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Abstract

Genes  contain  essential  information  for  the  correct  functioning  and

adaptation of the organism. The differences in the behavior or physiology

of closely related species are highly connected to differences in their gene

content. But, how do novel genes arise? For years, the major mechanism

for gene birth was gene duplication and subsequent sequence divergence.

However,  recent  comparative  genomics  studies  have  shown that  some

genes  are  originated  de  novo  from previously non-functional  genomic

sequences,  although  the  mechanisms  involved  are  not  yet  fully

understood.  This  thesis  investigates  the  mechanisms  for  de  novo gene

origination and evolution using high-throughput sequencing of complete

transcripts  and  ribosome-protected  fragments.  We  have  identified

thousands  of  de  novo genes  in  human  and  chimpanzee  and  obtained

evidence  that  these  genes  are  mostly  expressed  from  recently  arisen

promoters. We have shown that a large number of poorly conserved genes,

including genes previously believed to be non-coding, are translated. In

addition, we have found a link between the capacity of a sequence to be

translated  and  its  nucleotide  sequence  composition.  The  analysis  of

polymorphic  variants  has  revealed  that  many  non-conserved  peptides

evolve  neutrally  and  thus  could  be  precursors  of  new  genes.  Taken

together, the results show that there is abundant raw material for de novo

birth of new functional proteins.
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Resum

Els gens contenen informació que és essencial pel correcte funcionament i

adaptació  de  l'organisme.  Les  diferències  en  el  comportament  i  la

fisiologia d'espècies properes estan molt lligades a les diferències en el

contingut  de  gens.   Però,  com  s'originen  els  gens?  Durant  anys,  la

duplicació  gènica  i  la  posterior  divergència  de  seqüència  va  ser  el

mecanisme  principal.  Però  estudis  recents  basats  en  la  genòmica

comparativa han posat de manifest que existeixen gens que s'originen de

novo a  partir  de  seqüències  genòmiques  no funcionals,  encara  que  els

mecanismes  no  es  comprenen  del  tot  bé.  Aquesta  tesi  investiga  els

mecanismes  de  formació  i  evolució  de  gens  de  novo utilitzant

seqüenciació massiva de transcrits complerts i de fragments protegits per

ribosomes. Hem identificat milers de gens de novo en humans i ximpanzé

i  obtingut  evidència de que aquests gens s'expressen majoritàriament a

partir  de  promotors  que  han  aparegut  recentment  en  l'evolució.  Hem

demostrat  que  molts  dels  gens  poc  conservats,  incloent  gens  que

prèviament es creia que no eren codificants, es tradueixen. A més, hem

observat que existeix una relació entre la capacitat que té una seqüència

per ser traduïda i la seva composició nucleotídica. L'anàlisi de les variants

polimòrfiques ha revelat que molts dels pèptids de ratolí no conservats en

humans  evolucionen  de  forma  neutra  i  que,  per  tant,  podrien  ser

precursors de nous gens. En conjunt, el material de partida per la formació

de noves proteïnes funcionals és abundant en el genoma.
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Preface

Science is fascinating. This sentence has been in my mind for most of my

life, since I started to explore the world around me trying to understand

and give explanations to everything, and realizing that every time more

and more questions raised in my head. Thirst for  knowledge made me

become very interested in very different areas of natural science, to the

extent  that  I  turned  my  attention  to  the  sky.  I  spent  several  years

dedicating a part of my time to a very interesting hobby: Astronomy. It

turned me to be more and more overwhelmed about the inmensity of the

Universe. I cannot forget the moment in which I saw that photo of the

Earth taken by the Voyager I, described as a Pale Blue Dot by Carl Sagan

in one of his more illustrious quotes. Such ‘mote of dot suspended in a

sunbeam’ had  survived for  thousands  of  millions  of  years  in  a  hostile

environment defined by the aggressive nature of the Universe, and it had

given rise to an incredible variety of life forms that, so far, are unique in

our vast Solar System. As many people, I was very enthusiast with the

possibility of finding the answers about how life emerges and evolves, but

I understood that the answer had to be in our own planet.

Such  thoughts,  that  I  kept  with  me  during  the  next  years,  were

fundamental to arrive to this point. Darwin's theory of Evolution opened a

new  world  to  me;  I  discovered  that  the  possibility  of  tracing  and

understanding  the  history  of  the  life  in  the  Earth  was  in  our  hand.

Moreover,  bioinformatics  revolutionized  the  field  of  the  molecular

evolution and made us possible to work with a high amount of data of
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inestimable worth. I knew that my time to add my little grain of sand to

the human knowledge had arrived,  and I hope that  this  thesis starts  to

accomplish that purpose. It was not an easy task but I realized how hard

work, learning from mistakes and, most importantly,  enjoying the daily

work are essential to be proud of the result.  Working in  de novo gene

evolution has been a special challenge since it is a rather recent field that

was previously unknown or underrated, but that nowadays it is bringing a

new layer of information that might 'mind the gap' of the knowledge in the

evolution of specific species and lineages. I will be always indebted to

science and this is only the beginning of a path as uncertain as exciting.

Jorge Ruiz Orera

Barcelona, August 2016
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1        INTRODUCTION

“Our own genomes carry the story of evolution, written in DNA, the
language of molecular genetics, and the narrative is unmistakable.”

Kenneth. R. Miller

1.1. Brief history of evolution and genetics
The word evolution, which today denotes the most widely accepted theory

to explain how life proliferated and diversified on our planet, comes from

the Latin words  evolvere  and evolutio,  that  describe the unrolling of  a

scroll  (Bowler,  1989).  In  the  17th century,  the  English  word  was

commonly  used  to  define  the  process  of  unrolling,  opening  out,  or

revealing.  Nevertheless,  modern evolution as  understood today did not

start until 1859, when Charles Darwin published the book ’On the Origin

of the  Species’,  introducing for  the first  time the definition of  'natural

selection' - the differential survival and reproduction of individuals due to

differences  in  phenotype.  Such explanation  uncovered  the  mechanisms

that drive evolution and that initiated in a single common ancestor  (C.

Darwin, 1859). The importance of the concept was noted simultaneously

by  Alfred  Wallace  (Wallace,  1858).  By  the  end  of  the  18th century,

evolution became  the  general  term  for  a  process  of  development1,

1 Darwin refused to link his theory with the thought that the history of life was a
simple chronological unrolling of a predetermined creative plan. However, such
caution in avoiding this idea was futile. 
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1. INTRODUCTION

especially  when involving  a  gradual  change  from a  simple  to  a  more

complex state. 

During  Darwin’s  time  it  was  not  known  how traits  were  inherited  in

subsequent  generations.  An important  advance was made when Gregor

Mendel  determined the laws of inheritance by selectively breeding pea

plants; he tracked the segregation of traits and how they appeared in the

offspring, and he recognized the mathematical patterns of inheritance in

subsequent generations (Mendel, 1866)2.

These discoveries brought about the concept of the gene. The etymology

of ‘gene’ begins with the Greek word genesis or genos. This concept has

since  become  one  of  the  central  themes  in  biology.  Over  centuries,

humans have crossbreed animals and plants to  select  for  advantageous

traits,  but  the  word  ‘gene’  was  not  coined  until  1909  by  Wilhelm

Johannsen  (Johannsen,  1909).  Twenty  years  earlier,  Hugo  De  Vries

defined the word  pangene as the unit associated with the inheritance of

specific traits  (Vries, 1889), following Darwin’s hypothetical mechanism

of heredity, pangenesis (Charles Darwin, 1868).

Mendelian genetics and natural selection were fully consistent and derived

in the modern evolutionary synthesis,  which led to a new consensus to

describe evolution: “Evolution is change in the properties of populations

of organisms over time, being population the unit  of evolution”  (Mayr,

2002).

2 While Mendel is now recognized as the father of the genetics, his work was
only appreciated once his study was rediscovered at the early 19th century.

2



1.1. BRIEF HISTORY OF EVOLUTION AND GENETICS

Even so, it was only in the 1940s that the gene was considered to be a

blueprint  for  a  protein.  This  was  a  result  of  the  discovery  of  gene

mutations that cause defects in steps of metabolic pathways  (Beadle &

Tatum, 1941). George Beadle and Edward Tatum created the “one gene,

one enzyme” hypothesis, later referred as “one gene, one polypeptide”.

In the following decade, the discovery of the three-dimensional structure

of DNA  (Watson & Crick,  1953) revolutionized the field of molecular

biology. The central dogma described how DNA is transcribed to a RNA

molecule, denominated transcript, and how such transcripts are translated

into proteins3 (Crick, 1958). This new view of the gene was based on the

sequence of the gene itself rather than on the physical locus responsible

for a phenotype.  Friedrich Vogel published his 'preliminary estimate'  of

the number of genes in the human genome in 1964 (Vogel, 1964), based

on the number of amino acids in the alpha- and beta-chains of hemoglobin

(141  and  146,  respectively).  He  estimated  that  such  proteins  had  an

average  size,  and  that  the  whole  sequence  of  every chromosome  was

protein-coding.  Vogel  calculated  the  molecular  weight  of  the  human

chromosomes and estimated a total number of 6.7 million human genes, a

wildly  exaggerated  number  which  was  based  on  a  series  of  incorrect

assumptions that were at that time reasonable.

Ten years later, the first gene from the bacteriophage MS2 was sequenced

(Fiers et al., 1971, 1976) and it was discovered that a gene is spliced into

exons that are joined and introns that are removed, and that a gene can use

3 Some exceptions were found, as ribosomal (rRNA) or transfer (tRNA) small
RNAs that do not produce any proteins.
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1. INTRODUCTION

different  exon-intron  combinations  to  express  different  transcripts  in  a

mechanism called alternative splicing  (Berget,  Moore,  & Sharp,  1977).

This mechanism was later found to be ubiquitous (Black, 2003). 

The first genome was sequenced in 1977 by Fred Sanger yielding to a new

genomics era. Such breakthrough felt on the Sanger sequencing method,

which  initially  sequenced  the  ΦX174 bacteriophage  containing  5,386

nucleotides (Sanger et al., 1977). Several species were sequenced over the

next  decades,  such as  S.  cerevisiae (12.1 Mb,  1996),  E.  coli (4.6 Mb,

1997), C. elegans (97 Mb, 1998), and D. melanogaster (1.65 Gb, 2000). 

In 1990, before the human genome was sequenced, the Human Genome

Project reported an estimate of 100,000 human genes, based on a very

rough calculation that human genes are 30,000 bases long, and that genes

covered the entire 3 GB genome. Another historic main breakthrough in

genomics took place in 2001 with the complete sequencing of the human

genome  (Lander et al., 2001; Venter et al., 2001). The number of genes

decreased to 30,000-35,000, but once again these numbers were based on

estimates that kept varying throughout the following years. Until  2008,

several definitions were proposed requiring the translation of the protein

as a key aspect of  the gene  (Lewin,  2007;  Pearson, 2006;  Wain et  al.,

2002).  Graziano Pesole  updated this  definition to  include all  the  RNA

categories that are not translated into proteins (Pesole, 2008). Nowadays,

a  gene  is  defined  as  a  DNA locus  that  encodes  a  functional  RNA or

protein product, which is the molecular unit of heredity (Slack, 2014). 
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1.1. BRIEF HISTORY OF EVOLUTION AND GENETICS

Four different mechanisms driving species evolution have been defined:

mutation, selection, genetic drift, and migration. Mutations are the result

of  the  misincorporation  of  nucleotides  during  DNA replication  or  the

result  of  unrepaired  DNA damage.  This  yields  the  required  standing

variation  for  natural  selection  to  act.  Because  the  genetic  code  is

redundant,  mutations  in  coding  sequences  might  be  classified  as

synonymous  or  non-synonymous,  depending  on  whether  the  mutation

alters  the  amino  acid  sequence.  Other  mutations  might  affect  gene

regulation  by  affecting  promoter  activity,  exon-intron  structure,  or

unbalancing the expression of different gene isoforms. Mendelian diseases

are those caused by one or a few mutations and show relatively simple

patterns of inheritance. In recent years, important efforts have also been

made to identify mutations involved in complex diseases such as cancer

(Sebestyén et al., 2016; Supek et al., 2014).

