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Abstract

In my thesis I explore quantum metrology in open systems, with a special focus on quantum

temperature estimation, or thermometry. For this aim, I categorize my study in two different

regimes of thermal equilibrium and beyond thermal equilibrium. In both cases, my collabora-

tors and I, raise questions of fundamental and technological interest.

Among such questions, I point out the followings: What are the ultimate precision bounds on

thermometry with individual (single) probes? Is it possible to improve these bounds by using

quantum resources such as quantum correlations and quantum criticality?

We not only find the ultimate precision bound on thermometry, posed by physical laws of na-

ture, but also show how to exploit quantum resources to surpass the classical bounds on preci-

sion, even at finite temperature. Furthermore, we identify experimentally feasible measurements

which can achieve these bounds. Specifically, our results show that in a many-body sample, the

collective quantum correlations can become optimal observables to accurately estimate the tem-

perature. In turn, the collective spin correlations can be read out with the non-demolishing quan-

tum Faraday spectroscopy. Hence, our method offers inferring maximum information about the

temperature, yet leaving the sample unperturbed.

Out of thermal equilibrium, we address both static and dynamic systems. In the former case, we

find the limitations/opportunities for estimation of low temperature, and small temperature gra-

dient in a sample. Particularly, we identify that the thermometric precision at low temperature

can be significantly enhanced by strengthening the probe-sample coupling. Our observations

may find applications in practical nanoscale thermometry at low temperature—a regime which

is particularly relevant to quantum technologies.

With a more applied point of view, such non equilibrium protocols give rise to autonomous

quantum heat pumps. Hence, we also give thought to probing the quality of such heat pumps

with the tiniest probes, i.e., a single spin. Although at the first glance a spin seems to be a very

small probe, we confirm its efficiency in probing quantum heat pumps. Our techniques may find

applications in the emerging field of quantum thermal engineering, as they facilitate the diagno-

sis and design optimization of complex thermodynamic cycles.

When it comes to dynamic systems, we have formulate a (fluctuation-dissipation) theory with

the help of which one can identify the smallest external perturbation which affects a quantum

system. Our proposal might be found useful in quantum force detection, for instance, interfero-

metric detection of gravitational waves.
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Resumen

En mi tesis exploro la metrologı́a cuántica en sistemas abiertos, con especial enfoque en la es-

timación de temperatura cuántica o termometrı́a. Para este objetivo, voy a clasificar mi estudio

en dos regı́menes diferentes de equilibrio térmico y más allá del equilibrio térmico. En ambos

casos, mis colaboradores y yo planteamos cuestiones de interés fundamental y tecnológico.

Entre estas preguntas, señalo lo siguiente: ¿Cuáles son los lı́mites de precisión máximos en

la termometrı́a con sondas individuales? ¿Es posible mejorar estos lı́mites utilizando recursos

cuánticos tales como las correlaciones cuánticas y la criticalidad cuántica?

No sólo encontramos la máxima precisión ligada a la termometrı́a, planteada por las leyes fı́sicas

de la naturaleza, sino también muestramos cómo explotar los recursos cuánticos para superar

los lı́mites clásicos en la precisión, incluso a temperatura finita. Además, identificamos medidas

experimentalmente viables que pueden alcanzar estos lı́mites. Especı́ficamente, nuestros resul-

tados muestran que en una muestra de muchos cuerpos, las correlaciones cuánticas colectivas

pueden convertirse en observables óptimos para estimar con precisión la temperatura. A su vez,

las correlaciones de spin colectivo se pueden observar con espectroscopia cuántica de Faraday

no destructiva. Por lo tanto, nuestro método ofrece la posibilidad de inferir la máxima infor-

mación sobre la temperatura, dejando la muestra sin perturbar.

Fuera del equilibrio térmico, abordamos sistemas estáticos y dinámicos. En el primer caso,

encontramos limitaciones/oportunidades para la estimación a baja temperatura, y bajo gra-

diente de temperatura en una muestra. Particularmente, identificamos que la precisión ter-

mométrica a baja temperatura puede ser significativamente mejorada mediante el fortalec-

imiento del acoplamiento sonda-muestra. Nuestras observaciones pueden encontrar aplicaciones

prácticas en termometrı́a a nanoescala y baja temperatura—un régimen que es particularmente

relevante para tecnologı́as cuánticas.

Con un punto de vista más aplicado, tales protocolos de no equilibrio dan lugar a bombas de

calor cuánticas autónomas. Por lo tanto, también pensamos en explorar la calidad de tales bom-

bas de calor con las sondas más pequeñas, es decir, un solo spin. Aunque a primera vista un

spin parece ser una sonda muy pequeña, confirmamos su eficiencia explorando bombas de calor

cuánticas. Nuestras técnicas pueden encontrar aplicaciones en el campo emergente de la inge-

nierı́a térmica cuántica, ya que facilitan el diagnóstico y la optimización del diseño de ciclos

termodinámicos complejos.

Cuando se trata de sistemas dinámicos, hemos formulado una teorı́a (fluctuación-disipación) con

la ayuda de la cual se puede identificar la mı́nima perturbación externa que afecta a un sistema

cuántico. Nuestra propuesta puede ser útil en la detección de la fuerzas cuánticas, como por

ejemplo, la detección interferométrica de ondas gravitatorias.
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Chapter 1

Introduction

The field of parameter estimation or metrology deals with optimizing measurement and post

measurement strategies in order to infer the value of an unknown parameter ξ. Metrology lies at

the core of cutting-edge applications including ultra precise clocks, global positioning, or sens-

ing of tiny signals in biological systems to name a few [1–3]. In practice, technological advances

are bringing the attainable measurement resolutions to a whole new level, as showcased, for in-

stance, by the recent interferometric detection of gravitational waves [4]. The active exploitation

of quantum effects in high precision measurements, or quantum metrology, holds promise for

further improving the current metrological standards. Quantum metrology is becoming one of

the pillars of future quantum technologies [5, 6].

The most generic metrological setting consists in coupling a probe to a sample on which the

parameter ξ is registered. The outcomes of measurements performed on the probe form a dataset,

using which an estimate ξest of the unknown parameter is inferred. On account of the fact

that, imperfections, practical limitations, and other sources of error are inescapable in reality,

an essential aim of metrology is to enhance accuracy of data acquisition and inference, thus

boosting the level of estimation [7].

Apart from the indispensable task of upgrading measurement instruments, statistics plays its

own crucial role in exceeding better precisions. For instance, as a consequence of the celebrated

central limit theorem, the error in the estimation of the parameter ξ, denoted by δξ, decreases as

the number of independent measurement realizations, denoted by N, increases. This fact leads to

the shot-noise scaling δξ ∼ 1/
√

N [8]. What is even more compelling, is the restriction (or even

new possibilities to exploit) imposed by the physics of the system under study. These restric-

tions typically set bounds on the ultimate achievable accuracy, which are commonly described

through a ‘Cramér-Rao bound’ (CRB) [9]).
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In the framework settled by quantum physics, measurements act differently than in classical

systems. In particular, quantum correlations can affect the outcomes of measurements [10],

suggesting new possibilities to explore in parameter estimation. For instance, one of the most

remarkable outcomes of quantum metrology is exploiting entanglement in parameter estimation.

Using entangled systems could drastically improve the shot-noise limit, leading to an error δξ ∼

1/N. This is conventionally termed the Heisenberg limit, the counter part of the classical shot-

noise limit (also know as the standard quantum limit) [11].

Beating the shot-noise scaling is very difficult to be realized in practice [12]. This is primarily

due to the fragility of entanglement to environmental noise [13], although, in some instances

noise can allow for better-than-shot-noise performance [14–21]. An additional problem arises

from the fact that the optimal measurements to be performed on the N probes, i.e., those that

minimize the uncertainty in the estimation, are often highly non-local measurements and thus,

harder to implement. Nevertheless, multiple experiments have accomplished sub-shot-noise

limit error by utilizing features of quantum physics [22].

As the interaction with environment gets substantial, the underlying open dynamics originates

complications in having a neat theory of parameter estimation [23–26]. In principle, one might

consider the environment large enough, such that the compound system-environment forms a

“bigger closed system”. In turn, the evolution of this bigger closed system is described with

a unitary operation. The state of the system at any moment is given by tracing over the en-

vironment, namely ρS (t) = TrE[US E (t, t0)ρS E (t0)U†
S E

(t, t0)], where ρS E is the state of the system-

environment (S E), and US E (t, t0) is its corresponding unitary evolution [27, 28]. (See Chapter 3

for a review.) Under some conditions, this dynamics transfers any system to a unique station-

ary/steady state. The characteristics of this stationary state not only depend on the Hamiltonian

of the system, but also on that of the environment and its interaction with the system. In partic-

ular, the stationary state might be at (i) thermal equilibrium, or (ii) out of equilibrium. In this

thesis, we address parameter estimation in both scenarios as well as in (iii) dynamic systems.

(i) Thermal equilibrium

This occurs when the environment is in a thermal state and weakly interacts with the system.

With quantum1 thermal systems being usually described by few parameters, i.e., the conserved

charges or generalized chemical potentials, quantum metrology can play a crucial role to iden-

tify them. Specifically there is a growing interest in obtaining accurate temperature readings

with nanometric spatial resolution [3, 30, 31], which would pave the way towards many ground-

breaking applications in medicine, biology or material science. This motivates the development

of precise quantum thermometric techniques.

1Here we use the term “quantum” to also emphasize that the conserved charges might be non-commuting [29], in
contrast with a classical thermal state.
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On one hand, the recent progress in the manipulation of individual quantum systems has made

it possible to use them as temperature probes, thus minimizing the undesired disturbance on the

sample. Fluorescent thermometry may be implemented, for instance, on a single quantum dot

to accurately estimate the temperature of fermionic [32, 33] and bosonic [34] reservoirs. Simi-

larly, the ground state of colour centres in nano-diamonds has already been used as a fluorescent

thermometer [3, 30, 31], achieving precisions down to the millikelvin scale, and a spatial res-

olution of few hundreds of nanometers. Thermometry applied to micro-mechanical resonators

[35–37] has also been subject of investigation. Other studies have focused on more fundamen-

tal questions such as the scaling of the precision of temperature estimation with the number of

quantum probes [38], and the potential role played by coherence and entanglement in simple

thermometric tasks [39].

On the other hand, many-body systems empower the feasibility of realizing super-extensive ac-

curacy, (i.e., precisions better than the Heisenberg scaling). This accuracy may be attained even

without correlations in the input state, as the non-local Hamiltonian of a many body system

produces quantum correlations amongst any input state [22, 40–42]. Concretely, by enabling

k-body interactions, one can reach an estimation error as small as δξ ∼ 1/
√

Nk [43], if the

system is entangled, while uncorrelated inputs reach errors down to δξ ∼ 1/
√

Nk−1 . Notwith-

standing that these findings substantially rely on the non-local structure of the Hamiltonian, and

the measurement that is performed [43–45], few experiments have achieved super-Heisenberg

limit [22].

Thus, many-body systems, and in particular, strongly correlated ones present several features

that are starting to be explored for quantum sensing and quantum metrology purposes [46–48].

With the advent of quantum simulators based on ultracold atoms and ions, several paradigmatic

Hamiltonians representing simple spin models are being implemented in a very controllable

manner [49–52], which paves the way towards practical quantum-enhanced sensing. Hence,

in a fraction of this thesis we have explored the possibilities that strongly correlated systems

provide for quantum metrological purposes.

At zero temperature, quantum fluctuations can push the system to a new order by means of

quantum phase transitions. For second order phase transitions, the emergence of a new order is

reflected by the presence of quantum correlations at all length scales in the critical point. It is

known, that criticality emerged around a quantum phase transition point, is a powerful resource

for metrology [46, 53], as it allows for super-extensive scaling in the estimation of Hamiltonian

parameters, and external magnetic fields. At finite temperature, however, such emergence grad-

ually fades away due to the presence of thermal fluctuations. As a result, for low dimensional

systems, critical points signaling quantum phase transitions often broaden into critical regions.

Those regions still separate different phases which keep track of their ground state correlations.
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Hence, the transition between those phases might appear as smooth crossovers [54, 55], nonethe-

less carrying a footprint of the quantum phase transition occurring at zero temperature. In view

of these facts, the behavior of quantum correlations at finite temperatures could be used as a

way to estimate the it. Therefore, a natural question to pose, both for fundamental as well as

for technological reasons, is how well can the temperature be determined in these systems. The

second question is about precise estimation of many-body Hamiltonian couplings, rather than

temperature itself. Namely, what are the fundamental bounds on the precision of the estima-

tion? Is it possible to beat the shot-noise limit at finite temperatures? Our results show that this

is indeed the case.

Having the ultimate bound on precision at hand, a third question arises concerning its attainabil-

ity: Are there experimentally feasible measurement strategies that can saturate those bounds?

Generally this is not the case. For instance, the minimal error in temperature estimation of a

thermal sample is realized by a projective measurement on its energy eigenbasis. Typically,

such type of measurement in ultracold lattice gases is not accessible. Instead, information about

quantum phases and temperature is usually obtained from momentum and density distributions

or from density-density (or spin-spin) correlations. These quantities can be extracted by using

destructive methods such as time of flight imaging or in-situ imaging, the latter using single site

addressability [56], for instance using single site addressability [57, 58]. Despite the huge rele-

vance, these methods suffer some limitations for metrological pursposes due to their destructive

character.

In this sense, quantum non demolition (QND) methods can provide clear advantages [59]. The

quantum Faraday spectroscopy is a minimally disturbing matter-light interface that maps col-

lective atomic quantum correlations into light quadrature fluctuations, the latter perceptible to

be measured by homodyne detection. As a part of this thesis, we adapt this method to esti-

mate the temperature and Hamiltonian couplings of a strongly correlated system simulated by

an atomic lattice gas. Furthermore, to asses the reliability of our method for, we compare the

signal-to-noise ratio obtained from the measurement of collective atomic correlations with the

minimal possible error provided by the quantum Cramér-Rao bound. Our results show that

the measurement of collective quantum correlations can become optimal for thermometry and

magnetometry in some integrable models.

(ii) Non-equilibrium stationary states

Such states appear particularly, in the strong coupling limit, or due to the presence of multiple

environments interacting simultaneously with the system. In the former occurrence, the strong

coupling conducts a notable correlation between the system and the environment, therefore sim-

plifications which lead to the Lindbladian master equation are not permitted any longer. Even
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so, in numerous instances one might pinpoint the exact solution of the problem with the help

of, say, quantum Langevin equations. The strong coupling regime is very difficult to address

theoretically, but it conveys the idea that the system might acquire more information about its

environment, thus, providing a more precise thermometer. Indeed, we prove such conjecture rig-

orously for low temperature thermometry and identify the measurements that saturate the CRB

for specific systems. In addition, we suggest how the spectral density of the system-environment

coupling may be engineered to further improve thermometric performance.

In contrast, when multiple environments appear, the Lindbladian master equation may be still

valid. Rather, it is precisely the existence of multiple dissipators in the master equation that

leads to non-equilibrium stationary states. In this occasion we investigate how the role of a

system interacting with multiple baths at different temperatures translates into the estimation of

temperature gradient between the baths, or the other way round, how the temperature gradient

affects the quality of estimation in the system under scrutiny.

Further, with a more applied point of view, a tiny system coupled to several heat baths may be

thought of as a quantum heat pump. Depending on the direction of its stationary heat flows, it

may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can

be arbitrarily complex multipartite systems, and yet, their working principle is always the same:

they are made up of several elementary three-level stages operating in parallel. As a result, it is

possible to devise external “black-box” testing strategies to learn about their functionality and

performance regardless of any internal details. In this thesis, we propose testing such heat pump

by coupling a two-level spin to one of its “contact transitions”. The steady state of this external

probe contains information about the presence of heat leaks and internal dissipation in the device

and, also, about the direction of its steady-state heat currents. Provided that the irreversibility

of the heat pump is low, one can further estimate its coefficient of performance. Our techniques

may find applications in the emerging field of quantum thermal engineering, as they facilitate

the diagnosis and design optimization of complex thermodynamic cycles.

(iii) Non-equilibrium systems with a dynamic state

There are two different situations in which we address also dynamic systems. In the first one,

we assume that time is a finite resource, and we interrogate the system of interest before it

reaches a stationary state. Such a situation demands different strategies for quantum metrology

and quantum thermometry, which will be addressed later.

The second situation that we address deals with small time dependent perturbations around

stationary state of a generic Markovian evolution. Often in such circumstances, the time de-

pendence of the perturbation does not allow the system to rest at a stationary state. Yet still,
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estimation of the strength of the perturbation itself is a fundamental goal. We achieve such a

goal by means of a generalized fluctuation dissipation theorem.

The fluctuation-dissipation theorem (FDT) is a central result in statistical physics, both for clas-

sical and quantum systems. It establishes a relationship between the linear response of a system

under a time-dependent perturbation and time correlations of certain observables in equilibrium.

The FDT shows that the same information is obtained by measuring the response function of a

system or its fluctuations, and depending on convenience one can choose one or the other. More

recently, it has been proved useful to assess the entanglement of complex quantum systems and

in parameter estimation and other problems in quantum metrology [60].

We derive a generalization of the FDT that can be applied to any Markov quantum system and

makes use of the symmetric logarithmic derivative (SLD). There are several important benefits

when FDTs are formulated in terms of the SLD. First, such a formulation clarifies the relation

between classical and quantum versions of the equilibrium FDT. Second, and more important,

it facilitates the extension of the FDT to arbitrary quantum Markovian evolution, as given by

quantum maps. Third, it brings out the connection between the FDT and Fisher information,

which plays a crucial role in quantum metrology. We prove a generalized FDT for generic

quantum maps and illustrate these features in an example of two harmonic oscillators with a

modulated interaction.

1.1 The structure of thesis

The thesis is structured as follows: Chapters 2 and 3 are aimed at introducing some concepts and

tool boxes which are needed when presenting our original research contributions. In particular,

Chapter 2 presents the basics of quantum metrology while Chapter 3 deals with the theory of

open quantum systems. Namely, we review the definition of quantum maps and the derivation

of the Lindbladian master equation. Further, we introduce some models with open dynamics,

which are repeatedly used in the literature of open quantum systems. Specifically we present

their Lindbladian master equation, and give their steady state solutions.

We present our results in the next four chapters. In Chapter 4, our findings about parameter

estimation in systems at finite temperatures are given. We investigate which is the optimal quan-

tum probe to estimate temperature of an arbitrary thermal system, in other words, which is the

best quantum thermometer. We also characterize the smallest temperature fluctuations such a

quantum thermometer might detect. Then we explore the role of quantum correlations between

probes in thermometry, and certify their importance in precision enhancement. However, since

such optimal precision inherently demands non-local measurements, we benchmark the perfor-

mance of local measurements on any subsystem against the optimal one. We figure out that
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such local measurements are very close to optimal. Finally, we address the estimation of other

parameters in thermal systems. Namely we examine metrology of the coupling between two in-

dividual systems. We show that, unlike thermometry, local measurements are not very efficient

in this case.

Chapter 5, is exclusively devoted to parameter estimation in many body systems. Among our

results, the following two are remarkable: (i) We show it is possible to use a QND measurement

to estimate the parameters of a spin chain with an almost optimal precision. We provide such a

protocol for a experimentally relevant range of parameters. (ii) We propose an adaptive scheme

to exploit critical phenomena in many-body systems in order to overcome the shot-noise-limit

at finite temperature.

The last two chapters of this thesis address the problem of parameter estimation in systems out

of equilibrium. We categorize them into two different classes: static and dynamic. By static

or dynamic, we refer to the time dependence of the interrogated system. The static case is ad-

dressed in Chapter 6. In these scenarios, the reason for the system being out of equilibrium is,

for instance, a strong coupling to the environment, or the presence of multiple baths. Hence the

stationary state of the system is not thermal anymore, leading to a non-equilibrium stationary

state. Most of the mathematically beautiful results of thermal systems are not valid for these

models. In the first part of the chapter we study the strongly coupled systems, and we find

out that increasing the coupling boosts the precision of thermometry significantly. In the sec-

ond part, we work on systems which are coupled to multiple baths with different temperatures.

Namely, we suggest a method to efficiently measure the temperature gradient of the baths. In

the end, we propose the tiniest possible probe, i.e., a two level atom, to estimate the coefficient

of performance of a quantum heat pump.

Finally, in the last chapter we present our results in parameter estimation of dynamic systems.

In the first part, we give thought to a situation where a system is interrogated before it reaches

an stationary state, such that the measurement time plays a considerable impact. No need to

mention that the initial state of the system plays its own role as well, making it essential to

prepare a more sensitive one. For the sake of thermometry, we show that an optimal probe

shall be prepared on its ground state, and interrogated as fast as possible. In the next part we

consider parameter estimation in systems with a Markovian dynamics. The system, initially

resting at a stationary state, is perturbed by a time dependent term, whose strength is to be

estimated. For this, we develop a general fluctuation dissipation theorem, which connects the

linear response of the system to the static SLD, associated with a constant perturbation (i.e., with

no time dependence). The theorem simplifies most calculations in quantum metrology. Namely,

by knowing the linear ressponce of the system to a constant perturbation, we can characterize

the linear response to any time dependent parameter. As a case study, we illustrate the power of
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our generalized FDT considering two detuned harmonic oscillators coupled with a modulated

perturbation.



Chapter 2

An overview on quantum metrology

In this chapter we provide some necessary toolboxes from theory of quantum metrology. Our

focus is on the basic concepts, those which will be used in the upcoming chapters for presenting

our results. Quantum metrology is a fairly large field, for seeing its achievements see for instance

[61–63] and the references therein.

The structure is as follows: In Section 2.1 we review the precision bounds on classical and

quantum parameter estimation. Namely, we introduce the (Quantum) Cramér Rao inequality,

which sets a lower bound on the statistical error of parameter estimation. The quantum Fisher

information, a key element in metrology, is placed under scrutiny in Section 2.2, where its

classical and quantum parts are identified. Moreover, we provide some useful expressions for

it which will be used frequently in the next chapters. Further, in Section 2.3, we address some

properties of the quantum Fisher information such as “additivity” and “convexity”.

2.1 Error bounds on metrology

Consider a sample whose state depends on a parameter ξ. The value of ξ is unknown to us.

In order to identify the state precisely, one has to estimate ξ. Accumulation of information

about this parameter, is not possible except by performing measurements. Typically, such a

measurement is realized by exploiting an interaction between the sample and an external probe.

On the account of such an interaction, the probing system, with an initial state ρ0, will acquire a

certain amount of information about the value of ξ, hence, we show its state after the interaction

with ρ(ξ). Subsequently, a measurement is performed on the probe to extract this information

and infer an estimate ξest of the parameter. See Figure 2.1.

The measurement, in the most extensive case, is described by a positive-operator valued mea-

surement (POVM), the outcomes of which occur randomly, with some probability distribution

9
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Sample POVM

Figure 2.1: (Color online) A simple sketch of a probing scenario. The parameter ξ registered
on the sample is unknown, and the aim is to estimate it as precise as possible. To this end, one
must prepare a probe at an appropriate initial state ρ0, which gains some information about ξ
after interacting with the sample. Following this interaction one might show with ρξ the state of
the probe to account for the information it has acquired about ξ. This information will further
be extracted by performing a POVM measurement on the probe, and due to the contribution of

ξ in determining the statistics of the outcomes of such a measurement.

{
pm(ξ)

}
. More specifically, if the POVM elements are appointed by the set Π = {Πm}, then as

maintained by the Born rule, pm(ξ) = Tr
(
Πm ρ(ξ)

)
. This distribution is expected to depend on

the parameter value. Repeating the whole measurement scenario a large number of times, N,

provides us with a dataset x. Eventually, one might use an estimator ξest(x), in order to map

the dataset to some estimate of the parameter ξ. The precision of this estimation is unfavorably

affected by the randomness in the outcomes of the POVM measurement. This poses an error on

the parameter estimation, which is typically quantified by the square mean error

δ(Π; ξest) =

√〈(
ξest(x)−

〈
ξest(x)

〉
x

)2
〉

x
. (2.1)

Here the upper indexΠ reminds that this error depends on the specific POVM measurement. On

the right hand side, the averages are evaluated over all possible data outcomes, i.e.,
〈

f (x)
〉

x =∑
x p(x|ξ) f (x), with p(x|ξ) being the probability of x given the exact value of the parameter is ξ.

Hereafter we focus on unbiased estimators, for which
〈
ξest(x)

〉
x = ξ.

The first relevant question is, how small could the error get? To answer this question, let us

begin with a case where the POVM measurement is fixed. The Cramér-Rao bound (CRB) puts

a lower bound on the estimation error of any unbiased estimator as follows

δ(Π; ξest) ≥
1√

NFc(Π; ξ)
. (2.2)

The 1/
√

N dependence on the repeats is a direct result of the central limit theorem. This is a very

classical behavior, which leads to the well known shot-noise limit (also known as the standard

quantum limit). Moreover Fc(Π; ξ), the so called Fisher information, takes into account the

response of the probability distribution p to a small change in the parameter ξ. It is defined as
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follows

Fc(Π; ξ) ≡
〈(
∂ξ log p(x|ξ)

)2
〉

x
=

∑
x

(
∂ξp(x|ξ)

)2

p(x|ξ)
. (2.3)

The role of the Fisher information becomes more clear by considering its relation with the

fidelity between two probability distributions. The fidelity between two probability distribution

quantifies their closeness, and is defined as follows

F(p,q) =
∑

x

√
pxqx . (2.4)

It is easy to see that 0 ≤ F(p,q) = F(q, p) ≤ 1, with the equality to one holding iff p = q, while

equality to zero happens iff the two distributions have no common support, i.e., px , 0⇒ qx = 0,

and qx , 0⇒ px = 0. As we will see in Section 2.3.3 for a more general quantum case, the

Fc(Π, ξ) is related to the fidelity of two probability distributions at ξ and ξ+δξ. Concretely

Fc(Π; ξ) = −4 lim
δξ→0

1− F
(
p(ξ), p(ξ+δξ)

)
δξ2

 . (2.5)

The CRB can be asymptotically saturated using a maximum likelihood estimator [63].

It is essential to note that the CRB depends on the POVM measurement through the probabil-

ity distributions. It is very interesting to identify the POVM measurement which optimizes the

CRB, and its corresponding minimum error. The latter is provided by the Quantum Crémer-Rao

bound (QCRB), which puts a lower bound on the CRB, independent of any specific measure-

ment. The bound reads as

δξest ≥
1√

NF (ξ)
. (2.6)

The term F (ξ) is the quantum Fisher information (QFI) associated with the parameter ξ, and

is an optimization of the Fisher information over all possible measurements, such that F (ξ) =

maxΠFc(Π; ξ). More importantly, the QFI might could be explicitly calculated using the density

matrix of the probe

F (ξ) = Tr
(
ρ(ξ) Λ2

ξ

)
. (2.7)

The self adjoint operator Λξ is termed the symmetric logarithmic derivative (SLD) and is defined

as

Λξ ρ(ξ) +ρ(ξ) Λξ ≡ 2∂ξ′ρ(ξ′)
∣∣∣
ξ′=ξ

. (2.8)
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Proof of the Cramér Rao bound

Consider an unbiased estimator for which
∑

x p(x|ξ)
(
ξest(x)−ξ

)
= 0. By taking derivative of this

equality with respect to ξ one finds that

0 = ∂ξ
∑

x

(
ξest(x)− ξ

)
p(x|ξ)

= −1 +
∑

x

(
ξest(x)− ξ

)
∂ξp(x|ξ),

⇒ 1 =
∑

x

(
ξest(x)− ξ

)
p(x|ξ)∂ξ log p(x|ξ)

=
∑

x

[(
ξest(x)− ξ

) √
p(x|ξ)

] [ √
p(x|ξ)∂ξ log p(x|ξ)

]
. (2.9)

Now using the Cauchy-Schwartz for the two terms inside the brackets one finds

δ2(Π; ξ) ≥
1∑

x p(x|ξ)
(
∂ξ log p(x|ξ)

)2 . (2.10)

Reminding that the term in the denominator of the right hand side is Fc(ξ), the CRB for an

unbiased estimator is proved. ♣

Proof of the quantum Cramér Rao bound

The QCRB can be proved with the help of the CRB, together with the Born rule, and the Cauchy-

Schwartz inequality. We start by substituting p(x|ξ) = Tr
(
ρ(ξ) Πx

)
in the expression of the Fisher

information

Fc(ξ) =
∑

x

(
∂ξTr

(
ρ(ξ) Πx

))2

Tr
(
ρ(ξ) Πx

) . (2.11)

Next, we change the order of the derivative and the trace, and make use of the definition of the

SLD

Fc(ξ) =
∑

x

(
<Tr

(
Λξ ρ(ξ) Πx

))2

Tr
(
ρ(ξ) Πx

) ≤
∑

x

∣∣∣∣Tr
(
Λξ ρ(ξ) Πx

)∣∣∣∣2
Tr

(
ρ(ξ) Πx

) . (2.12)

By writing down Λξ ρ(ξ) Πx = Λξ

√
ρ(ξ)

√
ρ(ξ)

√
Πx
√
Πx , and with the help of the cyclic

property of trace, a further use of Cauchy-Schwartz inequality gives

Fc(ξ) ≤
∑

x

Tr
(
ρ(ξ) Πx

)
Tr

(
Λξ ρ(ξ) Λξ Πx

)
Tr

(
ρ(ξ) Πx

) = Tr

Λξ ρ(ξ) Λξ

∑
x
Πx

 = F (ξ). (2.13)
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Where in the last line we use the completeness of a POVM set,
∑

xΠx = I, and the cyclic property

of the trace. ♣

2.2 The QFI for a general density matrix: Classical and quantum
contributions

One can write down the QFI with a more explicit relation to the density matrix of the system.

With the help of Eq. .(2.8), and using the spectral decomposition of ρ, one might find the matrix

elements of the SLD to be

Λξρ+ρΛξ = 2∂ξρ,

⇒ (Λξ)mn pn |m〉 〈n|+ (Λξ)mn pm |m〉 〈n| = 2(∂ξρ)mn |m〉 〈n| ,

⇒ (Λξ)mn = 2
(∂ξρ)mn

pm + pn
, pm , 0∧ pn , 0. (2.14)

If both pm and pn are zero we have the freedom to let (Λξ)mn = 0. Substituting to the QFI gives

F (ξ) = 2
∑
mn

∣∣∣∂ξρmn
∣∣∣2

pm + pn
. (2.15)

Eq. (2.15) describes the QFI of a general density matrix. It is very interesting to expand this

expression in order to see the classical and quantum contributions to the QFI. To begin with, let

us consider the simplest case, where the density matrix is pure ρ =
∣∣∣ψ〉〈ψ∣∣∣. We will denote the

QFI for such a state with FQ,|ψ〉, where the index “Q” denotes the fact that the QFI is purely

quantum in this case and we have dropped the ξ dependence of the QFI to lighten the notation.

Simple algebra yields

FQ,|ψ〉 = 2
∑
nm

∣∣∣∣(∂ξ ∣∣∣ψ〉〈ψ∣∣∣)nm

∣∣∣∣2
pn + pm

= 2
(〈
∂ξψ|ψ

〉
+

〈
ψ|∂ξψ

〉)2
+

1
2

∑
m,0

(∣∣∣∣〈∂ξψ|ψm
〉∣∣∣∣2 +

∣∣∣∣〈ψm|∂ξψ
〉∣∣∣∣2)

= 4
〈
∂ξψ

∣∣∣ (I− ∣∣∣ψ〉〈ψ∣∣∣) ∣∣∣∂ξψ〉 = 4
〈
∂ξψ|∂ξψ

〉
−

〈
∂ξψ|ψ

〉〈
ψ|∂ξψ

〉
= 4

〈
∂ξψ

∣∣∣ (I− ∣∣∣ψ〉〈ψ∣∣∣) ∣∣∣∂ξψ〉 . (2.16)

It is very easy to check that for a unitary parametrization, where the parameter dependence of∣∣∣ψ〉 is generated by the operator U = exp(−iG) on some initial state
∣∣∣ψ0

〉
, which does not depend

on the parameter, we have F = 4Var(G)ψ0 .
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For a mixed quantum state, it is more convenient to work in the diagonal basis of the density

matrix, such that ρ = pk
∣∣∣ψk

〉〈
ψk

∣∣∣. Thus one can write

F = 2
∑
nm

∣∣∣∣(∂ξ∑k pk
∣∣∣ψk

〉〈
ψk

∣∣∣)
nm

∣∣∣∣2
pn + pm

= 4
∑

m

(
∂ξpm

)2

pm
+ 2

∑
nm

∣∣∣∣pm
〈
ψm|∂ξψn

〉
+ pn

〈
∂ξψm|ψn

〉∣∣∣∣2
pn + pm

= 4
∑

m

(
∂ξpm

)2

pm
+ 2

∑
nm

(pn− pm)2

pn + pm

∣∣∣∣〈ψm|∂ξψn
〉∣∣∣∣2

= Fc +FQ. (2.17)

Again, to go from the second to the third line we use the fact that
〈
ψm|∂ξψn

〉
= −

〈
∂ξψm|ψn

〉
.

