
Dynamic Factor Analysis as a Methodology of
Business Cycle Research

Konstantin A. Kholodilin



2



Contents

1 Introduction 5
1.1 The Object of Research . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Objective of Research . . . . . . . . . . . . . . . . . . . . 7
1.3 The Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . 8

2 Turning Points Analysis: Current State of Affairs 11
2.1 Markov Regime Switching Models . . . . . . . . . . . . . . . . 12

2.1.1 Basic univariate Markov-switching model . . . . . . . . 12
2.1.2 Forecasting with Markov-switching models . . . . . . . 15
2.1.3 Multivariate Markov-switching models . . . . . . . . . 15
2.1.4 Markov-switching models with time-varying transition

probabilities . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Dynamic Common Factor Approach . . . . . . . . . . . . . . . 20

2.2.1 Single factor model . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Multifactor model . . . . . . . . . . . . . . . . . . . . . 25

2.3 Regime-Switching Dynamic Factor Model . . . . . . . . . . . . 27
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Bifactor Models with Markov Switching 33
3.1 Bifactor Model with Granger-Causality Mechanism . . . . . . 33

3.1.1 Linear model . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Nonlinear model . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Simulated examples . . . . . . . . . . . . . . . . . . . . 38
3.1.4 Real example . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Bifactor Model with Transition Probabilities Matrix Mechanism 58
3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3



4 CONTENTS

3.2.2 Real example . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Dynamic Factor Analysis and Data Problems 79
4.1 Markov-Switching Dynamic Factor Model with Mixed-Frequency

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 Real example . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Structural Breaks in Dynamic Factor Model: Deterministic
Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 Simulated example . . . . . . . . . . . . . . . . . . . . 98
4.2.3 Real example . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Structural Breaks in Dynamic Factor Model: Probabilistic
Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.2 Real example . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Conclusion 147



Chapter 1

Introduction

1.1 The Object of Research

In this thesis we consider the application of dynamic factor analysis (with
possibly nonlinear dynamics) to the study of the cyclical fluctuations of a
modern market economy. Thus, the object of our research is the business
cycle, while the principal tool is dynamic factor model.

However, before trying to study business cycle properties, we have to
define the notion of a business cycle and its phases — expansion and recession
— in particular, since this would allow us to delineate the object of our
research and to employ the most appropriate model which permits grasping
these properties. Therefore we start with discussing several definitions of the
business cycle and its phases which are widely used in the modern literature
on economic fluctuations.

One of the most popular among the practitioners of the business cycle
research is the rule of thumb explained in Garcia-Ferrer and Queralt (1998):
”a widely used alternative to the NBER cycle-dating rules is to define a
turning point as a first of at least two successive increases (declines) in the
growth rate of the GNP”. Nevertheless, this definition has a serious flaw —
its narrowness, since it takes into account only the movements in GNP or
GDP. GDP is one of the most general economic indicators, however, its level
or rate of growth may change due to the partial changes, that is, fluctuations
in a particular sector of the economy, while the rest of the economy does not
necessarily move in the same direction.

Moreover, this definition requires only the growth rates to change, whereas
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6 CHAPTER 1. INTRODUCTION

according to the new classical definition of the business cycle one of the nec-
essary conditions is the change of sign of the rate of growth. As Barro and
Grilli (1994, p. 15) put it: ”When real GNP falls toward a low point or
trough, the economy is in a recession or an economic contraction. These are
periods characterized by negative rates of growth”.

The NBER’s definition1 is more consistent in this respect — it explic-
itly requires the downward or upward movements to be omnipresent, not
restricted to a particular branch of economy: ”A recession is a significant de-
cline in activity spread across the economy, lasting more than a few months,
visible in industrial production, employment, real income, and trade. A
recession begins just after the economy reaches a peak of output and em-
ployment and ends as the economy reaches its trough. Between trough and
peak, the economy is in an expansion. Expansion is the normal state of the
economy; recessions are brief and relatively rare”.

The NBER’s definition, as well as the ”practitioners’ definition” men-
tioned above, are based on the comparison of the present state of the econ-
omy to its immediate past and the future. The ”neoclassical definition”,
however, has more static nature and rests upon the notion of the potential
output. As exemplified in Samuelson and Nordhaus (1998, p. 433): ”A busi-
ness cycle is a swing in total output, income and employment usually lasting
for a period of 2 to 10 years, marked by widespread expansion or contraction
in most sectors of the economy. In modern economics, business cycles are
said to occur when actual GDP rises relative to potential GDP (expansion)
or falls relative to potential GDP (contraction or recession)”.

Stock and Watson (1989, p. 357) come with a more elaborate probabilistic
definition of the business cycle phases: ”The Recession Index is an estimate of
the probability that the economy will be in a recession six months hence. This
probability is computed using the same time series model used to calculate
the proposed LEI2, and is based on a definition (in terms of the sample path
of ∆Ct

3) of what constitutes a recession or an expansion. Unfortunately,
it is difficult to quantify precisely those patterns that will be recognized as
expansions or contractions. Burns and Mitchell (1946, p. 3) considered
the minimum period for a full business (reference) cycle to be one year;
in practice, the shortest expansions they identified were six months. The

1http://www.nber.org/cycles/recessions.html
2Leading economic indicator
3First differences of the common dynamic factor Ct.
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Recession Index is computed by approximating a recessionary (expansionary)
period in terms of negative (positive) growth of the CEI4 that lasts at least
six months. Note 6: We define a month to be in a recessionary pattern if
that month is either in a sequence of six consecutive declines of Ct below
some boundary brt, or is in a sequence of nine declines below the boundary
with no more than one increase during the middle seven months”.

Diebold and Rudebusch (1996, p. 67) stress two key characteristics of the
business cycle as defined by Burns and Mitchell: ”The first is the comove-
ment among individual economic variables. The second prominent element of
Burns and Mitchell’s definition of business cycles is their division of business
cycles into separate phases or regimes”.

Thus, we can recapitulate the main features of a business cycle phase: (1)
the movement should be general, embracing many sectors of the economy at
the time; (2) it should last long enough to be discriminated from a casual
short-lived oscillations; (3) the behavior of the economy at the upswing is
different from that on the downswing5. Given that these three conditions
hold, we observe either expansion or recession. The points on the border of
two adjacent phases are the turning points.

From the practical point of view the business cycle dynamics may be
translated in terms of a common factor, which reflects the overall movement
of the economy, being in high or low regime for several consecutive peri-
ods. This is captured by high enough — above 0.5 or some other margin
depending perhaps on the cost of false prediction imposed by the researcher
— probability of the ”state of the economy” approximated by the common
component belonging to that regime.

1.2 The Objective of Research

The main objective of our research is to elaborate a technique of construct-
ing a composite economic indicator or a set of such indicators which would
detecting and forecasting the turning points of the business cycle. This tech-
nique should have a sound theoretical basis and adequately meet the defining
characteristics implied by the business cycle definition.

4Composite economic indicator
5The expansions usually last longer than the contractions. Moreover, sometimes the

volatility is higher in the recessionary phase of the cycle.
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As a point of departure we choose the definition of business cycle pro-
posed by Burns and Mitchell (1946). Therefore the technique in question
should satisfy the business cycle properties exposed in the end of the pre-
vious section. We believe that the most appropriate method to capture the
Burns and Mitchell’s cycle would be dynamic factor analysis.

Nevertheless, dynamic factor analysis in its current state requires un-
doubtedly some refinements and extensions to obtain unbiased and consis-
tent estimates of the composite economic indicators and to use the available
information in the best possible way.

Our research is mostly oriented towards the practitioners who have opted
for using the dynamic factor approach in the construction of the business
cycle indicator both at the regional and national levels.

1.3 The Thesis Structure

The thesis is comprised of five chapters where the first and the last chapters
are the introduction and conclusion delineating the objectives of the study
and summarizing the results achieved during research.

Chapter two describes various approaches to the analysis of economic
fluctuations proposed during the last 20 years, especially those that have to
do with the construction of the composite economic indicators and identifi-
cation of the turns of business cycle. On the one hand, it concentrates on
models with nonlinear, namely Markov-switching, dynamics, on the other
hand, it is concerned with dynamic factor models. Finally, it shows the com-
bined techniques which unite these two principal approaches, thus, modeling
common latent factor with regime-switching dynamics.

In chapter three we introduce a general multifactor dynamic model with
linear and regime-switching dynamics. This model allows capturing the in-
tertemporal (leading versus coincident) dimension of the latent common fac-
tors. Two alternative multifactor dynamic models with a leading and a
coincident unobserved common factors are examined: a model where the
common coincident factor is Granger-caused by the common leading factor
and a model where the leading relationship is translated into a set of specific
restrictions imposed on the transition probabilities matrix.

Chapter four concentrates on the supplementary devices which allow to
overcome some data problems which are very frequent in the practitioner’s
life. Among the most prominent are the structural breaks and missing ob-
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servations. It is shown that some of these troubles can be coped with by
modifying the dynamic common factors models, which leads to more effi-
cient estimates of the parameters of the models.

Each subsection of chapters three and four is accompanied by an appendix
containing the tables and graphs which illustrate the argument. A list of
references can be found in the very end of the thesis.
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Chapter 2

Turning Points Analysis:
Current State of Affairs

Since many years the measurement and forecasting of cyclical economic ac-
tivity has played an important role as a tool of macroeconomic policy. The
most notorious examples of such measurements are the National Bureau of
Economic Research (NBER) leading, coincident, and lagging business cycle
indicators (USA) calculated since 1940s, similar indicators provided by the
Central Statistical Office (UK) since 1970s, and more recently — since 1980s
— the indicators computed on the international bases by the Organization
for Economic Cooperation and Development.

The policy makers need to know at which stage of the business cycle
the economy is situated and where it is going to move next. To answer
these questions we have to solve the following three problems. The first
problem is to build a composite economic indicator or a set of such indicators,
which would reflect the aggregate cyclical fluctuations of the economy, being
a quantitative proxy of the business cycle. Secondly, there should be a way to
obtain from this business conditions’ indicator a business cycle chronology,
that is, a sequence of turning points marking transitions from the recessions
to the expansions and vice versa. This would allow us identifying the actual
phase of the business cycle. Once the previous problems have been solved,
one can predict the future shifts between upward and downward phases of
the business cycle.

The business cycle is normally treated as the sequential upward and down-
ward movements in the GDP. However, this approach is far from being satis-
factory. One of the reasons is, as we stressed above, that GDP fails sometimes

11
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to reflect to a whole extent such a complex phenomenon as a business cycle.
If we define the business cycle as a synchronized movement across all the
economy, then all the changes in GDP may not be considered as attributable
to the cycle, since they may be related to some sectors only. For instance, if
the exports due to the lack of the purchasing power abroad are going down,
GDP may decrease, however, this does not necessarily mean that the whole
economy will be doing bad.

Another reason is that for the regional economies the GDP data for a more
or less long period are simply unavailable. Sometimes also their frequency is
too low, e.g. annual, for them to be used as an indicator of the business cycle.
Therefore if one wants to investigate the movement of the economy of some
region, he is compelled to look for separate pieces of appropriate information
to shed light on the overall fluctuations of that economy. Historically, the
second reason was the principal one for calculating the composite indices,
since real GDP or GNP indices that would cover long enough periods of time
were not really available until the end of 1950s.

Here we concentrate our attention on only two basic lines of business
cycle research, as capturing the main features of this phenomenon: Markov-
switching models, which reflect the asymmetries between different phases
of business cycle, and dynamic factor models, which take into account the
comovements of the observed time series, as well as a combined approach,
which manages to unify these features in a single model.

The chapter is structured as follows. In the next section we will consider
the Markov switching model and its modifications designed to analyze and
forecast the turning points of the macroeconomic activity. In section three we
discuss various linear dynamic factor models intended to model the business
cycle. Section four is devoted to the models which combine the above two
approaches, thus producing the dynamic factor models with regime-switching
dynamics. Section five concludes the chapter.

2.1 Markov Regime Switching Models

2.1.1 Basic univariate Markov-switching model

The main references here are Hamilton (1989, 1994). The basic idea of a
Markov-switching model is that the economy is thought to behave differently
in different regimes it may go through. For instance, the mean and variance
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of the growth rates observed during recession may be different from those
observed during expansion. In other words, the asymmetry in the economic
dynamics is allowed for.

More specifically the Markov-switching model can be motivated as fol-
lows. Suppose we observe a time series, yt, which is a sum of two unobserved
components:

yt = gt + zt, (2.1)

where

gt = gt−1 + α0 + α1st (2.2)

is the Markov trend with st being an unobserved state (regime) of the econ-
omy, as, for instance:

st =

{
1, if recession in period t
0, if expansion in period

However, there can be more than two states. For example, given the fact
that in the 1990s the growth rates fell in many market economies, one has to
introduce additional states (”high secular growth” and ”low secular growth”)
in order to capture this structural break. Artis et al. (1999) having faced
this problem, opted for constructing three-states Markov model, where one
of the regimes is intended to absorb the secular growth rates deceleration,
while the other two regimes are the usual ”recession” and ”expansion”.

The second component of the observable series, zt, was postulated by
Hamilton (1989) as an ARIMA(r,1,0) process, although later it was general-
ized to non-integrated processes case:

φ(L)(1− L)zt = εt (2.3)

where εt is a zero-mean white noise.
When the statistical model is formulated, the objective is to find the

probabilities of each regime conditional on the up-to-date information set
(information about the relevant variables available at the moment). These
probabilities are computed recursively as:

ξt|t =
(ξt|t ¯ ηt)

ξ′t|tηt
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and updated as follows:

ξt+1|t = Pξt|t

where
ξ′t|t =

(
P (st = 1|Yt) ... P (st = m|Yt)

)
is the vector of the conditional

state probabilities for each of the m regimes;
η′t =

(
f(yt, st = 1|Yt−1; θ) ... f(yt, st = m|Yt−1; θ)

)
is the vector of the

densities of the t − th observation for each of m states conditioned on the
previous period information set; ¯ is the element-by-element multiplication
operator; θ is the vector of parameters, and

P =




p11 p12 ... p1m

p21 p22 ... p2m
...

...
. . .

...
pm1 pm2 ... pmm




is the transition matrix, or matrix of transition probabilities.
The algorithm may be started as:

ξ1|0 =
1

m
E (2.4)

where E is an m× 1 vector of ones.
If, for example, we assume Gaussian distribution of the noise, the condi-

tional density function may be written as follows:

f(yt, st = i, st−1 = j, ..., st−p = k|Yt−1; θ) =

=
1√

2πσj

exp

{
− 1

2σ2
j

[
yt − µst − φ1(yt−1 − µst−1)− ...− φp(yt−p − µst−p)

]2
}

The filtered probabilities, P (st = i, st−1 = j, ..., st−p = k|Yt), can be
estimated by the maximum likelihood, where the log-likelihood function is
constructed as:

L(θ) =
T∑

t=1

log(ξ′t|tηt)
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As soon as the posterior probabilities of the states are calculated, one
can determine the business cycle chronology. One of the states, having the
lowest mean, is interpreted as recession, and then the recession dates may be
defined as those for which the probability of being in the recession is higher
compared with that of being in expansion (if we deal with the two regimes
model) or that of some other state (when number of the regimes is greater
than 2).

2.1.2 Forecasting with Markov-switching models

As soon as the Markov-switching model is estimated, the next important
problem is to forecast both the observed variable and the predictive prob-
abilities. The τ -step-ahead forecast of ξt+τ conditional on the information
available at period t is calculated as:

ξt+τ |t = P τξt|t (2.5)

For example, if we are making a one-period-ahead forecast, then the fore-
cast of yt+1 given the information available in t would be:

E(yt+1|Yt; θ) = h′tξt+1|t, (2.6)

where

ht =





E(yt+1|st+1 = 1, Yt; θ) = µ1 + φ1(yt−1 − µst) + ... + φp(yt−p − µst+1−p)
...

E(yt+1|st+1 = j, Yt; θ) = µj + φ1(yt−1 − µst) + ... + φp(yt−p − µst+1−p)

(2.7)
and ξt+1|t is calculated according to (2.5).

2.1.3 Multivariate Markov-switching models

Another interesting and important point is the extension of the univariate
Hamilton’s model to the multivariate case — the so-called Markov-switching
vector autoregression (MS-VAR).

In the general case MS(m)-VAR(p) can be expressed as follows (see
Krolzig (1996)):
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yt = µ(st) +

p∑
i=1

Ai(st)yt−i + εt(st) (2.8)

where yt is the n × 1 vector of the observable variables; µ(st) is the n × 1
vector of the intercept terms; Ai(st) is the n×n matrix of the autoregressive
coefficients at lag i; and εt(st) is the n × 1 vector of the disturbance terms.
εt(st)NID(0, Σ(st)). The state variable st = 1, ..., m, that is, m regimes are
assumed. Hence this model is called MS(m)-VAR(p): m states and p vector-
autoregressive terms.

In this specification both the intercepts, and the autoregressive parame-
ters and the disturbances are state-dependent. However, simpler specifica-
tions can be considered with the regime-invariance restrictions imposed on
some of these terms or parameters.

The simplest multivariate Markov-switching model is that of Kontolemis
(2001), where there are no lagged terms and the only switching components
are the intercepts and covariances. Moreover, Kontolemis imposes the re-
striction of identical turning points across the different coincident time series,
assuming that a common probability transition mechanism governs switches
from one regime to another. In this case the generalization of Hamilton’s uni-
variate Markov-switching model is immediate: the only thing to be changed
are the likelihood functions comprising vector ηt. The typical element of this
vector is:

f(yt, st = j|Yt−1; θ) =
1

(2π)n/2|Σj|1/2
exp

(
−(yt − µj)

′Σ−1
j (yt − µj)

2

)
(2.9)

where yt is a n×1 vector of coincident variables; Σj is the variance-covariance
matrix corresponding to regime j, and µj is the intercept term in regime j.

This approach is very promising, since it allows extracting the common
information regarding the turning points of the economy which is contained
in various time series. There is no need to construct any composite indicator
to get the recessions chronology. Furthermore, this model can be used to
forecast the turning points.

Krolzig (1996) generalizes this framework even more by elaborating an
algorithm to estimate VAR Markov-switching models with cointegration —
MS-VECM (Markov-switching vector error correction mechanism model) as
well as MS-VARMA.
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Krolzig (1996) considers a case where the time series are cointegrated.
Since a valuable information is contained in the series in levels, it is more
efficient to use a VECM model rather than estimating a VAR in the differ-
ences (see, e.g. Hylleberg and Mizon (1989)). The model Krolzig estimates,
MS(m)-VECM(p-1), is as follows:

∆yt = µ(st) +

p−1∑
i=1

Di∆yt−i + Πyt−p + εt (2.10)

where Di = −(In−
∑i

j=1 Aj) with autoregressive matrices Ai from (2.8) but
without state-dependence; Π = In −

∑p
i=1 Ai = A(1) = BC; B is the n × r

loading matrix, and C is the r×n cointegration matrix. The rank of matrix
Π, r, is called the integration rank, and n− r is the number of the common
stochastic trends in the system (see Stock and Watson (1988)). The only
term which is regime dependent in this model is the vector of intercepts.

To estimate the above model Krolzig proposes a two-step procedure. At
the first step the cointegration rank, r, is determined and the cointegration
matrix, C, is estimating using Johansen maximum likelihood analysis of VAR
(see Johansen (1991)). At the second stage all the remaining parameters of
MS(m)-VECM(p-1) are recovered with an EM algorithm (this algorithm as
applied to the Markov-switching modeling is presented in Hamilton (1990)
and in particular with respect to the MS-VECM — in Krolzig (1996)).

Phillips (1991) considers a very interesting vector Markov-switching model
which allows for the independent regime-switching processes as well as for
various types of dependence between the unobservable states of different time
series: perfect correlation (as in the Kontolemis (2001) model, which may be
considered as a particular case of the Phillips’ model) and one time series
leading the other. The latter can be used to model the relationship between
the CCI and CLI. Moreover, the Phillips’ setting allows testing all these
specifications against the baseline model, i.e. the model where the transition
matrix is unrestricted.

2.1.4 Markov-switching models with time-varying tran-
sition probabilities

Having noticed the quite poor performance of the standard fixed transition
probability (FTP) Markov-switching models in the presence of higher noised
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observations, Filardo (1994) had suggested to extend the standard model to
the time-varying transition probabilities (TVTP) case.

He motivates this extension by three arguments. First, the probabili-
ties of transition from one regime to the other may change depending on
whether the economy is in the beginning, in the middle or in the end of a
regime. Thus, for instance, probability of switch from recession to expansion
may increase dramatically in the end of the contractionary period. Constant
transition probabilities of the FTP models do not allow for these changes.
Secondly, fixed transition probabilities imply constant expected durations of
the states, while the time-varying transition probabilities lead to the vary-
ing durations, which is supported by the empirical evidence displaying wide
variety of expansions and recessions durations. Thirdly, TVTP models en-
rich the temporal persistence picture, since to the persistence of the business
cycle phases captured by the autoregressive terms and by the fixed transi-
tion probabilities they add persistence resulting from the dependence of the
transition probabilities of the dynamics of the other variables.

The algorithm is basically the same as in the baseline Hamilton’s model.
The only difference is the way the transition probabilities are modelled. If
in the baseline pij = P (st = j|st−1 = i) for any i and j, and, thus, is
constant, under the TVTP framework pij = P (st = j|st−1 = i, Zt), where
Zt = {zt, zt−1, ...} is the past history of the variables affecting the transition
variabilities.

There can be various functional forms reflecting the dependence of the
transition probabilities of the variables entering Zt. Filardo (1994) in a two-
regime TVTP Markov-switching model uses logistic function to model the
transition probabilities (he denotes p = p11 and q = p22):

p(Zt) =
exp(θp0 +

∑J1

j=1 θpjzt−j)

1 + exp(θp0 +
∑J1

j=1 θpjzt−j)
(2.11)

and

q(Zt) =
exp(θq0 +

∑J2

j=1 θqjzt−j)

1 + exp(θq0 +
∑J2

j=1 θqjzt−j)
(2.12)

When θpj = θqj = 0 for j 6= 0, we have a standard FTP Markov-switching
model. This functional form permits checking the null hypothesis of constant
transition probabilities against the alternative of the TVTP.
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Filardo (1994) shows that the removing the restriction of FTP may lead
to the improvement of the forecasting performance of the Markov-switching
model.

Filardo and Gordon (1998) use a probit specification to model the time-
varying transition probabilities. The transition probabilities at each time
period are computed using a conditional cumulative distribution function.
Thus, the probability of switching to the state 1, given that in the previous
period the system was in the same state, may be calculated as:

pt = P (Ut − θ0 − θs − z′tθz) = 1−
∫ ū(z)

−∞

1√
2π

exp
[−0.5u2

]
du

where u(z) is the upper limit of integration and u = −θ0 − θs − z′tθz.
Similarly the probability of switching from state 2 to state 2 conditional

on a vector of information variables zt is given by:

qt = P (Ut < −θ0 − z′tθz) =

∫ ū(z)

−∞

1√
2π

exp
(−0.5u2

)
du

where u = −θ0 − z′tθz.
This specification stems from modeling the latent variable S∗t as a function

of the unobserved state in the previous period, st−1, and of a set of the
information variables, zt:

S∗t = θ0 + θsst−1 + z′tθz

Note that in this model only mean of the latent variable S∗t is state-
dependent, while the coefficients with the information variables are the same
for both regimes. On the other hand, the fact that an unobserved state
variable enters the equations for the transition probabilities, may complicate
the estimation of the model.

