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There’s no map
And a compass wouldn’t help at all

— Björk

It is good to have an end to journey toward;
but it is the journey that matters, in the end.

— Ursula K. Le Guin
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Abstract

Eye tracker devices have traditionally been only used inside laboratories, requiring
trained professionals and elaborate setup mechanisms. However, in the recent
years the scientific work on easier–to–use eye trackers which require no special
hardware—other than the omnipresent front facing cameras in computers, tablets,
and mobiles—is aiming at making this technology common–place. These types of
trackers have several extra challenges that make the problem harder, such as low
resolution images provided by a regular webcam, the changing ambient lighting
conditions, personal appearance differences, changes in head pose, and so on.
Recent reasearch in the field has focused on all these challenges in order to provide
better gaze estimation performances in a real world setup.

In this work, we aim at tackling the gaze tracking problem in a single camera
setup. We first analyze all the previous work in the field, identifying the strengths
and weaknesses of each tried idea. We start our work on the gaze tracker with
an appearance–based gaze estimation method, which is the simplest idea that
creates a direct mapping between a rectangular image patch extracted around
the eye in a camera image, and the gaze point (or gaze direction). Here, we do
an extensive analysis of the factors that affect the performance of this tracker in
several experimental setups, in order to address these problems in future works. In
the second part of our work, we propose a feature–based gaze estimation method,
which encodes the eye region image into a compact representation. We argue that
this type of representation is better suited to dealing with head pose and lighting
condition changes, as it both reduces the dimensionality of the input (i.e. eye
image) and breaks the direct connection between image pixel intensities and the
gaze estimation. Lastly, we use a face alignment algorithm to have robust face
pose estimation, using a 3D model customized to the subject using the tracker. We
combine this with a convolutional neural network trained on a large dataset of
images to build a face pose invariant gaze tracker.

Key words: eye tracking, gaze tracking, human computer interaction, computer
vision
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Resumen

Los dispositivos de seguimiento de ojos han sido tradicionalmente utilizados sólo
dentro de los laboratorios, y requerían profesionales capacitados y mecanismos
de configuración elaborados. Sin embargo, en los últimos años el trabajo científico
sobre dispositivos fáciles de usar que no requieren ningún hardware especial—
aparte de las omnipresentes cámaras frontales en ordenadores, tabletas y móviles—
tiene como objetivo hacer esta tecnología accesible. Estos tipos de seguidores
tienen varios desafíos adicionales que dificultan el problema, como imágenes
de baja resolución proporcionadas por una cámara web normal, las condiciones
cambiantes de iluminación ambiental, las diferencias de apariencia personal, los
cambios en la postura de la cabeza, etc. La investigación reciente en el campo se ha
centrado en todos estos desafíos con el fin de proporcionar mejores resultados de
estimación de la mirada en una configuración del mundo real.

En este trabajo, tratamos de abordar el problema de seguimiento de la mirada
en una configuración de cámara única. Primero analizamos todo el trabajo previo
en el campo, identificando las fortalezas y debilidades de cada idea probada. Co-
menzamos nuestro trabajo con un método de estimación de la mirada basado en
la apariencia, que es la idea más simple que crea una correlación directa entre un
parche de imagen rectangular extraído alrededor del ojo en una imagen de cámara y
el punto de mirada. Aquí, hacemos un extenso análisis de los factores que afectan el
desempeño de este seguidor en varias configuraciones experimentales, con el fin de
abordar estos problemas en futuros trabajos. En la segunda parte de nuestro trabajo,
proponemos un método de estimación de la mirada basado en características, que
codifica la imagen de la región ocular en una representación compacta. Argumenta-
mos que este tipo de representación es más adecuado para tratar con la pose de la
cabeza y cambios en la condición de iluminación, ya que reduce la dimensionalidad
de la entrada (es decir, la imagen del ojo) y rompe la conexión directa entre las
intensidades de los píxeles de la imagen y la estimación de la mirada. Por último,
utilizamos un algoritmo de alineación de la cara para tener una estimación de la
postura de cara robusta, usando un modelo 3D personalizado para el sujeto que
usa el seguidor. Combinamos esto con una red neuronal convolucional entrenada
en un gran conjunto de datos de imágenes para conseguir un seguidor de miradas
invariante a la postura de la cara.

Palabras clave: seguimiento de los ojos, seguimiento de la mirada, interacción
de la computadora humana, visión por computador
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Resum

Els dispositius de seguiment d’ulls han estat tradicionalment utilitzats només dins
dels laboratoris, i requerien professionals capacitats i mecanismes de configuració
elaborats. No obstant això, en els últims anys el treball científic sobre dispositius fà-
cils d’usar que no requereixen cap maquinari especial—a part de les omnipresents
càmeres frontals en ordinadors, tauletes i mòbils —té com a objectiu fer aquesta
tecnologia accessible. Aquests tipus de seguidors tenen diversos desafiaments addi-
cionals que dificulten el problema, com imatges de baixa resolució proporcionades
per una càmera web normal, les condicions canviants d’il·luminació ambiental, les
diferències d’aparença personal, els canvis en la postura del cap, etc. La investi-
gació recent en el camp s’ha centrat en tots aquests desafiaments amb la finalitat
de proporcionar millors resultats d’estimació de la mirada en una configuració del
món real.

En aquest treball, tractem d’abordar el problema de seguiment de la mirada en
una configuració de càmera única. Primer analitzem tota la feina prèvia al camp,
identificant les fortaleses i debilitats de cada idea provada. Comencem el nostre
treball amb un mètode d’estimació de la mirada basat en l’aparença, que és la idea
més simple que crea una correlació directa entre un pegat d’imatge rectangular
extret voltant de l’ull en una imatge de càmera i el punt de mirada. Aquí, fem una
extensa anàlisi dels factors que afecten l’execució d’aquest seguidor en diverses
configuracions experimentals, per tal d’abordar aquests problemes en futurs tre-
balls. A la segona part del nostre treball, proposem un mètode d’estimació de la
mirada basat en característiques, que codifica la imatge de la regió ocular en una
representació compacta. Argumentem que aquest tipus de representació és més
adequat per a tractar amb la postura del cap i canvis en la condició d’il·luminació,
ja que redueix la dimensionalitat de l’entrada (és a dir, la imatge de l’ull) i trenca la
connexió directa entre les intensitats dels píxels de la imatge i l’estimació de la mira-
da. Finalment, utilitzem un algoritme d’alineació de la cara per tenir una estimació
de la postura de cara robusta, fent servir un model 3D personalitzat per al subjecte
que fa servir el seguidor. Combinem això amb una xarxa neuronal convolucional
entrenada en un gran conjunt de dades d’imatges per aconseguir un seguidor de
mirades invariant a la postura de la cara.

Paraules clau: seguiment dels ulls, seguiment de la mirada, interacció de l’ordi-
nador humana, visió per computador
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1 Introduction

From a computer scientist’s aspect, human beings are machines which receive input
from their sensors such as ears, eyes, skin and which interact with the world they
live in through their actuators, which are their hands, feet, and so on. Therefore, as
in the case of robots, one can understand the basis of their reasoning by inspecting
the input they receive and also how they direct the attention of their sensors, for
instance by looking at specific locations or inspecting unknown objects by touching
or smelling.

Eye-tracking studies build upon this insight and analyze the relation between
the movements of a person’s eyes and their attention, reasoning and feelings. These
studies make use of special equipment called eye-trackers, which either calculate
the direction of a person’s gaze [133] or a point in the surrounding area where the
gaze is fixed at. This point may be located on a 2D plane [15] (i.e. the display of an
electronic device) or a 3D volume [75] and is also called the point of regard (PoR)
[33]. There exist several commercial models of eye-trackers [5, 29] which come
with their software platforms to carry out eye-tracking research, also expertise for
calibration and actual usage is provided through documentation and support.

Although the commercial components provide satisfactory performance for
marketing or scientific research, the scalability of this methodology is problematic
because these products require trained operators and their price (starting from hun-
dreds of Euros) makes them not suitable for this purpose. Therefore, the availability
of a cheap, easy to setup alternative which does not require special hardware and
which provides comparable performance is a necessity.

Building this alternative constitutes the problem we address in this work, and it
consists of understanding where a subject is looking at using cheap components
such as light sources, cameras and a computer to run the eye-tracker software.
Actually, these requirements are already met in many consumer electronic devices
such as laptops, smart-phones, tablet computers. We believe that the availability of
a system running on these machines will provide basis for a variety of applications.
For example, the eye-tracker can be used as a new input method for the electronic
device just like a mouse [54, 113], or it can be used as a tool to enable remote
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Chapter 1. Introduction

marketing and usability research [2, 46]. The system can replace commercial eye-
tracking equipment to the extent allowed by its performance, and it can enable
mobile applications of these techniques. The uses of such a system is only limited
by the imagination of software developers, who will surely come up with many
usage areas that we don’t discuss here in order not to get off our topic.

1.1 Brief information on human visual system

In order to be able to understand the methodologies behind eye-trackers, one
should be familiar with the human visual system (HVS), in particular with the
human eye. Figure 1.1 shows the parts of the eye which are of interest for eye-
trackers. The white part of the eye which is seen from outside is called sclera, and in
the front part of the eye there exists cornea which is a transparent layer. Cornea lets
the light inside of the eye, which passes through an opening called pupil. Around
pupil, we find the iris which is the colored part of the eye as seen from outside. Iris
controls the amount of light which passes through pupil, and in a sense acts like
the diaphragm of a camera. The light that enters the eye is refracted by the eye lens,
and then it falls onto the retina layer which covers the inner surface of the eyeball,
forming the image of what is seen through the eyes. Here lies the fovea, which is
the area where eye’s light sensing cells are accumulated in huge numbers. The part
of the image that corresponds to this area is special, in the sense that the human
visual attention is mostly directed here [20]. In the figure, two axes are shown: the
optical axis passes through the eyeball center (E) and the pupil center, whereas the
visual axis passes through the fovea and a special point called corneal center (C).
This difference is caused by the fact that fovea does not lie on the optical axis.

Figure 1.1 – Human gaze geometry
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1.2. Objectives and Scope

Two other points important for software implementations of eye-trackers are
the eye corners. These are the extreme points of sclera that are visible from the
outside. As the iris and pupil change location due to the rotation of the eye, the
corner points become important for the software because they are mostly stable
and help understand the relative movement of the eyeball.

Another important topic about HVS that remains is related to the movements of
the eye. As noted before, the visual attention of human beings are mostly directed
towards the objects that lie on the visual axis and whose image drops onto the fovea.
Therefore, the movements of the eye should be seen as a change of attention point.
The eye movements can be mainly classified into three categories [20]:

Saccades: These are rapid eye movements that are aimed at focusing the visual
attention to a different object. For example, when a computer user jumps
from one menu item on the display to another, the eye moves rapidly in order
to focus on the next target. The duration of these movements is between
10 ms and 100 ms, and during this short period the visual system becomes
practically blind as the attention cannot be directed at a particular object.

Smooth Pursuits: These happen when the eyes are following a moving target. In
order to achieve this movement, the speed of the target should be in the range
that can be handled by the human eye.

Fixations: These are the movements which stabilize the retina on the object of
interest. This is particularly interesting for our work because during fixations,
the subject directs their attention on the object that lies on the visual axis and
calculating the gaze point makes sense.

Apart from these main movements, blinks which are involuntary movements
to keep the eyes moist, cool and clean [33] should be considered. For the correct
operation of an eye-tracking system, these movements should be detected and
excluded from training and testing processes.

1.2 Objectives and Scope

The aim of this PhD dissertation is to investigate methods to estimate a person’s gaze
with the help of computer vision and machine learning, by developing a software
that can run on any computing device with a front-facing camera. This requirement
is already satisfied in almost all commercial personal computers, mobile phones,
and tablet devices available for sale at this time; and a solution that can run real-time
with the computational power of these devices would open many new possibilities
in the area of human-computer interaction (HCI).

3



Chapter 1. Introduction

With this goal in mind, we first focus on assessing the limits of a gaze tracker
and the factors that may affect its performance, asking questions such as:

• How does the camera placement affect the accuracy of a gaze tracker?

• Does the accuracy change in mobile environments, where the viewing dis-
tance and angle is different compared to desktop setups?

• Is the estimation robust to personal physical differences? Can it fail to provide
decent estimations for everybody?

• Can head movements be handled easily by these systems?

In the first part of this thesis, we propose our first solution, and run thorough
tests to search for the answers to these questions. For these experiments, we collect
a dataset of 48 videos from 12 participants, and make it publicly available for fellow
researchers. Here, we also describe a novel gaze estimation method, which makes
use of features extracted through the segmentation of iris region. By investigating
this idea further, we search for the answers to:

• How can we encode the information of eye appearance into a compact repre-
sentation, which can later be used in predicting the gaze?

• Is there an middle-ground between the two extremes of a) using the image
pixels directly (around 1k features, most of which are irrelevant) and b) sum-
marizing the information too much and using iris center position (2 features)
or iris position & normal angle (6 features)?

• Does removing the direct dependency to image pixel intensities improve
estimation accuracy, removing the effects of different lighting conditions?

The second part of this work is aimed at making use of large datasets (>100k
samples) made available recently. We experiment with several convolutional neural
network (CNN) architectures that can harness the potential of these datasets, and
compare the results with traditional gaze tracking methods. With this work, we
hope to answer the following questions:

• Can pouring more data into gaze estimation methods improve the gaze esti-
mation performance and robustness?

• Which methods are more suitable to learn from more data?

• Do CNN architectures work well with very small images (an order of mag-
nitude less pixels than ImageNet samples) that are commonly processed by
gaze estimation systems?
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Finally, the third part of our work is aimed at building a complete gaze–tracking
system around the work done on the software implementation. This system in-
cludes a hardware prototype on which we run our eye–tracking software, and an
example use–case for human–computer interaction.

The objective of this PhD is to shed light on the answers to all these questions,
with the aim of building a gaze tracking system that can learn from data to the
maximum extent, providing a performance comparable to commercial eye tracker
machines.

1.3 Outline

This PhD thesis has been divided into four parts. In the next chapter, we explain
the state-of-the-art in the field, thoroughly analyzing all the works from several
aspects such as head pose invariance, calibration strategies and gaze estimation
methods. We make a comparison of the accuracies, the strengths and weaknesses
of each method, in order to provide a map where our work can be contextualized
correctly. Moreover, we review developments in related topics for natural light
gaze tracking, such as publicly available datasets, open source projects, commerial
solutions providing gaze tracking as a service, etc.

Chapter 3 starts with our initial investigation about the limits of natural light
gaze trackers, assessing the affects of several factors such as camera positioning
and resolution, head stability, etc. in their performance. Here, we propose our
first complete system which provides a semi-automatic initialization procedure
that acts as an initial step to calibration. The second part of Chapter 3 describes
a new method for eye feature representation, which can be mapped to the gaze
coordinates with the help of a regressor. This method is in contrast with traditionally
used representations, where the most common options are using the image pixel
intensities directly or summarizing the eye appearance with the iris center location
and/or the iris normal vector.

In Chapter 4, we investigate the methods made possible by the recent availability
of large-scale datasets (>100k samples). In other computer vision areas such as
object detection, larger datasets have been continuously helping improve the state-
of-the-art in the recent years, as they provide enough learning material to train more
and more complex models. In this part of the thesis, we use a publicly available
dataset to train different convolutional neural network (CNN) architectures, in order
to find a model which can learn as much as possible from this large dataset.

Chapter 5 discusses what we call our System, which consists of the software struc-
ture as described in the first chapters, a prototype for a cheap hardware structure,
and an example use–case. Here, we also explain the performance improvements
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that we achieve after parallelization of two key components of the software modules.
Finally, we wrap up this thesis in Chapter 6, going over our contributions and

listing the outcomes of these works.
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2 State-of-the-Art in Natural Light Gaze Track-
ing

Currently, the most widespread techniques used in eye trackers make use of light
sources and cameras that operate in the infrared (IR) spectrum. There are many
available commercial models that are either in the form of eyeglasses or table
mounted devices [4, 5, 29] and also open source alternatives that allow the use of
custom hardware [88].