Several methods have been developed to look for signatures of selection

at the molecular level. These methods can be based on the measurement

of  the  divergence  between  homologous  sequences  (substitution-based

methods)  or  between  individuals  of  the  same  species  (polymorphism-

based methods) (Biswas & Akey, 2006; Jensen, Wong, & Aquadro, 2007).

Substitution  is  the  term  generally  employed  to  denote  nucleotide

differences in homologous sequences from the same or different species.

By  estimating  the  number  of  substitutions  in  coding  sequences,  it  is

possible  to  calculate  the  dN/dS  ratio,  which  is  the  number  of  non-

synonymous substitutions per non-synonymous site (dN) divided by the

number of synonymous substitutions per synonymous site (dS). Such ratio

can be used to examine if specific protein-coding sequences are subjected

5



1. INTRODUCTION

to selection. A dN/dS of 1 corresponds to neutrality, while a ratio smaller

than  1  indicates  purifying  selection  or  negative  selection.  Negative

selection reflects functional constrains and hence dN/dS ratio are typically

below 1 for most protein-coding genes. A dN/dS ratio over 1 indicates

positive selection, advantageous variants increase in frequency until they

fix in a population.

In  population-based  analyses  the  ratio  PN/PS  defines  the  relative

abundance  of  non-synonymous  (PN)  and  synonymous  (PS)

polymorphisms.  Given  the  nature  of  the  genetic  code,  there  are  more

possible non-synonymous mutations than synonymous mutations. Under

neutrality, the PN/PS ratio is expected to be approximately 2.89  (Nei &

Gojobori, 1986), while lower ratios indicate purifying selection. Values of

such ratios vary depending on the species, for example due to differences

in  the  number  of  slightly  deleterious  mutations  segregating  in  the

population (Eyre-Walker, Woolfit, & Phelps, 2006).
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1.2. TRANSCRIPTOMICS: FROM SEQUENCE TO FUNCTION

“Volumes of history written in the ancient alphabet of G and C, A and T.” 
Sy Montgomery

1.2. Transcriptomics: from sequence to function
The transcriptome is defined as the set and quantity of transcripts for a

specific  developmental  stage  or  physiological  condition  in  a  cell.

Characterizing  the  transcriptome  is  essential  to  identify  the  functional

elements of the genome and understand how they are regulated.

1.2.1. The advent of transcriptomics
Various technologies have been developed with the aim of cataloging and

quantifying the transcriptome. Hybridization-based approaches are based

on the incubation of fluorescently labeled complementary DNA (cDNA)

in  microarrays.  Although inexpensive,  they have  important  limitations:

They rely on previous knowledge about the genes and the genome, cross-

hybridization may produce high background signal levels (Okoniewski &

Miller,  2006;  Royce,  Rozowsky,  &  Gerstein,  2007), and  they  have  a

limited  dynamic  range  of  detection.  In  contrast,  sequence-based

approaches can directly identify the cDNA sequence. The first technology

was the Sanger sequencing of cDNA or expressed sequence tag (EST)

libraries  (Boguski,  Tolstoshev,  & Bassett,  1994;  Gerhard,  2004).  Later,

tag-based methods as serial analysis of gene expression (SAGE) (Harbers

& Carninci, 2005; Velculescu, Zhang, Vogelstein, & Kinzler, 1995), cap

analysis  of  gene  expression  (CAGE)  (Kodzius,  2006;  Nakamura  &

Carninci,  2004;  Shiraki,  2003),  and  massively  parallel  signature

sequencing  (MPSS)  (Brenner,  2000;  Peiffer,  2008;  Reinartz,

2002) provided precise and high throughput quantitative data. However,
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1. INTRODUCTION

these were expensive technologies and a high fraction of the tags were not

long  enough  to  be  uniquely  mapped  to  the  genome.  Besides,  it  was

impossible  to  distinguish  between  different  transcripts  expressed  in  a

gene4.

Over  the  last  decade,  whole-transcriptome  sequencing  using  'next-'  or

'second-' generation sequencing (NGS) technologies, also know as RNA

sequencing (RNA-seq), unleashed a set of revolutionary tools to reveal the

complex landscape and dynamics of the transcriptome in different species

with high sensitivity and accuracy (Marguerat & Bahler, 2010; Ozsolak &

Milos,  2011;  Z.  Wang,  Gerstein,  &  Snyder,  2009;  B.  T.  Wilhelm  &

Landry, 2009). This resolved the main limitations of previous approaches.

The  first  NGS  platforms,  including  Illumina,  SOLiD  and  454,  only

produced very short reads (35-50 bp)  (Metzker, 2010). Over time, read

lengths  have  increased  substantially  and  NGS is  the  current  standard.

However,  except  for  small  classes  of  RNAs,  it  is  necessary  to  apply

informatics tools to reconstruct a comprehensive transcriptome.

Most  recently,  third-generation  sequencing  uses  advances  in

nanotechnology to process  unique RNA molecules  through a  real  time

synthesis  sequencing  system  like  PacBio  or  NANOPORE.  The  latter

moves the sample through nano-sensors that identify each residue in the

DNA strand. However, such technologies still have high error rates and

lower yields. 

4 Despite those limitations, CAGE- and SAGE-like methods are yet employed to
have a precise snapshot of the transcriptional start and end sites.
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1.2.2. Assembling the transcriptome
Transcript  reconstruction,  consisting  in  the  assembly  of  all  expressed

isoforms and genes in a transcriptome using RNA-seq datasets, usually

has high computational requirements. Datasets are composed of dozens of

millions  of  reads;  transcripts  might  have  different  sequencing  depth,

varying by several orders of magnitude; they might overlap in different

strands; and isoform variants from the same gene can share exons that are

difficult to unambiguously resolve.

Two  main  strategies  were  developed  to  reconstruct  the  transcriptome

(Figure  1.1),  depending on  whether  the  reference  genome  assembly is

available. The combination of both strategies is also feasible and can lead

to improved results (Bingxin, Zhenbing, & Tieliu, 2013).

Figure 1.1. Overview of the two main methods for transcript assembly. Adapted
from Haas & Zody, 2010.
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-Reference-based  strategy: This  strategy  involves  mapping  RNA-seq

reads to an available reference genome using a splice-aware aligner, such

as Tophat (C Trapnell, Pachter, & Salzberg, 2009), bwa (H. Li & Durbin,

2009),  STAR  (Dobin  et  al.,  2012),  or  HISAT  (D.  Kim,  Langmead,  &

Salzberg, 2015). Later, overlapping reads in each locus are merged into

graph  clusters  that  are  traversed  to  represent  all  possible  isoforms.

Cufflinks  (Cole Trapnell et al., 2010), Scripture  (Guttman et al., 2010),

and Stringtie (Pertea et al., 2015) are different softwares that resolve these

clusters to build the final transcript assemblies. 

-De novo strategy: This method does not require a reference genome and

it is highly advisable when the quality of the reference genome is low

since some regions might  not  be correctly assembled.  It  builds  on the

generation of k-mers from RNA-seq reads that are depicted as nodes in a

De Bruijn graph5. Pairs of nodes are then connected when an overlap is

found.  This approach usually requires high computational  power and a

high sequencing depth, and it is more prone to sequencing errors and to

the presence of chimeric molecules. Examples of de novo assemblers are

Trinity (Grabherr et al., 2011) and Trans-ABySS (Robertson, 2010).

These two different  strategies,  especially when produced from shallow

sequencing runs, may contain a significant  fraction of partial transcript

fragments. Hence, it is important to analyze the quality of the assembled

transcriptome  to  discard  these  partial  transcripts  as  well  as  alignment

artifacts due to the presence of DNA contamination or multiple aligned

5 This directed graph is constructed by connecting pairs of k-mers with overlaps
between the first k-1 nucleotides and the last k-1 nucleotides.
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reads  into  repetitive  regions  (Weirick  et  al.,  2015).  Reference-based

aligners use existing transcriptome assemblies to guide the reconstruction;

even  so,  thousands  of  transcripts  might  not  be  previously  annotated.

Selecting a coverage or expression threshold or discarding short loci are

usually  the  strategies  to  overcome  such  problems.  Filtering  out

monoexonic transcripts can improve the specificity as well (Cabili et al.,

2011), but would ignore the fraction of the transcriptome that is single-

exon. Finally, software like TransRate analyze assembled transcriptomes

to discard low-quality transcripts (Smith-Unna, Boursnell, Patro, Hibberd,

& Kelly, 2015).

Moreover,  the  use  of  RNA-seq datasets  with  longer  and/or  paired-end

reads lead to a better  quality transcriptome,  as does the use of strand-

specific RNA-seq, which permits to identify the strand of each generated

read. This information is used by the transcriptome assemblers to improve

the  assembly  quality  and  the  detection  of  overlapping  transcripts  in

antisense orientation (Levin, 2010).

11
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1.2.3. The pervasive transcription of the genome
After the sequencing of the human genome, the next big challenge was to

locate and identify the functional elements including genes, transcripts,

promoters,  and  other  regulatory  sequences.  Large-scale  studies  were

developed to identify full-length transcripts in a wide variety of tissues

and  cell  types  using  the  sequencing  technologies  present  in  the  first

decade  of  the  21st century,  which  were  used  to  update  the  existing

annotations  in  species  like  human  and  mouse  (Babak,  Blencowe,  &

Hughes, 2005; Carninci et al., 2005; Imanishi et al., 2004; Okazaki et al.,

2002). 

In a parallel effort, a public consortium named ENCODE (Encyclopedia

of  DNA  elements)  was  launched  in  September  of  2004  (T.  E.  P.

Consortium, 2004). Initially, a set of regions representing approximately

1%  of  the  genome  was  targeted  for  a pilot  project  and  revealed  the

pervasive  transcription  of  the  genome,  the  relationship  between

transcriptional  start  sites  (TSS)  and specific  regulatory sequences,  and

features of chromatin accessibility, structure and histone modification (T.

E. P. Consortium et al., 2007). 

Afterwards,  the  production  scale-effort  of  the  ENCODE  project  was

launched  (T.  E.  P.  Consortium,  2011) and  found  that  the  80% of  the

genome is involved in at least one biochemical RNA- and/or chromatin-

associated event in at least one human cell type6 (Dunham et al., 2012). 

6 When using a conservative estimate, this percentage decreased to ~20%; in any
case, both estimates are higher than the 8.2% of the genome that was detected as
constrained in a different study (Rands, Meader, Ponting, & Lunter, 2014).
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Moreover,  ENCODE  used  high-throughput  technologies  to  provide  a

genome-wide  catalogue  of  human  transcripts  and  to  identify  their

subcellular localization, observing that 62.1-74.7% of the human genome

is covered by transcripts, often overlapping and expressing many isoforms

simultaneously (Djebali et al., 2012). In addition, other studies found that

bidirectional transcription of promoters is widespread (Core, Waterfall, &

Lis, 2008; Pickrell et al., 2010; Trinklein et al., 2004), being an inherent

feature of most promoters (Wei, Pelechano, Järvelin, & Steinmetz, 2011).