Another specification of the time-varying transition probabilities function
was put forward by Simpson, Osborn and Sensier (2000). It is an exponential
function:

p(Zt) = 1− exp[−(θp0 +

J1∑
j=1

θpjzt−j)]

and
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q(Zt) = 1− exp[−(θq0 +

J2∑
j=1

θqjzt−j)]

As they claim and as our own experience confirms, this specification is
more stable in the estimation sense compared to the logistic and probit ones.

2.2 Dynamic Common Factor Approach

2.2.1 Single factor model

Since the late 1980s the composite economic indicator (CEI) together with
the leading economic indicator (LEI), estimated according to the methodol-
ogy proposed in Stock and Watson (1989, 1991, 1993), are regularly published
in the USA as an alternative to the official composite indicators provided by
the US Department of Commerce.

In their definition of the business cycle, Burns and Mitchell stress two
important and indispensable features of this economic phenomenon: the
comovement of the macroeconomic variables throughout the cycle and the
asymmetry between the expansions and recessions. The model of the coin-
cident economic indicator proposed by Stock and Watson incorporates first
of these features by trying to capture the common dynamics among different
macroeconomic time series at the business cycle frequencies.

They assume the existence of some common dynamic factor, which un-
derlies the comovements of the individual coincident economic variables and
which, by consequence, can be defined as the state of affairs in the economy.
However, this factor is unobservable and so we can make only hypothetical
statements about its nature.

Stock and Watson distinguish between the common and specific (idiosyn-
cratic) components of each of the time series they include in their model. The
common component, which may depend on its own past values, and therefore
is called dynamic, determines the comovements of different macroeconomic
variables. The idiosyncratic components capture the specific dynamics of
each of these series.

The algorithm, although having evolved over time, is basically the follow-
ing one:
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1. Construct CEI using the dynamic common factor model: express the
model in the state space form, use Kalman filter to construct the max-
imum likelihood function, estimate it to get the estimates of the pa-
rameters and of the CEI.

2. Estimate VAR including CEI and a set of individual leading variables.

3. Forecast the CEI for several periods (say, 6 months) into the future,
using the VAR estimated at step 2.

4. Construct the LEI as a difference between the CEI forecasted for the
period t + k (where k is the forecast horizon) and CEI at time t.

5. Forecast the recessions using either logit model, including the LEI and
the same leading series as in the VAR at step 2, or the stochastic
simulation forecasting approach, similar to that of Wecker and Kling.

The composite economic indicator is modelled as follows:

∆yt = δ + γ(L)∆Ct + ut (2.13)

where the dynamics of the common factor are:

φ(L)∆Ct = µ + εt (2.14)

and the specific, or idiosyncratic, components are:

Ψ(L)ut = ηt (2.15)

where yt is the vector of the coincident variables in levels; Ct is the common
dynamic factor; δ and µ are the constant terms; Ψ(L) and φ(L) are the lag
polynomials; εt and ηt are serially and mutually uncorrelated shocks:

(
εt

ηt

)
∼ NID

((
0
0

)
,

(
σ2

ε O
O Ση

))

To identify the model Stock and Watson set the variance of the com-
mon factor equal to one and assume that the lag polynomial matrices Ψj

(j = 1, ..., q, where the q is the maximum autoregressive order of the specific
components) are diagonal, thus excluding any causality relationships between
the idiosyncratic components.



22CHAPTER 2. TURNING POINTS ANALYSIS: CURRENT STATE OF AFFAIRS

In principle it is possible to build an unobserved components model with
the variables in levels. However, Stock and Watson use coincident variables
which are integrated of order one and which are not cointegrated. Therefore
the model is estimated with the logged variables in the first differences.

To estimate the model, one can express it in a state space form and
then use either maximum likelihood technique — as it is done by Stock and
Watson (1991) or, for example, Bayesian methods (like Gibbs sampler, see
e.g. Kim and Nelson (1999c)) in order to find the unknown parameters and
the estimates of the state variables.

The above model can be expressed in the following state-space form:

Measurement equation:

∆yt = Axt (2.16)

Transition equation:

xt = α + Cxt−1 + vt (2.17)

where xt =
(

∆Ct ... ∆Ct−p+1 u1t ... un,t−qn+1

)′
is the k× 1 state vec-

tor, k = p +
∑n

i=1 qi; vt =
(

εt ... 0 ε1t ... 0
)

is the k × 1 vector of the
disturbances to the state vector, and the intercept k× 1 vector is defined as:
α =

(
µ 0 ... 0

)
.

The system matrices have the following form. The measurement matrix:

A =




Γ1 iq1 O
...

...
...

Γn O iqn




where Γi is the 1 × g vector of the factor loadings of the i − th observed
variable: Γi = (γi,1, ..., γi,gi

, ..., 0) with g = max{g1, ..., gn}.
The transition matrix:

C =




Φ 0 0
0 Ψ1

. . .

0 0 Ψn




Φ =

(
φC 0

IpC−1 opC−1

)
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with φC = (φ1,...,φp) — the 1×p vector of the AR coefficients of the common
factor. The matrices Ψ1, ..., Ψn have the same structure as ΦC .

The k× k variance matrix of the disturbance to the state vector, vt, may
be written as:

Q =




σ2
ε 0

. . .

σ2
i

0 0




where σ2
i is the variance of the shock to the i− th specific component.

Having expressed the model in the state-space form, one can apply the
Kalman filter recursions to get the likelihood function and to find the filtered
and smoothed estimates of the state vector. We will not reproduce here the
recursive Kalman filter equations referring the reader to the chapter 13 of
Hamilton (1994).

Another estimation approach is the Monte Carlo Markov Chains (MCMC),
or Bayesian, method. It is especially useful when there are too many parame-
ters to be estimated. For the details of the estimation a single dynamic factor
model in the Bayesian framework see Otrok and Whiteman (1998) and Kim
and Nelson (1999c).

To construct an LEI, it is necessary to predict the future values of the
CEI. To do this, Stock and Watson estimate the following VAR model:

∆Ct = µC + ΦC(L)∆Ct−1 + ΦCL(L)Lt−1 + vCt (2.18)

Lt = µL + ΦLC(L)∆Ct−1 + ΦL(L)Lt−1 + vLt (2.19)

where Lt is the vector of the leading variables; µi is the constant term (i =
C, L); Φij(L) are the lag polynomials (i, j = C,M).

One can use either the two-step or one-step procedure to estimate the CEI
and LEI. With the two-step procedure one uses equations (2.13)-(??) to put
them in a state space form in order to estimate CEI (Ct|t = E(Ct|It)) with a
Kalman filter and then, at the second step, estimate the VAR replacing ∆Ct

by ∆Ct|t. However it is also possible to do the estimation simultaneously — in
one step. Then, equations (2.18) and (2.19) are substituted for the equation
(2.14), and the system of equations (2.13), 2.15, (2.18), and (2.19) is used to
run the Kalman filter.
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Initially the forecasting was done with a logit model. The idea behind
this model is the following (see for example, Amemiya (1981)).

Suppose that there exists an unobservable variable characterizing the
state of the economy: either expansion or recession. However, one can code
this latent variable with the observable dichotomous variable Rt :

Rt =

{
1, if recession in period t
0, if expansion in period t

Normally, in the USA one uses for Rt the dummy corresponding to the
NBER business cycle chronologies. However, if we do not have any generally
accepted dating of the turning points, it is not very clear what variable to
use in order to code the recession/expansion latent time series.

Then the model for the recessions forecasting can be written as follows:

P (Rt+k = 1) = F (X ′
tβ)

where P (Rt+k = 1) is the conditional probability of having recession in period
t+ k; F (·) is some cumulative distribution function; Xt is the n× 1 vector of
the explanatory variables (in this case it is CEI and several leading variables),
and β is the n× 1 vector of the unknown parameters.

In particular, when we are predicting recessions with the logit model:

P (Rt+k = 1) =
exp(X ′

tβ)

1 + exp(X ′
tβ)

The recessions probabilities and the parameters for the above (and for any
other qualitative response) model are estimated by the maximum likelihood.
The log-likelihood function to maximize may be written as:

L(β) =
T∑

t=1

{Rt+k log (F (X ′
tβ)) + (1−Rt+k) log (1− F (X ′

tβ))}

Varying the forecasting horizon and the composition of the vector Xt,
we can choose the model which gives the best predictions. The recession
probabilities estimated from this model can be used to define the dates of the
recessions and expansions, which, in turn, can be compared with the official
chronology. Nevertheless, it is important to stress it once again: without
any generally accepted and reliable business cycle chronology, the prediction
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of the recession probabilities using any qualitative response model becomes
senseless.

Another method to forecast the recession probabilities, which was em-
ployed more recently by Stock and Watson (1993) is the stochastic simulation
forecasting reminding that of Wecker (1979) and Kling (1987).

A very interesting extension to the dynamic common factor analysis was
proposed recently by Mariano and Murasawa (2003). They consider a model
where the use of the mixed-frequency data, say monthly and quarterly, in
the common dynamic factor model is allowed. This is especially useful if we
want to get use in constructing our composite coincident indicator of such
an important coincident time series as GDP. As a rule the GDP data are re-
leased at much lower frequency than individual series characterizing specific
sectors of the economy. The Mariano and Murasawa’s model permits tak-
ing advantage of the valuable information contained in the lower-frequency
time series. Thus, we can minimize the information losses and enhance the
efficiency of our common dynamic factor model.

2.2.2 Multifactor model

This single-factor approach was extended by Kose et al. (1999) to the cross-
sectional data — which automatically implies a multiplicity of the common
components. Their model has a hierarchy of common factors starting from
the most general world indicator, which absorbs the worldwide common fluc-
tuations, and descending to the country-specific common factors. All these
common factors are coincident.

A further step is made by Forni et al. (2001) whose generalized dy-
namic factor approach not only covers the cross-sectional dimension but also
takes care of the intertemporal relations between the common factors allow-
ing to estimate the leading, coincident, and lagging factors. Unlike all the
above mentioned methods, this technique is nonparametric and estimates
the dynamic factors in the frequency domain. Forni et al. (2001) relax the
restriction of the mutual uncorrelatedness of the idiosyncratic components
imposed by Stock and Watson, however, keeping intact the assumption of
the common factors being orthogonal to each other. Hence the coincident
and leading common factors are estimated separately: the coincident factor
being extracted from the whole set of the observed time series and the lead-
ing common factor being estimated from the subset of the observed variables
which turned out to be leading with respect to the coincident component
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found at the previous step.
The common factors are recovered by applying a set of symmetric filters

to the original multivariate series. The weights of these filters are obtained
by inverse Fourier transform from the eigenvectors of the spectral density
matrices of the observed process computed at different frequencies. Only
those eigenvectors are chosen which correspond to the largest eigenvalues of
the spectral density matrices. One important disadvantage of this method,
being a consequence of the way the common factors are estimated, is that
the observations in the beginning and in the end of the sample are lost and
hence it is necessary to fill the resulting gaps through back- and forecasting.

This technique is applied, for instance, to construct the monthly coinci-
dent indicator of the business cycle of the euro area as described in Altissimo
et al. (2001).

An alternative approach known as diffusion index model has been devel-
oped recently by Stock and Watson (1998) and Watson (2000). They are
using a dynamic factor analysis to estimate nonparametrically the multiple
common factors based on a very large set of predictors (hundreds or even
thousands of individual component series) in the time domain. Under this
approach the common factors are estimated as the principal components
corresponding to the largest eigenvalues of the variance-covariance matrix
of the set of component series. The common factors are interpreted given
their correlations with the individual component series. Thus, the common
factor having the highest correlations with most of the real sector variables is
thought to reflect the cyclical fluctuations caused by the real shocks. Other
common factors may be related to the monetary or foreign trade sectors.

Two examples of application of this methodology are the construction of
the diffusion indices for the European Union countries undertaken by Mar-
cellino and Stock (2000) and by Angelini, Henry, and Mestre (2001).

A further extension could be a parametric bifactor model which would
allow for a lead-lag relationships between the common factors: leading factor
and coincident factor. Different mechanisms relating the common coinci-
dent factor to the common leading factor are feasible. One is the Granger
causality between the two common factors, another is a kind of probabilistic
mechanism reflecting this relationship in the transition probabilities matrix.
In any case, the bifactor model would permit improving of the forecasting
of the coincident factor because of the additional information coming from
the leading variables. This extension will be introduced in chapter 3 of this
thesis.
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2.3 Regime-Switching Dynamic Factor Model

A very promising approach was introduced by Kim (1994) and Kim and
Nelson (1999c). It was applied by Chauvet (1998 and 1998/9), and by Kim
and Yoo (1995) to construct the US common coincident economic indicator
having nonlinear (Markov-switching) dynamics.

The Markov-switching common factor (MS-CF) approach allows to esti-
mate simultaneously both the common factor, underlying common dynamics
of several macroeconomic time series, and the conditional regime probabili-
ties corresponding to the states through which this factor evolves. In other
words, this approach incorporates nonlinear dynamics into the common fac-
tor extraction by combining the unobserved component model of Stock and
Watson with the Markov regime-switching methodology of Hamilton. This
permits reflecting two defining features of the business cycle put forward by
Burns and Mitchell (1946) and stressed by Diebold and Rudebusch (1996) in
their survey of the modern turning points modeling, namely: comovement of
the individual macroeconomic series within the cycle and asymmetric busi-
ness cycle dynamics, when the behavior of the economy during expansions is
different from that in the recessions.

The model of a single dynamic common factor with Markov switching is
as follows:

∆yt = γi(L)∆Ct + ut (2.20)

∆Ct = µ(st) + φ(L)∆Ct−1 + εt (2.21)

Ψ(L)ut = ηt (2.22)

where yt is the n× 1 vector of the observable time series; Ct is the dynamic
common factor in levels; ut is the n×1 vector of the idiosyncratic components;
st is the regime variable taking m values, where m is the number of the
regimes. Thus, for m = 2, st = 0, 1. The model is basically the same as
that of Stock and Watson, apart from having a very important extension —
that of the regime switching. In this model the intercept term, µ(st), and
possibly the variance of the common factor disturbance, σ2

ε(st), are made
state-dependent, that is, they are different for the different regimes.
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As in the Stock and Watson (1991) model, when the component series,
yt, are neither integrated nor cointegrated, they enter the model in the first
differences and not in the levels.

The shocks to the common and specific factors are assumed to be serially
and mutually uncorrelated and to be normally distributed. Moreover, the
variance of the common factor disturbance may be state-dependent:

(
εt

ηt

)
∼ NID

((
0
0

)
,

(
σ2

ε(st) O
O Ση

))

Again, as in Stock and Watson (1991) the lag polynomial matrices for
the specific components, Ψj (j = 1, ..., q), are assumed to be diagonal.

The transition probabilities, pij = Pr ob(st = j|st−1 = i), sum up to one
when added across all the possible state for the given regime in the previous
period:

∑m
j=1 pij = 1 ∀i for m states.

The above model can be expressed in the following state-space form:

Measurement equation:

∆yt = Axt (2.23)

Transition equation:

xt = α(st) + Cxt−1 + vt (2.24)

where xt =
(

∆Ct ... ∆Ct−p+1 u1t ... un,t−qn+1

)′
is the k× 1 state vec-

tor, k = p +
∑n

i=1 qi; vt =
(

εt ... 0 ε1t ... 0
)

is the k × 1 vector of the
disturbances to the state vector, and the intercept k× 1 vector is defined as:
α(st) =

(
µ1st + µ2 0 ... 0

)
.

The system matrices have the same form as in the case of the linear
common dynamic factor model — see previous section.

The Markov dynamics can be expressed as in Hamilton (1994) with slight
modifications:

p(st = j, st−1 = i|Yt−1) = p(st = j|st−1 = i)
m∑

h=1

p(st−1 = i, st−2 = h|Yt−1)

(2.25)
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p(st = j, st−1 = i|Yt) =
p(st = j, st−1 = i|Yt−1)f(yt|st = j, st−1 = i, Yt−1; θ)

f(yt|Yt−1; θ)
(2.26)

where

f(yt|Yt−1; θ) =
m∑

j=1

m∑
i=1

p(st = j, st−1 = i|Yt−1)f(yt|st = j, st−1 = i, Yt−1; θ)

(2.27)
and θ is a vector of unknown parameters.

The MS-CF can be estimated by the method of maximum likelihood
(see, for example, Kim (1994), Kim and Nelson (1999c)). The log-likelihood
function is constructed by expressing the model in the state-space form using
the Kalman filter. The Kalman filter recursions would be as:

xi,j
t|t−1 = αj + Cjx

i
t−1|t−1

P i,j
t|t−1 = CjP

i
t−1|t−1C

′
j + Qj

ui,j
t = yt − Ajx

i,j
t|t−1

H i,j
t = AjP

i,j
t|t−1A

′
j + R

xi,j
t|t = xi,j

t|t−1 + P i,j
t|t−1A

′
j(H

i,j
t )−1ui,j

t

P i,j
t|t = (I − P i,j

t|t−1A
′
j(H

i,j
t )−1Aj)P

i,j
t|t−1

The likelihood function for the t−th observation conditional on the states
in the current and previous periods is as follows:

f(yt|st = j, st−1 = i, Yt−1; θ) = (2π)−n/2|H i,j
t |−1/2 exp[−(ui,j

t )′(H i,j
t )−1ui,j

t

2
]

(2.28)
However, as can be seen from the above Kalman filter recursive equations,

MLE has one serious drawback: due to the dependence of the current states
on the past ones, the number of the cases to consider increases m times
at each iteration, making the estimation virtually impossible. Therefore to
render it feasible one has to apply approximations the consequences of which
are not fully understood. Kim (1994) proposes the following approximation:

xj
t|t =

∑m
i=1 p(st = j, st−1 = i|Yt−1)x

i,j
t|t∑m

i=1 p(st = j, st−1 = i|Yt−1)
(2.29)
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P j
t|t =

∑m
i=1 p(st = j, st−1 = i|Yt−1)[P

i,j
t|t + (xj

t|t − xi,j
t|t)(x

j
t|t − xi,j

t|t)
′]∑m

i=1 p(st = j, st−1 = i|Yt−1)
(2.30)

One solution to the approximation problem may be the estimation based
on the Gibbs sampler — an approach belonging to the family of Markov chain
Monte Carlo methods, as Kim and Nelson (1998, 1999b, 1999c) propose.
Gibbs sampling allows to avoid the approximations. The idea of the Gibbs
sampler is to construct a joint distribution function for all the parameters of
interest. Then random drawings of some parameters of this distribution are
made conditional on the rest of the parameters. The estimate of the parame-
ters is their mean value computed as an average across large enough number
of drawings. For more details on use of Gibbs sampler in the estimation of
the Markov-chain models see Smith and Roberts (1993).

Another extension of the MS-CF model is the modelling of more than one
common factor, as Kim and Piger (2002) do, introducing both common trend
and common transitory component having Markov switching dynamics, since
the dynamics of the observed time series may be much more complex to be
explained by a single underlying common factor.

2.4 Conclusion

In this chapter we reviewed a number of approaches to constructing the
common coincident and leading indicators and to recognizing and forecasting
the business cycle turning points. These tasks are very important from the
government policy standpoint, since the timely and accurate estimates of
the coincident economic indicators, characterizing the state of affairs in the
economy, together with the prediction of the changes in the regime may
allow to the decision makers to evaluate the situation correctly and to take
the appropriate policies.

It seems that, out of the recession predicting techniques considered in
this chapter, for the exploration and forecasting of the turning points of a
regional economy the best solution is offered by the dynamic factor model
with the regime switching. On the one hand, it supplies an estimate of a
composite economic indicator, which may be interpreted as an index of the
overall economic activity of the region or country. On the other hand, as a
byproduct it provides the conditional regime probabilities without making
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use of the official business cycle chronologies, which are very unlikely to be
available at the regional level. Moreover, the dynamic common factor model
can be modified to estimate a leading composite indicator and hence makes
it possible to predict the future evolution of the economy and of its cyclical
movements, in particular.

From the theoretical point of view, the attractiveness of the nonlinear
common dynamic factor model lies in that it combines the advantages of the
dynamic factor method of Stock and Watson, which captures the comovement
feature of the business cycle, with the those of the Markov regime-switching
model which allows for the asymmetry between various phases of the business
cycle.

Furthermore, this approach is open to introducing a rich set of fruitful
modifications making the model more flexible and the estimation more effi-
cient. Among them it is noteworthy to mention again the mixed-frequency
data approach by Mariano and Murasawa (2003), the Markov-switching
model with more than one common factor as exemplified by Kim and Piger
(2002), and the composite indicator model with the time-varying transition
probabilities as in Kim and Yoo (1995).
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Chapter 3

Bifactor Models with Markov
Switching

3.1 Bifactor Model with Granger-Causality

Mechanism

As we have seen in sections 2.2 and 2.3, in the modern macroeconomic lit-
erature many efforts are devoted to identifying a hypothetical coincident
economic indicator which represents a general economic activity and allows
to trace the evolution of the business cycle. It is designed to serve as a
reference time series to judge about the state of the affairs in the economy.

With respect to this common coincident indicator one can then define the
leading and lagging macroeconomic variables. The former of these series are
especially important since they permit to predict the changes in the state of
the economy before they have occurred.

Normally, however, the leading series are not aggregated into a common
leading factor. The evolution of the common coincident factor is conditioned
on each of them individually, either directly through a VAR system of the
common coincident factor and individual leading observed time series as in
Stock and Watson (1991), Chauvet and Potter (2000) or via the time-varying
transition probabilities which depend on the individual leading variables as
in Kim and Yoo (1995).

In this section we introduce a bifactor model where one of the latent
factors is postulated as a composite leading indicator (CLI), while the second
factor is taken to be the composite coincident indicator (CCI). A one-way

33
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Granger causality is assumed to exist coming from the former common factor
to the latter one. The common leading and coincident factors are estimated
from a set of the observed time series which is split into a subset of leading
and a subset of coincident variables.

First, we consider a linear model with leading and coincident factor fol-
lowing an AR process. Next, we add a regime-switching dynamics to take
into account the possible asymmetries between the recession and expansion
phases of the business cycle captured by both common latent factors.

The linear specification of the two-factor model is presented in the sub-
section 3.1.1, while subsection 3.1.2 contains a description of the model with
nonlinear dynamics. In subsection 3.1.3 we apply our models to the artificial
data in order to see how well these models reflect the true data-generating
process. Section 3.1.4 discusses the application of the model to the empiri-
cal data characterizing the Post-World War II evolution of the US economy.
Subsection 3.1.5 summarizes the main results of this section.