This last equation is very helpful to distinguish between the classical and quantum parts of the

quantum Fisher information. The first term, which we display by Fc, is the classical Fisher

information of the probability distribution p =
{
p1, p2, . . .

}
. This term is clearly zero for the pure

states. Moreover, any unitary operation on the density matrix, being it parameter dependent or

not, will keep this term unchanged, though it might change the diagonal basis of the density

matrix. The second term, FQ, which represents the quantum contribution takes into account the

parameter dependence of the basis. This term might be rewritten in the following form

FQ = 2
∑
nm

(pn− pm)2

pn + pm

∣∣∣∣〈ψm|∂ξψn
〉∣∣∣∣2

= 2
∑
nm

(pn + pm)2

pn + pm

∣∣∣∣〈ψm|∂ξψn
〉∣∣∣∣2−8

∑
nm

pn pm

pn + pm

∣∣∣∣〈ψm|∂ξψn
〉∣∣∣∣2

= 4
∑

m

pm
〈
∂ξψm|∂ξψm

〉
−4

∑
m

pm

∣∣∣∣〈ψm|∂ξψm
〉∣∣∣∣2−8

∑
n,m

pn pm

pn + pm

∣∣∣∣〈ψm|∂ξψn
〉∣∣∣∣2 .

(2.18)

The first two terms together can be described as the average of the QFI of the density matrix

spectra as described by (2.16). Hence the quantum contribution is

FQ =
∑

m

pmFQ,|ψm〉 −8
∑
n,m

pn pm

pn + pm

∣∣∣∣〈ψm|∂ξψn
〉∣∣∣∣2 . (2.19)

The second term is zero for any pure state. It is also zero for a unitary parametrization, where

the generator of the unitary has the same spectra as the density matrix. In such cases clearly

F ≤
∑

m pmFQ,|ψm〉 ≤ maxψm FQ,|ψm〉, i.e., for any mixed state there exist a pure state that has a

larger QFI. In other words, the QFI of a unitary parametrization is always optimal for a pure

probe. An alternative tool to prove this is provided by the extended convexity of the QFI.
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2.3 Some useful properties of the QFI

2.3.1 Additivity of the QFI

A very important property of the FI and the QFI is their additivity. This is not so difficult to

explain. Given N independent probability distributions, the probability that a set of outcomes

X = {x1,x2, . . . ,xN} occurs is given by the product of the probabilities of individual outcomes, i.e.,

p(X|ξ) =
∏N

m=1 p(xm|ξ), with p(xm|ξ) being the probability of having the subset xm of outcomes

from mth distribution. By substituting this in the definition of the Fisher information one finds

Fc(X, ξ) =
∑

X

(
∂ξp(X|ξ)

)2

p(X|ξ)
=

∑
X

p(X|ξ)
(
∂ξ log p(X|ξ)

)2

=
∑

X
p(X|ξ)

(
∂ξ

N∑
m=1

log p(xm|ξ)
)2

=

N∑
m=1

∑
xm

(
∂ξp(xm|ξ)

)2

p(xm|ξ)
+ 2

∑
m,m′

∑
xm,x′m

∂ξp(xm|ξ)∂ξp(x′m|ξ)

=

n∑
m=1

Fc(xm). (2.20)

Further, since the QFI is equal to the Fisher information obtained with an optimal measurement,

it is additive as well, i.e.,

Fξ

(
⊗N

m=1 ρ
m
)

=

N∑
m=1

Fξ(ρm). (2.21)

Another way to prove this is by using Eqs. (2.7), (2.8), and the fact that the independent prob-

ability distributions means that the density matrix before the measurements should have been

a product state ρ(ξ) = ⊗mρ
m(ξ). This leads to a SLD of direct sum form, i.e., Λξ = ⊕mΛm

ξ .

Substituting in the QFI definition proves the additivity.

2.3.2 Extended convexity of the QFI

For any positive set {Pm} which sums up to one, and a corresponding set of density matrices{
ρm(ξ)

}
, we have

F
(∑

m

pmρm(ξ)
)
≤ Fc(

{
pm

}
) +

∑
m

pmF (ρm(ξ)). (2.22)

with Fc(
{
pm

}
) =

∑
m pm(∂ξpm)2 being the classical Fisher information of the probability distri-

bution
{
pm

}
, as described in Eq. (2.3). �

If
{
pm

}
is independent of the parameter, as is the case for a unitary parametrization, this classical

term vanishes, leading to the convexity of the quantum Fisher information. Namely, if the unitary
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parametrization is given by U = exp(−iξG), then for any ρ we have F (ρ) ≤Var(G)ρ. This can be

seen by writing the spectral decomposition of ρ=
∑

m pm
∣∣∣ψm

〉〈
ψm

∣∣∣, then by applying the theorem

and using Eq. (2.19)

F (ρ) ≤
∑

m

pmFQ,|ψm〉 =
∑

m

pmVar(G)|ψm〉 ≤ Var(G)ρ. (2.23)

Proof of the extended convexity—This theorem was introduced in [64] and we follow the same

proof as presented in this reference. Let ρ =
∑

m pmρm and ρ̃m = pmρm. Differentiating with

respect to ξ gives

∂ξρ̃m =
1
2
(
Λmρ̃m + ρ̃mΛm

)
, (2.24)

with Λm = ∂ξpm/pm + Λρm . Next, one shall focus on the Fisher information for an arbitrary set

of POVM measurement Π = {Π1,Π2, . . . }

F Πc (ρ) =
∑

k

∂ξTr(ρ Πk)2

Tr(ρ Πk)
=

∑
k

∑
m

(
<Tr(Λm ρ̃m Πk)

)2

Tr(ρ Πk)

≤
∑

k

∑
m

∣∣∣Tr(Λm ρ̃m Πk)
∣∣∣2

Tr(ρ Πk)
≤

∑
k

∑
m Tr(ρ̃m Πk)Tr(ρ̃m Λm Πk Λm)

Tr(ρ Πk)

≤
∑

k

√∑
m Tr(ρ̃m Πk)2

Tr(ρ Πk)

√∑
m

Tr(ρ̃m Λm Πk Λm)2 . (2.25)

Now notice that the first term in the right hand side is less than one, hence, by once more using

the triangle inequality one yields

F Πc (ρ) ≤
∑

k

∑
m

Tr(ρ̃m Λm Πk Λm) =
∑

m

Tr(ρ̃m Λm Λm)

= Fc(
{
p
}
) +

∑
m

pmFQ(ρm). (2.26)

The fact that the right hand side of F Πc (ρ) ≤ Fc(
{
p
}
) +

∑
m pmFQ(ρm), does not depend on the

POVM measurements Π, implies that the inequality is true for any POVM, including the one

maximizing F Πc . This means that maxΠF Πc = FQ(ρ) ≤ Fc(
{
p
}
) +

∑
m pmFQ(ρm). ♣

2.3.3 Relation to fidelity, fidelity susceptibility and the Bures distance

Uhlmann fidelity

In quantum information theory, (Uhlmann) fidelity has been used as a measure of distance

(closeness) between two quantum states [65, 66]. For any two mixed density matrices ρ and



17

σ, the Uhlmann fidelity is defined as [66]

F(ρ,σ) = Tr
[√
√
ρσ
√
ρ

]2

. (2.27)

Obviously, for %=σ the Uhlmann fidelity is equal to one. Moreover, the symmetry of the fidelity

under σ↔ ρ can be seen by defining A =
√
ρ
√
σ , which leads to

F(ρ,σ) = Tr
[ √

AA†
]2

= Tr
[
|A|

]2
= Tr

[
|A†|

]2
= Tr

[ √
A†A

]2
= F(σ,ρ). (2.28)

It is clear from Eq. (2.27) that 0≤ F(ρ,σ), with equality holding for the states which are diagonal

in the same basis, with different supports. By using the Uhlmann theorem one can further see

that F(ρ,σ) ≤ 1. We refer the readers to [66] for proof of the theorem and more properties of the

fidelity.

Relation to the Bures distance

With the help of the Uhlmann fidelity, one might define the Bures distance DB between two

quantum density matrices

DB(ρ,σ) ≡

√
2
(
1−

√
F(ρ,σ)

)
. (2.29)

Since we are interested in the distinguishability problem, we shall focus on the Bures distance

of two states which are infinitesimally close to each other. We denote by dB such a distance

d2
B ≡ D2

B(ρ,ρ+δρ). (2.30)

Suppose that the variation in the density matrix, i.e., δρ, is posed by the driving some parameter

such as ξ. In order to have a measure which is independent of the magnitude of the driving δξ,

one might define the Bures metric, as follows

d2
B = gξ δξ2. (2.31)

with gξ being the Bures metric.

The geometric meaning of the quantum Fisher information

The quantum Fisher information is four times the Bures metric i.e., Fξ = 4gξ. This gives a

geometrical meaning to the QFI: For a parameter ξ, the smaller the QFI is, the closer are two

quantum states ρ(ξ) and ρ(ξ + δξ), hence the more difficult it is to distinguish them from one
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another.

Proof of Fξ = 4gξ—We follow the proof of reference [67]. By substituting the two density

matrices in the definition of the fidelity one finds

√
F(ρ,ρ+δρ) = Tr

√
√
ρ (ρ+δρ)

√
ρ . (2.32)

Next, we expand
√
√
ρ (ρ+δρ)

√
ρ to the first order in δρ

√
√
ρ (ρ+δρ)

√
ρ ≈ ρ+ X, (2.33)

With X being the linear term in δρ, whose precise expression should be obtained. The fidelity is

then Tr
√
√
ρ (ρ+δρ)

√
ρ = 1 + Tr X. By squaring both sides of Eq. (2.33) we obtain

√
ρ δρ
√
ρ = X ρ+ρ X. (2.34)

In a basis where ρ =
∑

i pi |i〉 〈i|, the elements of X are given by

Xi j =
p1/2

i p1/2
j

pi + p j
(δρ)i j. (2.35)

This means that TrX = 0, which indeed should be the case, otherwise it was possible to have a

fidelity greater than one. Hence, one should revise the Eq. (2.33), by adding a second order term

to the right hand side: Y ≈ O(δρ2). Doing the same procedure, aside form Eq. (2.34) gives an

additional equation for Y

ρ Y + Y ρ = −X2. (2.36)

One can simply see that the matrix elements of Y in the diagonal basis of ρ are

Yi j = −
1

pi + p j
(X2)i j. (2.37)

Therefore the Bures distance d2
B is given by

d2
B = −2TrY =

1
2

∑
i j

∣∣∣δρi j
∣∣∣2

pi + p j
= gξ δξ2, (2.38)

Comparing this with Eq. (2.15) proves the theorem. ♣
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Fidelity susceptibility and quantum phase transitions

As we saw in the previous section, the linear response of the fidelity to any parameter driving

is zero. Therefore, the leading order response of the fidelity, sometimes termed as the fidelity

susceptibility, is a second order term and is given by

χF ≡ − lim
δξ→0

∂2
δξ2 F(ρξ,ρξ+δξ) =

∑
nm

∣∣∣∂ξρnm
∣∣∣2

pn + pm
. (2.39)

which has been extensively used in the study of quantum phase transitions [68]. Notice that

this is nothing but half of the quantum Fisher information associated to the deriving parameter,

though typically in the study of quantum phase transitions it is referred to as the fidelity sus-

ceptibility. The motivation to investigate the fidelity in many-body systems is simple to express

[46, 69, 70]. Once at the ground state of a many-body system, changing a parameter, such as

an external magnetic field, will drive the system across a quantum phase transition. A relevant

question is then, how to recognize the critical point where the phase transition happens. Fur-

thermore, this problem can be extended to a thermal system whose state is not in the ground

state anymore. In this situation the change in parameter drives the system across a critical re-

gion through which a crossover from one phase to another happens. In both cases, one expects

the fidelity susceptibility to be a very good measure for quantifying the criticality. This is so,

because the fidelity susceptibility measures the response of the system to the driving parameter.

Remember that the fidelity of two very closed states with almost the same structure, should be

very close to one. Indeed this is the case across a certain phase. However in a critical point,

due to sudden change in the structure of the system, the fidelity shall drop notably, hinting a

quantum phase transition.



Chapter 3

Preliminaries from open quantum
systems

This chapter provides the necessary toolboxes for dealing with open quantum systems. In sec-

tion 3.1 we review the properties of a generic quantum map. In section 3.2 we present the

Lindbladian master equation, and overview the necessary conditions for it to hold. Section 3.3

is dedicated to introducing the bosonic heat bath at thermal equilibrium, a model to which we

will refer frequently in the rest of this thesis. Next, we look at the dynamics and statics of dif-

ferent systems in contact with such a heat bath. These are mainly the systems which will be

used for thermometry in chapter 4. Section 3.4 presents the solution of the simplest system, i.e.,

that of a two level atom. Further, in section 3.5 the solution of a quantum harmonic oscillator in

contact with the bosonic bath is given. Finally in section 3.6, we look at two coupled harmonic

oscillators interacting with a common bath. This system will be used for studying the role of

quantum correlations in thermometry, as well as exploring the contribution of dissipation on

estimation of the coupling between the two oscillators.

3.1 General quantum maps

First of all, we need to address the framework for evolution of an open quantum system. We

remind that such a system might not be described by a unitary (Hamiltonian) dynamic anymore,

and a sufficient knowledge about its environment is essential. Any open quantum system S ,

might be considered as a part of a sufficiently bigger isolated system. The latter includes S ,

with the Hamiltonian Hs, plus an environment (sometimes referred to as bath), which we rep-

resent by B, and is described by the Hamiltonian HB. In addition to the free Hamiltonians, an

interaction between S and B is also applied. We show the interaction Hamiltonian by HI . See

figure 3.1. The system-bath, hereafter S B, will undergo a unitary dynamics, generated by the

20
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Figure 3.1: (Color online) An open quantum system with the Hamiltonian Hs. The dynamics
of the system might be described with the help of an environment with HB, with which the
system interacts through the interaction Hamiltonian HI . The whole system plus environment

are isolated, hence having a closed dynamics described by a unitary evolution.

Figure 3.2: (Color online) Sketch of a general evolution of a density matrix under a quantum
map. The processM, maps any density matrix to another one. It should have the properties of

a CPTP map, as described in the main text.

total Hamiltonian

H = Hs + HB + HI (3.1)

By denoting by ρS B the density matrix of S B, which is defined on the Hilbert space HS ⊗HB,

we know that its evolution is simply given by

ρS B(t) = UρS B(0)U, U = exp(−iH). (3.2)

Since we are only concerned about S , we focus on its evolution by tracing out the B degrees of

freedom ρS (t) = TrB
(
ρS B(t)

)
. Inspired by this equation, one could alternatively define a quantum

mapM :H →H , which describes the evolution of the system as follows (see figure 3.2)

ρS (t) ≡M
(
ρS (0)

)
. (3.3)

The map is consisting of operators and superoperators in the Hilbert space of the system. One

way to show the map is using the Kraus representation as follows

M(ρ) =
∑

k

AkρA†k , (3.4)
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with the Kraus operators Ak satisfying
∑

k A†k Ak = I.

3.2 Lindbladian master equation

The aim is to find a differential equation, like the Schrodinger equation for the closed systems,

with the help of which one might find the time evolution of the density matrix. The start point

would be using the Kraus representation for a map which translates the density matrix infinites-

imally in time, i.e., from t to t +δt. This can be written as

ρ(t +δt) =M(t, δt)(ρ) =
∑

k

Ak(t, δt)ρA†k(t, δt). (3.5)

By assuming that the map is homogenous in time, we can drop the t dependence of M, and

Ak. On the other hand if we expand the density matrix wrt the translation time δt, we reach

at ρ(t + δt) = ρ(t) + δtρ̇(t) +O(δt2). This means that the Kraus operators shall be Ak(δt) = A0
k +

√
δt A1

k +O(δt). Since we have the freedom to choose the Kraus operators, we let A0 = I+
√
δt (−iHS + K) +O(δt2), with H and K being Hermitian operators, and Ak =

√
δt Lk ∀k , 0.

Substituting in Eq. (3.5) yields

ρ(t) +δtρ̇(t) +O(δt2) = [I+
√
δt (−iHS + K)]ρ[I+

√
δt (+iHS + K)] +δt

∑
k>0

LkρL†k +O(δt). (3.6)

Focusing on the linear contributions leads to an initial form of the desired master equation

ρ̇(t) = −i[H,ρ] +
{
K,ρ

}
+

∑
k>0

LkρL†k . (3.7)

Finally, by focusing on the constraint on the Kraus operators, i.e.,
∑

k A†k Ak = I, we can rewrite

K in terms of all other operators Lk, leading to K = −1/2
∑

k L†k Lk. Putting everything together

we have the Lindbladian master equation

ρ̇(t) = −i[H,ρ] +
∑

k

(
LkρL†k −

1
2

{
L†k Lk,ρ

})
. (3.8)

Next, we aim at simplifying the master equation, such that we have a clear expression for the

Lindbladian operators in terms of the environment characteristics and the interaction between S

and B. For this we use the interaction picture to describe the density matrix and the operators.

We remind that the interaction picture density matrix is related to the Schrodinger picture density

matrix through

ρI(t) = ei(HS +HB)tρ(t)e−i(HS +HB)t. (3.9)
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This is true for any other observable, like A, as well

AI(t) = ei(HS +HB)tA(t)e−i(HS +HB)t. (3.10)

The coherent dynamics of S B has a unitary shape, which in the interaction picture will takes the

following form

ρ̇I(t) = −i[(HS B)I(t),ρI(t)]. (3.11)

Here (HS B)I(t) is the interaction Hamiltonian in the interaction picture. From now on let us re-

place it by VI(t) to lighten our notation. In the Schrodinger picture, the interaction Hamiltonian,

in the most general case, might be written as V =
∑

k Ak ⊗ Bk, where Aks and Bks, respectively,

operate on the Hilbert space of S and B. In the interaction picture, one only needs to transform

individual Ak and Bk in the Heisenberg picture corresponding to their Hamiltonian. We will

refer to the interaction picture later, to make more simplifications. Integrating Eq. (3.11) one

finds the integral form of the master equation

ρI(t) = ρI(0)− i
∫ t

0
dt′[VI(t′),ρI(t′)]. (3.12)

One might further replace ρI(t′) appearing in the rhs by itself, leading to

ρI(t) = ρI(0)− i
∫ t

0
dt′[VI(t′),ρI(0)]−

∫ t

0

∫ t′

0
dt′dt′′[VI(t′), [VI(t′′),ρI(t′′)]]. (3.13)

Now we assume that the system and environment are initially in a product state, i.e., ρ(t) =

ρS (0)⊗ρB(0). Obviously this state is also product in the interaction picture. On top of that we

restrict ourselves to the so called weak coupling limit, which states that the interaction between

the system and the bath is weak enough, enabling us to write ρ(t) = ρS (t)⊗ ρB(t) at any time.

Further let’s assume that τB, the correlation time of the bath, is so small that ρB(t) ≈ ρB(0)

for t � τB. Thus, since we are interested only in the state of the system, by tracing over the

environment we forget about those degrees of freedom. Again, to lighten the notation, we drop

the index I of the interaction picture, but we should be aware that the equations are in the

interaction picture. We have

ρS (t) = ρS (0)− i
∫ t

0
dt′TrB[V(t′),ρS (0)⊗ρB(0)]−

∫ t

0

∫ t′

0
dt′dt′′TrB[V(t′), [V(t′′),ρS (t′′)⊗ρB(0)]].

(3.14)

With the help of the representation we introduced earlier for V , we might simplify the integrand

appearing in the second term on the rhs, TrB[V(t′),ρS (0)⊗ρB(0)] =
∑

k[Ak(t),ρS (0)]
〈
Bk(t′)

〉
ρB(0).

Notice that by the assumption we made earlier about the correlation time of the bath, one might

drop the time dependence of Bk(t). Also notice that it is always possible to choose the Bk
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operators such that

〈Bk〉ρB = 0. (3.15)

This may be done e.g., by Bk→ Bk −〈Bk〉, and shifting the energy of the system accordingly to

compensate. Hence, the second term in the rhs is zero. Taking the time derivative of Eq. (3.14)

we obtain

ρ̇S (t) = −

∫ t

0
dt′TrB[V(t), [V(t′),ρS (t′)⊗ρB(0)]], (3.16)

which by replacing for V(t) gives

ρ̇S (t) =
∑
kk′

∫ t

0
dt′

(
Ak(t)ρS (t′)Ak′(t′)−Ak′(t′)Ak(t)ρS (t′)

)〈
Bk(t)Bk′(t′)

〉
+ h.c. (3.17)

This equation is much simpler than what we started from, yet still the integrand depends on

ρS (t′), which takes into account the memory effects of the dynamics. However, by Markov

assumption, which assumes that in the integrand the dynamics of the system depends only on its

current state, i.e., by replacing ρS (t′)→ ρS (t) in the rhs, we have

ρ̇S (t) =
∑
kk′

∫ t

0
dt′

(
Ak(t)ρS (t)Ak′(t′)−Ak′(t′)Ak(t)ρS (t)

)
Gk,k′(t, t′) + h.c. (3.18)

Here we have defined Gk,k′(t, t′) ≡
〈
Bk(t)Bk′(t′)

〉
. Next, by assuming that the correlation times

of the bath are very small, such that Gk,k′(t, t′) has a significant value only around t ≈ t′, we can

shift the upper limit of the integral to infinity

ρ̇S (t) =
∑
kk′

∫ ∞

0
dt′

(
Ak(t)ρS (t)Ak′(t′)−Ak′(t′)Ak(t)ρS (t)

)
Gk,k′(t, t′) + h.c. (3.19)

Since the bath is considered to be at stationary, (which means [HB,ρB(0)] = 0), the two time

correlation function depends only on the time difference, i.e., Gk,k′(t, t′) = Gk,k′(t− t′). Further,

by writing the system interaction operators in terms of the Hamiltonian eigenoperators. The

former is the Fourier transform of the latter, i.e., Ak(t) =
∑
ω exp(iωt)Ak(ω). Here

Ak(ω) =
∑

εp−εp′=ω

Πεp AkΠεp′ , (3.20)

with Πεp being the projector into the eigenstate of the energy with the corresponding eigenvalue

εp. It is easy to see that [H,Ak(ω)] = −ωAk(ω) and [H,A†k(ω)Ak′(ω)] = 0. By using the change
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of variable t′→ t− t′, we reach at

ρ̇S (t) =
∑
ωω′

∑
kk′

e−i(ω+ω′)t
(
Ak(ω)ρS (t)Ak′(ω′)−Ak′(ω′)Ak(ω)ρS (t)

)∫ ∞

0
dt′eiω′t′Gk,k′(t′) + h.c.

(3.21)

In the rotating wave approximation, where the time scales of the system, characterized by typical

values of (ω−ω′)−1 is very small, one might ignore the highly rotating terms, and only take into

account the terms for which ω = ω′. The master equation is hence

ρ̇S (t) =
∑
ω

∑
kk′

Jkk′(ω)
(
Ak(ω)ρS (t)A†k′(ω)−A†k′(ω)Ak(ω)ρS (t)

)
+ h.c., (3.22)

where we introduce the spectral density as the Fourier transform of the two times correlations of

the bath, i.e., Jkk′(ω) ≡
∞∫
0

dt′eiωt′Gk,k′(t′), and we used the fact that Ak(−ω) = A†k(ω). The spectral

density can be rewritten as its real and imaginary parts such that Jkk′(ω) = 1/2γkk′(ω) + iS kk′(ω).

With this one could write down the master equation as

ρ̇S (t) = −i[HLS ,ρS (t)] +D(ρS (t)), (3.23)

where the Lamb shift Hamiltonian HLS is given by

HLS =
∑
ω

∑
kk′

S kk′(ω)A†k′(ω)Ak(ω). (3.24)

and the dissipatorD is defined as

D(ρS (t)) =
∑
ω

∑
kk′
γkk′(ω)

(
Ak′(ω)ρS (t)A†k(ω)− 1

2

{
A†k′(ω)Ak(ω),ρS (t)

} )
. (3.25)

By diagonalising the γkk′ matrix, one may have a Lindbladian type master equation. The

Schrodinger picture master equation is simply found by adding HS to the Lamb shift Hamil-

tonian. Notice that [H,HLS ] = 0, which means that if the system is in a Gibbs state, only the

dissipation part of the master equation matters. Moreover, if the environment also has a Gibbs

state ρβ, then, the KMS condition for the bath correlation functions holds

〈
Bk(t)Bk′(0)

〉
=

1
Z

Tr
(
e−βHBeiHBtBke−iHBtBk′

)
=

1
Z

Tr
(
e−βHB Bk′e−βHBeiHBtBke−iHBteβHB

)
=

〈
Bk′(0)Bk(t− iβ)

〉
. (3.26)
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By substituting in the Fourier transform one finds that

γkk′(ω) = eβωγk′k(−ω). (3.27)

Further, a thermal state of the system ρS
β satisfies

ρS
β Ak(ω) = eβωAk(ω)ρS

β , (3.28)

ρS
β A†k(ω) = e−βωA†k(ω)ρS

β . (3.29)

Putting the last two equations into Eq. (3.25), one sees that the dissipator is also zero, proving

that the stationary state of the system in contact with a thermal reservoir is a Gibbs state.

Another interesting property of the master equation (3.23) is that, for a non-degenerate system

Hamiltonian, the populations of the density matrix have a closed dynamics. In other words, their

equations of motion does not depend on the off-diagonal terms of the density matrix. This is true

regardless of the stationary state of the environment, namely it does not need to be thermal. If

the non-degenerate Hamiltonian is HS =
∑

n εn |n〉 〈n|, then pn the population of nth level satisfies

the following

ṗn =
∑

m

(
W(n|m)pm−W(m|n)pn

)
, (3.30)

with the transition rates W(n|m) given by

W(n|m) =
∑
kk′
γkk′ (εk − εk′) 〈m|Ak |n〉 〈n|Ak′ |m〉 . (3.31)

Moreover, for a thermal bath, using (3.27), one can find the detailed balance criteria

W(m|n)e−βεn = W(n|m)e−βεm . (3.32)

Therefore, at stationary the populations are given by the Boltzmann distribution

pn(∞)
pm(∞)

=
e−βεn

e−βεm
. (3.33)

3.3 Bosonic heat baths

As a paradigmatic case to which we will refer frequently in the rest of this chapter, and the

future chapters, we address the bosonic heat bath. The environment consists of infinite number
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of non-interacting bosonic modes, or simply harmonic oscillators, with the Hamiltonian

HB =
∑
µ

ωµb†µbµ. (3.34)

Here bµ is the annihilation operator of the µth mode in the bath. The environment is prepared in

a thermal state. Moreover, the system, with the Hamiltonian HS is coupled to the bath through

the linear interaction Hamiltonian

HI = X⊗
∑
µ

gµ
(
b†µ + bµ

)
, (3.35)

with the operator X defined onHS , the Hilbert space of the system. This in general might have

an spectrum given by X =
∑
ω A(ω) with A(ω)s being the Hamiltonian eigenoperators. Further

we demand the ergodicity condition to hold, such that the system always relaxes to thermal

equilibrium, regardless of the initial state. This condition translates to

[O,A(ω)] = [A(ω),O] = 0 ∀ω ⇒ O ∝ I. (3.36)

Before finding the spectral density, we notice that the criteria of Eq. (3.15) is satisfied for the

bath operator B =
∑
µ gµ

(
b†µ + bµ

)
, since it is evaluated over a thermal state. In order to find the

two time correlation function
〈
B(t)B(0)

〉
, we first notice that the time evolved of B is given by

B(t) =
∑
µ

gµ
(
e+iωµtb†µ + e−iωµtbµ

)
. (3.37)

which by substituting in the two time correlation function over the thermal state yields

〈
B(t)B(0)

〉
=

∑
µ

g2
µ

(
e+iωµtNµ + e−iωµt(Nµ + 1)

)
. (3.38)

Here Nµ = [exp(βωµ)−1]−1 is the average number of occupation in µth mode, over the thermal

state. The one sided Fourier transform of the latter gives

γ(ω) = πg2
ω

(
(Nω + 1)Θ(ω)−N−ωΘ(−ω)

)
. (3.39)

The dissipator Eq. (3.25) will be therefore

D(ρS (t)) =
∑
ω>0

g2
ω

[
(Nω + 1)

(
A(ω)ρA†(ω)− 1

2

{
A†(ω)A(ω),ρS (t)

})
+ Nω

(
A†(ω)ρA(ω)− 1

2

{
A(ω)A†(ω),ρS (t)

}) ]
, (3.40)
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where we absorb the π coefficient into gω. The Lamb shift contribution is also given by

S (ω) =
∑
µ

g2
µ

N(ωµ) + 1
ω−ωµ

+
N(ωµ)
ω+ωµ


=

∑
µ

g2
µ

ωµ +ωcoth(βωµ)

ω2−ω2
µ

. (3.41)

This term will be responsible for a renormalization of the systems Hamiltonian. However, usu-

ally this renormalization is very small and might be neglected, due to the weak coupling limit

[71].

3.4 Two level system in a radiation field

As the simplest scenario we consider a two dimensional system under the dissipative dynamics

(3.40). Such a system could represent an atom whose dynamics could be studied effectively

represented in a two level subspace. The system Hamiltonian is given by

H2 = − 1
2ωσz = 1

2ω
(
|0〉 〈0| − |1〉 〈1|

)
, (3.42)

where the subscript 2 refers to the dimension of the system, σz being the Pauli matrix in z

direction, and |0〉 (|1〉) standing for the ground (excited) state of the system. In turn, the bosonic

environment might represent a radiation field, with each mode of the field associated with a

quantum harmonic oscillator mode. The interaction Hamiltonian, which takes into account the

system transitions from the ground state to the exited state, by absorbing an excitation from the

radiation field, and vice verse through emitting an excitation to the bath, is given by

HI = σx⊗
∑
µ

gµ(b†µ + bµ), (3.43)

with σx = |0〉 〈1|+ |1〉 〈0|, being the Pauli matrix in the x direction. It is very easy to check that

σx = σ+ +σ−, with σ+ = |1〉 〈0| are the eigenoperators of the system Hamiltonian

[H2 ,σ±] = ∓ωσ±. (3.44)

Therefore, by recognizing that there is only one operator with the positive eigenvalue, i.e.,

A(ω) = σ−, the master equation takes the form

ρ̇2(t) = g2
ω

[
(Nω + 1)

(
σ−ρ2σ+−

1
2

{
σ+σ−,ρ2

})
+ Nω

(
σ+ρ2σ−−

1
2

{
σ−σ+,ρ2

}) ]
. (3.45)
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Solving this simple equation gives the following time dependence for populations of the two

levels

p0(t) = p∞
0

(
1− e−γt

)
+ e−γt p0(0),

p1(t) = p∞
1

(
1− e−γt

)
+ e−γt p1(0).

(3.46)

Here we defined p∞
0

= (1+Nω)/(1+2Nω) and p∞
1

= Nω/(1+2Nω) to be stationary state populations, and

γ = g2
µ(1 + 2Nω). These diagonal terms are exactly the same in the Schrodinger picture. More-

over, for the off-diagonal terms, we have

p01(t) = p∗
10

(t) = e−1/2γt p01(0). (3.47)

or alternatively in the Schrodinger picture, one has to substitute p01(t)→ p01(t)e−iωt, and p10(t)→

p10(t)eiωt. Clearly, at stationary state, i.e., as t → ∞, the coherences will vanish, leaving the

density matrix diagonal. The corresponding stationary state populations are simply those of

a two level system at thermal equilibrium, with the same temperature as the bath. This is so

regardless of the initial preparation of the two level atom.

