝑙𝑛𝑈3)2 + (𝑙𝑛𝑈4)2 + (𝑙𝑛𝑈5)2 + (𝑙𝑛𝑈6)2 + (𝑙𝑛𝑈𝑏)2)(3.64) 

 

Two uncertainty levels (low and high) are calculated in the following way: the low level 

considers the lowest scores of the Pedigree factors, while the high level considers the 

highest (1 and 5, based on Table 3.8, respectively).  

Parameter 𝑈𝑏varies from one impact to the other, but for a given impact category 

remains the same across technologies (e.g. acidification potential expressed in kg SO2e as 

an uncertainty factor 𝑈𝑏corresponding to SO2= 1.05 from Table 3.8 regardless of the 

technology being assessed). For instance, the variance 𝜎𝑔
2 of acidification potential 

impact when considering the quality score 1 (being the pedigree (1,1,1,1,1,1)) is 

calculated as follows: 

𝜎𝑔
2 = exp (√(𝑙𝑛1)2 + (𝑙𝑛1)2 + (𝑙𝑛1)2 + (𝑙𝑛1)2 + (𝑙𝑛1)2 + (𝑙𝑛1)2 + (𝑙𝑛1.05)2)

= 1.05 
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Note that the uncertainty factor 𝑈𝑏 corresponds to SO2 and equals 1.05 (Table 3.9) 

whereas the standard deviation is 1.025. On the other hand, when the quality score of 5 is 

considered (represented by pedigree (5,5,5,5,5,5)), the standard deviation equals 7.18 (for 

the same uncertainty factor 𝑈𝑏 = 1.05).  

 

Table 3.8.Uncertainty factors for the pedigree matrix scores 

Indicator score 1 2 3 4 5 

Reliability 1 1.05 1.1 1.2 1.5 

Completeness 1 1.02 1.05 1.1 1.2 

Temporal correlation 1 1.03 1.1 1.2 1.5 

Geographical correlation 1 1.01 1.02 --- 1.1 

Further technological correlation 1 --- 1.2 1.5 2 

Sample size 1 1.02 1.05 1.1 1.2 

 

Table 3.9.Basic uncertainty factors (𝑈𝑏). 

Input / output group c p a Input / output group c p a 

Demand of:   

 

  Pollutants emitted to air:       

Thermal energy, electricity, 

semi-finished products, working 

material, waste treatment 

services 

1.05 1.05 1.05 CO2 1.05 1.05   

Transport services (tkm) 2 2 2 SO2 1.05     

Infrastructure 3 3 3 NMVOC total 1.5     
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Resources:       NOX, N2O  1.5   1.4 

Primary energy carriers, metals, 

salts 
1.05 1.05 1.05 CH4, NH3 1.5   1.2 

Land use, occupation 1.5 1.5 1.1 Individual hydrocarbons 1.5 2   

Land use, transformation 2 2 1.2 PM>10 1.5 1.5   

Pollutants emitted to water: 
 

    PM10 2 2   

BOD, COD, DOC, TOC, 

inorganic compounds (NH4+, 

PO43-, NO3-, Cl-, Na+, etc...) 

  1.5   PM2.5 3 3   

Individual hydrocarbons, PAH, 
 

3   
Polycyclicaromatic hydrocarbons 

(PAH) 
3     

Heavy metals 
 

5 1.8 CO, heavy metals 5     

Pesticides 
 

  1.5 Inorganic emissions, others   1.5   

NO3 , PO4     1.5 Radionuclides (e.g., Radon-222)   3   

Pollutants emmited to soil: 
 

    

    Oil, hydrocarbon total 
 

1.5   

    Heavy metals 
 

1.5 1.5 

    Pesticides     1.2 

     

 

3.5.1.3 Combined use of Monte Carlo simulation and Pedigree matrix 

 

We used the lognormal distribution function which is the most commonly used 

distribution[349] to present the Monte Carlo simulation via the Pedigree matrix 

approach.  

As mentioned in chapter 3.5, to generate a given number of scenarios, the Monte Carlo 

method requires two parameters of the lognormal distribution (mean (𝜉) and standard 

deviation (𝜙).). The nominal value of the LCI entry provides the expected value of the 

LCI entry (retrieved from Ecoinvent database), on the other hand, the outcome of the 

Pedigree matrix (presented above) gives the standard deviation value as follows[349]: 
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𝜉 = ln (1 +
𝑉𝑎𝑟[�̃�]

(𝐸[�̃�])2
)(3.65) 

𝜙 = ln(𝐸[�̃�]) −
1

2
𝝃 (3.66) 

Where 𝐸[�̃�]is the expected value of the LCI entry, which can be retrieved from 

environmental databases such as Ecoinvent, 𝑉𝑎𝑟[�̃�]is its variance, and 𝜉 and 𝜙 are the 

mean and standard deviation of the natural logarithm of the stochastic variable (which by 

definition follows a normal distribution). The variance𝜎𝑔
2 is computed using the Pedigree 

Matrix, which builds the underlying lognormal distribution according to the quality of 

the data available.  

As mentioned above, the expected mean value (𝐸[�̃�]) is first retrieved from Ecoinvent v3 

and we assume that it represents the population arithmetic mean of the random variable. 

The “true” mean can be estimated by the expected value of a set of independent 

replications (i.e., scenarios). The same norm holds for the geometric standard deviation 

that is next calculated using the Pedigree Matrix (Eq. 3.64) and converted into the 

arithmetic standard deviation (𝜎 = ln (𝜎𝑔)). It should by mention that the true mean and 

standard deviation of uncertain parameters should correspond to the expected value and 

standard deviations of replications (i.e., scenarios) for an infinite number of those.  

Formerly the distribution is defined; the random values of the uncertain parameters using 

sampling methods can be generated. Figure 3.6 represents the procedure. The 

multivariate sampling methods typically consider that the uncertain data follows 

distributions other than lnN (i.e., mainly normal distributions). A random number-

generator with the so-called inverse transform sampling method is used to generate the 

values for lognormal from normal distribution. This procedure consist in that if F(x) is 

the cumulative distribution function (CDF) of random variable x, and the stochastic 

variable y follows a uniform distribution between 0 and 1, then the stochastic variable 

z=F-1(y) will follow the distribution of x. Hence, we generate the scenarios assuming that 
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the uncertain parameters follow normal distribution (N from here on). The mean (𝜙N) and 

standard deviation (𝜎N) are obtained as follows 

𝜙𝑁 = 𝐸𝑁[�̃�] (3.67) 

𝜎𝑁 = √𝑉𝑎𝑟𝑁[�̃�] (3.68) 

Where 𝐸𝑁[�̃�] is the expected value of the uncertain parameter and 𝑉𝑎𝑟𝑁[�̃�] represents 

its variance. Without loss of generality, we assume that the expected mean value and 

variance of normal distribution to be the same as those of lognormal distribution  

𝐸𝑁[�̃�] = 𝐸[�̃�]             (3.69)

𝑉𝑎𝑟𝑁[�̃�] = 𝑉𝑎𝑟[�̃�]    (3.70)
 

As mentioned before, the 𝐸𝑁[�̃�] of the lnN distribution can be retrieved from Ecoinvent 

databases, while 𝑉𝑎𝑟𝑁[�̃�] is obtained from the transformation of eq. (3.65) and (3.66) as 

follows: 

𝑉𝑎𝑟[�̃�] = [𝐸[�̃�]]
2
(𝑒𝜉 − 1) = (𝑒2𝜙+𝜉)(𝑒𝜉 − 1)      (3.71) 

We next calculate standard deviation (𝜎𝑁) of the normal distribution and covariance 

matrix (𝐶𝑜𝑣 = (𝜎𝑁)2). In case of correlation between impacts, we multiply the 

covariance matrix by the correlation matrix. 

The generation of multivariate normal random scenarios is made from the multivariate 

normal distribution with expected mean (𝐸𝑁[�̃�]) and covariance parameters. The 

transformation of normal into lognormal distribution is done in two steps: 

(1) Firstly, we apply the normal cumulative distribution function (CDF) to obtain a 

uniform distribution in the interval [0,1]. 

(2) Next, we undo the inverse CDF, but this time, into lognormal distribution instead 

of a normal distribution. 

Finally, the selected number of scenarios is generated with a lognormal distribution.  
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Fig. 3.6.The procedure of the Monte Carlo simulation process. 
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3.6 Modelling systems 

 

Various commercial tools can be used to implement the mathematical models 

(deterministic, stochastic, etc) including GAMS (General Algebraic Modeling Systems), 

AMPL (A Mathematical Programming Language)[352], AIMMS (Advanced Interactive 

Multidimensional Modeling Software)[353], OPL (Open Programming Language)[354] 

or MATLAB (MATrixLABoratory). 

 

3.6.1 GAMS – General Algebraic Modeling System 

 

The modeling system used in this thesis is GAMS, which is one of the most 

important software used in optimization problems[355]. Originally developed through a 

World Bank funded study in 1988, achieved the reputation as one of the most flexible 

and popular language. The programming language that GAMS uses, allows not only the 

modeling of optimization problems but also its optimization. Some important aspects 

have been pointed out by Castillo et al.[356]: 

 The separation between the modeling and solving procedure. After the 

development of a model, several solvers are available to optimize the problem. 

 The mathematical description of the problem is similar to the representation of 

model in GAMS. 

 Without varying the code, it is possible to transform the small size problem into 

large-scale one. 

 It is easy for both machines and humans to read the algebraic statements because 

of very compact and concise description of models 

 The unambiguous statements of algebraic relationship are allowed 

 Allows the changes in model specifications in very simple and safe way. 

 Allows to export and import data from/to Microsoft Excel files. 

 Allows the connection between MATLAB and GAMS. 
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Moreover, it is worthy to mention that optimization algorithms mentioned above are 

embedded in some of the different GAMS solvers. Each solver is usually developed to 

tackle a specific type of program (i.e., LP, NLP, MILP, MINLP, etc.). 

 According to Chattopadhyay [357], although that the GAMS is easy and flexibly 

in implementing a wide variety of optimization problems, some situations are not 

advisable when choosing the optimization models. First of all, the GAMS program is not 

freeware. Next, when the problems have an inherent inflexibility of modeling language, 

the application of GAMS does not admit full exploitation of power system capacities and 

is prohibited. Additionally, GAMS models are not a substitute for commercial power 

system software. The simplistic GAMS model performs inferior when compared with 

power system properties and expertise of a number of company years. 

