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Abstract

Nowadays there is a considerable progress in optical magnetometry and spin noise

spectroscopy, which use magnetically-sensitive atomic ensembles and optical read-

out, approaching the limits set by quantum mechanics. In recent years optical

magnetometers have become the most sensitive instruments for measuring low-

frequency magnetic fields, achieving sub-femtotesla sensitivity and surpassing the

competitive superconducting quantum interference devices (SQUIDs), and have

found applications in biomedicine, geophysics, space science as well as in tests

of fundamental physics. Another emerging technique is spin noise spectroscopy

(SNS), which allows one to determine physical properties of an unperturbed spin

system from its power noise spectrum. In the last decade technological advances

like real-time spectrum analyzers and shot-noise-limited detectors have allowed

improvements in the sensitivity of spin noise detection leading to a broad range

of applications in both atomic and solid state physics.

The main goal of this thesis is to address a major outstanding question:

whether squeezed light can improve the sensitivity of atomic sensors under optimal

sensitivity conditions, typically in a high-density regime due to the statistical

advantage of using more atoms.

Firstly, we describe the design, construction and characterization of a new

versatile experimental apparatus for the study of squeezed-light atomic spec-

troscopy within a high-density regime (n ≥ 1012 cm−3) and low-noise (' pT/
√

Hz)

magnetic environment. The new experimental system is combined with an exist-

ing source of polarization squeezed light based on spontaneous parametric down

conversion (SPDC) in a nonlinear crystal, which is the active medium of an optical

parametric oscillator.

Secondly, we report the first experimental demonstration of quantum-enhanced
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spin noise spectroscopy of natural abundance Rb via polarization squeezing of

the probe beam. We found that input squeezing of 3.0 dB improves the signal-

to-noise ratio by 1.5 dB to 2.6 dB over the combined (power)⊗(number density)

ranges (0.5 mW to 4.0 mW)⊗(1.5 × 1012cm−3 to 1.3 × 1013cm−3), covering the

ranges used in optimized spin noise spectroscopy experiments. We also show that

squeezing improves the trade-off between statistical sensitivity and broadening

effects.

Next, we introduce a novel theoretical model by defining a standard quantum

limit (SQL) for optically-detected noise spectroscopy, identified as a bound to the

covariance of the parameters estimated by fitting power noise spectra. We test the

model for spin noise spectroscopy of natural abundance Rb and we demonstrate

experimental performance of SNS at the SQL for a coherent probe and below the

SQL for a polarization squeezed probe.

Finally, we report an optical magnetometer based on amplitude modulated

optical rotation (AMOR), using a 85Rb vapor cell, that achieves room temperature

sensitivity of 70 fT/
√

Hz at 7.6 µT and we demonstrate its photon shot-noise-

limited (SNL) behaviour from 5 µT to 75 µT. While no quantum resources of

light were used in this second experiment, the combination of best sensitivity, in

the class of room-temperature scalar magnetometers, and SNL operation makes

the system a promising candidate for application of squeezed light to an optimized

optical magnetometer with best-in-class sensitivity.

iii



iv





Dedication

To my parents





Contents

Abstract i

1 Introduction 2

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical background 10

2.1 Phase estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Polarimetry detection . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Phase estimation with coherent states . . . . . . . . . . . . 13

2.2 Squeezed states of light . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Quadrature squeezing . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Polarization squeezing . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Phase estimation with squeezed states . . . . . . . . . . . . 20

viii



2.3 Linear magneto-optical effects . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Introduction and background . . . . . . . . . . . . . . . . . 23

2.3.2 Faraday effect . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Macaluso-Corbino effect . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Spin noise spectroscopy . . . . . . . . . . . . . . . . . . . . 29

2.4 Nonlinear magneto-optical rotation (NMOR) . . . . . . . . . . . . 33

2.5 Fundamental limits of optical magnetometers . . . . . . . . . . . . 36

2.5.1 Atomic projection noise . . . . . . . . . . . . . . . . . . . . 38

2.5.2 Photon shot noise . . . . . . . . . . . . . . . . . . . . . . . 38

3 Experimental setup for squeezed-light atomic spectroscopy 42

3.1 Atomic system and temperature control . . . . . . . . . . . . . . . 43

3.1.1 The vapor cell . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Heating circuit and temperature stabilization . . . . . . . . 48

3.2 Magnetic shielding and magnetic coils . . . . . . . . . . . . . . . . 51

3.2.1 Magnetic Shielding . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Uniform fields and gradient Coils . . . . . . . . . . . . . . . 56

3.3 Generation and detection of polarization squeezing . . . . . . . . . 66



3.3.1 The squeezer . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Detection and quantum noise lock . . . . . . . . . . . . . . 70

3.3.3 Optimization of the source and detection losses . . . . . . . 75

3.4 Laser frequency stabilization . . . . . . . . . . . . . . . . . . . . . 77

4 Squeezed-light spin noise spectroscopy 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Detector signal . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Photon shot-noise . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Atomic noise . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.4 SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Data analysis and results . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Quantum limits of noise spectroscopies 98

5.1 Theory of noise in fitting power spectra . . . . . . . . . . . . . . . 99

5.1.1 Theoretical covariance of fit parameters . . . . . . . . . . . 102



5.2 Optical noise spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 Specifics of atomic response . . . . . . . . . . . . . . . . . . 104

5.3 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Improvement by squeezing . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Shot-noise-limited optical magnetometer with sub-picotesla sen-

sitivity at room temperature 118

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Amplitude modulated optical rotation (AMOR) magnetometry . . 120

6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 AMOR signal and magnetic sensitivity . . . . . . . . . . . . . . . . 124

6.5 Optimization of the magnetometer sensitivity . . . . . . . . . . . . 128

6.6 Quantum noise analysis . . . . . . . . . . . . . . . . . . . . . . . . 132

6.7 Shot-noise limited performance and conclusions . . . . . . . . . . . 137

7 Conclusion 144

7.1 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix 150



List of Publications 153

Bibliography 155

Acknowledgements 177

xii





Chapter 1

Introduction

1.1 Context and motivation

The study of the interaction between light and matter in the presence of a mag-

netic field, i.e. magneto-optics, is one of the most long-lived topic in physics and

has had a crucial impact on the development of modern science and technology.

This long tradition of scientific inquiry started with milestone discoveries, among

the others, by Faraday [1, 2] and Voigt [3] of the rotation of the polarization

plane of a linearly polarized probe through its interaction with an atomic medium

placed in a longitudinal or transverse magnetic field, respectively. Starting from

the 1970’s, the rise of laser technology together with the development of the theory

of optical pumping [4], have enabled physicists to investigate regimes with stronger

interaction between atoms and light fields, nonlinear magneto-optical effects were

discovered [5, 6], and the scheme based on the generation of atomic polarization

and the detection of its magneto-optical evolution became a robust and standard
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1.1. Context and motivation 3

approach in precision measurements performed with atomic ensembles, i.e. atomic

metrology.

Nowadays, there is a considerable progress in precision measurements that

use magnetically-sensitive atomic ensembles and optical read-out. In this context

the most vibrant topic is optical magnetometry [7]: in recent years optical mag-

netometers have surpassed in sensitivity the superconducting quantum interfer-

ence devices (SQUID) by reaching the sub-femtotesla level of magnetic sensitivity

[8, 9, 10]. Magnetic fields are present within a huge variety of natural phenom-

ena and optical magnetometers have found applications in many scientific areas

including biomedicine [11, 12, 13], geophysics [14, 15, 16], space science [17, 18]

as well as in tests of fundamental physics [19, 20, 21]. Chip-scale atomic magne-

tometers [22] have been also developed and could help realize tiny mass-producible

devices with high sensitivity and low power consumption. Another emerging tech-

nique that we investigate in this thesis is spin noise spectroscopy (SNS), which

allows one to determine physical properties of an unperturbed spin system from

its power noise spectrum. Even if extracting information through the intrinsic

fluctuations of a spin system was theoretically predicted in the 1940’s [23], just

in the last decade technological advances like real-time FFT spectrum analyzers

and shot-noise-limited detectors have improved the sensitivity of spin noise detec-

tion in both atomic [24] and solid state [25] physics, making SNS an established

method to study g-factors, nuclear spin, isotope abundance ratios and spin life-

time in atomic gases [26, 27] as well as conduction electrons [28] and localized

states in semiconductors [29] under thermal equilibrium. Altough non-optical

noise spectroscopies based on resonance force microscopy [30, 31] and NV-center

magnetometry [32, 33, 34] have recently emerged, the most sensitive and wide
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used technique, pioneered by Aleksandrov and Zapasskii [35], is based on optical

Faraday rotation (FR).

The sensitivity of FR-based spin noise spectroscopy is limited by the photon-

shot-noise, a noise contribution due to the quantum nature of light and to the

random time arrival of photons at the detection stage. When the number of

photons of the probe beam that hit the detector is N , then the intrinsic uncer-

tainty on the estimated phase φ (polarization rotation angle) has the quantum

noise scaling δφ ∼ 1/
√
N . The same shot-noise contribution represents one of

the quantum limitations to the sensitivity of optical magnetometers approaching

fundamental limits. However, quantum optics provides a way of performing sub-

shot-noise measurements by using squeezed states of light. Following the original

proposal from Caves [36], squeezed states have been applied to several interfer-

ometer schemes as in the seminal experiments of polarization interferometry [37]

and saturated absorption spectroscopy [38], in quantum measurements with cold

atoms [39] and, more recently, in optical magnetometry [40], gravitational-wave

detection [41] and biological measurements [42].

The principal goal of this thesis is to study whether squeezed light can im-

prove the sensitivity of atomic sensors under optimal sensitivity conditions, typ-

ically in a high-density regime due to the statistical advantage of using more

atoms. Indeed, to date squeezed-light optical magnetometers [40, 43, 44, 45] have

shown reduction of the sensitivity by squeezing under certain, but not optimal,

experimental conditions. The best reported sensitivity among the squeezed-light

magnetometers is 1 pT/
√

Hz [43], which is still three orders of magnitude worse

than the state of the art sensitivity of sub-fT
√

Hz [8, 9, 10]. Furthermore, the ex-

periment by Horrom et al. [43] saw a complex and to-date unexplained behaviour:
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by probing a polarized ensemble in a magnetometer based on nonlinear magneto

optical rotation (NMOR), below the density that gives optimal sensitivity when

a classical probe is used, squeezing reduced the measurement noise. In contrast,

above that density, squeezing increased the measurement noise. At the optimum,

the net effect was zero, to within the resolution of the measurement. A related

experiment by Novikova et al. [45] demonstrated a strong coupling between the

nonlinear magneto-optical rotation (NMOR) signal and optical quantum noise

that introduces significant noise excess in the region where maximum sensitivity

is expected. It is thus not obvious that squeezing will improve a high-density

Faraday rotation measurement [24, 7], as it does for lower densities [39, 40].

In this thesis we describe two main experiments: first, we study application

of squeezed light to spin noise spectroscopy of hot Rb vapor and we report quan-

tum enhancement of the signal-to-noise ratio up to 2.6 dB by applying 3 dB of

polarization squeezing of the probe over the full density range up to n = 1013 cm3,

covering practical conditions used in optimized SNS experiments. Indeed, we show

for the first time that squeezed light improves SNS over a broad atomic density and

optical power ranges that include conditions used in state-of-the-art experiments

[26, 46, 27, 47]. Differently from [43, 45] we deal with a un-polarized atomic en-

semble and off-resonant probing, as required for a non-perturbative technique like

spin noise spectroscopy. Furthermore, in our apparatus the source of squeezing is

based on spontaneous parametric down-conversion (SPDC) in a non-linear crystal,

while in [43, 45] an atomic squeezer based on polarization self rotation has been

used. Our experimental results do not show any coupling between the optical and

spin noise contributions so that squeezing reduces the measurement noise at both

low and high densities. We also show that squeezing improves the trade-off be-
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tween statistica sensitivity and broadening effects, a previously unobserved quan-

tum advantage. Furthermore, we introduce a novel theoretical model by defining

a standard quantum limit (SQL) for optically-detected noise spectroscopy, iden-

tified as a bound to the covariance of the parameters estimated by fitting power

noise spectra. We test the model for spin noise spectroscopy of natural abun-

dance Rb and we demonstrate experimental performance of SNS at the SQL. We

further confirm the shot noise limitation to the sensitivity of the technique, by

demonstrating parameter estimation below the SQL via polarization squeezing of

the probe beam. In the second experiment we describe an optical magnetometer

based on amplitude modulated optical rotation (AMOR), using a 85Rb vapour

cell, that achieves room-temperature sensitivity of 70 fT/
√

Hz at 7.6µT and we

demonstrate its photon shot-noise-limited (SNL) behaviour from 5µT to 75µT,

making the system a promising candidate for application of squeezed-light to an

optical magnetometer with best-in-class sensitivity.

1.2 Thesis Outline

This thesis is structured in the following way:

Chapter 2 provides the theoretical background for the whole thesis. First,

within the scenario of optical interferometry, we define the fundamental limitation

on the phase estimation, i.e. the photon shot-noise-limit (SNL), in presence of

coherent states. Then, we introduce the theory of quadrature and polarization

squeezing of light by showing its metrological advantage in phase estimation. Sec-

ondly, we review the concepts of linear and nonlinear magneto-optical effects by

focusing on their application to spin noise spectroscopy, via paramagnetic Fara-
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day rotation, and to optical magnetometry, through nonlinear magneto-optical

rotation (NMOR). Finally, we define the fundamental limits of optical magne-

tometers.

Chapter 3 describes the design, construction and characterization of a ver-

satile experimental setup for the study of atomic spectroscopy (and potentially

magnetometry) in the presence of squeezed light. The apparatus combines a

source of polarization squeezing with a conventional setup of spin noise spec-

troscopy of high-density Rb atoms. First, we describe the atomic system, the

oven and its temperature stabilization. Then, we report the design and character-

ization of both the magnetic coils and the magnetic shielding. Finally we describe

the generation and detection of polarization squeezing.

Chapter 4 describes the quantum enhancement of spin noise spectroscopy

of a dense Rb vapor via polarization squeezing of the probe beam. We report the

improvement of the signal-to-noise ratio of an amount comparable with the input

squeezing of ' 3 dB over all the investigated parameter range. We also show that

squeezing improves the trade-off between statistical sensitivity and broadening

effects, a qualitative new quantum advantage. After introducing both the theory

and the mode of operation, we describe the data analysis procedure and we report

the experimental results.

Chapter 5 presents a novel theoretical model on the covariance matrix of the

fit parameters in noise spectroscopy. We define a new kind of standard quantum

limit (SQL) for the uncertainty on the fit parameters in the presence of optical

shot noise and atomic spin noise. We compare the theoretical covariance matrix

against data, from the experiment described in Chapter (4), and we find very good

agreement by demonstrating spin noise spectroscopy at the standard quantum
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limit. We also show the beating of the SQL by polarization squeezing of the

probe, in agreement with theoretical expectations.

Chapter 6 describes a shot-noise-limited optical magnetometer with sub-

picotesla sensitivity based on amplitude modulated optical rotation (AMOR). In

this second experiment, carried out at the Jagiellonian University (Krakow) in

collaboration with the group of Prof. Wojciech Gawlik, we report sensitivity of '

70 fT/
√

Hz, among the best reported sensitivities in the class of room-temperature

low-frequency magnetometers, and SNL operation over a broad dynamic range

(5µT to 75 µT) by making the described apparatus a promising candidate for

application of squeezed light to a state-of-the-art optical magnetometer.

Chapter 7 summarizes the main results of the thesis and gives an outlook

on future prespectives of the work.





Chapter 2

Theoretical background

In this chapter we provide concepts and references for the theoretical framework

of the experiments presented in the Thesis. We first describe a general phase esti-

mation process and we introduce the theory of polarization squeezing by focusing

on its application to phase estimation. Then we give a schematic description of

magneto-optical effects like linear Faraday rotation and nonlinear magneto-optical

rotation (NMOR) and we describe their application in spin noise spectroscopy and

optical magnetometry, respectively. Furthermore, we define the fundamental lim-

its of optical magnetometers to which we will refer in chapter (6).

2.1 Phase estimation

In parameter estimation, a certain physical quantity of interest alters a property

in the interaction between a probe input, known and previously prepared, and a

system under investigation. Then, such physical parameter is (often) estimated

10
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indirectly through the detection of the probe output after its interaction with the

system. In optical interferometry the parameter estimation problem is translated

into the measurement of a phase difference between either two optical paths (path

interferometer) or two polarization components (polarization interferometer) and

such measurement can be performed with very high sensitivity. However, because

of the discrete nature of photons, quantum physics sets lower limits on the uncer-

tainty in phase estimation, the so called shot-noise-limit (SNL), that turns to be

fundamentally related to the uncertainty in photon number. Quantum metrology

[48] uses quantum resources of both light and atoms to enhance precision in phase

estimation beyond that possible through classical approaches.

Figure 2.1: (a) Path interferometer in a Mach-Zehnder geometry. The relative phase
between the interferometer arms a1, a2 is modeled by a phase shift φ in one arm. The
intensity of each detector shows a sinusoidal dependence on the phase shift, so that uncer-
tainty in intensity translates into an uncertainty in phase. (b) Polarization interferometer
in which a relative phase shift φ between the H,V polarization components is imprinted
onto the probe polarization by the interaction with an atomic ensemble in the presence of
a nonzero magnetic field, i.e. by a magnto-optical effect (see Sections (2.3) and (2.4)). A
polarimeter, that consists of an half wave-plate (λ/2), a polarizing beam splitter (PBS)
and two photo-detectors allows one to reduce laser intensity and technical noise sources

in the polarization rotation measurement (see Section 2.1.1).

The goal of this thesis is to apply squeezed light to high-precision measure-

ments like spin noise spectroscopy and optical magnetometry, which use magnetically-

sensitive atomic ensembles and optical read-out. These measurements can be

understood as polarization interferometers in which the phase shift between two

polarization components is imprinted onto the optical probe by the magneto-
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optical interaction with a high density atomic vapor, as shown in Fig. (2.2 (b)).

While the magneto-optical effects will be introduced in sections (2.3) and (2.4),

in the following we describe the polarimetry detection scheme and the photon

shot-noise contribution to the sensitivity of the phase estimation process.

2.1.1 Polarimetry detection

In the experiments described in this thesis, we use the detection scheme based

on balanced polarimetry, which consists of a half-waveplate, a polarizing beam

splitter (PBS) and two photo-detectors, whose signals are subtracted and the

differential signal is further amplified to give the final output. For zero phase

shift on the input probe polarization, a condition that corresponds in having

the magnetic field turned off in our experiments, the polarimeter is fixed in the

balanced condition by setting the half-waveplate at an angle of 22.5◦, so that, after

the splitting at the PBS, half of the photons (with +45◦ polarization) reach one

detector while the second half (with −45◦ polarization) reach the second detector.

The mean differential signal is then zero when no polarization rotation takes place

and the laser intensity noise fluctuations, which affect the individual signals, are

subtracted and cancelled through the difference operation. When the source of

phase shift (for instance the magnetic field) is switched on, then the rotation

signal is detected against a zero background and the optical rotation φ is given

from a simple expression valid for φ� 1 [6]:

φ =
I+45◦ − I−45◦

2(I+45◦ + I−45◦)
(2.1)
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where I+45◦ and I−45◦ are the optical intensities reaching the two detectors, respec-

tively. The main benefit of the polarimetry detection, e.g. over absorption-based

measurements, is the subtraction of technical noise due to laser intensity and po-

larization fluctuations that, in the balanced condition, affect both beams with the

same noise amplitudes. However, shot-noise fluctuations intrinsically limit the

sensitivity of the technique as we describe in the next section (2.1.2)). The other

advantage of this setup is its insensitivity to circular dichroism, while the rotation

signal can arise from linear dichroism (as in NMOR) or circular birefringence (as

in normal and paramagnetic Faraday rotation). In section (3.3.2) we describe two

different polarimeter schemes that we used in the experiment reported in chapter

(4).

2.1.2 Phase estimation with coherent states

In the whole thesis we deal with quantum and technical noise contributions to the

differential output signal of a balanced polarimeter and, when this is fed into a

spectrum analyzer, to its power spectral density (PSD) in the frequency domain.

In a polarization rotation measurement the output voltage of the polarimeter is

simply given by:

V (t) = Gidiff(t) (2.2)

where G (V/A) is the transimpedance gain of the balanced detector and idiff is

the differential photo-current between the two photo-detectors. In the balanced

condition, the rotation angle of Eq. (2.1) is 〈φ〉 = 0 and also the differential

photo-current has zero mean value 〈idiff〉 = 0. However fluctuations arise from

different electronic, quantum and technical noise sources. It can be shown that,

due to the discrete nature of photons and to the randomness in their time arrival



14 Chapter 2. Theoretical background

to the detector, the generated photo-current exhibits shot noise fluctuations given

by the Schottky’s formula [49]:

(∆idiff)2
sh = (〈i2diff〉 − 〈idiff〉2)sh = (〈i2diff〉)sh = 2q〈idiff〉∆ν (2.3)

where q = 1.6× 10−19 C is the electron charge and ∆ν is the detector frequency

bandwidth. Then, still in the balanced condition, the photon shot-noise contri-

bution to the output voltage is given by:

(∆Vsh)2 = 〈V 2〉 = 2G2q〈idiff〉∆ν (2.4)

which can be also expressed as a function of the mean optical power P that

impinges the detector:

〈V 2〉sh = 2G2q<P∆ν (2.5)

where < = Qq/Eph (A/W) is the detector responsivity, Q denotes its quantum-

efficiency and Eph = h̄ω = 2.49 × 10−19 J , in the experiments described in this

work, is the photon energy at 795 nm. From Eq. (2.5) we can directly obtain the

shot noise contribution to the one-sided power spectral density, which is given in

units of V2/Hz by

Ssh(ν) = 2G2q<P (2.6)

and has the properties of being frequency independent (white noise) and scaling

as the mean optical power P . Although we derived the shot noise from Eq.

(2.3), which is valid in electronics for any current made of discrete charges with

random fluctuations, it is worth to note that in photo-detection the shot noise

is a consequence of the discrete nature of photons. For a coherent probe, the

photon shot noise is due to the Poissonian statistics of the photon distribution
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and can be derived with a quantum-mechanical approach in unit of photon number

[50]. However, in the experiments presented in this thesis we work with bright

coherent beams (P �µW) and continuous-time measurements, leading to a power

noise spectrum for which the shot-noise expression given in Eq. (2.6) is more

appropriate. Furthermore, the fluctuations of Eq. (2.4) set the photon shot-noise-

limit (SNL) to the polarimetric sensitivity, which is expressed as uncertainty on

the rotation angle of Eq. (2.1) and is given by [24]:

δφph ≈
√

∆ν

2NphQ
(2.7)

where Nph is the total number of photons per second reaching the polarimeter.

Eq. (2.7) defines the photon SNL for a phase estimation process performed with

coherent states.

As we will also show in this thesis, squeezed states of light, which exhibit

sub-Poissonian statistics [51], allows one to perform sub-shot-noise measurements

by reducing the shot noise contribution to the noise power density of Eq. 2.6 for

coherent states, at same mean power, and, equivalently, to overcome the shot-

noise-limited polarimetric sensitivity of Eq. (2.7) resulting in an improvement

of the signal-to-noise ratio of the polarization rotation measurement. However,

in order to perform quantum optics experiments and take advantages from the

use of squeezing, the detection scheme of the specific experiment needs to be

firstly limited by the photon-shot-noise. Indeed, our detection system (see section

(3.3.2)) has electronic noise fluctuations approximately given by [52]:

(∆i)2
el = (∆i)2

amp + (∆i)2
fl (2.8)
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which is the sum of the amplifier noise (∆i)2
amp ≈ 2qG∆νF , where F is the so-

called excess noise factor, and the ≈ 1/ν flicker noise (∆i)2
fl = (K2

I /ν)∆ν where

KI is the appropriate device constant in unit of A. The electronic noise is inde-

pendent on optical power and it is a property of the overall detection system that

consists of a balanced polarimeter and a spectrum analyzer. Here we neglect the

dark electronic noise and thermal (or Johnson) noise [52] contributions, which

are negligible in our balanced detectors. The first condition for the SNL operation

mode is that the shot noise fluctuations should be much larger than the electronic

noise: (∆i)2
el � (∆idiff )2

sh. Secondly, because of the imperfection of the balanced

condition, residual technical noise due to laser intensity and polarization fluctua-

tions, which power density scales as the mean power squared, needs to be smaller

that the shot noise contribution. Then, the SNL frequency bandwidth and optical

range of a detection system can be found by looking at the scaling of the power

noise density as optical mean power at a given detection frequency. A full detailed

quantum noise analysis of polarimetry detection is given in Section (6.6), where

we define the experimental SNL condition for the detection stage.