A  parallel  study  uncovered  substantial  conservation  of  the  potential

functional  sequences  in  mouse  and  human,  but  also  found  a  high

divergence  in  sequences  involved  in  transcriptional  regulation  or

chromatin organization  (Yue et  al.,  2014);  and a high RNA expression

diversity between humans and mice (S. Lin et al., 2014).

The  observation  of  a  pervasively  and  highly  interleaved  transcribed

genome in such projects prompted the reconsideration of the definition of

a gene: “A transcript should be considered as the basic unit of inheritance

whilst a gene would denote a different concept intended to include all the

transcripts that contribute to a certain phenotypic trait” (Djebali et al.,

2012).
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1.2.4. Deciphering the coding transcriptome
Until recently, distinguishing protein-coding RNAs and well-characterized

non-coding  RNAs  such  as  transfer,  ribosomal,  nuclear,  and  nucleolar

RNAs,  was  a  straightforward  procedure.  Nevertheless,  RNA-seq

transcriptomics revealed the existence of a myriad of transcripts with low

protein-coding potential and an unclear functional significance. 

In order to experimentally check if a transcript has a protein product, high

throughput tandem mass spectrometry (MS/MS) emerged as a method for

the identification of peptides and proteins in a complex protein mixture

(Choudhary,  Blackstock,  Creasy,  & Cottrell,  2001;  Keller,  Nesvizhskii,

Kolker, & Aebersold, 2002; Yates III, McCormack, Schieltz, Carmack, &

Link, 1997). This approach generates thousands of peptide spectra with

ion signatures that  can be identified using a database search algorithm

such as Sequest  (Eng, McCormack, & Yates, 1994) or Mascot  (Pappin,

Creasy,  & Cottrell,  1999).  They assume  that  the  peptide  exists  in  the

database and hence limit the analysis to known and predicted proteins. 

The advent of RNA-seq permitted researchers to combine transcriptomics

and  mass-spectrometry  data  in  an  approach  denominated

‘proteogenomics’ that  expands  protein  sequence  databases  to  identify

novel peptides in transcripts with unknown coding potential  (M.-S.-. S.

Kim et  al.,  2014;  Nesvizhskii,  2014;  M.  Wilhelm et  al.,  2014) and in

alternative frames from protein-coding genes  (Vanderperre et al., 2013).

However,  short  proteins  are  usually  difficult  to  identify  by  mass-

spectrometry experiments (Slavoff et al., 2013) as well as rare and short-

lived proteins that are rapidly degraded in purification procedures (Fälth et
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al.,  2006) so  most  short  and  recent  proteins  are  expected  to  lack

experimental evidence. Even so, some modifications in these approaches

led to the detection of several human short proteins (Ma et al., 2014, 2016;

Oyama et al., 2007; Schwaid et al., 2013; Slavoff et al., 2013) including

MRI-2, a 69 aa protein isoform that stimulates end-joining DNA repair

(Slavoff, Heo, Budnik, Hanakahi, & Saghatelian, 2014).

There  are  several  methods  to  predict  the  protein-coding potential  of  a

sequence.  A coding  statistic  is  a  function  that,  for  a  DNA sequence,

calculates  a  real  number  related  to  the  likelihood that  the  sequence is

coding for a protein (R. Guigo, 1999). Most of the methods that have been

developed measure codon or dicodon usage bias, base compositional bias

between codon positions,  or  periodicity in  base  occurrence  (Fickett  &

Tung,  1992).  Codon  usage  has  been  postulated  to  be  the  result  of

selection, mutation and genetic drift, although the relative contribution of

each process is not clear (Akashi, 1997; Duret, 2002; Hershberg & Petrov,

2008; Ziheng Yang & Nielsen, 2008). These biases, which are associated

with the GC content  and the evolutionary age of  genes  (Prat,  Fromer,

Linial,  & Linial,  2009),  help distinguish between protein-coding genes

and  non-coding  regions  (Toll-Riera  et  al.,  2009).  Sequence-based

statistics,  combined  with  open reading  frame  (ORF)  length  and cross-

species conservation, are employed in diverse computational tools such as

Coding Potential Calculator (CPC) (Kong et al., 2007), Coding Potential

Assessment Tool (CPAT) (L. Wang et al., 2013), or PhyloCSF (M. F. Lin

et  al.,  2007).  Such approaches are based on well-defined properties  of

conserved protein-coding genes and they filter out most of the spurious

ORFs that randomly appear in long non-coding and intergenic regions, but
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do  not  have  a  good  sensitivity  for  detecting  young  or  short  proteins

(Dinger, Pang, Mercer, & Mattick, 2008). So far, only a few functional

small  proteins  (smORFs)  with a  length shorter  than 100 aa have been

functionally characterized.  Examples  include  Humanine (HN),  a  24 aa

peptide  that  acts  as  a  neuron  death  suppressor  (Zapała  et  al.,  2010),

myoregulin (MLN),  a 46 aa  protein that  regulates  muscle  performance

(Anderson et al., 2015), and hemotin/stannin (SNN), an 88 aa conserved

protein acting as a regulator of phagocytosis (Pueyo et al., 2016). 

The number of protein-coding genes annotated in Ensembl has decreased

over the years (Figure 1.2), probably due to the use of more conservative

definition criteria. The current number of annotated protein-coding genes

is around 20,000, but it may drop to ~19,000 genes when only considering

long  and  conserved  protein-coding  genes  that  are  more  likely  to  be

detected by proteomics experiments (Ezkurdia et al., 2014).

Figure 1.2. Number of annotated genes in different Ensembl releases (57-83) for
different  biotypes.  Numbers  were  extracted  from  the  primary  assemblies  in
Ensembl  (Flicek,  Ahmed,  et  al.,  2012) and  GENCODE  (Harrow  et  al.,
2012) databases.
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1.2.5. Ribosome profiling deciphers the translatome
Deep sequencing of ribosome-protected fragments, or ribosome profiling

(Ribo-seq), has recently emerged as a technique that takes advantage of

modern sequencing technologies to perform a global scale analysis of the

regions that are translated in the transcriptome with the same precision

and  using  similar  pipelines  to  RNA-seq  (Ingolia,  Ghaemmaghami,

Newman,  &  Weissman,  2009).  Ribo-seq  has  been  used  to  annotate

translated sequences, to decipher the mechanisms of protein synthesis, and

to study the translational control of gene expression (Ingolia, 2014).

This technique unveiled the presence of numerous small upstream ORFs

(uORFs or leader peptides7) in protein-coding genes (Ingolia et al., 2009),

which  may act  as  regulators  of  translation  or  RNA levels  (Johnstone,

Bazzini,  & Giraldez,  2016;  Juntawong,  Girke,  Bazin,  & Bailey-Serres,

2014). Small ORFs with similar features as uORFs were found in non-

coding genes (Chew et al., 2013; Ingolia et al., 2014; Ingolia, Lareau, &

Weissman, 2011; Juntawong et al., 2014) and, although some of them did

not  resemble  coding  ORFs  (Guttman,  Russell,  Ingolia,  Weissman,  &

Lander,  2013),  a  high fraction showed true hallmarks  of  translation in

humans (Ingolia et al., 2014; Ji, Song, Regev, & Struhl, 2015; Ruiz-Orera,

Messeguer, Subirana, & Alba, 2014), mammals (Bazzini et al., 2014) and

yeast (Smith et al., 2014). Since reads are mapped with single nucleotide

resolution, software like RiboTaper (Calviello et al., 2016) and RiboORF

(Ji et al., 2015) can determine if reads span the correct frame and follow a

3-periodicity distribution as an indicator of true translation (Figure 1.3).

7 Leader peptides were originally discovered on the basis of their impact on the
regulation of genes involved in the synthesis or transport of amino acids. 
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Hence, ribosome profiling has emerged as a method to detect ORFs that

are not covered by proteomics techniques or coding sequence prediction

software.  Although  several  uORFs  are  regulatory  and  are  expected  to

produce  non-functional  peptides,  other  small  ORFs  might  translate

functional peptides.

Moreover,  this  technique  has  shown  that  polycistronic  translation  is

probably quite common, as it was previously hypothesized (Tautz, 2009).

This occurs in the gene pri in fruit fly, which regulates tarsal development

(Galindo, Pueyo, Fouix, Bishop, & Couso, 2007) and translates several

small  redundant  ORFs  (Kondo  et  al.,  2007),  the  gene  family  mlpt in

insects, that also regulates development (Savard, Marques-Souza, Aranda,

& Tautz, 2006), and meloe, a gene that translates three antigenic peptides

of different immunogenicity in melanoma cells  (Charpentier et al., 2016;

Godet et al., 2008).

Figure  1.3. Representation  of  the  ribosome  profiling  analysis.  Ribosome-
protected  fragments  are  sequenced  and  mapped  to  the  predicted  ORFs  in
transcripts. Initiation and termination positions in the ORF are used as a training
to  decipher  the  exact  read  nucleotide  that  corresponds  to  the  P-site  of  the
ribosome.  Bars  represent  the  density  of  mapped  reads  to  the  three  possible
frames; in this example, the blue ORF is translated since it is sufficiently covered
by ribosomes and the fraction of reads spanning the correct frame (+2) is higher
than randomly expected (1/3 of reads in each frame). 
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1.2.6. Characterizing non-coding transcription
While the exact number of protein-coding genes is a subject of debate, it

is clear that there are many transcripts that do not encode proteins. Small

non-coding RNAs are a well-defined category of short transcripts (< 200

nucleotides)  that  include  tRNAs,  rRNAs,  miRNAs,  snRNAs  and

snoRNAs. There are also thousands of annotated long non-coding RNAs

(lncRNAs)8 longer than 200 nucleotides and expressed in different cell

lines or tissues, many of them without a known function  (Cabili  et al.,

2011;  Iyer  et  al.,  2015;  Kazemian  et  al.,  2015;  Jun  Liu  et  al.,  2012;

Necsulea et al., 2014; Okazaki et al., 2002; Pauli et al., 2012; Ponting,

Oliver, & Reik, 2009; Ulitsky & Bartel, 2013).

Long  intergenic  non-coding  RNAs  (lincRNA)  are  the  most  abundant

lncRNA class  annotated  in  Ensembl  and  GENCODE.  It  includes  all

expressed  non-overlapping  transcripts  without  significant  coding

potential.  A second category of  non-coding  RNAs is  composed of  the

transcripts  that  overlap  protein-coding  genes,  denominated  Natural

Antisense Transcripts (NATs).

LincRNAs, antisense RNAs and other secondary classes of non-coding

RNAs9 are defined based on their genomic location. Compared to well-

defined protein-coding genes,  lncRNAs are poorly expressed and often

tissue-specific; some of them are localized in the nucleus but most of them

8 Unlike protein-coding and  small  RNAs,  these  genes  are  usually defined by
negative descriptors  and therefore have diverse  properties  and mechanisms of
action.
9 Ensembl has different structural  biotypes of non-coding RNAs as processed
transcripts, sense intronic genes, sense overlapping genes, or TECs.
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are polyadenylated and exported to the cytoplasm, and they tend to evolve

very rapidly (Derrien et al., 2012; Heesch et al., 2014; Kutter et al., 2012;

Necsulea et al., 2014; Ulitsky & Bartel, 2013). 