3.5 Damped harmonic oscillator

Another interesting model that we address is a damped harmonic oscillator (HO). The HO might

represent a cavity mode, while the bosonic bath represents the radiation field, just like the pre-

vious section. The free Hamiltonian of the HO is Hho = ωa†a, and its interaction with the bath

is realized by

HI = (a + a†)
∑
µ

gµ
(
bµ + b†µ

)
. (3.48)

Neglecting the Lamb shift Hamiltonian, the master equation in the Schrodinger picture is

ρ̇ho = −i[Hho,ρho] +γ(ω)
(
aρhoa†− 1

2

{
a†a,ρho

})
+γ(−ω)

(
a†ρhoa− 1

2

{
aa†,ρho

})
, (3.49)

where we have defined γ0 = g2
ω, γ(ω) = γ0(Nω + 1) and γ(−ω) = γ0Nω to simplify our notation.

The stationary state of the HO is given by the Boltzmann distribution, since its energy spectrum

is non-degenerate. The dynamics of the density matrix highly depends on the initial prepara-

tion, and in general one might not be able to address it, due to the infinite dimensional Hilbert

space. Nevertheless, since the whole dynamic is quadratic, it preserves Gaussianity. So, we

limit ourselves to Gaussian preparations. For such states, it is more convenient to work with the
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covariance matrix σ, knowing which is equivalent to knowing the density matrix of the system

σ =


〈
x2

〉
1/2

〈
xp + px

〉
1/2

〈
xp + px

〉 〈
p2

〉
 , (3.50)

where the quadratures x and p are Hermitian operators given by

x = 1/
√

2 (a†+ a), p = i/
√

2 (a†−a), (3.51)

a = 1/
√

2 (x + ip), a† = 1/
√

2 (x− ip). (3.52)

For higher order moments, the following conversion relation between the two representations

might be very useful

a2 = 1/2(x2− p2 + ixp + ipx), a†a = 1/2(x2 + p2−1),

x2 = 1/2(a2 + a† 2 + aa†+ a†a), p2 = −1/2(a2 + a† 2−aa†−a†a),

xp = i/2(−a2 + a† 2 + aa†−a†a), px = i/2(−a2 + a† 2−aa†+ a†a). (3.53)

In order to evaluate the elements of σ, we need to know how second order operators like{
a2,a† 2,aa†,a†a

}
depend on time. To this end we remind that the Heisenberg picture equation

of motion for any operator OH defined onHho is

dOH

dt
= i[Hho,OH ] +γ(ω)

(
a†OH a− 1

2

{
a†a,OH

})
+γ(−ω)

(
aOH a†− 1

2

{
aa†,OH

})
. (3.54)

Specifically for the creation and annihilation operators one might find

aH (t) = e(−iω−γ0/2)ta, a2
H

(t) = e(−i2ω−γ0)ta2

a†
H

(t) = e(iω−γ0/2)ta†, a† 2
H

(t) = e(i2ω−γ0)ta† 2

a†aH (t) = e−γ0ta†a + N(1− e−γ0t),

aa†
H

(t) = e−γ0taa†+ (N + 1)(1− e−γ0t). (3.55)
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From here one can easily find the time evolution of the second moments of the quadratures,

namely

〈
x2(t)

〉
= 1

2

(〈
a2

H
(t)

〉
+

〈
a† 2

H
(t)

〉
+

〈
a†aH (t)

〉
+

〈
aa†

H
(t)

〉)
= e−γ0t

(
cos2(ωt)x2 + sin2(ωt)p2 +

sin(2ωt)
2

(xp + px)
)
+ (Nω + 1

2 )(1− e−γ0t),〈
p2(t)

〉
= 1

2

(
−
〈
a2

H
(t)

〉
−

〈
a† 2

H
(t)

〉
+

〈
a†aH (t)

〉
+

〈
aa†

H
(t)

〉)
= e−γ0t

(
sin2(ωt)x2 + cos2(ωt)p2−

sin(2ωt)
2

(xp + px)
)
+ (Nω + 1

2 )(1− e−γ0t),

1
2
〈
px(t) + xp(t)

〉
= −i

2

(〈
a2

H
(t)

〉
−

〈
a† 2

H
(t)

〉)
=

e−γ0t

2

(
cos(2ωt)

〈
xp + px

〉
− sin(2ωt)

(〈
x2

〉
−

〈
p2

〉))
. (3.56)

Again, from these sets of equation we revive the fact that at stationary state, i.e., t →∞, the

off-diagonal terms vanish, while
〈
x2(∞)

〉
=

〈
p2(∞)

〉
= Nω + 1/2.

3.6 Coupled harmonic oscillators in a common bath

Here we address a system consisting of two interacting HO which are placed in a common bath.

The Hamiltonian of the system is

H = ω1a†1a1 +ω2a†2a2− J
(
a†1a2 + a1a†2

)
+

U
2

(
a†21 a2

1 + a†22 a2
2

)
, (3.57)

the first two terms refer to the free Hamiltonians of each oscillator, the third term takes into

account the role of tunneling, and finally the last term is responsible for the self interaction in

each mode. In what follows we let ω1 = 1, and allow for a detuning between the two frequencies

∆ = ω2−ω1. At thermal equilibrium, the system is described by the following density matrix

ρ(β) =
e−βH

Z
, with the partition functionZ = Tr(e−βH). (3.58)

First of all, let us focus on the tunneling dominated regime. With U = 0, the Hamiltonian is

quadratic, and we may benefit from the Gaussian stationary state. Very similar to the single HO

of section 3.5, we define the quadratures associated with each mode as follows

x j = 1/
√

2 (a j + a†j), and p j = i/
√

2 (a†j −a j). (3.59)

The 4× 4 covariance matrix, has the elements σlm = 1
2 〈RlRm + RmRl〉 − 〈Rl〉 〈Rm〉, where the Rl

and Rm are chosen among any pair of the quadratures Rl,Rm ∈ {x1, x2, p1, p2}. One can show that
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the stationary state covariance matrix is as follows

σ(β) =
1

2N


K+ 2J sinh(C) 0 0

2J sinh(C) K− 0 0

0 0 K+ 2J sinh(C)

0 0 2J sinh(C) K−


, (3.60)

withN = A
(
cosh(B)− cosh(C)

)
, K± = Asinh(B)±∆sinh(C), A =

√
∆2 + 4J2 , B = 1

2β(2+∆), and

C = 1
2β
√
∆2 + 4J2 . Furthermore, once the two oscillators are at resonance, i.e., if ∆ = 0, this

takes the more compact form

σ
∆=0(β) =

1
2
[
cosh(β)− cosh(Jβ)

]


sinh(β) sinh(Jβ) 0 0

sinh(Jβ) sinh(β) 0 0

0 0 sinh(β) sinh(Jβ)

0 0 sinh(Jβ) sinh(β)


. (3.61)

Proof of Eq. (3.60)— One can easily bring the Hamiltonian of the coupled oscillators (with

U = 0) in the diagonal form by the mode mixing transformation. First we define the new ladder

operators bi to satisfy the following a1

a2

 =

 cosφ sinφ

−sinφ cosφ


 b1

b2

 , or equivalently

 b1

b2

 =

 cosφ −sinφ

sinφ cosφ


 a1

a2

 . (3.62)

These new operators inherit the same commutation relations as a js. By writing down the Hamil-

tonian in terms of the new ladder operators, and demanding the coefficients of the off diagonal

terms to be zero. This leads to φ = 1
2 arctan2J/∆ and

H =Ω1b†1b1 +Ω2b†2b2, with Ωi = 1 +

(
∆∓

√
∆2 + (2J)2

)
/2. (3.63)

with the minus sign for i = 1, and plus sign for i = 2. Once at thermal equilibrium, we can find

the expectation value of the quadratic ladder operators

〈
b†1b1

〉
=

〈
b1b†1

〉
−1 = N1,

〈
b†2b2

〉
=

〈
b2b†2

〉
−1 = N2, with Ni = (eΩ

i/T −1)−1, (3.64)

while all other quadratic operators have zero expectation value. In order to find the covariance

matrix elements we need to know the expression for all the elements of the matrix in terms of
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those appearing in Eq. (3.64). This can be done with the help of Eq. (3.62)

〈
x2

1

〉
=

〈
p2

1

〉
= 1/2 +

〈
a†1a1

〉
= 1/2 + cos2φN1 + sin2φN2

= (1 + N1 + N2)/2 + cos2φ(N1−N2)/2,〈
x2

2

〉
=

〈
p2

2

〉
= 1/2 +

〈
a†2a2

〉
= 1/2 + cos2φN2 + sin2φN1

= (1 + N1 + N2)/2− cos2φ(N1−N2)/2,

〈x1x2〉 =
〈
p1 p2

〉
=

〈
a†1a2 + a1a†2

〉
/2 = sin2φ(N2−N1)/2, (3.65)

while any other element of the covariance matrix vanishes. Finally, this might be simplified to

Eq. (3.60) by using

1 + N1 + N2 =
sinh(Ω

2+Ω1

2T )

cosh(Ω
2+Ω1

2T )− cosh(Ω
2−Ω1

2T )
, N2−N1 =

sinh(Ω
2−Ω1

2T )

cosh(Ω
2+Ω1

2T )− cosh(Ω
2−Ω1

2T )
,

cos2φ = ∆/
√
∆2 + 4J2 , sin2φ = 2J/

√
∆2 + 4J2

♣ (3.66)

In the next chapter we will use this covariance matrix in order to address the estimation of

temperature as well as the interaction strength J.



Chapter 4

Quantum metrolgy at thermal
equilibrium

This chapter is dedicated to our results regarding parameter estimation in thermal systems. By

this, we mean that the parameter drivings happen adiabatically, keeping the thermal feature of

the system. In general, on account of the structure of thermal states, the description of the

problem is possible merely with the help of a small set of macroscopic parameters such as

temperature, chemical potentials, and conserved quantities.

We classify metrology in thermal systems in two distinct categories:

1. Estimation of temperature, or thermometry.

2. Estimation of Hamiltonian couplings.

As we shall discuss below, thermometry is simpler to formulate and allows for universal results

that have no dependence whatsoever on a specific model. This is so, because temperature enters

as a global parameter in the expression of thermal states. On the contrary, the estimation of

Hamiltonian couplings might become highly non trivial due to the non commutativity of the dif-

ferent terms in the Hamiltonian. In Section 4.1 we briefly review some fundamental definitions

and properties of thermal systems. Specifically, Section 4.1.1 explains the difference of the two

categories mentioned above.

The rest of this chapter is devoted to present our new results, which are mainly focused on

thermometry. In Section 4.2 we investigate the ultimate temperature precision with individual

quantum probes. We show that the best quantum thermometer corresponds to a two-level system

with a single ground state and a highly degenerate excited state. Besides, we show that increas-

ing the degeneracy always improves the thermometry precision. Such type of spectrum can be

34
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easily implemented with e.g., alkaline atoms, which in the absence of an external magnetic field

have a manifold of excited Zeeman hyperfine energy levels.

While for individual quantum probes, any thermometer cannot outperform the two-level system

with a highly degenerate excited state, multipartite probes offers novel possibilities for thermom-

etry. In order to examine this possibility, in Section 4.3 we investigate temperature sensitivity

of a bipartite system, consisting of two coupled harmonic oscillators. The interaction between

the two oscillators creates quantum correlations even at finite temperatures. We observe that,

the presence of correlations appreciably enhances the thermometry precision, compared to two

uncoupled probes. This enhanced precision is, however, achieved only by performing a global

measurement on both oscillators, which might not be easy to implement in practice. Even so,

we propose local measurements, that are more feasible experimentally, yet they perform close to

optimal. We observe that quantum correlations boost the thermometry precision obtained even

with local measurements.

Thermometry aside, in Section 4.3.2 we study the estimation of the interaction strength itself.

Particularly, in the same system of coupled harmonic oscillators, we ask ourselves about the

limitations on estimation of the coupling between the two modes. We observe that by increasing

the temperature, the estimation gets less precise. In addition, unlike thermometry, local schemes

fail to perform close to the global (optimal) ones. Finally, in Section 4.4 we conclude.

4.1 The canonical distribution

By stating that a (generic) system is at thermal equilibrium, we mean its density matrix is de-

scribed by a Gibbs state. More precisely, if the Hamiltonian of the system is given by H, then

the thermal state of the system would be

ρT =
e−H/kBT

Z
, (4.1)

with kB being the Boltzmann constant, T the temperature of the system, and Z = Tr[e−H/kBT ]

its the partition function. Throughout this thesis we set kB = h̄ = 1, unless otherwise mentioned.

Moreover, we regularly switch between T and the inverse temperature β= 1/T to make notations

simpler. The (Helmholtz) free energy is given

A = −T log(Z), (4.2)
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which is a very important quantity, specially in classical statistical mechanics. In fact the statis-

tics (the expectation values and the uncertainties) about different physical quantities (observ-

ables) can be related to first and second derivatives of the free energy. We will discuss this in

section 4.1.1 for classical systems, and try to find the non-trivial quantum counterpart.

4.1.1 Adiabatic driving and static susceptibilities

As we already mentioned, here we consider all parameters of interest change adiabatically, so

that the system is always described by a Gibbs state. In particular, if the Hamiltonian of the

system can be written as H = ξ1H1 + ξ2H2, then the driving parameters that allow to move

within the Gibbs space correspond either to the temperature T or to the parameters
{
ξ1, ξ2

}
.

The temperature driving is simpler to study, because of the Gibbs structure of the state, and due

to the fact that T appears as a global factor in the exponent of thermal states. In such case, one

can explore χB,T , the susceptibility of an arbitrary observable B associated to the temperature

driving. This is defined as

χB,T = ∂T 〈B〉 = ∂T Tr[B ρT ]. (4.3)

Traditionally, the temperature susceptibility (i.e., the susceptibility associated with temperature

driving) of the Hamiltonian observable is called the heat capacity CT ≡ χH,T = ∂T 〈H〉. One can

easily confirm that the heat capacity is proportional to the variance of the Hamiltonian. More

generally, for any observable B, the temperature susceptibility is nothing but its correlation with

the Hamiltonian H. The proof is not complicated, one needs to substitute the thermal state (4.1)

in (4.3), yielding

χB,T = ∂T Tr[BZ−1e−H/T ]

= Tr[B ∂T (Z−1e−H/T )]

= β2 Tr[B (H−〈H〉) (Z−1e−H/T )]

= β2 Corr(B,H)ρT , (4.4)

where we use ∂T ρT = β2 (
H−〈H〉

)
ρT , and the standard definition of correlation, Corr(◦,•)σ ≡

1
2 Tr[(◦ • + • ◦)σ] − Tr[◦σ]Tr[•σ]. Straightforwardly, substituting B → H, leads to the well-

known expression for heat capacity CT = β2 Var(H)ρT .

Before proceeding further, we remind that since H commutes with the density matrix, one can

rewrite the derivative of the density matrix in the following symmetric shape

∂T ρT =
β2

2

((
H−〈H〉

)
ρT +ρT

(
H−〈H〉

))
. (4.5)
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As a result and by virtue of Eq. (2.8), the symmetric logarithmic derivative associated to tem-

perature is simply

ΛT =
β2

2
(
H−〈H〉

)
. (4.6)

When it turns to Hamiltonian coupling estimation i.e., ξ1 and ξ2, to find analytical expressions

for optimal observables become very involved and, generally, model dependent. This is so

because [H1,H2] , 0 in general. However, there exist scenarios in which one is still able to find

analytic solutions. We will address one of these occasions in Section 4.3.2, in the estimation of

tunneling rate between two harmonic oscillators. Another occurrence which might be addressed

with simple mathematics is when [H1,H2] = 0. Specifically, we explore parameter estimation

under this circumstance in many body systems as presented in Section 5.5.

4.2 Ultimate precision of temperature estimation

In standard thermometry, a (sufficiently small) thermometer is simply allowed to equilibrate

with the sample to be probed, so that the temperature of the latter is inferred from the state of

the probe. In a quantum scenario, the same procedure can be applied. A first approximation

to the sample temperature can be obtained by performing a suitable measurement on the steady

state of the thermalized probe. As we know from Chapter 2, if a large number m of such

independent experiments is carried out, one can refine the estimate T of the sample temperature.

Its corresponding uncertainty δT is bounded from below by the quantum Fisher information FT ,

via the quantum Cramér-Rao inequality. We will then refer to FT as optimal thermal sensitivity

and consider it as a benchmark for maximum quality of estimation in the following analysis.

We write the Hamiltonian of our thermometer as H =
∑

n εn |εn〉 〈εn|. A thermalization process

leads to stationary states of the Gibbs form, as given by Eq. (4.1). The QFI for such a state is

FT = Tr [Λ2
Tρ

T ]

= β4 Var(H)ρT

= β2 CT , (4.7)

where in the last line we enter the heat capacity into the equation through CT = β2 Var(H)ρT .

Interestingly, in the single shot scenario of ν = 1, one can combine Eqs. (2.6) and (4.7) to get

the thermodynamic uncertainty relation δ2T Var(H) ≥ T 2. Equivalently, the signal-to-noise ratio

T/δT is upper-bounded as (T/δT )2 ≤ C(T ) [72]. Note as well that, by the virtue of Eq. (4.6), the

most informative measurement for thermometry is just a projection onto the energy eigenbasis.
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In the light of Eq. (4.7), the maximization of the thermal sensitivity of a probe translates into

finding the energy spectrum with the largest possible energy variance at thermal equilibrium,

or equivalently, the N-dimensional probe with largest heat capacity. The heat capacity of the

sample must be anyway much larger than that of the probe so as to minimize any disturbance

arising from the estimation procedure.

For a general N-level probe, the energy variance writes as

Var(H)ρT = Tr[H2 ρT ]−Tr[H ρT ]2 =

N∑
k=0

pkε
2
k −

( N∑
k=0

pkεk
)2

=Z−1
∑

k

ε̄2
k e−ε̄k/T (4.8)

with the populations defined as pk = e−βεk
Z

and ε̄k ≡ εk − 〈H〉. The variance is bounded. In order

to identify its maximum, we impose ∂Var(H)/∂ε̄l = 0, which should hold for any l, resulting a

set of N transcendental equations

0 = −βpl

N∑
k=1

(δkl− pk)ε2
k + 2εl pl + 2

( N∑
k=1

pkεk
)(
−βpl

N∑
k=1

(δkl− pk)εk + pl
)

= ε2
l −

〈
H2

〉
−2

εl

β
−2 〈H〉

(
εl−〈H〉−

1
β

)
= ε2

l −2
(1
β

+ 〈H〉
)
εl + 2 〈H〉2−

〈
H2

〉
+

2
β
〈H〉 , (4.9)

By subtracting the lth equation from the l′th, we reach at

(εl− εl′)[εl− εl′ −2(〈H〉+ T )] = 0. (4.10)

That is, at the extremum points of Var(H), any two energy eigenvalues εl and εl′ must be either

equal, or sum up to a fixed value. This may only happen if the energy spectrum is that of an

effective two-level atom with energies {ε−, ε+} and some ground and excited-state degeneracies

given by N0 and N−N0, respectively. Without loss of generality, we may always shift the energy

spectrum so that ε− = 0, wherefore, the optimal gap becomes x∗
N,N0
≡ Ω∗/T = 2(〈H〉/T + 1) > 2,

since 〈H〉 > 0. By virtue of this definition, it follows that

e
x∗

N,N0 =
N −N0

N0

x∗
N,N0

+ 2

x∗
N,N0
−2

. (4.11)

Further, we note the expression for the energy variance reads as follows

Var(H(xN,N0
)) = T 2x2

N,N0

N0(N −N0)exN,N0(
(N −N0) + N0exN,N0

)2 . (4.12)
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By exploiting Eq. (4.12) to the optimal frequency, one might compare the energy variance of

two configurations with two different ground state degeneracies, namely N0 and N0−1, leading

to

Var(H(x∗
N,N0−1

))−Var(H(x∗
N,N0

)) =
1
4

(
x∗

N,N0−1
− x∗

N,N0

)
> 0. (4.13)

The last inequality is guaranteed by virtue of Eq. (4.11). Therefore, the maximum sensitivity is

obtained from an effective two-level system with N0 = 1 the degeneracy of the ground state, and

N −1 the degeneracy of the excited states at the optimal gap, which satisfies (4.11).

At last let us show that the configuration we found here is indeed maximizing the energy vari-

ance, and does not correspond to a minimum or a saddle point. To this end, one should calculate

the Hessian matrix Hi j = ∂εi∂ε jVar(H). If it is negative definite, the extremum point that we

found is indeed the maximum of the Hamiltonian variance. The diagonal elements of H are

given by

Hii =

e−εi/T

TZ

2 2(〈H2
〉
−3 〈H〉2−4T 〈H〉−T 2

)
+ 8(T + 〈H〉)εi−4ε2

i

+Zeεi/T
(
2T 2 + 2 〈H〉 (2T + 〈H〉)−

〈
H2

〉
−2(2T + 〈H〉)εi

)
+ ε2

i

, (4.14)

while the off-diagonal terms read as

Hi j =
e−(εi+ε j)/T

T 2Z2

(
4 〈H〉 (εi + ε j−2T ) + (εi + ε j)(4T − εi− ε j) + 2

〈
H2

〉
−6 〈H〉2−2T 2

)
. (4.15)

The symmetry arising from N − 1 degeneracy of the excited states simplifies the rest of the

analysis. On this account, the Hessian matrix has four different types of elements, two of which

are diagonal, corresponding to a = H11, and b = Hii ∀i , 1, and two off-diagonals, c = H1i =

Hi1,∀i, 1, and d = Hi j = H ji, ∀i, j, 1. Further, notice thatZ= 2x∗/(2+ x∗), 〈H〉= (x∗−2)T/2,〈
H2

〉
= x∗(x∗ − 2)T 2/2, and ex∗ = ∗(N − 1)(x∗ + 2)/ ∗ (x∗ − 2). Putting everything together one

obtains

a = −
1
8

(x∗−4),

b = −
(x∗−2)(4N + x∗−6)

8(N −1)2 ,

c =
(x∗2−4)2

8(N −1)
,

d = −
(x∗−2)2

8(N −1)2 . (4.16)

Whence the eigenvalues of the Hessian matrix are λ1 = 0, λ2 = −(x∗2 − 4)/8(N − 1), and λ3 =

−(x∗−2)/2(N −1), with λ3 being N −2 folded degenerate. The fact that one of the eigenvalues
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is zero, is a result of Var(H) being invariant under a constant energy-shift of all levels. Moreover,

as it follows from (4.11), x∗ > 2, which makes both λ2 and λ3 negative definite. That being the

case, the configuration that we obtained earlier, is indeed maximizing the energy variance.

For an N-level system, by adapting the optimal N0 = 1 structure, Eq. (4.12) suggests that, the

optimal QFI reads as (actually one still needs to optimize over the energy gap, we rather refer to

the optimality of the degeneracies)

F N
T =

(N −1)eε/T

((N −1) + eε/T )2

ε2

T 4 . (4.17)

4.2.1 Thermometry with a quantum harmonic oscillator

Another interesting example is a harmonic oscillator. The Hamiltonian is given by Hho =∑∞
n=1 nεn |n〉 〈n|, where we have considered the ground state energy to be zero. Once at ther-

mal equilibrium at temperature T , the average energy is given by

〈Hho〉 =
e−ε/T

1− e−ε/T
ε. (4.18)

By taking the derivative of the average energy with respect to temperature one may find the

energy variance to be

Var(Hho) =
e−ε/T

(1− e−ε/T )2 ε
2, (4.19)

leading to a QFI given by

F ho
T =

e−ε/T

(1− e−ε/T )2

ε2

T 4 . (4.20)

All the dashed lines in Figure 4.1 shows the temperature sensitivity of the harmonic oscillator.

In the left panel, we see that a h.o. with a specific frequency always over performs a qubit with

the same energy gap. As already mentioned in the previous section, for small temperatures the

qubit and the h.o. are equivalent in a thermometric point of view. In fact one can see this through

the their QFIs as well. Concretely, for T/ε � 1, we have F ho
T u F

2
T u

ε2

T 4 e−ε/T .
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Figure 4.1: Left: (Solid) The temperature sensitivity, FT , of a two-level atom plotted versus
temperature for different values of energy gap. At small temperatures, decreasing the energy
gap improves appreciably the precision of thermometry. As temperature decreases, however, a
small energy gap turns to a disadvantage. What is more, for a fixed energy gap, the sensitivity
drops exponentially to zero as T → 0, making it very challenging to estimate low temperatures.
(Dashed) The same for a harmonic oscillator. Although it over performs the qubit predomi-
nantly, for small temperatures they have exactly the same operation quality. Right: (Solid) The
temperature sensitivity of optimal N-level systems, with N ∈

{
2,4,6,8

}
, and a fixed energy gap

ε = 1. (Dashed) The performance of a harmonic oscillator at the same frequency. (Inset) The
normalized sensitivity of a qubit (Dashed) is compared to that of an N = 8 level system (Solid).
It is evident that a two-level system performs close to its maximum value for a wider range of

temperatures.

4.2.2 Analysis: Temperature sensitivity of multi-level systems and harmonic os-
cillators

Here we analyze the sensitivity of our optimal N-level system. To begin with, we look at a

qubit’s temperature sensitivity. Substituting N→ 2 into Eq. (4.17) yields

F 2
T =

eε/T

(1 + eε/T )2

ε2

T 4 . (4.21)

The temperature sensitivity of a qubit as a function of temperature is depicted in the left panel of

Figure 4.1, for different energy gaps ε between the ground and excited state. We also illustrate

the performance of a harmonic oscillator with frequency Ω = ε in the same picture. The first

observation is that, for small temperatures, by decreasing the energy gap ε, the precision of the

qubit improves. This can be easily explained by taking into account that at small temperatures

thermal fluctuations are suppressed. Consequently, a system with a large energy gap remains

in its ground sate, insensitive to temperature. In contrast, by diminishing the energy gap, it is

more likely for the excited state to become occupied, making the qubit more sensitive to the

temperature.

Second, at small temperatures, the qubit performs equivalent to a quantum harmonic oscillator

with the same frequency. Again, this can be understood by noticing that at small temperatures

and due to the small thermal fluctuations, only the first excited states of the h.o. is accessible.
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Because of this, the h.o. might be thought of as an effective two-level system. Rigorously, for

T/ε � 1, Eqs. (4.21) and (4.20) suggest that F ho
T u F

2
T u

ε2

T 4 e−ε/T .

Beyond the scope of a qubit, in the right panel of Figure 4.1, we illustrate the thermal sensitivity

of optimal multi level systems for different N. Evidently increasing N raises the temperature

sensitivity albeit at the expense of reducing the temperature range within which it operates ef-

ficiently. One last remark regarding Figure 4.1: For very small temperatures, all of the sensi-

tivities drop drastically. In fact it can be seen from Eq. (4.17) that for a finite N, even the best

thermometer fails to estimate small temperatures with an exponential speed.

4.3 Metrology with bipartite systems: The role of interaction

So far we have identified the optimal individual thermometers. Here we put a step forward, and

examine the role of interaction among constituents of a system in metrology. Our main motiva-

tion for investigating the effect of interaction is as follows: Although the individual probes have

a unique Hamiltonian, whose structure might not be suitable for thermometry, the interaction

among them can be manipulated in a favorable manner, so as to make them better thermome-

ters.

In this section we address the simplest instance of a bipartite system, consisting of only two

(interacting) parties. Systems with more parties, namely the many-body ones with short range

interactions, are tackled exhaustively in the Chapter 5. The situation with long range interaction

is beyond the scope of this thesis and it is subject for future works.

The bipartite system that we case study here is the coupled HOs of Section 3.6. For easiness we

rewrite the Hamiltonian again

H = ωa†1a1 + (ω+∆)a†2a2− J
(
a†1a2 + a1a†2

)
,

where we have ignore the self interaction term, and for simplicity we set ω = 1 in what follows.

Firstly we concentrate on thermometry, and then, for completeness, we address the estimation of

the interaction strength J. We bear in mind that interaction between the two oscillators creates

quantum correlations amongst them even if the full system is at thermal equilibrium. That being

the case, the QFI is not additive. In other words the QFI of the bipartite system is not merely

equal to the sum of the QFI of each individual HO. Nonetheless, thanks to such correlations, the

thermometry precision improves noticeably, as we will see below in details.
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Figure 4.2: Left: FT is plotted vs temperature. The solid lines belong to the resonance scenario
with ∆= 0, while the dashed curves represent a model with ∆= 0.2. It is evident that, for having
a better precision, one should keep the two oscillators at resonance. Moreover, we observe that
by increasing the interaction strength between the two modes the precision boosts significantly.
Right: We picture the performance of a HO with frequency ε = ω (solid black), and compare
it with the performance of two other HOs, one with the frequency ε = Ω1 (solid gray), and the

other one with ε =Ω2 (dashed gray). In this panel we set ∆ = 0, and ω = 1 in both panels.

4.3.1 Thermometry precision

Since the system is at thermal equilibrium the QFI associated with the temperature is given by

the energy variance. Notice that if we diagonalized the Hamiltonian, as we did in Section 3.6,

the variance of the full Hamiltonian in such a non-local basis can be written as

Var(H) = Var(Ω1b†1b1) + Var(Ω2b†2b2) =Ω2 (N1[N1 + 1]) +Ω2 (N2[N2 + 1])

=
1
4


(
Ω1

sinhβΩ1

)2

+

(
Ω2

sinhβΩ2

)2
 . (4.22)

Here Ω1 = 1 +

(
∆−

√
∆2 + (2J)2

)
/2 and Ω2 = 1 +

(
∆+

√
∆2 + (2J)2

)
/2. Besides the new basis

is connected to the old basis with a Bogoliobov transformation b1

b2

 =

 cosφ −sinφ

sinφ cosφ


 a1

a2

 ,
with φ = 1

2 arctan2J/∆. The QFI is obtained from FT = Var(H)/T 4.

In the left panel of Figure 4.2 we plot FT versus temperature and for different values of detuning

and coupling strength. We first notice that the detuning has a negative effect on the precision.

Second, we observe that, increasing the interaction strength boosts the temperature estimation

significantly. We deduce that, correlations enhance thermometry precision at low temperatures,

a regime that is normally very difficult to estimate. This is easier to explain with the help of the

normal mode frequencies. As a result of the interaction J, the normal frequency Ω1 decreases,

hence making it a much more effective thermometer. On the other hand, the other normal mode

frequency, Ω2, increases with J, hence, it effectively gets a worse thermometer. Nevertheless,



44

the improvement attained from decreasing Ω1 is so big that it not only compensates for Ω2,

it makes the total system a much more sensitive thermometer as well. See the right panel of

Figure 4.2.

4.3.1.1 Local schemes for thermometry

The enhancement in thermometry precision, due to the correlations, is accomplished entirely just

by means of global measurements, i.e., those performed on the full Hamiltonian of the bipartite

system. Such a global measurement might not be experimentally viable. For this reason, one has

to think about local measurements as an inescapable alternative, and explore their sensitivity. Do

local measurements also benefit from the enhanced precision offered by quantum correlations?

Below, our results reveal that this is surely the case.

We examine the local number operator measurement in either of the wells. This, for the mode

j, is given by
〈
a†

j
a j

〉
=

〈
x2

j

〉
− 1

2 . The error associated to this operator is quantified by the error-

propagation formula [61],

δ2(a†
j
a j ;T ) =

∣∣∣∣∂T
〈
a†

j
a j

〉∣∣∣∣2
Var(a†j a j)

≡ F −1(a†
j
a j ;T ). (4.23)

Here we define F (Ô;T ) to be the sensitivity of the observable Ô to the parameter T . Without

any difficulty, it can be checked out that, for any observable, this quantity is upper bounded by

the QFI associated to T , i.e., F (Ô;T ) ≤ F . This is obtained from Eq. (4.23), by changing the

order of derivative and trace, using the definition of the SLD, followed by the Cauchy-Schwartz

inequality.

