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Abstract

The characterization of interactions between coupled dynamics from
their signals is important for the understanding of real-world systems. The
particular aspect of the detection of directional interactions has a central
position in the analysis of dynamics. In simple unidirectionally coupled
dynamics directional interactions can be achieved by applying data-driven
approaches. However, for more complex dynamics the characterization
of their directional interactions is not so straightforward. To address this
problem we follow a data-driven approach by analyzing signals of pairs
and ensembles of non-identical coupled dynamics. In particular, we use
a nonlinear state-space approach and a phase-based approach. For the
pairs of bidirectionally coupled dynamics, we introduce the notion of the
coupling impact that allows us to better reveal the real effect that one dy-
namics has on the other for different degrees of asymmetry. Furthermore,
we show that the coupling and its direction can be detected even for large
ensembles of dynamics. Our results demonstrate that directional interac-
tions in complex dynamics can be successfully inferred from the analysis
of their signals. Hence, our work shows that the approaches are promising
for a reliable detection of directional interactions from real-world signals.

La caracterización de interacciones entre dinámicas acopladas a par-
tir de sus señales, es importante para entender los sistemas del mundo
real. Particularmente, la detección de interacciones direccionales tiene
un papel fundamental en el análisis de dinámicas. En las dinámicas
acopladas unidireccionalemente, las interacciones direccionales pueden
lograrse mediante el uso de técnicas dirigidas por datos. Sin embargo,
para dinámicas más complejas, la caracterización de sus interacciones
direccionales no es tan trivial. Para abordar el tema, hemos utilizado
una medida basada en datos analizando señales de pares y grupos de
dinámicas acopladas no idénticas. En particular, utilizamos una medida
de espacio de estados no linear y una medida basada en fases. Para los
pares de dinámicas acopladas bidireccionalmente, presentamos el con-
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cepto de impacto de acoplamiento que nos permite desvelar mejor el
efecto real que tiene una dinámica sobre la otra con distintos niveles
de asimetrı́a. Además, demostramos que el acoplamiento y su dirección
pueden ser detectados incluso para grandes conjuntos de dinámicas. Nue-
stros resultados ponen de manifiesto que las interacciones direccionales
en dinámicas complejas pueden ser entendidas satisfactoriamente a par-
tir del estudio de sus señales. Por lo tanto, nuestro trabajo evidencia que
estas técnicas son prometedoras para la detección fehaciente de interac-
ciones direccionales de señales del mundo real.

La caracterització de les interaccions entre sistemes dinàmics acoblats
a partir de les seves senyals és important per entendre els sistemes del
món real. L’aspecte particular de la detecció d’interaccions direccionals
té una posició central en l’anàlisis de sistemes dinàmics. En simples din-
miques unidireccionalment acoblades, la direcció d’acoblament es pot de-
tectar mitjançant mètodes basats en la informació dels senyals. Malgrat
això, per dinàmiques més complexes, la caracterització de la direcció de
l’interacció no és tan trivial. Per adreçar aquest problema, utilitzarem un
enfocament basat en la informació de les senyals analitzant senyals de
parelles i conjunts de dinàmiques acoblades no idèntiques. En particu-
lar, utilitzem mètodes basats en l’espai d’estats i en la fase del sistema.
Per parelles de sistemes dinàmics acoblades bidireccionalment, introdum
la noció de impacte d’acoblament. Aquest concepte ens permet revelar
l’efecte real que un sistema dinàmic fa envers l’altre per diferents graus
d’asimetria. A més, ensenyem que l’acoblament i la seva direcció pot ser
detectada fins i tot per grans conjunts de sistemes dinàmics. Els nostres
resultats demostren que les interaccions direccionals en dinàmiques com-
plexes poden ser detectades amb èxit a partir de l’anàlisis de les seves
senyals. Per tant, el nostre treball posa de manifest que les tècniques
utilitzades són prometedores per una detecció fiable de les interaccions
direccionals dels senyals de sistemes del món real.
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Chapter 1

INTRODUCTION

In nature there are abundant examples of interacting systems that evolve
over time. These systems are called dynamics, and the characteriza-
tion of their interaction is important for the understanding of their be-
havior. Prominent examples include the interplay between physiological
[20, 29, 5, 21], ecological [41] and climate [37, 42] dynamics. In addi-
tion, interactions between real-world dynamics like the stock market in-
dexes in economy [23, 39] have been studied in order to better understand
their behavior. To understand the interplay of these systems, we want to
quantify the degree of their interaction and also to find its direction. In
order to achieve this goal many data-driven approaches have been devel-
oped. These approaches are applied to the measurements of the dynam-
ics with the aim to infer the connectivity between the coupled dynamics.
The data-driven approaches have different modalities and characteristics.
They are based on state-space reconstruction [24, 59, 8, 51, 4, 15], phases
[54, 66, 58, 27, 28, 30, 31], information theory [60, 43, 44, 74, 19, 32],
linear correlation [56, 34, 35], dynamical Bayesian inferrence analysis
[64, 67, 68, 57, 17] as well as on neural networks [9, 38], among others.

When the data-driven approaches which aim to characterize directional
couplings are developed they are not directly applied to experimental data.
Instead, an evaluation on known model dynamics is required. In this way
it can be assessed if the approaches are sensitive which means that they
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detect the presence of coupling and specific which indicates that the ap-
proaches correctly detect the absence of coupling. In this work we use the
state-space approach L [15] and the phase-based approach d [54, 27, 28].
These approaches are based on different assumptions and capture differ-
ent characteristics of the signals. Moreover, it has been shown that in uni-
directionally coupled dynamics these approaches successfully capture the
strength and the direction of the interaction between the coupled dynam-
ics [54, 15]. In particular, Chicharro and Andrzejak ([15] and references
therein) showed that L has better sensitivity and specificity than previous
state-space approaches. Moreover, Kraleman et al. [27, 28] proposed an
improved method for phase extraction from signals that results in a more
accurate estimation of the phase-based approach d.

In this study we want to characterize interactions between more com-
plex dynamics, such as pairs of non-identical bidirectionally coupled dy-
namics. Furthermore, we investigate if we are able to detect directional
interactions between high-dimesional dynamics like pairs of ensembles of
non-identical coupled dynamics. When two bidirectionally coupled dy-
namics are identical symmetric interactions between them can be straight-
forwardly defined by their coupling strength values [54, 74]. However,
this does not hold when the coupled dynamics are non-identical [65, 54].
To address this problem we introduce the notion of the coupling impact
[33] that considers apart from the coupling strength the energy of the in-
dividual dynamics as expressed through the variance of the signals. We
show that the coupling impact better reveals the real effect that one dy-
namics has on the other for different degrees of asymmetry.

After pairs of coupled dynamics we analyze pairs of ensembles of dy-
namics. Many real-world dynamics have collective behavior in the sense
that they are composed of many interacting units. Moreover, oftentimes
the measurements of such dynamics reflect the average activity of the
interacting units. Such measurements are called called mean field sig-
nals. A characteristic example is the brain dynamics which consists of
billions of interacting neurons [25]. Additionally, one type of the brain
measurements, the electroencephalographic recordings, reflect the aver-
age electrical activity of populations of neurons [13]. Many studies were
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carried out for the characterization of synchronization between the inter-
acting units of the ensembles by using their mean field signals [49, 63].
Moreover, a phase-based approach [16] was applied to the mean fields in
order to infer the connectivity between interacting ensembles of neural
models. Here, we analyze ensembles of coupled dynamics and apply the
state-space measure L in order to investigate if it is able to capture di-
rectional couplings between the two ensembles. We demonstrate that the
strength of the interaction and its direction can be detected even for large
ensembles of coupled dynamics. Moreover, we show the advantage of the
measure L over its previous version the measure M .

In the beginning of this thesis (Ch. 2) we provide the theoretical con-
cept of dynamics and explain the phase-space and state-space reconstruc-
tion. Afterwards, we present the data-driven connectivity measures M,L
and d (Ch. 3). In Ch. 4 and 5 we analyze pairs and ensembles of coupled
dynamics, respectively. In the end (Ch. 6) we summarize the results of
this work.
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Chapter 2

DYNAMICS AND SIGNALS

2.1 Dynamical systems
Every system that evolves over time is called dynamics or dynamical

system [69]. The dynamics can be natural like the brain or artificial. Ar-
tificial dynamics that evolve in continuous time are called continuous and
they are often composed by ordinary differential equations. In such cases
they can be described by the d-dimensional system

ẋ1(t) = f1(x1(t), x2(t), . . . , xd(t)),

... (2.1)
ẋd(t) = fd(x1(t), x2(t), . . . , xd(t)),

where t denotes the time, xj(t), j = 1, . . . , d are the variables of the
dynamics and ẋj(t) stands for the time derivative of xj(t). When the
functions fj of the right-hand side of Eqs. (2.1) are linear the dynam-
ics is called linear. Otherwise it is called nonlinear. For a time in-
stant ti = i∆t, i ∈ N and ∆t → 0 an infinitesimal sampling inter-
val, we have an instantaneous state of the dynamics described by Eqs.
(2.1). This state is represented by the d-dimensional point x(ti) =
(x1(ti), x2(ti), . . . , xd(ti)). If we join all these points across all values
of time ti we obtain the trajectory of the dynamics which is located in the
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d-dimensional state-space. The trajectory could diverge to infinity or be
bounded in a specific space forming a geometrical shape which is called
attractor. From the dynamics we take measurements the so-called time
series or signals. A time series is a sequence of measurements that are
taken from a dynamics at integer multiples of a sampling time ∆t [26].
Accordingly, from Eqs. (2.1) (ẋ(t) = f(x(t)), where f = (f1, . . . , fd))
we can obtain d scalar time series

si = h(x(ti)), ti = i∆t (2.2)

with the help of a measurement function h. As an example we provide
the Lorenz dynamics [36]

ẋ1(t) = 10 (−x1(t) + x2(t)),

ẋ2(t) = 28 x1(t)− x2(t)− x1(t)x3(t), (2.3)

ẋ3(t) = x1(t)x2(t)−
8

3
x3(t).

We integrate the differential equations (Eqs. (2.3)) with the fourth-order
Runge-Kutta method. The time step for the integration is 0.005 time units
and the sampling interval is ∆t = 0.03 time units. We also apply preiter-
ations in the integration in order to discard transients. In Fig. 2.1 we can
see the trajectory of the Lorenz dynamics that forms an attractor in the
3-dimensional state-space. If we project every point of the trajectory on
each axis, then we obtain three scalar time series, one for each variable.
Fig. 2.2 illustrates the signal that we get from the variable x1.