 

3.6.2 ECOINVENT database 

 

The Ecoinvent database v.3.2 [358] is used to retrieve the environmental data 

required to perform the calculations. As mentioned before, this database contains LCA 

data of 4087 products associated with human activities organized by region, economic 

sector and product type. Additionally, Ecoinvent database is a set of information of 

various thousands of life cycle inventory datasets in several fields such as: energy supply, 

biofuels and biomaterials, agriculture, transport, chemicals, basic and precious metals, 

packing materials, ICT (information and communication technologies), waste treatment, 

and electronic devices, among others. The main advantages of this database results of its: 

- Consistency: the database is fully interlinked with unit processes and presents the 

common data requirements and guidelines; 

- Reliability: Ecoinvent database has been continuously developed and improved 

for over 18 years by several independent expert and reviewers for all datasets; 
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- Transparency: Each dataset contain individual documentation and the unit 

process data with all calculation results are fully accessible. 

The main disadvantages are the license cost. Additionally, the datasets provides 

information for only for a limited number of regions or countries (mostly refers to the 

European and US countries). On the other hand, due to the limited number of the 

elementary flows for specific processes (e.g., earth movement in agriculture and 

silviculture or countries with unused mining and extraction processes for specific 

substances), in some cases it is impossible to consider the regional differences in the 

analysis. 

Despite de Ecoinvent database, several national and international public databases 

have been created such as: the Swedish SPINE@CPM [359], the Japanese JEMAI [360], 

the US NREL[361], the German PROBAS (UBA) [362], the Australian LCI database 

[363] or the European Reference Life Cycle Database (ELCD) [364], among others. 

Additionally, some of the databases alternative to Ecoinvent are: GaBi[365] or 

ELCD[366], among others. 
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PART II. Ecoefficiency analysis 

 

4. Assessment of the environmental efficiency of the electricity mix of 

the top European economies via DEA 

 

4.1 Introduction into sustainable development of energy system 

 

Moving towards a more sustainable energy system or company converts into a 

major goal of modern societies that aim to minimize the dependence on fossil fuels and 

the associated anthropogenic impacts. 

With the recent increase of awareness that the role plays energy in sustainability 

has suffered major changes. There is a clear need for systematic approaches for 

sustainability analysis, including tools to quantify the eco-efficiency level attained by a 

system. 

The renewable energy sources (e.g., wind energy, biomass, hydropower, solar 

power, geothermal, and ocean power) have become promising alternatives to reduce the 

dependence on fossil fuels, as they could lead to significant environmental and economic 

benefits, including energy security enhancement. 

In the European Union, several environmental strategies and policies have been 

recently developed, which highlight the necessity for a clean and efficient energy supply. 

These policies aim to transform the current energy system into a sustainable and low-

carbon system, which will have far-reaching implications on how to produce energy. Due 

to a specific character of energy generation in each country and that any energy transition 

is a very slow process, the World Energy Council has summed up the challenges in their 

“energy trilemma” concept which involves balancing three conflicting objectives:  

(i) Energy security: The reliability of energy supply must be ensured to meet current and 

future demand,  
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(ii) Energy equity: The accessibility of energy around the world at affordable cost, 

(iii) Environmental sustainability: The improvement of energy efficiency through the 

lowering of greenhouse gas emissions, pollution, and fossil fuel dependence. 

Several scenarios (Figure 4.1) have been developed by IEA experts analyzing 

how the energy mix could change by 2035. The common trend to minimize the fossil 

fuels dependence and at the same time, to increase the use of renewable energy has been 

proposed to achieve the goals. 

As mentioned above, significant energy reduction strategies have been enacted 

in order to minimize energy consumption improving energy efficiency. For instance, a 

binding legislation approbated by the European Union (EU) in March 2007, which 

purposes the ambitious 2020 Energy Strategy plan combating climate change and air 

pollution. By 2020, the EU aims to reduce its greenhouse gas emissions by at least 20% 

from 1990 levels, increase the share of renewable energy to at least 20% of consumption, 

and achieve energy savings of 20% or more [367]. In addition, EU countries have agreed 

to meet the following objectives by 2030: 

(i) Reduction of at least a 40% in greenhouse gas emissions, compared to 1990. 

(ii) Achieve a binding target of at least 27% of renewable energy. 

(iii) An energy efficiency increase of at least 27%, to be reviewed by 2020 potentially 

raising the target to 30%. 

(iv) A completion of the internal energy market by reaching an electricity 

interconnection target of 15% between EU countries, and pushing forward 

important infrastructure projects. 

 

The finally EU aim is to achieve an 80% to 95% reduction in greenhouse gasses 

compared to 1990 levels by 2050. Indeed, the transformation of the current energy 

system into a sustainable, low-carbon and greenhouse gas emissions system seems to be 

the significant energy efficiency strategy to achieve the reduction goals presented above. 

It is imperative to find effective ways for assessing the environmental impact of the 
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technologies available for electricity generation in order to move towards an 

environmentally friendly electricity mix (i.e., eco-friendly mix). 

As the significant role of energy in sustainability is evident, intensive research 

efforts are presently being undertaken to seek sustainable alternatives for satisfying the 

growing electricity demand at minimum environmental impact. In practice, it is unlikely 

that a single technology will show the best performance in every environmental impact 

category of interest. As an example, nuclear energy contributes marginally to global 

warming, but shows high impact in ionising radiation [368], whereas with coal the 

opposite situation occurs. Understanding that electricity production technologies may 

perform well in some environmental categories and poorly in others, the question that 

arises is how to identify the best ones (i.e., environmentally efficient) and, for the worst, 

obtain the specify targets that (if achieved) would make them efficient. This valuable 

insight could facilitate the transition towards a cleaner electricity generation system. 
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Fig.4.1Global energy mix from 1990 to 2035. Several scenarios have been developed by 

International Energy Agency (IEA) that project energy trends through to 2035. Source: 

IEA[369]. 

 

In the context of energy systems analysis, LCA considers all aspects associated 

with energy generation over the entire energy supply chain, that is, throughout the entire 

life cycle of the production of energy. These lifecycle stages include the extraction and 

combustion of the corresponding fuels (e.g., coal, oil, biomass, natural gas, etc.) the 

transportation tasks associated with these fuels, the distribution of energy and the impact 

associated with the construction and maintenance of the facilities that produce energy 

(e.g., nuclear plants, wind turbines, coal plants, etc.). The main advantage of using LCA 

in the assessment of energy systems is that it provides a holistic view of each technology, 

thereby informing on the extent to which it contributes to decrease the impact globally. 

This comes at the cost of requiring large amounts of data, some of which might be 

difficult to collect in practice. Applications of LCA to electricity production include the 

assessment of different renewable energy sources [161] and of several emissions 
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associated with electricity production from coal and natural gas in Canada [370], among 

others. More information is presented in subsection 2.2.2.1. 

 

4.2 Problem statement 

 

 The combined approach that integrates LCA and DEA proposed by Vázquez-

Rowe et al.[67] has been applied in this work to assess the environmental efficiency of 

the electricity mix of the 27 wealthiest economies in Europe (Figure 4.2). We discuss in 

this chapter which countries are efficient and for those found to be inefficient, we obtain 

the quantitative environmental targets are provided to make them efficient. Note that we 

have focused here on analyzing the environmental performance of the electricity 

generation mixes of the top European countries, which display similar levels of 

development. Note also that, as it will be discussed in more detail later in this chapter, 

economic, social, technological and political aspects have been left out of the analysis. 

The main reason for this is that there is a lack of quantitative indicators for describing the 

performance of a technology in these dimensions (except for the economic case, for 

which several indicators are available, but they seldom reflect the true cost of the system 

due to external regulations). 
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Fig. 4.2 Graphical abstract of DEA study case. 

 

 The chapter is organized as follows. The results of applying LCA to the 

electricity mix of the top economies are first presented. We next describe the DEA 

methodology, which is employed to quantify the environmental efficiency of the 

electricity mix of each country. The results of the DEA study are presented afterwards, 

while the conclusions of the work are drawn in the last section. 

 

4.3 Environmental impact assessment of energy productions 

 

The environmental performance of the electricity mix of the top economies in 

Europe (see Table 4.1) is analyzed first following LCA principles. Particularly, this 

environmental performance is quantified through the CML 2001 [109], [371], an LCA-

based methodology that considers 15 damage scores (which are quantified over the entire 

life cycle of the energy supply chain). 
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Table 4.1 Countries studied in the analysis and their acronyms. 

Country Acronym 

Austria AUT 

Bosnia & Herzegovina BIH 

Belgium BEL 

Bulgaria BGR 

Switzerland CHE 

Czech Republic CZE 

Germany DEU 

Denmark DNK 

Spain ESP 

Finland FIN 

France FRA 

United Kingdom GBR 

Greece GRC 

Croatia HRV 

Hungary HUN 

Ireland IRL 

Italy ITA 

Luxemburg LUX 

Republic of Macedonia MKD 

Netherlands NLD 

Norway NOR 

Poland POL 

Portugal PRT 

Romania ROU 

Sweden SWE 

Slovenia SVN 

Slovakia SVK 
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The impacts analysed and the corresponding units are given in Table 4.2. The 

results of the LCA analysis have been retrieved from the environmental database 

EcoInvent v3.2[372], which contains LCA data of the main technological processes 

implemented worldwide. 

 

Table 4.2 Set of impacts considered in the study (in alphabetic order). 

Impact Unit 

1 Acidification potential kg SO2 – Eq 

2 Climate change kg CO2 – Eq 

3 Eutrophication potential kg NOx – Eq 

4 Freshwater aquatic eco-toxicity kg 1.4-DCB-Eq 

5 Freshwater sediment eco-toxicity kg 1.4-DCB-Eq 

6 Human toxicity kg 1.4-DCB-Eq 

7 Ionising radiation DALYs 

8 Land use 𝑚2 times year (𝑚2𝑎) 

9 Malodorous air m3 air 

10 Marine aquatic eco-toxicity kg 1,4-DCB-Eq 

11 Marine sediment eco-toxicity kg 1,4-DCB-Eq 

12 Photochemical oxidation (summer smog) kg formed ozone 

13 Resources kg antimony – Eq 

14 Stratospheric ozone depletion kg CFC-11-Eq 

15 Terrestrial eco-toxicity kg 1,4-DCB-Eq 

 

Fig. 4.3 shows the normalized environmental impacts associated with the 

generation of 1 kWh in the different damage categories. The interval within which the 

impact values fall is very large, which leads to numerical problems during the application 

of the DEA approach. Hence, to enhance the numerical robustness of the models solved 
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by DEA, we first normalize the data prior to its application. The goal of normalization is 

to refer the impact scores to a common interval (e.g., [0,1], where 0 is the minimum 

value and 1 is the maximum). This facilitates the comparison of different environmental 

impacts and their visual analysis (see Fig. 4.3), while at the same time avoiding the 

numerical difficulties that may arise when solving the LP models of the DEA approach 

using the original raw data. 
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Fig. 4.3 Normalized environmental impact for every country in each category. The values are expressed per kWh and normalized by 

subtracting the minimum value and dividing bythe difference between the maximum and minimum impact attained in every category 

over all the countries. The horizontal axis displays the values of the 15 impacts described inTable 4.2 for every country shown in the 

vertical axis (see acronyms in Table 4.1). The vertical lines represent the average of each impact. 
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In Fig. 4.3, the average of each impact is depicted by a vertical line (note that the 

values of the average of impact 9, 10 and 11 are very similar; 0.2235, 0.2227 and 0.2240, 

respectively, and cannot be properly distinguished in the figure). As seen, there are 

countries that perform poorly in one impact and well in others. As an example, France, 

Switzerland and Sweden show low environmental impacts in all of the damage 

categories, except for ionising radiation. This is because in these countries nuclear 

energy, which performs very well in many environmental categories except for ionising 

radiation, represents a significant proportion of the electricity production mix (see Figure 

4.4). Hence, there is no single country that shows the best performance in all indicators 

simultaneously. 

