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Abstract 
 
Explosive volcanic eruptions can eject large quantities of particulate matter that, along with other aerosol 

droplets and trace gases, are carried upwards into the atmosphere by the buoyant eruption column and 

then dispersed by winds aloft. The presence of volcanic ash in the atmosphere is a sporadic yet important 

factor that can threaten human health, affect the urban built environment, disrupt aerial navigation and, 

for very large eruptions, alter both atmospheric composition and chemistry. Once volcanic ash is injected 

into the atmosphere, it can be transported over great distances, even circumnavigating the entire planet. 

Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to 

generate operational short-term forecasts to support civil aviation and emergency management. The 

efficiency of response and mitigation actions is directly associated to the accuracy of the volcanic ash 

cloud detection.  

 

Volcanic ash modeling systems normally require an emission or source term model to characterize the 

eruption column; a dispersal model to simulate the atmospheric transport, dispersion and ground 

deposition of ash particles; and a meteorological model for the description of the atmospheric conditions.  

Traditional forecasts for volcanic ash build on off-line coupled modeling systems, where meteorological 

variables are only updated at the specified coupling intervals. Although this approach is computationally 

advantageous is some cases, there is a concern that it can lead to a number of accuracy issues and 

limitations that can be corrected by on-line modeling strategies. Despite these concerns, to date, no on-

line coupled model is available for the operational forecast of volcanic ash. In addition, the quantification 

of the limitations associated to the off-line systems has received no attention.  

 

This Ph.D. thesis describes and evaluates NMMB-MONARCH-ASH, a novel fully coupled on-line 

multiscale meteorological and atmospheric transport model designed to predict ash cloud trajectories, 

concentration of ash at relevant flight levels, and the expected deposit thickness for both regional and 

global domains in research and operational set-ups.  The thesis document focuses on four main activities: 

 

The first activity targeted a model validation against several well-characterized events including, the Mt. 

Etna 2001, Eyjafjallajökull 2010, and Cordón Caulle 2011 eruptions. The model has shown to be robust, 

scalable, and capable to reproduce the spatial and temporal dispersal variability of the ash cloud and 

tephra deposits, showing promising results and improving the performance from well-known off-line 

operational models. 

 

The second activity quantified the model shortcomings and systematic errors associated to traditional off-

line forecasts employed in operational set-ups. NMMB-MONARCH-ASH demonstrated that off-line 

forecasts could fail to reproduce up to 45-70% of the ash cloud of an on-line forecast, considered to be the 



   

best estimate of the true outcome. The uncertainty associated to off-line systems was found to be as 

relevant (same order of magnitude) as those uncertainties attributed to the source term. 

 

The third activity focused on a global application of NMMB-MONARCH-ASH to analyze the potential 

impacts of ash dispersal from Antarctic volcanoes. Numerical simulations suggested that volcanic ash 

emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences 

for global aviation safety. 

 

The last activity included a novel computational inversion method to account, for the first time, for the 

Plinian and co-ignimbrite phases of the 39 ka Campanian Ignimbrite super-eruption. This particular 

application employed the off-line coupled FALL3D model, found to be more suitable from a 

computational point of view. 

 

The outcome of this Ph.D. thesis encourages operational groups responsible for real‐time advisories for 

aviation to consider employing computationally efficient on-line coupled dispersal models for volcanic 

ash. 

  



   

Resumen 
 
Las erupciones volcánicas explosivas pueden emitir una gran cantidad de material que, junto con otros 

aerosoles y gases traza, son inyectados en la atmósfera por la columna eruptiva para luego ser dispersados 

por los vientos en altura. La presencia en la atmósfera de cenizas volcánicas es un factor esporádico 

aunque importante, que puede llegar a amenazar la salud humana, afectar las infraestructuras urbanas, 

interrumpir la navegación aérea y, en el caso de grandes erupciones, alterar la composición atmosférica y 

química. Una vez inyectada en la atmósfera, la ceniza volcánica puede ser transportada a grandes 

distancias, llegando incluso a circunnavegar todo el planeta. Los sistemas de modelado de cenizas 

volcánicas se utilizan para simular la dispersión atmosférica de estas partículas, y para generar 

pronósticos operacionales a corto plazo empleados para dar soporte a la aviación civil y a la gestión de 

emergencias. La eficacia para responder a estos eventos y mitigar su potencial impacto está directamente 

asociada a la precisión de detección y simulación del transporte de las nubes de cenizas volcánicas. 

 

Los sistemas de modelado de cenizas volcánicas normalmente requieren un modelo de emisión de 

partículas (o término fuente) para la caracterización de la columna eruptiva; un modelo de dispersión para 

la simulación del transporte atmosférico, la dispersión y la deposición de partículas de cenizas; y de un 

modelo meteorológico para la descripción de las condiciones atmosféricas. Los pronósticos tradicionales 

de ceniza volcánica se basan en sistemas de modelado desacoplados (off-line), donde las variables 

meteorológicas sólo se actualizan a intervalos de tiempo especificados. Aunque este enfoque presenta 

ventajas desde el punto de vista computacional, existe la preocupación de que puede estar asociado a una 

serie de limitaciones y problemas de precisión que, por el contrario, pueden ser corregidos mediante 

estrategias de modelado acoplado (on-line). A pesar de estas preocupaciones, hasta la fecha no hay un 

modelo acoplado on-line disponible para el pronóstico operativo de las cenizas volcánicas. Además, 

tampoco existe una cuantificación de las limitaciones asociadas a los sistemas off-line. 

 

Este doctorado describe y evalúa NMMB-MONARCH-ASH, un modelo de transporte meteorológico y 

atmosférico multiescalar (regional/global) completamente acoplado on-line, para su uso en investigación 

y servicios de predicción operacional. El modelo está diseñado para predecir trayectorias de nubes de 

cenizas volcánicas, concentración de ceniza en niveles de vuelo (flight levels) relevantes, y el 

correspondiente espesor de depósito. El documento de doctorado se centra en cuatro actividades 

principales: 

 

La primera actividad de esta tesis se centra en la validación de modelo mediante varias erupciones bien 

caracterizadas. Estas incluyen las erupciones del Mt. Etna 2001, Eyjafjallajökull 2010, y del Cordón 

Caulle 2011. El modelo ha demostrado ser robusto, escalable y capaz de reproducir la variabilidad de la 



   

dispersión espacial y temporal de los depósitos y de las nubes de ceniza, mostrando resultados 

prometedores y mejorando el rendimiento de modelos operacionales como el FALL3D. 

 

La segunda actividad cuantifica las deficiencias y errores sistemáticos asociados a los pronósticos off-line 

tradicionalmente empleados en configuraciones operacionales. NMMB-MONARCH-ASH demuestra que 

los pronósticos off-line podrían no reproducir hasta un 45-70% de la nube de cenizas de un pronóstico on-

line, considerado éste último como la mejor estimación de la realidad. Esta actividad concluye que la 

incertidumbre asociada a los sistemas off-line puede llegar a ser en algunos casos tan relevante (mismo 

orden de magnitud) como aquellas incertidumbres atribuidas al término fuente. 

 

La tercera actividad se centra en una aplicación global de NMMB-MONARCH-ASH para analizar los 

posibles impactos de la dispersión de cenizas asociado a los volcanes antárticos. Las simulaciones 

numéricas sugirieren que las cenizas volcánicas emitidas por estos volcanes pueden llegar a rodear el 

globo, conduciendo a  consecuencias significativas para la seguridad de la aviación a nivel mundial. 

 

La última actividad incluye un nuevo método de inversión computacional para identificar, por primera 

vez, las fases Pliniana y co-ignimbrita de la super-erupción de la Ignimbrita Campaniana (39 ka). Para 

esta aplicación, se empleó el modelo FALL3D off-line, que resultó ser más adecuado desde un punto de 

vista computacional. 

 

El resultado de este Ph.D. anima a los grupos operacionales responsables de dar soporte al sector de la 

aviación durante una erupción, a considerar el uso de modelos eficientes de dispersión acoplados on-line 

para las cenizas volcánicas.  
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  4,	
  6,	
  and	
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  after	
  the	
  eruption	
  start	
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  to	
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  respectively).	
  An	
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  to	
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  Safe	
  ash	
  concentration	
  thresholds	
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  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  .................................................	
  125	
  
Figure	
  48.	
  Global-­‐scale	
  NMMB-­‐MONARCH-­‐ASH	
  model	
  results	
  for	
  the	
  Austral	
  winter	
  period	
  at	
  different	
  time	
  

instants	
  (2,	
  4,	
  6,	
  and	
  8	
  days	
  after	
  the	
  eruption	
  start	
  from	
  top	
  to	
  bottom	
  respectively).	
  An	
  eruptive	
  

column	
  of	
  10	
  km	
  height	
  was	
  considered	
  for	
  the	
  1970-­‐like	
  scenario	
  to	
  simulate:	
  a)	
  the	
  total	
  column	
  mass	
  

loading	
  (g	
  m-­‐2),	
  b)	
  the	
  concentration	
  of	
  ash	
  at	
  Flight	
  Level	
  FL050	
  (mg	
  m-­‐3),	
  and	
  c)	
  the	
  concentration	
  at	
  

FL250	
  (mg	
  m-­‐3).	
  Safe	
  ash	
  concentration	
  thresholds	
  are	
  shown	
  (red	
  concentration	
  contours	
  illustrate	
  “No	
  

Flying”	
  zones).	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  .................................................	
  126	
  
Figure	
  49.	
  NMMB-­‐MONARCH-­‐ASH	
  total	
  ash	
  column	
  mass	
  load	
  (g	
  m-­‐2)	
  during	
  the	
  1999	
  summer	
  period	
  at	
  

different	
  time	
  instants	
  after	
  the	
  eruption	
  start.	
  Simulation	
  considering	
  an	
  eruption	
  column	
  height	
  of	
  5	
  

km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ......................................................................	
  127	
  
Figure	
  50.	
  NMMB-­‐MONARCH-­‐ASH	
  total	
  ash	
  column	
  mass	
  load	
  (g	
  m-­‐2)	
  during	
  the	
  1999	
  summer	
  period	
  at	
  

different	
  time	
  instants	
  after	
  the	
  eruption	
  start.	
  Simulation	
  considering	
  an	
  eruption	
  column	
  height	
  of	
  10	
  

km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ......................................................................	
  128	
  
Figure	
  51.	
  NMMB-­‐MONARCH-­‐ASH	
  total	
  ash	
  column	
  mass	
  load	
  (g	
  m-­‐2)	
  during	
  the	
  1999	
  summer	
  period	
  at	
  

different	
  time	
  instants	
  after	
  the	
  eruption	
  start.	
  Simulation	
  considering	
  an	
  eruption	
  column	
  height	
  of	
  15	
  

km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ......................................................................	
  129	
  



 

Figure	
  52.	
  NMMB-­‐MONARCH-­‐ASH	
  total	
  ash	
  column	
  mass	
  load	
  (g	
  m-­‐2)	
  during	
  the	
  1992	
  summer	
  period	
  at	
  

different	
  time	
  instants	
  after	
  the	
  eruption	
  start.	
  Simulation	
  considering	
  an	
  eruption	
  column	
  height	
  of	
  5	
  

km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ......................................................................	
  130	
  
Figure	
  54.	
  NMMB-­‐MONARCH-­‐ASH	
  total	
  ash	
  column	
  mass	
  load	
  (g	
  m-­‐2)	
  during	
  the	
  1992	
  summer	
  period	
  at	
  

different	
  time	
  instants	
  after	
  the	
  eruption	
  start.	
  Simulation	
  considering	
  an	
  eruption	
  column	
  height	
  of	
  15	
  

km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ......................................................................	
  132	
  
Figure	
  55.	
  NMMB-­‐MONARCH-­‐ASH	
  Flight	
  Level	
  ash	
  concentrations	
  (mg	
  m-­‐3)	
  at	
  FL050	
  (left),	
  FL250	
  (middle),	
  

and	
  FL350	
  (right)	
  at	
  different	
  time	
  slices	
  during	
  the	
  1999	
  summer	
  period.	
  Safe	
  ash	
  concentration	
  

thresholds	
  are	
  shown	
  (red	
  contours	
  illustrate	
  “No	
  Flying”	
  zones).	
  Simulation	
  considering	
  an	
  eruption	
  

column	
  height	
  of	
  5	
  km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ...................................	
  133	
  
Figure	
  56.	
  NMMB-­‐MONARCH-­‐ASH	
  Flight	
  Level	
  ash	
  concentrations	
  (mg	
  m-­‐3)	
  at	
  FL050	
  (left),	
  FL250	
  (middle),	
  

and	
  FL350	
  (right)	
  at	
  different	
  time	
  slices	
  during	
  the	
  1999	
  summer	
  period.	
  Safe	
  ash	
  concentration	
  

thresholds	
  are	
  shown	
  (red	
  contours	
  illustrate	
  “No	
  Flying”	
  zones).	
  Simulation	
  considering	
  an	
  eruption	
  

column	
  height	
  of	
  10	
  km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ................................	
  134	
  
Figure	
  57.	
  NMMB-­‐MONARCH-­‐ASH	
  Flight	
  Level	
  ash	
  concentrations	
  (mg	
  m-­‐3)	
  at	
  FL050	
  (left),	
  FL250	
  (middle),	
  

and	
  FL350	
  (right)	
  at	
  different	
  time	
  slices	
  during	
  the	
  1999	
  summer	
  period.	
  Safe	
  ash	
  concentration	
  

thresholds	
  are	
  shown	
  (red	
  contours	
  illustrate	
  “No	
  Flying”	
  zones).	
  Simulation	
  considering	
  an	
  eruption	
  

column	
  height	
  of	
  15	
  km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ................................	
  135	
  
Figure	
  58.	
  NMMB-­‐MONARCH-­‐ASH	
  Flight	
  Level	
  ash	
  concentrations	
  (mg	
  m-­‐3)	
  at	
  FL050	
  (left),	
  FL250	
  (middle),	
  

and	
  FL350	
  (right)	
  at	
  different	
  time	
  slices	
  during	
  the	
  1992	
  summer	
  period.	
  Safe	
  ash	
  concentration	
  

thresholds	
  are	
  shown	
  (red	
  contours	
  illustrate	
  “No	
  Flying”	
  zones).	
  Simulation	
  considering	
  an	
  eruption	
  

column	
  height	
  of	
  5	
  km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ...................................	
  136	
  
Figure	
  59.	
  NMMB-­‐MONARCH-­‐ASH	
  Flight	
  Level	
  ash	
  concentrations	
  (mg	
  m-­‐3)	
  at	
  FL050	
  (left),	
  FL250	
  (middle),	
  

and	
  FL350	
  (right)	
  at	
  different	
  time	
  slices	
  during	
  the	
  1992	
  summer	
  period.	
  Safe	
  ash	
  concentration	
  

thresholds	
  are	
  shown	
  (red	
  contours	
  illustrate	
  “No	
  Flying”	
  zones).	
  Simulation	
  considering	
  an	
  eruption	
  

column	
  height	
  of	
  10	
  km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ................................	
  137	
  
Figure	
  60.	
  NMMB-­‐MONARCH-­‐ASH	
  Flight	
  Level	
  ash	
  concentrations	
  (mg	
  m-­‐3)	
  at	
  FL050	
  (left),	
  FL250	
  (middle),	
  

and	
  FL350	
  (right)	
  at	
  different	
  time	
  slices	
  during	
  the	
  winter	
  period.	
  Safe	
  ash	
  concentration	
  thresholds	
  

are	
  shown	
  (red	
  contours	
  illustrate	
  “No	
  Flying”	
  zones).	
  Simulation	
  considering	
  an	
  eruption	
  column	
  

height	
  of	
  15	
  km.	
  The	
  yellow	
  star	
  indicates	
  the	
  location	
  of	
  Deception	
  Island.	
  ...............................................	
  138	
  
Figure	
  61.	
  Regional-­‐scale	
  model	
  ground	
  deposit	
  thickness	
  (in	
  cm)	
  for	
  the	
  1970-­‐like	
  scenario	
  with	
  different	
  

column	
  heights	
  of:	
  5km	
  (left),	
  10km	
  (middle),	
  and	
  15km	
  (right).	
  Top	
  and	
  bottom	
  panels	
  show	
  the	
  

corresponding	
  ash	
  deposition	
  for	
  the	
  summer	
  and	
  winter	
  periods,	
  respectively.	
  ......................................	
  139	
  
Figure	
  62.	
  Schematic	
  diagram	
  (not	
  to	
  scale)	
  of	
  a	
  super-­‐eruption	
  event	
  with	
  an	
  initial	
  (left)	
  sustained	
  Plinian	
  

phase	
  followed	
  by	
  a	
  column-­‐collapse	
  and	
  large	
  pyroclastic	
  density	
  currents	
  eventually	
  leading	
  to	
  co-­‐

ignimbrite	
  plumes	
  offset	
  from	
  the	
  vent	
  (right).	
  Colored	
  cells	
  mark	
  the	
  extent	
  of	
  each	
  transport	
  regimes	
  

in	
  the	
  umbrella	
  cloud	
  (extracted	
  from	
  Marti	
  et	
  al.,	
  2016).	
  ................................................................................	
  144	
  
Figure	
  63.	
  Map	
  showing	
  the	
  location	
  of	
  the	
  CI-­‐caldera	
  (blue	
  star)	
  and	
  geological	
  samples	
  in	
  dataset	
  1	
  (red	
  

asterisks)	
  and	
  2	
  (black	
  circles).	
  The	
  inset	
  shows	
  the	
  reconstructed	
  TGSD	
  from	
  dataset	
  1	
  (extracted	
  from	
  

Marti	
  et	
  al.,	
  2016).	
  ......................................................................................................................................................	
  147	
  



 

Figure	
  64.	
  Isopach	
  maps	
  (cm)	
  from	
  inversion.	
  (a)	
  Plinian	
  phase,	
  (b)	
  co-­‐ignimbrite	
  phase,	
  (c)	
  combined	
  two-­‐

phase	
  and,	
  (d)	
  single-­‐phase	
  inversion.	
  Bottom	
  plots	
  show	
  simulated	
  versus	
  observed	
  thicknesses	
  for	
  (e)	
  

Plinian	
  and	
  co-­‐ignimbrite	
  phases	
  and	
  (f)	
  two-­‐phase	
  approach.	
  The	
  solid	
  bold	
  line	
  represents	
  a	
  perfect	
  

agreement,	
  while	
  the	
  dashed	
  and	
  solid	
  thin	
  black	
  lines	
  mark	
  the	
  region	
  that	
  is	
  different	
  from	
  observed	
  

thicknesses	
  by	
  a	
  factor	
  5	
  (1/5)	
  and	
  10	
  (1/10),	
  respectively	
  (extracted	
  from	
  Marti	
  et	
  al.,	
  2016).	
  ...........	
  155	
  
Figure	
  65.	
  (a)	
  Impact	
  of	
  gravity	
  current	
  on	
  the	
  deposit	
  (variation	
  in	
  %).	
  Positive	
  values	
  show	
  areas	
  where	
  

tephra	
  deposition	
  increases	
  when	
  accounting	
  for	
  gravity-­‐current	
  effects;	
  negative	
  indicate	
  lesser	
  tephra	
  

deposition.	
  (b)	
  Wind	
  field	
  at	
  ~32	
  km	
  elevation	
  for	
  the	
  meteorological	
  field	
  that	
  best	
  represents	
  the	
  

(unknown)	
  meteorological	
  conditions	
  at	
  the	
  time	
  of	
  the	
  CI	
  eruption	
  (7th	
  December	
  1991).	
  ..................	
  156	
  
Figure	
  66.	
  Contribution	
  (%)	
  from	
  the	
  Plinian	
  (left)	
  and	
  co-­‐ignimbrite	
  (right)	
  phases	
  to	
  the	
  CI	
  tephra	
  deposit	
  

(extracted	
  from	
  Marti	
  et	
  al.,	
  2016).	
  ........................................................................................................................	
  158	
  
Figure	
  67.	
  Campanian	
  Ignimbrite’s	
  contribution	
  to	
  the	
  Middle	
  to	
  Upper	
  Palaeolithic	
  transition.	
  Tephra	
  

fallout,	
  together	
  with	
  the	
  attendant	
  episode	
  of	
  Fenno-­‐Scandinavian	
  ice	
  cap	
  and	
  peripheral	
  tundra	
  

advance	
  on	
  land	
  (top	
  dashed	
  line),	
  suggests	
  a	
  reduction	
  of	
  the	
  area	
  available	
  for	
  human	
  settlement	
  in	
  

Europe	
  of	
  up	
  to	
  30%	
  (represented	
  by	
  the	
  ash	
  fallout	
  gap	
  with	
  isopach	
  tephra	
  deposits	
  in	
  cm).	
  

Anatomically	
  modern	
  humans	
  would	
  have	
  gravitated	
  towards	
  repopulating	
  this	
  gap	
  after	
  ecosystem	
  

recovery,	
  rather	
  that	
  overcoming	
  new	
  biogeographical	
  frontiers,	
  leading	
  to	
  an	
  instance	
  of	
  prolonged	
  

(extracted	
  from	
  Marti	
  et	
  al.,	
  2016).	
  ........................................................................................................................	
  160	
  



 

List of Tables  
 

Table	
  1.	
  Comparison	
  of	
  existing	
  TTDMs	
  (IUGG-­‐WMO,	
  2013b.	
  Colored/white	
  cells	
  indicate	
  that	
  the	
  option	
  is	
  

available/not	
  available	
  for	
  the	
  TTDM,	
  respectively.	
  ............................................................................................	
  21	
  
Table	
  2	
  Aerosol	
  impacts	
  (feedbacks)	
  on	
  meteorology	
  (Baklanov	
  et	
  al.,	
  2014)	
  .......................................................	
  25	
  
Table	
  3.	
  Recent	
  (5	
  years	
  or	
  less)	
  developments	
  in	
  plume	
  modeling.	
  Top:	
  1-­‐D	
  models;	
  Bottom:	
  3-­‐D	
  models	
  

(Costa	
  et	
  al.,	
  2016b)	
  .....................................................................................................................................................	
  31	
  
Table	
  4.	
  Main	
  characteristics	
  of	
  the	
  NMMB-­‐MONARCH-­‐ASH	
  meteorological	
  solver.	
  ............................................	
  42	
  
Table	
  5.	
  Ash	
  aggregation	
  options	
  in	
  NMMB-­‐MONARCH-­‐ASH	
  from	
  from	
  field	
  observations.	
  Default	
  aggregate	
  

properties	
  can	
  be	
  modified	
  by	
  the	
  user.	
  ..................................................................................................................	
  52	
  
Table	
  6.	
  Model	
  configuration	
  for	
  the	
  2011	
  Cordón	
  Caulle	
  regional	
  and	
  global	
  runs.	
  The	
  regional	
  run	
  used	
  a	
  

horizontal	
  resolution	
  of	
  0.15º	
  x	
  0.15º	
  with	
  a	
  30s	
  dynamic	
  time-­‐step,	
  while	
  the	
  global	
  domain	
  used	
  a	
  

horizontal	
  resolution	
  of	
  1º	
  x	
  0.75º	
  with	
  a	
  180s	
  dynamic	
  time-­‐step.	
  ................................................................	
  62	
  
Table	
  7.	
  Model	
  configuration	
  for	
  the	
  2001	
  Mt.	
  Etna	
  regional	
  simulations.	
  Regional	
  Run1	
  used	
  a	
  horizontal	
  

resolution	
  of	
  0.1º	
  x	
  0.1º	
  with	
  a	
  30s	
  dynamic	
  time-­‐step,	
  while	
  Run2	
  used	
  a	
  finer	
  horizontal	
  resolution	
  of	
  

0.05º	
  x	
  0.05º	
  with	
  a	
  10s	
  dynamic	
  time-­‐step.	
  ..........................................................................................................	
  70	
  
Table	
  8:	
  Contingency	
  table	
  of	
  binary	
  events	
  for	
  categorical	
  verifications	
  scores	
  at	
  each	
  grid-­‐point.	
  ................	
  89	
  
Table	
  9:	
  Summary	
  of	
  Eruption	
  Source	
  Parameters	
  (ESPs)	
  used	
  in	
  NMMB-­‐MONARCH-­‐ASH	
  for	
  the	
  synthetic	
  

case,	
  and	
  the	
  2010	
  Eyjafjallajökull	
  and	
  2011	
  Cordón	
  Caulle	
  applications.	
  ......................................................	
  91	
  
Table	
  10.	
  Evaluation	
  scores	
  for	
  the	
  synthetic	
  case	
  at	
  the	
  end	
  of	
  the	
  48h	
  forecast	
  with	
  NMMB-­‐MONARCH-­‐ASH.

	
  .........................................................................................................................................................................................	
  91	
  
Table	
  11.	
  Evaluation	
  scores	
  for	
  the	
  2010	
  Eyjafjallajökull	
  eruption	
  application	
  at	
  the	
  end	
  of	
  the	
  48h	
  forecast	
  

with	
  NMMB-­‐MONARCH-­‐ASH.	
  ....................................................................................................................................	
  99	
  
Table	
  12.	
  Evaluation	
  scores	
  for	
  the	
  2011	
  Cordón	
  Caulle	
  eruption	
  application	
  at	
  the	
  end	
  of	
  the	
  48h	
  forecast	
  

with	
  NMMB-­‐MONARCH-­‐ASH.	
  ..................................................................................................................................	
  104	
  
Table	
  13.	
  List	
  of	
  Antarctic	
  volcanoes	
  and	
  last	
  eruptions	
  according	
  to	
  the	
  Global	
  Volcanism	
  Program	
  (last	
  

accessed	
  02/05/2017).	
  ............................................................................................................................................	
  111	
  
Table	
  14.	
  Model	
  configuration	
  for	
  the	
  regional	
  and	
  global	
  runs	
  for	
  a	
  1970-­‐like	
  eruptive	
  scenario	
  at	
  Deception	
  

Island.	
  ...........................................................................................................................................................................	
  115	
  
Table	
  15.	
  TGSD	
  employed	
  in	
  NMMB-­‐MONARCH-­‐ASH	
  for	
  all	
  DI	
  runs	
  .....................................................................	
  115	
  
Table	
  16.	
  Dataset	
  1	
  showing	
  tephra	
  layer	
  thicknesses	
  from	
  Engwell	
  et	
  al.	
  (2014)	
  for	
  Plinian	
  and	
  co-­‐

ignimbrite	
  phases	
  of	
  the	
  CI	
  eruption	
  with	
  distance	
  from	
  the	
  source.	
  Note	
  how	
  the	
  percentage	
  of	
  the	
  co-­‐

ignimbrite	
  contribution	
  tends	
  to	
  increase	
  with	
  distance	
  from	
  source.	
  ..........................................................	
  148	
  
Table	
  17.	
  Best-­‐fit	
  results	
  obtained	
  from	
  reconstructing	
  the	
  CI	
  super-­‐eruption	
  as	
  a	
  two-­‐phase	
  and	
  single-­‐

phase	
  event.	
  The	
  combined	
  phase	
  column	
  is	
  obtained	
  by	
  using	
  the	
  optimal	
  ESPs	
  resulting	
  from	
  the	
  

Plinian	
  and	
  co-­‐ignimbrite	
  phase	
  inversions.	
  ........................................................................................................	
  153	
  
Table	
  18.	
  Chemical	
  release	
  estimates	
  by	
  each	
  phase	
  of	
  the	
  CI	
  eruption.	
  Left:	
  estimation	
  of	
  stratospheric	
  

volatiles	
  after	
  Self	
  et	
  al.	
  (2004);	
  Right:	
  chemicals	
  leached	
  into	
  the	
  soil	
  considering	
  volume	
  estimations	
  

for	
  the	
  proximal	
  pyroclastic	
  density	
  current	
  deposits	
  after	
  Pyle	
  et	
  al.	
  	
  (2006).	
  ...........................................	
  159	
  



   

List of acronyms 
 
ADS Advection–Diffusion–Sedimentation 

AMS American Meteorological Society 

AOD Aerosol Optical Depth 

ATM Air Traffic Management 

BSC-CNS Barcelona Supercomputing Center – Centro National de Supercomputación 

CTM Chemical Transport Model 

DRE Dense Rock Equivalent 

ECMWF European Centre for Medium-Range Weather Forecasts 

EPA Environmental Protection Agency 

ESMF Earth System Modeling Framework 

ESP Eruption Source Parameter 

GCM Global Climate Models 

IAVW International Airways Volcano Watch 

INGV Istituto Nazionale di Geofisica e Vulcanologia 

IUGG International Union of Geodesy and Geophysics 

JMA Japanese Meteorological Agency 

LES Large Eddy Simulations 

MER Mass Eruption Rate 

MPI Message Passing Interface 

MER Mass Eruption Rate 

MONARCH Multiscale On-line Nonhydrostatic AtmospheRe CHemistry model 

NASA National Aeronautics and Space Administration 

NAM North American Mesoscale 

NBL Neutral Buoyancy Level 

NCEP  National Centers for Environmental Prediction  

NEMS NOAA Environmental Modeling System 

NEMOH Numerical, Experimental and stochastic Modeling of vOlcanic processes and Hazard 

NMMB Non-hydrostatic Multiscale Model on a B grid 

NOAA National Oceanic and Atmospheric Administration 

NPWM  Numerical Weather Prediction Model 

PBL Planetary Boundary Layer 

RAM Random-Access Memory 

RRTM Rapid Radiative Transfer Model 

SMN Servicio Meteorológico Nacional (Argentina) 

SDS-WAS Sand and Dust Strom Warning Advisory and Assessment System 

SSA Stratospheric Sulfate Aerosol 

TDM Transport and Dispersion Models 

TGSD Total Grain Size Distribution 



   

TKE Turbulent Kinetic Energy 

TTDM Tephra Transport and Dispersion Model 

USGS United States Geological Survey 

VAA Volcanic Ash Advisory 

VAAC Volcanic Ash Advisory Center 

VAG Volcanic Ash Graphic 

VATDM Volcanic Ash Transport and Dispersal Model 

VIIRS Visible Infrared Imaging Radiometer Suite 

WRF Weather Research and Forecast model 

  

*other specific symbols are defined in the text. 



 1 

Introduction 

Background 

Explosive volcanic eruptions can eject large quantities of particulate matter (tephra) that, along with other 

aerosol droplets and trace gases, are carried upwards into the atmosphere by the buoyant eruption column 

and then dispersed downstream by winds aloft (e.g. Sparks et al., 1997). Tephra particles smaller than 2 

mm in diameter, technically defined as volcanic ash (Schmid, 1981), can spread over large distances 

away from the source forming ash clouds that jeopardize air traffic (Casadevall, 1993), airports (Guffanti 

et al., 2009) and, for very large eruptions, alter both atmospheric composition and chemistry (Myhre et 

al., 2013; Self, 2006).  The recent eruptions of Eyjafjallajökull (Iceland) in 2010 and Cordón Caulle 

(Chile) in 2011 have reinforced the importance of volcanic ash dispersal in the context of global aviation 

safety. Particularly, the former event prompted a rapid change in the management of hazards to aviation 

from volcanic ash clouds, triggered by the use of safety concentration thresholds for flight. In addition, 

these eruptions have driven the improvement of volcanic ash detection and forecasting techniques that 

allow Volcanic Ash Advisory Centers (VAACs) to issue more accurate advice to aviation authorities. 

 

Volcanic ash modeling systems are used to simulate the atmospheric transport, dispersion and ground 

deposition of tephra, and to generate operational short-term forecasts to support civil aviation and 

emergency management. Conventionally, these modeling systems require of: i) a source term model to 

characterize the emission of ash depending on the so-called Eruption Source Parameters (ESPs); ii) a 

Numerical Weather Prediction Model (NWPM) for the description of the atmospheric conditions, and; iii) 

a Volcanic Ash Transport and Dispersal Model (VATDM) to forecast the particle transport and 

deposition mechanisms. These systems are vital during efforts to prevent aircraft flying into ash clouds, 

which could result in catastrophic impacts (Miller and Casadevall, 2000). In addition, other model 

applications include the reconstruction of past eruptive events, probabilistic hazard assessments or 

simulation of recent eruptions for model evaluation purposes.   

 

Traditionally, VATDMs have evolved decoupled (off-line) from the driving NWPM. In an off-line 

modeling system, the NWPM runs a priori and independently from the VATDM to produce the required 

meteorological fields at regular time intervals (e.g. every 1 or 6 hours for typical mesoscale and global 

operational NWPM outputs and reanalysis data, respectively). Meteorological fields are then furnished to 

the VATDM, which commonly assumes constant values for these fields during each time coupling 

interval or, at most, performs a linear interpolation in time. This approach is convenient in terms of 

computing time because different VATDM executions are possible without re-running the meteorological 

component, e.g. to update the source term whenever the eruption conditions vary, for inverse modeling of 

ash emissions (Marti et al., 2016; Webster et al., 2012), or to perform an ensemble forecast (e.g. 

Galmarini et al., 2010) in which all the ensemble members share the same meteorological conditions. 
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However, off-line systems introduce model and numerical errors due to non-synchronized time stepping, 

use of unaligned grids and projections, and/or inconsistencies in the numerical schemes. In contrast, in an 

on-line coupled system, the NWPM and the VATDM run concurrently and consistently and the particle 

transport is automatically tied to the model resolution time and space scales. This strategy results in a 

more realistic particle dispersal representation as highlighted by the experience from other communities 

(e.g. air quality; Baklanov, 2014; Zhang, 2008). 

 

Despite these experiences, to date, all operational ash forecast systems follow the off-line modeling 

approach. However, the increase of computational power in recent years and the fact that the total 

computing time required to run an on-line coupled model is actually not substantially larger (e.g. Grell 

and Baklanov, 2011; Marti et al., 2017), imply that the benefits of the traditional off-line systems are at 

question. Seemly, it is also surprising that the quantification of modeling errors and shortcomings 

associated to the off-line coupling strategy has received no attention in volcanology despite the lessons 

learned from other communities.  

Motivation and context of the Ph.D.  

This research project aims to implement a fast and reliable on-line meteorological and atmospheric 

transport model to pioneer research and operational forecast of volcanic ash. Three primary questions are 

raised to motivate this research line: 

I. What are the best available models for volcanic ash operational forecast? 

II. How can we improve the accuracy of traditional off-line modeling systems for volcanic ash? 

III. What are the advantages of the on-line coupled chemistry transport models over traditional off-

line modeling systems for volcanic ash? 

In order to answer these questions, this research project is separated into three main areas. The first area 

explores and validates the traditional off-line approach assumed by all operational volcanic ash dispersion 

models. The second area focuses on the implementation of a novel on-line modeling system to pioneer 

the future operational forecast of volcanic ash. The final research area evaluates the differences between 

the traditional off-line and the novel on-line modeling strategies for volcanic ash forecast.  In the context 

of these research areas, the three main objectives proposed for this Ph.D. thesis are: 

1. Investigate the VATDMs currently available and select a suitable model to be coupled on-line 

with the Non-hydrostatic Multiscale Model on a B grid (NMMB) meteorological model. 

2. Implement and evaluate NMMB-MONARCH-ASH: a fast and reliable on-line meteorological 

and atmospheric transport model to pioneer research and operational forecast for volcanic ash. 
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3. Quantify the systematic errors and shortcomings associated to traditional off-line modeling 

systems employed for operational volcanic ash forecast.  

To achieve these and other objectives, the author of this thesis was funded as an Early Stage Researcher 

at the Barcelona Supercomputing Center for a period of 36 months under NEMOH: an Initial Training 

Network in the framework of the European Community FP7 Marie-Curie Programme. The objective of 

this Marie-Curie ITN was to form the next generation of European volcanologists, capable of extending 

further the knowledge and understanding of volcano dynamics and the methods and paradigms for 

volcanic hazard evaluation. As a Marie-Curie fellow, Alejandro Martí was hosted for a three month-long 

international secondment from the 1st of June to the 1st of September 2014 at the Geophysical Fluid 

Dynamics unit of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Bologna, Italy. The main 

objective of the secondment was to carry out research activities under the supervision of Dr. Antonio 

Costa in the field of numerical modeling of volcanic ash and aerosols. During the secondment, a novel 

computational approach was developed to reconstruct, for the first time, the duration and contribution of 

the two phases of the Campanian Ignimbrite super-eruption. The primary contribution from this 

secondment included the publication of this novel computational approach on Scientific Reports journal 

form the publishers of Nature (see Chapter 5 for detailed description of data, methodology, and results 

from this study).  

Organization of the Ph.D. thesis 

This Introduction sets the background, the motivation and the structure of the Ph.D. thesis. Airborne 

volcanic ash presents a well-publicized threat to aviation, health, and agriculture. In consequence, a 

central goal of volcano science is focused on volcanic ash, including both its atmospheric transport during 

a volcanic crises and its eventual deposition over the ground and sea. The state of the science has 

advanced rapidly, in large part due to the interest generated by the high economic cost and the disruptions 

caused to aviation stakeholders by the 2010 Eyjafjallajökull eruption in Iceland and the 2011 Cordón 

Caulle eruption in Chile. On the scientific front, these events have prompted a notable increase in 

volcanic-cloud research. A burst of scientific articles have been published, including special journal 

issues (e.g. Hasager et al., 2010; Langmann et al., 2012). Despite this significant progress, to date, no 

operational on-line coupled dispersal model is available to forecast volcanic ash. In light of the above, the 

objective of this Ph.D. thesis is to implement the NMMB-MONARCH-ASH model: a fast and reliable 

on-line meteorological and atmospheric transport model to pioneer research and operational forecast for 

volcanic ash.  

 

Chapter 1 summaries the scientific context of this Ph.D. thesis. The chapter starts with a general 

introduction about volcanic ash and its properties, leading to a comprehensive description of the 

meteorological and atmospheric transport components typically employed in a volcanic ash modeling 
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system. This description gives way to a historical evolution and recent developments of the transport and 

dispersal models conventionally used to simulate the atmospheric transport, dispersion and ground 

deposition of volcanic ash. The operational FALL3D dispersal model is selected for extensive review, 

and it is designated as the VATDM model to be embedded in the Multiscale Online Nonhydrostatic 

AtmospheRe CHemistry model (NMMB-MONARCH; formerly known as NMMB/BSC-CTM). To 

conclude, this chapter discusses the advantages and limitations of traditional off-line modeling systems, 

and highlights the benefits of using on-line strategies reported by other communities (e.g. air quality, 

climate) and their current state-of-the-art. 

 

Chapter 2 describes and evaluates NMMB-MONARCH-ASH, a new on-line multi-scale meteorological 

and transport model that attempts to pioneer the forecast of volcanic aerosols at operational level. The 

model forecasts volcanic ash cloud trajectories, concentration of ash at relevant flight levels and the 

expected deposit thickness. The ash module coupling in NMMB-MONARCH-ASH can be turned on or 

off, depending on the solution required (on-line vs. off-line). The regional and global configurations of 

the model are validated against two well-characterized events (2011 Cordón Caulle and 2001 Mount Etna 

eruptions). The numerical performance of the model is calculated in terms of its parallel speed-up and its 

scaling efficiency. The computational efficiency of NMMB-MONARCH-ASH and its application results 

compare favorably against other long-range tephra dispersal models (FALL3D), supporting its 

operational implementation. 

 

Chapter 3 employs the coupling strategies available in the NMMB-MONARCH-ASH model presented 

in Chapter 2 to quantify the systematic errors and shortcomings associated to traditional off-line 

modeling systems by employing different quantitative and categorical evaluation scores. The skills of the 

off-line coupling strategy are compared against those from an on-line forecast considered to be the best 

estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption 

source parameters and for two historical events, which suitably illustrate the severe aviation disruptive 

effects of European (2010 Eyjafjallajökull) and South-American (2011 Cordón Caulle) volcanic 

eruptions. Evaluation scores indicate that systematic errors credited by off-line modeling can be of the 

same order of magnitude that those associated to the source term uncertainties. In particular, traditional 

off-line forecasts employed in operational model setups can result in significant uncertainties, failing to 

reproduce, in the worst cases, up to 45-70% of the ash cloud of an on-line forecast. These inconsistencies 

are anticipated to be even more relevant in scenarios where the meteorological conditions change rapidly 

in time. The outcome of this chapter encourages operational groups responsible for real‐time advisories 

for aviation to consider employing computationally efficient on-line dispersal models or, at least, short 

coupling intervals (≤	
 1h). 
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Chapter 4 presents a global application of the on-line coupled NMMB-MONARCH-ASH model to 

analyze the potential impacts of ash dispersal and fallout from Antarctic volcanoes. The chapter focuses 

on Deception Island as a case study, one of the most active Antarctic volcanoes with multiple eruptions in 

the last 10,000 years. Numerical simulations using NMMB-MONARCH-ASH demonstrate that volcanic 

ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant 

consequences for global aviation safety. Results obtained in this chapter recall the need to perform a 

proper hazard assessment on Antarctic volcanoes, and are crucial to understanding the patterns of ash 

distribution at high southern latitudes with strong implications for tephrostratigraphy, pivotal to 

synchronize palaeoclimatic records. 

 

Chapter 5 presents a particular application where employing off-line coupled modeling systems is 

recommended from a computational point of view. This chapter employs a computational inversion 

method that explicitly accounts, for the first time, for the Plinian and co-ignimbrite phases of the 39 ka 

Campanian Ignimbrite (CI) super-eruption, the largest volcanic eruption of the past 200 ka in Europe. In 

addition, this chapter also evaluates the effect of gravitational spreading of the umbrella cloud by 

coupling FALL3D (introduced in Chapter 2) with a model that accounts for the gravity-driven transport 

in the umbrella cloud. To verify the consistency of the novel two-phase reconstruction, an additional 

single-phase inversion was performed using an independent thickness dataset. The better-fitting two-

phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total 

fallout volume is co-ignimbritic in origin. Gravitational spreading of the umbrella cloud dominates tephra 

transport only within the first hundred kilometers due to strong stratospheric winds in the best-fit wind 

model. Finally, tephra fallout impacts would have interrupted the westward migration of modern human 

groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-

Western Europe during the Middle to Upper Palaeolithic transition. 