Dynamics like the Lorenz (Eqs. (2.3)) are deterministic. In such dy-
namics when the present state is fixed all the future states are well deter-
mined [26]. If this is not the case, they are called stochastic. Stochastic
dynamics contain dynamical noise ξ(t) and they can be described by

ẋ(t) = f(x(t), ξ(t)). (2.4)

This means that the noise is intrinsic and each state of the dynamics con-
tains randomness. In other words, the present state of the dynamics does
not unambiguously determine its temporal future state. Here, we have to
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Figure 2.1: The trajectory of the Lorenz dynamics (Eqs. (2.3)) forms an attrac-
tor in the 3-dimensional state-space.

underline that when the noise ξ(t) enters only in the measurement then
the noise is called observational or measurement noise. If we assume that
the dynamics ẋ(t) = f(x(t)) is deterministic and we contaminate it with
observational noise ξ(t) then the measured signal can be described by:

si = h(x(ti), ξ(ti)), ti = i∆t (2.5)

Observational noise does not affect the future evolution of the dynamics
ẋ(t) = f(x(t)) which remains deterministic. In other words, observa-
tional noise depends rather on the imprecision during the measurement
process and it is defined as the difference between the actual state of the
system and the observed state.

7



Figure 2.2: The signal that results from the projection of the x1 component of
the Lorenz attractor on the x1 axes of Fig. 2.1.

2.2 Characterization of interactions between
dynamics

In coupled dynamics the most simple type of interaction can occur
between a pair of dynamics, while complex interactions occur between
ensembles of dynamics. In the first case the interaction can be unidi-
rectional, when only one dynamics influences the other, or bidirectional
where both dynamics exchange information. In the case for which ensem-
bles of dynamics interact, their interplay is more complex. Here, interac-
tions could take place not only within the elements (i.e. dynamics) of the
same ensemble but also between the elements of different ensembles. For
the characterization of this interplay the signal analysis techniques that
have been developed analyze the measurements from the dynamics. The
analysis that is done with these approaches can be bivariate where only
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two signals are used [24, 59, 8, 51, 4, 15, 54, 66, 60, 43, 44, 74, 56] or
multivariate when more signals are available [58, 19, 32, 31, 35, 17]. In
this thesis we use two bivariate approaches: the state-space approach L
[15] as well as the phase-based approach d [54, 27, 28]. The measure
L directly uses the the amplitudes of the measurements and it is based
on the reconstruction of the dynamics’ state-space. On the other hand,
the measure d utilizes phase variables that are extracted from the signals.
Therefore, we continue by explaining the notion of the state space recon-
struction (Sec. 2.3) and the phase variable ( Sec. 2.4).

2.3 State space reconstruction
The state space reconstruction is the basic notion that the measure L is
based on. Moreover, it is commonly used in nonlinear signal analysis
techniques ([15] and referencies therein). In Sec. 2.1 we explained that
the signals are measurements from dynamics. In real-world experiments
we only have signals (e.g. electrocardiogram) and the information about
the dynamics that produced the signal is limited. With the state space re-
construction we aim to construct from the measured signal an estimate of
the state space of the underlying unknown dynamics. To achieve this we
use the method of delays that was introduced by the embedding theorem
of Takens [71]. This theorem assumes that the measured signal reflects all
the degrees of freedom of the underlying stationary dynamics. Moreover,
it requires that the measurement function h (Eq. (2.2)) is invertible and
the length of the noise-free signal is infinitely long. If we have a mea-
sured scalar signal si, i = 1, . . . , N we built m-dimensional embedding
vectors si (m ≥ 2D+ 1, ([26] and references therein) D is the dimension
of the original attractor) with delay τ

sa = (sa, sa−τ , sa−2τ , . . . , sa−(m−1)τ ), a = (m− 1)τ + 1, . . . , N. (2.6)

The real-world signals are not infinitely long and noise is always present.
Moreover, the dimension D of their underlying dynamics is in generall
unknown. Thus, in order to obtain a good estimation of the underlying
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dynamics we have to adjust the values of m and τ . The selection of the
proper m and τ values is a study by itself. The embedding delay τ is of-
ten selected with regard to the first zero of autocorrelation function or the
first local minimum of the mutual information function [26]. For the em-
bedding dimension m, the method of false nearest neighbors is often used
among others [26]. In practice the selection of m and τ is on dependence
of the variability of the results of the connectivity measure that we apply.
We use first a broad range of m and τ values and for each combination of
them we apply the connectivity measure (e.g. the measure L). For some
values of m and τ the results for L will be similar. Finally, we select one
of these m, τ values for which the connectivity measure had similarity on
its values.

Figure 2.3: The reconstructed state space from the x1 variable of the Lorenz
dynamics (Eqs. (2.3)) with m = 3 and τ = 5.

As an example of the state space reconstruction we provide the re-
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construction of the Lorenz dynamics (Eqs. (2.3)). For optical reasons
we use an embedding of m = 3 and a time delay of τ = 5 sampling
times. If we use the signal from the x1 component (Fig. 2.2) we can build
3-dimensional embedding vectors with delay τ = 5. The resulted state
space is depicted on Fig. 2.3. We can see that the shape of the attractor
that is formed is topologically similar [2] to the original one (Fig. 2.1).

2.4 Phase variable
Dynamics (Eqs. (2.1)) that have a periodic solution x(ti) = x(ti + T ),

where T denotes the period, form in their state-space closed attractive
trajectories which are called limit cycles. A characteristic example is the
van der Pol dynamics

ẋ1(t) = x2(t),

ẋ2(t) = 0.2(1− x21(t))x2(t)− 0.9025x1(t). (2.7)

For the integration of this dynamics we use the Euler method with time
step 0.01π time units and sampling interval ∆t = 0.1π time units. In
Fig. 2.4 we can clearly see the limit cycle which is formed in the state
space. The motion of the point that is moving along the limit cycle can be
described by a variable φ that is called phase. In other words, the phase
variable φ parameterizes the motion of the point along the limit cycle. The
phase φ grows monotonically in the direction of the motion and gains 2π
in each cycle. Moreover, its growth is uniform in time such

φ̇(t) = ω, (2.8)

where ω = 2π/T0 governs the natural frequency of the dynamics.

2.4.1 Extraction of phases from measurements
An important topic is how we can extract phase variables φ (Eq. (2.8)

from data. This process is done in two stages. In the first stage we obtain
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Figure 2.4: The limit cycle of the van der Pol dynamics (Eqs. (2.7)) in the
2-dimensional state-space.

preliminary phases θ which are called protophases (from the Greek word
πρωτos (protos = first) and φαση (phasi = phase)) [27, 28]. In general
there are many ways to extract protophases from data [48]. Here, we fol-
low the analytic signal approach [22] based on the Hilbert transform. The
analytic signal z(t) is a complex function of time and gives the instanta-
neous protophase and amplitude of a signal x(t). It is defines as:

z(t) = x(t) + i x̃(t) = A(t)eiθ(t) (2.9)

where, x̃(t) is the Hilbert transform of x(t)

x̃(t) =
1

π
p.v.

∫ ∞
−∞

x(t′)

t− t′
dt′, (2.10)
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and p.v. stands for the Cauchy principal value. Then, the instantaneous
protophase is given by

θ(t) = arctan
x̃(t)

x(t)
. (2.11)

Figure 2.5: The signal of the x1 variable of the van der Pol dynamics (Eqs.
(2.7)).

The Hilbert transform applies a time shifting of π/2 to the signal x(t)
while the phase spectrum remains unchanged. Thus, by ploting the sig-
nal x(t) on dependence on its Hilbert trasform we can obtain points that
follow circular rotations around an origin. If we consider the signal (Fig.
2.5) from the x1 variable of the van der Pol dynamics (Eqs. (2.7)), then
by applying a two dimensional embedding based on the Hilbert transform
(Fig. 2.6) we can obtain the protophases. In Fig. 2.6 we can clearly see
that the protophases are well-defined. This means that all cycles rotate
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around the same origin (here this is the point (0,0)) and x(t) as well as
its Hilbert transform x̃(t) do not vanish simultaneously [48]. On the con-
trary, when the signal has many fluctuations on its amplitudes (Fig. 2.7)
the cycles in the Hilbert embeddding do not all rotate around the same
origin (Fig. 2.8) and therefore the protophases are not well-defined. We
have to underline that in the calculation of the instantaneous protophases
of a signal we should always take into account the boundary effect. Prac-
tically, this means that when we apply the Hilbert embedding on a signal
we have to eliminate its first and last part (approximately 10 periods [48]).

Figure 2.6: Well defined instantaneous phases. The Hilbert transform of x1(t)
versus the signal x1(t) of the van der Pol dynamics (Eqs. (2.7)). The red circle
denotes the origin.

The protophase θ that we obtain from the analytic signal approach (Eq.
(2.9)) does not in general have the properties of phase φ (Eq. (2.8))
[27, 28]. Although θ is 2π-periodic it does not always grow linearly in
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time but obeys θ̇(t) = f(θ(t)). Moreover, it depends on the method (e.g.
Hilbert transform) that we used to extract it from the signal. Therefore,
the second stage of the process of extracting phase variables from data
is to transform the protophase θ to the genuine phase φ (Eq.(2.8)). This
transformation reads

φ(t) = θ(t) + 2

nF∑
n=1

Im
[Sn
n

(expinθ(t)−1)
]
, (2.12)

where Sn = N−1
∑N

i=1 exp−inθ(ti) are coefficients of the Fourier expan-
sion of the probabilitity density function (p.d.f.) of θ. This p.d.f. is
calculated from the signal of protophases θ(ti), i = 1, . . . , N . The opti-
mal number of Fourier nodes nF is selected according to a study done by
Tenreiro [72, 31]. The transformation that we apply on θ is invertible and
it is neither an interpolation nor a filtering. Figure 2.9 depicts the phase
φ that we obtain from the x1 variable of the van der Pol dynamics (Eqs.
(2.7)) after applying the Hilbert transform and the transformation on the
protophase θ.
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Figure 2.7: The signal x1(ti) of Fig. 2.5 contaminated with 60% Gaussian
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Figure 2.9: The genuine phases φ(t) of the signal x1(t) (Fig. 2.5) of the van
der Pol dynamics (Eqs. (2.7)).
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Chapter 3

BIVARIATE CONNECTIVITY
MEASURES

3.1 Introduction

In this chapter we explain the bivariate, data-driven approaches that
we follow for the characterization of connectivity between two coupled
dynamics X and Y . These approaches aim to reveal not only the strength
of interaction between X and Y but also its direction. They belong to
two categories in the sense whether they assume or not the existence of
a model of the underlying dynamics. In Sec. 3.2 we present the non
model-based approaches which are the state space measures M [4] and
L [15]. Afterwards in Sec. 3.3 we provide the model-based approach
which is the phase-based directionality index d [54, 27, 28]. All these
measures assume stationarity in the sense that the generating dynamics
have no explicit time dependence. Moreover, strong coupling between X
and Y should not be present. When two dynamics are synchronized in the
amplitude or in the phase domain, then the detection of the interaction is
no longer possible [54, 65, 44, 15, 74, 19].
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3.2 State space approaches

The state-space approaches M [4] and L [15] are bivariate directional in-
terdependence measures. Chicharo and Andrzejak [15] showed that in
unidirectionally coupled dynamics L prevails over M . In our study we
will use the measure L and only in Ch. 5 we will apply the measure
M in order to to show its lower accuracy over L. The measure L was
successfully applied to experimental data, like neuronal [1] and musical
data [45]. Moreover, it was applied to electroencephalographic record-
ings from epilepsy patients and it was shown that in combination with
surrogates it is able to localize the epileptic focus [3] as well as to assess
the nonlinear interdependence in the brain [6]. Both measures utilize the
amplitudes of the measured signals and they require the dynamics to be
aperiodic. They are based on two notions. The first one is the state space
reconstruction (Sec. 2.3) and the second one is the asymmetric state simi-
larity criterion. Here, we explain asymmetric state similarity criterion and
afterwards we present the measures.