Furthermore, as seen in Fig. 4.3, some impacts behave similarly, that is, when one 

takes high values in one country so do others and vice-versa. To further study the 

relationships between metrics, we carried out a statistical analysis based on the r-value 

(Pearson correlation coefficient) between damage categories (Table 4.3). This analysis 

shows that water pollution metrics (impacts 4, 5, 10, 11) are highly correlated (r -value 

above 0.99 between them and above 0.72 with climate change, acidification, resources 

and human toxicity). Other strong dependences arise between climate change and 

resources (r-value of 0.975) and climate change and eutrophication potential (r-value of 

0.886), between acidification and eutrophication potential (r-value above 0.91) and 

between malodorous air and stratospheric ozone depletion (r-value above 0.84). In 

addition, human toxicity shows a strong correlation with climate change and acidification 

potential (r-values of 0.715 and 0.732, respectively). Moderate correlations are observed 

as well between climate change and ionising radiation (r-value of 0.588) and 

photochemical oxidation (r-value of 0.563), and between malodorous air and 

photochemical oxidation (r-value of 0.628).  
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Table 4.3 Correlation between impacts (with significance level of 0.05). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0.527 0.757 0.729 0.728 0.376 -0.418 -0.198 -0.218 0.723 0.722 -0.099 0.514 -0.222 0.412 

2 0.527 1 0.779 0.713 0.713 0.539 -0.601 0.141 0.197 0.717 0.718 0.601 0.976 0.230 0.642 

3 0.757 0.779 1 0.561 0.561 0.493 -0.541 0.085 0.008 0.567 0.567 0.383 0.730 0.080 0.564 

4 0.729 0.713 0.561 1 1.000 0.642 -0.353 -0.222 -0.091 0.999 0.999 -0.005 0.754 -0.147 0.694 

5 0.728 0.713 0.561 1.000 1 0.643 -0.353 -0.222 -0.091 0.999 0.999 -0.005 0.754 -0.148 0.694 

6 0.376 0.539 0.493 0.642 0.643 1 0.049 -0.147 0.159 0.661 0.664 0.218 0.579 0.154 0.862 

7 -0.418 -0.601 -0.541 -0.353 -0.353 0.049 1 -0.137 -0.186 -0.359 -0.358 -0.473 -0.596 -0.235 -0.351 

8 -0.198 0.141 0.085 -0.222 -0.222 -0.147 -0.137 1 -0.031 -0.229 -0.229 0.284 0.106 -0.055 -0.139 

9 -0.218 0.197 0.008 -0.091 -0.091 0.159 -0.186 -0.031 1 -0.075 -0.074 0.719 0.175 0.963 0.206 

10 0.723 0.717 0.567 0.999 0.999 0.661 -0.359 -0.229 -0.075 1 1.000 0.010 0.759 -0.129 0.717 

11 0.722 0.718 0.567 0.999 0.999 0.664 -0.358 -0.229 -0.074 1.000 1 0.011 0.760 -0.128 0.720 

12 -0.099 0.601 0.383 -0.005 -0.005 0.218 -0.473 0.284 0.719 0.010 0.011 1 0.587 0.805 0.294 

13 0.514 0.976 0.730 0.754 0.754 0.579 -0.596 0.106 0.175 0.759 0.760 0.587 1 0.215 0.674 

14 -0.222 0.230 0.080 -0.147 -0.148 0.154 -0.235 -0.055 0.963 -0.129 -0.128 0.805 0.215 1 0.189 

15 0.412 0.642 0.564 0.694 0.694 0.862 -0.351 -0.139 0.206 0.717 0.720 0.294 0.674 0.189 1 
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To shed further light on the environmental impact patterns of energy generation, 

we next analyzed the electricity mix of the top European countries (Fig 4.4). From this 

analysis we can draw the following conclusions: 

- Norway shows the lowest impact in all of the categories due to the high share of 

hydro power (i.e., 96.7%), which is a very clean production technology. 

- Countries with high share of nuclear energy present high impacts in ionising 

radiation. For instance, France attains the maximum ionising radiation impact, as 

nuclear energy represents 75.3% of its total mix. Other countries with high 

ionizing radiation impacts are Slovakia, Belgium and Hungary. On the other 

hand, countries with little or no nuclear energy show low impacts in ionising 

radiation (i.e., Austria, Bosnia & Herzegovina, Denmark, Greece, Ireland, Poland, 

Portugal and Republic of Macedonia). 

- Countries with high share of fossil fuels (coal and oil) show high impacts on 

climate change, eutrophication potential and human and terrestrial eco-toxicity, 

among others. This happens for instance in Greece, Bosnia & Herzegovina, 

Poland and Republic of Macedonia, which use large amounts of coal. 

- Countries with large shares of fossil, nuclear and renewable sources in their 

electricity mixes show large environmental impacts in many categories (i.e., 

Germany, Portugal, Romania and Spain). 
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Fig.4.4. Mix of electricity generation for the 27 studied countries. Source: IEA statistics, electronic version, 2012. 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



117 

 

As already mentioned, countries tend to perform well in some damage categories 

and poor in others. This is because the environmental performance is given by the 

technologies they implement (i.e., fossil, nuclear or renewable), which have large 

impacts in some categories and low in others as well. Hence, there is no single nation 

attaining the lowest impact in all of the environmental damage categories, that is, there is 

no single “best” electricity mix in environmental terms, but rather a set of “efficient” 

technologies that feature the property that they cannot be improved simultaneously in all 

of the environmental categories without necessarily worsening at least one of them. 

Bearing this in mind, we next address the following points: 

1) Considering the current electricity mixes, we would like to know which nations 

are environmentally efficient and which are inefficient. 

2) For the countries that are inefficient (i.e., they cannot be improved simultaneously 

in all of the impact categories), we would like to answer the following questions: 

(i) Which efficient countries should be taken as benchmark to improve the 

environmental performance of the inefficient one? (ii) By how much we should 

reduce the impact in every category to make the inefficient country efficient? 

In the following sections, DEA is used to shed light on these fundamental 

questions. 

 

4.4 Methodology – DEA application 

 

After performing the preliminary analysis of environmental performance shown 

above, we next describe the methodology followed to assess the environmental efficiency 

of the electricity mix of each country. In essence, we follow here the combined method 

LCA + DEA, which was already applied to quantify the eco-efficiency of wind farms 

[373], among others aforementioned in subsection 2.3.1. In this case, CCR DEA input-

oriented model is used to measure the environmental efficiency, while LCA principles 

are applied to quantify the environmental performance. The fundamentals of DEA are 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



118 

 

presented first through the use of a small illustrative example before explaining in detail 

how it has been applied to our particular case. 

 

4.4.1 Illustrative example 

 

To further clarify the concept of efficiency and the use of the primal and dual LP 

models in the context of our problem, we next introduce an illustrative example that 

considers nine technologies for electricity generation and two environmental impacts. 

For simplicity, we assume that all the technologies have the same cost, but differ in the 

values of the environmental impacts associated with the generation of 1 kWh. Hence, for 

this case the inputs are the environmental impacts, and the output is 1 kWh. 

 

Table 4.4 Example of 9 technologies with 2 environmental inputs (i.e., impacts) and one 

output (i.e., 1 kWh). 

Technologies   A B C D E F G H I 

Impact 1 [kWh-1] 
x1j 

4 7 8 4 2 5 6 5.5 6 

Impact 2 [kWh-1] x2j 3 3 1 2 4 2 4 2.5 2.5 

Output [kWh] y1j 1 1 1 1 1 1 1 1 1 

 

Fig. 4.5 displays the values of the two impacts (inputs) for each technology. Red 

circles in the figure denote the efficient technologies, while blue squares represent the 

inefficient ones. The efficient technologies satisfy the condition that they cannot be 

improved in one impact without necessarily worsening the other one. In the figure, the 

efficient units lie on the convex envelope of the points. 

The figure shows also the efficiency values of each technology, which are 

obtained from the primal LP model. The dual problem is in turn solved for the inefficient 
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technologies (i.e., those for which the efficiency score is lower than one) in order to 

obtain further guidelines on how to improve them using as a basis the efficient ones.  

 

 

Fig.4.5. Interpretation of the DEA eco-efficiency measure for the alternatives in Table 

4.4 as a radial distance to the frontier. The efficient value of each technology is shown 

into brackets (note that E, D and C have an efficiency score of 1).  

 

 We identify the line connecting C,D and E as the efficient frontier. The efficiency 

of technology A (note that this point does not belong to the efficiency frontier) can be 

measured as follows. Let 
𝑂𝐴
→  be the line from the origin (0,0) to A, which crosses the 

frontier line at P (see Fig.4.6). The efficiency of A corresponds to 
𝑂𝑃

𝑂𝐴
= 0.86. This means 

that the efficiency of A is to be evaluated by a combination of D and E, because the point 

P is on the line connecting these two points. D and E are called the reference set for A. 

The reference set for an inefficient technology may differ from one technology to 
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another. For example, the reference set of B is composed of C and D in Figure 4.5. We 

can also observe that many technologies are close to D, so it can be therefore said that D 

is an efficient technology which is also “representative”. On the other hand, C and E are 

also efficient, but display different features compared to the other units, and for this 

reason they are far from them. 

 

 

 

Fig. 4.6. Improvement of an inefficient point (technology) to make it efficient. 