Because lncRNAs are poorly conserved and most of them have no known

functions, it has been hypothesized that they are not functional and are

just spurious by-products of the noisy transcriptional machinery  (Struhl,

2007). It has been estimated that the cost of transcription in multicellular

organisms  is  probably  too  low  for  selection  to  counteract  (Lynch  &

Marinov, 2015). Thus, it may be more costly to maintain mechanisms of

control  than  simply  tolerating  some  level  of  non-functional  genomic

transcription. On the other hand, transcription itself can produce changes

in the chromatin- or transcription-factor-binding landscape resulting in the

activation or repression of other genes in cis or trans. In the second case,

those  RNAs  might  be  under  pressure  to  conserve  the  structure  or  the

promoter  but  not  the  sequence.  Indeed,  promoters  are  often  more

conserved than exon sequences in lncRNAs (Cabili et al., 2011; Derrien et

al., 2012; Guttman et al., 2009; Necsulea et al., 2014).

Besides, some studies reported a significant number of lncRNAs showing

purifying  selection  in  their  genomic  loci,  including  splice  sites  and

secondary structure motifs (Guttman et al., 2009; Haerty & Ponting, 2015;

Nitsche, Rose, Fasold, Reiche, & Stadler, 2015; Pegueroles et al., 2016;

Ponjavic, Ponting, & Lunter, 2007). 

Necsulea  et  al.  reconstructed  homologous  families  of  lncRNAs  and

detected that 3% originated more than 300 Myr ago and showed similar

20



1.2. TRANSCRIPTOMICS: FROM SEQUENCE TO FUNCTION

conservation  patterns  as  protein-coding  genes  (Necsulea  et  al.,  2014).

Sequence conservation may be explained by the role of some lncRNAs in

post-transcriptional  regulation  by  antisense  base  complementarity,  by

competing for miRNAs, circRNAs or mRNAs, or by hosting small RNAs

in its sequence, or by acting as molecular scaffolds of proteins (Guttman

& Rinn, 2012; Kung, Colognori, & Lee, 2013). For instance, TERC is a

component of the telomerase complex and it has a conserved structure that

serves  as  a  template  for  telomere  replication  (Theimer  CA,  Blois  CA,

2005).  It  is  also possible that  some of the  lncRNAs analyzed in  these

studies are miss-annotated protein-coding genes. It has been shown that a

significant  fraction  of  annotated  lncRNAs  show  ribosome  protection

patterns that are consistent with translation. In general, these transcripts

contain  ORFs  which are  shorter  than 100 aa  and often  disregarded as

possible protein-coding sequences.

There are some cases of nuclear RNAs involved in different well-defined

non-coding  functions  (Figure  1.4).  X-inactive  specific  transcript  (Xist),

Kcnq1 overlapping  transcript  1  (Kcnq1ot1)  and  Airn (antisense  Igf2r

(insulin-like growth factor 2 receptor) induce the formation of repressive

chromatin  in  cis and  they  are  involved  in  dosage  compensation  and

genomic imprinting (J. T. Lee & Bartolomei, 2013). Jpx is a transcript that

competes  with  CTCF,  a  transcriptional  repressor  that  inhibits  Xist

promoter (S. Sun et al., 2013; Tian, Sun, & Lee, 2010). HOXA is a gene

from the HOX gene family10 that produces a myriad of non-coding RNAs

(Rinn et  al.,  2007),  some of  which are  functional  antisense loci.  First,

10 HOX genes are an evolutionary conserved family of transcription factors that
regulate  embryo  development  and  cell  specification  in  several  adult
differentiation processes. In mammals, this family is composed of 39 HOX genes.
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distal  transcript  antisense  RNA (HOTTIP)  functions  through  the  cis-

recruitment  of  the  MLL1 complex,  which  drives  the  formation  of  the

activating histone H3K4me3  (K. C. Wang et al., 2011). Second,  HOXA

transcript  antisense  RNA (HOTAIR)  is  a  trans-acting  regulator  of  the

HOXD genes by forming a scaffold that recruits two different repressor

complexes  (Rinn et al., 2007; Tsai et al., 2010). The RNAs lncRNA-ES1

and lncRNA-ES2 regulate embryonic stem cell pluripotency by associating

with the transcription factor sex-determining region Y-box 2 (SOX2) and

PRC2 (Ng, Johnson, & Stanton, 2012).

Figure 1.4. Examples of genes with nuclear non-coding functions. Modified from
Fatica & Bozzoni, 2014.
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Besides,  there  are  different  models  by  which  lncRNAs  can  affect  the

stability or translation of other transcripts in the cytoplasm by base-pairing

of complementary regions between the non-coding RNA and the RNA

target (Figure 1.5).

Figure 1.5. Models of cytoplasmatic RNA non-coding functions through base-
pairing of complementary functions. Modified from Fatica & Bozzoni, 2014.
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BACE1 interacts  with  an  antisense  transcript  (BACE1-AS)  in  specific

regions of the sense gene stabilizing it and increasing protein expression

(Faghihi  et  al.,  2008).  Staufen double-stranded RNA-binding protein 1

(STAU1)-mediated mRNA decay (1/2sbsRNA) or stabilization (TINCR) is

induced when base pairing is formed in an Alu or SINE element in the 3′

UTR of a mRNA as well as in other required motifs  (Gong & Maquat,

2011;  Kretz  et  al.,  2013;  Jiashi  Wang,  Gong,  & Maquat,  2013).  RNA

pairing can also control translation. A repressive effect on translation was

shown  for  the  targets  of  tumour  protein  p53  pathway  corepressor  1

(Trp53cor1) RNA (Yoon et al., 2012). Conversely, Uchl1-as1 is a member

of an antisense class of transcripts known as SINEUPs, whose activity

requires an embedded inverted SINEB2 sequence to increase translation

and for the overlapping region to target the protein-coding gene (Carrieri

et  al.,  2012;  Zucchelli  et  al.,  2015),  although  other  examples  with  a

different architecture are functional as well (Tran et al., 2016).

Regardless of the observation that some lncRNAs can translate proteins,

the list of biological events where lncRNAs play major roles as regulatory

molecules is quickly growing. The described biological processes include

cell-cycle regulation, apoptosis, lineage differentiation, and organogenesis

(Grote & Herrmann, 2015; Pauli et al., 2012; Pickard & Williams, 2015;

Ponting et al., 2009; Rinn & Chang, 2012). Dysregulation of lncRNAs is

linked to several human diseases and cancers (Bhan & Mandal, 2014; Du

et al., 2013; Gibb, Brown, & Lam, 2011; Mitra, Mitra, & Triche, 2012;

Zhi et al., 2014) and hence they are potential biomarkers and therapeutic

targets (Saus et al., 2016; Tsai, Spitale, & Chang, 2011).
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“All of today's DNA, strung through all the cells of the earth, 
is simply an extension and elaboration of [the] first molecule.” 

Lewis Thomas

1.3. The origin of new genes
One of the long-standing questions in evolutionary biology has been how

new genes emerge in genomes and how they evolve over time. A well-

standing  process  is  gene  duplication  followed  by sequence  divergence

(Ohno, 1970). For a long period of time, gene duplication was the only

accepted mechanism for  new gene formation.  In  1977,  François  Jacob

stated:  “The probability that a functional protein would appear de novo

by random association of amino acids is practically zero” (Jacob, 1977).

Later, other mechanisms that involved the reuse of DNA or RNA were

also considered  (reviewed in Long,  Betran,  Thornton,  & Wang,  2003).

More recently, several studies have described how completely new gene

sequences  can  arise  de  novo (Figure  1.6)  (McLysaght  & Hurst,  2016;

reviewed in Tautz & Domazet-Lošo, 2011). While all these mechanisms

were initially discovered in protein-coding genes, they also explain how

non-coding genes can arise in genomes (Kaessmann, 2010).

Figure 1.6. Comparison of gene duplication and de novo gene formation. In the
latter mechanism, one new gene starts to be expressed from a DNA region in a
single species. Thus, the gene has no paralogs or orthologs in other species.
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1.3.1. Gene duplication
Gene duplication is the mechanism by which one DNA region11 containing

a gene is duplicated by a process involving DNA recombination and gives

rise to a new gene that is called a paralog. It is the major force for new

gene  origination  (Magadum,  Banerjee,  Murugan,  Gangapur,  &

Ravikesavan, 2013) and there are numerous examples of gene families

expanded through gene duplication; for instance the human and mouse

olfactory  receptors  (Gilad,  Man,  &  Glusman,  2005;  Waterston  et  al.,

2002).

John  Haldane  suggested  that  duplicated  genes  could  be  a  source  of

novelty, given the redundancy of having two or more copies of a gene in a

genome  (JBS,  1932).  Susumu Ohno  proposed that,  unless  having  two

copies is advantageous for the organism, one of the genes might acquire a

completely new function (neofunctionalization) (Ohno, 1970). Years later,

a different outcome was proposed, in which both genes might evolve to

retain  different  subfunctions  of  the  original  one  (subfunctionalization)

(Force et al., 1999; Stoltzfus, 1999).

11 This  is  a  very  generic  definition,  since  a  duplication  can  be  genomic,
segmental (> 1 kb DNA) or genic. In the latter case, the whole gene or just a
partial region can be duplicated.
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1.3.2. Other sources of new genes
Other  mechanisms  for  new  gene  formation  involving  the  reuse  of

DNA/RNA elements have been proposed in more recent years. These may

occur separately or jointly.

-Retroposition: RNA-based duplication. A DNA copy is created through

reverse transcription of a RNA transcript and inserted into the genome.

These  copies  are  usually  pseudogenized  since  they  lack  regulatory

sequences  and  introns  (Maestre,  Tchénio,  Dhellin,  &  Heidmann,

1995) and  are  classified  as  processed  pseudogenes  in  databases.

Nevertheless, some retrocopies might adopt nearby promoters and show

new expression  patterns  and functions  (Kaessmann,  2010;  Kaessmann,

Vinckenbosch,  &  Long,  2009;  Long  et  al.,  2003).  Examples  of

retroposition-based  genes  have  been  found  in  human,  most  of  them

expressed in testis and involved in spermatogenesis (Lahn & Page, 1999;

Marques, Dupanloup, Vinckenbosch, Reymond, & Kaessmann, 2005).

-Exaptation  of  Transposable  Elements:  Use  of  DNA/RNA  mobile

elements  such  as  SINEs,  LINEs,  or  LTRs,  as  parts  of  genes.  Several

primate-specific  protein-coding  (Toll-Riera  et  al.,  2009) and  especially

non-coding genes (Kapusta et al., 2013) have a significant fraction of the

sequence  covered  by  transposable  elements.  They  may  drive  novel

functions  (Nekrutenko & Li, 2001) or rewire new sequence elements in

conserved non-coding RNAs (Hezroni et al., 2015).

-Horizontal gene transfer: Process involving any occurrence of heritable

material  passing  between  organisms,  asynchronous  with  their
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reproduction  (Heinemann  &  Bungard,  2006).  It  is  more  frequent  in

prokaryota  (Boucher  et  al.,  2003).  Moreover,  there  are  cases of  lateral

transfer described in associations of parasites and endosymbionts (Conaco

et al., 2016; Hotopp et al., 2007). 

-Gene fusion or fission: Gene fusion refers to the formation of a hybrid

gene formed from two previously separate genes. Kua-UEV, for instance,

is a single human gene that is expressed as two separate loci in insects

(Thomson et al., 2000).  Tre2 is a chimeric gene which resulted from the

fusion  of  a  highly conserved gene  and a  recent  segmental  duplication

(Paulding, Ruvolo, & Haber, 2003). Gene fission refers to the split of one

gene into two different genes, as it occured with the  MITF gene that is

expressed as two different genes in some fish species (Altschmied et al.,

2002). Both mechanisms are major contributors to the evolution of multi-

domain proteins in bacteria (Pasek, Risler, & Brézellec, 2006).