3.2.1 The asymmetric state similarity criterion

The second notion that the state-space measures M and L use is the
asymmetric state similarity criterion. According to this criterion, if the
dynamics X is unidirectionally coupled to the dynamics Y (X → Y )
then the probability that spatial close neighbors in the state space of Y are
mapped to spatial close neighbors in the state space of X is higher than
in the opposite direction [24, 59, 8, 50].

Let us graphically observe the mapping between close neighbors of
model dynamics. We consider a unidirectional interaction between two
Lorenz dynamics, where X is the driving dynamics and Y is the driven
one. We evaluate two cases. In the first one there is coupling from X
to Y dynamics. In the second one the two dynamics are uncoupled. The
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equations for the driving Lorenz read

ẋ1(t) = 10 (−x1(t) + x2(t)),

ẋ2(t) = 30 x1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)−
8

3
x3(t). (3.1)

and for the driven dynamics the equations are:

ẏ1(t) = 10 (−y1(t) + y2(t)),

ẏ2(t) = 35 y1(t)− y2(t)− y1(t) y3(t) + εx (x2(t)− y2(t)),

ẏ3(t) = y1(t) y2(t)−
8

3
y3(t). (3.2)

If we use the signals of their second components x2, y2 and we make a
reconstruction of their state spaces with m = 3, τ = 5 we can clearly see
that in the case of coupling (Fig. 3.1), spatial close neighbors in the driven
Lorenz dynamics are mapped to spatial close neighbors in the driving
one. On the contrary, when the coupling between the dynamics is absent
(Fig. 3.2), spatial close neighbors in the driven Lorenz dynamics are not
mapped to spatial close neighbors in the driving dynamics.

Summarizing we can say that when a relation X → Y exists, then
close neighbors in the Y dynamics are mapped to close neighbors in the
X dynamics. The mapping in the other direction (i.e from X → Y )
also holds to a weaker degree. The quantification of this mapping is the
basic feature that gives the directionality between two coupled X and Y
dynamics. We underline that in order to define the predominant direction
of the interaction between X and Y one has to consider the mapping
between close neighbors in both directions (X → Y and Y → X) [15]

3.2.2 The measures M and L
We now review the algorithms for the calculation of M [4] and L

[15]. We start with the measure M . Suppose that we have two simul-
taneously measured signals xi, yi, i = 1, . . . , N derived from the dy-
namics X and Y , respectively. Using the method of delays [71], we
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Figure 3.1: Mapping of close neighbors in the coupled Lorenz dynamics. Close
states in the driven dynamics Y are mapped to close states in the driving dynam-
ics X .

reconstruct the X and Y dynamics with embedding delay τ and em-
bedding dimension m. The embedding vectors for the X dynamics are
xa = (xa, xa−τ , . . . , xa−(m−1)τ ) and for the Y dynamics they are ya =
(ya, ya−τ , . . . , ya−(m−1)τ ), where a = h+ 1, . . . , N and h = (m− 1)τ .

With ua,b and wa,b, b = 1, . . . , k we denote the time indexes of the k
spatially nearest neighbors of xa and ya, respectively. In order to avoid
the selection of temporally close neighbors, we apply a Theiler window,
W [73]. This means that the time indices of all neighbors of xa and ya
should satisfy |ua,b− a| > W and |wa,b− a| > W , respectively. For each
reference embedding vector xa, the mean squared Euclidean distance to
its k nearest neighbors is Rk

a(X) = 1
k

∑N
a=h+1 |xa − xua,b |2. Similarly,

22



Figure 3.2: Mapping of close neighbors in the uncoupled Lorenz dynamics.
Close states in the “driven” dynamics Y are not mapped to close states in the
driving dynamics X .

the Y -conditioned distance is Rk
a(Y ) = 1

k

∑N
a=h+1 |xa − xwa,b

|2. The
mean distance of xa to all the other embedding vectors xo, o = h +
1, . . . , N, o 6= a isRa(X) = 1

Na−1
∑N

a=h+1 |xa−xo|2, whereNa = N−h
holds for the rangeW < a < N−W +1. Below and above the bounds of
this rangeNa increases linearly and reachesNa = N−W−1 at a = h+1
and a = N . Considering these distances the interdependence M(X|Y )
from the X to the Y dynamics is defined by:

M(X|Y ) =
1

N − h

N∑
a=h+1

Ra(X)−Rka(X|Y )

Ra(X)−Rka(X)
. (3.3)

The algorithm for the measure L is very similar with the one of the
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measure M . Loosely speaking we can say that L is M with ranks. In
other words if we transform the distances of Eq. (3.3) to ranks we will
obtain L. Therefore, instead of having Rk

a(X) we now have the con-
stant Gk

a(X) = k+1
2

which denotes the mean value of the ranks of the
k nearest neighbors of each reference point xa. Moreover, the quantity
Ga(X) = Na+1

2
substitutes the quantity Ra(X) and denotes the average

rank between xa and all the others xo embedding vectors. Finally, for each
reference point of the X dynamics, xa we calculate the Y -conditioned
mean rank Gk

a(X|Y ) = 1
k

∑k
b=1 ga,wa,b

. The term ga,wa,b
denotes the rank

that the distance between xa and xwa,b
takes in a sorted ascending list of

all the distances between xa and all xo. L(X|Y ) is defined by:

L(X|Y ) =
1

N − h

N∑
a=h+1

Ga(X)−Gka(X|Y )

Ga(X)−Gk(X)
. (3.4)

With A we denote M or L. To assess the interdependence A(Y |X) from
Y to X we follow the corresponding above processes by exchanging the
roles of X and Y . Accordingly, we define ∆A = A(X|Y )−A(Y |X) for
the characterization of the predominant direction of interaction between
the X and Y dynamics.

When we have identical synchronization (Y = X) then Gk
a(X|Y ) =

Gk
a(X), and L(X|Y ) = 1. If there is an interaction from X → Y then

0 < L(X|Y ) < 1. When the dynamics X and Y are independent, then
Gk
a(X|Y ) ≈ Ga(X) and the values of L(X|Y ) are distributed symmet-

rically around zero. Similar values are obtained by the measure M but
Chicharro and Andrzejak [15] showed that L has better sensitivity and
specificity than M [14].

3.3 Phase-based approach

The bivariate directional phase-based approach d [54, 27, 28] aims at
the reconstruction of pairs of coupled phase dynamics through an analysis
of the instantaneous phases and the instantaneous frequencies. It is based

24



on the assumption that the dynamics can be described by a phase vari-
able and this phase variable can be reconstructed from the measured sig-
nal. Moreover, the interacting dynamics should be self-sustained. Later,
this approach was extended to characterize interactions in networks of
coupled oscillators [30, 31]. It was successfully applied not only in bi-
variate but also in multivariate model systems and to experimental data
[54, 53, 11, 16, 40, 27, 28, 30, 29, 31]. In this Section we provide the
general concept of the phase-based approach. Moreover, we explain how
to use the phase variables that are extracted from measurements (Sec.
2.4.1) in order to reconstruct the phase dynamics.

3.3.1 General concept of the directionality index d
The phase-based approach utilizes the fact that an autonomous periodic
oscillator can be characterized by a phase φ which grows uniformly in
time (Eq. (2.8)). For the case of two coupled dynamics X, Y we have to
take into account their interaction. Accordingly, they can be described by

φ̇x = ωx + qx(φx, φy),

φ̇y = ωy + qy(φy, φx),
(3.5)

where φx,y are the phase variables, ωx,y govern the natural frequencies
and qx,y are the coupling functions which are 2π-periodic with respect to
their arguments [54, 48]. The interaction between the X and Y dynamics
can be quantified with the norms of the coupling functions qx,y. The in-
teraction from Y → X and vice versa can be characterized by cx = ||qx||

ωx

and cy = ||qy ||
ωy

, respectively. Finally, the directionality index d [54] is
calculated as

d =
cy − cx
cx + cy

. (3.6)

For uncoupled dynamics zero values of d are expected. With increasing
unidirectional coupling from X to Y positive values of d with an upper
bound of 1 are obtained. For the opposite coupling direction negative
values are attained with a limit of -1. The sign of d can be used to con-
clude the predominant coupling direction. Additionally, equal estimates
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of interaction in both directions between X and Y result in zero values of
d.

3.3.2 Reconstruction of phase dynamics

In Sec. 3.3.1 we presented the general concept of the phase-based di-
rectionality index d. Here we will describe how we can reconstruct the
phase dynamics (Eqs. (3.5)) by using the measurements of the underlying
dynamics. Assume that we have two simultaneously measured time series
xi, yi, i = 1, . . . , N that correspond to the dynamics X and Y respec-
tively. We first extract the genuine phases φx, φy from the signals xi, yi
respectively (Sec. 2.4.1) and afterwards we numerically calculate their
time derivatives. According to Eqs. (3.5) the derivatives of the phases are
2π-periodic functions of the phases. Hence, we represent the right hand
side of Eqs. (3.5) as double Fourier series of order p

φ̇x,y = ωx,y + qx,y(φx, φy) + ξx,y

=

p∑
v=−p

p∑
l=−p

Q
(x,y)
v,l ei(vφx+lφy) + ξx,y. (3.7)

Here, we include noise terms ξx,y that are always present in real-wold
data. The coefficients Q(x,y)

v,l are estimated by means of a least mean
square fit. From the coefficients Q(x,y)

0,0 we estimate the natural frequen-
cies ωx,y that are denoted by ω̄x,y [27, 28]. The norms of the coupling
functions are given by

E(x,y) =
( p∑
v=−p

p∑
l=−p

|Q(x,y)
v,l |

2
)1/2

. (3.8)

From the summation and for both X and Y dynamics the case for which
m = l = 0 (estimated natural frequencies) is excluded. In the end the
norms E(x,y) of the coupling functions are normalized by the estimated
natural frequencies in order to obtain the influence of one dynamics on
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the other,

cx =
E(x)

ω̄x
, cy =

E(y)

ω̄y
. (3.9)

Finally, by substituting Eqs. (3.9) in Eq. (3.6) we obtain the directionality
index d [10].
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Chapter 4

INTERACTIONS BETWEEN
TWO COUPLED DYNAMICS

4.1 Introduction

In the Introduction (Ch. 1) of this thesis we mentioned that many data-
driven approaches successfully detect interactions between unidirection-
ally coupled dynamics. However, a characterization of bidirectional inter-
actions is not so straightforward. Hence, in this chapter we will investi-
gate whether we can characterize interactions between non-identical bidi-
rectionally coupled dynamics. We summarize our study [33] published in
the peer -reviewed journal Physical Review E and we closely follow its
text. Let us consider two bidirectionally coupled dynamics X and Y the
evolution of which is described by the time-dependent state space vectors
x(t) = {x1(t), x2(t), . . . , xd(t)} and y(t) = {y1(t), y2(t), . . . , yd′(t)},
respectively. Their equations of motion have the form:

ẋ(t) = F (x(t), f(yj′(t), xj(t), εy)),

ẏ(t) = G(y(t), g(xj(t), yj′(t), εx)). (4.1)
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The function f represents an interaction from the Y to the X dynamics
with coupling strength εy. The xj and yj′ components are involved in
this interaction, with j = 1, . . . , d and j′ = 1, . . . , d′. Analogously, the
function g represents the interaction from the X to the Y dynamics with
coupling strength εx.