Visible light gaze tracking, on the other hand, does not require any special
hardware and aims to solve the task making use of regular cameras. In this thesis,
we concentrate our work on this class of trackers and this chapter includes a survey
of the related research. Furthermore, we will limit our search to the table mounted
setup (also called remote setup) as it is ubiquitous in contemporary devices and it
removes the restrictions for camera placement (with a few exceptions). The aim of
the review in this chapter is:

• Provide an exhaustive literature review

• Comment on these works from various perspectives

• List publicly available datasets

• List open source software

• List gaze trackers as a web service

The rest of the chapter is organized as follows: we will start with an overview
of the software structure used in remote, visible light gaze trackers. Then, we will
categorize and explain the previous work according to the techniques used, and
continue with two other categorization schemes: how/if they are calibrated and
how/if they handle head movements. Afterwards, we will list and comment on the
available datasets, online gaze tracking services and open source projects. We will
finish with our conclusions regarding the current state and future directions.
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Chapter 2. State-of-the-Art in Natural Light Gaze Tracking

2.1 Categorization and Structure of Visible Light Gaze
Trackers

The categorization of the works that we analyze in this review is not trivial, because
the borders between groups of methods are not always clear and in the literature
different naming schemes exist.

In the early review by Morimoto and Mimica [74], methods using the eye appear-
ance (i.e. eye region image pixels) directly for gaze estimation are called appearance-
based or view-based methods, and the rest is left unnamed. Here, the given name
refers to all the visible light methods and does not give information about the sub-
categories. Even in a more recent survey [33] where both infrared (IR) and visible
light methods are considered, the latter group is considered as just an alternative,
and its sub-categories are left unclear. Other categorization schemes also build on
this ambiguity: appearance-based vs. feature-based [60, 64], appearance-based
vs. model-based [24, 101]. It should also be noted that the "appearance-based"
name is still being used to refer to all visible light methods [61, 131], adding to the
confusion.

With the aim of clearly identifying the borders between different visible light
gaze estimation techniques (and hopefully not adding to the confusion), we present
a new categorization scheme:

a) Appearance-based: These methods only use the eye image pixel intensities
to create a mapping to the gaze estimation. The image pixels are converted to
a vector representation via raster scanning and fed to the estimation compo-
nent.

b) Feature-based: Methods of this category also make use of a mapping to
calculate the gaze; however, they use richer feature vectors compared to the
methods in the previous category (i.e. not just pixel intensities).

c) Model-based: Compared to the discriminative approach of the first two cate-
gories, the methods belonging to this category follow a generative approach
by trying to model the eyes and maybe even the face. The gaze is calculated
geometrically using the model parameters.

After explaining our categorization and the reasoning behind it, we can continue
with the discussion about the software pipeline of these trackers. Although the
variation in details are huge, a common skeletal structure that describes their
software implementation can easily be identified as seen in Fig. 2.1.

The input to the system is generally a video stream; however, examples of sys-
tems working on still images are also found [144]. In the former case, the previously
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Figure 2.1 – The common software structure for visible light gaze trackers. The
methods start by locating the eyes. To make the estimation more stable, spatio-
temporal tracking may be utilized at this step. Later, the location information is
used to extract features, fit 2D or 3D models to the eyes or just to extract the eye
region image. In the case of model-based methods, the fitted model is used to
calculate the gaze geometrically; whereas in the other methods a mapping function
is necessary to calculate the gaze angle or point.

processed video frames’ results may be used to improve the performance for the
next frames [127].

The first task in the pipeline is to extract the eye region. If an optional head pose
estimation component is present, and if its output contains information about the
eye location; it may be used directly as the location or it may be used as a rough
initial estimate for the actual eye locator. Otherwise, the eye locator component
has the option of using face detectors to restrict the processed image area and
reduce computational cost [100, 119]. In order to calculate accurate eye location,
the system can make use of iris center detectors [95], eye corner detectors [72] or
3D eye models that take into account the appearance of the entire eye [141].

Once the region of interest (ROI), that is the eye region, is located; the second
step is to prepare the input for the gaze estimation component. Depending on
the class of gaze estimation method, the required input for the last step varies. In
appearance-based methods, the extracted eye image from the first step is used di-
rectly as the input. Here, each image pixel intensity is considered as one dimension
of the input vector. As the change in illumination and shadows may interfere with
these inputs, this class of methods may not always give robust results.

Feature-based methods try to break the direct connection between the raw
pixel intensities and the final input vector, in an attempt to increase robustness to
lighting changes. Some of the features used in the literature are:
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• Pixel positions of keypoints (e.g. inner eye corners, iris center, eyelid) [10, 32]

• Their relative positions (i.e. vectors connecting two positions) [112, 115, 147]

• Standard computer vision features such as histogram of oriented gradients
(HOG) [18, 70], local binary patterns (LBP) [61, 81]

• Features calculated by a convolutional neural network (CNN) [144]

• Features grouping and summarizing pixel intensities [21, 65, 66, 138]

Finally, the model-based gaze estimation methods require the parameters for a
2D or 3D eye model as the input. In case of 2D, these can be the parameters defining
the iris edge model [121]; in the 3D case it can get more complex to include 3D
positions of the eyeball center [15] or other facial landmarks [50].

The last step in the described pipeline is the estimation of the gaze, given
the inputs calculated in the previous step. Appearance-based and feature-based
methods require a mapping function that maps the input vectors to the gaze point
or the gaze direction. The commonly used techniques include: neural networks
(NN) [12, 146], Gaussian process (GP) regression [78, 127] and linear interpolation
[91, 107], among others. On the other hand, model-based methods use the geometry
of their 3D model (e.g. normal vector for the iris of 3D eye ball model) to calculate
the gaze [87, 134].

2.2 Methods for Single Camera Remote Gaze Tracking

In this section, we categorize the works that we focused on according to our scheme.
A summary of these works can be seen in Table 2.1, Table 2.2 and Table 2.3.

2.2.1 Appearance-Based Methods

The first techniques proposed for visible light gaze tracking introduced the category
of appearance-based methods [12, 100, 137]. These methods are characterized by
their use of eye image pixel intensities as their features for gaze estimations. After a
possible histogram normalization step for standardizing image appearances over
the whole dataset, these feature vectors are fed to the estimation component which
maps them to screen coordinates.

Neural Networks

One of the most popular mapping functions used in eye tracking is neural net-
works (NN). In their pioneering work, Baluja and Pomerleau [12] introduce the first
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Table 2.1 – Summary of appearance–based methods. Calibration column denotes
how/if the system is calibrated. HP column shows whether the technique has head
pose invariance or not. Techniques allowing small head movements are denoted by
the ≈ symbol. Accuracy column shows the reported error in degrees.

Mapping Calibration HP Acc. References Comments
NN Grid — 1.5–4 [12, 40, 92, 100, 137]
GP Grid — 2 [24]
GP Grid ≈ n/a [77, 78] Rigorous calib. for HP
LLI Grid — 0.4 [107] IR to locate eye
LLI Grid — 2.4 [82]
LLI Grid + HP X 2.2–2.5 [64, 65, 67, 69] 0.85◦ w/ fixed HP
LLI Grid X 4.8 [60]
LLI — X 3–5 [104, 105] Incremental calibration
LLI Grid X 4 [102] 8 cameras
LLI — — 3.5–4.3 [7, 101] Saliency for calibration
LLI Grid X 3.4 [142] 0.9◦ w/ fixed HP
LLI — X 9.9 [129] Synth. training data

method making use of NNs. They test their system extensively by varying the inputs
(iris region or entire eye), NN structure (single continuous or divided hidden layer)
and the hidden layer unit number. In another experiment, they demonstrate that
by training the system with inputs from different head poses, the system can even
handle small head movements. Finally, they top their system with an offset table
that is used to correct the systematic shifts in actual eye tracker use. In the best case,
their reported accuracy is around 1.5◦.

Stiefelhagen et al. [100] use skin color segmentation and pupil detection to
replace the use of a light source for this task in the original Baluja and Pomerlau
work. Xu et al. [137] introduces an iterative thresholding method to locate the iris
region accurately, and also propose a Gaussian smoothing for outputs of the NN
during training. Two recent works [40, 92] used the NN technique for gaze tracking
on commercial tablet computers and report lower accuracy (average error > 3◦),
mainly because of the low sampling rates in tablets and high training data demand
of the NNs.

Local Linear Interpolation

A recently more popular alternative to NN mapping is local linear interpolation
as proposed for gaze tracking by Tan et al. [107]. In their work, they see the eye
region images as coming from an appearance manifold, and gaze estimation is
posed as a linear interpolation problem using the most similar samples from this
manifold. Although this work makes use of IR illumination for eye localization,
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Table 2.2 – Summary of feature–based methods.

Feature Mapping Calibration HP Acc. References Comments
PC-EC GP Grid — 1.6 [32, 34]
PC-EC LI Grid — 1—1.2 [135, 147]
PC-EC LI Grid — n/a [115, 117]
PC-EC PI Grid — 3 [91] 1.2◦ w/ chinrest
PC-EC LI Grid X 2–5 [116]
PC-EC PI Grid — 2.4 [11]
PC-EC PI Grid X 2.3 [72] 1.2◦ w/ fixed HP
Several NN Grid — 1–2 [111, 112]
Several NN Grid X 2–7 [10] Few tests
EC shift n/a Grid — 3.2 [48]
EC shift LI — — 3.4 [79] Hand-coded params.
GC-CM LI Grid — 1.5 [128]
Several LI Grid — 3 [95]

Edge energy S3GP Grid — 0.8 [127]
Intensity ALR Grid ≈ 0.6 [66, 68] 8D or 15D feats.
Intensity RR Grid — 1.1 [138] 120D feats.

HOG SVR/RVR Grid — 2.2 [70]
Several NN Grid — 3.7 [146] Dim. reduced to 50
CS-LBP S3GP Grid — 0.9 [61] Partially labelled data
Several Several Grid — 2.7 [90] Dim. reduced to 16
Several Several Grid X 3.2 [43]

Segmentation GP Grid — 2.2 [21]
CNN Several — X ~6 [144] Calib. from dataset
CNN CNN — X 7.9 [130] Calib. from dataset
CNN CNN — X 1.7cm [57] Calib. from dataset

Img. patches SVM — — 7.5 [63] Posed as classification
BRIEF SVR Grid X 4.1 [51]

the gaze estimation technique is valid for purely visible light setups. The reported
accuracy of around 0.40◦ shows the promise of the proposed technique.

Ono et al. [82] calculate the decomposition of the eye image, which takes into
account variations caused by gaze direction, base eye appearance and shifts in
image cropping. Using this decomposition, they can encounter the most similar 3
training samples and use LLI to calculate the gaze with 2.4◦ accuracy.

Sugano et al. [104] use an LLI technique that allows head movements. They
cluster the eye images according to the corresponding head pose and choose sam-
ples for interpolation only from the cluster with the same head pose as the current
sample. Their system keeps learning from user interaction (i.e. mouse clicks) and
continuously updates its parameters, adding clusters for new head poses when
necessary. The reported average error is between 4−5◦. The extended version of
the work [105] provides methods for refining gaze labels acquired through mouse
clicks, discarding high-error training samples and locating the eye position better;
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Table 2.3 – Summary of model–based methods.

Model Calibration HP Accuracy References Comments
Iris contour Camera X 1 [121, 122] One-circle alg.
Iris contour Grid X 4 [35, 36]
Iris contour — X n/a [133] Two-circle alg.
Iris contour Camera — n/a [44]
Iris contour Camera — 0.8 [143] Error for single dir.
Iris contour Grid X 3.3 [26]
Iris contour Grid X 3.5 [73]
Iris contour Grid X 6.9 [131]

Eyeball Grid X 3.2 [50] Calib. personal params.
Eyeball Grid — 3.5 [134] PF tracking
Eyeball 1 target X ~2 [1] Error for single dir.
Eyeball Grid X 2.7 [15]
Eyeball — X 9 [140, 141] Auto calibration
Eyeball Grid X n/a [87]
Eyeball — X 5.6 [39]
Eyeball — X 8 [17] 3.8◦ w/ fixed HP

thus decreasing the average error to only 2.9◦.
Lu et al. [64, 65] decompose the gaze estimation problem into subproblems:

1) estimation under fixed head pose, 2) compensation of errors caused by head
rotation and eye appearance distortion. Unlike other works, they do not choose
most similar local training samples explicitly; however, they argue that their method
for weighting all the training samples automatically selects a small number of local
samples. By learning eye appearance distortion from 5-second video clips and
applying both compensations, they decrease the average error from 6◦ to 2.38◦
(and from 13.72◦ to 2.11◦ in the 2014 paper). In their later work [67, 69], instead of
video clips (containing around 100 frames), they acquire only 4 additional training
samples under reference head poses and synthesize extra training samples by
modeling the change in eye appearance.

Alnajar et al. [7] propose a calibration-free estimation based on the assumption
that humans have similar gaze patterns for the same stimulus. Here, first initial
gaze points are calculated for a user without calibration, then a transformation
is calculated to map the user’s gaze pattern to other users’. For the initial gaze
estimation, they either use the closest neighbors from the training set to reconstruct
the current eye appearance (with samples from other users) or project the eye
appearance to a 2D manifold to get the most similar samples.

Lai et al. [60] use random forests to learn the neighborhood structure for their
joint head pose and eye appearance feature (HPEA). Gaze is estimated with linear
interpolation using the neighbors in the random forest, yielding an accuracy of
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around 4.8◦ (horizontal and vertical combined).
Sugano et al. [102] build a multi-view dataset and use it to reconstruct part of

the face in 3D. They use this 3D model to generate synthetic samples acquired from
different camera angles and use the extended dataset to train a random forest. Here,
unlike their previous work [104], they do not divide the data strictly according to the
head pose; however, they build sets of regression trees with overlapping head pose
ranges (i.e. samples from a single head pose is used in building several sets of trees).
Gaze is calculated as the average result from the nearest regression forests according
to head pose, resulting in an average error of 6.5◦ with cross-subject training.

Wood et al. [129] also take the route of generating synthetic data for training,
using a generative eye region model to render realistic eye images. In a cross dataset
experiment, they achieve 9.9◦ gaze errors.

Yu et al. [142] argue that in local linear interpolation, the common practice of
using the same reconstruction weights in the appearance space for gaze estimation
is flawed, and they propose an adjustment to address this issue. This technique
reduces the error rates by 12—63%, yielding error rates of 0.9—6.1◦, depending on
whether there is head pose and subject variation.

Gaussian Processes

Gaussian Process (GP) is another choice for the mapping in some gaze tracking
methods. GP predictions are probabilistic, and allow calculation of confidence
intervals for the outputs which may be used as an indicator to detect when the
calibration is no longer valid for the test data [32, 86].

Nguyen et al. [77, 78] describe a system where they use a Viola-Jones [119] eye
detector and optical flow (OF) to detect and track the eye in the camera image. Then,
the extracted eye image is fed to a GP to calculate the gaze point. In the extended
work [78], they show that when the calibration is repeated in several head poses,
the system can even become head pose invariant.

Sugano et al. [101] use saliency information to automatically calibrate a gaze
tracker while the subject is watching a video clip. While calibrating the GP-based
tracker, instead of using known gaze positions, they train the GP with gaze probabil-
ity maps calculated by aggregating several saliency maps.

2.2.2 Feature-Based Methods

In the appearance-based methods, the inputs to the mapping functions were the
same across all techniques, therefore we categorized them according to the mapping
functions they used. However, in feature-based methods the main difference is
their feature set, and our categorization also reflects this difference.