2.2 Squeezed states of light

In the experiment described in chapter (4) we exploit polarization squeezing of the

probe beam to beat the photon SNL polarimetric sensitivity resulting in quantum-

enhancement of the signal-to-noise ratio of spin noise specroscopy of a hot Rb

ensemble. As described in detail in chapter (3), we generate polarization squeezing

by combining quadrature squeezed vacuum with an orthogonally polarized local

oscillator bright beam. In the next section we briefly introduce the theoretical

concepts of quadrature and polarization squeezing.
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2.2.1 Quadrature squeezing

In its quantum description [50] the single mode electric field operator is described

by the so-called quadrature field operators having a phase difference of π/2:

X̂1 =
1

2
(â† + â) X̂2 =

i

2
(â† − â) (2.9)

where â and â† are the single mode annihilation and creation field operators.

The quadrature operators, that can essentially be understood as dimensionless

position and momentum operators [53], satisfy the commutation relation:

[X̂1, X̂2] = i/2 (2.10)

Due to the generalized Robertson uncertainty relation [54], the variances of the

quadratures are then bound by the relation:

var(X̂1)var(X2) ≥ 1

4
|〈[X̂1, X̂2]〉|2 =

1

16
(2.11)

where the variance of the operator Â is defined as var(Â) = 〈Â2〉 − 〈Â〉2. The

coherent state is a minimum-uncertainty state for which var(X̂1) = var(X̂2) = 1/4

and the inequality of Eq. (2.11) becomes an equality. In contrast, a quadrature

squeezed field state has the variance of one quadrature lower than a coherent state

at the expense of a higher variance of the conjugate quadrature [53, 50]:

var(X̂i) <
1

4
(i = 1 or 2) (2.12)
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The quadrature squeezed state is obtained by applying the so-called squeezing

operator [50]:

Ŝ(ξ) = exp[
1

2
(ξ∗â2 − ξâ†2)] (2.13)

where ξ = seiθ is the complex squeezing parameter with amplitude s ≥ 0 and

phase 0 ≤ θ ≤ 2π. The squeezing operator creates and annihilates pairs of

photons and can be described as a two-photon generalization of the displacement

operator [50]. The quadrature squeezed vacuum state, that we experimentally

generate through spontaneous parametric down conversion (SPDC) as described

in chapter (3), is defined by |ξ〉 = Ŝ(ξ)|0〉 [50].

2.2.2 Polarization squeezing

As already mentioned, in the experiments described in this thesis the phase in-

formation is encoded in the probe polarization, so that we generate and detect

squeezing in the polarization degree of freedom. A continuous variable description

of the light polarization is obtained by defining the Stokes parameters:

Ŝ0 = â†H âH + â†V âV (2.14)

Ŝx = â†H âH − â
†
V âV (2.15)

Ŝy = â†H âV + â†V âH (2.16)

Ŝz = i(â†V âH − â
†
H âV ) (2.17)

where the subscripts H,V indicate horizontal and vertical polarization compo-

nents [55]. Because of the bosonic commutation relations [âj , âk] = δjk with

j, k = H or V , the operator Ŝ0, that correspond to the total number of photons,
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commutes with all the other Stokes operators:

[Ŝ0, Ŝi] = 0 i = x, y, z (2.18)

while the remaining operators satisfy the commutation relations of the SU(2) Lie

algebra [56]:

[Ŝi, Ŝj ] = 2iε̂ijkSk i, j, k = x, y, z (2.19)

This noncommutativity precludes the simultaneous exact measurement of the

Stokes operators and, analogously to Eq. (2.11) for the quadrature variables,

their variances are related by uncertainty relations [56]:

var(Ŝx)var(Ŝy) ≥ |〈Ŝz〉|2 var(Ŝy)var(Ŝz) ≥ |〈Ŝx〉|2 var(Ŝz)var(Ŝx) ≥ |〈Ŝy〉|2

(2.20)

Analogously to quadrature squeezing, a state is polarization squeezed if:

var(Ŝj) < |〈Ŝk〉| with j 6= k (2.21)

which means that at least one Stokes operator has an uncertainty smaller than

that of a coherent state with the same optical power. Experimentally, a polar-

ization squeezed state can be generated by overlapping two quadrature squeezed

states [56, 57] or by mixing a single quadrature squeezed state with a strong coher-

ent beam (local oscillator - LO) with orthogonal polarization as in [37, 39]. In our

experiment, as described in detail in chapter (3), we follow the latter approach by

mixing a vertically polarized squeezed vacuum with a bright horizontally polar-

ized LO. The combined state, at the output of a polarizing beam splitter, shows a

strong horizontal polarization, i.e. Ŝx ≈ Ŝ0 with sub-shot noise (squeezed) quan-
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tum fluctuations either in the Ŝy or Ŝz Stokes operator. Then, it is convenient

to look at the squeezing behaviour in the Ŝy, Ŝz plane by defining the operator

Ŝϕ = Ŝy cosϕ + Ŝz sinϕ with var(Ŝϕ) = 〈N〉. This state is polarization squeezed

if, for a certain relative phase ϕ, var(Ŝϕ) is smaller than that of a coherent state.

Figure 2.2: Phase space representation of a polarization-squeezed state. (a)
The uncertainty area of a coherent state is represented by a circle (light green), while the
uncertainty area of a polarization-squeezed state forms an ellipse (dark green). (b) The
angle of the ellipse in the phase space θ is determined by the relative phase between local

oscillator and squeezed vacuum (see text).

While the uncertainty area of a coherent state gives a circle in the phase-

space diagram, the uncertainty area of a polarization squeezed state is visualized

by an ellipse. Finally, so far we assumed a phase between the squeezed vacuum

and the local oscillator (LO) fixed at θ = 0. A change of this relative phase

corresponds to a rotation of the polarization-squeezing ellipse in the Ŝy, Ŝz plane

[55]. In section (3.3) we describe the experimental generation and detection of

this kind of polarization squeezing.

2.2.3 Phase estimation with squeezed states

If polarization squeezed light is injected into a polarization interferometer, the

shot-noise level can be reduced or increased depending on the relative phase be-
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tween the quadrature squeezed vacuum and the LO [37]. When the squeezing is

locked to the minimum of the noise oscillations the phase estimation can be re-

duced below SNL. This can be shown at least in two ways. First, we note that the

balanced polarimetry scheme described in section (2.1.1), when the half-waveplate

before the PBS is set at an angle of 22.5◦, corresponds to the experimental mea-

surement of the Ŝy Stokes parameter, which is defined in Eq. (2.17) and can be

expressed in terms of optical intensity operators as Ŝy = Î+45◦ − Î−45◦ [55]. The

polarization rotation measurement can be written as [40]:

Ŝ(out)
y = Ŝ(in)

y + Ŝxφ (2.22)

where Ŝx = ÎH − ÎV is the difference between the optical intensity with horizontal

and vertical linear polarization of an input coherent beam, Ŝ
(in)
y and Ŝ

(out)
y are the

input and output states of the Ŝy operator, while φ is the rotation angle defined

in Eq. (2.1). In Eq. (2.23) we assume that the two contributions of the RHS

are independent. Furthermore, we don’t make any assumption on the nature of

the rotation, but we just look at the noise properties. For an horizontal polarized

coherent beam Ŝx is maximum and Ŝ
(in)
y is zero. Furthermore, for a zero mean

rotation angle 〈φ〉 = 0, as in spin noise spectroscopy (SNS) (see chapter (4)), what

we measure in the balanced condition is the variance:

var(Ŝ(out)
y ) = 〈(Ŝ(out)

y )2〉 = var(Ŝ(in)
y ) + var(Ŝxφ) (2.23)

where the first and second terms of the RHS are the photon shot-noise and the

atomic noise, i.e. the signal in SNS, contributions, respectively. In Eq. (2.23) we

also assume that the detection is shot-noise-limited, i.e. that other noise contri-

butions like electronic noise are much smaller than shot noise [40], as described
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in section (2.1.2). Then, just by using the definition of Eq. (2.21), if the probe

beam is polarization squeezed in the Ŝ
(in)
y operator, then var(Ŝ

(in)
y )sq < var(Ŝ

(in)
y )

and the noise of the measurement described by Eq. (2.23) is performed below the

shot-noise-limit.

Another convenient way to look at the quantum noise suppression is the

definition of a squeezing parameter ξ2 < 1 [39] so that, the power noise density in

presence of a polarization squeezed beam with 10 log(ξ2) dB of squeezing is given

by :

Ssq(ν) = Ssh(ν)ξ2 (2.24)

with a clear reduction of the shot noise density defined in Eq. 2.6. This notation

will be used in chapter 4.

2.3 Linear magneto-optical effects

In the work described in this Thesis a phase shift is imprinted onto a linearly

polarized probe beam by the interaction of light with an atomic ensemble in

presence of a magnetic field i.e. by a magneto-optical effect. In the experiments

reported in chapters (4) and (6) we exploit different magneto-optical effects where

the polarization rotation shows linear and nonlinear dependence on the light

field amplitude, respectively. Then, before introducing the concepts of nonlinear

magneto-optics, we first review the basic physics of linear magneto-optics.
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2.3.1 Introduction and background

During the second half of the 19th century Michael Faraday [1, 2, 58] discovered

that linearly polarized light undergoes rotation of its polarization plane during

the propagation through a medium placed in a magnetic field longitudinal with

respect to the beam propagation direction. By using an oil lamp as light source

and a dense leaded glass as atomic medium, Faraday was able to demonstrate that

the angle of magneto-optical rotation φ is proportional to the applied magnetic

field and to the length of the interacting medium:

φ = VlB (2.25)

where V is the so-called Verdet constant that characterizes the ability of a medium

to rotate the polarization plane. To give an example, typical commercial Faraday

rotators or optical isolators, that are made of dense flint glasses, show linear rota-

tion with a Verdet constant of V ' 3× 10−5 radG−1cm−1, while nonlinear optical

rotation with V ' 3× 104 radG−1cm−1 can be observed in resonant alkali vapors

[6]. Then, by considering the difference in density, an atomic vapor can be tought

as a magneto-optical material with 1020 greater rotation “per atom” than heavy

glass.

The resonant behaviour of the linear Faraday rotation was discovered at the end

of the 19th century by the Italian physicists D. Macaluso and O.M. Corbino, who

performed a series of experiments [59, 60] to study near resonance magneto-optical

rotation in alkali vapors by selecting atom-resonant frequencies from sunlight

through a diffraction grating. The results obtained by Macaluso and Corbino,

in addition to the discovery of splitting of spectral lines in a magnetic field by

Peter Zeeman [61, 62], led Woldemer Voigt [63] to explain the magneto-optical
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rotation in terms of a difference in the refractive indices for the circular polar-

ization components of the linearly polarized probe due to the Zeeman shifting of

the medium spectral lines. Before starting with the formal theoretical treatment,

we clarify that the linear magneto-optical rotation is called Faraday effect (or

Macaluso-Corbino effect near resonance) when the magnetic field is longitudinal

with the probe propagation direction, while it is called Voigt effect (in gases) or

Cotton-Mouton effect (in liquids) if the applied field is perpendicular.

2.3.2 Faraday effect

The Faraday effect can be understood as a polarization interferometer where the

input polarization is a liner combination of left (σ+) and right (σ−) circular polar-

ization. If atomic anisotropy is generated (or naturally present) in the medium,

then the two circular polarizations experience different dispersive and absorptive

features resulting either in a rotation of the linear polarization plane or in change

from linear to elliptical or circular polarization, respectively. In this thesis a ru-

bidium vapor serves as anisotropic medium and the simplest transition in which

magneto-optical rotation can be observed is the F = 1 → F ′ = 0 system, where

F and F ′ denote the total angular momentum of the ground and excited state,

respectively. In such system, shown in Fig. (2.3) and usually described as Λ-

system [6], the σ+ component generates the transition from the ground state of

m = −1 to the excited state m′ = 0, where m and m′ are the magnetic quantum

numbers determining projections of the angular momentum on the quantization

axis (beam propagation direction) for the ground and excited state, respectively.

The σ− component excites the transition m = 1 → m′ = 0, while the sublevel

m = 0 is decoupled from light.
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Figure 2.3: (a) No Faraday effect. Zero magnetic field condition, where the σ± polar-
ization components have the same refractive index and there is no polarization rotation.
(b) Normal Faraday effect. In presence of nonzero magnetic field, the Zeeman shift
of the energy sub-levels causes a difference in the refractive index for σ± polarizations
resulting in polarization rotation of a linearly polarized probe. (c) Paramagnetic Fara-
day effect. The isotropy of the medium is broken by population imbalance of Zeeman
sublevels. For a thermal state, spin noise fluctuations can be measured as described in

Section (2.3.4))

If no magnetic field is applied the atomic medium is isotropic as shown in

Fig. (2.3 a), i.e. left and right polarization components have the same refractive

index, the ensemble is in a thermal state and the mean polarization rotation is

zero. Anisotropy can be induced by applying a nonzero magnetic field along the

quantization axis (normal Faraday effect shown in Fig. (2.3 b)) or by a popula-

tion imbalance of Zeeman sublevels (paramagnetic Faraday effect shown in Fig.

(2.3 c)), generated by optical pumping [4]. Even for zero magnetic field and

under thermal equilibrium (no optical pumping), intrinsic statistical fluctuations

between Zeeman sublevels cause local instantaneous magnetization, i.e. spatial

anisotropy, that turn into the so-called spin noise and such fluctuations can be

mapped onto the probe polarization through Faraday rotation. The power spec-

trum analysis of these spin fluctuations is the core of the spin noise spectroscopy

technique that we define in section (2.3.4) and we deeply investigate in chapters

(4) and (5), with both coherent and polarization squeezed light probing.

We now provide an expression for the electric field intensity of a probe beam af-

ter Faraday interaction with an atomic medium. We consider the linear Faraday

effect where a magnetic field Bz is applied along the z-direction of propagation
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of a linearly polarized, monochromatic, weak-intensity probe beam. The electric

field of the incident beam can be written as:

E(0, t) = E0eε cosωt (2.26)

where the electric field vector E, with amplitude E0, oscillates in the x, y plane so

that eε = ex cos ε+ey sin ε. The propagation through the atomic medium of length

L can be described with the evolution of the circular polarization components σ±

with amplitudes A± = Ar± + iAi±:

E(z, t) =
E0

2
(A+e+e

−i(ωt−k+z) + A−e−e
−i(ωt−k−z) + c.c.) (2.27)

where e± = ∓ 1√
2
(ex ± iey) and k± = ω

c (n± + iα±) are the wave numbers for

the two σ± circular polarization components being n± and α± the real and the

imaginary parts of the refractive indices, respectively. In polarimetry detection

the intensity measured after the polarizer depends on the relative angle between

the probe output polarization direction ε and the polarizer angle θ:

Iθ = (E(L, t) · eθ)2 (2.28)

where eθ = ex cos θ − ey sin θ. By inserting Eq. (2.27) in Eq. (2.28) we can

evaluate the intensity transmitted by the polarizer [64]:

Iθ =
I0

4
(e−2α+ωL/c + e−2α−ωL/c)

+
I0

2
cos[2(ε− θ) + (n+ − n−)

ωL

c
]e−(α++α−)ωL/c (2.29)

where I0 is the incident intensity, ω is the angular frequency of the probe light.
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By using the identities cos 2x = 1 − 2 sin2 x and cosx = − cos(x − π) Eq. (2.29)

becomes:

Iθ =
I0

4
(e−α+ωL/c − e−α−ωL/c)2

+ I0 sin2[(ε− θ − π

2
) + (n+ − n−)

ωL

2c
]e−(α++α−)ωL/c (2.30)

where the first term describes the differential absorption due to circular dichro-

ism, sometimes called the parity nonconservation rotation [64], and the second

term includes the Faraday rotation due to the difference in real part of the refrac-

tive index for the σ± circular polarization components with an overall absorption

factor. Then, the dispersive Faraday rotation angle φ is given by:

φ = (n+ − n−)
ωL

2c
(2.31)

2.3.3 Macaluso-Corbino effect

As first example, we now consider the Faraday rotation expression in the case of

the Macaluso-Corbino effect (or normal Faraday effect). If we consider the Λ-type

atomic system, introduced in section (2.3.2) and depicted in Fig. (2.3 (b), it can

be shown [65] that, in the case of a narrow-band light interacting with motionless

atoms and zero magnetic field, the complex refractive index η = n + iα is the

same for the two circular polarization components and it is given by:

η ≈ 1 + 2πχ0
1

∆ω + iΓ/2
(2.32)

where ∆ω = ω − ω0 is the light detuning, ω and ω0 are probe and transition

frequency respectively, Γ is the relaxation rate of the excited state and χ0 is the
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atomic linear susceptibility. When a nonzero magnetic field is applied along the

quantization axis, the ground state Zeeman sublevels are shifted by the Larmor

frequency ΩL = gFµBB/h̄ where gF is the Landé factor and µB is the Bohr

magneton. As already mentioned, this turns into the modification of the refractive

index for the σ± circular polarization components:

η± ≈ 1 + 2πχ0
1

(∆ω ∓ ΩL) + iΓ/2
(2.33)

By inserting the real part (n±) of Eq. (2.33) into Eq. (2.31) we obtain the

Macaluso-Corbino (or normal Faraday) rotation angle:

φ ≈ 4πχ0ωL

c

ΩL(∆ω2 − Γ2/4− Ω2
L)

[∆ω2 − Γ2/4− Ω2
L]2 + Γ2∆ω2

(2.34)

Through the Larmor frequency expression, Eq. (2.34) shows that the rotation

angle is a function of the applied magnetic field B and describes an example

of an optical magnetometer based on the linear Faraday effect. Moreover, Eq.

(2.34) is important for understanding the characteristic Lorentzian dependence

(dispersion-like shape) of the rotation signal versus both magnetic field and fre-

quency detuning. Indeed, the resonant dependence of the magneto-optical rota-

tion is well visible: far from resonance there is no rotation, while for light tuned

to an atomic transition the rotation is maximal.

Even if the Macaluso-Corbino effect is an important step for understand-

ing application of linear Faraday rotation to optical magnetometry, we don’t use

it in this thesis. In the magnetometer described in chapter (6) we use nonlin-

ear magneto-optical rotation (NMOR), described in section (2.4), which is rather

based on linear dichroism (an absorptive effect) and provides much better sensitiv-
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ity than the linear Faraday effect. On the other hand, in chapter (4) we deal with

spin noise spectroscopy, which is based on a dispersive effect and it is introduced

in the following.

2.3.4 Spin noise spectroscopy

Spin noise spectroscopy (SNS) is a non-perturbative approach that allows one to

extract physical properties of both atoms [66] and semiconductors [25] from the

power noise spectrum of the unperturbed spin system that, under thermal equilib-

rium, exhibits intrinsic spin fluctuations. These fluctuations between the different

atomic levels generate instantaneous population unbalance that can be mapped

onto the polarization of a probe beam via Faraday rotation. Then, the dispersive

rotation is due to circular birefringence and has the form of Eq. (2.31). The probe

beam is off-resonance in order not to perturb the system out of equilibrium. This

is clearly different from conventional perturbative approaches like paramagnetic

Faraday rotation where a non-equilibrium population distribution is generated

through optical pumping [4]. In chapter (4) we describe SNS of natural abun-

dance Rb and we demonstrate quantum-enhancement of the signal-to-noise ratio

via polarization squeezing of the probe beam. We detect spin noise fluctuations

in the so-called Voigt configuration [66], by applying a magnetic field transverse

with respect to the probe propagation direction and by measuring the FR with

a balanced polarimeter (see section (2.1.1)). In this configuration any random

transverse fluctuation of magnetization will precess around the magnetic field di-

rection at the Larmor frequency during the transverse relaxation time T2 and then

will be replaced by another fluctuating magnetization with different magnitude

and phase of precession. As result, the probe beam undergoes random FR pro-
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cesses at the Larmor frequency. The Voigt scheme is advantageous because, for

large enough magnetic field (B ≥ µT), the resonance frequency of the spin noise

peak, in the power noise spectrum, is shifted far from the 1/ν electronic (flicker)

noise and also ends up in a more likely shot-noise-limted detection region. In-

deed, this feature is also well-matched with atom-resonant squeezed light sources

[67, 68, 69, 70, 71], which have shown squeezing at radio frequencies. While in

chapter (4) we describe the experimental setup, the data analysis and the exper-

imental results, here we derive the atomic spin noise contribution to the power

spectral density for Rb in natural abundance.

Here we refer to the dispersive rotation angle of Eq. (2.31) with the notation

φ = ΘFR. The following theoretical derivation has been obtained by my colleague

Dr. Ricardo Jiménez-Mart́ınez and it is also reported in [72]. We can compute

the FR angle ΘFR by a coarse-grained approach. Dropping the t for simplicity,

and labelling by i the isotope mass number and by j the hyperfine state, so that

f (i,j) is the single-atom total spin quantum number, the contribution to ΘFR from

atoms in a small region of dimensions ∆x×∆y × Lcell, centered on (xm, ym)

Θ
(i,j)
FR =

1

P

Di(ν
′)

(2Ii + 1)

∑
m

P (xm, ym)
σ0

∆x∆y
F (i,j,m)
z , (2.35)

where P (xm, ym) ≈ ∆x∆yI(xm, ym) is the power of the beam in the given region,

2Ii + 1 is a geometrical factor accounting for the hyperfine coupling between

electronic spin (S = 1/2) and nuclear spin (Ii) of the atom, so that f (i,j) = Ii + j,

j ∈ {−1
2 ,+

1
2}, and F

(i,j,m)
z is the z-component of the collective angular momentum

operator, i.e., the sum of the individual angular momenta f (i,j) for atoms in the

given region.
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The on-resonance cross-section for the collision-broadened optical line is [73]

σ0 =
crefosc

∆νlight/2
= 2.4× 10−12 cm2 (2.36)

where re = 2.82 × 10−13 cm is the classical electron radius, fosc = 0.34 is the

oscillator strength of the D1 transition in Rb, and c is the speed of light. The

spectral factor is

Di(ν
′) =

(ν ′ − ν ′j)∆νlight/2

(ν ′ − ν ′j)2 + (∆νlight/2)2
, (2.37)

where ν ′ and ν ′j , denote the probe optical frequency and optical resonance fre-

quency, respectively, and ∆νlight represents the pressure-broadened FWHM of the

optical transition. For the vapor cell used in our experiments ∆νlight ≈ 2.4 GHz

due to 100 Torr of N2 buffer gas (see section (3.1.1)).

For a given region, the mean of the collective spin projection is 〈F (i,j,m)
z 〉 =

ni∆x∆yLcellTr[ρf i,jz ] = 0 where ni is the atomic density of the i-th species, and

ρ is the thermal state, which to a very good approximation is a uniform mixture

of the ground states. As a result 〈Θ(i,j)
FR 〉 = 0.