3.1.1 Linear model

We consider a set of the observed time series, some of which may be defined
as leading while the rest of them are treated as the coincident series. The
common dynamics of the time series belonging to each of these groups are
”explained” by a common factor: leading factor corresponding to the first
group and coincident factor corresponding to the second group. The idiosyn-
cratic dynamics of each time series in particular are captured by one specific
factor per each observed time series. Therefore the model can be written as
follows:

∆yt = Γ∆ft + ut (3.1)

where ∆yt = (∆yLt | ∆yCt)
′ is the n × 1 vector of the observed time series

in the first differences; ∆ft = (∆fLt | ∆fCt)
′ is the 2× 1 vector of the latent

common factors in the first differences; ut = (uLt | uCt)
′ is the n × 1 vector

of the latent specific factors; Γ is the n× 2 factor loadings matrix linking the
observed series with the common factors.

The dynamics of the latent common factors can be described in terms of
a VAR model:

∆ft = µ + Φ(L)∆ft−1 + εt (3.2)
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where µ is the 2 × 1 vector of the constant intercepts; Φ(L) is the sequence
of p (p = max{pL, pC}, where pL is the order of the AR polynomial of the
leading factor, and pC is the order of the AR polynomial of the coincident
factor) 2 × 2 lag polynomial matrices; εt is the 2 × 1 vector of the serially
and mutually uncorrelated common factor disturbances:

εt ∼ NID

((
0
0

)
,

(
σ2

L 0
0 σ2

C

))

We assume that the leading factor Granger-causes the coincident factor
but not vice versa. This assumption means that the matrices Φi (i = 1, ..., p)
are diagonal or lower diagonal for all i. For simplicity we suppose that the
causality from the leading to the coincident factor is transmitted only at one
lag, say τ . Thus, if i 6= τ,

Φi =

(
φL,i 0
0 φC,i

)

and if i = τ,

Φi =

(
φL,i 0
φCL,i φC,i

)

The idiosyncratic factors are by definition mutually independent and are
modelled as the AR processes:

ut = Ψ(L)ut−1 + ηt (3.3)

where Ψ(L) is the sequence of q (q = max{q1,..., qn}, where qi is the order
of the AR polynomial of the i − th idiosyncratic factor) n × n diagonal lag
polynomial matrices and ηt is the n × 1 vector of the mutually and serially
uncorrelated Gaussian shocks:
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ηt ∼







0
...
0


 ,




σ2
1 0

. . .

0 σ2
n







To estimate this model we express it in a state-space form:

∆yt = Axt (3.4)

xt = α + Cxt−1 + vt (3.5)

where xt = (ft|ut)
′ is the state vector containing stacked on top of each other

vector of common factors and the vector of specific factors; vt is the vector
of the common and idiosyncratic factors’ disturbances with mean zero and
variance-covariance matrix Q; α is the vector of intercepts.

A =

(
γL OnL×(r+pC) iq1 ... 0

OnL×r γC 0 ... iqn

)

where γL is the nL × 1 vector of the leading factor loadings; On×m is n×m
matrix of zeros; im is the first row of the m × m identity matrix, and r =
max{pL, τ}.

C =




ΦL 0
ΦCL ΦC

Ψ1

. . .

0 Ψn




where ΦL is the r × r matrix:

ΦL =

(
φL o′r−pL

Ir−1 O(r−1)×(r−pL)

)

where φL is the 1×pL row vector of the AR coefficients of the leading factor,
In is the n× n identity matrix, and om is the m× 1 vector of zeros.
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ΦC =

(
φC 0

IpC−1 opC−1

)

The matrices Ψ1, ..., Ψn have the same structure as ΦC .

ΦCL =

(
o′r

φCL

)

where φCL is the 1× r vector of zeros with φCL, τ at the τ − th position.
The unknown parameters and the latent factors may be estimated using

Kalman filter recursions which are presented in section 2.3. To save space
we will not reproduce them here again.

3.1.2 Nonlinear model

It was observed by many authors, among them by Diebold and Rudebusch
(1996), that the model of the business cycle would be incomplete if it would
not take into account both the comovement of various macroeconomic vari-
ables and the asymmetries between the phases of the cycle. The linear model
presented in the previous section incorporates the phenomenon of the simul-
taneous changes in the levels of different individual time series. However, it
lacks a mechanism which would reflect the qualitatively different behavior of
these series during recessions and expansions. One of the ways to introduce
this mechanism in our model is to add to it the regime-switching dynamics.

The Markov-switching dynamics is introduced through the leading factor
intercept:

∆ft = µ(st) + Φ(L)∆ft−1 + εt (3.6)

where µ(st) = (µL(st), ..., 0)′.
st is the unobserved regime variable. In the two-regime (expansion-

recession) case it takes two values: 0 or 1. Depending on the regime, the
leading factor intercept assumes different values: low in recessions and high
in expansions. Thus, the common factors grow faster during the upswings
and slower (or even have negative growth rate) during the downswings of the
economy.

The changes in the regimes are governed by the first-order Markov chain
process, which is summarized by the transition probabilities matrix:
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Expansion Recession
st−1 = 0 st−1 = 1

Expansion st = 0 p11 1− p22

Recession st = 1 1− p11 p22

where pij = prob(st = j|st−1 = i).
The rest of the equations of the model remains unchanged. The state-

space representation of the nonlinear two-factor model may be written as:

∆yt = Axt (3.7)

xt = α(st) + Cxt−1 + vt (3.8)

where α(st) = (µL(st), ..., 0)′.
It is worthwhile to notice that, since it is the common leading factor

whose dynamics equation includes the state-dependent intercept in the cur-
rent period, the conditional regime probabilities predicting the occurrence of
recessions or expansions of the coincident factor are simply the conditional
regime probabilities computed for the leading factor shifted forward for τ pe-
riods. Hence, the conditional regime probabilities estimated using the above
model provide us with the τ -periods ahead forecast of the coincident factor
regimes.

All the other system matrices are as in the linear model. Thus, we have
a model expressed in the state-space form and having Markov-switching dy-
namics. Again, we will not reproduce here all the relevant recursions which
are necessary to estimate the parameters and the unobserved state vector.
These can be found in Kim (1994) or Kim and Nelson (1999c).

3.1.3 Simulated examples

To see how well our models replicate the true data-generating processes where
both common factors are present and the described above causal relationship
is introduced, we have generated four artificial data sets and have estimated
the corresponding models using as inputs the time series which may be ob-
served. In the first two cases the dynamics are linear, while in the last two
cases the common factors follow Markov-switching process. In the case one
all the leading variables have the same lead time, whereas in the case two
one of the leading variables leads the coincident factor at a smaller lead than
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the other observed leading time series. The same distinction is maintained
for the cases three and four where the regime switching is added.

For the linear case one we have generated two common latent factors and
five individual observable series. The first two observed time series are lead-
ing, while the three remaining are the coincident. Both the common factors
(in fact, their first differences, not levels) and the idiosyncratic components
are modelled as the stationary AR(1) processes. The coincident factor is
positively correlated with the leading factor at the lag τ = 3. The true pa-
rameters of the DGP are presented in the column two of the Table 3.1.1 of
the Appendix. The length of all these series is 540 observations, which is
comparable to the length of an ordinary Post World War II monthly time
series for the US economy. In the case two six observed series were simu-
lated: three leading and three coincident. The first two leading series lead
the common coincident indicator by three periods, while the third leading
time series has a lead of only two periods. The true parameters are reported
in the column two of the Table 3.1.2 of Appendix.

To identify the model (in both cases), we set the factor loadings of the
first observable variable in each subset — leading and coincident — equal
to unity. Thus, we estimate only three of five factor loadings: one for the
leading factor and two for the coincident factor. The model is estimated
by the maximum likelihood. The estimated parameters together with the
standard errors and their p-values for case one are reproduced in the Table
1, for case two — in the Table 3.1.2. The mere observation of the true
and estimated parameters’ values shows that the latter are sufficiently close
to the former suggesting that the proposed model estimates the parameters
generated process accurately enough.

The visual comparison of the common factors profiles suggests a very
high degree of similarity of the simulated and estimated common factors,
especially in the case of the latent leading factor. We do not display the
graphs of the simulated data here in order to save space.

In the two cases with the Markov-switching dynamics the length of the
series is also 540. In the case three the first two observable time series are
leading, meanwhile the last three series are coincident. The coincident factor
is again correlated to the leading factor with a lag of three periods. The
same identifying normalization — by setting the factor loadings of the first
observed time series in each group of the variables — is used. In the case four
six observed series were generated with the same leading structure as in the
case two. The parameters of the true DGP for the case three are presented
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in the second column of Table 3.1.3 and those for the case four — in the
second column of Table 3.1.4 of Appendix. The estimates replicate the true
parameters with a sufficiently high degree of precision. Again, as in the case
of the linear model, the estimated common factors series are very similar to
the simulated common factors.

The probabilities obtained from the nonlinear model are used to build the
business cycle chronology. If the probability of being currently in recession
exceeds some margin (for example, 0.5) we say that the economy stays in
a recession. The estimated model captures the recession dates pretty well.
However, the smoothed recession probabilities sometimes miss the recessions
when those have a very short duration. In contrast, the filtered probabilities
give sometimes false alarms by announcing the arrival of recessions which
did not take place. Thus, the smoothed probabilities turn out to be a more
conservative dating tool than the filtered probabilities.

3.1.4 Real example

The linear bifactor model was estimated using the US monthly data from
January 1959 to December 1998. To estimate the leading common factor
the data from Watson (2000) were used, while the common coincident factor
was estimated based on the four real time series borrowed from Mariano and
Murasawa (2003). The list of the component series of CLI and CCI and their
description are contained in Table 3.1.5. In fact, the component series we use
to build our common coincident factor are those utilized by The Conference
Board (USA) to construct their composite coincident index1.

The leading component series were selected by comparing them individ-
ually to the common coincident factor computed as if it did not depend on a
hypothetical leading common factor. Figure 3.1.1 shows that the correlation
between these series (SFYGM3, SFYGT10 in levels and the first differences
of the log of HSBR and FSNCOM), on one hand, and the growth rate of the
common coincident indicator, on the other hand, is relatively high at leads
4-5. It is also very important that the series are sufficiently highly correlated
among each other, thus permitting to postulate existence of a latent common
factor standing behind their common evolution.

One may ask whether this approach is legitimate. Indeed, we use a com-
mon coincident indicator estimated separately to select the individual leading

1The list of series see on www.tcb-indicators.org/GeneralInfo/serieslist.cfm
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series which will be used later — along with the individual coincident series
— to compute simultaneously a common leading indicator and a common
coincident indicator which depends on the former one. We think that it is
legitimate as soon as the independently estimated coincident indicator can
be considered as a good enough approximation of the dependent coincident
indicator. Anyway, we need a point of departure to figure out the leading
time series which are relevant for the estimation of common leading indicator.

The estimates of the parameters of the linear and Markov-switching mod-
ifications of the two single-factor models — common leading factor model and
common coincident factor model — are reported in Tables 3.1.6 and 3.1.7,
respectively.

Three model combinations were estimated: LF(0,0)-CF(0,0), LF(1,1)-
CF(1,1) for linear dynamics, and LF(0,0)-CF(1,1) with state-dependent in-
tercept and common factor residual variance for the regime-switching dy-
namics. The LF(p,q) stands for the common leading factor model, where the
common factor follows AR(p) and the specific factors follow AR(q). CF(p,q)
stands for the common coincident factor. For each of these combinations
different leads between the common leading and coincident factor were tried,
starting from the ”zero lead” (no Granger causality) and ending with a lead
of six months. The results of these experiments are displayed in Table 3.1.8.
The first conclusion is that introducing a Granger causality between the
leading and coincident factor seems to be a meaningful exercise — there is
a significant increase in the likelihood function value when a cross-regressive
term is included. Secondly, even larger positive effect is achieved when the
AR(1) dynamics are allowed compared to the AR(0). Finally, in the LF(0,0)
case (autoregression of the zero order, that is, static leading factor model)
the ”optimal lead”, i.e. the lead which delivers the maximum likelihood func-
tion value, is four months, while in the LF(1,1)-CF(1,1) case the ”optimal
lead” is three months. It should be stressed, however, that for the LF(0,0)
specifications there is no big difference in the maximum likelihood function
values between the cases where lead equals 3 or 4 months. The estimates of
the linear two-factor model with (1,1) specification with lead equal 3 months
are presented in the second and third columns of Table 3.1.9.

Before we continue one remark is due. We do not use the information
criteria to compare the models where the lead is different, since the Granger
causality is introduced only through one term. Hence the number of param-
eters is the same regardless of the lead as long as it is positive.

The common leading and coincident factors estimated with a linear model
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are depicted on the two left panels of Figure 3.1.2. On the upper left panel
two common factors — each estimated separately in a single-factor model
— are displayed. The common factors are constructed by summing up their
first differences. Thus, they are represented as random walks without drift.
This is done to render the cyclical movements more visible. If we were to
introduce a nonzero drift as it is done normally (e.g., by Stock and Watson
(1991)), it would mask the cyclical fluctuations.

The linear common factors estimated independently have the following
specifications: leading factor is (1,1), that is, both common and specific
factors follow AR(1), and the coincident factor is (1,1). In the case of simul-
taneous estimation of the two common factors, when the coincident factor
depends on the leading one, the specification is also (1,1). We can observe
that in terms of the turning points the two models (with and without Granger
causality between the factors) are similar, differing mainly in their ”vertical
profile”. The latter is not surprising given that the common factors were
reconstructed as random walks.

One can also see clearly on Figure 3.1.2 that the CLI is systematically
leading the CCI. CLI enters both recessions and expansions a few months
before than CCI does.

The next exercise was to incorporate the Markovian dynamics into the
multifactor model. This was done through the regime-dependent intercept of
the leading common factor. Since in the bifactor model the coincident factor
depends on the leading one, the Markov-switching dynamics of the latter is
transferred to the former. The parameter estimates of the Markov-switching
two-factors model are contained in the last two columns of Table 8. The
common leading factor is specified as AR(0), with common factor’s intercept
and residual variance being state-dependent, while the common coincident
factor follows AR(1). The lead is set equal to 3 months.

The common factors estimated assuming the regime-switching dynamics
are displayed on the two right panels of Figure 3.1.2. The specification of
common leading and coincident factors computed in a single-factor model
are (0,0) and (1,1), respectively. In the bifactor case the leading common
factor and corresponding idiosyncratic components were modeled as AR(0),
while the common coincident factor and corresponding specific factors were
supposed to follow AR(2) processes. Visual inspection of all four graphs
depicted on Figure 3.1.2 shows that their turning points are basically the
same. One important difference is that the linear models treat the recession
of the early 1990s as deeper than that of the beginning of 1980s, while the
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nonlinear models reverse the order.
Next, we compare the CLI’s and CCI’s conditional recession probabilities

resulting from the single-factor models to the NBER chronology. This is done
on Figure 3.1.3. It is evident that there is very close correspondence between
the NBER dating and the coincident factor recessions. The composite leading
indicator recessions, as it is to be expected, anticipate the NBER turning
points.

Figure 3.1.4 compares the recession probabilities (filtered and smoothed)
of the leading and coincident common factors contrasts them to the NBER
dates. The CLI’s recession probabilities are computed from the bifactor
model, whereas those of the CCI are estimated in the single (coincident)
factor model and are basically the same as on Figure 3.1.3. One can easily
see that the recession probabilities calculated for the leading factor signal
the arrival of the recession phase several periods later than the coincident
factor recession probabilities do. The coincident factor model suggests that
there were six recessions during the January 1959 — December 1998 period,
while the bifactor model discovers five recessions. The only recession which
is missing is the one in the very beginning of the sample. However, given
the leading nature of the recession probabilities obtained from the bifactor
model, one can assume that this recession simply ”does not fit the sample”.
In other words, it would be found, had we the had data starting a few months
earlier.

Finally, we calculate the cross-correlations between the leading and coin-
cident common factors at different lags and leads. These cross-correlations
are displayed on Figure 3.1.5. The data used to plot the picture were the
same as those which are displayed on Figure 3.1.1. The cross-correlations
were computed for the first differences of the common factors, not their lev-
els. The reason is that the common factors in levels are not stationary, while
their growth rates are. We can see that the maximum correlation approaches
0.5 and that it is achieved at lead 4-5 months, although being pretty high in
the neighborhood of this point.

3.1.5 Summary

In this section we have introduced a common dynamic factor model with
two factors: leading and coincident. Each of them represents the common
dynamics of a corresponding subset of the observed time series which are
classified as being leading or coincident with respect to some hypothetical
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”state of the economy”. The common leading factor Granger-causes the
common coincident factor, thus allowing to use the former in the predictions
of the future values of the latter. This permits to improve the forecasting of
the coincident factor because of the additional information coming from the
leading variables.

We consider two models: a model with the linear dynamics and a model
with the regime switching. The second model allows to take care of the
asymmetries which may characterize different phases of the business cycle and
therefore is more complete from the point of view of the Burns and Mitchell’s
definition of the business cycle as interpreted by Diebold and Rudebusch
(1996).

Both models are illustrated using four artificial examples (two with the
identical lead time for all the observed leading series and two with the differ-
ent lead times), which show a high enough ”goodness-of-fit” of these models,
provided that they correspond to the true data-generating process.

Quite interesting results were obtained when the model was applied to
the US monthly macroeconomic data stretching from January 1959 through
December 1998. A linear and a Markov-switching bifactor models were es-
timated. The common coincident factor is sufficiently closely related to the
common leading factor, the lead time being 3-4 months. This lead is also ap-
parent when the recession probabilities are considered: the peaks of the low
state probabilities calculated for the leading factor precede those computed
for the coincident factor. Moreover, there is a tight correspondence between
our estimated recession dates and those provided by the NBER. The conclu-
sion is that we can use the two-factor model to predict the evolution of the
US Post-War coincident economic indicator and the business cycle turning
points in the near (up to four months) future.
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3.1.6 Appendix

Table 3.1.1. True and estimated parameters of the linear bifactor model
(case 1: identical lead time)

Parameter True Estimated St. error p-value

γ1 1 – – –
γ2 0.9 0.91 0.03 0.0
γ3 1 – – –
γ4 2 2.06 0.03 0.0
γ5 1.7 1.71 0.02 0.0
φL 0.8 0.79 0.03 0.0
φC 0.7 0.70 0.03 0.0

φCL,3 0.5 0.48 0.05 0.0
ψ1 -0.3 -0.36 0.05 0.0
ψ2 -0.7 -0.67 0.04 0.0
ψ3 -0.5 -0.47 0.05 0.0
ψ4 -0.2 -0.22 0.07 0.0
ψ5 -0.8 -0.79 0.03 0.0
σ2

1 0.25 0.26 0.03 0.0
σ2

2 0.36 0.36 0.03 0.0
σ2

3 0.16 0.16 0.01 0.0
σ2

4 0.49 0.48 0.05 0.0
σ2

5 0.81 0.81 0.06 0.0
σ2

L 0.25 0.24 0.03 0.0
σ2

C 0.36 0.36 0.03 0.0
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Table 3.1.2. True and estimated parameters of the linear bifactor model
(case 2: different lead time)

Parameter True Estimated St. error p-value

γ1 1 – – –
γ2 0.9 0.86 0.03 0.0
γ3 1.5 1.43 0.04 0.0
γ4 1 – – –
γ5 2 2.03 0.05 0.0
γ6 1.7 1.72 0.04 0.0
φL 0.8 0.79 0.03 0.0
φC 0.7 0.67 0.02 0.0

φCL,3 0.5 0.58 0.04 0.0
ψ1 -0.3 -0.35 0.05 0.0
ψ2 -0.7 -0.72 0.03 0.0
ψ3 -0.5 -0.51 0.06 0.0
ψ4 -0.2 -0.16 0.05 0.0
ψ5 -0.8 -0.82 0.03 0.0
ψ6 -0.3 -0.36 0.05 0.0
σ2

1 0.25 0.25 0.02 0.0
σ2

2 0.36 0.36 0.02 0.0
σ2

3 0.16 0.16 0.02 0.0
σ2

4 0.49 0.50 0.03 0.0
σ2

5 0.81 0.79 0.08 0.0
σ2

6 0.64 0.64 0.05 0.0
σ2

L 0.25 0.23 0.02 0.0
σ2

C 0.36 0.33 0.03 0.0
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Table 3.1.3. True and estimated parameters of the nonlinear bifactor model
(case 3: identical lead time)

Parameter True Estimated St. error p-value

p11 0.95 0.97 0.01 0.0
p22 0.84 0.84 0.05 0.0
µL1 0.4 0.40 0.04 0.0
µL2 -0.6 -0.70 0.06 0.0
γ1 1 – – –
γ2 0.9 0.90 0.01 0.0
γ3 1 – – –
γ4 2 1.99 0.01 0.0
γ5 1.7 1.69 0.01 0.0
φL 0.8 0.78 0.02 0.0
φC 0.7 0.70 0.02 0.0

φCL,3 0.5 0.51 0.03 0.0
ψ1 -0.3 -0.29 0.05 0.0
ψ2 -0.7 -0.69 0.03 0.0
ψ3 -0.5 -0.50 0.05 0.0
ψ4 -0.2 -0.09 0.07 0.0
ψ5 -0.8 -0.82 0.03 0.0
σ2

1 0.25 0.26 0.02 0.0
σ2

2 0.36 0.35 0.03 0.0
σ2

3 0.16 0.16 0.01 0.0
σ2

4 0.49 0.47 0.05 0.0
σ2

5 0.81 0.81 0.06 0.0
σ2

L 0.16 0.18 0.03 0.0
σ2

C 0.36 0.37 0.03 0.0
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Table 3.1.4. True and estimated parameters of the nonlinear bifactor model
(case 4: different lead time)

Parameter True Estimated St. error p-value

p11 0.95 0.95 0.01 0.0
p22 0.84 0.86 0.03 0.0
µL1 0.4 0.39 0.03 0.0
µL2 -0.6 -0.58 0.05 0.0
γ1 1 – – –
γ2 0.9 0.91 0.01 0.0
γ3 1.5 1.51 0.02 0.0
γ4 1 – – –
γ5 2 2.00 0.02 0.0
γ6 1.7 1.70 0.02 0.0
φL 0.8 0.79 0.02 0.0
φC 0.7 0.71 0.02 0.0

φCL,3 0.5 0.49 0.03 0.0
ψ1 -0.3 -0.27 0.05 0.0
ψ2 -0.7 -0.73 0.03 0.0
ψ3 -0.5 -0.46 0.06 0.0
ψ4 -0.2 -0.22 0.05 0.0
ψ5 -0.8 -0.83 0.03 0.0
ψ6 -0.5 -0.49 0.05 0.0
σ2

1 0.25 0.25 0.02 0.0
σ2

2 0.36 0.36 0.02 0.0
σ2

3 0.16 0.17 0.02 0.0
σ2

4 0.49 0.49 0.03 0.0
σ2

5 0.81 0.64 0.07 0.0
σ2

6 0.36 0.42 0.04 0.0
σ2

L 0.16 0.17 0.02 0.0
σ2

C 0.36 0.36 0.03 0.0
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Table 3.1.5. The component series of the US composite leading and
coincident indicators

Monthly series 1959:1 – 1998:12

Series Short-hand Description

Composite leading indicator
New housing HSBR Authorized housing, total new

house units, 103

Spread 3-month SFYGM3 Spread between US Treasury bills
3-month interest rate and federal
funds effective annualized rate

Spread 10-year SFYGT10 Spread between US Treasury bills
10-year interest rate and federal
funds effective annualized rate

