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Programa de Doctorat en F́ısica



Anomalous transport and diffusion of Brownian

particles on disordered landscapes

Ph.D. Thesis

Programa de Doctorat en F́ısica
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En el peŕıode de temps que he estat duent a terme les investigacions

incloses en la tesi, ha estat un goig poder comptar amb la col·laboració,
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University College London, m’ha donat sempre que li ho he requerit. De
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trucció de la variant de Puig-reig, li deia “avi, de gran portaré una ex-
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estic profundament agräıt.
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apassionar-me; nogensmenys, hem après a conviure. Àdhuc li dec alguns

vii



dels moments més plaents que he viscut en el procés d’investigar la dinàmica
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m’ha fet cada vespre en arribar a casa, per comprendre’m, per fer que tot

plegat sigui menys costerut, per estimar-me com sóc.
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Preface

This thesis is arranged in two parts and eight chapters.

The first part comprises an introduction to the phenomenon of Brow-

nian motion and the description of the theoretical framework employed

throughout the scientific investigations (Chap. 1), as well as a summary of

the thesis, the main results, and the subsequent conclusions that have been

attained (Chap. 2).

The second part is made up of five chapters (Chapters 3 to 8) that con-

duct a thorough discussion of each particular case that has been inquired.

Finally, a catalan résumé of the thesis, the list of publications, a glossary

of the nomenclature, and the bibliography are included at the rear end of

the book.
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CHAPTER 1

Introduction

1.1. About Brownian motion

Brownian motion refers to the random movement that undergo meso-

sized particles suspended in a simple solvent. It has become the keystone

of a fully probabilistic formulation of statistical mechanics and a prevailing

subject of physical investigation. The history of stochastic motion may

be traced back to 1784, when a Dutch scientist called Jan Ingen-Housz

reported the erratic motion that coal dust particles exhibited when observ-

ing powdered charcoal on an alcohol surface under light microscope [Ingen-

Housz, 1784, 1789]. Notwithstanding that this observation might be claimed

as the discovery of the jiggling movement at the mesoscale between the

atomic and the macroscopic realms, this phenomenon was named for the

Scottish botanist Robert Brown, who published in 1828 an investigation

of the agitated movements of minute particles ejected from certain pollen

grains in the liquid he was looking at in the microscope [Brown, 1828], (Fig.

1.1). Further, Brown repeated his experiments with pollen kept in alcohol

for several months—presumably dead—and with non–organic particles. He

noticed the same unceasing motion [Ford, 1992], and so he concluded that

this movement had nothing to do with life.
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CHAPTER 1. Introduction

Figure 1.1 – Pollen grains suspended in water. From the Image Library of the Bioimaging

Laboratory of IBERS, University of Wales.

The qualitative explanation of Brownian motion was put forward by

several authors by the end of the XIXth century. In 1889, the French

physicist Louis George Gouy reported detailed qualitative studies of the

phenomenon [Gouy, 1889]. He found that Brownian motion is not due to

random external influences, such as vibrations, and electric or magnetic

fields, and that its magnitude depends mainly on two factors: the parti-

cles’ size and the temperature.

In the first decade of the XXth century, the theoretical description of

Brownian motion was carried out independently by Albert Einstein [Ein-

stein, 1905]—in 1905—and Marian von Smoluchowski [Von Smoluchowski,

1906]—in 1906—employing probability arguments. In particular, Einstein’s

probabilistic approach to the Brownian motion is founded on the princi-

pal that the random movement is on account of the molecular motions of

heat [Einstein, 1905]. He argued that Brownian particles obey the well-

known differential equation for diffusion of chemical species in aqueous so-

lutions [Fick, 1855] that Adolf Eugen Fick, a German physician and physi-

ologist, had developed empirically by direct analogy with the heat and elec-

tricity transfer equations. From this equation, Einstein predicted that the

root mean square displacement of suspended particles is proportional to the

square root of time. Further, employing thermodynamics arguments and

4



1.1. About Brownian motion

Figure 1.2 – Obtained from [Barkai et al., 2012]. (a) In 1908 Jean Perrin traced individual

trajectories of microscopically putty particles in water at 30–second intervals [Perrin,