The sensitivity of
〈
a†

j
a j

〉
can be evaluated analytically for both wells, but they are cumbersome

and we don’t present them here. Figure 4.3 pictures the precision of local measurements. Inter-

estingly, they have an overall behavior similar to the optimal one. Namely, the precision boosts

by increasing the tunneling rate. Additionally, for comparison, we also depict the QFI per num-

ber of oscillators (i.e., FT/2). It is seen that for vanishing detuning, F (a†
j
a j ;T ) ≈ FT/2. Yet,

by increasing the detuning, not only both F (a†
j
a j ;T ) and FT start to decrease, but also the local

measurements happen to behave differently. Evidently, for the first mode i.e., the one with a

smaller frequency we have F (a†
1
a1 ;T ) > FT/2, while for the second mode the direction of the

inequality is reversed.

4.3.2 Estimation of the tunneling rate J

Putting thermometry aside for a moment, here we aim to explore the limitations on the estima-

tion of the tunneling rate, assuming we know the temperature of the sample accurately. In order
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Figure 4.3: (Solid thick lines) The sensitivity of local energy measurement a†
1
a1 , as given

by F (a†
1
a1 ;T ), plotted versus temperature. (Solid thin lines), the same for a†

2
a2 . Just like

the optimal non-local global energy, the correlation among the two oscillators enhances the
precision of local measurements as well. For comparison we benchmark the performance of
each local measurement with the optimal precision per oscillator FT /2 (Dashed lines). The left
panel depicts the case ∆ = 0, so that the performance of the two modes are equal. The right
panel corresponds to ∆ = 0.2. In such a case, the frequencies of the normal modes are different

causing one oscillator to increase its performance while the other one to decrease it.

to quantify FJ , the ultimate precision on J estimation, one needs to identify the associated SLD:

ΛJ . Let us repeat what we mentioned earlier in Section 4.1.1, that classically, the best estimator

for J is built up upon the conjugate observable to it, i.e., A = ∂JH = −(a†
1
a2 +a1a†

2
). Specifically,

the susceptibility ∂J 〈A〉 is considered to quantify the linear response of the system to small per-

turbations in J. Despite that, in quantum mechanics the observable A as defined here, does not

characterize the most informative observable to perturbations in J. This is rather determined by

the SLD.

Unlike A, which we discover trivially by taking the derivative of H with respect to J, finding the

SLD is not as effortless. The complexity is caused by the fact that [∂JH,H] , 0. Notice that in

this model the non-commutativity arises from the detuning ∆, while for ∆= 0 we have [H0,H1] =

0, and therefore the SLD is ΛJ(∆ = 0) = −β(A− 〈A〉) [73]. Typically, the non-commutativity

does not allow for such an elegant and straightforward relation between the SLD and A. Having

said that, the model under study turns out to be immensely exceptional, in some way bridging

between non-commutative and commutative models.

Rigorously, by using the results of [74, 75] one can identify the SLD for non-zero detuning to

be

ΛJ(∆) = β
tanh( ∆2T )

∆
2T

(
a†

1
a2 + a1a†

2
−

〈
a†

1
a2 + a1a†

2

〉)
= −β

tanh( ∆2T )
∆

2T

(A−〈A〉). (4.24)
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Figure 4.4: Left: Local estimation of the tunneling rate J. The (solid thin) lines represent
precision of a†

1
a1 measurement, while the (solid thick) lines are obtained by measuring a†

2
a2 .

We benchmark such local measurements against the QFI per oscillator F (J)/2 (dashed lines).
For small values of J, local schemes absolutely fail to estimate it. The temperature is set to
T = 0.1. Right: The same as left, but with T = 0.2. We observe that the precision of all

measurements, being it local or global, is decreased.

The additional coefficient
tanh( ∆2T )

∆
2T

, which appears in Eq. (4.24), is arising from the non-

commutativity. Actually, such contribution is the simplest that can arise from non-

commutativity. We recall that, this is true only for a thermal state. Out of equilibrium, the

effects of non-commutativity are larger and in such a case, the SLD is not even proportional to

−β(A−〈A〉). In Section 5.8 we analyze a system with more involved non-commutativity, and in

Section 6.2 we analyze the “out of equilibrium” scenario in detail.

Concentrating our efforts on the ΛJ , we obtain that for a thermal state, the QFI is given by

FJ(∆) = Tr
(
Λ

2
J(∆)ρ

)
=

 tanh( ∆2T )
∆

2T

2

β2Var(A2). (4.25)

The term in parenthesis is a monotonically decreasing function of ∆/2T , with a maximum value

equal to one for ∆ = 0. Therefore, the detuning between the frequencies of the two oscillators

leads to a less precise estimation of the tunneling rate (however, one should notice that Var(A)

is also a function of ∆, but our results show that for a wide range of parameters it is a decreasing

or a constant function with ∆. Nevertheless, the total contribution of ∆ decreases the QFI). This

can be explained, by bearing in mind that the detuning makes it harder for the two oscillators to

exchange energy, as their frequencies are different. While at resonance, exchanging excitation

is easier, so that the tunneling term is playing a stronger role, making it easier to be detected.

4.3.2.1 Local estimation of J

Since the interaction coupling is, by definition, a non-local operator, naturally we do not ex-

pect to detect it optimally with local measurements. Despite this fact, we would like to
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quantify the precision of local measurements, e.g., when global measurements are experimen-

tally unfeasible. Specifically, we study the sensitivity of local number operators F(a†
j
a j ; J) =∣∣∣∣∂T

〈
a†

j
a j

〉∣∣∣∣2 /Var(a†
j
a j). As depicted in Figure 4.4, the local estimations are not very efficient for

the estimation of J, and the global measurement notably outperforms them.

4.4 Conclusions

We have analyzed the performance and ultimate limitations of quantum probes for precise ther-

mometry, when the probe thermalizes with the system whose temperature is to be estimated.

First, we have rigorously demonstrated that the best individual quantum thermometer is an ef-

fective two-level atom with a maximally degenerate excited state at a specific energy gap, which

depends, non-trivially, on the sample temperature. We have shown that there exists a com-

plementary trade-off between the maximum achievable estimation precision, which grows with

N, and the specified temperature range in which the estimation is efficient, which shrinks with

N. This ultimate precision on thermometry using individual quantum probes is totally model

independent. Secondly, we have addressed the role of quantum correlations when using a mul-

tipartite system as a probe. By engineering interaction amongst its parties we aim at enhancing

our thermometry precision. To this aim, we have analyzed the performance of a thermometer

consisting on two coupled harmonic oscillators, and investigated the role of correlations between

different partitions in boosting the resolution. We have demonstrated that, when we allow for

interaction between the two parties, the QFI gets super-extensive. Moreover, since in this case

the optimal thermometry protocol requires non-local measurements, we have examined also the

precision of more feasible local protocols, and confirm their efficiency. We have shown that even

local measurements inherit the boost in precision obtained from the interaction between the two

partitions.

Finally, for the system of couple oscillators, in Section 4.3.2, we have also addressed the es-

timation of the strength of the coupling between the two parties, for a fixed temperature. We

observe that increasing the temperature, as well as the detuning between the frequencies of the

two oscillators, decreases the precision of estimating the tunneling rate. Besides, we see that

local schemes are not efficient in estimation of the tunneling rate, specially when the coupling

is small.

The simultaneous estimation of the interaction strength, J, and temperature, T , remains an open

problem. In next chapter, we go beyond the bipartite scenario and focus on thermometry and

metrology with many-body systems. Parameter estimation out of equilibrium will be also ana-

lyzed later in Chapter 6 and Chapter 7.



Chapter 5

Quantum metrolgy in many body
systems

As already mention in the chapter Introduction, quantum metrology in strongly correlated sys-

tems makes use of criticality to enhance measurement precisions [46, 53]. Despite the fact that

quantum phase transitions occur only at zero temperature and in the thermodynamical limit,

even at finite temperature, critical effects can be exploit for quantum metrology. Indeed, for low

dimensional systems, critical points signaling quantum phase transitions often broaden into crit-

ical regions. Those regions still separate different phases which keep track of their ground state

correlations. Hence, the transition between those phases appear as smooth crossovers [54, 55],

nonetheless carrying a footprint of the quantum phase transition occurring at zero temperature.

Therefore, even at finite (but small) temperatures, quantum correlations are present and allow

for better metrological bounds. For this reason, strongly correlated many-body systems could

be used as highly precise magnetometers or thermometers, if tuned close to a critical point

[47, 76–79].

In this chapter, we focus on Heisenberg spin models to investigate potential metrological ad-

vantages of strongly correlated systems. The quantum Ising model, or XY model in a transverse

field, is an integrable model that, unlike the majority of quantum spin models, can be exactly

solved by means of a Jordan-Wigner transformation mapping it onto a system of non-interacting

fermions and giving access to the full energy spectrum [80]. In Section 5.1 we briefly review the

basic properties of the XY spin chain both, at zero and finite temperatures. Our aim is twofold:

exploiting strongly correlated systems for both thermometry and estimation of Hamiltonian pa-

rameters.

As we discussed extensively in Chapter 4, if the parameter to be estimated is temperature and the

system is in thermal equilibrium, the Cramér-Rao bound yields a relation of the form δT∆H ≥

T 2, being H the Hamiltonian governing system. The above relation indicates that the minimal

48
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error in temperature estimation of a thermal sample is realized by a projective measurement

on its energy eigenbasis. In general, such type of measurements in ultracold lattice gases is

not accessible. Instead, information about quantum phases and temperature is usually obtained

from momentum and density distributions or from density-density (or spin-spin) correlations.

These quantities can be extracted by using destructive methods such as time of flight imaging

(the latter via the study of noise correlations [56]) or in-situ imaging, for instance using single

site addressability [57, 58]. Despite their huge relevance, these methods might suffer limitations

in certain occasions, due to their destructive character. For instance, in order to study spin-

spin correlations in currently available setups for single site imaging, one needs to remove all

particles from one of the two spin components. In this sense, quantum non demolition (QND)

methods can provide clear advantages [59].

Section 5.2 reviews the basic concepts describing the QND Faraday spectroscopy. In Sec-

tion 5.3, we focus on the thermometry aspects in the XY chain. To this aim, we derive first

a closed form of the quantum Fisher information as a function of the temperature for the whole

phase diagram. This, in turn, provides the minimal error on the temperature estimation when

performing an optimal measurement. Section 5.4 is devoted to the analysis of quantum corre-

lations at finite temperatures with Faraday spectroscopy method. We evaluate, for the whole

phase diagram of the model, the signal-to-noise ratio, T/δT , obtained with a Faraday interface.

Remarkably, our results support the suitability of collective quantum correlations as optimal

observable for quantum thermometry of strongly correlated systems.

An interesting scenario for metrology arises when the Hamiltonian of interest has a closed alge-

bra, i.e., when the Hamiltonian is of the form H = ξ1H1 + ξ2H2 with [H1,H2] = 0. Whence, the

commuting algebra helps to provide the optimal observables that saturate the quantum Cramér-

Rao bound. In Section 5.6 we develop the formalism of quantum metrology for closed algebras

and in Sec. 5.6 we use as a case study the XX Heisenberg spin model.

In Section 5.7 we propose an iterative feedforward scheme, that exploits criticality to achieve

sub-shot-noise metrology at finite temperature. In Section 5.8, we focus on precision magnetom-

etry for Hamiltonians whose algebra do not obey [H1,H2] = 0, as is the case for the XY model.

Since we do not know the optimal measurements analytically, we propose suboptimal metrol-

ogy scenarios to estimate the unknown parameter. These suboptimal measurements, having a

close to optimal yet complicated measurement, are again realized by Faraday spectroscopy. In

Section 5.9, we summarize and conclude.

Finally, in the Section 5.8 we develop metrological strategies to tackle precision magnetometry

for Hamiltonians whose algebra do not obey [H1,H2] = 0, as is the case for the XY model. Since

for such cases we do not know the optimal measurements analytically, we propose suboptimal
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metrology scenarios to estimate the unknown parameter. These suboptimal measurements, hav-

ing a close performance to the optimal (yet complicated) measurement, are again realized by

Faraday spectroscopy. In Section 5.9, we summarize and conclude.

5.1 The model: XY spin chain in a transverse field

The XY spin-1/2 chain in a transverse field (including the Ising and isotropic XX models as

particular cases) is an exactly solvable model, and as such, it can be used as a prototype to

understand the interplay between quantum and thermal fluctuations. The Hamiltonian governing

the system can be written as:

H = −J
N∑

l=1

[
1 +γ

2
σx

l σ
x
l+1 +

1−γ
2

σ
y
lσ

y
l+1

]
−h

N∑
l=1

σz
l (5.1)

where σαl are the usual Pauli matrices at site l, −1 ≤ γ ≤ 1 is the parameter that sets the XY

anisotropy (γ = ±1 and γ = 0 for the Ising and XX models respectively), h is the transverse

magnetic field and N is the number of sites of the chain. The coupling constant J can be positive

(ferromagnet) or negative (antiferromagnet). Throughout this paper, we will consider only the

ferromagnetic case J > 0. However, equivalent results can be straightforwardly derived for the

antiferromagnetic case J < 0. For simplicity, we consider here periodic boundary conditions

with an even number of sites, but the results can be easily extended to an odd number of sites or

an open chain. However, for large enough chains, one expects such variations not to influence

the results [80].

The Hamiltonian (5.1) can be easily diagonalized by mapping it onto a non-interacting fermionic

model that provides the full energy spectrum. As it is well known [80, 81] the non-interacting

fermionic representation of the XY model is obtained by means of the Jordan-Wigner transfor-

mation, followed by a unitary Bogoliubov transformation in the quasi-momentum space, yield-

ing:

H =
∑

k

εkγ
†

kγk, (5.2)

and the dispersion relation (up to a constant)

εk = 2|J|
√

(cosk−h)2 +
(
γ sink

)2 , (5.3)

being k the quasi-momentum, k = π
N (2 j + 1), and j = −N/2, . . . ,N/2−1. The sign of this energy

is arbitrary. Choosing a positive value corresponds to the particle-hole picture for the fermionic

quasiparticles, which are defined for k ∈ (0,π) by the following Bogoliubov transformation:

γ†
±k = cosθkc†

±k ± isinθkc∓k. (5.4)
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Here, cos(2θk) = γ sink/(cosk−h) for θk ∈ (0,π/2), and c†k are the Fourier transform of the on-site

fermionic operators that directly relate to the spin operators via the Jordan-Wigner transforma-

tion

c†l = σ+
l

∏
l′<l

σz
l′ , cl = σ−l

∏
l′<l

σz
l′ . (5.5)

The ground state of the system corresponds to the vacuum of the Bogoliubov quasiparticles, and

excitations are obtained with creation operators acting on the vacuum. The energy gap between

the ground state and the continuum of excited states is thus given by ∆E = mink(εk).

Note that the Hamiltonian is symmetric under the exchange h↔ −h (by k↔ π/2− k) and un-

der γ↔ −γ (by σx ↔ σy). A sketch of the phase diagram at zero temperature, together with

the energy gap ∆E and the energy relation dispersion are displayed in Figure 5.1. The sys-

tem is always gapped i.e. ∆E > 0, except for the quantum critical lines occurring at h/J = ±1

(Ising transitions), which separate the paramagnetic phases (PM) from the ferromagnetic (FM)

ones (or antiferromagnetic if J > 0) and for γ = 0 and |h/J| ≤ 1, corresponding to the critical

phase in the XX model (anisotropic transition). Moreover, Heisenberg systems with general

anisotropies exhibit, for particular values of the couplings, a ground state which is doubly de-

generated and which is factorizable as a product of on-site localized wave-functions [82, 83]. In

the XY model, for each value of γ, this product ground state corresponds to an external trans-

verse field h/J = ±
√

1−γ2 . The factorized ground state is depicted by a dashed line in phase

diagram of Figure 5.1(a).

In the thermodynamic limit (large N), the system in thermal equilibrium at a given temperature

T can be described by the density matrix in the macrocanonical ensemble (we set kB = 1):

ρ(γ,h/J,T ) =
e−H(γ,h/J)/T

Z
=

⊗
k

ρk(γ,h/J,T ), (5.6)

where Z denotes the partition function of the system. For compactness of notation we write

from now on ρk(γ,h/J,T ) simply as ρk(T ). Since the Hamiltonian (5.2) is separable, the density

matrix can be directly written as a tensor product of the density matrices associated to each

quasiparticle mode k. These quasiparticles obey fermionic commutation relations, and thus

ρk(T ) =
|0〉k 〈0|+ e−εk/T |1〉k 〈1|

1 + e−εk/T
, (5.7)

where |0〉k (|1〉k) denotes an empty (occupied) quasiparticle state k. We take the above expression

as the starting point to study correlations at finite temperatures.

Finally, let us remark that the XY model can be realistically implemented in experiments. In

particular, the isotropic XX model directly maps onto a system of hard-core bosons and has been
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Figure 5.1: (Color online) a) Sketch of the phase diagram at zero temperature for the XY
model. The γ = 0 and γ = 1 lines correspond to the isotropic XX and Ising models respectively.
FM(AFM) denote phases with quasi long-range ferro(antiferro)-magnetic order along the x-
and y-axis for γ > 0 and γ < 0, respectively. PM is the paramagnetic phase. There are second
order phase transitions at h/J = ±1 (Ising transition) and at γ = 0 (anisotropy transition). The
dashed line denotes the factorization ground state for this model. b) Energy gap ∆E to the
continuum of excited states (in units of 2J). The energy spectrum is always gapped except at
the critical point h/J = ±1 and at the critical phase γ = 0, |h/J| < 1. c) Quasiparticle energy
dispersion relation for γ = 1, γ = 0.5 and γ = 0, for different values of h/J (dark red: FM phase;

red: h = 0; blue: PM phase; dashed black: critical point).

experimentally realized with cold atoms in optical lattices [49], while the Ising model has been

also engineered with a similar system [84]. Moreover, other models that can be implemented

with cold atoms, as the bond-charge Hubbard model, directly map onto the XY model [85].

5.2 Quantum Faraday Spectroscopy

Here, we briefly review a quantum non-demolition scheme for measuring quantum correlations

in ultracold atomic lattices. The method is based on a light-matter interface [86] employing

the quantum Faraday effect. It was adapted to determine quantum phases of strongly correlated

systems in optical lattice systems in [59, 87]. The scheme is extremely versatile and can detect

superfluidity, superlattice ordering and itinerant magnetism for fermionic and bosonic lattice

gases [88, 89]. It also allows to reconstruct the phase diagram of non-trivial spin chain models

[90, 91] and to engineer quantum correlations by suitable post-selection [92]. In the following
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we review the basics of the scheme but we point the reader to the previous references for more

details.

The basics of a QND Faraday spectroscopy assumes a strongly linearly polarized light beam

along e.g. the x-axis propagating on the z-axis and interacting off resonantly with the internal

spin degree of freedom of an atomic sample. Due to the atom-photon interaction, the light

polarization is rotated by an amount that depends on the magnetic state of the sample. The light

can be described by time-integrated canonical operators X = S 2/
√

Nph and P = S 3/
√

Nph ,

where S 2(3) denote the Stokes operators in the perpendicular directions of the incoming beam

while Nph is the total number of photons of the beam. If the atomic sample is confined in an

optical lattice, the light can be modulated in a standing wave configuration as schematically

depicted in Figure 5.2. After the Faraday interaction has taken place, the integrated equations of

motion result into [86]

Xout = Xin− κJz, (5.8)

where Xin and Xout represent, in the input-output formalism, the light quadratures before and

after the Faraday interaction. The observable Jz corresponds to the modulated collective angular

momentum along z-direction and is defined as:

Jz =
∑

l

cos2
(
kpld

)
σz

l . (5.9)

The above sum extends on all lattice sites l, kp is the wave vector of the probing beam and d is the

inter-site distance. Finally, the light-matter coupling constant κ =
√

doη depends on the optical

depth of the atomic sample do as well as on the spontaneous emission probability induced by

the probe. Typical values of κ are in the range 1-10.

As the light and atom states are initially uncorrelated, it follows that

〈Xout〉 = −κ〈Jz〉, (5.10)

VarXout =
1
2

+ κ2VarJz, (5.11)

where we assume the incoming light beam to be in a coherent state with zero mean and variance

1/2. For the ferromagnetic case (J > 0), the output signal is maximum when the wave vector

of the probe beam is set to kp = π/d i.e. the light is not modulated. For the antiferromagnetic

case (J < 0), since the total magnetization of the sample is zero, it is necessary to modulate the

incoming beam with half of the frequency kp = π/2d.

After the outcoming light quadrature Xout has been homodyne measured, the atomic sample is

projected onto a subspace of fixed Jz. Owing to the fact that the off resonant interaction with the

light does not destroy the sample, we further assume that after the measurement thermalization

will take place on such given subspace. Since typical thermalization times for ultracold lattice
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gases are on the order of ms and the many-body sample is stable on the time scale of seconds,

the Faraday interface taking place in the µs regime can be considered as instantaneous. Thus,

the Faraday interface could be repeated several times on the same sample preserving its QND

character. Finally, we remark that in order to measure the other collective operators Jx and Jy

using the same experimental setup, one should apply an appropriate spin rotation to the atomic

sample so to map σx→ σz or σy→ σz[93].

d / kp

HD

homodyne 
detection

Figure 5.2: (Color online). Schematic diagram of the proposed experimental set-up to mea-
sure the collective angular momentum imprinted on the light quadratures. The ultracold atomic
sample is trapped by an optical lattice potential with wavelength d (blue). An additional strong
laser beam (yellow) initially polarized in the x direction is impinging on a beamsplitter. The
transmitted part of this probe is propagating through the sample and reflected off a mirror, form-
ing a standing wave with wavevector kp. After the second pass, the laser beam is outcoupled to

a homodyne detector, where the light quadrature is measured and recorded.

5.3 Optimal strategy: lowest bound on the temperature error

Calculation of the QFI becomes straightforward for the XY model due to the simple structure

of a thermal state which corresponds to a product state in the fermionic representation (5.6).

Therefore we are able to use the additivity of the QFI, which we proved earlier Eq. (2.21) of

Section 2.3.1. In particular this allows us to express F (T,ρT ) as the sum of the QFI of each

individual k state contributing to product state, i.e.

F (T,ρT ) =
∑

k

F (T,ρk(T )) =
(∆H)2

T 4 =
∑

k

(
εk

T 2

)2

nk(1−nk) (5.12)

being nk = (1 + eεk/T )−1 the Fermi-Dirac distribution of the quasiparticles.

Using the above expressions, we focus on the upper bound on the signal-to-noise-ratio, which

is given by (T/δTmin)2 = T 2F (T,ρT ), where we use the index min to highlight that the error
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obtained from the CRB is minimum over all possible measurements. In the top panels of Fig-

ure 5.3, we display this upper bound, normalized by the total number of sites N, for the whole

phase diagram at different temperatures. For finite T , this quantity scales linearly with N.

For very small temperatures, e.g. T/J = 0.05, the QFI becomes noticeable only close to the

critical lines. This is not surprising, since for a gapless system, excitations to the lowest part

of the energy spectrum will be created no matter how small the temperature is. Thus, as the

uncertainty in energy of the state grows, so does the QFI and accordingly the state becomes

very sensitive to thermal fluctuations. In contrast, for a gapped phase, if T � ∆Emin, with ∆Emin

being the minimum energy gap with the ground state, the probability of creating excitations

remains low. In such cases, the energy remains well defined, yielding a vanishing value of QFI

and correspondingly a large error in temperature estimation. See Section 5.7.1 for details and

more quantitative analysis of low temperature behaviour of the system.

On the other hand, for large enough values of the temperature, i.e. T ≥ ∆Emin, different modes

become excited, and other regions of the phase diagram become more sensitive and optimal for

thermometry. In fact, for a given value of T , the accurate estimation of the sample’s temperature

depend on the energy spectrum but also on the density of states (DOS) as they play a crucial

role in the QFI expression (5.12). This can be clearly seen in Figure 5.3, where the value of

(T/δTmin)2 is also plotted for T/J = 0.2 and T/J = 0.8. The more sensitive regions of the phase

diagram are now clearly different than the “zero temperature transition points”, i.e. h = ±1 and

γ = 0 for |h/J| < 1.

Finally, in the limit of very large temperatures and as the state tends to be maximally disordered,

it is to be expected that the QFI or thermal sensitivity will decay again to zero as shown in Fig-

ure 5.5 (solid lines) for some particular cases. We shall return to this point later, in Section 5.4.

5.4 Thermometry in the XY model using a Faraday interface

The quantum polarization spectroscopy technique described in the previous section grants ac-

cess, a priori, to any order of the statistical moments of the collective atomic angular momentum.

For certain quantum phases of the model, as for instance the ferromagnetic phase, the mean value

of Jz will be enough to infer the temperature of the sample. However, the mean value might van-

ish for certain observables in an unbroken symmetry phase (e.g. the longitudinal magnetization,

Jx, in the Ising model for a thermal state). Instead, this ordering is clearly revealed when looking

at the quantum fluctuations or variance of the observable. Here, for reasons that will become

clearer later, we focus our study to the mean value of Jz and the variance of Jx. The latter can

be written as:

VarJx =
∑
l,m

〈σx
l σ

x
m〉− 〈σ

x
l 〉〈σ

x
m, 〉 (5.13)
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Figure 5.3: (Color online). a) Optimal signal-to-noise ratio, (T/δT )2
min, where δT denotes the

temperature uncertainty given by the Cramér-Rao bound when assuming the optimal measure-
ment strategy, plotted as a function of the Hamiltonian parameters and for different values of
T/J. At very low T , the thermal sensitivity is larger close to the critical points, whereas when
increasing T , the maximum gradually shifts to the Ising (h = 0) line. (b) and (c) Signal-to-noise
ratio, (T/δT )2

F, estimated for the Faraday interface for the two mean values of the observables
(Jx − 〈Jx〉)2 and Jz respectively. The VarJx is more sensitive in the FM phase, whereas 〈Jz〉

works better in the PM phase.

and corresponds to the sum over any two-site correlation function or, equivalently, to the mag-

netic structure factor at zero quasi-momentum.

We start by analyzing the strength of the output signal when the observable to be measured is

VarJx (VarJy) for γ > 0 (γ < 0). We recall that for a coherent input beam, the shot noise is

VarXin = 1/2. Note that the results for Jy and γ > 0 are equivalent to those for Jx and γ < 0.

As expected, the variance of the angular momentum associated to the order parameter always

exceeds the variance of the angular momentum along the other two directions. Moreover, this

is maximal for the Ising model (γ = 1) and continuously decreases when approaching the XX

model (γ = 0).

A comparison between these two limiting cases (γ = 1 and γ= 0) is depicted in Figure 5.4, where

in the top panels, we display the output signal VarJx/N (assuming κ ≈ 1) divided by the input

shot-noise (VarXin) as a function of T/J for different values of h/J and two different system

sizes N = 100 and N = 200. At zero temperature, and in the gapped FM phase (|h/J| < 1 and
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Figure 5.4: (Color online). Output signal (assuming κ ≈ 1) as a function of T/J for the two
limiting cases γ = 1 (Ising model) and γ = 0 (isotropic XX model) for different observables. In
red(blue) FM (PM) phase for different values of h/J (a) VarJx/N, normalized, for comparison,
to the incoming beam shot-noise (VarXin = 1/2). At finite T , VarJx scales linearly with N, and
the signal is always larger than VarXin. At low T/J, the signal decreases (increases) with T in
the FM (PM) phase. (b) 〈Jz〉/

√
N properly normalized, Jz scales linearly with N, and it shows

the opposite behavior with respect to (a). At very low T/J it decreases (increases) in the PM
(FM) phase with T . Solid (dashed) lines correspond to N = 200 (N = 100).

γ , 0), the signal scales as κ2N, whereas in the PM phase (|h/J| > 1), it scales as κ2. Strictly

speaking, and since we are dealing with a 1D system, there exists no phase transition at finite

temperature. This is reflected in the fact that, at any finite value of T , the signal in the gapped

FM phase does not scale anymore as κ2N but rather as κ2 and the signal for the two system sizes

overlap. Therefore, the plateau depicted in the top panel of in Figure 5.4 is only a finite size

effect and it disappears as the system size increases. In this region, the signal is constant with T

and thus, it will not be useful for thermometry. The results for any γ , 0 are qualitatively similar

to those for the Ising model. Moreover, for any value of the parameters γ and h it is always

satisfied that VarJx ≥ 1. If the optical depth do is tuned so that κ ≥ 1, the signal of the output

beam will be greater than the input beam shot-noise. This is, however, not the case for the other

two observables VarJy and VarJz, which go well below the shot noise limit when approaching

the XX model.

The output signal, when measuring the mean value of the Jz observable (〈Jz〉/
√

N ), is depicted

in the bottom panels of Figure 5.4, assuming again κ ≈ 1. In contrast to the former observable,

this is maximum (in absolute value) in the PM phase and increases when approaching the γ = 0

limit.
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In order to asses the optimality of measuring collective quantum correlations for thermometry,

we focus in the signal-to-noise ratio (T/∆T )2
F achievable by using the Faraday interface and

compare it with the minimal possible error in temperature estimation provided by the Cramér-

Rao bound (T/∆T )2
CRB.

To this aim, the error performed in measuring temperature using the observable A can be defined

as [94]

∆T ≈
(
∂〈A〉
∂T

)−1

∆A, (5.14)

where ∆A is the standard deviation of the observable or (VarA)1/2. Therefore,(
T
∆T

)2

F
≈

(
∂〈A〉
∂T

)2 1
VarA

, (5.15)

For the analyzed model, the variance of the two observables of interest can be evaluated by

making extensive use of Wick’s theorem. For a better comparison with the optimal signal-to-

noise ratio (T/∆T )2
CRB, in Figure 5.3 we display the signal-to-noise ratio (T/∆T )2

F corresponding

to the observable A = (Jx − 〈Jx〉)2 (middle panels) and A′ = Jz (bottom panels) for the whole

phase diagram and different values of T/J. Strikingly enough, the behavior of the observable

corresponding to the variance of the order parameter is optimal in the FM regions, and follows

the same qualitative behavior as (T/∆T )2
CRB, shifting its maximum value with temperature from

the multicritical points (γ = 0, |h| = 1) to the Ising model in absence of transverse field (γ = ±1,

h = 0). However, it decays faster with T/J than (∆T/T )2
CRB. In contrast, the observable Jz is

optimal in the PM phase and for the γ = 0 model, and it decays slower with T/J. One could

further approach to the value of the former derivative with temperature, which shows a similar

behavior with T , by increasing the number of measurements and reduce the variance of the

observable.

Our main results are summarized in Figure 5.5, where we fix the value h/J to do a quantitative

comparison between the signal-to-noise ratio obtained with the Faraday spectroscopy, (T/∆T )2
F,

and the optimal one provided by the quantum Cramér-Rao bound, (T/∆T )2
CRB, as a function

of T/J. The comparison is performed for γ = 1,0.3 and 0, both in the FM phase (h = 0) and

PM phase (h = 1.5). The results clearly show for T/J ≤ 0.35 the Faraday spectroscopy reading

out the observable VarJx provides an almost optimal measurement for thermometry precision

in the FM phase in the Ising model and its optimality decreases when approaching the critical

XX model (γ = 0). Instead, in the PM phases, 〈Jz〉 approaches the ideal bound in the XX model

for a temperature range 0 < T/J ≤ 0.45. It is worth to recall that this is indeed the range of

temperatures of interest for present experiments with ultracold atomic gases simulating strongly

correlated systems [95]
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Figure 5.5: (Color online). Comparison between the optimal signal-to-noise ratio (solid line),
estimated by the Cramér-Rao bound, (T/∆T )2

CRB, and the signal-to-noise ratio obtained with the
Faraday interface using as observables VarJx (dashed line) and 〈Jz〉 (dotted line), for different
values of γ and as a function of T/J. (a) h/J = 0 (FM phase) and (b) h/J = 1.5 (PM phase).
(T/∆T )2

CRB increases with T/J until it reaches a maximum, decreasing again at very large T/J.
VarJx is optimal in the FM phase and γ = 1, whereas 〈Jz〉 is optimal in the PM phase and γ = 0.

At very large T/J the signal of the Faraday interface becomes less optimal.