 

Chapters 3, 4 and 5 are presented in a similar form as they have been published or submitted to an 

international SCI journal and include their own introduction, specific methodology, results, discussion 

and conclusions. Because part of the methodological aspects and data are common in different chapters, 

some adjustments have been performed with respect to the journal version in order to avoid unnecessary 

repetitions. However, there is still some overlap between the introductive sections for some chapters, with 

the objective that each chapter has a comprehensive background and can be read independently from the 

rest of the thesis. Chapter 6 includes the main harmonized conclusions of this thesis, and the 

recommendations for future research considering the specific conclusions exposed in Chapters 3, 4 and 

5. Finally, all references are compiled at the end of this thesis.  

Research at the Barcelona Supercomputing Center 
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The research leading to this work has been carried at the Barcelona Supercomputing Center – Centro 

Nacional de Supercomputación (BSC-CNS) Computer Applications in Science and Engineering (CASE) 

Department in the capacity of an Early-Stage Researcher within the framework of the NEMOH-ITN: an 

Initial Training Network under the European Community FP7 to train the next generation of European 

volcanologists.  

 

This research builds on the work of two BSC-CNS in-house models:  

 

i. The Multiscale On-line Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH; 

formerly known as NMMB/BSC- CTM; Badia et al., 2017a; Haustein et al., 2012; Jorba et al., 

2012; Pérez et al., 2011; Spada et al., 2013, 2015), an on-line chemical weather prediction system 

conceived for both the regional and the global scale. The model is developed and maintained by 

the Earth Sciences Department at the BSC-CNS. 

 

ii. The FALL3D model, a 3-D time-dependent Eulerian model for the transport and deposition of 

volcanic ash and lapilli (Costa et al., 2006; Folch et al., 2009). The model is developed and 

maintained by the Computer Applications in Science and Engineering at the BSC-CNS in 

collaboration with the INGV. 

 

Numerical simulations included in this thesis were performed at the Barcelona Supercomputing Center 

with the MareNostrum III Supercomputer using 8x4 GB DDR3-1600 DIMMS (2GB/core) Intel Sandy 

Bridge processors, iDataPlex Compute Racks, a Linux Operating System, and an InfiniBand 

interconnection. 
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1 SCIENTIFIC CONTEXT 

1.1 General introduction to volcanic ash 

There are numerous excellent volcanological resources on volcanic ash and its properties, including 

Heiken's (1974) classic Atlas of Volcanic Ash and two data-rich textbooks from the 80’s: Fisher and 

Schmincke's (1984) Pyroclastic Rocks and Cas and Wright's (1987) Volcanic Successions: Modern and 

Ancient.  More recently, Mackie et al. (2016) provided a comprehensive overview on the volcanic ash 

formation, its physical characteristics, and spatial variations in ash properties within a range of volcanic 

deposits. The effects of volcanic ash on the global environment have also been recently described by 

Schmidt et al. (2015). The objective of this section is to provide a general introduction to volcanic ash, its 

transport and the associated impact on air traffic management. 

  

The term volcanic ash refers strictly to all particles ejected by an explosive eruption that are 2 mm or less 

in diameter, regardless of its composition. It is thus a subset of the entire population of fragmented or 

eroded (clasts) particles produced by an explosive volcanic eruption, material that is broadly termed 

tephra, a collective term for pyroclasts derived from a Greek term used by Aristotle for volcanic ash. This 

work follows this convention and uses the term “tephra” when referring to the entire ensemble of 

explosively erupted particles, and “ash” when referring specifically to the small size fraction. 

Thorarinsson (1944) classified, for the first time, tephra particles according to their size as: volcanic 

bombs or blocks, lapilli, coarse ash, and fine ash (Figure 1). 

 

 
Figure 1. Tephra particle size representation: volcanic bombs or blocks (𝒅 ≥ 𝟔𝟒mm or 𝜱 ≤ −𝟔), lapilli (𝟐mm ≤ 𝒅 < 𝟔𝟒mm 
or −𝟏 ≥ 𝜱 > −𝟔), coarse ash (𝟔𝟒  µμm ≤ 𝒅 < 𝟐mm or 𝟒 ≥ 𝜱 > −𝟏), and fine ash (𝒅 < 𝟔𝟒µμm or 𝜱 > 𝟒), where 𝒅 is the 
diameter of the particle and 𝜱 ≡ −𝒍𝒐𝒈𝟐𝒅 (mm). 
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Juvenile tephra forms when magma fragments during explosive eruptions. Fragmentation transforms 

magma from a continuous liquid phase with dispersed gas bubbles to a gas phase with dispersed magma 

fragments (Cashman and Rust, 2016). Once created, volcanic particles are transported within, and 

deposited from, hot plumes that rise up to tens of kilometers above the volcanic vent. Tephra deposits 

formed from volcanic plumes have spatial extents and thickness variations that reflect both eruption and 

transport conditions (Scollo et al., 2008). These deposits preserve information on the size and strength of 

the eruption.  

 

The focus here, however, is on volcanic ash, which comes in many sizes, compositions, shapes, and 

densities and, as a result, has a wide range of optical characteristics and transport dynamics. This 

variability has important implications for detecting, tracking, and forecasting the behavior of ash 

transported within volcanic plumes. Particle size is the main parameter in controlling tephra 

sedimentation velocity; blocks and larger lapilli follow ballistic and non-ballistic trajectories settling in 

minutes to few hours near the volcano. In contrast, very fine ashes can remain entrapped at higher 

atmospheric levels for days to months and disperse at continental or even at global scales. 

 

Once volcanic ash is injected into the atmosphere, it can be transported over great distances, even 

circumnavigating the entire planet, such as the Mt. Pinatubo eruption in 1991. Volcanic ash transport and 

dispersion models (VATDM) have been developed to comprehensively forecast volcanic ash clouds. A 

detailed description of the available VATDMs currently available is provided in Sect. 1.3. The primary 

users of these VATDMs are those stakeholders involved in the provision of operational forecast of the 

future trajectory of an ash cloud. These include, for example, those agencies involved in the International 

Airways Volcano Watch (IAVW), known as Volcanic Ash Advisory Centers (VAACs). In addition, 

VATDMs are also important for reconstructing ground deposit data after a volcanic eruption in an 

attempt to better understand the event and to provide new methods for improving the capabilities of the 

models for future use.  

 

The presence in the atmosphere of volcanic ash is a sporadic yet important factor that can threaten human 

and animal health; affect the urban built environment; or disrupt aerial navigation. In addition, volcanic 

ash is a hazard to aircraft because it can degrade engine performance and navigational and operational 

instrumentation. For example, the presence of airborne volcanic ash at low and jet-cruise atmospheric 

levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters 

with volcanic ash clouds. A full review on the influence of volcanic ash on aircraft engine components is 

provided by Chen and Zhao (2015), and a re-evaluation of the engine manufacturers ash concentration 

threshold for safe aircraft operation (‘Safe-to-Fly’ chart) was reported by Clarkson et al. (2016). Past 

events have shown the difficulty to access to atmospheric hazard dispersal information useful for Air 

Traffic Management (ATM). For example, due to the extent of the ash clouds generated by the 2010 
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Eyjafjallajökull volcano eruption in Iceland, more than 100,000 flights were cancelled and over 300 

airports in about two-dozen countries, and a correspondingly large airspace, were closed in Europe during 

16-21 April. This disruption caused a loss of more than $1.7 billion USD airline revenues and more than 

10 million stranded passengers according to an analysis by Oxford Economics.  

1.2 Atmospheric transport models for volcanic ash 

Atmospheric transport models are used to simulate the transport of particles and gases, comprising those 

of natural (e.g. volcanic particles and aerosols, mineral dust, sea salt), biogenic (e.g. biomass burning), 

and anthropogenic origin (e.g. aerosol and particulate matter pollutants, radionuclides). All models 

involve three different components (Russell and Dennis, 2000) regardless of the nature of the substance 

being transported (Fig. 2): 

 

i. An emission or source term model, which describes the “release” of the airborne substance, both 

in time and space;  

ii. A Numerical Weather Prediction Model (NWPM; also known as Meteorological Models), which 

describes the state and evolution of the atmosphere in which the emissions are introduced. 

Meteorological codes are classified based on their different spatial and temporal scales; 

iii. A transport and dispersal model (TDM), which describes the substance transport and deposition 

mechanisms. TDMs require the definition of an additional source/sink term when particles 

experience transformations during transport (e.g. particle aggregation, chemical or photochemical 

reactions).  

 

In particular, volcanic ash modeling systems are atmospheric transport models specifically employed to 

simulate the atmospheric dispersion of volcanic ash and to generate operational short-term forecasts to 

support civil aviation and emergency management.  These systems require of: i) an eruption source term 

model to characterize the emission of ash depending on the so-called Eruption Source Parameters (ESPs); 

ii) a meteorological model (NWPM) for the description of the atmospheric conditions, and; iii) a 

Transport and Dispersal Model to forecast the particle transport and deposition mechanisms of volcanic 

ash. The accuracy of the model forecast is highly dependent on the input parameters to the model 

simulations, such as the accuracy of the meteorological data (wind, temperature, precipitation rate) and 

the determination of the emissions from the volcano (the source term). Models to simulate tephra 

dispersal in atmosphere are called Tephra Transport and Dispersal Models (TTDMs). TTDMs are often 

referred as Volcanic Ash Transport and Dispersal Models (VATDMs), which are actually a sub- group of 

TTDMs especially adapted to model volcanic ash (particles with 2mm or less in diameter). 
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Figure 2. Schematic representation of the main components of an Atmospheric Transport Model. Red text shows model 
specifications for the transport of volcanic ash (modified from Marti et al., 2017). 

 

The following sections provide a brief overview about the volcanological source term, describe different 

types of meteorological and atmospheric transport models, and discuss the possible NWPM-TDM 

coupling strategies.  

1.2.1 Source term model 

In general terms, the source model consists of a model for the eruption plume (or column; these terms are 

used interchangeably in this document), which furnishes the TTDM with a spatio-temporal distribution of 

particles (mass) along the eruption column. Source term models used by TTDMs may range from simple 

geometric distributions to complex multi-component and multi-phase flow models. To complete the 

volcanological characterization of the source term model, it is necessary to describe the parameters for the 

source term quantification, commonly known as Eruption Source Parameters (ESPs). These include the 

eruption start and duration, the determination of the eruption column height, the mass eruption rate 

(MER) and the total particle grain size distribution (TGSD). These parameters, not only vary from one 

eruption to another, but also during the different eruptive phases of a single event.  

Strategies for quantifying these physical parameters may differ whether they are estimated in real time or 

a posteriori implying, therefore, different uncertainty levels. On one end, real-time dispersal forecasts 

employ a combination of geophysical and modeling strategies to define ESPs parameters with different 

application limits and resolutions. On the other end, the a posteriori ESP definition relies on the 

exhaustive study of tephra deposits and provides probability density functions for selected activity 

scenarios. These outputs are used both to compile long-term hazard assessments, and to help with 

preliminary real-time simulations of dispersal forecasting when no real-time data are available. Typically, 
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the eruption starting time, duration and column height are inferred/constrained in real-time from visual 

(direct ground observation or Pilot reports; not accurate for large columns), ground-based instrumentation 

(e.g. C-band weather radar, transportable X and L-band radars, lidars, thermal cameras, etc.), or satellite 

observations. Model input values for MER are commonly inferred from column height. A common option 

is to use field-based relationships between column height and averaged MER (e.g. Mastin et al., 2009; 

Sparks et al., 1997). However, such estimations can have up to a factor 10 of uncertainty. Recent studies 

have shown the importance of accounting for wind effects in the determination of MER using either 

numerical models or analytical relationships (Bursik, 2001; Degruyter and Bonadonna, 2012;Woodhouse 

et al., 2013). A comprehensive description of the most relevant source term parameterizations is 

presented in Section 2.2.3.1. Finally, the total grain size distribution (TGSD) of particles ejected by the 

source term is normally reconstructed from tephra deposits using both field studies and numerical 

inversion strategies. It is important to mention that, to date, no real-time technique is capable to provide 

the erupted mass associated with the whole particle size’s spectrum. 

 

For those eruptive events where ESPs are not readily available, model inputs must be inferred from 

previous events of similar characteristics. Mastin et al. (2009) compiled an ESP database with 

information on  volcanoes around the world including the vent location (latitude, longitude and height) 

and the corresponding ESPs for the eruptive events associated to each volcano. Finally, for ancient 

eruptions, where ESPs are not available, values can be estimated from tephra deposits (e.g. Carey and 

Sparks, 1986; Pyle, 1989) or by best-fitting tephra deposit by means of inverse modeling techniques (e.g. 

Connor and Connor, 2006; Costa et al., 2012; Marti et al., 2016).  

1.2.2 Meteorological model classification 

Meteorological phenomena occur over a wide range of space and time scales. Based on its scale 

resolution, meteorological models can be classified from global, to meso- to microscale. As defined in the 

American Meteorological Society’s (AMS) Glossary of Meteorology, mesoscale models include domains 

ranging from ~100 to 2000 kilometers, and typically use structured rectilinear mesh with nested grids and 

finite-difference methods in all three dimensions. Horizontal grid cell sizes may range from few to tens of 

kilometers, while vertical resolution may be of the order of meters near the surface and stretch to 

hundreds of meters or more above the boundary layer. Operational mesoscale models are typically run by 

National Weather Services for their region of interest. Examples include NMMB (Janjic, 2005, 2009; 

Janjic and Gall, 2012), WRF-NMM (Skamarock et al., 2008), or WRF-ARW (Michalakes et al., 2000). 

Global models, on the other end, cover the entire Earth and often use spectral methods for the horizontal 

dimensions and finite-difference methods for the vertical dimension. For forecasting purposes, the most 

utilized global models are the Global Forecast System (GFS; Kalnay et al., 1990), the Integrated Forecast 

System (IFS; Michalakes et al., 2000) or the JMA Global Spectral Model (GSM), run by the National 

Oceanic and Atmospheric Administration (NOAA), the European Centre for Medium-Range Weather 
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Forecasts (ECMWF), and the Japanese Meteorological Agency (JMA), respectively. All systems can run 

operationally or as members of an ensemble of meteorological models, and provide daily forecasts and 

reanalysis datasets.  

1.2.3 Transport model classification  

Atmospheric transport models are classified as Eulerian, Lagrangian or Gaussian-puff models, based on 

the way they solve the advection, diffusion, and sedimentation processes. Eulerian models numerically 

solve the discretized version of the Advection–Diffusion equation at specific reference points in a gridded 

system using finite differences or finite elements. Eulerian solvers can be adapted to account for 

deposition, agent decay, and gravitational settling by solving the Advection–Diffusion–Sedimentation 

(ADS) equation. Multiple equations need to be solved for multiple particle bins. Lagrangian models, on 

the other hand, track “particles” (virtual puffs accounting for several real particles) along their trajectory. 

Finally, Gaussian puff models, allow for a hybrid modeling solution where the trajectory of the puff 

centroid is computed and then used to obtain the particle concentration assuming Gaussian diffusion. The 

following sections summarize the general physics for each modeling approach. 

1.2.3.1 Eulerian models 

Eulerian models describe how an airborne particle is advected by wind, diffused by atmospheric 

turbulence and deposited by gravity, by means of their scalar concentration ADS equation (Eq. 1).  This 

equation also includes the source and sink terms corresponding to the generation and destruction of 

particles, respectively. Neglecting the particle inertia effects and the interaction between particles, the 

general expression of the ADS equation is: 

 
𝜕𝐶
𝜕𝑡

=   −∇ 𝑢𝐶 +   ∇ 𝕂∇C − ∇ 𝑢!  𝐶 +   𝑆! +   𝑆! (1)  

 

where 𝐶 is the particle mass concentration, 𝑡 represents time, 𝑢 = 𝑢! , 𝑢! , 𝑢!  is the wind velocity, 𝕂 is 

the turbulent eddy diffusivity tensor, 𝑢! is the particle sedimentation velocity,  𝑆! 𝑥, 𝑦, 𝑧, 𝑡  is the source 

term (accounting for the production of particles per time-step), and 𝑆! 𝑥, 𝑦, 𝑧, 𝑡  is the sink term 

(accounting for the destruction of particles per time-step). The advection-diffusion solver typically uses 

the three components of the wind field computed by a NWPM as input. Many solvers use an eddy 

diffusivity or 𝕂-theory gradient diffusion turbulence model to approximate turbulent mixing.  

 

Transport and dispersal models for volcanic ash based on this approach group ash particles with 

comparable size, density, and shape in particle classes on bins. These groups are characterized by sharing 

the same sedimentation velocity. Eulerian models are very convenient for steady particle size distribution, 
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employing different ADS equations for each particle class. However, this approach is no longer valid for 

those events where the particle size distribution evolves with time, e.g. with the occurrence of particle 

aggregation. Some examples of Eulerian models employed for the transport and deposition of volcanic 

particles include: FALL3D (Costa et al., 2006; Folch et al., 2009), ASH3D (Schwaiger et al., 2012), or 

ATHAM (Herzog et al., 2003).  

1.2.3.2 Lagrangian models 

Lagrangian models track maker “particles” released in the air using the mean wind field. Neglecting the 

particle mixing and inertia effects, the movement of a particle between time-steps 𝑡! and 𝑡! is given by: 

 

𝑟 𝑡! = 𝑟 𝑡! + 𝑢 𝑟, 𝑡 + 𝑢! 𝑟, 𝑡 + 𝑢! 𝑟, 𝑡   𝑑𝑡
!!

!!
 (2)  

 

where 𝑡 is the time, 𝑟 is the position vector, 𝑢 and 𝑢! are the wind and particle sedimentation velocities, 

and 𝑢!  is the unresolved-scale wind turbulent fluctuations. A typical solution to resolve turbulent 

fluctuations is to employ the standard random-walk expression for the horizontal and vertical components 

of 𝑢!. This approach is capable to handle the influence of spatially complex wind and turbulent fields on 

the ash cloud transport and dispersion by introducing random perturbations in the trajectory of a particle 

(Boughton et al., 1987; Legg and Raupach, 1982).  

 

Examples for volcanic ash Lagrangian models include HYSPLIT (Stein et al., 2015), PUFF (Searcy et al., 

1998), NAME (Jones et al., 2007), MLDP0 (D’Amours et al., 2010), or FLEXPART (Stohl et al., 2005). 

It is relevant to mention that models that merely consider the advection term are known as Lagrangian 

tracers, whereas those considering diffusion and particle deposition mechanisms are know as Lagrangian 

transport models. 

1.2.3.3 Gaussian puff models 

Gaussian puff models also track puffs using the mean wind field from a meteorological model, increasing 

the puff size with time to mimic turbulent diffusion. The puff travels with the wind at the puff centroid.  

The rate of growth of the puff depends on the atmospheric turbulence and, as the puff grows, it is possible 

that it splits if significant wind variations occur. For this particular case, concentrations within the puff 

are described by a 3D Gaussian distribution, where the size of the puff is proportional to the travel time 

and the magnitude of turbulence.  

Gaussian puff models can be interpreted as a hybrid Lagrangian-Eulerian solution, in the sense that the 

model tracks the puffs in a Lagrangian way but, computes the concentration at fixed receptors by 

summing up the contribution of all puffs on each receptor as in an Eulerian model. This approach is 
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capable to simulate the effect of turbulent spreading of the ash cloud faster than random-walk models 

since the puff growth is accomplished through a Gaussian equation requiring fewer puffs. Similar to 

Eulerian models, Puff models can be adapted to account for deposition, gravitational settling, and agent 

decay, and are ideally suited to buoyant rise and dense gas applications. A typical Gaussian puff transport 

model employed for volcanic ash dispersal is the VOL-CALPUFF (Barsotti et al., 2008) transport model. 

1.2.4 Coupling strategies (off vs. on-line) 

This section introduces the different NWPM-TDM coupling strategies available, their limitations, and 

their possible implementation methods, using the nomenclature approach found in most air quality and 

chemistry models. In general terms, the NWPM-TDM coupling can be performed either off-line or on-

line (Fig. 3).  

1.2.4.1 Off-line models 

In an off-line modeling system, the NWPM runs a priori and independently from the TDM to produce the 

required meteorological fields at regular time intervals. Meteorological fields are then furnished to the 

TDM, which commonly assumes constant values for these fields during each time coupling interval or, at 

most, performs a linear interpolation in time.  

 

At present, all operational ash forecast systems follow the off-line approach and the few existing on-line 

atmospheric chemistry and transport models adapted to volcanic ash, e.g. NMMB-MONARCH-ASH 

(Marti et al., 2017), ICON-ART (Rieger et al., 2015) or WRF-Chem (Stuefer et al., 2013) are still 

restricted to a research level. However, notwithstanding the increase of computational power in recent 

years and the fact that the total computing time required to run an on-line coupled model is actually not 

substantially larger (e.g. Grell and Baklanov, 2011; Marti et al., 2017) the benefits of the traditional off-

line systems are at question.  

 

The off-line approach is convenient in terms of computing time because different TDM model executions 

are possible without re-running the meteorological component, e.g. to update the source term whenever 

the eruption conditions vary, for reconstructing the ESP corresponding to past events employing inverse 

modeling methods (see section 5.3.3) of ash emissions (e.g. Marti et al., 2016; Webster et al., 2012), or to 

perform an ensemble forecast (e.g. Galmarini et al., 2010) in which all the ensemble members share the 

same meteorological conditions. However, off-line modeling systems can lead to a number of issues due 

to inheritance uncertainties. NWPM and TDM codes frequently use different input datasets (e.g. 

underlying terrain, land use/land cover), occasionally are set-up in different projections (e.g. Universal 

Transverse Mercator vs. Lambert Conformal vs. model specific projections). Additionally, they have non-

aligned grid meshes, non-synchronized time stepping, and/or inconsistent physical parameterizations and 
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numerical schemes that can lead to a loss of potentially important information about atmospheric 

processes that often have a time scale much smaller than the meteorological model output frequency (e.g. 

wind speed and directional changes, PBL height variations, cloud formation, and rainfall). This may be 

especially important when meteorological conditions change rapidly in time or when feedbacks between 

the ash cloud and meteorology are important. These limitations can be corrected by using an on-line 

approach, specially, with on-line integrated systems allowing feedbacks between the TDM and the 

NWPM. 

1.2.4.2 On-line models 

In contrast, in an on-line modeling system, the NWPM and the TDM run concurrently and consistently 

and the particle transport is automatically tied to the model resolution time and space scales, resulting in a 

more realistic transport representation. In most cases, both the NWPM and TDM are embedded in the 

same code and run using a single executable. Depending on the degree of integration of the on-line 

system, on-line models can be further distinguished between on-line integrated or on-line access 

modeling systems (Baklanov et al., 2014). On-line integrated models are defined as those where the 

NWPM and TDM are fully integrated in one unified modeling system using one main time-step for 

integration (e.g. consistent spatial and temporal interpolation, map projections, dataset inputs, numerical 

schemes, etc.). On the other end, on-line access models use independent meteorology and transport 

models but exchange information between them on a regular and frequent basis. In this case, the transport 

model is embed it into an existing meteorological code but models use different input datasets and map 

projections, dissimilar algorithms for computing identical quantities, and distinct numerical schemes 

and/or computational grids. That is, the TDM and NWPM are put into the same code and share input and 

output information via memory but, in all other respects, models are run equivalently to an off-line 

system. For the purpose of this document, the term “on-line” is used to refer to “on-line integrated 

models”.   

 

This modeling approach might also include two-way interactions (also referred to as feedbacks) at each 

model time-step. These models, commonly known as (two-way) feedback modeling systems, are useful to 

estimate the effect of volcanic aerosols on the radiative budget. Despite that for most volcanic eruptions 

the influence on the radiative budget is minor (no effect or minor local/regional effects), in some cases 

(e.g. large explosive eruptions, super-eruptions) the impact of tropospheric volcanic aerosol can be 

significant, becoming a regional or even global radiative forcing of climate (Schmidt et al., 2015).  
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Figure 3. Schematic representation of the different coupling approaches for the meteorological (NWPM) and transport and 
dispersal (TDM) models. Green and red arrows describe whether data consistency is preserved or not, respectively. 

 

1.3 Historical evolution of TDMs for volcanic ash 

Historically, different scientific communities had modeled volcanic ash dispersal based on the particle 

size and dispersal distance. On one end, volcanologists developed families of models suitable for lapilli 

and coarse ash (see Fig. 1). These models aim at computing fallout deposits and provide probabilistic 

hazard assessments. In contrast, meteorologists and atmospheric scientists have conventionally used other 

TDMs dealing with finer ash particles for tracking motion of volcanic ash clouds and, eventually, for 

computing airborne ash concentrations. This section builds on the review of Folch (2012), who provided 

a comprehensive review of the evolution and characteristics of different families of TDMs for volcanic 

ash. Despite the exiting overlap in some cases, this review follows a chronological structure, starting with 

the early models built on simple particle sedimentation parameterizations for plumes, followed by the 

development of Tephra TDMs (TTDMs) and Volcanic Ash TDMs (VATDMs), which represent a specific 

sub-group of TTDMs used to model long-range transport of fine ash. To conclude, this chronological 

review includes a brief overview on recent efforts to employ Chemical Transport Models for volcanic ash 

forecast.  

1.3.1 Sedimentation models 

a) 

b) 

d) 

c) 
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The first models to quantify tephra transport were mainly focused on reproducing ground measurements 

obtained by volcanologists (isopleths and isopachs – contours of equal largest clasts or equal mass per 

unit area/thickness, respectively). These models are commonly known as sedimentation models (e.g. 

Carey and Sparks, 1986; Wilson, 1976; Wilson and Walker, 1987). During the mid 1980’s, Carey and 

Sparks (1986) and Wilson and Walker (1987) pioneered the first sedimentation model for pyroclastic 

fallout. The model was capable to calculate the trajectory of an isopleth by defining support envelopes; a 

surface where the column vertical velocity (Turner, 1973) equals the terminal velocity of a clast type. 

Given a specific support envelope, the isopleth morphology is defined by a unique combination of plume 

height and wind speed, allowing for a simple calculation of the clast trajectories under a given wind 

profile by inverting these two parameters. Despite its limitations (e.g. assumptions of steady eruption and 

wind conditions, restrictions in clast size definition, etc.), this approach was widely used by field 

geologists as a first approximation to reconstruct a deposit. This groundbreaking work led the 

development of sedimentation models throughout the decade. During the 1990’s, sedimentation models 

shifted their focus to the atmospheric transport phenomena. In that framework, seminal works such as 

Sparks et al. (1992) or Bursik et al. (1992) were key to add novel parameterizations for convective 

transport of the plume and gravitation spreading of the umbrella cloud.   

 

Starting with the new millennia, research works such as Bonadonna et al. (1998), Bonadonna and Phillips 

(2003) or Bonadonna and Houghton (2005) built on Sparks et al. (1992) sedimentation model to describe 

relevant features of tephra deposits such as: particle aggregation, plume strength or the dependencies 

between the terminal fall velocity and Reynolds number dependencies. Despite these improvements, 

sedimentation models were still mainly used for the reconstruction of proximal deposits. In 2001, 

however, following the original work from Armienti et al. (1988), Koyaguchi and Ohno (2001) proposed 

a sedimentation model that accounted for the amount of fine ash particles at the top of the eruption 

column. This work can be considered and inflexion point in the historical evolution of TDM for volcanic 

ash, opening the door, for the first time, for the reconstruction of more distal deposits with sedimentation 

models. 

1.3.2 Tephra Transport and Dispersion Models 

In parallel, a different family of modeling strategies focused explicitly on the particle (tephra) transport 

phenomena also gained relevance amongst volcanologists during the late 90’s, setting the bases of what is 

today know as Tephra Transport and Dispersion Models (TTDMs). These models can be classified as 

Eulerian or Lagrangian models (or a hybrid of both). As previously introduced in Sect. 1.2.3 the main 

difference between these two approaches is that Eulerian models use a fixed three-dimensional grid 

(typically Cartesian), whereas Lagrangian models calculate the trajectories of particles within the 

computational domain. Eulerian models can be further classified depending on their Advection-Diffusion-

Sedimentation (ADS) equation solution as Semi-analytical (also called Gaussian models) and Numerical 
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models. In terms of validation, TTDMs are normally validated against well-characterized tephra deposit. 

Validation is typically performed through isomass/isopach model-to-data semi-quantitative comparisons, 

log–log plots of observed versus computed values of load and thickness at discrete points, or ground 

measurements of tephra accumulation rates.  For a complete list of the available numerical TTDMs, refer 

to Table 1. 

1.3.2.1 Semi-analytical (Gaussian) Models 

These models describe the dispersion of particles using an analytical solution of the ADS equation in the 

form of a Gaussian function. This is possible if one assumes a negligible vertical diffusion and settling 

velocity divergence, a constant and homogenous horizontal wind advection and turbulent diffusion, and a 

sufficient eruption column height to neglect terrain effects. Gaussian TTDMs were born after the seminal 

works of Suzuki (1983) and Armienti et al. (1988). The first semi-analytical Gaussian model for tephra 

dispersion to become popularly used amongst the volcanological community was HAZMAP (Macedonio 

et al., 2005; Pfeiffer et al., 2005), a model originally developed to simulate ground load and probabilistic 

mass accumulation given a wind profile. The model also allowed the possibility to compute the mass 

accumulation probabilities given a set of wind profiles. Further developments on HAZMAP led to – 

ASHFALL (Hurst, 1994), TEPRHA2 (Bonadonna et al., 2005) – versions of the model. Gaussian models 

have been mainly used to elaborate probabilistic hazard maps. Additionally, thanks to their low 

computation cost, these models are also suitable to constrain eruption source parameters (ESP) by means 

of inversion analysis (Connor and Connor, 2006). However, despite these advantages, Gaussian models 

are limited to several assumptions that are not always satisfied, including: i) the dispersal from strong 

plumes (high eruptions columns to neglect terrain effects); ii) proximal tephra dispersal (to meet the 

homogenous requirements for the wind field) and, iii) short-lasting eruptions (to meet the time-constant 

atmospheric conditions).  

1.3.2.2 Numerical Models 

Numerical TTDMs, on the other side, are able to overcome these limitations by numerically solving the 

ADS equation, which allow the transport and deposition of any particle size, including fine ash. One of 

the first numerical models specifically developed for tephra transport was FALL3D (Costa et al., 2006; 

Folch et al., 2009). This multi-scale Eulerian TTDM is coupled off-line with several mesoscale and global 

NWPM and re-analysis datasets, allowing the forecast of both particle concentration in the atmosphere 

(i.e. ash cloud evolution) and particle loading at ground level. Its multi-purpose core, allows for 

operational forecast applications (e.g. Buenos Aires Volcanic Ash Advisory Center), reconstruction of 

recent (e.g. Folch et al., 2012) and historical eruption events (Costa et al., 2012; Marti et al., 2016), or 

performing probabilistic hazard assessments (Folch and Sulpizio, 2010; Scaini et al., 2012). A couple of 

years after, Barsotti et al. (2008) presented VOL-CALPUFF, a semi-Lagrangian puff model built on 
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adapting the pollutant transport model CALPUFF to simulate the transport and deposition of volcanic 

particles. The model has been mainly applied at Mt. Etna for modeling volcanic clouds (Barsotti et al., 

2008) and to assess volcanic ash hazards (Barsotti et al., 2010). More recently, Schwaiger et al. (2012) 

and Mastin et al. (2013) added ASH3D to this list; a finite-volume Eulerian model developed and 

employed by USGS scientist and U.S. volcano observatories. 

1.3.3 Volcanic Ash Transport and Dispersion Models 

The establishment of the International Airways Volcano Watch (IAVW) Programme in 1987, and the 

subsequent creation of the Volcanic Ash Advisory Centers (VAACs) in 1994, extenuated the need to 

further develop TTDMs to be able of tracking and forecasting fine ash from volcanic ash clouds. With 

this objective in mind, the volcanology and atmospheric communities started to adapt existing 

atmospheric Lagrangian models (e.g. atmospheric tracers, aerosol transport models) to forecast distal 

dispersal of fine ash. These efforts led to the development of the first Volcanic Ash Transport and 

Deposition Models (VATDMs), which were used for civil aviation safety purposes, by simply identifying 

the location of the volcanic ash cloud.  

 

However, in the aftermath of the April–May 2010 Eyjafjallajökull eruption and the subsequent inclusion 

of ash concentration thresholds, required VATDMs to shift towards a more quantitative modeling 

approach (absolute ash mass concentrations). Since then, many VATDMs have been used to operationally 

forecast tephra dispersal around the world: HYSPLIT (Stein et al., 2015 - United States), NAME III 

(Witham et al., 2007 - United Kingdom), FALL3D (Costa et al., 2006; Folch et al., 2009 - Argentina). 

MOCAGE-accident (Martet et al., 2009 - France), JMA (Iwasaki et al., 1998 - Japan)  or, the MLDP0 

(D’Amours et al., 2010 - Canada) model, just to name a few. Table 1 illustrates the model characteristic 

for the vast majority of VATDM existing worldwide.  

 

Table 1. Comparison of existing TTDMs (IUGG-WMO, 2013b. Colored/white cells indicate that the option is available/not 
available for the TTDM, respectively. 
(1) L=Lagrangian, E=Eulerian, H=Hybrid 
(2) A=Analytical, S=Semi-analytical, N-Numerical 
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(3) L=Local, R=Regional, G=Global 
(4) PS=Point Source, L=Linear, U=Umbrella-type, P=Poisson, LN=Log-Normal, BP= Buoyant-Plume, O=Other 
(5) Neglected. Diffusion of numerical origin appears to be sufficient, with particularly good results at 0.5°.  

1.3.3.1 FALL3D 

FALL3D (Costa et al., 2006; Folch et al., 2008) is an Eulerian model for the transport and deposition of 

volcanic ash and lapilli. The model solves the advection–diffusion–sedimentation (ADS) equation on a 

structured terrain-following grid using a second-order finite differences explicit scheme. The model code 

can be compiled either as serial or parallel using Message Passing Interface (MPI). Model inputs include 

meteorological data, topography, vent coordinates, Eruption Source Parameters (i.e. MER, eruption 

duration, and TGSD). Model outputs are tephra ground load/thickness, airborne ash concentration and 

other related variables. Several parameterizations can be chosen to describe eruption source geometry and 

physics, particle terminal settling velocity, eddy diffusivity tensor, and ash aggregation. FALL3D 

employs an off-line strategy to furnish meteorological variables from independent models or datasets. The 

model can be used to reproduce features of past eruptions, as a tool for short-term ash dispersal 

forecasting, and for volcanic fallout hazard assessment. The FALL3D model is used at the Buenos Aires 

and Darwin Volcanic Ash Advisory Centers (VAAC) in operational forecasts. 

 

This thesis work partially builds on the most recent release of FALL3D – version 7.1 (Folch et al., 

2016b). Current developments in FALL3D 8.0 (expected by the end of 2017) replace the classical Lax-

Wendorff (LW) central scheme for solving the ADS equation, known to introduce numerical dissipation 

leading to over-diffusive results, for the high-resolution Kurganov-Tadmor scheme (KT). This scheme is 

combined with a fourth-order explicit Runge-Kutta method to advance in time, as opposed to the second-

order (first-order for big gradients) time-marching Euler method implemented in the previous versions of 

the code. In addition, version 8.0 will include nesting and several model performance implementations.  

 

FALL3D sources and a list of scientific publications employing the model are available at: 

http://datasim.ov.ingv.it/models/fall3d.html.  

1.3.4 Chemical Transport Models for volcanic ash 

During the last decade, and mainly as a result of the 2010 Eyjafjallajökull eruption, scientists have started 

to apply exiting Eulerian chemistry aerosol models to study the dispersion of volcanic ash and 

sulfur/sulfate aerosol. Chemical Transport Models (CTM) are capable of simulating the long-range 

transport of small particles in the atmosphere provided the necessary input parameters (e.g. accurate 3-D 

meteorological and emission fields).  
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Traditionally, CTM were mainly developed to study specific processes. However, the latest generation of 

CTMs have gravitated towards the representation of most processes associated to changes in the 

atmospheric composition in terms of aerosols and trace gases, including all types of emissions – i.e. 

anthropogenic, biogenic, mineral dust, sea salt, vegetation fires, etc. In a recent article Baklanov et al. 

(2014) provided a comprehensive review of the current research status of online coupled meteorology and 

atmospheric chemistry modeling within Europe.  

 

The review of all available CTMs is beyond the scope of this section. This section provides a brief 

description of those CTMs capable to simulate the transport and deposition of volcanic ash.  It is worth 

mentioning that most of these CTMs have not been developed with the objective of providing cost-

efficient and reliable operational forecasts for volcanic ash. In fact, CTMs that forecast volcanic ash 

transport are normally limited to specific research purposes and, in many cases, use a version of the 

model that was originally developed for mineral dust or other aerosol simulations. Some of these models 

include: 

 

i. MCCM (Grell et al., 2000): a meso-scale on-line coupled meteorology atmospheric chemistry 

model capable to produce flow simulation and weather forecast model based on the 5th- 

generation Penn State/NCAR Mesoscale Model (MM5). The model is frequently used for 

weather, climate and air quality forecasts. For the simulations of the volcanic ash dispersion, ash 

is attributed entirely to the coarse mode and handled as mineral dust in MADE/SORGAM 

(Emeis et al., 2011). 

ii. COSMO-MUSCAT: a regional CTM system consisting of the non-hydrostatic model COSMO 

(Doms et al., 2011) as meteorological driver, and the online-coupled 3-D chemistry tracer 

transport model MUltiScale Chemistry Aerosol Transport Model (MUSCAT; Renner and 

Wolke, 2010). Similar to the previous case, volcanic ash transport is simulated with a version of 

the model that was originally developed for Saharan dust simulations (Heinold et al., 2012).   

iii. WRF-CMAQ (Community Multi-scale Air Quality modeling system): In this case the WRF 

model is coupled with an Eulerian chemistry transport model developed by the U.S. 

Environmental Protection Agency (EPA) Atmospheric Science Modeling Division. The CMAQ 

modeling system has been used as a VATDM to model ash dispersion over Europe for the 2010 

Eyjafjallajökull eruption (Matthias et al., 2012). 

iv. REMOTE (Langmann, 2000): is a regional scale Eulerian atmosphere-chemistry and aerosol 

model coupled on-line with the former regional weather forecast system of the German Weather 

service (DWD). The model has been applied to study the local dispersion of SO2 volcanic 

emissions and volcanic ash. 
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In few cases, chemistry transport models include specific parameterizations (e.g. compute the total mass 

flux emitted according to empirical fits) to characterize volcanic emission. Despite this, CTM models in 

the literature are still limited in the way they characterize the volcanological source term and lack the 

representation of certain critical processes (e.g. mass distribution in the column, aggregation, particle 

settling velocity, etc.). Some models including basic parameterizations to characterize the volcanological 

source term are: 

 

i. WRF-Chem (Grell et al., 2005; Stuefer et al., 2013): The Weather Research and Forecast (WRF; 

http://www. wrf-model.org/) model coupled with Chemistry (WRF-Chem; Grell et al., 2005) 

provides the capability to simulate chemistry and aerosols from cloud scales to regional scales. 

WRF-Chem is a community model. The development is led by NOAA/ESRL with multiple 

collaborating agencies. The initial release of WRF-Chem uses the emission PREP-CHEM-SRC 

emission tool (Freitas et al., 2011), originally developed to characterize trace gases and aerosol 

emissions and to provide the volcano location and the total erupted mass, which is empirically 

derived from the column height according to Mastin et al. (2009). The preprocessor allows only 

for three options to characterize volcanic ash i) use the four finest ash species as invariant tracers 

that are being transported, deposited and settled only; ii) selecting a number of 10 ash variables, 

which also includes coarse ash species for estimates of ash fall; and iii) only 2 different ash 

species with feedback processes implemented within WRF-Chem. The model has been tested for 

the simulation of ash transport for the 2010 Eyjafjallajökull eruption.  

ii. CHIMERE-2016 (Mailler et al., 2016):  this CTM has evolved from its original box-modeling of 

regional atmospheric composition design to a 3D Eulerian model capable to run from local to 

continental domains. As in WRF-Chem, the source term for volcanic emissions only computes 

the total erupted mass following the Mastin et al. (2009) empirical fits. Its global forecast 

capabilities have been recently tested for a simulation of the circumpolar transport of volcanic 

ash plume from the Cordón Caulle volcanic eruption in June 2011 in Chile, and employing the 

WRF meteorological mode as a NWPM. 

iii. ICON-ART: in a joint development with the Max-Plank-Institute of Meteorology Hamburg 

(MPI-M), the German Weather service (DWD) is working on the dispersion of volcanic ash 

particles and radioactive tracers for operational forecast with ICON-ART; an extension of ICON 

(ICOsahedral Nonhydrostatic model) to enable the simulation of gases, aerosol particles and 

related feedback processes in the atmosphere. The future implementation of ICON-ART will 

include a parameterization that only depends on the top of the plume height and employs an 

inversion modeling approach based on Stohl et al. (2011) to derive vertical profiles of the 

emissions of volcanic ash. In its current stage, ICON-ART is capable of simulating mineral dust 

and sea salt aerosol and the interactions of these aerosol types with clouds (Rieger et al., 2015). 
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While atmospheric Chemistry Transport Models might be very useful in future operational set-ups, to 

date, no CTM is capable to match the specific VADTM volcano emissions. In addition, CTM currently 

assume all particles to be spherical in shape. While this may be suitable for fine particles (volcanic ash), 

this approach is not adequate for bigger tephra particles such as lapilli, limiting therefore the 

representation of the sedimentation processes of these models. At the time of this review, all VAACs 

employ traditional VADTM models coupled off-line with NWPM. In light of the above, the focus on 

developing a computational efficient online CTM model specific for volcanic ash capable to provide 

robust operational forecasts is timely. 