-Overprinting: In this process, an alternative open reading frame acquires

the  capacity to  be  translated.  In  contrast  to  gene  duplication,  the  new

protein has a completely different sequence and therefore a novel function

(Ohno,  1984).  Initially,  newly  translated  frames  will  be  random

byproducts  of  a  gene,  which  may  eventually  acquire  a  function.

Overprinted genes have been found in viruses (Carter et al., 2013; Pavesi,

Magiorkinis,  &  Karlin,  2013),  bacteria  (Delaye,  Deluna,  Lazcano,  &

Becerra, 2008; Fellner et al., 2015), and eukaryotes  (Chung, Wadhawan,

Pond, & Nekrutenko, 2007; R Neme & Tautz, 2013). They constitute a

strong argument for the viability of genes with completely new sequences,

and thus for de novo gene emergence (Neme & Tautz, 2013).
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1.3.3. The continuous emergence of new genes 
The full sequencing of the chromosome 3 in yeast was completed in 1992

(Oliver et  al.,  1992) and four years  later  Bernard Dujon discussed 'the

mystery of the orphans', following the observation that almost half of the

protein-coding ORFs had no clear homologs in other organisms  (Dujon,

1996). These genes were called ORFans or orfans, which implies that they

should  have  parent  genes  that  were  somehow  missing.  Fischer  and

Eisenberg  confirmed  that  the  ORFans  were  a  real  phenomenon  in

prokaryotes (Fischer & Eisenberg, 1999). A different study confirmed that

such genes evolve fast (Schmid & Tautz, 1997). However, it was thought

that  the  parents  of  these  genes  would  eventually  be  found  with  the

sequencing of new genomes.

Orphan genes were continuously discovered in newly sequenced genomes

and a new definition was coined: “taxonomically restricted genes” (TRGs)

(Domazet-Loso & Tautz, 2003; Khalturin, Hemmrich, Fraune, Augustin,

& Bosch, 2009; Toll-Riera et al., 2009). With this term, it was recognized

that genes had been born at different time points across the evolutionary

history of life. These genes might be linked to the emergence of lineage-

specific  adaptations.  The  idea  of  new genes arising relatively fast  and

slowing down as  they became  functional  led  to  the  development  of  a

procedure called “phylostratigraphy” to study the phylogenetic age of the

genes  by  comparing  the  presence  of  homologs  in  different  species

(Domazet-Loso, Brajkovic, & Tautz, 2007).

The classification of genes in different  conservation levels revealed an

inverse  relationship  between  gene  age  and  evolutionary  rate  (Albà  &
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Castresana, 2005). While this pattern could in principle be due to a lack of

sensitivity of BLAST for fast evolving proteins (Elhaik, Sabath, & Graur,

2006), sequence evolution simulations along a phylogenetic tree revealed

that the percentage of error for proteins is relatively small (4.7%) even

when  performing  searches  from mammals  to  fungi  or  plants  (Albà  &

Castresana,  2007).  Besides,  this  issue  practically  disappears  at  short

evolutionary  distances.  For  instance,  in  human  and  chimpanzee

comparisons the percentage of nucleotide differences in neutrally evolving

regions  is  only  about  7%,  so  it  should  be  possible  to  detect  all

homologous genes if they existed. In addition, other methodologies have

been  developed  to  improve  the  detection  of  homologous  genes.  For

example,  the  alignment  of  domain  arrangements  can  find  protein

homologs missed by other comparison methods (Terrapon, Weiner, Grath,

Moore, & Bornberg-Bauer, 2014).

TRGs were initially proposed to evolve by a model of gene duplication

followed  by  a  fast  evolving  phase,  which  would  explain  the  loss  of

similarity  to  parental  genes  and  the  absence  of  homologous  sequence

matches (Domazet-Loso & Tautz, 2003). However, species- and lineage-

specific  genes  continued  to  be  detected  when  many  more  genomes

became available. This is better explained by de novo gene formation than

by gene  duplication  (Neme  & Tautz,  2013).  The  analysis  of  genomic

syntenic  regions  across  closely  related  species  provided  additional

evidence for the birth of genes from previously non-genic regions (Begun,

Lindfors,  Kern,  &  Jones,  2007;  J.  Cai,  Zhao,  Jiang,  &  Wang,  2008;

Heinen, Staubach, Häming, & Tautz, 2009; Knowles & Mclysaght, 2009;

Toll-Riera et al., 2009).
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1.3.4. De novo gene origination
The  first  de  novo genes  were  described  in  Drosophila  using  genomic

comparisions and gene expression analyses  (Begun et al., 2007; Begun,

Lindfors, Thompson, & Holloway, 2006; S.-T. Chen, Cheng, Barbash, &

Yang,  2007;  Levine,  Jones,  Kern,  Lindfors,  & Begun,  2006).  In  2009,

Toll-Riera et al. concluded that at least 5.5% of primate-specific genes had

emerged out of non-coding DNA (Toll-Riera et al., 2009). Over the next

few years, de novo genes were found in many other eukaryotic species or

lineages  with  complete  proteome  or  transcriptome  information  (Table

1.1).  Moreover,  de novo genes have been found in bacteria as well.  A

recent  study has  reported the presence of  72  de novo genes  that  were

previously  unannotated  in  E.  Coli.  These  genes  are  also  translated

according  to  ribosome  profiling  data  and  7  of  them  have  additional

evidence by mass-spectrometry (Neuhaus et al., 2016).

The number of  de novo genes with well-characterized functions is still

quite limited, but it is likely to increase in the future.  MDF1, a  de novo

gene  discovered  in  yeast,  binds  to  two  different  proteins  to  suppress

mating  and  promote  vegetative  growth,  thus  conferring  a  selective

advantage in this species  (D. Li et al.,  2010; D. Li,  Yan, Lu,  Jiang,  &

Wang, 2014). BSC4 is another de novo gene from yeast involved in DNA

repair and that has evidence of peptides from mass spectrometry (J. Cai et

al., 2008).  QQS, a  de novo gene found in Arabidopsis, is a regulator of

starch biosynthesis and it modulates the allocation of carbon and nitrogen

(L. Li et al., 2009; L. Li & Wurtele, 2015).
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Table 1.1.  Global studies identifying recently originated de novo protein-coding
genes in different eukaryotic lineages: description of the initial gene datasets, and
expression and translation analyses performed on these genes.

PBOV1 is a primate-specific de novo gene overexpressed in prostate and

breast cancer which increases cell proliferation through promoting G1/S

transition  (Pan  et  al.,  2016;  Samusik,  Krukovskaya,  Meln,  Shilov,  &

Kozlov,  2013).  C20orf203 is  a  primate-specific  gene  under  purifying

selection and it is expressed in brain and overexpressed in Alzheimer's

disease (C.-Y. Li et al., 2010). NCYM is a gene conserved in human and

chimpanzee  that  acts  as  an  oncopromoting  factor  in  human  cancer

stabilizing its antisense pair and thus probably acting as a bi-functional
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RNA  (Suenaga  et  al.,  2014;  Vadie  et  al.,  n.d.).  Finally,  TDRG1 is  a

primate-specific gene which is overexpressed in testis that promotes the

development and migration of seminoma cells via the regulation of the

PI3K/Akt/mTOR signaling pathway  (Jiang et  al.,  2011;  Y. Wang et al.,

2016). Additional de novo translated genes with unknown function were

found in other studies:  DNAH10OS, CLLU112, and C22orf45 are human-

specific  genes  with  evidence  of  translation  based  on  the  presence  of

different peptides  (Knowles & Mclysaght, 2009).  RDT1 is a yeast gene

with a small 28 aa ORF that is translated according to ribosome profiling

signatures (Wilson & Masel, 2011). Finally, several de novo genes with no

evidence  of  translation  have  been  identified  as  well.  In  2009,  it  was

demonstrated that a mouse gene, Poldi, arose de novo within the past 2.5-

3.5  million  from an  intergenic  region.  The  gene  knockout  resulted  in

reduced sperm motility and reduced testis weight  (Heinen et al., 2009).

Other examples are Hydra in fruit fly (S.-T. Chen et al., 2007), OsDR10 in

rice (Xiao et al., 2009), and ESRG in human (Jichang Wang et al., 2014).

De novo genes differ significantly from non-coding sequences in that they

show  interspecific  and  intraspecific  purifying  selection  signatures

(Carvunis  et  al.,  2012;  C.-Y.  Li  et  al.,  2010;  Palmieri,  Kosiol,  &

Schlötterer,  2014),  indicating  that  a  significant  fraction  of  them  is

probably functional.  Nonetheless,  because  de novo proteins are usually

short  and not  conserved across species,  many of them are likely to be

missing from the current gene catalogs, as it occurs with short proteins in

general.  For  example,  the  majority  of  de  novo protein-coding  genes

reported in human in different studies are not present in the latest Ensembl

12 CLLU1 is a gene highly expressed in chronic lymphocytic leukemia.
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version. Additionally, these genes are generally unstable across different

dataset versions. Only 14 of them are annotated as protein-coding genes in

Ensembl v.83, and 39 have been re-annotated as non-coding genes (Figure

1.7).

Figure  1.7.  Evolution  of  Ensembl  biotypes  for  the  133  human-/hominoid-
protein-coding de novo genes reported in different studies (J.-Y. Chen et al., 2015;
Guerzoni & McLysaght, 2016; Jiang et al., 2011; Knowles & Mclysaght, 2009;
C.-Y. Li et  al.,  2010; Suenaga et  al.,  2014; Toll-Riera et al.,  2009; D.-D. Wu,
Irwin, & Zhang, 2011; Xie et al., 2012). Ensembl releases 49,67, 74, and 83 were
available at 2008, 2012, 2013, and 2015, respectively. Not available: Cases where
the ID is not found in that Ensembl version, and no other similar genes are found
in  the  same  region.  Cases  in  bold  were  assigned  to  a  distinct  ID  in  certain
Ensembl releases.
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“Heritability pertains to the entirety of the genome, not to a single gene.”
Steve Pinker

1.4. The life cycle of the transcriptome
Large-scale  genomics,  transcriptomics  and  epigenomics  analyses  have

unveiled  the  existence  of  a  dynamic  transcriptome  that  continuously

evolves and changes across mammalian lineages, organs, developmental

stages, chromosomes, and sexes. This implies that events of gene birth

and death are frequent across the genome.

1.4.1. Transcription explores the genomic space
The  high  number  of  detected  expressed  transcripts  in  every  species

exposes a high and variable fraction of the genomic space to transcription.

This is  due to the pervasive transcription of the genome, and the high

turnover of poorly conserved transcripts (Kutter et al., 2012). For instance,

81%  of  the  lncRNA  families  found  in  human  are  primate-specific

(Necsulea et al., 2014). Strikingly,  when analyzing transcriptomes from

different  mouse  taxa  spanning  a  phylogenetic  distance  of  10  Mya,  no

transcript-free  regions  are  observed  indicating  that  nearly  the  entire

genome can be transcribed into poly-adenylated RNA when viewed from

an evolutionary perspective (Neme & Tautz, 2016).

Transcriptional dynamics are highly asymmetric between different tissues.