14



2.2. Methods for Single Camera Remote Gaze Tracking

Anchor Point Position-Based Features

In this first subcategory of feature-based methods, the positions of important an-
chor points inside and around the eye (e.g. pupil (iris) center, inner and outer
eye corners, nostrils) are used as features. In some cases, they constitute distinct
dimensions of the feature set; whereas in other cases, the relation between them
(i.e. the vector connecting two anchor points) is used as the feature.

Pupil Center-Eye Corner Vector
In infrared gaze trackers, a feature widely used for gaze estimation is the pupil
center-corneal reflection vector (PC-CR) [91]. The equivalent of this in natural
light methods is the pupil center-eye corner vector (PC-EC) (or alternatively, iris
center-eye corner (IC-EC) vector).

The first use of the PC-EC vector in natural light eye trackers is proposed by
two distinct research groups around the same time [32, 34, 147]. Hansen et al.
[32, 34] use Active Appearance Model (AAM) and mean-shift to track the eyes over
time and find the positions of pupil center and eye corners. Gaze estimation is
done by training a Gaussian Process (GP) where the input is the PC-EC vector. The
system results in an average error of around 1.6◦, and the eye tracker is verified in
an eye-typing interface. Zhu and Yang [147], on the other hand, propose methods
for detecting the iris center and the eye corner with subpixel accuracy. They use a
2D linear mapping to estimate gaze positions from the feature vectors. They report
an accuracy of around 1.2◦ from their experiments.

Valenti et al. [115, 117] propose a novel eye corner locator and combine it with
a state-of-the-art eye center locator to calculate the EC-PC vector. Inspired by Zhu
and Yang [147], they also use a 2D linear mapping for gaze estimation. In their
later work [116], they make use of a head pose estimator and use the calculated
transformation matrix to normalize the eye regions. The more accurate eye location
found this way, in turn, is used to better estimate the head pose in a feedback
loop. To solve the gaze estimation problem with head movements, they retarget the
known calibration points to the monitor coordinates whenever there is a change
in the head pose, and calibrate the system again. With these improvements, they
achieve average errors of between 2◦ and 5◦ in two experimental tasks.

Sesma et al. [91] normalize the PC-EC vector, dividing the vector components
by the Euclidean distance between the inner and outer eye corners. For gaze
estimation, they use both PC-EC vectors for the inner and outer eye corners and
their experiments show the average error to be 1.25◦ when the head movement is
constrained, and around 3◦ when no chin rest is used.

Baek et al. [11] apply image rectification to rectify the eye images to a front facing
head pose, and combine it with a novel iris center localization method. They use
second order polynomial equations (as in [91]) to calculate the gaze and measure

15



Chapter 2. State-of-the-Art in Natural Light Gaze Tracking

an accuracy of 2.42◦.
Cheung et al. [72] fit Active Shape Models (ASM) on images normalized using

local sensitive histograms. With the novel methods they propose for iris center and
eye corner detection, they achieve errors of 1.28◦ with fixed head pose and 2.27◦
with head movements.

Others
Some feature-based methods making use of anchor point positions may take a
different path, and combine or replace the EC and PC positions with information
coming from other anchor points (e.g. nostrils) or simply calculate the features in
another way.

In his thesis, Bäck [10] uses several geometrical features such as iris center, eye
corner, nostril positions, head angle, eye angles to create a rich feature vector, and
trains a NN for gaze estimation. The system is not tested heavily; however, the
accuracy is reported to be between 2−4◦ and sometimes even up to 7−8◦.

Torricelli et al. [111, 112] calculate several distance and angle features from both
eyes to fill the feature vector. These features include distances of inner and outer
eye corners to the iris center, the slopes of the lines connecting these points and the
positions of outer eye corners. The trained NN gaze estimation component results
in average errors between 1−2◦.

Ince and Kim [48] track the iris with a custom method, and calculate the gaze
using the iris center displacements between subsequent camera frames. The pro-
posed system has an accuracy of 3.23◦ (horizontal and vertical combined). Nguyen
et al. [79] take a similar approach and make use of the center-bias effect, which
states that gaze distribution is biased towards the center of the screen [52]. Their
system does not require any calibration, and works by calculating the mean iris
center over time and estimating the gaze through the difference of current iris center
and the mean. The combined error in x and y directions are 3.43◦ of visual angle.

Wojciechowski and Fornalczyk [128] preprocess the eye images by calculat-
ing the edges, and then extract their features which are the geometric center and
center of mass of edge pixel positions. The final feature is the vector connecting
these two locations (GC-CM), which is used to calculate the gaze estimation using
the weighted average of data from 4 training points. The system has around 1.5◦
accuracy (combined).

Skodras et al. [95] track several moving and stationary anchor points (e.g. eye
corner, eyelid control points, iris center) and calculate vectors from their relative
positions to build the final feature vector. They use linear regression for mapping to
gaze point and achieve an accuracy of 2.96◦ (combined).
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Intensity-Based Features

In some feature-based methods, the direct connection between the image pixel
intensity and feature vector is not broken completely. Williams et al. [127] combine
the image pixel intensities with edge energies in their feature vector. They train
a sparse, semi-supervised Gaussian process (S3GP) which also infers the missing
labels in the partially labeled training data. They make use of the confidence value
for the GP to filter the estimation over time using a Kalman filter and achieve a final
accuracy of 0.83◦.

Lu et al. [66, 68] propose extracting 8D or 15D intensity features from the eye
region, which is identical to resizing the grayscale eye image to 2×4 or 3×5 pixels,
respectively. Together with the proposed subpixel alignment method for eye region,
and adaptive linear regression (ALR) for gaze estimation, they can estimate the gaze
point with up to 0.62◦ of accuracy.

Xu et al. [138] extend the work of Lu et al. [66, 68] to increase the feature
dimension to 120D (2 eye images of 6×10 pixels) and to use ridge regression for
gaze estimation, and achieve slightly worse results (1.06◦).

Traditional Computer Vision Features

Computer vision (CV) tasks such as object detection, classification, etc. are nor-
mally solved by using features (e.g. histogram of oriented gradients (HOG) [18],
scale-invariant feature transform (SIFT) [62], local binary patterns (LBP) [81], etc.)
extracted around salient points in the images. However, until recently, this approach
was still unexplored for the gaze tracking problem.

Martinez et al. [70] introduce this concept in a head mounted tracker, where they
extract multilevel HOG features from eye images and use support vector regression
(SVR) or relevance vector regression (RVR) to map these features to the gaze point,
and achieve an accuracy of 2.20◦ (combined).

Zhang et al. [146] combine several features to build their feature vectors: color,
pixel intensity, orientation (from several Gabor filters), Haar-like features, spa-
tiogram features (combining color histogram with spatial information). After gener-
ating this rich representation, they apply a dimensionality reduction technique to
reduce the feature vector size to 50, and train a NN for gaze estimation. Although
the reported average error is not very low (around 3.70◦, when combined), the work
is a great example of applying the traditional CV pipeline to gaze trackers.

Liang et al. [61] build on the previously explained S3GP technique [127], and
train it with CS-LBP features [38], which is based on LBPs. They make use spectral
clustering to learn from partially labeled data, and report an average error of 0.92◦.

Schneider et al. [90] explore several feature types (DCT, LBP, HOG) in conjunc-
tion with many alternatives for regression (GP, k-nearest neighbors (kNN), regres-
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sion trees, SVR, RVR, splines). They use a dually supervised embedding method to
reduce the feature dimensionality, resulting in up to 31.2% decrease in the errors
(best accuracy being 2.69◦ with 16-dimensional features based on HOG and LBP).
Huang et al. [43] also take the same approach and review several feature types (LOG,
LBP, HOG, mHOG) and regression components (kNN, RF, GP, SVR). They report
that random forests (RF) combined with multilevel HOG (mHOG) features prove to
be the most efficient combination (3.17◦ error) in a very challenging scenario (i.e.
tablet computers), with free head movements.

Jeni et al. [51] make use of BRIEF binary features [13] extracted around the eye
and calculate the gaze estimation using SVR. The reported accuracy is between
3.9—4.1◦, which drops to 5.9◦ for lower resolution images.

Lu et al. [63] build a "codebook" (or vocabulary) of image patches, and calculate
the reconstruction of eye images using a combination of these patches. The rep-
resentation of this reconstruction is used as the feature set for a multi–class linear
SVM, where the final error rate is around 7.5◦ on average.

Lately, convolutional neural networks (CNNs) are very popular in computer
vision research, and Zhang et al. [144] are the first to use it for gaze tracking. CNN
methods generally require a large dataset, and in their work they also present their
dataset [145] which contains more than 200,000 images. They calculate features
using a CNN, and combine it with the head pose information to build the complete
feature vector. After testing with several regression functions (random forests, kNN,
ALR, SVR), the best accuracy they achieve is around 6◦.

Wood et al. [130] feed synthetic images together with another synthetically
augmented dataset [103] to a CNN, and reach 7.9◦ cross–dataset average error rates.
The latest example of using CNN architectures for gaze estimation is from Krafka
et al. [57], where they enrich the input by using eye region images in conjunction
with head region images and a grid representing the location of the head inside
the camera frame. The average error of their system is around 1.04cm on mobile
phones, and 1.69cm on tablets.

2.2.3 Model-Based Methods

The models used in model-based gaze estimation methods are roughly divided into
two: iris contour models (also known as one-circle algorithm) where an ellipse is
fitted around the iris region, and eyeball models where the main objective is to
estimate the location of the eyeball center.
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Iris Contour Models

The direct least squares method for fitting ellipses onto a set of points [25] is influ-
ential in the development of iris contour models for gaze estimation. This method,
complemented with the observation that the circular iris boundary appears as an
ellipse in camera images, has enabled the development of several gaze tracking
techniques.

Wang et al. [121, 122] develop the one-circle algorithm where they use edge
detection to find pixels belonging to the iris boundary, and they fit an ellipse to this
set of locations. Then, the ellipse is back-projected to the 3D space to find the iris
contour circle, and its normal vector is used as the gaze vector. Their system has an
average error of around 1◦.

Hansen and Pece [35, 36] use an active contour method to track the iris edges
over time, and (probably) using the one-circle method, their system estimates the
gaze with around 4◦ accuracy.

Wu et al. [133] propose an extension with their two-circle algorithm, where they
assume the elliptic iris contours for both eyes lie on the same plane or on parallel
planes in 3D. With this assumption, they are able to estimate the gaze direction
without the need for camera calibration.

Huang et al. [44] use randomized Hough transformation for iris contour fitting,
whereas Zhang et al. [143] propose an improved RANSAC algorithm. The reported
accuracy for the latter work is 0.8◦ in a single direction.

Fukuda et al. [26] propose subpixel methods for iris contour estimation in low
resolution images, achieving a combined average error of 3.35◦. Mohammadi and
Raie [73] train a support vector machine (SVM) to filter out the unrelated edge
segments before applying the ellipse fitting, yielding an accuracy of 3.48◦.

Wood and Bulling [131] detect the edges belonging to the iris from the image’s
radial derivative. After fitting the ellipse using the RANSAC method, the gaze esti-
mation has an accuracy of 6.88◦.

Eyeball Models

Eyeball model-based techniques try to infer the eyeball center position, and calcu-
late the gaze vector as the line connecting this point with the iris center.

Ishikawa et al. [50] use an AAM to track the face, and use the eye corner positions
and the scale of the face to infer the anatomical constants for the user (i.e. eye
geometry). This calibration is followed by iris detection by template matching and
edge-based iris refinement to calculate the center of the iris. The geometrically
calculated gaze has an average error of 3.2◦.

Wu et al. [134] track the iris contours and the eyelids with a particle filter (PF),
and use several appearance metrics to calculate the likelihood of a given particle
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(candidate). Experimental results show the mean error to be greater than 3.5◦.
Xie and Lin [1] infer the position of the eyeball center and other personal param-

eters using a simple one target calibration. They calculate the gaze geometrically by
using the iris center and eye corner positions on the image, with 2◦ accuracy in a
single direction.

Chen and Ji [15] use a generic face model that includes several facial anchor
points (nostrils, inner and outer eye corners) and one of the eyeball centers. After
calibrating for the personal parameters, they track the facial points and fit the 3D
model to estimate the gaze with 2.7◦ accuracy.

Yamazoe et al. [140, 141] segment the eye image pixels into three classes: skin,
sclera, iris. Using the segmentation results, they calculate the most possible eye
pose by minimizing the projection errors for a given candidate. The accuracy of the
system is reported to be around 9◦.

Reale et al. [87] use the detected iris contours to calculate the eyeball center,
and after calibrating for the visual axis-optical axis shift and the eyeball radius, they
estimate the gaze direction. Finally, the most recent work in this category is from
Heyman et al. [39], who employ canonical correlation analysis (CCA) to estimate
the head pose in a similar manner to AAMs. They calibrate the eyeball radius during
initialization, and estimate the iris center using a segmentation method. Their
system estimates the gaze direction with 5.64◦ accuracy.

Cristina and Camilleri [17] use a similar cylindrical head model as in [116],
combined with spherical eyeball models. Their method has 3.84◦ accuracy with
little head movement, which drops to 8◦ with free head movement.

2.3 Calibration Strategies

Traditionally, calibration of the eye trackers consists of asking the subject to look
at several targets in known positions. This way, either the personal parameters
(e.g. angle between visual and optical axis of the eye, eyeball radius) or the camera
parameters (e.g. focal length, position with respect to the display) are learned.

Several papers that we analyze in this review present novel techniques to make
this process easier for the subject using the tracker. Yamazoe et al. [140, 141]
employ a transparent calibration process, where the user does not need to be aware
at all. They track the face over time to construct the 3D model of the face and
eyes, and start calculating the gaze when the calibration is ready. Alnajar et al.
[7] use other users’ gaze patterns to help estimate the current user’s. Sugano et
al. [101] completely remove the need for training data, and estimate the gaze in a
probabilistic manner using computed saliency maps.

Another approach to collecting the training data without needing special actions
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from the user, is to let the user operate the computer normally and take samples
during mouse clicks [104, 105, 144]. This method is based on the assumption that
the user looks around the mouse pointer while clicking.

Head movements constitute a challenge for eye tracker calibration, and even
small movements may cause large errors in the estimations of a calibrated tracker.
This holds true especially for appearance-based gaze trackers. Valenti et al. [116]
solve this problem by retargeting the calibration targets’ positions to user’s new field
of view, and calibrating the system again. Lu et al. [64, 65] require the user to record
5 second video clips while moving her/his head, and use these to correct errors
caused by head movements. Xie and Lin [1] require just a single target calibration,
where the user keeps looking at the same position on the screen and moves her/his
head around. Zhang et al. [144] take an approach based on large datasets, and use
other people’s training data to calibrate a more accurate tracker.

Making the calibration process transparent for the user and collecting the re-
quired large amount of data are two conflicting objectives. In order to use the
available training data to full extent, Williams et al. and Liang et al. [61, 127] use
partially labeled data and annotate some of the unlabeled samples automatically.
Ono et al. [82] create new samples by adding shifts while cropping the eye images,
and this way they can model the resulting appearance change and compensate
for it while searching local samples. Lu et al. [67, 69] create synthetic training
data by modeling the pixel flow around the eyes, whereas Sugano et al. [102] use 8
cameras to model a large part of the face in 3D and to generate training samples
from previously unobserved head poses.

2.4 Dealing with Head Pose

Model-based visible light gaze tracking methods are normally invariant to head
movements, assuming the preprocessing steps such as eye localization or model
fitting do not fail. However, the same does not hold for the appearance-based and
feature-based systems. As Lu et al. [65] demonstrate, the head movement not only
adds a shift to the gaze angle, but also makes the calibration invalid by distorting
the eye appearance for appearance-based methods.

The naive approach to solving the problem of head movements is adding more
training data. Nguyen et al. [77, 78] propose repeating the calibration up to 10 times,
while Lai et al. [60] require 34,000 training samples per user.