1.3.5 Review of existing on-line modeling efforts in other communities 

To date, most TTDMs and VATDMs are off-line systems. However, other communities involved in 

modeling atmospheric transport and dispersion have highlighted the importance of on-line strategies for 

different applications. This section discusses current state-of-the-art of on-line systems in the fields of: i) 

air quality; ii) climate and, iii) plume transport and dispersal models.  

1.3.5.1  Regional air quality and photochemical transport models 

In the regional photochemical community, on-line systems have been (and continue to be) developed 

primarily to improve the reliability of the air quality predictions through the inclusion of two-way 

feedback mechanisms. In this context, Grell et al. (2004) described the feedback effects between air 

pollutants and meteorology on both short-term and climatic time scales. Aerosol concentrations have an 

impact on the radiative forcing and meteorological events (e.g. precipitation, thunderstorms, etc.) through 

the availability and distribution of cloud condensation nuclei. Table 2 summarizes the chemistry-

meteorology impacts described by Baklanov et al. (2014) for air quality. 

 

Table 2 Aerosol impacts (feedbacks) on meteorology (Baklanov et al., 2014) 

 

Presently, most of the coupled photochemical meteorological models include simple direct effects of 

aerosols on meteorological processes in which aerosols scatter, absorb and reemit incoming shortwave 

Aerosols 

- Modulate radiation transfers (SW scattering/absorption, LW absorption and scattering by large particles like dust) 

- Affect boundary layer meteorology (temperature, humidity, wind speed and direction, ABL height, stability) 

- Extraordinary high concentrations can affect stability and wind speed 

- Influence cloud formation, since they act as cloud condensation nuclei 

Aerosols physical 

properties  

 

- Influence cloud droplet and crystal number and hence cloud optical depth and hence radiation 

- Modulate cloud morphology (e.g. reflectance) 

- Influence precipitation (initiation, intensity) 

- Affect haze formation and atmospheric humidity 

- Influence scattering /absorption 

Soot deposited on ice - Influences albedo 

Radiative active gases - Modulate radiation transfers 
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radiation (e.g., COSMO LM-ART and MCCM). Grell and Baklanov (2011) and Zhang, (2008) provided 

comprehensive reviews on integrated models to forecast weather and air quality in Europe and United 

States, respectively. According to Baklanov et al. (2014) only two mesoscale on-line integrated modeling 

systems (WRF-Chem and Enviro-HIRLAM) consider both the first and the second indirect feedbacks.  

 

Finally, in the context of photochemical modeling, several authors (e.g. Baklanov et al., 2011; Grell and 

Baklanov, 2011; Zhang, 2008) have listed the following advantages for employing on-line modeling 

systems: 

- Only one grid for both the Met and scalar concentration advection-diffusion solver. 

- No interpolation in space and time. 

- Identical physical parameterizations and numerical schemes, i.e., no inconsistencies.  

- Availability of all 3-D meteorological variables at the right time, i.e., each time step.  

- Possibility to consider feedback mechanisms, e.g., aerosol forcing.  

- No need for meteorological pre/postprocessors. 

1.3.5.2 Global Climate community 

Similarly than in the air quality community, global climate models (GCM’s) use the on-line approach to 

efficiently account for the feedback of greenhouse gases and aerosols onto the radiation balance, the 

atmospheric and surface energy budget, and the meteorology (e.g Cox et al., 2000). 

 

Larson et al. (2005) discussed the strengths and weaknesses of coupled global climate modeling systems. 

Their work summarizes the main aspects to consider in the choice of the coupling technique, including 

for example: the physics of the problem, the needed solution accuracy, and the elements of software 

implementation. According to Larson et al. (2005), the physics of the problem determines: 

 

- The connectivity, i.e., the model-model interactions determined by the physics and solution 

algorithms of the coupled system (e.g., ocean and atmosphere interactions). 

- The domain overlap, i.e., the simulation space across which two or more models must exchange 

either driving or boundary condition data, which may be as simple as subsets of physical meshes, 

or as complex as interactions across spectral spaces or between Eulerian and Lagrangian models 

(e.g., the evaporation rate from the ocean model is a source term for the atmospheric model).  

- The coupling cycle, i.e., the period over which all models in the system exchange data (e.g., 

hourly, daily). 

- The coupling frequency, i.e., the temporal exchange rate for a given model pair.  

- The “tightness,” i.e., the ratio of the effort (e.g., wall-clock time) spent by a component executing 

model-model interactions vs. integrating the model mass, momentum, and energy conservation 
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equations (e.g., time spent transferring data between models over a distributed-memory 

multiprocessor network vs. computing the ���equations). ��� 

 

They also identified the following software implementation characteristics to consider:  

- Component scheduling, i.e., the order of execution for the individual models in the coupled 

system, which can be sequential, concurrent, or a combination of both.  

- Resource allocation, i.e., the number of processors and threads allocated to each component in the 

system.  

- Number of executables, i.e., the number of executable images in the coupled system – either 

single or multiple executables.  

- Coupling mechanism, i.e., the way models exchange information, either directly or through an 

intermediate entity (e.g., a preprocessor, a centralized server).  

 

���Finally, independently from the coupling strategy, they described the following additional issues that 

need to be addressed when linking models:  

- Data structures, i.e., two modules that need to exchange data can have different internal data 

structures. This is true, for instance, any time two modules were developed independently from 

different groups and then forced to work together. 

- Data transformation, i.e., the spatiotemporal interpolation from an original to a target grid and 

variable transformation to infer the set of physical quantities required by the target module 

starting from a different set of variables. In case of a distributed memory parallel program, 

distributed inter-grid interpolation algorithms are needed. 

- Data transmission, i.e., the act of moving data from one module to another. In a distributed 

memory parallel program, data could be decomposed differently on different sets of processors; 

therefore they will need to be transmitted from the original network node to the target node(s) 

potentially resulting in performance degradation and lack of scalability. 

1.3.5.3 Mesoscale plume transport and dispersal modeling 

Extensive use of on-line systems has been reported within the mesoscale plume transport and dispersal 

modeling community. Some examples include the COAMPS, OMEGA, and TAPM models. The Navy’s 

COAMPS code is the only one that includes aerosol feedback on the cloud microphysics with plans for 

further integration with radiation balance schemes (Smith et al., 2012). The model accounts for the impact 

of volcanic emissions, fires, and dust storms on regional weather to predict the reduction in visibility to 

support military operations. OMEGA and TAPM are on-line integrated modeling systems that do not 

currently include plume feedback onto the meteorological fields. 

1.4 Recent developments  
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The recent eruptions of Eyjafjallajökull (Iceland) in 2010 and Cordón Caulle (Chile) in 2011 have shed 

light into the importance of tephra dispersal in the context of aviation safety. Moreover, the unsuccessful 

implementation of the zero-ash tolerance criterion for high capacity European Air Space during long-

lasting eruptions required the employment of a new volcanic ash contingency plan. In the aftermath of 

these events, a new multidisciplinary international community was created to promote stronger 

interactions between the volcanological and the operational forecasting communities and to provide a 

robust and reliable response to societal needs. As a result of the recommendations from the IUGG-WMO 

workshops on Ash Dispersal Forecast and Civil Aviation (Bonadonna et al., 2012, 2014), significant 

progress has been accomplished to improve the accuracy of dispersal models for volcanic ash and to 

lessen their associated uncertainties. In general, this progress has led to a series of recent developments 

including new methods and techniques to improve: i) the characterization of the source term; ii) physical 

processes for particle transport and deposition; iii) model validation and; iv) the operational 

implementation of models. In addition, the European Research Council (ERC) has also pioneered 

different Initial Training Networks (ITN) to prepare the next generation of volcanologists. This section 

provides an overview on the research progress achieved in each area in the last 5 years. 

1.4.1 Source term (plume models) 

The description of physical parameters from explosive eruptions is necessary to characterize eruptive 

behavior of active volcanoes and assess their hazards. In that context, several datasets are for the 

characterization of eruptive events of the past 10.000 years (e.g. Global Volcanism Program, GVP, 

http://www.volcano.si.edu/; LaMEVE database, 

http://www.bgs.ac.uk/vogripa/view/controller.cfc?method=lameve).  In addition, collaborative efforts are 

currently underway to review and restructure the Eruption Source Parameters (ESPs) Database for the 

world’s volcanoes (Engwell et al., 2016) originally proposed by Mastin et al. (2009).  

 

Accurate characterization of the initial plume height, mass eruption rate (MER) and total grain size 

distribution (TGSD) is key to characterize the source term and to determine the height at which volcanic 

plumes spread in the atmosphere. The height to which a volcanic plume (or column; these terms are used 

interchangeably in this document) may rise is greatly influenced by the surrounding atmospheric 

characteristics and it is widely investigated for hazard mitigation. Traditionally, simple relationships 

between the source mass flux and plume height in a wind field have been used to characterize the 

eruption column. However, such empirical formulations (0-D) can be inaccurate and can underestimate 

rates in windy conditions (Mastin, 2014). This section focuses on the most recent developments regarding 

plume modeling.  

 

Noteworthy progress has been reported in the development of new empirical formulations and eruptive 

plume models. In a recent work, Costa et al. (2016b). compared and evaluated one-dimensional (1-D) and 
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three-dimensional (3-D) numerical models of volcanic eruption columns in a set of different inter-

comparison exercises. Model variability in plume height was estimated to be within ~20% for the weak 

plume and ~10% for the strong plume (Costa et al., 2016b). Results from this work also suggest that 1D 

models are considered adequate for weak plumes but recommend the use of more complex 3D models for 

strong plumes (Fig 4).  This section provides a conceptual overview of the existing plume modeling 

solutions (empirical, 1-D and 3-D) and the most recent developments for each approach. It is worth 

mentioning that, despite the progress presented by 1-D and 3-D models, recent studies have also 

highlighted the uncertainty associated to plume models, (e.g. Dioguardi et al., 2016; Macedonio et al., 

2016; Mastin, 2014). In light of the above, better understanding of the source conditions and how these 

affect the development and evolution of eruptive plumes is still required to reduce uncertainties in ash 

dispersion modeling.  

  

 
Figure 4. Schematic representation of weak and strong plumes according to eruption size (modified from Costa et al., 2016b) 

1.4.1.1 Empirical formulations (0-D) 

Historically, empirical formulations provided the relationship between plume height and mass eruption 

rate based exclusively on field observations (e.g. Mastin et al., 2009). Despite their goodness of fit (Fig. 

5), these relationships result in significant uncertainty when used to estimate mass flux in windy 

conditions (Mastin, 2014). Recent developments have led to explicitly account for the effects of wind. For 
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example, Degruyter and Bonadonna (2012) and Woodhouse et al. (2013) incorporated the effects of the 

atmospheric temperature, wind profile, source thermodynamic properties, and values of the entrainment 

coefficient into this relationship.  

 

More recently, Carazzo et al. (2015) used analogue experiments from strong and weak plumes to account 

for wind velocity. Despite their advantages, several authors (e.g. Mastin, 2014) have argued that the 

actual eruption rate could have been 1 to 2 orders of magnitude greater than the empirical relations would 

suggest, and could be more accurately estimated using one-dimensional plume models.   

 

             
Figure 5. Column height and MER relationship based on field observations (extracted from Mastin et al. 2009). 

1.4.1.2 1-D Plume Models 

Despite their simplicity, 1-D models have been remarkably successful at describing buoyant plumes. 

These employ different applications of the mathematical description of turbulent buoyant plumes (Morton 

et al., 1956), hereafter referred to as Buoyant Plume Theory (BPT). Most 1-D models use the formulation 

of Woods (1988) who built his plume theory on Wilson (1976) by assuming ambient pressure and 

homogeneous mixture of all phases. The inclusion of additional atmospheric processes a few years later, 
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such as humidity (Mastin, 2007), wind (Bursik, 2001) and profiles in temperature, allowed 1-D models to 

start reflecting real atmospheric conditions. More recently, models adopted different entrainment 

coefficients values based on their specific formulations or calibration studies (e.g. Devenish et al., 2010). 

Finally, Folch et al. (2016a) presented FPlume: a 1-D cross-section averaged plume model which 

accounts for plume bent over, entrainment of ambient moisture, effects of water phase changes on the 

energy budget, particle aggregation, particle fallout and re-entrainment by turbulent eddies, as well as 

variable entrainment coefficients fitted from experiments.  FPlume has been implemented in NMMB-

MONARCH-ASH. Currently, 1-D models currently offer the best tool for operational use and broad 

exploratory investigations (Costa et al., 2016b; Devenish, 2013). Table 3 (top) summarizes, in 

chronological order, 1-D models developed (or updated) in the last 5 years. 

1.4.1.3 3-D Plume Models 

Three-dimensional (3-D) plume models are designed to resolve the detailed turbulence structure of 

volcanic plumes using a time-dependent solution of the turbulent Navier–Stokes equations for the 

conservation of mass, momentum, and energy.  Different numerical solutions exist depending on the way 

models describe the eruptive mixture or solve the governing equations. In any case, to initialize these 

models it is necessary to provide a description of the flux of volcanic ash and gases into the atmosphere. 

These multiphase and multicomponent models, while computationally more expensive, have shown to 

provide critical information on the interaction of the plume with the surrounding atmosphere. Suzuki et 

al. (2016) provided a thorough inter-comparison of three-dimensional models of volcanic plumes. Table 3 

(bottom) summarizes (in chronological order) the most commonly used 3-D models developed (or 

updated) in the last 5 years. 

 
Table 3. Recent (5 years or less) developments in plume modeling. Top: 1-D models; Bottom: 3-D models (Costa et al., 2016b) 

Model  (Year) Refs. 
Model 

type 
Air entrainment Wind 

Particle 

fallout 

Particle re-

entrainment 

Moisture 

entrainment 

Water 

latent heat 

Puffin 2001-2016 1 1D α=0.15 β=1.0 Yes Yes Yes No No 

Plumeria 2007-2014 3 1D α=0.09 β=0.5 Yes No No Yes Yes 

Degruyter 2012 3 1D α=0.10 β=0.5 Yes No No Yes Yes 

PlumeRise 2013 4 1D α=0.09 β=0.9 Yes No No Yes Yes 

Devenish 2013 5 1D α=0.10 β=0.5 Yes No No Yes Yes 

PPM  2014 6 1D α=f(Ri) β=0.5 Yes Yes No No No 

PlumeMoM 2015 7 1D α=0.09 β=0.6 Yes Yes No No No 

FpluMe 2016 8 1D α=f(Ri) β=g(Ri)  Yes Yes Yes Yes Yes 

ASH1D 2015 9 1D α=0.10 β=0.0 No No No No Yes 
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1.4.2 Dispersal model physics 

Recent contributions in the physics of ash dispersal models include developments mostly in three fronts: 

i) experimental and modeling work on aggregation of volcanic ash; ii) description of the gravitational 

spreading of the umbrella cloud; iii) modeling work on sedimentation processes, and; iv) re-suspension of 

volcanic ash. This section offers a brief overview of recent contributions on each front.  

1.4.2.1 Aggregation processes 

A substantial fraction of finer tephra particles (diameters up to 100 μm; fine ash roughly) often falls as 

different aggregates types. Particle aggregation is a fundamental process that controls the dispersal and 

sedimentation of ash with diameter <100 μm. Model accuracy is limited by the fact that fine ash 

aggregates alter patterns of deposition. Experimental work on sedimentation and aggregation of volcanic 

ash has been (and is being) undertaken by a number of groups. Brown et al. (2012) provided a 

compressive review on recent volcanic ash aggregation developments during the past few decades. More 

recently, Mackie et al. (2016)  dedicated a chapter to provide an overview of aggregates observed falling 

out of recent volcanic clouds, aggregates found in deposits, and key formation mechanisms. Since the 

review of Brown et al. (2012), a significant number of aggregation papers have been published. Some of 

that progress is highlighted here. 

 

At modeling level, Costa et al. (2010) and Folch et al. (2010) developed a pioneer aggregation model 

based on a fractal relationship to describe the rate particles are incorporated into ash aggregates. Later, 

Langmann (2013) reported suitable algorithms for volcanic ash aggregation and wet deposition during 

long-range transport to be used in standard off-line volcanic ash forecast models.  Van Eaton et al. (2015) 

proposed a mechanism of hail-like ash aggregation, based on previous laboratory experiments (Van Eaton 

et al., 2012a), that contributes to the anomalously rapid fallout of fine ash and occurrence of 

concentrically layered aggregates in volcanic deposits. More recently, Mastin et al. (2016) developed a 

simple, computationally-efficient aggregation parameterization scheme for use in operational model 

forecasts.  The data resulting from these new developments have been included in the IAVCEI 

Commission for Tephra Hazard Modeling database for ash aggregates and it is currently being used in 

ATHAM  1998-2016 10 3D LES Yes Yes Yes Yes Yes 

PDAC 2007-2015 11 3D LES No Yes Yes No No 

SK-3D 2005-2009 12 3D DNS-LES Yes No No No No 

ASHEE 2016 13 3D LES No Yes Yes Yes Yes 

 Refs: 1—Bursik (2001), Pouget et al. (2016); 2—Mastin (2007, 2014); 3- Degruyter and Bonadonna (2012); 4—Woodhouse et 
al. (2013); 5—Devenish (2013); 6—Girault et al. (2014);7—De’Michieli Vitturi et al. (2015); 8—Folch et al. (2016a); 9—
Cerminara (2015); 10—Oberhuber et al. (1998),(Savre et al., 2016); 11—Esposti Ongaro et al. (2007), Esposti Ongaro and 
Cerminara (2015); 12—Suzuki (2005), Suzuki and Koyaguchi (2009); 13—Cerminara et al. (2016). 
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different TTDMs.  That same year, Costa et al. (2016a) attempted, for the first time, to assess TGSD on 

the basis of pivotal physical quantities, such as magma viscosity and plume height. Their proposed 

empirical strategy represented a valuable step forward towards a better evaluation of ESPs when more 

rigorous data are not available, e.g. real-time forecasting during volcanic crisis and fast hazard 

assessments. In addition, several works have illustrated observational and modeling perspectives on 

aggregation processes for specific recent eruptions – e.g. the 2010 Soufrière Hills eruption - Burns et al., 

(2017), the 2011 Grímsvötn eruption - Prata et al. (2017), or pre-historical events such as the 25.4 ka 

Oruanui supereruption from Taupo volcano, New Zealand (Van Eaton and Wilson, 2013). 

Despite the significant progress presented above, aggregation processes remain a major source of 

uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. 

New integrated observations that combine remote sensing studies of ash clouds with field measurements 

and lab experiments are required to fill current gaps in knowledge surrounding ash aggregation processes. 

It is worth mentioning that with the exception of the FALL3D model, no operational model considers 

aggregation in their forecasts. Instead, aggregation is accounted for by either setting a minimum settling 

velocity in the code or, in the model input, adjusting particle-size distribution by replacing some of the 

fine ash with aggregates of a specified density, shape, and size range. 

1.4.2.2 Gravitational spreading umbrella cloud 

The complex interplay among cloud gravitational spreading, atmospheric diffusion, and wind advection 

of volcanic clouds have recently been topics of lively debates within the international community. For 

example, Costa et al. (2013) presented a novel analytical model to describe the radial growth of the 

umbrella cloud and the conditions when the dominant transport regime is gravity-current, passive, or 

mixed in terms of the cloud Richardson number. The model was implemented in FALL3D to evaluate the 

relative importance of gravity current effects during large volcanic eruptions (e.g. comparing model 

results to satellite imagery showing the 1991 Pinatubo umbrella cloud). In a later work, Mastin et al. 

(2014) replicated this work in Ash3D by calculating turbulent diffusion through an adjusted Crank-

Nicolson formulation to match the observed rate of downwind widening of a deposit or ash cloud in 

simulations. In that same context, Johnson et al. (2015) suggested the need to re-evaluate the 

interpretations of Costa et al. (2013)  grounded on the assumption that the radius of a continuously 

supplied intrusion (𝑟!) should grow in time (𝑡) as 𝑟!~𝑡
!
! rather than 𝑟!~𝑡

!
!.  

 

More recently, Pouget et al. (2016a) presented a new model for radial, gravity-driven intrusion of 

volcanic ash and gas into the atmosphere in the umbrella cloud. The model increased the number of 

regimes described in Costa et al. (2013) to four spreading regimes based on type of resistance force (i.e. 

buoyancy-inertial or turbulent) and type of release (i.e. instantaneous or continuous). 
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1.4.2.3 Sedimentation (particle settling velocity)  

Particle settling velocity is a complex function of particle size, density, and shape. These parameters 

control the residence time of tephra in the atmosphere and, consequently, tephra deposition. For 

simplicity, it is commonly assumed that tephra particles in volcanic clouds settle at their terminal 

velocity, which is derived from the balance between gravity, buoyancy, and drag forces. The precise 

determination of the aerodynamic drag forces requires a detailed parameterization of particle shape (e.g., 

Ganser, 1993). A large amount of experimental aerodynamic data exists for simple regular shapes. 

However, just a few studies have directly measured the terminal velocities of irregular volcanic particles 

(non-spherical), which is typical from most volcanic eruptions. In that context, the seminal work of 

Ganser (1993) has been considered to be the most accurate model available for predicting drag coefficient 

of non-spherical particles.  

 

A review presented by Alfano et al.  (2011) compared and assessed the use of Ganser’s model along with 

various existing particle settling velocity models considering different morphological characterizations 

(i.e., 2D and 3D).  A couple of years later, Bonadonna et al. (2013) provided a review of the main 

approaches to model tephra sedimentation from volcanic plumes. This work concluded that more 

sophisticated numerical models do not necessary provide better accuracy in terms of ground depositions, 

but they can provide crucial information not possible with analytical models.  This review also 

emphasized that models of all levels of sophistication would benefit from better parameterization of 

critical sedimentation processes such as particle aggregation and from the quantification of uncertainties 

associated with input parameters. More recently, Bagheri and Bonadonna (2016) summarized the current 

state of methods for characterizing size, shape, and aerodynamics of volcanic particles. Their review 

confirmed that particle shape governs both size parameters and particle aerodynamics (i.e. drag 

coefficient, settling velocity), and that the spherical approximation of volcanic particles introduces large 

errors. In a complementary work, Bagheri and Bonadonna (2016b) presented a novel model to predict the 

drag coefficient of non-spherical solid particles of different shapes (settling in gas or liquid) valid for sub-

critical particle Reynolds numbers (i.e. 𝑅𝑒 <   3×10!). Finally, Dioguardi et al. (2017) presented new 

drag laws as a function of 3D fractal dimension and 3D sphericity measurements taken with X-ray 

microtomography. 

 

Despite recent progress, the prediction of the drag coefficient for volcanic particles continues to be a 

major source of uncertainty. In that context, the seminal work of Ganser (1993) has been considered to be 

the most accurate model available for predicting drag coefficient of non-spherical particles and it is 

currently employed in most VATDMs. 

1.4.2.4 Re-suspension 
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Re-suspension of fine ash has long been recognized as an issue for aviation and air quality in some 

regions of the world (e.g. Alaska, Argentina and Iceland). For the past five years, research groups 

focusing on re-suspension have worked to classify the source of re-suspended material and identify 

methodologies to include it as an area source within VATDMs. To define the source term emission 

schemes for mineral dust have been tested for volcanic ash in Iceland (Leadbetter et al., 2012; Liu et al., 

2014);  Argentina (Folch et al., 2014; Ulke et al., 2016; Reckziegel et al., 2016; Toyos et al., 2017). In a 

recent work, Beckett et al. (2016) employed a different approach by using satellite-based measurements 

in combination with radiative transfer and dispersion modeling to quantify the total mass of ash re-

suspended during the 16–17 September 2013 strong surface winds in southern Iceland.  

1.4.3 Model validation 

Strategies to develop timely and quantitative products for use in real-time observations of the dispersing 

cloud, were discussed at the “2nd IUGG-WMO Workshop on Ash Dispersal Forecast and Civil Aviation 

workshop” (Bonadonna et al., 2014). In recent years, a significant number of model validation papers 

were published as a consequence of the extensive observational data gathered during Eyjafjallajökull 

(2010), Cordón Caulle (2011) and Grimsvötn (2011) eruptions. In general, TTDM can be validated 

against ground deposits and ash cloud measurements, expecting point-to-point differences to lie within a 

factor 5 on average when model inputs are well constrained. In contrast, VATDM have traditionally been 

validated using satellite imagery, providing a qualitative location and extend of the ash cloud (e.g. Prata, 

1989). More recently, satellite retrievals (e.g. Pavolonis, 2016; Pavolonis et al., 2013), space-based 

remote sensing techniques (e.g. Dacre et al., 2011, Folch et al., 2012), or X-ray microtomography (tephra 

deposits preserved within marine sediments; e.g., Griggs et al., 2015) have been used to identify tephra 

deposits. 

 

Traditional passive satellite algorithms were recently evaluated during the Volcanic Ash Algorithm 

Intercomparison SCOPE-Nowcasting PP2 (Pavolonis, 2016). This study considered more than 20 passive 

satellite sensor algorithms from institutions and groups all over the world to improve knowledge of 

satellite-based detection and quantification of volcanic ash, and explore the nowcasting applications for 

volcanic ash forecast. The six volcanic eruptions considered in the intercomparison were Eyjafjallajökull 

(2010), Grimsvötn (2011), Sarychev Peak (2009), Kelut (2014), Cordón Caulle (2011) and 

Kirishimayama (2011). The study revealed the improvement in volcanic cloud monitoring and 

highlighted the forecasting capabilities of these data to improve the safety and economic hazards that 

volcanic eruptions pose on aviation. Despite these improvements, the study exposed the need for 

additional scientific development of algorithms and more detailed comparisons between datasets within 

an organized international framework.  
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In response to the needs presented by Pavolonis (2016), the aftermath of the 2010 Eyjafjallajökull 

eruption generated an unprecedented validation dataset that triggered the development of alternative 

algorithms. In addition to the European EARLINET network (Pappalardo et al. 2013), validation datasets 

and algorithms have been reported including observations from satellite-based infrared (e.g. Zhu et al. 

2017) and ultraviolet (e.g. Carn and Krotkov, 2016) measurements, thermal cameras (e.g., Clarisse and 

Prata, 2016; Prata and Bernardo, 2014), lidar ceilometers deployed for monitoring of meteorological 

clouds (e.g. Geisinger et al., 2016; Mona and Marenco, 2016), single or multi-wavelength aerosol lidars 

(e.g. Ansmann et al., 2010), dedicated satellite-derived ash plume measurements  (e.g. (Balis et al., 2016) 

or from in situ measurements using particle counters mounted on aircrafts (e.g. Schumann et al., 2011) 

and on ground stations (e.g. Flentje et al., 2010). 

 

In addition, the IAVCEI Commission for Tephra Hazard Modeling completed a benchmarking exercise 

for plume models of both strong and weak plumes (Costa et al., 2016b) and collaborates with the ICAO 

Volcanic Ash Scientific Advisory Group (VASAG) in building a database including satellite data, 

NWPM results and ESPs for recent eruptions.  These efforts will constitute the first open dataset for 

VATDM validation. 

1.4.4 ERC Training Networks  

The 2010 Eyjafjallajökull eruption also stressed the associated threats to volcanic eruptions and 

emphasized that Europe has and is surrounded by active volcanoes and, therefore, must be prepared for 

similar future events. In that context the European Research Council (ERC) has pioneered two Initial 

Training Networks (ITN) under the FP7 Framework to form the next generation of European 

volcanologists and modelers. These networks account for a unique and innovative portfolio of partners 

from academia, research institutes and the private sector from several European countries.  

1.4.4.1 NEMOH - Numerical, Experimental and stochastic Modeling of vOlcanic processes and 
Hazard (FP7/2007-2013 - REA grant agreement n° 289976) 

NEMOH was an Initial Training Network under the European Community FP7 running from 2012 to 

2016. The objective of the network was that of forming the next generation of European volcanologists, 

capable of extending further the knowledge and understanding of volcano dynamics and the methods and 

paradigms for volcanic hazard evaluation. The NEMOH consortium was made of nine full Network 

Partners (Institutions playing a leading European and world-wide role in volcano research, volcanic 

hazard forecasting, and management of volcanic crises), plus four Associated Partners (including two 

SMEs - Small/Medium Enterprises) that fully participated to the network activities and contributed to the 

definition and development of the research and training programs under the network. The network was 
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conceived for the appointment of 18 Early Stage Researcher (ESRs) for a total of 528 person months 

(PM).  

 

NEMOH targeted mainly seven research activities: 

i. Laboratory determination of single-phase and multiphase magma-rock properties 

ii. Analogue modeling 

iii. Numerical simulation of magma and eruption dynamics 

iv. Fluid-Rock interaction dynamics and rock transfer functions; 

v. Source models and inversion procedures; 

vi. Mixed deterministic/stochastic approach for the simulation of volcanic processes; 

vii. Volcanic hazard assessment. 

 

The training part of the network was conceived to be developed in the context of internationally 

coordinated research structured in closely interconnected research activities, including: i) the physical 

mechanisms of volcanic eruptions; ii) the numerical techniques for both the solution of complex space-

time-dependent equations that describe the physical processes, and their constrain through inverse 

modeling of large datasets, and; iii) the techniques to deal with the uncertain, stochastic nature of volcanic 

processes and hazard. 

 

More information of NEMOH objectives, deliverables and outcomes can be found at http://www.nemoh-

itn.eu/. 

1.4.4.2 VERTIGO - Volcanic ash: FiEld, expeRimenTal and numerIcal investiGations of prOcesses 
during its lifecycle (FP7/2013-2017 - REA grant agreement n° 607905) 

VERTIGO is an on-going Initial Training Network under the European Community FP7 running from 

2014 to 2018. The objective of the network is to address the challenging mission of providing an 

encompassing mechanistic and quantitative understanding of the physico-chemical processes during the 

lifecycle of volcanic ash: from formation in a volcano, through changes during the dispersal in the 

atmosphere to the impacts on life and society.The VERTIGO consortium was made of nine full Network 

Partners (Institutions playing a leading European and world-wide role in volcano research, volcanic 

hazard forecasting, and management of volcanic crises), plus fourteen Associated Partners (involving 

academia, research institutions and the private sector from eight European countries). The network was 

conceived for the appointment of 13 Early Stage Researcher (ESRs) for a total of 468 person months.  

 

VERTIGO targets mainly five research activities: 

i. Direct observation of explosive eruptions and characterization of proximal deposits; 

ii. Experimental simulation of explosive eruptions and proximal deposition; 
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iii. Experimentally constraining the physico-chemical processes in the eruption column and the 

atmosphere; 

iv. Numerical simulation of physico-chemical processes during explosive magma fragmentation and 

in eruption plumes; 

v. Impact of volcanic ash on life. 

More information of VERTIGO objectives, deliverables and expected outcomes can be found at 

http://www.vertigo-itn.eu. 

 

 
 
 
 
 
 
 
 
 

                                                   Chapter 2  
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2 Description and evaluation of the NMMB-MONARCH-ASH v1.0 
model 

2.1 Introduction 

This chapter describes and evaluate NMMB-MONARCH-ASH (Marti et al., 2017), a new on-line 

meteorological and atmospheric chemistry transport model to simulate the emission, transport and 

deposition of tephra particles released from volcanic eruptions. The final objective in developing NMMB-

MONARCH-ASH is two-fold. On one hand, at a research level, this chapter aims at studying the 

differences between the on-line/off-line modeling strategies. On the other hand, at an operational level, it  

aims to develop a robust and low-cost computational model that can be applied for more accurate on-line 

operational forecasting of volcanic ash clouds. The chapter is organized as follows; Section 2.2 describes 

the main characteristics of the meteorological core and the volcanic ash module. Section 2.3 describes the 

observational data and introduces the model evaluation strategy. Section 2.4 discusses the performance of 

the model and its cost-benefit analysis. Section 2.5 introduces the model operational set-up. Finally, 

Section 2.6 includes the conclusions of this chapter.  

2.2 Model description 

NMMB-MONARCH-ASH predicts ash cloud trajectories, concentration of ash at relevant flight levels, 

and the expected deposit thickness for both regional and global domains. The novel on-line coupling in 

the model allows solving both the meteorological and aerosol transport concurrently and interactively at 

every time-step. This coupling strategy aims at improving the current state-of-the-art of tephra dispersal 

models, especially in situations where meteorological conditions are changing rapidly in time, two-way 

feedbacks are significant, or distal ash cloud dispersal simulations are required. The model builds on the 

Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH; formerly 

known as NMMB/BSC-CTM; Badia et al., 2017a; Haustein et al., 2012; Jorba et al., 2012; Pérez et al., 

2011; Spada et al., 2013, 2015) to represent the transport of volcanic particles. The following subjects 

present a comprehensive description of the meteorological and volcanic ash components of the model.  

2.2.1 Meteorological core 

Its meteorological core, the Non-hydrostatic Multiscale Model on a B grid (NMMB; Janjic and Black, 

2007; Janjic and Gall, 2012; Janjic, 2005; Janjic et al., 2011), is a fully compressible meteorological 

model with a non-hydrostatic option that allows for nested global-regional atmospheric simulations by 

using consistent physics and dynamics formulations. The non-hydrostatic dynamics were designed to 

avoid over-specification.  The cost of the extra non-hydrostatic dynamics is about 20% of the cost of the 

hydrostatic part, both in terms of computer time and memory (Janjic, 2001, 2003).  

 



 41 

The numerical schemes for the hydrostatic and nonhydrostatic options available in the NMMB dynamic 

solver were designed following the principles found in Janjic (1977) and developed and modified 

thereafter (Janjic, 1979, 1984, 2003), and are summarized in Janjic and Gall (2012). The Arakawa B-grid 

horizontal staggering is applied in the horizontal coordinate employing a rotated latitude-longitude 

coordinate for regional domains and latitude-longitude coordinate (Janjic, 2003) with polar filtering for 

global domains. Rotated latitude-longitude grids are employed for regional simulations in order to obtain 

more uniform grid distances. In this particular case, the equator of the rotated system runs through the 

middle of the integration domain, reducing the longitudinal grid-size as the southern and the northern 

boundaries of the integration domain are approached (Janjic and Gall, 2012). In the vertical, the Lorenz 

staggering vertical grid is used with a hybrid sigma-pressure coordinate. The general time integration 

philosophy in NMMB uses explicit schemes when possible for accuracy, computational efficiency and 

coding transparency (e.g., horizontal advection), and implicit for fast processes that would otherwise 

require a restrictively short time-step for numerical stability with explicit differencing (e.g., vertical 

advection and diffusion, vertically propagating sound waves).  

 

NMMB is placed within the NOAA Environmental Modeling System (NEMS) infrastructure: a shared, 

portable, high performance software superstructure for use in operational prediction models at the 

National Centers for Environmental Prediction (NCEP). The NEMS architecture is based on the Earth 

System Modeling Framework (ESMF; Janjic and Black, 2007), and follows the general modeling 

philosophy of the NCEP regional WRF-NMM (Weather Research and Forecasting framework – Non-

hydrostatic Mesoscale Model; Janjic et al., 2001; Janjic, 2003). The NMMB model became operational in 

October of 2011 as the NCEP North American Mesoscale (NAM) meteorological model, and it has been 

computationally robust, efficient and reliable in operational applications and pre-operational tests since 

then. In high-resolution NWP applications, the efficiency of the model significantly exceeds those of 

several established state-of-the-art non-hydrostatic models (e.g. Janjic and Gall, 2012). 

 

The following sections include a comprehensive description of the model dynamics, numeric, and physics 

employed by the model. The standard physical and numerical schemes employed in NMMB are 

summarized in Table 4. 
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Meteorological Solver Scheme Reference 

Spatial discretization 
Multi-scale domain ranging from large eddy simulations (LES) to global simulations Janjic (2005) 

Conservativeness  

Conservation of mass, momentum, energy, enstrophy and a number of other first order and 
quadratic quantities. Positive definiteness and monotonicity are preserved by tracer advection 

Janjic (1984) 

Coordinates /Grid 

Horizontal coordinate Rotated latitude-longitude for regional domains, and 
latitude-longitude coordinate with polar filter for 
global domains  

Janjic et al. (2009); Janjic and Gall, 
(2012) 

Vertical coordinate Terrain following hybrid sigma-pressure Simmons and Burridge, (1981) 

Horizontal grid Arakawa B-grid staggering  Janjic, 2005; Janjic and Black, 2007) 

Vertical grid Lorenz staggering  Lorenz, (1960) 

Time integration schemes 

Horizontally propagating fast-waves  
Forward-backward scheme Ames, (1969); Gadd, (1974); Mesinger, 

(1977); Janjic, 1979)  

Vertically propagating sound waves Implicit scheme Janjic and Gall, (2012) 
Horizontal advection & Coriolis terms Modified (Stable) Adams-Bashforth scheme  
Vertical advection  

Crank-Nicolson scheme Janjic, (1977,1984) 

TKE generation and dissipation Iterative  
Advection terms 

Horizontal Energy and enstrophy conserving, quadratic 
conservative, second order Janjic and Gall, (2012) 

Vertical Quadratic conservative, second order 
Janjic and Gall, (2012) 

Diffusion terms 

Vertical  
Surface layer scheme Janjic (1994, 1996) 

Lateral  
Smagorinsky non-linear approach  Janjic (1990) 

Physics Options 

Microphysics/Clouds Ferrier (Eta) Ferrier et al. (2002) 
Short and Longwave Radiation 

Rapid Radiative Transfer Model (RRTM) Mlawer et al. (1997); Pérez et al. (2011) 

Surface Layer NMMB similarity theory scheme: Based on Monin-
Obukhov similarity theory with Zilitinkevich thermal 
roughness length 

Monin and Obukhov (1954); 
(Zilitinkevich, 1965a); Janjic (1994, 
1996)  

Land Surface, Heat & moisture  
surface flux LISS model Vukovic et al. (2010) 

Planetary Boundary layer / free 
atmosphere Mellor-Yamada-Janjic scheme Mellor and Yamada, (1982); Janjic  

(1996, 2001)  
Convective adjustments 

Betts-Miller-Janjic scheme Betts and Miller, (1986); Janjic (1994, 
2000). 

Table 4. Main characteristics of the NMMB-MONARCH-ASH meteorological solver. 

2.2.1.1 The NMMB dynamics 

The NMMB dynamics solver together with various options for physics, initialization and post processing 

are combined within the NEMS framework to produce end-to-end multiscale simulations. The solver 

includes fast waves, advection, thermodynamic processes, a nonhydrostatic add-on module, lateral 
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diffusion, horizontal divergence damping, coupling of the sub-grids of the semi-staggered grid B, 

boundary conditions, polar filtering and nesting capabilities. In addition, it also includes transport of 

various components of the atmosphere such as moisture variables and other tracers Janjic and Gall 

(2012).  

 

This section provides a brief overview of the atmospheric fluid dynamic equations implemented in 

NMMB dynamics solver. For a full review of the scientific and algorithmic approaches in the NMMB 

dynamics refer to the Janjic and Gall (2012) technical note.  The NMMB dynamics solver equations are 

characterized for being fully compressible, Eulerian and nonhydrostatic with a hydrostatic option.  

 

The hydrostatic mass continuity equation is obtained from:  

 
𝜕
𝜕𝑡

𝜕𝜋
𝜕𝑠

+ ∇! + 𝒗
𝜕𝜋
𝜕𝑠

+
𝜕
𝜕𝑠

𝑠
𝜕𝜋
𝜕𝑠

= 0 (3)  

 

where 𝜋  is the hydrostatic pressure; 𝑠denotes a generalized mass based terrain following vertical 

coordinate that varies from 0 at the model top to 1 at the surface (e.g. Eckermann, 2009); 𝒗 represents the 

horizontal velocity vector; and 𝑠 is the vertical velocity and the subscripts indicate the variable that is 

kept constant while the differentiation is performed. 

 

The nonhydrostatic dynamics extension in NMMB is implemented through an add–on nonhydrostatic 

module. This module can be turned on and off depending on resolution in order to eliminate the 

computational overhead at coarse and transitional resolutions where the impact of nonhydrostatic effects 

is not detectable ∆𝑥~∆𝑦 > 10Km. The nonhydrostatic option in NMMB was designed to avoid over-

specification, reducing about 20% of the cost of the hydrostatic dynamics both in terms of computer time 

and memory.  

 

The following equations summarize the relaxed hydrostatic approximation used in NMMB. The 

hypsometric equation !"
!"
= −𝛼, relates the geopotential 𝜙 to the hydrostatic pressure 𝜋. If the atmosphere 

is assumed to be dry, the specific volume is related to the temperature 𝑇 and actual pressure 𝑝 by the ideal 

gas law 𝛼 =   𝑅𝑇   𝑝  (𝑅 being the gas constant). Note that the ideal gas law does not involve the 

hydrostatic pressure but rather the actual pressure, 𝑝, hereafter referred to as nonhydrostatic pressure.  