Transcriptional  changes  are  slow in some tissues,  such  as  the  nervous

system and high in others, such as testis  (Brawand et al.,  2011). Testis

tissue  is  subject  to  strong  selective  pressures  associated  with  sperm

competition, sexual conflict, reproductive isolation, germline pathogens,
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and  mutations  that  cause  segregation  distortions  in  the  male  germline

(Nielsen et al., 2005). A large number of protein-coding genes and non-

coding genes (Heinen et al., 2009; Kaessmann, 2010; Levine et al., 2006;

Paulding et al., 2003; She et al., 2004) are expressed in testis. Different

testis  cell  types  at  different  time  points  exhibit  very  different

transcriptomes, which partially explains the high transcriptional diversity

found in that tissue. However, the high transcriptional levels may be better

explained  by  the  overall  permissive  chromatin  states  resulting  from

numerous rounds of chromatin remodeling (Soumillon et al., 2013). This

may allow gene expression from simple  or  cryptic  promoters  (Kleene,

2005), which is  also consistent  with the  high expression of  retrogenes

observed in testis (Betrán, Thornton, & Long, 2002; Marques et al., 2005).
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1.4.2. The making of a new gene
A genome that is pervasively transcribed and whose RNA products change

over time implies the continuous de novo birth of numerous expressed loci

with no apparent  functionality.  The  life  cycle  of  a  gene  is  defined  by

different scenarios that a gene endures over evolutionary time (Figure 1.8)

(Neme & Tautz, 2014).

Figure 1.8. The life cycle of genes. Blue arrows represent transitions which lead,
either partially or completely, to newly originated genes. Red arrows represent the
loss of features that result in the degradation of the genic potential of a sequence.
Green arrows represent the mechanisms which increase the gene repertoire from
existing genes. Adapted from Rafik Neme & Tautz, 2014.

Since it is generally considered that a gene is a functional unit, most of

these recently expressed loci are merely ‘protogenes’, genes subject to no

or weak selective pressure that arise from previously non-expressed DNA

sequences (Carvunis et al., 2012). Some of these sequences might become

functional genes over time, and subsequently be expanded through gene

duplication or other similar mechanisms. Eventually, some newly emerged

genes might  become non-functional again and pseudogenized  (Demuth,
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Bie,  Stajich,  Cristianini,  &  Hahn,  2006).  A  small  fraction  of  the

pseudogenes  can  become  functional  again  (Bekpen  et  al.,  2009),

something which is more likely when they still conserve the capacity of

being  transcribed  and/or  translated  (Shidhi  et  al.,  2014).  The  relative

constant number of genes over time means that most protogenes do not

ever become functional genes. Accordingly, it has been observed than the

probability of loss-of-function mutations is higher for de novo genes than

for older ones (Palmieri et al., 2014). Selection will eliminate deleterious

protogenes  before  they  become  established  (Masel,  2006;  Wilson  &

Masel, 2011). Therefore, the pool of protogenes will be enriched for those

that have a higher chance of becoming a gene.

Given the high expression levels in testis and the gene life cycle model, it

is not surprising that many young genes have been identified in this tissue

(She et al., 2004; Xie et al., 2012). The 'out of testis' hypothesis proposes

that a high fraction of genes arise in testis because of the aforementioned

characteristics of this tissue. Over time, some new genes may evolve more

efficient promoters, more diverse expression patterns, and gain functions

in other tissues (Kaessmann, 2010; Light, Basile, & Elofsson, 2014).

The origination of a new gene not only involves the expression of a new

locus but the acquisition of a translatable ORF (Figure 1.9). The RNA-

first model describes that a non-coding loci would eventually acquire an

ORF through DNA mutations (Xie et al., 2012). The ORFs may become

longer  and  more  structured  over  time  (Bornberg-Bauer,  Schmitz,  &

Heberlein,  2015),  as supported by the presence of  de novo genes with

truncated ORFs in other species (J. Cai et al., 2008; Zhou et al., 2008).
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Figure  1.9.  Model  of  de  novo gene  origination  in  a  pervasively  transcribed
genome. New promoters continuously arise in the genome, which results in the
production  of  novel  non-functional  transcripts.  Some  ORFs  can  become
translated and eventually be elongated and combined with other  ORFs.  If  the
protein  is  useful  it  will  continue  to  evolve  under  purifying  selection.
Subsequently, the new gene will tend to acquire a stronger promoter, a refined
protein subject to stronger constraints, and a more complex exonic structure.
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On the other hand, as the genome is full of random non-expressed ORFs,

an alternative ORF-first model is also plausible. For example, ~60% of

800 bp intergenic sequences in Drosophila harbor ORFs of at least 150 bp

(Zhao, Saelao, Jones, & Begun, 2014). Some of these ORFs might acquire

regulatory elements that allow them to be transcribed and translated. Zhao

et al. identified pre-existing ORFs in loci only expressed in a subset of

Drosophila individuals, observing that the expression polymorphism was

linked to cis-sequence variation (Zhao et al., 2014).

Finally, a gene acquiring a new translated ORF may keep or develop a

non-coding  function  indistinctly.  There  are  some  examples  of  bi-

functional RNAs in the literature, such as the human  Steroids Receptor

Activator (SRA), a RNA that co-activates steroid hormone receptors at the

transcript level  (Lanz et al., 1999) but which also encodes a protein that

acts antagonistically to its non-coding function  (Chooniedass-Kothari et

al., 2004). Furthermore, numerous pairs of coding RNAs are stabilized by

overlapping regions in their UTRs, and hence they might be considered

bi-functional as well (Su et al., 2012).
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2.1. Long non-coding RNAs as a source of new 
peptides

Authors: Jorge Ruiz-Orera, Xavier Messeguer, Juan A Subirana, M.Mar 
Albà

Published in: eLife (2014) 3: 1-24. doi:10.7554/eLife.03523

Full text: http://elifesciences.org/content/3/e03523v1

Abstract:  Deep transcriptome sequencing has revealed the existence of
many transcripts that lack long or conserved open reading frames (ORFs)
and which have been termed long non-coding RNAs (lncRNAs). The vast
majority of lncRNAs are lineage-specific and do not yet have a known
function. Here we test the hypothesis that they may act as a repository for
the  synthesis  of  new  peptides.  We  find  that  a  large  fraction  of  the
lncRNAs expressed in cells from six different species is associated with
ribosomes.  The patterns  of  ribosome protection are  consistent  with the
translation of short peptides. lncRNAs show similar coding potential and
sequence constraints than evolutionary young protein coding sequences,
indicating that they play an important role in de novo protein evolution. 
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2. RESULTS

2.2. Origins of De novo genes in Human and 
Chimpanzee
Authors: Jorge Ruiz-Orera, Jessica Hernandez-Rodriguez, Cristina Chiva,
Eduard Sabidó, Ivanela Kondova, Ronald Bontrop, Tomàs Marqués-Bonet,
M.Mar Albà

Published in: PLOS Genetics (2015) 11(12), e1005721. 
doi:10.1371/journal.pgen.1005721

Full text: http://journals.plos.org/plosgenetics/article?
id=10.1371/journal.pgen.1005721

Abstract:  The birth of new genes is an important motor of evolutionary
innovation. Whereas many new genes arise by gene duplication, others
originate  at  genomic  regions  that  did  not  contain  any  genes  or  gene
copies. Some of these newly expressed genes may acquire coding or non-
coding functions and be preserved by natural selection. However, it is yet
unclear which is the prevalence and underlying mechanisms of  de novo
gene emergence. In order to obtain a comprehensive view of this process
we  have  performed  in-depth  sequencing  of  the  transcriptomes  of  four
mammalian  species  -  human,  chimpanzee,  macaque,  and  mouse  -  and
subsequently compared the assembled transcripts and the corresponding
syntenic genomic regions. This has resulted in the identification of over
five  thousand  new multiexonic  transcriptional  events  in  human  and/or
chimpanzee that are not observed in the rest of species. Using comparative
genomics we show that the expression of these transcripts is associated
with the gain of regulatory motifs upstream of the transcription start site
(TSS) and of U1 snRNP sites downstream of the TSS. In general, these
transcripts  show little  evidence  of  purifying  selection,  suggesting  that
many  of  them  are  not  functional.  However,  we  find   signatures  of
selection in a subset  of  de novo genes which have evidence of protein
translation. Taken together, the data supports a model in which frequently-
occurring  new  transcriptional  events  in  the  genome  provide  the  raw
material for the evolution of new proteins.  
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2.3. CLASSES OF PEPTIDES PRODUCED BY LNCRNAs

2.3. Functional and non-functional classes of peptides
produced by long non-coding RNAs
Authors:  Jorge Ruiz-Orera,  Pol  Verdaguer-Grau,  José Luis Villanueva-
Cañas, Xavier Messeguer, M.Mar Albà

Submitted. Preprint published in: BioRxiv (2016). 
doi: http://dx.doi.org/10.1101/064915 

Full text: http://biorxiv.org/content/early/2016/07/21/064915

Abstract:  Cells express thousands of transcripts that show weak coding
potential.  Known as  long non-coding RNAs (lncRNAs),  they typically
contain  short  open  reading  frames  (ORFs)  having  no  homology  with
known proteins. Recent studies have reported that a significant proportion
of lncRNAs are translated, challenging the view that they are essentially
non-coding.  These  results  are  based  on  the  selective  sequencing  of
ribosome-protected fragments, or ribosome profiling.  The present study
used ribosome  profiling  data  from eight  mouse  tissues  and cell  types,
combined  with  ~330,000  synonymous  and  non-synonymous  single
nucleotide  variants,  to  dissect  the  biological  implications  of  lncRNA
translation. Using the three-nucleotide read periodicity that characterizes
actively translated regions, we found that about 23% of the transcribed
lncRNAs was translated (1,365 out  of  6,390).  About one fourth of the
translated sequences (350 lncRNAs) showed conservation in humans; this
is  likely  to  produce  functional  micropeptides,  including  the  recently
discovered myoregulin. For other lncRNAs, the ORF codon usage bias
distinguishes between two classes. The first has significant coding scores
and contains functional proteins which are not conserved in humans. The
second  large  class,  comprising  >500  lncRNAs,  produces  proteins  that
show no significant  purifying selection signatures.  We showed that  the
neutral translation of these lncRNAs depends on the transcript expression
level  and  the  chance  occurrence  of  ORFs  with  a  favorable  codon
composition. This provides the first evidence to data that many lncRNAs
produce non-functional proteins. 
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3                 DISCUSSION

3.1.  Molecular  processes  involved  in  de  novo gene
origination
The  advent  of  next-generation  sequencing  technologies  led  to  the

discovery of thousands of expressed loci  that  are not  conserved across

distant species. Most of these transcripts have no reported functionality

and  some  authors  have  proposed  that  they  are  'transcriptional  noise'

(Struhl, 2007; Jun Wang et al., 2004). This is consistent with the finding

that  pervasive  transcription  probably has  a  negligible  cost  for  the  cell

(Lynch & Marinov, 2015). Despite this, the existence of highly dynamic

transcriptomes can have important consequences for the evolution of new

genes and functions. Expressed transcripts, even if they are not functional,

can provide the raw material necessary for the birth of new genes. The

discovery of thousands of non-characterized translated ORFs in different

species  by ribosome profiling has  opened up new questions  about  the

extent of transcript translation and its significance for protein-coding gene

evolution.

In this thesis, we focused on the identification and characterization of the

evolutionary plasticity of the transcriptome and translatome in different

eukaryotes, including human and mouse. With the data we gathered, we

propose an evolutionary model to explain how protein-coding genes can

arise  de novo in different species. This process can be broken into four

steps:  transcription,  translation,  selection,  and maturation.  Transcription
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and translation are the source of new genes and proteins. Selection will act

as  a  filter  to  eliminate  deleterious  new  genes  and  favor  useful  ones.

Finally, maturation is required to explain the differences between recently

evolved functional genes and older ones. Alternatively, genes with non-

coding functions  can concurrently emerge in  the genome.  These genes

will not be translated (or only secondarily) and will be selected for non-

coding functions.