Zhang et al. [144] use a large dataset of previously collected images to train a
feature-based gaze tracker. Here, training data collected from many subjects can be
used in estimating the gaze for another person. Head pose invariance is achieved
by incorporating the head pose angles into the feature set.
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Table 2.4 – Publicly available datasets for remote, natural light gaze tracking

# Subjects # Targets # Head Poses Resolution Dataset Size References

UUlm 20 2-9 19 1600×1200 2,200 imgs [125, 126]

HPEG 10 Cont. 2 640×480 20 videos [8, 9]

Gi4E 103 12 1 800×600 1,236 imgs [83, 84, 118]

CAVE 56 21 5 5184×3456 5,880 imgs [96, 97]

CVC 12 12-15 4 1280×720 48 videos [23, 24]

EYEDIAP 16 Cont. Cont. 1920×1080 94 videos [27, 28]

Multi-view 50 160 8 (+synt.) 1280×1024 64,000 imgs [102, 103]

MPIIGaze 15 Cont. Cont. 1280×720 213,659 imgs [144, 145]

OMEG 50 10 Cont. 1280×1024 44,827 imgs [37]

TabletGaze 51 35 Cont. 1280×720 816 videos [42, 43]

In other approaches [104, 105], the multi-pose training data is grouped accord-
ing to head pose, and only a subset corresponding to the most similar head pose is
used in the active calibration. To reduce the need for additional training data, Lu et
al. [67] synthetically generate training samples for unseen head poses.

Instead of pouring more data into the system, another option is to apply com-
pensations, or small fixes to keep the current calibration working. Lu et al. [68]
propose an eye image alignment scheme to undo the deformation in these images.
In their other works [64, 65], they train a regression for this task, and combine it
with a compensation for head rotation.

Valenti et al. [116] keep the calibration targets in a flexible representation, and
retarget these to the display coordinates whenever the head pose is changed and
recalibrate their system.

Cheung et al. [72] assume the PC-EC feature is completely invariant to head
pose, and apply only head rotation compensation in their system.

2.5 Available Datasets

Several papers that we analyzed contain a summary of publicly available datasets for
visible light gaze tracking [96, 102, 144]. However, they are mostly for the purpose
of comparison with the presented datasets in the mentioned work, and thus may
lack some pieces of related information.

In Table 2.4, we bring together all the datasets mentioned in these works (with
several more recently published additions), in an attempt to provide a reference for
future research in the field.

One of the datasets [71] cited in the previous reviews has been removed, as it
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provided data for a head mounted setup.

2.6 Gaze Tracking as a Service

While visible light gaze tracking has become a hot topic in the academia in recent
years (as can be observed in Fig. 2.2), the industry is not trailing far behind either.
Here, we talk about several companies already providing gaze tracking service based
on regular cameras found on consumer devices.

GazeHawk [46] (now closed), was enabling its customers to convey remote eye
tracking studies inside the user’s browser. xLabs [136] is another similar service,
which is also available as a Chrome extension. With the extension, several demos
(including continuous calibration by an ant smashing game) can be tried. Lastly,
Sticky [99] also provides a JavaScript-based service, suggesting use cases such as
online ad placement, web page optimization, etc. As the only service with detailed
specifications, their eye tracker provides an average accuracy of 2.4◦.

Other possible clients for this type of eye trackers are the game or application
developers. SentiGaze [76] provides an SDK for developers targeting the Windows
platform. FaceTrack from Visage Technologies [108] provide a similar C++ SDK for
developers, with augmented reality, view control in gaming, view-dependent ren-
dering suggested as possible use cases. The SDK provides detailed information such
as mouth contour, chin pose, eye openness, etc., in addition to the gaze information.
InSight SDK [93] takes one step further and combines the gaze information with
mood, age and gender estimation.

With the transition from desktop programs to mobile apps in recent years, two
companies see a possibility for gaze tracking on this platform. Snapdragon [47]
provides an SDK for Android apps, whereas Umoove [114] has a product on both
iOS and Android platforms.

2.7 Open Source Projects

A few works that we analyze in this review have released their source code with an
open source license. In this section, we list these options so that new projects in the
field will have a starting point for the codebase. Table 2.5 shows a summary of the
listed projects.

Opengazer [148] is an eye tracker from Cambridge University, that is unfortu-
nately no longer maintained. It uses Gaussian process regression with eye images as
features, which is similar to the technique described by Nguyen et al. [78]. NetGazer
[3] is the port of Opengazer for the Windows platform and is not maintained any-
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Table 2.5 – Open source gaze trackers and the related publications

Language Platform License References

Opengazer C/C++ Linux/Mac GPLv2 [148]

NetGazer C++/C# Windows GPLv2 [3]

CVC ET C/C++ Linux/Mac GPLv2 [21, 22, 24]

NNET Objective C iOS GPLv3 [40, 41, 92]

EyeTab Python/C++ Windows MIT [131, 132]

TurkerGaze JavaScript All MIT [138, 139]

Camgaze Python All ? [120]

more either.
In the recent years, a fork of Opengazer project, named CVC Eye Tracker [22]

was made available and is maintained actively by researchers from Universitat
Autònoma de Barcelona. This project is the basis for two works analyzed in our
review [21, 24].

Neural Network Eye Tracker (NNET) [41] is the NN-based eye tracker implemen-
tation for iPad devices, which is presented in two articles [40, 92]. EyeTab [132] is
another open source codebase for tablet computers, which uses the iris contour
model-based method described by Wood and Bulling [131].

Recently, the TurkerGaze project [138, 139] was made available on GitHub. This
application is totally implemented in JavaScript (JS), which makes it platform-
independent (with possible extension to the mobile). The library has a polished
interface for calibration and verification, and comes with a small application for
analyzing the gaze patterns recorded during conducted experiments. Although its
proposed usage area is to enable crowdsourcing eye tracking tasks on platforms
similar to Amazon Mechanical Turk, we believe it will have a larger impact on both
academic works and web-based applications.

One last open source application is Camgaze [120], which is written in Python
and calculates binocular gaze estimations.

2.8 Summary and Conclusions

In this chapter, we presented a review of the state-of-the-art in remote, natural light
gaze trackers. Although in recent years many great works were published in the
field, and the accuracy gap to reach the infrared-based trackers is closing; many
open problems and unexplored approaches still remain.
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Apart from the accuracy, the biggest challenges to these trackers are a) making
the calibration less painful for the user, b) allowing free head movements. As
we analyzed in the previous sections dedicated to these two problems, the field
witnessed amazing works recently. Some open lines of work that we have identified
in these areas are the following:

• Maintaining personal calibration: Most of the works we analyzed require
some sort of calibration, be it for personal parameters for the user, for camera
properties or simply for training the gaze mapping component. Although
some techniques may already allow it (without stating explicitly), reusing the
calibration information for the subsequent sessions of the same user is still
pending extensive analysis. With such a technique, calibration before each
session can be simplified or removed altogether.

• Using calibration data from other users: Despite being explored in a few
papers [7, 144], we believe the accumulation (or collection) of training data
from people other than the current user will receive more focus in the coming
years. This is analogous to training classifiers or detectors in other computer
vision tasks, and it will let us make better use of the large datasets that we
have begun to build.

• Other ways of collecting data: Collecting calibration samples each time the
user clicks the mouse enabled us to create very large datasets for the first time
[104, 105, 144]. Especially with the advent of JavaScript-based eye trackers
[138], other possibilities such as remotely crowdsourcing data collection will
emerge. Larger data will eventually let us explore previously impossible ideas,
a trend which is common in computer vision.

These lines of work are mostly around the topic of data collection and calibra-
tion, and they will help solve the large data needs of training for different head
poses.

Most of the recent high-performing techniques [61, 66, 68, 127] are using feature-
based gaze estimation, which shows the promise of this category over appearance-
or model-based methods. Fig. 2.2 also shows this tendency, and the increase in
feature-based methods can be observed clearly. Over the next years, we will proba-
bly see more examples of similar work with the following focus points:

• Different features: The PC-EC vector; pixel intensity and color; and other
standard features (such as HOG, LBP) have been used so far. New feature
representations that may be better suited to the problem at hand will greatly
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Figure 2.2 – Number of works from different categories of eye trackers according to
the publication year.
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improve the eye tracking accuracy. The desired characteristics of such fea-
tures are: a) invariance to head pose, b) invariance to intensity changes,
c) invariance to personal appearance differences.

• Migrating proven ideas from other CV fields: Use of convolutional neural
networks (CNN) [144], features such as HOG, LBP, and in general the com-
puter vision (CV) pipeline [146] are changing our approach to the gaze track-
ing problem. These ideas were already commonplace in other areas of CV,
and we believe our community will keep transferring insights which have
been proven to work for other problems.

Apart from these technical challenges and lines of work; as a society, our biggest
problems are related to transparency and letting others build on our work.

Firstly, only very few of these works report their accuracy on publicly available
datasets or publish the dataset they use. This is a must in other computer vision
areas so that the results from techniques can be compared and verified. Moreover,
standardization of the processing pipeline will immediately follow (as it depends
on the training data structure) and will foster our progress.

Our second problem is that, only few works make their source code available.
This prevents other researchers from standing on the shoulders of giants, and hinders
the rate of our progress. We believe that by releasing our source code, we can create
stronger ties and cooperation in the field.

In conclusion, the amount and quality of the recent work in the field is promising
and signals an even faster progress in the coming years. With this map of the
current state-of-the-art that you are holding in your hands (or gazing at through
an electronic display), we hope to provide a reference point for all these amazing
works we cannot wait to see.
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3 Gaze Estimation Methods Based on Tradi-
tional Features

After doing an extensive review of the state–of–the–art in the previous chapter, we
see that some of the methods can achieve quite low error rates (lower than 1◦)
[61, 68]. However, these methods mostly have been tested in experimental setups
in laboratories, and are almost never made available to the general public as a
final, usable research output. Without advanced programming skills and a solid
background in image processing (and sometimes mathematics), it is impossible to
make use of these systems.

One of our aims in this work is to build on an open source eye–tracking software
[148] with all our contributions, and make the final gaze tracker available to the
public at all times. With this purpose, we start with explaining our first methods for
gaze estimation in this chapter. These methods have the traditional computer vision
pipeline as their structure: they manipulate the input in some ways to calculate
hand–crafted features, and feed these to a regression algorithm to calculate the
gaze points. This is in contrast to the deep learning method we explain in the next
chapter.

With these works, we explore the categories of appearance–based and feature–
based gaze estimation algorithms, and make improvements on the open source
baseline system.

3.1 Appearance–Based Gaze Estimation

3.1.1 Introduction

In most of the previous works on natural light gaze tracking, the focus has always
been on accuracy and on the proposed method itself. The same experimental setup
is used throughout the experiment, and no variations are introduced to assess
the affects of the changed parameter in the setup. We believe that knowing these
effects will give us, the researchers, valuable insights on how to improve the overall
performance and robustness.

In this part of our work, we aim to analyze the factors that are affecting the
accuracy of these gaze trackers such as head pose stability, camera placement,
camera resolution. In doing so, we build an easy–to–use gaze tracking system
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which improves the performance of the open source system that we take as a base.
Moreover, we also bundle the videos recorded in our experiments in a publicly
available dataset so that other researchers in the field can benefit from this data in
their work.

Our Contributions

We build our eye-tracker on top of the open source eye–tracker Opengazer, and
our contributions are aimed at making the system more robust, increasing its
performance and making it easier to use.

One of the differences of our work from the appearance–based methods men-
tioned above, is that it is a fully automatic system. The auto facial point selection
mechanism initializes the system, and the rest of the application does not require
much user input. Moreover, the work on the point tracking and image normal-
ization handles the problems of illumination change and accumulated tracking
errors in longer tracker use. The training error correction improves the estimations
especially for targets near the screen corners. These contributions can be seen in
Figure 2.1.

3.1.2 Method

The components of the software can be seen in Figure 3.1. The original system
requires at least 4 facial feature points chosen manually on subject’s face and it
employs a combination of optical flow (OF) and 3D head pose based estimation
for tracking them. The image region containing one of the eyes is extracted and
used in calibration and testing. In calibration, the subject is asked to look at several
target locations on the display while image samples are taken and for each target, an
average eye image is calculated to be used as input to train a Gaussian process (GP)
estimator. This estimator component maps the input images to display coordinates
during testing.

Our first contribution is a programmatic point selection mechanism to automate
this task. Then we propose several improvements in the tracking component, and
we implement image intensity normalization algorithms during and after tracking.
We finish the work on the blink detector to use these detections in other components.
In calibration, we propose a procedure to assess and eliminate the training error.
For the gaze estimation component, we try to employ a neural network method
[40]. In the following subsections, we give the details of these contributions and talk
about their effects on system performance in the discussion section.
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Figure 3.1 – The pipeline of the eye-tracker and our contributions on top of the base
code
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Figure 3.2 – Sequence of facial feature point selection
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Point Selection

Our contribution in the automation of the point selection mechanism aims at re-
moving the errors due to operation mistakes. Moreover, it provides a standardized
technique which increases the system’s robustness. It employs a combination of
Haar cascade detectors [14, 31], geometrical heuristics and a fast eye-corner detec-
tion technique. First, a cascade is used to detect the region containing both eyes
and then the novel method detects the outer eye-corner points (Figure 3.2a). Here,
the proposed method extracts all corner points inside the ROI using Harris detector,
and calculates the average corner coordinates in the left and right half of the region.
These two points are considered as approximate eye centers and the outer corner
points are chosen on the line that passes through them. As we only search a point
around the eye corner that is stable enough, we do not make more complex calcula-
tions and we simply choose the eye corner points at a predefined distance (1/3 of the
distance between two centers) away from the center point approximates.

After the eye corners are selected, we search the nose in a square region below
them. When the Haar cascade returns a valid detection—as in the inner rectangle
in Figure 3.2b—, the two nasal points are selected at fixed locations inside this area.
The algorithm continues in a similar way for the mouth and eyebrow feature points.

Point Tracking

The point tracking component of the original system uses a combination of optical
flow (OF) and 3D head pose based estimation. Optical flow calculations are done
between the current camera image and the previous image. This methodology
results in the accumulation of small tracking errors and causes the feature points
to deviate vastly from their original positions after blinking, for instance. In order
to make our eye-tracker more robust to these problems, we modified the tracking
component so that OF is only calculated against the initial image saved while
choosing the feature points. Moreover, if we still lose track of any point, we directly
use the estimate calculated using the 3D head pose and correctly tracked points’
locations.

Image Normalization

During eye-tracker usage, the ambient light may change depending on the sun or
other external light sources. Particularly, the computer display itself also acts as a
source of frontal illumination, which contributes to a modification of the shades
and shadows on the face as images of different intensities are shown in the screen.
As the gaze estimation component of our eye-tracker uses intensity images for
training and testing, the change in the light level is reflected in the increased error
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rates of the system.

Normalization Techniques In order to tackle the varying lighting conditions, we
incorporate two image normalization techniques to standardize the intensities over
time [30]:

a) Standard pixel intensity mean and variance: In this technique, we first cal-
culate the mean (µorig) and the standard deviation (σorig) of the original image
(I orig) pixels. In the next step, the scale factor (S) is calculated as:

S = σnorm

σorig
(3.1)

where σnorm is the desired standard deviation of intensity for the normalized
image (I norm). Finally, the normalized image pixels are calculated with the
formula:

I norm = S · (I orig −µorig)+µnorm (3.2)

Here, the equation first scales the image pixels to have the desired standard
deviation, then shifts the mean intensity to the desired value.

b) Standard minimum and maximum intensity: The second method aims at
normalizing the images so that the minimum and maximum intensity values
are the same among all the images.

We start by calculating the minimum (min orig) and maximum (max orig) pixel
intensities in the original image. Then, the scale factor is calculated as:

S = max norm −min norm

max orig −min orig
(3.3)

which is basically the ratio of pixel intensity interval between the desired
normalized image and original image. Lastly, the normalized image pixels are
calculated as:

I norm = S · (I orig −min orig)+min norm (3.4)

where the image pixels are mapped from range [min orig,max orig] to [min norm,max norm].