Using the hypsometric equation, the third (vertical) equation of motion may be written as: 

 
𝜕𝑝
𝜕𝜋

= 1 + 𝜀 (4)  
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which defines the relationship between the hydrostatic and the nonhydrostatic pressures, and where 

𝜀 ≡ !
!
!"
!"

, defines the ratio of the vertical acceleration (𝑤) and gravity (𝑔). As can be seen from Eq. (4) 

should 𝜀 vanish, the pressure and the hydrostatic pressure become equivalent.  

 

In the hydrostatic 𝑠 coordinate system, the nonhydrostatic continuity equation takes the form: 

 

𝑤 =
1
𝑔

𝜕𝜙
𝜕𝑡 !

+ 𝒗 ∙ ∇!𝜙 + 𝑠
𝜕𝜋
𝜕𝑠

𝜕𝜙
𝜕𝜋

+𝑊 !,!,!  (5)  

 

i.e., reduces to the definition of the vertical velocity 𝑤. Where 𝑊 denotes an integration constant that may 

depend on horizontal coordinates and time; 𝑠 is the vertical velocity and the subscripts indicate the 

variable that is kept constant while the differentiation is performed. 

 

In the hydrostatic s coordinate system, the time derivative of a fluid property 𝑞  following the motion of 

an air parcel may be written as: 

 
𝑑𝑞
𝑑𝑡

=
𝜕𝑞
𝜕𝑡 !

+ 𝒗 ∙ ∇!𝑞 + 𝑠
𝜕𝜋
𝜕𝑠

𝜕𝑞
𝜕𝜋

 (6)  

 

The operator presented in Eq. (6) is applied to the nonhydrostatic continuity Eq. (5) to obtain the vertical 

acceleration !"
!"

 . Then, from vertical acceleration and gravity ratio: 

 

𝜀 =
1
𝑔
𝑑𝑤
𝑑𝑡

=
1
𝑔

𝜕𝑤
𝜕𝑡 !

+ 𝒗 ∙ ∇!𝑤 + 𝑠
𝜕𝜋
𝜕𝑠

𝜕𝑤
𝜕𝜋

 (7)  

 

The inviscid nonhydrostatic equation for the horizontal part of the wind (momentum equation) takes the 

form: 

 
𝑑𝒗
𝑑𝑡

= − 1 + 𝜀 ∇!𝜙 − 𝛼∇!𝑝 + 𝑓𝐤 ∙ 𝐯 (8)  

 

 

 

 

Finally, the thermodynamic equation takes the form: 
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𝜕𝑇
𝜕𝑡

= −𝒗 ∙ ∇!𝑇 − 𝑠
𝜕𝜋
𝜕𝑠

𝜕𝑇
𝜕𝜋

+
𝛼
𝑐!

𝜕𝑝
𝜕𝑡
+ 𝒗 ∙ ∇!𝑝 + 𝑠

𝜕𝜋
𝜕𝑠

𝜕𝑝
𝜕𝜋

 (9)  

 

where 𝑇 denotes temperature, and 𝑐! is the specific heat at constant pressure.  

 

The parameter 𝜀 is the key factor of the extended, nonhydrostatic dynamics in NMMB. The presence of 

nonzero 𝜀 in (Eq. 4), (Eq. 8) and (Eq. 9) indicates where, how, and to what extent are the familiar 

hydrostatic equations affected by relaxing the hydrostatic approximation. This approximation can be 

safely used for meso- and large scales where atmospheric flows 𝜀 << 1 (vertical acceleration is much 

smaller than the gravitational field). Previous works (Janjic and Gall, (2012) and reference therein) have 

shown that impact of nonhydrostatic dynamics becomes detectable at resolutions <10km, and is important 

at resolutions of about 1km. 

2.2.1.2 The NMMB numerics 

Horizontal domain. NMMB is discretized on an Arakawa semi-staggered B grid (Fig. 6), a form of 

spatial horizontal grid characterized for its accuracy in calculating the inertial-gravity waves (Arakawa 

and Lamb, 1977; Janjic et al., 2003) of the atmosphere and a better stability of the model.  

 

 
Figure 6. Arakawa semi-staggered B grid, where 𝒉 represents mass points (temperature, pressure, height, any scalar variable) 
and 𝑣 represents the horizontal velocity vector. The grid distances ∆𝒙,∆𝒚 and 𝑑 are also shown (extracted from Janjic and Gall, 
2012). 

The B-grid uses a regular latitude-longitude coordinate system for the global domain, and a rotated 

latitude-longitude system for regional applications (Fig. 7). The rotated regional domain is centered at the 

equator to obtain more uniform grid distances. In this particular case, the equator of the rotated system 

runs through the middle of the integration domain, reducing the longitudinal grid-size as the southern and 

the northern boundaries of the integration domain are approached (Janjic and Gall, 2012). 
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Figure 7. Horizontal coordinate system in NMMB for a domain centered at 38N, 92W. On the left side: domain plotted on a 
regular latitude longitude map background. On the right: the same domain is projected on a rotated latitude longitude map 
background (extracted from Janjic and Gall, 2012). 
 

Vertical domain. NMMB uses a hybrid pressure-sigma vertical coordinate option (Eckermann, 2009; 

Simmons and Burridge, 1981) for consistency with NCEP’s global spectral model. Hybrid σ-pressure 

coordinate schemes combine σ-denominated layers at the bottom (following terrain) with isobaric 

(pressure-denominated) layers aloft. In the hybrid coordinate system, the hydrostatic pressure can be 

obtained from: 

 

 𝜋(!,!,!,!) = 𝜋! + 𝜎! 𝑠 Π + 𝜎! 𝑠 𝜇(!,!,!) (10)  

at σ-levels = 𝜋! + Π + 𝜎! 𝑠 𝜇(!,!,!)   

at p-levels = 𝜋! + 𝜎! 𝑠 Π   

 

where 𝜋 is the hydrostatic pressure, taking values of 𝜋!"# at surface and 𝜋! at the top of the model 

atmosphere; 𝜇 is the difference between 𝜋!"#   and  𝜋!. The hydrostatic pressure depends on the horizontal 

(𝑥, 𝑦), and terrain following vertical coordinate (𝑠) - which varies from 0 at the model top to 1 at the 

surface, and time (𝑡). Π is the constant depth of the hydrostatic pressure coordinate layer at the top of the 

model atmosphere. 𝜎!  is zero at the top and the bottom of the model atmosphere, and 𝜎! increases from 0 

to 1 from top to bottom (Fig. 8 left).  

 

The Lorenz staggering of the variables (Lorenz, 1960) is used in the vertical (Fig. 8 right). The 

nonhydrostatic pressure and the geopotential are defined at the interfaces of the vertical layers, while the 

three components of the velocity and temperature are provided in the middle of the model layers 
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Figure 8. Vertical coordinate system in NMMB. On the left side: the vertical hybrid σ-pressure coordinate system. On the right 
the Lorentz vertical staggering of the variables. Solid lines represents the atmospheric layers while dotted lines represent middle 
levels within the layers (modified from Janjic and Gall, 2012). 

 

Time stepping. The general time integration philosophy in NMMB is: 

 

Explicit where possible for accuracy, computational efficiency and coding transparency of: 

- Horizontal advection of 𝑢 , 𝑣, 𝑇 

- Advection of various other variables such as water vapor mixing ratio, cloud water, and turbulent 

kinetic energy (TKE) 

- Adjustment terms (gravity-inertia waves) 

Implicit for very fast processes that would require a restrictively short time-step for numerical stability 

with explicit differencing:  

- Vertical advection 

- Vertically propagating sound waves 

 

For the basic dynamic variables the NMMB uses four types of time integration: (i) modified Adams-

Bashforth for horizontal advection of 𝑢 , 𝑣, 𝑇 and tracers, and for Coriolis terms (𝑓), (ii) Crank Nicholson 

for vertical advection of 𝑢 , 𝑣, 𝑇 and tracers, (iii) forward-backward scheme for adjustment terms and (iv) 

time integration for vertically propagating sound waves hidden inside the implicit algorithm used to solve 

the full model equations (Janjic and Gall, 2012). 

2.2.2 The NMMB Physics 

The physical package in NMMB is composed by: i) the Mellor-Yamada-Janjic (MYJ) (Mellor and 

Yamada, 1982; Janjic, 2001) level 2.5 turbulence closure for the treatment of turbulence in the planetary 

boundary layer (PBL) and in the free atmosphere (Janjic et al., 2001); ii) the surface layer schemes are 

based on the Monin-Obukhov similarity theory (Monin and Obukhov, 1954) with introduced viscous 

sublayer over land and water (Zilitinkevich, 1965; Janjic, 1994) and the NCEP Global Forecasting 



 48 

System (GFS) scheme; iii) the Noah land surface model (Pan and Mahrt, 1987; Ek et al., 2003) or the 

LISS model (Vukovic et al., 2010) for the computation of the heat and moisture surface fluxes, iv) the 

RRTM longwave and shortwave radiation (Mlawer et al., 1997; Pérez et al., 2011); v) the Ferrier 

gridscale clouds and microphysics (Ferrier et al., 2002); and vi) the cumulus parameterization schemes 

based on the Betts-Miller-Janjic convective adjustment scheme (Betts and Miller, 1986; Janjic, 1994, 

2000), or the Simplified Arakawa­Schubert scheme (Han and Pan, 2011).  Vertical diffusion is handled 

by the surface layer scheme and by the PBL scheme (Janjic, 1994). Lateral diffusion is formulated 

following the Smagorinsky non-linear approach (Janjic, 1990). Isotropic horizontal finite volume 

differencing is employed so a variety of basic and derived dynamical and quadratic quantities are 

conserved (Janjic, 1984).  

2.2.3 The volcanic ash module 

The ash module is embedded within the NMMB meteorological model and solves the mass balance 

equation for volcanic ash taking into account: i) the characterization of the source term (emissions); ii) the 

transport of volcanic particles (advection/diffusion); and iii) the particle removal mechanisms 

(sedimentation/deposition). The coupling strategy of this module can be turned on or off, depending on 

the solution required (on-line vs. off-line). The on-line version of the model solves both the 

meteorological and ash transport concurrently and consistently (on-line coupling). This strategy allows 

the particle transport to be automatically tied to the model resolution time and space scales, resulting in a 

more realistic representation of the meteorological conditions. To ensure consistency with the 

meteorological solver, the ash bins are advected at the corresponding time step of the meteorological 

tracers using the same numerical schemes implemented in the NMMB. In contrast, the off-line approach 

uses an “effective wind field” in which meteorological conditions (e.g. wind velocity, mid-layer pressure, 

etc.) are set to constant, and are only updated at specific coupling intervals. This strategy replicates the 

off-line coupling effect of traditional ash dispersal models used at operational level (e.g. coupling 

intervals of 1h or 6h). The conservativeness of the model is evaluated to ensure that the ash transport 

scheme is consistent with the mass conservation equation.  

2.2.3.1 Source term 

2.2.3.1.1 Mass eruption rate 

The Mass Eruption Rate (MER) gives the mass released by unit of time and defines the eruption intensity. 

Its characterization in NMMB-MONARCH-ASH is achieved by employing a series of empirical 

correlations between (observed) column height and MER, which, according to the buoyant plume 

similarity theory, scales roughly as the 4th power of height. Because of this strong dependence, 

uncertainties within 20% in the determination of column height can translate into uncertainties up to 70% 
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for the MER (e.g., Biass and Bonadonna, 2011). Averaged column heights of eruptions that have not been 

directly observed are typically derived from characteristics of tephra deposits (e.g. Bonadonna and Costa, 

2013; Carey and Sparks, 1986; Pyle, 1989), or derived from model inversion (e.g. Connor and Connor, 

2006; Marti et al., 2016; Pfeiffer et al., 2005). 

 

The empirical correlations to estimate MER in the model are based either on fitting observations (e.g. 

Mastin et al., 2009), or more sophisticated fits accounting for wind bent-over effects (e.g. Degruyter and 

Bonadonna, 2012; Woodhouse et al., 2013). The mathematical representation of these empirical fits is 

described next.  In addition, MER can also be derived using a more sophisticated 1-D plume model (see 

section 2.3.1.5), which, in addition, give the vertical distribution of mass.  

 

Mastin et al. (2009) estimated MER using empirical correlations based on column height observation 

taken from the field: 

𝑀𝐸𝑅 =   𝜌
0.5𝐻!"#$%

10!

!
!.!"#

 (11)  

 

where 𝜌   represents the density (2500 kg m-3), and 𝐻!"#$% is the column height above the vent (m). 

 

A more sophisticated fit to estimate MER was presented by Degruyter and Bonadonna (2012). This 

estimation accounts for the bent-over effects of winds on the eruption column: 

 

𝑀𝐸𝑅 =   𝜋
𝜌!!
𝑔′

𝛼!𝑁!

𝑧!!𝑛
𝐻!"#$%! +

𝛽!𝑁!𝑣
6

𝐻!"#$%!  (12)  

 

where 𝜌!! is the  atmospheric density at the vent (1,105 kg m-3), 𝑁 is the average Brunt-Väisälä buoyancy 

frequency (s-1), 𝑣 represents the average wind velocity across column height (m s−1), 𝑧! is the maximum 

non-dimensional height, and 𝛼 and 𝛽 are the radial and crossflow entrainment coefficients taking values 

of 0.1 and 0.5, respectively. Finally,  𝑔! in Eq. (12) corresponds to the value for the reduced gravity, which 

is computed as: 

 

𝑔′ = 𝑔
𝑐!𝜃! − 𝑐!!𝜃!!

𝑐!!𝜃!!
 (13)  

 

where 𝑔 is the gravitational acceleration (9.81 m s−2),  𝑐! denotes the mixture specific heat capacity (1250 

J kg-1 K-1), 𝑐!!  is the specific heat capacity of the atmosphere (998 J kg-1 K-1), 𝜃!  represents 

the source temperature (1200 K), and 𝜃!! is the atmospheric temperature (268.7 K). 
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Finally, Woodhouse (2013) followed the parameterizations presented by Degruyter and Bonadonna 

(2012) to include the bent-over effects of wind employing the following function for wind strength (𝑊!) 

as follows: 

 

𝑓 𝑊! = 1.44𝛾
𝑁 (14)  

where 𝛾 represents the shear rate of atmospheric wind (s-1). The resulting dimensionless value for the 

wind strength is then used to find MER as follows 

 

𝑀𝐸𝑅 = 0.35𝛼!𝑓 𝑊!)
! 𝜌!!
𝑔!

𝑁!𝐻!"#$%!    (15)  

 

In this case, Woodhouse (2013) computed the value for the reduced gravity (𝑔!) in Eq. (15) as follows: 

  

𝑔′ = 𝑔
𝑐!𝑛! + 𝑐! 1 − 𝑛! 𝜃! − 𝑐!𝜃!!

𝑐!𝜃!!
 (16)  

 

where  𝑐!, 𝑐!  and 𝑐! are the specific heat of solids, dry air and water vapor (J kg-1 K-1), respectively. 

2.2.3.1.2 Vertical distribution of mass 

The vertical distribution of mass in the column at the vent location is key when representing the plume, 

especially if wind shear exists above the volcano (Lin, 2012). To determine the vertical distribution of 

mass, NMMB-MONARCH-ASH allows for the following geometrical distributions: i) point source, 

where mass is released as a single source point at a certain height above the vent, 𝐻!"#$%; ii) top-hat, 

where mass is released along a umbrella-type slab of user-defined thickness, and iii) the so-called Suzuki 

distribution (Suzuki, 1983; Pfeiffer et al., 2005), which assumes a more complex vertical distribution of 

mass release along the eruption column; 

 

𝑆 = 𝑀𝐸𝑅 1 −
𝑧

𝐻!"#$%
exp   𝐴

𝑧
𝐻!"#$%

− 1
!

 

 

(17) 

where 𝑆(𝑧) is the mass per unit of time (kg s-1) released at a given height 𝑧 above the vent, 𝑀𝐸𝑅 is the 

total mass eruption rate, 𝐻!"#$% is the column height above the vent and 𝐴 and 𝜆 are the so-called Suzuki 

parameters. The parameter 𝐴 dictates the height of the maximum particle release (typically taking values 

of 4 or 9 for Plinian or co-ignimbrite eruptions, respectively), whereas 𝜆 controls how closely mass 

distributes around this maximum. Any of the previous options  (i.e. point, top-hat or Suzuki) above can be 

combined independently with the different fits for MER estimation. It is important to highlight that in 
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NMMB-MONARCH-ASH, the terrain following hybrid sigma-pressure vertical levels of the model are 

converted to elevations at each model integration time-step in order to interpolate 𝑀𝐸𝑅 from the discrete 

source points into the nodes of the model grid. 

2.2.3.1.3 Total grain size distribution 

The impact of explosive volcanic eruptions on climate and air traffic strongly depends on the 

concentration and grain size distribution (GSD) of pyroclastic fragments injected into the atmosphere 

(e.g. Girault et al., 2014). Grain size distribution is normally reconstructed by volcanologists from grain 

size data at individual outcrops, ranging from basic unweighted average of the GSD at individual sparse 

outcrops, to various integration methods of grain size data (e.g. Rose and Durant, 2009). The particle 

grain size distribution in NMMB-MONARCH-ASH is specified through an input file, which defines each 

particle bin properties (bin mass fraction, diameter, density and shape factor). In volcanology, grain size 

distributions are given in terms of the Φ-number, defined as 𝑑 = 2!!, where 𝑑 is the particle diameter in 

mm. The granulometry file in the model can be furnished by the user (typically derived from field data) 

or generated by an external utility program which produces Gaussian and Bi-Gaussian distributions in Φ 

(log-normal in diameter 𝑑) (Costa et al., 2016a; Folch et al., 2009). 

2.2.3.1.4 Particle aggregation 

The total grain size distribution (TGSD) erupted at the vent can be altered in case of particle aggregation, 

which dramatically impacts particle transport dynamics thereby reducing the atmospheric residence time 

of aggregating particles and promoting the premature removal of fine ash. For computational purposes, 

particle aggregation in NMMB-MONARCH-ASH is assumed to take place mainly in the eruption 

column, where particle concentration and water contents are higher (the subsequent formation of 

aggregates downstream in the ash cloud under the appropriate atmospheric conditions is not contemplated 

by the model). The model considers aggregates as another particle class (bin), introduced as a standard 

source term by considering either: i) a series of simple analytical expressions based on field observations 

or, ii) a more sophisticated wet aggregation model originally proposed by Costa et al. (2010).  In this 

particular case, the source term must be computed with the plume model (see section 2.3.1.5). 

 

The analytical expressions available in the model modify the user-given particle grain size distribution by 

assuming that a certain mass fraction of each granulometric class forms a new aggregate class that is 

added to the TGSD. Despite the obvious limitations (obviates the physics of aggregation processes), these 

field-based simplistic approaches are advantageous in that only the source term has to be modified in 

order to account for aggregation. Table 5 provides an overview of these options.  

 
Name New aggregate class  Default aggregation properties Reference 
NONE No aggregation processes n/a n/a 
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CORNELL 50% of the 63–44 μm class aggregate 
75%  of the 44–31 μm class aggregate 
100%  of the < 31 μm class aggregate 

4.2.1.1.1.1.1.1.1 Diameter = 250 μm 
Density = 350 kg m-3                    
Sphericity = 0.9 

Based on Cornell et al. (1983) Campanian 
Ignimbrite’s deposit (Y5 ash layer)  

PERCENTAGE Takes a user-defined fixed percentage 
from each particle class 

Diameter = 250 μm 
Density = 350 kg m-3 Based on Sulpizio et al. (2012) 

Table 5. Ash aggregation options in NMMB-MONARCH-ASH from from field observations. Default aggregate properties can 
be modified by the user. 

 

In addition to these empirical aggregation schemes, NMMB-MONARCH-ASH also includes a wet 

aggregation model originally proposed by Costa et al. (2010) and (Folch et al., 2010). This option allows 

for wet aggregation in the column providing an intermediate solution between the unaffordable all-size 

class approach and the empirical solutions presented before. The model is based on a solution of the 

classical Smoluchowski equation, obtained by introducing a similarity variable and a fractal relationship 

for the number of primary particles in an aggregate. It also considers three different mechanisms for 

particle collision: Brownian motion, ambient fluid shear, and differential sedimentation. The governing 

equations of this wet aggregation model are as presented below. 

 

The number of particles (∆𝑛!) of a class 𝑗 per unit of volume that aggregate during a time interval ∆𝑡 is 

approximated by: 

 

∆𝑛! ≈
∆𝑛!"!𝑁!

𝑁!!
     𝑘 = 𝑘!"#,… , 𝑘!"#  (18) 

 

where ∆𝑛!"! corresponds to the number of particles that decay per time interval, and  𝑁! and 𝑁!  are the 

number of particles with diameter 𝑘 and 𝑗 in an aggregate, respectively. The number of aggregated 

particles with diameter 𝑗 is computed employing a fractal prefactor (𝑘! ≈ 1) and a fractal exponent 

(𝐷! ≤ 3) as follows: 

 

  𝑁! = 𝑘!
𝑑!
𝑑!

!!
 (19) 

 

where 𝑑! is the aggregate diameter.  

 

The total particle decay (∆𝑛!"!) per unit volume during the interval ∆𝑡 is obtained by integrating the 

coagulation kernel over all particle sizes: 

 

∆𝑛!"! = 𝛼! 𝐴!𝑛!"!! + 𝐴!∅!/!!𝑛!"!
!!!/!! + 𝐴!"∅!/!!𝑛!"!

!!!/!! ∆𝑡 (20) 
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where ∅ is the solid volume fraction, 𝑛!"! corresponds to the total number of particles that can potentially 

participate in the aggregation process per unit volume ( !!!
!!!!!

!!    𝑗 = 𝑗!"#,… , 𝑗!"# ), and 𝛼! denotes the 

sticking efficiency mean (size class averaged) calculated as: 

 

𝛼! =
𝑓!! 𝑓!𝛼!"!

𝑓!! 𝑓!!
 (21) 

 

where 𝑓! is the class mass fraction, 𝛼!" is the sticking efficiency between the classes 𝑖 and 𝑗, and the 

addition on 𝑖 and 𝑗 is performed over the aggregating classes between 𝑘!"# and 𝑘!"#. Equation (20) 

considers the product of Eq. (21) times a collision frequency function which accounts for Brownian 

motion (𝐴!), laminar and turbulent fluid shear (𝐴!), and differential sedimentation (𝐴!"): 

 

𝐴! = −
4𝑘!𝑇
3𝜇!

  

𝐴! =
2Γ!ℇ!

3
   (22) 

𝐴!" = −
π 𝜌! − 𝜌! 𝑔ℇ!

48𝜇!
  

 

where 𝑘!  is the Boltzmann constant (1.38 × 10−23 m2 kg s−2 K), 𝑇  is the absolute temperature, 𝜇! 

symbolizes the dynamic viscosity of air, Γ! is the fluid shear, ℇ is the particle diameter to volume fractal 

relationship, 𝜌! is the class averaged mean particle density, and 𝜌! is the air density. 

2.2.3.1.5 FPlume model 

A more sophisticated approach to obtain MER and the vertical mass distribution in the column from the 

conditions at the vent consists of solving a 1-D radially averaged BPT model for mass, momentum, and 

energy. These 1-D plume models are more useful in operational roles and broad exploratory 

investigations (Costa et al., 2016b; Devenish et al., 2012). For that reason, NMMB-MONARCH-ASH is 

coupled with the 1-D FPlume model (Folch et al., 2016a); a 1-D cross-section averaged plume model 

which accounts for plume bent over, entrainment of ambient moisture, effects of water phase changes on 

the energy budget, particle fallout and re-entrainment by turbulent eddies, as well as variable entrainment 

coefficients fitted from experiments. The model also accounts for particle aggregation in presence of 

liquid water or ice that depends on column dynamics, particle properties, and amount of liquid water and 

ice existing in the column (Folch et al., 2010). This allows the plume model to predict an “effective” 

grain size distribution depleted in fines with respect to that erupted at the vent. For a complete definition 

of the governing equations of FPlume, refer to Folch et al. (2016a). FPlume has two solving strategies 

where the model: i) solves directly for column height for a given MER; or ii) solves iteratively for MER 
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for a given height. For any case, the following inputs need to be provided to the ash input file in NMMB-

MONARCH-ASH: eruption start and duration, vent coordinates and elevation, conditions at the vent (exit 

velocity, temperature, magmatic water mass fraction, and total grain size distribution) and total column 

height or MER. 

2.2.3.2 Particle advection and diffusion 

Transport of volcanic ash by advection and turbulent diffusion is analogous to that of atmospheric tracers 

(e.g. moisture Janjic et al., 2009) in NMMB (see section 2.2.1), and follows the initial model 

developments focused on the implementation of the mineral dust aerosol component (NMMB/BSC-Dust; 

Haustein et al., 2012; Pérez et al., 2011). Tracer advection is Eulerian, positive-definite and monotone, 

maintaining a consistent mass conservation of the chemical species within the domain of study. The 

Adams-Bashforth scheme is used for horizontal advection and the implicit Crank-Nicolson scheme for 

vertical advection. In addition, particle advection in NMMB is coupled with a model to account for the 

gravity-driven transport above the vent in the umbrella region of the column, typically associated to high-

intensity explosive eruptions. For the horizontal diffusion, the model uses a second order scheme with 

two types of parameterized dissipative processes: explicit lateral diffusion (often called horizontal 

diffusion, a 2nd order nonlinear Smagorinsky-type approach; Janjic, 1990) and horizontal divergence 

damping (Janjic and Gall, 2012).  

2.2.3.2.1 Gravity-driven transport 

Plumes from high-intensity eruptions can be injected high into the stratosphere, reaching a maximum 

column height and intruding laterally at the neutral buoyancy level (NBL) as a gravity current (Sparks et 

al., 1997). This gravity current can spread at velocities exceeding those of the surrounding winds, 

affecting tephra transport and deposition near the source. As larger particles are removed by deposition 

and air is entrained, the plume density decreases and momentum reduces such that, at a certain distance, 

atmospheric turbulence and wind advection become the dominant atmospheric transport mechanisms 

(Baines and Sparks, 2005). To account for this phenomena, NMMB-MONARCH-ASH is coupled with 

the model of Costa et al. (2013) describing cloud spreading as a gravity current. This parameterization 

calculates an effective radial velocity of the umbrella spreading 𝑢!  as a function of time (𝑡) or cloud 

radius (𝑅). 

 

𝑢!(𝑡) =
2
3

3𝜆𝑁𝑞
2𝜋

!
!
  𝑡! ! 

 

(23) 

𝑢! 𝑅 =
2𝜆𝑁𝑞
3𝜋

!
!
  
1
𝑅
   (24) 
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where 𝜆 is an empirical constant (𝜆 ≈ 0.2; Suzuki and Koyaguchi, 2009), 𝑁 corresponds to the frequency 

of Brunt-Väisälä due to the ambient stratification of the atmosphere, and 𝑡 is time. Finally, 𝑞 symbolizes 

the volumetric flow rate into the umbrella region and can be estimated as a function of the efficiency of 

air entrainment, 𝑘, the MER, and the location of the eruption 𝐶: 

 

𝑞 = 𝐶 𝑘
𝑀𝐸𝑅! !

𝑁!
!

 

 

(25) 

𝐶 0.5×104  m3kg-­‐3/4s-­‐7/8    for  tropical  eruptions                                                      
  1.0×104    m3kg-­‐3/4s-­‐7/8  for  midlatitude  and  polar  eruptions

 

 

The effective radial velocity of the umbrella spreading is then combined with the wind field velocity 𝑢!  

centered above the vent in the umbrella region to calculate the contribution of the gravitational spreading 

(𝑐𝑡) to the total cloud spreading: 

 

𝑐𝑡 =
𝑢!

𝑢! + 𝑢!
  ×100 

 
(26) 

To estimate the radial distance at which the critical transition between gravity-driven and passive 

transport occurs, the umbrella front velocity is compared with the mean wind velocity at the Neutral 

Buoyancy Level (NBL) estimating the Richardson number, 𝑅𝑖 (gravity-driven regime when 𝑅𝑖 > 1, 

passive transport regime for 𝑅𝑖 < 0.25, and an intermediate regime in between these values): 

 

𝑅𝑖 =
𝑢!!

𝑢!!
=

4
9𝑢!!

3𝜆𝑁𝑞
2𝜋

!
!
  𝑡!! ! 

 

(27) 

Finally from Eq. (24), the critical time-scales characterizing the passive 𝑡! and gravity-driven 𝑡! transport 

can be estimated: 

𝑡! =
32𝜆𝑁𝑞
9𝜋𝑢!!

 

𝑡! =
4𝜆𝑁𝑞
9𝜋𝑢!!

 
(28) 

 

Neglecting the gravitational spreading of the umbrella cloud in tephra dispersal simulations could 

misrepresent the interaction of the volcanic ash cloud and the atmospheric wind field for high-intensity 

eruptions and for proximal deposition of tephra (Mastin et al., 2014). 
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2.2.3.3 Particle sedimentation  

2.2.3.3.1 Particle settling velocity 

Particle sedimentation in NMMB-MONARCH-ASH is governed by the terminal velocity of settling 

particles. This fall velocity is sensitive to particle size and atmospheric conditions, determining the 

residence time of ash particles in the atmosphere. NMMB-MONARCH assumes that the settling 

velocities of aerosols (mineral dust, sea salt, etc.) follow the Stokes law for spherical particles corrected 

by the Cunningham slip factor. The Stokes law applies to the creeping or Stokes flow regime, in which 

the drag force is proportional to particle velocity, and holds only for Reynolds numbers, 𝑅𝑒 ≲ 0.1. This 

regime is justified for small particles and aerosols (< 20 μm). However, calculating settling velocities 

using the Stokes Law is less adequate for coarse ash (> 64 μm), which sediments much faster. In addition, 

ash particles are not spherical, which complicates and further slows fallout. In order to simulate properly 

a wider spectrum of particle sizes, NMMB-MONARCH-ASH adds a new sedimentation module that 

covers the turbulent regime (𝑅𝑒 ≳ 1000) in which the drag force is proportional to the square of the 

particle velocity. In this case, the gravitational particle settling velocity, 𝑣! (𝑚  𝑠!!), can be expressed as: 

 

𝑣! =
4𝑔   𝜌! − 𝜌!   𝑑

3𝐶!𝜌!
 

 

(29) 

where 𝜌! and 𝜌! denote air and particle density, respectively, 𝑑 is the particle equivalent diameter, and 

𝐶! is the drag coefficient (based on the Reynolds number). Strictly, the expression above is valid for 

spherical particles in the turbulent regime but it is often generalized to the whole range of 𝑅𝑒 numbers 

and particle shapes by defining the drag coefficient properly.  

 

The different settling velocity models available in NMMB-MONARCH-ASH depend on the empirical 

evaluation of drag coefficient (𝐶!) and the assumed particle shape. In the framework of Eq. (29), the 

available sedimentation models in NMMB-MONARCH-ASH is presented next. First, the model includes 

a simple solution to compute the drag coefficient, assuming that all particles are spherical in shape. In that 

context, Arastoopour et al. (1982) defined the empirical evaluation of the drag coefficient as:  

 

𝐶! =   
24
𝑅𝑒 1 +0.15𝑅𝑒!.!"#         𝑅𝑒 ≤ 988.947

  
      0.44                                                                  𝑅𝑒 > 988.947

 (30) 

 

This assumption for irregular particles only holds in the case of a laminar sedimentation regime 

(Bonadonna and Costa, 2013b). However, this approach is largely used in tephra dispersal modeling.  
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In order to provide analytical solutions of settling velocity specifically for irregular particles, NMMB-

MONARCH-ASH relies on simple parameterizations of particle morphology, such as the ratio of the 

three orthogonal axes (Wilson and Huang, 1979) and sphericity (Dellino et al., 2005; Ganser, 1993). In 

particular, Ganser (1993) gives a fit valid over a wide range of particle sizes and shapes covering the 

spectrum of volcanic particles considered in volcanic column models (lapilli and ash): 

 

𝐶! =   
24
𝑅𝑒𝐾!

1 +0.1118 𝑅𝑒𝐾!𝐾! !.!"!# +
0.4305𝐾!

1 + 3305
𝑅𝑒𝐾!𝐾!

 (31) 

 

where 𝐾1 and 𝐾2 are two shape factors depending on the particle orientation and particle sphericity,  𝜓,  

which is defined as: 

 

𝐾! =   
!

!!
! !!!!!.!

  (32) 

 

𝐾! = 10!.!"#! !!"#$ !.!"#$ (33) 

 

where 𝑑 is the sphere of equivalent volume, 𝑑! is the average between the minimum and maximum axis. 

The particle sphericity (𝜓) takes the value of 1 for spherical particles, while for other shapes is provided 

as an input parameter by the user. 

 

Following a similar approach than Ganser (1993), the Wilson and Huang (1979) model used the 

interpolation suggested by Pfeiffer et al. (2005) to provide suitable 𝐶! valid for different particle sizes and 

shapes: 

 

𝐶! =   

24
𝑅𝑒𝜑

!!.!"! + 2 1.07 − 𝜑                                                              𝑅𝑒 ≤ 10!

1 −   
1 − 𝐶! !"!!"!

900
10! − 𝑅𝑒                 10! ≤ 𝑅𝑒 ≤ 10!

1                                                                                                                                                      𝑅𝑒 ≤ 10!

 (34) 

 

where 𝜑 = (𝑏 + 𝑐)/2𝑎 is the particle aspect ratio (𝑎 ≥ 𝑏 ≥ 𝑐 denote the particle semi-axes).  

 

Finally, NMMB-MONARCH-ASH also includes the Dellino et al. (2005) sedimentation model focused 

to describe the sedimentation of larger particles: 

 

𝑣! =   1.2605
𝑣!
𝑑

𝐴𝑟𝜀!.! !.!"#$ (35) 
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where 𝐴𝑟 = 𝑔𝑑! 𝜌! − 𝜌!
𝜌!

𝜇!!
 is the Archimedes number, 𝑔 is the gravity acceleration, 𝜀 is a particle 

shape factor (sphericity to circularity ratio), 𝜇! is the dynamic viscosity,  𝑑  is the particle equivalent 

diameter, and 𝜌! and 𝜌! are the air and particle density, respectively.  

2.2.3.3.2 Dry deposition 

Dry deposition, acting at the bottom layer of the model, is a complex process depending on physical and 

chemical properties of the particle, the underlying surface characteristics and micro-meteorological 

conditions. Dry deposition in the model is based on that originally proposed by Zhang et al. (2001). This 

parameterization has been updated to account for the different settling velocities available for volcanic 

particles - Eq. (29). The dry deposition velocity in the model, 𝑣! (𝑚  𝑠!!), is given by: 

 

𝑣! =   𝑣! +
1

𝑅! + 𝑅!
 

 
(36) 

where  𝑅! is the aerodynamic resistance of the particle, and 𝑅! is the surface resistance (both in 𝑠  𝑚!!). 

These terms take into account all the effects of the lowermost layer of the atmosphere, such as turbulence 

(𝑅!) and Brownian diffusion, impaction and interception (𝑅!). It is worth mentioning that, for most of its 

resident time, airborne volcanic ash lies above the near-surface atmospheric layers, where gravitational 

settling dominates. This fact implies that, in most cases, dry deposition has little influence on model 

results for volcanic ash. 

2.2.3.4 Mass conservation 

Mass conservation is a critical requirement for any atmospheric transport algorithm. Non-conservative 

schemes can significantly underestimate or overestimate concentrations, especially for long time 

integrations, in which it is critical that the tracer advection scheme is consistent with the mass continuity 

equation (Jöckel et al., 2001). Most mesoscale meteorological models use observation/analyzed fields or 

global model results as initial conditions, and therefore they are not very sensitive to slowly accumulated 

mass inconsistencies as re-initializations remove accumulations. However, dispersal models are usually 

very sensitive to mass inconsistencies set in previous simulations or spin-up fields as initial conditions, 

thereby accumulating mass inconsistencies.  

 

In addition to mass conservation, monotonicity and prevention of non-physical under and overshoots in 

the solution are also a highly desirable characteristics in transport schemes (Rood, 1987). For these 

reasons, the model includes a conservative, positive definite (i.e. tracer is a positive scalar) and monotone 

(i.e. entirely increasing) Eulerian scheme for advection. The positive definiteness in the model is 

guaranteed by advecting the square root of the tracer using a modified Adams-Bashforth scheme for the 
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horizontal direction and a Crank-Nicolson scheme for the vertical direction. The conservation of the 

tracer is achieved as a result of the preservation of quadratic quantities by the advection scheme. 

Monotonization is applied a posteriori to eliminate new extrema (Janjic et al., 2009). The conservative 

nature of NMMB-MONARCH-ASH is evaluated by calculating the mass flux at the boundaries (for 

regional domains) of the computational domain, the airborne mass, and the mass deposited on the ground 

to verify mass conservation at each time-step (e.g. < 0.5% mass creation for a 30 day simulation).  

2.3 Model evaluation 

The forecast skills of NMMB-MONARCH-ASH have been tested for several well-characterized 

eruptions, including the 39ka Campanian Ignimbrite (Italy), Decepcion Island 1970 (Antarctica), 

Pinatubo 1991 (Philippines), Etna 2001 (Italy), Chaitén 2008 (Chile), Eyjafjallajökull 2010 (Iceland), and 

Cordón Caulle 2011 (Chile) eruptions (e.g. Marti et al., 2013, 2014, 2015, 2016, 2017). This section 

presents two applications of the model for the ash dispersal forecast of weak and strong long lasting 

eruptions. Section 2.3.1 summarizes the results of the regional and global simulations for the first days of 

the 2011 Cordón Caulle eruption. This event represents a suitable case study of strong long-lasting 

eruptions with changing winds, which is useful to evaluate the advantages of the on-line approach for 

operational forecast. In a parallel effort, Sect. 2.3.2 summarizes the results from the regional 

configuration of the model for the 2001 Etna eruption. This eruption is a good example of a weak, long-

lasting eruption, useful when evaluating the sedimentation mechanisms of the model against well-

characterized tephra deposits.  

 

 

 

2.3.1 The 2011 Cordón Caulle eruption 

The 2011 Cordón Caulle eruption was a typical mid-latitude Central and South Andean eruption, where 

dominating winds carried ash clouds over the Andes causing abundant ash fallout across the Argentine 

Patagonia. Besides the significant regional impacts on agriculture, livestock and water distribution 

systems, this eruption stranded thousands of passengers due to air traffic disruptions in the southern 

hemisphere, thereby causing important economic losses to airlines and society (e.g. Raga et al., 2013; 

Wilson et al., 2013). This event evidenced the global nature of the volcanic ash dispersion phenomena 

and highlights the need for accurate real-time forecasts of ash clouds. 

 

The Cordón Caulle volcanic complex (Chile, 40.5º S, 72.2º W, vent height 1420 m a.s.l.) reawakened on 

4 June 2011 around 18:30 UTC after decades of quiescence. The initial explosive phase spanned more 

than two weeks, generating ash clouds that dispersed over the Andes. The climactic phase (~27 h) (Jay et 
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al., 2014) was associated with a ~9 km (a.s.l.) high column (Osores et al., 2014). For the period between 4 

- 14 June, numerous flights were disrupted in Paraguay, Uruguay, Chile, southern Argentina and Brazil. 

The two major airports serving Buenos Aires and the international airport of Montevideo, Uruguay, were 

closed for several days, along with airports in Patagonia (Wilson et al., 2013). A detailed chronology of 

the eruption can be found in Collini et al. (2013) and Elissondo et al. (2016), the stratigraphy and 

characteristics of the resulting fallout deposit are described in Pistolesi et al. (2015) and Bonadonna et al., 

(2015b), and a summary of the environmental impacts of the eruption is discussed in Raga et al. (2013) 

and Wilson et al. (2013). This section describes the synoptic meteorological situation during the first two 

weeks of eruptive activity (Fig. 9), and gives a brief chronology of the events in order to compare them 

with the predictions of the model.  

 
Figure 9. Meteorological synoptic situation during the first two weeks (4-14 June) of the 2011 Caulle (white star) activity over 
South America. Plots show the direction (vector) and velocity (contours m s-1) of the wind at 9100 m above ground level (300 
hPa circa). Meteorological data obtained from the NMMB meteorological forecast driven with ERA-Interim reanalysis at 0.75º 
horizontal resolution (extracted from Marti et al., 2017). 
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The eruption developed as a long-lasting rhyolitic activity with plume heights above the vent between 9-

10 km high a.s.l. (4-6 June), 4 and 9 km during the following week (7-14 June) and < 6 km after 14 June 

(Global Volcanism Program, GVP, http://www.volcano.si.edu). The first major episode, on 4 June (18:45 

UTC), resulted in an ash cloud (9-10 km) that reached the Chile-Argentina border within the hour of the 

eruption. On June 5, E-SE winds drove the plume to the Atlantic Ocean (1800 km away from the source), 

leaving a large area of Argentina territory affected by ash fall. On June 6, the plume changed its direction 

abruptly toward N-NE, reaching the northern regions of the Argentine Patagonia, and then shifted 

direction again towards SE, threating the Buenos Aires air space. On June 7, a second episode resulted in 

a plume (4-9 km) dispersing ash further to the north of Argentina leading to a more recognizable shift of 

winds over the E-SE. On June 8, the volcanic cloud (9-10 km a.s.l.) dispersed towards NE with a bend 

toward SE 400 km from the source. On June 9, the plume had a NE direction reaching the city of Buenos 

Aires and the northern boundary of Paraguay following a frontal zone passing through Patagonia. This 

resulted in major air traffic disruption at the two airports that service the city: Aeroparque (AEP) and 

Ezeiza (EZE), which remained closed intermittently during the following 15 days. Later during the day, 

the wind turned SE dispersing ash over Uruguay, Brazil and Paraguay. Ash cloud continued to change in 

direction over the next 6 days, with clouds following the ridge structure to the NE and SE, respectively. 