In a similar way, and assuming that different atoms are independent, so that

their variances sum, we find

var Θ
(i,j)
FR =

(
σ0

P

Di(ν
′)

(2Ii + 1)

)2

var
∑
m

I(xm, ym)F (i,j,m)
z

∝
∑
m

var I(xm, ym)F (i,j,m)
z

∝
∑
m

I2(xm, ym)var F (i,j,m)
z , (2.38)
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where var F
(i,j,m)
z = ni ∆x∆y LcellTr[ρ(f

(i,j)
z )2], with

Tr[ρ(f (i,j)
z )2] =

f (i,j)(f (i,j) + 1)(2f (i,j) + 1)

6(2Ii + 1)
. (2.39)

Taking the limit ∆x∆y → dx dy, and assuming the contributions of different

isotopes and different hyperfine levels contribute independently, the spin noise due

to isotope i is

var Θ
(i)
FR = κ2

iσ
2
0nLcell

∫
dxdyI2(x, y)

P 2
, (2.40)

where the parameter κ2
i is given by

κ2
i =

∑
j

D2
i (ν
′)

(2Ii + 1)3

f (i,j)(f (i,j) + 1)(2f (i,j) + 1)

6
(2.41)

Equation (2.40) is conveniently expressed as

var Θ
(i)
FR = Ni

σ2
0

A2
eff

κ2
i , (2.42)

where Ni ≡ niAeffLcell is the effective number of istope-i atoms in the beam, and

Aeff is the effective area [46]:

Aeff ≡
[
∫
dxdy I(x, y)]2∫
dxdy I2(x, y)

. (2.43)

The spin noise oscillates at the Larmor frequency νi and with FWHM linewidth

∆νi, so that

S(ν) = Sph +
∑

i∈{85,87}
S

(i)
at

(∆ν/2)2

(ν − νi)2 + (∆ν/2)2
(2.44)
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where

S
(i)
at (ν) =

4G2<2P 2

π∆ν/2
var Θ

(i)
FR. (2.45)

gives, combined with Eqs. (2.41) and (2.42), the atomic noise contribution of the

i-th species to the power spectral density of a Faraday rotation measurement, as

a function of atomic density and optical detuning. The Sph contribution to the

spectrum is the photon shot noise power, which has been already defined in Eqs.

(2.6) and (2.24) for a coherent and polarization squeezed probe, respectively. In

chapters (4) and (5) we will refer several times to the theory introduced in this

section.

2.4 Nonlinear magneto-optical rotation (NMOR)

After the discovery of the laser, it became possible to investigate magneto-optical

effects within a regime of interaction between strong light fields and atomic media.

Among different nonlinear processes [6], in 1974 a light intensity dependent Fara-

day rotation of the polarization plane, the so-called nonlinear magneto-optical

rotation (NMOR), was discovered by W. Gawlik and co-workers [5, 74]. Nowa-

days, some of the most sensitive optical magnetometers are based on NMOR [75]

and the narrowest feature in the magnetic resonance is related to the ground-state

atomic coherence time, which can be increased when alkali vapours are confined

with a buffer gas [76, 77] or in anti-relaxation coated cells [75, 78]. Techniques

based on modulation in amplitude (AMOR) [79] or frequency (FM-NMOR) [80]

of the pumping process, have extend the near-zero field NMOR high-sensitivity

to a broader dynamic magnetic field range. In chapter (6) we report a shot-noise-

limited AMOR magnetometer, with a complete description of both the experiment
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and data analysis. In this section we qualitatively describe the physics of the

AMOR process and we will refer to more complete references for a full theoretical

treatment.

While the linear effects described in the previous section are understood in

terms of circular birefringence induced either by Zeeman level shifts or by popula-

tion unbalance between atomic energy sub-levels (as in SNS), nonlinear magneto-

optical rotation is more properly explained in terms of probing the light-induced

linear dichroism of a polarized atomic ensemble, which evolves in the presence

of a magnetic field. Although the complete process is usually simultaneous, it is

convenient to describe it as occurring in three stages: optical pumping, magnetic

field dependent evolution (typically Larmor precession) of the atomic spin and

optical probing.

As described in chapter (6) we perform AMOR-based magnetometry by

means of amplitude modulated pumping and unmodulated CW probing in a

right-angle geometry. Optical pumping with linearly polarized light generates

spin alignment, i.e. ground state coherences between Zeeman sub-levels with

∆mF = 2 [81, 82]. In our experiment the pump beam is locked 20 MHz be-

low the F = 3 → F ′ = 2 transition of the 85Rb D1. The alignment describes

a preferred axis, but not a preferred direction along this axis. In the saturated

condition the medium becomes transparent to the linear polarization of the pump

beam, while can still absorb light with orthogonal polarization, i.e. it acquires the

property of linear dichroism. When a magnetic field is applied, the alignment axis

precesses at the Larmor frequency ΩL around the field direction and behaves like a

rotating polaroid film [83] that is transparent to light polarized along its axis and

slightly absorbent for the orthogonal polarization. The probe beam, which has
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the same linear polarization of the pump and propagates along the magnetic field

direction, is sensitive to alignment through linear dichroism, when the alignment

is neither parallel to nor perpendicular to its polarization, and undergoes non-

linear magneto optical rotation (NMOR) of the polarization plane. As a function

of the magnetic field, the NMOR resonance has a sub-natural linewidth equal to

Γrel, the relaxation rate of the ground state atomic coherence, that provides very

high sensitivity of optical magnetometers [75], approaching fundamental limits as

we also demonstrate in this thesis [84]. By considering that the aligned atomic

state reproduces itself twice in a 1/ΩL time, the NMOR signal also oscillates at

2ΩL, and can be detected directly on a spectrum analyzer or demodulated with

a lock-in amplifier to extract the in-phase and quadrature components, as de-

scribed in chapter (6). In AMOR, amplitude modulated optical pumping at 2ΩL

produces a resonant build-up of spin alignment, as demonstrated in several earlier

works [85, 86]. The alignment now behaves as a damped driven oscillator, and

in steady state responds at frequency Ωm with an amplitude and phase relative

to the drive that depend on the detuning Ωm − 2ΩL [87], where Ωm is the mod-

ulation frequency. Indeed, with CW pumping, as the magnetic field is increased

the Larmor precession is faster, increasing the angle between the alignment axis

and the probe polarization i.e. increasing the NMOR signal amplitude. When the

Larmor precession starts to be much larger than the ground-state relaxation rate

ΩL � Γrel the atoms can precess on the order of a full revolution before relaxing

and, because of the continuous re-pumping in the same input polarization axis,

the atomic polarization begins to average out reducing the signal that is even-

tually destroyed for CW pumping and strong magnetic fields. This explains the

dispersive shape of the NMOR magnetic resonance [75] and the fact that, in order

to get high sensitivity for larger magnetic fields, a synchronization of the pumping



36 Chapter 2. Theoretical background

process with the Larmor frequency is necessary [79]. In chapter (6)) we define the

AMOR rotation signal and the AMOR sensitivity, we study the magnetometer

quantum noise and we demonstrate SNL performance at the optimal sensitivity.

A rigorous theoretical treatment of nonlinear magneto-optical effects is quite

complex, represents a subject in itself and goes beyond the objectives of this

Thesis. The reader can refer to one of the more complete approaches [88], which

makes use of the wave propagation equation for the optical field in the medium

to relate the atomic density matrix with the changes in the light parameters.

Another elegant method that allows one to make a systematic classification of

both linear and nonlinear effects is the perturbative approach [6, 88], in which the

density matrix is expanded in powers of the light electric-field amplitude.

2.5 Fundamental limits of optical magnetometers

As we described in the previous sections, by probing the magneto-optical evolution

of an atomic medium, the polarization rotation signal is a function of the applied

magnetic field. Then, in optical magnetometry [7] what is typically reported as

magnetometer sensitivity is given by:

δB =

(
dφ

dB

)−1

δφ (2.46)

where dφ/dB is the slope of the rotation signal versus magnetic field and δφ is

the uncertainty on the rotation angle i.e. the phase uncertainty in the polariza-

tion interferometer scheme. For near zero magnetic field the slope is given with a

good approximation by the ratio dφ/dB ≈ A/γ between the rotation signal am-

plitude A and the resonance width γ. Depending on the magnetometer scheme



2.5. Fundamental limits of optical magnetometers 37

and performance, different physical mechanisms affect the resonance linewidth; for

istance, in NMOR-based magnetometry, as decribed in the previous section, the

narrowest feature is related to the ground-state coherence relaxation rate γ ' Γrel

so that increasing the coherence lifetime with noble buffer gas [77] or paraffine

coated vapor cells [78] improves the magnetometer sensitivity. The amplitude of

the rotation signal is proportional to the optical depth and can be improved either

by increasing the atomic density or the light-atoms interaction length. The for-

mer is obtained by increasing the temperature of the vapor cell and consequently

the atomic density (increasing the density has a limit when the dominant spin-

relaxation mechanisms becomes either spin-exchange or spin-destruction collisions

[89]). The latter is obtained either by using longer vapor cells or through multi-

pass vapor cells [10], in which the light probe is reflected hundreds times back

and forward before detection, resulting in a significant enhancement of the signal

[90]. From Eq. (2.46) it is also evident that a reduction in the phase uncertainty

turns into an improved sensitivity. However, the magnetometer sensitivity of Eq.

(2.46) is fundamentally limited by two independent quantum noise contributions

δBat and δBph, arising from the quantum nature of both atoms and photons,

respectively. The quantum limited sensitivity is given by [7, 89]:

δBql =
√
δB2

at + δB2
ph (2.47)

It should be noted that light-atom coupling via AC Stark shifts can also be a

source of additional quantum noise [91].
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2.5.1 Atomic projection noise

The atomic contribution, the so-called spin-projection-noise (or atomic shot-noise)

limit is due to the fundamental quantum uncertainty on the measurement of

atomic spin projection along a certain axis and, for a measurement time τ � Γrel,

it is determined by the total number of atoms N involved in the measurement

and by the spin-relaxation rate Γrel:

δBat ≈
h̄

gfµB

√
Γrel

Nτ
(2.48)

This quantum limit can be understood by considering that a measurement per-

formed with a single atom for a time of 1/Γrel gives a precession angle uncertainty

of 1 rad. Using N atoms results in an uncertainty reduction by
√
N , while repeat-

ing the measurement multiple times further reduces the uncertainty by the number

of measurements that is approximately equal to
√

Γrelτ . In different magnetome-

ter schemes, the atomic shot-noise of Eq. (2.48) can be beaten by using either

atomic entanglement [92] or atomic spin squeezing [93, 94]. However, as already

mentioned, in this thesis we focus on the opportunities given by the polarization

squeezing of the light, that can analogously beat the photon shot-noise-limited

magnetometer sensitivity, which is defined below.

2.5.2 Photon shot noise

As already described in Section (2.1.2), within a general interferometer scheme,

the uncertainty of the phase estimated with coherent states is limited by the

photon-shot-noise of Eq. (2.7). By inserting the photon shot noise scaling in

Eq. (2.46) we can obtain the quantum noise contribution to the magnetometer
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sensitivity [95]:

δBph ≈
h̄

gfµB

Γrel

A

1√
Nph

(2.49)

When optical magnetometers are limited by the photon shot noise, it is possi-

ble to improve the sensitivity below the shot-noise limit of Eq. (2.49) by using

squeezed states of light, as described in Section (2.2.3). Application of polarization

squeezed-light improved the sensitivity of optical magnetometers up to the level

of ≈ 1 pT/
√

Hz [40, 43, 44, 45], still much worse than state of the art sensitivity

[8, 10] in the class of low-frequency scalar magnetometers. In chapter 6 we report

the first shot-noise-limited optical magnetometer that is suitable for application of

squeezed light and, at the same time, has a sensitivity of 70 fT/
√

Hz, comparable

with the best in class optical magnetometers.







Chapter 3

Experimental setup for

squeezed-light atomic

spectroscopy

In this chapter we describe in detail the experimental setup that we built at ICFO

during my PhD, together with my colleagues Jia Kong and Ricardo Jiménez-

Mart́ınez. The setup combines a source of polarization squeezed light with a dense

atomic ensemble within a low-noise magnetic environment. While the squeezer

was already built [69] and used in previous experiments within our group [40, 96],

my work has been focused on the design and building of the apparatus, which

consists of vapor cell, oven, heating system, magnetic coils for both uniform and

gradient fields and on the study of its interaction with a squeezed light probe.

The combined experimental setup is a versatile system for studying quantum

effects and limitations of atomic spectroscopy and magnetometry at the picotesla

42
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level of sensitivity with atomic density up to n = 1013 atoms/cm3, while the

use of squeezed light can beat the classical limitation to sensitivity given by the

photon shot-noise contribution. This chapter 3 gives all the technical details and

calibrations of the different components of the apparatus. As first application,

we report quantum enhancement of spin noise spectroscopy of dense Rb ensemble

using squeezed light, an experiment described in Chapter 4.

3.1 Atomic system and temperature control

In this section we describe the characterization of the Rb vapor cell and the

design/construction of the aluminium oven that encloses the vapor cell. We also

give all the technical details regarding the heating system and the temperature

control.

3.1.1 The vapor cell

Figure 3.1: Rb Vapor cell.

In our experiment we used a cylindrical vapor cell (Manufacturer: Precision
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Glassblowing) with natural isotopic abundance of 85Rb and 87Rb. The cell, shown

in Fig. 3.1, has length of Lcell = 3 cm, diameter of d = 1.27 cm and fused silica

windows with length of Lwin = 3 mm each and double-side antireflection (AR)

coating for 795 nm. In order to increase the atomic spin lifetime, in addition

to 25mg of Rb the cell is filled with 100 Torr of N2 buffer gas. We checked the

amount of buffer gas by measuring the absorption spectrum versus detuning of a

probe laser. In Fig. (3.2) we report the absorption spectra for the cell with buffer

Figure 3.2: Absorption vs frequency detuning. Measured absorption spectrum of
the cell with buffer gas is in blue, while the performed fit (see text) is in red. A reference
spectrum (87Rb isotopically pure cell with no buffer) is in black. The light detuning on
the x-axis is measured with respect to the hyperfine transition Fg = 2→ Fe = 1 of 87Rb

D1 line.

gas and for a reference cell of pure 87Rb. In general, the intensity of a laser beam

after absorption through a cell of length Lcell with isotopic abundance is given by:

I = I0exp[−(
∑

αi)Lcell] (3.1)

where I0 is the beam intensity at the entrance of the medium, the sum is performed

over all the available transitions for all the isotopes and αi is the absorption
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coefficient of the individual transition for each species. In our specific case, shown

in Fig. (3.2), the laser frequency is scanned around the Rb D1 line (zero reference

at the transition Fg = 2 → Fe = 1 of 87Rb), there are four available D1 line

transitions for both 85Rb and 87Rb isotopes with transition strengths given in the

Appendix B of [97]. By knowing that the D1 line is significantly broadened by

atomic collisions with buffer gas atoms, we neglect the effect of Doppler broadening

so that the absorption coefficient for the transition F → F ′ of the isotope with

abundance Is can be written as αi = OD/Lcell × Is× Si(F,F
′)Li(ν) in which OD

is the optical depth and Li(ν) is a pure Lorentzian function given by:

Li =
γ2/4

(ν − νcoll − νi)2 + γ2/4
(3.2)

where γ is the FWHM pressure-broadened linewidth, νcoll is the transition fre-

quency shift due to collisions with the buffer gas, Si(F, F
′) and νi are transition

strength and detuning of the F → F ′ transition relative to the reference transi-

tion Fg = 2 → Fe = 1 of 87Rb D1 line, respectively. Then, in order to obtain

the experimental values of γ and νcoll, we perform a fit (see Fig. (3.2)) of the

measured absorption spectrum (in Volt units) with the fit function:

V (ν) = A+Bν

(
exp

[
−OD

(
0.7217

∑
i

Si(F,F
′)Li(ν)+0.2783

∑
j

Sj(F,F
′)Lj(ν)

)])
(3.3)

in which A is an offset, B takes into account the laser intensity dependence on

optical frequency, i and j indices run over the four available transitions for 85Rb

and 87Rb, respectively. From the fit with free parameters (A,B,OD, γ, νcoll) we

obtained an optical linewidth γ = 2.29GHz, a collisional shift νcoll = −1.19GHz

and an optical depth OD = 1.1. By considering that OD = σnLcell, the mea-
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sured pressure broadened cross section is σ = 2.4 × 1012 cm2 and Lcell = 3cm,

the described measurement gives also an atomic density value of n = 2 × 1011

atoms/cm3. The measured values of linewidth and shift due to collisions with

buffer gas atoms are in good agreement with theoretical expectations based on

[98] (broadening of 2.3GHz and shift of −1GHz) for a buffer gas pressure of 100

Torr.

3.1.2 Oven

The vapor cell is enclosed in an aluminium oven that, thanks to high thermal

conductivity kT ≈ 200Wm−1K−1, is heated up through conduction with a heating

circuit that we describe in detail in the next section (3.1.3). The oven constists

(a) Oven bottom part (b) Oven top part

Figure 3.3: Aluminium Oven design pictures.

of two independent parts of length l = 5.5cm and width w = 4.5cm, machined by

the ICFO mechanical workshop, that are shown in Figs. (3.3a) and (3.3b). The

technical drawings, including holes dimensions, are reported in the Appendix.

Both parts of the oven are machined with a v-groove structure, so that the vapor

cell can stay in mechanical equilibrium over the bottom part, as shown in Fig.

(7.2), while the top part is attached to the first through non-magnetic screws, in
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order to surround the cell volume and to keep, at the same time, free space for

transverse and longitudinal laser beam propagation. The cell’s stem goes through

a hole, machined at the center of the bottom part of the oven, as shown in Figs.

(3.3a) and (7.2).

Figure 3.4: Aluminium oven. Top view of the vapor cell over the bottom part of
the aluminium oven. The combined system is thermally isolated by a Teflon box. A
thermocouple sensor is attached to the oven through Kapton tape and it monitors the

temperature as described in Section (3.1.3).

The system composed by the aluminium oven and the Rb vapor cell is ther-

mally isolated from the environment by means of a Teflon box connected to rings
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that are machined in order to fit inside the innermost acrylic tube of the overall

apparatus, described in section (3.2). In Fig. (3.5a) we report the picture of the

system that includes the Teflon box (open in the photograph), the aluminium

oven and the vapor cell. The Teflon box is machined with longitudinal holes of

diameter D = 1cm (side view in Fig. 3.5c) and transverse windows (side view in

Fig. 3.5d) to enable laser propagation in both directions. In addition, as shown in

Figs. (3.5a), transverse holes allow the wires, of both thermocouple and heaters,

to be passed out of the oven for electrical connections. In the experiment de-

scribed in Chapter 4, carried out with this apparatus, the Rb vapor is in thermal

equilibrium (no optical pumping) and we probe the atoms just with a single laser

beam in the longitudinal direction (coordinate system defined in Section 3.2).

3.1.3 Heating circuit and temperature stabilization

The density of the Rb vapor is increased by heating up the aluminium oven that

surrounds the cell. The heating system is shown in Fig. (3.6). A tranformer

reduces the 250 VAC from the laboratory power line to a lower voltage of 115AC

Volt that is applied to a load of five Katpon heaters connected in series. Each

heater (Model: KHLV-101/(10) from Omega) has area of 1in2, impedance of 83.6Ω

and is specified for power up to 10 Watt/in2. Then, when a 115 VAC is applied to

the load, a total electrical power of 25W is released. Four out of five heaters are

placed underneath the aluminium oven (See Fig. 3.5a) and they are overlapped

in pairs, so that the current in the top heater flows in the opposite direction with

respect to the bottom one and the residual generated magnetic fields are mutually

cancelled, as shown in Fig. 3.7. A fifth heater is also wired in series to the first

four but it is outside of both the oven and the magnetic shielding, so that it com-
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(a) Aluminium oven inside the Teflon
box

(b) Top view

(c) Longitudinal side view (d) Transverse side view

Figure 3.5: Teflon box for thermal isolation. The aluminium oven that encloses the
vapor cell is attached to a Teflon box for thermal isolation and supported by Teflon rings.

pletes the circuit’s load but does not contribute to the oven/vapor cell heating, as

depicted in Fig. (3.6). The temperature inside the oven is monitored by a type-T

thermocouple (Model: CT-Z2-PFA-T-2 from LabFacility) that is attached to the

oven at the height of the probe beam propagation through the vapor cell (see Fig.

7.2). The thermocouple voltage output is electrically connected to a PID feed-

back/control circuit of a digital temperature controller (Model: CN9111A from

Omega) that alternatively switches ON/OFF a relay output allowing to the 115

VAC to be applied or not to the circuit load, in order to reach the temperature
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Figure 3.6: Heating Circuit. The heating system consists of a transformer, a load of
five Kapton heaters, a thermocouple sensor and a temperature controller (see text for
details). The rows indicate the direction of the current’s flow. The blue region includes
components that are inside an isolation box made of aluminium with electrical input (to
the temperature controller) and output (to the load circuit) for the thermocouple and the
115AC voltages, respectively. The yellow region includes the circuit load. The red region
encloses the components (four heaters and thermocouple’s sensor) that are in thermal
contact with the aluminium oven, inside the magnetic shielding within a Teflon isolation
box. A fifth heater is outside of the magnetic shielding and it is used both as a monitor of
the proper operation of the circuit and as a source (from its extremes) of a trigger voltage

for the data acquisition.

setpoint and/or to keep it stable. As shown in Figs. (3.8a) and (3.8b), by using

the described heating system the temperature reaches the setpoint from five to

ten minutes, the higher the temperature the longer the stabilization time, and

afterwards remains stable within a ±1◦C uncertainty. While we tested tempera-

ture up to 180◦C, in the main experiment described in Chapter 4 we heated the

vapor cell up to 120◦C. Under stable conditions, the current flows into the circuit,

through the relay control, one second over ten, the 10% of the time. The accessible

kapton heater outside the shielding, is used both as a safety monitor and, most
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Figure 3.7: Kapton heater. The four heaters are in thermal contact with the bottom
part of the aluminium oven, they

are connected in series and overlapped in pairs with opposite current flow, as
depicted here, in order to minimize residual magnetic fields.

(a) Low Temperature Stabilization (b) High Temperature Stabilization

Figure 3.8: Temperature versus time.

importantly, as a trigger for the data acquisition. In fact, we take the voltage

across the heater in order to generate a signal that trigger the data acquisition

while no current flows through the heaters.

3.2 Magnetic shielding and magnetic coils

Magneto-optical effects, like Faraday rotation, are at the core of atomic measure-

ments as those described in this Thesis like spin noise spectroscopy and optical



52 Chapter 3. Experimental setup for squeezed-light atomic spectroscopy

magnetometry. Then, a very low-noise magnetic environment is required in order

to reach quantum-limited sensitivity of such atomic sensors. In this section we

describe the geometry and the characterization of the magnetic shielding, nec-

essary to achieve the picotesla level of sensitivity, and we give all the details on

design, construction and calibration of the magnetic coils for the generation of

both uniform and gradient magnetic fields.

3.2.1 Magnetic Shielding

In the apparatus we built at ICFO, the atomic system and the magnetic coils,

that we describe in the next subsection (3.2.2), are magnetically shielded from the

environment (mainly from the Earth’s magnetic field) through four cylindrical mu-

metal layers whose diameters and thickness are given in Table (3.1) (Manufacturer:

magneticshields.uk). The main figure of merit here is the magnetic shielding factor

S = Bext/Bint, which is defined as the ratio of the magnetic field Bext applied

to a certain volume in absence of magnetic shielding to the field Bint measured

inside the shielded volume. An estimate of the total shielding factor of a series of

n shield layers can be found by using the simple approximate expression [99]:

Stot = Sn

n−1∏
i=1

Si
[
1−

( Di

Di+1

)k]
(3.4)

where Di is diameter of the ith shielding layer and k depends on the shield ge-

ometry: k = 3 for spherical shells, k = 2 for cylindrical layers as in our case. The

individual layer shielding factor is given by:

Si = µiti/Di (3.5)
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where µi, ti and Di are magnetic permeability (relative to the free space) and

thickness of the ith shielding layer.