5.5 Estimation of the Hamiltonian couplings

The most general form of a many body Hamiltonian is of the type H = ξ1H1 + ξ2H2, and the

physics of the system is governed by the competition between both terms. Here we firstly focus

on the estimation of Hamiltonians that fulfill [H1,H2] = 0. For such Hamiltonians parameter

estimation is directly linked to the (static) susceptibilities of the conjugate Hamiltonian term.

With the help of Eq. (4.3) of Section 4.1.1, we know that for instance if ξ1 is the parameter to be

estimated, the susceptibility of H1 is χH1 ,ξ1
= ∂ξ1 〈H1〉.

Moreover, the corresponding optimal estimator for either of the Hamiltonian parameters ξi (i ∈

{1,2}) and its corresponding sensitivity, may be easily found from the definitions of the QFI

and the SLD, i.e., Eqs. (2.7) and (2.8). One only needs to replace ρp with the thermal state

ρT ≡Z−1 exp(−βH), and use exp(−βH) = exp(−βξ1H1)exp(−βξ2H2). This yields

Λξiρ
T +ρT Λξi = −β

(
Hi−〈Hi〉

)
ρT −βρT

(
Hi−〈Hi〉

)
, (5.16)

implying that Hi is itself an optimal estimator for ξi. In addition, the QFI is straightforwardly

evaluated to be

F (ξi) = β2
∆Hi

2. (5.17)
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Making use of Eqs. (2.6) and (5.17) one may write the uncertainty-type relation ∆Hi
2δξ2

i ≥

β−2. Further, by bearing in mind that 〈Hi〉 = −β−1∂ξi logZ, the maximum ξi-sensitivity can be

alternatively expressed as

F (ξi) = β

∣∣∣∣∣∣∂〈Hi〉

∂ξi

∣∣∣∣∣∣ =
∂2 logZ
∂ξ2

i

= −β
∂2A
∂ξ2

i

, (5.18)

where A ≡ −kBT logZ stands for the Helmholtz free energy. Evidently, the ultimate precision in

the estimation of Hamiltonian parameters from thermal states is nothing but a generalized sus-

ceptibility. For instance, if the parameter to be estimated is temperature, the specific heat is the

relevant figure of merit and, as we shall see below, what limits the sensitivity of a magnetometer

is its magnetic susceptibility [46, 53, 60, 70, 96–99].

The connection between susceptibility and QFI has been very recently addressed in refer-

ence [60], where it has been shown that χi = −β2 ∂2A/∂ξ2
i may be cast as χi = χ(el)

i + χ(vV)
i ,

where χ(el)
i is the elastic contribution, also known as the Curie term, and χ(vV)

i is the van-Vleck

term. Furthermore, the QFI can be written as the sum of a classical and a quantum contribution

F (ξi) = FC(ξi) +FQ(ξi), arising from the parameter-dependence of the eigenvalues and eigen-

vectors of ρT , respectively. It can be seen that (even when [H1,H2], 0), the susceptibility relates

to the QFI as χ(el)
i = β∆Hi

2 = βFC(ξi). Hence for [H1,H2] = 0, where both χ(vV)
i and FQ(ξi) are

zero due to the fact that the eigenstates of the Hamiltonian are independent of the parameter, the

Eq. (5.17) is recovered.

5.6 Magnetometry in the XX model

The XX spin chain in a transverse field corresponds to a Heisenberg model with the same cou-

pling for the x and y component of the spin interactions. It can be trivially derived from the XY

model by choosing the anisotropy equal to zero, and reads:

HXX = −
J
2

N∑
l=1

(
σ(x)

l σ(x)
l+1 +σ

(y)
l σ

(y)
l+1

)
−h

N∑
l=1

σ(z)
l . (5.19)

The energy dispersion for this model reduces to

εp = 2J (cos p−h/J),

p =
π

N
(2l + 1), l ∈ {−N/2, · · · ,N/2−1}. (5.20)

It is easy to see that, in Eq. (5.19), the term proportional to J and the term proportional to h

commute. Hence, from Section 5.5, we know that the optimal observable for the estimation of h
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Figure 5.6: (color online) Specific QFI (i.e. F (h)/N) for the estimation of the magnetic field
h in the XX model as a function of h/J, at three different temperatures. The shaded area

corresponds to the ferromagnetic region. In the plot N = 105 and J = 1.

is the total magnetization along the z-direction Jz =
∑N

l=1σ
(z)
l and that the corresponding sensi-

tivity is modulated by the static magnetic susceptibility F (h) = β |∂h〈Jz〉| ≡ βχh [100]. Note that

〈Jz〉 is a quantity that can be accessed experimentally using Faraday spectroscopy spectroscopy

as we already explained in Section 5.2.

For a thermal state ρT , Eqs. (5.2) and (5.20) allow to express the magnetization as

〈Jz〉 = 2
∑

p

np−N. (5.21)

With this expression at hand, and with the help of Eq. (5.18), it is easy to find the explicit formula

for F (h), which reads as

F (h) = β

∣∣∣∣∣∣∂〈Jz〉

∂h

∣∣∣∣∣∣ = 4β2
∑

p

np(1−np). (5.22)

As shown in Figure 5.6, the sensitivity peaks in the ferromagnetic phase, close to the critical

point |h/J| = 1. This feature becomes sharper as the temperature is cooled down, until F (h)

eventually diverges at criticality in the limit β→∞ [46]. Note as well that F (h) drops quickly to

zero as the probe enters the paramagnetic region (most markedly at low temperatures), whereas

it remains non-vanishing within the ferromagnetic phase. This is intuitive, recalling that the

paramagnetic ground state is an eigenstate of the estimator Jz and thus, completely insensitive

to fluctuations in the field intensity h.

Interestingly, although increasing the equilibrium temperature of the probe significantly reduces

the attainable sensitivity for both the ferromagnetic phase and the critical point, thermal mixing
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does slightly enhance the sensitivity of paramagnetic samples. This is not so surprising, as an

increase in the temperature of the sample populates excited states of HXX (more sensitive than

the paramagnetic ground state).

5.7 Sub-shot-noise sensing in the XX model

5.7.1 Low-temperature approximation for F (h)

Is it possible to overcome the shot-noise limit in the above occasions. This is what we attack

in this section. In what follows we simplify the expression of F (h) in the ferromagnetic phase,

capturing its dependence on N, h/J, and β. Specifically, we are interested in the regime of low

temperatures (β � 1) and large N. Inspection of Eq. (5.22) suggests that contributions from

np ' {0,1} to F (h) can be safely neglected. Recalling that np = [1 + exp(βεp)]−1, only those

terms for which β |εp| < κ, where κ is some small positive constant, contribute significantly to

the total magnetic sensitivity. From Eq. (5.20) it follows that −κ/β < 2J(cos p−h/J) < κ/β, and

hence

arccos
(

h
J
−

κ

2βJ

)
< p < arccos

(
h
J

+
κ

2βJ

)
. (5.23)

One can now perform Taylor expansion to first order in the small parameter κ/β, which yields

arccos
(

h
J
±

κ

2βJ

)
' arccos(h/J)∓

κ

2βJ
√

1− (h/J)2
. (5.24)

Since N is large, we may assume that the indices p are continuously distributed with a uniform

‘density’ N/2π (recall that |p| < π). Therefore, the number of energy levels effectively contribut-

ing to the sum in Eq. (5.22) would be the product of N/2π and the gap between the upper and

lower bounds of Eq. (5.23). Taking a constant np for all the terms involved in the sum provides

with an optimal magnetic sensitivity of

F (h) ' Fapp(h) ≡C
βN

J
√

1− (h/J)2
. (5.25)

For low enough temperatures and large N, we numerically find the fitting parameter C ≈ 0.64

to be independent of β, J, and, most importantly, also of the size of the probe N. The close

agreement between Eq. (5.25) and F (h) is showcased in Figure 5.7. As a rule of thumb, we

can expect the approximation to hold so long as kBT < J − h. Closer to the critical point, i.e.

when J− kBT < h < J, the magnetic sensitivity presents a maximum of approximately Fapp(h =

J− kBT ).
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Figure 5.7: (color online) (solid black) Specific QFI for magnetic field sensing in the XX
model versus h/J. All the plotted area lies within the ferromagnetic phase. (dashed red) Low-
temperature approximation of the magnetic sensitivity Fapp(h) from Eq. (5.25). The region
kBT > J − h where the approximation breaks down appears in shaded gray. (inset) Close-up
of the neighbourhood of the critical point. The temperature was set to β = 100, N = 104, and

J = 1.

Finally, notice as well that Fapp(h) is linear in N or, in other words, the magnetic sensitivity

scales extensively with the probe size. Next, we will show how the scaling of (δh)−2 may be

enhanced by means of a feedforward adaptive protocol that actively exploits quantum criticality.

5.7.2 Adaptive feedforward magnetometry

The expression provided for Fapp(h), i.e. Eq. (5.25), suggests an adaptive protocol to improve

the estimation of h. Let us assume, in full generality, that h is known within an interval hmin <

h < hmax. If the Hamiltonian parameter J is accessible to control, one may start by tuning it

to J = hmax to ensure that the spin chain lies in the ferromagnetic side of the transition. After

the sample has equilibrated with the new parameters, we can measure its magnetization Jz and

come up with the estimate h±δh1, with ‘error bars’ δh1 ' 1/
√
F1 , where

F1 ≡C
βνN

hmax
√

1− (h/hmax)
≡ AνN. (5.26)

In Eq. (5.26), we have explicitly accounted for enough repetitions ν of this first step to ensure that

δh1/h� 1. At this point, one can update the interaction strength to J = h + δh1 and, again after

re-equilibration of the probe, refine the estimate of h according to the outcomes of ν additional

magnetization measurements. The error δh2 after the second iteration is arguably much smaller

than δh1. Note that the protocol is essentially driving the probe towards the critical point, which
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drastically increases the sensitivity as shown in Figure 5.7. In particular, δh2 ' 1/
√
F2 , where

F2 =

 Cβ
√

2h

 νN
√
δh1

+O

(
δh1

h

)3/2

' BνNF 1/4
1 , (5.27)

where B ≡Cβ/
√

2h . F2 As the protocol is repeated further, we find δhk ' 1/
√
Fk , with

Fk ' BνNF1/4
k−1 = A1/4k−1

B1+1/4+···+1/4k−2
(νN)1+1/4+···+1/4k−1

= A1/4k−1
B4/3(1−1/4k−1)(νN)4/3(1−1/4k). (5.28)

In the limit of large k, the sensitivity scales as Fk ∼ N4/3 so that δhk ∼ 1/N2/3, which out-

performs the shot-noise scaling by a factor of 1/N1/6. Hence, the proposed adaptive scheme

shows that, at finite temperatures, it is possible to exploit criticality in its wider sense to allow

quantum-enhanced sensing and overcome the linear (shot-noise) scaling associated to uncorre-

lated probes. The reason for such (certainly surprising) fact is that, at each step k of the protocol,

the thermal state changes and approaches the quantum crossover point, with its critical behavior.

Those changes reflect in a sensitivity that scales super-extensively with the number of particles

N. This is the main result of the work presented here.

Two clarifications are in order. To begin with, note that for Eq. (5.25) to remain applicable,

we shall always work in the limit {β,N} � 1. Recall, however, that the approximation Fapp(h)

only holds if kBT < Jk −h = δhk−1, so that thermal fluctuations set an effective lower bound for

the statistical uncertainty attainable with this iterative scheme: As soon as δh falls below kBT ,

updating the interaction strength provides no scaling advantage. Indeed, it may even become

detrimental if the probe is pushed too close to criticality (see Figure 5.7). Note that this does not

mean that uncertainties δh below the level of thermal fluctuations are unattainable, but only that

the error decreases no faster than 1/N1/2 beyond that point.

Secondly, the only metrologically relevant resource considered in our analysis is the number N

of spins in the sample. In particular we implicitly assume that the precise adjustment of J, the

iteration of the magnetization measurement ν× k times, or the re-thermalization of the probe at

each step come at no additional cost. Care must be taken, however, as this may be not the case

in actual experiments: Practical limitations, like the short lifetime of the sample or the imperfect

control of the Hamiltonian parameters, may call for a different assessment of resources, specific

to each particular implementation.

Finally, let us mention that a generalization of our adaptive approach has been proposed in [101].
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Figure 5.8: (color online) (solid black) Specific QFI for the estimation of J in the XX model
versus J/h. As in Figure 6.1 the ferromagnetic phase has been shaded. (dashed red) Specific J-
sensitivity F(J; Jz)/N of the total magnetization Jz. The temperature was set to β = 100, h = 1,
and N = 103. (inset) Same as in the main plot for the much larger temperature β = 2. Note that,

unlike in the main plot, the vertical axis of the inset is not scaled by the 103 factor.

5.7.3 Sub-shot-noise estimation of the coupling J

For completeness we also address the estimation of the Hamiltonian parameter J in the XX

model. As we know from Section 5.5, the estimator OJ ≡
∑N

l=1

(
σ(x)

l σ(x)
l+1 +σ

(y)
l σ

(y)
l+1

)
would be

optimal in this case. Its sensitivity can be obtained as in Eq. (5.22), which gives

F (J) = 4β2
∑

p

cos2 p np(1−np). (5.29)

Unfortunately, OJ is not as easy to measure as the total magnetization Jz, since it involves two-

body correlations. Although generally sub-optimal, the magnetization is known to be a good

estimator for J in the related Ising model (cf. Section 5.8) [47], which motivates us to look at

the J-sensitivity F(J; Jz) of this observable. This is plotted alongside F (J) in Figure 5.8. Note

that the abscissa is, in this case, J/h instead of h/J. As in Figure 6.1, F (J) (solid black) peaks

in the ferromagnetic phase close to the critical point. On the other hand, F(J; Jz) (dashed red) is

seen to be nearly optimal at low enough temperatures. Most interestingly, F(J; Jz) still remains

very close to the optimal sensitivity even at very large temperatures, as illustrated in the inset of

Figure 5.8. Hence, Jz can be regarded as a practical alternative for estimating J.

Due to the similarity between Eqs. (5.22) and (5.29), one may proceed as in Section 5.7.1 to

come up with the following low-temperature approximation for F (J) at large N:

F (J) ' Fapp(J) ≡C
h2βN

J3
√

1− (h/J)2
. (5.30)
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Figure 5.9: (color online) (a) Specific QFI (in logarithmic scale) in the XY model as a function
of h/J and γ. The critical line appears highlighted in white. Note that γ = 0 corresponds to the
XX model and γ = 1, to the Ising model. The sensitivity increases with the asymmetry param-
eter γ in the paramagnetic region, whereas it decreases with γ in the ferromagnetic phase. For
this illustration N = 103, β = 103, and J = 1. (b) (solid black) Specific QFI in the Ising model,
(dashed red) specific h-sensitivity F(h; Jz)/N of the total magnetization in the z-direction, and
(dotted green) specific h-sensitivity F(h; J2

x )/N. (inset) Zoom into the high-sensitivity region,
not shown in the main plot. The ferromagnetic phase is highlighted in shaded gray and N = 40,

β = 100, and J = 1.

Consequently, the exact same line of reasoning of Section 5.7.2 applies to this case: Iteratively

updating the value of the external magnetic field h, so as to drive the system towards the critical

point, allows, in principle, for sub-shot-noise scaling in the J-sensitivity.

5.8 Magnetometry beyond the XX model

We shall now turn our attention back to the Heisenberg XY model, which includes the XX model

as a particular case as described by Eq. (5.1). Here the asymmetry parameter γ is a resource of

non-commutativity, hence [H1,H2] , 0. As a result, we cannot use the results of Section 5.5.

However, just like the thermometry precision, the maximum magnetic sensitivity of the thermal

state ρT of the XY Hamiltonian can be computed easily by using the additivity of the QFI. Specif-

ically we have F (h) =
∑

pFp(h). Each of the terms contributing to the rhs can be calculated by

the help of Eq. (2.17)

Fp(h) = 4
∑

i

(
∂h pi

)2

pi
+ 2

∑
i j

(pi− p j)2

pi + p j

∣∣∣∣〈ip|∂h jp
〉∣∣∣∣2 (5.31)

where i, j ∈ {0,1}, and pi = 〈ip|ρ
p(T )|ip〉. Notice that unlike thermometry, the state vectors |ip〉

do depend on the parameter h. In Figure 5.9(a) the resulting F (h) is plotted versus h/J and γ.

Note that the sensitivity peaks sharply around the critical line h/J = 1 (indicated in white) for

any γ. Otherwise, in the ferromagnetic phase, the sensitivity decreases as the asymmetry γ is

increased, while in the paramagnetic phase, it grows instead.
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Note that the two terms in Eq. (5.1) do not commute in general and, consequently, Jz is not

necessarily an optimal magnetic field estimator. Even if the QFI can be readily computed,

finding the SLD is a much harder task, typically yielding complex non-local optimal estimators.

It is therefore important to find good practical estimators, as in Section 5.7.3.

In particular, we shall consider again Jz and the variance ∆Jx
2, which can be expressed in

terms of two-body correlation functions [77]. Their corresponding h-sensitivities, F(h; Jz) and

F(h;∆Jx
2), are easy to calculate numerically for low N. These are compared to F (h) in Fig-

ure 5.9(b) for γ = 1 (i.e. in the Ising model). At low temperatures and far from the critical point,

Jz turns out to be nearly optimal again. In contrast, close to criticality ∆Jx
2 features a magnetic

sensitivity much closer to the ultimate bound. At larger temperatures, however, correlations are

destroyed by thermal mixing and, consequently, F(h;∆Jx
2) reduces significantly. On the other

hand, F(h; Jz) remains close to optimality even at very large temperatures. Figure 5.9(b) sug-

gests that, in a practical situation, a first estimate h± δh1 would be best obtained with the more

conservative estimator Jz. If the temperature is low enough and J can be tuned to h+δh1, further

estimates based on ∆Jx
2 would subsequently provide much better accuracies.

5.9 Summary and Outlook

In summary, we have proposed a method to estimate the parameters in a strongly correlated

spin chain at finite temperatures. Such parameters range from an external magnetic field to

atom-atom couplings, to the temperature itself. Our method is based on using collective atomic

measurements via a QND Faraday interface. The Faraday interface gives access, a priori, to

any order of the statistical moments of the collective atomic angular momentum operators. We

have investigated which are the best collective operators to estimate the sample. These de-

pend upon the order of the strongly correlated system (quantum phases) and the temperature

range. By borrowing concepts from quantum metrology, we have analytically derived the op-

timal signal-to-noise ratio for a thermal state governed by the XY Hamiltonian given by the

quantum Cramér-Rao bound and we have compared it with the one obtained from the Fara-

day interface. Remarkable enough, collective atomic correlations can be considered as optimal

observables for precision thermometry/magnetometry in the temperature range of interest in

present experiments of ultracold lattice gases simulating strongly correlated systems. Our re-

sults hold for the XY model, but it remains to be analyzed if the method can be also optimal for

other quantum spin models, either integrable or not.

Further we have shown how, even though the magnetic susceptibility, which modulates the mag-

netic sensitivity, scales extensively in the probe size, sub-shot-noise reduction of the error is still

possible through a feedforward adaptive scheme. This sub-shot-noise behaviour can be main-

tained until the error falls below the level of the environmental noise.
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Finally, we have extended our study to more general Hamiltonians where commutative algebra

cannot be exploited for metrology; namely, the paradigmatic XY model. There, the sensitivities

of different sub-optimal observables have been benchmarked against the practically unattainable

ultimate precision bound set by the quantum Fisher information.

Our results may be particularly relevant to practical sub-shot-noise sensing, as we place the

focus on the sensitivities achievable with probes prepared in robust thermal states, rather than

the fragile highly-entangled pure preparations which are often sought in order to attain better-

than-classical error scaling in parameter estimation.

The problem of the simultaneous measurement of several parameters (e.g. h and J) with quan-

tum many-body probes remains an open question that certainly deserves investigation. Although

technically very challenging, it would also be interesting to extend this type of analysis to non-

integrable thermal spin models, possibly featuring a richer phase diagram. This will be the

subject of future work.



Chapter 6

Quantum metrology beyond thermal
equilibrium I: Static systems

In this chapter we present our results regarding parameter estimation in systems which are not

at thermal equilibrium. The focus is on systems which are at their stationary state, so their

density matrix does not change with time. By non-equilibrium we specifically mean that the

stationary state is not described by a Gibbs state. In turn, systems whose density matrices are

time dependent (dynamic) will be addressed in Chapter 7. We are curious about two particular

scenarios that bring on non-equilibrium stationary states:

1. Systems which interact strongly with a thermal bath.

2. Systems which interact, simultaneously, with multiple baths.

In the first case, the strong coupling produces an unavoidable correlation between the system

and the bath, therefore, the Born-Markov approximation is not maintainable anymore. As a

consequence, making use of the Lindbladian master equation is ruled out. Notwithstanding,

there are multiple paradigms which can be dealt with analytically. Aligned with our particular

task of low temperature thermometry, we point out the standard Caldeira-Leggett model as

an instance of such paradigms. Remarkably, we observe that low temperature thermometry is

indeed boosted by strong dissipative interactions, while within quantum technologies, strong

dissipation is most often detrimental.

In contrary, when multiple baths appear, the Lindbladian master equation is applicable—

provided that the interaction with each bath is weak enough. Nevertheless, the existence of

multiple baths poses complications, above all we can not assess a unique temperature to the

system. On the bright side, this situation brings up new physics e.g., the rise of stationary heat

currents can be exploited to construct an autonomous quantum heat pump. Therefore, for our

69
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metrological purposes, it provides various novel opportunities to inquire into. Such opportu-

nities range from exploring the role of temperature gradient in metrology, or estimation of the

temperature gradient itself, to probing a quantum heat pump, aiming at acquiring information

about the quality of its performance.

The chapter is structured as follows: In Section 6.1 we deal with thermometry of at low tem-

peratures (T ), the very same regime where equilibrium probes fail to prove efficient. To tackle

this issue we propose coupling the probe strongly to the sample (the heat bath). Our probe is

represented by a quantum harmonic oscillator. By studying the stationary state properties of

the harmonic oscillator, we observe that the strong coupling definitely improves the precision

of thermometry at low T . Further, we propose practically feasible measurements which can

achieve fairly close to optimal precision. Finally, we suggest that the spectral density of the

probe-system interaction can be set to play a crucial role in low T thermometry.

The rest of the chapter is dedicated to our results in systems which are in contact with multiple

baths. Specially, Section 6.2 is devoted to metrology in an interacting bipartite system consist-

ing of two coupled harmonic oscillators, each of which is placed in its local bath. We inquire

about the estimation of the temperature gradient between the two local baths, as well as the es-

timation of the interaction coupling between the two oscillators. Our observations show that the

estimation of the coupling between the two oscillators—not to be confused with the coupling

with the baths—can be increased quadratically by increasing the temperature gradient. This is

achievable merely by global measurements performed on both oscillators, while local protocols

fail to acquire any information about the coupling strength. In contrast, we discover that the

temperature gradient might be estimated even with local measurements, albeit the optimal mea-

surement is a global one. In addition, we see that unlike the thermal scenario of Section 4.3.1,

the coupling between the two oscillators diminishes thermometry precision.

Eventually, Section 6.3 is devoted to quantum heat pumps. First, we review the principle ele-

ments of an autonomous quantum heat pump. Whence, we propose the tiniest system, i.e., a

two-level atom, to probe a quantum heat pump. Despite the fact that the probe is very small,

measuring its steady state reveals notable information about the quantum heat pump. Specially,

it detects possible resources of irreversibility, such as heat leaks or internal dissipation. Provided

that the irreversibility is negligible, our tiny probe can be used to further estimate the coefficient

of performance of the heat pump.
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6.1 Thermometry with strongly coupled probes

In what follows, we will show that the thermal sensitivity can indeed improve (at low enough

T ) as the probe-sample coupling is increased, and the correlations built up among the two even-

tually allow the probe to sense a ‘larger’ portion of the sample. Namely, we will find the exact

(non-equilibrium) steady-state of a harmonic probe under arbitrarily strong dissipation into an

equilibrium environment, to then compute its maximum thermal sensitivity. In order to describe

the probe-sample interaction, we adopt the standard Caldeira-Leggett model [102, 103]. As we

described in Chapter 3, the Hamiltonian of the probe is just Hp = 1
2ω

2
0x2 + 1

2 p2 (where the mass

of the probe is m = 1), whereas the sample is described as an infinite collection of non-interacting

bosonic modes Hs =
∑
µ

1
2ω

2
µmµx2

µ + 1
2mµ

p2
µ. The probe-sample coupling is realized by a linear

term of the form Hp–s = x
∑
µ gµxµ. In order to compensate exactly for the ‘distortion’ caused on

the probe by the coupling to the sample, one should replace ω2
0 with ω2

0 +ω2
R in Hp [102, 103],

where the ‘renormalization frequency’ is ω2
R B

∑
µ

g2
µ

mµω
2
µ

1.

The coupling strengths between the probe and each of the sample modes are determined by

the ‘spectral density’ J(ω) B π
∑
µ

g2
µ

2mµωµ
δ(ω−ωµ), which is given a phenomenological ana-

lytical form. To ensure convergence, one must set up a high-frequency cutoff in J(ω) [103].

In what follows, we shall work with an Ohmic spectral density with Lorentz-Drude cutoff

J(ω) = 2γωω2
c/(ω

2 +ω2
c), which vanishes for ω�ωc. Here, γ stands for the dissipation strength

and carries the order of magnitude of the couplings gµ 2.

1Splitting the Hamiltonian into a potential and a kinetic term H = U(x, xµ) + K(p, pµ), one can see that effective
potential felt by the probe is given by U(x, x?µ ), where x?µ = −

gµ
mµω

2
µ

[i.e. ∂xµU = 0 at x?µ ]. This is U(x, x?µ ) = 1
2 (ω2

0 −

ω2
R)x2. As a result, the high temperature limit of the reduced steady state of the probe obtained from the bare model

H = Hp + Hs + Hp–s is trs ρ ∝ exp
(
− 1

2T (ω2 −ω2
R)x2 − 1

2T p2
)
, which may differ significantly from the corresponding

thermal state ρT = Z−1 exp(−Hp/T ) if the couplings gµ are strong. To correct this, one must introduce the frequency
shift ω2

R in Hp ad hoc.
2The need to introduce the cutoff frequency ωc is related to the fact that even if very large (as compared to the

probe), the sample is finite and thus, it has a maximum energy. The non-equilibrium steady state of the central
oscillator will unavoidably depend on the choice of ωc but, as long as ωc� ω0, this dependence should be weak and
not change its qualitative features [104]. In particular, note that ω2

R ≡
2
π

∫ ∞
0 dω J(ω)

ω = 2γωc.
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From the Heisenberg equations of motion to the QLE

We can write down the Heisenberg equations of motion
(

d
dt A(t) = i[H,A(t)] + ∂tA(t)

)
for all

degrees of freedom {x, p, xµ, pµ} of the system H = Hp + Hs + Hp–s. These read

ẋ = p (6.1a)

ṗ = −
(
ω2

0 +ω2
R

)
x−

∑
µ

gµxµ (6.1b)

ẋµ =
pµ
mµ

(6.1c)

ṗµ = −mµω
2
µxµ−gµx. (6.1d)

Differentiating Eq. (6.1c) and inserting in it Eq. (6.1d) yields ẍµ +ω2
µxµ = −

gµ
mµ

x, which results

in

xµ(t) = xµ(t0)cosωµ(t− t0) +
pµ(t0)
mµωµ

sinωµ(t− t0)−
gµ

mµωµ

∫ t

t0
dssinωµ(t− s) x(s). (6.2)

Similarly, one can differentiate Eq. (6.1a) and use Eqs. (6.1b) and (6.2) to eliminate ṗ and xµ.

This results in the following integro-differential equation

ẍ +
(
ω2

0 +ω2
R

)
x−

∫ t

t0
ds

∑
µ

g2
µ

mµωµ
sinωµ(t− s) x(s)

= −
∑

µ
gµ

xµ(t0)cosωµ(t− t0) +
pµ(t0)
mµωµ

sinωµ(t− t0)
 . (6.3)

This is nothing but the quantum Langevin equation (QLE) of our probe [103, 105]. Since we

are interested in the steady state of the central oscillator, we may let t0 → −∞ without loss of

generality. Defining the stochastic quantum force

F(t)B −
∑

µ
gµ

xµ(t0)cosωµ(t− t0) +
pµ(t0)
mµωµ

sinωµ(t− t0)
 , (6.4)

and the dissipation kernel

χ(t)B
∑

µ

g2
µ

mµωµ
sinωµtΘ(t) =

2
π

∫ ∞

0
dω J(ω) sinωt Θ(t), (6.5)

one may rewrite the QLE as

ẍ(t) +
(
ω2

0 +ω2
R

)
x(t)− x(t)∗χ(t) = F(t), (6.6)

where ∗ denotes convolution.
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In summary, the first two terms in the left-hand side of Eq. (6.6) correspond to the coherent

dynamics of a free harmonic oscillator of squared frequency ω2
0 +ω2

R, while the incoherent

superposition of all environmental modes, encompassed in F(t), plays the role of a stochastic

driving force. Finally, the convolution x(t)∗χ(t)B
∫ ∞
−∞

dsχ(t− s)x(s) brings memory effects into

the dissipative dynamics.

It is important to remark that Eq. (6.6) is exact. As already advanced, the only assumption that

we make is that probe and sample start uncorrelated at t0 → −∞, i.e. in ρ⊗σT , where σT is

the Gibbs state of the sample at temperature T . The initial state of the probe ρ is arbitrary.

However, since the Hamiltonian H is overall bilinear in positions and momenta, its stationary

state is Gaussian, and thus, completely determined by its second-order moments σi j(t′, t′′) B
1
2 〈{Ri(t′),R j(t′′)}〉, where R = (x, p) [105]. The notation 〈· · · 〉 stands here for average on the

initial state and {. . . } denotes anti-commutator.

One may now take the Fourier transform ( f̃ (ω)B
∫ ∞
−∞

dt f (t)eiωt) in Eq. (6.6), and solve for x̃(ω),

which yields

x̃(ω) = [ω2
0 +ω2

R−ω
2− χ̃(ω)]−1F̃(ω)B α(ω)−1F̃(ω). (6.7)

The position correlator σ11(t′, t′′) can be thus cast as

σ11 =

" ∞

−∞

dω′ dω′′

8π2 e−i(ω′t′+ω′′t′′) 〈{x̃(ω′), x̃(ω′′)}〉, (6.8)

whereas σ22 may be calculated similarly by noticing that 〈{p̃(ω′)p̃(ω′′)}〉 =

−ω′ω′′〈{x̃(ω′)x̃(ω′′)}〉. The two remaining correlators simply vanish (σ12 = σ21 = 0) (see

Appendix C).

Hence, in light of Eqs. (6.7) and (6.8), all we need to know is the power spectrum of the noise

〈{F̃(ω′)F̃(ω′′)}〉 and the Fourier transform of the dissipation kernel χ̃(ω). Since the sample was

prepared in a Gibbs state, one can show that the noise is connected to the dissipation kernel

through the following fluctuation-dissipation relation (see Appendix A.1)

〈{F̃(ω′), F̃(ω′′)}〉 = 4πδ(ω′+ω′′)coth( ω
′

2T ) Im χ̃(ω′). (6.9)

For our specific choice of spectral density J(ω), χ̃(ω) evaluates to χ̃(ω) = 2γω2
c/(ωc− iω).

Putting together the pieces from the above paragraphs, we can compute the steady-state covari-

ances σi j(0,0) [104, 106–108] (recall that t0→−∞). These may be collected into the 2×2 co-

variance matrix σ, which provides a full description of the (Gaussian) non-equilibrium asymp-

totic state of our single-mode probe [109]. We can now calculate FT from Eq. (??), using the

fact that the Uhlmann fidelity between two single-mode Gaussian states with covariance ma-

trices σ1 and σ2 is given by F(σ1,σ2) = 2
(√
∆+Λ −

√
Λ

)−1
, where ∆ B 4det (σ1 +σ2) and

Λ B (4detσ1 − 1)(4detσ2 − 1) [110]. In Figure 6.1(a) we plot the thermal sensitivity FT of a
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Figure 6.1: (color online) (a) Quantum Fisher information FT vs. the sample temperature T for
different dissipation strengths: (solid black) γ = 0.1, (dashed black) γ = 1, and (dotted black)
γ = 5 (ω0 = 1). The sensitivity of a single-mode probe at thermal equilibrium (dot-dashed red)
has been super-imposed for comparison. (b) Log-log plot of FT as a function of γ for (solid)
T = 1, (dashed) T = 0.1, and (dotted) T = 0.05. In both cases we work in units of h̄ = kB = 1.