The relevant components in this bidirectional interaction between X
and Y are the coupling strength values as well as the variables of the
dynamics which are contained in the coupling terms. Moreover, X and
Y can be identical or non-identical. When X and Y are identical their
coupling strengths as well as their variables are the same. However, this
does not hold when X and Y are non-identical. Thus, a question that
results reads: Is it possible to define a symmetric interaction between
non-identical coupled dynamics? To address this question, we follow a
data-driven approach by analyzing pairs of signals derived from coupled
model systems. Particularly, we use the directional state space measure L
(Sec. 3.2) and the phase-based directionality index d (Sec. 3.3).

Rosenblum and Pikovsky [54] applied the phase-based directionality
index d in a system of bidirectionally coupled dynamics X and Y . They
found that when the coupled dynamics X and Y are almost identical, equal
estimates of the interdependence in both directions, as judged by their
phase-based approach, were correctly obtained for equal εx, εy values.
In other words, symmetric interactions between two identical or almost
identical X and Y dynamics can be defined directly from the coupling
strength values. On the other hand, Rosenblum and Pikovsky [54] indi-
cated that when the X and Y dynamics are non-identical, equal estimates
of the interdependence in both directions are obtained for different εx, εy
values. Hence, the coupling strengths are not by themselves enough to
characterize an interaction to be symmetric.

To address this asymmetry in coupled dynamics we introduce in this
study the notion of coupling impact. The coupling impact takes into ac-
count both the coupling strength and the energy of the individual dynam-
ics. As a data-driven estimator of this energy we use the variance of the
signals. In particular we use the variance of the variables through which
the dynamics are coupled. This is straightforward, since it is this vari-
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ance in combination with the coupling strength that reflects the energy
which is transmitted from one dynamics to the other. We determine the
coupling strength values as well as the coupling impact values for which
the two directional connectivity measures L and d judge the interaction
to be symmetric. In Sec. 4.2 we present the coupled dynamics that we
use and provide the information for the implementation of the connectiv-
ity measures. Afterwards, we introduce the coupling impact (Sec. 4.3)
and we present the results (Sec. 4.4). Finally, in Sec. 4.5 we discuss the
conclusions of this study.

4.2 Methods

4.2.1 Coupled dynamics

We analyze pairs of bidirectionally coupled deterministic chaotic dynam-
ics as well as noisy limit-cycle oscillators. The pairs of chaotic dynamics
comprise identical, almost identical and non-identical coupled Lorenz,
Rössler and Rössler-Lorenz dynamics. We also use noisy non-identical
van der Pol oscillators as an example of limit-cycle oscillators. As we
mentioned in Sec. 3.1 we want to avoid synchronization between the X
and Y dynamics. Therefore, we restrict our analysis to coupling strength
values that do not result in a functional relation between the amplitudes
(for the chaotic dynamics) and between the phases (for the limit-cycle os-
cillators). Without loss of generality, we fix the coupling strength from
X to Y , denoted by εx, and we vary the coupling strength from Y to X ,
denoted by εy. Our first dynamics are coupled Lorenz:

ẋ1(t) = 10 (−x1(t) + x2(t)) + εy (y1(t)− x1(t)),
ẋ2(t) = Rx x1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)−
8

3
x3(t), (4.2)
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and

ẏ1(t) = 10 (−y1(t) + y2(t)) + εx (x1(t)− y1(t)),
ẏ2(t) = Ry y1(t)− y2(t)− y1(t) y3(t),

ẏ3(t) = y1(t) y2(t)−
8

3
y3(t). (4.3)

Here, the coupling strength fromX → Y is fixed to εx = 1.2 and the cou-
pling strength εy from Y → X runs from 0.5 to 2.48 in steps of 0.02. All
dynamics depend on some parameters. Therefore, we can control the de-
gree of asymmetry between the dynamics by changing these parameters.
For the coupled Lorenz dynamics, we vary the values of Rx, Ry from 48
to 54 in steps of 2. Taking all the possible combinations of Rx, Ry values
we obtain 12 pairs of non-identical and 4 pairs of identical coupled Lorenz
dynamics. We analyze the signals that are obtained from the components
x1, y1.

For the integration of all chaotic dynamics we use the the fourth-order
Runge-Kutta method. For the coupled Lorenz dynamics (Eqs. (4.2)-
(4.3)), the step size for the integration is 0.005 time units and the sam-
pling interval is ∆t = 0.03 time units. As a consequence, every rotation
period of the Lorenz dynamics contains approximately 20 samples which
we consider as an appropriate sampling of the dynamics [65]. We always
use random initial conditions and in order to discard transients we apply
preiterations in the numerical integration. The signals that we use for the
analysis consist of 4096 points and they correspond to 200 basic periods
approximately.

For the coupled Rössler dynamics [49] the equations read

ẋ1(t) = −ωx x2(t)− x3(t) + εy(y1(t)− x1(t)),
ẋ2(t) = ωx x1(t) + 0.25x2(t),

ẋ3(t) = (x1(t)− 8.5)x3(t) + 0.4, (4.4)
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and

ẏ1(t) = −ωy y2(t)− y3(t) + εx (x1(t)− y1(t)),
ẏ2(t) = ωy y1(t) + 0.25 y2(t),

ẏ3(t) = (y1(t)− 8.5) y3(t) + 0.4. (4.5)

The mean frequencies ωx, ωy take the values ωx, ωy =
{0.9, 0.905, 1.045, 1.05}. Thus, the 16 possible combinations be-
tween the ωx, ωy values can be classified as follows. We obtain 4 pairs
of identical (e.g. ωx = 0.9, ωy = 0.9), 4 pairs of almost identical (e.g.
ωx = 0.9, ωy = 0.905) and 8 pairs of non-identical coupled Rössler
dynamics (e.g. ωx = 0.9, ωy = 1.05). We fix εx = 0.02 and the εy values
run from 0.01 to 0.0298 in steps of 0.0002. The integration step is 0.05
time units, and the sampling interval is set to ∆t = 0.3 time units, again
resulting in approximately 20 points per cycle. We use the variables
x1, y1 as observables.

We also study the Rössler-Lorenz dynamics an example where the
dynamics do not only have different parameters but they also have
different structure:

ẋ1(t) = 10(−ωx x2(t)− x3(t)) + εy(y2(t)− x1(t)),
ẋ2(t) = 10(ωx x1(t) + 0.25x2(t)),

ẋ3(t) = 10((x1(t)− 8.5)x3(t) + 0.4), (4.6)

and

ẏ1(t) = 10 (−y1(t) + y2(t)),

ẏ2(t) = Ry y1(t)− y2(t)− y1(t) y3(t) + εx (x1(t)− y2(t)),

ẏ3(t) = y1(t) y2(t)−
8

3
y3(t). (4.7)

We vary the ωx values as well as the Ry values in the same ranges that
we used for the coupled Rössler and coupled Lorenz dynamics, namely
ωx = {0.9, 0.905, 1.045, 1.05} and Ry = {48, 50, 52, 54}. Therefore,
across all the combinations of ωx and Ry we obtain 16 pairs of cou-
pled Rössler-Lorenz dynamics. The fixed coupling strength from X
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to Y is εx = 0.55 and the varied coupling strength from Y to X is
εy = 0.3/1.02i−1, i = 1, . . . , 100. The step size for the integration is
0.005 time units and the sampling interval is ∆t = 0.03 time units. Since
we use the same Rössler and Lorenz dynamics as in the previous coupled
dynamics, we multiply the right hand side of the Rössler equations with
the factor of 10 to continue to have approximately 20 points per cycle for
both dynamics. In this dynamics we analyzed the signals from the x1, y2
components.

The limit-cycle oscillators consist of van der Pol oscillators which read

ẍ(t) = 0.2(1− x2(t))ẋ(t)− ω2
xx(t) + εy(y(t)− x(t)) + ηx,

ÿ(t) = 0.2(1− y2(t))ẏ(t)− ω2
yy(t) + εx(x(t)− y(t)) + ηy, (4.8)

where ηx, ηy are independent white Gaussian noises with zero mean and
correlation functions 〈ηx,y(t)ηx,y(t′)〉 = 2Dx,yδ(t − t′)δx,y. For the inte-
gration of this type of dynamics we use the Euler method with step size
dt = 0.01π time units. The variables x, y are used as observables. The
sampling interval is 0.1π time units again resulting in approximately 20
points per cycle for each oscillator. The values of the frequencies ωx, ωy
vary in steps of 0.01 in the ranges [1.09, 1.12] and [0.88, 0.91] respectively.
Accordingly, we obtain 16 pairs of non-identical coupled oscillators. For
the aforementioned ranges of frequency we fix the standard deviation of
noise, the so-called noise level ξx,y =

√
2Dx,y to 0.04. We also vary the

values of the noise ξx,y in the range [0.02, 0.05] in steps of 0.01, while the
frequencies are fixed to ωx = 1.1 and ωy = 0.9. Concerning the coupling
values, εx is set to 0.05, and the εy values vary in steps of 2× 10−4 in the
range [0.04002, 0.06]. Like for the chaotic dynamics we limit the range of
the coupling values such that we do not have synchronization.

4.2.2 Implementation of connectivity measures
As we already mentioned, we use in our analysis the connectivity mea-

sures L (Sec. 3.2) and d (Sec. 3.3). Both of them require for their
calculation the regulation of some parameters. Concerning the measure
L, we need to adjust the embedding dimension m, the embedding delay
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τ , the number of the nearest neighbors k as well as the Theiler correc-
tion W . In a pre-analysis we scanned the ranges k = [3, 5, 10, 15, 20],
m = [4, 5, 6, 7, 8, 9] and τ = [4, 5, 6, 7, 8, 9] sampling times. For all
the possible combinations between k,m and τ the values of ∆L =
L(X|Y ) − L(Y |X) were similar for k = [3, 5, 10], m = [4, 5, 6] and
τ = [4, 5, 6]. Therefore, without performing any kind of optimization, we
set the values of k,m and τ to the middle value of these ranges. In other
words, we set the parameters of L: k = 5 nearest neighbors, embedding
dimension m = 5 and embedding delay τ = 5 sampling times. For the
Theiler window we use W = 15. Like described in Sec. 4.2.1 we sam-
ple all our dynamics such they have approximately 20 samples per cycle.
Accordingly, for the parameters τ and W which are in units of time we
can use the same values across all dynamics. The source code resources
that we used for the calculation of L can be found in [14].