Shield parameters Estimated Shielding Measured Shielding

i Di (mm) ti (mm) µ = 104 µ = 2× 104 µ = 105 DC AC

1 203.2 1.5 74 148 738 179 115

2 254 1.5 59 118 591 104 43

3 304.8 1 33 66 328 337 127

4 355.6 1 28 56 281 120 67

Total Shielding Sn (×106) 0.1 1.9 1173.8 22 1.2

Table 3.1: Magnetic Shielding In this table we report the geometrical parameters of the
mu-metal layers together with the individual and overall shielding factor, both estimated

and measured.

In Fig. (3.9) we report the scheme used for measuring the shielding factor

for AC/DC applied magnetic field. We applied a known magnetic field to the

center of the volume of the individual shielding layer. By means of a fluxgate

magnetometer with 10 pT sensitivity (Model: Mag-03 MCUP range 100 from

Bartington Instruments) we measured (see caption of Fig. (3.9) for details) the

generated field Bext in absence of the shielded volume and the field Bint inside the

cylindrical layer at the same position. Thus we obtained the shielding factor Si of

the individual mu-metal layer. By comparing the measured shielding factors with

the theoretical values given by Eqs. (3.4) and (3.5), we found a good agreement

for values of magnetic permeability that vary for different layers from 1.7 × 104

to 1 × 105 for an applied DC B-field and from 7.2 × 103 to 3.8 × 104 for an

applied B-field oscillating at 72 Hz. Form this, we infer an averaged magnetic

permeability values of µ = 4.5×104 and µ = 1.95×104, respectively. By inserting

the measured shielding factors (see Table (3.1)) in Eqs. (3.4) and (3.5) we obtain

a total magnetic shielding factor of Stot = 2.19× 107 and Stot = 1.2× 106 for the

DC/AC case, respectively. Then, the contribution from the Earth’s magnetic field
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Figure 3.9: Shielding factor measurement scheme. We apply a known voltage to
a set of rectangular coils from the output of a Waveform Generator/Lock-in-amplifier
(LIA) for generating a DC/AC magnetic field, respectively. By knowing coils geometry
(a, b), applied voltage and coils impedance we calculated the generated field at a distance
d0 from the center of the rectangular coils, in free unshielded space, through the law
of Biot-Savart. We found good agreement with the experimental value Bext, measured
by means of a fluxgate magnetometer along the axis of the generated field (blue dashed
line). The fluxgate output is fed into a digital multimeter directly in the DC case, after
demodulation by the LIA (at the same 72Hz reference frequency) in the AC measurement.
We then placed the individual shielding layer, we measured the field Bint at the same
position inside the shielded voulme and we obtained the shielding factor S = Bext/Bint.
We followed the same procedure for the four individual layers by obtaining experimental

values given in Table (3.1).

BE ≈ 50µT (or other field of similar strength outside the shielding) is shielded to

the uniform level of BE/Stot = 2.27pT.

Each mu-metal layer consists of a tubular body with transverse holes (de-

signed for transverse laser beam propagation) and two endcaps, attachable and

removable by friction, with three holes designed for the longitudinal propagation

of a laser beam and for allowing the wires (of both coils and heating system)

to go through, as shown in Fig. (3.10a). The overall magnetic shielding stands
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(a) Magnetic shielding. Overall mu-metal magnetic shielding
with cylindrical body and endcaps. The holes allow transverse

and longitudinal propagation of laser beams.

(b) Coordinate sys-
tem.

Figure 3.10: Magnetic shielding and coordinate system. The zero position (0,0,0) cor-
responds to the geometrical center of the cylindrical vapor cell as well as of the tubular

shielding. See also Fig. 3.15b.

in mechanical equilibrium over four aluminium mounts that are screwed to the

optical table. In this way the entire system is stable in a fixed position, but could

also be moved easily to another region of optical table. In Fig. (3.10b) we define

the coordinate system where the z direction corresponds to the laser propagation

direction through the Rb vapor cell while the (0,0,0) position corresponds to the

geometrical center of both the vapor cell and the magnetic shielding. We will re-

fer to this coordinate system in the next section as well as throughout the whole

Thesis.
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3.2.2 Uniform fields and gradient Coils

In order to make our setup versatile for different experimental configurations, we

have designed and built different coil geometries for generating uniform magnetic

fields and gradients in the three spatial directions. By referring to the coordinate

system of Fig. (3.10b), in our apparatus, inside the magnetic shielding, we can

apply to the region covering the vapor cell volume the three DC fields:

{
Bx, By, Bz

}
(3.6)

and their respective gradients with respect to the probe propagation direction z:

{∂Bx
∂z

,
∂By
∂z

,
∂Bz
∂z

}
(3.7)

Coils design and fabrication

In order to make the coils independent and easily removable, we have wrapped

them around channels that have been machined by the ICFO mechanical workshop

over three cylindrical acrylic tubes (Manufacturer: Plasting (IT)) with different

geometries that we describe afterwards in this section. Two out of the three acrylic

tubes, after being machined, are shown in Figs. (3.11a) and (3.11b).

Let’s describe first the geometry of the coils for the three DC magnetic fields{
Bz, Bx, By

}
. We can generate the longitudinal field Bz through a solenoid and

the transverse fields Bx, By by means of two pairs of saddle shaped coils [100].

These geometries are shown in Figs. (3.12a) and (3.12c), respectively. Just one

pair of saddle coils is shown in Fig. (3.12c) for the generation of the Bx field.
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(a) Solenoid coil geometry (b) Saddle coils geometry

Figure 3.11: Acrylic tubes machined with channels of the desired geometry before coils
wrapping.

Another copy of saddle coils with the same dimensions, just rotated by π/2 degrees

around the z axis, generates the By field. Both saddle coils for the generation of

Bx, By fields are wrapped across the same acrylic tube, shown in Fig. (3.11b).

At the origin (the geometric center of the coil), the magnetic field generated by a

saddle coil is [100]:

~Bx(0, 0, 0) =
4µoNI

π

h

D2
(s−1/2 + s−3/2) sin(φ/2)~x (3.8)

where ~x is a unit vector in the x direction, µo = 4π × 10−7 is the free space

magnetic permeability, N is the number of turns in both coils, I is the current in

the wire, and:

s = 1 + (
h

D
)2 (3.9)

We designed two identical pairs of saddle coils with height h = 34cm, diameter

D = 19.86cm and angle φ = 12.82◦. These values provide an expected magnetic

field at the center of the coils of Bx(0, 0, 0) = 7.514µT for one coil turn N = 1 and

per unit of current I = 1A. The same theoretical value applies to the By(0, 0, 0)

field, being the coil geometry the same.
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(a) Solenoid geometry (b) Design picture of the tube machined for the
Solenoid coil

(c) Saddle coil geometry (d) Design picture of the tube machined for the
Saddle coils

Figure 3.12: Geometries for the generation of DC B-fields. The black arrows on the coils
indicate the versus of the current’s flow. (a) The solenoid generates the Bz field. (b)
Design of the acrylic tube that supports the solenoid and an anti-Helmholtz coils pair
(see text) (c) A saddle coil pair generates the Bx field. (d) Design of the acrylic tube
that supports two pairs of saddle coils, rotated by π/2 degrees around the z axis, for the

generation of the transverse Bx, By fields.

On the other hand, the magnetic field generated by a circular coil along the

z-axis is:

~Bz(0, 0, z) =
µo
4π

2πR2NI

(z2 +R2)3/2
~i (3.10)
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where ~i is a unit vector in the z direction, N is the number of turns of the coil

and R = D/2 is the coil radius. We designed a solenoid with Ncoils = 16, spacing

between adjacent coils d = 2cm, diameter D = 19.86cm and length L = 30cm.

Then, by adding the contributions of Eq. (3.10) given by the Ncoils = 16 at

different on-axis distances, we calculated a magnetic field generated from the

solenoid, at the center of the coordinate system, of Bz(0, 0, 0) = 54.94µT, per

turn and per unit of current I = 1A.

(a) Solenoid uniformity (b) Saddle coils uniformity

Figure 3.13: Spatial variation of the magnetic field generated by the solenoid and the
saddle coils

We can also estimate the theoretical uniformity of the generated fields with

respect to the three spatial directions. In Figs. (3.13a) and (3.13b) we show the

spatial variation of the magnetic field generated by the solenoid and the saddle

coils, respectively. The change is relative to the field generated at the center

of the the coordinate system
{
Bz(0, 0, 0), Bx(0, 0, 0)

}
, while the position changes

over a distance of 3cm. Within the vapor cell volume, we calculated a uniformity

up to 0.25% for the solenoid field Bz and up to 0.05% for the saddle coils fields{
Bx, By

}
.
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Let’s now describe the geometry of the coils for the generation of the three

magnetic field gradients
{
∂Bx
∂z ,

∂By
∂z ,

∂Bz
∂z

}
. We can generate the longitudinal field

gradient ∂Bx
∂z through a pair of anti-Helmholtz coils, in which the electrical current

flows in opposite direction, as shown in Fig. (3.14a). The generated field is

null at the center of the coils system and depends linearly on the z-position.

Furthermore, we generate the transvere field gradient ∂Bx
∂z with respect to the

beam propagation direction z by means of two pairs of saddle coils that carry

electrical current in opposite direction as shown in Fig. (3.14b). The generated

field is null at the center of the saddle coils system while it increases/decreases

linearly for positive/negative x-position. As for the DC y-field, the
∂By
∂z gradient

is generated with a second set of saddle coils, identical to those shown in Fig.

(3.14b), rotated by π/2 degrees around the z axis.

(a) Anti-Helmholtz coils geometry (b) Gradient Saddle coils geometry

Figure 3.14: Geometries for the generation of the magnetic field gradients. The black
arrows on the coils indicate the versus of the current’s flow (see text for details).

All the coils are made of enamelled copper wire with outer diameter of

0.63mm and resistance of 0.07Ohm/m (Model Number: ECW0.56 in Farnell
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Spain) and they are fixed to the tube channels through a 2-part epoxy (Dou-

ble Bubble, Manufacturer: Loctite). The solenoid and the anti-Helmoltz coils are

wrapped around the largest acrylic tube (Dimensions: Outer Diameter of 200mm,

Inner Diameter of 190mm, Length of 355 mm), the two pairs of saddle coils that

generate the transverse DC fields
{
Bx, By

}
are wrapped around the middle acrylic

tube (Dimensions: OD=185mm, ID=175mm, L=355 mm), while the saddle coils

pairs that generate the gradients
{
∂Bx
∂z ,

∂By
∂z

}
are wrapped around the smallest

acrylic tube (Dimensions: OD=164mm, ID=154mm, L=355 mm). Then, the

three tubes are inserted concentrically inside the four mu-metal layers magnetic

shielding as shown in Fig. (3.15a). The rounded Teflon slab that encloses oven

and vapor cell, as previously described, is then interlocked at the center of the

innermost acrylic tube as depicted in Fig. (3.15b), so that the vapor cell stands

at the center of the coordinate system.

(a) Acrylic tubes and Shielding layout (b) Oven and acrylic tubes layout

Figure 3.15: Geometry of the apparatus that includes the vapor cell inside the oven,
surrounded and supported by the Teflon box, and placed within the three machined
acrylic tubes that hold the magnetic coils and are fixed inside the four mu-metal layers

magnetic chielding.
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Coils calibration

We calibrated the constructed magnetic coils by using a 3-axis fluxgate mag-

netometer (Model: Mag-03 MCUP range 100 from Bartington Instruments) to

measure the different DC field components
{
Bx, By, Bz

}
versus z-position and

current. In absence of the vapor cell, the fluxgate was mounted on a post that

can go through the central hole of the shielding endcaps. The post holder was

fixed on a double translation stage along the z-axis, the probe beam propagation

direction, so that the fluxgate sensor could be translated from the center of the

coordinate system of a distance ±3cm, covering the vapor cell length. These mea-

surements have been performed with the acrylic tubes that support the coils fixed

concentrically inside the overall magnetic shielding with all the mu-metal endcaps

in place. We report the effective field components, obtained by subtracting the

background field from the total field, measured when electrical current is applied

to different coils.

(a) Bz(0, 0, 0) field generated by the solenoid
versus electrical current. Blue triangles show

data points, the red line a linear fit.

(b) Bx(0, 0, 0) (red circles) and By(0, 0, 0)
(black squares) generated by the DC sad-
dle coils versus electrical current. The red

line is a linear fit.

Figure 3.16: Magnetic field components versus current intensity.

In Figs. (3.16a) and (3.16b) we report the magnetic field components
{
Bz, Bx, By

}
,
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generated by the DC coils, versus electrical current. As expected from Eqs. (3.8)

and (3.10), the magnetic field strength increases linearly with the intensity of cur-

rent through the coils. For the Bz field, generated by the solenoid with N = 8

turns, we measured a slope of 0.449µT/mA, which is in a good agreement (2.2%

error) with the theoretical value of 0.439µT/mA, obtained from Eq. (3.10) for

Ncoils = 16 and N = 8 turns. For the Bx, By fields, independently generated by

two pairs of saddle coils with N = 11 turns, we measured a slope of 0.082µT/mA,

that also agrees (0.7% error) with its theoretical value, given by Eq. (3.8) with

N = 11.

(a) Bz(0, 0, z) solenoid field versus z-position at
current I=100mA. Black points: all end-caps
attached to the tubular shielding. Red points:

shielding end-caps removed from one side.

(b) Bx(0, 0, z) (red circles) and By(0, 0, z)
(black squares) saddle coils fields versus z-

position at constant current I=600mA.

Figure 3.17: Magnetic field components versus z-position.

In Fig. (3.17) we report the measured DC field components versus the z-

position. For the longitudinal field Bz, generated by the solenoid, we applied a

current of 100mA and we measured the field strength at different position ±3cm

of the fluxgate sensor along the z-axis, as shown in Fig. (3.17a). Over the spatial

region of interest, ±1.5cm equal to the 3 cm length of the vapor cell, we measured

a Bz field inhomogeneity of about 10 nT/mm. We also show that by removing
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the endcaps from one side of the tubular shielding both the strength and the

homogeneity of the generated field change, because of the unshielded environment

magnetic field. For the Bx, By fields, we applied a current of 600mA and we

measured the field components over the same length along the z-axis. For both

fields generated by the saddle coils, we measured an inhomogeneity of about 2

nT/mm along ±1.5cm from the center of the coordinate system ∂Bx
∂z .

Figure 3.18: Magnetic field gradients. Magnetic fields Bz (black squares), Bx (red
circles) and By (blue triangles) generated by the gradient coils versus the z-axis position.
The fields are measured by a 3-axis fluxgate sensor with 10 picotesla sensitivity. The
negative slope of the By field is due to the opposite versus of the fluxgate y-sensor with

respect to the direction chosen in the experiment reference.

To complete the calibration section, in Fig. (3.18) we show the magnetic

field components generated by the gradient coils versus the z-position. For the

gradient of the longitudinal field Bz, generated by the anti-Helmholtz coils pair

shown in Fig. (3.14a), we measured a slope of 94.13 nT/mm with applied constant

current of 100mA. For the gradients of the field components
{
Bx, By

}
, generated

by two identical pairs of saddle coils as in Fig. (3.14b), we measured a slope of
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63.72 nT/mm and 64.8 nT/mm, respectively. By varying the intensity of current

through the coils we have a control on the slopes of the field gradients in the three

directions. While this complete coil calibration and characterization is necessary

for future work with the described apparatus, for the spin noise spectroscopy

experiment, described in the Chapter 4, we just applied the transverse DC field

Bx and we compensate the gradient of the same field component along the laser

beam propagation direction.

Figure 3.19: Overall Atomic Setup Transverse view of the atomic and magnetic system
formed by the vapor cell, the oven, the Teflon isolation box, the magnetic coils and the

magnetic shielding.

We conclude this section by showing in Fig. (3.19) the transverse view of
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the complete apparatus that includes the vapor cell inside the oven, the Teflon

isolation box and support, the three acrylic tubes that hold the magnetic coils and

the 4-layers magnetic shielding. In the next section we describe how the atomic

system is probed either with coherent or squeezed light.

3.3 Generation and detection of polarization squeez-

ing

As explained in chapter (2), a polarization interferometer allows one to obtain

information on the atomic sample by detecting the polarization rotation of a lin-

early polarized probe beam. Such a rotation angle depends on the magneto-optical

properties of the atomic ensemble. Then the degree of freedom that carries all the

measurement information is the light polarization and the measured observables

are the Stokes polarization operators. Polarization squeezing is then necessary in

order to reduce the polarization quantum noise. In Fig. (3.20) we show the full

experimental apparatus that combines a source of polarization squeezing with the

setup for atomic spectroscopy in a low-noise magnetic environment, previously

described. While the full experiment and data analysis are described in Chapter

5, in this section we present details on the generation, detection and stabilization

of polarization squeezed light.

3.3.1 The squeezer

The source of squeezing is based on an optical parametric oscillator (OPO) that

has been designed and built by A. Predojević and it is presented in details in
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Figure 3.20: Experimental setup for Squeezed-light atomic spectroscopy The
overall setup includes the laser source, the squeezer, a monitor for the detection of squeez-
ing before the atomic interaction and a second polarimeter for the detection of the signal
after the atomic interaction. The detector differential output is fed into both the FFT
spectrum analyzer and the quantum noise lock circuit for the squeezing phase stabiliza-
tion, as described in the text. Experimental schematic LO - local oscillator, PBS -
polarizing beam splitter, DPD - differential photo detector, FM - flip mirror, HWP - half

wave-plate, WP - Wollaston prism, FFT - fast Fourier transform analyzer.

[69, 101]. The nonlinear process that occurs within the OPO is a conventional

spontaneous parametric down-conversion (SPDC) in a type-I phase matched PP-

KTP crystal. The full-optical setup for squeezing generation, in absence of atomic

interaction, is shown in Fig. (3.21). Our laser source (TA-SHG Toptica) is an

external-cavity diode laser at 794.7nm, tunable over the D1 line or 85Rb. A first

laser output is spatially filtered through a polarization maintaining fiber and it

is fed into the double fiber interferometer system for the laser frequency stabi-

lization, that we describe in section (3.4). A second laser output, from the same

source, passes through a tapered amplifier and it is split into two parts: the weaker

is spatially filtered with a single mode fiber and works as local oscillator (LO).
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The stronger is frequency doubled to 397.4nm, is spatially filtered by means of a

PPKTP

PBS
HWP

Pump PBS

S
an

Tapered
amplifier

Atomic
reference

LO

CW laser
Z795 nmv

SHG SMF

SMF

PZT

AOM setup

Cavity
locking

PD

Laser Lock
setup

SHG

CW Laser Tapered
Amplifier

Detection
Stage

Figure 3.21: Squeezed light generation. SHG - second harmonic generation, OPO-
optical parametric oscillator, PPKTP - phase matched nonlinear crystal, LO - local os-
cillator beam, PZT - Piezo transducer, PBS - polarizing beam splitter, AOM - acousto
optical modulator, HWP - half-wave plate, SMF - single mode fiber, PD - photodiode.

single mode fiber, then it works as pump of the OPO in which squeezed vacuum

is generated through SPDC in the V polarization at the same LO frequency. By

mixing the generated squeezed vacuum state with the horizontally-polarized LO

coherent state by means of a polarizing beam splitter (PBS), as shown in Fig.

(3.21), we obtain polarization squeezing from amplitude squeezing. By scanning

the phase relation between the two beams, trough a piezo-electric actuator on

the LO path, we generate squeezing fluctuations in the diagonal or circular polar-

ization basis that correspond to the Stokes parameters S2 and S3 (See Chapter

1). The double detection stage (before and after the atomic interaction) and the

quantum noise lock are described in next section. A photo of the OPO cavity
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Figure 3.22: The Squeezer (OPO). A photo of the OPO cavity that we used for
generate squeezed vacuum. The vacuum is then combined on a PBS (to the right of the
picture) with a bright local oscillator (LO) in order to generate polarization squeezing.

is shown in Fig. (3.22). To stabilize the length of the OPO we use a modified

Pound-Drever-Hall (PDH) technique [102]. The laser is current-modulated, and

thus frequency-modulated, at 20 MHz, as required by the PDH technique. A part

of the laser source at 795 nm is used as locking beam and passes through a double-

pass acousto-optic modulator (AOM) that adds an adjustable offset (630MHz) to

its frequency, to make it resonant to a higher order transverse mode of the cavity

with H polarization, orthogonal to the OPO output. As shown in Fig. (3.21), this

beam enters the OPO cavity from a mode counter-propagating to the squeezed

vacuum. This allows us to stabilize the cavity with no contamination of the

squeezed vacuum by the locking beam, which is simultaneously at a different fre-

quency, polarization, spatial mode, and direction of propagation. The nonlinear
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crystal is birefringent, which implies that the cavity resonates at different frequen-

cies for orthogonal polarization modes. We adjust the locking-beam frequency to

make the cavity resonate simultaneously for both the squeezed vacuum and the

locking-beam modes. We use then the error signal given by the locking beam to

stabilize the cavity length, to keep the cavity resonant to the squeezed vacuum

mode. More details about the cavity locking are given in [40, 103].

3.3.2 Detection and quantum noise lock

The squeezing is detected by a conventional balanced detection setup that consists

of an half-waveplate at 22.5◦, a second optical element that splits the horizontal

and vertical polarization components and two photodiodes that collect the two

beams. We use commercial balanced detector (PDB450A-DC Thorlabs) in which

the signals from the two photodiodes are electronically subtracted and the dif-

ferential signal amplified to give a single output that we monitor simultaneously

on both a scope and a spectrum analyzer. In our experiment we use two differ-

ent balanced detectors. The first, whose scheme and photo are shown in Figs.

(3.23a) and (3.23b) respectively, is used as a monitor of the squeezing before the

atomic interaction (see Fig. 3.20). In this detector the polarization components

are separated by a polarizing beam splitter (PBS), then the two beams are fo-

cused into the photodiodes and two AR-coated (HR[710− 850nm]> 99.9%) plano

mirrors (Number: 108198 from Layertec) send back the photons reflected from the

photodiodes windows, in order to increase the quantum efficiency up to 88%, as

reported in [101], in which the same detection scheme was already implemented.

We send the probe light to this monitor detector by means of a flip mirror as

shown in Fig. (3.20). A second polarimeter setup, whose scheme and photo are
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(a) Monitor polarimeter
scheme, L - Lens, M - AR-
coated plano mirror, HWP - Half
wave plate, PBS - Polarizing beam

splitter

(b) Photo of the monitor po-
larimeter. Note that the lens L
is mounted on a micrometer trans-

lation stage.

(c) Detection polarimeter scheme. HWP - Half
wave plate, WP - Wollastone prism, M - Plano AR-
coated mirror, (PC)M - Plano-concave AR-coated

mirror

(d) Photo of the detection polarime-
ter. The PDB detector is in a vertical

configuration.