Here, ωc = 100ω0.
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Figure 6.2: (color online) Comparison of (solid black) the maximum thermal sensitivity FT
of the non-equilibrium probe, (dashed black) the sub-optimal sensitivity of the average energy
FT (Hp), (dotted black) the sensitivity of the position covariance FT (x2), for different values of
the dissipation strength: γ = 5×10−3, γ = 5×10−2, and γ = 0.5. Again, the thermal sensitivity
of the corresponding equilibrium state has been added for comparison (dot-dashed red), and

ωc = 100ω0.

harmonic probe as a function of the sample temperature, for several (large) values of the dis-

sipation strength γ. When comparing it with the sensitivity of an equilibrium mode, we can

see that, even though the overall maximum attainable sensitivity may be deterred by a stronger

probe-sample coupling, the low-temperature QFI does increase significantly as the dissipation

strength grows. This is further illustrated in Figure 6.1(b), where we plot FT as a function of γ

for different temperatures: As shown in the figure, if the sample is cold enough, the sensitivity of

the probe increases monotonically with the dissipation strength. Hence, the probe-sample cou-

pling can be thought-of as a relevant control parameter in practical low-temperature quantum

thermometry. This is our main result.

Thus far, we have shown how strong coupling may improve the ultimate bounds on thermometric

precision at low temperatures. However, we have not yet discussed how to saturate those bounds

in practice. We therefore need to find observables capable of producing temperature estimates

that approach closely the precision bound set by the QFI.
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In general, a temperature estimate based on M measurements of some observable O on the

steady state of the probe has uncertainty δT ≥ 1/
√

MFT (O) , where FT (O) stands for the ‘clas-

sical Fisher information’ of O [111]. This may be lower-bounded by the ‘thermal sensitivity’

FT (O) B |∂T 〈O〉|2/(∆O)2 ≤ FT (O) ≤ FT ≡ supO FT (O) [112]. Here, ∆O B
√
〈O2〉− 〈O〉2 de-

notes the uncertainty of O and all averages are taken with respect to the stationary state of the

probe.

The observable for which FT (O) is maximized commutes with the so-called ‘symmetric loga-

rithmic derivative’ (SLD) L, which satisfies ∂Tρ = 1
2 (Lρ+ ρL). For instance, in the case of an

equilibrium probe, i.e. ρT ∝ exp(−Hp/T ), one has [L,Hp] = 0. Consequently, a complete projec-

tive measurement on the energy measurements renders the best temperature estimate. However,

as shown in Figure 6.2, when the strength of the interaction with the sample increases, energy

measurements become less and less informative about the temperature of the sample: the larger

the dissipation strength γ, the smaller FT (Hp)/FT . Temperature estimates based on energy mea-

surements seem thus incapable of exploiting the extra low-temperature sensitivity enabled by

the strong dissipation. In searching for a more suitable measurement scheme, one can look at

the SLD: Since ρT is an undisplaced Gaussian (see Appendix A), L will be a quadratic form

of x2 and p2 [74]. Due to our choice for the probe-sample coupling (x
∑
µ gµxµ), the steady

state ρT becomes squeezed in the position quadrature when the temperature is low enough and

the dissipation rate is sufficiently large. Interestingly, we observe that 〈x2〉 is much more sen-

sitive to temperature changes in this regime than 〈p2〉. We thus take O = x2 as an ansatz for

a quasi-optimal temperature estimator. FT (x2) is also plotted in Figure 6.2, where we can see

how it does approach closely the ultimate bound FT as γ grows. Note that the quadratures of

e.g. a single trapped ion are either directly measurable [113] or accessible via state tomography

[114, 115]. Measuring the variance of the most relevant quadrature of a harmonic thermometer

is therefore a practical prescription capable of exploiting the thermometric advantage provided

by strong dissipation at low temperatures.

To conclude, we shall give an intuition about the origin of the observed dissipation-driven en-

hancement. To that end, let us consider not just the marginal of the probe but the global state

of probe and sample. For simplicity we can model them as a finite N-mode ‘star system’,

comprised of a central harmonic oscillator (playing the role of the probe), linearly coupled to

N − 1 independent peripheral oscillators with arbitrary frequencies (representing the sample).

Let us further prepare the N-mode composite in a Gibbs state at the sample temperature T . In-

deed, when such linear system is at global thermal equilibrium, and provided that the number

of modes N is large enough, the marginal of the central oscillator approximates well the actual

steady state of the probe, which we have just calculated exactly [116].

It is easy to see that, whatever the distribution of the couplings, the frequencies of the lowermost
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Figure 6.3: Quantum Fisher information FT as a function of temperature for (solid) Ohmic
and (dashed) super-Ohmic spectral density Js(ω) with exponential high-frequency cutoff. (top
left) Zoom into the low-temperature region of the main plot. (bottom right) comparison of the
(solid) Ohmic and (dashed) super-Ohmic spectral densities. In this plots ω0 = 1, γ = 0.1, and

ωc = 100ω0.

normal modes of the global star system always decrease monotonically as the overall magni-

tude of the coupling strengths increases (see Appendix D). If the temperature T was so low that

not even the first harmonic could get thermally populated, the sensitivity of the entire system

and, by extension, also that of the central probe, would vanish. However, one could populate

the first few normal modes by strengthening the couplings, as their frequencies would then de-

crease. It is this effect which ultimately enables temperature sensing at low T . The magnitude

of the enhancement is dictated by the specific frequency distribution of the probe-sample cou-

plings which, in turn, determines the spectrum of the normal modes of the global system (see

Appendix D and Reference [117]).

From the above reasoning it follows that the shape of the spectral density J(ω) could, in prin-

ciple, be tailored to render more precise low-temperature probes. To see that this is indeed the

case, we shall adopt a generic spectral density of the form Js(ω)B π
2γω

sω1−s
c e−ω/ωc , i.e. with

an exponential high-frequency cutoff. We can thus compare the performance of a single-mode

thermometer coupled to the sample through an Ohmic (s = 1) and a super-Ohmic (s > 1) spec-

tral density, e.g. at fixed γ. For this purpose, we resort again to Eqs. (6.7)–(6.9), leading to

the exact Gaussian marginal of the probe. Importantly, the dissipation kernel χ̃(ω) needs to be

re-calculated due to the change in spectral density (see Appendix B and [108]). Note as well

that now ωR = γωcΓ(s), where Γ(z)B
∫ ∞

0 dt tz−1e−t is Euler’s Gamma function. The results are

illustrated in Figure 6.3: As we can see, a super-Ohmic spectral density (in our case, with s = 2)

may allow for a large improvement over an Ohmic one, in terms of maximum achievable ther-

mal sensitivity (also compare with Figure 6.1). On the contrary, when it comes to thermometric

precision at low temperatures, the Ohmic spectral density offers a clear advantage. As a final

remark, we note that, since the equilibrium state of the probe corresponds to the marginal of

a global thermal state [116], we can think of our results as an instance of thermometry on a

macroscopic sample through local measurements, as studied in [97].
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6.2 Coupled harmonic oscillators with individual local baths

We address the problem of two coupled harmonic oscillators (HO), which could represent a

double well, or two cavity modes. The free Hamiltonian of the system is given by

H = H0 + HI , with H0 = ω a†1a1 + (ω+∆)a†2a2, and HI = −J(a†1a2 + a1a†2). (6.10)

Here a j and a†j represent, respectively, the annihilation and creation operators of the jth HO.

Besides, ω is the frequency of the first HO, while the frequency of the second HO is ω+∆.

In addition, J is the coupling between the two modes, which we assume to be constant. (See

Section 7.2.2 for the time dependent tunneling.) Further, we assume that each of the oscillators

is coupled to individual thermal baths with two different temperatures T1 and T2. By working in

the weak coupling limit, and after Born-Markov approximation, followed by the rotating wave

approximation, the master equation describing the reduced state of the oscillators is found to be

[28, 71, 118, 119]

ρ̇(t) = −i[H,ρ(t)] +
∑

j={1,2}

D j[ρ(t)], (6.11)

where the dissipatorsD j are given by

D j[ρ(t)] = γ(N j + 1)
(
a jρ(t)a†j −1/2{a†ja j,ρ(t)}

)
+γN j

(
a†jρ(t)a j−1/2{a ja

†

j ,ρ(t)}
)
. (6.12)

Here N j = (exp[ω j/T j]−1)−1 is the mean number of excitations of the jth oscillator at temper-

ature T , and γ being the dissipation rate. We have assumed the same constant dissipation rate

for both oscillators. Obviously, for J = 0 this dynamic is separable, i.e., under this dynamics the

two oscillators evolve independently. Therefore, the stationary state is simply a product state.

More precisely, the stationary state is such that each oscillator is at thermal equilibrium with its

own bath

ρ∞
J=0

=
e−H1/T1

Tr[e−H1/T1]
⊗

e−H2/T2

Tr[e−H2/T2]
, (6.13)

with H j = ω ja
†

ja j being the free Hamiltonian of the jth oscillator, and the index “∞” stands for

the stationary state. Also notice that the dynamics of this model is quadratic in ladder operators,

hence it preserves Gaussianity of quantum states. Thus, one may equivalently describe this

system with the covariance matrix. We remind the definition of the quadratures

x j =
1
√

2
(a†j + a j), p j =

i
√

2
(a†j −a j), (6.14)
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which satisfy the commutation relations [x j, pk] = iδ jk, and all the other commutations are zero.

With these definitions at hand, the covariance matrix σ is defined as a Hermitian matrix, with

the elements σlm = 1
2 〈RlRm + RmRl〉−〈Rl〉 〈Rm〉, and Rl ∈ {x1, x2, p1, p2}. The σ corresponding to

the density matrix of Eq. (6.13) is the following diagonal matrix

σ∞
J=0

=


N1 + 1

2 0 0 0

0 N2 + 1
2 0 0

0 0 N1 + 1
2 0

0 0 0 N2 + 1
2


. (6.15)

For a non-zero tunneling, the covariance matrix is not diagonal anymore, as the tunneling estab-

lishes correlations amongst the two HOs. It is rather given by the following expression [118],

σ∞ = ζ


D + N1 + 1

2 −∆C 0 γC

−∆C D + N2 + 1
2 −γC 0

0 −γC D + N1 + 1
2 −∆C

γC 0 −∆C D + N2 + 1
2


, (6.16)

with ζ =
γ2+∆2

4J2+γ2+∆2 , D =
2J2(N1+N2+1)

γ2+∆2 , and C =
J(N1−N2)
γ2+∆2 .

6.2.1 Estimation of the tunneling strength

We are interested in estimation of the tunneling strength J, when it appears as a perturbation.

Specially we aim at finding the ultimate precision of its estimation. Accordingly, we need to

identify the SLD associated to J, and whence the corresponding QFI. This is straightforward,

as we know that for a Gaussian state, like the one in Eq. (6.16), ΛJ can be expressed as a linear

combination of all the second order moments of the quadratures [74, 75], namely

ΛJ = d1
(
x2

1−σ
∞
11

)
+ d2

(
p2

1−σ
∞
33

)
+ d3

(
x1 p1 + p1x1

)
+ d4

(
x2

2−σ
∞
22

)
+ d5

(
p2

2−σ
∞
44

)
+ d6

(
x2 p2 + p2x2

)
+ c1

(
x1x2−σ

∞
12

)
+ c2

(
x1 p2−σ

∞
14

)
+ c3

(
p1x2−σ

∞
32

)
+ c4

(
p1 p2−σ

∞
34

)
, (6.17)

with d js and c js being coefficients which are yet to be determined. To this end, we make benefit

of the fact that for any observable Ô we have

∂J
〈
Ô
〉

J=0
=

1
2

〈
ΛJÔ + ÔΛJ

〉
J=0

. (6.18)

Note that both sides are evaluated at J = 0, as we consider the coupling to appear as a pertur-

bation around zero. Next, we imply this relation to all of the quadratic observables appearing
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in (6.17), i.e., we choose Ô ∈ {x2
1, x

2
2, x1 p1 + p1x1, . . . }. With this choice of Ô, the left hand side

of Eq. (6.18) can be evaluated by taking derivative from the covariance matrix σ∞. Moreover,

by using the Wick’s theorem for Gaussian distributions [120], one can easily simplify the right

hand side and write it down in terms of the elements of σ∞ as well. We shall start by focusing

on the local terms. As an example, for x2
1 we have

1
2

〈
ΛJ x2

1 + x2
1ΛJ

〉
J=0

=
(
∂Jσ

∞
11

)
J=0

⇒ 2d1(σ∞11)2
J=0
−

d2

2
= 0, (6.19)

where we used the fact that σ∞J=0, has no off-diagonal terms, as stated by Eq. (6.15). For p2
1

we find a very similar equation, with the change of coefficients d1 ↔ d2. This implies that,

d1 = d2 = 0. In the same manner, one can find that d4 = d5 = 0. For the other two local terms i.e.,{
1
2 (x1 p1 + p1x1), 1

2 (x2 p2 + p2x2)
}

we have

d3

[
2(σ∞11)J=0(σ∞33)J=0 +

1
2

]
= 0, d6

[
2(σ∞22)J=0(σ∞44)J=0 +

1
2

]
= 0, (6.20)

whence, d3 = d6 = 0 as well. This confirms that the coefficients associate to local observables

are zero, i.e., di = 0 ∀i. Thus, it is impossible to detect the perturbation (in the linear response

regime) by local measurements on individual oscillators. In other words, the linear response of

any local observable to the perturbation is zero. However, the non-local coefficients are non-

zero. For
{
x1x2, x1 p2, p1x2, p1 p2

}
we find

c1(σ∞11)J=0(σ∞22)J=0 = (∂Jσ
∞
12)J=0 , c2(σ∞11)J=0(σ∞44)J=0 = (∂Jσ

∞
14)J=0 ,

c3(σ∞33)J=0(σ∞22)J=0 = (∂Jσ
∞
32)J=0 , c4(σ∞33)J=0(σ∞44)J=0 = (∂Jσ

∞
34)J=0 . (6.21)

Or, by using the symmetry in the covariance matrix we can simply write down

c1 = c4 =

 ∂Jσ
∞
12

σ∞11σ
∞
22


J=0

, c2 = −c3 =

 ∂Jσ
∞
14

σ∞11σ
∞
44


J=0

. (6.22)

In turn, the SLD at J = 0 is simply given by

Λ0 = c1(x1x2 + p1 p2) + c2(x1 p2− p1x2)

= (c1 + ic2)a†1a2 + h.c. (6.23)
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From here one finds the corresponding QFI easily with the help of FJ = Tr
(
ρΛ2

J

)
, and again, by

using the Wick’s theorem

FJ = 2c2
1

(
σ∞11σ

∞
22−

1
4

)
+ 2c2

2

(
σ∞11σ

∞
44−

1
4

)
= 2

σ∞11σ
∞
22−

1
4

(σ∞11σ
∞
22)2

[(
∂Jσ

∞
12

)2
+

(
∂Jσ

∞
14

)2
]

=

 2N1N2 + N1 + N2

(N1 + 1
2 )2(N2 + 1

2 )2

 (N1−N2)2

γ2 +∆2 . (6.24)

It is interesting to look at a case when the temperature of the baths and the frequencies of the

two HOs are close to one another. Concretely, let T2 = T1 +δT , δT � T1 ≡ T , and ∆�ω. Thus,

in Eq. (6.24), for the terms in the bracket, we can replace N2 u N1 ≡ N = (eω/T −1)−1. However,

the expression in the parenthesis shall be treated as a differential term, i.e., N1−N2 ≡ dN, which

depends on two variables, the temperature gradient δT and the frequency detuning ∆. One can

write it as

dN = −δT∂T (eω/T −1)−1 +∆∂ω(eω/T −1)−1

= −
ωδT
T 2 N(N + 1) +

∆

T
N(N + 1). (6.25)

Putting everything together, the QFI reads as follows

FJ = 2
N3(N + 1)3

(N + 1
2 )4

(∆−ω δT
T )2

T 2(∆2 +γ2)
. (6.26)

One can see that the difference between the detuning and the temperature gradient, i.e., ∆−ω δT
T ,

plays a crucial role in estimation of J. Particularly, for a fixed δT , the best performance is

realized when ∆ = 0. This leads to a QFI that increases quadratically with δT (yet we should

keep δT � T ).

6.2.2 Estimation of temperature gradient between two baths

In Chapter 4 we used the coupled HOs to estimate the temperature of a thermal bath. Specifi-

cally, we observed that the coupling between the two oscillators boosts the thermometry preci-

sion considerably. Here, we address the same problem, in the non-equilibrium regime. We are

particularly interested in identifying the optimal measurement for thermometry, its sensitivity,

and how the correlation between the two HOs enters the problem.

Concretely, let T2 = T1 + δT , whence, our task is to estimate δT i.e., the temperature gradient.

For simplicity, we work in the regime where ∆�ω = 1, and δT � T1 ≡ T , but we do not put any

limit on the coupling J. In order to find ΛδT , the SLD associated to the temperature gradient,
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we rewrite Eq. (6.17), with new coefficients to be determined

ΛδT = d′1
(
x2

1−σ
∞
11

)
+ d′2

(
p2

1−σ
∞
33

)
+ d′3

(
x1 p1 + p1x1

)
+ d′4

(
x2

2−σ
∞
22

)
+ d′5

(
p2

2−σ
∞
44

)
+ d′6

(
x2 p2 + p2x2

)
+ c′1

(
x1x2−σ

∞
12

)
+ c′2

(
x1 p2−σ

∞
14

)
+ c′3

(
p1x2−σ

∞
32

)
+ c′4

(
p1 p2−σ

∞
34

)
. (6.27)

Since the temperature gradient is evaluated around δT = 0, the off-diagonal terms of (σ∞)δT=0

vanish. Further, similar to the estimation of coupling constant, Eq. (6.18), we shall find the

linear response of different observables to δT . For instance for x2
1 we have the following

(∂δTσ∞11)δT=0 = 2d′1(σ∞11)2
δT=0
−

d′2
2
. (6.28)

Analogous expressions can be found for the other diagonal terms. Solving them simultaneously

gives

d′1 = d′2 =

(
∂δTσ

∞
11

2(σ∞11)2− 1
2

)
δT=0

, d′4 = d′5 =

(
∂δTσ

∞
22

2(σ∞22)2− 1
2

)
δT=0

. (6.29)

For the local off-diagonal terms, such as x1 p1 + h.c. one finds

(∂δTσ∞13)δT=0 = d′3

[
2
(
σ∞11 σ

∞
33

)
δT=0

+
1
2

]
⇒ d′3 = 0. (6.30)

Therefore d′3 = d′6 = 0. It remains to determine the off-diagonal non-local terms. These are easily

evaluated as follows

(∂δTσ∞12)δT=0 = c′1
(
σ∞11 σ

∞
22

)
δT=0
⇒ c′1 =

(
∂δTσ

∞
12

σ∞11 σ
∞
22

)
δT=0

. (6.31)

Putting everything together, the SLD simplifies to

ΛδT = d′1
(
x2

1 + p2
1−2(σ∞11)δT=0

)
+ d′4

(
x2

2 + p2
2−2(σ∞22)δT=0

)
+ c′1(x1x2 + p1 p2) + c′2(x1 p2− p1x2),

(6.32)

with the coefficients

d′1 =

(
∂δTσ

∞
11

2(σ∞11)2− 1
2

)
δT=0

, d′4 =

(
∂δTσ

∞
22

2(σ∞22)2− 1
2

)
δT=0

,

c′1 =

(
∂δTσ

∞
12

σ∞11 σ
∞
22

)
δT=0

, c′2 =

(
∂δTσ

∞
14

σ∞11σ
∞
22

)
δT=0

. (6.33)

Notice that for a vanishing coupling J = 0 only d′4 survives. Hence, the optimal measurement

becomes a projective energy measurement of the second oscillator. Indeed, this could be already

expected considering our results of Chapter 4, in which a single HO in a thermal bath is treated.
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On this occasion, the thermal sensitivity is directly given by Eq. (4.20). For non-zero coupling,

however, the global observables, like x1x2 and p1 p2, as well as local observables of the first HO,

affect the optimal measurement. The impact of each of these observables is determined by the

competition between ∆, γ, and J.

Finally, the quantum Fisher information reads as

FδT = 4d′21

[
(σ∞11)2

δT=0
−

1
4

]
+ 4d′24

[
(σ∞22)2

δT=0
−

1
4

]
+ 2c′21 (σ∞11)δT=0(σ∞22)δT=0 + 2c′22 (σ∞11)δT=0(σ∞22)δT=0

=
(∂δTσ∞11)2

δT=0

(σ∞11)2
δT=0
− 1

4

+
(∂δTσ∞22)2

δT=0

(σ∞22)2
δT=0
− 1

4

+
2(∂δTσ∞12)2

δT=0

(σ∞11)δT=0(σ∞22)δT=0

+
2(∂δTσ∞14)2

δT=0

(σ∞11)δT=0(σ∞22)δT=0

=

4J4 + (2J2 +∆2 +γ2)2

(4J2 +∆2 +γ2)2

 1
4T 4 sinh−2(

1
2T

) +

2(∆J)2 + 2(γJ)2

(4J2 +∆2 +γ2)2

 1
T 4 sinh−2(

1
T

). (6.34)

One can further take the derivative of this function with respect to J, and see that the result

is always negative (for J > 0). As a result, increasing the coupling leads to reduction of the

temperature sensitivity. This is in contrast with our result when both HOs interact with a single

external bath. In that case, the increase of the coupling leads to the enhancement of thermometry

precision.

Time evolution of quadratures For our discussions later in Section 7.2, we also address the

time evolution of all the second moments under the uncoupled Hamiltonian H0. We remind the

time evolution of local quadratures are given by Eq. (3.56), since the unperturbed dynamics does

not mix the modes. These for the jth mode read as

x2
j (t) = e−γt

(
cos2(ω jt)x2

j + sin2(ω jt)p2
j +

sin(2ω jt)
2

(x j p j + p jx j)
)

+ (N j +
1
2 )(1− e−γt),

p2
j(t) = e−γt

(
sin2(ω jt)x2

j + cos2(ω jt)p2
j −

sin(2ω jt)
2

(x j p j + p jx j)
)

+ (N j +
1
2 )(1− e−γt),(

p jx j(t) + x j p j(t)
)

= e−γt
(
cos(2ω jt)

(
x j p j + p jx j

)
− sin(2ω jt)

(
x2

j − p2
j

))
. (6.35)

On top of that, for the non-local terms, by using

x j(t) =
1
√

2
(a†j(t) + a j(t)) = e−γ/2t

(
cos(ω jt)x j + sin(ω jt)p j

)
p j(t) =

i
√

2
(a†j(t)−a j(t)) = e−γ/2t

(
−sin(ω jt)x j + cos(ω jt)p j

)
,

(6.36)
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we can easily conclude that

x1x2(t) = e−γt
(
cos(ω1t)cos(ω2t)x1x2 + cos(ω1t) sin(ω2t)x1 p2

+ sin(ω1t)cos(ω2t)p1x2 + sin(ω1t) sin(ω2t)p1 p2

)
,

x1 p2(t) = e−γt
(
− cos(ω1t) sin(ω2t)x1x2 + cos(ω1t)cos(ω2t)x1 p2

− sin(ω1t) sin(ω2t)p1x2 + sin(ω1t)cos(ω2t)p1 p2

)
,

p1x2(t) = e−γt
(
− sin(ω1t)cos(ω2t)x1x2− sin(ω1t) sin(ω2t)x1 p2

+ cos(ω1t)cos(ω2t)p1x2 + cos(ω1t) sin(ω2t)p1 p2

)
,

p1 p2(t) = e−γt
(
sin(ω1t) sin(ω2t)x1x2− sin(ω1t)cos(ω2t)x1 p2

− cos(ω1t) sin(ω2t)p1x2 + cos(ω1t)cos(ω2t)p1 p2

)
.

(6.37)

We shall come back to this problem in Section 7.2, where we develop our fluctuation dissipation

theory to explore the estimation of a time dependent coupling rate J(t).

6.3 Quantum heat pumps

In the previous section, we dealt with a system simultaneously interacting with two different

thermal reservoirs. We saw that the stationary state of such a system is not at thermal equilibrium

any more. Such non equilibrium systems, which gives rise to stationary state heat currents, might

be used to build a (quantum) heat pump. By quantum heat pump we mean any multi-level device

which operates between several heat baths, and is capable of realizing energy-conversion cycles

like a refrigerator, or a heat transformer.

6.3.1 Endoreversible and irreversible heat pumps

The simplest quantum heat device is a three or a four-level system, which is simultaneously in

contact with three external baths: the ‘work’, the ‘hot’, and the ‘cold’ baths with temperatures

Tw > Th > Tc respectively. In what follows, the heat pump will be either endoreversible (three-

level system) or irreversible (four-level system), as schematically shown in Figure 6.4. The total

Hamiltonian of the system including the heat pump plus all the baths is given by

H = Hhp +
∑

α∈{w,h,c}

Hα
I +

∑
α∈{w,h,c}

Hα
B, (6.38)
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Figure 6.4: Schematic illustration of (a) a three-level heat pump and (b) a four-level irreversible
device. The three external heat baths (‘work’, ‘hot’ and ‘cold’) have temperatures Tw > Th > Tc.
The arrows indicate dissipative coupling between a given heat bath and the corresponding tran-
sition. The internal parameter g in the four-level device controls its ‘degree of irreversibility’

(see text for details).

Hhp, being the heat pump Hamiltonian. For the three-level system (also called maser) it is given

by

H3 = ωc |b〉 〈b|+ωh |c〉 〈c| , (6.39)

while for the four-level device it reads as

H4 = ωc(|b〉 〈b|+ |c〉 〈c|) +ωh |d〉 〈d|+ g(|b〉 〈c|+ |c〉 〈b|). (6.40)

The free Hamiltonian of the bath α, is given by the usual bosonic model

Hα
B =

∑
k

ωα,kb†
α,kbα,k. (6.41)

Here α ∈ {c,h,w}, and the index α,k refers to the mode k of the bath α. Further, we consider

three independent interaction terms Hα
I between the heat pump and each bath. The interactions

keep the same structure as Eq. (3.43), with σx→
∣∣∣↓α〉〈↑α∣∣∣+ h.c., where

∣∣∣↑α〉 and
∣∣∣↓α〉 represent

the two energy levels of heat pump, which are coupled to the bath α. For instance, regarding

the maser of Figure 6.4 we have
∣∣∣↓c〉 = |a〉, and

∣∣∣↑c〉 = |b〉, and so on. Therefore the interaction

with each bath is Hα
B =

∣∣∣↓α〉〈↑α∣∣∣⊗Bα + h.c., with Bα =
∑

k gα,k(bα,k + b†
α,k). The corresponding

master equation in the interaction picture, under the usual Born-Markov, and the rotating wave

approximations, is given by

ρ̇hp =
∑

α∈{c,h,w}

Dαρhp

=
∑

α∈{c,h,w}

∑
ωα

Γα,ωα

(
Aα,ωαρhp A†α,ωα −

1
2

{
A†α,ωαAα,ωα ,ρhp

})
+ e−ωα/TαΓα,ωα

(
A†α,ωαρhp Aα,ωα −

1
2

{
Aα,ωαA†α,ωα ,ρhp

})
. (6.42)

Hence we have one dissipator Dα per bath. As we discussed earlier in this chapter, each dis-

sipator may include contributions from several open decay channels at frequencies {ωα}. It is
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easy to check that the maser has only one open decay channel per bath. The corresponding

jump operators of the maser are Ac = |a〉 〈b| with ωc, Ah = |a〉 〈c| with ωh, and Aw = |b〉 〈c| with

ωw = ωh −ωc. For the four-level device, however, this is not the case, since there are two open

decay channels in the cold bath and two open decay channels in the work bath [121].

The presence of multiple thermal reservoirs in the master equation (6.42) results in a non-

equilibrium stationary state ρ∞. This non-equilibrium state means that there are some heat

currents from the heat devise to each bath. The heat current from the bath α is defined as

Q̇α = Tr(H3Dα(ρ∞)). It is not difficult to check that

Q̇α =
∑
ωα

Γα,ωα ωα(e−ωα/Tα pα,ωα
↓
− pα,ωα

↑
), (6.43)

where pα,ωα
↑

= Tr(A†α,ωαAα,ωαρ∞), and pα,ωα
↓

= Tr(Aα,ωαA†α,ωαρ∞) are the stationary state popula-

tions of the energy levels involved in the transition governed by Aα,ωα . Then, Eq. (6.42) dictates

that
∑
α Q̇α = 0, which is the first law of thermodynamics. In addition, the second law of ther-

modynamics implies that S =
∑
α Q̇α/Tα ≤ 0, i.e., the entropy of the system never decreases.

It is instructive to define τα the internal spin-temperatures (a.k.a. virtual temperature) associated

to each transition of open decay channels []. This reads as

τα =
ωα

log(pα,ωα
↓ /pα,ωα

↑
)
. (6.44)

For models with one open decay channel per bath, like the maser, one might confirm that Tα > τα
implies Q̇α > 0, i.e, the heat flows from the bath α to the heat pump. In contrast, for Tα < τα the

heat flows in the opposite direction, from the heat pump to the bath. This makes the definition

of internal temperature more insightful. If the bath is hotter than the corresponding internal tem-

perature, the heat pump absorbs the energy, and vice versa. In addition, if a bath has the same

temperature as the internal temperature, the heat current from that bath is zero. One might easily

show that a global equilibrium, (i.e., Q̇α = ∀α) is possible. We just need to choose the cold tran-

sition frequency to satisfy ωc = ωh
Tc(Tw−Th)
Th(Tw−Tc) ≡ ω

rev
c . Here we label this frequency with the index

rev, since the entropy production is zero, and the process is reversible. Generally speaking, for

models with one open decay channel per heat bath, we can always find a reversibility criteria.

Therefore these models, whose source of irreversibility is only due to a mismatch between the

external and internal temperatures, are referred to as endoriverssible. In contrary, in case of mul-

tiple open decay channels for a bath, like the cold and warm baths in the four-level device, there

are multiple internal temperatures as well. As a result, the bath temperature might not be equal

to all of the internal temperatures simultaneously, posing a problem for achieving reversibility.

Such heat devices are referred to as irreversible.

For an endoreversible heat pump, by choosing ωc < ω
rev
c , it is guaranteed that the system per-

forms as a refrigerator with Q̇c > 0, Q̇w > 0, and Q̇h < 0. In contrary, for ωc > ω
rev
c the device
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Figure 6.5: Schematic illustration of (a) a three-level heat pump and (b) a four-level irreversible
device coupled to a tunable two-level probe of frequencyΩ, with coupling strength J. The three
external heat baths (‘work’, ‘hot’ and ‘cold’) have temperatures Tw > Th > Tc. The arrows
indicate dissipative coupling between a given heat bath and the corresponding transition. The
internal parameter g in the four-level device controls its ‘degree of irreversibility’ (see text for

details).

operates as a heat transformer with Q̇c < 0, Q̇w < 0, and Q̇h > 0.

In what follows we focus on answering some relevant questions regarding the performance of a

quantum heat pump. Namely, is it an irreversible device, or it is just endoreversible? Is it per-

forming as a heat transformer, or as a refrigerator? And is it possible to estimate its coefficient

of performance?

6.3.2 Probing a quantum heat pump

In this section we propose a protocol for probing a quantum heat pump, in order to answer to

the questions which were arose in the previous section. To this end, we couple the heat device

to the simplest possible probe, a two-level spin, as depicted in Figure 6.5. We label the ground

state of the spin by
∣∣∣g〉, and its excited state by |e〉. Let the energy gap of the two-levels be Ω,

such that the free Hamiltonian of the probe reads as Hp =Ω |e〉 〈e|.