NYSE index FSNCOM NYSE common stock price index
Composite coincident indicator

Employees on nonagricultural payrolls EMP 103, SA
Personal income less transfer payments INC 109 1992 USD, SA, annual rate
Index of industrial production IIP total index, 1992=100, SA
Manufacturing and trade sales SLS chained 106 1992 USD, SA
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Table 3.1.6. Estimated parameters of the single leading factor model
(US macroeconomic monthly data, 1959:1-1998:12)

Parameter Linear: -1616.06 Markov-switching: -2228.76
Estimated St. error Estimated St. error

p11 – – 0.989 0.005
1− p22 – – 0.044 0.021

µ1 – – 0.102 0.020
µ2 – – -0.380 0.079

γFSNCOM 0.611 0.228 0.78 0.244
γSFY GM3 3.56 0.581 3.74 0.725
γSFY GT1 3.09 0.534 3.45 0.669

φ 0.926 0.019 – –
ψHSBR -0.136 0.047 – –

ψFSNCOM 0.245 0.045 – –
ψSFY GM3 0.769 0.066 – –
ψSFY GT1 0.981 0.012 – –
σ2(st = 1) 0.011 0.004 0.005 0.002
σ2(st = 2) – – 0.076 0.031

σ2
HSBR 0.908 0.060 0.939 0.061

σ2
FSNCOM 0.910 0.059 0.962 0.062

σ2
SFY GM3 0.094 0.010 0.181 0.021

σ2
SFY GT10 0.009 0.005 0.301 0.025
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Table 3.1.7. Estimated parameters of the single coincident factor model
(US macroeconomic monthly data, 1959:1-1998:12)

Parameter Linear: -2312.91 Markov-switching: -2296.78
Estimated St. error Estimated St. error

p11 – – 0.976 0.010
1− p22 – – 0.156 0.079

µ1 – – 0.143 0.039
µ2 – – -0.904 0.161

γINC 0.843 0.057 0.823 0.055
γIIP 0.975 0.061 0.950 0.057
γSLS 0.658 0.052 0.638 0.049

φ 0.629 0.047 0.407 0.066
ψEMP 0.040 0.090 -0.010 0.037
ψINC -0.052 0.051 -0.049 0.054
ψIIP 0.006 0.069 0.037 0.056
ψSLS -0.322 0.047 -0.311 0.047
σ2 0.395 0.046 0.312 0.039

σ2
EMP 0.343 0.035 0.32 0.035

σ2
INC 0.533 0.041 0.539 0.041

σ2
IIP 0.377 0.037 0.386 0.036

σ2
SLS 0.619 0.046 0.631 0.046

Table 3.1.8. Optimal lead determination in the linear case
Likelihood function values corresponding to different AR order

combinations of common factors and different leads
Lead Combinations

Linear Markov-switching
LF(0,0)-CF(0,0) LF(1,1)-CF(1,1) LF(0,0)-CF(1,1)

0 -4899.40 -3928.97 -4541.68
1 -4873.82 -3913.83 -4526.21
2 -4865.81 -3912.07 -4525.11
3 -4859.52 -3909.28 -4523.90
4 -4855.32 -3909.57 -4523.66
5 -4855.97 -3912.88 -4524.71
6 -4860.29 -3916.00 -4528.57
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Table 3.1.9. Estimated parameters of the two-factor model
(US macroeconomic monthly data, 1959:1-1998:12)

Parameter Linear: -3909.28 Markov-switching: -4523.90
Estimated St. error Estimated St. error

p11 – – 0.989 0.005
1− p22 – – 0.044 0.021

µ1 – – 0.103 0.021
µ2 – – -0.383 0.079

γFSNCOM 0.621 0.257 0.781 0.243
γSFY GM3 3.46 0.574 3.70 0.718
γSFY GT1 2.92 0.519 3.42 0.663

γINC 0.858 0.059 0.854 0.058
γIIP 0.989 0.062 0.986 0.061
γSLS 0.675 0.054 0.672 0.052
φL 0.921 0.020 – –
φC 0.488 0.057 0.504 0.053

φCL,3 0.793 0.185 0.841 0.220
ψHSBR -0.139 0.047 – –

ψFSNCOM 0.243 0.045 – –
ψSFY GM3 0.771 0.063 – –
ψSFY GT1 0.980 0.012 – –
ψEMP 0.092 0.104 0.081 0.087
ψINC -0.057 0.059 -0.055 0.055
ψIIP -0.002 0.068 0.001 0.035
ψSLS -0.329 0.048 -0.327 0.047

σ2
L(st = 1) 0.012 0.004 0.005 0.002

σ2
L(st = 2) – – 0.077 0.032

σ2
C 0.365 0.043 0.368 0.043

σ2
HSBR 0.904 0.060 0.938 0.061

σ2
FSNCOM 0.909 0.059 0.962 0.062

σ2
SFY GM3 0.092 0.010 0.181 0.021

σ2
SFY GT10 0.011 0.005 0.300 0.025
σ2

EMP 0.352 0.034 0.349 0.034
σ2

INC 0.526 0.041 0.528 0.041
σ2

IIP 0.372 0.036 0.373 0.036
σ2

SLS 0.608 0.046 0.610 0.045
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Figure 3.1.1: Cross-correlation of composite coincident indicator and leading variables
US monthly data 1959:1-1998:12
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Figure 3.1.2: Composite leading and coincident indicators
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Figure 3.1.3: Single-factor model
Conditional recession probabilities vs. NBER dates
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Figure 3.1.4: Bifactor model
Conditional recession probabilities vs. NBER dates
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Figure 3.1.5: Cross-correlation of common leading and coincident factor
US monthly data 1959:1-1998:12
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3.2 Bifactor Model with Transition Probabil-

ities Matrix Mechanism

In this section we continue investigating the composite leading and coincident
indicators. As in section 3.1 the common leading and coincident factors are
estimated from two sets of observed data: leading and coincident time series.
However, the angle is changed compared to the previous section: instead
of trying to capture the leading relationship through a bivariate VAR, we
work with the transition probabilities matrix which governs the shifts in
the regimes of the two common factors. Here we base our analysis on that
of Phillips (1991) who showed, using a bivariate regime switching model,
how the time lags between two observed variables with Markov-switching
dynamics can be expressed in terms of the transition probabilities. He applied
his model to the observed variables, while we generalize his approach to the
latent common factors.

The rest of the section is organized as follows. Subsection 3.2.1 contains
the description of the three bifactor models with regime-switching dynamics
differing in the way the cyclical evolution of both factors is defined. In section
3.2.2 these three Markov-switching models with leading and coincident com-
mon factors are estimated using the US Post-War monthly macroeconomic
data. Section 3.2.3 summarizes the outcomes obtained in the section.

3.2.1 Model

If the model in section 3.1 can be endowed either with a linear or with a
regime-switching dynamics, although the nonlinear dynamics fit better the
business cycle definition we are using in this thesis, the model we are exam-
ining here indispensably requires Markov switching. The reason lies in the
very way the leading relationship is modeled.

We consider a set of the observed time series, some of which are defined
as leading while the rest of them are the coincident series. The common
dynamics of the time series belonging to each of these groups are underlined
by a common factor: leading corresponding to the first group and coincident
corresponding to the second group. The idiosyncratic dynamics of each time
series in particular are captured by one specific factor per each observed time
series. Therefore the model can be written as:
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∆yt = Γ∆ft + ut (3.9)

where ∆yt = (∆yLt | ∆yCt)
′ is the n × 1 vector of the observed time series

in the first differences; ∆ft = (∆fLt | ∆fCt)
′ is the 2× 1 vector of the latent

common factors in the first differences; ut = (uLt | uCt)
′ is the n × 1 vector

of the latent specific factors; Γ is the n× 2 factor loadings matrix linking the
observed series with the common factors.

The dynamics of the latent common factors can be described in terms of
a nonlinear VAR model:

∆ft = µ(st) + Φ(L)∆ft−1 + εt (3.10)

where µ(st) = {µL(st), µC(st)} is the 2 × 1 vector of the state-dependent
intercepts of the common leading and coincident factors, correspondingly,
which take different values depending on the regime; Φ(L) is the sequence
of p (p = max{pL, pC}, where pL is the order of the AR polynomial of the
leading factor, and pC is the order of the AR polynomial of the coincident
factor) 2 × 2 lag polynomial matrices; εt is the 2 × 1 vector of the serially
and mutually uncorrelated common factor disturbances with possibly state-
dependent variance:

εt ∼ NID

((
0
0

)
,

(
σ2

L(st) 0
0 σ2

C(st)

))

st is the unobserved regime variable. In the two-regime (expansion-
recession, or high-low) case it takes two values: 0 or 1. Depending on the
regime, the common factor’s intercept assumes different values: low in reces-
sions and high in expansions. Thus, the common factors grow faster during
the upswings and slower (or even have negative growth rate) during the
downswings of the economy.

The changes in the regimes are governed by the first-order Markov chain
process, which is summarized by the transition probabilities matrix, whose
characteristic element is pij = prob(st = j|st−1 = i).

Since we have two common factors each of which passes through its own
low and high regimes, the whole process is to be cast in a four regimes
framework as it is done in Phillips (1991). Namely:
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Regime 1 Regime 2 Regime 3 Regime 4

Composite state variable st = 0 st = 1 st = 2 st = 3

Leading state variable sL
t = 0 sL

t = 1 sL
t = 0 sL

t = 1
Coincident state variable sC

t = 0 sC
t = 0 sC

t = 1 sC
t = 1

where sL
t and sC

t are the unobserved state variables for leading factor and
coincident factor, respectively.

The way the unobserved regimes of leading indicator and coincident in-
dicator are interrelated affects the form of the 4 × 4 transition probabilities
matrix. First, we may suppose that the state variables sL

t and sC
t are mutu-

ally independent. In that case the transition matrix, π, looks like:




pL
11p

C
11 (1− pL

11)p
C
11 pL

11(1− pC
11) (1− pL

11)(1− pC
11)

(1− pL
22)p

C
11 pL

22p
C
11 (1− pL

22)(1− pC
11) pL

22(1− pC
11)

pL
11(1− pC

22) (1− pL
11)(1− pC

22) pL
11p

C
22 (1− pL

11)p
C
22

(1− pL
22)(1− pC

22) pL
22(1− pC

22) (1− pL
22)p

C
22 pL

22p
C
22




In fact, π = πC ⊗ πL, where πL and πC are the transition probabilities
matrices for state variables sL

t and sC
t .

A second hypothesis is that there exist not two different state variables,
but only one representing a single process and that both common factors
enter into each regime simultaneously, without any lags among the two fac-
tors. In other words, the recessions (expansions) of the leading factor are
the recessions (expansions) of the coincident factor. In this case there is no
sense to talk about a leading factor, because both factors are coincident. This
case may be represented with an ordinary two-regime transition probabilities
matrix:

π =

(
p11 1− p11

1− p22 p22

)

Under the third hypothesis the two unobserved processes are interrelated,
with leading factor entering the recessions (expansions) several periods earlier
than the coincident indicator. As Phillips (1991) remarks, the model with
an integer lag exceeding one period would require a Markov process with the
order higher than 1. However, the real-valued (positive) lag can be modeled
with a first-order Markov process by constructing the following transition
probabilities matrix:
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π =




p11 1− p11 0 0
0 1− 1

A
0 1

A
1
B

0 1− 1
B

0
0 0 1− p22 p22




where A and B are the expected leads in the recession and expansion, cor-
respondingly.

The quantity 1− 1
A

stands for the probability of being now in the regime
(leading factor — recession, coincident factor — expansion) given that in the
preceding period the economy has been in the same regime. In other words,
it is a situation when the leading factor has already entered the downswing,
while the coincident indicator still stays in the upswing. The expected dura-
tion of this regime (st = 1) is:

A = p(st = 1|st = 1) + p(st+1 = 1|st = 1) + p(st+2 = 1|st = 1) + ...
or

A = 1 + p(st = 1|st−1 = 1) + p(st = 1|st−1 = 1)2 + ...
that is

A = 1
1−p(st=1|st−1=1)

Similarly,

B = 1
1−p(st=2|st−1=2)

where st = 2 corresponds to the leading factor being already in the new
expansion and coincident factor staying still in the old contraction.

Thus, we can analyze the three above stated cases — independent cyclical
evolution of leading and coincident factors (let us call it model 1), identical
cyclical evolution of both factors (model 2), and similar cyclical evolution
with coincident factor lagging behind the leading indicator (model 3) — and
compare the resulting three hypotheses to check whether the composite lead-
ing indicator is really leading and if so, how far it is advancing the composite
coincident indicator.

We assume for simplicity that the two factors are related only through
the transition probabilities, no correlation and no Granger-causality coming
from the leading factor to the coincident factor and vice versa as it was done
in section 3.1. This assumption implies that the matrices Φi (i = 1, ..., p) are
diagonal or lower diagonal for all i:
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Φi =

(
φL,i 0
0 φC,i

)

The idiosyncratic factors are by definition mutually independent and are
modelled as the AR processes:

ut = Ψ(L)ut−1 + ηt (3.11)

where Ψ(L) is the sequence of q (q = max{q1,..., qn}, where qi is the order
of the AR polynomial of the i − th idiosyncratic factor) n × n diagonal lag
polynomial matrices and ηt is the n × 1 vector of the mutually and serially
uncorrelated Gaussian shocks:

ηt ∼







0
...
0


 ,




σ2
1 0

. . .

0 σ2
n







To estimate this model we express it in a state-space form:

∆yt = Axt (3.12)

xt = α(st) + Cxt−1 + vt (3.13)

where xt = (ft|ut)
′ is the state vector containing the vectors of common

factors and of specific factors, stacked on top of each other; vt is the vec-
tor of the common and idiosyncratic factors’ disturbances with mean zero
and variance-covariance matrix Q; α(st) = (µL(st), µC(st), ..., 0)′ is the state-
dependent vector of intercepts.

A =

(
ΓL onL

iq1 ... 0
OnL×r γC 0 ... iqn

)

where ΓL is the nL × (r − 1) matrix of the leading factor loadings:

ΓL =




γL,1 0 0
γL,2 0 0

...
. . .

0 0 · · · γL,nL



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in which the position of each leading factor loading depends on the lead time
of a corresponding observed time series.

On×m is n×m matrix of zeros; om is the m× 1 vector of zeros; im is the
first row of the m×m identity matrix, and r = max{pL, τ}.

C =




ΦL O 0
O ΦC

Ψ1

. . .

0 Ψn




where ΦL is the r × r matrix:

ΦL =

(
φL o′r−pL

Ir−1 O(r−1)×(r−pL)

)

where φL is the 1×pL row vector of the AR coefficients of the leading factor,
In is the n× n identity matrix, and om is the m× 1 vector of zeros.

ΦC =

(
φC 0

IpC−1 opC−1

)

The matrices Ψ1, ..., Ψn have the same structure as ΦC .
There are different ways of estimating the unknown parameters and the

latent factors (maximum likelihood, EM, MCMC techniques — see Kim and
Nelson (1999c) for more details). Here we applied the maximum likelihood
method with log-likelihood function obtained using Kalman filter recursions.

3.2.2 Real example

The linear two-factor model was estimated using the US monthly data from
January 1959 to December 1998. These are same data we have used in section
3.1 to construct the CLI and CCI. Recall that the list and the description
both of the leading and of the coincident series can be found in Table 3.1.1.

The leading time series were selected following the same logic as explained
in subsection 3.1.4. That is, they were compared individually to the compos-
ite coincident indicator computed as if it were not dependent of a hypothet-
ical composite leading indicator. As we have seen already, the correlation
between these series (SFYGM3, SFYGT1 in levels and the first differences
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of the log of HSBR and FSNCOM), on the one hand, and the growth rate
of the common coincident indicator, on the other hand, is relatively high at
leads 4-5. See Figure 3.1.1 in the Appendix to section 3.1.

All the three models were estimated under the identifying assumption of
the first factor loading for each common factor being equal 1. The parameter
estimates, together with their standard errors and corresponding p-values, of
the three models can be found in Tables 3.2.1-3.2.3 of Appendix. In all the
models both the common and specific factors are supposed to follow serially
uncorrelated process (AR(0)).

Both the model with independent leading and coincident indicators and
the model with the leading and coincident indicators having the same cycli-
cal dynamics with coincident factor lagging behind the leading one seem to
bring significant increase in the maximum likelihood compared to the model
with two common factors having common cyclical dynamics. The indepen-
dent factors model turns out to slightly outperform model 2. However, model
2 delivers some additional information of interest, namely the leads in low
and high states. According to Table 3.2.2 the leading factor enters the reces-
sions on average approximately five months earlier than the coincident factor
and goes into the expansions roughly nine months earlier than the common
coincident indicator does.

Figure 3.2.1 represents the three estimates of the common leading and
coincident factors corresponding to the three models: independent compos-
ite leading and coincident indicators, two composite indicators with common
dynamics, and composite leading and coincident indicators with common dy-
namics. The common factors were reconstructed as the partial sums of their
growth rates obtained as an output of the estimation procedure. Therefore
they follow random walks. Nevertheless, their profiles are quite similar re-
gardless of the model. The coincident factors in all three cases seem to lag
almost always the leading indicators.

Next, we consider the conditional recession (low intercept regime) prob-
abilities for each of the three bifactor models we examine in this section.

Figure 3.2.2 illustrates model 1 with CLI and CCI being independent.
The upper panel compares the conditional (filtered and smoothed) proba-
bilities of CLI having low intercept (these are computed as the sum of the
conditional probabilities of regimes 2 and 4) to the NBER dates. Recall that
regime 2 corresponds to the leading indicator signalling the low state and
coincident indicator still being in the high state, while in the regime 4 both
CLI and CCI are in the low state. In four cases out of six the peaks in the
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probabilities precede the beginning of the NBER recessions. In the other two
cases the recessions are signalled by two minor and short-lived increases in
the probabilities which lead the NBER contractions.

The lower panel of Figure 3.2.2 shows the conditional recession probabil-
ities of the composite coincident indicator compared to the NBER business
cycle chronology. The former are calculated as the sum of probabilities of
regime 3 (CCI is still in recession, while CLI is already in expansion) and
regime 4 (both indicators are in contraction). CCI also behaves as a leading
indicator entering the low-intercept state well before than NBER recessions
start. This circumstance is a bit surprising, since both common factors are
supposed to be independent and follow their own nonlinear dynamics.

Figure 3.2.3 shows the conditional recession probabilities of the model 2.
In this case, since both composite indicators have an identical cyclical dy-
namics, there are only two states: low intercept and high intercept. Hence we
have only one panel displaying the (filtered and smoothed) recession probabil-
ities corresponding to these common nonlinear dynamics against the NBER
dates. These probabilities are slightly leading the NBER cycle, the leading
factor playing more prominent role in the determination of the conditional
probabilities.

Figure 3.2.4 is illustrating model 3 where CLI and CCI are interrelated
with lags depending on the cyclical phase. The layout of Figure 3.2.4 is
similar to that of Figure 3.2.2. On the upper panel one can see the CLI’s
conditional recession probabilities (sum of regime 2 and regime 4 probabili-
ties) versus the NBER dates. While on the lower panel the CCI’s recession
probabilities (sum of regime 3 and regime 4 probabiliites) are plotted versus
the NBER business cycle chronology. The CLI’s model-derived probabilities
are unmistakenly leading the NBER’s business cycle, although the lead time
is not constant. The CCI recession probabilities, unlike on Figure 3.2.2, are
generally coinciding with the NBER dates and are not leading the latter.
While the first five contraction are well enough recognized, the sixth reces-
sion is somewhat ”oversized” compared to the official NBER dating — the
contractionary regime probabilities coming up with a longer recession. So, in
the model 3 the correspondence between our model-derived dating and that
of the NBER seems to be better than in models 1 and 2.
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3.2.3 Summary

In this section we have introduced a multifactor model with two common
factors (leading and coincident) having a regime-switching dynamics. Each
of them represents the common dynamics of a corresponding subset of the
observed time series which are classified as being leading or coincident with
respect to some hypothetical ”state of the economy”. The common lead-
ing factor advances faster than the common coincident factor which can be
reflected in the transition probabilities matrix. This permits improving the
prediction of the coincident factor because of the additional information com-
ing from the leading variables. In addition, different leads with respect to
the common coincident indicator for the individual leading time series are al-
lowed, which makes the model more flexible and realistic, since in the real life
the leading time series rarely lead the coincident factor for the same periods
of time.

We consider three nonlinear models: (1) a model with the independent
leading and coincident factors; (2) a model with two common factors having
exactly the same cyclical dynamics, and (3) a model with leading and coinci-
dent factors having the common cyclical dynamics allowing for the different
lead durations in recessions and expansions.

These models were applied to the US monthly macroeconomic data stretch-
ing from January 1959 to December 1998. The common coincident factor, as
model 2 reveals, is lagging behind the common leading factor 5 months when
entering into the recessions and around 9 months when going into the expan-
sions. Moreover, there exists a tight correspondence between our estimated
recession chronologies and those provided by the NBER. The conclusion is
that it is feasible to use the bifactor model to forecast the evolution of the
US Post-World War II coincident economic indicator and its turning points
in the near (5 months for downswings and 9 months for upswings) future.
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3.2.4 Appendix

Table 1. Estimated parameters of model 1
Log-likelihood: -4633.5

Parameter Estimated St. error p-value

pL.11 0.988 0.01 0.0
pL.22 0.921 0.04 0.0
pC.11 0.980 0.01 0.0
pL.22 0.892 0.04 0.0
µL1 0.084 0.02 0.0
µL2 -0.527 0.11 0.0
µC1 0.255 0.04 0.0
µL2 -1.330 0.132 0.0

γFSNCOM 0.745 0.241 0.0
γSFY GM3 3.520 0.693 0.0
γSFY GT1 3.46 0.672 0.0

γINC 0.786 0.05 0.0
γIIP 0.898 0.06 0.0
γSLS 0.655 0.06 0.0

σ2
HSBR 0.936 0.06 0.0

σ2
FSNCOM 0.963 0.06 0.0

σ2
SFY GM3 0.228 0.03 0.0

σ2
SFY GT1 0.256 0.03 0.0
σ2

EMP 0.279 0.04 0.0
σ2

INC 0.554 0.04 0.0
σ2

IIP 0.419 0.04 0.0
σ2

SLS 0.689 0.05 0.0
σ2

L 0.018 0.007 0.01
σ2

C 0.380 0.042 0.0
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Table 2. Estimated parameters of model 2
Log-likelihood: -4682.6

Parameter Estimated St. error p-value

p11 0.988 0.01 0.0
1− p22 0.066 0.03 0.01

µL1 0.084 0.02 0.0
µL2 -0.434 0.09 0.0
µC1 0.134 0.04 0.0
µL2 -0.689 0.10 0.0

γFSNCOM 0.746 0.25 0.0
γSFY GM3 3.980 0.82 0.0
γSFY GT1 3.61 0.75 0.0

γINC 0.829 0.06 0.0
γIIP 0.998 0.06 0.0
γSLS 0.738 0.06 0.0

σ2
HSBR 0.945 0.06 0.0

σ2
FSNCOM 0.969 0.06 0.0

σ2
SFY GM3 0.164 0.03 0.0

σ2
SFY GT1 0.311 0.03 0.0
σ2

EMP 0.358 0.04 0.0
σ2

INC 0.558 0.04 0.0
σ2

IIP 0.360 0.04 0.0
σ2

SLS 0.649 0.05 0.0
σ2

L 0.016 0.01 0.01
σ2

C 0.548 0.06 0.0
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Table 3. Estimated parameters of model 3
Log-likelihood: -4641.1

Parameter Estimated St. error p-value

p11 0.983 0.01 0.0
p22 0.873 0.05 0.0
A 4.950 2.18 0.01
B 8.840 3.5 0.01

µL1 0.090 0.02 0.0
µL2 -0.467 0.09 0.0
µC1 0.278 0.04 0.0
µL2 -1.040 0.10 0.0

γFSNCOM 0.760 0.25 0.0
γSFY GM3 3.590 0.71 0.0
γSFY GT1 3.530 0.69 0.0

γINC 0.791 0.05 0.0
γIIP 0.889 0.06 0.0
γSLS 0.656 0.06 0.0

σ2
HSBR 0.938 0.06 0.0

σ2
FSNCOM 0.963 0.06 0.0

σ2
SFY GM3 0.229 0.03 0.0

σ2
SFY GT1 0.254 0.03 0.0
σ2

EMP 0.277 0.04 0.0
σ2

INC 0.548 0.04 0.0
σ2

IIP 0.429 0.04 0.0
σ2

SLS 0.688 0.05 0.0
σ2

L 0.018 0.01 0.01
σ2

C 0.433 0.04 0.0
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Figure 3.2.1: Composite leading and coincident indicators
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Figure 3.2.2: Model 1. Conditional recession probabilities vs. NBER chronology
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SMOOTHED
FILTERED

Figure 3.2.3: Model 2. Conditional recession probabilities vs. NBER chronology
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Figure 3.2.4: Model 3. Conditional recession probabilities vs. NBER chronology
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3.3 Conclusion

This chapter has been devoted to an important extension of the standard
single factor dynamic model — a bifactor dynamic model. The two common
factors are distinguished across the temporal dimension: a composite leading
indicator and a composite coincident indicator. This distinction may be
extremely useful for the forecasting, since, once the relationship (if any)
between the CLI and the CCI is figured out, we can use this information to
predict the future values of the common coincident indicator as well as its
cyclical phases more efficiently.