Concerning the phase-based directionality index dwe first need to spec-
ify the way for the calculation of the derivatives of the phases. We here
use the central finite difference and we set the order p of the Fourier ex-
pansion (Eq. (3.7)) to 10. Afterwards, we need to specify the way for the
calculation of the norms of the coupling functions. In our study, we use
the trapezoidal method. We underline, that one can also follow different
methods either for the calculation of the phase derivatives or for the norms
of the coupling functions. The source code resources that we use for the
measure d can be found in [10].

4.3 Coupling strength and coupling impact

In Sec. 4.1 we discussed the fact that the coupling strength values are
not by themselves enough to define symmetric interactions in pairs of
non-indetical X to Y dynamics . Instead, in order to define a symmetric
interaction between X to Y we also have to consider the energy of the
variables through which the coupling is conveyed from one dynamics to
the other. In this study we propose the notion of the coupling impact
as a quantity that takes into account both the coupling strengths and the
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variables’ energy. As a data-driven estimator of the variables’ energy we
use the variance of their corresponding signals. Accordingly, the coupling
impact γx from X to Y dynamics is given by

γx =
εx
σ2
y

, (4.9)

where εx is the coupling strength from X → Y and σ2
y is the variance

of the signal that corresponds to the variable of the Y dynamics which is
contained on the coupling term. For the coupling impact γy of the other
direction Y → X , we exchange the roles of the x and y components in
Eq. (4.9).

What is the relation between the values of the coupling strength and
between the values of the coupling impact when there is a symmetric in-
teraction in the coupled X and Y dynamics as estimated by L or d? In
other words, what is the relation between the εx, εy values as well as the
one between the γx, γy values for which we obtain ∆L = 0 or d = 0?

We carry out an analysis in two stages. We start by describing the pro-
cess we follow for the chaotic dynamics that we analyze with the measure
∆L = L(X|Y ) − L(Y |X). At first, we pair the fixed value of the cou-
pling strength εx with a range of 100 values of εy. The exact range of εy is
determined in a pre-analysis such that in its intermediate range, and given
εx, we obtain equality in the values of L in both directions (Fig. 4.1a). For
each pair of dynamics and for each of the 100 sets of the coupling strength
(εx, εy) we generate 500 independent realizations. In Fig. 4.1b we show
the mean values of ∆L across the 500 realizations in dependence on the
ratio rε = εy/εx of the coupling strength values. As a consequence of
the adjustment of the εy range, the curve of ∆L crosses zero. In order
to estimate the abscissa of the zero-crossing point (∆L = 0), we fit a
third-order polynomial on the curve of the mean values of ∆L using the
Brent-Dekker method [12]. The resulting abscissa value is denoted by rεo.
In other words, rεo is the approximated value of εy/εx for which there is
a symmetric interaction between the X and Y dynamics as judged by the
measure L. We illustrate the second stage of our analysis in Fig. 4.2. We
plot the mean values of the measure ∆L not in dependence on the ratio
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of the coupling strength values rε = εy/εx, but in dependence on the ratio
of the coupling impact values rγ = γy/γx. We denote by rγo the abscissa
of the point for which we have ∆L = 0. Similarly, for the limit-cycle
oscillators we follow exactly the same process, but instead of ∆L we use
the directionality index d = (cy − cx)/(cx + cy).

If we get rεo = 1 this would mean that equal estimates of the inter-
action between the X and Y dynamics as judged by the measure ∆L (or
d) are obtained for equal coupling strength values. Analogously, rγo = 1
means that symmetric interaction in the coupled X and Y dynamics is
obtained for equal coupling impact values. In order to quantify devia-
tions of rεo and rγo from one, we define the quantities ρε = ln(rεo) and
ργ = ln(rγo).

4.4 Results

We start by illustrating the influence of the asymmetry between the
dynamics and the coupling on the variances of the signals. We do this
since the variance is the basic component of the coupling impact values.
Thus we inspect the relation between the ratio of the coupling strength
values rε = εy/εx and the ratio of the variance of the signals rv = σ2

y/σ
2
x

across different pairs of Lorenz dynamics (Fig. 4.3). For coupled identical
dynamics with equal coupling strength values (rε = 1), the rv ratio is 1,
correctly reflecting the symmetry of the dynamics and the coupling. For
increasingly non-identical dynamics, the rv ratio gradually diverges from
the one obtained for identical dynamics. In addition, for any degree of
asymmetry between the dynamics, rv covaries with rε.

We now consider strongly asymmetric coupled Lorenz dynamics
(Eqs. (4.2)-(4.3) for Rx = 48, Ry = 54). The coupling strength εx from
X → Y dynamics is fixed. As a consequence the values of L(X|Y ) form
an almost horizontal line (Fig. 4.1a). In contrast, since the εy coupling
strength from Y toX dynamics is increasing, so do the values of L(Y |X)
(Fig. 4.1a). The graphs in Fig. 4.1b and Fig. 4.2 show the resulting
∆L = 0 values. In each panel, however, the abscissa is scaled differently.
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Figure 4.1: The coupling strength does not detect a symmetric interaction in
strongly asymmetric coupled Lorenz dynamics. Values of L and ∆L for the
coupled Lorenz dynamics (Rx = 48, Ry = 54). The error bars depict the mean
± one standard deviation across 500 independent realizations. In (a) we depict
values of L(X|Y ), L(Y |X) in dependence on the coupling strength εy. The
vertical dashed line marks the fixed coupling strength εx = 1.2 from X → Y .
In (b) the ∆L = L(X|Y ) − L(Y |X) values are shown in dependence on the
ratio of the coupling strength values rε = εy/εx. In panel (b) the dashed vertical
line highlights the abscissa value of one. The black solid line in (a) marks the
crossing point of L(X|Y ), L(Y |X) whereas in (b) the solid line stands for the
rεo value. 38
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Figure 4.2: The coupling impact detects a symmetric interaction in strongly
asymmetric coupled Lorenz dynamics. Values of ∆L = L(X|Y ) − L(Y |X) in
dependence on the ratio of the coupling impact values rγ = γy/γx for the Lorenz
dynamics of Fig. 4.1. Here, the dashed vertical line highlights the abscissa value
of one, whereas the solid line stands for the rγo value.

We use εy in Fig. 4.1a, rε in Fig. 4.1b, and rγ in Fig.4.2. Nonetheless, by
construction, the crossing point of L(X|Y ) and L(Y |X) in Fig. 4.1a and
the zero crossing of ∆L = 0 in Figs. 4.1b and 4.2 all have approximately
the same relative position with regard to the abscissa limits. These lines
are all positioned in the 29th data point. However in Fig. 4.2 the distance
between pairs of subsequent points is not constant but depends on the
ratio of variances. The ratio of variances in turn depends on the εy (see
again Figs. 4.1, 4.2)

When the degree of interdependence is the same in both directions, as
judged by ∆L = 0, the corresponding ratio rεo of the coupling strength
values is different from 1 (Fig. 4.1b). On the other hand, when we use the
ratio rγ of the coupling impact values, for ∆L = 0 the rγo value is almost
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Figure 4.3: Both the asymmetry and the coupling strength of the dynamics
affect the variance of the signals. Mean values of the ratio of the variances of the
signals rv = σ2y/σ

2
x in dependence on the ratio of the coupling strength values

rε = εy/εx. Each curve corresponds to a different coupled Lorenz dynamics
with the Rx and Ry values specified in the legend.

equal to 1 (Fig. 4.2). This means that equal estimates of interdependence
(∆L = 0) are obtained for unequal coupling strength values (rεo 6= 1),
but for almost equal coupling impact values (rγo ≈ 1).

We now turn to the effect of the degree of asymmetry of the coupled
dynamics on the quantities ρε = ln(rεo) and ργ = ln(rγo) (Figs. 4.4-4.6).
We start with the coupled Lorenz dynamics (Eqs. (4.2)-(4.3) for all the
set of Rx, Ry values). For pairs of identical dynamics we obtain zero val-
ues of ρε (Fig. 4.4a). In contrast, for pairs of non-identical dynamics we
obtain non-zero values of ρε. We also find that an increase in the asymme-
try of the dynamics leads to an increase in the absolute values of ρε (Fig.
4.4a). In contrast, the use of coupling impact renders the resulting values
of ργ to be almost zero for both identical and non-idetical bidirectionally
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Figure 4.4: The coupling impact correctly detects a symmetric interaction for
the coupled deterministic Lorenz dynamics. Values of ρε (a) and ργ (b).

coupled Lorenz dynamics (Fig. 4.4b). Similar findings are obtained for
the coupled Rössler dynamics (Eqs.(4.4)-(4.5)) for all the set of ωx, ωy
values) as can be seen in Figs. 4.5a, 4.5b. Again we find that zero values
of ρε and ργ are obtained for all the pairs of identical dynamics. These re-
sults also hold for pairs of almost identical dynamics (top left and bottom
right blocks of Figs. 4.5a, 4.5b). Concerning the pairs of non-identical
dynamics we obtain non-zero values of ρε (Fig. 4.5a). On the other hand,
the values of ργ are almost zero (Fig. 4.5b).

We continue with an example of coupled dynamics with different struc-
ture given by the Rössler and Lorenz dynamics (Eqs. (4.6)-(4.7)). Since
these dynamics are completely different, the ρε quantity takes non-zero
values (Fig. 4.6a) for all the pairs of dynamics. Moreover, these values
are higher than the ones of the coupled Lorenz (Fig.4.4a) and Rössler dy-
namics (Fig. 4.5a). Despite the strong asymmetry between the coupled
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Figure 4.5: Same as Fig. 4.4 but for the coupled Rössler dynamics.

dynamics the use of coupling impact successfully results in values of ργ
that are very close to zero (Fig. 4.6b).

In order to assess the accuracy of our results we divide the 500 inde-
pendent realizations that we made for each pair of dynamics in 5 groups
of 100 realizations each. For every group we repeat the analysis as de-
scribed in Sec. 4.3 and we determine the corresponding ρε and ργ values.
Their mean value and ranges for the Lorenz, Rössler and Rössler-Lorenz
dynamics are shown in Figs. 4.7, 4.8 and 4.9 respectively. The small
magnitude of these ranges illustrates that our estimates of ρε and ργ are
reliable.

We now study limit-cycle oscillators. We follow the exact same pro-
cedure like the three chaotic dynamics, but instead of the measure L we
use the directionality index d. In particular, we assure that the estimates
ρε and ργ are of comparably high accuracy as the one obtained for the
chaotic dynamics. For all the pairs of non-identical van der Pol oscilla-
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Figure 4.6: Same as Fig. 4.4 but for the coupled Rössler-Lorenz dynamics.

tors (Eqs. (4.8) with ξx,y = 0.04) the values of ρε diverge from zero (Fig.
4.10a). Again the more asymmetry between the frequencies ωx, ωy of the
oscillators the higher absolute values of ρε we get. In contrast, the use of
coupling impact results in values of ργ close to zero (Fig. 4.10b). We also
study the role of noise on the coupling impact. For this purpose, we fix
ωx = 1.1, ωy = 0.9 and we vary the noise levels ξx, ξy from 0.02 to 0.05
in steps of 0.01. In general higher values of noise lead to higher absolute
values of ρε (Fig. 4.11a). On contrary, the use of coupling impact ends in
values of ργ very close to zero (Fig. 4.11b).