Variations in Usage Having these two normalization techniques at hand, we con-
tinue by incorporating them in the eye-tracker. Normalization takes into account
the distribution of gray levels for a given region. In our particular context, this can be
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applied in a pyramidal approach to: 1) the region containing the eye, 2) the region
containing the face, or 3) the whole image. Since the statistics of each region are
different, normalization is expected to provide different results depending on the
region of application. In addition, normalizing in different regions has an impact in
a number of system modules as explained next:

• Eye-region normalization: Only the extracted eye regions are used for the
normalization. By applying normalization to the eye-regions we guarantee
that the gaze estimation component always receives images with similar
intensity distributions.

• Face-region normalization: Normalization parameters are derived and ap-
plied to the face region. We make use of the facial feature points’ positions for
a fast region segmentation. The bounding box coordinates for these points
are calculated and the box is expanded by 80% horizontally and 100% ver-
tically so that the whole face is contained. By normalizing within the face
bounding box we aim at improving point tracking by removing the effects of
intensity variations.

• Whole-image normalization: By using the whole image, we adapt the nor-
malization to the average light conditions. However, variations in the back-
ground can affect the final result. Potentially, changes in the frontal illumi-
nation provided by the display can affect stability of the facial feature points
detection.

• Combined normalization: Lastly, we apply the eye-region normalization on
top of the face-region or whole-image normalizations. By combining both
methodologies, we expect to address both the tracking problems and the
problems caused by not normalized eye-region images.

Blink Detection

The blink detector is an unfinished component of Opengazer and we continue with
analyzing it and making the necessary modifications to get it running. We believe
that blinks have an effect on performance and by skipping them during training, we
can remove the errors they introduce.

The blink detector is designed as a state machine with initial, blinking and
double blinking states. The system switches between these, depending on the
differences in eye images that are extracted as described in the previous section.
These differences are calculated as the L2 norm between the eye images in consecu-
tive frames. When the difference threshold for switching states is exceeded during
several frames, the state is switched to the next state and a blink is detected.
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We built on this structure and completed the rules for the state switching mech-
anism. Moreover, we added a state reset rule that resets the system to the initial
state whenever the threshold criteria is not met at a certain frame.

Calibration

The original system uses all the images acquired during the calibration step. We
propose a modification in the calibration part which uses our blink detector so
that the images acquired during blinks are no longer included in the calibration
procedure. This is crucial because these frames can alter the average eye images
calculated during calibration and therefore are reflected as noise in the calibration
procedure. However; as these frames are no longer available for calibration, we
have to increase the time each target point is displayed on the screen in order to
provide the system with enough samples during calibration.

Another improvement that we propose is the correction of calibration errors as
illustrated in Figure 3.3.

Figure 3.3 – The drift correction moves the estimates (small signs) towards the
actual target (larger signs). The training error direction (blue line) and testing error
direction (red line) show the correlation.

Here, red triangles on the left side correspond to a target point displayed on the
screen and the corresponding gaze estimations of our system, one for each camera
frame. The larger symbol denotes the actual target, whereas the smaller ones are the
estimates. The shorter line connects the average estimation and the target location.
Therefore, the length and direction of this line gives us the magnitude and direction
of average testing error. Apart from these symbols, the longer line that starts from
the target denotes the direction of the calibration error. However, it should be noted
that in order to easily observe the direction, the magnitude of the calibration error
is increased by a factor of 5. In this figure, we can see the correlation between
the calibration error and average testing error, therefore we propose a correction
method. The final effect of this technique can be seen on the right side, where the
estimates are moved closer to the actual target point.

To calculate the calibration errors, we store the grayscale images which are used
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to calculate the average eye images during calibration. Therefore, we save several
images corresponding to different frames for each target point. After calibration is
finished, the gaze estimations for these images are calculated to obtain the average
gaze estimation for each target. The difference between these and the actual target
locations gives the calibration error.

After the calibration errors are calculated, we continue with correcting these
errors during testing. We employ two multivariate interpolators [123, 124] which
receive the average gaze estimations for each target point as inputs and are trained
to output the actual target x and y coordinates they belong to. The parameters
that we chose for the interpolators are: approximation space dimension ndi m = 2,
Taylor order parameter N = 6, polynomial exactness parameter P = 1 and safety
factor sa f et y = 50. After the interpolator is trained, we use it during testing to
remove the effects of calibration errors. We pass the currently calculated gaze
estimate to the trained interpolators and use the x and y outputs as the corrected
gaze point estimation.

Gaze Estimation

Originally, gaze estimates are calculated using the image of only one eye. We
propose to use both of the extracted eye images to calculate two estimates. Then,
we combine these estimations by averaging.

We also consider the case where the GP interpolator is completely substituted in
order to see if other approaches can perform better in this particular setup. Neural
network (NN) methods constitute a popular alternative for this purpose. There exist
recent implementations of this technique [40]. In the aforementioned work, an eye-
tracker using NNs to map the eye image to gaze point coordinates is implemented
and is made available [41].

We incorporated the NN method in our system by making use of the Fast Arti-
ficial Neural Network (FANN) library [80] and created a similar network structure,
and a similar input-output system as the original work. Our neural network had
2 levels where the first level contained 128 nodes (1 for each pixel of 16× 8 eye
image) and the second level contained 2 nodes (one each for x and y coordinates).
We scaled the pixel intensities to the interval [0, 1] because of the chosen sigmoid
activation function.

Experimental Setup

In this section, we give the details of the experimental setup we created to test the
performance of our application. Variations in the setup are introduced to create
separate experiments which allow us to see how the system performs in different
conditions. Figure 3.4 shows how the components of the experimental setup are
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Figure 3.4 – Placement of the components in the experimental setup and the geom-
etry involved in error calculation

placed in the environment.
The stimuli display faces the subject and it is raised by a support which enables

the subject to face the center of the display directly. The camera is placed at the top
of this display at the center (A), and it has an alternative location which is 19.5 cm
towards the left from the central location (B). An optional chinrest is placed at the
specific distance of 80 cm away from the display, acting as a stabilizing factor for
one of the experiments.

By introducing variations in this placement, we achieve several setups for several
experiments which test different aspects of the system. These setups are:

Standard setup: Only the optional chinrest is removed from the setup shown in
Figure 3.4. Subject’s face is 80 cm away from the display. The whole screen is
used to display the 15 target points one by one.

Extreme camera placement setup: This setup is similar to the previous one. The
only difference is that the camera is placed at its alternative location which is
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(a) iPad setup (b) Other setups

Figure 3.5 – Target positions on the display for different setups

19.5 cm shifted towards the left. The purpose of this setup is to test how the
position of the camera affects the results.

Chinrest setup: A setup similar to the first one. The only difference is that the
chinrest is employed. This experiment is aimed at testing the effects of head
pose stability in the performance.

iPad setup: This setup is used to test the performance of our system simulating
the layout of an iPad on the stimuli display. This background image contains
an iPad image where the iPad screen corresponds to the active area in the
experiment and is shown in a different color (see Figure 3.5a). The distance
of the subject is decreased to 40 cm, in order to simulate the use-case of an
actual iPad. The camera stays in the central position; and it is tilted down as
seen necessary in order to center the subject’s face in the camera image.

We also analyze the effect of different camera resolutions in these setups. This
is done in an offline manner by resizing the original 1280×720 image to 640×480.

The error in degrees is calculated with the formula:

Er r or = |arctan(DxC /DEC )−arctan(Dx′C /DEC )|

where, x is the target, x ′ is the estimate, C is the display center and E is the face
center point. The variables DxC , DEC and so on denote the distances between the
specified points. They are converted from pixel values to cm using the dimensions
and resolution of the display.

For the evaluation of normalization techniques, the videos recorded for the
standard setup are processed again with one of the normalization techniques incor-
porated into the eye-tracker at a time.
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Table 3.1 – Errors in degrees with 1280×720 camera resolution for all setups

Standard Extreme

Version Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ)

ORIGINAL 1.80 (0.75) 1.46 (0.53) 2.02 (1.11) 1.92 (0.57)
2-EYES 1.49 (0.62) 1.42 (0.54) 1.50 (0.60) 1.66 (0.40)
TRACKING 1.59 (0.56) 1.41 (0.50) 1.71 (0.74) 1.77 (0.35)
BLINK REMOVAL 1.59 (0.52) 1.42 (0.52) 1.73 (0.74) 1.79 (0.37)
CORRECTION 1.47 (0.54) 1.35 (0.50) 2.24 (2.07) 1.95 (0.99)
NEURAL NETWORK 4.90 (1.39) 1.97 (0.67) 4.86 (1.93) 2.17 (0.44)

Chinrest iPad

Version Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ)

ORIGINAL 1.25 (0.55) 1.53 (0.49) 2.80 (1.17) 2.58 (0.80)
2-EYES 1.15 (0.95) 1.40 (0.39) 2.47 (1.07) 2.53 (0.95)
TRACKING 1.18 (0.87) 1.40 (0.44) 2.02 (0.83) 2.03 (0.53)
BLINK REMOVAL 1.17 (0.90) 1.37 (0.41) 2.01 (0.84) 1.98 (0.52)
CORRECTION 1.07 (0.85) 1.26 (0.39) 1.83 (0.83) 1.86 (0.59)
NEURAL NETWORK 4.18 (1.17) 2.01 (0.51) 5.97 (0.93) 3.83 (1.55)

3.1.3 Results

In this section, we present the results which show the effects of the proposed
changes on the performance. To achieve this, we reflect our changes on the original
Opengazer code one by one and compare the results for all four experiments. We
compare 6 different versions of the system which denote its certain phases:

a) ORIGINAL: Original Opengazer application + automatic point selection

b) 2-EYES: Previous case + average estimate of 2 eyes

c) TRACKING: Previous case + tracking changes

d) BLINK REMOVAL: Previous case + excluding blinks during calibration

e) CORRECTION: Previous case + training error correction

f ) NEURAL NETWORK: Previous case + neural network estimator

In all versions, the facial feature points are selected automatically by the method
described in previous sections and gaze is not estimated during blinks. For each
experiment, average horizontal and vertical errors for all subjects and all frames are
given in degrees and the standard deviation is supplied in parentheses.

Table 3.1 shows the progressive results of our eye-tracker’s performance for
different versions of the system. Each result column denotes the horizontal or
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Table 3.2 – Standard setup errors in degrees with 640×480 resolution

Standard

Version Hor. (σ) Ver. (σ)

ORIGINAL 1.64 (0.66) 1.45 (0.63)
2-EYES 1.40 (0.65) 1.36 (0.65)
TRACKING 1.54 (0.72) 1.48 (0.66)
BLINK REMOVAL 1.54 (0.68) 1.48 (0.66)
CORRECTION 1.42 (0.72) 1.40 (0.65)
NEURAL NETWORK 4.71 (1.29) 2.20 (0.84)

vertical errors for a different experimental setup. Moving from top to bottom in
each column, the effects of our changes can be seen for a single error measure of an
experimental setup. Along each row, the comparison of errors for different setups
can be observed. Table 3.2 shows the performance values of the system in the
standard setup with the lower resolution camera. These results can be compared
to the high resolution camera’s results as seen in Table 3.1 to see how the camera
resolution affects the errors in the standard setup. The original application’s results
(ORIGINAL) and our final version’s results (CORRECTION) are shown in boldface to
enable fast comparison.

As for the normalization contributions, the results are grouped in Figure 3.6. Fig-
ure 3.6a and 3.6d show the results for the two techniques applied on the eye images.
The black baseline shows the best results of the system without any normalization
(1.37◦ horizontal, 1.48◦ vertical errors). For the standard pixel intensity mean and
variance normalization (NORM 1), the standard intensity mean parameter is fixed
to 127 and several values are evaluated as the standard deviation parameter (main
parameter). This choice was made because when the standard deviation parameter
is selected, the mean parameter does not affect the gaze estimations unless it re-
sults in the trimming of pixel intensities (mapping to intensities outside the range
[0,255]). In the case of standard minimum and maximum intensity normalization
(NORM 2), the minimum intensity parameter is considered the main parameter
and the maximum intensity is set to: max norm = 255−min norm.

In Figure 3.6b and 3.6e, the second set of normalization results are shown. Here,
the better performing NORM 1 technique is applied to the whole camera image
(WHOLE) or the face-region (FACE) and the results are given.

Lastly, Figure 3.6c and 3.6f show the results when the eye-region normalization
is combined with whole-image or face-region normalizations. As the eye-region
normalization is independent of the others, the parameters for this step are fixed
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(a) Hor. error for eye-region norm.
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(b) Hor. error for large scale norm.
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(c) Hor. error for combined norm.
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(d) Ver. error for eye-region norm.
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(e) Ver. error for large scale norm.
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(f) Ver. error for eye-region norm.

Figure 3.6 – Errors in degrees for eye image normalization techniques. (a) and (d)
show errors for eye-region normalization. In (b) and (e), the errors for only face-
region and whole-image normalization methods are shown. These methods apply
the first normalization technique in the corresponding image areas. Lastly, (c) and
(f ) show the results where the eye-region normalization is applied on top of either
the whole-image or the face-region normalization. The black straight lines show
the baseline accuracy for comparison. In (a), (b), (d) and (e), this corresponds to
the error rate without any normalization. In (c) and (f ), it denotes the best results
so far, which belong to the eye-region normalization using technique 1 (filled data
points in (a) and (d)).

to the best performing values (µnorm = 127, σnorm = 50) and the black baseline
shows the best results achieved with only eye normalization (1.22◦ horizontal, 1.36◦
vertical errors).

3.1.4 Discussion

Considering the 1.47◦ horizontal and 1.35◦ vertical errors of the final system in
the standard experimental setup, we conclude that we have improved the original
system by 18% horizontally and 8% vertically. As seen in Table 3.2, the performance
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difference in the same experiment done with VGA cameras (13% horizontally, 3%
vertically) is comparably lower than the first case, which shows us that our contri-
butions in this work exhibit more robust performance with the increased image
quality. From another aspect, it means that better cameras will favor the methods
we proposed in terms of robustness.

One interesting aspect of these results is that with the increased camera resolu-
tion, the original application shows a worse performance. We believe this is caused
by the optical flow algorithm used in the tracking component. The increased detail
in the images affect the tracking and the position of the tracked point may vary more
compared to the lower resolution image. This, combined with the accumulated
tracking error of the original application, result in a higher error rate. However, it is
seen that the final version of our eye-tracker (CORRECTION) recovers most of this
error.

From the extreme camera placement setup results seen in Table 3.1, we see that
shifting the camera from the top center of the display decreased the performance by
52% horizontally and 44% vertically. Here, the performance loss is mainly caused
by the point tracking component. From such a camera angle, the farther eye corner
point may be positioned on the face boundary, making it hard to detect and track.
When we compare the errors before and after the error correction is applied (BLINK
REMOVAL and CORRECTION), we see that this change introduced a great amount
of error for this case. We can say that the unreliable tracking also hinders the error
correction component, because the correction relies on the calibration being as
good as possible. In order to tackle these problems, a 3D model based face tracking
algorithm may be employed.

In the 3rd experimental setup, we show that the chinrest improves the perfor-
mance by 27% horizontally compared to the standard setup. This setup proves to
be more reliable for experimental purposes.

The results for the iPad setup may be deceiving, because here actually the errors
in pixels are lower; however, as the distance of the subject is used in the calculation
of errors in degrees, the angular errors are higher. Each 1◦ error in other setups
corresponds to around twice as many pixels on the screen compared to a 1◦ error
in the iPad setup. Using this rule of thumb, we can see that the iPad case results in
lower error rate in pixels compared to even the chinrest setup.

One of the major problems with the original system lies in the tracking compo-
nent. As tracking is handled by means of optical flow (OF) calculations between
subsequent frames, the tracking errors are accumulated and the facial feature points
end up far away from their original locations. To tackle this problem, we proposed
to change this calculation to compare the last camera frame with the initial frame
which was saved during facial feature point selection. Comparing the 2-EYES and
TRACKING results in Table 3.1, we see that the tracking changes increased the
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system’s accuracy in the iPad setup. However, in the first two setups we have just
the opposite results. This is probably because when using both of the eyes for gaze
estimation, the tracking problems with the second eye have a larger effect on the
averaged gaze estimation.