2.3.1.1 Regional simulation 

2.3.1.1.1 Model set-up 

The model domain for the regional run is presented in Table 6 and consists of 268x268x60 grid points 

covering the northern regions of Chile and Argentina using a rotated latitude–longitude grid with a 

horizontal resolution of 0.15º x 0.15º. The top pressure of the model was set to 21 hPa (∼34 km) with a 

mesh refinement near the top (to capture the dispersion of ash) and the ground (to capture the 

characteristics of the atmospheric boundary layer). The computational domain spans in longitude from 

41º W to 81º W and in latitude from 18º S to 58º S. Runs were performed with the on-line version of 

NMMB-MONARCH-ASH from 3 June 2011 at 00:00 UTC to 21 June 2011 at 00:00 UTC. The 

integration time-step for the meteorological core and aerosol transport was set to 30 seconds. The 

dynamic time-steps for the long and short wave radiations were computed every 120 time-steps. 

Feedback effects of ash particles on meteorology and radiation were not included in this run. The 

meteorological driver was initialized with wind fields from the Era-Interim reanalysis at 0.75º x 0.75º 

resolution as initial and 6-h boundary conditions. In order to reduce the errors in meteorological 

conditions, they were reinitialized every 24 h with a spin-up of 12 h.  

 

Daily eruption source parameters (ESP) were obtained from Osores et al. (2014), who estimated column 

heights for each eruptive pulse using the Imager Sensor data from the GOES-13 satellite, applying the 
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cloud-top IR image technique (Kidder and VonderHaar, 1995). Mass flow rate released along the column 

was derived from column heights based on Mastin et al. (2009), assuming a Suzuki vertical distribution of 

mass typical of explosive Plinian eruptions (A=4 ; λ=5). Grain size distribution was obtained from Collini 

et al. (2013) and discretized in 10 bins ranging from -1Φ (2 mm) to 8Φ (4 μm) with a linear dependency 

of particle density on diameter ranging from 1.000 to 2.200 kg m-3. Particle sphericity was set to a 

constant standard value of 0.9 for all bins. The Percentage aggregation model was used to update the 

TGSD with a new bin for aggregates, resulting in a total of 11 bins.  

 

 

MODEL CONFIGURATION 

Dynamics NMMB (30s/180s time-step) 

Physics 

Ferrier microphysics  

BMJ cumulus scheme 

MYJ PBL scheme  

LISS land surface model  

Aerosols 11 ash bins (30s/180s time-step) 

Source Term (emissions)  

Duration 

Vertical distribution 

MER formulation 

 

20 days 

Suzuki distribution 

Mastin et al. (2009) 

Aggregation model Percentage 

Sedimentation model Ganser (1993) 

Run Set-up 

Number of processors 

Domain 

Horizontal resolution 

Vertical layers 

Top of the atmosphere 

Meteorology Boundary conditions  

(spatial resolutions) 

512 

Regional/Global 

0.15º x 0.15º / 1º x 0.75º 

60 

21 hPa 

ECMWF EraInterim Reanalysis   (0.75º x 0.75º) 

Table 6. Model configuration for the 2011 Cordón Caulle regional and global runs. The regional run used a horizontal resolution 
of 0.15º x 0.15º with a 30s dynamic time-step, while the global domain used a horizontal resolution of 1º x 0.75º with a 180s 
dynamic time-step. 

 

2.3.1.1.2 Validation of results against satellite imagery 

Model results for the airborne mass concentration of ash were validated using qualitative and quantitative 

comparisons with data obtained using two different techniques. On one end, a qualitative comparison is 

performed between the simulated column mass (g m-2) from the model and the NOAA-AVHRR satellite 

imagery provided by the high-resolution picture transmission (HRPT) division of the Argentinian 

National Meteorological Service. Figure 10 shows how the model forecasts for cloud trajectory and 

arrival times are in agreement with observations, capturing the three major dispersion episodes. It should 
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be noted that these types of images are not directly comparable because the MODIS ash detection 

threshold and the reflectivity coefficients of volcanic ash are not well constrained. However, the figure 

illustrates the capability of the model to predict the variation of the cloud position with time.  

 
Figure 10. Composite image of NMMB-MONARCH-ASH results for dispersion of ash for the 2011 Caulle eruption at different 
time slices. Simulation results are compared against split window algorithm NOAA-AVHRR satellite images (bands 11-12 
microns). Contours indicate ash column load (g m-2) resulting from integrating the mass of the ash cloud along the atmospheric 
vertical levels (extracted from Marti et al., 2017). 

 

Column mass simulations were also validated against ash mass loadings presented by Osores et al. 

(2015), who retrieved ash-contaminated pixels detected on the basis of the concept of reverse absorption 

(Prata, 1989a, 1989b), i.e. those pixels with brightness temperature differences between 11 and 12 

μm  (BTD11-12 μm) that are lower than 0 K. To minimize the presence of false positives, pixels with a 

BTD11-12 μm > -0.6 K and clear sky pixels were removed. Mass loadings were mapped up to 15 g m-2 

based on an approach which combines the satellite data with look-up tables of brightness temperatures 

obtained with a radiative transfer model and optical properties of andesite volcanic rocks (Prata, 2011).  

 

Figure 11 shows a good quantitative agreement between the model results and the airborne ash mass 

loadings described above. 
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Figure 11. Left: Mass loadings (g m-2) of the 2011 Caulle volcanic ash cloud from the MODIS-based retrievals (Osores et al., 
2015). Right: Predicted column mass (g m-2) with NMMB-MONARCH-ASH for a) 6 June at 14:25 UTC and, b) 8 June at 14:15 
UTC (extracted from Marti et al., 2017). 

2.3.1.1.3 Validation of results against fallout deposit 

Tephra was mostly deposited eastward from the source during the first 72 h of the event within an 

elongated area between 40-42º S and 64-72º W. Results from the ash deposition forecast were validated 

against: i) a detailed characterization of the proximal deposit for the first 72 h of the eruption, and ii) an 

isopach map derived from measurements taken for the period beginning on 4 June until 30 June (Collini 

et al., 2013).  

 

To evaluate the simulated computed thicknesses (cm) by the model near the vent during the first 72 h of 

the event, model results were compared against a comprehensive classification of the proximal deposit 

presented by Pistolesi et al. (2015b), who constrained the stratigraphic sequence of the deposit in different 

units (phases). In here, the deposit is constrained to the first three units of their work, corresponding to the 

first 72 h of the eruptive even and including: i) Unit I, containing coarser-grained layers A-B, 

representing the very first stage of the eruption within the first 50 km from the vent, and layers A–F 

associated to the first 24-30 h of the eruption (afternoon of 4 to morning of 5 June); ii) Unit II, containing 

layer H, a fine pumice lapilli layer which was emplaced starting on the night of 6 June; iii) Unit III, 

enclosing layer K2, the easiest to identify from several coarser (fine-lapilli) grain-size layers, and being 

associated to the morning of 7 June. Figure 12 shows that NMMB-MONARCH-ASH can reproduce the 

deposit presented by Pistolesi et al. (2015b) both in time and space. Key sections located along the 

dispersal area (e.g. San Carlos de Bariloche – SCB, 90 km from the vent; Ingeniero Jacobacci – IJ, 240 

km east of the vent) were used as geographic references. 
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Figure 12. Left: Isopach maps in centimeter of layers A-B, A–F, H, and K2. Dashed lines infer the limit of the deposits presented 
in Pistolesi et al. (2015b). Right: Corresponding NMMB-MONARCH-ASH computed thicknesses (cm). Key locations in blue 
include San Carlos de Bariloche (SCB) and Ingeniero Jacobacci (IJ), 90 and 240 km east of the vent); (extracted from Marti et 
al., 2017). 

 

To evaluate the model performance at the end of our simulation, model results were also validated against 

an isopach map derived from measurements taken from the 4 to 30 June presented by Collini et al. 

(2013). Deposit load variations produced by remobilization were not considered in this analysis. Figure 

13 shows good agreement between the modeled deposit load (kg m-2) at the end of the simulation and the 

measured ground deposit isopachs (kg m-2) at 30 June from Collini et al. (2013). The model resulted in a 

cumulative mass of ~4.2  ×  10!! kg. This value is in agreement with previous works, where total mass 

was either modeled (Collini et al., 2013) or estimated by empirical fits (Bonadonna et al., 2015b). Ashfall 



 66 

forecast with the NMMB-MONARCH-ASH model represented well the overall deposit load for the 2011 

Caulle eruption. 

 
Figure 13. Left: measured ground deposit isopachs (kg m-2) for the period beginning on 4 June until 30 June. Dashed lines infer 
the limit of the deposits (modified from Collini et al., 2013). Right: Predicted deposit load (kg m-2) with NMMB-MONARCH-
ASH at the end of the simulation. Key locations in blue include San Carlos de Bariloche (SCB; 90 km from the vent), Ingeniero 
Jacobacci (IJ; 240 km east of the vent), and Trelew and Viedma (~ 600 km SE and NE of the vent, respectively); (extracted from 
Marti et al., 2017). 

2.3.1.2 Global simulation 

For this simulation, the global domain was configured using a regular latitude–longitude grid with a 

horizontal resolution of 0.75º × 1º and 60 vertical layers. The ash distribution is simulated between 3-21 

June 2011 using the Era-Interim reanalysis at 0.75º x 0.75º resolution as initial conditions. Meteorological 

conditions for the global runs were also reinitialized every 24h. The atmospheric model’s fundamental 

time-step was set to 180 s, while the rest of the model variables and grain size distribution remained the 

same as in the regional simulation. Figure 14 shows the global dispersal of ash for the 2011 Cordón 

Caulle eruption at different times of the simulation. As it can be inferred from this figure, by 10 June, the 

plume entered the Australian and New Zealand airspace (Fig 14b) covering more than half of the southern 

hemisphere. At that point, the Civil Aviation Authority of New Zealand warned pilots that the ash cloud 

was between 20,000 and 35,000 feet (6 to 11 kilometers), the average cruising level for many aircraft 

(Sommer, 2011). Before the end of our simulation, on 13 June the ash cloud had completed its first circle 

around the globe. This is in agreement to satellite images reported by the Darwin Volcanic Ash Advisory 

Centre (Darwin VAAC, 2011). Finally, results from the global simulation are also in agreement with 

those from our regional run. 
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Figure 14. NMMB-MONARCH-ASH total column concentration (mass loading; mg m-2) from our global simulation. Results for 
a) 8 June at 09:00 UTC, b) 10 June at 04:00 UTC, and c) 14 June at 06:00 UTC (modified from Marti et al., 2017). 
 

2.3.1.3 Forecasting impacts on civil aviation 

NMMB-MONARCH-ASH can furnish values of airborne concentration at relevant flight levels (FL), 

defined as a surface of constant atmosphere pressure (expressed in hundred of feet) separated from other 

such surfaces by specific pressure intervals, and for which ash concentration is forecasted. This 

information is particularly important for air traffic management and can be used to decide alternative 

routes to avoid an encounter with a volcanic cloud. Airborne concentration at FL050 (5,000 feet of 

nominal pressure) is relevant for the determination of flight cancellations and airports closures, while 

concentrations at FL300 (30,000 feet) are critical to assist flight dispatchers while planning flight paths 

and designing alternative routes in the presence of a volcanic eruption. The model runs as if responding to 

an eruptive event, i.e. only used the semi-quantitative data available at that time as volcanological inputs.  
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Figure 15 shows the airspace contamination forecasted by the model during the 6-7 June at flight levels 

FL050 and FL300, within a latitude band between 20º S and 55º S.  

 

 
Figure 15. NMMB-MONARCH-ASH Flight level ash concentrations (mg m-3) before and after closure of the Buenos Aires 
(Ezeiza) airport and air space. Results for FL050 (left) and FL300 (right) for a) 6 June at 11:00 UTC, b) 7 June at 04:00 UTC, 
and c) 7 June at 12:00 UTC. Safe ash concentration thresholds are shown (red contours illustrate “No Flying” zones); (extracted 
from Marti et al., 2017). 

 

Model results show the volcanic cloud twisting in different directions during that period of time, 

achieving critical concentration values within a wide area east of the Andes range. On 6 June, simulation 

results show the volcanic cloud at high atmospheric pressure (~ 30,000 feet or 300 hPa) moving 

northwards, and the one at lower atmospheric pressure (~ 5,000 ft or 850 hPa) threatening the main 

international airports that service the region of Buenos Aires (Fig. 15a). In the morning of 7 June, the ash 



 69 

cloud present at lower atmospheric pressure (~ 5,000 ft) changed its direction towards the SW, ultimately 

affecting part of the Patagonia and Chile (Fig. 15b), while higher ash clouds started their course around 

the globe (Fig. 15c). These results suggest that the cancellation of multiple flights in several Argentinean 

airports during this time was justified. It is important to point out that, for this section, our objective is not 

to perform a detailed study of the Caulle eruption but to use it as a blind test to confront short-term model 

predictions and semi-quantitative syn-eruptive observations.  

2.3.2 The 2001 Mt. Etna eruption 

Mt. Etna is the most active volcano in Europe and constitutes a continuous hazard for eastern Sicily. 

Since 1980, Mt. Etna has injected large volumes of pyroclasts into the atmosphere (between 104 and 107 

m3 per event) over more than 160 eruptive episodes (Scollo et al., 2012). The explosive activity of Mt. 

Etna reached its climax in 2001 and 2002–03 when two major flank eruptions occurred; both 

characterized by long-lasting explosive activity (Branca and Del Carlo, 2005). The 2001 event represents 

a good case to evaluate the deposition mechanisms of the model against the well-characterized tephra 

deposit reported in Scollo et al. (2007). The explosive activity at the 2570 m vent had three main phases 

characterized by phreatomagmatic, magmatic and vulcanian explosions. The eruption started with a series 

of phreatomagmatic explosions during the first days of the eruption. These explosions were followed by a 

second eruptive phase characterized by strombolian and Hawaiian style explosions during 19-24 July. 

The explosive activity continued until 6 August with a series of vulcanian explosions. Tephra fallout 

associated to the explosive activity during 21-24 July represented a major source of hazard for eastern 

Sicily. Flight operations were cancelled at the Catania and Reggio Calabria airports during the 22 and 23 

July. A detailed chronology of the eruption can be found in Scollo et al. (2007). Volcanic plumes were 

detected by the Multiangle Imaging Spectro Radiometer (MISR) on board NASA’s Terra spacecraft, and 

analyzed with stereo matching techniques to evaluate the height of the volcanic aerosol with a precision 

of a few hundred meters (Scollo et al., 2012). This section validates NMMB-MONARCH-ASH against 

the tephra deposit produced from the 2570 m vent for that period of time, and compares the model 

performance against simulations results from the FALL3D model (see section 1.3.3.1) for the same event.  

2.3.2.1 Regional simulation 

2.3.2.1.1 Model set-up 

Two regional domains were used to simulate the first phase of the 2001 eruption of Mt. Etna (Table 7). 

The first domain (Regional 1), used to reconstruct the tephra deposit, consists of 101x101x60 grid points 

covering the SE flank using a rotated latitude–longitude grid with a horizontal resolution of 0.05º x 0.05º. 

Similarly to the Cordón Caulle simulations, the top pressure of the model was set to 21 hPa (∼34 km) 

with a mesh refinement near the top and ground. The computational domain spans in longitude from 12.5º 
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E to 17.5º E, in latitude from 35.25º N to 40.25º N. Simulation runs were performed with the on-line 

version of NMMB-MONARCH-ASH from 21 July 2001 at 00:00 UTC to 25 July 2001 at 00:00 UTC. 

The integration time-step for the meteorological core was set to 10 seconds. The meteorological driver 

was initialized with Era-Interim reanalysis meteorological data at 0.75º x 0.75º resolution as initial and 6-

h boundary conditions. A spin-up of 12 h was used to prepare each daily model run, reinitialized with the 

corresponding reanalysis of the model tracers’ output from the previous day, and the associated eruption 

source parameters. Meteorological conditions were reinitialized every 24 h. The grain size distribution 

and eruption source parameters were obtained from Scollo et al. (2007), who assumed a Suzuki vertical 

mass distribution located at the middle of the eruption column (A=2; λ=1), and employed the Mastin et al. 

(2009) empirical relationship to characterize the MER and the Voronoi tessellation method to obtain the 

grain size distribution. Finally, sensitivity analyses were performed against the different aggregation 

schemes available in the model.  In all cases, the TGSD was updated with a new bin for aggregates, 

resulting in a total of 8 bins. 

 

A second regional domain (Regional 2) was used to evaluate tephra dispersal between 21 and 25 of July. 

In this case, the domain consisted of 201x201x60 grid points covering a computational domain spanning 

in longitude from 41º E to 81º E, in latitude from 18º S to 58º S. This domain used a coarser horizontal 

resolution of 0.1º x 0.1º. The integration time-step for the meteorological core was set to 30 seconds. The 

rest of model set-up was kept the same as in the first regional domain (Regional 1).  

 

MODEL CONFIGURATION 

Source Term (emissions)  

Duration 

Vertical distribution 

MER formulation 

Column height above the vent 

Ash bins 

 

 3 days 

Suzuki distribution 

Mastin et al. (2009) 

2570 m 

8 

Aggregation model Cornell et al. (1983) 

Sedimentation model Ganser (1993) 

Run Set-up 

Number of processors 

Domain 

Horizontal resolution 

Vertical layers 

Top of the atmosphere 

Meteorology Boundary conditions  

 

256 

Regional 1/ Regional 2 

0.1º x 0.1º /  0.05º x 0.05º 

60 

21 hPa 

ECMWF EraInterim Reanalysis   (0.75º x 0.75º) 

Table 7. Model configuration for the 2001 Mt. Etna regional simulations. Regional Run1 used a horizontal resolution of 0.1º x 
0.1º with a 30s dynamic time-step, while Run2 used a finer horizontal resolution of 0.05º x 0.05º with a 10s dynamic time-step. 

 

 

2.3.2.1.2 Validation of results against fallout deposit 
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At the end of the second explosive phase, a continuous tephra layer covered Etna's flanks between Giarre 

and Catania (from E to S). Ash deposition results from the model were validated against 47 samples 

collected between 25 and 26 July from measured areas on flat open spaces, where the deposit did not 

show any reworking. The computed tephra dispersal and deposition from NMMB-MONARCH-ASH was 

able to reproduce the bilobate shape of the real deposit with the two axes oriented toward Acireale and 

Acicastello towns. Figure 16 compares the simulated deposit load (kg m-2) at the end of the run against 

the isopachs map derived from measurements taken from the 21-24 July (Scollo et al., 2007). The model 

resulted in a cumulative mass of ~1.18  ×  10! kg. This value is in agreement with the results obtained 

from Scollo et al. (2007) 

 

 
Figure 16. Left: Isomass map of the tephra deposit formed between 21 and 24 July 2001. Curves are given in kg m-2. Coordinates 
are given in UTM-Datum ED50 (Scollo et al., 2007). Right: Modeled deposit load (kg m-2) with NMMB-MONARCH-ASH at 
the end of the event (extracted from Marti et al., 2017). 

2.3.2.2 Model intercomparison: NMMB-MONARCH-ASH vs. FALL3D 

To validate the model performance of NMMB-MONARCH-ASH for its operational implementation, the 

tephra deposition results of the model are compared against those of the FALL3D model for the 

reconstruction of the 2001 Mt. Etna eruption. For this comparison both models are run using the same 

meteorological and volcanological initial conditions (Table 7). Figure 17 shows the simulated thicknesses 

(vertical axis) for both transport models against the observations (horizontal axis) presented in Scollo et 

al. (2007). The model improved the tephra distribution results from FALL3D simulations for the same 

event (R2; 0.80/0.62), reducing the RMSE (0.014/0.24) and bias (0.02/0.6). In particular, all values 

simulated with NMMB-MONARCH-ASH plot inside the region between 5 and 1/5 (dashed orange line) 

times the observed mass at each station. The greatest differences perceived against the observations for 

both models belong to those points located at distances less than 15 km from the vent. The mean value of 

the relative error between the computed values and observed data is 64%, which improves those from 
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FALL3D (91%), and are comparable with those of Scollo et al. (2007), who obtained a 57% by deposit 

best-fitting using the HAZMAP dispersion model.  

                          
Figure 17. Simulated versus observed thicknesses at 47 locations of the 2011 Etna eruption with NMMB-MONARCH-ASH 
(circles) and FALL3D (crosses). The solid bold line represents a perfect agreement, while the dashed and solid thin orange lines 
mark the region that is different from observed thicknesses by a factor 5 (1/5) and 10 (1/10), respectively (extracted from Marti et 
al., 2017). 

2.4 Numerical performance 

The high computational efficiency of the NMMB meteorological driver allows for the application of 

nonhydrostatic dynamics at a global scale (Janjic et al., 2009), and supports that NMMB-MONARCH-

ASH could be used in an operational forecast of volcanic ash clouds. Model parallelization is based on 

the Message Passing Interface (MPI) library. The computational domain is decomposed into sub-domains 

of nearly equal size in order to balance the computational load, where each processor is in charge to solve 

the model equations in one sub-domain. The Eulerian schemes in the model require relatively narrow and 

constant width halos (i.e. data points from the computational domain of neighboring sub-domains that are 

replicated locally for exchange), which simplify and reduce communications.  

 

To optimize a future operational implementation of the model, we aim to minimize the time-to-solution 

required avoiding communication overhead. To measure this, the parallel speed-up (computation speed) 

of the model is analyzed; that is, the performance gains of parallel processing in comparison to serial 

processing: 

𝑆 ! =
𝑡 !!!
𝑡 !

 (37) 

 

where 𝑆 is the computed speed-up value, and 𝑡 is the simulation run-time employing 𝑃 processors instead 

of running it serially (𝑃 = 1). Figure 18 shows the parallel speed-up of the modeling system for a global 
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simulation of the climactic phase for the 2011 Cordón Caulle (Table 6). On the MareNostrum-III 

supercomputer, maximum efficiency for the global simulation described in Table 6 is reached between 

32-40 nodes (16 CPUs each). 

 

In this same context, the model scalability (scaling efficiency) was evaluated for NMMB-MONARCH-

ASH regional and global configurations by performing a strong scalability test. For this test, the problem 

size of our simulation (e.g., model domain and resolution) remains fixed while increasing the number of 

processing cores. This is measured by the parallel efficiency of the model, which computes the ratio 

between the parallel speed-up over the number of processors employed: 

 

𝐸 ! =
𝑆 !

𝑃
 (38) 

 

Parallel efficiency is used as a metric to determine how far the model’s speed-up is from the ideal. If the 

speed-up is ideal, the efficiency is 1, regardless of how many cores the program is running on. If the 

speed-up is less than ideal, the efficiency is less than 1. Figure 19 shows the parallel efficiency of the 

modeling system. A parallel maximum efficiency of 0.6 is found for the global simulation under the same 

computational conditions than the parallel speed-up. 

Number of computational nodes 

,1.0

,2.0


,4.1


,7.2


,12.8


,19.3
 ,20.1

,17.9


,1.0
,1.9

,3.9


,6.4


,10.4
 ,10.0
 ,10.8


,7.5


0


5


10


15


20


25


0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50


Sp
ee

d-u
p 

(S
)


Dispersal
 Meteo


Figure 18. NMMB-MONARCH-ASH parallel speed-up results (S; computational speed) for meteorology only 
(blue) and for meteorology and dispersal combined (red); (modified from Marti et al., 2017). 
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Figure 19. NMMB-MONARCH-ASH parallel efficiency (E) for meteorology only (blue) and for meteorology and dispersal 
combined (red); (modified from Marti et al., 2017). 

 

In addition, scalability analyses were performed on all the available source term and sedimentation 

schemes in the model. The relative computational cost associated with the main processes in NMMB-

MONARCH-ASH is presented in Fig. 20.  Processes represented include: meteorological driver, volcanic 

ash transport and sedimentation forecast, aggregation of particles, gravity current effects, and the restart 

phase. The restart phase represents the CPU time employed to rerun the preprocess system (see section 

2.5.1) every 24h of simulation. This figure suggests that the computational increase (CPU time) 

associated to the ash module can vary from 5 to 55%, depending on the number of computational nodes 

employed. It is important to note that, depending on the settling velocity model employed, up to 60% of 

the time allocated to the ash module is assigned to the sedimentation term.  

 
Figure 20. NMMB-MONARCH-ASH relative computational cost (%) with increasing CPUs. Represented processes include: 
Meteorology (blue); Ash dispersal for 10 bins (red); Aggregation (green); Gravity current (purple) and; Restart phase (light blue); 
(extracted from Marti et al., 2017).  
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Results from the scalability analysis show that the model performance (in terms of speed-up) depends on 

the problem size as well as on the domain partitioning topology. In that context, the relative 

computational cost of the model’s meteorological core (NMMB) is evaluated as a function of its domain 

decomposition (e.g., distribution of processing units for the horizontal domains – nodes i and j). For this 

analysis the bin-performance dependency of the model is considered, therefore evaluating only the cost of 

one bin of ash. Figure 21 suggest that, for an optimal simulation using 32 nodes, the computational cost 

of the meteorological core decreases over 10 % when the weight of the decomposition is focused on the j 

nodes (e.g., more computational resources assigned for the Fast Fourier Transformation algorithm). The 

best domain decomposition resulted in 6(i)x84(j)+8(w); where i and j, are the number of processors 

employed in the horizontal and vertical dimensions respectively, and w, the number of writing processors. 

 

 
Figure 21. NMMB-MONARCH-ASH meteorological core cost (%) for the best (32 node) domain decomposition (AxBxC). A 
and B indicate the number of CPU employed for the horizontal (i) and vertical (j) dimensions, respectively; while C refers to the 
writing number of processing units employed. 

 

For operational purposes, the computational time employed to provide ash dispersal forecast using 

NMMB-MONARCH-ASH is evaluated for the global simulation with 1 bin of ash. Figure 22 shows that 

the maximum time required by the model to perform a 24 h forecast, running all the physical processes 

(e.g., advection, diffusion, sedimentation, etc.) every time-step (180 seconds) is less than 5 minutes when 

using the best domain decomposition presented before (6x84+8). This time can be further optimized for 

operational purposes, e.g., calling the model physics less frequently in order to save computational time. 

As a general rule of thumb, the adjustment time-step in seconds for the meteorological core can be taken 

as 2.25 times the grid spacing in kilometers. For higher resolution model runs made without 

parameterized convection, a time-step in seconds of about 1.9 to 2.0 times the grid spacing may be more 

appropriate (Janjic and Gall, 2012). 
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Figure 22. NMMB-MONARCH-ASH computational time for a 24h global forecast. Different domain decompositions options 
are shown.  

2.5 Operational implementation 

The Barcelona Supercomputing Center is currently considering a modeling integrated system to provide 

operational forecast of volcanic ash with NMMB-MONARCH-ASH. The system includes a 

preprocessing tool (prepares the model for real-data simulations), an executable file to run the model, and 

a user-based postprocessing utility tool. Figure 23 shows a simple schematic representation of the 

operational implementation of the model. The outcome of this modeling system is currently being 

evaluated against the FALL3D operational model. This section introduces the structure of the operational 

NMMB-MONARCH-ASH system. Preliminary results for the model intercomparison against FALL3D 

are described in Sect. 2.3.2.2.  

2.5.1 The preprocessing system 

The preprocessing utility system consists of a set of programs whose collective role is to prepare the 

model for real-data simulations. Programs are grouped to preprocess geographical, meteorological and 

climatological inputs and interpolate those to the model grid(s). The preprocessing system employed in 

this version of the NMMB model (v.2.0.1) uses three main programs: runfix, degrib and runvariable.  

 

- Runfix defines the model domain(s) and interpolates static geographical data to the model grid(s). 

In addition to computing the latitude and longitude of the rotated grid points, this program 
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interpolates soil categories, land use types, terrain height, annual mean deep soil temperature, 

monthly albedo, maximum snow albedo, and slope category. 

 

- Degrib extracts the necessary meteorological fields from GRIB-formatted files, used as initial 

condition for global simulations and as initial and boundary conditions for single regional 

domains (i.e. not nested with a global domain). GRIB files contain time-varying meteorological 

fields obtained from another regional or global NWPM. In addition to the available NCEP's 

North American Model (NAM) or Global Forecast System (GFS) model, the program has been 

updated to include European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-

Interim reanalysis data as forcing.  

 

- Runvariable interpolates the meteorological fields extracted by debgrib to the model grid(s) 

defined by runfix and prepares the climatological schemes. This program generates the initial and 

boundary conditions that are ingested by NMMB using the NOAA Environmental Modeling 

System (NEMS; Janjic, 2005; Janjic and Black, 2007), a high performance software 

superstructure and infrastructure based on the Earth System Modeling Framework (ESMF) for 

use in operational prediction models at NCEP. 

2.5.2 The ash module I/O files 

The model takes three run-specific input files: 

- The model input file (nmmb.inp), which defines the computational and physical schemes needed 

by the meteorological core, the atmospheric model’s fundamental time-step, and the 

parameterization for chemical processes and radiative schemes for aerosol tracers (including ash), 

amongst other properties of the model. For long-lasting eruptions, the model performs restart runs 

initializing the tracers from the previous day’s history file.  

 

- The ash input file (ash.inp), which defines those parameters employed in the ash module. The 

user-defined parameters include: i) the characterization of the source term: eruption source type, 

column height and determination of the mass eruption rate, eruption duration, aggregation 

processes, and particle settling velocity model. In the event of various eruptive phases, the 

respective ESPs for each phase can be defined; ii) the settings to turn on/off the gravity current 

model altering the particle transport in the umbrella cloud; and iii) the definition of the coupling 

strategy (on vs. off-line) employed by the model. 
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-  The granulometry input file (ash.tgsd), which specifies the diameter, density, sphericity, and 

relative mass fraction of each particle bin. This information is typically obtained from field data 

or created by external utility programs for idealized grain size distributions. 

 

Once a simulation is concluded, NMMB-MONARCH-ASH writes the following output files (includes 

outcomes from postprocess system): 

- A log file (ash.log), containing information about the run, including a summary of the computed 

volcanic ash source and mass balance statistics for each time-step, and errors and warnings if any. 

  

- A granulometry log file (ash.grn) with the final granulometry used for the simulation. If 

aggregation was active, a new bin class for aggregates was added to the original ash.tgsd.  

2.5.3 The Postprocess system 

The postprocess utility tools are designed to interpolate outputs from the NMMB-MONARCH-ASH 

native grid(s) to National Weather Service (NWS) standard levels (pressure, height, etc.) and standard 

output grids (Lambert Conformal, polar-stereographic, etc.) in NetCDF format. The system also includes 

the NMMB2GMT program, which uses the Generic Mapping Tools (GMT) software (Wessel and Smith, 

1991) to produce similar plots to the Volcanic Ash Graphics (VAG) used by Volcanic Ash Advisory 

Centers in operational forecasts.  

 

The postprocess writes the following files: 

- A forecast results file (problemname.nc) in NetCDF format containing, amongst other variables, 

the total column mass concentration (g m-2) and ground deposition (kg m-2) for all bins, the 

concentration at different Flight Levels (g m-3) and the Aerosol Optical Depth. This information 

can be processed using several open-source programs to generate plots and animations. 

Alternatively, the post-process utility program NMMB2GMT has been developed to generate 

basic GMT scripts automatically. 

 

- A restart file (nmmb.hst) used to initiate a new run using the ash concentrations from a previous 

simulation. 

 

- A log file (nmmb_post.out), containing information basic information about the postprocess 

outcome (e.g. files read, NetCFD definition and output location, etc.). 

 

2.6 Summary and conclusions 
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This chapter presents NMMB-MONARCH-ASH, a new on-line multiscale meteorological and transport 

model developed at the Barcelona Supercomputing Center (BSC) to forecast the dispersal and deposition 

of volcanic aerosols. The objective of this model is to improve the current state-of-the-art of tephra 

dispersal models, especially in situations where meteorological conditions are fluctuating rapidly in time, 

two-way feedbacks are significant, or long-range ash cloud dispersal predictions are necessary. To date, 

no operational on-line coupled dispersal model is available to forecast volcanic ash. NMMB-

MONARCH-ASH is the first on-line system specifically designed to predict ash cloud trajectories, 

concentration of ash at relevant flight levels, and the expected deposit thickness for both regional and 

global domains in research and operational set-ups. The model solves the mass balance equation for 

volcanic ash by means of a new ash module embedded in the BSC’s operational system for short/mid-

term chemical weather forecast (NMMB-MONARCH). In addition to volcanic ash, the system is also 

capable to forecast the dispersion of other atmospheric aerosols (e.g. dust, sea salt, black carbon, organic 

aerosol, sulfates, etc.).  Its multiscale capability allows for nested global-regional atmospheric transport 

simulations, taking into account the characterization of the source term (emissions), the transport of 

volcanic particles (advection/diffusion), and the particle removal mechanisms (sedimentation/deposition).  

The model has been shown to be robust and scalable to arbitrary domain sizes (regional to global) and 

numbers of processors (e.g. 50% up to 640 processors).  

 

The forecast skills of NMMB-MONARCH-ASH have been validated against two well-characterized 

eruptions. On one end, the regional and global configurations of the model have been evaluated to 

forecast the dispersal of ash for the first days of the 2011 Cordón Caulle eruption (strong long-lasting 

eruption with rapid wind changes). On the other end, the sedimentation mechanisms of the model have 

been evaluated employing different regional configurations for the first phase of the 2001 Etna eruption 

(a good case study of weak long-lasting eruption with well-characterized tephra deposits). In general, 

simulation results demonstrate that NMMB-MONARCH-ASH is capable to reproduce the spatial and 

temporal dispersal variability of the ash cloud and tephra deposits.   

 

The performance of the novel on-line approach in NMMB-MONARCH-ASH has been compared against 

FALL3D, a well-known off-line dispersal model traditionally employed in several operational settings at 

the Buenos Aires and Darwin VAACs. Results from this model intercomparison show that NMMB-

MONARCH-ASH improves the tephra distribution results from FALL3D simulations for the same event 

(R2; 0.80/0.62), reducing the RMSE (0.014/0.24) and bias (0.02/0.6) by an order of magnitude. 

 

The numerical performance of NMMB-MONARCH-ASH has been evaluated in terms of its parallel 

speed-up (computational speed) and its scaling efficiency. Scalability analyses for the computational 

domain described in Table 6 show a parallel efficiency of 0.6 when employing 512-640 processors. The 

relative computational cost associated with the main processes in the model suggest that the 
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computational increase (CPU time) associated to the ash module can vary from 5 to 55%, depending on 

the number of computational nodes employed. The relative computational cost of the model’s 

meteorological core (NMMB) depends on the selected domain decomposition. In that context, the 

computational cost of the meteorological core decreases over 10 % when the weight of the decomposition 

is focused on the j nodes. For the specific model configuration presented in Table 6, the best domain 

decomposition to transport 1 ashbin resulted in 6(i)x84(j)+8(w); where i and j, are the number of 

processors employed in the horizontal and vertical domains respectively, and w, the number of writing 

processors. For operational purposes, the computational time employed to provide ash dispersal forecast 

using NMMB-MONARCH-ASH for a 24h forecast is less than 5 minutes when using the best domain 

decomposition. The current version of the modeling system includes a preprocessing tool (prepares the 

model for real-data simulations), an executable file to run the model, and a user-based postprocessing 

utility tool. The work described in this chapter is based on NMMB-MONARCH-ASH version 1.0 

(released in 23 November 2016). The code, written in FORTRAN-90, is portable and efficient on 

different parallel computing platforms.  
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3 Quantification of off-line modeling errors with the NMMB-
MONARCH-ASH v1.0 model 

3.1 Introduction 

Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to 

generate operational short-term forecasts to support civil aviation and emergency management. These 

systems are vital in efforts to prevent aircraft flying into ash clouds, which could result in catastrophic 

impacts (e.g. Miller and Casadevall, 2000; Prata and Tupper, 2009). The aviation community is 

concerned about the detection and tracking of volcanic ash clouds to provide timely warnings to aircrafts 

and airports. In the event of an eruption, the individual Volcanic Ash Advisory Center (VAAC) 

responsible for the affected region combines ash cloud satellite observations and dispersal simulations to 

issue periodic Volcanic Ash Advisories (VAAs). These are text and graphical products informing on the 

extent of the ash clouds at relevant flight levels and their forecasted trajectories at 6, 12 and 18 hours 

ahead that are updated periodically or whenever significant changes occur in the eruption source term. All 

this information is used to ensure flight safety by supporting critical decisions such as closure of ash-

contaminated air space and airports or diversion of aircraft flight paths to prevent encounters. The 

noteworthy economic impact and social disruption of these air traffic restrictions are, therefore, directly 

associated to the accuracy of the volcanic ash cloud detection and modeling systems. 

 

The objective of this chapter is to quantify the model shortcomings and systematic errors associated with 

traditional off-line forecasts. In that context, the strategies available in the NMMB-MONARCH-ASH 

model (Marti et al., 2017) are employed to evaluate the predictability limitations of the off-line coupling 

approach against those from an on-line forecast considered to be the best estimate of the true outcome. 

Section 3.2 in this chapter describes the methodology used to quantify the coupling model errors; Section 

3.3 presents the results from a synthetic case study with constant ESPs and focused to quantify the 

systematic errors attributed to the meteorological coupling intervals. Section 3.4 evaluates the results 

from two real cases that suitably illustrate the severe disruptive effects of European (2010 

Eyjafjallajökull) and South-American (2011 Cordón Caulle) volcanic eruptions. Section 3.5 discusses the 

magnitude of the model forecast errors implicit in the off-line approach by comparing it with other better-

constrained sources of forecast error, e.g. uncertainties in eruption source parameters. Finally, Sect. 3.6 

provides the conclusive remarks of this work. 

3.2 Methods 

3.2.1 Modeling background 

NMMB-MONARCH-ASH (Marti et al., 2017) is a novel on-line meteorological and atmospheric 

transport model to simulate the emission, transport and deposition of tephra (ash) and aerosol particles 
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released during a volcanic eruption. The model predicts ash cloud trajectories, concentration of ash at 

relevant flight levels, and the expected ground deposit for both regional and global domains. The on-line 

coupling in NMMB-MONARCH-ASH allows for solving both meteorology and tephra/aerosol transport 

concurrently and interactively at every time-step. The computational efficiency of its meteorological core 

suggests that NMMB-MONARCH-ASH could be used in an operational setting to forecast volcanic ash 

(Marti et al., 2017). A full description of the model can be found in Chapter 2 (Sect. 2.2). 

 

The model allows for two different coupling strategies: on-line and off-line. The on-line version of the 

model runs the NWPM and VATDM modules synchronously, updating the transport of ash at each 

NWPM model time step. This coupling strategy offers a more realistic representation of the 

meteorological conditions, improving the current state-of-the-art of volcanic ash dispersal models, 

especially in situations where meteorological conditions are changing rapidly in time, two-way feedbacks 

are significant, or distal ash cloud dispersal simulations are required. In contrast, in the off-line version, 

the model uses “effective wind fields” in which, meteorological conditions (e.g. wind velocity, mid-layer 

pressure, etc.) are set to constant, and are only updated at the user-defined coupling interval. This strategy 

aims to replicate the decoupling effect of traditional VATDM dispersal models used at operational level. 

3.2.2 Forecasts 

The skills of an atmospheric dispersal model are known to vary in space and time. In that context, 

NMMB-MONARCH-ASH simulations were performed to study the sensibility of the off-line modeling 

approach towards the coupling interval and the dispersal distance of the forecast. On-line forecasts were 

evaluated against simulations from four different off-line coupling intervals (i.e. 1, 3, 6 and 12h) to 

compare the skills of each off-line coupling strategy. To this purpose, model comparisons were performed 

for: i) a synthetic case study with constant ESPs to focus exclusively on the effect of the off-line coupling 

interval; and ii) two historical cases accounting for the effects of changing the ESPs, including a case 

where meteorological conditions change rapidly in time (first phase 2011 Cordón Caulle eruption), and a 

case where these changes are less abrupt (first phase 2010 Eyjafjallajökull eruption). Finally, in order to 

assess the order of magnitude of the error associated to the off-line forecasts, errors were compared with 

the better-constrained source of forecast error attributed to the source term (i.e. uncertainties in column 

height and related mass eruption rate), known to be one of the main reasons (first order) for VATDM 

output variability (e.g. Bonadonna et al., 2010). 

Forecasts (off and on-line) for each application use the same computational domain and share the same 

spatial and temporal scales, allowing for a gridded (point-to-point) evaluation. The standard NMMB-

MONARCH-ASH parameterization is employed for all simulations (Marti et al., 2017). The 

meteorological driver is initialized with wind fields from the Era-Interim reanalysis at 0.75º x 0.75º 

resolution and, for regional domains, the reanalysis also furnishes 6-h boundary conditions. For the 

purpose of this study, forecasts predict ash cloud trajectories and concentration of ash at relevant flight 
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levels for a period up to 48 hours. This approach is consistent with most volcanic ash forecasts 

operational systems.  