 

 We extend the analysis in Figure 4.6 to identify improvements for the inefficient 

units so they can become efficient and lie in the efficient frontier. For each inefficient 

technology, a composite efficient one belonging to the frontier is determined. This 

composite unit reflects the hypothetical targets that should be achieved by the inefficient 

unit in order to become efficient. Each inefficient technology should try to get as close as 
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possible to its targets, because by doing so it increases its efficiency. Note that there are 

different possible ways in which we can project the inefficient unit onto the efficient 

frontier. Among them, we have selected in this paper the radial projection, which is the 

most widely used one. However, we could have applied instead the minimum distance 

projection that finds the point in the efficient frontier with minimum distance to the 

inefficient unit. In general, there are an infinite number of possible projections, and the 

targets set on the inefficient units depend on the one chosen. For example, A can be 

improved by moving towards P with 𝐼𝑛𝑝𝑢𝑡𝑥1 = 3.4 and 𝐼𝑛𝑝𝑢𝑡𝑥2 = 2.6 (which 

corresponds to the coordinates of P, that is, the coordinates of the point on the efficient 

frontier identified with the line segment 
𝑂𝐴
→  in Fig. 4.5 that connects A with the origin). In 

practice, this means that A needs to reduce impact 1 by 15% and impact 2 by 13.3% so as 

to become efficient. 

 

4.4.1. Integrated use of LCA and DEA 

 

Vazquez-Rowe et al.[67] developed a “five step LCA+DEA method” for the 

direct estimation of the environmental impact efficiency of DMUs and the simultaneous 

benchmarking of operational and environmental parameters (as described in subsection 

4.3). We have adapted this approach by omitting some steps that are not required, as the 

environmental profiles are obtained in our case from LCIA data retrieved from an 

environmental database (i.e., Ecoinvent 3.2) rather than calculated from mass and energy 

balances. Hence the following steps are applied in our case: 

i. Data collection. Environmental LCIA data are gathered for each DMU using 

environmental databases. If the necessary data are missing for some 

technologies, specific LCA calculations based on mass and energy balances 

could be carried out in order to obtain the impact values required for the 

analysis. 
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ii. The primal DEA is solved for each DMU in order to determine whether it is 

efficient or not. 

iii. Quantification of the environmental consequences of operational 

inefficiencies (eco-efficiency verification). The comparison between the 

environmental impacts of the virtual DMUs and those corresponding to the 

current DMUs quantifies the environmental damage generated by inadequate 

operational practices. Clear guidelines are therefore proposed in this step for 

the inefficient units that could in turn be used to develop more efficient 

environmental regulations. 

 

4.5 Case study 

 

The combined approach that integrates DEA with LCA was applied to determine 

the environmental efficiency of the electricity production mix of the 27 European top 

economies. The countries, and therefore the electricity production mix associated to each 

of them are regarded as DMUs (whose eco-efficiency will be assessed via DEA). As 

output, we consider the electricity production of 1 kWh, while the environmental impacts 

associated with the mix (undesirable outputs) are considered as inputs. 

 

4.6 Numerical results and discussion 

 

The results obtained by applying the input-oriented CCR DEA model are 

presented in the radar chart of Fig. 4.7. Results reveal that three countries are found to be 

eco-efficient (efficiency equal to 1). These are Ireland, Norway and Romania. On the 

other hand, 24 countries are inefficient (efficiency lower that 1), with some of them 

showing very low efficiency scores (like Hungry, Finland, Luxemburg and Germany). 
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Fig. 4.7.Eco-efficiency of the electricity production mix of the 27 European top 

economies. 

 

Norway was expected to be environmentally efficient because it shows very good 

performance in almost all of the impact categories. This is because its share of hydro 

power is quite large. The other three efficient countries perform well in very few 

categories in which Norway fails to attain the best performance. This happens because 

they do not have some energy sources in their mixes (i.e., nuclear, fossil fuels and 

renewable sources). For instance, the share of hydro power in Romania is lower than in 

Norway, and for this reason Romania shows better performance in land use. Similarly, 

Ireland has not nuclear energy, and therefore its ionising radiation impact is lower than 

that of Norway. 

We address next the issue of how to make the inefficient countries efficient. As 

already mentioned, besides the efficiency score, DEA provides guidelines on how to 
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improve the inefficient countries taking as a basis the efficient ones. Fig. 4.8 shows the 

heat map of the linear coefficients that should be assigned to each efficient country so as 

to make every inefficient nation efficient. The rows correspond to the efficient countries 

taken as benchmark in the improvement of the inefficient nations, while the columns 

display the inefficient countries. Each cell is colored according to the value of the linear 

coefficient assigned to the efficient nation (in the corresponding row), which is taken as a 

basis to improve the efficiency score of the inefficient one (in the corresponding 

column).Light colors indicate low coefficients, while dark colors indicate the opposite. 

As observed, Norway is the most employed country (it shows the highest 

weights). This is because Norway produces most of its electricity from hydro power. 

Inefficient countries could become eco-efficient by reducing their inputs (environmental 

impacts) drastically in order to resemble to Norway. This could be accomplished by 

replacing their current electricity production mix by one based on hydroelectric power. 

Note, however, that this strategy is quite unrealistic, as the orography of the country 

plays a key role in the establishment of hydro plants. In other words, it might be 

impossible (or extremely expensive) to build hydro plants in flat countries (e.g., The 

Netherlands). 

 

 

Fig. 4.8. Heat map of linear coefficients used for improving the inefficient countries 

considering the 27 European top economies. 
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As suggested by Atici and Podinovski[374], there are several ways of dealing 

with applications in which DMUs have different specializations or production profiles, as 

it happens in our case. One way is to select a subset of inputs on the basis of which the 

analysis is performed. Another possible manner is to use weight restrictions on the inputs 

(environmental impact categories). Both of these methods have the drawback of being 

based on value judgments. In this work we follow an alternative method that consists of 

removing the outliers from the analysis ([198],[197]). In our study, Norway shows very 

specific profiles of electricity production that differ significantly from those displayed by 

the other countries. Since Norway produces more than96.7% of its electricity using hydro 

power, it can be regarded as an outlier and therefore removed from the analysis in order 

to generate more meaningful results. For similar reasons, several energy efficiency 

approaches of European countries do not consider Norway into analysis [279]–[282]. 

The results obtained by applying the input-oriented CCR DEA model without 

considering Norway are presented in the radar chart of Fig. 4.9. Nineteen countries were 

found to be eco-efficient, while seven countries are inefficient. Ireland and Romania still 

appear as ecoefficient, as they do not have nuclear facilities (and therefore show very 

good performance in ionising radiation). 
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Fig. 4.9. Eco-efficiency of the electricity production mix of the 26 European top 

economies without considering Norway. 

 

The inefficient countries are Czech Republic, Greece, Croatia, Hungary, 

Luxemburg, Slovenia and Slovakia. The efficiency value obtained shows to what extent 

these countries should reduce their inputs (environmental impacts) to become eco-

efficient considering a fixed output of 1 kWh of electricity. Following the previous order, 

they should reduce their impacts (compared to the current level) in 6.94%, 24.31%, 

9.97%, 22.23%, 6.73%, 2.27% and 22.57%, respectively. 
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Fig. 4.10. Heat map of linear coefficients used for improving the inefficient countries 

considering the 26 European top economies (analysis without Norway). 

 

We address next the issue of how to make the inefficient countries efficient taking 

as a basis the eco-efficient ones. Fig. 4.10 shows the heat map of the linear coefficients 

that should be assigned to each efficient country so as to make every inefficient nation 

efficient. The rows correspond to the efficient countries (taken as benchmark in the 

improvement of the inefficient nations), while the columns display the inefficient 

countries. Each cell is colored according to the value of the linear coefficient assigned to 

the efficient nation (in the corresponding row), which is taken as a basis to improve the 

efficiency score of the inefficient one (in the corresponding column). Light colors 

indicate low coefficients, while dark colors indicate the opposite. As an example on how 

to interpret the coefficients shown in Fig. 4.10, Luxemburg would become eco-efficient 

by making a linear combination of the countries in its efficiency reference set, which is 

composed of Switzerland, Germany, Denmark, Netherlands and Romania. The inputs 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



128 

 

and outputs of the efficiency reference set are multiplied with the coefficients shown in 

Fig. 4.10, and then added together to create a composition (i.e., new electricity mix), 

which determines the hypothetical inputs that Luxemburg should have so as to become 

eco-efficient. The eco-efficiency composition for each inefficient country (obtained as 

explained previously for Luxemburg) can then be compared with the current inputs and 

outputs. This analysis allows determining the excesses of inputs (excesses in 

environmental impact) of the inefficient countries and the way in which they should 

change their electricity production mix in order to become eco-efficient. 

 

 

Fig. 4.11.Heat map of environmental impact reductions (%) for the inefficient countries. 

 

Fig. 4.11 shows the reductions in each environmental impact category that are 

necessary to make the inefficient countries efficient. Every cell in the heat map 

represents the impact reductions (percentage with respect to the current situation) 

required by each inefficient country in every damage category so as to make it efficient. 

Light colors indicate low reductions, while dark colors represent the opposite. As an 

example, in Luxemburg, significant reductions in malodours air, terrestrial eco-toxicity, 
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photochemical oxidation (summer smog) and climate change (71.4%, 39.8%, 24.1% and 

20.5%, respectively) have to be attained to become eco-efficient. 

These reductions can be attained by changing their electricity production mix. 

Fig. 4.12 shows a comparison between the current electricity production mix of the 

inefficient countries and the hypothetical mix that would make them eco-efficient. There 

are two columns per country; the first one corresponds to the current production 

electricity mix and the second one, bordered with a bold line, corresponds to the 

hypothetical mix that would make the inefficient country eco-efficient. As observed in 

Fig. 4.12, there is a repeated pattern in all the countries. Particularly, the share of hydro 

power should increase and the share of fossil fuels reduced. Each of these “hypothetical” 

eco-efficient electricity production mixes provides valuable insight for governments and 

policy-makers concerning which targets need to be met in the future to ensure a better 

transition towards a cleaner energy system. In practice, these targets could be reached by 

progressively replacing some technologies by others. More precisely, fossil fuels should 

be replaced by cleaner and environmentally friendlier electricity production technologies. 

 

 

Fig. 4.12. Comparison between the current inefficient and the hypothetical efficient 

electricity production mix for each inefficient country. 
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4.7 Conclusions 

 

Moving towards environmentally friendly energy systems has become a major goal 

of modern societies, which seek to satisfy the growing electricity demand at minimum 

environmental impact. 

In this approach we assessed the eco-efficiency of the electricity mix of the top 27 

European's economies using an approach that combines LCA and DEA. Each European 

country satisfies the electricity demand with different mixes of technologies that cause 

specific impacts. In this context, the integrated methodology that combines LCA and 

DEA allows assessing the level of eco-efficiency attained by a country, that is, the extent 

to which it is able to cover its electricity demand while keeping the impact in several 

categories as low as possible. Our approach provides clear environmental targets that 

should be attained by inefficient countries in order to become eco-efficient. 