We observe that excluding the blink frames from the calibration process (appli-
cation version labeled BLINK REMOVAL) does not have a perceivable effect on the
performance. We argue that the averaging step in the calibration procedure already
takes care of the outlier images. The neural network estimator does not provide
an improvement over the Gaussian process estimator and performs similar to its
reported accuracy (4.42◦). We believe this is due to eye images extracted by our
system. Currently the feature point selection and tracking mechanism allows small
shifts in point locations and therefore the extracted eye images vary among samples.
The GP estimator resolves this issue during the image averaging step; however, the
NN estimator may have problems when the images vary a little in the testing phase.
In order to resolve this problem, a detection algorithm with a higher accuracy may
be used to better estimate the eye locations.

Analyzing the eye image normalization results as seen in Figure 3.6a and 3.6d, we
see that both approaches improve the results. For the first normalization technique,
the parameter value giving the best results is σnorm = 50, which decreases the errors
by 11% horizontally and 8% vertically. We can say that the eye image normalization
does just what the Gaussian process estimator needs and helps compare eye images
from different time periods in a more accurate way. The results for the second
normalization method lag behind especially in the horizontal direction.

Figure 3.6b and 3.6e show the results for intensity normalization in the large
scale, either applied to the whole camera image or around the face region. Here,
we see that large scale normalization applied on top of eye image normalization
does not improve the results at all. Our expectations for the face normalization to
perform better than whole image normalization are not verified, either. We observe
that the face normalization performs especially worse in vertical direction.

As it can be seen in Figure 3.6c and 3.6f, combining the two normalization
methodologies do not increase the system’s accuracy, either. From these results, we
can conclude that face-region or whole-image normalization cause the tracking
component perform worse, and thus decrease the performance.

3.1.5 Conclusion

Our contribution provides significant improvement in a number of modules of the
baseline system. The automatic point selection technique enabled us create an easy
to use application, removing errors caused by wrong operation. The experiments
showed that the final system is more reliable in a variety of scenarios. The blink
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detection component is mostly aimed at preparing the eye-tracker to real world
scenarios where the incorrect estimations during blinks should be separated from
meaningful estimates. The proposed error correction algorithm helped the system
better estimate gazes around the borders of the monitor. Lastly, the eye image
normalization technique improved the performance of the system and made the
system more robust to lighting conditions slightly changing in time. The final code
can be downloaded from the project page [22].

Apart from these experimental performance assessments, this work resulted
in an additional valuable output, which is the publicly available dataset [23] that
consists of the videos recorded during the experiments. This dataset contains videos
for 12 subjects and 4 different experiment cases, for a total of 48 videos. The videos
are annotated with the timestamps where specific phases such as anchor point
initialization, calibration and testing take place. Moreover, the locations of the
displayed on–screen gaze targets are also available for each video frame.

3.2 A Quick Feature–Based Gaze Estimation

3.2.1 Introduction

In our review in Chapter 2, we talked about a categorization scheme for gaze track-
ers, which groups them into three main categories: appearance–based, feature–
based and model–based methods. Later on, in the previous section, we described
our first proposal for an appearance–based gaze estimation method, which pro-
vided promising results. However, our experiments in that work showed us that
with these types of methods, small head movements may lead to the invalidation of
gaze tracker calibration, without an easy way to recover. On the other hand, model–
based methods are mostly explored; with previous works analyzing 2D iris boundary
[121, 122], 3D eyeball models [1, 134], as well as full face models [15, 50] for gaze
tracking. This doesn’t leave much creativity for proposing new types of models,
but only improvements of previously proposed models (i.e. better facial structure
estimation, improved iris boundary detection, etc.). We believe that the remaining
category of feature–based methods still has a lot of potential for exploitation.

In this section, we propose a feature–based gaze estimation method, which
is based on accurate segmentation of the iris region. Here, the iris segmentation
is converted into a feature representation, which encodes the segmented pixel
positions and numbers into a compact representation.

We start our contributions by a robust method for iris localization, and continue
with an improvement on anchor point tracking with the help of eye corner patch
extraction during initialization. Then, we explain our proposal for iris segmentation,
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which is later used for extracting two types of features. Finally, we use Gaussian
Process regression for mapping these features to gaze estimations.

3.2.2 Methodology

Iris Detection

As our feature proposals are based on the iris segmentation, one of the key compo-
nents of this work is accurate detection and segmentation of the iris region.

Once we have the eye regions extracted using the same pipeline explained in
Chapter 3, we test all the possible locations of the iris inside the 128×64 image. An
illustration of the overall pipeline can be seen in Figure 3.7

As the first step, we apply an ellipsoidal mask to filter out the corners of the eye
images, which may often include shadows caused by the nose. Using this mask, we
fill the corner areas with an average gray color, suppressing the likelihood of finding
an iris candidate in these areas.

We prepare iris templates of several sizes (with a radius between 13 and 31
pixels) to be used in calculating the likelihood of a region containing the iris. These
templates consist of a black circle with the given radius, surrounded by small white
margin filling the enclosing square block. A similar representation was previously
used for iris localization in the literature [92], especially due to its fast calculation.

The iris templates of varying sizes are used to calculate the cross-relation be-
tween the template and the eye image. At this step, we apply all the prior informa-
tion we have about how a good iris candidate should be: it is more likely to find it
closer to the center of the image (assuming we extracted the eye regions correctly).
Moreover, if we see similarly scored iris candidates of different sizes, the larger one
is more likely to be the real iris detection, and may even be surrounding completely
the smaller candidate.

To apply these pieces of prior information, we multiply the cross-correlation
scores with the following:

Prioritizing the center: We apply a Gaussian (with standard deviation of 200) cen-
tered around the image center to all cross-correlation result matrices (for all
template sizes). This causes the candidates at the corners of the eye images
to have around 6–7% less likelihood than the candidate at the center of the
image.

Proritizing larger sizes: We calculate prioritization factors for each iris template
radius, of the following form: 1+ (i ∗ i )/300. Here, the i corresponds to the
index of the iris template radius, and is in the range of [0,19]. This multiplica-
tion causes the largest possible iris candidate (with i = 19 and r adi us = 31)
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Figure 3.7 – The pipeline of the iris detection complonent
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to have around 120% more likelihood than the smallest candidate.

After calculating the cross-correlations and applying the priotizations based on our
domain information, we end up with all possible iris location candidates sorted
by the likelihood. To increase the robustness of this method to shadows, etc., we
apply one last level of filtering at this step. We use a fast eye center localization
method [110] to make sure that the selected candidate contains the eye center. This
method was previously used for gaze estimation [131], and shown to work well with
closer images of the eye region as seen in the tablet use case. However, in the case of
remote gaze tracking with a webcam, we found that the images were too low quality
and the estimated center may exhibit jumps from time to time. Here, we only use it
to filter out the iris candidates that our system mistakenly ranked high up.

Anchor Point Initialization and Tracking

As in our previous proposal, before the calibration, our system chooses several
anchor points on the subject’s face and tracks them over time.

Out of the 8 points we choose and track, the outer eye corners have a bigger
impact in the overall accuracy. This is because they are directly connected to
the robust extraction of eye region images which in turn are used in the feature
extraction and gaze estimation modules. In the work described in this chapter, we
use a special method for initializing these two points, as their accurate localization
is also crucial for the newly proposed features.

Once we detect the rectangular region containing both eyes using two Viola–
Jones detectors [89, 119] (one for full face, another one for two–eye region), we use
the right and left halves as initial bounding boxes for the eyes. We apply the iris
detection algorithm described above to locate both irises, and use the center of the
iris bounding boxes as eye center approximations. The line passing through these
two points is calculated, and the eye corners are selected at a predefined distance
(30% of the distance between the eye centers) away from the centers.

After calculating the initial positions of outer eye corners, two small patches
are extracted around these locations. When the optical flow component is done
tracking the anchor points between subsequent frames, we use the previously
extracted patches to finetune the position of the outer eye corners.

Feature Extraction

In the previous components of our system, we robustly detect the iris bounding
box, and make sure the anchor point tracking and eye image extraction are running
in a stable way. To use these information for gaze estimation, here we propose our
novel feature descriptors.
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Iris segmentation

by thresholding

Iris localization

# of pixels in each

column and row

192-dimensional

joint features

Figure 3.8 – Feature extraction steps

The first step in calculating our features is segmenting the iris region inside the
iris bounding box. We apply an adaptive thresholding using Otsu’s method to mark
the pixels belonging to the iris (the blue blob).

Traditionally, methods use the calculated iris segmentation in several ways. One
option is using it for fitting a model such as an ellipse for the iris boundary, or even
more complex models where this ellipse is then used for inferring the 3D eyeball
properties. Another option is calculating the iris center from the segmentation,
which can later be used in gaze estimation through a variety of ways; such as
calculating the pupil center-eye corner (PC-EC) vector or calculating the iris normal
vector in 3D.

In our method, we aim for creating a novel feature representation which can
encode this information in a meaningful way.

As seen in the figure, feature extraction takes as input the iris segmentation
and creates two types of features: vertical features are calculated by a projection of
segmented iris pixels into the vertical axis, and horizontal features are calculated
by projection to the horizontal axis. Here, projection operation sums the number
of pixels in each row (for vertical features) and in each column (for horizontal
features).
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The intuition behind these features is that: when we use iris segmentation (or
detected iris boundary pixels) to calculate features that summarize the information
too much (such as iris center location), we lose a lot of relevant information. If
we encode the distribution of positions of all these pixels in our feature set, our
regression component can make use of it to better estimate the gaze direction.

When we compare this feature set with our first proposal from Chapter 3, we
see that in this new representation we are only keeping the relevant information.
In the previous proposal, all image pixels were considered by the Gaussian Process
regression component. In case of a non-homogeneous change in the lighting
conditions, even the skin pixels that are irrelevant for the gaze could affect the
results.

As the eye images have 128×64 pixels of resolution in this work, the horizontal
and vertical features have 128 and 64 dimensions, consecutively. By joining these
two vectors, we come up with the final 192 dimensional feature set.

Gaze Estimation

Once we have the features calculated, the remaining task is mapping these to screen
coordinates of the gazed point. As in our previous work, we use a Gaussian Process
estimator as the mapping component.

During calibration, we store the average histogram features for each calibration
target on the screen. After building the training data this way, we need to decide on
a kernel function for the Gaussian Process, which calculates the similarity between
two samples.

Our features are basically histograms, where segmented pixels are placed into
bins corresponding to their location. Thus, the logical option for the kernel function
is to turn to standard histogram comparison methods. Some options that we
evaluated at this step were:

Correlation, which is defined as:

d(H1, H2) =
∑

I (H1(I )− H̄1)(H2(I )− H̄2)√∑
I (H1(I )− H̄1)2 ∑

I (H2(I )− H̄2)2
(3.5)

where H̄k is the mean value of a given histogram.
Intersection kernel with the formula below:

d(H1, H2) =∑
I

min(H1(I ), H2(I )) (3.6)

Lastly, the squared exponential kernel (also known as Radial Basis Function
kernel or the Gaussian kernel) which we also used in our work described in Chap-
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ter 3:

d(H1, H2) =σ2 exp

(
− (SSD(H1, H2))2

2`2

)
(3.7)

where SSD(H1, H2) is the sum of squared differences between the two his-
tograms’ bins and is calculated as:

SSD(H1, H2) =∑
I

(H1(I )−H2(I ))2 (3.8)

Through an empirical analysis, we choose to use the squared exponential kernel
and set its two parameters σ= 80 and `= 125.

Experimental Setup

In order to test the effects of our contributions on the eye-tracker performance,
we designed an experimental setup and recorded 12 videos from 6 subjects. Next,
we evaluated the performance of the appearance–based system described in the
previous section and the newly introduced feature–based approach, calculating the
errors for each video and for two versions of the system.

The experiments were carried out on a laptop computer with a 13” monitor.
The subjects were asked to sit 60cm away from the monitor (compared to 80cm in
the previous work), facing its center point. We used the same 15 point calibration
and testing scheme, and for each subject these steps were repeated twice and in
total 12 videos were recorded. The target point position shown on the display is
assumed to be the ground truth and the error is calculated as the horizontal and
vertical differences between the ground truth and the gaze estimation coordinates.
These values (in pixels) are then converted to errors in degrees using the geometry
as defined in the previous work.

3.2.3 Results

Table 3.3 shows the results of the feature–based gaze estimation next to the results
of the appearance–based method on the newly collected data.

Figure 3.9 shows the error in degrees obtained from the dataset of 12 videos. The
bars on the left show the results for the base system [24], where the average errors
are 2.35◦ (horizontally) and 1.82◦ (vertically). The bars on the right show the results
of histogram feature based gaze estimation, with average errors 1.54◦ (horizontally)
and 1.61◦ (vertically). As observed, the proposed method decreases error in the
horizontal direction by 34% and in the vertical direction by 12%.

To convert these numbers into pixel units and assess the significance on a
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Table 3.3 – Comparison of gaze estimation performance between the proposed
feature–based method vs. the appearance–based method from the previous chapter.

Feature Based Appearance-Based

Experiment Horizontal Vertical Horizontal Vertical

# 01 1.13 1.18 1.81 1.39
# 02 1.36 1.39 1.29 0.92
# 03 0.80 1.31 1.58 1.58
# 04 1.07 1.18 2.21 1.42
# 05 3.23 1.97 4.27 3.00
# 06 1.66 1.38 3.06 2.59
# 07 0.97 1.55 1.47 1.25
# 08 0.99 1.63 1.54 1.37
# 09 1.89 1.27 1.70 1.31
# 10 1.38 1.32 0.71 0.88
# 11 1.51 2.31 5.25 3.74
# 12 2.49 2.78 3.28 2.45

Mean (Std) 1.54 (0.78) 1.61 (0.76) 2.35 (1.35) 1.82 (0.90)
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Figure 3.9 – Horizontal and vertical errors in degrees for the appearance based and
feature based methods. Center lines show the medians; box limits indicate the 25th
and 75th percentiles, whiskers extend 1.5 times the interquartile range from the
25th and 75th percentiles; data points are plotted as open circles.
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monitor of 1280 × 800 resolution, the errors in degrees can be multiplied by a

conversion factor of 47 pi xel s
deg r ees .

3.2.4 Conclusion

In this work, we proposed a novel algorithm for gaze estimation, which brings to-
gether the advantages of appearance based and model based estimation algorithms
to create a hybrid approach. As in appearance based techniques, our algorithm is as
direct as possible, neither requiring personalized 2D/3D models nor using too much
computational power. It eliminates the effects of change in appearance (lighting
conditions, small instabilities, etc.) just like model based algorithms, and the pro-
posed features can be invariant to small changes in head pose without much effort.
Therefore it will be possible to incorporate head pose correction algorithms as a
future work. Traditionally, this has been the main problem with appearance based
models (especially with classical neural networks, etc.) and we believe our approach
is the first step towards solving it. Our final results show significant improvement
compared to previously used appearance based estimation method.

The rest of the described work has the aim of making the eye tracker easier to
use and more robust. We believe these features will be the deciding factor for the
application to be used outside research laboratories and to be included in real life
scenarios.
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4 Head Pose Invariant Gaze Estimation

4.1 Introduction

In Chapter 3 we investigated the factors that affect the performance of a visible light
gaze tracker. We concluded that extreme camera placement, which is another way
of saying extreme head pose, deteriorates the performance significantly. Moreover,
personal differences add a significant variance (of around 0.50◦ in both horizontal
and vertical axes) and cause the gaze estimation to be unreliable for some people.
In our personal experience, we have seen that the calibration of these trackers do
not stay valid for a long amount of time (longer than 5 minutes) due to factors such
as head pose changes, illumination changes, eyelid openness, which accumulate
over time and manifest themselves in the final error rate.