3.2.3 Evaluation methods 

In general terms, forecast evaluation is the process of assessing the goodness of a model prediction. The 

forecast is compared, or verified, against a corresponding observation of what actually occurred or some 

good estimate of the true outcome. For the purpose of this work, the output from the on-line forecast is 

considered to be the model “observations” (i.e. best-estimate of the true outcome) and is compared 

against those results from the different off-line forecasts. However, it is important to highlight that the 

aim of these simulations is not to reconstruct the actual eruptive events but to compare the skills of the 

off-line forecasts against the on-line in order to quantify their differences. 

 

The accuracy of a volcanic ash forecast can be measured by means of different evaluation scores, as no 

single metric is adequate to fully determine the goodness of a VATDM prediction. Consequently, a 

detailed assessment of the strengths and weaknesses of a set of forecasts normally requires more than one 

or two scores (Jolliffe and Stephenson, 2012). This chapter evaluates the skills of the off-line versus on-

line NMMB-MONARCH-ASH forecasts in terms of their ash column loading (ACL) using different 

quantitative and categorical evaluation scores. These scores are often grid-point-based; they compare 

observations and predictions per grid cell and compute various metrics for the entire set or a subset of 

grid-points. Objects from both on-line and off-line ACL fields must be identified for each evaluation 

score. An object is a group of adjacent grid cells that have an ash cloud loading value above a given 

threshold. Here, the threshold is defined as the typical ash detection limit for most satellite ACL retrievals 

(~ 0.2 g m-2 - Prata and Prata, 2012). Modeled ACL values below this threshold are omitted from all 

evaluation metrics. 

3.2.3.1 Quantitative evaluation scores 

Quantitative evaluation scores are useful to determine the degree to which a forecast differs from the best 

estimate of the true outcome (i.e. the on-line simulation). Quantitative measures such as correlation 

coefficients, root-mean-square error (RMSE), or bias, are simple in implementation and thus are regularly 

used to compare and monitor the quality of a forecast. Here, RMSE is used to assess the average 

magnitude of forecast errors; bias to assesses the difference between the on-line and off-line forecast 

means; and the Pearson’s correlation coefficient to reflect their linear association. Due to their invariance 

properties, these measures are considered to be suitable in many predictive sciences, and in particular in 

weather and climate forecasting (Jolliffe and Stephenson, 2012).  

 

However, the skill of a dispersion forecast is known to vary in space and time, making these commonly 
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used evaluation scores problematic for grid-point-based measures. A classical example to illustrate these 

limitations is the “double penalty problem” (Wernli et al., 2008), where a forecast is correct in terms of 

amplitude, size and timing, but slightly incorrect concerning location, resulting, for example, in very 

poorly rated correlation and RMSE scores. To overcome these limitations, previous scores are 

complemented with the quantitative object-based metric SAL (Wernli et al., 2008). This metric 

individually considers aspects of the structure (S), amplitude (A), and location (L) of a forecast, revealing 

meaningful information about the systematic differences between forecasts. This diagnostic metric has 

been previously used to measure the skill of volcanic ash forecast using data insertion from satellite 

observations (Wilkins et al., 2016) and has been adapted here to compare the differences between on-line 

and off-line coupled NMMB-MONARCH-ASH forecasts. Figure 23 provides a schematic representation 

of different metric combinations and scores in SAL. 

 
Figure 23. Schematic representation of the possible on-line (O; representing the “observations”) and off-line forecasts (F) 
combinations of the different components for the quantitative object-based metric SAL: Structure (S), Amplitude (A) and 
Location (L).  Modified from Wernli et al. (2008). 

 

The structure [𝑆, Eq. (39)] component in SAL captures information about the size and shape of ACL 

objects by computing the normalized weighted mean mass difference [𝑉, Eq. (40)] for the on-line and off-

line forecasts: 

 

 

𝑆 =
𝑉!"" − 𝑉!"

0.5 𝑉!"" + 𝑉!"
 (39) 

 

Weighted means (𝑉) of the ash column load fields are estimated considering the mass (𝑅!) and the 

scaled mass [𝑉!, Eq. (41)] for the number of objects in the domain (𝑀): 
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𝑉 =
𝑅!𝑉!!

!!!

𝑅!!
!!!

 (40) 

 

Scaled masses (𝑉!) for all objects are calculated separately for each object, as follows: 

 

𝑉! =
𝑅!"

𝑅!!"#
(!!)∈!!

 

 

(41) 

 

where 𝑥𝑦 is the grid cell location within forecasted field, 𝑅!" is the area-integrated concentration field 

(i.e., ash mass) in grid cell 𝑥𝑦, and 𝑅!!"# is the maximum grid cell ash mass in object 𝑂!.   Note that, in 

the case of a single object, 𝑉 = 𝑉!. Structure scores range between [-2,2], with positive values indicating 

more objects in the off-line forecast and ACL values are too spread out and/or flat. A negative  𝑆  score 

occurs when the off-line forecast ACL objects cover too small of an area or are too peaked (or a 

combination of both).  

 

The amplitude (𝐴) component of SAL corresponds to the normalized difference of the domain-average 

ash mass values (𝑅). This provides a simple measure of the quantitative accuracy of the total mass of ash 

in the domain ignoring the field’s subregional structure: 

 

𝐴 =
𝑅!"" − 𝑅!"

0.5 𝑅!"" + 𝑅!"
 (42) 

 

where 𝑅!""  and 𝑅!"  are the ash masses averaged over all grid cells in the domain (𝐷), i.e., 𝑅! =

   𝑅!"
𝐷(!")∈!!  . Amplitude scores range between [-2,2] with 0 denoting no difference between off-line 

and on-line forecasts. An amplitude score of +1/-1 indicates that off-line forecasts 

overestimate/underestimate the domain-averaged ACL by a factor of 3. Scores of 𝐴 = 0.4 and 0.67 

correspond to factors of 1.5 and 2, respectively (Wernli et al., 2008).  

 

The location (𝐿) component of SAL compares the mass distribution between forecasts. The 𝐿 component 

is composed by two parts: 

 

𝐿 = 𝐿! +   𝐿! 

 
(43) 

The first one [𝐿!, Eq. (44)] compares the normalized distance between the center of mass 𝐶  of the off-

line and on-line ACL fields over the maximum distance within the entire domain (𝑑): 
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𝐿! =
𝐶!"" − 𝐶!"

𝑑
 

 

(44) 

The values of 𝐿! are in the range of [-1,1], with 𝐿! = 0 suggesting identical centers of mass for both 

forecasts. However, separated ash clouds could also have the same center of mass, and therefore 𝐿! = 0 

would not necessary indicate a perfect match.  The second part of the location component [𝐿!, Eq. (45)] 

aims at distinguish such situations by measuring the weighted average difference [𝐻, Eq. (46)] between 

the center of mass of the total ash load and the center of mass for each object (𝐶!): 

 

𝐿! = 2
𝐻!"" + 𝐻!"

𝑑
 (45) 

 

𝐻 =
𝑅! 𝐶!"" + 𝐶!"!

!!!

𝑅!!
!!!

 (46) 

 

In the event that both on-line and off-line ACL fields have only one object, then 𝐿! = 0. Note that a 

factor of 2 is used to scale 𝐿! to the range of 𝐿!. Hence, the total location component of 𝐿 can reach 

values between [0,2], and can only be possibly for an off-line forecast where both the distance between 

objects and the center of mass agree with the on-line forecast. It is important to mention that since both 

off-line and on-line computational domains are the same, the magnitude dependency of 𝐿 to the size of 

the domain does not affect our interpretation of this SAL component.  

 

Absolute SAL scores range from 0 to 6, with scores closest to 0 denoting the best agreement between 

forecasts. The computation of the structure and location components of SAL requires to group adjacent 

grid cells into objects with a value above a given threshold for the forecasted variable. For this study, 

objects are given as 𝑂!  , 𝑛   = 1,… ,𝑀, where 𝑀 is the number of objects in the model domain. Each 

object combines at least two grid cells to avoid unrealistic single ash-containing grid cells. As defined 

previously, the object identification threshold for the ash cloud loading is set to 0.2 g m-2. Modeled ACL 

values below this threshold are omitted from all components of SAL.   

3.2.3.2 Categorical evaluation scores 

From an operational perspective, it is also important to know whether the presence of volcanic ash 

constitutes an airspace threat or not. In that context, the significance of quantitative volcanic ash forecasts 

can be measured in terms of categorical evaluation scores (Jolliffe and Stephenson, 2012). These scores 

are less sensitive to larger errors than quantitative evaluations scores. This is particularly important for 

extremely skewed data such as ACL, providing the degree to which the forecast supports a decision 

maker during an emergency event (i.e. closure of airspace). Consequently, ash loads can be viewed 

categorically (or binary for “yes” or “no” events) according to whether that value exceeds a threshold 
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(event) or not (non-event). This section computes a series of categorical evaluation scores based on a 

contingency table (Table 8), which describes the combined distribution of forecast events and non-events 

for each coupling strategy.  

 

Off-line forecast exceeding threshold 
On-line forecast exceeding threshold 

Yes No 

Yes 𝐻𝑖𝑡𝑠   𝐹𝑎𝑙𝑠𝑒  𝐴𝑙𝑎𝑟𝑚  

No 𝑀𝑖𝑠𝑠𝑒𝑠   𝐶𝑜𝑟𝑟𝑒𝑐𝑡  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  

Table 8: Contingency table of binary events for categorical verifications scores at each grid-point. 

 

 In Table 8, “Hits” represents the number of grid-points for which both forecasts (off-line and on-line) 

exceed the threshold previously established (0.2 g m-2); “Misses” represents the number of points for 

which only on-line forecasts exceed this threshold; “False Alarms”, indicates the number of points for 

which only off-line forecasts exceeded the threshold; Finally, “Correct Negatives”, represents the number 

of points for which neither off-line nor on-line forecasts exceeded the threshold value. This chapter uses 

these binary skill metrics to calculate four categorical evaluation scores:  

a) Probability of detection (𝑃𝑂𝐷): Measures the fraction of ash points observed in the on-line forecast 

and that were correctly predicted by the off-line forecast. This score is good for rare events, should be 

used together with the 𝐹𝐴𝑅 score [𝐹𝐴𝑅, Eq. (48)], and is insensitive to false alarms. The P𝑂𝐷 score 

can reach values between [0,1]: 

 

𝑃𝑂𝐷 =
𝐻𝑖𝑡𝑠

(𝐻𝑖𝑡𝑠   +   𝑀𝑖𝑠𝑠𝑒𝑠)
   ;   [0,1] (47) 

 

b) False alarm ratio (𝐹𝐴𝑅): Measures the fraction of ash points predicted by the off-line forecast that 

were observed to be non-events (i.e. non exceeding the threshold) in the on-line forecast. This score 

should be used together with the previous 𝑃𝑂𝐷 score and ignores the misses. The FAR score can 

reach values between [0,1]: 

 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒  𝐴𝑙𝑎𝑟𝑚

(𝐻𝑖𝑡𝑠   +   𝐹𝑎𝑙𝑠𝑒  𝐴𝑙𝑎𝑟𝑚)
   ;   [0,1] (48) 

 

c) Frequency bias (𝐹𝐵𝐼): Measures the ratio of frequency of off-line forecast points to the frequency of 

observed ash points in the on-line forecast. This score indicates whether the forecast system has a 

tendency to under-forecast (𝐹𝐵𝐼<1) or over-forecast (𝐹𝐵𝐼>1) events. However, it does not measure 

how well the off-line forecast corresponds to the on-line simulation, only measures relative 

frequencies. The FBI score can reach values between [0,∞]: 
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𝐹𝐵𝐼 =
𝐻𝑖𝑡𝑠   +   𝐹𝑎𝑙𝑠𝑒  𝐴𝑙𝑎𝑟𝑚
(𝐻𝑖𝑡𝑠   +   𝑀𝑖𝑠𝑠𝑒𝑠)

   ;   [0,∞] (49) 

 

d) Critical success rate (𝐶𝑆𝐼): Measures the fraction of all off-line and on-line forecast points that were 

correctly diagnosed and does consider both misses and false alarms. The CSI score can reach values 

between [0,1]: 

 

𝐶𝑆𝐼 =
𝐻𝑖𝑡𝑠

(𝐻𝑖𝑡𝑠   +   𝑀𝑖𝑠𝑠𝑒𝑠   +   𝐹𝑎𝑙𝑠𝑒  𝐴𝑙𝑎𝑟𝑚𝑠)
   ;   [0,1] (50) 

  

Similar metrics, such as the Figure of Merit in Space (𝐹𝑀𝑆; Galmarini et al., 2010), have been used 

in previous works (e.g. Wilkins et al., 2016) to complement the SAL score for the evaluation of the 

spatial coverage between forecasts: 

 

𝐹𝑀𝑆 =
𝐵!"" ∩ 𝐵!"
𝐵!"" ∪ 𝐵!"

   ;   [0,1] (51) 

 

In both cases, a score of 1 suggests a complete spatial overlap of the evaluated forecasts. 

Alternatively, the spatial overlap will decrease as these scores reach values close to 0. This work 

employs the Figure of Merit in Space (𝐹𝑀𝑆) metric to evaluate the spatial coverage of the forecasts 

and to complement a missing spatial coverage component in SAL. To be consistent with our 

implementation of SAL, the spatial ash coverage is computed only for forecast ACL fields exceeding 

a threshold of 0.2 g m-2. However, it is worth mentioning that a low 𝐹𝑀𝑆 score could also suggest 

two similar shapes shifted in space (Mosca et al., 1998) and, therefore, should be used together with 

the SAL score.  

3.3 Synthetic case study 

The first step of our evaluation consists in isolating the model’s shortcomings and systematic errors that 

are exclusively associated to the off-line coupling strategy employed in traditional volcanic ash forecasts. 

To this purpose, a preliminary synthetic case is constructed based on the first 48h of the 2011 Caulle 

eruption with constant Eruption Source Parameters (ESPs). This synthetic application reduces the 

differences associated to the source term (i.e. different source term quantification because of different 

wind fields) and allows us to isolate the systematic errors corresponding to the off-line coupling 

approach. Within this framework, the eruption duration is limited to 12h, using a constant column height, 

and employing the Mastin et al. (2009) relationship (mass eruption rate vs. column height: see section 

2.2.3.1.1), for the dispersion evaluation of a single bin of ash (1 particle class) during the first 48h of the 
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event. Multiple regional simulations with NMMB-MONARCH-ASH were performed to produce four 

different off-line coupled forecasts (i.e. 1, 3, 6 and 12h). Details about the 2011 Caulle eruption, 

accompanying meteorological conditions, and the computational domain are described in detail in Sect. 

3.5. Table 9 provides a summary of the ESPs used for this application.  

 

Source term Synthetic 2010 Eyjafjallajökull 2011 Cordón Caulle 

Run duration 12h 96h 72h 

Vertical distribution of mass 

in the column 

Suzuki (1983) 

distribution 
Suzuki (1983) distribution Suzuki (1983) distribution 

MER vs. column height 

relationship 

Mastin et al. (2009) Degruyter and Bonadonna 

(2012) (Fig. 5b) 

Degruyter and Bonadonna 

(2012) (Fig. 10a) 

Column height  8500m Fig. 5c Fig. 10b 

TGSD 1 bin (Φ=6) (Bonadonna et al., 2011) Bonadonna et al., (2015b) 

Sedimentation model (Ganser, 1993) (Ganser, 1993) (Ganser, 1993) 

Table 9: Summary of Eruption Source Parameters (ESPs) used in NMMB-MONARCH-ASH for the synthetic case, and the 2010 
Eyjafjallajökull and 2011 Cordón Caulle applications. 

 

The skills of these forecasts were compared against the on-line coupled simulation employing the 

quantitative and categorical evaluation scores described in Sect. 3.2. Scores at the end of the simulation 

(48h) are shown in Table 10.  This chapter focuses on describing the scores for the 6h off-line coupled 

forecast, representative of an operational forecast driven by reanalysis data. 

Table 10. Evaluation scores for the synthetic case at the end of the 48h forecast with NMMB-MONARCH-ASH. 

 

Figure 24 shows the results of the quantitative evaluation scores: RMSE (Fig. 24a), correlation coefficient 

(Fig. 24b) and bias (Fig. 24c); as a function of the forecast’s length for each coupling interval in the 

synthetic case. These scores assist in determining the degree to which off-line forecasts correspond to the 

best estimate of the true outcome (on-line forecast). In general terms, and as expected a priori, all scores 

indicate that the quality of the forecast decreases with decreasing coupling frequency (i.e. 1, 3, 6 and 12h) 

and length of the forecast. The RMSE score is presented in Fig. 24a, and is used to assess the average 

magnitude of the off-line forecast errors. Figure 24b shows how the linear association between the on-line 

and off-line forecasts (Pearson’s correlation coefficient) significantly decreases with decreasing coupling 

frequency, reaching noticeably low correlations. For example, the resulting coefficient for the 6h-coupled 

forecast after 24h of simulation is below 0.5, and below 0.4 after 48h.  

 

Coupling/Score R RMSE BIAS S A L |SAL| POD FAR FBI FMS 

1h 0.849	
   0.107	
   -­‐1.090	
   -­‐0.026	
   -­‐0.007	
   0.006	
   0.039	
   0.897	
   0.039	
   0.934	
   0.855	
  

3h 0.631	
   0.167	
   -­‐2.589	
   -­‐0.077	
   -­‐0.008	
   0.012	
   0.097	
   0.752	
   0.108	
   0.843	
   0.669	
  

6h 0.357	
   0.220	
   -­‐3.362	
   -­‐0.143	
   0.008	
   0.027	
   0.178	
   0.603	
   0.243	
   0.796	
   0.477	
  

12h 0.039	
   0.269	
   -­‐5.239	
   -­‐0.077	
   -­‐0.003	
   0.027	
   0.107	
   0.400	
   0.413	
   0.682	
   0.281	
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These scores indicate that 6h coupling off-line forecasts are not capable to reproduce more than half of 

the true outcome, suggesting that the coupling frequency in 

tephra dispersal modeling could be a critical source of error. 

This result is relevant considering that 6h-coupled forecasts are 

used by some emergency-response model setups. Finally, Figure 

24c depicts the forecasts bias over those from the on-line 

simulation. In general terms, all off-line forecasts underestimate 

ACL, reaching values between -1 and -5 g m2 at the end of the 

forecast for the 1h and 12h coupling intervals, respectively 

(Table 10). 
 
Figure 24. Quantitative evaluation scores for NMMB-MONARCH-ASH 
synthetic application: a) root mean square error; b) Pearson’s correlation 
coefficient; c) error bias.  

 

 

Figure 25 illustrates the results from the quantitative object-based metric SAL, aimed to evaluate the 

variation in space and time of the forecasts. As with previous scores, the error associated to the SAL score 

also increases with the length of the coupling frequency. For all 

off-line simulations within the synthetic case, the structure 

component of the metric (Fig 25a) explains most of the 

discrepancy with the on-line forecast. Negative values of 𝑆 

indicate that off-line forecasts predict fields that cover too 

small of an area and/or are too peaked. In addition, results from 

the amplitude and location components indicate a slight 

overestimation of the domain-averaged ACL for all off-line 

forecasts, employing comparable centers of mass with the on-

line reference. In general terms, systematic differences in the 

off-line forecast are 4 times higher for a coupling frequency of 

6h than those of 1h interval (Table 10). 

 
Figure 25. SAL evaluation scores for NMMB-MONARCH-ASH synthetic 
case: a) Structure; b) Amplitude; c) Location; d) combined SAL. 

 

Categorical scores resulting from the evaluating of the 

synthetic case are summarized in Fig. 26. As in the previous 

scores, a threshold value of 0.2 g m-2 is considered to define the 

ash-contaminated objects, categorizing these as “yes” or “no” 

events depending if they exceed or not this threshold. These 

Figure 26. Categorical evaluation scores for NMMB-MONARCH-ASH 
synthetic case including: a) Probability of detection (POD); b) False alarm 
ratio (𝐹𝐴𝑅); c) Frequency bias (FBI), and; d) Figure of Merit in Space 
(FMS).  
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scores are critical for the aviation industry during a volcanic crisis since they can determine the closure of 

the airspace or the cancellation of flights.  Figure 26a illustrates the probability of detection (𝑃𝑂𝐷) for 

each forecast. As expected, this metric clearly shows how the probability of detecting ash-contaminated 

points in the off-line forecasts decreases with decreasing coupling frequency and the forecast length.  In 

addition, this figure also suggests that 𝑃𝑂𝐷 scores decrease considerably during the first hours of the 

forecast, matching the time for which the source was active. This trend is applicable to all categorical 

evaluation scores. After 48h, the 𝑃𝑂𝐷 scores for the 3h and 6h coupled forecasts are 0.752 and 0.603, 

respectively. For coupling frequencies above 6h, the probability of detecting an ash-contaminated areas 

drops below 50% (e.g. 12h couple forecast in Table 3).  𝑃𝑂𝐷 scores are complemented by the results 

from the False Alarm Ratio (𝐹𝐴𝑅) metric, which measures the fraction of ash events predicted by the off-

line forecasts that were observed to be non-events.  

 

Figure 26b shows 𝐹𝐴𝑅  scores to be consistent with 𝑃𝑂𝐷  scores and predict a 25% of false ash-

contaminated object for the given domain after 48h of the 6h-coupled simulation.  The equivalent plot for 

the Frequency Bias (𝐹𝐵𝐼) metric as a function of forecast length is shown in Fig. 26c. This metric 

indicates that all forecasts tend to overestimate the ACL, especially while the eruption is active. After that 

time, 𝐹𝐵𝐼 scores stabilize between values ranging from 0.7 to 1.0.  Finally, Fig. 26d illustrates the spatial 

overlap between off-line and on-line forecasts defined by the Figure of Merit in Space (𝐹𝑀𝑆). This 

metric provides similar results to the 𝑃𝑂𝐷 metric. However, in this case, false alarms (Table 8) are also 

considered in the metric leading to 𝐹𝑀𝑆 scores lower than those for the 𝑃𝑂𝐷 metric. Considering this, 

𝐹𝑀𝑆 scores indicate that the spatial overlap  (i.e. probability of hits over hits, misses and false alarms) 

between the on-line and the 6h coupled offline forecasts after 48h of simulation is below 50% (Table 10). 

3.4 Historical cases 

In addition to the synthetic case, this chapter presents two applications of NMMB-MONARCH-ASH for 

the simulation of the initial phases of the 2010 Eyjafjallajökull and 2011 Cordón Caulle eruptions. In 

these cases, off-line forecasts are evaluated taking into account the effects of the coupling interval and the 

actual changes in the ESPs (i.e. MER depending on wind field) for each event. A summary of the ESPs 

used for each application is presented in Table 9. These two events have shed light onto the importance of 

ash dispersal in the context of aviation safety (Bonadonna et al., 2012), and they suitably illustrate the 

severe disruptive effects of European and South-American eruptions.  Similar to the synthetic case: on-

line and off-line forecasts were compared on the same temporal scales and spatial grid; a gridded (point-

to-point) evaluation was performed between forecasts following the criteria presented in the contingency 

Table 8; the output of the on-line forecast was considered as the “observed” (best estimation of true 

outcome) field; and a threshold of 0.2 g m-2 was employed as the ash cloud loading detection limit.  
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Each application includes: i) a brief description of the eruptive event; ii) a summary of the modeling set-

up to simulate the eruption and; iii) a comprehensive evaluation of the plume dispersal forecast including 

qualitative, quantitative and categorical evaluations and metrics.  

3.4.1 The 2010 Eyjafjallajökull eruption 

The April 2010 eruption of Eyjafjallajökull volcano (63.6Nº, 19.6Wº, vent height 1666 m a.s.l.) in 

southern Iceland, created unprecedented disruptions to European air traffic during 15–20 April. On 14 

April a major outbreak of the central crater under the covering ice cap lead to a submittal activity causing 

phreatomagmatic explosions, generation of volcanic ash, and eruption columns rising up to 9 km (a.s.l) 

(Institute of Earth Sciences, 2010). The initial ash clouds travelled rapidly across the North Atlantic and 

North Sea, reaching southern Norway on 15 April and then traveling southwards as a frontal cloud 

crossing over to north-European countries. In turn, the London VAAC dispatched immediate warnings to 

European aviation authorities and other VAAC centers every 3-6 hours. The southern part of the ash 

cloud finally diluted and grounded in the northern parts of the Alps. On 20 April new aviation guidelines 

based on safe ash concentration thresholds were adopted, allowing for the ability to resume operations in 

large areas previously banned. In addition, several other ash cloud episodes occurred during late April 

and May, disrupting the European airspace for a total of 13 days (over 4 million passengers stranded due 

to cancellation or delay of over 100,000 flights), affecting 25 countries, and costing the aviation industry 

billions of Euros (Oxford Economics, 2010). These impacts brought into focus how significantly 

volcanoes can affect communities and economies far away from the source, and the critical importance of 

accurate volcanic ash forecasts. 	
  

3.4.1.1 Modeling set-up 

For the purpose of simulating this eruption, NMMB-MONARCH-ASH employed a model domain 

consisting of 401x428x60 grid points, covering the northern and western regions of Europe and using a 

grid with a horizontal resolution of 0.15º x 0.15º. The top pressure of the model was set to 10 hPa (∼26 

km) with a mesh refinement near the top (to capture the dispersion of ash) and the ground (to capture the 

characteristics of the atmospheric boundary layer). The computational domain spans in longitude from 

30º W to 30º E and in latitude from 34º S to 84º N. The Eruption Source Parameters (ESPs) 

characterizing the event are described in Table 9 and presented in Fig. 27. Figure 27a shows the 

variations in column height for the duration of the forecast (Arason et al., 2011). Figure 27b illustrates the 

results from estimating the Mass Eruption Rate (MER) using the different formulations available in 

NMMB-MONARCH-ASH (see section 2.2.3.1.1). For those simulations employing empirical 

correlations to estimate MER based on fits accounting for wind bent-over effects (e.g. Degruyter and 

Bonadonna, 2012), it is important to see what are the differences in MER associated to the different off-
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line coupling intervals with the NWPM.  Figure 27c shows these variations in MER and compares them 

with the fully coupled on-line forecast.  

 
Figure 27. Eruption Source Parameters for the 2010 Eyjafjallajökull application: a) Column height change over time (Arason et 
al., 2011); b) Resulting MER over time considering different parameterizations (Degruyter and Bonadonna, 2012; Folch et al., 
2016a; Mastin et al., 2009; Woodhouse et al., 2013); c) Resulting MER for each coupling strategy (Degruyter and Bonadonna 
(2012) only). 

3.4.1.2 Qualitative evaluation 

Figure 28 shows the plume dispersal (ash column loading; ACL) from the on-line forecast corresponding 

to the first explosive phase (14–18 April) of the Eyjafjallajökull eruption (Gudmundsson et al., 2012). 

This phase is conveniently divided into 14–16 April, when the volcanic plume produced a well-defined 

sector towards the east, and 17 to early 18 April, when northerly winds drove the plume to the south.  

 

 
Figure 28. NMMB-MONARCH-ASH total ACL (mass loading; g m-2) for the 2010 Eyjafjallajökull application. 
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Complementary to this figure, Figure 29 illustrates the airspace contamination forecasted by the model 

during the first phase of the eruption at flight levels FL050 and FL200. This figure illustrates the ash 

hazard aviation guidelines, which distinguish zones of low (green; ash concentration less than 0.2 mg m-

3), moderate (orange; ash concentration between 0.2 and 2 mg m-3) and high (red; ash concentration above 

2 mg m-3) concentration of ash employed to regulate No Fly zones. This information is critical for air 

traffic management to assist flight dispatchers while planning flight paths and designing alternative routes 

in the presence of a volcanic eruption. Model results show the volcanic cloud traveling E-NE, achieving 

critical concentration values in northern Europe during 15-17 June, and suggesting severe disruptions in 

the European airspace. 

 
Figure 29. Ash hazard aviation guidelines applied for 2010 Eyjafjallajökull application over time. Zones of low (green; ash 
concentration <0.2 mg m-3), moderate (orange; ash concentration between 0.2 and 2 mg m-3) and high (red; ash concentration 
above 2 mg m-3) concentration are displayed for FL050 (top) and FL200 (bottom). 

  
Figure 30 shows a qualitative comparison between the on-line and the different off-line coupled forecasts 

for Eyjafjallajökull application.  Qualitative comparisons are presented for each coupling interval in 

different rows (i.e. 1st row = 1h; 2nd row = 3h; 3rd row = 6h; 4th row= 12h coupling). Areas in grey (“Hits”) 

represent grid points for which both forecasts (off-line and on-line) exceed the established threshold. Red 

areas (“Misses”) indicate those regions where the off-line forecast fails to predict existing ash 

(underprediction). Finally, blue areas (“False Alarms”) illustrate those domain areas for which only off-

line forecasts exceed the threshold, implying a false prediction of ash (overprediction).  In general terms, 

off-line forecasts for the Eyjafjallajökull event tend to overpredict towards the north of the plume and to 

underpredict towards the south. While results of the 1h off-line forecast indicate mostly Hits (H), Fig. 8 

clearly shows how the number of Missed (M) and False Alarm (FA) points increase with the coupling 

frequency and the length of the forecast. This is consistent with those results presented previously in the 

synthetic case.   
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As a consequence, these forecasts would miss, for example, the arrival of volcanic ash over northern 

Germany in the late afternoon of 16 April as indicated by the DWD ceilometer network at the time of the 

eruption (Flentje et al., 2010).  As a general approximation, Fig. 30 suggests that for the Eyjafjallajökull 

eruption, off-line forecasts with coupling intervals of 3h and above could result in significant inconsistent 

predictions (M + FA areas). 

 

 
Figure 30. Qualitative comparison between the on-line and off-line forecasts with 1h (row 1), 3h (row 2), 6h (row 3) and 12h 
(row 4) coupling intervals. Gridded evaluation is performed following the criteria presented in the contingency Table 1. Hit 
(grey), Missed (red) and False Alarm (blue) predictions are shown for the 2010 Eyjafjallajökull case over time. 

3.4.1.3 Quantitative and Categorical evaluation 

Figure 31 shows the results of the quantitative and categorical evaluation for the ACL off-line forecasts 

for the 2010 Eyjafjallajökull application. Complementing this figure, Table 11 shows the scores for all 

coupled forecasts after 48h from the eruption starting time. As found in the synthetic case, quantitative 

and categorical metrics lessen their scores for longer coupling intervals and forecast lengths.  

 

Quantitative evaluation scores RMSE (Fig. 31a), correlation coefficient (Fig. 31b) and bias (Fig. 31c) 

show comparable trends than those reported for the synthetic case. After 48h of simulation, the 6h-
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coupled forecast scores show barely any correlation with the on-line forecast and a RMSE of 0.149 g m-2. 

Bias scores suggest that all off-line forecasts tend to underestimate ACL between -0.33 and -2.5 g m2 at 

the end of the forecast. Figures 31d through 31g illustrate the results from the quantitative object-based 

metric SAL, quantifying the variation in space and time of the forecasts. For the Eyjafjallajökull 

application, both the structure (Fig. 31d) and amplitude (Fig. 31e) from the off-line forecasts explain most 

of the discrepancy with the on-line forecast. Contrary to the synthetic case, where the amplitude 

component (𝐴) had a residual effect towards the total SAL, in this application the off-line forecasts tend 

to underestimate the total concentration of ash in the domain by a factor of 1.5 for coupling intervals 

equal to or above 6h. This is anticipated since meteorological conditions are kept constant for the given 

interval and no additional ash-contaminated objects are found in the domain. After the first coupling with 

the NWPM takes place, scores start to stabilize. Location scores (Fig. 31f) suggest a comparable mass 

distribution of the ACL fields for the on-line and off-line forecasts. Finally, absolute SAL scores after 

48h of simulations (Table 11) indicate that systematic differences in the off-line forecast are 

approximately 2 times higher for a coupling frequency of 6h than those of 1h interval. 

 

Categorical scores for the Eyjafjallajökull application are summarized in Fig. 31h through Fig. 31k. 

Results from the 𝑃𝑂𝐷 metric (Fig. 31h) show that the probability of detecting ash-contaminated events in 

the off-line forecasts decreases with decreasing coupling frequency, especially during the time the first 

coupling with the NWPM occurs. After 48h, 𝑃𝑂𝐷 scores for the 6h-coupled forecast are below 50% (i.e. 

0.46). Conversely, results from the False Alarm Ratio (𝐹𝐴𝑅) metric follow an increasing trend (Fig. 31i), 

misrepresenting near 45% objects in the domain. Results from the Frequency Bias (𝐹𝐵𝐼) metric (Fig. 31j) 

indicate that all off-line forecasts tend to overestimate the ACL. Finally, 𝐹𝑀𝑆 scores suggest that the 

spatial overlap between the on-line and the 6h coupled offline forecasts after 48h of simulation is below 

50% for those simulations with coupling intervals of 3h or more.   
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Figure 31. On-line vs. off-line evaluation scores for the 2010 Eyjafjallajökull case. 

 
Coupling/Score R RMSE BIAS S A L |SAL| POD FAR FBI FMS 

1h 0.787	
   0.072	
   -­‐0.327	
   -­‐0.087	
   -­‐0.019	
   0.006	
   0.112	
   0.881	
   0.091	
   0.969	
   0.805	
  

3h 0.386	
   0.122	
   -­‐0.783	
   -­‐0.138	
   -­‐0.049	
   0.019	
   0.206	
   0.664	
   0.283	
   0.926	
   0.499	
  

6h 0.08	
   0.149	
   -­‐1.82	
   -­‐0.116	
   -­‐0.063	
   0.034	
   0.213	
   0.465	
   0.438	
   0.828	
   0.332	
  

12h -­‐0.292	
   0.177	
   -­‐2.521	
   -­‐0.136	
   -­‐0.105	
   0.051	
   0.292	
   0.251	
   0.671	
   0.762	
   0.156	
  

Table 11. Evaluation scores for the 2010 Eyjafjallajökull eruption application at the end of the 48h forecast with NMMB-
MONARCH-ASH. 

3.4.2 The 2011 Cordón Caulle eruption 

The 2011 Cordón Caulle eruption exemplifies a typical mid-latitude Central and South Andean eruption. 

The Cordón Caulle volcanic complex (Chile, 40.5º S, 72.2º W, vent height 1420 m a.s.l.) reawakened on 

4 June 2011 around 18:30 UTC after decades of quiescence. The initial explosive phase spanned over 

more than two weeks, generating ash clouds that dispersed over the Andes (Collini et al., 2013). The 

climatic phase (~27 h) (Jay et al., 2014) was associated with a ~9 km (a.s.l.) high column (Osores et al., 

2014). For the period between 4-14 June, numerous flights and airports were disrupted in Paraguay, 

Uruguay, Chile, southern Argentina and Brazil (Wilson et al., 2013). A thorough description of this 

eruptive event can be found in Sect. 2.3.1. 

3.4.2.1 Modeling set-up 

The model domain for this application consists of 268x268x60 grid points covering the northern regions 

of Chile and Argentina using a horizontal resolution of 0.15º x 0.15º. The top pressure of the model was 

set to 10 hPa (∼26 km). The computational domain spans in longitude from 41º W to 81º W and in 
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latitude from 18º S to 58º S. The Eruption Source Parameters (ESPs) characterizing the Caulle event are 

described in Table 9. Figure 32a shows the slight MER variation in column height for the duration of the 

forecast. Figure 32b illustrates the results from simulating the MER over time considering different plume 

models. 

 
Figure 32. Eruption source parameters for the 2011 Cordón Caulle case: a) Column height fluctuation over time (Osores et al., 
2014); b) Resulting MER over time for each coupling strategy.  

 

 

3.4.2.2 Qualitative evaluation 

Figure 33 illustrates the plume dispersion from the on-line forecast associated to the early Plinian phase 

(4-7 June) of the Cordón Caulle eruption. The initial ash cloud reached the Atlantic coast on 4 June late 

afternoon, just before turning to the northeast to reach the northern part of Argentina during the 6 June 

and the city of Buenos Aires the days after.  

 

 
Figure 33. NMMB-MONARCH-ASH total column load (mass loading; g m-2) for the 2011 Cordón Caulle case. 
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The effect of the plume dispersion on air-traffic management is shown in Figure 34. This figure shows the 

airspace contamination forecasted by the model during 4–6 June at Flight Levels FL050 and FL200. 

Model results show the volcanic cloud achieving critical concentration values within a wide area east of 

the Andes range.  

 

 
Figure 34. Ash hazard aviation guidelines applied for the 2011 Cordón Caulle application over time. Zones of low (green; ash 
concentration <0.2 mg m-3), moderate (orange; ash concentration between 0.2 and 2 mg m-3) and high (red; ash concentration 
above 2 mg m-3) concentration are displayed for FL050 (top) and FL200 (bottom). 

 

Figure 35 shows the qualitative comparison between the on-line and off-line coupled forecasts for the 

first days of 2011 Cordón Caulle eruption. In this case, given that the plume height during the first hours 

of the eruption was more constant (no significant changes in wind speed and direction) than for the 

Eyjafjallajökull application, the difference between forecasts is less suggestive, although still remarkable. 

Contrary to the Eyjafjallajökull application, off-line forecasts tended to underestimate to the north of the 

plume and slightly overestimate to the south. The resulting evaluation from these inconsistencies 

indicates that off-line forecast with longer coupling intervals missed the abrupt shift in the plume course 

known to be associated to early June 6. This alteration was due to the change in the wind direction toward 

N-NE first and then again towards SE (e.g. Elissondo et al., 2016).  As a consequence, these results 

suggest that off-line forecasts would miss the correct arrival time of volcanic ash to the main airports in 

Buenos Aires (i.e. Ezeiza and Aeroparque Jorge Newbery airports).  
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Figure 35. Qualitative off-line vs. on-line forecast comparison for 1h (row 1), 3h (row 2), 6h (row 3) and 12h (row 4) coupling 
intervals. Gridded evaluation is performed following the criteria presented in the contingency Table 8. Hit (grey), Missed (red) 
and False Alarm (blue) predictions are shown for the 2011 Cordón Caulle application over time. 

3.4.2.3 Quantitative and Categorical evaluation 

Figure 36 summarizes the results for the quantitative and categorical metrics for the 2011 Caulle 

application. Metric scores at the end of the simulation are presented in Table 12. Results for the Cordón 

Caulle application are consistent with those from the synthetic case and the Eyjafjallajökull application in 

that the uncertainty of the forecast increases significantly with the length of the coupling frequency 

employed. Quantitative evaluation scores RMSE (Fig. 36a), correlation coefficient (Fig. 36b) and bias 

(Fig. 36c) show comparable trends to those from the Eyjafjallajökull application. Despite this similarity, 

linear correlation coefficients between off-line and on-line forecasts for the Caulle application are higher 

than those from the Eyjafjallajökull simulation. This result is explained by the fewer changes in the 

source term (e.g. variations in the column height) during the Caulle event. After 48h of simulation, the 
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6h-coupled forecast scores a correlation coefficient of 0.60 with a RMSE of 0.16 g m-2. Bias scores 

suggest that all off-line forecasts tend to underestimate ACL between -0.13 and -4.75 g m-2 at the end of 

the forecast.  

 

Figures 36d through 36g illustrate the results from the quantitative object-based metric SAL for the 

Cordón Caulle event. SAL scores (Fig. 36g) suggest that differences between on-line and off-line 

strategies for the Cordón Caulle application are considerably higher than those for the Eyjafjallajökull 

application. This is due to the changing meteorological conditions during to the Cordón Caulle event, and 

confirms that inconsistences associated to off-line forecasts are more relevant in scenarios where the 

meteorological conditions (mainly wind speed and direction) vary rapidly in time. In terms of the 

individual components of SAL, Structure (Fig. 36d) and Amplitude (Fig, 36e) scores explain most of the 

discrepancy with the on-line forecast. Structure scores indicate that more objects occur in the off-line 

forecast and ACL values are too spread out and/or flat, while Amplitude scores suggest that off-line 

forecasts tend to overestimate the total concentration of ash in the domain up to a 1.5 factor. The 

systematic error associated to the off-line forecasts is clearly demonstrated after 18h of simulation (Fig. 

36g), time during which changes in wind speed and direction start to be noteworthy (Fig. 33). Location 

scores (Fig. 36f) suggest a consistent mass distribution of the ACL fields amongst forecasts. The Cordón 

Caulle application is a perfect example to illustrate the importance of complementing traditional 

quantitative metrics with the quantitative object-based metric SAL. For this particular case, SAL scores 

are capable to capture the inconsistences of the off-line dispersion forecast due to the changing 

meteorological conditions that other quantitative metrics (i.e. RMSE, correlation coefficient, bias) cannot 

account for.  

 

Finally, categorical scores for the Cordón Caulle application are presented in Fig. 36h through Fig. 36k. 

Results suggest that the skill of the forecast decreases with decreasing coupling frequency, following 

similar trends than those found in the Eyjafjallajökull application. After 48h, 𝐹𝑀𝑆 scores suggest that the 

spatial overlap between the on-line and the 6h coupled offline forecasts is below 65% (Table 12; Fig 

36k), with a probability of misrepresenting ash-contaminated objects above 10% (𝐹𝐴𝑅; Fig. 36i). Results 

from the Frequency Bias (𝐹𝐵𝐼) metric (Fig. 36j) indicate that all off-line forecasts tend to overestimate 

the ACL.  
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Figure 36. On-line vs. off-line evaluation scores for the 2011 Cordón Caulle application.   
 