After removing outliers, we found that there are seven eco-inefficient countries 

out of 26. For these inefficient countries, we determined the changes in their mixes that 

need to be performed so as to make them efficient. These changes imply reductions of 

different magnitude in the share of fossil fuels, which cause significant environmental 

impacts. Therefore, our results provide valuable insight for decision and policy makers 

on how to set environmental targets on electricity production. However, when making 

decisions for the future electricity mix other considerations of economic and social nature 

should be considered. 

The combined approach LCA+DEA provides valuable insight during the 

development of effective regulations that aim to ensure that electricity demand is 

satisfied at minimum environmental impact. 

Note that the results obtained in this work may change according to the variability 

and uncertainty of the input data. Uncertainty factors were missing for some LCIA data, 

and for this reason we decided to concentrate on the analysis of the nominal performance.  
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5. Combined use of life cycle assessment, data envelopment analysis 

and Monte Carlo simulation for quantifying environmental 

efficiencies under uncertainty 

 

5.1 Introduction 

 

The combined use of data envelopment analysis (DEA) and life cycle assessment 

(LCA) has recently emerged as a suitable technique for assessing the environmental 

efficiency of products. The standard approach DEA+LCA requires the input/output data 

to be perfectly known in advance. In practice, however, the environmental impact 

calculations are typically affected by a high degree of uncertainty stemming from lack of 

data and/or inaccurate measurements. LCA studies, in particular, require large amounts 

of data from disperse facilities embedded in the product’s supply chain, which might be 

potentially owned by different stakeholders who might be reluctant to share this 

information (or even lack the necessary measurements). These uncertainties critically 

affect the outcome of LCA studies [2] and should be hence accounted for in the analysis 

to generated meaningful results. 

This approach introduces a methodology that combines DEA, LCA and stochastic 

modelling to evaluate the environmental and eco-efficiency of products under 

uncertainty. The capabilities of this research are illustrated through its application to the 

assessment of several technologies for electricity generation.  

 

5.2 Problem statement 

 

 The combined approach that integrates LCA and DEA proposed by Vázquez-

Rowe et al.[67] joint with Monte Carlo simulation has been applied to evaluate the 

difference in efficiency and target values between deterministic and stochastic case for 

German electricity mix (Figure 5.1). We discuss in this chapter which countries are 
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efficient in both cases and for those found to be inefficient, we obtain the quantitative 

environmental targets to make them efficient. The significant differences between the 

two case studies have been presented and appropriate improvements have been made. 

 

 

Fig.5.1. Graphical abstract of DEA under uncertainty study case. 

 

 To illustrate the need to include uncertainties in environmental efficiency 

assessment, we next introduce a motivating example that considers six technologies for 

electricity generation (i.e. wind 1, wind 2, wind 3, wind 4, nuclear 1 and nuclear 2, see 

details in Table 5.1). For this case the inputs are two environmental impacts (i.e. climate 

change and land use) and the output is one kWh (functional unit). Furthermore, we 

consider that these impacts can take on different values depending on the realization of 

the associated uncertainty. Therefore, in addition to the nominal case, we study three 

scenarios (labeled as scenarios 1, 2 and 3), where each of them corresponds to a sample 

of the uncertain parameters space entailing a set of specific parameters values. The 
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nominal values for the impacts were retrieved from the environmental database 

EcoInvent v3.1 [358].  

 

Table 5.1 Technologies considered in the motivating example. 

Cases Abbreviation Technologies 
Climate change 

[kg CO2 – Eq] 

Land use [m2 

times year (m2a)] 

A Wind 1 
wind, <1MW turbine, 

onshore 
0.018245 0.002629 

B Wind 2 
wind, >3MW turbine, 

onshore 
0.033060 0.002403 

C Wind 3 
wind, 1-3MW turbine, 

offshore 
0.017106 0.000804 

D Wind 4 
wind, 1-3MW turbine, 

onshore 
0.019312 0.0011316 

E Nuclear 1 
nuclear, boiling water 

reactor 
0.015267 0.001131 

F Nuclear 2 
nuclear, pressure water 

reactor 
0.013490 0.0009585 

    Uncertainty factor Ub 1.05 1.5 

 

Figure 5.2 shows the performance attained by each technology in every scenario. The 

points in the figure represent technologies (i.e. DMUs), with solid markers indicating that 

the technology is efficient in the corresponding scenario and empty markers denoting the 

opposite (i.e. the technology is inefficient). The efficient frontier in each scenario is 

depicted with lines, where solid lines denote the strong frontier and discontinuous lines 

represent the weak frontier. Dotted lines provide the radial projections of one of the 

inefficient units (technology A) onto the efficiency frontier emerging in each scenario. 

Nominal values are represented in purple, while scenarios 1, 2 and 3 are illustrated in red, 
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green and yellow, respectively. As seen, in the nominal case (nominal values of the 

impacts), there are two technologies that emerge as efficient (i.e. C and F), since no 

single technology exists that improves any of them simultaneously in the two impacts. 

Conversely, for each of the inefficient technologies (i.e. A, B, D and E), it is always 

possible to identify another technology that improves such inefficient alternative 

simultaneously in both impacts. As an example, comparing A with F, the latter (which is 

efficient) improves the former (which is inefficient) in both impacts at the same time (i.e. 

0.01824 of CO2e for A compared to 0.01349 CO2e for F in climate change; and 0.002629 

for A compared to 0.0009585 for F in land occupation).  

 

Fig.5.2. Efficient frontier and inefficient units for the nominal case and the three 

scenarios considering climate change and land use (as inputs) and the generation of 

1kWh (as output). 
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A detailed analysis of the figure reveals that: 

 Depending on the scenario, a DMU (i.e. technology) might be deemed efficient or 

inefficient. For example, technology C, which is efficient in the nominal case, 

becomes inefficient in scenario 2, while technology E that is inefficient in the 

nominal case becomes efficient in scenario 2. The efficient frontier is indeed 

formed by C and F in the nominal case and in scenario 3, but it is formed by C, E 

and F in scenario 1, and by E and F in scenario 2.  

 Radial projections also vary from one scenario to another and so do the 

corresponding improvement targets. Technology A, which is inefficient in the 

nominal case, can be projected onto the nominal efficient frontier giving rise to 

point a, entailing a reduction target of 26% in both impacts. On the other hand, 

technology A in scenario 1 would lead to a’, with an associated reduction target 

of 22%.In scenario 2, however, A would be projected onto point a’’, giving rise 

to a reduction target of 11% in both impacts. Finally, in scenario three, the 

projection of A is a’’’, with reduction targets of 14%. Hence, it is clear that the 

projection of inefficient technologies onto the Pareto frontier varies for each 

technology and scenario. 

These results arise the following questions: How should environmental efficiency be 

assessed under uncertainty? How can DMUs be ranked under uncertainty? How can we 

define robust targets for the inefficient units? In the following sections, we shall show 

how the approach proposed in this contribution clearly sheds light on these fundamental 

questions. 

 

In this chapter, a novel approach is proposed to assess the environmental and eco-

efficiency of a system under uncertainty which combines Monte Carlo simulation, LCA 

and DEA. The capabilities of this combined approach are illustrated through its 

application to the assessment of several electricity generation technologies considering 

uncertain environmental metrics. 
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This section is organized as follows. Firstly, we introduce an example to motivate 

the need to handle uncertainties in DEA. The approach proposed for environmental and 

eco-efficiency assessment under uncertainty, which integrates Monte Carlo simulation, 

LCA and DEA, is next presented. A case study is then introduced to illustrate how the 

methodology presented works in a practical example. The conclusions of the work are 

finally drawn in the last section of the chapter. 

 

5.3 Methodology – DEA application 

 

In this chapter, the input-oriented BCC DEA model (Eq. (3.26)-(3.30)) was used. This 

BBC model has been in our case appropriately extended to deal with multiple scenarios 

analysis.  

 

5.3.1 Stochastic formulation with uncertain inputs/outputs 

 

Considering t scenarios belonging to the set of scenarios S, each corresponding to a 

different materialization s of the uncertain parameters (s=1,…,t; 𝑠 ∈ 𝑆), for each such 

scenario, the quantification of efficiency of n DMUs is calculated (each with m inputs 

and p outputs). The following notation has been used: 

- variable 𝑢𝑟𝑠 - weight associated with the r-th output in scenario s, 

- variable 𝑣𝑖𝑠 - weight given to the i-th input in scenario s,  

- parameter 𝑥𝑖𝑗𝑠 - amount of input i utilized by 𝐷𝑀𝑈𝑗in scenario s, 

- parameter 𝑦𝑟𝑗𝑠 - amount of output r produced by 𝐷𝑀𝑈𝑗in scenario s,  

where 𝑖 = 1,… ,𝑚;  𝑗 = 1,… , 𝑛; 𝑟 = 1,… , 𝑝; 𝑠 = 1, … , 𝑡.  Assuming that 𝑥𝑖𝑗𝑠 ≥ 0, 𝑦𝑟𝑗𝑠 ≥

0 and for the test object with index j’, the relative efficiency score in scenario s of DMU 

j’ (𝜃𝑗′𝑠) is given by the following LP model defined for every scenario: 

(𝐵𝐵𝐶𝑠)   𝜃𝑗′𝑠 = max∑ 𝑢𝑟𝑦𝑟𝑗′𝑠 − 𝑢𝑗′𝑠
𝑝
𝑟=1   (5.1) 

 𝑠. 𝑡 ∑ 𝑣𝑖𝑥𝑖𝑗′𝑠
𝑚
𝑖=1 = 1               (5.2) 
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∑ 𝑢𝑟𝑦𝑟𝑗𝑠
𝑝
𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗𝑠

𝑚
𝑖=1 − 𝑢𝑗′𝑠 ≤ 0  ∀𝑗      (5.3) 

𝑢𝑟𝑠 ≥ 0 ∀𝑟, 𝑣𝑖𝑠 ≥ 0 ∀𝑖, 𝑢𝑗′𝑠 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑  (5.4) 

 

The dual form of linear program (BBCs), adapted to scenario case has been defined as 

follows: 

min𝜃𝑗′𝑠 (5.5) 

Subject to 

∑ 𝜆𝑗𝑠𝑦𝑟𝑗𝑠
𝑛
𝑗=1 − 𝑦𝑟𝑗′𝑠 ≥ 0    ∀𝑟       (5.6) 

𝜃𝑗′𝑠𝑥𝑖𝑗′𝑠 − ∑ 𝜆𝑗𝑥𝑖𝑗𝑠
𝑛
𝑗=1  ≥ 0   ∀𝑖 (5.7) 

∑ 𝜆𝑗𝑠 = 1         
𝑛
𝑗=1    (5.8) 

𝜆𝑗𝑠 ≥ 0, ∀𝑗, 𝑠,  𝜃𝑗′𝑠 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (5.9) 

Decision variable 𝜆𝑗𝑠 represents the weight for 𝐷𝑀𝑈𝑗 defined as peer of j’ in scenario s. 