The feature based gaze estimation method described in the second part of
Chapter 3 also has its share of disadvantages. For example, eyelid openness can
change during tracker usage, making larger or smaller portions of the iris to be
occluded. This in turn causes our gaze estimator to wrongly conclude that the user
is looking downwards, in which case a larger part of the iris also becomes occluded.
The proposed feature set is not affected by small & gradual changes in lighting
conditions, but in an uncontrolled environment where the user may have different
facial structure, the shadows around the nose and the eye cavity may hinder the
detection of anchor points and the iris localization.

All of these problems actually point in the same direction: we are lacking data
when we are recording videos for our experiments with limited time and thus,
limited number of subjects and setups. In other areas of computer vision, the
dataset sizes grew over years and enabled the application of more complex and
better performing algorithms. For example, in object detection, the reference
dataset size grew from 60000 images of 32×32 images in 2009 [58] to millions of
larger images in ImageNet [19] after a few years.

As we explained in our review in Chapter 2, in recent years the community of
visible light gaze tracking also built several large scale datasets [42, 145] that are
publicly available. Our aim in the work in this chapter is to leverage the MPIIGaze
dataset [145] to address the problems we listed above.

We start by introducing the face tracker that is used track the subject’s face in a
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more reliable way compared to our previous works. This is crucial for uncontrolled
environments where the subject may move freely during tracker usage. Once we
have the initial estimations of the anchor points included in the face tracker model,
we customize a generic 3D model with personal parameters learned during calibra-
tion (e.g. distance between two eyes, nose size) which is later on used to estimate
the head pose in a more accurate way. With this information, we proceed to extract
the eye images using the 3D geometry involved, and use it for gaze estimation. For
estimating the gaze, we train a convolutional neural network (CNN) that can learn
better from large datasets.

4.2 Methodology

4.2.1 Face Aligment

As our aim in this chapter is building a gaze tracker that is invariant to head poses,
we start with estimating the face pose of the subject that is using the tracker. In
order to have the tracker run in realtime, we need a fast and still accurate face
alignment algorithms to detect the positions of facial landmarks. We take as base
the work of Kazemi and Sullivan [53], who developed a method that can do this
detection for an image in 1 millisecond.

We adapt the implementation of the aforementioned alrogithm from the dlib
C++ library [55, 56] for our purposes. The algorithm takes as input the region of
interest (ROI) that contains the face to be analyzed so that the calculations are faster.
For this, we first use the frontal face detector from dlib to get the bounding box of
the face. The image and this bounding box are then fed into the face alignment
component to get the facial landmark positions. The output contains the positions
of 68 landmarks (compared to the 194 landmarks in the original work) as seen in
Figure 4.1. From these points, the ones lying on the eyebrows and the mouth cannot
be assumed to be stable during gaze tracker usage; because smiling, talking or
expressions such as surprise would cause large movements. Moreover, the points
lying around the chin are not very helpful in detecting the head pose; because after
head rotations the newly detected chin points are not exactly the same points in
3D. Therefore, we also discard these points and keep only a small subset of the
calculated points.

Figure 4.3 shows the landmarks that we use for our purposes. These are: a) sell-
ion, b) right eye outer corner, c) left eye outer corner, d) nose tip, e) menton (chin).

In our experiments, we also tested an extended face model that included the
right and left sides of the face (next to the ears) and the stomion (mount center);
however, this model proved to be less stable as these points are not always reliably
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Figure 4.1 – Example facial landmarks as detected by Kazemi and Sullivan’s method

tracked.

4.2.2 Face pose estimation

With the initial localization of these five landmarks, we have a good estimate of
subject’s face pose. However, using a generic 3D face model to calculate the face
pose leads to estimation errors. Moreover, if one decides to project a 3D point
from the face model onto the image, the projected point is further away from
the detected landmark position. This especially hinders our eye image extraction
algorithm which needs to project several points from the 3D model onto the image
for accurate image extraction.

To tackle this problem, we adapt a generic face model to the subject’s face during
the calibration. We take as a base the measurements of U.S. Dept. of Defense related
to head anthropometry [85]. In this document, we can find detailed results about
how various measures related to human body vary among the population. Of these,
we focus on those focusing on facial measurements, of which an extract can be seen
in Figure 4.2.

On Figure 4.3, the personal variations in facial features that we account for are
also shown. In our model, the sellion is the base point (i.e. positioned at the origin).
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Figure 4.2 – Extract from U.S. Dept. of Defense report on designing by taking into
account anthropomorphic variations.

The positions of the rest of the facial feature points are defined relative to this point,
and taking into account the personal parameters. In the model, the X axis points
towards the camera, and the Z axis points upwards. The final calculations of their
positions are:

Outer eye corners: (−20∗Pe yedepth , ±59.5∗Pe yesepar ati on , 5)

Nose tip: (22∗Pnosedepth , 0, −48∗Pnosel eng th)

Menton: (0, 0, −117.5∗Pmentonleng th)

Here, all the constants are the initial values of the facial measures such as eye
depth, eye separation, etc., and they are set to the corresponding average value for
the whole population (average of measures for men and women). The parameters
such as Pe yesepar ati on are initially set to 1.0, and the value is modified during the
calibration to fit subject’s face better.

During facial model calibration, we collect samples that are calculated by the
face alignment component, and add a new sample to our training set whenever we
detect a previously unseen head pose. This way, we have a maximum of 40 samples
covering a wide range of head poses. Using this data, we apply coordinate descent
to finetune the personal parameters.

In each iteration of the coordinate descent, we iterate over the personal parame-
ters and calculate the update for the parameter. Here, we approximate the partial
gradient at the current configuration relative to the updated parameter. For each
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ab c

d

e

Figure 4.3 – Geometry of facial feature points and the personal parameters. a)
Sellion, b–c) eye corners, d) nose tip, e) menton. The five personal parameters to
calibrate are 1) eye–sellion depth, 2) binocular breadth (eye separation), 3) nose
depth, 4) nose–sellion distance, 5) menton–sellion distance.
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Figure 4.4 – Eye extraction taking into account the perspective

parameter, we test how a small modification would change the projection errors on
the training data. Using this as the aproximation of the gradient, we take a small
step at the indicated direction. After 1000 iterations, the step size is reduced from
10−5 to 10−6.

Once the personal parameters are calibrated, we calculate the rectangles con-
taining the eyes in the 3D model, and project their corners onto the latest camera
image. This way, we can take into account the perspective while extracting the eye
images, as seen in Figure 4.4.

4.2.3 Gaze estimation

After tracking the face reliably over time, and extracting the rectangular eye images,
we are left with the task of estimating the gaze with these information. In the
original work [144], the authors use a well-known convolutional neural network
(CNN) architecture [59] to handle this task.

CNNs have several advantages that have made them the go–to option for han-
dling large–scale data in the recent years:
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• As the weights in convolutional layers are shared for different input locations,
the model is less complex and the detected features are shift invariant (i.e.
the same image feature learned by a convolution can be detected anywhere
in the input). Moreover, this makes training the network faster.

• Deeper architectures enable building a cascade of features. For example, a
deep CNN trained to detect objects may detect parts of the object in the first
layers, and the last layers build upon these detections. This way, there is no
need to manually engineer the features extracted from the images.

• Available machine learning libraries such as TensorFlow [6], Theano [109],
Keras [16], etc. make it easier to harness the power of GPUs and process huge
amounts of data in a shorter time.

With these in mind, we also see CNNs as the best option to handle the gaze
estimation task on the MPIIGaze dataset which contains > 400k samples in total.
We analyzed many different architectures with the following characteristics:

• The simplest CNNs with several convolution–pooling layers, topped with a
fully connected (i.e. dense) layer for finishing.

• Deeper architectures that contain many layers of convolutions.

• Models including novel ideas such as batch normalization [49], inception
module [106], fire module [45], dropout [98]

Among these works, the fire modules are quite interesting as they enable more
compact networks with same performance as larger networks. In this architec-
ture, the 1×1 convolutions are used to compress (or squeeze) the input volumes
before feeding them into the next convolution (which expand back the squeezed
volumes). This way, the network has less parameters to train while still maintaining
its modelling complexity. With an architecture making use of these fire modules
(i.e. squeeze convolutions followed by two separate expand convolutions, which
are later concatenated), the authors maintain AlexNet [59] level accuracy with 50×
fewer parameters.

After our initial analysis, we evaluated the following options to choose the final
architecture:

a) Baseline (multi-modal input): The baseline architecture as used in the origi-
nal work [144].

b) Deep network (VGG-like): Deep network architecture with 5 levels of convo-
lutional layers. This is inspired by the VGG network [94].
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c) Inception modules: Simplified version of the original network introducing
the inception modules [106]. We left only 5 inception modules in this archi-
tecture.

d) Fire modules v1: A modified version of the SqueezeNet architecture, making
use of its fire modules [45]. The architecture can be seen in detail in Figure 4.5.

e) Fire modules v1 (L1 reg.): v1 network, with L1 regularization in the final
dense layers with a regularization factor of 0.01.

f ) Fire modules v1 (L2 reg.): v1 network, with L2 regularization in the final
dense layers with a regularization factor of 0.005.

g) Fire modules v1 (m.m. input): v1 network, with multi–modal input as de-
scribed in the baseline system. The head pose angles (pitch & yaw) are con-
catenated to the dense layer output just before gaze estimation.

h) Fire modules v2: v1 network, with a duplicate of the 2nd fire module to
increase model depth.

i) Fire modules v3: v1 network, with 25% more filters in each layer of fire mod-
ules (i.e. 20–80–80 instead of 16–64–64).

With the comparison of all these, we can evaluate the performances of the
alternative networks against the baseline. The deep architectures have the objective
of seeing whether deeper networks are better suited for this problem or not. In
the variants based on fire modules, we try to see if regularization, more model
complexity or late fusion of head pose information are improving the performance.

Figure 4.5 shows the final architecture employed in our experiments (base v1
architecture). After an initial 3×3 convolution and maxpooling layers, 2 fire modules
are used. In each module, first we squeeze the input volume with 1×1 convolutions,
and then separately apply two convolutions with different sizes (1×1 and 3×3).
These are then concatenated before being passed to the next layer.

After the fire modules, we apply another maxpooling to reduce the dimension-
ality of the output volume, and employ a dropout layer to reduce overfitting to
training data. We finish by flattening the output volume and applying two dense
layers to come up with the X and Y estimations. Unlike the baseline system, our
experiments didn’t show any performance improvements with late fusion of head
pose information, and we removed it from the final architecture.
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Figure 4.5 – Convolutional neural network architecture used for gaze estimation
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4.3 Experimental setup

In our first experiments, we use the same training and evaluation split of the dataset
as in the original paper. Under this setup, there are 382315 training examples (left
and right eyes combined) and 44996 validation examples. Our first experiment
is for comparing the different architectures as explained in the previous chapter,
and we run the experiments for each of these 9 models. However, to reduce the
runtime of these experiments, we sample the training and validation sets with a
sampling rate of 50%. This way, we use around ~190k training examples and ~22.5k
validation examples for this comparison.

For the second experiment, we use the same training & evaluation split and
train both our final model and the baseline system (with multi–modal inputs) on
the full dataset for 300 epochs. We report the average gaze estimation error on the
complete validation set of ~45k samples for both architectures.

In the last experiment, we run our final network with leave–one–out cross–
validation as done in the original work. At each iteration, we set aside the data for
one subject from the 427311 dataset samples, and use it as the validation set. In this
case, we needed to run the same training & evaluation procedure 15 times (once
for each subject), and to reduce the runtime we employed 50% sampling on the
training set. We report the validation accuracy in the full validation set to be able to
compare our cross–validation results with the baseline (i.e. we use all validation
samples for each subject). This way, each training takes around 7.5 hours on a Tesla
K80 GPU, which results in 4.5 days of GPU usage in total.

4.4 Results

4.4.1 Comparison of Different Architectures

Table 4.1 shows the validation errors for each of the 9 CNN models we listed in the
previous sections. We measure the average validation error of the baseline system
to be 3.03◦ (using 50% of the training and validation sets).

The idea of using very deep networks inspired by VGG network have failed
in this case, with above 9◦ error with no signs of convergence after 40 epochs.
We believe that this architecture may have been an overkill for a problem with
small input images, and the deep network failed to learn quickly as in other tried
architectures.

The network making use of inception modules (and some other variants of this
network not listed here) could get close to the baseline network’s results (after just
60 epochs); however, its validation error was jumping too much between epochs
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and we decided to stop the training at this point.
The first architecture making use of fire modules showed great performance

and decreased the validation error by 17% in this experiment. We believe that
the compact nature of these fire modules were suitable for this problem, and the
branching & concatenation in each module enabled the network to shuffle and
combine the results of previous convolutions in each level. With the success of this
module, we analyzed several variants of this network.

In the first two variants, we added L1 or L2 regularization to decrease the gap
between training and validation errors. In the original v1 network’s results, this
difference could exceed 1◦ after 200 epochs, signalling an overfitting (despite the
dropout layer). However, these regularizations did not improve the validation
performance as seen in the results table. Moreover, the L2 regularization caused a
spiky validation curve, with huge jumps of up to 0.20◦ between consecutive epochs.

Another variation of this architecture was adding the head pose information at
the last stage of the neural network (just before gaze estimation), as in the original
work. In this case, this additional input did not improve the performance after 100
epochs, and we decided to stop this experiment. As the eye images are already
transformed to look as if they were captured from a frontal face pose, and from a
fixed distance with a camera with the same properties, we believe this information
didn’t provide much value to the network.

Version 2 of this network adds a duplicate of the second fire module, in order
to increase model depth and complexity. After 200 epochs, the network achieved
exactly the same minimum validation error as in the original model, and we decided
to continue with the simpler model for the rest of the experiments.

Version 3 also adds more complexity to the original model with fire modules,
increasing the number of convolution filters in each fire module by 25%. We have
seen that this did not improve the performance in 200 epochs, and again, we
continued with the simpler model.

4.4.2 Comparison Against the Baseline

In the second set of experiments, we train both our system and the baseline system
(with multi–modal inputs) on the full training set and check the validation error.
The original work did not specify the error rate under this setup, and we measured
it to be 3.03◦ after 300 epochs. Our network achieved 2.73◦ lowest validation error,
lowering the error rate by 10% compared to the baseline. Figure 4.6 shows the error
distributions for both systems. Here, each histogram bin denotes the number of
validation samples that had an error in the corresponding interval.

As seen from the figure, the difference in the long tail can be seen clearly, with
the baseline having more cases with > 4◦ errors (~12k vs. ~9k samples).

65



Chapter 4. Head Pose Invariant Gaze Estimation

Table 4.1 – Comparison of minimum validation errors for 9 CNN architectures
analyzed in this chapter. If not noted otherwise, the models were run for 200 epochs
with a batch size of 128.

Architecture Val. Error Comments

Baseline (multi-modal input) 3.03◦
Deep network (VGG-like) > 9.00◦ Not converging at all in 40 epochs
Inception modules 3.31◦ Not converging, killed after 50 epochs
Fire modules v1 2.51◦ Final architecture
Fire modules v1 (L1 reg.) 3.01◦
Fire modules v1 (L2 reg.) 3.14◦ Very "spiky" validation error curve
Fire modules v1 (m.m. input) 2.64◦ No improvement, killed after 100 epochs
Fire modules v2 2.51◦ Same error, more complex model
Fire modules v3 2.60◦

4.4.3 Leave–One–Out Cross–Validation

In the leave–one–out cross–validation experiments, we achieve 5.84◦ error rate in
average for all participants, compared to 6.3◦ as reported in the original work. In
this experiment too, we have a 7% decrease in the average error rate. Here, we
should note that our networks were trained with 50% of the available training
data, in contrast to the baseline system where all the available data was used during
training.

These experiments show that our system can generalize well, and work with
better accuracy for never–seen–before subjects.