We have examined two general models: (1) a model where the link be-
tween the common leading factor and the common coincident one is deter-
mined by the Granger causality, and (2) a model where this lead-lag rela-
tionship between the two common factors has a probabilistic nature.

Unfortunately, the statistical comparison of these two models is impossi-
ble due to the presence of the nuisance parameters — the parameters which
are not present under the null hypothesis, as, for instance, transition proba-
bilities, state-dependent intercepts and variances — unless we are using some
simulation method of model estimation, like Monte Carlo Markov Chain. For
this reason, for example, we cannot contrast a model having two regimes
against that with four regimes. Therefore we have to rely upon the quali-
tative judgements, like, for instance, the applicability of each model given
particular situation or some indirect measures of performance of the models
in question.

The model with Granger causality seems to deliver a significant improve-
ment in the performance, as measured by the value of the log-likelihood
function, compared to the model where the common leading and coincident
indicators are supposed to be independent. In the case of the model with
probabilistic mechanism the submodel with two common factors being inde-
pendent slightly outperforms the model where the coincident indicator cycle
lags behind the cycle of the leading indicator.

Furthermore, the model with Granger causality is somewhat less flexible,
since it assumes that the lag between the leading and coincident indicators
is fixed. While in the model with probabilistic mechanism this lag may
vary depending on the cyclical phase. One can treat the availability of the
Granger-causality model both with linear and regime-switching dynamics as
its advantage: it might be useful, especially in the cases when the hypothesis
of the regime switching is rejected. Moreover, it is more parsimonious in



3.3. CONCLUSION 75

terms of the number of parameters to estimate than the probabilistic mech-
anism model.

One of indirect measures of the model performance is the so-called quadratic
probability score (QPS) introduced by Diebold and Rudebusch (1989) and
employed by Layton and Katsuura (2001). This method compares the re-
cession probabilities estimated using some model to a generally accepted
business cycle dating. In the case of the US economy one normally takes
advantage of the NBER’s dates as such ”official dating”.

Formally the QPS is defined as follows (see Layton and Katsuura (2001,
p.408)):

QPS =
1

T

T∑
t=1

(Pt −Dt)
2 (3.14)

where T is the number of observations; Pt is the model-derived probability
for the t-th observation; Dt is the binary variable taking value of 1 during
the NBER recessions and of 0 during the NBER expansions.

The table below represents the QPS estimated for the various models
analyzed in this chapter together with the Diebold-Mariano statistic2 used
to compare the accuracy of prediction of the NBER turning points by these
models to the accuracy of prediction of the NBER dates by a benchmark
model. The benchmark model is defined as single coincident factor model
with specification CF-MS(0,0). The idea is to find out whether the QPS of
a compared model is significantly different from the QPS of the benchmark
model, since we are using QPS as a measure of predictive accuracy.

2See Diebold and Mariano (1995). The authors claim that their statistic allows for
the forecast errors which are potentially non-Gaussian, non-zero mean, serially and/or
contemporaneously correlated.
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Lead Filtered probabilities Smoothed probabilities

Single leading factor model
8 0.123 (2.45) 0.127 (3.02)

Single coincident factor model
0 0.061 (0.50) 0.023 (0.79)

Bifactor model with Granger-causality mechanism
8 0.121 (2.48) 0.125 (3.01)
9 0.126 (2.57) 0.124 (3.12)

Bifactor models with transition-probabilities mechanism
Model 1: Independent common factors

Leading factor’s probabilities
1 0.113 (2.64) 0.072 (2.23)
5 0.077 (1.67) 0.090 (5.79)

Coincident factor’s probabilities
0 0.047 (1.11) 0.055 (2.32)

Model 2: Perfectly correlated probabilities
5 0.097 (2.80) 0.093 (3.67)

Model 3: Common factors related with lead
Leading factor’s probabilities

5 0.083 (1.75) 0.083 (3.21)
6 0.085 (1.90) 0.079 (2.87)

Coincident factor’s probabilities
0 0.062 (0.42) 0.054 (1.0)

Numbers in parentheses are the absolute values of the Diebold-Mariano
statistic. The statistic was computed using a rectangular spectral window of
length 101. Here the forecast accuracy of each model listed in the table is
compared to that of the benchmark model. The test statistic is standardized
and hence is asymptotically distributed as N(0,1).

Six models are presented in the above table: two single-factor models
(leading factor model LF(0,0) with state-dependent intercept and variance
and coincident factor model CF(1,1)) and four bifactor models (one with
Granger-causality mechanism and three with transition probabilities matrix
mechanism). The first column ”Leads” stands for the time displacement
which renders the best correspondence between the particular dating and the
NBER chronology. Thus, the leading factor recession probabilities should be
shifted backwards to get closer to the NBER cycle, given the fact that they
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lead the coincident indicator whose turning points are reflected by the NBER
dates. The second and the third columns display the QPS characterizing
conformity between the filtered and smoothed recession probabilities, on the
one hand, and the NBER business cycle chronology, on the other hand.
In the bifactor models with transition probabilities matrix mechanism in
two cases (model 1 and model 2) we have two datings: one for the leading
factor and another for the coincident factors. In the former case the recession
probabilities are obtained as a sum of conditional probabilities of regime 2 and
4 (”low CLI’s intercept — high CCI’s intercept” and ”low CLI’s intercept —
low CCI’s intercept”), while in the latter case it is a sum of the probabilities
of regimes 3 and 4 (see section 3.2).

Leading factor recession probabilities appear to fit the NBER dates worse
than the recession probabilities of the coincident factors. This is quite natural
since the common leading factor serves as a proxy of the common coincident
factor within a few months. However, despite the worse ex post performance,
the leading factor’s recession probabilities permit forecasting the arrival of
future recessions and expansions.

In the case of single leading factor model and bifactor model with Granger
mechanism the lead is 8-9 months, while in the case of the bifactor model
with transition matrix mechanism the lead is 5-6 months.

The QPS of the coincident recession probabilities stays almost unchanged
regardless of the model, while the leading recession probabilities estimated
using the bifactor model with probabilistic mechanism fit the NBER dates
much better than those of the single leading factor model and of the bifactor
model with Granger-causality mechanism.

Thus, to our opinion, the choice between each of the two models can
be made depending on the particular data-generating process which we en-
counter in our research. Neither of the models is absolutely superior to its
counterpart, each having its advantages which may be useful in one situation
and useless in another.

Finally, one could possibly combine the two approaches allowing for both
the Granger causality and transition probabilities matrix mechanism. In such
a way we would be able to consider a case where there exist two independent
business cycles — one for each common indicator — and where common
coincident indicator’s dynamics depend not only on its own state variable
but also on that of the common leading factor.
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Chapter 4

Dynamic Factor Analysis and
Data Problems

In the previous chapter we have been discussing some important extensions
of the common dynamic factor model towards developing bifactor models
having both linear and Markov-switching dynamics. We have shown how
one can introduce a multiplicity of factors in the time dimension, namely:
leading and coincident common factors. This renders the forecasts more
efficient, since they are based not only on the past values of the coincident
economic indicator but also on the past and present values of the leading
series. Moreover, two different ways of modeling the relationships between
these common factors were examined: the Granger-causality mechanism and
the mechanism of the transition probabilities matrix.

However, quite often the practical realization of the dynamic factor ap-
proach is impeded by the lack of the relevant data measured at high (say,
monthly) frequencies. Another source of the problems are the various struc-
tural breaks which introduce discontinuities in the time series, thus, short-
ening already not very long contemporaneous macroeconomic time series.
This is especially the case of most European countries and their regions,
not to mention the developing economies whose statistical databases may be
even worse. The causes of these breaks are very diversified ranging from the
changes in the statistical methodology to the secular volatility shifts.

In this chapter we propose some devices to cope with these problems. In
section 4.1 a model with mixed-frequency data is considered, while section
4.2 and section 4.3 deal with the structural breaks problem. Section 4.2
employs the deterministic dummies to model the structural shifts both in

79
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the means and in the variances of the observed variables, whereas section 4.3
introduces additional state variable to take into account the structural break
in volatility.

4.1 Markov-Switching Dynamic Factor Model

with Mixed-Frequency Data

A lot of valuable information is lost because many important time series are
only available at the quarterly or annual frequencies. For instance, the CEI
estimated with the monthly data does not take into account the information
contained in the GDP series which is available only at quarterly or lower
frequencies. This problem is especially severe at the regional level, since the
regional statistical databases are much poorer than the national ones.

Fortunately, the problem of discrepancy in the frequency of observations
seems to be solved. The solution was proposed recently by Mariano and
Murasawa (2003). They consider a model where different frequencies, say
monthly and quarterly, for different variables entering the model are allowed.
This is especially useful if we want our coincident indicator to be a proxy for
some aggregate observable variable, e.g. GDP. As a rule the GDP data are
released at much lower frequency than individual series characterizing specific
sectors of the economy. The Murasawa and Mariano’s model enables us to
take advantage of the valuable information contained in the lower-frequency
time series.

Our idea is to apply this approach to the Markov-switching common
dynamic factor model so that to be able to estimate CEI which incorporates
both the comovement of the macroeconomic variables and the asymmetry of
the different business cycle phases without losing the important information
which is otherwise wasted because of the discrepancies in the observation
spacing.

The rest of the section is structured as follows. In the next subsection we
discuss the technical details of construction and estimation of the Markov-
switching common factor models. In subsection 4.1.2 we consider application
of this methodology to the real data. Subsection 4.1.3 concludes the section.
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4.1.1 Model

The model of the common factor with nonlinear (Markov-switching) dynam-
ics as the one estimated by Kim and Nelson can be expressed as follows:

∆yt = δ + Γ∆ct + ut (4.1)

where ∆yt is the n × 1 vector of the first differences of the observed time
series in logs; ∆ct is first difference of the unobserved common factor hav-
ing a regime-switching dynamics; ut is the n × 1 vector of the specific, or
idiosyncratic, components characterizing the individual dynamics of each of
the observed series, and Γ is the matrix of factor loadings.

Assume now that we deal with the mixed-frequency data. In other
words, some of the series are observed at a lower frequency (say, yearly
or quarterly) and some other series are observed at a higher frequency (say,
monthly or weekly). This amounts to saying that we dispose of n = n1 + n2

observable component series1. The first n1 component series, y1, are ob-
served at lower frequency (each f > 1 periods), while the remaining n2

series, y2, are measured at a higher frequency which we may normalize
to 1. Thus, if we have quarterly and monthly data, f = 3 and we ob-
serve y1 = {y13, y16..., y1.T−3, y1.T} and y2 = {y21, y22..., y2.T−1, y2.T}. Denote
by y∗1t the values of the first n1 component series that we might have ob-
served if these series were measured at the same frequency as y2, that is,
y∗1 = {y∗11, y

∗
12, ..., y

∗
1.T−1, y

∗
1.T}. The observed lower-frequency series can be

expressed in terms of these unobserved values as follows:

y1t =
1

f

f−1∑
i=0

Liy∗1t (4.2)

Hence after taking the first differences of the observable lower frequency
series, the growth rates of these series would be as:

(1− Lf )y1t =
1

f
(

f−1∑
i=0

Li)2(1− L)y∗1t (4.3)

where (
∑f−1

i=0 Li)2 =
∑2f−1

i=0 (f + 1− |i− f |) Li or simpler

1Here we consider only the case of the flow variables.
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(

f−1∑
i=0

Li)2 = 1 + L + 2L2 + 3L3 + ... + 3L2f−4 + 2L2f−3 + L2f−2 + L2f−1 (4.4)

To estimate the model at the higher frequency, the unobserved values
of the lower-frequency time series are treated as missing. As Mariano and
Murasawa (2003) have shown, they can be replaced by any random variable as
long as it is independent of the parameters of the model. In particular, these
missing observations may be substituted by zeros. Thus, the growth rates of
the first n1 variables expressed at the higher frequency can be constructed
as:

(1− L)ỹ∗1t =

{
(1− Lf )y1t, if t = f, 2f, ..., T

0 otherwise

In principle, we can do this kind of substitution not only for the obser-
vations between the observed values of the lower-frequency time series, but
also in case of the series which are shorter than the others. In the general
case we may define the constructed higher frequency series as:

ỹ∗t =

{
yt, if t ∈ Ξ
0, otherwise

where Ξ is the set of dates for which the shortest time series is observable.
For instance, when the t1 initial observations are missing, the set Ξ will be
defined as:

Ξ = {t| tt1}
In the case when the same variable is also the one which is measured at

the lower frequency, the definition of Ξ will be as:

Ξ = {t| tt1 and t = f, 2f, ..., T}
Therefore the vector of the growth rates of all the n observed series, ∆yt,

measured at the higher frequency may be decomposed as:

(
(1− Lf )ỹ∗1t

(1− L)y2t

)
= δ+Γ

(
1
f
(
∑f−1

i=0 Li)2It

1

)
(1−L)ct+

(
1
f
(
∑f−1

i=0 Li)2It

1

)
ut

(4.5)
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where It is the indicator function: It = 1 when t = f, 2f, ..., T and It = 0
otherwise.

The common dynamic factor is modeled as:

φ(L)∆ct = µ(st) + εt (4.6)

where φ(L) is the AR(p) lag polynomial; µ(st) is the common factor inter-
cept depending on the state variable st following a first-order Markov-chain
process, and εt ∼ NID(0, σ2(st))− thus the variance of the common fac-
tor shock may also be state-dependent. In a more general specification the
coefficients of the autoregressive polynomial φ(L) may depend on the state
too.

The vector of the idiosyncratic components can be represented as follows:

ψ(L)ut = ηt (4.7)

where ηt ∼ NID(0, Σ) and both the lag polynomial ψ(L) and variance-
covariance matrix Σ have a diagonal structure. Each idiosyncratic component
is modelled as AR(qi) where i = 1, ..., n. In principle, the autoregressive order
may be different across the specific components and may be equal to zero.

In order to be estimated using Kalman filter, this model can be expressed
in the state-space form.

The measurement equation:

∆yt = Axt + wt (4.8)

Transition equation:

xt = α(st) + Cxt−1 + vt (4.9)

where ∆yt =
(

(1− Lf )y1t (1− L)y2t

)′
is the n× 1 vector of observed variables in differences;

xt =
(

∆c∗t ut

)′
is the m × 1 state vector containing the common dy-

namic factor vector ∆c∗t =
(

∆ct−1 ∆ct−2 ... ∆ct−r

)′
, with r = max{p, 2f−

1},
and the specific components vector

ut =
(

u1t ... u1t−l ... unt ... unt−qn

)′
, with l = max{q1, 2f − 1};
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α(st) =
(

µ(st) 0 ... 0
)′

is the vector of intercepts, and finally

vt =
(

εt 0 ... η1t ... ηnt ... 0
)′

is the vector of disturbances.
The dimension of the state vector, m, is determined as:

m = r + n1 ∗ l +
∑n

i=n1+1 qi

The system matrices have the following structure:
The measurement n×m matrix:

A =




γ1ΛIt 0
γ2 or−1 ΛIt

. . .

γn iqn




where Λ is the 1× (2f − 1) vector of coefficients of the (
∑f−1

i=0 Li)2; ok is the
k × 1 vector of zeros, and ik is the first row of the k × k identity matrix.

The m×m transition matrix:

C =




Φ or 0
Ir−1

Ψ1 ol

Il−1

. . .

Ψn oqn

0 Iqn−1




where Φ and Ψi (i = 1, ..., n) are the row vectors of the autoregressive coef-
ficients; Ik is the k × k identity matrix.

The n×n variance-covariance matrix of the disturbances to the measure-
ment equation:

R =

(
I(f) O
O O

)

where I(f) is the diagonal n1 × n1 matrix with the indicator functions, It,
on the main diagonal.

The m ×m variance-covariance matrix of the disturbances to the tran-
sition equation:
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Q =




σ2(st) 0
. . .

σ2
1

. . .

0 σ2
n




We introduce three identifying assumptions in this specification of model.
First, the variance-covariance matrix Q is diagonal. Secondly, we may set
either γ1 = 1 or σ2(st = 1) = 1. We chose the first option.

As always in this thesis we estimate the model using the method of max-
imum likelihood.

4.1.2 Real example

Having tested the performance of our model on the artificial data, we applied
it to the actual Post World War II macroeconomic time series, the only
difference being the time span: they use the series covering the period of
1959-1998, while we utilize the series stretching from 1959 through 2002. For
more details on the time series used in this study see Table 4.1.2. The series
were logged, then their first differences were taken and normalized.

To select the lag order, we applied Akaike information criterion (AIC)
and Schwartz Bayesian information criterion (SBIC) computed as follows:

Akaike information criterion:

AIC = 2 log[L(θ)]− 2[n1p + n2q] (4.10)

where L(θ) is the likelihood function value at maximum; n1 number of the
low-frequency series (in this case we have only one such time series — quar-
terly GDP); n2 is the number of the high-frequency series; p and q are the
orders of the AR polynomials of the low- and high-frequency series, respec-
tively.

Schwartz Bayesian information criterion:

SBIC = 2 log[L(θ)]− [n1p + n2q] log(T ) (4.11)
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where T is the number of observations.
The values of the log-likelihoods for the various autoregressive order com-

binations (p, q) as well as the two information criteria are presented in Table
4.1.3 of Appendix. The AIC chooses (3,3) while SBIC selects (1,2) combi-
nation as the optimal one. We are going to use the latter combination as a
more parsimonious. This is the same combination which was suggested by
the SBIC in the linear case (see Mariano and Murasawa (2003)).

We represent the estimates of the parameters of the linear and Markov-
switching common factor model with single- and mixed-frequency data in
Tables 4.1.4 and 4.1.5, respectively. The estimated parameters for the linear
and nonlinear models are very similar, with the exception of the autoregres-
sive parameter of the common dynamic factor which is slightly smaller when
the Markov switching is introduced.

Based on the parameter estimates of the nonlinear common factor model
with different observation frequencies, we calculated the estimate of the com-
mon factor by taking the partial sums:

ct = ct−1 + ∆ct + δ (4.12)

Figure 4.1.1 shows the profiles of the composite coincident indicators con-
structed using the single- and mixed-frequency component series.

The behavior of the linear and Markov-switching composite indicators is
very similar, regardless of whether single- or mixed-frequency data are used.
On the other hand, the volatility of the mixed-frequency indicator is substan-
tially smaller than that of the single-frequency indicator. One can observe
this also by comparing the common factor’s residual variance in Tables 4.1.4
and 4.1.5: in the single-frequency case it varies between 0.274 and 0.324,
whereas in the mixed-frequency case it is between 0.074 and 0.09. Moreover,
nonlinear composite indicators appear to be less volatile than linear ones.

Figure 4.1.2 displays the conditional recession probabilities obtained from
the estimation of two Markov-switching model — with single- and mixed-
frequency data — plotted against the National Bureau of Economic Research
(NBER) recession dates, where the latter are represented by the shading.

The correspondence between the filtered and smoothed recession proba-
bilities, on the one hand, and the NBER recession dates, on the other hand,
is striking. The only exception is the recession detected by our model in
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the very beginning of the sample and absent in the NBER chronology. The
probabilities obtained for the single- and mixed-frequency models are almost
indistinguishable.

The formal analysis of the in-sample forecasting performance of single-
frequency and mixed-frequency CEI models was conducted using the quadratic
probability score (QPS).

To test whether the differences in the QPS of different models are statis-
tically significant we use the Diebold-Mariano statistic (with the rectangular
spectral window of length 15) proposed by Diebold and Mariano (1995). The
DM-statistic is computed by comparing the loss differentials (with respect to
the binary coded NBER dating) of the filtered and smoothed regime probabil-
ities of the single-frequency CF-MS, on the one hand, to the loss differentials
of the regime probabilities of mixed-frequency CF-MS, on the other hand.

The results of the comparison of performance of both nonlinear models
are presented in Table 4.1.6. The second column displays the QPS statistic.
The columns 3 through 5 report the Diebold-Mariano (DM) statistics for
different pairwise comparisons of QPS.

The first conclusion that can be drawn from Table 4.1.6 is that the
smoothed probabilities are much better predictors of the NBER dating than
the filtered probabilities. This difference is statistically significant at 1%
level. By contrast, we cannot say that the mixed-frequency CF-MS forecasts
are significantly better than the forecasts supplied by the single-frequency
model.

4.1.3 Summary

In this section we have introduced a Markov-switching common dynamic
factor model with mixed-frequency observations. Until now only the data
of the same frequency and with the same length were used to estimate the
latent common factor models with Markov-switching dynamics. Building on
the extension of the linear common factor model to the case of the data with
different observation frequencies proposed by Mariano and Murasawa (2003),
we offer a solution to the problem of missing observations in the nonlinear
case.

This would allow preventing the losses of valuable information concerning
the evolution of the common dynamic factor which may be contained in the
lower-frequency time series and, in general, in the time series with any type
of missing values.