4.5 Discussion
In this study we proposed the notion of the coupling impact as a way to

define symmetric interactions between non-identical bidirectionally cou-
pled dynamics. For this purpose we followed a data-driven approach by
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Figure 4.7: High accuracy of the estimation of the coupling strength and cou-
pling impact values. Mean values of ρε (a) and ργ (b) for the coupled Lorenz
dynamics obtained across five sets of 100 realizations each. The error bars de-
pict the corresponding ranges.

analyzing signals from pairs of coupled dynamics. In order to charac-
terize the interdependence between the interacting dynamics we used the
state space measure L [15] as well as the phase-based directionality index
d [54, 27, 28]. These measures estimate the strength and direction of the
interaction between two dynamics X and Y . At first, we showed that in
identical and almost identical bidirectionally coupled dynamics, equal es-
timates of the interdependence in both directions as judged by L or d are
obtained for equal or almost equal values of the coupling strength. This
finding is in accordance with expectation and previous findings [54, 74]
as it reflects the symmetry between the dynamics in this setting. On the
other hand, we showed that in non-identical bidirectionally coupled dy-
namics equal estimates of interdependence in both directions are obtained
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Figure 4.8: Same as Fig. 4.7, but for the coupled Rössler dynamics.

for unequal values of the coupling strength. In other words, in the case
of non-identical coupled dynamics, if the coupling strength from the dy-
namics X to the dynamics Y is stronger than in the opposite direction,
this does not always imply that also the interaction from X to Y is higher
than for the opposite direction. These findings do not reflect a peculiar-
ity of L or d but are consistent with results of previous studies [54, 65]
which used state space [65] and phase-based [65, 54] approaches for the
characterization of interaction between bidirectionally coupled dynam-
ics. For increasingly different coupled dynamics, equal estimates of the
interaction between the dynamics are obtained for increasingly different
coupling strength values. Therefore, the coupling strength values do not
determine by themselves the real impact that one dynamics exerts on the
other.

In order to address this problem we here introduced the notion of the
coupling impact. The coupling impact takes into account not only the
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Figure 4.9: Same as Fig. 4.7, but for the coupled Rössler-Lorenz dynamics.

coupling strength between the dynamics but also the energy of the indi-
vidual dynamics. As an estimator of this energy we used the variance of
the signal that corresponds to the variable through which the dynamics
are coupled. We found that equal estimates of interdependence in both
directions are obtained for approximately equal coupling impact values,
regardless of the asymmetry between the coupled dynamics. Hence, this
approach reveals the real impact that one dynamics has on the other much
more reliably than the coupling strength.

We choose the variance as a data-driven estimator of the dynamics’ en-
ergy because it is a simple and intuitive quantity. Our results show that it
is well-suited to address symmetric interactions in non-identical coupled
dynamics. On the other hand, we still at times have a remaining mis-
match. In some cases equal estimates of interaction in both directions are
obtained for only approximately equal coupling impact values. Hence, an
open topic for a future study is to test higher order moments for the esti-
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Figure 4.10: The coupling impact correctly detects symmetric interactions for
the noisy van der Pol oscillators. Values of ρε (a) and ργ (b) for different fre-
quency levels. We vary the frequencies ωx,y while the noise levels ξx,y are fixed
to 0.04.

mation of the dynamics’ energy. Furthermore, we can consider dynamics
that are coupled not only diffusively but which have more complex inter-
actions.

It is important to underline the scope of this work. For real-world data
one does not know in general the values of the coupling strength of the
underlying dynamics. Furthermore, the variance of real-world signals
might not reflect well the true energy that one dynamics exerts on the
other, but instead depends on the measurement. An important aspect is
the path between the place where the dynamics takes place and the lo-
cation of the measurement device. In electroencephalographic record-
ings, for example, the activity of the interacting neurons takes place in the
brain but electrodes are placed on different positions of the scalp. More-
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Figure 4.11: Same as Fig. 4.10 but for different noise levels. The frequencies
ωx, ωy are fixed to 1.1 and 0.9 respectively and the noise levels ξx,y vary.

over, the electrode impedance is not identical across different electrodes.
Hence, the variance of electroencephalographic recordings cannot be the
real variance of the signal through which the coupling is conveyed. For
these reasons an application of the coupling impact to experimental data
is not straightforward.

We also note that noisy dynamics with time-varying parameters can be
analyzed with the dynamical Bayesian inference approach [67, 68, 17, 57]
that reveals the effective connectivity. However, the phase-based ap-
proach that we applied here as well as the dynamical Bayesian inference
approach are model-based [52] while the state space approach does not
assume any model of the interacting dynamics.

Concluding, we underline that the aim of this study is not to propose
the coupling impact as a measure to analyze experimental data. Instead,
it serves as a way to define symmetric interactions between bidirection-
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ally coupled dynamics, regardless of whether or not they are identical.
Therefore, although we follow a data-driven approach our contribution is
towards an understanding of dynamical systems.
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Chapter 5

INTERACTIONS BETWEEN
TWO ENSEMBLES OF
COUPLED DYNAMICS

5.1 Introduction

From interactions between two individual dynamics we now move to
interactions between two ensembles of dynamics. In nature there are
many dynamics with collective behaviour. The measurements of such
dynamics are at a macroscopic instead at a microscopic level. In other
words the measurements of real-world dynamics often reflect the average
activity of the individual units of the dynamics. This average activity is
expressed through the mean field signal. A characteristic example is the
brain where the electroencephalographic recording indicates the average
electrical activity of groups of neurons [13]. Apart from the real-world
dynamics there are many model systems with collective behavior. Such
systems consist of ensembles of dynamics that are coupled via many ways
like global the so-called all to all and random coupling. The mean fields
of the ensembles usually act as variables of the system through which the
individual dynamics of the same or different ensembles interact [48, 47].
There are studies where a quantitative analysis of the mean field signals
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aims at the characterization of synchronization between the individual
dynamics of the ensembles [49, 63]. Moreover, Cimponeriu et. al. [16]
applied a phase-based approach to the mean fields of two coupled neu-
ronal ensembles in order to characterize directional interactions between
them. In this study, we apply the state-space measure L to the mean fields
of two coupled ensembles of chaotic dynamics. We consider cases where
the individual dynamics of the ensembles are globally coupled and uncou-
pled. We investigate the role of different parameters for the detection of
interaction between the two populations such as the population size and
the data length of the signals. Moreover, we use different types of chaotic
dynamics and we test the accuracy of the measure L when measurement
noise is present. In the end, we show the advantage of L over its previous
version the so-called measure M (Sec. 3.2.2).

5.2 Methods
The model systems that we analyze consist of two ensembles of chaotic

dynamics, A and B (Fig. 5.1). Each ensemble contains P dynamics that
are weakly globally coupled with intracoupling strength µ. Furthermore,
each dynamics of theA ensemble is unidirectionally coupled with exactly
one dynamics of the B ensemble, with intercoupling strength ν. The A
and B ensembles both consist of non-identical Rössler or Lorenz dynam-
ics. The A ensemble of the Rössler dynamics [49] is described by:

ẋλ(t) = −ωλ yλ(t)− zλ(t) + µ(X(t)− xλ(t)),
ẏλ(t) = ωλ xλ(t) + 0.25 yλ(t),

żλ(t) = (xλ(t)− 8.5) zλ(t) + 0.4, (5.1)

while the B ensemble reads:

u̇λ(t) = −ωλ vλ(t)− wλ(t) + µ(Y (t)− uλ(t)) + ν (xλ(t)− uλ(t)),
v̇λ(t) = ωλ uλ(t) + 0.25 vλ(t),

ẇλ(t) = (uλ(t)− 8.5)wλ(t) + 0.4, (5.2)
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Figure 5.1: The coupling scheme between the A (left) and B (right) ensembles.

where λ = 1, . . . , P . The variables X = 1/P
∑P

λ=1 xλ and Y =

1/P
∑P

λ=1 uλ stand for the mean field of the A and B ensemble, re-
spectively. The parameters ωλ denote the frequencies of the individual
Rössler dynamics and they are randomly selected from a uniform distri-
bution U(a, b). For the A ensemble ωλ ∼ U(0.93, 0.97), while for the B
ensemble ωλ ∼ U(0.96, 1). The intercoupling values ν run from 0 to 0.17
in steps of 0.0189. The intracoupling value µ is fixed to either µ = 0 or
µ = 0.02. We use the fourth order Runge-Kutta method to numerically
integrate these dynamics with step size of 0.05 time units and sampling
interval of ∆t = 0.6 time units. In every cycle of the dynamics corre-
spond 12 points, approximately.

Regarding the Lorenz dynamics, the A ensemble is described by:
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ẋλ(t) = 10 (−xλ(t) + yλ(t)) + µ (X(t)− xλ(t)),
ẏλ(t) = Rλ xλ(t)− yλ(t)− xλ(t) zλ(t),

żλ(t) = xλ(t) yλ(t)−
8

3
zλ(t), (5.3)

and the B ensemble reads:

u̇λ(t) = 10 (−uλ(t) + vλ(t)) + µ (Y (t)− uλ(t)) + ν (xλ(t)− uλ(t)),
v̇λ(t) = Rλ uλ(t)− vλ(t)− uλ(t)wλ(t),

ẇλ(t) = uλ(t) vλ(t)−
8

3
wλ(t). (5.4)

In analogy to the definitions of the Rössler dynamics λ = 1, . . . , P and the
variables X = 1/P

∑P
λ=1 xλ and Y = 1/P

∑P
λ=1 uλ indicate the mean

field of the A and B ensemble, respectively. The parameters Rλ are ran-
domly selected from a uniform distribution. Particularly, Rλ ∼ U(37, 39)
for the A ensemble and Rλ ∼ U(43, 45) for the B ensemble. Here, the ν
values run from 0 to 8 in steps of 1, while µ is fixed to either µ = 0 or
µ = 0.5. For the numerical integration we use the fourth order Runge-
Kutta method with step size of 0.005 time units and sampling interval of
∆t = 0.06 time units. Again, every cycle consists of 12 points, approx-
imately. We underline that for all the dynamics we always use random
initial conditions and we apply preiterations in the numerical integration
to discard transients.

In our analysis the intercoupling values ν vary while the intracoupling
value µ is fixed. We consider two cases for the µ value. In the first case,
µ = 0, which implies that the dynamics within the same ensemble are
uncoupled. In the second one, µ takes a non-zero value and the dynam-
ics within the same ensemble are weakly globally coupled. When the
dynamics of the same ensemble are coupled many phenomena can occur
like partial [46] and intermittent synchrony [70]. In our study, the selec-
tion of µ and ν coupling values is done such that the dynamics which
belong to the same or different ensembles do not have a synchronous
motion. For each intercoupling value ν we obtain from the A and B en-
sembles the X and Y mean fields respectively and we apply to them the
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measure ∆L = L(X|Y ) − L(Y |X). We repeat this process for 20 in-
dependent realizations and afterwards we calculate the mean values of
〈∆L〉. Moreover, for the implementation of the measure L we use the
same parameters like our previous study (Sec. 4.2.2). In our analysis we
examine the effect of different parameters in the detection of coupling by
the measure L. We test the role of the population size P by considering
different sizes (P = 2, 50, 500, 5000). We also examine the effect of the
data length of the mean field signals. In particular, we use signals which
consist of N = 300, 1000, 3000 and 6000 data points and we investigate
the influence of observational noise. In addition, we test the effect of the
number of interlinks between the individual dynamics of the two ensem-
bles on the detection of coupling.