Figure 3.23: Double polarimeter detection stage. We show schematic and photos
of the two polarimeter stages before (monitor) and after (signal detection) the atomic

interaction.
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shown in Figs. (3.23c) and (3.23d) respectively, is used to detect the probe light

after the atomic interaction, as schematically shown in Fig. (3.20). In this second

setup the optical element that splits the two polarization is a Wollaston prism

and we removed the glass windows from the photodiodes in order to minimize the

reflection and increase the quantum efficieny to 92%. Furthermore, the orthogo-

nally polarized beams are focused by two AR-coated (HR[710−8805nm]> 99.9%)

plano-concave mirrors (Number: 102548 from Layertec) to the photodiode sur-

faces at an angle of about 3◦, in order to avoid back reflection into the setup and

the OPO cavity when the squeezed light is used as probe. Both balanced detec-

tors have a switchable bandwidth and transimpedance gain. In our experiment

we used a gain of G = 106V/A corresponding to a 300kHz bandwidth. Indeed, as

decribed in Chapter 4, the spin noise spectroscopy experiment is performed for

magnetic fields that correspond to a Larmor precession frequency smaller than

100kHz. The differential output signal is fed into a spectrum analyzer that record

the polarization noise trace in time with zero span mode. In fig. (3.24) we show

the recorded squeezing noise oscillations obtained by scanning the phase of the co-

herent LO with a piezo-electric actuator and acquired at room temperature with

the first monitor balanced detector, before the atomic interaction. We generate

a maximum squeezing of 3.2dB measured at a central frequency of 100kHz with

resolution and video bandwidth of 10kHz and 10Hz respectively. At room tem-

perature, after the atomic interaction, we measured the same amount of quantum

noise suppression with the second balanced detection setup. However, by increas-

ing the atomic density of the Rb atomic ensemble, the amount of absorption of

the off-resonance probe beam increases up to a maximum of 30% at the largest

investigated atomic density (n = 1.3 × 1013 atoms/cm3). Then, the amount of

squeezing is partially reduced by absorption from the atomic ensemble and this is
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Figure 3.24: Room-temperature squeezing oscillations. Polarization noise power
measured by the monitor detector. Center frequency 100 kHz, zero-span mode,
RBW=10kHz, VBW=10Hz. The black horizontal trace shows the photon shot noise level
for a coherent probe with the OPO off and it is taken as a reference at 0dB. The blue
trace represents the quantum oscillations below (squeezing) and above (anti-squeezing)

the shot-noise level, acquired with the OPO on as the LO phase is scanned.

actually the only detrimental effect in the high-density scenario, as we describe in

details in Chapter 4. At the largest investigated density the amount of squeezing,

after the atomic interaction, is about 2dB out of the 3.2dB of injected squeezed

light.

In Fig. (3.25) we show the squeezing oscillations measured by the second

polarimeter after the atomic interaction at a density n = 2.4 × 1012 cm−3, for

which 3dB of shot noise suppression is obtained, out of the 3.2dB squeezed light

probe. Being the squeezing a phase-dependent process, the maximum polarization

squeezing is kept stable by a quantum noise lock that stabilizes the piezo-translator

on the LO optical path. While the piezo is scanning at a very low frequency of
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Figure 3.25: Stabilized squeezing after the atomic interaction. Polarization noise
power measured after atomic interaction at density n = 2.4×1012 cm−3. Center frequency
100 kHz, zero-span mode, RBW=10kHz, VBW=10Hz. The black trace shows the photon
shot noise level for a coherent probe, the blue trace represents squezing oscillations as the
LO phase is scanned, the red trace is the sub-shot noise level of −3dB after the phase

lock to the maximum squeezing.

about 1.3 Hz we can reproduce the noise oscillations, as the spectrum analyzer

does, by plugging the balanced detector output to a multiplier circuit that squares

the differential signal and, after frequency filtering and amplification described

in [104], gives the squeezing oscillations from which we obtain en error signal.

While in [104] a side-of-fringe locking was sufficient to maintain a constant phase

regardless of its value, in this experiment we need the right phase that gives the

minimum in the polarization noise oscillations. In order to do that we add a faster

modulation of 709 Hz from a lock-in-amplifier (LIA) to the pump piezo-translator

and we demodulated the oscillating signal at the same LIA reference frequency

with a phase of 94.89◦ by obtaining a dispersive error signal with the zero voltage
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corresponding to the minimum of the squeezing oscillation. This error signal is

then fed to a FPGA-based PID controller that applies a feedback on the LO piezo

to maintain the phase stable to the minimum of the squeezing oscillations, as

shown in Fig. (3.25).

3.3.3 Optimization of the source and detection losses

An important difference of the experiment described in this Thesis with respect

to prior experiments of our group [69, 40] is the wavelength of the generated po-

larization squeezed light. In fact, the spin noise spectroscopy (SNS) technique is

based on getting information about the physical properties of an atomic vapor

or a solid state system by keeping it unperturbed. This means that, in a typical

Faraday-rotation based measurement, the probe beam must be off-resonance in

order to minimize absorption from the sample and not to perturb nor even op-

tically pump the atomic ensemble out from the equilibrium thermal state. After

modifying the laser frequency from resonance to the off-resonance condition, we

had to recover the crystal phase-matching condition for the new wavelength by

varying the crystal temperature. We did this by optimizing the gain of the optical

parametric amplification (OPA) of a seed beam at the laser frequency, resonant

with the OPO, in presence of the pump beam at double the frequency. The para-

metric gain is defined in [101] as G = (1 − µ2)−2 with µ =
√
P/Pth, where P is

the optical pump power and Pth is the OPO threshold power. For completeness,

for a given gain, the theoretical maximum squeezing spectrum is given by:

S(Ω) = 1− 4η|µ|Q
(1 + |µ|)2 + Ω2

(3.11)
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Figure 3.26: Parametric gain versus crystal temperature. We show the SPDC
parametric gain versus the PPKTP crystal temperature for laser wavelengths of 377072.3
GHz (red squares), 377106.6 GHz (black circles) and 377127.3 GHz (blue triangles). The
data are fitted with a function proportional to the sinc(∆kLc/2), where ∆k is the SPDC

phase mismatch and Lc = 1cm is the crystal length [103].

where η = 0.9 iis the cavity escape efficieny, Q is the detector quantum efficiency

and Ω is the detection frequency. In Fig. (3.26) we show the measured parametric

gain of the SPDC process in the OPO at three different laser frequencies, measured

with a commercial wave-meter. The down-converted photons have half frequency

of the pump beam through energy conservation of the SPDC process. As you can

see from our measurement, the maximum reachable gain (' 1.8) is not affected by

the frequency change that is indeed smaller than the crystal efficiency frequency

bandwidth. After this optimization we keep the crystal at a temperature of 26◦C

that satisfies the phase-matching condition for a wavelength of 794.718nm, cor-

responding to a frequency of 377127, 3 GHz that is 20GHz off-resonance with

respect to the 85Rb D1 resonance central line. We keep this laser frequency in
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the main experiment described in the next chapter. Under optimal conditions

of phase-matching and cavity alignment, the main experimental limitation to the

amount of generated squeezing is the optical pump power. We obtain the max-

imum amount of squeezing of 3.2dB with a pump power of Ppump = 45mW. A

larger amount of laser power would increase the amount of squeezing until a limit

given by the crystal damage threshold and other detrimental effects like thermal

lensing [101]. Different losses contributions affect the squeezing in its generation,

propagation and detection stages. The total detection efficiency is 85.6% and it in-

cludes escape efficiency (96%), the homodyne efficiency of mode macthing between

squeezed vacuum and LO (98%), transmission efficiency through high-reflectivity

optical elements (99%) and balanced detection quantum efficiency (92%). More

details about the cavity losses and limitations are given in prior works [101, 69]

and are beyond the scope of this thesis.

3.4 Laser frequency stabilization

All prior works with squeezed light carried out in our lab [69, 40, 96] used probe

light close to the Rb absorption resonance. Then, in all these experiments the laser

frequency was locked using a combination of saturated absorption spectroscopy

(SAS) of a Rb vapor and the Pound-Drever-Hall [102] technique. As references,

atomic lines are very stable but give low signal to noise ratios and a limited

selection of frequencies. As already mentioned in the previous section, in our

experiment we need to lock the laser frequency far from resonance, at about 20

GHz from the 85Rb D1 resonance line. To solve this problem, we have developed a

long-term laser frequency stabilization system based on fiber interferometers. The

system is described in details in our publication by Jia Kong et al. [105]. It uses
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Figure 3.27: Schematic of laser frequency locking system. Using a half-wave plate
(HWP) and a polarizing beam splitter (PBS), a few 10s of µW of power from the laser to
be stabilized, at 795 nm, is injected into a fiber system containing two unequal-path Mach-
Zehnder interferometers. Each interferometer is composed of two 50:50 fiber couplers (FC)
and an additional 5 m fiber to imbalance the paths. In the frequency control interferometer
(FCI) the extra fiber is a jacketed single mode fiber, while for the temperature control
interferometer (TCI), it is a polarization maintaining fiber without jacket. The fibers are
wound around a 10 cm diameter aluminum cylinder fitted with a resistive heater and a
resistive temperature sensor. In each interferometer the output powers are collected on a
Thorlabs balanced amplified photodetector (PDB450C), providing signals that are used
for feedback, either to the laser current, or to the set-point of a temperature controller
from Wavelength Electronics (model HTC1500) by a digital controller (PC-based data-
acquisition card). The interferometers are enclosed in a insulation layer of extruded

polystyrene foam.

only the target laser, without any other transfer lock from other references, and

it is based on a pair of 5m fiber Mach-Zehnder interferometers. The “frequency

control interferometer” (FCI) is used to sense and stabilize the laser frequency,

while a second “temperature control interfetometer” (TCI), by using a jacketless

fiber, is used to sense and eliminate fluctuations in the temperature of the thermal

reservoir to which both interferometers are attached. In Fig. (3.27) we show the

experimental setup for such laser frequency stabilization from ([105]), in which

the laser source was a distributed-feedback (DFB) diode laser at 795 nm. In the

experiment described in this Thesis we used exactly the same locking setup of Fig.

(3.27) with an external-cavity diode laser at 794.7nm as laser source, as described

in section (3.3.1) and depicted in Fig. (3.21).





Chapter 4

Squeezed-light spin noise

spectroscopy

In this chapter we report quantum enhancement of Faraday rotation spin noise

spectroscopy by polarization squeezing of the probe beam. As described in the

previous chapter (3), we use natural abundance of Rb in 100 Torr of N2 buffer

gas and squeezed light from a sub-threshold optical parametric oscillator stabi-

lized 20 GHzto the blue of the D1 resonance. We observe that an input squeezing

of 3.0 dB improves the signal-to-noise ratio by 1.5 dB to 2.6 dB over the com-

bined (power)⊗(number density) ranges (0.5 mW to 4.0 mW)⊗(1.5×1012cm−3 to

1.3 × 1013cm−3), covering the ranges used in optimized spin noise spectroscopy

experiments. We also show that squeezing improves the trade-off between statis-

tical sensitivity and systematic errors due to line broadening, a qualitative new

quantum advantage with respect to previous applications of squeezed light. The

described experiment has been carried out at ICFO and it has been published in

80
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[72]. Its theoretical Appendix, reported in section (2.3.4), has been written by

Ricardo Jiménez-Mart́ınez.

4.1 Introduction

The presence of intrinsic fluctuations of a spin system in thermal equilibrium was

first predicted by Bloch [23] and experimentally demonstrated in the 1980’s by

Aleksandrov and Zapasskii [35]. In the last decade, “spin noise spectroscopy”

(SNS) has emerged as a powerful technique for determining physical properties

of an unperturbed spin system from its noise power spectrum [24, 25]. SNS has

allowed measurement of g-factors, nuclear spin, isotope abundance ratios and

relaxation rates of alkali atoms [26, 27], g-factors, relaxation times and doping

concentration of electrons in semiconductors [28, 106, 107, 108, 109] and localized

holes in quantum dot ensembles [29, 110] including single hole spin detection [111].

Recently, SNS has been used to study complex optical transitions and broadening

processes [66, 112], coherent phenomena beyond linear response [113] and cross-

correlations of heterogeneous spin systems [47, 114].

Spin noise has been measured with nuclear magnetic resonance [115, 116] and

magnetic force microscopy [30, 31, 117], but the most sensitive and widely used

detection technique is Faraday rotation (FR) [35, 26, 27], in which the spin noise

is mapped onto the polarization of an off-resonant probe. In FR-SNS, spin noise

near the Larmor frequency competes with quantum noise [39] of the detected

photons, i.e., the optical shot noise. The main figure of merit is η, the peak power

spectral density (PSD) due to spin noise over the PSD due to shot noise, called

“signal strength” [118] or the “signal-to-noise ratio” (SNR). Reported SNR for
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single-pass atomic ensembles ranges from 0 dB to 13 dB [26, 46], and up to 21

dB in atomic multi-pass cells [90]. Due to weaker coupling to the probe beam,

reported SNR ranges from −50 dB to −20 dB in semiconductor systems (See

Table 1 in [118]). Several works have studied how to improve the polarimetric

sensitivity [119] or to cancel technical noise sources [28, 106, 108], but without

altering the fundamental tradeoff between sensitivity and broadening processes

[119].

For small optical power P and atomic density n, SNR is linear in each:

η ∝ nP . At higher values, light scattering and atomic collisions broaden the spin

noise resonances, and thus introduce systematic errors in measurements, e.g. of

relaxation rates, that are derived from the SNS linewidth [26, 27, 28]. This trade-

off between statistical sensitivity and line broadening is a fundamental limitation

of the technique, with its origin in quantum noise properties of the atomic and

optical parts of the system.

Here we work in a high-density regime, with atomic number densities up to

n ∼ 1013cm−3, covering the range of recent experiments with optimized atomic

instruments [26, 27, 46, 47]. Earlier studies in this regime have observed non-

trivial interactions between optical quantum noise and nonlinear magneto-optical

rotation (NMOR) of a on-resonance probe [45] including increased measurement

noise as a result of input squeezing for densities above n ≈ 2× 1011cm−3 [43]. It

is thus not obvious that squeezing will improve a high-density Faraday rotation

measurement [24, 7], as it does for lower densities [39, 40]. In contrast, here we

observe that squeezing does in fact improve both the signal to noise ratio and the

sensitivity/line broadening trade-off in SNS, over the full practical range of the

technique. It is worth noting that we work with an un-polarized atomic ensemble



4.2. Mode of operation 83

and off-resonant probing, as required for the non-perturbative SNS technique.

This may explain the difference between our results and prior experiments [43, 45].

4.2 Mode of operation

We optically probe the atomic ensemble via Faraday rotation (FR) and obtain

a signal proportional to the on-axis projection of the collective spin of the Rb

group of atoms in thermal equilibrium. The collective spin precesses in response

to an external transverse magnetic field and experiences a stochastic motion as

required by the fluctuation-dissipation theorem [14, 118]. For rubidium, which

has two isotopes 85Rb and 87Rb, and shot-noise limited detection [84], the power

spectrum of the FR signal is given by a double Lorentzian function:

S(ν) = Sph +
∑

i∈{85,87}
S

(i)
at

(∆νi/2)2

(ν − ν(i)
L )2 + (∆νi/2)2

, (4.1)

where Sph ∝ Pξ2 is the (frequency-independent) shot-noise contribution at power

P and ξ2 is the squeezing factor. The sum on i is over atomic mass, ν
(i)
L and

∆νi are the (linear) Larmor frequency and FWHM width, respectively. S
(i)
at is the

height of Lorentzian spin noise contribution of the i-th species. Exact expressions

of these quantities have been already defined in section (2.3.4) and are reported

again in the next section (4.3). We probe the atomic ensemble with coherent and

polarization squeezed respectively. By fitting the measured spin noise spectra

with equation (4.1), we estimate signal-to-noise ratio ηi ≡ S(i)
at /Sph and resonance

linewidth ∆νi and we compute the quantum advantages due to the polarization

squeezing of the probe. In section (4.5) we fully described the data analysis and

the experimental results.
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4.3 Theory

In what follows we remind expressions for the shot-noise background, Sph, and the

height of the Lorentzian spin noise, S
(i)
at , appearing in the function used to fit the

power spectral density (PSD) of the polarimeter output as described in Section

4.5. These have been already derived in section (2.3.4). Using these expressions

we obtain the signal-to-noise ratio (SNR) ηi = S
(i)
at /Sph which is used to estimate

η for 85Rb as a function of probe light power and density. In generating these

estimates we use the parameters quoted in Table 4.1.

4.3.1 Detector signal

In our experiment we analyze S(ν), the power spectral density (PSD) of VDPD, the

output voltage of the polarimeter detector described in Chapter (3), expressed in

V2/Hz. Because the scalar signal is acquired by combining polarization rotation

information over A, the area of the beam, we write the signal as

VDPD(t) = 2G<[PΘFR(t) + PSN(t)], (4.2)

where G = 106 V/A is the transimpedance gain, P =
∫
A dxdy I(x, y) is the total

power of the beam reaching the detector with intensity I(x, y), and ΘFR � 1 is

the Faraday rotation (FR) angle as defined in Eq. (2.35) below. < = Qq/Eph is

the detector responsivity, where Q denotes the quantum-efficiency of the detector,

Eph = h̄ω = 2.4910−19J is the photon energy at 795 nm, and q = 1.610−19C. PSN

is a white-noise component due to shot noise, that we compute in the next section.
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4.3.2 Photon shot-noise

The contribution from photon shot-noise to S(ν) is given by

Sph = 2G2q(<P )ξ2, (4.3)

where ξ2 represents the light-squeezing parameter.

Figure 4.1 shows Sph, as estimated by fitting the measured spin noise spec-

trum, at different atomic densities for a coherent probe (hollow symbols) and

squeezed probe (filled symbols). The dashed lines and solid lines in Fig. 4.1 cor-

respond to a fit of the data using Eq. (4.3), with Q and ξ2 as the free parameter

in the fit for coherent-probe and squeezed-probe data, respectively. From the

coherent-probe data, for which ξ2 = 1, we obtain Q = 0.87. The different slopes

observed for the squeezing-probe data can be explained by the degradation of

squeezing due to light absorption, given by [39]

ξ2 = 1− (1− ξ2
0) exp[−OD], (4.4)

where OD is the optical depth experienced by the light beam. For our experimen-

tal conditions ξ2
0 = 0.55, obtained by fitting the measured ξ2 to Eq. (4.4) and can

be considered as the squeezing parameter of the transmitted light when the cell

is at room temperature.
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Figure 4.1: Shot-noise background, Sph, as a function of probe power reaching the detector
for coherent probe (hollow symbols) and squeezed probe (filled symbols) at densities of

2.4× 1012 cm−3 (blue) and 9.3× 1012 cm−3 (red).

4.3.3 Atomic noise

The spin noise oscillates at the Larmor frequency νi and with FWHM linewidth

∆νi, so that

S(ν) = Sph +
∑

i∈{85,87}
S

(i)
at

(∆ν/2)2

(ν − νi)2 + (∆ν/2)2
(4.5)

where

S
(i)
at (ν) =

4G2<2P 2

π∆ν/2
var Θ

(i)
FR. (4.6)

From the fitted amplitude S
(85)
at , and FWHM ∆ν85 of the Rb85 spin noise

spectrum we compute var Θ
(85)
FR using Eq. (4.6). These data are shown in Fig. 4.2

as a function of the Rb-vapor density n. The solid line in Fig. 4.2 corresponds

to a fit of the data using Eq. (2.42) with κ2
85 as the free parameter and with

N85 = 0.72 nAeffLcell, here Aeff = 0.054 cm2 and Lcell = 3 cm. From the fit we
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Parameter Value Unit

Q 0.87 —
α/(2π) 57.8 Hz/(1012cm−3)
β/(2π) 63 Hz/mW
Γ0/2π 501 Hz

σ0 2.4 ×10−12 cm2

κ2 5.0× 10−4 —
Aeff 0.0544 cm2

∆νlight 2.4 GHz

Table 4.1: Parameters used in computing η. See text for details.

obtain κ2
85 = 5× 10−4, to be compared with the value of 3.7× 10−4 obtained by

evaluating Eq. (2.41) with a detuning of ν ′−ν ′85 = −20 GHz and optical linewidth

∆νlight = 2.4 GHz, and using σ0 = 2.410−12cm2.

Width of the magnetic line

For 85Rb the FWHM width of the magnetic line is ∆ν = Γ/π, where Γ = 1/T2 is

the spin relaxation rate that can be approximated by [120]:

1

T2
= Γ0 + αn+ βP, (4.7)

where αn and βP are the contributions from atomic collisions and power-broadening,

respectively, with n being the Rb-vapor density, P the optical power of the probe

beam, and Γ0 the spin relaxation due to other mechanisms, including buffer-gas

collisions and the finite residence time of the atoms in the light beam.

To estimate the power broadening and collisional-broadening parameters we

fit the measured ∆ν85 using Eq. (4.7). From the fit we obtain a collisional

broadening parameter α/(2π) = 57.8Hz/1012cm3, a power-broadening parame-
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Figure 4.2: var Θ
(85)
FR as a function of atomic density for a coherent probe. The solid line

indicates a linear fit to the data. Dashed lines show the best fit ±3σ statistical uncertainty
in the fit offset.

ter β/(2π) = 63Hz/mW, and Γ0/(2π) = 501 Hz.

4.3.4 SNR

Using equations (4.3), (2.42), (4.6), and (4.7) we obtain the following expression

for the SNR ηi ≡ S(i)
at /Sph

ηi =
P

h̄ω

4Q

ξ2

σ2
0

A2
eff

κ2
iNi

Γ
, (4.8)

where Ni = niAeffLcell, thus arriving to:

ηi ≡
S

(i)
at

Sph
=

P

h̄ω

4Q

ξ2

σ2
0

A2
eff

κ2
iniLcellAeff

Γ
, (4.9)
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where Γ = 1/T2 is the spin relaxation rate defined above.

From Eqs. (4.9) and (4.7) we see that it is in principle possible to increase

η by increasing either the optical probe power or the atomic density. However

both of these actions result in additional broadening of the linewidth ∆ν. As one

main use of SNS is to measure relaxation processes in an unperturbed spin system

[26, 27], this additional broadening represents a systematic shift of the measured

variable (the linewidth) [113]. On the other hand, Eqs. (4.9) and (4.7) predict

that squeezing boosts η without additional shifts, providing a quantum advantage

irrespective of the other experimental parameters.

4.4 Experimental Setup

The experimental setup is shown schematically in Fig. 4.3 (a) and it has been

already described in detail within chapter (3). In this section we recall its main

properties.

A polarization-squeezed probe beam is generated as in [37] by combining local

oscillator (LO) laser light with orthogonally polarized squeezed vacuum using a

parametric oscillator described in [69], cavity locking system as in [104], and a

quantum noise lock (to ensure the measured Stokes component is the squeezed

component) described in [121, 40]. The probe frequency is stabilized to 20 GHz

to the blue of the 85Rb D1 unshifted line using the system of [105]. Adjusting the

LO power changes the probe power P without changing the degree of squeezing.

To perform conventional FR-SNS with the coherent LO [66] we simply turn off

the squeezer. The effective size of the probe beam is 0.054 cm2.
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(a)

(b)

Figure 4.3: Squeezed-light spin noise spectroscopy. (a) Experimental schematic.
LO - local oscillator, PBS - polarizing beam splitter, DPD - differential photo detector,
FM - flip mirror, HWP - half wave-plate, WP - Wollaston prism, FFT - fast Fourier
transform analyzer. (b) SNS Spectra. Averaged spin noise spectra at T = 90◦ (n =
2.4 × 1012 cm−3) acquired with coherent probe (cyan) and polarization squeezed probe
(red) respectively. The spectra shown are averages of 10 spectra, each representing 0.5 s
of acquisition organized into bins of width 10 Hz. 0 dB on the power scale corresponds
to −95.57 dBV/Hz at the detector. Dashed and continuous smooth curves show fits by
Eq. (4.1) to the coherent and squeezed spectra, respectively. Optical power P = 2.5 mW,

magnetic field Bx = 5.6µT.
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The atomic system consists of an ovenized cylindrical vapor cell of length

Lcell = 3 cm and diameter d = 1 cm, with natural isotopic abundance Rb and

100 Torr of N2 buffer gas. Density is controlled by oven temperature and cali-

brated by absorption at 20 GHz detuning. We alternate five-second acquisition

periods with electrical heating of the oven. Before the cell, measured squeezing

at a sideband frequency of 40 kHz is 3.0 dB, while squeezing after the cell ranges

from 2.6 dB to 1.5 dB at the highest density. These numbers are consistent with

expected loss of squeezing due to absorption of the off-resonance probe.

We apply a transverse DC field Bx = 5.6µT and minimize the gradient

∂Bx/∂z by minimizing the width of the SNS resonances. The oven and coils

are inside four layers of high-permeability magnetic shielding. We detect the

probe beam with a polarimeter consisting of a half-waveplate, Wollaston prism

and differential photodetector (DPD). The output is recorded by a 24-bit digitizer

with 200 kHz sampling rate and a PC computes the power spectrum.