1908] (red dots). (b) By fitting a Gaussian to the distribution of all the 30–second

displacements, shifted to a common origin, he obtained an ensemble diffusion con-

stant [Perrin, 1908]. (c) Six years later, Ivar Nordlund recorded individual trajectories

of mercury particles in water as they settled to the bottom, and obtained the time

averaged mean squared displacements [Nordlund, 1914]. The waviness of the trajec-

tories is a sign of Brownian motion and their advance is a trace of transport.

the concept of osmotic pressure of suspended particles, Einstein obtained

a relation between the particle diffusion constant, the fluid viscosity—or

friction—, the absolute temperature, and the Avogadro–Loschmidt num-

ber. This relation provided an emphatic and categorical evidence for the

atomistic conception of matter. Summarizing, Einstein’s theory on Brow-

nian motion follows from three postulates. First, particles are assumed

not to interact with each other. Second, the motion is memoryless at long

times. Third, the distribution of particle displacements possesses at least

two lower moments, for they are independent.
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CHAPTER 1. Introduction

Between 1908 and 1911, Jean Perrin and his students performed a series

of experiments comprising meticulous analyses of single trajectories of col-

loidal particles observed under a microscope [Perrin, 1909] (Fig. 1.2) that

not only verified the Einstein’s predictions but they also brought about

an improved estimation of the Avogadro–Loschmidt number. Perrin was

awarded with the Nobel prize in 1926 for this contribution that bolstered

the atomistic hypothesis of matter.

The ideas of Einstein and von Smoluchowski were rephrased by Paul

Langevin [Langevin, 1908; Lemons and Gythiel, 1997]—in 1908—so as to

account for the Brownian trajectories, leading to a new type of differen-

tial equations, namely the so–called stochastic differential equations. Such

equations separate the force balance into a deterministic and a random

part; they can be regarded as generalizations of Newtonian mechanical

equations. The characterization of the random forces was mainly ascribed

to the work of Leonard Ornstein [Ornstein, 1919], who settled the basis of

the so–called random Gaussian white noise—Gaussian distributed with δ

correlation function—. The modern calculus of Langevin equations is still

nowadays founded on the random forces conceived by the Dutch physicist.

Back to the initial approach of Einstein, in which the Brownian move-

ment was based on the discussion of deterministic equations for the prob-

ability densities, its generalization leads to the Fokker–Planck or the dif-

fusion equation method. The diffusion–like equation for the Brownian mo-

tion with drift was first proposed be Adriaan Fokker [Fokker, 1914] in 1914

and discussed later by Max Planck [Planck, 1917] in 1917; it consists of

a linear second–order partial differential equation—a forward Kolmogorov

equation [Schuss, 1980]—. The approach states that for an ensemble of

particles or systems, macroscopic fluctuations—e.g. the distribution func-

tion of the fluctuating macroscopic velocity—are like a diffusion process.

The distribution function of the random variables will, therefore, fulfill

a partial differential equation of the diffusion type. A detailed discus-

sion on the Fokker–Planck equations can be found in the books of Hannes

Risken [Risken, 1989], and Werner Ebeling and Igor M. Sokolov [Ebeling
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1.1. About Brownian motion

Figure 1.3 – Obtained from [Dix and Verkman, 2008; Crane and Verkman, 2008]. Mem-

brane protein diffusion. Long–range diffusion of aquaporin–1 (AQP1) water channels

in cell plasma membranes. (a) Schematic of a quantum dot (Qdot)–labeled AQP1

monomer. (b) AQP1 trajectories from time-lapse of single particle tracking acquired

at 1 Hz (total time ≈ 6 min) overlaid onto fluorescence images of green fluorescent

proteins in the cytoplasm of a COS–7 cell. Each trajectory is shown in a different

color. (c) MSD versus time curves for AQP1 diffusion in COS–7—a nonpolarized

fibroblast—and MDCK cells—Madine–Darby canine kidney cells, an epithelial cell

type—(≈ 300 individual trajectories averaged for each cell type). Nearly linear MSD

plots are obtained in agreement with the theory of Brownian motion developed by

Einstein.

and Sokolov, 2005].

Subsequent theoretical artifacts, such as the well–known fluctuation–

dissipation theorem [Callen and Welton, 1951] developed by Herbert Callen

and Theodore A. Welton—in 1951—, and the linear response theory of

Ryogo Kubo [Kubo, 1957]—in 1957—entailed generalizations of the Ein-

stein relation.