Before we show the results of the analysis it is important to have a vi-
sual inspection of the signals. We illustrate the mean field signal X of
the Rössler ensemble (Eqs. (5.1)) for intracoupling value µ = 0 and for
different ensemble size P (Fig. 5.2). We observe that as the size of the
ensemble is increasing, the amplitude of the mean field X is decreasing.
This is more evident on Fig. 5.3 where we depict the standard deviation
sA of the mean field X for different P values.

5.3 Results

We divide our analysis into parts. In the firt part we use the Rössler
ensembles (Eqs. (5.1)-(5.2)) and in the second one we use the Lorenz
ensembles (Eqs. (5.3)-(5.4)).

5.3.1 Rössler ensembles

We start to present the results by illustrating the values of the measure
L for different ensemble sizes P and for different data lengths of the
signals. We use the Rössler ensembles with intracoupling strength µ = 0.
Fig. 5.4 demonstrates that L is sensitive enough to capture the inter-
coupling strength ν (coupling from the A ensemble to the B ensemble)
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Figure 5.2: The amplitude of the mean field signal is decreasing as the popula-
tion size is increasing. Mean field signals X(ti), i = 1, . . . , 1000 of the Rössler
ensembles (Eqs. (5.1)) for intracoupling strength µ = 0 and different ensemble
size P (P = 2 (a) , P = 50 (b), P = 500 (c) and P = 5000 (d)).
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Figure 5.3: The standard deviation of the mean field signal is decreasing with
the increase of the ensemble size P . Mean values of the standard deviation of
the mean field X for the Rössler ensemble of Fig. 5.2. The errorbars illustrate
the mean ± one standard deviation across 20 independent realizations.
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when it is present. In general, as the values of ν are increasing the
values of L(X|Y ) (blue line) also increase. However, we also observe an
increase in the values of L(Y |X) (green line), despite the fact that there
is no coupling from the B ensemble to the A ensemble. This behavior
is not peculiar but reflects the characteristics of the state similarity
criterion (Sec. 3.2.1). In general, in unidirectionally coupled dynamics
the state-space measures detect the coupling not only in the direction
where it is really present, but also in the other direction that is absent
[15]. However, the detection of the coupling in the latter case holds to
a weaker degree. Hence, in order to find the predominant direction of
coupling between two interacting dynamics we should always consider
the difference of the measure L in both directions [15].

In our analysis we say that the measure L is able to detect a positive
intercoupling value ν if across the 20 independent realizations the values
of ∆L = L(X|Y ) − L(Y |X) are significantly positive as assessed by a
Wilcoxon rank sum test. Our analysis requires many levels of multiple
testing. Apart from the 8 non-zero coupling values, we have 4 differ-
ent data length of the signals and 4 different population sizes. There-
fore, due to the Bonferoni correction [62], we set the significance level to
α = 0.05/128 = 3.9× 10−4. Fig. 5.4 shows that as the data length of the
mean fields is increasing the measure L gets more sensitive and captures
small intercoupling values ν. On the other hand, as the ensemble size is
increasing the values of L decrease and the difference ∆L gets smaller.
However, it still remains significant. We can also see a clear difference
between the top-left panel and bottom-right panel. Although, on the top-
left panel the differences between the L values are large however, due to
their large variability they are not significant. On the contrary, the small
variability of the L values in the bottom-right panel render them signifi-
cant despite their small difference.

We quantify the performance Ψ of the measure L by calculating the
fraction of the number of the non-zero intercoupling values ν for which
we have significant detection of coupling over the total number nν of the
non-zero intercoupling values. Hence, the Ψ values vary from 0 (com-
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Figure 5.4: The measure L is able to detect the coupling between ensembles of
dynamics from their mean fields. Values of L(X|Y ) (blue) and L(Y |X) (green)
for the Rössler ensembles (Eqs. (5.1)-(5.2)) with µ = 0. The error bars de-
pict the mean ± one standard deviation across 20 independent realizations. Red
crosses label the intercoupling values ν for which we have significant detection
of coupling. From one column to the other the population size P is increasing.
From top to bottom the data length N of the mean field signals is increasing.

plete failure of detection of non-zero intercoupling values) to 1 (success-
ful detection of all the non-zero intercoupling values). Fig. 5.5 depicts
the performance of the measure L for µ = 0 (a) and µ = 0.02 (b). We
see that when the dynamics within the same ensemble are weakly glob-
ally coupled the performance of the measure L gets better. Moreover,
for both intracoupling values µ the increase of the lengths of the mean
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field signals boosts the Ψ values. Obviously, this does not hold with the
increase of the population size P . In the analysis that we did for Fig.

Figure 5.5: The performance of the measure L gets better with the presence
of intracoupling strength. Ψ values of the Rössler ensembles for intracoupling
strength µ = 0 (a) and µ = 0.02 (b).

5.5 we examined the sensitivity of the measure L. It is also important to
test its specificity (i.e. detection of the absence of coupling). Thus, we
create one more auxiliary system of Rössler ensembles, A′ and B′. The
auxiliary system has the same parameters with the one of the A and B
ensembles (Eqs. (5.1)-(5.2)) but for its generation we use different initial
conditions. For the analysis we use the mean field signal X of the A en-
semble and the mean field signal Y not from the B ensemble but from the
B′. Since the A,B ensembles are independent from the A′, B′ ensembles
there is no presence of coupling between the A and B′ ensembles. Fig.
5.6 shows that indeed the measure L does not detect the presence of any
coupling between the A and B′ ensembles since all the Ψ values are zero.
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This holds when the dynamics within the same ensemble are uncoupled
as well as when they are weakly globally coupled.

Figure 5.6: The measure L correctly detects the absence of coupling between
two independent ensembles. Performance of L for the independent Rössler en-
sembles A and B′. In (a) the intracoupling strength is µ = 0 while in (b) it is
µ = 0.02.

In order to evaluate the accuracy of the results of Fig. 5.5 we apply the
following process. For each intercoupling value ν, we make 60 indepen-
dent realizations and we split them in three groups each of which contains
20 realizations. For each group we calculate the performance Ψ of L and
afterwards we estimate the mean and range of the Ψ values across the
three groups (Fig. 5.7). We observe that the range is either zero or it de-
viates at most 2 coupling values from the mean. Therefore, the results of
Fig. 5.5 are accurate.

So far, we evaluated the performance of the measure L for different
lengths of the mean field signals as well as for different ensemble sizes.
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Figure 5.7: Accuracy of the results of Fig. 5.5. Mean values of the performance
Ψ obtained across 3 sets of 20 independent realizations each. In (a) µ = 0 while
in (b) µ = 0.02. Error bars depict the corresponding ranges.

We saw that when the data length is small the directional coupling be-
tween the two ensembles is hardly detectable by the measure L (Fig. 5.4).
However, as long as the signals have enough data, L correctly detects the
coupling even for large ensemble sizes. Therefore, it is essential to find
the limit of the ensemble size P for which L does not detect the coupling
between the two populations. From our study we found that even for very
large ensembles (P was in the order of 105) L was able to capture the
directional coupling between the two ensembles. Moreover, we observed
a stability in the values of L, which is already visible in Fig. 5.4. On the
last three columns and for enough data length (N = 3000, 6000) we ob-
serve that although the ensemble sizes are different the values of L show
a similarity across the different panels.

The fact that the measure L correctly detects the presence and ab-
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sence of coupling even for very large ensembles means that the mean
fields X and Y carry the information of the individual dynamics. Hence,
we have to study the mechanism under which the information is trans-
ferred from the individual dynamics xj, j = 1, . . . , P to the mean field
X = 1/N

∑P
i=j xj . In other words, we have to find what common has the

mean field with the individual dynamics of the population.
We consider Rössler ensembles A and B with size P that ranges from

2 to 19000 in various steps. We fix the intracoupling value µ = 0 and the
intercoupling value ν = 0.1512. From the A and B ensembles we ob-
tain the mean field signals X and Y and apply to them the measure ∆L.
Moreover, we calculate their corresponding standard deviations sA, sB,
respectively. As an order parameter e.g. for the A ensemble, we use the
quantity ρA = rms(X)/〈rms(xj)〉(see also [18]), where rms stands for
the root mean square error. From Fig. 5.8(a) we observe that the differ-
ence ∆L gradually decreases with the increase of the P values. However,
the ∆L values tend to become stable for P > 10. Panels (b),(c) also
demonstrate that with the increase of the ensemble size the standard de-
viation sA as well as the order parameter ρA decrease.

Now we will study the mechanism under which the information is
transferred from the individual dynamics to the mean fields. In partic-
ular, we will use the embedding vectors of the signals since the mea-
sure L is based on the state space reconstruction via embedding vec-
tors (Sec. 3.2.2). Let us assume that we take the signal of the xj
j = 1, . . . , P dynamics of the ensemble with length i = 1, . . . , N . With
xa, a = (m − 1)τ + 1, . . . , N we denote its embedding vectors. More-
over, za stands for the embedding vectors of the mean field signal X . We
indicate with βa and δa the vectors whose elements are the time indexes
of all the k spatial close neighbors of xa and za, respectively. We count
the total number of a values for which {βa ∩ δa 6= ∅} and we denote this
number with cj . In other words, cj indicates the number of embedding
vectors for which the mean field and the j-th dynamics have at least one
spatial close neighbor with the same time index,

cj =
∣∣∣⋃
a

{βa ∩ δa 6= ∅}
∣∣∣. (5.5)
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We estimate the cj values for each j dynamics of the ensemble and af-
terwards, we calculate the average value cA = 〈cj〉, j = 1, . . . , P . Fig.
5.8(d) illustrates the cA values for different ensemble size P . We observe
that as the ensemble size is increasing, the cA values gradually decrease.
However, they become stable for P > 1000. We also observe that panel
(d) has a relation with panel (a). The higher the cA values are, the greater
∆L values we get. When the cA values start to become stable, we also
have a stability in the ∆L values. In other words, when the cA values
become stable the information that is transferred from the individual dy-
namics to the mean field saturates and this is reflected by the similarity of
the ∆L values. We underline that if we calculate the average cardinality
of the set {βa ∩ δa 6= ∅} across all the a values we obtain similar results
like Fig. 5.8(d) with an upper and lower limit of 1.1 and 1, respectively.

We now test the robustness of L against noise. For this, we contam-
inate the mean field signals with observational Gaussian noise with zero
mean and standard deviation ξ percent of the standard deviation of the
mean field. The values of ξ are ξ = 10, 30, 50 and 100. Fig. 5.9 shows
that as the percentage of the noise level is increasing the performance Ψ
of the measure L is decreasing. The presence of the intracoupling strength
µ increases the Ψ values. On the other hand, the increase of the ensemble
size reduces the performance of L regardless of the presence of the intra-
coupling.