In Fig. 4.3 (b) we show typical spectra using coherent and polarization

squeezed probes. As expected from Eq. (4.1) we observe the two atomic noise con-

tributions from 85Rb and 87Rb centered at Larmor frequencies ν85
L and ν87

L above

a uniform shot noise background. Squeezing reduces the shot noise level without

evident change to the spin noise contribution, resulting into a SNR improvement

with unaltered FWHM width.

4.5 Data analysis and results

At any given optical power and atomic density we acquire 100 individual spin

noise spectra and fit them with Eq. (4.1) to obtain the parameters Sph and S
(i)
at ,
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ν
(i)
L , ∆ν(i), and the derived η = S

(i)
at /Sph, for i ∈ {85, 87}. Due to imperfect

stability of the quantum noise lock, it is necessary to reject about 10 percentof the

traces, identified by the condition χ ≡
∫
dν S(ν) > 1.03χ̄, where the integral is

taken over a featureless window between 80− 90 kHz, not included in the fitting,

and χ̄ is the average of χ over the 100 spectra.
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Figure 4.4: SNR Enhancement. SNR η versus atomic density for coherent probes
(empty markers) and polarization squeezed probes (filled markers), respectively. We show
three optical powers of P = 0.5 mW (squares), P = 1.5 mW (triangles) and P = 4 mW
(circles). Predicted η from Eq. (4.9) is plotted for coherent (dashed lines) and squeezed
(continuous lines) probing, taking into account the reduction of squeezing versus density
due to absorption at the probe frequency. The discrepancy between theoretical curves

and experimental data is due to uncertainty on density estimation.

In Fig. 4.4 we show measured 85Rb SNR versus n, the Rb number density, for

coherent and squeezed probes at P = 500µW and P = 4 mW, which bound our

investigated power range, and at the intermediate P = 1.5 mW. The temperature

range is T = 85 ◦C – 120 ◦C. As expected from Eq. (4.9), the SNR increases with

both increasing density and increasing power. Squeezing enhances the SNR by a
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factor ranging from 2.6 dB at n = 1.5×1012cm−3 to 1.5 dB at n = 1.3×1013cm−3,

with the difference due to greater absorption at higher density. This latter number

is higher than the densities used in other alkali SNS works [26, 27, 47], and at

this density we observe collisional broadening αn/(2π) = 760 Hz, larger than

Γ0/(2π) = 501 Hz. We are thus in a regime where a feature of interest (the

linewidth) is already strongly disturbed. Analogous observations apply to the

investigated probe power range. In this sense the regime we investigate is fully

practical for SNS applications [66, 25]. Moreover, the model described in section

(4.3) shows that the benefit of squeezing extends until the optical absorption

becomes strong and the squeezing is lost. The theoretical SNR for squeezed and

coherent probes (curves of Fig. 4.4) converge at a density of n ≈ 1.3× 1014 cm−3

(temperature larger than T = 160◦), much above the investigated and practical

range of interest. This is our first main result: polarization squeezing significantly

improves the SNR of spin noise spectroscopy over the full practical range of power

and density without any detrimental effect.

Furthermore, in Fig. 4.5 we show 85Rb SNR η85 and FWHM linewidth

∆ν85 versus optical power for three different experimental situations: n = 0.5 ×

1013cm−3 (squeezed only) and, with roughly twice the density, at n = 0.9 ×

1013cm−3 (coherent and squeezed). At the higher density, squeezing improves

the SNR with respect to the coherent probe without significantly changing the

linewidth. At the lower density, squeezing gives the same SNR as the coherent

probe gives with the higher density, but with significantly less perturbation of the

linewidth. These behaviors are observed over the full investigated power range.

A similar behavior occurs if we compare SNR and linewidth versus atomic

density at different probe power levels. Fig. 4.5 (a) already shows that squeezing
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Figure 4.5: Collisional broadening reduction (a) SNR η versus optical power for
coherent (empty black squares) and polarization squeezed (filled red circles) probing at
n = 0.9 × 1013 cm−3 and just for squeezed probe (filled blue circles) at lower density
n = 0.5 × 1013 cm−3. Theoretical SNR from Eq. (4.9) is shown for coherent (dashed
lines) and squeezed (continuous lines) probing. (b) FWHM linewidth ∆ν85 vs probe
power for the same conditions of (a). Theoretical FHWM widths from Eq. (4.7) are
plotted for coherent (dashed line) and squeezed (continuous line) probing, respectively.

allows us to get the same classical SNR by using about half of the power, resulting

in a reduced power broadening. For completeness in Fig. 4.6 we show the FWHM

linewidth versus Rb density for P = 2 mW and P = 4 mW where the SNR with

squeezing at P = 2 mW is equal to the SNR with coherent probing at P = 4 mW.

The linewidth reduction with power is smaller than that seen Fig. 4.5 (b), because

the collisional broadening is greater than the broadening due to probe scattering

and, in these experimental conditions, dominates the broadening. In Figs. 4.5 and

4.6 we show our second main result: due to line broadening reduction, squeezing

can reduce systematic errors at no cost to figures of merit such as statistical

sensitivity. To our knowledge, this is both the first description of the possibility

to reduce systematic errors with squeezing, and its first observation in experiment.
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Figure 4.6: Power broadening reduction FWHM linewidth ∆ν85 vs Rb density for
coherent (empty markers) and polarization squeezed (filled markers) probing at optical
powers of P = 4 mW (red circles) and P = 2 mW (blue triangles). Theoretical FHWM

widths from Eq. (4.7) are plotted.

4.6 Conclusions

We have studied the application of polarization-squeezed light to spin noise spec-

troscopy of atomic ensembles over the full practical range of density and probe

power. We observe that squeezing improves the signal-to-noise ratio by an amount

comparable to the applied squeezing, in contrast to prior experiments [43] that

showed the opposite behavior: increased measurement noise due to squeezing

above a critical density. We demonstrate that by using a crystal-based squeezer

and off-resonant probing of an un-polarized ensemble, differently from [43, 45], op-

tical and atomic quantum noise add incoherently without any coupling. Moreover,

squeezing improves the trade-off between statistical noise and line broadening by

giving performance not available with classical probes at any power level.

Our results provide clear evidence that squeezing can improve Faraday-rotation-

based SNS measurements, with a broad range of applications in atomic and solid

state physics [66, 25]. This advantage over the full practical parameter range
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for SNS is promising for similar advantages in high-performance magnetometers,

gravimeters, and clocks.





Chapter 5

Quantum limits of noise

spectroscopies

In this chapter we study noise spectroscopy from the perspective of estimation

theory and, considering optically-detected noise spectroscopies, derive quantum

limits for the sensitivity of the technique, which is identified with the covariance

of the fit parameters. The question we want to answer here is: what are the shot

noise and atomic noise contributions to the uncertainty in the fit parameters? We

note that this is not the same question as “what is the shot noise contribution

to S(ν)” which is usually asked in works about squeezing. That question is the

interesting one if you want to consider for example a communications or sensing

scenario in which you expect a signal at a given frequency ν and you want to

know how much noise background there is at that frequency. This is different in

two ways: First, as described in the previous chapter (4), our “signal” is actually

a noise level, so what counts as our “noise” is the uncertainty in the power noise

98
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spectrum. Second, we are looking for the covariance on fit parameters, which will

end up combining uncertainty from different parts of the spectrum. Because of

the quantum origin of such uncertainty, we will refer to the covariance bound as

standard quantum limit (SQL). The data for spin-noise spectroscopy in natural

abundance Rb vapor, obtained from the measurements described in the previ-

ous chapter (4), are found to agree very well with theory, demonstrating spin

noise spectroscopy at the SQL. We study the high-density and high-probe-power

regimes, giving quantum limits also in optimized regimes. We finally confirm

the shot noise limitation to the SQL of the technique, by reporting parameter

estimation below the SQL via polarization squeezing of the probe beam, in agree-

ment with theoretical predictions. The results presented in this chapter are being

prepared for submission to a peer-reviewed journal.

5.1 Theory of noise in fitting power spectra

We begin with general statistical observations. Any noise spectroscopy records a

dynamical variable P (t), and derives information from the power spectrum S(ν).

For simplicity, we consider the discrete-time version Si ≡ S(νi) ≡ |P̃ (νi)|2, where

P̃ is the discrete Fourier transform of P (t), sampled at times t = ∆, 2∆, . . . , T , so

that νi = iνT are the centres of the frequency bins of width νT ≡ 1/T . Note that

this describes the single-sided power spectral density. With the assumption that

P (t) is stationary, i.e. its statistics are t-independent, a simple calculation finds

cov(Si, Sj) = 〈Si〉2δij (5.1)
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where δ indicates the Kronecker symbol. Eq. (5.1) describes a unit signal-to-

noise ratio for Si, independent of its value, in marked contrast to most physical

estimation problems. To reduce the uncertainty of S, two averaging procedures

are typically applied: a simple averaging of Nave independent spectra, and coarse-

graining of the spectrum, averaging νbin/νT adjacent values of Si to obtain S̄j ≡

〈Si〉i∈Bj , where the brackets indicate an average over Bj , the range of frequencies

in the jth bin. By simple averaging, and using Eq. (5.1), we find

var(S̄i) =
νT

Naveνbin
〈S̄i〉2 ≡

1

N
〈S̄i〉2. (5.2)

By the central limit theorem, increasing N drives S̄i toward a normal distribution.

Spectroscopic information is obtained by fitting the power spectrum {Si}

with a generic model f(ν,v), where v is a vector of parameters. As with S, we

will write fi ≡ f(νi). We consider a maximum likelihood fit, which, since the

model is gaussian, is equivalent to minimizing χ2, defined as:

χ2(v) ≡
∑
i

(fi(v)− Si)2

σ2
i

(5.3)

where σi ≡ σ(νi) is the frequency dependent standard deviation of {Si} around

the mean value µi = S̄i = fi, by assuming that f is the correct model, so that

fi = S̄i. For a single spectrum and no averaging, as for Eq. (5.1), the standard

deviation of {Si} has exactly the same frequency dependence of the spectrum

S(ν) so that σi = µi . The chi-squared minimization is achieved when

∂jχ
2(v)

∣∣∣
v=v̂

= 0 (5.4)

where ∂j indicates ∂/∂vj and vj is a component of the parameters vector v. The
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carat over v̂ indicates the estimator of v. From here on, we suppress the v

dependence in fi(v) and we use the Einstein summation convention. Applying

the derivative, the optimization condition is

(fi − Si)∂jfi
σ2
i

∣∣∣∣∣
v=v̂

=
∂jσi(fi − Si)2

σ3
i

∣∣∣∣∣
v=v̂

(5.5)

We can apply the variational principle to understand how a small error in Si i.e.

Si = S̄i + δSi produces a corresponding error in the estimator v̂i = v̄i + δvi.

By assuming that the fit function correctly describes the mean spectrum, i.e.

f − S̄ = 0, to mantain the condition of Eq. (5.5) we must have:

(∂kfi)(∂jfi)

σ2
i

δv̂k =
∂jfi
σ2
i

δSi (5.6)

which is a general result for a noise spectrum S(ν) that is fitted with the right

model fi = S̄i and that satisfies Eq. (5.1). In order to obtain an analytical

expression for the covariance matrix Γ of the estimator v̂, we define a non-square

matrix L:

Lij ≡
∂jfi
σi

. (5.7)

and, by defining the matrix M ≡ LLT , i.e. Mjk ≡ LjiLki, we can rewrite equation

(5.6) as:

Mjkδv̂k = Lji
δSi
σi

(5.8)

with solution

δv̂k = M−1
kj Lji

δSi
σi

(5.9)

Eq. (5.9) relates the uncertainty on the spectrum, i.e. the noise on the noise

power, with the uncertainty on the fit parameters.
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5.1.1 Theoretical covariance of fit parameters

We now want to calculate the covariance matrix of v̂:

Γjk ≡ 〈v̂j v̂kT 〉 − 〈v̂j〉〈v̂kT 〉 = 〈δv̂jδv̂kT 〉

=
〈M−1

jl LlmδSm(M−1
kn LnpδSp)

T

σmσp

〉
=

〈
M−1
jl LlmLpnM

−1
nk

δSmδS
T
p

σmσp

〉
(5.10)

By using the fact that δSi are independent random variables and applying Eq.

(5.1) we finally get:

Γjk = M−1
jl LlmLpnM

−1
nk δmp

= M−1
jl LlmLmnM

−1
nk

= M−1
jl M

−1
ln M

−1
nk = M−1

jk (5.11)

On the other hand, the elements Mjk of the matrix M ≡ LLT are given by:

Mjk =
∑
i

(∂jfi)(∂kfi)

σ2
i

=
1

δνT

∑
i

(∂jfi)(∂kfi)

σ2
i

δνT

=
1

δνT

∫ ν2

ν1

(∂jf(ν))(∂kf(ν))

f2(ν)
dν (5.12)

where ν1, ν2 delimit the frequency range over which the fit f(ν) is performed and,

in the last step, we use σi = fi and we consider a continuous spectrum.

The described model is very general and can be applied to any noise spec-

troscopy experiment. Giving a noise spectrum S(ν) that satisfies Eq. (5.1) and



5.1. Theory of noise in fitting power spectra 103

an accurate model f(ν) that depends on a parameters vector v, by combining Eq.

(5.12) and Eq. (5.11) one can obtain the analytical covariance matrix Γ = M−1 of

the parameters vector. In particular, the diagonal terms of Γ are the variances of

the fit parameter outputs, while the off-diagonal terms give information on their

correlations. Hence, the described model provides a powerful tool for a a priori

knowledge on the experimental conditions that optimize the information achiev-

able through noise spectroscopy, e.g. that minimize the variance on a specific fit

parameter.

It is worth noting that the theoretical result, which is obtained by combin-

ing Eqs. (5.11) and (5.12), is valid for a continuous spectrum and represents an

asymptotic limit, a maximum-likelihood estimation (MLE), for the discrete spec-

trum described by a multivariate normal distribution with mean µi = S̄i = f(νi)

and covariance matrix Σij = N−1f2(νi)δij , for which the Cramer-Rao [122, 123]

bound is Γ ≥ I−1 and the Fisher information I is given by [124]:

Ikl =
∑
i

(∂kµi)Σ
−1(∂lµi) +

1

2
Tr
[
Σ−1(∂kΣ)Σ−1(∂lΣ)

]
= N

∑
i

(∂kfi)f
−2
i (∂lfi) +

1

2

∑
i

f−4
i (∂kf

2
i )(∂lf

2
i )

= (N + 2)
∑
i

f−2
i (∂kfi)(∂lfi). (5.13)

For the asymptotic case, i.e., for large N as defined in Eq. (5.2), the bound

becomes Γ = I−1 and Eq. (5.13) becomes equal to the continuous limit of Eq.

(5.11). In our experiment we acquire individual spectra, i.e. Nave = 1, and we

perform a decimation with νbin/νT = 50. Then, for our data analysis, N = 50 is

large enough so that Eqs. (5.13) and (5.11) give the same results.
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5.2 Optical noise spectroscopy

We now specialize to the case of optically-detected noise spectroscopy, as in

[26, 125, 126, 42, 10]. A dimensionless optical degree of freedom θ, e.g. optical

phase, polarization angle or pointing direction, has initial value θ(in)(t), under-

stood to include fluctuations due to shot noise. After passing through the system

under study this variable is θ(out)(t) = φ(t) + θ(in)(t), where the change φ(t) is

proportional to the noisy quantity of interest, e.g. refractive index, magnetization,

or distribution of refractive index across the beam profile. In the linear regime,

the detected power, typically from a differential measurement, is

P (t) = ηh̄ωΦ[φ(t) + θ(in)(t)] (5.14)

where Φ is the mean flux of photons reaching the detector and η is the detector

quantum efficiency. A Fourier transform of P (t) provides the power noise spec-

trum S(ν) that, trough the fluctuation-dissipation theorem, should carry all the

information about the system under investigation.

5.2.1 Specifics of atomic response

We now specialize to resonant noise, e.g. spin noise subject to Larmor precession

[26] or trapped objects in optical tweezers [127]. In particular, we want to test the

model of Eq. (5.11) against the experiment described in the previous chapter (4),

in which we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday

rotation of a coherent, or polarization squeezed, off-resonance probe beam [72].

Taking the parameters vector v = (Sph, ν85, S
85
at ,∆ν85), where ν85 is the resonance

frequency, S85
at is the atomic noise contribution and ∆ν85 is the linewidth of the
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85Rb resonance, we can fit the frequency portion of noise spectrum S(ν) around

ν85 with the Lorentzian funtion:

f(ν) = Sph + S85
at

(∆ν85
2 )2

(ν − ν85)2 + (∆ν85
2 )2

(5.15)

that is just the 85Rb contribution of the double Lorentzian function already given

in Eq. (4.1). Then, for simplicity, from now on we write S85
at ≡ Sat, ∆ν85 ≡ ∆ν

and ν85 ≡ νL.

From the fit function of Eq. (5.15) we want to derive the theoretical 4 × 4

covariance matrix Γ = M−1, defined in Eq. (5.11), for the parameters v =

(Sph, νL, Sat,∆ν) and compare it against the experimental sample covariance ma-

trix. First, we need to calculate the M -matrix of Eq. (5.12) through the partial

derivatives of the fit function with respect to the fit parameters:

∂[Sph]f(ν) = 1 (5.16)

∂[νL]f(ν) =
8Sat∆ν

2(ν − νL)

(∆ν2 + 4(ν − νL)2)2
(5.17)

∂[Sat]f(ν) =
∆ν2

γ2 + 4(ν − νL)2
(5.18)

∂[∆ν]f(ν) =
8Sat∆ν(ν − νL)2

(∆ν2 + 4(ν − νL)2)2
(5.19)

We note that the above results are independent of the photon shot noise con-

tribution Sph. On the other hand, in the calculation of the covariance matrix

Γ, the shot noise enters into the denominator of Eq. (5.12) through the un-

certainty on the noise spectrum σ(ν) = f(ν) = σph + σat(ν), where σθ = Sph

and σat(ν) = Sat
( ∆ν

2
)2

(ν−νL)2+( ∆ν
2

)2 are the frequency independent (shot noise) and

frequency-dependent (atomic noise) contributions to the uncertainty. Moreover,
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in our experimental conditions [72] (see chapter (4)), the Larmor frequency is

a constant while the other fit parameters (Sph, Sat,∆ν) are functions of optical

power P and Rb density n so that, from now on, we conveniently express the

covariance matrix itself as Γ = Γ(n, P ). Exact expressions of the parameters

(Sph, Sat,∆ν) have been already given in Eqs. (4.3), (4.6) and (4.7), respectively.

5.3 Analytical results

By combining Eqs. (4.3,4.6-4.7) with Eqs. (5.16-5.19) and solving the integrals

of Eqs. (5.12) over the frequency range ν1 = 33 kHz - ν2 = 52 kHz, we can

analitically calculate the theoretical covariance matrix Γth(n, P ), as a function of

optical power and atomic density. A sample of these results is given at the end

of this section for fixed values of both density and mean power. Furthermore,

because of the quantum origin of the uncertainty on the spin noise spectrum,

from now on we refer to the statistical limit Γth(n, P ), defined by Eq. (5.11), as

standard quantum limit (SQL) of noise spectroscopy.

In Fig. (5.1) we show 2D contour-plots of the diagonal terms Γth
22(n, P ) and

Γth
44(n, P ), i.e. the variances of the estimated Larmor frequency νL and resonance

linewidth ∆ν, versus atomic density and optical power over the parameter range

(1 × 1012 cm−3 to 2 × 1013 cm−3) ⊗ (1mW to 20 mW). In the low-density/low-

power regime both variances decrease by increasing both degrees of freedom, until

reaching an optimal region, i.e. minimum variance. By further increasing either

atomic density or probe power, an inversion of the scaling is visible and both

variances rise again. In a 2D plot this scaling results in a guitar-plectrum-shaped

optimal area for the variances of (νL,∆ν), which are reported in unit of (Hz2) in
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Figure 5.1: Analytical results. (Left) Covariance matrix term Γth
22(n, P ) versus atomic

density and optical probe power. (Right) Covariance matrix term Γth
44(n, P ) in the same

parameters space. The upper limits of the experimental investigated range are P = 4 mW
(dashed red line) and (n = 12.6 1012 cm−3) (dashed black line). Sample data are shown
in Figs. (5.3) and (5.4) for P = 2 mW (continuous horizontal red line) and n = 7.65∗1012

cm−3 (continuous vertical black line) (see text).

the legends of Fig. (5.1). On the other hand, in Fig. (5.2) we show 2D contour-

plots of the variances of the estimated atomic Sat and shot noise Sph contributions

to the power spectrum of Eq. (5.15), given respectively by the covariance matrix

diagonal terms Γth
33(n, P ) and Γth

11(n, P ), respectively. For these fit parameters the

theoretical variance increases monotonically with both power and density, without

showing an optimal region or an inversion trend within the investigated parameter

range.

The diagonal terms of the covariance matrix, i.e. the variances of the fit pa-

rameters, are probably of greatest practical interest because they are the variances

of parameters that have been estimated in state-of-the-art SNS experiments for
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Figure 5.2: Analytical results. (Left) Covariance matrix term Γth
33(n, P ) versus atomic

density and optical probe power. (Right) Covariance matrix term Γth
11(n, P ) in the same

parameters space. See caption of Fig. 5.1 for horizontal and vertical lines legend.

measuring g-factors, nuclear spin, isotope abundance ratios and relaxation rates

of alkali atoms [26, 27] as well as g-factors, relaxation times and doping concentra-

tion of electrons in semiconductors [28, 106, 107, 108, 109]. However, here we are

also calculating the covariances of the fit parameters that might be important to

study correlations between different parameters. For completeness, we compare

full theoretical and experimental covariance matrices for fixed values of power

P = 2 mW and atomic density n = 7.65 × 1012 cm−3. In Figs. (5.1) and (5.2)

these values are indicated by horizontal and vertical continuous lines, respectively,

and they have been chosen for comparison with the data (see next sections (5.4)

and (5.5). In the following we report the theoretical covariance matrix:
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Γth =



0.45× 10−22 (V2/Hz)2 0.31× 10−12 V2 0.78× 10−12 (V2/Hz)2 −4.82× 10−10 V2

0.31× 10−12 V2 1741.4 Hz2 0.32× 10−12 V2 −2.68× 10−12 Hz2

0.78× 10−12 (V2/Hz)2 0.32× 10−12 V2 0.49× 10−20 V2 −66.50× 10−10 V2

−4.82× 10−10 V2 −2.68× 10−12 Hz2 −66.50× 10−10 V2 15 490.8 Hz2


and its standard deviation:

σth =



0.64× 10−23 (V2/Hz)2 27.9× 10−12 V2 0.48× 10−12 (V2/Hz)2 0.96× 10−10 V2

27.9× 10−12 V2 246.271 Hz2 292.1× 10−12 V2 519.38× 10−12 Hz2

0.47× 10−12 (V2/Hz)2 292.1× 10−12 V2 0.07× 10−20 V2 10.96× 10−10 V2

0.96× 10−10 V2 519.38× 10−12 Hz2 10.96× 10−10 V2 2190.73 Hz2


In order to facilitate the reader in the comparison against the experiment,

here we also report the experimental sample covariance matrix Γexp, whose cal-

culation is described in section (5.4), for same power and density values:

Γexp =



0.45× 10−22 (V2/Hz)2 5.22× 10−12 V2 0.39× 10−12 (V2/Hz)2 −4.83× 10−10 V2

5.22× 10−12 V2 2030.6 Hz2 977.13× 10−12 V2 −1514.33× 10−12 Hz2

0.39× 10−12 (V2/Hz)2 977.13× 10−12 V2 0.49× 10−20 V2 −63.51× 10−10 V2

−4.83× 10−10 V2 −1514.33× 10−12 Hz2 −63.51× 10−10 V2 15 635.3 Hz2


The theoretical covariance matrix Γth has negative correlations between the

resonance linewidth and the other three fit parameters, while the off-diagonal

terms that do not involve ∆ν are positive, indicating positive correlations among

(νL, Sph, Sat). This correlation property holds over all the parameter range (1 ×

1012 cm−3 to 2× 1013 cm−3)⊗ (1mW to 20 mW) used for the analytical calcula-

tions.