Note also that the aforementioned model assumes variable returns to scale (VRS), that is, 

that the DMUs do not operate at the same scale and that the output will not change at the 

same proportion as the inputs are changed (to ensure this, the summation of lambdas is 

forced to equal one). 

 

5.3.2 Integrated use of LCA, DEA and Monte Carlo simulation 

 

We next describe our overall approach for environmental and eco-efficiency 

assessment under uncertainty that makes use of the models defined above (Eq. (5.1) – 

(5.9)). Without loss of generality, we assume that LCA metrics, midpoint or endpoint, are 

employed to assess the environmental performance of the DMUs. LCA indicators for 

which lower values imply better performance can be defined as inputs, while the rest can 

be considered as “bad outputs” [284]. This approach, however, has the limitation that the 

metrics are not treated in the same manner (recall that DEA models can be input-oriented 

or output oriented). Hence, to avoid this asymmetric treatment of metrics, we suggest that 
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all the LCA indicators are normalised so that lower values imply always better 

performance. This allows defining all of them as inputs. Note that normalization is an 

open issue in DEA. Scaling (multiplying with a factor, i.e., using a common multiplier) 

does not alter the DEA outcome, whilst the same does not hold for translation (summing 

up a fixed number and multiplying with a parameter, i.e., using a common coefficient).  

The general approach we present herein comprises the following five steps (Figure 5.3). 

 

 

Fig.5.3. General scheme of the overall approach. 

 

Step I: Data collection. Consider a set J of technologies (i.e. DMUs) assessed according 

to a set I of LCA metrics. The environmental impact associated with each technology is 

determined first following the general LCA methodology. Let 𝐿𝐶𝐼𝐴𝑖𝑗 be the impact of 

technology (DMU) j in damage category (input) i. 
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Step II: Uncertainty characterisation. We assume that the impact values are stochastic as 

a result of various uncertainty sources, including those affecting the life cycle inventory 

entries (LCI) that propagate through the damage assessment model as well as those 

present in the damage factors themselves. 

In practice, uncertain impacts can be described through probability functions (either 

continuous or discrete). While uncertainties in damage factors are difficult to 

characterize, probability functions can be used to model stochastic LCI entries. These 

functions can be built using either historical data or qualitative information (i.e. the 

Pedigree matrix). There are several statistical methods to build distributions from 

historical data [375][376]. When such data on emissions, waste and feedstock 

requirements are missing, the Pedigree matrix [55] can still be used to model their 

underlying stochastic distributions. This approach assumes that each stochastic LCI 

variable follows a lognormal distribution whose parameters are established based on 

qualitative information on the data available, including reliability, completeness, 

temporal correlation, geographical correlation, further technological correlation and 

sample size. In this approach, LCI entries are assumed to follow lognormal distributions, 

that is, 𝐿𝐶𝐼~lnN(𝜇, 𝜎), where 𝜇 and 𝜎are the mean and standard deviation of the 

variable’s natural logarithm. Specifically, the outcome of the Pedigree matrix provides 

the standard deviation of the distribution. Then, the mean parameter can be estimated 

from the standard deviation and the expected value, which is assumed to be equal to the 

nominal value of the LCI entry. 

 

Step III: Scenario generation: Sampling methods (e.g., Monte Carlo, Latin Hypercube, 

Sobol sequence, Halton sequence) are next used to generate potential outcomes for the 

stochastic inputs from the parameters of the underlying probability functions (modeled in 

step II). To this end, off-the-shelf software packages, such as Matlab or Crystal Ball 

[377], can be employed. After generating the values for the LCI entries, impact values in 

each scenario are calculated as follows: 
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𝑥𝑖𝑗𝑠 = 𝐿𝐶𝐼𝐴𝑖𝑗𝑠 =∑𝐿𝐶𝐼𝑖𝑗𝑏𝑠𝑑𝑎𝑚𝑖𝑏

𝑞

𝑏=1

∀𝑖, 𝑗, 𝑠  (5.10)  

where 𝐿𝐶𝐼𝐴𝑖𝑗𝑠 is the value of LCA impact i for DMU j in scenario s (e.g., global 

warming potential), 𝐿𝐶𝐼𝑖𝑗𝑏𝑠 is the life cycle entry of chemical b (e.g. CO2 emissions) 

released during the manufacturing of DMU j in scenario s, and 𝑑𝑎𝑚𝑖𝑏 is the damage 

factor that translates the amount of LCI entry b into impact i. Note that under the central 

limit theorem, impact values can be approximated by normal distributions when many 

stochastic LCI entries are involved in their calculation. 

 

Step IV: Solving the stochastic DEA. The stochastic DEA (5.1) - (5.4) and its dual form 

(5.4) – (5.9) are solved iteratively for every scenario, obtaining efficiency scores and 

target values for each DMU j in each scenario. 

 

Step V: Interpretation of results. Since calculations are repeated for different scenarios, 

thereby leading to a set of efficiency values and improvement targets, a key point is then 

how to use the DEA outcomes to assess the efficiency of a DMU under uncertainty. As 

will be discussed later, it is important to analyse the dispersion of efficiencies and targets 

so as to assess the robustness of the nominal DEA results. In essence, if the nominal and 

average values are very close to each other, then the insight remains unaltered with 

respect to the deterministic case. However, if the opposite situation occurs, it is 

recommended that the deterministic results are taken with caution and complemented 

properly with the information provided by the stochastic analysis.   

 

5.3.3 Revisited motivating example: Monte Carlo simulation and DEA in the 

context of our study 

 

For simplicity, we assume that the impacts (LCIA) in the motivating example (rather 

than the LCI entries themselves) follow lognormal distributions lnN(𝜇, 𝜎), where 𝜇 and 
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𝜎 are the mean and standard deviation (defined via the Pedigree matrix) of the 

distribution. To complete the Pedigree matrix, we provide the lowest scores for all the 

categories (the corresponding uncertainty factor Ub for each category impact is presented 

in Table 5.1). Then, the standard deviation and the expected value of the distribution 

(assumed to be equal to the nominal value retrieved from Ecoinvent) are used to compute 

the mean parameter. A total of 500 scenarios are generated via Monte Carlo simulation 

from these distributions, in each of which the impacts take a different value.  

 

 

Fig.5.4. Efficient frontier and inefficient units for the motivating example under 

uncertainty. The efficiency value of each technology for the nominal case is shown in 

parenthesis (note that C and F have an efficiency score of one). 
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Figure 5.4 depicts the average impacts of the DMUs in a Cartesian plot with the 

corresponding 99% confidence interval for each impact value. Purple squares in the 

figure represent the efficient technologies for the nominal case (retrieved from 

Ecoinvent), while circumferences denote the inefficient ones (also in the nominal case). 

Dotted lines denote efficient frontiers corresponding to some of the 500 scenarios. Figure 

5.5 shows the boxplot of efficiency values attained by each DMU, while Figure 5.6 

depicts the cumulative probability curves of efficiency values associated with each 

alternative (which have been constructed using the data in Figure 5.4). In Figure 5.5, the 

bottom and top of each box represent the first (Q1) and third (Q3) quartiles, whereas the 

red lines inside the box depict the second quartile (the median). The black lines extended 

vertically from the boxes (whiskers) indicate variability outside the upper (Q3+1.5IQR) 

and lower (Q1-1.5IQR) quartiles, where IQR (inter quartile range) is the difference 

between the upper and lower quartiles. The values outside of the boxplot are outliers 

(represented with red ‘plus’ signs). The black squares depict the efficiency values of each 

technology for the nominal case, while the green circles represent the average 

efficiencies for each technology. 

 

 

Fig.5.5. Box-and-whisker plot of efficiencies obtained from the stochastic results for the 

six technologies.  
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Fig.5.6. Cumulative probability curve for the efficiencies of the six technologies in the 

motivating example under uncertainty. 

 

 On the other hand, Figure 5.6 can be interpreted as follows: the probability that a 

given technology attains an efficiency value lower or equal than the x-coordinate in the 

horizontal axis is given by the y-coordinate shown in the corresponding cumulative 

curve. As an example, the probability of technology A obtaining an efficiency score 

below 0.7 is 6.2%. Hence, technologies A, B and D are inefficient in all of the scenarios 

(all show zero probabilities of efficiency values above 0.9).In contrast, technology F is 

always efficient regardless of the scenario selected (100% probability of efficiency 

values of one). Finally, C and E have 70% and 16%probabilities of achieving efficiency 

scores above 0.99, respectively.  

We compare next the deterministic targets with the stochastic ones obtained from 

the Monte Carlo simulation (see Fig. 5.7). To this end, we use again boxplots. The 

inefficient technologies in the nominal case (A, B, D and E) show very high dispersion in 

their targets, while in the efficient ones (C and F) such dispersion is rather low (zero for 

F in all of the scenarios, as one could expect from Figure 5.6). 
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From the example above, it becomes clear that the results generated via DEA in the 

nominal case can differ quite significantly from the stochastic ones, to the point that a 

DMU can be deemed as efficient or inefficient depending on the scenario. This 

observation clearly motivates the need to apply stochastic simulation in the efficiency 

assessment. The next section provides a more complex example covering multiple LCA 

metrics, where a similar analysis is conducted. 

 

 

Fig.5.7. Improvement targets for the nominal and the stochastic case of the motivating 

example. Black squares represent the nominal case, while green circles depict the 

average DEA targets in the 500 scenarios. Subplot (a) depicts results for climate change 

whereas subplot (b) displays those for land use. 

 

5.4 Case study 

 

The capabilities of our approach are further illustrated through its application to several 

technologies for electricity generation. Our study covers 11 technologies (see Table 5.2) 

for energy production (functional unit: one kWh) assessed in terms of nine environmental 

impacts (see Table 5.3). We omit here the economic performance of each such 
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technology, as the real costs of electricity generation are usually highly masked due to 

external regulations. The nominal LCIA data were retrieved from the environmental 

database EcoInvent v3.1 [372].  

The calculations were carried out for the nominal scenario (case 1) and for low 

and high uncertainty levels (cases 2 and 3, respectively). The nominal scenario considers 

the deterministic LCA values retrieved from the environmental database. The uncertain 

cases are defined as follows. We assume that the LCA metrics follow lognormal 

distributions. The standard deviation of these lognormal distributions is established based 

on the Pedigree matrix. In case 2, the Pedigree factors are given the lowest scores, while 

in case 3 they are given the highest. In each impact, we consider the basic Pedigree factor 

of the main emission affecting that impact (i.e. for global warming, we consider kg CO2e, 

with a factor Ub equal to 1.05). The considered uncertainty factors Ub for each impact 

score are given in Table 5.3. Further details on how the scenarios were generated are 

provided in the section 5.3.1.3. 