Transcription:  The fraction of the genome that is transcribed is

much larger than the fraction that corresponds to annotated genes. As a

result,  transcript  assembly  from  RNA-seq  typically  identifies  many

transcripts that are not yet annotated in the databases  (Iyer et al., 2015;

Necsulea et al., 2014), and genes can also emerge from intronic regions

(Kumar, 2009;  Toll-Riera et  al.,  2009;  Zhao et al.,  2014). In any case,

genomes are exposed to a fast transcriptional turnover over evolutionary

time (Neme & Tautz, 2016). In line with this, we found thousands of non-

annotated  loci  expressed  in  human  and other  mammals.  This  included

both conserved and non-conserved genes and extended the current gene

catalogs  in  those  species  (Ruiz-Orera  et  al.,  2015).  To  ensure  high

transcript  coverage,  we  used  deep-sequencing  transcriptomics  for  four

mammalian species and analyzed data from several tissues. 

To date, our study is the only one that identifies de novo transcription in

mammals by using reconstructed assemblies instead of the annotations.

This greatly increased the power of BLAST to detect expressed homologs

in other species, since the annotations in many species are poor and based

on  predictions  and  projections  from other  species.  Moreover,  syntenic

genomic alignments are available from the UCSC genome browser and
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provide numerous alignment  blocks of  chromosome sequences for two

different  species,  when possible.  We used these syntenic alignments to

directly  check  for  the  expression  of  the  corresponding  loci  in  related

species. This analysis identified 2,714 de novo genes that are specific to

human and/or chimpanzee, which constitutes 4% of the total set of genes.

Only 8 of these genes were annotated as protein-coding in the databases,

highlighting the importance of considering long non-coding RNAs and

novel  reconstructed  genes  to  characterize  the  whole  de  novo

transcriptome. The use of strand-specific RNA-seq detected a myriad of

antisense transcripts that are not yet annotated since they would be missed

by conventional RNA-seq technologies.

One of the fundamental questions regarding  de novo gene emergence is

what triggers the transcription of a new locus.  It is known that animals

and  plants  have  evolved  complex  transcriptional  regulation  factors.

However, the promoters of young and old genes show distinct features

and interact with different transcription factors  (de Mendoza et al., 2013).

Conserved  genes  usually  have  GC-rich  promoters,  which  have  been

hypothesized  to  result  from the  acquisition  of  numerous  CpG islands

across time (Almada et al., 2013). In contrast, de novo expressed loci are

enriched in A/T-rich motifs (Carvunis et al., 2012; Necsulea et al., 2014;

Toll-Riera et al., 2009). In mouse, a  de novo gene has been proposed to

arise after gaining new regulatory motif sequences  (Heinen et al., 2009;

Tautz & Domazet-Lošo, 2011). 

In my thesis, I shed new light on this question by comparing data from

closely related species that differ in the expression of the syntenic region.
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We found an enrichment of transcription factor binding sites in  de novo

promoters when compared to syntenic regions not expressing the gene;  in

agreement with the hypothesis that the gain of regulatory motifs underlies

de novo gene origination  (Ruiz-Orera et  al.,  2015). We found an over-

representation  of  two  non-annotated  motifs,  which  may correspond  to

binding  sites  for  the  polymerase  II  complex,  as  well  as  many  sites

recognized by RFX2, which is highly expressed in testis  and has been

involved in spermiogenesis  (Kistler et al., 2015). This may explain why

the expression of most de novo genes was restricted to testis. In addition,

we found that de novo gene expression is stable in the human population

as the majority of de novo genes were detected in all or the vast majority

of individuals with testis  sequencing data in GTEx  (T.  G. Consortium,

2013).

The birth of new motifs can be explained by the random accumulation of

mutations in the genome. In addition, we found that in 13% of  de novo

genes,  transposable  elements  (TEs)  were  an  important  source  of

regulatory sequences. TEs were previously found to be enriched in these

types of sequences (Jordan, Rogozin, Glazko, & Koonin, 2003) and have

been proposed to contribute to non-coding RNA origination (Faulkner et

al., 2009; Kapusta et al., 2013).

Moreover,  new  genes  are  expected  to  emerged  from  bidirectional

promoters of older genes  (Gotea, Petrykowska, & Elnitski, 2013; X. Wu

& Sharp, 2013). We found that 20% of  de novo genes were associated

with bidirectional promoters. The expression of these genes tends to be

positively correlated with the older member of the pair and, as a result,
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this class of  de novo genes was expressed in a broader range of tissues

than other de novo genes.

Translation: Translation is likely to be a highly pervasive process

that produces both functional and non-functional products as judged by

ribosome profiling analyses  (Bazzini  et  al.,  2014;  Heesch et  al.,  2014;

Ingolia et al., 2011; Ji et al., 2015; Juntawong et al., 2014; Ruiz-Orera et

al., 2014). Since most of transcripts are polyadenylated, they accumulate

in the cytoplasm (Carninci et al., 2005; Heesch et al., 2014) and therefore

are exposed to the translation machinery.

In  this  thesis,  we  addressed  what  drives  the  translation  of  ORFs  in

codRNAs  and  lncRNAs.  We  performed  the  first  meta-analysis  of

ribosome  profiling  data  for  several  species  and  we  observed  that

translation, while not so common as in codRNAs, is a pervasive process in

lncRNAs  regardless  of  the  conservation  of  the  ORF  in  other  species.

LncRNAs  are  often  poorly  expressed  and  we  observed  how this  low

abundance had a direct effect on the detection of ribosome association.

Moreover, ORFs in lncRNAs were often small (< 100 aa) and had lower

translational efficiency (TE) values than protein-coding genes, although

they were still significantly higher than untranslated regions (UTRs). In

protein-coding genes, one ORF harbored most of the ribosome profiling

signal;  however,  in  lncRNAs  we  observed  that  translation  of  multiple

small ORFs was a relatively common event. Polycistronic transcripts have

been reported in insects  (Savard et  al.,  2006) and may extend to other

species (Tautz, 2009).
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The use of mouse ribosome profiling datasets with high read coverage

resulted  in  the  discovery  of  higher  levels  of  translated  peptides.  We

analyzed the ribosome protection patterns using the 3-nucleotide bias of

ribosome profiling as indicator of true translation  (Bazzini et al., 2014;

Calviello et al., 2016; Ingolia et al., 2009; Ji et al., 2015). Previous studies

used  different  models  to  distinguish  true  translation  from  noise.  We

identified ORFs with a significant frame bias by using randomization of

the reads as  a null  model.  This,  combined with the  use  of  8  different

datasets,  led to the identification of thousands of translated ORFs.  The

translation patterns of many of these peptides were similar across tissues,

indicating that  their  translation is  relatively stable  and reproducible.  In

humans, we only mapped ribosome profiling reads from brain and HeLa

cells  to  the  transcriptome.  We  detected  translation  patterns  in  many

lncRNAs, including several human- or hominoid-specific  de novo genes

(Ruiz-Orera et al., 2015, 2014). We expect that, when ribosome profiling

data from other human tissues become available, the number of translated

de novo genes will increase dramatically.

The translation of numerous non-conserved peptides in mouse strengthens

the idea that non-coding RNAs can be used as raw material for the birth of

protein-coding genes (J. Cai et al., 2008; Carvunis et al., 2012; Levine et

al., 2006; Wilson & Masel, 2011). In principle, non-sense mediated decay

(NMD) could degrade many of these peptides. However, by analyzing the

relative position of the STOP codon and splice junctions, we predict that

only a minority of them will be targeted by this mechanism.
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Selection: Translation is a highly pervasive process; this leads to

the production  of  more  peptides  than  was  previously considered.  The

translation  of  peptides  that  are  toxic  to  the  cell  will  be  the  target  of

negative selection and so we will, in general, not observe them (Wilson &

Masel, 2011). Our data, based on single nucleotide variants, suggests that

a large number of new genes, and translated peptides, have no function

and  evolve  neutrally.  Many  of  these  genes  are  therefore  expected  to

degenerate over time.  Consistent  with this idea,  studies in insects have

found an excess of new genes in the terminal branches when compared to

genes originated in more internal branches (Palmieri et al., 2014; Wissler

et al., 2013) and we observed the same trend in primates  (Ruiz-Orera et

al., 2015).

The large number of recently expressed loci in a species provides a large

reservoir  for  the  appearance of  new molecular  functions.  Some  of  the

genes will turn out to be useful and be preserved by natural selection. In

our  study,  we  observed evidence  of  purifying  selection  in  a  subset  of

species or lineage-specific genes. We also measured the coding score of

predicted ORFs using a statistic based on dicodon frequencies.  Coding

score captures mutational biases as well as the effect of natural selection

for translation optimization. We observed that translated lncRNAs exhibit

higher coding scores than non-translated lncRNAs and intron sequences,

but  lower  than  protein-coding  and  pseudogene  sequences. More

importantly,  translated  lncRNAs  showed  similar  coding  potential  and

sequence  constraints  than  evolutionary  young  protein-coding  genes

defined in other studies  (Ruiz-Orera et al., 2014).  Resemblance between

young protein-coding genes and translated non-coding genes in different
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species probably indicates that translated lncRNAs form a heterogeneous

group of genes ranging from non-functional new genes to well-established

protein-coding genes. 

We observed that a subset of recent mouse genes with high coding scores

exhibited signatures of purifying selection, whereas the rest of sequences,

despite  signals  of  translation,  evolved  neutrally.  To  some  extent,  the

coding  score  reflects  the  functionality  of  an  ORF.  In  this  study,  we

provided the first  evidence that  many lncRNAs produce non-functional

proteins. These genes correspond to a previously defined class of genes

from a study performed in yeast known as ‘protogenes’ (Carvunis et al.,

2012). We also obtained evidence that a subset of species-specific genes

showed evidence of purifying selection. These genes fit a more classical

definition of de novo genes, which assumes that the genes are functional

(McLysaght & Hurst, 2016).

It was previously hypothesized that the translation of a lncRNA may be

linked  to  the  relative  amount  of  transcripts  in  the  nucleus  and  the

cytoplasm, but we observed translation of some lncRNAs with nuclear

functions suggesting that  the cytosolic fraction of any lncRNA may be

translated regardless of the role or preferred location of the transcript. We

determined that the neutral translation of these lncRNAs depends on the

transcript  expression  level  and  the chance occurrence  of  ORFs  with  a

favorable codon composition.  Poldi,  one  de novo lncRNA described to

have a non-coding function (Heinen et al., 2009), harbors one long ORF

with a very low coding score. Accordingly, it is not translated in any of the

samples analyzed in our study.
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Maturation: A de novo gene that is useful for the cell and that is

subjected to negative selection will mature into a more complex structure

over time. Since older genes will have had more time to evolve complex

coding sequences and promoters, it is not surprising that several studies

have found a correlation between gene age and properties like number of

exons, protein length, and gene expression level  (Arendsee et al., 2014;

Carvunis  et  al.,  2012;  Neme  & Tautz,  2013). We  found  the  expected

patterns  in  de  novo genes  from human  and  chimpanzee,  which  were

shorter  and had more tissue-restricted expression than conserved genes

(Ruiz-Orera et al., 2015).