88CHAPTER 4. DYNAMIC FACTOR ANALYSIS AND DATA PROBLEMS

The comparison of the ability to predict the NBER business cycle chronol-
ogy, though, conducted in this paper, does not provide any evidence of the
statistically important superiority of the mixed-frequency model with regime
switching over the single-frequency CF-MS.

The results presented here will be used later on in the thesis to investigate
the structural break problem — see section 4.3.

4.1.4 Appendix

Table 4.1.1. Simulated example: true and estimated parameters

Parameter True Estimated St. error p-value

p11 0.95 0.93 0.02 0.0
p22 0.84 0.87 0.03 0.0
µ1 0.4 0.43 0.03 0.0
µ2 -0.6 -0.68 0.05 0.0
γ2 0.5 0.44 0.05 0.0
γ3 0.8 0.81 0.02 0.0
γ4 2.0 2.01 0.06 0.0
γ5 1.7 1.73 0.05 0.0
φ 0.6 0.56 0.03 0.0
ψ1 -0.5 -0.61 0.16 0.0
ψ2 0.6 0.59 0.04 0.0
ψ3 -0.1 -0.06 0.05 0.12
ψ4 -0.2 -0.17 0.06 0.0
ψ5 -0.8 -0.84 0.02 0.0
σ2

1 0.25 0.99 0.16 0.0
σ2

2 0.36 0.38 0.02 0.0
σ2

3 0.16 0.16 0.01 0.0
σ2

4 0.49 0.53 0.05 0.0
σ2

5 0.81 0.81 0.06 0.0
σ2

c 0.16 0.15 0.02 0.0
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Table 4.1.2. The component series of the US composite coincident indicator

Series Short-hand Description

Monthly series 1959:1 – 2002:6
Employees on nonagricultural payrolls EMP 103, SA
Personal income less transfer payments INC 109 1996 $, SA, annual rate
Index of industrial production IIP total index, 1996=100, SA
Manufacturing and trade sales SLS chained 106 1996 $, SA

Quarterly series 1959:1-2002:2
Real GDP GDP chained 109 1996 $, SA

Table 4.1.3. Lag selection analysis

(p,q) LogLik AIC SBIC

(0,0) -1643.52 -3287.04 -3287.04
(0,1) -1605.68 -3221.36 -3242.82
(0,2) -1565.85 -3151.7 -3194.62
(0,3) -1555.95 -3141.9 -3204.48
(1,0) -1626.37 -3254.74 -3259.03
(1,1) -1589.89 -3191.78 -3217.53
(1,2) -1550.31 -3122.62 -3169.83
(1,3) -1539.81 -3111.62 -3178.37
(2,0) -1625.38 -3254.76 -3263.34
(2,1) -1589.3 -3192.60 -3222.64
(2,2) -1549.68 -3123.36 -3174.86
(2,3) -1539.81 -3113.62 -3184.54
(3,0) -1625.29 -3256.58 -3269.10
(3,1) -1589.26 -3194.52 -3227.89
(3,2) -1545.73 -3117.46 -3171.69
(3,3) -1534.41 -3104.82 -3179.91
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Table 4.1.4. Estimated parameters of linear and Markov-switching models
with single-frequency data 1959:1-2002:6

Parameter Linear LL=-2474.77 Nonlinear LL=-2464.20
Coefficient St. error Coefficient St. error

p11 – – 0.975 0.009
1− p22 – – 0.125 0.052

µ1 – – 0.136 0.037
µ2 – – -0.670 0.112

γINC 0.931 0.070 0.926 0.069
γIIP 1.19 0.078 1.16 0.077
γSLS 0.755 0.057 0.741 0.057

φ 0.579 0.045 0.358 0.063
ψEMP.1 0.114 0.044 0.108 0.044
ψEMP.2 0.466 0.048 0.462 0.050
ψINC.1 -0.008 0.047 -0.020 0.069
ψINC.2 0.051 0.050 0.041 0.047
ψIIP.1 -0.105 0.078 -0.069 0.070
ψIIP.2 -0.093 0.072 -0.073 0.066
ψSLS.1 -0.415 0.049 -0.411 0.048
ψSLS.2 -0.192 0.047 -0.189 0.047

σ2
C 0.324 0.038 0.274 0.033

σ2
EMP 0.310 0.029 0.300 0.030

σ2
INC 0.570 0.041 0.561 0.041

σ2
IIP 0.306 0.035 0.321 0.034

σ2
SLS 0.583 0.041 0.585 0.041

LL = the value of loglikelihood function
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Table 4.1.5. Estimated parameters of linear and Markov-switching models
with mixed-frequency data 1959:1-2002:6

Parameter Linear LL=-2945.31 Nonlinear LL=-2934.72
Coefficient St. error Coefficient St. error

p11 – – 0.975 0.009
1− p22 – – 0.124 0.052

µ1 – – 0.069 0.018
µ2 – – -0.341 0.061

γEMP 1.89 0.145 1.92 0.151
γINC 1.81 0.137 1.82 0.142
γIIP 2.24 0.130 2.24 0.133
γSLS 1.46 0.095 1.46 0.096

φ 0.573 0.045 0.354 0.061
ψGDP.1 -0.050 0.090 -0.052 0.074
ψGDP.2 -0.834 0.064 -0.835 0.063
ψEMP.1 0.119 0.043 0.116 0.043
ψEMP.2 0.467 0.048 0.467 0.048
ψINC.1 -0.028 0.056 -0.034 0.099
ψINC.2 0.036 0.048 0.031 0.060
ψIIP.1 -0.056 0.070 -0.042 0.092
ψIIP.2 -0.061 0.060 -0.058 0.071
ψSLS.1 -0.432 0.048 -0.427 0.048
ψSLS.2 -0.204 0.047 -0.201 0.047

σ2
C 0.090 0.013 0.074 0.011

σ2
GDP 0.240 0.050 0.243 0.045

σ2
EMP 0.313 0.029 0.306 0.030

σ2
INC 0.556 0.040 0.552 0.040

σ2
IIP 0.324 0.031 0.327 0.031

σ2
SLS 0.569 0.040 0.570 0.040

LL = the value of loglikelihood function
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Table 4.1.6. Comparison of the turning points detection performance

QPS DM-statistic
Single-FreqSm Mixed-FreqF Mixed-FreqSm

Single-FreqF 0.0544 1.68** 0.75 1.51*
Single-FreqSm 0.0364 1.71** 1.36*
Mixed-FreqF 0.0533 1.54*

Mixed-FreqSm 0.0375

Column 2 contains the QPS of different models; columns 3 through 5 repre-
sent the absolute values of Diebold-Mariano (DM) statistics measuring the
statistical significance of the forecasting accuracy: * stands for 10% signifi-
cant difference, ** stands for 5% significant difference.
Single-FreqF = single-frequency MS-CF(1,2) filtered recession probabilities
Single-FreqSm = single-frequency MS-CF(1,2) smoothed recession probabil-
ities
Mixed-FreqF = mixed-frequency MS-CF(1,2) filtered recession probabilities
Mixed-FreqSm = mixed-frequency MS-CF(1,2) smoothed recession probabil-
ities
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Figure 4.1.1: US composite indicators based on single- & mixed-frequency data
US monthly and quarterly data 1959:1-2002:6
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Figure 4.1.2: Conditional recession probabilities
US monthly and quarterly data 1959:1-2002:6
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4.2 Structural Breaks in Dynamic Factor Model:

Deterministic Mechanism

In this section we will consider one of the ways of dealing with the structural
breaks in the observed time series which may be caused both by the ”natu-
ral” shifts in the behavior of the economic variables and by the changes in
the statistical methodologies. The models examined here use the determin-
istic dummies to capture the structural breaks in different model parameters
with unknown breakpoints different for each time series. The specification
proposed here builds on the paper by Krane and Wascher (1999), who in-
troduce the seasonal dummies in the means of the observed time series and
of the common factor as well as in the factor loadings in order to take ac-
count of the deterministic seasonality in the common dynamic factor model,
and on that by Chauvet and Potter (2001), who make the intercept and the
autoregressive coefficients of the common factor change as a function of the
structural break.

In subsection 4.2.1 we present the linear common dynamic factor model
with the structural break(s) in the observed time series. In subsection 4.2.2
an artificial example is considered. Subsection 4.2.3 comes up with a real
example — common dynamic model of the US composite economic indicator
with deterministic dummies capturing the structural breaks in the means and
variances of the observed series and idiosyncratic components. Subsection
4.2.4 concludes the section.

4.2.1 Model

We consider a set of the observed time series, whose common dynamics are
underlined by one or several common factors which may interact in a complex
temporal and/or spatial way.

The idiosyncratic dynamics of each time series in particular are captured
by one specific factor per each observed time series. Therefore the model in
the general form can be written as follows:

∆yt = [(In − It)δ1 + Itδ2] + [(In − It)Γ1 + ItΓ2] ∆ft + ut (4.13)

where ∆yt is the n × 1 vector of the logged observed time series in the first
differences (growth rates); ∆ft is the k × 1 vector of the latent common
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factors in the first differences; ut is the n × 1 vector of the latent specific
factors; δ1 and δ2 are the n × 1 vectors of the means of the observed time
series; Γ1 and Γ2 are the n× k factor loadings matrices linking the observed
series with the common factors, In is the n× n identity matrix, and It is the
structural break indicator function. Since, in principle, there is no reason to
suppose that all the observed time series were subject to the structural break
and that, if any, the structural breaks took place in the same moment, the
breakpoint indicator function, It, can be written as a diagonal matrix whose
diagonal elements are the individual indicator functions:

It = In ⊗




I1t

I2t

. . .
Int




where

Iit =

{
0, if t <τi

1, otherwise

where τi is the period when the structural break in the i− th observed time
series has taken place.

The dynamics of the latent common factors can be described in terms of
a VAR model:

∆ft =
[
(Ik − If

t )ν1 + If
t ν2

]
+

[
(Ik − If

t )Φ1(L) + If
t Φ2(L)

]
∆ft−1 +εt (4.14)

where ν1 and ν2 are the k×1 vectors of the constant intercepts; If
t is the k×k

diagonal matrix having the structure similar to that of It; Φ1(L) and Φ2(L)
are the sequences of p (p = max{pf1 , ..., pfk

}, where pfj
is the order of the AR

polynomial of the j − th common factor) k × k lag polynomial matrices; εt

is the k × 1 vector of the serially and mutually uncorrelated common factor
disturbances:

εt ∼ NID







0
...
0


 ,




σ2
f1

0
. . .

0 σ2
fk






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The specific factors are assumed to be mutually independent but serially
correlated:

ut = Ψ(L)ut−1 + ηt (4.15)

where Ψ(L) is the sequence of q (q = max{q1,..., qn}, where qi is the order
of the autoregressive polynomial of the i − th idiosyncratic factor) n × n
diagonal lag polynomial matrices and ηt is the n× 1 vector of the mutually
and serially uncorrelated Gaussian shocks:

ηt ∼







0
...
0


 ,




σ2
1t 0

. . .

0 σ2
nt







where σ2
it = λi(1− Iit) + σ2

i , i = 1, ..., n.
Thus, in general the intercepts of the observed variables, their factor load-

ings, and the residual variances of the specific components may be subject
to the deterministic structural breaks.

Assume for the sake of simplicity that we have only one common factor
(the extensions to the multi-factor case are straightforward). Furthermore,
suppose that only observed variables are subject to the structural change
which affects their means but not their factor loadings. These assumptions
would seem realistic especially in the case of the changes in the accounting
methodology which lead to the sudden shifts in the time series levels.

The model is estimated by the maximum likelihood method. To do this
it is expressed in the state-space form:

∆yt = [δ1(1− It) + δ2It] + Axt (4.16)

xt = α + Cxt−1 + vt (4.17)

where xt = (ft|ut)
′ is the state vector containing stacked on top of each other

vector of common factor and the vector of specific factors; vt is the vector
of the common and idiosyncratic factors’ disturbances with mean zero and
variance-covariance matrix Q; α is the vector of intercepts.

A =




Γ1 iq1 O
...

...
...

Γn O iqn



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where Γi is the 1 × g vector of the factor loadings of the i − th observed
variable: Γi = (γi,1, ..., γi,gi

, ..., 0) with g = max{g1, ..., gn}.

C =




Φ 0 0
0 Ψ1

. . .

0 0 Ψn




Φ =

(
φC 0

IpC−1 opC−1

)

with φC = (φ1,...,φp) being the 1 × p vector of the AR coefficients of the
common factor. The matrices Ψ1, ..., Ψn have the same structure as ΦC .

One immediate extension of this model is the introduction of the regime-
switching dynamics. This would allow taking care of the asymmetries which
may characterize different phases of the business cycle and therefore is more
complete from the standpoint of the Burns and Mitchell’s definition of the
business cycle as interpreted by Diebold and Rudebusch (1996). We are not
discussing here the way it is to be done, the issue of the regime-switching
dynamics being studied at length elsewhere in the thesis.

4.2.2 Simulated example

Following the pattern chosen above, we have generated an artificial data set,
where some of the observed time series are subject to the one-time structural
break, and have estimated the corresponding model using as inputs the ob-
servable time series. The dynamics in this model are linear, but one should
keep in mind that it is straightforward to extend the model to a case of the
Markov-switching dynamics.

For the linear case we have generated one common latent factor and four
individual observable series. Both the common factors (in fact, their first
differences, not levels) and the idiosyncratic components are modelled as the
stationary AR(1) processes. The true parameters of the DGP are presented
in the column two of Table 1 of the Appendix. The length of all these time
series is 500 observations, which is comparable to the length of an ordinary
Post World War II monthly time series for the US economy. The structural
break takes place in the period 350, thus τ = 350. Only the time series two is
characterized by the structural break which makes its mean go up, the rest
of the observed time series being exempt of the structural changes.
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To identify the model, we set the factor loadings of the first observable
variable equal to unity. Hence we estimate only three of four factor loadings.
However, this implies that the common factor residual variance must be left
unrestricted.

The model is estimated by the maximum likelihood method. The esti-
mated parameters together with the standard errors and the p-values are
reproduced in Table 4.2.1. The comparison of the true and estimated pa-
rameters’ values shows that the latter are sufficiently close to the former
suggesting that the proposed model estimates the parameters of the data-
generating process with a high enough precision. The largest deviations from
the true values are found in the case of the autoregressive parameters of the
specific components. Nevertheless, even these deviations are not significant.

4.2.3 Real example

We use U.S. monthly coincident time series covering 1959:1-2002:6 — see
Table 4.2.2. The data are logged, their first differences are taken and are
demeaned and standardized.

The first question to answer when we are using the deterministic mech-
anism of structural breaks modeling is when these structural breaks have
taken place. To answer this question we employed the following procedure as
in McConnell and Perez Quiros (2000). Firstly, for the growth rates of each
of the time series in question an AR(1) model with a constant was estimated:

∆yit = µi + φi∆yit−1 + ξit (4.18)

where i = 1, ..., n.
Secondly, the residuals of these models were used to estimate the following

model:

√
π

2
|ξit| = α1iDi1t + α2iDi2t + ωit (4.19)

where Di1t and Di2t are the dummies capturing structural break in the vari-
ance of the i− th time series.
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Di1t =

{
0, if t < τi

1, otherwise
and

Di2t =

{
0, if t > τi

1, otherwise

The idea is to change the location of the breakpoint τi and for each
location compute the corresponding Wald statistics. The point where Wald
statistics achieves its ”supremum” is taken to be the breakpoint. However,
not all the points of the sample were considered — only those between 0.15T
and 0.85T , where T is the sample size, as suggested by Andrews (1993).

To test for the structural break with unknown breakpoint in the variance
of the i − th time series we apply the supremum Wald statistic as Andrews
(1993) proposes:

SupWi = max
π

T

[
ω′iRωiR − ω′iUωiU

ω′iUωiU

]
(4.20)

where π = τ/T. In words, for each time series we are looking for the point
of time where the estimated Wald statistic attains its supremum. This Wald
statistic’s value is taken to be the test statistic.

The test critical values were computed using bootstrapping procedure as
described in Diebold and Chen (1996). Our implementation of the procedure
was as follows:

1. Estimate model in (4.18) and save the residuals.

2. Estimate restricted analog of equation (4.19), that is, an equation
where, instead of two structural break dummies, Di1t and Di2t, we
put the constant term.

3. Construct the pseudo-observations of the standard errors,
√

π
2

∣∣∣ξ̂it

∣∣∣, us-

ing the estimate of the coefficient with the constant term of the model
from step 2 as well as its residuals drawn with replacement.

4. Estimate equation (4.19) and compute the statistic value using equation
(4.20). Save this statistic and repeat steps 3-4 large enough number of
times.
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We undertook a bootstrap with 1000 iterations. The resulting critical
values corresponding to 10%, 5%, and 1% significance levels are reported in
Table 2.

Then we estimated the Wald statistics for each time series within the
subsample obtained from the original sample when 15% of the observations
were left out in the beginning and 15% in the end of the sample. Figure 4.2.1
shows the estimated Wald statistics for each of the time series in question.
The results of the test aiming at determination of the timing of the structural
breaks in the variances of these series are reported in Table 4.2.4. Three
time series out of four — for INC the null hypothesis of no structural break
could not be rejected — seem to have experienced a structural break in
the variance, although the breakpoints are spread across the sample. It is
worthwhile to notice, however, that two out of these four time series have
had the structural break in variance in the beginning of 1984, namely EMP
and IIP. The importance of this circumstance will become more clear later
on when we will be discussing the evidence of the decline in the volatility of
some US macroeconomic time series in section 4.3.

It makes sense to check the intercept of equation (4.18) for a structural
break, because the structural shifts we just identified in the residual variances
may, in fact, be due to the changes in the intercepts. Therefore the following
unrestricted and restricted regressions were estimated to test the null of no
structural breaks in the intercepts:

Unrestricted regression:

∆yit = β1iDi1 + β2iDi2 + φi∆yit−1 + ξit (4.21)

Restricted regression:

∆yit = βiDi + φi∆yit−1 + ξit (4.22)

where i = 1, ..., n. The null hypothesis is formulated as: Di = Di1 = Di2 for
all i, the dummies being defined as above. Notice that the time subscripts are
suppressed, since the structural break locations were fixed at the breakpoints
identified in Table 4.2.4. However, the variable subscript is still there meaning
that each variable has its specific breakpoint.
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The parameter estimates of regressions (4.21 and (4.22 are reported in
Tables 4.2.5 and 4.2.6, respectively. The results of the F test conducted
using these two regressions are displayed in Table 4.2.7. Only for INC the
null hypothesis of no structural break in intercept may be rejected at the
usual 0.05 significance level. This implies that most probably the structural
breaks detected for the other three variables are due entirely to the breaks
in the residual variances.

The results of Table 4.2.4 were used to construct the structural break
dummies in the common dynamic factor model. We have estimated eight
models: four linear and four with regime-switching dynamics. Under each dy-
namics assumption the following modifications of the model were considered:
(1) no structural break, (2) structural break only in the observed variables’
intercepts, (3) structural break only in the residual variance of the specific
components, and (4) structural break both in intercepts and in variances.
Only specification (0,0) was used. The estimated parameters of these models
together with their standard errors are reported in Tables 4.2.8-4.2.11. The
respective log-likelihood function values are presented in the header after the
specification of the model ”linear” or ”Markov-switching”.

It can be seen (Tables 4.2.8 through 4.2.11) that the structural-break-in-
intercept dummies in most cases (except sometimes the INC variable) are
not significantly different from zero. This is not the case, however, of the
residual variances which are almost always significant at 0.05 significance
level. This implies that it was rather the volatility of the growth rates of
the US macroeconomic variables that went down during the last 30 years,
whereas the average growth rates level did not experience any noteworthy
changes.

The linear estimates of the composite economic indicators with and with-
out breaks in intercepts and/or variances are plotted on Figure 4.2.2 of Ap-
pendix. The estimates with deterministic dummies are strikingly close to
CF(0,0) with no breaks. This is especially true in the case of CF(0,0) with
breaks in the intercepts.

The profiles of the nonlinear composite economic indicators with and
without deterministic dummies are shown on Figure 4.2.3. It appears that
the CF-MS with no break and CF-MS with break in the residual variances
have the closest profiles. In contrast, the model with breaks both in intercepts
and residual variances of the specific factors displays quite distinct behavior
— it has a clearly expressed downward trend which is not the case of other
CF-MS.
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Different specifications of the model are compared in Table 4.2.12. The
likelihood ratio (LR) test is used to conduct this comparison. Each cell of
the table contains the double difference between the log-likelihoods of the
unrestricted and restricted models. Numbers in the parentheses stand for
the degrees of freedom. The asterisks show the test statistics values which
exceed the critical χ2

0.95 values. The upper triangular matrix contains the
LR-statistics for the linear models, while the lower triangular matrix displays
those corresponding to the Markov-switching models. The models 2 and 3 are
not nested and therefore cannot be compared using the LR test. Therefore
the corresponding cells are left empty.

The model with the structural break only in the intercepts of the observed
variables does not lead to an important improvement of the log-likelihood:
in the linear case the difference between the model with no structural breaks
and the breaks only in the intercepts is not significant, while in the regime-
switching case it is rather significant at 5% level. The introduction of the
structural breaks in the residual variances of the idiosyncratic components,
however, substantially improves the performance of the model. On the other
hand, in the linear case there is no significant gain of introducing the struc-
tural shifts both in intercepts and variances as compared to the model with
breaks in variances only. In the Markov-switching case the estimated test
statistic again is very close to the critical value χ2

0.95(8) = 21.03. This im-
plies that the bulk of the improvements in the model stem from including the
deterministic dummies taking account of the structural breaks in the resid-
ual variances of the specific factors. This can be regarded as an evidence of
the negative structural shift in the volatility which has affected the four US
macroeconomic time series we are using in our analysis.

Figures 4.2.4 through 4.2.6 illustrate the low-intercept regime probabili-
ties for each of the models with deterministic dummies. These probabilities
are superimposed on the NBER business cycle chronology. The simple ”eye-
ball analysis” of the pictures permits concluding that the it is the CF-MS(0,0)
with break in the intercepts that replicates the NBER dates the best. The
other two models, while capturing good enough most of the recessions, exag-
gerate the last one which took place in early 1990s. They make it last twice
as long as the ”official” contraction had lasted. The formal analysis of the
similarities between the model-derived datings and the NBER’s chronology,
however, is postponed to the concluding section of this chapter.

Finally we compare performance of the non-linear models examined in this
paper in terms of the in-sample prediction of NBER turning points. To eval-
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uate the performance we use quadratic probability score (QPS) of Diebold
and Rudebusch (1989) which is reported in Table 4.2.13. The forecast accu-
racy of each structural break model is compared to that of the benchmark
(no structural break) model using statistic of Diebold and Mariano (1995)
with rectangular window of length 201. The null hypothesis states no differ-
ence between the predictive accuracy of the two models. The test statistic is
standardized and asymptotically distributed as N(0,1).

Among the deterministic break models only model with break in mean
gives better estimates of the NBER turning points than the benchmark
model. Nevertheless, if we take into account the Diebold-Mariano statistic
we have to conclude that there is no significant difference in the in-sample
turning points forecast accuracy between the benchmark model and the best
model with structural break (deterministic break in the means of the ob-
served variables).

The smoothed conditional probabilities are normally closer to the NBER
dates.