In our analysis, we also investigate the effect of the number of in-
terlinks (connections between the individual dynamics of the A to the
B ensemble) on the detection of the coupling between the two Rössler
ensembles. We know that each dynamics of the A ensemble is unidirec-
tionally coupled with exactly one dynamics of the B ensemble. We start
removing these interlinks and we test the performance of the measure L
in such cases. Here, the ensemble size takes values P = 50, 100, 500 and
5000. Moreover, the percentage of interlinks ζ that are present between
the individual dynamics of the ensembles is ζ percent of the population
size P , where ζ = 35, 65, 85 and 95. Fig. 5.10 (a) shows that when the
intracoupling value µ = 0, L does not detect the presence of coupling
between the two ensembles for ζ ≤ 65. As we increase the percentage
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Figure 5.8: Analogy between the ∆L and cP values. Panel (a) illustrates the
mean values of ∆L of the Rössler ensembles (Eqs. (5.1)-(5.2)) for µ = 0. Panels
(b)-(d) correspond to the A ensemble. They depict mean values of the order
parameter of the population A (b), the standard deviation of the mean field X
and the cA values (c). Error bars show the mean ± one standard deviation across
20 independent realizations. The length of the signals is N = 1000 data points.

of the interlinks between the dynamics of the two populations, we have
better performance of the measure L. This result is reasonable since by
removing the interlinks between the two ensembles the two mean fields
become more independent. By adding interlinks, the mean fields become
more dependent and this results to an increase of the performance of L.
Moreover, the presence of intracoupling (Fig. 5.10 (b)) is beneficial again
since it increases the performance of L. Regarding the increase of the
ensemble size we cannot say that in this case it reduces the performance
of L since we observe in general similar Ψ values across the difference
ensemble sizes.

We close the analysis of the Rössler ensembles by evaluating the per-
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Figure 5.9: The measure L captures the coupling from noisy mean field signals.
Performance of the measure L for different noise levels ξ and for different en-
semble sizes P . In (a) µ = 0 and in (b) µ = 0.02. The length of the mean field
signals is N = 3000.

formance of the measure L over its previous version, the measure M [4]
(Sec. 3.2.2). Chicharro and Andrzejak [15] showed that in unidirection-
ally coupled dynamics L has better sensitivity and specificity than M .
Here, we illustrate the difference ∆Ψ = Ψ(L)−Ψ(M) between the per-
formances ofL andM denoted by Ψ(L) and Ψ(M), respectively. Positive
values of ∆Ψ with an upper limit of 1 imply that L performs better than
M , while the contrary is indicated by negative values of ∆Ψ and a lower
limit of -1. Zero values of ∆Ψ imply equal performance of the measures.
The panels of Fig. 5.11 are in analogy with Figs. 5.5, 5.9, 5.10 but they
depict the difference ∆Ψ. We see that in general L prevails over M , but
sometimes they have the same performance.
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Figure 5.10: The performance of L is decreasing as the number of interlinks
between the dynamics of the two ensembles are decreasing. Ψ values for differ-
ent percentages of interlinks between the Rössler ensembles. In (a) µ = 0 and in
(b) µ = 0.02. The length of the mean field signals is N = 3000.

5.3.2 Lorenz ensembles

Regarding the Lorenz ensembles the results are similar with the Rössler
ensembles. Fig. 5.12 illustrates the Ψ values for various ensemble sizes
and lengths of the mean field signals. We observe that the large data
length improves the performance of L. Moreover, the increase of the
ensemble size reduces the values of ∆L = L(X|Y ) − L(Y |X), but they
still remain significant for long enough signals. Figs. 5.13-5.15 are in
analogy with Figs. 5.5, 5.9, 5.10 of the Rössler ensembles. We see that
the performance of L is better in the Rössler dynamics particularly for the
signals with small data length and for those which are contaminated with
noise. However, in Lorenz ensembles L captures the coupling between
the two ensembles even with small number of interlinks. Concerning the
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Figure 5.11: L is in general more sensitive than M since it can better capture
the coupling between the two ensembles. The panels of each column correspond
to Figs. 5.5, 5.9, 5.10 respectively but they illustrate the difference ∆Ψ between
the performances of L and M . In the first row the intracoupling is zero while in
the second one it is positive.

advantage of L over M , Fig. 5.16 clearly demonstrates that L prevails
over M . Here the advantage of L over M is more evident than in the
Rössler ensembles.

5.4 Discussion
In this study we wanted to examine if we can detect directional couplings
between pairs of ensembles of coupled dynamics from the mean fields.
We followed a data-driven approach by applying the measure L to the
mean field signals of the ensembles. We evaluated the sensitivity and
specificity of L by investigating the role of different parameters such as
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Figure 5.12: Same as Fig. 5.4 but for the Lorenz ensembles.

the population size and the length of the signals. Moreover, we used dif-
ferent types of chaotic dynamics (Rössler and Lorenz) and we tested the
accuracy of the measure L when measurement noise is present. Addition-
ally, we tested the effect of the number of interlinks between the dynamics
of the ensembles on the detection of coupling.

We found that L successfully captures directional couplings from the
mean fields of the coupled ensembles. Particularly, we showed that sig-
nals with long data as well as the presence of weak intracoupling boost
the sensitivity of L (Fig. 5.5). However, the performance of L is reduced
with the increase of the ensemble size. Here, we observed a phenomenon
where for large ensembles L was not only able to capture directional cou-
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Figure 5.13: Same as Fig. 5.5 but for the Lorenz ensembles.

plings between the mean fields of the two populations, but it also took
similar values across different ensemble sizes. We showed that the reason
for this behavior is that the information which is transferred from the in-
dividual dynamics to the mean filed saturates (Fig. 5.8). This saturation
is expressed via the embedding vectors in the sense that across different
population sizes the average number of embedding vectors for which the
mean field and the individual dynamics have at least one common neigh-
bor is the same. Furthermore, we showed that the measure L is robust to
observational noise (Fig. 5.9) and in general it is more sensitive than its
previous version the so-called measure M (Fig. 5.16). We observed these
results not only for the Rössler ensembles but also for Lorenz ensembles.

We have to mention that for the intercoupling values ν for which we
had significant detection of coupling, the difference ∆L between the L
values in both directions was small. Small but significant ∆L values are
often met in the analysis of biomedical data. On the contrary, when L is
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Figure 5.14: Same as Fig. 5.9 but for the Lorenz ensembles.

applied to model uni- [15] or bidirectionally [33] coupled dynamics ∆L
gets higher values.

Summarizing we can say that our study provides good indications that
the measure L is able to detect directional couplings between ensembles
of dynamics from their mean fields. We underline that the signals which
are used for the analysis should have enough data. Future studies can con-
sider applications of the measure L to neuronal models since these types
of models better simulate real-world dynamics. Moreover, different types
and ways of coupling can be considered. Here, the dynamics which be-
long to the same ensemble were globally coupled whereas the coupling
between the dynamics of different ensembles was one to one. It would
be interesting to test another types of coupling such as non-local and ran-
dom coupling. Moreover, it would be interesting to study networks of
interacting ensembles and evaluate the performance of L.
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Figure 5.15: Same as Fig. 5.10 but for the Lorenz ensembles.
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Figure 5.16: Same as Fig. 5.11 but for the Lorenz ensembles.

73





Chapter 6

CONCLUSIONS

In this thesis we followed a data-driven analysis in order to charac-
terize interactions between coupled dynamics. We used two approaches
with different modalities and characteristics, the state-space measure L
[15] and the phase-based measure d [54, 27, 28]. It has already been
demonstrated that these approaches correctly detect directional interac-
tions in simple unidirectionally coupled model dynamics. With this study
we wanted to investigate directional interactions in more complex dynam-
ics. Questions that motivated our research include: Can we characterize
interactions in pairs of non-identical bidirectionally coupled dynamics? Is
it possible to detect directional couplings from ensembles of dynamics?

In the beginning of this thesis we provided the theoretical concept about
dynamical systems (Ch. 2) and explained the algorithms of the data-
driven approaches (Ch. 3). Afterwards, we analyzed pairs of bidirection-
ally coupled dynamics (Ch. 4). We characterized directional interactions
in pairs of bidirectionally coupled dynamics. In particular, we introduced
the notion of the coupling impact that more accurate reveals the real effect
that one dynamics has on the other. We showed that the coupling impact,
in contrast to the coupling strength varies monotonically with the values
of data-driven approaches.

Subsequently, we analyzed high dimentional dynamics. We investi-
gated directional interactions between pairs of ensembles of coupled dy-

75



namics (Ch. 5). Here, we only used the state-space approach L since the
variation of the mean-field signals did not allow us to obtain well-defined
phases. We showed that we are able to detect not only the strength but also
the direction of the coupling even for interactions which occur between
large ensembles. Detailed conclusions about the results of each study on
pairs and ensembles of coupled dynamics are given in the end of Ch. 4
and 5, respectively.

The dynamics that we used in our study were model dynamics. Con-
cerning the applications of the measure L and d to real-world experimen-
tal data one should always take into account the characteristics of the
signals and the assumptions of the approaches. Directional couplings can
be only inferred in weakly coupled dynamics which are not yet synchro-
nized. When the interacting dynamics are strongly coupled they form a
unit and the detection of the direction is no longer possible. Moreover, the
phase-based measure requires well-defined phases. On the other hand, the
state-space measure L requires the dynamics to be aperiodic. To calculate
these measures many parameters have to be fixed (Ch. 3). The best selec-
tion of these parameters is based on the fact that we always have to test
different ranges and select the ones for which the corresponding measure
has stable results. Additionally, for real-world applications one can con-
sider the use of surrogate data [61]. Surrogate data are constrained ran-
domizations of the original data that share specific properties with them.
A hypothesis test is performed and the null hypothesis is composed with
assumptions that we want to test (e.g. linear stochastic Gaussian process).
Previous studies demonstrated that the use of surrogate can be powerful
if we want to test non-linear dependences, between coupled dynamics aas
well as stationarity and randomness of individual dynamics [7, 55, 6].

The results of our study demonstrate that directional couplings between
complex dynamics can be inferred from an analysis of their signals. In
particular we achived to characterize interactions between pairs of non-
identical bidirectionally coupled dynamics. We introduced the notion of
the coupling impact which better reflects the real effect that one dynamics
has on the other for different degrees of their asymmetry [33]. Moreover,
we demonstrated that we are able to detect the strength and the direc-

76



tion of interaction in large ensembles of coupled dynamics. The different
data-driven approaches L and d successfully captured the directional cou-
plings of the dynamics. In particular, the measure L demonstrated very
good accuracy not only in pairs but also in ensembles of coupled dynam-
ics. Therefore, our work shows that these approaches are suitable for a
reliable detection of interactions between real-world signals.

Future studies of this work could include the extension of the measure
L in order to infer connectivity from networks of dynamics. Moreover, it
would be interesting to study directional couplings from the mean fields
of multiple ensembles of dynamics. Aspects that can be studied are the
effect of the topology of the dynamics and the role of perturbations. The
perturbations include but are no limited to the presence of noise, removal
of connections and changes of the inherent dynamics.
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