The Einstein’s theory of Brownian motion based on the molecular-

kinetic theory of heat constitutes one of the milestones in physics. It pro-

vides the link between the elementary underlying microscopic dynamics and

macroscopic observables, such as the ubiquitous underlying fluctuations in

plenty of processes in natural and social sciences, for example in membrane

protein diffusion [Crane and Verkman, 2008], see Figure 1.3. Many areas of

physics, still subject to active research, have been prompted by theories of

7



CHAPTER 1. Introduction

Brownian motion indeed [Hänggi and Marchesoni, 2005]. However, extrap-

olating mesoscopic type of behavior to microscopic scales, as the Langevin

or Fokker–Planck approaches assume, is not always advantageous. It might

otherwise be appropriate to build up the theory from a simple microscopic

kinematic model, as for example the so–called random walk approaches

do. The term “random walk” is ascribed to Karl Pearson, who was en-

gaged in biostatistical problems in 1905 [Pearson, 1905]. The first random

walk model was nonetheless put forward in 1900 by Louis Bachelier in

his doctoral thesis on the stock market prices [Bachelier, 1900a,b; Cour-

tault et al., 2000]. Random walk models are versatile, for they adapt to

non–Markovian situations. General information about the random walk

approaches to different physical milieus can be found in the review articles

by Joseph W. Haus and Klaus W. Kehr [Haus and Kehr, 1987], by Jean–

Philippe Bouchaud and Antoine Georges [Bouchaud and Georges, 1990],

and by M. B. Isichenko [Isichenko, 1992]. Random walk models are of-

ten employed to shed light into a myriad of processes exhibiting anomalous

dynamics, for example, the diffusion of potassium channels in plasma mem-

branes of living cells [Weigel et al., 2011].

Random walk approaches consider the motion of a particle as a se-

quence of independent steps. In each of these steps the particle travels

some distance away from its initial position within a particular time. The

step’s duration and length are obtained from some probability distribution.

Depending on the properties of the probability distribution, a wealth of dif-

ferent approaches arise. Among them, the lattice random walk allows the

particle to jump only to the next–neighboring lattice sites; it was put into

practice by Elliott W. Montroll and George Weiss in the sixties of the XXth

century to account for luminiscent reactions in molecular crystals [Montroll

and Weiss, 1965; Montroll, 1969]. Concerning the time behavior, random

walks split between the so–called simple random walks, in which the time

step is fixed, and the continuous–time random walks (CTRW), in which

the time is itself a random variable. In the latter, the random walk may

result from a series of scattering events, in which case the time and the

displacement are strongly correlated. May the particle remain trapped in
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1.2. Transport and diffusion

some bounded state until it is released from time to time and makes a ran-

dom motion until it gets trapped again, the displacement and time random

variables are otherwise independent. Transport in disordered semiconduc-

tors may be described by this class of CTRW [Scher and Montroll, 1975].

CTRW with power–law waiting time distributions do have a corresponding

formulation through deterministic equations, leading to the so–called frac-

tional Fokker–Planck equations [Metzler and Klafter, 2000; Sokolov et al.,

2002]—a Fokker–Planck approach to non Fickian processes [Balakrishnan,

1985; Schneider and Wyss, 1987, 1989] which brings about non–Markovian

outcome—. Finally, may the third Einstein’s postulate of normal diffusion

be abandoned—the mean square displacement is not finite—leads to sev-

eral different models. For example, the CTRW with step lengths distributed

according to a power–law results in the so–called Lévy flights, which is a

Markovian process of indefinitely large jumps—hence the model does not

exhibit a limiting velocity—. Another important model is the Lévy walk

built up by Michael F. Shlesinger, Bruce J. West and Joseph Klafter in

1987 [Shlesinger et al., 1987]. In such a process the particle moves at a

constant velocity during a certain period of time—given by a probability

density—, after which the direction of the velocity is chosen anew. Lévy

walks can also be described within the framework of fractional kinetic equa-

tions as Igor M. Sokolov and Ralf Metzler demonstrated in 2003 [Sokolov

and Metzler, 2003].

Posterior to the historical overview of the Brownian motion phenomenon,

this opening chapter goes on with the discussion of the theoretical formal-

ism employed throughout the investigations that account for the present

thesis.