4.2.4 Summary

In this section we have introduced a common dynamic factor model with the
one-time deterministic shift in the mean of the observed variables. This is
often a case when the accounting methodology used in constructing of the
statistical indicators is changed. Usually this introduces a discontinuity into
the observed time series not allowing to compare the dynamics before and
after the structural break.

We consider the models with both the linear and regime-switching dy-
namics having a single common dynamic factor. An illustrative artificial
example for a linear dynamics case with a structural break in the intercept
of one of the observed series was estimated. It shows a high enough fitting
ability of these models when they correspond to the true data-generating
process.

Next, the model allowing structural breaks both in the intercepts of the
observed time series and in the residual variances of the idiosyncratic factors
was estimated for the real US post-World War II monthly data. A model
without structural breaks is compared to (1) model with structural breaks
in the observed variables intercepts; (2) model with structural breaks in
the residual variances of the specific factors, and (3) model with structural
breaks both in the intercepts and variances. It turns out that the hypothesis
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of structural break in the means finds no support in the real data, whereas
the hypothesis of the structural breaks in the variances, although occurred
at different points of time for different observed variables, is likely to be
confirmed by the empirical evidence.

4.2.5 Appendix

Table 4.2.1. True and estimated parameters of the linear common factor
model with structural break

Coefficient True Estimated St. error p-value

γ1 1 – – –
γ2 0.9 0.89 0.02 0.0
γ3 1.2 1.19 0.02 0.0
γ4 0.7 0.68 0.02 0.0
δ21 0 -0.01 0.02 0.33
δ22 5 5.03 0.03 0.0
φ 0.8 0.82 0.03 0.0
ψ1 -0.3 -0.35 0.06 0.0
ψ2 -0.7 -0.71 0.03 0.0
ψ3 -0.5 -0.51 0.07 0.0
ψ4 -0.2 -0.13 0.05 0.0
σ2

C 0.81 0.76 0.06 0.0
σ2

1 0.25 0.25 0.02 0.0
σ2

2 0.36 0.36 0.03 0.0
σ2

3 0.16 0.16 0.02 0.0
σ2

4 0.49 0.48 0.03 0.0
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Table 4.2.2. The component series of the US composite economic indicator
Monthly data, January 1959 – June 2002

Series Short-hand Description

Employees on nonagricultural payrolls EMP 103, SA
Personal income less transfer payments INC 109 1996 $, SA, annual rate
Index of industrial production IIP total index, 1996=100, SA
Manufacturing and trade sales SLS chained 106 1996 $, SA

Notation: 109 1996 $ = billions of 1996 dollars; SA = seasonally adjusted.
Note: Chained (1996) dollar series are calculated as the product of the chain-
type quantity index and the 1996 current-dollar value of the corresponding
series, divided by 100.
Source: NBER (www.nber.org/cycles/hall.xlw): the industrial production
series has an erroneous entry in December 1985 which was replaced by the
figure taken from the index of industrial production with 1992 base, given
that the neighboring values (before and after 1985:12) are exactly the same
for both indices.

Table 4.2.3. Bootstrap critical values of the Wald statistics
1000 iterations

Variable Significance level
10% 5% 1%

EMP 13.071 14.620 17.609
INC 13.053 14.220 16.826
IIP 12.726 14.119 17.987
SLS 13.324 14.880 17.270

Table 4.2.4. Structural breaks timing

Variable Wald statistic Date

EMP 64.25** 1984:3
INC 7.171 1972:6
IIP 25.59** 1984:4
SLS 13.48* 1992:2

The statistic has superscripts * and ** if it exceeds 10% and 5% critical
value, respectively.
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Table 4.2.5. Unrestricted regression
Breakpoints: as suggested by Table 2

Variable D1 D2 ∆yt−1

EMP 0.0031 -0.0057 0.4363
INC 0.0540 -0.0281 0.2623
IIP 0.0089 -0.0249 0.3765
SLS -0.0273 0.1170 -0.0894

Table 4.2.6. Restricted regression
Breakpoint: none

Variable D ∆yt−1

EMP -0.0002 0.4369
INC -0.0006 0.2752
IIP -0.0036 0.3771
SLS -0.0025 -0.0871

Null hypothesis: D = D1 = D2

Table 4.2.7. F-test for structural break in intercept
Based on results of the regressions in Tables 4 and 5

Variable F-statistic p-value

EMP 0.188 0.664
INC 4.233 0.040
IIP 0.188 0.665
SLS 1.282 0.258
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Table 4.2.8. Estimated parameters of the linear and regime-switching
models with no structural break 1959:1-2002:6

Linear LL=-2627.9 Markov-switching LL=-2547.8
Parameter Estimated St.error Estimated St.error

p11 – – 0.979 0.008
1− p22 – – 0.085 0.031

µ1 – – 0.296 0.042
µ2 – – -1.16 0.104

γINC 0.825 0.057 0.778 0.052
γIIP 1.00 0.065 0.887 0.056
γSLS 0.710 0.062 0.619 0.056
σ2 0.639 0.066 0.385 0.040

σ2
EMP 0.359 0.039 0.270 0.037

σ2
INC 0.563 0.042 0.557 0.040

σ2
IIP 0.353 0.040 0.426 0.039

σ2
SLS 0.676 0.047 0.720 0.049

LL = the value of loglikelihood function



4.2. STRUCTURAL BREAKS IN DYNAMIC FACTOR MODEL: DETERMINISTIC MECHANISM109

Table 4.2.9. Estimated parameters of the linear and regime-switching
models with structural break in means 1959:1-2002:6

Linear LL=-2624.4 Markov-switching LL=-2538.5
Parameter Estimated St.error Estimated St.error

p11 – – 0.979 0.008
1− p22 – – 0.104 0.036

µ1 – – 0.364 0.073
µ2 – – -1.21 0.114

γINC 0.816 0.057 0.773 0.052
γIIP 1.01 0.066 0.914 0.056
γSLS 0.713 0.062 0.632 0.056
σ2 0.634 0.066 0.352 0.038

σ2
EMP 0.358 0.039 0.288 0.035

σ2
INC 0.561 0.042 0.558 0.040

σ2
IIP 0.353 0.040 0.408 0.037

σ2
SLS 0.676 0.047 0.716 0.048

δ1.EMP 0.054 0.054 0.026 0.060
δ1.INC 0.127 0.070 0.103 0.075
δ1.IIP 0.025 0.058 0.0 0.036
δ1.SLS -0.002 0.032 -0.044 0.067
δ2.EMP -0.074 0.061 -0.252 0.091
δ2.INC -0.056 0.047 -0.147 0.068
δ2.IIP -0.035 0.059 -0.199 0.090
δ2.SLS 0.006 0.032 -0.101 0.093

LL = the value of loglikelihood function
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Table 4.2.10. Estimated parameters of the linear and regime-switching
models with structural break in variances 1959:1-2002:6

Linear LL=-2586.7 Markov-switching LL=-2492.0
Parameter Estimated St.error Estimated St.error

p11 – – 0.978 0.008
1− p22 – – 0.073 0.026

µ1 – – 0.290 0.034
µ2 – – -1.13 0.078

γINC 0.900 0.066 0.816 0.056
γIIP 0.978 0.072 0.795 0.056
γSLS 0.769 0.072 0.615 0.059
σ2 0.553 0.065 0.301 0.034

σ2
EMP 0.175 0.034 0.029 0.024

σ2
INC 0.551 0.043 0.568 0.040

σ2
IIP 0.183 0.033 0.293 0.035

σ2
SLS 0.601 0.083 0.664 0.086

λEMP 0.363 0.069 0.426 0.058
λINC 0.0 0.0 0.0 0.0
λIIP 0.365 0.070 0.364 0.080
λSLS 0.089 0.100 0.113 0.104

LL = the value of loglikelihood function
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Table 4.2.11. Estimated parameters of the linear and regime-switching
models with structural break in intercepts and variances 1959:1-2002:6

Linear LL=-2582.9 Markov-switching LL=-2484.8
Parameter Estimated St.error Estimated St.error

p11 – – 0.978 0.008
1− p22 – – 0.075 0.028

µ1 – – 0.267 0.080
µ2 – – -1.17 0.124

γINC 0.893 0.067 0.799 0.057
γIIP 0.983 0.073 0.793 0.058
γSLS 0.776 0.073 0.613 0.060
σ2 0.545 0.064 0.292 0.034

σ2
EMP 0.173 0.034 0.026 0.026

σ2
INC 0.549 0.042 0.569 0.041

σ2
IIP 0.183 0.033 0.295 0.036

σ2
SLS 0.599 0.082 0.660 0.086

δ1.EMP 0.055 0.056 0.132 0.090
δ1.INC 0.130 0.070 0.180 0.091
δ1.IIP 0.027 0.053 0.090 0.080
δ1.SLS -0.002 0.036 0.029 0.069
δ2.EMP -0.075 0.050 -0.064 0.073
δ2.INC -0.058 0.050 -0.023 0.041
δ2.IIP -0.037 0.047 -0.031 0.067
δ2.SLS 0.005 0.024 0.034 0.091
λEMP 0.366 0.069 0.427 0.058
λINC 0.0 0.0 0.0 0.0
λIIP 0.365 0.070 0.362 0.080
λSLS 0.090 0.099 0.120 0.105

LL = the value of loglikelihood function
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Table 4.2.12. Comparison of different modifications of the model
Specifications CF(0,0) and CF-MS(0,0). Likelihood ratio test

Linear models
No SB 7.0 (8) 82.4* (4) 90.1* (12)

18.7* (8) SB in M 83.1* (4)
111.7* (4) SB in V 7.7 (8)
126.0* (12) 107.3* (4) 14.3 (8) SB in M & V

Markov-switching models

”No SB” = no structural break; ”SB in M” = structural break in the mean
of observed variables; ”SB in V” = structural break in the residual variance
of specific components; ”SB in M & V” = structural break both in the mean
and in the residual variance.
The asterisks show the LR-statistics exceeding the critical χ2

0.95 values.

Table 4.2.13. In-sample forecasting performance of the Markov-switching
common factor models with deterministic structural break

Model-derived recession probabilities compared to the NBER business cycle
chronology, 1959:1-2002:6

Model QPS DM p-value

Filtered probabilities
No break (benchmark model) 0.050 — —

Break in mean 0.047 0.378 0.353
Break in variance 0.060 -1.27 0.102

Break in mean and variance 0.056 -0.862 0.194
Smoothed probabilities

No break (benchmark model) 0.037 — —
Break in mean 0.029 0.959 0.169

Break in variance 0.051 -1.89 0.029
Break in mean and variance 0.044 -0.779 0.218

QPS = quadratic probability score
DM = Diebold-Mariano statistic testing the hypothesis of equality of the fore-
cast accuracy of two alternative models — see Diebold and Mariano (1995)
p-value = significance value of DM-statistic
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Figure 4.2.1: Testing the timing of structural break
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Figure 4.2.2: Linear CF(0,0) with and without dummies
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Figure 4.2.3: CF-MS(0,0) with and without dummies
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Figure 4.2.4: Recession probabilities vs. NBER dates
Model with break in means
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Figure 4.2.5: Recession probabilities vs. NBER dates
Model with break in variances
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Figure 4.2.6: Recession probabilities vs. NBER dates
Model with break in means and variances
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4.3 Structural Breaks in Dynamic Factor Model:

Probabilistic Mechanism

This section studies a probabilistic model of structural break. Unlike the pre-
vious section, here we concentrate only on the structural break in volatility.
However, given the empirical evidence presented both above, in subsection
4.2.3, and below, in section 4.3.2, for the US data there is little evidence
to support the hypothesis of structural change in the mean, while there is
strong support for the hypothesis of the structural shifts in the variance.

Another difference is that in this section we consider a single structural
break which hit the common dynamic factor, not the idiosyncratic factors
as in the preceding section. In this sense the model we are going to present
is somewhat less flexible. Nevertheless, it has an important advantage since
it does not impose the predefined breakpoints as the deterministic model of
section 4.3, rather estimating the moment when the structural break had
presumably taken place.

4.3.1 Model

We consider a set of the coincident time series which are supposed to evolve
at the same pace as a current state-of-affairs indicator (e.g. real GDP). The
common dynamics of the coincident time series are explained by a latent
common factor. The idiosyncratic dynamics of each time series are captured
by one specific factor per each observed time series. Formally:

∆yt = Γ∆ft + ut (4.23)

where ∆yt is the n×1 vector of the observed time series in the first differences;
∆ft is the scalar representing the latent common factor in the first differences;
ut is the n×1 vector of the latent specific factors; Γ is the n×1 factor loadings
vector linking the observed series with the common factors.

The dynamics of the latent common factor can be described in terms of
a nonlinear autoregressive (AR) model:

∆ft = µ(st) + φ(L)∆ft−1 + εt (4.24)

where µ(st) is the state-dependent intercept of the common coincident factor
which takes different values depending on the regime; φ(L) is the common
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factor AR lag polynomial of order p; εt is the serially uncorrelated common
factor disturbance term with possibly state-dependent variance:

εt ∼ NID (0, σ2(st))

st is the unobserved regime variable. In the two-regime (expansion-
recession, or high-low) case it takes two values: 0 or 1. Depending on the
regime, the common factor’s intercept assumes different values: low in reces-
sions and high in expansions. Thus, the common factor grows faster during
the upswings and slower (or even have negative growth rate) during the
downswings of the economy. Here we introduce yet another dimension to the
problem by allowing the common factor residual variance, σ2(st), to have
its own low and high regimes — regime of low volatility and regime of high
volatility. We assume that the ”mean” state variable, sµ

t , is independent of
the residual variance state variable, sσ

t . This is a kind of model which was
used by McConnell and Perez Quiros (2000) to examine the Post-World War
II evolution of the US quarterly real GDP.

The changes in the regimes are governed by the first-order Markov chain
process, which is summarized by the transition probabilities matrix, whose
characteristic element is pij = prob(st = j|st−1 = i).

Since we have two parameters — intercept and variance — each of which
passes through its own low and high regimes, the whole process should be
cast in a four regimes framework as it is done in McConnell and Perez Quiros
(2000). Namely:

Regime 1 Regime 2 Regime 3 Regime 4

Composite state variable st = 0 st = 1 st = 2 st = 3

Intercept state variable sµ
t = 0 sµ

t = 1 sµ
t = 0 sµ

t = 1
Variance state variable sσ

t = 0 sσ
t = 0 sσ

t = 1 sσ
t = 1

where sµ
t and sσ

t are the unobserved state variables for common factor inter-
cept and common factor residual variance, respectively. Each state variable
has its own 2× 2 transition probabilities matrix:

sj
t

High Low

sj
t−1 High pj

11 1− pj
11

Low 1− pj
22 pj

22
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where j = {µ, σ}.
Given that the state variables sµ

t and sσ
t staying behind the evolution of

the common factor intercept and residual variance are independent, the 4×4
transition probabilities matrix, π, governing the behavior of the ”composite”
state variable, st, would look as:




pµ
11p

σ
11 (1− pµ

11)p
σ
11 pµ

11(1− pσ
11) (1− pµ

11)(1− pσ
11)

(1− pµ
22)p

σ
11 pµ

22p
σ
11 (1− pµ

22)(1− pσ
11) pµ

22(1− pσ
11)

pµ
11(1− pσ

22) (1− pµ
11)(1− pσ

22) pµ
11p

σ
22 (1− pµ

11)p
σ
22

(1− pµ
22)(1− pσ

22) pµ
22(1− pσ

22) (1− pµ
22)p

σ
22 pµ

22p
σ
22




In fact, π = πµ ⊗ πσ, where πµ and πσ are the transition probabilities
matrices for the state variables sµ

t and sσ
t .

Thus, in our four-regime model we have four state-dependent means, µij,
where i = {sµ

t = 0, sµ
t = 1} and j = {sσ

t = 0, sσ
t = 1}, and two state-

dependent residual variances, σ2
j , j = {high, low}.

A restricted version of the above model was also considered. It is a
variant proposed by Kim and Nelson (1999a) for the univariate US real GDP
data. They regard the low volatility regime as an absorbing state. In other
words, whenever the system attains this state, it remains there forever. This
assumption translates into the following constraint imposed on the transition
probabilities matrix πσ:

πσ =

(
pσ

11 1− pσ
11

0 1

)

The quantity 1
1−pσ

11
measures the expected duration of the high volatility

regime and hence indirectly indicates the approximate location of the break
point. The two models — unrestricted and restricted — can be compared
using the standard likelihood ratio (LR) test.

The unobserved idiosyncratic factors are by definition mutually indepen-
dent and are modelled as the AR processes:

ut = Ψ(L)ut−1 + ηt (4.25)

where Ψ(L) is the sequence of q (q = max{q1,..., qn}, where qi is the order
of the AR polynomial of the i − th idiosyncratic factor) n × n diagonal lag
polynomial matrices and ηt is the n × 1 vector of the mutually and serially
uncorrelated normally distributed shocks:
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ηt ∼ NID







0
...
0


 ,




σ2
1 0

. . .

0 σ2
n







The state-space form of this model would be as follows:

∆yt = Axt (4.26)

xt = α(st) + Cxt−1 + vt (4.27)

where xt = (ft|ut)
′ is the state vector containing stacked on top of each other

vector of common factor and the vector of specific factors; vt is the vector
of the common and idiosyncratic factors’ disturbances with mean zero and
variance-covariance matrix Q; α(st) = (µ(st), 0, ..., 0)′ is the state-dependent
vector of intercepts.

A =

(
Γ iq1 ... 0

on×1 0 ... iqn

)

where Γ is the n× 1 vector of the common factor loadings:

Γ =




γ1

γ2
...

γn




which, to simplify the matters, we represent as a column vector, although
when some of the observed time series are lagging with respect to the common
factor we would need to include additional columns with the factor loadings.

On×m is n×m matrix of zeros; om is the m× 1 vector of zeros; im is the
first row of the m×m identity matrix.

C =




Φ 0 0
0 Ψ1

. . .

0 Ψn




where Φ is the p×p companion matrix of the AR polynomial of the common
dynamic factor:
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Φ =

(
φ

Ip−1

)

where φ is the 1 × p row vector of the AR coefficients of the leading factor,
In is the n× n identity matrix, and om is the m× 1 vector of zeros.

The matrices Ψ1, ..., Ψn have the same structure as Φ.
There are different ways of estimating the unknown parameters and the

latent factors (maximum likelihood, EM, MCMC techniques — see Kim and
Nelson (1999b) for more details). Here we applied the maximum likelihood
method with log-likelihood function obtained using Kalman filter recursions.
To save space we will not present them here, referring the reader, for instance,
to Hamilton (1994) who gives very clear and systematic explanation of the
Kalman filter methodology.

4.3.2 Real example

The previous research (e.g. McConnell and Perez Quiros (2000)) suggests
that a structural break in the US economy had presumably taken place in
early 1984. For the sake of illustration we analyze the behavior of the ma-
jor US macroeconomic series before and after that date (see Table 4.2.1 in
Appendix to section 4.2 which lists the component series of our compos-
ite economic indicator). Recall that only two of the four series had their
structural breaks close to the early 1984, as we have seen in section 4.2. Fig-
ures 4.3.1-4.3.2 show the evolution of the growth rates of the US real GDP
(quarterly data) and the four monthly component series of the US composite
economic indicator listed in Table 4.2.1. Besides the time series themselves,
their means and the two standard deviations band for two subperiods —
1959:1-1983:12 for monthly data (1959:2-1983:4 for GDP) and 1984:1-2002:6
for monthly data (1984:1-2002:2 for GDP) — are plotted on the graphs. This
allows evaluating the scale of shifts in the mean and variance of each time
series. The means apparently have not changed much, while the variances,
especially those of GDP, nonagricultural employment and industrial produc-
tion have undergone an important decline.

The quantitative characterization of these changes may be found in Ta-
bles 4.3.1a-4.3.1b of Appendix which contain means, standard deviations
(St.dev.), coefficients of variation (CV), minima (Min) and maxima (Max)
of the time series in question before and after the beginning of 1984. As com-
parison of Tables 1a and 1b shows, the means have decreased, although not
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significantly. The variances have gone down, especially those of employment
and industrial production which in the second subsample have experienced
almost double reduction. The coefficients of variation fell down too, save for
the case of industrial production where the variance diminished faster than
the mean. It seems also that the growth rates have changed somewhat asym-
metrically: if in two cases out of five (INC and SLS) the lowest growth rates
where attained in the second subperiod, only in one case out of five (SLS)
the highest growth rate had been achieved after January 1984.

The formal test2 of the differences between the means and variances in
the two subsamples is contained in Table 4.3.2. The columns two and four
represent the test statistics values — Z distributed as a normal and F follow-
ing F (n1, n2) distribution — for means and variances, respectively. n1 and n2

stand for the sizes of each of two subsamples. The p-values (see columns three
and five of Table 4.3.2) computed using these test statistics allow testing the
null hypothesis of no difference between the moments of the two subperiods.
One can see that only for the mean of the variable INC the null hypothesis
may be rejected at significance level of 10%, while the rest of the means seem
not to change. What for the variances, here the structural break appears to
happen for all the time series under inspection. The largest decrease in the
growth rate variance took place in nonagricultural employment, GDP, and
industrial production. Thus, it makes sense to talk about a structural break
in 1983-1984 which turned out to affect mainly the volatility of growth but
not the average level of the growth rates.

Given the fact that the GDP has experienced large volatility structural
break as our own calculations show and as was discovered, e.g., by McConnell
and Perez Quiros (2000), we decided to estimate both a single-frequency
model based only on the monthly time series and a mixed-frequency model
which uses, in addition to the monthly series, the quarterly real GDP data.

The data used are as in section 4.1. Namely, for the estimation of the com-
mon coincident factor model with single-frequency data the four US monthly
time series stretching from January 1959 through June 2002 were used: EMP,
INC, IIP, and SLS (see Table 4.2.1). The time series in levels were logged,
then their first differences were taken and multiplied by 100. Finally, all the
component series were demeaned and normalized.

Six models were estimated: (1) single-frequency model with no struc-
tural break (2-regime model); (2) mixed-frequency model with no structural

2For details on inferences based on two samples see Devore (1987).
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break (2-regime model); (3) unrestricted single-frequency model with struc-
tural break (4-regime model); (4) unrestricted mixed-frequency model with
structural break (4-regime model); (5) restricted single-frequency model with
structural break (4-regime model), and finally (6) restricted mixed-frequency
model with structural break (4-regime model).

All the models were estimated under the identifying assumption of the
first factor loading being equal 1. The results of estimation of models 1 and
2 are reported in Table 4.3.4. The parameter estimates, together with their
standard errors, of the unrestricted and restricted single-frequency models
with structural break are in Table 4.3.4, while those of the unrestricted and
constrained mixed-frequency models with structural break - in Table 4.3.5.
In all the models both the common factors and idiosyncratic factors are
specified as AR(0).

The LR test of the restriction imposed on the transition probabilities
matrix of the variance state variable shows that the null hypothesis of pσ

22 = 1
can be rejected at 5% significance level: the estimated test value for the
single-frequency model is equal 24.8 and for the mixed-frequency model it is
22.4 (see the first rows of Tables 4.3.4 and 4.3.5) against χ2

0.95(1) = 3.84.
The low residual standard error of the unobserved common factor is about

10 times smaller than the high residual standard error of the common factor
in case of both restricted and unrestricted single-frequency models. For the
4-regime mixed-frequency models this ratio is approximately 3.5. This dif-
ference is somewhat surprising, given that the pre-1984 to post-1984 ratio of
standard deviations of the individual component time series does not exceed
2.