The standard deviation σth is calculated by knowing that the sample covari-

ance matrix Γ of a sample from a multivariate normal distribution follows the

Wishart probability density function [128]:

P (Γth) = det Γ(m−p−1)/2e−
Tr[ΓthΓ]

2 (5.20)
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with sample size m = 100, number of variables p = 4 (see section (5.4) for sample

data analysis), mean value Γth and variance var(Γth) = (σth)2, where for var(M)

of a generic matrix M we mean the matrix with elements [var(M)]ij = var(Mij)

and for M2 we mean the matrix with elements [(M)2]ij = M2
ij .

We note that the sample covariance matrix agrees reasonably well with the

predicted covariance matrix. The difference |Γth
ij −Γexp

ij | is ∼ σth
ij for most elements

of the matrix, and the largest discrepancy is 3.3σth. Comparing also Γth, σth and

Γexp obtained for other powers and number densities (not shown), this is a typical

result. In the next section (5.4) we compare the experimental diagonal terms

Γexp
ii against theory as a function of atomic density and optical power and we

demonstrate performance of SNS at the SQL.

5.4 Experimental results

As described in both [72] and chapter (4), we experimentally investigated the

parameter range (1.49×1012 cm−3 to 12.6×1012 cm−3)⊗ (500µW to 4 mW) that

represents a portion of the, just described, theoretical parameter range and its

upper limits are indicated by horizontal (P = 4 mW) and vertical (n = 12.6×1012

cm−3) dashed lines in Figs. (5.1) and (5.2). Here we show that the experimental

range is sufficient to end up on the minimum variance region of both Larmor

frequency and resonance linewidth parameters, as predicted in Fig. (5.1).

At any fixed atomic density and optical power, we acquire 100 spin noise

spectra and we fit each spectrum with the Lorentzian function of Eq. (5.15) over

the spectral region 33−52 kHz around the 85Rb resonance at νL = 42.6 kHz. After

performing all the fits, we end up with 100 samples of the vector v. Then, we can
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estimate the mean values v̄i = (
∑100
k=1 v

(k)
i )/100 for all the vector components as

well as the experimental signal-to-noise ratio of Eq. (4.9), as reported in chapter

(4) [72]. Here we are interested on the covariance of the fit parameters and we

want to test the theoretical model. In order to do that, we obtain the experimental

sample covariance matrix Γexp(n, P ) by applying Γexp
ij (n, P ) = cov(vi, vj) to our

sample of multivariate random variables. An example of the full sample covariance

matrix for values of power P = 2 mW and atomic density n = 7.65× 1012 cm−3

has been already given in the previous section (5.3), where we showed agreement

between theory and experiment in units of the theoretical error σth. Here we

report data for the diagonal terms Γexp
ii and we calculate their standard errors

by applying the k-statistics approach [129] to the individual distributions of the

components of the parameters vector v. For the vi parameter the k-statistics can

be given in terms of the sums of the r-th powers of the distribution as:

Sr =
m∑
k=1

(v
(k)
i )r (5.21)

where m = 100 is again the sample size. Then, following the notation of [129],

we can calculate the unbiased estimators (k2, k4) of the cumulants (κ2, κ4) of the

given distribution, which are given by:

k2 =
m(S2 − S2

1)

m(m− 1)
(5.22)

and

k4 =
−6S4

1 + 12mS2
1S2 − 3m(m− 1)S2

2 − 4m(m+ 1)S1S3 +m2(m+ 1)S4

m(m− 1)(m− 2)(m− 3)

(5.23)

Then, an unbiased estimator for var(k2), which is the variance of the estimator of
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the variance of the distribution, is given by ([129] pp. 189-190):

var(Γexp
ii ) = var(k2) =

2nk2
2 + (n− 1)k4

n(n+ 1)
(5.24)

From Eq. (5.24) we obtain the standard error of the diagonal term of the sample

covariance matrix Γexp
ii . By performing this calculation with i = 1 to 4 we get the

error bars that are shown in Figs. (5.3) and (5.4).

In Fig. (5.3) we show the experimental covariance terms Γexp
22 (n) (top) and

Γexp
44 (n) (bottom) versus the atomic density, at the sample optical power P = 2

mW (indicated by a continuous red line in Figs. (5.1) and (5.2)). The agree-

ment with the theoretical model is very good and shows that the experiment is

performed at the SQL (red continuous curves). Furthermore, the data are consis-

tent with the prediction of an optimal, i.e. minimum variance, region of atomic

density around the tested value of n = 7.65 × 1012 cm−3, indicated by vertical

continuous lines in Fig. (5.1). We also found that the optimal interval is narrower

for the variance of the linewidth (bottom) with respect to that one of the Larmor

frequency (top) as expected from the theory and depicted in Fig. (5.1). We point

out that predicting a minimum variance in a parameter, estimated by fitting noise

spectra, corresponds to the potential a priori optimization of state-of-the-art mea-

surements based on noise spectroscopies, not only in atomic [26, 27, 47] and solid

state physics [108, 109, 25, 111], but also in other fields of science like, among

the others, cell biology [130, 131], geophysics [132] and quantum information pro-

cessing [133, 134, 135]. In the insets of Fig. (5.3) we report also good agreement

between the Γexp
11 (n) (top) and Γexp

33 (n) (bottom) terms of the sample covariance

matrix and the theoretical SQL. Differently from ∆ν and νL, the variances of

the estimated atomic and photon shot noise contributions increase versus atomic
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Figure 5.3: Experimental sample variances. (a) Experimental covariance matrix
term Γexp

22 (n) (black filled circles). Inset (a) Experimental covariance matrix term
Γexp
11 (n) (blue filled circles). (b) Experimental covariance matrix term Γexp

44 (n) (blue filled
circles) versus atomic density. Inset (b) Experimental covariance matrix term Γexp

33 (n)
(black filled circles). The continuous red lines represent the theoretical bound to the vari-
ances (SQL). The fixed optical power for both data and theory is P = 2 mW. The dashed
and dot-dashed curves show optical-noise-only and atomic spin-noise-only scenarios, re-
spectively. Error bars show the standard errors of the sample covariance term, calculated

by applying the k-statistics [129] to the individual parameter distribution (see text).
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density over all he investigated range, in agreement with theoretical predictions.

As described in the theoretical section (5.1.1), the standard deviation of the

noise spectrum is equal to the fit function σ(ν) = f(ν) = σph + σat(ν) of Eq.

(5.15), where σph = Sph and σat(ν) = Sat
( γ

2
)2

(ν−νL)2+( γ
2

)2 , and it is crucial in deter-

mining the SQL by entering, to the second power, into the denominator of the

integrals in Eq. (5.12), while the partial derivatives in the numerator are inde-

pendent of Sph, as shown in Eqs. (5.16-5.19). In all the plots of Fig. (5.3) we

show two functions (black dashed and brown dot-dashed) that are obtained by

calculating Eq. (5.11) when either the uncertainty σ(ν) = σph or σ(ν) = σat(ν) is

inserted into the denominator of Eq. (5.12), respectively. The resulting functions

show qualitatively that the SQL of optically-detected noise spectroscopy arises

from both quantum fluctuations of the probe photons (shot-noise) and intrinsic

fluctuations of the investigated system, resonant spin-noise in the specific case.

Then, we claim that the increasing of the variances after the optimal region, in

the high-density shown in Figs. (5.1) and (5.3), is due to the increased atomic

noise contribution to the spectrum uncertainty together with additional linewidth

broadening due to atomic collisions [72].

5.5 Improvement by squeezing

A further confirmation of the quantum limitations to the covariance matrix, is

that the use of a polarization squeezed probe allows us to perform an estimation

beyond the SQL. In Fig. (5.4) we report, as a function of optical power, the

variance of the diagonal covariance terms Γ44(P) and Γ22(P) for a coherent and for

a polarization squeezed probe with 2.6 dB (ξ2 = 0.55) of squeezing, at the optimal
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atomic density n = 7.65 × 1012 cm−3, as we demonstrated in Fig. (5.3). The

improvement in signal-to-noise ratio, due to the quantum shot-noise suppression

[72], turns into a reduction of the variance of both the resonance linewidth and

Larmor frequency below the SQL. The theoretical model agrees very well with

data, acquired up to a power of 4 mW, both for coherent and squeezed probing.

The theory also predict squeezing to reduce the variance even for optical power

much above the optimal range, as illustrated in (5.4). In the high-power regime,

both curves increase because of both the larger contribution to the SQL from the

atomic spin noise, which has a quadratic dependence on optical power, as for Eq.

(4.6) and additional power broadening of the linewidth [72]. If we just look at the

Figure 5.4: Improvement by squeezing. Covariance term Γexp
44 (P) versus power for

coherent (blue circles) and polarization squeezed (green squares) probe, respectively. The
theoretical SQL for ξ2 = 1 (coherent probe) and ξ2 = 0.55 (squeezed probe) is shown with
continuous and dashed curves, respectively. Inset Analogue analysis for the covariance
term Γexp

22 (P). The fixed atomic density is n = 7.65 × 1012 cm−3. Error bars show the
standard errors of the sample covariance term, calculated by applying the k-statistics

[129] to the individual parameter distribution (see text).
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coherent data, we see that, by increasing the optical probe power, the variance of

both variables end up into the optimal area shown in the 2D plots of Fig. (5.1).

On the top of that, at same optical power, squeezing reduces both variances under

all the investigated parameter range.

5.6 Conclusions

We have presented a novel theoretical model on quantum limits of noise spec-

troscopy, by deriving a SQL for the covariance matrix of the fit parameters, in

the presence of optical probing. We tested the model against data from spin noise

spectroscopy of hot Rb vapor and we demonstrated operation at the SQL, in good

agreement with theory. The model provides an elegant and simple way to iden-

tify optimal experimental conditions that minimize the variance of parameters

of interest in noise spectroscopies in different fields like cell biology [130, 131],

molecular biophysics [136, 127], geophysics [132], space science [137], and quan-

tum information processing [138, 139, 133, 134, 135]. Our model can be applied

to optimize a broad range of SNS applications like measurements of spin lifetime,

g-factors and isotope abundances both in atomic and solid state physics. We also

identify the quantum nature of the contributions to the SQL and we experimen-

tally demonstrate the overcoming of such limitations by optical squeezing of the

probe beam.





Chapter 6

Shot-noise-limited optical

magnetometer with

sub-picotesla sensitivity at

room temperature

In this chapter we report a photon shot-noise-limited (SNL) optical magnetometer

based on amplitude modulated optical rotation (AMOR) using a room-temperature

85Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-

temperature sensitivity of 70 fT/
√

Hz at a DC field of B = 7.6 µT. Experimental

scaling of noise with optical power, in agreement with theoretical predictions, con-

firms the SNL behaviour from 5 µT to 75 µT. While no quantum resources of light

were used in this setup, the combination of best-in-class sensitivity and SNL op-

eration makes the system a promising candidate for application of squeezed light

118
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to a state-of-the-art atomic magnetometer. The described experiment has been

carried out at the Institute of Physics of the Jagiellonian University (Krakow) in

collaboration with the group of Prof. Wojciech Gawlik and it has been published

in [84].

6.1 Introduction

Optical magnetometers [80, 7, 89] are currently the most sensitive devices for

measuring low-frequency magnetic fields and have many applications, from med-

ical diagnostics and biomagnetism [11, 12, 13], to the detection of fields in space

[17, 18], to tests of fundamental physics [19, 20, 21]. Quantum-enhanced sensi-

tivity of optical magnetometers has been recently demonstrated using squeezing

[46, 40, 43]. Quantum enhancement of a best-in-class magnetometer, i.e. of an

instrument with unsurpassed sensitivity for a given parameter range, is a natural

next step after these proof-of-principle demonstrations. This kind of enhancement

was recently shown in gravitational wave detection, when the LIGO H1 detector

was enhanced with squeezed light [41].

In this chapter we demonstrate a shot-noise-limited magnetometer that simul-

taneously is well-adapted for sensitivity enhancement with squeezed light, as in

[40, 43], and has detection noise of 70 fT/
√

Hz at a field of 7.6 µT. For the given

field strength and room-temperature atomic density of n = 1.27×1010 atoms/cm3

[140], this is among the best reported magnetometer sensitivity including those

using amplitude [85, 95], frequency [141, 142] and polarization [143] modulation

strategies. With two orders of magnitudes higher atomic density, a heated-cell

scalar magnetometer (cell temperature 160◦ C) showed a noise level below 10

fT/
√

Hz in the same field range [144]. Sub-femtotesla spin-exchange-relaxation-
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free (SERF) magnetometers, e.g. [8, 10], are not comparable here because they

operate only at near-zero field.

After introducing the magnetometer mode of operation, we describe the experi-

mental setup, we define the magnetometer sensitivity and we report its experimen-

tal optimization. In the last section we make a detailed and redundant analysis of

the quantum versus classical noise contributions, including both theoretical cal-

culation of the expected shot noise level and an independent, fully experimental

analysis based on scaling of measured noise with optical power. These agree and

indicate the potential to improve the sensitivity of this system by up to 6 dB using

polarization squeezing.

6.2 Amplitude modulated optical rotation (AMOR)

magnetometry

Our magnetometer is based on the process of nonlinear magneto-optical rotation

(NMOR), also known as nonlinear Faraday rotation [5, 80]. In this process, al-

ready introduced in chapter (2), resonant or near-resonant light produces spin

coherence by optical pumping, and the spin coherence in turn produces Fara-

day rotation, either of the optical pumping beam itself [79], or of a separate

probe beam [85], leading to a detectable signal indicating the Larmor frequency

and thus the magnitude of the field. Modulation of the pumping, either in fre-

quency (FM NMOR) [6], amplitude (AMOR) [79] or circular polarization [143]

produces a resonant buildup of atomic polarization with minimal disturbance to

the spin coherence. The modulation strategy significantly increases the magnetic

dynamic range, i.e., the ratio between the largest detectable signal, which in
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NMOR can reach the geophysical field range [141, 86], and the lowest detectable

signal. NMOR can give high sensitivity, due to the long ground-state coherence

times, and hence narrow resonances, that arise when alkali vapours are confined

with a buffer gas [76, 77] or in anti-relaxation coated cells [75, 78].

As previously introduced in chapter (2), the sensitivity of optical magnetometers

is ultimately limited by two fundamental noise sources: the atomic projection

noise and the optical shot-noise [80, 7]. When atomic projection noise is limiting,

quantum non-demolition measurement [93, 145, 46, 146], atomic entanglement

[92] and spin squeezing [94] can improve sensitivity for measurements within the

atomic coherence time [46] and for non-exponential relaxation processes [147].

Similarly, optical squeezing can improve sensitivity when photonic shot noise is

limiting [40, 43]. Prior works on AMOR [95] and FM NMOR [142] have shown

experimental sensitivity about one order of magnitude above (i.e. worse than)

the predicted fundamental sensitivity. Other magnetometers based on oscillat-

ing field-driven Zeeman resonance [144], Mx method [148] or intensity-modulated

(IM) pumping [149], have approached the photon shot-noise level, but still have

a significant technical noise component. In contrast, we report an AMOR mag-

netometer in which all other noise sources are significantly below shot noise from

5 µT to 75 µT, as needed for squeezed-light enhancement.

6.3 Experimental setup

The experimental scheme is shown in Fig. 6.1. A sample of isotopically-pure

85Rb is contained in a spherical vapor cell of 10 cm diameter, with no buffer

gas. The cell is at room temperature (∼ 25◦C) corresponding to 85Rb atomic

density of n = 1.27× 1010 atoms/cm3 [140]. The inner cell walls are coated with
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an antirelaxation (paraffin) layer that prevents atoms from depolarizing upon

collision with the walls and prolongs the ground-state Zeeman coherence lifetime

to ' 100 ms.
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Figure 6.1: Experimental Setup. SAS – saturated-absorption-spectroscopy frequency
reference, AOM – acousto-optical modulator with the RF driver, λ/2 – half-wave plate,
P – polarizer, WP – Wollaston prism. The oscillator that drives the AOM of the pump
beam is amplitude modulated with a sine-wave of frequency Ωm/2π by the waveform

generator.

The cell is inside a “box solenoid,” a cubical box made of printed-circuit-

board material, with three mutually perpendicular sets of printed wires, each in a

solenoidal pattern. Together with an accompanying ferrite box, which extends the

effective length of the solenoid based on the method of images for magneto-statics,

we can generate a uniform field along the three directions. In this experiment we

generate a constant magnetic field along the z-axis, which is also the probe beam
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direction, while the coils in the perpendicular directions are used to compen-

sate the residual transverse magnetic field. Residual magnetic field gradients are

compensated by a set of three mutually perpendicular anti-Helmoltz coils wound

around the box. This setup was kept inside three nested layers of µ-metal shields,

giving a whole magnetic shielding of ∼ 106 efficiency.

The light source for both probing and pumping is an extended-cavity diode

laser whose frequency is stabilized by saturated absorption spectroscopy at 20

MHz below the F = 3 → F ′ = 2 transition of the 85Rb D1 line. The laser beam

is split into pump and probe beams that pass through acousto-optic modulators

independently driven by two 80 MHz RF signals so that, before reaching the

atoms, the frequency is additionally red-detuned 80 MHz away from the F = 3→

F ′ = 2 transition. Additionally, the intensity of the pump beam is sinusoidally

modulated with frequency Ωm/2π. 1 Both pump and probe have a beam diameter

of 1mm at the center of the vapor cell.

Both beams are vertically polarized (x-direction in Fig. 6.1) with high-quality

crystal polarizers to ensure pure linear polarization and the light intensity that

interacts with the atoms can be adjusted with half-wave plates situated in front

of the polarizers. The pump beam passes through the cell in the y direction,

perpendicular to the z-axis bias field. When the pumping modulation frequency

coincides with twice the Larmor precession frequency, a large precessing alignment

accumulates in the x−y plane. The pump power is set to 60µW. The probe beam

propagates through the atomic vapor cell along the z-axis, i.e. parallel to the field,

and experiences Faraday rotation (NMOR) of the polarization plane due to the

1The AOM along the probe beam path makes the setup suitable also for single-beam NMOR
but is not necessary in the strategy followed in this paper, where just the pump beam needs to
be amplitude modulated.
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precessing alignment. The optimal probe power changes from 80.5 µW to 620

µW, depending on the employed detector’s gain.

Polarization rotation is detected with a balanced polarimeter consisting of a

Wollaston prism set at an angle of 45◦ with respect to the vertical and a fiber-

coupled variable gain balanced photo-detector (PDB) (Thorlabs PDB150A DC).

The differential output is analyzed with a radio-frequency (RF) spectrum ana-

lyzer (SA) (RIGOL DSA1030A) or demodulated at Ωm/2π with a lock-in am-

plifier (Stanford Research Systems model SR844). The in-phase and quadrature

output signals are then stored on a computer for later analysis. As explained in

section (6.5), both SA and lock-in signals are used to determine the magnetometer

sensitivity. Throughout this work we used SA resolution bandwidth RBW= 30

Hz and video bandwidth VBW= 30 Hz.

6.4 AMOR signal and magnetic sensitivity

As anticipated in chapter (2.4) the AMOR signal is generated by means of am-

plitude modulated pumping and unmodulated CW probing in a right-angle ge-

ometry. Optical pumping with linearly polarized light generates spin alignment,

i.e. ground state coherences between Zeeman sub-levels with ∆mF = 2 [81, 82].

The alignment describes a preferred axis, but not a preferred direction along this

axis. The signal due to alignment oscillates at twice the Larmor frequency due

to this additional symmetry, i.e., at 2ΩL = 2gFµ0B/h̄ where gF is the Landé

factor and µ0 is the Bohr magneton. Amplitude modulated optical pumping at

2ΩL produces a resonant build-up of spin alignment, as demonstrated in several

earlier works [85, 86]. The alignment behaves as a damped driven oscillator, and
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in steady state responds at frequency Ωm with an amplitude and phase relative to

the drive that depend on the detuning Ωm−2ΩL [87]. As described in chapter (6),

the weak probe is sensitive to alignment through linear dichroism, i.e., linearly

polarized light parallel to the alignment experiences less absorption [89]. When

the alignment is neither parallel to nor perpendicular to the probe polarization,

this dichroism rotates the probe polarization. This rotation signal also oscillates

at 2ΩL, and we demodulate it with the lock-in amplifier to extract the in-phase

and quadrature components, shown in Fig. 6.2 for a representative magnetic field

intensity of B = 10.8 µT.
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Figure 6.2: AMOR Signals versus Modulation Frequency. In-Phase φP (blue) and
quadrature φQ (red) output signals of the lock-in amplifier for B = 10.8µT, Pprobe =
80µW and Ppump = 60µW. The modulation/demodulation frequency Ωm/2π is scanned
around the resonance condition Ωm = 2ΩL(∆ = 0). Experimental data are fitted by
dispersive (red) and absorptive (blue) Lorentzian curves. From the fit we obtain resonance

frequency and FWHM width γ = Γ/2π.

The optical rotation angle is an oscillating function at the modulation fre-
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quency Ωm with the amplitude dependence well described by a single-Lorentzian

in the small field approximation

φ(t) = φ0Re

[
iΓ/2

∆ + iΓ/2
eiΩmt

]
+ δφ(t)

= φP cos (Ωmt) + φQ sin (Ωmt) + δφ(t) (6.1)

where φ0 is the maximum rotation angle, which depends on the optical detuning,

cell dimension, and pump power. The detuning between the modulation frequency

and 2ΩL is ∆ ≡ Ωm − 2ΩL while Γ is the FWHM line width due to relaxation,

pumping, and nonlinear Zeeman shifts 2. The symbols φP and φQ are the in-phase

and quadrature components, respectively, directly observable by demodulation at

Ωm. The photon shot noise contribution, δφ(t), is a white noise with a power

spectral density Sφ(ω) = 1/(2Φph) [142, 95, 89], where Φph is the flux of photons

arriving to the detector.

We note that on resonance, i.e. with ∆ = 0, the signal consists of a cosine

wave at frequency Ωm with amplitude φ0, plus a white-noise background due to

δφ(t). In the balanced condition, and with φ0 � π, the polarimeter signal is

∝ φ(t). When recorded on a spectrum analyzer with resolution bandwidth RBW,

the signal shows a peak power spectral density Ssig = g2
detφ

2
0/(2RBW), where

gdet is the gain relating rotation angle to RF amplitude at the SA (the factor of

one half represents a mean value of 〈cos2〉 = 1/2). A typical RF spectrum of

the AMOR resonance recorded in our measurements is shown in Figure 6.3. The

signal peak rises above a flat background Sbg = g2
detδφ

2
/2, where δφ

2
= Sφ is

2The single-Lorentzian approximation should fail at large B, when the resonance splits into
several lines due to the nonlinear Zeeman shift. This was not observed at the field strengths used
in this work. Even at 75µT, the response was well approximated as a single Lorentzian. This
suggests a strong line-broadening accompanied the nonlinear Zeeman shift.
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the spectral noise density of the phase, so that δφ has units rad/
√

Hz (the factor

of two reflects the fact that only one quadrature contributes to the noise of the

demodulated signal, while both are recorded by the SA). The signal-to-noise ratio

SNR is given by SNR2 ≡ RBWSsig/Sbg = φ2
0/δφ

2
, which is independent of gdet

and RBW and can be directly measured.
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Figure 6.3: AMOR Magnetometer Resonance Spectrum. Spectrum of the rotation
signal acquired on SA at the resonance condition Ωm = 2ΩL with RBW= 30Hz, VBW=
30Hz and a PDB nominal gain G= 106V/A. The red curve shows the signal spectrum
S(Ω) ≡ Ssig with a magnetic field of B = 10.8µT and 40kHz span frequency around Ωm,
while the blue dashed line indicates the background noise level, i.e. S(Ω) ≡ Sbg acquired

with B = 0 and averaged over a 4kHz range around Ωm.