 

Table 5.2 Technologies considered for electricity production. 

Cases Abbreviation Technologies 

1 geothermal Geothermal 

2 wind 1 Wind, <1MW turbine, onshore 

3 wind 2 Wind, >3MW turbine, onshore 

4 wind 3 Wind, 1-3MW turbine, offshore 

5 wind 4 Wind, 1-3MW turbine, onshore 

6 hard coal Hard coal 

7 lignite Lignite 

8 natural gas Natural gas, at conventional power plant 

9 nuclear 1 Nuclear, boiling water reactor 

10 nuclear 2 Nuclear, pressure water reactor 

11 oil Oil 
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Table 5.3 Set of impact values considered in the study (impacts sorted in alphabetical order) in the nominal scenario.  

    Technologies  
Uncertainty 

factor Ub Impact Unit geothermal wind 1 wind 2 wind 3 wind 4 hard coal lignite 
natural 

gas 
nuclear 1 nuclear 2 oil 

Acidification potential kg SO2e 5.20·10-4 1.05·10-4 2.81·10-4 9.52·10-5 1.12·10-4 1.20·10-3 1.27·10-3 8.82·10-4 9.52·10-5 8.4·10-5 4.09·10-3 1.05 

Climate change kg CO2e 7.79·10-2 1.82·10-2 3.31·10-2 1.71·10-2 1.93·10-2 1.10·100 1.23·100 5.84·10-1 1.53·10-2 1.35·10-2 1.15·100 1.05 

Eutrophication 

potential 
kg NOxe 6.92·10-4 5.70·10-5 1.28·10-4 5.40·10-5 6.95·10-5 8.66·10-4 1.11·10-3 5.71·10-4 5.95·10-5 5.32·10-5 1.52·10-3 1.50 

Freshwater aquatic 

eco-toxicity 
kg 1.4-DCBe 3.22·10-2 1.35·10-1 4.08·10-1 6.48·10-2 1.22·10-1 1.15·10-1 1.56·100 2.36·10-2 2.21·10-2 1.99·10-2 3.25·10-2 2.00 

Land use 
m2 times year 

(m2a) 
2.25·10-3 2.63·10-3 2.40·10-3 8.04·10-4 2.28·10-3 2.36·10-2 6.36·10-3 1.65·10-3 1.13·10-3 9.59·10-4 4.35·10-3 1.50 

Marine aquatic  

eco-toxicity 
kg 1.4-DCBe 1.11·10-1 4.37·10-1 1.31·100 2.13·10-1 3.94·10-1 4.04·10-1 5.43·100 1.12·10-1 8.50·10-2 7.68·10-2 3.13·10-1 2.00 

Photochemical 

oxidation  

kg formed 

ozone 
2.59·10-5 5.23·10-6 8.98·10-6 4.11·10-6 5.22·10-6 6.09·10-5 2.03·10-5 5.89·10-5 2.03·10-6 1.81·10-6 9.73·10-5 1.50 

Stratospheric ozone 

depletion 
kg CFC-11e 4.28·10-8 1.38·10-9 2.69·10-9 1.15·10-9 1.64·10-9 3.02·10-9 7.73·10-9 1.76·10-7 1.53·10-9 1.09·10-9 1.79·10-7 1.50 

Terrestrial eco-toxicity kg 1.4-DCBe 2.21·10-4 1.91·10-5 2.99·10-5 1.39·10-5 1.90·10-5 1.50·10-4 1.35·10-4 2.01·10-5 1.96·10-5 1.75·10-5 2.90·10-4 2.00 
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We generated two sets of 500 scenarios in each case via Monte Carlo sampling. Fig. 5.8 

shows the dispersion of impacts for one technology (i.e. hard coal) in the different cases 

(for different uncertainty levels). As observed, it might be very hard to identify the best 

technology in a straightforward manner given the large number of scenarios 

encompassing different impact values.  

 

 

Fig.5.8. Distribution of impacts for hard coal considering low and high uncertainty levels 

calculated according to the Pedigree matrix (see section 3.5.1.2 for more details). The 
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boxplot bars represent the uncertain cases, while black points depict the nominal value 

impacts for hard coal. Data for the other technologies can be found in the next 

subsection. 

3.4.1 Figures of the dispersion of all technologies considered 

 

This subsection shows the boxplots for all technologies (geothermal, wind 1, 

wind 2, wind 3, wind 4, lignite, natural gas, nuclear 1, nuclear 2 and oil) considering low 

and high uncertainty levels calculated according to the Pedigree matrix (see section 

3.5.1.2 for more details). The boxplot bars represent the uncertain cases, while black 

points depict the nominal value impacts for the technologies considered. 
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Fig.5.9. Boxplots for geothermal considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.10. Boxplots for wind 1 considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.11. Boxplots for wind 2 considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.12. Boxplots for wind 3 considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.13. Boxplots for wind 4 considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.14. Boxplots for lignite considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  

 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



155 

 

 

Fig.5.15. Boxplots for natural gas considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.16. Boxplots for nuclear 1 considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.17. Boxplots for nuclear 2 considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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Fig.5.18. Boxplots for oil considering low and high uncertainty levels calculated 

according to the Pedigree matrix (see section 3.5.1.2 for more details).  
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5.5 Numerical results and discussion 

 

In the ensuing sections we describe in detail the results of the environmental efficiency 

assessment under uncertainty for every case. 

 

Case I: Deterministic approach. 

We start by solving the deterministic DEA considering nominal impact values. Recall 

that each technology is modelled as a DMU whose environmental efficiency is assessed 

via DEA. As output, we consider one kWh of electricity, while nine environmental LCA 

impacts are defined as undesirable inputs. 

 

Table 5.4 Efficiency values of the studied technologies for the nominal case. 

Technology Efficiency value 

geothermal 0.694 

wind 1 0.932 

wind 2 0.493 

wind 3 1 

wind 4 0.811 

hard coal 0.363 

lignite 0.144 

natural gas 0.869 

nuclear 1 0.904 

nuclear 2 1 

oil 0.614 

 

The results obtained by applying the input-oriented BCC DEA model in the nominal 

scenario are displayed in Table 5.4. Two technologies are found efficient in the nominal 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



160 

 

case. These are nuclear 2 (i.e., production of high voltage electricity at a grid-connected 

nuclear pressure water reactor) and wind 3 (i.e., production of high voltage electricity at 

offshore grid-connected wind power plants with 2 MW wind turbine). On the other hand, 

nine technologies are inefficient (efficiency lower than one), showing some of them very 

low efficiencies scores (like lignite, with an efficiency of 0.144, and hard coal, with an 

efficiency of 0.363). 

 

Cases 2 and 3: Stochastic results 

We next solve the stochastic DEA considering the two sets of scenarios defined above 

(low and high uncertainty levels). Figure 5.19 summarises the results in boxplots. As 

observed, in both the low (case 2) and high (case 3) uncertainty level cases the average 

efficiency is sometimes above the nominal one (i.e. wind 2, hard coal or lignite) and 

sometimes below (i.e. geothermal, wind 1, wind 3, natural gas or oil). It is worth to 

mention that in case 2, nuclear 2 has an efficiency score of one in all of the scenarios (the 

same behavior as in the nominal case).The dispersion of efficiencies varies from one 

technology to another and clearly increases gradually as we first move from the nominal 

case to the low and then high uncertainty level cases. The biggest mismatch between the 

nominal and average efficiencies is observed in nuclear 1 (0.904 in the nominal case 

versus 0.956 and 0.976, on average, in the stochastic cases with low and high uncertainty 

levels, respectively), oil (0.614 in the nominal case versus 0.529 and 0.544 in stochastic 

ones), wind 1 (0.932 in the nominal case versus 0.810 and 0.890 in the stochastic ones) 

and wind 2 (0.493 in the nominal case versus 0.510 and 0.565 in the stochastic cases). 

 

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



161 

 

 

 

 

Fig.5.19. Distribution of efficiencies for every technology in each case: (a) low 

uncertainty level; (b) high uncertainty level. The black squares represent the efficiencies 

for the nominal impact values, while green points depict the average efficiencies of each 

technology in all the scenarios. 
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Table 5.5 shows the rankings of technologies in terms of efficiency values (either 

nominal values or average ones) obtained in the deterministic and stochastic cases. The 

ranking has been established by sorting the efficiency values in a descendant order (note 

that super-efficiency models could have been used to further discriminate between the 

efficient technologies in the nominal case, but this was not done for simplicity). As seen, 

the ranking for a low uncertainty level (case 2) is the same as the nominal one for all 

technologies except for the third-ranked (nuclear 1) and fourth-ranked (wind 1) ones. For 

a high uncertainty level (case 3), there are two places where the orders are reversed 

(technologies nuclear 1, natural gas and wind 1, in third, fourth and fifth positions, and 

technologies wind 2 and oil in eighth and ninth positions). 

 

Table 5.5. Efficiency of the technologies ranked in a descendant order. We highlight the 

differences in ranking orders between the deterministic and the stochastic cases in bold 

and underlined. The value of the efficiency in cases 2 and 3 is the average of the 

efficiency over the 500 scenarios generated.  

Deterministic case (case 1)  
Low uncertainty level 

(case 2) 

High uncertainty level 

(case 3) 

1 nuclear 2 1 1 nuclear 2 1 1 nuclear 2 0.986 

2 wind 3 1 2 wind 3 0.994 2 wind 3 0.962 

3 wind 1 0.932 3 (↑1) nuclear 1 0.976 3 (↑1) nuclear 1 0.956 

4 nuclear 1 0.904 4 (↓1) wind 1 0.898 4 (↑1) natural gas 0.847 

5 natural gas 0.869 5 natural gas 0.868 5 (↓2)wind 1 0.810 

6 wind 4 0.811 6 wind 4 0.834 6 wind 4 0.779 

7 geothermal 0.694 7 geothermal 0.655 7 geothermal 0.667 

8 oil 0.614 8 oil 0.544 8 (↑1) wind 2 0.565 

9 wind 2 0.493 9 wind 2 0.510 9 (↓1) oil 0.529 

10 hard coal 0.363 10 hard coal 0.366 10 hard coal 0.378 

11 lignite 0.144 11 lignite 0.160 11 lignite 0.184 
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Figure 5.20 shows the efficiency distribution for cases 2 and 3. As an example, in the low 

level of uncertainty case, natural gas has a 46% probability of attaining efficiency values 

below 0.90. This implies that the efficiency for this technology is lower than 0.90 in 230 

out of the 500 scenarios. As observed, the technologies deemed efficient in the nominal 

case (nuclear 2 and wind 3) are inefficient in some scenarios (i.e. technology wind 3 

shows 93% and 81% probabilities of efficiency values above 0.99 in cases 2 and case 3, 

respectively; whereas nuclear 2 deemed efficient in all of the scenarios in case 2, has a 

92% probability of attaining an efficiency score above 0.99 in case 3). 