4.4.4 Other Results

To see how our hand–crafted features would fare against the features extracted by
the CNN, we extracted our features from the same, large–scale dataset. As in the
second experiments explained above, we used the training and evaluation split as
in the original work; however, this time we used all the available training data. After
training a ridge regressor for mapping to gaze, our feature set yielded 8.37◦ error on
the whole evaluation set.

After repeating the leave–one–out cross–validation as in the last experiments
above, we have seen that our hand–crafted features result in 8.75◦ error. This error
rate is surprisingly close to the training and evaluation set, and we conclude that
our feature representation may not be very suitable for the extracted eye images
from this dataset; as the images are not extracted in a stable way. In other words,
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Figure 4.6 – Error distribution for our network compared to the baseline

in our system, we apply anchor point tracking over the video frames to make sure
that the point positions remain stable over time; but in the already extracted (called
"normalized" by the dataset authors) images, this assumption doesn’t hold. With
such shifts in eye image extraction steps, our features cannot summarize the eye
appearance in a compact way.

4.5 Conclusion

In this last piece of work that we described in this chapter, our aim was to harness
the power of the large–scale gaze tracking datasets that are available today. We em-
ployed a robust face alignment algorithm, which was combined with a personalized
3D face model to calculate the face pose with better precision, and to extract the
subject’s eye images in a more reliably.

We topped this face pose estimation algorithm with a convolutional neural net-
work architecture to map the extracted eye images to gaze vectors. Our experiments
showed that we improved on the baseline results, lowering the error rates by 7−10%.
Moreover, we also conclude that using the face pose data in a multi–modal CNN
didn’t improve the results of our architecture. This may be an indicator that we still
haven’t discovered the best way to make use of this data, in order to trim a little bit
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more of the errors.
Deep learning networks have been revolutionizing all fields of computer vision

in the recent years, and we are also experiencing the same change in gaze tracking,
although it is still in its early stages. We believe the next few years will see more great
examples of work, be it in novel network architectures or larger datasets allowing
for more complex training.
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In the previous chapters, we first analyzed all previous works in natural light gaze
estimation field, and then proposed several methods with different characteristics.
Our first proposal was an appearance–based gaze estimation method, with several
improvements over the baseline that provided robustness and ease–of–use for the
final system. Later on, we described a method that makes use of compact feature
representations for feature–based gaze estimation.

Lastly, we defined our convolutional neural network architecture which can
harness the power of large–scale gaze estimation datasets during training, and can
generalize well to estimate the gaze of subjects for which it never received training
data.

All these works had the aim of building an easy–to–use, cheap eye–tracker
option that could open up many potential application areas. In this chapter, we talk
about other contributions that we made while working on these projects, which are
either focused on providing a novel use–case, or on improving another aspect of
the developed system.

In the first section, we define our hardware setup for a prototype of cheap,
standalone eye–tracker that makes use of off–the–shelf components. Later on, we
propose a way of using similar gaze trackers for an interaction in a multi–display
setup. Lastly, we explain our works towards the paralellization of the computations
in two components of our eye–tracker software.

With these contributions, we build our System which is the combination of our
software modules, the hardware prototype, and the use–cases that we propose.

5.1 Cheap Eye–Tracker Prototype

For the software that we worked on in this thesis, we also built a prototype hardware
setup that can be used as a standalone device. We believe that this device proposal
is a first step towards encapsulating these software systems as a blackbox where the
gaze estimation output can be used for other purposes.

Raspberry Pi is a small computer, with a footprint similar to the size of a credit
card. It has a relatively powerful ARM processor, for a cheap price of around $40.
These specifications make it a suitable choice for our hardware tracker, where
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Figure 5.1 – Our hardware setup for the cheap eye–tracker prototype.

the cost–effectiveness is one of the key concerns. Moreover, this tiny computer
is capable of running Raspbian operating system, which is based on Debian and
provides a familiar runtime environment.

Our full hardware setup consists of a Raspberry Pi device connected to a regular
webcam as seen in Figure 5.1.

On top of this hardware, we first install Raspbian and the required libraries such
as OpenCV, ffmpeg, etc. This way, we have all the requirements for running our
eye–tracker on this device. We use OpenCV to access the connected camera, and
output the calculated gaze estimation through a network port. The overview of this
software structure is shown in Figure 5.2.

In our prototype, the system is first connected to an external display and it is
calibrated by following the gaze target while it moves to different locations on the
screen in a grid pattern. Once the calibration is done, the eye–tracker continues cal-
culating the gaze of the subject on this external display, and outputs the estimations
on a network port. This way, the users can disconnect the eye–tracker device from
the display, and keep using their computer while accessing the gaze estimations by
listening to the specific port of the eye–tracker device.

The eye–tracker device that is built this way had a refresh rate of 3Hz (as we
measured 4 years ago). Here, accessing the camera image was one of the bottlenecks,
as we measured the speed of only this operation to be around 7Hz in the early
versions of Raspberry Pi machines. We believe that the hardware that is available for
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Raspbian OS

Our Eye-Tracker

Ethernet Libraries OpenCVGaze Webcam

Figure 5.2 – Our software setup for the cheap eye–tracker prototype.

the same price today can provide better speeds, and increase the overall usability of
the entire system.

5.2 Multi–Display Interaction Prototype

As one use–case of a cheap, natural light eye–tracker, we designed an interaction
that makes use of multiple displays, where other input modalities such as hand
gestures and touch gestures are also considered.

As a potential hardware platform, we initially proposed the idea for use with
Google Glass devices. These devices have the form of regular eye–glasses, and they
have a small display on their right side. The discontinuation of this product proved
that it wasn’t ready for wide adoption by regular computer users, but we argued
that it may be more useful and valuable in niche setups such as interacting with
physical documents and digital information in an immersive way.

We propose the fusion of data obtained from our low cost eye–tracker device and
the Google Glass camera in order to provide the Goggle Glass display with specific
information about the part of the physical document that is being observed. One
possible implementation area of this approach lies in the context of an augmented–
reading experience: information provided on the display will be changing on–the–
fly depending on the word that is being read or the information being analyzed.

For this prototype, first we install our eye–tracking software on the user’s desktop
computer or on the standalone eye–tracker prototype as described in the previous
section. After calibration, we have the information of where the subject is looking
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at on the main screen or on the scene (by mapping the gaze to Google Glass camera
axis), and we use this to discover information related to the gaze object. The
information can be in several forms:

• Information related to places, in case the user is analyzing photos of known
places (such as touristic locations). This could be information from sources
such as Wikipedia, or a gallery of images coming from a web search.

• Actionable cards, which provide a quick link to take action about the viewed
topic. For example, in case the user is checking out news for a football game,
the display could provide a quick link to buy the game’s tickets.

• Map information, which can help the user to navigate to the location related
to the viewed object. For example, in case the user is analyzing a touristic
location, the Glass display can show the navigation directions for that place.

The final interface prototype for this system can be seen in Figure 5.3. Here, the
left half of the screen shows the gaze targets, which are photos of known locations
for this purpose. Each of these targets have some related information assigned to
them. For example, the Camp Nou stadium is assigned to a quick link to buy game
tickets, whereas the targets for the touristic locations may correspond to gallery
of images, navigation directions, etc. Depending on the viewed target, the Google
Glass display (shown on the top right of the prototype figure) shows the related
information.

For demo purposes, the internal view of the eye–tracker is also shown on this
prototype, and is found at the bottom right of the figure.

5.3 GPU–Accelerated Components for Eye-Tracking

During the eNTERFACE’14 workshops, we worked on GPU–acceleration for some
of the eye–tracker modules, together with Sidi Ahmed Mahmoudi.

The proposed implementation can exploit both NVIDIA and ATI graphic cards,
based on CUDA4 and OpenCL5. The CUDA version consists of selecting a number
of GPU threads so that each thread can perform its processing on one or a group
of pixels in parallel. Otherwise, the OpenCL implementation is based on the same
process, but using a specific syntax related to OpenCL. The main advantage of
OpenCL is its compatibility with both NVIDIA and ATI graphic cards, as it was
proposed as a standard for GPU programming. However, CUDA, which allows
to program NVIDIA cards only, offers better performances thanks to its adapted
programming architecture.
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Figure 5.3 – The proposed multi–display interaction prototype. The left side of the
screen shows the gaze targets, which trigger related information on the Google Glass
display (on top right). The system window can be seen on the bottom right, with
debug information such as anchor points and extracted eye images.
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Figure 5.4 below compares performance between CPU, CUDA and OpenCL
implementations (in terms of fps) of points (eyes, nose and frontal face) detection
and optical flow-based tracking. These accelerations allowed to improve the process
of webcam-based eye tracker with a factor of 3x. As result, our GPU-based method
allows real time eyes tracking with high definition videos.

With this work, we explored the possibilities of making use of the device’s GPU
to accelerate the processing pipeline of our eye–tracker.
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(a) Anchor point selection

(b) Optical–flow point tracking

Figure 5.4 – Acceleration provided by each GPU paralellization method for anchor
point selection and point tracking components. The results are shown in FPS rate.
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6 Conclusions

6.1 Overview

In this PhD dissertation we have addressed the problem of gaze estimation with
visible light cameras in a step–by–step fashion. We built on the same codebase, and
improved the gaze tracker with each contribution. Here, we take the opportunity to
summarize the findings of this work.

In the first part of this dissertation we started with reviewing the previous works
on the field. We analyzed all the works in an exhaustive manner, comparing them
from many perspectives such as how they are calibrated, what types of algorithms
they employ for gaze estimation, whether they allow for head movements, etc. We
also compared their reported performances, to give a better view of which idea
has worked better and what are the shortcomings of other methods. Moreover, we
reviewed the state–of–the–art in several related topics such as what are the datasets
that can be used for measuring the performance of these methods, the services that
are providing webcam based gaze tracking for scalable eye tracking studies and
so on. Here, our aim was to create an extensive map of the field as a reference for
future studies.

In Chapter 3, we analyze the factors that could affect a gaze tracker’s perfor-
mance. We aim at understanding these problematic factors better, in order to take
them into account in future work and provide solutions. Moreover, we propose our
first gaze tracking system which uses an appearance–based method for estimation.
With extensive experiments, we demonstrate how face poses (or camera position),
subject distance, variance between subjects, face stability, camera resolution, etc.
may hinder the estimation performance. We release the dataset recorded during
these experiments as yet another contribution.

In the second part of Chapter 3, we propose a feature–based gaze estimation
method. In our review in Chapter 2, we had shown that feature–based gaze es-
timations are gaining more popularity in the recent years, due to their potential
for exploitation. In this work, we propose a new way of encoding the eye region
image into meaningful features, which can later on be made head pose invariant by
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applying a correction for the pose.
Lastly, in the previous chapter, we proposed our final gaze tracker which starts

with module for estimating the face pose, initially using a generic 3D face model
which is built with consideration of the variations of facial features among the
population. This generic model is customized for the subject during calibration, so
that the face pose estimation is more accurate. We connect this component with
a deep convolutional neural network, which can leverage the large datasets made
available in the recent years. With these two modules, we achieve the head pose
free gaze estimation that we aimed at while beginning this thesis.

6.2 Contributions

In this PhD dissertation we have made both practical and theoretical contributions
to gaze tracking with regular cameras. We can quickly summarize our contributions
as:

• A complete review of the state–of–the–art in the field

• An analysis of factors that may affect gaze tracking with regular webcams

• A public dataset for visible light gaze tracking

• Early stand–alone cheap eye tracker prototype which consists of our software
installed on a Raspberry Pi device connected to a webcam

• A novel feature–based gaze estimation method, which proposes new types of
features that can describe the eye appearance in a compact representation

• Gaze based interaction prototype for Google Glass devices

• A head pose invariant gaze estimation method that handles variations in the
face appearance of different subjects

Apart from these contributions in the main line of research, we also worked
on the field of human–computer interaction (HCI), with our works with Dr. Dan
Norton. In these works, we built multi–display interfaces where one of the displays
is also a touch screen. We designed several touch based interactions to enable
easy access to large public image datasets such as propaganda posters from the
Spanish civil war. We employed our experience from computer vision and used
these techniques to add flair to the final installation, making library visits more
fun to adults and children alike. Moreover, we also connected this system with
sound recordings from the daily life such as school yards, birds, etc., and added yet
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another level of connectivity between the sounds and the images. In this case, the
computer vision based special effects that we add on the original poster images
react to the change in the sound recordings. Apart from scientific conferences, we
also presented this work in many cases:

• An installation at the Living Lab in the Library of Miquel Batllori in Sant Cugat,
Barcelona 2015-2016

• Demo installation at the Sonar+D event in 2015

• Installation in a Barcelona library for being one of the winners of Mobile Week
Barcelona contest in 2017

6.3 Scientific Articles

This dissertation has led to the following communications:

6.3.1 Submitted Journals

• Onur Ferhat, & Fernando Vilariño. (2016). "Low Cost Eye Tracking: The
Current Panorama " . Computational Intelligence and Neuroscience, , Article
ID 8680541.

• Onur Ferhat, Fernando Vilariño, & F. Javier Sanchez. (2014). A cheap portable
eye-tracker solution for common setups. Journal of Eye Movement Research,
7(3), 1–10.

6.3.2 International Conferences

• Fernando Vilariño, Dan Norton, & Onur Ferhat. (2016)." The Eye Doesn’t
Click – Eyetracking and Digital Content Interaction" In 4S/EASST

• Dan Norton, Fernando Vilariño, & Onur Ferhat. (2015)." Memory Field – Cre-
ative Engagement in Digital Collections" In Internet Librarian International
Conference.

• Fernando Vilariño, Dan Norton, & Onur Ferhat. (2015)." Memory Fields: DJs
in the Library" In 21 st Symposium of Electronic Arts.

• Onur Ferhat, Arcadi Llanza, & Fernando Vilariño. (2015). "Gaze interaction
for multi-display systems using natural light eye-tracker " In Proceedings of
2nd International Workshop on Solutions for Automatic Gaze Data Analysis,
SAGA 2015.
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• Onur Ferhat, Arcadi Llanza, & Fernando Vilariño. (2015). "A Feature-Based
Gaze Estimation Algorithm for Natural Light Scenarios " In Pattern Recogni-
tion and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015
(Vol. 9117, pp. 569–576). Springer International Publishing.

• Onur Ferhat, & Fernando Vilariño. (2013). "A Cheap Portable Eye-Tracker
Solution for Common Setups " In 17th European Conference on Eye Move-
ments.

6.3.3 Workshops

• Christian Frisson, Nicolas Riche, Antoine Coutrot, Charles-Alexandre De-
lestage, Stéphane Dupont, Onur Ferhat, Nathalie Guyader, Sidi Ahmed Mah-
moudi, Matei Mancas, Parag K. Mital, Alicia Prieto Echániz, François Rocca,
Alexis Rochette, & Willy Yvart. (2014). Auracle: how are salient cues situated
in audiovisual content? In eNTERFACE Workhshop 2014.

6.4 Contributed Code and Datasets

• OpenGazer: The complete eye tracker that we developed during this thesis,
which is based on the open source OpenGazer project. We revamped the
code to make it completely modular, and in each work, we created a couple
of new modules which can be plugged via a simple configuration XML. http:
//github.com/tiendan/opengazer

• War Posters: The web application we developed for multi–display interaction
with a touch interface for the Spanish civil war posters project. https://github.
com/tiendan/warposters

• CVC Eye Tracker DB: A dataset for gaze estimation which includes 48 videos
from 12 participants. http://mv.cvc.uab.es/projects/eye-tracker/cvceyetrackerdb

6.4.1 Awards

• Google Faculty Research Award: Awarded to Dr. Fernando Vilariño for his
proposal about the multi–display interaction that was part of this thesis.

6.4.2 Demos

• Feature–based gaze estimation at the Iberian Conference on Pattern Recogni-
tion and Image Analysis, Santiago de Compostela, Spain, 2015
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