The magnetic sensitivity can be related to SNR by noting that the slope of

the quadrature component on resonance is

dφQ

dB
=
gFµ0

πh̄

φ0

γ
. (6.2)
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where the width γ ≡ Γ/2π has unit of Hz. Considering that on resonance Ωm =

2ΩL = 2gFµ0B/h̄, we find the noise in magnetic units, i.e., the sensitivity

δB =

∣∣∣∣dφQ

dB

∣∣∣∣−1

δφ =
πh̄

gFµ0

γ

SNR
, (6.3)

with units T/
√

Hz.

As described in the next section, using this method to measure the sensitivity

we find δB as low as 70 fT/
√

Hz. For comparison, the atomic projection noise

contribution to the overall measurement is: [80, 7]:

δBat '
h̄π

gFµ0

√
γ

Nat∆τ
(6.4)

where Nat is the number of atoms involved in the measurement. With our cell

volume of 4πR3/3, R ≈ 5 cm, atomic density n = 1.27×1010 atoms/cm3, measured

relaxation rate γ ≈ 10 Hz and ∆τ = 1s time of measurement we find δBat '

0.134 fT/
√

Hz. This value is two orders of magnitude lower than the observed

sensitivity, justifying our earlier step of ignoring this contribution. If all other

noise sources have lower amplitude than the shot noise, then the magnetometer

can be expected to be photon shot-noise-limited. In Section 6.6 we demonstrate

that, in the experimental conditions that optimize the sensitivity, this is indeed

the case.

6.5 Optimization of the magnetometer sensitivity

In this section we examine different setup parameters in order to find the optimal

conditions maximising the magnetometric sensitivity.
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In our configuration, with a pump and probe of the same frequency, laser

tuning affects the pumping efficiency, the rotation signal corresponding to a given

degree of atomic alignment, and the probe absorption. In addition, the pump

power increases both the amplitude and the width of the rotation signal. To

optimize these parameters, we first adjust the gradient fields to minimize the

broadening due to magnetic field inhomogeneities [150], and then optimize the

laser frequency and pump power to maximize the slope of the AMOR signal. The

optimum conditions, which we use throughout this work, occur at the detuning of

100 MHz to the red of the F = 3→ F ′ = 2 transition and 60 µW of pump power.
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Figure 6.4: Magnetometer SNR. Signal-to-Noise ratio versus optical probe power.
The modulation frequency was 71 kHz (B = 7.6 µT). The green dashed line indicates the
probe power value of 80.5 µW that maximizes the sensitivity. This condition does not
correspond to the best SNR because of the trade-off with the width trend (see Eq. 6.3).
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To measure the magnetometric sensitivity for a given probe power and field

strength, we first set the detuning and pump power to the optimal values discussed

above. We then set a constant current in the solenoidal coil along the z-axis, and

minimize the width of the AMOR resonance with the help of the gradient coils.

Demodulation of the signal yields the in-phase and quadrature components of

the resonance versus Ωm, as depicted in Fig. 6.2. By fitting a Lorentzian to

these curves, the central resonance modulation frequency Ωm = 2ΩL (∆ = 0)

and width γ are obtained. Keeping then Ωm fixed and maximizing the in-phase

component allows one to measure the spectrum as in Fig. 6.3 and to extract

Ssig(Ωm) = φ2
0/RBW. A second spectrum is taken with the B-field set near

zero. This moves the resonance peak far away from Ωm, so that S(Ωm) now

gives the background noise δφ2
RMS . In analogy with previous works [95, 151] the

experimental sensitivity, defined by equation 6.3, can be calculated in terms of

the width (FWHM) and signal-to-noise ratio. The magnetometric sensitivity of

the instrument was measured in the range from 5 µT to 75 µT. We employ two

detector bandwidths, 300 kHz and 5 MHz, corresponding respectively to nominal

transimpedance gains of 106 V/A and 105 V/A.

Typical results, taken at a field of 7.6 µT (modulation frequency of 71 kHz,

detector gain setting 106 V/A) are shown in Figs. 6.4 and 6.5. In Fig. 6.4

we present signal Ssig and noise Sbg power spectral densities with the resulting

signal-to-noise ratio (SNR) as a function of the probe power. Signal grows with

the probe power until saturation occurs. In contrast, noise grows monotonically,

so that the SNR has an optimal value before the signal saturates. Fig. 6.5 depicts

the slope φ0/γ and the sensitivity δB, calculated using equation 6.3, as a function

of probe power, also acquired with B = 7.6 µT. An optimum sensitivity of 70
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Figure 6.5: Magnetometer Sensitivity. Signal slope φ0/γ and magnetometer sensitiv-
ity versus optical probe power. The sensitivity is computed as in Eq. 6.3 using the width
from the demodulated signal, as in Fig. 6.2, and the measured SNR, as in Fig. 6.3. The
green dashed line indicates the probe power that gives the best sensitivity of 70 fT/

√
Hz

for a modulation frequency of 71 kHz (B = 7.6 µT)

.

fT/
√

Hz is observed at a probe power of 80.5 µW 3 and remains within 10% of

this value between 50 µW and 100 µW 4.

3Although this probe power exceeded the pump power of 60 µW, the increased resonance
broadening is compensated by higher signal amplitude and results in a better net sensitivity.
Moreover, for the gain setting of 105 V/A we find the optimal probe power to be as high as
620µW.

4While optimized sensitivity value of 70 fT/
√

Hz is observed below 10.8 µT at higher fields
this number rises significantly, roughly as B4, reaching 250 pT/

√
Hz at 75 µT (Ωm = 700 kHz).

The observed reduction of the sensitivity for larger fields is related to the nonlinear Zeeman
effect (NLZ) [89, 141, 86]. Saturation of the ferrite shielding cube at high fields and high-order
magnetic field gradients that are not compensated in the current experimental setup could also
contribute to the sensitivity worsening and need further investigation.
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6.6 Quantum noise analysis

Here we report the results of two noise analyses: the first characterises the probing

and detection system, without an atomic contribution. This was performed by

probing at the optimal laser detuning but with the pump beam off. The second

analysis characterizes the magnetometer under the experimental conditions that

optimize the sensitivity, as described in section (6.5).
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Figure 6.6: Low-Frequency Detection Noise. Noise spectra of the PDB differential
output acquired with mean optical power of P = 0, 10, 20, 50, 100, 200, 400, 700µW, from

bottom to top. G= 106 V/A and BW= 300 kHz.

In a linear detection system, the noise power N of the electronic output will
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depend on the average light power P as

N = AP 0 +BP 1 + CP 2, (6.5)

where A,B and C are constants. The three terms of this polynomial are the

“electronic noise” (stemming, e.g. from the detector electronics), the shot noise,

and the “technical noise” contributions, respectively [52, 152]. The laser source

can contribute to technical noise, e.g. through power fluctuations if the detection

is imbalanced or if its optical elements are unstable. By determining the noise

scaling as the function of light intensity, we can identify the dominating noise

source. When BP 1 > AP 0 and BP 1 > CP 2, we say the system is shot-noise

limited, in the sense that the shot noise is the largest noise contribution. These

two inequalities define the range of powers B/C > P > A/B in which the system

is SNL. If B/C < A/B, the system is not SNL for any power. This definition

of SNL can be extended to include more stringent conditions that might arise in

applications. For any given k ≥ 1, we can consider powers satisfying the inequal-

ities B/(kC) > P > (kA)/B, i.e. powers such that the shot-noise contribution is

a factor k larger than both the electronic noise and the technical noise contribu-

tions. For instance, for k = 2, the photonic noise is 3 dB higher than the other

two contributions of Eq. (6.5).

For a given field B, and thus the Larmor precession or modulation frequency,

the noise of interest is N = S(Ωm), the noise spectral density at the demodulation

frequency Ωm. Using the SA we collect output noise spectra for several probe

intensities. The data shown in Figs. 6.6 and 6.7 reveal the resulting scaling of

the noise level. The electronic noise floor in the two Figures differs because of the

different employed detector’s gain. In the next step we examine the scaling of the
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Figure 6.7: High-Frequency Detection Noise. Noise spectra of
the PDB differential output acquired with mean optical power of P =
0, 10, 20, 50, 70, 125, 250, 500, 1000, 2000, 3000, 4500µW, from bottom to top. G= 105

V/A and BW= 5 MHz.

noise level.

For any given detection frequency Ωm (that will be the modulation/demodulation

frequency in the magnetometer operation mode), we can then fit the polynomial

of Eq. (6.5), and find the range of powers and frequencies over which the detection

system is SNL.

In Figure 6.8 we show an example of this analysis for a detection frequency

of 48.5 kHz. We can see that scaling of the noise amplitude is different for dif-

ferent intensity ranges. The red area represents the SNL range. This is the
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Figure 6.8: SNL Power Range. At 48.5 kHz detection frequency the coefficients of shot-
noise (linear scaling) and technical noise (quadratic scaling) are obtained by fitting data
(black points) with the polynomial function of Eq. 6.5 (dashed line), whose intercept
is the electronic noise level (constant), measured at zero power. The red central area
corresponds to the experimental SNL power range. We obtain good agreement with
the theoretical shot-noise level (see text for calculation) represented by a red line with

thickness due to the 10% uncertainty on the PDB nominal gain G = 106 V/A.

only power range in which quantum noise reduction via probe squeezing could

significantly enhance the magnetometer sensitivity. We find good agreement

between the observed shot noise level and the predicted value [52] (in W/Hz):

N(P̄ ,Ω) = G2(Ω)2̄ie/R, where e is the electron charge, R = 50 Ohm is the SA

input impedance and G(Ω) is detector gain at frequency Ω. Due to impedance

matching at the detector, the PDB150A transimpedance gain is only half the nom-

inal value when used with the SA. The frequency dependence can be neglected

because our signal frequency of 48.5 kHz is far below the detector’s 300 kHz nom-

inal 3 dB bandwidth. We thus take G(Ω) = (106 ± 105)/2 V/A, which represents
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the manufacturer’s specification. The photocurrent is ī = P̄ e/(hνηdet) where P̄

is the averaged optical power and ηdet = 0.88 is the detector quantum efficiency.
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Figure 6.9: SNL Power Range for low frequencies. Blue and red curves show (kA)/B
and B/(kC), the lower and upper limits, respectively, of the SNL range with k = 1 (red
region), k = 2 (blue region) and k = 4 (cyan region). PDB gain G = 106 V/A. A/B and
B/C were found by fitting the spectra of Fig. 6.6 as illustrated in Fig. 6.8. To reduce

scatter, spectra were first averaged in 10 kHz bins. See text for details.

After performing the same analysis over all detection frequencies, we report

in Figs. 6.9 and 6.10 lower (A/B) and upper (B/C) power limits of the SNL range

(red area) versus frequency for two detector settings (106 V/A with 300 kHz BW

and 105 V/A with 5 MHz BW). According to our previous definition we also show

the signficant SNL regions with k = 2 (light blue area) and k = 4 (cyan area) that

correspond to power regions where the photonic shot-noise is respectively 3 dB

and 6 dB above the other noise contributions. Below 20 kHz the detection system

is limited by electronic noise i.e. not significantly SNL within the investigated
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Figure 6.10: SNL Power Range for high frequencies. Blue and red curves show
(kA)/B and B/(kC), the lower and upper limits, respectively, of the SNL range with
k = 1 (red region), k = 2 (blue region) and k = 4 (cyan region). PDB gain G = 105 V/A.
A/B and B/C were found by fitting the spectra of Fig. 6.7 as illustrated in Fig. 6.8. To

reduce scatter, spectra were first averaged in 34 kHz bins. See text for details.

range of light power. It is properly reproduced in Fig. 6.9, although the data

coming from the fit procedure suffer from considerable scattering. The dip in the

red curves (B/kC) at 40 kHz is due to technical noise excess at this frequency

(see Fig. 6.6).

6.7 Shot-noise limited performance and conclusions

Being interested in the SNL range, we have constrained our AMOR measurements,

reported in section (6.5), to modulation/detection frequencies higher than 50kHz

and thus to magnetic field intensities above 5 µT. Above modulation frequency of
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200 kHz higher detector BW of 5 MHz needs to be used. Because of the lower gain

(105 V/A), starting from frequency of 200 kHz the system becomes SNL above

200 µW as shown in Fig. 6.10.

Having determined the SNL range of the detector, we now proceed to charac-

terize the magnetometer noise over this range. We set conditions for an optimized

B-field measurement, as described in section (6.5), and switch off the B-field but

leave on all other components, including the modulated pumping (in contrast to

the measurements described above). We then acquire the noise power spectrum

Sbg(Ωm) as a function of probe power. We report two representative results that

correspond to detector setting with high gain and low gain respectively. Although

in our experiment we did not observe any significant difference between the detec-

tor and the magnetometric noises, these two features may differ in other experi-

mental conditions where environmental or technical noise sources dominate over

the fundamental shot-noise contribution, as reported in previous works [95, 143].

In Fig. 6.11 we show the magnetometer noise power at 71 kHz (B = 7.6

µT) and 700 kHz (B = 75 µT) as a function of probe power. Fitting both data

with N(P ) of Eq. (6.5) and knowing the electronic noise coefficient A, we find

the coefficients B and C and we can define the shot-noise-limited power range.

The difference in power range and reference level between the two representative

frequencies is due to the different employed BPD gain. The trend of the noise

power is linear, i.e. shot-noise-limited, in the power range of 30 µW-500 µW

and 100 µW−1 mW for 71 kHz and 700 kHz respectively. Within this range

the observed noise levels agree with theoretical shot-noise levels, calculated in the

same way as for Fig. 6.8, by taking into account the 10% uncertainty on the

detector nominal gain.
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Figure 6.11: SNL Magnetometer Performance. Background noise level (acquired
with B = 0 and averaged over a 4 kHz range around the resonance frequency) versus
optical probe power at 71 kHz (black circles) and 700 kHz (black squares). These are
simultaneously AM frequencies of the optical pumping (kept on in the noise measurement)
and SA detection frequencies. Electronic (constant), shot-noise (linear) and technical
noise (quadratic) contributions are shown with solid and dashed black lines at 71 kHz
and 700 kHz respectively. For 700 kHz, the electronic noise level is below the shown scale
at 5.6 × 10−14 mW/Hz. Red lines represent the theoretical shot-noise levels, calculated
with the PDB nominal gain values of G = 106 ± 105 V/A and G = 105 ± 104 V/A
respectively. The probe powers that maximize the magnetometer sensitivity (vertical

green lines) fall within a significant SNL power range. See text for details.

Most importantly, the probe power intervals in which the magnetometer sen-

sitivity is not worse than 10% of the maximum (reached at 80.5 µW and 620 µW

respectively) are well inside a significant photon SNL region with k = 4, in which

the photonic shot-noise is more than 6 dB above the electronic and technical

noise levels. Within this optimal power range, significant sensitivity enhancement

can be achieved by using optical polarization squeezing of the probe beam [40].

Indeed, the results of Fig. 6.11 show that the fundamental light shot-noise contri-
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bution dominates the magnetometer noise budget i.e. technical noise and atomic

projection noise (Eq. 6.4) are negligible when the magnetometer sensitivity is

optimized at room temperature. Similar SNL performance was observed between

5µT and 75µT, over all the investigated magnetic dynamic range.

To conclude this chapter, we have demonstrated a sensitive pump-probe opti-

cal magnetometer that is shot-noise limited over the field range 5 µT to 75 µT. We

optimized the system for pump/probe detuning, pump and probe beam powers,

and found sensitivity of 70 fT/
√

Hz at a field of 7.6 µT. The shot-noise-limited

performance of the system has been confirmed by the scaling of the magnetometer

noise as a function of probe input power and by agreement with the theoretical

shot-noise level. This is the first experimental demonstration of a photon shot-

noise-limited AMOR magnetometer. Moreover, it has the highest reported sen-

sitivity for a room-temperature optical magnetometer in a range around 10 µT.

Based on these observations, the described magnetometer is a good candidate for

squeezed-light enhancement of sub-pT sensitivity over a broad dynamic range.

It is worth noting that AMOR and other modulated magnetometry strate-

gies at these field strengths are well-matched to atom-resonant sources of squeezed

light, because the signal is recovered at a multiple of the Larmor frequency, i.e. at

a radio frequency. Although optical squeezing can be generated at low frequen-

cies [153], in practice most squeezing experiments, and to date all atom-resonant

squeezed light sources [67, 68, 69, 70, 71], have shown squeezing at radio frequen-

cies.

A number of improvements suggest themselves. The lower limit of 5µT is

set by the low-frequency electronic noise of the balanced detector. Electronics de-

signed for lower frequency ranges [153] could make the system shot-noise-limited
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also for weaker fields. Recently-developed anti-relaxation coatings [78] could ex-

tend the ground-state coherence. Techniques to evade broadening due to the non-

linear Zeeman effect could improve the sensitivity at high fields [154, 155, 156].







Chapter 7

Conclusion

7.1 Summary and outlook

This thesis describes the research activities of my PhD and contributes to the un-

derstanding and development of quantum-enhanced atomic sensors using squeezed

states of light and magnetically-sensitive dense atomic vapors, at the state-of-the-

art level of both technology and sensitivity.

First, we have described the design, construction and characterization of a

new experimental apparatus for the study of atomic spectroscopy within a high-

density regime (n ≥ 1012 cm−3) and low-noise (' pT/
√

Hz) magnetic environ-

ment. The building of magnetic coils for the generation of both uniform fields in

the three axes and gradient fields in the optical probe propagation direction, makes

the described apparatus versatile for different applications in atomic metrology

i.e. noise spectroscopy [66] and optical magnetometry [7]. Furthermore, by means

of several technical efforts like the use of high optical transmission in all compo-

144
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nents of the apparatus, shot-noise-limited detectors and high-stability locking sys-

tems, we have combined the new apparatus with an existing source of polarization

squeezed light [69], which is based on spontaneous parametric down conversion

(SPDC) in a nonlinear crystal placed into an optical parametric oscillator.

As a first application, we have optimized the polarization squeezing to 3.0

dB and we have reported quantum-enhancement of spin noise spectroscopy (SNS)

of dense Rb vapor in natural abundance. We demonstrated improvement of the

signal-to-noise ratio by 1.5 dB to 2.6 dB over the combined (power)⊗(number den-

sity) ranges (0.5 mW to 4.0 mW)⊗(1.5 × 1012cm−3 to 1.3 × 1013cm−3), covering

the ranges used in optimized spin noise spectroscopy experiments [26, 27, 47].

We found that the only detrimental effect to squeezing is absorption of the off-

resonance probe (20 GHz to the blue of the D1 line) and we do not observe neither

coupling between optical and atomic quantum noise nor back-action of the atomic

ensemble onto the squeezed probe: squeezing reduces the measurement noise at

both low and high densities, even in the saturated regime. These are new ex-

perimental observations with respect to related works on squeezed-light optical

magnetometry [43, 45], in which squeezing increased the measurement noise above

a density value which was optimized for sensitivity. However, the fact that we deal

with a un-polarized atomic ensemble and off-resonance probing, together with the

different source of squeezing (crystal-based versus atom-based) can explain the

discrepancy with the mentioned works. We also show that squeezing improves

the trade-off between statistical sensitivity and broadening effects, a qualitatively

new quantum advantage. Our results provide a clear evidence that polarization

squeezing can improve Faraday rotation based spin noise spectroscopy under op-

timized regimes with a broad range of applications in both atomic [66] and solid
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state physics [25].

Secondly, we have developed a novel theoretical model by defining a standard

quantum limit (SQL) for optically-detected noise spectroscopy. We have identified

quantum limitations to the covariance matrix of the fit parameters estimated

through fitting a sample of power noise spectra. We tested the model with the

data for spin noise spectroscopy of natural abundance Rb and we demonstrated

experimental performance of SNS at the SQL. We further confirm the shot noise

limit to the sensitivity of the technique, by demonstrating parameter estimation

below the SQL via polarization squeezing of the probe beam. These observations

confirm that squeezing can reduce systematic errors on the quantities estimated

through SNS, like Larmor frequency and resonance linewidth, under optimized

regimes. The introduced model represents an elegant and powerful tool that can

be used to identify a priori experimental conditions, i.e. figures of merit, that

maximize the information obtainable trough noise spectroscopy and could find

application not only in atomic [26] and solid state physics [125, 126], but also

in cell biology [130, 131], molecular biophysics [136, 127], geophysics [132], space

science [137], and quantum information processing [138, 139, 133, 134, 135].

Finally, we have reported a room temperature shot-noise-limited (SNL) op-

tical magnetometer that achieves a best sensitivity of 70 fT/
√

Hz at a field of

7.6µT. We demonstrated the SNL behaviour over the field range 5 µT to 75 µT,

where this broad dynamic range is obtained through synchronization between

amplitude modulation of the pump beam and the Larmor precession of atomic

alignment (AMOR-based magnetometry). The demonstrated sensitivity is among

the best reported in the class of low-frequency and scalar optical magnetometers

[80, 95, 10] with classical probes and it is more than two orders of magnitude bet-
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ter than what has been reported in recent works on squeezed-light magnetometers

[40, 43, 44, 45]. Then, the combination of state-of-the-art sensitivity and SNL per-

formance makes the described system a promising candidate to the application of

squeezed-light to an optical magnetometer with best-in-class sensitivity.







Appendix

Figure 7.1: Solenoid technical drawing.
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Figure 7.2: Saddle coils technical drawing.
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[120] Ricardo Jiménez-Mart́ınez, W. Clark Griffith, Svenja Knappe, John Kitch-

ing, and Mark Prouty. High-bandwidth optical magnetometer. J. Opt. Soc.

Am. B, 29(12):3398–3403, Dec 2012.

[121] Kirk McKenzie, Eugeniy E Mikhailov, Keisuke Goda, Ping Koy Lam, Nico-

lai Grosse, Malcolm B Gray, Nergis Mavalvala, and David E McClelland.

Quantum noise locking. Journal of Optics B: Quantum and Semiclassical

Optics, 7(10):S421, 2005.

[122] Harald Cramr. Mathematical Methods of Statistics. Princeton Univ. Press.,

1946.



[123] Calyampudi Radakrishna Rao. Information and the accuracy attainable in

the estimation of statistical parameters. Bulletin of the Calcutta Mathemat-

ical Society, 37:81–89, 1945.
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office mates Roberto and Jǐŕı, Adam, Ramaiah, Anshuman, James, Pablo, Fabian,

Pablo y Elsa, Georg, Matteo, Margherita, Mustafa, Boris, Daniel, Ben, Michele S.,

Miriam, Carlos, Roland, Juan, Lisa, Kevin, Jonas, Adri, Achim, Stijn, Mathieu,

Antoine and Eric for sharing a bit of Flamenco, Ivan, Dominik, Cesar, Luca Tanzi,

Luca Tagliacozzo, Nello, Angelo, Martina, Marco, Maria, Pietro, Alessio, Leticia,

Simon, Anna, Carlo and many many others, 5 years and half are really a lot.



Much gratitude to my best spanish friend, which is not catalan, but he is

from Valencia, Mister Paco Castera for having shared one amazing year in the

atico together with several concerts and travels. I also thank Carlos and Almu

for their friendship and constant presence on my birthday, typically with a buen

jamon. Thanks to Maria Surrymury Subbrillo for her constant friendship and

energy during these years, thanks also to Irene, Estela, Cristina, Bea, Lucia and,

I mean, again, 5 years and half are really a lot. I would like to thank all my

other flatmates in Barcelona: Asier Larretxea, Amélie Araguas, Thomas Koffel,
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