In addition, the probability of being efficient (say an efficiency above 0.99) increases as 

we move from the nominal case to the low and high uncertainty level cases for those 

technologies with low efficiency scores (i.e. technology wind 2 has a probability of less 

than 1% of being efficient in case 2, and 9% in case 3). 

As shown, lignite is the only technology that never becomes efficient in any scenario (i.e. 

it shows a zero probability of efficiency values above 0.90). On the other hand, hard coal 

is inefficient in the nominal case and in all the scenarios of case 2, but has a 2% 

probability of attaining an efficiency score above 0.99 in case 3. 
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Fig.5.20. Cumulative probability distribution of efficiencies for each technology for the 

stochastic cases: (a) low uncertainty levels (case 2); (b) high uncertainty levels (case 3). 
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Fig.5.21. Improvement targets (expressed as percentage with respect to the nominal case) 

for the stochastic (with low and high uncertainty levels) and the deterministic cases. Note 

that black points represent the nominal case, while green points represent the average 

targets for each impact across all the 500 scenarios. 
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The dual models are solved next for the nominal and stochastic cases in order to obtain 

the improvement targets (i.e. percentage reduction needed with respect to the nominal 

case so as to become efficient, see Figure 5.21). As observed, nuclear 2 and wind 3 

deemed efficient in the nominal case, show very low percentages of target reduction in 

the stochastic cases. Particularly, nuclear 2 is deemed efficient in all of the scenarios in 

the case with a low uncertainty level, showing zero targets regardless of the scenario 

considered. On the other hand, technologies with low efficiency scores (i.e. lignite or 

hard coal) show high percentage reductions in the deterministic and stochastic cases. 

As seen, in both the low and high uncertainty level cases the average target values are 

sometimes above the nominal ones (e.g. wind 2,wind 3 or wind 4 except the freshwater 

and marine aquatic toxicity and land use damage categories) and sometimes below (e.g. 

geothermal or oil in climate change, acidification and eutrophication damage categories). 

The dispersion of targets varies also from one technology to another and clearly grows 

gradually as we first move from the nominal case to the low and then high uncertainty 

level cases. The highest differences between average and nominal targets are observed in 

natural gas, geothermal, wind 1 and oil technologies. For instance, the difference of 

targets for natural gas ranges between 38% and 48% in almost all of the impacts, except 

for water and terrestrial ecotoxicity damage categories. Geothermal is the second 

technology with the highest differences between deterministic and stochastic cases 

(differences ranging from 13% to 27% between the nominal and average targets 

depending on the category being analysed), followed by wind 1,with differences in the 

range 1% to 25% (except in water damage categories, where this difference falls in the 

range 31% to 44%). 

Targets provide valuable information regarding the main weaknesses of the technologies 

and can therefore be used to identify potential areas of improvement. Note, however, that 

in our case some of them may be unattainable ‘per se’, as there is little room for 

improvement in several energy generation technologies. Hence, improvement targets 

should be considered with caution. This might not be the case when assessing the 
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environmental efficiency of other systems. Particularly, if the DMUs being assessed were 

facilities using the same technology but operating differently (and with uncertainties in 

their LCI measurements) then the targets computed using the proposed Monte Carlo 

DEA+LCA approach would be more meaningful. 

Note that there is a maximum target value for every impact and technology such that if 

the technology accomplishes it, then it will be guaranteed to remain efficient in all of the 

scenarios. As seen in Figure 10, these maximum target values can differ significantly 

from the nominal one. As an example, the average target in the impact land use for the 

technology geothermal is 0.0012, while the maximum target that would guarantee its 

efficiency across all the scenarios is 0.00376 (for low uncertainty level case). These 

results confirm the convenience of including uncertainties when applying DEA to the 

environmental efficiency assessment of products and technologies.  

 

5.6 Conclusions 

 

This chapter introduced an approach that combines LCA, DEA and stochastic modelling 

for the benchmarking of systems according to multiple environmental criteria and 

considering the associated uncertainties. The approach presented was applied to the 

assessment of several technologies for electricity generation.  

We found that the deterministic results (i.e. efficiencies and target values for the nominal 

case) can differ significantly from the stochastic ones, which affects the ranking of 

alternatives. This observation can be exploited to discriminate between alternatives that 

are deemed efficient in the deterministic case. More precisely, several alternatives may 

show the same efficiency level in the deterministic case, but it is very unlikely that the 

same will happen in the stochastic one. 

The traditional deterministic DEA approach dichotomously categorizes the DMUs as 

efficient and inefficient (this division is definite and clear). On the other hand, the 
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stochastic DEA provides no sharp categorization. Some DMUs may not always be 

efficient, yet they are deemed efficient with a certain probability.  

Finally, it should be kept in mind that the case study results strongly depend on the data 

used in the analysis. Our framework focuses on the combined use of DEA and LCA 

where uncertainties are described via the Pedigree matrix. However, it could easily 

handle other environmental impact assessment methods and stochastic modelling 

approaches, where uncertainties are described via historical data and scenarios are 

generated by means of Latin Hypercube, Sobolor Halton algorithms, for instance. 

Furthermore, our methodology could also be employed to assess other types of 

efficiencies in cases where uncertainties on the data (i.e. inputs/outputs) are expected to 

have a significant impact on the outcome of the assessment. What emerges as a clear 

conclusion is that uncertainties can impact drastically the outcome of the DEA analysis 

as applied to the assessment of the environmental efficiency of a system and should be 

therefore considered in any study of this nature. 
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PART III: Conclusions 

 

6. Conclusions and future work 

 

6.1 General conclusions 

 

The objective of this thesis has been to apply and analysis mathematical 

programming techniques and approaches for sustainability assessment. Specifically, 

input models and mathematical formulations have been developed to tackle the 

environmental efficiency in deterministic and uncertain conditions. Hence, two case 

studies has been addressed and solved by mathematical programming frameworks 

devised in this thesis. 

The first part of this thesis (Part I) is the welcoming part to the sustainability 

development. In this section, the importance of the appropriate analysis and definition of 

sustainable development is highlighted due to the quick economic and technology growth 

during the last decade. Chapter 1 introduces the basic concepts of eco-efficiency concept 

towards Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) including 

the uncertain aspects. The main objectives of this thesis toward the Life Cycle 

Assessment and Data Envelopment Analysis are described at the end of this chapter 

followed by the thesis outline as a guide of this work and an illustrative example of 

proposed methodology.  

 According to thesis outline, the brief historical overview of sustainability 

development is presented in Chapter 2, followed by the framework of LCA and DEA 

applications. From these areas, this thesis has been focused on the environmental energy 

efficiency, the impact assessment and the consideration of different sources/levels of 

uncertainty. The theory, concepts, methodology and tools used to solve the efficiency 

problems has been presented in Chapter 3.  

UNIVERSITAT ROVIRA I VIRGILI 
SYSTEMATIC TOOLS BASED ON DATA ENVELOPMENT ANALYSIS FOR THE LIFE CYCLE SUSTAINABILITY EVALUATION 
OF TECHNOLOGIES 
Anna Ewertowska 
 



170 

 

In Part II, the eco-efficiency energy systems analysis is described toward two 

approach cases. In Chapter 4, an environmental eco-efficiency analysis of electricity mix 

of 27 European economies based on the integrated use of DEA and LCAtechnique is 

proposed. This approach identified environmentally efficient and inefficient countries 

considering as undesirable inputs several environmental impacts associated with the 

production of 1 kWh (regarded as output). The method provided as well the quantitative 

targets for the inefficient countries that (if attained) would make them efficient. Note that 

only the environmental performance of the electricity generation mixes of the top 

European countries, which display similar levels of development, have been taken into 

account while the economic, social, technological and political aspects have been left out 

of the analysis. The lack of quantitative indicators for describing the performance of a 

technology in these dimensions (except the economic case), were the reason for only the 

environmental aspect of the analysis. 

This doctoral thesis has applied life cycle assessment and data envelopment analysis 

into sustainability assessment, paying special attention to the minimization of the 

environmental impact and the inclusion of uncertainty issues in the analysis. The 

following conclusions have been made: 

 Our results provide valuable insights for governments and policy makers that aim 

to satisfy the electricity demand while minimizing the associated environmental 

impact (Chapter 4). However, when making decisions for the future electricity 

mix other considerations of economic and social nature should be considered. For 

example, the specific character of electricity mix of Norway has been classified 

this country as an outlier. After removing Norway from the analysis, the 

following seven countries out of 26 have been found eco-inefficient: Czech 

Republic, Greece, Croatia, Hungary, Luxemburg, Slovenia and Slovakia and the 

reduction values of their impact (compared to the current level) should be: 6.94%, 

24.31%, 9.97%, 22.23%, 6.73%, 2.27% and 22.57%, respectively. 
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 For the aforementioned inefficient countries, the changes in their electricity mixes 

have been determined in order to make them efficient. The main proposed 

changes implied reductions of different magnitude in the share of fossil fuels, 

which cause significant environmental impacts.  

 The consideration of uncertainty is crucial to allow the suitable generation of 

practical and good quality management for decision makers. Numerical results 

(see Chapter 5) show that the efficiency scores in the nominal and the stochastic 

cases can differ significantly, and the same applies to the target values established 

for the inefficient units. Moreover, the differences in efficiency values affect the 

ranking of alternatives. These results support the need to incorporate uncertainties 

into the LCA+DEA framework in order to provide further insight into the 

problem and assess the robustness of the results obtained. 

 The deterministic DEA analysis show the clear division between efficient and 

inefficient DMUs, while in the stochastic DEA such a sharp categorization is not 

provided. On the contrary, the DMUs are presented with certain probability level. 

 

6.2 Future work 

 

Some issues requiring further investigation have been already revealed in the 

course of this work. Moreover, some of the potential research lines are suggested in this 

section. 

We already mentioned that economic, social, technological and political aspects 

have been left out of the analysis (chapter 4), mainly because there are very few 

quantitative indicators for describing the performance of a technology in these 

dimensions (except for the economic case, for which several indicators are available; but, 

as already mentioned, they seldom reflect the true cost of the system due to external 
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regulations). Hence, future work can be extended by incorporating some social and 

economic metrics in the analysis. 

On the other hand, the case study results strongly depend on the data used in the 

analysis. Our framework (chapter 5) uses the combined use of DEA and LCA where 

uncertainties are described via the Pedigree matrix, but could be easily extended to 

include other environmental impact methods and tools for stochastic modelling. The 

consideration of uncertainty for outcome of the DEA (impacts) is crucial when the 

meaningful results are sought, thus any future studies should also include sensitivity 

analysis. 
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