The interaction between the probe and the heat device is realized by a flip-flop term, corre-

sponding to any of the transitions of the system. The probe independently interacts with the

corresponding bath as well. In the rest of this section we place the probe in the cold bath, and

couple it to the heat pump transition between the levels |a〉 and |b〉, as illustrated in Figure 6.5.

The system Hamiltonian is

HS = Hhp + Hp + J(|a,e〉
〈
b,g

∣∣∣+ ∣∣∣b,g〉 〈a,e|), (6.45)

where we assume J, the interaction strength, to be weak enough not to disturb the heat pump

significantly. Keep in mind that we refer to the heat pump plus the probe as system. The idea is

to find the system’s stationary state. Then by tracing out the heat pump, and measuring only the

probe, we collect necessary information about the device.

The rest of our analysis is model dependent, and we address the maser and the four-level heat

device separately.
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Probing the endoreversible maser

First we focus on probing the endoreversible maser. The free Hamiltonian of the system, includ-

ing the maser and the spin is

H3,p = ωc |b〉 〈b|+ωh |c〉 〈c|+Ω |e〉 〈e|+ J(|a,e〉
〈
b,g

∣∣∣+ ∣∣∣b,g〉 〈a,e|). (6.46)

Together with the baths and their interactions with the system, one might write down the total

Hamiltonian

H =
∑

α∈{c,w,h}

Hα
B + H3,p + (|a〉 〈b|+

∣∣∣g〉 〈e|+ h.c.)⊗Bc

+ (|b〉 〈c|+ h.c.)⊗Bw + (|a〉 〈c|+ h.c.)⊗Bh. (6.47)

In order to find the jump operators of the Lindbladian master equation, we need to expand the

system interaction operators, i.e., those appearing in the parenthesis in Eq. (6.47), in the system’s

basis. First, notice that the eigenvalues of H3,p are E1 = 0, E2 = 1
2

(
ωc +Ω−

√
4J2 + (ωc−Ω)2

)
,

E3 = 1
2

(
ωc +Ω+

√
4J2 + (ωc−Ω)2

)
, E4 = ωc +Ω, E5 = ωh, and E6 = ωh +Ω, while the cor-

responding eigenvectors are |1〉 =
∣∣∣a,g〉, |2〉 = N−1

2

[
(E2 −ωc) |a,e〉+ J

∣∣∣b,g〉], |3〉 = N−1
3

[
(E3 −

ωc) |a,e〉+ J
∣∣∣b,g〉], |4〉 = |b,e〉,

∣∣∣5〉 =
∣∣∣c,g〉, and

∣∣∣6〉 = |c,e〉 (N2 and N3 are just normalization

constants). It thus follows that the work bath interacts with the maser-spin system at the Bohr

frequencies ωh − E2, ωh − E3 and ωh −ωc, which correspond to jump operators Aw,ωh−E2 =〈
2|b,g

〉
|2〉

〈
5
∣∣∣, Aw,ωh−E3 =

〈
3|b,g

〉
|3〉

〈
5
∣∣∣, and Aw,ωh−ωc =

∣∣∣6〉 〈4|. Likewise, the hot bath contributes

with three decay channels to the master equation: Ah,ωh = |1〉
〈
5
∣∣∣, Ah,ωh+Ω−E2 =

〈
2|a,e

〉
|2〉

〈
6
∣∣∣, and

Ah,ωh+Ω−E3 =
〈
3|a,e

〉
|3〉

〈
6
∣∣∣. There are also five transitions between energy eigenstates coupled to

the cold bath, namely |1〉↔ |2〉, |3〉↔ |4〉, |1〉↔ |3〉, |2〉↔ |4〉, and
∣∣∣5〉↔ ∣∣∣6〉. However, transitions

|1〉 ↔ |2〉 and |3〉 ↔ |4〉 have the same associated Bohr frequency E2. As a result, both are ac-

counted for by a single jump operator Ac,E2 = (
〈
a,e|2

〉
+
〈
b,g|2

〉
) |1〉 〈2|+(

〈
3|a,e

〉
+
〈
3|b,g

〉
) |3〉 〈4|.

In the case of transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉, these enter the master equation through the op-

erator Ac,E3 = (
〈
a,e|3

〉
+

〈
b,g|3

〉
) |1〉 〈3|+ (

〈
2|a,e

〉
+

〈
2|b,g

〉
) |2〉 〈4|. Finally, the process

∣∣∣5〉↔ ∣∣∣6〉
is represented simply by Ac,Ω =

∣∣∣5〉〈6∣∣∣. It remains to address the decay rates, Γα,ωα . We use

the expression for an electromagnetic radiation field at thermal equilibrium in a three dimen-

sional box, thus Γα,ωα = γω3
α(1 + Nωα,Tα), where Nωα,Tα = (eωα/Tα − 1)−1 is the bosonic thermal

occupation number [28].

With all of these at hand, one might solve the stationary state ρ∞
3,p

of the maser-probe system.

Therefore, as already mentioned, after tracing out the heat-pump (the maser), we have the sta-

tionary state of the probe ρ∞
p

= Tr3(ρ∞
3,p

). In general, this density matrix is not diagonal in the

energy basis, and coherence is present. However, we limit ourselves to population measure-

ments in the energy basis (therefore we are not performing the most precise measurement, since
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Figure 6.6: (solid line) Polarization bias ε of the two-level probe as a function of its frequency
Ω, while scanning the ‘cold transition’ of a three-level maser [cf. Figure 6.5(a)] (a) in the
chiller mode (ωc = 3/4ωc,rev), and (b) in the heat transformer mode (ωc = 5/4ωc,rev). The
dashed lines indicate the corresponding equilibrium polarization bias at temperature Tc, and
the vertical dotted lines highlight the resonance condition Ω = ωc. Specifically, in these plots
Tw = 30, Th = 20, Tc = 10, ωh = 40, and J = 0.1, in units of h̄ = kB = 1. See text for discussion.

we ignore the information registered in the off-diagonal of the ρ∞
p

). Specifically, we study the

polarization bias of the spin, ε ≡
〈
g
∣∣∣ρ∞

p

∣∣∣g〉−〈e|ρ∞
p
|e〉, and compare it with its equilibrium value,

εeq = (eΩ/Tc−1)/(eΩ/Tc + 1). In Figure 6.6 we plot both, versus the frequency Ω in two different

regimes. Panel (a) corresponds to ωc < ωc,rev, and the heat pump performs as a refrigerator. In

this case, the polarization bias is slightly larger than its equilibrium value, with a significant pick

only close to Ω ≈ ωc. In contrast, panel (b), with ωc > ωc,rev, corresponds to a heat transformer.

The polarization bias is slightly smaller than its equilibrium value, with a significant drop only

close to Ω ≈ ωc.

Both figures suggest that the energy exchange between the probe and the heat device is efficient

only if Ω is close to resonance with ωc. Otherwise, the probe thermalizes with the cold bath, as

if it was not interacting with the heat pump.

Further, one can explain why the polarization bias falls above/below the equilibrium polariza-

tion for the refrigerator/heat transformer. For instance, in the refrigeration regime, the probing

spin might be considered as an intermediate systems between the bath at Tc, and the virtual

spin with τc < Tc. As a result, the probing spin acquires its own virtual temperature τp, defined

in terms of its ground and excited state populations. This temperature is between τc and Tc, in

order to compromise. Since τp < Tc, the polarization bias is larger than its equilibrium value at

Tc.
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Probing the irreversible four-level heat pump

The free Hamiltonian corresponding to the four-level heat devise plus the probing spin (panel b
in Figure 6.5), is

H4,p = ωc(|b〉 〈b|+ |c〉 〈c|) +ωh |d〉 〈d|+ g(|b〉 〈c|+ |c〉 〈b|) +Ω |e〉 〈e|

+ J(|a,e〉
〈
b,g

∣∣∣+ ∣∣∣b,g〉 〈a,e|). (6.48)

The eigenvalues of this Hamiltonian are E1 = 0, E2 = ωc +Ω− g, E3 = ωc +Ω+ g, E4 = ωh,

E5 = ωh +Ω, and the three real solutions of

E3
i − (Ω+ 2ωc)E2

i + (ω2
c + 2Ωωc−g2− J2)Ei + (g2

Ω+ J2ωc−Ωω
2
c) = 0, i ∈ {6,7,8}. (6.49)

The associated eigenvectors write as |1〉 =
∣∣∣a,g〉, |2〉 = 1√

2
(|b,e〉 − |c,e〉), |3〉 = 1√

2
(|b,e〉+ |c,e〉),

|4〉 =
∣∣∣d,g〉, ∣∣∣5〉 = |d,e〉, and |i〉 =N−1

i [((Ei −ωc)2 −g2) |a,e〉+ J(Ei −ωc)
∣∣∣b,g〉+ gJ

∣∣∣c,g〉], where

i ∈ {6,7,8}, and Ni are the corresponding normalization constants.

Moreover, the total Hamiltonian of the system plus the baths is

H =
∑

α∈{c,w,h}

Hα
B + H4,p + (|a〉 〈b|+

∣∣∣g〉 〈e|+ h.c.)⊗Bc

+ (|c〉 〈d|+ h.c.)⊗Bw + (|a〉 〈d|+ h.c.)⊗Bh. (6.50)

In this case, the work, hot and cold baths couple to five, four and ten energy transitions respec-

tively. In general, each of these corresponds to a distinct open decay channel, since they all have

different Bohr frequencies3. The Lindblad operators are (i ∈ {6,7,8})

Aw,ωh−ωc+g = |2〉
〈
5
∣∣∣/√2 , Aw,ωh−ωc−g = |3〉

〈
5
∣∣∣/√2 , Aw,Ei−ωh =

〈
c,g|i

〉
|4〉 〈i| ,

Ah,ωh = |1〉 〈4| , Ah,Ei−Ω−ωh =
〈
a,e|i

〉 ∣∣∣5〉 〈i| ,
Ac,Ei = (

〈
a,e|i

〉
+

〈
b,g|i

〉
) |1〉 〈i| , Ac,Ei+g−Ω−ωc = −(

〈
a,e|i

〉
+

〈
b,g|i

〉
−

〈
c,g|i

〉
) |2〉 〈i|/

√
2 ,

Ac,Ei−g−Ω−ωc = (
〈
a,e|i

〉
+

〈
b,g|i

〉
+

〈
c,g|i

〉
) |3〉 〈i|/

√
2 , AΩ = |4〉

〈
5
∣∣∣ .

Again, by finding ρ4,p , the stationary state of the system, and by tracing out the four-level heat

pump, we reach at the stationary state of the probing spin ρp = Tr4(ρ4,p). The polarization bias

of the spin, in the refrigeration regime with ωcωc,rev is illustrated in panel (a) of Figure 6.7. One

can pinpoint the two open decay channel frequencies at ωc ± g. As pointed out in the previous

section, the fact that the polarization bias peaks around these frequencies indicates cooperative

3However, at Ω = ωc one finds that E7 = ωc and hence, the hot decay channels at frequencies ωh and ωh +Ω−E7
merge.
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Figure 6.7: (a) (solid black) Polarization bias ε of the auxiliary two-level spin as a function
of Ω, when coupled to the cold transition of an irreversible four-level chiller with g = 0.5 and
J = 0.1. The dashed and dotted lines represent the equilibrium bias and the resonance conditions
Ω = ωc ± g. (b) Same as (a), with g = 0.1 and J = 0.1. The thin solid gray line stands for the
polarization bias resulting from the weaker coupling J = 0.01. (c) Spin temperature of the probe
Teff = −Ω/ log[(ε −1/2)/(ε + 1/2)] versus Ω during the scan of an irreversible four-level chiller
with g = 0.5 at ωc = ωc,rev. (d) (solid) Coefficient of performance (COP) ε = ωc/(ωh −ωc) of
an endoreversible chiller as a function of ωc. The dashed and dot-dashed curves correspond to
the COP of the irreversible four-level chiller, with g = 0.1 and g = 0.5, respectively. All other

parameters are the same as in Figure 6.6(a).

heat absorption from the cold heat bath by the two detuned elementary cycles conforming the

heat device.

However, it may be the case that the separation between open decay channels is smaller or of the

order of the spin-device coupling constant J. We may then be unable to resolve the dissipative

spectrum. This is illustrated by the solid black curve in panel (b) of Figure 6.7. Reducing the

coupling J thus allows to increase the resolution of the scan4 and certify unambiguously the

irreversibility of the heat pump. See the thin gray curve in the same figure.

As already mentioned, the existence of decay channels with different frequencies at the inter-

faces with two or more heat baths gives rise to two distinct effects: The detuning between the

various elementary stages that make up the device facilitates the direct heat transfer between

baths, i.e. heat leaks, and it also results in different stationary rates of energy exchange for

each of those constituent stages. As a result, for certain choices of parameters (usually close to

ωc = ωc,rev) some stages within the device may be operating as absoprtion chillers, while some

others may be releasing heat into the cold bath as heat transformers. We refer to this competition

as internal dissipation [122]. Probing an irreversible heat device may give direct evidence of

internal dissipation, as it is the case in Figure 6.7(c). There, we plot the stationary spin temper-

ature of the external probe as a function of the probing frequency Ω, precisely at ωc = ωc,rev.

We can see how the stage at frequency ωc − g absorbs heat from the cold reservoir, ultimately

4Recall that fixing the dissipation rate γ sets a lower bound on J for consistency with Eq. (6.42).
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lowering the spin temperature of the resonant probe, whereas the stage at ωc + g is effectively

hotter than its environment and thus, releases heat on average. The only reason for choosing Teff

instead of ε is to graphically accentuate this effect.

6.3.3 Estimating the coefficient of performance of a quantum heat pump

So far we have been able to identify the frequencies of the dissipative spectrum of a multi-level

heat device and to assess the direction of its steady-state heat currents. Probing a quantum heat

pump with a two-level spin also allows to give an estimate of its coefficient of performance

(COP), a figure of merit central to thermal engineering. The COP captures the cost-efficiency

of the thermodynamic cycle being implemented: For instance, in the case of a quantum absorp-

tion refrigerator, it would be defined as ε ≡ Q̇c/Q̇w, that is, the ‘useful effect’ divided by the

corresponding ‘energy cost’.

In an endoreversible quantum heat device, the stationary rate I at which energy is exchanged

with all three heat baths is identical [123] and the corresponding steady-state heat currents read

Q̇α = ωαI. Consequently, the COP of e.g. an endoreversible quantum absorption chiller would

be given by just the ratio of the frequencies of the cold and work contact ports ε = ωc/ωw =

ωc/(ωh −ωc). Hence, estimating the COP of any endoreversible device only takes to probe it

through two of its frequency filters so as to find the corresponding decay channels.

If the device does not deviate significantly from endoreversibility, i.e. if the frequencies of

its open decay channels do not spread out too much, as it is the case in Figure 6.7(b), it will

be described reasonably well by an endoreversible model. In particular, its COP may be well

approximated as ε ' ωc/(ωh −ωc). This is illustrated in Figure 6.7(d), where the COP of an

endoreversible three-level chiller (solid line) is compared with the actual ε of two irreversible

four-level refrigerators with g = 0.1 (dashed line) and g = 0.5 (dot-dashed line), as calculated

from the exact steady-state heat currents Q̇α. As we can see, for the low-irreversibility setting

of Figure 6.7(b), the disagreement only becomes important when operating close to the Carnot

COP εC =
Tc(Tw−Th)
Tw(Th−Tc) , while for the more irreversible case portrayed in Figure 6.7(a), the approx-

imation is much worse, in general. Note as well that the slight shifts of the peaks/wells in the

polarization bias, due to the finite spin-device coupling J, are an additional source of error in

the estimation of the COP.

6.4 Summary

In this chapter we have analyzed thermometry and metrology for out-of-equilibrium systems in

two different scenarios: (A) Strong interactions with a single bath and (B) Simultaneous contact

with multiple baths. Regarding (A) our most remarkable results are:
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• Low temperature quantum thermometry boosts strong coupling between probe and sys-

tem.

• The spectral density of the probe-sample coupling plays an important role in this regime.

• Feasible measurement schemes capable of producing nearly optimal temperature esti-

mates are provided.

These findings may be particularly relevant to practical nanoscale thermometry, taking into ac-

count the marked decay of the thermometric precision at low temperatures. It is worth empha-

sizing that all our results are exact, irrespective of the relative ordering of the various time scales

involved in the problem. In particular, the second observation calls for a more in-depth analysis

of the potential role of reservoir engineering techniques [124, 125] or even dynamical control

[126] in enhanced low-temperature quantum thermometry and will be the subject of further

investigation.

Regarding (B), we give thought to two distinct projects: (i) Two coupled harmonic oscillators

each embedded on its own thermal bath and (ii) Multilevel quantum heat devices with multiple

baths. In the case (i), our main results can be summarized as follows

• We provide metrological bounds to both estimation of temperature gradient, δT , and in-

teraction strength J.

• We identify that estimation of J is only possible with non-local measurements and de-

pends on δT .

• Estimation of δT can be performed with local measurements.

In the case (ii), we show how black-box testing of a multi-level quantum heat device can pro-

vide relevant information such as the direction of its steady-state heat currents, its degree of

irreversibility, and even a good estimate of its coefficient of performance. All this information

may be obtained by simply looking at the departure from thermal equilibrium of the steady state

of an external two-level probe coupled to one of the contact transitions of the heat device. Cru-

cially, in this testing protocol, no information about the internal structure of the heat device is

required.

In particular, it is possible to identify the frequencies of the open decay channels at the interface

of the system and each of the heat baths, and thus, to characterize the various elementary ther-

modynamic cycles that make up the quantum heat pump. We emphasize that all this is possible

without knowledge of the Hamiltonian of the multi-level heat device. In some cases, the com-

petition between these elementary stages, which is a signature of internal dissipation, may be

directly witnessed.
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For our analysis, we have considered the dissipative dynamics of an absorption three-level

maser, which realizes the simplest endoreversible thermodynamic cycle, when dissipatively cou-

pled to our external two-level spin. We have further studied the case of a four-level absorption

chiller as the paradigm of the more complex irreversible heat devices.

Our results provide a clear and intuitive picture of the inner workings of generic heat-driven

thermodynamic cycles, beyond specific models, and they may find applications in the design of

cost-efficient nano-engineered thermodynamic devices, or in the characterization of the complex

energy-conversion processes taking place in mesoscopic biological systems.



Chapter 7

Quantum metrology beyond thermal
equilibrium II: Dynamic systems

In this chapter we present our results regarding metrology in systems out of equilibrium, with a

dynamic state. The term dynamic refers to the time dependence of the density matrix. On this

account, the outcomes of measuring the system depend on the time it is interrogated. We point

out two distinct frameworks giving rise to dynamic systems:

1. A system underlying a dynamic with a unique stationary state. Any initial preparation of

the system ends up in such a stationary state, after a long enough time. Nevertheless, the

system might be measured at a finite time before reaching such stationary state.

2. A system which is prepared in the stationary state of a certain dynamic. In principle,

it should rest in such a state forever, however, it does not, due to some external (time

dependent) perturbation.

The first layout may be employed to survey thermometry with partially thermalized systems,

a relevant scheme when the total interaction time is insufficient to produce full thermalization.

We optimize the estimation protocol by breaking it down into sequential stages of prepara-

tion, thermal contact, and measurement. The second scheme is relevant in study of a systems

which undergoes a time dependent quantum map which, is not necessarily described by a simple

Hamiltonian. Aiming at detection of tiniest external forces, which exert a minimum influence

on the system, we develop a powerful framework that generalizes the fluctuation dissipation

theorem to Markovian systems out of equilibrium.

The structure of this chapter is as follows: Section 7.1, is dedicated to thermometry with a

restricted time. This situation needs a slightly different framework than the usual metrology

scenarios, as one has to optimize the quantum Fisher information per time, rather than QFI itself

94
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[12, 14]. By taking this contemplation into account, we observe that frequently interrogated

probes initialized in their ground state achieve the best performance. Moreover, analogous to

the fully thermalized scenario of section 4.2, we see that the precision of thermometry increases

by using probes with more energy levels. However one must perform an optimization to find the

best energy gap for the system.

In section 7.2 we investigate a system which is subject to a time dependent perturbation, other-

wise it would have been resting at the steady state of a Markovian dynamics. To this end, we

rigorously derive a generalization of the fluctuation dissipation theorem (FDT), which can be

applied to any system with a Markovian quantum evolution. Our FDT is elegantly established

with the assistance of the symmetric logarithmic derivative (SLD). We exploit our FDT in the

model of two harmonic oscillators, placed in distinct heat baths. Then, by establishing a mod-

ulated interaction among the two oscillators, we study the response of the system. We identify

the measurement scheme which can detect the tiniest interaction strength. Specifically, we char-

acterize the best observable for detection of the perturbation, the best modulation frequency, and

the optimal interrogation time. Finally In section 7.3 we conclude and summarize.

7.1 Thermometry with partially thermalized probes

In section 4.2, we gave thought to a thermometer which reaches thermal equilibrium with the

sample. Then we identified which are the optimal probes that maximize the attainable precision

in the estimation of the temperature. Here we address the complementary situation in which the

probe does not thermalize completely, due to a constraint on the total estimation time (e.g., the

sample may be unstable and exists only for times comparable to the dissipation time scale).

On this account, we analyze the dissipative time evolution of the thermometer, in order to make

the most effective use of the thermometric protocol. Concretely, we ask ourselves about the

optimal breakup of the total running time of the estimation procedureT , into sequential stages of

probe preparation, thermal contact during a time interval t, and measurement, so as to optimize

the achievable precision Eq. (2.6). Given that we have access to m copies of the thermometer,

the total number of independent repeats is N = mT /t. In turn, the QCRB gets the form

δT ≥
1√

mTFT (t)/t
, (7.1)

with FT (t) being the QFI of a single probe at time t. Therefore, the figure of merit to be max-

imized is the ratio FT (t)/t [12, 14]. We need to mention that, for simplicity, we have assumed

that after each interrogation the system will be prepared in the same state. In a more general

scenario, one could use the information obtained from each measurement to adaptively prepare

a more effective thermometer for the next run.
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Since we must monitor the time evolution of the thermometer, it is essential to specify the

sample and its coupling with the thermometer. To this end, we shall model the sample as a

bosonic heat bath linearly coupled to an arbitrary probe, which we introduced in section 3.3.

The total Hamiltonian writes as Htot = H +
∑
µωµ b†µbµ + X ⊗

∑
µ gµ(bµ + b†µ), where bµ is the

annihilation operator of mode ωµ in the sample. We choose the probe-sample coupling con-

stants to be gµ = (γωµ)1/2, implying flat spectral density J(ω) ∼
∑
µ

g2
µ

ωµ
δ(ω−ωµ) = γ [103]. This

sets the time-scale τD ∼ γ
−1 over which ρ(t) varies appreciably. Tracing out the sample from

the overall unitary dynamics and assuming a thermal state χT for it, leads to an effective equa-

tion of motion of the Lindblad-Gorini-Kossakovski-Sudashan type (LGKS) [127], that follows

from ρ̇ = TrS
d
dt {e

−iHtott ρ(0)⊗ χT eiHtott}, after sequentially performing the Born, Markov and

rotating-wave approximations (see chapter 3 for a detailed derivation). Note that the Born ap-

proximation implies that no correlations are ever created between probe and sample, so the latter

remains undisturbed throughout the estimation procedure. Note also that, for consistency with

the Markov approximation, the temperature of the sample may be not arbitrarily low, as the

thermal fluctuations must remain fast compared with τD.

In the interaction picture, the master equation can be cast as

ρ̇ = ΓΩ,T
(
AΩρA−Ω− 1

2 {A−ΩAΩ,ρ}+
)
+ e−Ω/TΓΩ,T

(
A−ΩρAΩ− 1

2 {AΩA−Ω,ρ}+
)
, (7.2)

where A±Ω stands for the relaxation/excitation operator associated with the decay channel at

frequency Ω. We remind that these follow from the decomposition of X =
∑
ΩAΩ as sum of

eigen-operators of the probe Hamiltonian. We also remind that the thermal state ρ =Z−1e−H/T

is a fixed point of Eq. (7.2) and, choosing a suitable coupling operator X, the open dynamics

may also be ergodic, thus eventually bringing any initial state to thermal equilibrium.

For a two-level thermometer with Hamiltonian H = Ω
2σz, we can take, for instance, X = σx

from which AΩ = |−Ω/2〉 〈Ω/2|, while A−Ω = A†
Ω

. Here, |±Ω/2〉 are the corresponding energy

eigenstates. Generalizing to the case of an N-level probe with eigenstates {|εi〉}, a coupling

term like X =
∑

i,1 |ε1〉 〈εi|+ |εi〉 〈ε1| would also thermalize any preparation, where we have la-

belled the ground state by |ε1〉. The corresponding jump operators are Aεi−ε1 = |ε1〉 〈εi|. In

particular, to account for our effective two-level systems with maximum excited-state degen-

eracy we can set ε1 = 0 and take the limit εi → Ω for i , 1. Let us finally comment on the

decay rates ΓΩ,T , which follow from the power spectrum of the bath auto-correlation function

〈B(t)B(0)〉T ≡ Tr[B(t)B(0)χT ], where B≡
∑
µ gµ(bµ+b†µ). In the specific case of a quantum probe

coupled through dipole interaction to the quantized electromagnetic field in three dimensions,

one obtains ΓΩ,T = γΩ3(1− e−Ω/T )−1 [28].

The problem now goes down to solving Eq. (7.2), transforming the time-evolved state ρ(t) back

into the Schrödinger picture (i.e. ρ 7→ e−iHtρeiHt), and computing the QFI. Note that besides
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Figure 7.1: Log-log plot of F T (t)/t as a function of t for different preparations and probe
dimensionalities. The continuous orange lines stand for probes with N = {2,4,10} initialized in
the ground state. The dashed and dotted orange curves stand for a two-level probe initialized in
a thermal state at temperature 0.8 and 0.9, respectively. The dot-dashed blue curve corresponds
to a two-level probe prepared in the maximally coherent state ρ(0) = |+〉 〈+| (Ω/T = x̃, γ = 10−3,

and T = 1, in arbitrary units).

comparing the performance of different types of probe, we must now optimize over their ini-

tial state too. We start by considering the simplest case of two-level thermometers. Extensive

numerical analysis over different initial states shows that ground-state preparations display max-

imal thermal sensitivity. This indicates that the presence of initial quantum coherence does not

provide any significant advantage for thermometry in this setting.

Thus, by choosing ρ(0) = |0〉 〈0| we can combine eqs. (7.2) and (2.7) to compute F T
2 (t) as a

function of the interrogation time t, starting from a ground state preparation:

F T
2 (t) =

x2
(
ex

(
et/τ−1

)
+

(
1 + ex) t

2τcsch x
2

)2

(1 + ex)2
(
et/τ−1

) (
1 + exet/τ

)
T 2

, (7.3)

where x =Ω/T and τ−1 ≡ γΩ3 coth x
2 . Eq. (7.3) shows that the details of the thermal fluctuations

of the sample, encoded in ΓΩ,T , only enter in the dynamics through the scaling factor τ. Hence,

even if our choice of a flat spectral density might seem pretty restrictive at first, changing the

probe-sample coupling would just amount to a suitable rescaling of time.

In fig. 7.1 we plot F T
2 (t)/t for different preparations. As we can see, the sensitivity of a cold

thermal probe peaks at some optimal readout time, after which it must be quickly cooled down

to start over another relaxation stage in the estimation protocol. In the limiting case of a ground-

state preparation, the overall maximum sensitivity is approached as t→ 0.

Eq. (7.3) can be generalized to any of our highly degenerate effective two-level probes prepared

in the ground state. Just like in the two-level case, their maximum estimation precision follows

from the limit

lim
t→0

F T
N (t)
t

=
γT (N −1)x5e2x

(ex−1)3 . (7.4)
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We now search for the optimal frequency-to-temperature ratio x̃ that sets an ultimate upper

bound on the thermal sensitivity in Eq. (7.4). This can be expressed implicitly as ex̃ = (5 +

2x̃)/(5− x̃), which is independent of N. Interestingly, the specified temperature range for efficient

operation does not scale with N, at variance with the fully thermalized case.

For completeness, we examine again here the performance of harmonic probes. Going back to

Eq. (7.2), we will set H = Ωa†a and X = a + a†, whose corresponding relaxation and excitation

operators are trivially AΩ = a and A−Ω = a†, as described in section 3.5. The total Hamiltonian

is thus quadratic in positions and momenta and therefore, any Gaussian preparation will pre-

serve its Gaussianity in time [109]. Provided that the initial state also has vanishing first order

moments (〈x〉 =
〈
p
〉

= 0), its covariance matrix σ(t) alone will be enough for a full description.

In this case, the dynamics may be obtained by using Eq. 3.5, leading to σ(t) = e−ΓΩ,T tσ(0) +

(1− e−ΓΩ,T t)σT (see [109, 128] as well). Computing the transient QFI is thus straightforward

by resorting to Eq. (2.7). In what follows, we shall consider general (undisplaced) single-mode

Gaussian states as initial preparations; these can be written as rotated, squeezed thermal states

[109, 129]. As it could be expected, ground-state initialization (ρ(0) = |0〉 〈0|) provides once

again the largest thermal sensitivity. One can ignore the temperature dependence of ΓΩ,T in

the solution to the master equation and still get a good approximation to limt→0F
T

ho(t)/t. Sur-

prisingly, we recover Eq. (7.4) with N = 2. Indeed, this equivalence of two-level probes and

harmonic thermometers extends generally beyond the limits t→ 0 and ρ(0) = |0〉 〈0|. Therefore,

at variance with the fully-thermalized scenario, the specified temperature range of both oscilla-

tors and N-level probes in an effective two-level configuration is virtually the same, regardless

of N.

7.2 Parameter estimation in Markovian environments

In order to tackle the problem of local parameter estimation in systems out of equilibrium we

develop a fluctuation dissipation theorem (FDT). The FDT establishes a relationship between

the linear response of a system under a time-dependent perturbation and time correlations of

certain observables in equilibrium [130]. Here we derive a generalization of the theorem which

can be applied to any Markov quantum system and makes use of the symmetric logarithmic

derivative (SLD). There are several important benefits when FDT’s are formulated in terms of

the SLD. First, such a formulation clarifies the relation between classical and quantum versions

of the equilibrium FDT. Second, and more important, it facilitates the extension of the FDT to

arbitrary quantum Markovian evolution, as given by quantum maps. Third, it brings out the

connection between the FDT and Fisher information, our figure of merit in quantum metrology.

In what follows, by adapting the strategy introduced in [131], we prove a generalized FDT for
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generic quantum maps, and illustrate these features in the example of two harmonic oscillators

with a modulated interaction that was introduced in section 6.2.

We are interested in the well established case of a generic Markovian dynamics. Specifically,

we considerMξ be a completely positive trace preserving (CPTP) map, as described in Chapter

3. Further, for any fixed value of the parameter ξ, the map has a steady state πξ. In other words,

we have Mξπξ = πξ, i.e., πξ is invariant under the map. The system of our interest is initially

given by π0, which is invariant underM0. Whence, it evolves by consecutive operation of the

mapMξ(t). Note that we allow the parameter to be time dependent. Taking discrete time steps

t = 1,2, . . . , the evolution of the system is

ρ(t) =
[
Mξ(t) ◦Mξ(t−1) ◦ . . .Mξ(1)

]
π0. (7.5)

Since we work in a regime where ξ appears as a perturbation, our focus shall be on the linear

response of any observable B. The latter is defined as the deviation of the expectation value of

B at time t, from its initial value, and is given by

RB(t) ≡
〈
B(t)

〉
−

〈
B(0)

〉
=

t∑
t′=1

φB(t− t′)ξ(t′). (7.6)

Here
〈
B(t)

〉
= Tr[ρ(t)B], identifies the expectation value of the observable B at time t, specially,〈

B(0)
〉

= Tr[π0B]. In addition, φB(t) is the response function of the observable B under the

perturbation ξ, and is assumed to vanish for t < 0 due to causality. Our aim is mainly to formalize

the response function φB(t), independent of the time dependence of ξ(t). By identifying φB(t)

one can find the linear response of B to any time dependent perturbation, as Eq. (7.6) suggests.