The state-dependent intercepts corresponding to the high variance regime
(µ11 and µ21) are much greater in the absolute value than their counterparts
in the low-volatility regime. This implies that the shift in the volatility was
accompanied by a ”stabilization” of the growth rates. Both the recessions
and expansions became milder.

The expected duration of the high volatility state computed using the
estimate of the transition probability, pσ

11, in both cases (single- and mixed-
frequency models) is equal 333 months. If we assume that the high variance
state commences at the very beginning of the sample (February 1959), the
333rd period will correspond to October 1986. The date is somewhat late
compared to the beginning of 1984 proposed as the date of the start of
volatility decline.

Figure 4.3.3 displays the estimates of the common coincident factor ob-
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tained using the single-frequency models and mixed-frequency models plotted
against the NBER’s US business cycle dates. The common factor in both
cases was reconstructed as the partial sums of its growth rates obtained as
an output of the estimation procedure. Unlike Stock and Watson (1991), we
are not adding the drift in order to be able to see the composite economic
indicator’s fluctuations more clearly. Seven major recessions can be observed
on the picture which fit quite well the NBER recession dating (shaded areas),
with the composite economic indicator leading sometimes the dating. The
common factor resulting from the mixed-frequency model has a far smaller
variance than that of the single-frequency model. The profiles of the common
factor from the models with and without structural break do not display any
perceivable differences.

Figure 4.3.4 illustrates the conditional recession (low-intercept) probabil-
ities of the benchmark model, that is, the model without structural break.
Two cases are considered: with single-frequency and mixed-frequency data.
The recession probabilities appear to correspond quite well to the NBER
business cycle chronology represented by the shaded areas as contractions.
There are three noteworthy differences: (1) the conditional probabilities de-
tect a recession in late 1950s which is not treated as such by the NBER; (2)
the ”model-derived” recession of early 1990s is twice as long as the ”official”
one, especially in the single-frequency case; (3) the last contraction which,
according to NBER started in March 2001, is signalled well in advance by
the conditional probabilities.

On Figures 4.3.5-4.3.6 the conditional (smoothed) probabilities of the
low intercept regime (sum of the conditional probabilities corresponding to
the regimes 2 and 4) and low intercept — high variance regime (conditional
probabilities corresponding to the regime 2) for both the single- and mixed-
frequency model are depicted. Both conditional probabilities are contrasted
against the NBER’s business cycle chronology. However, only the condi-
tional probabilities of the low intercept — high variance regime display fairly
high degree of conformity to this dating — see Figure 4.3.6. The low regime
probabilities detect quite a bit of false signals: two false recessions in 1960s,
one in 1980s, and one in 1990s. The picture is the same for the two mod-
els, although the mixed-frequency model attenuates slightly the false alarms
compared to the single-frequency model. Nevertheless, the situation is im-
proved when only the conditional probabilities of the low intercept — high
variance regime are considered: they display fairly high degree of conformity
to NBER dating (see Figure 4.3.6).
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Figure 4.3.7 displays the conditional (smoothed) probabilities of the low
variance regime (sum of the conditional probabilities corresponding to the
regimes 1 and 2) for both unrestricted models, too. It seems that, regardless
of model, this regime becomes much more probable since February-March
of 1984. From that period on the conditional probabilities of the coincident
economic indicator having low residual variance are almost always — except
for two short interruptions — exceeding 0.7. This evidence is in accordance
with the finding of McConnell and Perez Quiros (2000) who using the quar-
terly GDP data point out to the first quarter of 1984 as the beginning of
”low volatility era”.

The low-intercept and low-variance regime probabilities corresponding to
the restricted models — with single and mixed frequency — are displayed
on Figures 4.3.8 and 4.3.9, respectively. The recession (low intercept) proba-
bilities obtained from the constrained model do not differ from those result-
ing from the unconstrained estimation. The restricted model low volatility
regime probabilities are much smoother thanks to the restriction imposed on
the transition probability, pσ

22. The smoothed probabilities signal the arrival
of the low volatility regime earlier than the filtered conditional probabili-
ties do. One can clearly see the frontier between the high and low variance
regimes which passes through the middle of 1984. This does not contradict
the results of the previous studies.

We conclude the analysis of the models examined above by comparing
their performance in terms of the in-sample prediction of the NBER turning
points. We use the quadratic probability score (QPS) suggested by Diebold
and Rudebusch (1989) to evaluate the forecasting accuracy. QPS compares
the recession probabilities derived from some model to a generally accepted
business cycle dating. In the USA case it is normally the NBER’s recession
dates.

Table 4.3.6 reports QPS both for the models with structural break and
those without it. Columns 2 and 3 display QPS corresponding to the fil-
tered and smoothed regime probabilities. The smoothed probabilities seem
to outperform the filtered ones. This is due to the fact that smoothing elim-
inates the smaller spikes which are very typical for the filtered probabilities
and which reflect nothing but the noise. The low-intercept regime prob-
abilities computed for the unrestricted models with break have very poor
performance. However, the low intercept — high volatility regime probabil-
ities derived from these models appear to fit better. This confirms what we
saw on Figures 4.3.5 and 4.3.6.
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The fact that QPS of different models are different is not sufficient to con-
clude that one model is superior with respect to another. The difference may
be statistically insignificant. In order to check this we computed the statistic
proposed by Diebold and Mariano (1995) to test the hypothesis of equality of
the forecast accuracy of two alternative models. The Diebold-Mariano (DM)
statistic was calculated using the rectangular spectral window of length 21.
The forecast accuracy of one model-derived chronology is compared to that of
other model-derived dating. The null hypothesis states no difference between
the predictive accuracy of the two models. The test statistic is standardized
and hence it is asymptotically distributed as N(0,1).

Since the DM-statistic is pairwise and we have 8 model-derived chronolo-
gies to compare, there can be many different combinations. To save space
we do not report all of them, only two tables comparing the models with-
out structural break serving as a benchmark to those with break (Tables
4.3.7a and 4.3.7b). In Table 4.3.7a filtered conditional probabilities of all the
models are compared to the filtered and smoothed probabilities of two bench-
mark models (with single- and mixed-frequency data). These two models are
endowed with Markov-switching with two regimes: low and high intercept.
Table 4.3.7b compares the smoothed conditional probabilities of all the mod-
els to the filtered and smoothed conditional probabilities of the benchmark
models. The following conclusions can be drawn from the prediction accuracy
comparisons which are partly reported in Tables 4.3.7a and 4.3.7b.

First, the smoothed conditional probabilities are normally closer to the
NBER dates. In other words, their forecasting accuracy is statistically supe-
rior to that of the filtered regime probabilities.

Secondly, there is no evidence of better performance of the models with
mixed-frequency data compared to the single-frequency models, no matter
how many regimes are assumed in those models.

Finally, we did not find any strong statistical evidence of the structural
break (4-regime) models performing the in-sample forecasting better than
the models with no structural break.

The reason why neither adding the mixed-frequency nor including another
independent state variable improves the prediction of the NBER business
cycle chronology may be that there is no much room for such an improvement,
since the two-regime model replicates the chronology sufficiently well.
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4.3.3 Summary

An analysis of the five US macroeconomic time series shows that in the
beginning of 1984 a structural break in the volatility of the growth rates of
the series in question had taken place. There is no strong evidence of any
break in the average growth rate, however.

In this section we considered the problem of declining volatility of the
US economy. Six single-factor models with Markov switching were exam-
ined: two models without structural break with single (monthly) and mixed
(monthly and quarterly) observation frequencies, two unrestricted structural
break models with single and mixed frequencies, and two restricted structural
break models with single and mixed frequencies.

In the restricted models a constraint is imposed on the transition proba-
bilities matrix of the variance state variable forcing the low variance regime
to be an absorbing state. The restriction results in smoother conditional
regime probabilities but, according to likelihood ratio test, the constrained
models are beaten by the unrestricted models — the difference between the
log-likelihood function values of the restricted and unrestricted models being
statistically insignificant.

The models were estimated using the US monthly and quarterly macroe-
conomic data covering the period 1959-2002. The shift in the residual vari-
ance of the composite economic indicator appears to have happened in the
early 1984. This is compliant to the previous findings, e.g. McConnell and
Perez Quiros (2000), Chauvet and Potter (2001).

A strong link between our models’ recession probabilities and the NBER
chronology is evident. As the formal forecasting accuracy tests show, the
four-regime models do not contribute new information in forecasting the
NBER dates but do allow detecting the secular structural break in the volatil-
ity of the US economy.
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4.3.4 Appendix

Table 4.3.1a. The component series statistics in first subperiod

Series Mean St.dev. CV Min Max
Monthly data 1959:2-1983:12

EMP 0.189 0.283 1.50 -0.86 1.23
INC 0.293 0.430 1.47 -1.05 1.61
IIP 0.296 1.048 3.54 -4.25 6.00
SLS 0.286 1.128 3.94 -3.11 3.12

Quarterly data 1959:2-1983:4
GDP 0.853 1.082 1.27 -2.06 3.78

Table 4.3.1b. The component series statistics in second subperiod

Series Mean St.dev. CV Min Max
Monthly data 1984:1-2002:6

EMP 0.158 0.148 0.94 -0.31 0.56
INC 0.246 0.370 1.50 -1.10 1.25
IIP 0.235 0.534 2.27 -1.34 2.06
SLS 0.254 0.945 3.72 -3.21 3.54

Quarterly data 1984:1-2002:2
GDP 0.776 0.556 0.72 -0.83 2.16

Table 4.3.2. Testing significance of differences between the means and
variances of two subsamples

Series Mean Z Mean p-value Variance F Variance p-value
EMP 1.620 0.053 3.66 0.0
INC 1.340 0.091 1.35 0.009
IIP 0.866 0.193 3.85 0.0
SLS 0.352 0.363 1.42 0.003
GDP 0.609 0.271 3.79 0.0
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Table 4.3.3. Estimated parameters of the 2-regime models with single- and
mixed-frequency data

Parameter Single-frequency: -2547.1 Mixed-frequency: -3041.1
Estimated St. error Estimated St. error

pµ
11 0.98 0.007 0.979 0.008

1− pµ
22 0.085 0.030 0.091 0.032

µ1 0.300 0.041 0.121 0.019
µ2 -1.150 0.099 -0.484 0.058

γGDP – – 1 –
γEMP 1 – 2.28 0.188
γINC 0.774 0.052 1.85 0.163
γIIP 0.880 0.055 2.16 0.170
γSLS 0.615 0.056 1.52 0.15
σ2 0.389 0.040 0.073 0.012

σ2
GDP – – 0.192 0.024

σ2
EMP 0.265 0.036 0.315 0.037

σ2
INC 0.558 0.040 0.549 0.040

σ2
IIP 0.430 0.039 0.385 0.038

σ2
SLS 0.721 0.049 0.695 0.047
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Table 4.3.4. Estimated parameters of the unrestricted and restricted models
with single-frequency data

Parameter Unrestricted: -2470.7 Restricted: -2481.9
Estimated St. error Estimated St. error

pµ
11 0.959 0.013 0.977 0.008

pµ
22 0.919 0.027 0.919 0.030

pσ
11 0.937 0.022 0.997 0.003

pσ
22 0.951 0.017 1 –

µ1high 0.677 0.089 0.469 0.067
µ2high -1.460 0.131 -1.430 0.190
µ1low 0.223 0.044 0.110 0.036
µ2low -0.405 0.075 -0.878 0.079
γINC 0.697 0.046 0.688 0.050
γIIP 0.827 0.048 0.803 0.054
γSLS 0.540 0.050 0.541 0.052
σ2

high 0.661 0.086 0.633 0.074
σ2

low 0.014 0.023 0.053 0.021
σ2

EMP 0.194 0.030 0.178 0.039
σ2

INC 0.607 0.041 0.610 0.043
σ2

IIP 0.448 0.037 0.469 0.042
σ2

SLS 0.764 0.050 0.758 0.050
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Table 4.3.5. Estimated parameters of the unrestricted and restricted models
with mixed-frequency data

Parameter Unrestricted: -2966.3 Restricted: -2978.8
Estimated St. error Estimated St. error

pµ
11 0.957 0.014 0.975 0.009

pµ
22 0.917 0.029 0.916 0.030

pσ
11 0.932 0.025 0.997 0.003

pσ
22 0.947 0.018 1 –

µ1high 0.274 0.042 0.189 0.027
µ2high -0.536 0.061 -0.534 0.064
µ1low 0.081 0.018 0.043 0.015
µ2low -0.148 0.037 -0.316 0.036
γEMP 2.50 0.199 2.47 0.201
γINC 1.85 0.165 1.82 0.165
γIIP 2.23 0.179 2.18 0.177
γSLS 1.46 0.155 1.48 0.153
σ2

high 0.101 0.020 0.097 0.017
σ2

low 0.001 0.004 0.008 0.003
σ2

GDP 0.196 0.024 0.201 0.025
σ2

EMP 0.247 0.034 0.247 0.034
σ2

INC 0.588 0.040 0.587 0.040
σ2

IIP 0.404 0.037 0.410 0.038
σ2

SLS 0.742 0.049 0.729 0.048
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Table 4.3.6. In-sample performance of the probabilistic structural break
models: QPS of filtered and smoothed low-intercept regime probabilities

Model Filtered Smoothed

No structural break (two-regime) models
Single-frequency (regime 2) 0.069 0.037
Mixed-frequency (regime 2) 0.063 0.031

Structural break (four-regime) models
Single-frequency unrestricted (regime 2 + regime 4) 0.121 0.128
Mixed-frequency unrestricted (regime 2 + regime 4) 0.122 0.128
Single-frequency unrestricted (regime 2) 0.059 0.043
Mixed-frequency unrestricted (regime 2) 0.056 0.037
Single-frequency restricted (regime 2 + regime 4) 0.071 0.053
Mixed-frequency restricted (regime 2 + regime 4) 0.064 0.052

Note: recall that regime 2 in the two-regime (no break) model stands for
the low intercept regime, while in the four-regime structural break model it
stands for the low intercept - high variance regime. The sum of regime 2 and
regime 4 probabilities corresponds in the latter model to the low intercept
regime.

Table 4.3.7a. Comparing forecasting accuracy of filtered regime
probabilities: pairwise DM-statistic

Benchmark
Model SFNoB MFNoB

filtered smoothed filtered smoothed
SFNoB (regime 2) – -3.08** -1.35* -2.46**
MFNoB (regime 2) 1.35* -3.19** – -2.70**
SFUnR (regime 2 + regime 4) -2.90** -3.90** -2.97** -3.53**
MFUnR (regime 2 + regime 4) -3.01** -4.09** -3.17** -3.72**
SFUnR (regime 2) 0.42 -1.10 0.16 -1.61*
MFUnR (regime 2) 0.61 -1.00 0.38 -1.60*
SFRes (regime 2 + regime 4) -0.31 -3.15** -0.92 -2.59**
MFRes (regime 2 + regime 4) 0.67 -3.74** -0.27 -2.82**

Notation: SF = single frequency; MF = mixed frequency; NoB = no
structural break; UnR = unrestricted structural break model; Res = re-
stricted structural break model; * and ** — means that difference of accuracy
is significant at 10% and 5%, respectively.
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Table 4.3.7b. Comparing forecasting accuracy of smoothed regime
probabilities: pairwise DM-statistic

Benchmark
Model SFNoB MFNoB

filtered smoothed filtered smoothed
SFNoB (regime 2) 3.08** – 3.19** -0.89
MFNoB (regime 2) 2.46** 0.89 2.70** –
SFUnR (regime 2 + regime 4) -2.50** -3.35** -2.60** -3.13**
MFUnR (regime 2 + regime 4) -2.46** -3.34** -2.60** -3.14**
SFUnR (regime 2) 1.06 -0.27 0.93 -0.66
MFUnR (regime 2) 1.38* -0.01 1.31* -0.41
SFRes (regime 2 + regime 4) 1.26 -1.74** 0.75 -1.47*
MFRes (regime 2 + regime 4) 1.29* -1.88** 0.82 -1.58*

Notation: SF = single frequency; MF = mixed frequency; NoB = no
structural break; UnR = unrestricted structural break model; Res = re-
stricted structural break model; * and ** means that difference of accuracy
is significant at 10% and 5%, respectively.
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Figure 4.3.1: US real GDP in 1959:2-2002:2
Structural change: mean and 2 standard deviations
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Figure 4.3.2: Component series of the US coincident indicator, 1959:2-2002:6
Structural change: mean and 2 standard deviations
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Figure 4.3.3: US coincident economic indicator vs. NBER dates
Models with & without structural break 1959:1-2002:6
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Figure 4.3.4: Low intercept regime probabilities vs. NBER dates
Benchmark (no break) model
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Figure 4.3.5: Low intercept regime probabilities vs. NBER dates
Unrestricted structural break model
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Figure 4.3.6: Low intercept - high variance regime probabilities vs. NBER dates
Unrestricted structural break model
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Figure 4.3.7: Low variance regime probabilities
Unrestricted structural break model
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Figure 4.3.8: Low intercept regime probabilities vs. NBER dates
Restricted structural break models

SMOOTHED FILTERED

Single-frequency model

1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999
0.00

0.25

0.50

0.75

1.00

SMOOTHED FILTERED

Mixed-frequency model

1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999
0.00

0.25

0.50

0.75

1.00



144CHAPTER 4. DYNAMIC FACTOR ANALYSIS AND DATA PROBLEMS

Figure 4.3.9: Low variance regime probabilities
Restricted structural break models
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4.4 Conclusion

We conclude the analysis of the models examined in this chapter by com-
paring their performance in terms of the in-sample prediction of the NBER
turning points. As in chapter 3 we use the quadratic probability score to
evaluate the performance. The below table compares the models with deter-
ministic and probabilistic structural break mechanisms as defined in sections
4.2 and 4.3, correspondingly. Remind that in the former case the structural
break is captured by the deterministic dummies added to the idiosyncratic
factors’ intercepts and/or residual variances. In the latter case the structural
break is taken into account by introducing second state variable responsible
for the secular change in the common factor’s volatility.

All the models in this table have both the common factor and the id-
iosyncratic factors specified as AR(0). The benchmark model is that with
no break. It is endowed with the Markov-switching dynamics represented
by a state variable with two regimes: low intercept (contraction) and high
intercept (expansion).

In-sample performance: QPS 1959:1-2002:6

Model Filtered Smoothed

Deterministic structural break model
No break (benchmark model) 0.050 0.037
Break in mean 0.047 0.029
Break in variance 0.060 0.051*
Break in mean and variance 0.056 0.044

Probabilistic structural break model
Single-frequency unrestricted 0.121* 0.128*
Mixed-frequency unrestricted 0.121* 0.127*
Single-frequency restricted 0.071* 0.053*
Mixed-frequency restricted 0.064* 0.052*

The asterisks denote the QPS which are significantly — at 5significance
level — different from the benchmark model’s QPS. The significance level is
determined using the Diebold-Mariano statistic. The null hypothesis of the
Diebold-Mariano test states no difference between the predictive accuracy of
the two models.

First conclusion that can be drawn from this table is that among the
deterministic break models only model with break in intercept gives better
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estimates of the NBER turning points than the benchmark model. Among
the probabilistic break models only the last one outperforms the benchmark
model and only in terms of the filtered conditional probabilities. However,
if we take into account the Diebold-Mariano statistics we have to conclude
that there is no significant difference in the in-sample turning points forecast
accuracy between the benchmark model and the best model with structural
break (deterministic break in the intercepts of the specific factors).

Secondly, the smoothed conditional probabilities are normally closer to
the NBER dates.

Thirdly, the models with deterministic structural break are generally out-
performing those with stochastic break, especially in terms of the smoothed
probabilities. The two models with restricted transition matrix perform bet-
ter than the two models with deterministic dummies for the structural break
in the variances of the specific factors.

Fourthly, the models with mixed-frequency series appear to predict better
the NBER business cycle chronology than the single-frequency models. This
may be due to the additional information contained in the quarterly real
GDP data which have been used in these models. The gain is especially
noticeable for the models with restricted transition probabilities matrix.



Chapter 5

Conclusion

Dynamic factor analysis is a very rich methodology which can be extended
in many ways to get a closer approximation to complex economic reality.
In particular, it is a good approach to the investigation of the business cy-
cle, since, especially when augmented with Markov switching, it captures
the basic features of this macroeconomic phenomenon: the comovements of
different macroeconomic time series and their asymmetrical evolution over
contraction and expansion phases of the business cycle.

In this thesis we have introduced several models aimed at increasing the
forecasting ability of the common dynamic factor model and improving its
efficiency. The models were analyzed using both the simulated time series
with known data-generating process and the real macroeconomic variables
characterizing the Post-World War II evolution of the US economy.

Firstly, two bifactor models, including common leading factor and com-
mon coincident factor, were examined. The models differ in the way the
intertemporal relation between these two common factors is defined. The
first model uses the Granger causality concept to link the coincident factor
to the leading one and thus to transmit the cyclical fluctuations of the lat-
ter to the former. The second model assumes no Granger causality between
the two factors, working through the transition probabilities matrix which
permits considering various hypotheses concerning the intertemporal relation
in question: mutually independent common factors, common factors having
exactly the same cyclical dynamics, and the common factors whose recession
probabilities are correlated with some lag.

Secondly, we have elaborated a number of tools to allow a better use
of the information available to the researcher. Here we have addressed two
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issues: missing data and structural breaks. In principle, both can be uni-
fied under the heading of lacking information, since in both cases the us-
able dataset is reduced. One of these tools is the model combining the use
of mixed-frequency data and the Markov-switching dynamics, which allows
dealing with data having different (for example, monthly and quarterly) ob-
servation frequencies. Another tool is implemented in two alternative models
incorporating the structural breaks. The first model introduces deterministic
structural break dummies in the intercepts and residual variances of each of
the observed variables. The breakpoints may be specific for each observed
time series. Their timing is determined from the structural break analysis
preceding the model estimation. The second model deals with a single one-
time structural break hitting the residual variance of the common unobserved
factor. This requires additional state variable in the regime-switching model
tracing uniquely the variance shifts. In this case the breakpoint timing is
estimated endogenously based on the conditional regime probabilities and
expected duration of high volatility regime.

In fact, the aforementioned models can be combined depending on the
conditions of a particular problem, the main objective being the efficient
utilization of all available information to obtain the reliable results which can
be used in the macroeconomic analysis, forecasting, and decision-making.

There is still a lot of room for making useful extensions and refinements
of the dynamic factor models. Firstly, the nonlinear dynamics other than
regime switching can be employed. One example might be the threshold
autoregression (TAR) or smooth transition autoregression (STAR) applied to
the unobserved common factor. Secondly, the hierarchical common dynamic
factor models as that of Kose et al. (1999), including the common factors of
many levels, can be endowed with nonlinear dynamics which may be allowed
to be different for different common factors. In this case, however, the MLE
would be hardly applicable. Instead of MLE one would use some of the
MCMC estimation techniques.
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