Coupling/Score R RMSE BIAS S A L |SAL| POD FAR FBI FMS 

1h 0.932	
   0.068	
   -­‐0.131	
   -­‐0.001	
   -­‐0.02	
   0.002	
   0.023	
   0.965	
   0.028	
   0.993	
   0.934	
  

3h 0.808	
   0.113	
   -­‐1.16	
   -­‐0.008	
   -­‐0.038	
   0.008	
   0.054	
   0.881	
   0.063	
   0.94	
   0.82	
  

6h 0.598	
   0.164	
   -­‐3.657	
   0.123	
   -­‐0.105	
   0.017	
   0.245	
   0.719	
   0.114	
   0.811	
   0.639	
  

12h 0.333	
   0.212	
   -­‐4.754	
   0.033	
   -­‐0.287	
   0.046	
   0.366	
   0.568	
   0.248	
   0.755	
   0.453	
  

Table 12. Evaluation scores for the 2011 Cordón Caulle eruption application at the end of the 48h forecast with NMMB-
MONARCH-ASH. 

3.5 Discussion 

Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to 

generate forecasts to quantify the impacts from volcanic eruptions on air quality, aviation, and climate. 

However, volcanic ash forecasts require the consideration of numerous and complex uncertainties. The 

2010 Eyjafjallajökull eruption clearly demonstrated the need for a better understanding of the 

uncertainties associated to the dispersal model employed in operational volcanic ash forecasting. Since 

then, the scientific community has focused on identifying and improving uncertainties primarily 

associated to the characterization of the source term (e.g. MER, column height, etc.). However and 

surprisingly, the quantification of systematic errors and shortcomings associated to the meteorological 

data driving the dispersion model has received little attention. Traditionally, operational volcanic ash 

forecasts employ off-line coupling strategies to produce the required meteorological fields at regular time 

intervals, e.g. every 1 or 6 hours for typical mesoscale and global operational NWPM outputs and 

reanalysis data, respectively. This chapter has shown the meaningful negative impact of employing off-

line coupling intervals on the accuracy of the ash‐cloud simulations as compared to on-line coupled 

forecasts. In particular, Section 3.3 showed the scores from evaluating a synthetic case focusing 
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exclusively on the effect of the coupling approach. Evaluation scores reveal that the uncertainty of the 

off-line forecasts increase significantly with the length at which the meteorological driver is coupled with 

the dispersion model (e.g. up to 4 times for the 6h-coupled forecast). However, the question on how does 

this compares to other better-constrained sources of forecast error remains still unanswered.   

 

In order to answer this question, this chapter evaluated to which extend the magnitude of the model 

forecast errors implicit in the offline approach compare with that of the source term. To this purpose, four 

additional experimental simulations were performed under the synthetic case where ESP for the on-line 

forecast where modified by: i) employing a 2 MER factor (i.e. x2 and 1/2 times the original MER), and; 

ii) varying ± 20% the corresponding column height. As in previous applications, experimental forecasts 

were evaluated on the same temporal scales and spatial grid against on-line forecast employing a range of 

complementary quantitative and categorical metrics. Figure 37 illustrates the evaluation scores from these 

four simulations, and compares them with those of the 6h coupled off-line forecast. Overall, Fig. 37 

reveals that systematic errors and shortcomings associated to the traditional off-line coupling strategies 

employed in operational volcanic ash forecast can be of the same other of magnitude than those 

uncertainties credited by the characterization of the source term. For example, correlation coefficients 

(Fig. 37b) and 𝑃𝑂𝐷  scores (Fig. 37h) suggest an additional 10-30% level of uncertainty attributed to the 

6h coupled forecast than those associated to the source term. In that same context, at the end of the 

simulation, 𝐹𝑀𝑆 scores (Fig. 37k) reveal that the spatial overlap between the on-line and the 6h coupled 

offline forecasts is ~ 20% lower than those from varying ± 20% the column height, and ~ 50% lower than 

those from altering the original MER. These results suppose a significant advance in the quantification of 

the uncertainty sources associated to traditional off-line volcanic ash forecasts.  

 
Figure 37. On-line vs. off-line evaluation scores evaluation scores for the NMMB-MONARCH-ASH synthetic application 
representing the uncertainty associated to the source term. ESPs were modified for the eruption column height (+/- 20%) and 
MER (x2 and ½).  Scores are compared with those from the 6h off-line coupled forecasts (red line).  
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3.6 Summary and conclusions  

This chapter quantifies the systematic errors inherent in off-line coupling strategies employed for 

operational volcanic ash forecasting. To this purpose, different coupling strategies available in the 

NMMB-MONARCH-ASH model (see Chapter 2 for model details) were employed to evaluate the 

predictability limitations of the off-line forecast against the on-line. Model comparison were performed 

for a synthetic case study focusing exclusively on the effect of the coupling approach, and for two 

historical cases accounting for changing meteorological conditions and ESPs. Evaluation scores indicate 

that systematic errors credited by off-line forecast (with more than 1h coupling interval) can be of the 

same order of magnitude that those better-constrained uncertainties associated to the source term. In 

particular, off-line forecasts in operational setups can result in significant errors in the dispersion of the 

ash plume for coupling intervals above 3h. The results of this study show that 6h coupling off-line 

forecasts fail to reproduce over 50% of the on-line forecast (best estimate of the true outcome) for a case 

with constant ESPs (synthetic case); close to 70% for the 2010 Eyjafjallajökull case and over 45% for the 

2011 Cordón Caulle case. These inconsistencies are anticipated to be even more relevant in scenarios 

where the meteorological conditions change rapidly in time.  The outcome of this chapter suppose a 

significant advance in the quantification of the uncertainty sources associated to traditional off-line 

volcanic ash forecasts, and advocates that operational groups responsible for real‐time advisories for 

aviation consider employing computationally efficient on-line dispersal models. 
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4 ON-LINE APPLICATION WITH NMMB-MONARCH-ASH.  Antarctic 
volcanoes: A remote but significant hazard 

4.1 Introduction 

Explosive volcanic eruptions pose proximal hazards by tephra fallout and can disperse fine ash and 

volcanic aerosols over vast areas of the globe thereby generating a threat to human health and 

infrastructures and causing long-range air traffic disruptions. Several volcanic events occurred in recent 

years, including the 2010 Eyjafjallajökull, 2011 Grímsvötn and Cordón Caulle eruptions, led to large 

economic losses for the aviation industry and their stakeholders, and demonstrated the global extent of the 

phenomenon.  From the tens of volcanoes located in Antarctica, at least nine are known to be active and 

five of them, all stratovolcanoes, have reported frequent volcanic activity in historical times (Fig. 38a)  

 

 

Figure 38. a) Location of Antarctic volcanoes listed in Table 13. AS: Amundsen Sea; BS: Bellinghausen Sea; MB: Marie Byrd 
Land; RS: Ross Sea; VL: Victoria Land; WS: Weddell Sea; WL: Wilkes Land. b) Location of year-round (black dots) and 
temporary (only austral summer)(blue dots) research stations nearby Deception Island. Red dots correspond to temporary field 
camps. The intensity of vessel traffic in the touristic season 2012/13 is also indicated (Bender et al., 2016).  
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Table 13 shows a list of volcanoes and last eruptions in Antarctica (Global Volcanism Program, 

http://www.volcano.si.edu). 

 

Table 13. List of Antarctic volcanoes and last eruptions according to the Global Volcanism Program (last accessed 02/05/2017). 
 

To date, no study have assessed the potential regional and global scale risks associated to high latitude 

eruptions, albeit volcanic eruptions have damaged several Antarctic scientific stations repeatedly in the 

past (Roobol, 1982; Smellie, 2002).  During the last decades, both scientific activity and tourism in the 

Antarctica have augmented notably, especially at the South Shetland Islands and the Antarctic Peninsula. 

This fact has significantly increased the exposure of population and infrastructures to volcanic 

Volcano name 
Primary 

volcano type 
Last eruption year lat (º) lon (º) 

Andrus Shield(s) Unknown -75.8 -132.33 

Berlin Shield(s) -8350 -76.05 -136 

Bridgeman Island Stratovolcano Unknown -62.061 -56.717 

Buckle Island Stratovolcano 1899 -66.78 163.25 

Deception Island Caldera 1970 -63.001 -60.652 

Erebus Stratovolcano 2016 -77.53 167.17 

Hudson Mountains Stratovolcano(es) -210 -74.33 -99.42 

James Ross Island Shield Unknown -64.15 -57.75 

Melbourne Stratovolcano 1892 -74.35 164.7 

Melville Stratovolcano Unknown -62.02 -57.67 

Morning Shield Unknown -78.5 163.53 

Paulet Pyroclastic cone Unknown -63.579 -55.78 

Penguin Island Stratovolcano 1905 -62.1 -57.93 

Peter I Island Shield Unknown -68.85 -90.58 

Pleiades, The Stratovolcano -1050 -72.67 165.5 

Rittmann, Mount Shield Unknown -73.45 165.5 

Royal Society Range Pyroclastic cone(s) Unknown -78.25 163.33 

Seal Nunataks Group Pyroclastic cone(s) Unknown -65.03 -60.05 

Siple Shield Unknown -73.43 -126.67 

Sturge Island Stratovolcano Unknown -67.4 164.83 

Takahe Shield -5550 -76.28 -112.08 

Toney Mountain Shield Unknown -75.8 -115.83 

Unnamed Pyroclastic cone(s) Unknown -73.45 164.58 

Unnamed Submarine Unknown -76.83 163 

Waesche Shield(s) Unknown -77.17 -126.88 

Young Island Stratovolcano Unknown -66.42 162.47 
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phenomena. For example, the islands of Deception and Livingston (South Shetland archipelago) host 5 

research stations and 3 summer field camps, whereas Greenwich and King George islands, located in the 

same archipelago, are home to 10 all-year and 2 temporary research stations (Fig. 38b). In addition, the 

Palmer Archipelago and the northwestern coast of Graham Land have become important touristic 

destinations exceeding 30,000 visitors per year (IAATO, https://iaato.org/), drastically increasing the 

vessel traffic during the touristic season (e.g. traffic intensity; Fig. 38b). In light of the above, there is a 

real need to address the hazards posed by Antarctic eruptions. 

 

The frequency of explosive ash-forming eruptions happening at high southern latitudes is uncertain. 

However, considering that a priori low energetic basaltic effusive activity may easily evolved into 

explosive if the raising magma interacts with sea water, snow or ice, the occurrence of moderate to highly 

explosive eruptions should not be disregarded (Pedrazzi et al., 2014). The objectives of this chapter are: i) 

analyze the potential impacts of ash dispersal and fallout from Antarctic volcanoes by focusing on 

Deception island as a case study, an active composite volcano with several tens of eruptions in the last 

10,000 years (Bartolini et al., 2014; Smellie, 2002); ii) evaluate the ash dispersion dependency on the 

source location and magnitude for different eruptive scenarios in Antarctica; iii) investigate the seasonal 

climatic influence, by considering different meteorological situations typical for the Antarctic summer 

and winter periods.  

 

The final objective of this chapter is to demonstrate that ash from high southern latitude volcanoes may 

pose a higher threat than previously believed.  For this purpose, it is critical to employ a global model 

such NMMB-MONARCH-ASH (Marti et al., 2017) to understand ash circumpolar distribution patterns at 

high southern latitudes, which have obvious implications for tephrostratigraphic and chronologic studies 

that provide valuable isochrones to synchronize paleoclimate records. Section 4.2 in this chapter provides 

a description about Deception Island and its historical volcanism. Section 4.3 describes the methodology 

employed in this work. Section 4.4 presents the meteorological, ash dispersal and fallout simulations 

results. Section 4.5 discusses the potential impact of global aviation safety and climate associated to 

volcanic ash from Antarctic eruptions. Section 4.6 provides the conclusive remarks of this study.   

4.2 Volcanism at Deception Island 

Deception Island (DI), located at the spreading center of the Bransfield Strait marginal basin, consists of a 

horse-shoe-shaped composite volcanic system truncated by the formation of a collapse caldera 

represented as a sea-flooded depression known as Port Foster (Smellie, 2002). The tephra record from 

Deception and neighboring islands, reveals over 30 post-caldera Holocene eruptions, although a 

considerably higher number of eruptions are assumed to have occurred (Orheim, 1972). Indeed, over 50 

relatively well-preserved craters and eruptive vents, scattered across the island, can be reconstructed and 

mapped (Fig. 39). The eruption record in Deception Island since the 19th century reveals periods of high 
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activity (1818–1828, 1906–1912) followed by decades of dormancy  (e.g. 1912–1967) (e.g. Orheim, 

1972; Roobol, 1982; Smellie, 2002). The unrest episodes recorded in 1992, 1999 (Ibáñez et al., 2003) and 

2014-2015 (Almendros et al., 2015) demonstrate that the volcanic system is still active and may be cause 

of concern in the future. During the most recent explosive eruptions occurred in 1967, 1969 and 1970, ash 

fall and lahars destroyed or severely damaged the scientific bases operating on the island at that time 

(Roobol, 1982).  

 

                                 
Figure 39. Simplified geological and tectonic map of DI (modified from Martí et al. (2013) and Smellie (2002). Blue stars show 
the sites of the 1970 volcanic event (data obtained from Spatial Data Infrastructure for Deception Island SIMAC, Torrecillas et 
al., 2006). Black solid and dashed lines delimit visible and inferred post-caldera volcanic craters. 

Historical volcanism at DI, mostly classified as Volcanic Explosivity Index (VEI) 2-3, involves small to 

moderate-volume monogenetic eruptions (< 0.1 km3) with eruptive columns up to 10km height (Bartolini 

et al., 2014; Pedrazzi et al., 2014; Smellie, 2002). Based on the analysis of past eruptions, the most 

disrupting hazard during a volcanic eruption on DI is ash fall. Due to the strong winds and the low 

altitude of the tropopause in the area (8-10 km; Smellie, 1999), ash fall deposits are rapidly dispersed 
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(Fretzdorff and Smellie, 2002; Liu et al., 2016; Pallàs et al., 2001). In fact, the common presence of DI 

tephra in lacustrine cores of neighboring islands, marine sediments of the Bransfield Strait and Scotia Sea 

(>800 km distance), and even in South Pole ice cores, suggests that some post-caldera eruptions may 

have been much more violent than those experienced in recent centuries. These eruptions would have 

involved eruptive columns exceeding 20 km in height and much larger volumes of magma (Liu et al., 

2016; Moreton and Smellie, 1998; Smellie, 1999). In DI, variations in the degree of explosivity can be 

explained by eventual interactions of sea, underground aquifer, or glacier water with the rising or erupting 

magma (Pedrazzi et al., 2014).  

4.3 Methods 

This section presents the methodology to reconstruct, for the first time, the 1970-like eruptive scenario at 

DI to assess the potential impacts of ash dispersal evaluate the dispersion dependency on the source 

location and magnitude for different eruptive scenarios and seasonal periods.  

4.3.1 Tephra dispersal modeling 

Simulations with the on-line version of NMMB-MONARH-ASH (Marti et al., 2017) were performed to 

evaluate long-range dispersal of volcanic ash for a case of similar characteristics as the most recent 

eruption occurred in 1970 (Pedrazzi et al., 2014). The model predicts ash cloud trajectories, concentration 

at relevant flight levels, and deposit thickness for both regional and global domains. Regional-scale 

simulations serve to constrain the expected fallout ranges and deposit thicknesses whereas the global-

scale ones aim at assessing potential long-range impacts on air traffic. Ash concentration values at FL050 

(5,000 feet of nominal pressure) are relevant for airport closure whereas concentrations at FL250 and 

FL350 (25,000 and 35,000 feet) were used to evaluate the potential impacts from ash dispersal on 

aviation. Additionally, to evaluate the ash dispersion dependency on the source location and eruption 

magnitude (column height), dispersion results from the DI scenario were compared with: i) those with 

similar set-up but with the source located at higher latitudes, more specifically, at a position equivalent to 

Mt. Erebus volcano (77.5ºS and 167ºE); and ii) those from an eruptive event with ± 50% variation in the 

height of the eruptive column.   

4.3.1.1 Model set-up and data 

Table 14 summarizes the NMMB-MONARCH-ASH model configuration for the global and regional 

domains. The Eruption source parameters (ESP) for the 1970-like scenario were obtained from Pedrazzi 

et al. (2014), who inferred a column height of 10 km and a volume of 0.1 km3. The model estimates the 

mass eruption rate from column height and atmospheric conditions above the vent based on the 

parameterization of Degruyter and Bonadonna (2012).  
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MODEL CONFIGURATION 

Dynamics NMMB (10s/180s time-step) 

Physics 

Ferrier microphysics  

BMJ cumulus scheme 

MYJ PBL scheme  

LISS land surface model  

Aerosols 5 ash bins (30s/180s time-step) 

Source Term (emissions)  
Duration 

Vertical distribution 

MER formulation 

 

12h 

Point source 

Degruyter and Bonadonna (2012) 

Aggregation model None 

Sedimentation model Ganser (1993) 

Run Set-up 

Duration 

Number of processors 

Domain 

Horizontal resolution 

Vertical layers 

Top of the atmosphere 

Meteorology global conditions  

(spatial resolutions) 

9 days 

256/512 

Regional/Global 

0.052º x 0.037º / 1º x 0.75º 

60 

21 hPa 

ECMWF EraInterim Reanalysis   (0.75º x 0.75º) 

Table 14. Model configuration for the regional and global runs for a 1970-like eruptive scenario at Deception Island. 

 

The particle Total Grain Size Distribution (TGSD) was reconstructed from tephra deposits measured at 

Livingstone island and discretized in 5 bins ranging from 2Φ (0.5 mm) to 6Φ (16μm) with a linear 

dependency of particle density on diameter ranging from 1666 to 2800 kgm-3 (Table 15). It should be 

noted that, due to the lack of sampling in more proximal locations the resulting TGSD is fine-skewed. As 

a consequence, simulations are expected to slightly underestimate deposit load and overestimate far-range 

concentrations. 
size 

(Φ) 
diameter 

(mm) 
density 
(kg m-3) 

sphericity 
(-) 

mass fraction 
(%) 

2 0.5 1666 0.9 2.92 

3 0.25 1950 0.9 30.20 

4 0.125 2233 0.9 33.80  

5 0.031 2516 0.9 30.02 

6 0.016 2800 0.9 3.05 

Table 15. TGSD employed in NMMB-MONARCH-ASH for all DI runs 

 

 

4.3.2 Seasonal climate variability 
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The seasonal climate variability of Antarctica is mainly controled by the Southern Annular Mode (SAM). 

Changes in this mode explain up to 30% of the deseasonalized variability in both geopotential and winds 

(Bergmann and Dobslaw, 2012). For this reason, each set of simulations considers meteorological 

situations typical for the Antarctic summer and winter periods, selecting 1982 and 1995 as representative 

years, respectively.  For each of these two periods (S-82/W-95), the specific days with season-mean 

upper-level winds were selected for simulations. In addition, two additional simulation sets were 

performed to give special emphasis to the summer situation in Antarctica, where there is a significant 

increase of tourists and scientific researchers. The additional summer dates were chosen in coincidence 

with the recent unrest episodes recorded in 1992 and 1999 (S-92/S-99) (Ibáñez et al., 2003).  

4.4 Results 

4.4.1 Meteorological conditions 

Figure 40 shows the meteorological results over the South Pole during the two selected seasons (S-82/W-

95).  A persistent large-scale clock-wise circulation around an upper-level low-pressure zone located 

close to the Pole is clearly visible at any time. The polar vortex extends up to the stratosphere, with a 

global-scale circulation covering latitudes from 70º up to 50º depending on the period. At these 

stratospheric levels, the resulting polar jet stream is very intense (wind speeds over 60 m/s), widening 

notably during the winter (Fig. 40b) and narrowing during the summer (Fig. 40a).  

 

In the particular case of the summer situation, the jet stream remains confined at around 65º latitude. This 

is also true close at the tropopause (Fig 42 - 10 km time series height plots), where Rossby waves start to 

form and large-scale wind meandering appears. Finally, at mid-tropospheric levels (Fig. 41 and 44: 5 km 

time series height plots), the meteorological situations show lesser seasonal dependency and are 

characterized by a breaking of the jet stream and a pronunciation of the meanders reaching much lower 

latitudes. These well-known synoptic situations have implications on tephra dispersal patterns and 

anticipate distinct behaviors depending on the volcano location and eruption column height. On the one 

hand, low plumes (<10 km) from high-latitude (>70º) volcanoes are likely to be confined within the less-

intense-winds zone encircled by the jet stream, i.e. displaying no transcontinental dispersal. However, this 

may not be the case for higher plumes from these volcanoes (Fig. 43 and 46), which could be advected 

towards the continental periphery and then entrapped by the jet stream before ash settling on the ground. 

On the other hand, ash released at any height from lower-latitude volcanoes (e.g. Deception Island) is 

more likely to encircle the globe and reach sub-polar latitudes by meandering advection. Meteorological 

model results for all climatological periods are presented in detail in Figs. 41- 46. 

4.4.2 Long-range ash dispersal 
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Global and regional-scale ash dispersal simulations were performed for the DI 1970-like scenario under 

the different “climatically-representative” meteorological situations. Figures 47 and 48 show global-scale 

model results from an eruptive column of 10 km height for the summer and winter seasons, respectively. 

Simulation results for the other summer scenarios (S-92/S-99) are presented for total column mass load 

(Figs. 49 - 54) and ash concentration at relevant flight levels (Figs 55 - 60).  At global scale, moderate to 

high values of ash column load (>1 g m-2) are found up to 4 days (96 h) after the eruption (see Figs. 49 - 

54). In all simulations, the highest cloud column mass load values (>100 g m-2) are limited to the first 48 

h after the eruption start and are mainly found over the Atlantic Ocean, the Scotia and the Weddell Seas. 

However, a residual small amount of ash (0.1-1 g m-2) is still present in the atmosphere up to 8 days after 

the eruption onset. Ash concentrations above the flight safety thresholds (0.2-2 mg m-3, orange and red 

contours in Figs. 47 and 48, and Figs. 55 - 60) can be observed over South Africa and, in some cases, also 

over southern Australia or even over austral Patagonia, confirming the potential threat of this DI eruptive 

scenario to aviation. Depending on the specific wind conditions, some ash clouds re-enter back to the 

Antarctic Continent through the Queen’s Maud Land during the first 48 h after the eruptions (e.g. Fig. 48) 

or through the Wilkes Land (with lower concentrations) after longer times (e.g. 72 h in Fig. 54). 

However, in most cases ash clouds circulate around (latitudes 70º-50º) and away (<50º) the continent, i.e. 

leaving no substantial fallout record on the main land, highlighting the possibility that many DI eruptions 

are not registered in the form of tephra layers in South Pole ice cores. 

4.4.3 Ash fallout 

Figure 61 shows the ash fallout deposits for the different meteorological conditions. Understandably, the 

precise orientations or the deposit axes depend on the regional winds during the selected days, which 

dispersed coarser particles predominantly to the southeast and southwest of DI. Deposits exceeding 1 cm 

in thickness can be found at distances as far as James Ross Island (> 190 km) or beyond Joinville Island 

(> 230 km). In any case, results highlight the potential for fallout to impact research stations and touristic 

destinations around Palmer Archipelago and Bransfield Strait locations. In addition, ash fallout could also 

have a disruption for touristic vessels operating in the region. 
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Figure 40. NMMB-MONARCH-ASH meteorological results over the South Pole during the selected (averaged) days of summer 
1982 (a), and winter 1995 (b) seasons. Plots show wind vectors and velocity contours (m s-1) at 5 (top), 10 (middle) and 15 
(bottom) km a.s.l., roughly corresponding to mid-troposphere, tropopause and stratosphere respectively.  
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Figure 41. NMMB-MONARCH-ASH meteorological model results over the South Pole during the selected (averaged) days of 
the summer 1982 period. Plots show wind vectors and velocity contours (m s-1) at 5 km height during 8 days (192h). 
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Figure 42. NMMB-MONARCH-ASH meteorological model results over the South Pole during the selected (averaged) days of 
the summer 1982 period. Plots show wind vectors and velocity contours (m s-1) at 10 km height during 8 days (192h). 
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Figure 43. NMMB-MONARCH-ASH meteorological model results over the South Pole during the selected (averaged) days of 
the summer 1982 period. Plots show wind vectors and velocity contours (m s-1) at 15 km height during 8 days (192h). 
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Figure 44. NMMB-MONARCH-ASH meteorological model results over the South Pole during the selected (averaged) days of 
the winter 1995 period. Plots show wind vectors and velocity contours (m s-1) at 5 km height during 8 days (192h). 
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Figure 45. NMMB-MONARCH-ASH meteorological model results over the South Pole during the selected (averaged) days of 
the winter 1995 period. Plots show wind vectors and velocity contours (m s-1) at 10 km height during 8 days (192h). 
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Figure 46. NMMB-MONARCH-ASH meteorological model results over the South Pole during the selected (averaged) days of 
the winter 1995 period. Plots show wind vectors and velocity contours (m s-1) at 15 km height during 8 days (192h). 
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Figure 47. Global-scale NMMB-MONARCH-ASH model results for the summer 1982 period at different time instants (2, 4, 6, 
and 8 days after the eruption start from top to bottom respectively). An eruptive column of 10 km height was considered for the 
1970-like scenario to simulate: a) the total column mass loading (g m-2), b) the concentration of ash at Flight Level FL050 (mg m-

3), and c) the concentration at FL250 (mg m-3). Safe ash concentration thresholds are shown (red concentration contours illustrate 
“No Flying” zones). The yellow star indicates the location of Deception Island. 
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Figure 48. Global-scale NMMB-MONARCH-ASH model results for the winter 1995 period at different time instants (2, 4, 6, 
and 8 days after the eruption start from top to bottom respectively). An eruptive column of 10 km height was considered for the 
1970-like scenario to simulate: a) the total column mass loading (g m-2), b) the concentration of ash at Flight Level FL050 (mg m-

3), and c) the concentration at FL250 (mg m-3). Safe ash concentration thresholds are shown (red concentration contours illustrate 
“No Flying” zones). The yellow star indicates the location of Deception Island.   
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Figure 49. NMMB-MONARCH-ASH total ash column mass load (g m-2) during the 1999 summer period at different time 
instants after the eruption start. Simulation considering an eruption column height of 5 km. The yellow star indicates the location 
of Deception Island. 
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Figure 50. NMMB-MONARCH-ASH total ash column mass load (g m-2) during the 1999 summer period at different time 
instants after the eruption start. Simulation considering an eruption column height of 10 km. The yellow star indicates the 
location of Deception Island. 
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Figure 51. NMMB-MONARCH-ASH total ash column mass load (g m-2) during the 1999 summer period at different time 
instants after the eruption start. Simulation considering an eruption column height of 15 km. The yellow star indicates the 
location of Deception Island. 
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Figure 52. NMMB-MONARCH-ASH total ash column mass load (g m-2) during the 1992 summer period at different time 
instants after the eruption start. Simulation considering an eruption column height of 5 km. The yellow star indicates the location 
of Deception Island. 
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Figure 53. NMMB-MONARCH-ASH total ash column mass load (g m-2) during the 1992 summer period at different time 
instants after the eruption start. Simulation considering an eruption column height of 10 km. The yellow star indicates the 
location of Deception Island. 
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Figure 54. NMMB-MONARCH-ASH total ash column mass load (g m-2) during the 1992 summer period at different time 
instants after the eruption start. Simulation considering an eruption column height of 15 km. The yellow star indicates the 
location of Deception Island. 
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Figure 55. NMMB-MONARCH-ASH Flight Level ash concentrations (mg m-3) at FL050 (left), FL250 (middle), and FL350 
(right) at different time slices during the 1999 summer period. Safe ash concentration thresholds are shown (red contours 
illustrate “No Flying” zones). Simulation considering an eruption column height of 5 km. The yellow star indicates the location 
of Deception Island. 
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Figure 56. NMMB-MONARCH-ASH Flight Level ash concentrations (mg m-3) at FL050 (left), FL250 (middle), and FL350 
(right) at different time slices during the 1999 summer period. Safe ash concentration thresholds are shown (red contours 
illustrate “No Flying” zones). Simulation considering an eruption column height of 10 km. The yellow star indicates the location 
of Deception Island. 
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Figure 57. NMMB-MONARCH-ASH Flight Level ash concentrations (mg m-3) at FL050 (left), FL250 (middle), and FL350 
(right) at different time slices during the 1999 summer period. Safe ash concentration thresholds are shown (red contours 
illustrate “No Flying” zones). Simulation considering an eruption column height of 15 km. The yellow star indicates the location 
of Deception Island. 
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Figure 58. NMMB-MONARCH-ASH Flight Level ash concentrations (mg m-3) at FL050 (left), FL250 (middle), and FL350 
(right) at different time slices during the 1992 summer period. Safe ash concentration thresholds are shown (red contours 
illustrate “No Flying” zones). Simulation considering an eruption column height of 5 km. The yellow star indicates the location 
of Deception Island. 
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Figure 59. NMMB-MONARCH-ASH Flight Level ash concentrations (mg m-3) at FL050 (left), FL250 (middle), and FL350 
(right) at different time slices during the 1992 summer period. Safe ash concentration thresholds are shown (red contours 
illustrate “No Flying” zones). Simulation considering an eruption column height of 10 km. The yellow star indicates the location 
of Deception Island. 



 138 

  

  
Figure 60. NMMB-MONARCH-ASH Flight Level ash concentrations (mg m-3) at FL050 (left), FL250 (middle), and FL350 
(right) at different time slices during the winter period. Safe ash concentration thresholds are shown (red contours illustrate “No 
Flying” zones). Simulation considering an eruption column height of 15 km. The yellow star indicates the location of Deception 
Island. 
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Figure 61. Regional-scale model ground deposit thickness (in cm) for the 1970-like scenario with different column heights of: 
5km (left), 10km (middle), and 15km (right). Top and bottom panels show the corresponding ash deposition for the summer and 
winter periods, respectively. 

4.5 Discussion 

The potential impact associated to volcanic ash from Antarctic eruptions is mainly contingent on the 

volcano location and eruption column height (h). In that context, lower plumes (h<10 km) form high-

latitude (>70º) eruptive events are likely to be confined close to the South Pole due to moderated wind 

zones encircled by the polar jet stream, while higher plumes have a higher potential for transcontinental 

ash dispersal. However, contrary to this situation, ash from lower-latitude Antarctic volcanoes (e.g. 

Deception Island) is more likely to encircle the globe, even for moderate size eruptions. In this case, 

volcanic ash clouds could reach up to tropical latitudes, a vast part of the Atlantic coast of South America, 

South Africa and/or Oceania. Thus, a wider dispersion of volcanic particles than previously believed may 

be originated resulting in significant consequences in the context of global aviation safety. For example, 

Flight level (FL) ash concentrations resulting from our NMMB-MONARCH-ASH simulations (Figs. 40 

and 55 through 60) at FL050 (5,000 feet), FL250 (25,500 ft) and FL350 (35,000 ft), clearly show areas 

over which air traffic would be disrupted due to the presence of ash in the atmosphere (assuming “No 

Flying” zones with threshold of 2 mg m-3). This is true not only in proximity to the South Shetland 

Islands, i.e. South American airports (over 1,000 km in distance) (e.g. Fig.41), but also in South Africa 

(over 6,400 km), affecting international and domestic flying routes, in addition to flights connecting 

Africa with South America and Australia (e.g. Fig. 42).  
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In a similar way, dispersal from events with smaller eruption columns (e.g. h=5 km), can result on “No 

Flying” areas affecting all flying routes towards international airports such as Buenos Aires and up to 

tropical latitudes (< 25º S, Tropic of Capricorn) (e.g. Fig. 49). For strong eruptive columns (e.g. h=15 

km), ash takes longer to settle where and, including parts of West Antarctica, the Amundsen and 

Bellinghausen Seas and the South Pole, are still disrupted by the presence of volcanic ash, even eight 

days after the eruption on-set (Fig. 51). These results clearly recall the need for further research on the 

area to investigate the potential occurrence of an eruption on DI and to perform a proper hazard 

assessment for other active Antarctic volcanoes located on West Antarctica and along Victoria Land. 

Most importantly, considering that the eruption simulated here is by far not the largest that has been 

register neither in DI nor in Antarctica, future work is needed to evaluate the potential effects of a larger 

eruption (VEI >3) not only to air traffic but also to climate change.  

4.6 Summary and conclusions 

Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat 

to human health and infrastructures and causing enormous disruption to air traffic. In Antarctica, at least 

five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-

economic and environmental consequences of an ash-forming eruption occurring at high southern 

latitudes. This chapter shows how ash from Antarctic volcanoes may pose a threat higher than previously 

believed. As a case study, this work evaluates the potential impacts of ash for a given eruption scenario 

from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the 

novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes 

could potentially encircle the globe, leading to significant consequences to global aviation safety. Results 

obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial 

to understand the patterns of ash distribution at high southern latitudes with strong implications for 

tephrostratigraphy, pivotal to synchronize palaeoclimatic records. 
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5 OFF-LINE APPLICATION WITH FALL3D. Reconstructing the Plinian 
and co-ignimbrite sources of large volcanic eruptions: A novel 
approach for the Campanian Ignimbrite  

5.1 Introduction 

Volcanic super-eruptions, those that eject magma in excess of 450 km3 Dense Rock Equivalent (DRE) or 

~1,000 km3 of volcanic ash deposits (Self, 2006; Sparks et al., 2005), may have catastrophic long-term 

global impacts. Despite the low probability of occurrence in relation to human life-spans, the probability 

increases significantly when considering the time-scales of civilizations (Sparks et al., 2005). Many 

aspects of volcanic super-eruptions are not well understood due to a lack of historical precedents, and 

such eruptions must be reconstructed from their geological deposits (Self, 2006). Reconstructing the 

volume and tephra dispersal from volcanic super-eruptions is necessary to gain further insight into these 

catastrophic events and assess their widespread impact on humans, ecosystems and climate. Recent 

studies (Costa et al., 2012, 2014; Mastin et al., 2014) have demonstrated that the capability of numerical 

models to reconstruct tephra dispersal from these events has greatly improved in recent years. 

 

Commonly associated with caldera-forming events, super-eruptions often include multiple eruptive 

sources with different styles of ash injection (Wilson, 2008). A common scenario begins with Plinian 

column destabilization and/or structural collapse of a caldera to produce a collapsing fountain that sheds 

pyroclastic flows. These high-density flows spread laterally along the ground at high-speeds (Sparks et 

al., 1978), eventually leading to formation of secondary, co-ignimbrite plumes (Fig. 62) (Woods and 

Wohletz, 1991).  

 

 
Figure 62. Schematic diagram (not to scale) of a super-eruption event with an initial (left) sustained Plinian phase followed by a 
column-collapse and large pyroclastic density currents eventually leading to co-ignimbrite plumes offset from the vent (right). 
Colored cells mark the extent of each transport regimes in the umbrella cloud (extracted from Marti et al., 2016). 

 

Source conditions for co-ignimbrite plumes vary considerably from those of Plinian, with much larger 

source radii, lower initial ascent velocities and finer granulometry. However, previous numerical studies 

have simplified the characterization of volcanic super-eruptions to a single eruptive source, potentially 

leading to inaccurate estimations of their eruption dynamics. In order to evaluate the magnitude of each 

eruptive phase, it is critical to constrain their eruption dynamics and quantify optimal eruption source 
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parameters (ESPs; i.e. erupted mass, mass flow rate, eruption duration, plume height and total grain size 

distribution) that best represent each phase of the eruption.  

 

In eruptions where both Plinian and co-ignimbrite sources (referred to as phases when separated in time 

during the eruption) have occurred, tephra deposits commonly have bimodal grain size distributions at 

individual sites (Sparks and Huang, 1980). A number of processes have been invoked to explain this 

bimodality, typically ascribed to depositional processes such as aggregation (Carey and Sigurdsson, 

1989). However, such bimodality has also been interpreted as representing different eruptive phases, 

specifically Plinian versus co-ignimbrite (Engwell et al., 2014; Eychenne et al., 2012, 2015; Sparks and 

Huang, 1980). Inaccurate assessment of the proportion of co-ignimbrite ash in the deposit in distal areas 

can lead to an overestimation of the volume of the Plinian deposit (Perrotta and Scarpati, 2003).  

 

Atmospheric transport of tephra released during this type of eruption is driven by the interaction of the 

volcanic plume and the atmospheric wind field (Costa et al., 2013). Plumes from high-intensity eruptions 

can be injected high into the stratosphere, reaching a maximum column height and intruding laterally at 

neutral buoyancy level (NBL) as a gravity current (Fig. 62). This current can spread at velocities 

exceeding those of the surrounding winds, affecting tephra transport and deposition near the source 

(Baines and Sparks, 2005; Costa et al., 2013). As particles are deposited and air is entrained, the plume 

density decreases and momentum reduces such that, at a certain distance, atmospheric turbulence and 

wind advection become the dominant atmospheric transport mechanisms (Baines and Sparks, 2005). 

Neglecting the gravitational spreading of the umbrella cloud in tephra dispersal simulations could 

misrepresent the interaction of the volcanic plume and the atmospheric wind field, especially for high-

intensity eruptions and for proximal deposition of tephra (Mastin et al., 2014). For further details on the 

description of the gravity current transport, refer to Sect. 2.2.3.2.1. 

 

In a recent work, Costa et al. (2012) combined FALL3D ash dispersion model simulations, analysis of an 

ensemble of wind fields, and thickness measurements of the tephra deposit to quantify volcanic ash 

dispersal of the Campanian Ignimbrite (CI) eruption. The dispersal model was used in conjunction with a 

downhill simplex inversion method (DSM; Connor and Connor, 2006) to investigate eruption dynamics. 

However, Costa et al. (2012) reconstructed the eruption as a single-phase event and neglected the 

gravitational spreading of the umbrella cloud in their tephra dispersal simulations, overlooking potentially 

important eruption processes. Reconstruction of the eruption as a two-phase event can provide a more 

realistic characterization of the eruption and allow for a better estimation of its duration. 

 

The aim of this chapter is to further develop the Costa et al. (2012) computational approach to 1) 

reconstruct, for the first time, the duration and contribution of the two phases of the CI super-eruption 

and, 2) evaluate the effect of gravitational spreading of the umbrella cloud by coupling FALL3D with a 
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model that accounts for the gravity-driven transport in the umbrella cloud (Costa et al., 2013).  In this 

particular case, the use of an off-system is preferred to constrain eruption source parameters (ESP) by 

means of inversion analysis. The off-line approach is convenient in terms of computational time and cost 

because different VATDM executions are possible without re-running the meteorological component, e.g. 

to refine the source term parameters during the inverse modeling.  Section 5.2 in this chapter summarizes 

the eruptive event and presents the different datasets employed for the inversion and validation analyses. 

Section 5.3 describes the methodology used to perform the two-phase reconstruction of CI the super-

eruption. Section 5.4 presents the results from reconstructing the eruption as a single and two-phase 

event, and summarizes the effect of the gravity current phenomena during the Plinian phase. Section 5.5 

discusses the environmental and climate-forcing implications associated with the eruption to provide 

insight into its impact on the Middle to Upper Palaeolithic transition. Finally, Sect. 5.6 provides the 

conclusive remarks of this work.  

5.2 The Campanian Ignimbrite: history and geological deposits 

The trachytic-phonolitic Campanian Ignimbrite eruption (Barberi et al., 1978), the largest eruption of the 

last 200 ka in Europe, erupted from the Phlegrean Fields on the Bay of Naples (Italy) ~39,300 years ago 

(De Vivo et al., 2001). Geological evidence suggests that the eruption had two main phases; beginning 

with a sustained Plinian phase (Rosi and Vezzoli, 1999) followed by a secondary co-ignimbrite phase 

(Perrotta and Scarpati, 2003; Pyle et al., 2006). The upper portions of the Plinian deposits contain 

evidence for initiation of column collapse (generating a crater 13 km in diameter; Barberi et al., 1978) 

and are overlain by massive ignimbrite deposits (Rosi and Vezzoli, 1999), with local thicknesses 

exceeding 100 m. These deposits were emplaced by pyroclastic density currents that travelled in excess of 

80 km from source (Fedele et al., 2003), and resulted in formation of the co-ignimbrite plume(s) (Perrotta 

and Scarpati, 2003). While the dynamics and physical characteristics of proximal deposits have been 

widely discussed in the literature (e.g. Barberi et al., 1978; Civetta et al., 1997; Engwell et al., 2014; 

Fisher et al., 1993) dispersal and volume estimates of the associated distal fallout deposit are still poorly 

constrained (Pyle et al., 2006), despite containing a significant portion of the erupted material. 

 

According to recent studies, the resulting stratospheric aerosol cloud would have induced a “volcanic 

winter” (Rampino et al., 1988) with a cooling effect of ~ 6-9 ºC in Eastern Europe (Black et al., 2015). 

Additionally, it has been debated that the eruption, boosted by the impact of the broadly synchronous 

Heinrich Event 4 (Heinrich, 1988), contributed to the Middle to Upper Palaeolithic transition (Fedele et 

al., 2003; Zilhão, 2006). 

 

 

5.2.1 Geological datasets 
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Two independent datasets containing deposit thickness were used for model inversion and validation. 

Dataset 1 contains 10 deposit thickness measurements with distinct bimodality from which a Total Grain 

Size Distribution (TGSD) was reconstructed. This is a more complete distribution than that used by Costa 

et al. (2012), who assumed an empirically parameterized TGSD bi-log-normal distribution. Dataset 2, 

contains  

114 unimodal observations spanning across the dispersal area. Figure 63 shows the sampling locations for 

each dataset along with their reconstructed Total Grain Size Distribution (TGSD). 