Before proceeding further, we remark that for a scenario with constant perturbation, ξ(t) = ξ, the

linear response RB(t) is a key element to characterize the sensitivity of the observable B to ξ. In

particular, as t→∞, the linear response reduces to the static susceptibility times the parameter,

i.e., RB(∞) = ξ χB,ξ (See the error-propagation formula (4.23) for comparison). Similarly, for a

time dependent perturbation, namely ξ(t) = |ξ| f (t), the linear response characterizes the sensi-

tivity of B to |ξ|, the strength of perturbation. Therefore, identification of RB(t) is pivotal from a

metrological point of view.

One can extend the definition of RB(t) to the case of maps acting for a short time ∆t. In the

continuous limit, ∆t→ 0, the sum in (7.6) is replaced by an integral, such that

RB(t) =

∫ t

0
dt′φB(t− t′)ξ(t′). (7.7)



100

Another important quantity is the generalized susceptibility which is defined as the Fourier trans-

form of the response function,

XB(ω) =

∫ ∞

0
dtφB(t)eiωt. (7.8)

Again, notice that for a constant perturbation, and for ω = 0, the generalized susceptibility re-

duces to the static susceptibility viaXB(0) = ξ χB,ξ . The generalized susceptibility has interesting

properties, such as the Kramers-Kronig relation [8, 103] between its real and imaginary parts:

XB(ω) = X′
B
(ω) + iX′′

B
(ω). When the evolution is unitary under the Hamiltonian H0 − ξ(t)A, the

imaginary part X′′
B

(ω) is called absorptive part of the susceptibility, since the energy absorbed

by the system due to the perturbation is proportional to X′′
B

(ω).

To obtain the response function, we need to expand ρ(t) as a power series of ξ(t), and keep up

to linear terms. To this end, we writeMξ =M0 + ξM1 +O(ξ2), whereM1 is not a CPTP map.

In addition, the stationary state can be written as πξ = π0 + ξ π1 +O(ξ2). Again, notice that π1 is

not a density matrix, for instance because it is traceless. The invariance of πξ under the mapMξ

implies

[
M0 + ξM1 +O(ξ2)

]
(π0 + ξ π1 +O(ξ2)) = π0 + ξ π1 +O(ξ2)

⇒M1(π0) +M0(π1) = π1, (7.9)

where we use the fact thatM0(π0) = π0. Furthermore, the SLD of πξ associated to ξ (at ξ = 0)

obeys

(
Λξπξ +πξΛξ

) ∣∣∣
ξ=0 = 2(∂ξπξ)

∣∣∣
ξ=0

⇒ 2π1 = Λ0π0 +π0Λ0. (7.10)

Expanding the evolution equation (7.5) up to linear terms, we obtain

ρ(t) =Mt
0(π0) +

t∑
t′=1

ξ(t′)
[
Mt−t′

0 ◦M1 ◦M
t′−1
0

]
(π0)

= π0 +

t∑
t′=1

ξ(t′)
[
Mt−t′

0 ◦M1
]
(π0). (7.11)

where we have used the invariance of π0 underM0. Therefore, the linear response of B at time

t is

RB(t) =

t∑
t′=1

ξ(t′) Tr
[
BMt−t′

0 ◦M1 (π0)
]

(7.12)
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Comparing (7.12) with (7.6), we immediately identify the response function to be

φB(t) = Tr
[
BMt

0 ◦M1(π0)
]
. (7.13)

Using (7.9) and (7.10) one can further simplify this expression

φB(t) = Tr
[
BMt

0(π1−M0(π1))
]

= −Tr
[
BMt+1

0 (π1)−BMt
0(π1))

]
= −Tr

[
∆B(t)π1

]
= −

1
2

Tr
[
∆B(t)(Λ0π0 +π0Λ0)

]
= −

1
2
〈
∆B(t)Λ0 +Λ0∆B(t)

〉
0 (7.14)

with 〈•〉0 = Tr[•π0] being the expectation value over the initial state. Besides, ∆B(t) = B(t +1)−

B(t) and B(t) = M̃t
0(B) is the evolution of the observable B in the generalized Heisenberg picture

for quantum maps. Here M̃0(•) is the adjoint map (not necessarily trace preserving) with respect

to the scalar product between operators given by the trace, i.e., Tr[◦M0(•)] = Tr[M̃0(◦)•], for

all pair of operators ◦ and •.

The fluctuation-dissipation relation for the static case is recovered from (7.14) if the two time

correlations between B(t) and Λ0 vanish in the limit t→∞

χB,ξ =

∞∑
t′=0

φB(t′)

= − lim
t→∞

1
2
〈
B(t)Λ0 +Λ0B(t)

〉
+

1
2
〈BΛ0 +Λ0B〉

=
1
2
〈BΛ0 +Λ0B〉 . (7.15)

Finally, the continuous-time version of theorem (7.14) is

φB(t) = −
1
2

d
dt

〈
B(t)Λ0 +Λ0B(t)

〉
. (7.16)

Eqs. (7.14) and (7.16) are the main result of this section.

7.2.1 Connection with the Kubo relations

Our main results (7.14) and (7.16) are FDR’s for generic quantum Markov systems. One can

recover the familiar Kubo quantum FDR for states πξ = e−β(H0−ξA)/Z and Hamiltonian evolution.

In this case, the FDR (7.16) reads (as before, we denote by φB(t) the response function of
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observable B under the perturbation −ξ(t)A):

φB(t) = −
1
2

〈
Ḃ(t)Λ0 +Λ0Ḃ(t)

〉
= −

i
2
〈
[H0,B(t)]Λ0 +Λ0[H0,B(t)]

〉
0

= −
i
2

Tr
[
(Λ0π0 +π0Λ0)[H0,B(t)]

]
= −

i
2

Tr
[
[Λ0π0 +π0Λ0,H0]B(t)

]
. (7.17)

Here we use the fact that for a unitary dynamics (we set h̄ = 1), B(t) = exp(iH0 t)Bexp(−iH0 t),

and hence Ḃ(t) = i[H0,B(t)]. Before taking any further steps, we present an interesting formula

for the SLD. To this end, we note that for any real function g(x)

[H0− ξA,g(H0− ξA)] = 0. (7.18)

Differentiating this equation with respect to ξ and setting ξ = 0, one gets

−[A,g(H0)] +

H0,
∂g(H0− ξA)

∂ξ

∣∣∣∣∣∣
ξ=0

 = 0. (7.19)

In particular, by choosing g(x) = e−βx and using the definition of the SLD we obtain

[A,π0] =
1
2

[H0,Λ0π0 +π0Λ0] (7.20)

Substituting this last result into (7.17) leads to

φB(t) = i Tr
[
[A,π0]B(t)

]
= i

〈
[B(t),A]

〉
, (7.21)

which is the standard Kubo formula. Notice that the relationship between the classical FDT and

the Kubo formula is not clear at all. On the contrary, our version of the FDT, namely Eqs. (7.14)

and (7.16), can be equally applied to classical and quantum systems. This uniform formulation

is possible due to the introduction of the SLD. We remind that in the classical case, the SLD

coincides with the normal derivative and consequently, for a thermal state with Hamiltonian

H0 − ξA, the SLD is −β(A− 〈A〉), whereas for a quantum system with [H0,A] , 0, the SLD

yields a nontrivial conjugated variable as we saw for the two coupled harmonic oscillators in the

previous chapters.

7.2.2 Coupled Harmonic Oscillators Out of Equilibrium

With the help of our FDT we are able to investigate, more generally, the system of coupled har-

monic oscillators that was described earlier in chapters 4 and 6. In particular, we are interested
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in a case where the tunneling between the two oscillators acts as a time dependent perturbation,

i.e., J(t). The system is initially identified by Eq. (6.15) (or equivalently Eq. (6.13)), whence, it

is quenched/perturbed, by introducing the tunneling between the two oscillators

H→ H0 + HI

HI = −J(t)(a†
1
a2 + a1a†

2
). (7.22)

We remark that the difference of this scenario with section 6.2 is twofold: (i) Here, we focus in

the response of the system at any time, in contrast to the static case with t→∞. (ii) In turn, J(t)

itself is also time dependent, unlike the static case. On this account, even at t→∞ the system

does not relax to a stationary state.

Further, we demand |J(t)| � ω, at any time, such that our linear response remains valid. In

order to find RB(t), the linear response of the observable B to J(t), we need to identify two key

elements as suggested by eqs. (7.7) and (7.16). First, the SLD associated to the tunneling rate

ΛJ |J=0. This is already found analytically in section 6.2, and is given by Eq. (6.23)). The second

element is the time evolution of the desired observable under the conjugate map, i.e., B(t). This

is also identified by eqs. (6.36) and (6.36) of section 6.2.

With these two elements at hand, the rest is straightforward to proceed. Specifically,

one can simply check that the linear response of local observables is zero, i.e., for B ∈{
x2

j , p
2
j , x j p j + h.c.

}
, we have RB(t) = 0. This means that the perturbation does not affect lo-

cal observables, or in other words, the perturbation can not be detected by local measurements.

Remember that this is true also for the static case. However, for global observables, i.e., for

B ∈
{
x1x2, x1 p2, p1x2, p1 p2

}
, the linear response is nonzero.

Let us first give thought to a constant quench, J(t) = J0, such that we can study the relaxation

of the system to its new stationary state. In the left panel of Fig. 7.2 we illustrate, RB(t)/J0, for

the non-local observables B ∈
{
x1x2, x1 p2

}
. In the right panel we benchmark the corresponding

(square root) sensitivity of these two observables, i.e.,
√

F(B; J0) =RB(t)/J0
√

Var(B) , with that

of ΛJ . We discover that the linear response (and hence the sensitivity) experiences some oscil-

lations, before relaxing to the new stationary state, at t→∞. Interestingly, at certain instances

of time, the amplitude of these oscillations might be even bigger than the asymptotic value. By

measuring the system at these certain times, one can acquire maximum information about, J0.

Further, from the inset of the left panel, we notice as well, that the sensitivity of x1 p2 may over

perform that of the SLD. But this is not an issue, since the SLD identifies the most sensitive

observable for asymptotic measurements.

In general, and more-interestingly, the perturbation is time dependent. With no loss of generality,

we focus on a case where J(t) = J0(1− sin(νt)). The linear response to this perturbation will be

equal to the linear response to a constant J0 minus the linear response to J0 sin(νt). The latter
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Figure 7.2: Left) The linear response of the non-equilibrium system to a constant perturbation
J0 for two different observables: x1x2 (red), and x1 p2 (blue). The system relaxes to its new
steady state asymptotically, albeit after experiencing some oscillations. The amplitude of such
oscillations decays exponentially. Note that, Particularly, at some instances of time, the linear
response becomes significantly bigger than its final (static) value. Right) The (square root)
sensitivity of the same observables as the left panel, benchmarked against the sensitivity of
ΛJ (black). We see that the x1x2 observable performs very similar to the SLD. As t→∞ and
the system relaxes to its new steady state, the SLD (and approximately x1x2) characterizes the
most sensitive observable to the perturbation. Its corresponding sensitivity is given by

√
FJ .

Interestingly the sensitivity at some instances of time may get considerably bigger than
√
FJ .

Inset) For smaller times, we observe that the sensitivity of x1 p2 over-performs that of the SLD.
Here we set the parameters as follows: ω1 = 1, ω2 = 1.1, T1 = 1, T2 = 2, and γ = 0.01.

is given by
∫ t

0 φB(t′) sin(ν(t − t′))dt′. Fig 7.3 pictures the linear response to a time dependent

perturbation for two different frequencies. On the left panel, we let ν = ∆, i.e., at resonance

with the detuning between the two modes. It is seen that RB(t)/J0 may become significantly

bigger than the response to a constant perturbation, i.e., with ν = 0 (the black curve). In the

right panel of the same figure, we depict the same quantity, but with a larger frequency. We

discover that the linear response in this case is also oscillating around the linear response of a

constant perturbation. However, due to the small amplitude of these oscillations, one may hardly

distinguish this case from a constant perturbation.

The frequency dependence of the linear response raises the idea of modulating the perturbation

such that it has a bigger response, hence becoming easier to detect. As a result, from a metro-

logical point of view, characterizing the frequencies with a bigger response sounds essential. To

this end we focus on the linear response to the time dependent part of the perturbation, J0 sin(νt):

RνB(t) ≡
∫ t

0
φB(t′) sin(ν(t− t′))dt′

= sin(νt)
∫ t

0
φB(t′)cos(νt′)dt′− cos(νt)

∫ t

0
φB(t′) sin(νt′)dt′. (7.23)

We also keep in mind that φB(t′)→ 0 with the speed exp(−γt′) (see eqs. (6.36) and (6.36)).

Therefore, for large enough times we can approximate the upper bound of the integral with
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Figure 7.3: (Left) Blue line) The linear response of the observable x1x2 to a time dependent
perturbation J(t) = J0(1− sin(νt)) with ν = ∆. Black line) The response to the constant per-
turbation J(t) = J0 is also plotted for comparison. The oscillations of the linear response are
so large that the system never gets close to any new stationary state. For metrological tasks,
interrogating the system at times with maximum linear response (tmax) is essential. (Right)
Same as left, but with ν = 2. For this frequency, the amplitude of oscillations of the linear re-
sponse are very small, such that the system can be considered sufficiently close to a stationary
state. Therefore, in metrological scenarios, measuring the system at tmax does not significantly

enhance the precision of estimation. Here we use the same parameters as in Fig. 7.2.

infinity, which leads to

RνB(t) u sin(νt)Re XB(ν)− cos(νt)Im XB(ν)

u | XB(ν) |cos(νt +α). (7.24)

Here we benefit from the expression of generalized susceptibility, Eq. (7.8), and define the phase

shift α= arctan(ReXB(ν)/ImXB(ν)). As a result, the magnitude of the generalized susceptibility

is equivalent to the amplitude of the oscillations of the linear response at large times. Fig 7.4

shows this amplitude for the observable x1x2. It is observed that for ν < ∆, the generalized sus-

ceptibility increases monotonically, and approaches a maximum at ν = ∆. This is the reason for

big oscillations of RB(t) in Fig 7.3. However, for ν > ∆, the generalized susceptibility decreases

exponentially. This explains the small oscillations of the linear response for larger frequencies.

Moreover, one can characterize the instances when the linear response has its maximum (at large

times):

tmax =
mπ−α
ν

, (7.25)

with m being a (large enough) integer number. Knowing such instances with maximum response

is required for being able to detect tinier amounts of J0. Notice also that tmax does not depend

on J0 itself.
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Figure 7.4: The magnitude of the generalized susceptibility |XB(ν)| for the observable x1x2.
We use the same parameters as in Fig. 7.2. For values of ν around the resonance (with ∆ = 0.1),
and for ν < ∆, the magnitude of the generalized susceptibility is big. This means that for these
frequencies the perturbed system never gets close to a stationary state. For larger frequencies,
the generalized susceptibility becomes very small, thus the perturbed system will get close to a

final steady state, and keeps oscillating around it for ever. See fig 7.3 as well.

7.3 Summary and conclusions

The aim of this chapter was exploring parameter estimation in dynamic systems. For us this is a

relevant question in two different scenarios.

The first case is a system which is interrogated before reaching a stationary state. In particular,

our study of thermometry with partially thermalized probes in section 7.1 lies within this cat-

egory. We observed that frequently interrogated probes prepared in their ground state provide

the largest thermal sensitivity. The maximum thermometry precision scales with N, the number

of energy levels, similar to the fully thermalized scenario. However, the specified temperature

range—within which the thermometry precision is efficient—is dimension-independent, in con-

trast to thermalized probes, where this range shrinks with N. These results were obtained by

considering a large bosonic sample in thermal equilibrium, weakly coupled to the probe through

a linear interaction term, ensuring ergodicity.

The second case that we had to take into account the role of dynamics, was tackling the detection

of a time dependent perturbation. Precisely, a system, resting at the fixed point of its dynamics,

is affected by a time dependent perturbation. For us it is essential to estimate the strength of this

perturbation. To this end, we developed a fluctuation dissipation theory (FDT) for generalized

Markovian dynamics. Our FDT connects the linear response of any observable to its correlation

with the symmetric logarithmic derivative (SLD). We benefit from this connection, in different
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aspects, namely, by clarifying the connection between classical and quantum FDT for equilib-

rium, by extending the FDT to an arbitrary quantum Markovian dynamic, and by highlighting

the connection between the FDT and the QFI for a time dependent parameter.

We applied our FDT by exploring the response of two harmonic oscillators to a perturbation,

which exploits interaction amongst them. Particularly, we discovered that in order to detect the

strength of such a perturbation, one has to perform global measurements, while local schemes

are blind to this perturbation. Wherefore, we quantified the precision of such global measure-

ments. Our results show that there are certain instances of time that the system has a notably big-

ger response to the perturbation. This suggests that, the system periodically acquires and looses

a definite amount of information about the perturbation. That being the case, we characterize

the instances of time with the maximum response, and identify that the amount of information

is given by generalized dynamical susceptibility.



Appendix A

Solving the QLE for the steady state of
the central oscillator

As explained in the main text, any Gaussian state (such as the steady state of the probe) is fully

characterized by its first and second-order moments. In the case of a single-mode Gaussian

state, these latter can be arranged in the 2× 2 real and symmetric covariance matrix σ. We

therefore must be able to compute objects like 〈{x(t′), x(t′′)}〉, 〈{p(t′), p(t′′)}〉 and 〈{x(t′), p(t′′)}〉

from Eq. (6.6). Let us start by taking its Fourier transform, which gives

−ω2 x̃ + (ω2
0 +ω2

R)x̃ + x̃ χ̃ = F̃⇒ x̃(ω) =
F̃(ω)

ω2
0 +ω2

R−ω
2− χ̃(ω)

B α(ω)−1F̃(ω). (A.1)

Note that

1
2
〈{x(t′), x(t′′)}〉 =

1
2

∞∫
−∞

dω′

2π
e−iω′t′

∞∫
−∞

dω′′

2π
e−iω′′t′′〈{x̃(ω′), x̃(ω′′)}〉

=
1
2

∞∫
−∞

dω′

2π
e−iω′t′

∞∫
−∞

dω′′

2π
e−iω′′t′′ α(ω′)−1α(ω′′)−1〈{F̃(ω′), F̃(ω′′)}〉T . (A.2)

Therefore, all what is left is to find the analytical expression of the power spectrum of the bath

2−1〈{F̃(ω′), F̃(ω′′)}〉T and of the Fourier transform of the susceptibility χ̃(ω), which appears in

α(ω). Note that the Fourier transform of all first order moments will be proportional to 〈F̃(ω)〉T
which is identically zero [cf. Eq. (6.4)]. Hence, the steady states of the central oscillator will

be undisplaced Gaussians. With the subscript in 〈· · · 〉T , we emphasize that the average is taken

over the initial Gibbs state of the sample.
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A.1 The fluctuation-dissipation relation

Let us start by computing 1
2 〈{F̃(ω′), F̃(ω′′)}〉T = Re 〈F̃(ω′)F̃(ω′′)〉T from Eq. (6.4). Taking

into account that 〈xµ(t0)x′µ(t0)〉T = δµµ′(2mµωµ)−1[1 + 2nµ(T )], 〈pµ(t0)p′µ(t0)〉T = δµµ′
1
2 mµωµ[1 +

2nµ(T )] and 〈xµ(t0)pµ(t0)〉T = 〈pµ(t0)xµ(t0)〉∗T = i/2, one has

1
2
〈{F̃(t′), F̃(t′′)}〉T =

1
π

∑
µ

πg2
µ

2mµωµ
[1 + 2nµ(T )]

×
[
cosωµ(t′− t0)cosωµ(t′′− t0) + sinωµ(t′− t0) sinωµ(t′′− t0)

]
=

1
π

∞∫
0

dω J(ω)coth
ω

2T
cosω(t′− t′′), (A.3)

where we have used 2nµ(T )+1 = coth(ωµ/2T ), which follows from the definition of the bosonic

thermal occupation number nµ(T ) ≡ [exp(ω/2T )− 1]−1. Now, taking the Fourier transform of

Eq. (A.3) yields

1
2
〈{F̃(ω′), F̃(ω′′)}〉T = 2π

∞∫
−∞

dt′

2π
eiω′t′

∞∫
−∞

dt′′

2π
eiω′′t′′

∞∫
0

dω J(ω)coth
ω

2T

(
eiω(t′−t′′) + e−iω(t′−t′′)

)

= 2π

∞∫
−∞

dt′

2π

∞∫
−∞

dt′′

2π

∞∫
0

dω J(ω)coth
ω

2π

(
eit′(ω+ω′)eit′′(ω′′−ω) + eit′(ω′−ω)eit′′(ω′′+ω)

)

= 2π

∞∫
0

dω J(ω)coth
ω

2T

[
δ(ω+ω′)δ(ω′′−ω) +δ(ω′−ω)δ(ω′′+ω)

]
= 2πδ(ω′+ω′′)coth

ω′

2T

[
J(ω′)Θ(ω′)− J(−ω′)Θ(−ω′)

]
, (A.4)

where we have used the identity
∫ ∞
−∞

dt eiωt = 2πδ(ω). On the other hand, we may find Im χ̃(ω)

from Eq. (6.5). Note that

Im χ̃(ω) = Im
∑
µ

g2
µ

mµωµ

∞∫
−∞

dt eiωt
Θ(t) sinωµt =

∑
µ

g2
µ

mµωµ

∞∫
0

dt sinωt sinωµt

=
1
4

∑
µ

g2
µ

mµωµ

∞∫
0

dt [ei(ω+ωµ)t − ei(ω−ωµ)t − ei(−ω+ωµ)t + e−i(ω+ωµ)t]

=
1
4

∑
µ

g2
µ

mµωµ


∞∫
−∞

dt ei(ω+ωµ)t −

∞∫
−∞

dt ei(ω−ωµ)t

 =
π

2

∑
µ

g2
µ

mµωµ
[δ(ω−ωµ)−δ(ω+ωµ)]

=

∞∫
0

dω J(ω)[δ(ω−ωµ)−δ(ω+ωµ)] = J(ω)Θ(ω)− J(−ω)Θ(−ω). (A.5)
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Hence the fluctuation-dissipation relation 〈{F̃(t′), F̃(ω′′)}〉= 4πδ(ω′+ω′′)coth(ω′/2T ) Im χ̃(ω′).

When it comes to its real part, the calculation is not so straightforward. Recall from Eq. (6.5) that

the response function χ(t) is causal due to the accompanying Heaviside step function. Causal

response functions have analytic Fourier transform in the upper-half of the complex plane and

therefore, the Kramers-Kronig relations hold [103]. In particular

Re χ̃(ω) =
1
π

P

∞∫
−∞

dω′
Im χ̃(ω)
ω′−ω

≡H Imχ̃(ω), (A.6)

where we have introduced the Hilbert transform g(y) =H f (x)B π−1 P
∫ ∞
−∞

dx f (x)/(x−y) [132],

and P denotes Cauchy principal value.



Appendix B

Dissipation kernel for Ohmic and
super-Ohmic spectral densities with
exponential cutoff

We will now obtain Re χ̃(ω) for two instances of the family of spectral densities Js(ω) B
π
2γω

sω1−s
c e−ω/ωc , namely s = 1 (Ohmic case) and s = 2 (super-Ohmic case). To begin with,

let us list four useful properties of the Hilbert transform that we shall use in what follows

f (−ax)
H
7−−→ −g(−ay) a > 0 (B.1a)

x f (x)
H
7−−→ yg(y) +

1
π

∞∫
−∞

dx f (x) (B.1b)

exp(−a|x|)
H
7−−→

1
π

signy
[
exp(a|y|)Ei(−a|y|)− exp(−a|y|)Ei(a|y|)

]
a > 0 (B.1c)

sign x exp(−a|x|)
H
7−−→ −

1
π

[
exp(a|y|)Ei(−a|y|) + exp(−a|y|)Ei(a|y|)

]
a > 0, (B.1d)

where Ei(x) ≡ −
∫ ∞
−x dt t−1e−t is the exponential integral, and Ei(x) denotes its principal value.

Ohmic case (s = 1)

According to Eqs. (A.6) and (A.5), one has

Re χ̃(ω) =
πγ

2

{
H[Θ(ω′)ω′ exp(−ω′/ωc)](ω)−H[−Θ(−ω′)ω′ exp(ω′/ωc)](ω)

}
. (B.2)
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Using Eqs. (B.1a) and (B.1b), this rewrites as

Re χ̃(ω) =
πγ

2

{
H[Θ(ω′)ω′ exp(−ω′/ωc)](ω) +H[Θ(ω′)ω′ exp(−ω′/ωc)](−ω)

}
=
πγ

2

{
ωH[Θ(ω′) exp(−ω′/ωc)](ω)−ωH[Θ(ω′) exp(−ω′/ωc)](−ω) +

2ωc

π

}
. (B.3)

Now, using first Eq. (B.1a), and then Eq. (B.1c), one finds

Re χ̃(ω) = γωc +
πγ

2
ωH[exp(−|ω′|/ωc)](ω)

= γωc−
γ

2
ω

[
exp(−ω/ωc)Ei(ω/ωc)− exp(ω/ωc)Ei(−ω/ωc)

]
, (B.4)

which can also be expressed in terms of the incomplete Euler’s Gamma function Γ(0, x) =

−Ei(−x).

Super-Ohmic case (s = 2)

Using the properties of Eq. (B.1) it is also straightforward to obtain Re χ̃(ω) in the case of s = 2:

Re χ̃(ω) =
πγ

2ωc

{
H[Θ(ω′)ω′2 exp(−ω′/ωc)](ω)−H[Θ(−ω′)ω′2 exp(ω′/ωc)](ω)

}
=
πγ

2ωc

{
H[Θ(ω′)ω′2 exp(−ω′/ωc)](ω) +H[Θ(ω′)ω′2 exp(−ω′/ωc)](−ω)

}
=
πγ

2ωc

{
ωH[Θ(ω′)ω′ exp(−ω′/ωc)](ω)−ωH[Θ(ω′)ω′ exp(−ω′/ωc)](−ω) +

2ω2
c

π

}
= γωc +

πγ

2ωc

{
ω2H[Θ(ω′) exp(−ω′/ωc)](ω) +ω2H[Θ(ω′) exp(−ω′/ωc)](−ω)

}
= γωc +

πγ

2ωc
ω2H[signω exp(−|ω′|/ωc)](ω)

= γωc−
γ

2ωc
ω2

[
exp(−ω/ωc)Ei(ω/ωc) + exp(ω/ωc)Ei(−ω/ωc)

]
.

(B.5)



Appendix C

Calculation of the steady-state
covariances

Now we have all the ingredients to compute the steady-state covariances of the central oscillator.

Note that

1
2
〈{x(t′), x(t′′)}〉 =

1
2

∞∫
−∞

dω′

2π
e−iω′t′

∞∫
−∞

dω′′

2π
e−iω′′t′′α(ω′)−1α(ω′′)−1〈{F̃(ω′), F̃(ω′′)}〉T (C.1)

=

∞∫
−∞

dω′

2π
e−iω′t′

∞∫
−∞

dω′′ e−iω′′t′′α(ω′)−1α(ω′′)−1

× [J(ω′)Θ(ω′)− J(−ω′)Θ(−ω′)]coth
ω′

2T
δ(ω′+ω′′) Im χ̃(ω′) (C.2)

=

∞∫
−∞

dω′

2π
e−iω′(t′−t′′)α(ω′)−1α(−ω′)−1

× [J(ω′)Θ(ω′)− J(−ω′)Θ(−ω′)]coth
ω′

2T
Im χ̃(ω′). (C.3)

This gives a closed expression for the position-position covariance. Note that, since p̃(ω) =

−iω x̃(ω), one has 2−1〈{p̃(ω′), x̃(ω′′)}〉 = 0 and

1
2
〈{p(t′), p(t′′)}〉 =

∞∫
−∞

dω′

2π
e−iω′(t′−t′′)ω′2α(ω′)−1α(−ω′)−1

× [J(ω′)Θ(ω′)− J(−ω′)Θ(−ω′)]coth
ω′

2T
Im χ̃(ω′). (C.4)

Therefore, we have fully characterized the steady state of a single harmonic oscillator in a

bosonic bath. Note that the only underlying assumption is that the environment was prepared

in an equilibrium state at temperature T . Specifically, this was required when evaluating the

113



114

correlators 〈{xµ(t0), xµ(t0)}〉T and 〈{pµ(t0), pµ(t0)}〉T in Eq. (A.3). Otherwise, our calculation is

completely general. For a non-equilibrium bath, one would only need to recalculate Eqs. (A.3)

and (A.4).



Appendix D

Dependence of the normal-mode
frequencies on the coupling strength in
a ‘star system’

Let us consider a finite star system with N modes. As already explained in the main text, this

will be comprised of a central harmonic oscillator of bare frequency ω0 (playing the role of the

probe), dissipatively coupled to N −1 independent peripheral oscillators with arbitrary frequen-

cies ωµ∈{1,··· ,N−1} (representing the sample). We will choose linear probe-sample couplings of

the form xγ
∑N−1
µ=1 gµxµ, were γ carries the order of magnitude of the coupling strengths. Note

that we also allow for arbitrary frequency-distribution of the coupling constants gµ.

Hence, the total N-particle Hamiltonian may be written as Ĥ = 1
2 x̄tVx̄ + 1

2 | p̄|
2, with x̄ =

(x, x1, · · · , xN−1) and p̄ = (p, p1, · · · , pN−1). For simplicity of notation, we will take unit mass

for all particles. The N ×N interaction matrix V may thus be written as

V = γ



γ−1Ω2
0 g1 g2 · · · gN−2 gN−1

g1 γ−1ω2
1 0 · · · 0 0

g2 0 ω2
2 · · · 0 0

...
...

...
. . .

...
...

gN−2 0 0 · · · γ−1ω2
N−2 0

gN−1 0 0 · · · 0 γ−1ω2
N−1


. (D.1)

The frequencies of the normal modes of the system are given by the square root of the N solu-

tions λi of PN(λi) = |V−λi1|= 0. Note that we have shifted the frequency of the central oscillator

ω2
0→Ω

2
0 B ω2

0 +
∑
µ g2

µ/ω
2
µ to ensure that all λi > 0.
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While it is hard to obtain closed expressions for λi, one may easily see the following: The

frequencies of the modes above Ω0 increase with the coupling strength, whereas those of the

modes below Ω0 decrease with γ (i.e. ∂γλi > 0 for λi > Ω
2
0 and ∂γλi < 0 for λi < Ω

2
0). Indeed,

expanding PN(λ) by minors along the last row, yields the recurrence relation

PN(λ) = (ω2
N−1−λ)PN−1(λ)−γ2 g2

N−1Π
N−2
k=1 (ω2

k −λ), (D.2)

which allows to rewrite the condition PN(λi) = 0 as

Ω
2
0−λi =

1∏N−1
l=1 ω2

l −λi

N−1∑
k=1

γ2g2
k

N−1∏
l=1

ω2
l −λi

ω2
k −λi

=

N−1∑
k=1

γ2g2
k

ω2
k −λi

. (D.3)

Consequently, the derivative of any eigenvalue λi with respect to the coupling strength γ evalu-

ates to

∂γλi = −
2γ

∑N−1
k=1 g2

k(ω2
k −λi)−1

1 +
∑N−1

k=1 γ
2g2

k(ω2
k −λi)−2

. (D.4)

Comparing Eqs. (D.3) and (D.4) we can see that ∂γλi > 0 for λi > Ω
2
0, and that, on the contrary,

∂γλi < 0 for λi <Ω
2
0.
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berg limit in quantum-enhanced metrology. Nature Communications, 3(2012):1063,

2012. ISSN 2041-1723. doi: 10.1038/ncomms2067. URL http://www.nature.com/

doifinder/10.1038/ncomms2067.

[14] Alex W. Chin, Susana F. Huelga, and Martin B. Plenio. Quantum metrology in non-

markovian environments. Physical Review Letters, 109(23):1–5, 2012. ISSN 00319007.

doi: 10.1103/PhysRevLett.109.233601.

[15] Katarzyna Macieszczak. Zeno limit in frequency estimation with non-markovian envi-

ronments. Phys. Rev. A, 92:010102, Jul 2015. doi: 10.1103/PhysRevA.92.010102. URL

http://link.aps.org/doi/10.1103/PhysRevA.92.010102.
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