It  is  likely  that  numerous  de  novo protogenes  and  genes  are  initially

monoexonic since this is the simplest gene structure. For example, up to

5% of annotated human protein-coding genes are single-exon. Our study

detected the expression of numerous non-conserved monoexonic loci, but

the analysis of a RNA-seq sample without reverse transcriptase revealed

the presence of numerous monoexonic artifacts that we could only discard

by removing genes with one exon. It has been proposed that the formation

of introns is a process that depends on the age of the gene. The number of

U1snRNP sites (GGUAAG-like, 5’splice site) in the first kilobase after the

transcriptional  start  site  increases  with  the  age  of  the  gene  while  the

number  of  PAS  (poly-adenylation  termination  signals)  sites  decreases,

which  results  in  an  increased  rate  of  transcript  elongation  over  time

(Almada et al., 2013). Besides, the first intron is usually longer and more

conserved than other downstream introns (Bradnam & Korf, 2008; Park et

al.,  2014) since  it  harbors  most  cis regulatory  sequences  (Chorev  &

Carmel,  2012).  In  this  thesis,  we found an enrichment  of transcription
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factor binding sites and U1snRNP motifs in the first  200bp of  de novo

genes in human and chimpanzee; this is consistent with the idea that the

gain of regulatory motifs underlies de novo gene origination.

Other elements involved in transcript elongation are transposable elements

(TEs)  (Kapusta et al., 2013; Toll-Riera et al., 2009), and some of them

harbor ORFs that can form fusion proteins with proximal exons (Denli et

al.,  2015).  We  found  that  de  novo transcripts  were  enriched  in  such

elements; about 20% of their total transcript length was covered by TEs,

compared to only 8% in conserved genes.

Over time, a gene may acquire multiple isoforms, stronger promoters that

might  produce  antisense  transcripts,  and  more  structured  proteins  that

associate  with other  proteins  and become more  integrated into cellular

networks  (Abrusán,  2013;  Bornberg-Bauer  et  al.,  2015;  Moore  &

Bornberg-Bauer, 2012).

Non-coding functions in RNA: The evolutionary model that was

explained above intends to explain how a new protein-coding gene can

arise  in  a  genome.  Nevertheless,  several  lncRNAs  exert  non-coding

functions directly or by regulating the transcription and/or translation of

other  genes.  These  functional  lncRNAs  will  be  maintained  by natural

selection,  although  non-overlapping  sequences  might  experience

important changes in sequence and exon-intron structure. Thus, functional

lncRNAs in the cytoplasm will be continuously exposed to the translation

of  new ORFs.  A significant  fraction of  identified  de novo genes  were

located in an antisense configuration and hence some of those cases might
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have  regulatory  functions  at  transcriptional,  translational,  or  post-

transcriptional level. The PN/PS ratio will not be of any use to detect the

non-coding functionality of such sequences. Other approaches, based on

whole  sequence  values  of  diversity  and  divergence,  will  be  more

appropriate (Wiberg et al., 2015).

Some RNAs may be bi-functional displaying both coding and non-coding

functions. For example, Malat1 is a well-characterized RNA that is often

retained in the nucleus, where it forms ribonucleoprotein complexes and it

regulates  the  expression  of  numerous  genes  (Tripathi  et  al.,  2010).

However, some RNA molecules are exported to the cytoplasm and can be

translated via a 3’ triple helical structure (Marzluff, Wilusz, Jnbaptiste, &

Lu, 2012). We found a small protein of 57 aa with evidence of proteomics

and ribosome profiling that is translated from  Malat1.  Other functional

lncRNAs,  such  as  Neat1,  Jpx,  and  Cyrano,  also  contained  translated

ORFs. 

On the other hand, several protein-coding genes were revealed to have an

intrinsic  non-coding  function  (Karapetyan,  Buiting,  Kuiper,  & Coolen,

2013; Kumari & Sampath, 2015). Such functionality is usually performed

by the  UTR regions,  that  resemble  lncRNAs  in  base  composition  and

structure.  Finally,  non-coding isoforms from protein-coding  genes  may

have functional roles, as it occurs with the circular RNAs (Lasda, Parker,

& Parker, 2014).
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3.2. Improving the gene annotation
As  previously  explained,  numerous  long  non-coding  transcripts  are

discovered and annotated based on the analysis of high coverage RNA-seq

data from different tissues and conditions. While the number of long non-

coding RNAs is continuously raising, the number of protein-coding genes

is slightly decreasing as some of them are re-annotated as non-coding or

discarded as annotation artifacts.

The observation of a significant proportion of translated non-coding and

non-annotated transcripts, though, calls into question how genes should be

annotated. While most coding prediction software shows high precision in

the detection of long and conserved protein-coding genes, it usually fails

when  trying  to  characterize  the  coding  potential  of  short  and  non-

conserved translated sequences. Other studies proposed the existence of

hundreds of conserved functional smORFs (Bazzini et al., 2014; Hanada

et al., 2013; Mackowiak et al., 2015). In our study, we observed how the

analysis of the sequence conservation in other species, combined with the

global  analysis  of  purifying  selection  with  polymorphism  data,  is  an

effective method to characterize translated groups of functional smORFs

that  are often non-annotated.  The SNP analysis is  limited to groups of

genes,  as  individual  coding  sequences  do  not  usually  contain  enough

polymorphisms to perform statistical analysis (Gayà-Vidal & Albà, 2014).

Numerous non-conserved ORFs, most of them shorter than 100 aa, have

been observed to be translated in our study in mouse. We developed a new

computational  tool,  CIPHER,  that  predicts  the  coding  potential  of  a

sequence  by  computing  an  hexamer-based  coding  score.  Unlike  other
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properties of coding sequences, the hexamer score is a robust metric that

is  independent  of  the  length  and  that  separates  translated  and  non-

translated  transcripts  regardless  of  the  age  of  the  gene.  Widely-used

predictors such as PhyloCSF or CPAT use multiple sequence conservation

or ORF length metrics to predict coding sequences (M. F. Lin, Jungreis, &

Kellis, 2011; L. Wang et al., 2013). This is not appropriated for the ORFs

mentioned  here,  which  are  not  phylogenetically  conserved.  Using  the

hexamer scoring metric we could identify many of the ORFs that were

translated according to ribosome profiling data. However, there were also

translated  ORFs  that  had  low scores  and  which  would  have  not  been

detected by CIPHER. Hence, other unknown properties might induce the

translation of ORFs. 

Another current limitation is that predictions and annotations are usually

limited  to  a  single  ORF  per  transcript  that  is  often  the  longest  one.

However, many transcripts are polycistronic and numerous small ORFs

are  translated,  including  regulatory  uORFs  and  non-canonical  ORFs

(Aspden et al., 2014; Ingolia et al., 2014; Ji et al., 2015; Juntawong et al.,

2014),  but  those  sequences  usually  escape  the  analysis  of  coding

prediction tools because they are small and/or lack standard start and stop

signals. Moreover, there are a few examples of genes translating multiple

functional  ORFs  in  separate  or  overlapping  frames  (Andrews  &

Rothnagel,  2014).  Hence,  future  annotation  efforts  should  aim  at

identifying  all  the  multiple  translated  sequences.  CIPHER  can  predict

multiple  translated  ORFs  per  sequence,  although  the  number  of  false

positives will likely increase. Thus, the integration of ribosome profiling

and ORF prediction data should lead to improved gene annotations.
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So far, genes that are translated are only classified as protein-coding, but

the  data  shown  indicates  that  there  are  different  types  of  translated

sequences (ORFs): functional translated, regulatory translated, and non-

functional translated. Depending on how we define a protein-coding gene,

we  may  include  thousands  of  sequences  that  are  translated  but  not

conserved, or instead focus on those that are conserved across species.

Once the number of sequences that are transcribed and translated in any

organism has been defined, the question of how many genes are functional

arises. While the term 'gene' is usually linked to functionality, we found

several  loci  with  no  assigned functions  that  are  neither  conserved nor

subjected to negative selection. Without ignoring the possibility of these

loci having a regulatory non-coding function, the term 'protogene' define

this set of non-functional sequences that might be retained or lost over

time (Carvunis et al., 2012). In the future, annotations should distinguish

between functional genes and non-functional protogenes, as they do now

separate  genes  and  pseudogenes.  In  this  thesis,  we  observed  how the

coding score is a powerful metric to identify functional coding sequences

that are not conserved in other distant species. 

Moreover, the number of annotated lncRNAs continuously rises, but the

annotations  are  based  on  expression,  and  the  gene  biotypes  rely  on

structural properties, instead of functionality. Finally, the aforementioned

possibility of the existence of numerous bi-functional genes, with coding

and non-coding properties, adds more complexity to this problem.
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1. We have identified thousands of non-annotated genes in human,

chimpanzee,  macaque,  and  mouse  by analyzing  strand-specific

RNA-seq for different tissues, including brain and testis.

2. We have published the first catalog of multiexonic de novo genes

in  human  and  chimpanzee  that  includes  protein-coding  genes,

long non-coding RNA genes and novel  genes.  These genes are

short and tissue-restricted.

3. We have obtained evidence that genes which have only recently

begun  to  be  transcribed  have  gained  regulatory  motifs  in

promoters and exons.

4. We  have  developed  CIPHER,  a  method  using  hexanucleotide

frequencies to measure the coding potential of a sequence (coding

score)  independently  of  open  reading  frame  length  or

phylogenetic conservation.

5. We have identified a significant fraction of long non-coding RNA

transcripts  associated  with  ribosomes  in  different  eukaryote

species. These transcripts exhibit lower abundance and translation

efficiency than protein-coding  genes.  Their  similarity to  young

161



4. CONCLUSIONS

protein-coding genes indicates that they play an important role in

de novo protein-coding gene evolution.

6. We have identified 350 long non-coding RNAs with evidence of

translation  in  mouse  that  show  sequence  similarity  to  human

transcripts.  These  genes  are  probably  producing  functional

micropeptides.

7. We have found little evidence of purifying selection in recently

evolved  genes  in  general.  However,  some  translated  non-

conserved genes show signatures of selection and are likely to be

functional.

8. We have observed that translation is pervasive and some of the

translated  proteins  show  no  evidence  of  purifying  selection.

Translation of neutral sequences depends on the coding score and

the transcript expression level.
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In  this  thesis  I  have  described  a  series  of  analysis  to  quantify  and

characterize the regions of a genome that are expressed and/or translated,

greatly extending the current gene annotation catalogs. Our study reveals

the presence of a pervasive transcriptome with a significant fraction that

continuously evolves de novo from not expressed DNA, and a pervasive

translatome, with the translation of numerous short coding sequences into

proteins.

Naturally, these findings raise new and interesting questions to be solved

in  the  next  years.  As  explained  in  the  first  chapter  of  the  thesis,  the

definition of a gene has been changing over time, and it will  probably

continue  to  change  for  a  long  time.  This  will  be  triggered  by  the

development  of new technologies that  will  permit  researchers to better

assemble  genomes  and  transcriptomes,  as  well  as  measuring  the

translatome with increasing accuracy and coverage. 

Our  work  contributes  to  a  better  understanding  of  gene  evolution  and

highlights the necessity to rethink what a gene is and how we define it.

Investigating how new loci arise in genomes is a key step to understand

the present architecture of genomes. Once the loci are defined, we can

apply population and functional analyses to find out which fraction of the

dynamic transcriptome is functional and how de novo genes are fixed in

populations.  Genes should then be tagged on the basis of  functionality
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rather than the presence or absence of expression. A parallel effort should

be done to characterize the translatome in every cell type and condition in

order to identify how many coding sequences produce functional  short

and long proteins. We should also investigate how cells cope with the high

amount  of  translated proteins  that  is  observed with  ribosome profiling

experiments and how much of this material is quickly degraded.  Thus,

what we consider a protein-coding gene might be subdivided into different

functional categories, and this information should be combined with the

non-coding functionality that was developed in this thesis.
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