 

 
Figure 63. Map showing the location of the CI-caldera (blue star) and geological samples in dataset 1 (red asterisks) and 2 (black 
circles). The inset shows the reconstructed TGSD from dataset 1 (extracted from Marti et al., 2016). 

5.2.1.1 Dataset 1 (two-phase inversion) 

Dataset 1 was used for the two-phase inversion. The dataset was derived from analysis of more than 40 

marine, lacustrine and land deposits across the dispersal area, originally presented in Engwell et al. 

(2014). The deposits range from 130 km from the source, at Lago Grande di Monticchio (LGdM), to 

distances of more than 2000 km, in Russia. Amongst these deposits, only the ten showing distinct 

bimodality were selected (Table 16). Within lake sediments at LGdM, the CI deposit was separated into a 

16.5 cm thick coarse lapilli pumice fall overlain by a 13 cm thick vitric ash layer. This overlying ash 

layer, the co-ignimbrite layer, is fine grained with a median diameter of approximately 50 μmi, and is 

relatively homogenous, with little variation in median diameter and sorting coefficient within the deposit. 

While the lapilli deposit fines slightly towards the top of the deposit, the boundary with the overlying 

vitric ash layer is sharp. Similar trends have also been noted within deposits at greater distances from 
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source (Sparks and Huang, 1980), with the boundary between the two phases becoming more difficult to 

distinguish with distance. Deposits at greater distances were too thin for the two phases to be 

distinguished stratigraphically. 

Sample Lon (E) Lat (N) Depositional 
Environment 

Water 
Depth 

(m) 

Distance from 
source (km) 

Thickness  
Plinian  

(cm) 

Thickness  
Co-ignimbrite  

(cm) 

% Co-
ignimbrite 

Tephra 
TR172-42 14.55 40.02 Deep Sea 728 118 11 4 27.7 

LGM-10  15.61 40.93 Lake NA 130 16.5 13 44.1 

MONTEN 18.48 42.78 Cave NA 430 5.1 2.9 36.2 

RC9-191 18.03 38.20 Deep Sea 2,345 445 1.56 2.44 61.0 

V10-69 17.28 37.23 Deep Sea 3,156 490 1.38 1.62 54.0 

RC9-190 19.23 38.65 Deep Sea 1,712 497 1.4 2.6 65.0 

RC9-189 19.68 36.98 Deep Sea 3,378 645 5.2 4.8 48.0 

V10-67 20.72 35.70 Deep Sea 2,904 810 1.6 2.9 64.4 

RC9-185 20.12 34.45 Deep Sea 2,858 890 0.75 2.25 75.0 

TR171-21 20.13 34.45 Deep Sea 2,785 900 0.32 2.18 87.2 

Table 16. Dataset 1 showing tephra layer thicknesses from Engwell et al. (2014) for Plinian and co-ignimbrite phases of the CI 
eruption with distance from the source. Note how the percentage of the co-ignimbrite contribution tends to increase with distance 
from source. 

Deposits were chemically treated to remove any biological components, and grain size analysis was 

conducted using a combination of sieve and laser diffraction analysis (Engwell et al., 2014) using the 

Malvern Mastersizer 2000E. Deposits at LGdM are easily separated into Plinian and co-ignimbrite phases 

based on stratigraphy, with both deposits having a unimodal distribution. Grain size results for 

intermediate distances show the characteristic bimodality typical of deposits associated with multiple 

phases, and particularly those associated with Plinian and ignimbrite forming eruptions. Deposits at 

distances greater than 900 km from source are unimodal, and likely contain ash from both the Plinian and 

co-ignimbrite phase. However it was not possible to identify to what extent each component contributes 

(Engwell et al., 2014).  

 

The total grain size distribution of the two main component phases (inset Fig.63) was calculated using the 

Voronoi Tessellation spatial statistical technique (Bonadonna and Houghton, 2005), whereby the 

identified deposit extent is divided into a number of territories according to the spacing and distribution of 

the measurements. In this case, the deposit extent of Pyle et al. (2006) was used as the tessellation limit. 

Uncertainties associated with estimation of TGSDs are typically related to the choice of deposit extent 

and to the number and distribution of analysed deposits (Bonadonna et al., 2015a; Bonadonna and 

Houghton, 2005). However, given the lack of variation in co-ignimbrite deposit grain size characteristics, 

regardless of direction and distance from source, the calculated TGSD is likely to be robust, and the 

resultant grain size is remarkably similar to co-ignimbrite deposits from other events (e.g. Montserrat;  

Bonadonna et al., 2002). In the case of the Plinian deposit, the fines from very distal deposits were not 

taken into account, and therefore the resultant grain size distribution is likely to underestimate the finest 

grain sizes. 
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5.2.1.2 Dataset 2 (single phase inversion and validation) 

Dataset 2 was used for the single-phase inversion experiment and for validation purposes. The dataset 

consists of the 112 sample thicknesses previously used by Costa et al. (2012) plus two measurements in 

southeast Romania (Fitzsimmons et al., 2013). The location, thickness and distance from source of each 

geological sample is available in the Supplemental material (S2) in Marti et al. (2016).  

5.3 Methods 

This section presents a novel computational approach to infer ESP values that allow to reconstruct, for the 

first time, the duration and contribution of the two phases of the CI super-eruption, and to quantify the 

effect of the gravitational spreading of the umbrella cloud.  This methodology employs four components: 

i) a meteorological dataset that statistically represents the meteorological conditions at the time of the 

eruptive event; ii) two independent datasets containing deposit thickness (see Sect. 5.2.1) used for 

inversion and validation purposes; iii) an off-line VATDM (i.e. FALL3D) to simulated the transport and 

deposition of tephra, and; iv) a downhill simplex inversion method that selects a solution that best 

reconstructs each phase of the eruption. Finally, this section also describes the methodology used to 

estimate the environmental emissions from the CI event to the atmosphere.  

5.3.1 Wind fields 

Costa et al. (2012) performed a five-step computational procedure to generate the set of 4D winds that 

statistically represents the (unknown) meteorological conditions at the time of the 39 ka CI eruption. To 

select dates, the authors performed forward simulations using a set of five hundred synoptic 

meteorological fields (using 15 years of European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-40 reanalysis data). Costa et al. (2012) concluded wind fields from 5-12th of December 

1991 best-represented the meteorological conditions at the time of the event (see online supplementary 

material in Costa et al., 2012). In this chapter, the methodology presented in Costa et al. (2012) is 

improved by using the ECMWF ERA-Interim reanalysis dataset at 0.25ºx0.25º resolution in the 

horizontal and 60 vertical levels from the surface up to 0.1 hPa. Meteorological fields from the ERA-

Interim dataset were interpolated over the FALL3D computational mesh with a 1-hour interval. To 

improve the quality of the fit for the ultra-distal deposits, the wind field was rotated 7 degrees anti-

clockwise around the vent. Considering these improvements, the wind fields from the 7th of December 

1991 were found to statistically best represent those at the time of the eruption. 

5.3.2 Tephra dispersal modeling 

For this particular case, employing an off-line tephra dispersion model is convenient in terms of 

computational time and cost because different dispersal model executions are possible without re-running 
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the meteorological component, e.g. to refine the source term parameters during the inverse modeling. To 

this purpose, the stand-alone FALL3D Eulerian model for the transport and deposition of volcanic tephra 

(see Sect. 1.1.3.1) was employed (rather than NMMB-MONARCH-ASH) including the following 

parameterizations: 

 

• To determine the vertical distribution of mass within the plume through inversion, the model 

assumes the Suzuki empirical parameterization (Pfeiffer et al., 2005; Suzuki, 1983) to control 

concentration of mass along the column.  

• To account for aggregation processes, FALL3D uses the empirical aggregation model of Cornell 

et al. (1983), originally proposed for the CI eruption. For computational reasons, particle 

aggregation was assumed to occur within the eruption plume thereby affecting the original 

TGSD, which was modified considering a single aggregate class, depleting particle classes finer 

than the aggregate class itself.  

• The horizontal diffusion coefficient was calculated using a large eddy parameterization such as 

the one used by the RAMS model (Pielke et al., 1992).  

• The vertical diffusion coefficient was set to a constant value  of 100 m2s-1.  

• The particle settling velocity model of Ganser (1993) was used to predict settling rates of 

particles.  

• Finally, to account for the gravity-driven transport, FALL3D is coupled with a parameterization 

that describes cloud spreading as a gravity current (see Sect.1.4.2.2). This model calculates an 

effective radial velocity of the umbrella spreading as a function of time, and combines it with the 

wind field centered above the vent in the umbrella region. To estimate the radial distance at 

which the critical transition between gravity-driven and passive transport occurs, the umbrella 

front velocity is compared with the mean wind velocity at the Neutral Buoyancy Level (NBL) 

estimating the Richardson number, Ri (gravity-driven regime when Ri > 1, passive transport 

regime for Ri < 0.25, and an intermediate regime in between these values). 

• The computational domain contained 241x201x50 grid points resolution. 

5.3.3  Inversion modeling and best-fitting criterion 

To reconstruct the dynamics of an eruption, first it is necessary to understand the eruptive behavior of a 

given volcano. For prehistorically eruptions, were the volcanic dynamics cannot be directly or remotely 

observed, it is necessary to infer very basic parameters from the deposit (i.e. eruption column height, 

erupted mass, and the prevailing wind speed and direction). Given the meteorological and geological 

datasets previously obtained, this section introduces the (volcanological) inversion methodology used to 
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find the optional set of eruption parameters to characterize the Plinian and co-ignimbrite phases of the CI 

event. The inputs of the inversion method include the mass per unit area measurements (or thickness) of a 

tephra deposit and estimate parameters ranges (e.g. minimum and maximum values for plume height, 

total erupted mass, eruption duration, MER, total grain size distribution modes and variances, density of 

aggregates, etc.). Together via inversion, a downhill simplex inversion method (Connor and Connor, 

2006) and the forward model FALL3D are used to determine optimal values for the estimated eruption 

parameter ranges. The basic steps employed by this inversion methodology include: 

 

i. Define a range of values for the ESPs being modeled (see Table 17). The chosen number of 

eruption parameters defines an 𝑁 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  solution space, 𝑁  being the number of 

parameters to be optimized by inversion. 

ii. Randomly initialize the parameter sets. Use FALL3D as the forward model for calculating initial 

tephra deposits using each randomly initialized parameter set.  

iii. Compare model results against field observations from dataset 2 by employing two goodness-of-

fit measures: i) the minimization criterion used in Folch et al. (2010), and; ii) the criterion 

originally proposed by Aida (1978) to measure the spatial variation between the recorded and 

computed tsunami heights. This measure has been previously adapted and proven to be suitable 

for best-fitting tephra deposits (Costa et al., 2014): 

 

𝑙𝑜𝑔𝐾 =
1
𝑛

log𝐾!
!

!!!
          with          𝐾! =

𝑀!
𝐻! 

(52) 

   

 

log𝑘 =
1
𝑛

𝑙𝑜𝑔𝐾! !
!

!!!
− 𝑙𝑜𝑔𝐾 !   ! ! (53) 

 

where 𝑛  is the number of measurements,   𝐾! =
𝑀!

𝐻! is the ratio of measured tephra thickness 

(load) to simulated thickness (load) at 𝑖-th location. The first Aida index (𝐾) is associated with 

the geometric average of the distribution and the second (𝑘) is related to the geometric standard 

deviation of the distribution (expected to be 1.5-2 times larger for volcanic deposits than for 

tsunami heights). This approach was proven to be suitable for best-fitting tephra deposits (Costa 

et al., 2014).  

iv. Select new parameter values using the downhill simplex method to minimize the difference 

between calculated values and observed measurements. 
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v. Iterate through this process to minimize the difference between calculated values and observed 

measurements. This iteration takes places until the goodness-of-fit measures fall within the 

tolerance limit selected:  

 

0.95  <  K  <  1.05        and  the  smallest  𝑘  coefficient  (ideally  k<1.45) (54) 

 

5.3.4 Environmental and atmospheric emissions 

The amount of volatiles released from the CI eruption is estimated using the volcanic emission approach 

originally described in Self (2004) for SO2. This approach is updated here to estimate fluoride and 

chloride emissions during the CI eruption: 

 

 

𝐸𝑀! = 𝑓!𝑀!
1 −𝑊!"# 𝐶!"#$ − 𝐶!"#$%&

100
     (55) 

 

 

where 𝐸𝑀! is the emission for each substance (in kg), 𝑀! is the mass of erupted magma (in kg) obtained 

from the our best-fit results, 𝑊!"# is the mass fraction of crystals in the magma (Pappalardo et al., 2013; 

Signorelli et al., 2001), 𝐶!"#$ − 𝐶!"#$%&  is the difference between the average chemical concentrations of 

the glass inclusions and the matrix in wt% (Civetta et al., 1997), and 𝑓! is factor difference between the 

molecular weights (e.g. factor 2 for the SO2 and S). 

 

5.4 Results 

5.4.1 Modeling the CI eruption as a two-phase event 

Best-fit results from the inversion model (Table 17) indicate that the eruption began with a short (4h), 

high-intensity Plinian explosive phase that produced a column 44 km in height, and a mass eruption rate 

(MER) of 3.75×109 kg/s. Results also show that the vertical mass distribution can be characterized by a 

value of the Suzuki coefficient (Suzuki, 1983) commonly assumed for Plinian eruptive columns (A = 4). 

The Plinian phase deposited a total volume of 54 km3 of tephra (~23 km3 DRE), accounting for 26% of 

the total fallout deposit volume, and covered an area of ~1.3 million km2 with deposits greater than 0.5 

cm in thickness. Figure 64a shows that Plinian lapilli and coarse ash were predominantly deposited in 

southern Italy with deposit thickness decreasing with distance in concordance with data reported in 
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dataset 1. The correlation coefficient between the observed thicknesses in dataset 1 and the model results 

was 0.76 (Fig. 64e), with a relative root mean square error (RMSE) of 0.10. 

 

Best-fit results for the second phase suggested the co-ignimbrite column(s) reached 37 km in height (with 

a Suzuki coefficient of A = 9), fed by an average MER of ~2.3×109 kg/s over approximately 19 h and 

produced deposits ~154 km3 (~62 km3 DRE) in volume. The fallout from the co-ignimbrite phase (Fig. 

64b), much richer in fines than the Plinian phase, was spread over an area of ~3 million km2 (thickness ≥ 

0.5 cm), and would have represented almost 74% of the total bulk volume for the eruption. These results 

confirm the key role of the co-ignimbrite fallout in the total bulk volume (Engwell et al., 2014; Perrotta 

and Scarpati, 2003; Pyle et al., 2006;Engwell et al., 2014), and is consistent with fluid dynamics models 

indicating that co-ignimbrite plumes from very high-intensity eruptions (~109 kg/s) distribute a major 

proportion of fine grained particles into the stratosphere (Van Eaton et al., 2012b). Assuming that ~35-

40% of the erupted material was elutriated from the pyroclastic density current (Sparks and Walker, 

1977), the total MER for the ignimbrite phase would have been considerably higher than our estimates 

(up to ~5-6×109 kg/s). The correlation coefficient between observations (dataset 1) and simulation results 

was 0.83 (Fig. 64e), with a relative RMSE of 0.30. 

 

The resulting optimal ESPs from the Plinian and co-ignimbrite phase inversions (Table 17) allows to 

simulate the total dispersal from the CI eruption (Fig. 64c), obtaining an eruption duration of 23h and a 

total deposit volume of ~208 km3 (~84 km3 DRE). Tephra fallout would have covered an area of over ~3 

million km2 (thickness ≥ 0.5 cm). Given volume estimations of 180 to 380 km3 for the proximal 

pyroclastic density current deposits (Pyle et al., 2006), the total bulk volume would range from 388 to 588 

km3 (155–235 km3 DRE). Finally, dataset 2 to validate results from the combined phases, obtaining a 

correlation coefficient of 0.81, a RMSE of 0.18 and a bias of 0.21. 

5.4.2 Modeling the CI eruption as a single event 

For the purpose of comparison, an additional single-phase inversion was performed using dataset 2. Best-

fit results from (Table 17) suggested a column height of 38 km (with a Suzuki coefficient of A = 9), an 

average MER of 2.6×109 kg/s and a duration of 23 hours. The tephra volume deposited (Fig. 64d) would 

have totaled 211 km3 (~84 km3 DRE). This volume is consistent with the 208 km3 obtained by the two-

phase combined inversion. The correlation coefficient between the observed and the simulated thickness 

is 0.79, with a relative RMSE of 0.27 and bias of 0.47. 
Table 17. Best-fit results obtained from reconstructing the CI super-eruption as a two-phase and single-phase event. The 
combined phase column is obtained by using the optimal ESPs resulting from the Plinian and co-ignimbrite phase inversions. 

	
   TWO-­‐PHASE	
   SINGLE-­‐PHASE	
  

Modelled	
  dispersion	
  parameters	
   Explored	
  
Range	
  

Plinian	
  phase	
   Co-­‐ignimbrite	
  
phase	
  

Combined	
  
phases	
  

Single	
  phase	
  
event	
  

Tephra	
  mass	
  (kg)	
   Calculated	
   5.40	
  × 1013	
   1.54	
  × 1014	
   2.08	
  × 1014	
   2.11	
  × 1014	
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Average	
  deposit	
  density	
  (kg/m3)	
  (a)	
   Assumed	
   1,000	
   1,000	
   1,000	
   1,000	
  

Tephra	
  volume	
  (km3)	
   Calculated	
   54	
   153.9	
   207.9	
   211.1	
  

Tephra	
  volume	
  DRE	
  (km3)	
   Calculated	
   22.6	
   61.6	
   84.2	
   84.4	
  

Duration	
  (h)	
   12-­‐48	
   4	
   19	
   23	
   23	
  

Mass	
  eruption	
  rate	
  (kg/s)	
   108-­‐1010	
   3.75	
  × 109	
   2.25	
  × 109	
   2.51	
  × 109	
  (b)	
   2.55	
  × 109	
  

Column	
  height	
  (km)	
   20-­‐50	
   44	
   37	
   38	
  (b)	
   38	
  

TGSD	
  modes	
  (Φ)	
  (c)	
   0-­‐3/6-­‐9	
   2.5	
  (d)	
   5	
  (d)	
   -­‐	
   2.0/6.5	
  (c)	
  

TGSD	
  variances	
  (Φ)	
  (c)	
   1-­‐3/1-­‐3	
   1.16	
   1.22	
   -­‐	
   2/2(c)	
  

Suzuki	
  coefficient	
  A	
  (−)	
  (e)	
   2-­‐9	
   4	
   9	
   8	
  (b)	
   9	
  

Density	
  of	
  aggregates	
  (kg/m3)	
  (f)	
   100-­‐500	
   350	
   350	
   350	
   350	
  

Diameter	
  of	
  aggregates	
  (in	
  Φ–unit)	
  (f)	
   2-­‐3	
   2.3	
   2.3	
   2.3	
   2.3	
  

Pearson	
  correlation	
  coefficient	
  (R)	
  (h)	
  	
   Calculated	
   0.76	
   0.83	
   0.81	
   0.79	
  

Root-­‐mean-­‐square	
  error	
  (RMSE)	
  (h)	
   Calculated	
   0.10	
   0.30	
   0.18	
   0.27	
  

Aida	
  indexes	
  K/k	
  (−)(i)	
   Calculated	
   1.01/1.05	
   1.03/1.07	
   1.02/1.14	
   1.02/1.15	
  

 

(a) This value is used to convert mass loading to deposit thickness and thereby to calculate tephra volume from mass, whereas a 
bulk density of 2500 kg/m3 was considered to convert into DRE volume. 
(b) Weighted sum of input parameters for each phase. 
(c) Total grain size distribution (TGSD) for the single phase reconstruction is assumed bi-Gaussian in Φ with maxima at µ1 and µ2 
and corresponding variances σ1 and σ2.  
(d) TGSD for the two-phase reconstruction was determined by Voronoi tessellation (Bonadonna and Houghton, 2005). 
(e) The eruption source is described in a purely empirical way using the Suzuki distribution (Pfeiffer et al., 2005; Suzuki, 1983) 
for mass release along the column. 
(f ) Aggregation is accounted for using the empirical model of Cornell et al. (1983), assuming that 50% of the 63–44 µm ash, 75% 
of the 44–31 µm ash, and 95% of the less than 31 µm ash fell as aggregated particles, with diameter and density of aggregates 
found through the best-fit.  
(h) Pearson correlation (R) and root-mean-square error (RMSE) based on the differences between log (measured thickness) and 
log (simulated thickness)  
(i) Aida index for geometric average (K) and geometric standard deviation (k) of the distribution.  
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Figure 64. Isopach maps (cm) from inversion. (a) Plinian phase, (b) co-ignimbrite phase, (c) combined two-phase and, (d) 
single-phase inversion. Bottom plots show simulated versus observed thicknesses for (e) Plinian and co-ignimbrite phases and (f) 
two-phase approach. The solid bold line represents a perfect agreement, while the dashed and solid thin black lines mark the 
region that is different from observed thicknesses by a factor 5 (1/5) and 10 (1/10), respectively (extracted from Marti et al., 
2016). 
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5.4.3 Atmospheric umbrella cloud spreading 

Gravity-driven transport was found to be dominant for the first hour of the eruption with an effective 

radial velocity of ~130 m/s, resulting in an umbrella cloud radius of <100 km. Model results show the 

effect of atmospheric gravity-driven transport to be significant in proximal areas, increasing tephra 

deposition by 1.5-2 times NE from the source and decreasing up to 50% in the eastern Mediterranean 

region (Fig 65). The gravity-current model predicts a fully passive regime after ~ 3 hours, with a 

corresponding umbrella cloud radius of ~430 km. At this distance, atmospheric turbulence and wind 

advection would have dominated tephra transport for the CI eruption.  

 

Figure 65. (a) Impact of gravity current on the deposit (variation in %). Positive values show areas where tephra deposition 
increases when accounting for gravity-current effects; negative indicate lesser tephra deposition. (b) Wind field at ~32 km 
elevation for the meteorological field that best represents the (unknown) meteorological conditions at the time of the CI eruption 
(7th December 1991). 	
  

5.5 Discussion 

This chapter uncovers valuable new results and present new methods for reconstruction of the volume 

and tephra dispersal of the 39 ka CI super-eruption. The computational approach presented here infers 

ESP values for both phases, Plinian and co-ignimbrite, of the eruption accounting for the gravitational 

spreading of the umbrella cloud. This novel approach improves modeled tephra distribution across the 

dispersal area, and reduces the RMSE of the single-phase inversion by ~33% (0.18/0.27) and bias by 

~52% (0.21/0.47). Total volumes, durations, phase-averaged MER, column height, and mass distributions 

(Suzuki coefficient A) for both (single and two-phase) inversions are consistent (i.e. total tephra volume 

differed by less than 1.5%), suggesting that results from the two-phase reconstruction are robust. 

 

Results from the novel combined two-phase simulation were compared with those reported in the Costa et 

al. (2012) best-fit single-phase simulation (correlations coefficients of 0.81 and 0.77, respectively). The 

best-fit simulation for the two-phase approach uses a higher MER (75% increase), lower total volume 
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(15% decrease) and shorter duration (5 times) of the climatic phase of the eruption using dynamics that 

are more consistent with geological interpretations of the event. In addition, the two-phase reconstruction 

is in better agreement with the collapse conditions presented by Koyaguchi et al. (2010) (see Fig. 6 in 

their study), and the Woods and Wohletz (1991) column-height/MER relationship (see Fig. 3 in their 

study). Concerning the reconstruction of the deposit, the novel simulations suggest a slightly thinner 

tephra blanket in the East Black Sea than Costa et al. (2012). This is mainly due to the different TGSDs 

used in the two studies (the TGSD used here is reconstructed from field data limited to deposits within 

900 km from source and is fines depleted with respect to Costa et al. 2012).  
 

In general terms, the resulting proximal tephra fallout is consistent with previous studies (Civetta et al., 

1997; Perrotta and Scarpati, 2003). Much of the dispersal area was covered by 1 – 10 cm of ash, including 

regions from the Mediterranean and Ionian Sea to the east European Plains. Dispersal results also predict 

a thick tephra deposit (10-20 cm) covering regions of present-day Macedonia, Bulgaria and Romania, 

which is consistent with tephra deposits in the south-eastern Romanian loess steppe (Fitzsimmons et al., 

2013). Fine ash aggregation processes could explain this secondary maximum thickness. In order to 

account for ash aggregation this work uses the model of Cornell et al. (1983), who analysed the CI 

deposit (Y5 ash layer) and determined that 50, 75, and 100% of the 63–44, 44–31, and <31 μm ash could 

be considered as a single aggregated class. The model assumes a simplified distribution of aggregates in 

the eruption column with a single effective diameter and constant density. More sophisticated aggregation 

models could not be employed, as they are too computationally intensive for an inversion analysis. Ultra-

distal dispersal simulations (>2500 km NE from source) is consistent with analyses of the CI ash layer 

identified in the Russian Plain (Pyle et al., 2006). 

 

Reconstruction of the Plinian phase indicates that tephra volume from this phase is 2-3 times larger than 

previous studies (Pyle et al., 2006). However, the maximum height and mass distribution of the eruptive 

column in our simulations is consistent with the height estimated by field and laboratory analyses (Rosi 

and Vezzoli, 1999) of a sustained Plinian column with maximum mass distribution at 3/4 of the column 

height (Pfeiffer et al., 2005; Sparks, 1986). The resulting eastern dispersion trend is compatible with 

proximal Plinian fall products (Perrotta and Scarpati, 2003; Rosi and Vezzoli, 1999). On the other hand, 

tephra fallout from the co-ignimbrite phase is similar to higher-end estimates (73-140 km3) from previous 

studies (Pyle et al., 2006). The relative proportion of the distal co-ignimbrite tephra (130 - 900 km from 

source) over the total bulk volume for the eruption is consistent with estimates reported Engwell et al. 

(2014) (74% versus 60 ± 6%). Deposits in Eastern Europe and North Africa in particular, are 

predominately composed of co-ignimbrite tephra. Figure 66 shows the contribution from the Plinian and 

co-ignimbrite tephra to the total bulk volume. At distances greater than 900 km from the source, it is not 

possible to quantitatively determine the relative proportions of tephra from the different phases due to the 

unimodal nature of the deposits (Engwell et al., 2014). However, the rapid decrease in the Plinian 
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component between 800 and 900 km indicates that ultra-distal tephra deposits (~ 1-2 cm) would have 

been predominantly co-ignimbrite in origin (Pyle et al., 2006).  

 

 
Figure 66. Contribution (%) from the Plinian (left) and co-ignimbrite (right) phases to the CI tephra deposit (extracted from 
Marti et al., 2016). 

The inclusion of the gravity-driven transport improves tephra distribution in proximal areas reducing the 

overall RMSE by ~20% and the bias by ~20% (0.28 to 0.21). Contrary to other large explosive volcanic 

eruptions (e.g. Mt. Pinatubo - Costa et al. (2013); Toba Tuff - Costa et al. (2014), where cloud spreading 

and spinning velocities exceed typical stratospheric wind speeds (Baines and Sparks, 2005), gravity-

current transport was dominant for the first hour only, producing an umbrella cloud radius of ~100 km 

upwind. This result is in agreement with findings of Giaccio et al. (2012), who reported the absence of 

tephra deposits associated with the CI event at the Sulmona intermountain basin, less than 150 km north 

of the vent, suggesting CI tephra transport was dominated by wind advection.  An explanation for this 

phenomenon is associated with the inferred strong stratospheric winds (~90 m/s) above the vent, which 

could have prevailed over the effect of the spreading umbrella cloud (Fig 66). Stratospheric wind speed 

values above the vent are consistent with the mean of the 10 best meteorological fields found by Costa et 

al. (2012), which ranged from ~55 to ~95 m/s. This could support the idea that during the last Glacial 

period, winds were stronger than those in present-day (Dietrich et al., 2015). The passive transport 

dominance during the CI eruption can also explain the good fit reported in Costa et al. (2012), in which 

the effect of the gravity current in the umbrella cloud was not considered. 

 

From a climatic perspective, recent studies indicate that the stratospheric aerosol cloud generated from 

the CI event would have induced a “volcanic winter” (Rampino et al., 1988) with a cooling effect of ~ 6-

9ºC in Eastern Europe (Black et al., 2015). Using the total magma volume reported in this chapter (Table 

17), and the CI melt composition (Signorelli et al., 2001), this work estimates (after Self et al., 2004) the 
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amount of sulphur dioxide (SO2) released by the eruption to be 168-180 Tg of SO2 (84.5-90 Tg S), most 

of which reached the stratosphere assuming negligible release in the troposphere (Self, 2004). Table 18 

summarizes the volatile release estimates for each phase of the CI eruption.   Estimates are consistent 

with sulphate deposition records of the GISP2 ice core (Zielinski et al., 1996). These values represent a 

10-15% decrease compared to previous CI reconstructions as a single-phase event (Costa et al., 2012) and 

are three times higher than those estimated for the largest historic eruption, the 1815 Tambora event (Self, 

2004). Estimates of chlorine (Cl) and fluorine (F) are also calculated using the same methodology, taking 

into account the difference between concentrations dissolved in melt inclusions and those in matrix glass 

(Pappalardo et al., 2008). The amount of chemicals leached into the soil are calculated using volume 

estimations for the proximal pyroclastic density current deposits (Pyle et al., 2006).  

 

Chemical	
  
Stratospheric	
  volatiles	
  (Tg)	
  

Leached	
  into	
  the	
  soil	
  (Tg)	
  
(by	
  proximal	
  PDC)	
  Plinian	
  phase	
   Co-­‐ignimbrite	
  phase	
   Combined	
  phases	
  

SO2	
  aerosols	
  	
   88-­‐92	
   248-­‐264	
   336-­‐356	
   n.a.	
  

SO2	
   44-­‐46	
   124-­‐132	
   168-­‐178	
   273-­‐289	
  

Fluoride	
   243-­‐256	
   693-­‐731	
   936-­‐987	
   1,519-­‐3,384	
  

Chloride	
   340-­‐359	
   970-­‐1,024	
   1,310-­‐1,383	
   2,362-­‐4,738	
  

Table 18. Chemical release estimates by each phase of the CI eruption. Left: estimation of stratospheric volatiles after Self et al. 
(2004); Right: chemicals leached into the soil considering volume estimations for the proximal pyroclastic density current 
deposits after Pyle et al.  (2006). 

 

For large volcanic eruptions like the CI, stratospheric injection of SO2 is the principal atmospheric and 

global impact. In the stratosphere, SO2 is converted to sulphuric acid (H2SO4), which condenses rapidly to 

form fine sulphate aerosols that block incoming solar radiation and contribute to ozone destruction. 

Assuming a conversion efficiency (SO2 to sulphate aerosols) of  ~86% (McCormick et al., 1995; Self, 

2004), the CI eruption would have yielded a maximum of 336–356 Tg of sulphate aerosols. These results 

are an order of magnitude greater than those found for the Mount Pinatubo eruption (McCormick et al., 

1995), and are comparable with those of the Bishop Tuff eruption (Scaillet et al., 2004).  

 

The environmental stress that followed the CI eruption, aggravated by the onset of the Heinrich Event 4, 

provides a link between this exceptional volcanic eruption and the comprehensively discussed Middle to 

Upper Palaeolithic transition (Fedele et al., 2007; Giaccio et al., 2012; Golovanova et al., 2010; Zilhão, 

2006). Despite a long history of investigation, considerable debate still focuses on whether Neanderthals 

became extinct as a result of climate change or due to competition with anatomically modern humans 

(Banks et al., 2008; Fedele et al., 2003). According to recent studies, a stratospheric aerosol cloud of the 

size indicated by our CI simulations would have induced a cooling effect of ~ 6-9 ºC in eastern Europe 

and Northern Asia, 2-4°C in Western Europe (Black et al., 2015), and ~ 1-2 ºC globally (Timmreck et al., 

2010), with an e-folding decay time of approximately 1 year (Robock, 2003). However, this “volcanic 

winter” (Rampino et al., 1988) would not have been sufficient to trigger dramatic changes in Upper 
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Palaeolithic European populations on a larger scale (Black et al., 2015). Archaeological records indicate 

that anatomically modern humans from Central Asia and the Middle East first populated the European 

continent prior to the CI eruption, suggesting contemporaneity with Neanderthals (Fedele et al., 2003). 

Tephra fallout from the eruption would have reduced the area available for human settlement in Europe 

by up to 30% (Fig. 67), causing a halt in the westward dispersal of modern human groups and leading to a 

significant “genetic bottleneck” (Zilhão, 2006). However, the removal of a large part of this tephra by 

erosion, the short acid deposition phase (1-2 years; Black et al., 2015), and the availability of nutrient 

reserves in buried topsoils, would have allowed for a rapid (~ 10 years) ecosystem recovery (Arnalds, 

2013) in most areas away from the source. For example, the effect on net primary productivity following 

deposition of 5 – 10 cm of tephra from the 1980 eruption of Mount St. Helens was similar to that of 

subsequent yearly weather fluctuations (Pfitsch and Bliss, 1988). This being considered, it is possible that 

modern humans would have gravitated towards repopulating these recovered areas rather than resuming 

their westward dispersal, permitting prolonged Neanderthal survival in South-Western Europe. This 

assumption is consistent with the existing consensus that Neanderthal populations persisted in southern 

Europe, particularly in southern Iberia, well after the CI eruption (Zilhão, 2006). Furthermore, climatic 

changes from the Heinrich event 4 briefly created a biogeographic barrier between the Neanderthals and 

modern humans as described in the “Ebro Frontier” model (Zilhão, 2000). Demographic pressure over 

this frontier after the reinstatement of modern human groups in central and Eastern Europe would have 

culminated in the assimilation of the last Neanderthal refugia through expansion from across the 

Pyrenees. 

 

 
Figure 67. Campanian Ignimbrite’s contribution to the Middle to Upper Palaeolithic transition. Tephra fallout, together with the 
attendant episode of Fenno-Scandinavian ice cap and peripheral tundra advance on land (top dashed line), suggests a reduction of 
the area available for human settlement in Europe of up to 30% (represented by the ash fallout gap with isopach tephra deposits 
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in cm). Anatomically modern humans would have gravitated towards repopulating this gap after ecosystem recovery, rather that 
overcoming new biogeographical frontiers, leading to an instance of prolonged (extracted from Marti et al., 2016). 

5.6 Summary and conclusions 

The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka 

in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, 

characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the 

eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To 

reconstruct the volume, intensity, and duration of the tephra dispersal, a computational inversion method 

was applied to explicitly account for the Plinian and co-ignimbrite phases and for gravitational spreading 

of the umbrella cloud. To verify the consistency of our results, an additional single-phase inversion was 

performed using an independent thickness dataset. Our better-fitting two-phase model suggests a higher 

mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-

ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport within the 

first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra 

fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, 

possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during 

the Middle to Upper Palaeolithic transition. 

 

An interactive website providing a moderated explanation of this methodology and its results is available 

to the general public at: (http://www.bsc.es/viz/campanian_ignimbrite).  
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6 Conclusions and future research 

A detailed discussion of the results and their conclusions were included for each chapter. The following 

sections identify the main conclusions of the Ph.D. research and highlights emerging areas and future 

challenges related to volcanic ash forecasting. 

6.1 Main conclusions 

The research conducted in this Ph.D. dissertation has focused on the implementation and evaluation of 

NMMB-MONARCH-ASH, a new on-line meteorological and atmospheric chemistry transport model to 

simulate the emission, transport and deposition of tephra particles released from volcanic eruptions. Five 

main conclusions are drawn from this work: 

 

1. NMMB-MONARCH-ASH is the first on-line system designed to predict ash cloud 

trajectories, concentration of ash at relevant flight levels, and the expected deposit thickness 

for both regional and global domains in research and operational set-ups. The model has 

demonstrated the ability to remove most inconsistencies found in traditional off-line modeling 

systems, showing to be robust and scalable to arbitrary domain sizes and numbers of processors – 

See Chapter 2.  

2. The model is capable to reproduce the spatial and temporal dispersal variability of the ash 

cloud and tephra deposits, showing promising results and improving the performance from 

well-known off-line dispersal models traditionally employed in several operational settings 

(cases: 2001 Mt. Etna and 2011 Cordón Caulle eruptions). For example NMMB-MONARCH-

ASH improved the tephra distribution results from FALL3D simulations for the same event (R2; 

0.80/0.62), reducing the RMSE (0.014/0.24) and bias (0.02/0.6) by an order of magnitude (case: 

2001 Mt. Etna eruption) – See Chapter 2.  

3. Traditional off-line forecasts employed in operational model setups can result in significant 

uncertainties due to model and numerical errors. The on-line vs. off-line strategies available in 

NMMB-MONARCH-ASH have demonstrated that off-line forecasts can fail to reproduce 

up to 45-70% of the ash cloud of an on-line forecast. The uncertainty associated to off-line 

systems is found to be as relevant (i.e. same order of magnitude) as those uncertainties 

attributed to the source term (cases: synthetic, 2010 Eyjafjallajökull, and 2011 Cordón Caulle 

eruptions) – See Chapter 3.  

4. On-line modeling strategies are preferred over traditional off-line forecasts in situations where 

meteorological conditions are fluctuating rapidly in time, two-way feedbacks are significant, or 

long-range ash cloud dispersal predictions are necessary. A global application of NMMB-
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MONARCH-ASH has demonstrated, for the first tine, that volcanic ash emitted from 

Antarctic volcanoes could potentially encircle the globe, leading to significant consequences 

for global aviation safety, and showing that performing proper hazard assessment on this 

region is crucial to understand the patterns of ash distribution at high southern latitudes 

(case: 1970-like Deception Island eruptive scenario) – See Chapter 4. 

5. Employing off-line modeling systems might be more convenient in terms of computing time or 

resources in cases where multiple VATDM executions are necessary without the prerequisite of 

re-running the meteorological component, e.g. to update the source term whenever the eruption 

conditions vary, for inverse modeling of ash, or to perform an ensemble forecast. A novel 

computational intensive inversion approach has been developed to reconstruct, for the first 

time, the duration and contribution of the two phases of the Campanian Ignimbrite super-

eruption.  This approach has employed hundreds of FALL3D off-line simulations to 

improve modeled tephra distribution across the dispersal area from single phase 

reconstructions (R2; 0.81/0.77), reducing RMSE by ~33% (0.18/0.27) and bias by ~52% 

(0.21/0.47). The better-fitting two-phase model suggests a higher mass eruption rate than 

previous studies (75% increase), lower total volume (15% decrease) and shorter duration (5 

times) of the climatic phase, and estimates that 3/4 of the total fallout volume is co-

ignimbritic in origin (case: 39 ka Campanian Ignimbrite) – See Chapter 5. 

6.2 Future research and recommendations 

This section proposes further research in three challenges related to volcanic ash forecasting: 

1. To employ computationally efficient on-line dispersal models for operational forecast of 

volcanic ash. To date, all operational ash forecast systems follow the off-line approach and the 

few existing on-line atmospheric chemistry and transport models adapted to volcanic ash are still 

restricted to a research level. However, the increase of computational power in recent years and 

the fact that the total computing time required to run an on-line coupled model is not substantially 

larger, the benefits of the traditional off-line systems are at question. The results of this Ph.D. 

thesis advocate that operational groups responsible for real‐time advisories for aviation should 

consider explore and consider on-line coupled models. 

2. To quantify the feedback effect of dense volcanic ash clouds on the radiative budget and 

regional meteorology. Volcanic pollution affects the energy balance of the atmosphere whilst 

the dust and aerosols remain in the stratosphere. Despite that for most volcanic eruptions the 

influence on the radiative budget is minor (no effect or minor local/regional effects), in some 

cases (e.g. large explosive eruptions, super-eruptions) the impact of tropospheric volcanic aerosol 

can be significant, becoming a regional (or even global) radiative climate forcing. According to 



 165 

  

the IPCC (2013) aerosols (including those from volcanic eruptions) and their interactions with 

clouds contribute to the largest uncertainties in the estimation of the Earth’s changing energy 

budget. Future versions of NMMB-MONARCH-ASH foresee the implementation of volcanic 

particles within the radiative transfer model of NMMB-MONARCH.  

3. To pioneer tools to support managing aviation risk from ash hazards. Impact analysis tools 

are necessary to prevent aircraft flying into ash clouds, which could result in catastrophic 

impacts. The aviation community is concerned about the detection and tracking of volcanic ash 

clouds to provide timely warnings to aircrafts and airports. The burden on airline operators is to 

perform dynamic risk assessments, including during the pre-eruptive phase. Finding the right 

balance between ensuring safety of flight (recognizing and avoiding hazardous airspace) and 

implementing efficiency of flight (minimizing unnecessary diversions and re-routing) is an 

ongoing challenge. The BSC is currently working on a software tool called SORT-ATM 

(Solutions of Real-Time for Air Traffic Management) aimed to fulfill this challenge. SORT-ATM 

is a user-friendly software application capable to provide customer-based solutions for Air Traffic 

Management during emergency situations involving atmospheric natural hazards. The impact 

assessment is based on calculations of a unique algorithm that employs in-house atmospheric 

dispersion models (e.g. FALL3D, NMMB-MONARCH-ASH), parameters for flight plan 

configurations and schedule, aircraft specifics, forecasted weather conditions and other relevant 

air traffic management and asset data from clients. The expected release date for this software is 

January 1st, 2018. 
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