1.2. Transport and diffusion

The basic concepts that will make up the subject matter of this thesis,

that are contained in Einstein’s paper [Einstein, 1905], are reviewed in this

section. Further, an extended excerpt of Einstein’s reasoning can be found
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CHAPTER 1. Introduction

in the book by Crispin W. Gardiner [Gardiner, 1985].

1.2.1. Free particles: Einstein’s diffusion and the Fokker-

Planck approach

A suspended particle in a solvent is subjected to rapid collisions with

the solvent molecules; these kicks occur at the time scale of the liquid

dynamics—picosecond regime—and lead to a tiny exchange of momen-

tum. Concomitantly, they also give rise to the macroscopic friction force.

May r̂(t̂) be the vector that points the position of a suspended particle

at time t̂, increments concerning a time scale where the particle moves

significantly— i.e. these time intervals are not chosen too small—∆r̂(t̂) =

r̂(t̂ + t̂′) − r̂(t̂′) are considered as random variables that are identically

and independently distributed. This assumption mans that the process is

memoryless—Markovian—[Wang and Uhlenbeck, 1945]. Besides, hydrody-

namic effects are not taken into account for it would violate the Markovian

assumption. Considering an ensemble of n identical particles performing

Brownian movements, and assuming the former conjectures, there will be a

certain frequency law for the increments ∆r̂(t̂); Einstein demonstrated by

a microscopic interpretation that the differential equation to approach the

dynamics of the distribution of particles is—up to second order in 1− d—

∂P (r̂, t̂)

∂t̂
= D̂

∂2P (r̂, t̂)

∂r̂2
+ . . . , (1.1)

where r̂ is the position, that in 1−d is a scalar. This is already known as the

differential equation of diffusion—second law of Fick, and so P (r̂, t̂) displays

the same space–time dynamics as the macroscopic concentration—in which

D̂ is the diffusion coefficient, and its solution is

P (r̂, t̂) =
n√

4πD̂t̂
exp

(
− r̂2

4D̂t̂

)
. (1.2)

This is the well–known normal distribution, whose cumulants beyond the

first two—other than the mean and the variance—are zero; the variance

exhibits a linear time behavior indeed

〈∆r̂2(t̂)〉 = 2D̂t̂ , (1.3)

10



1.2. Transport and diffusion

where the brackets 〈. . .〉 indicate the average over the displacements at a

fixed time t̂ along the trajectory of a particle, as well as over the ensemble

of identical non–interacting particles. The generalization of Equation (1.3)

to d–dimensional space reads

〈∆r̂2
û(t̂)〉 = 2d D̂û t̂ , (1.4)

where subindex û—the hat indicates that û is a unit vector—labels any

direction in the Euclidean d–space, D̂û is the component along û of the

Cartesian diffusion tensor D̂ = {D̂i1,...,id}—i1, . . . , id label the components

in a d–space—that is computed by the product

D̂û = û · D̂ · û . (1.5)

Einstein’s work goes beyond and evaluates the particle diffusion constant.

Balancing a diffusion current—to be obtained from the osmotic pressure

deduced from the molecular–kinetic theory of heat—with a drift current—

inferred from the Stokes’ law—leads to the so–called Stokes–Einstein relation—

assuming 1− d space so that diffusion is a constant—,

D̂ =
kBT̂

η
, (1.6)

where kB is the Boltzmann’s constant, T̂ is the absolute temperature, and η

is the phenomenological friction coefficient. For a sphere of hydrodynamic

radius rh immersed in a solvent of kinematic viscosity ν and density ρ

η = 6π ν ρ rh . (1.7)

Equation (1.7) corresponds to stick boundary conditions between the so-

lute and solvent. May no stickiness be applied between the solvent and the

solute—slip boundary conditions—the factor 6π in equation (1.7) would be

replaced by 4π. For nonspherical shapes, the friction coefficient is multi-

plied by a shape factor greater than 1.

Briefly, the displacements of free Brownian particles ought to exhibit

a Gaussian distribution whose variance is proportional to time with a co-

efficient that involves the temperature and the friction coefficient. This
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statement (1.4) is the standard fundamental point when inquiring into

the diffusion of Brownian particles. Free Brownian particles thus spread

isotropically over space without a privileged direction at a constant time

rate.

It ought to be noted that the diffusion equation (1.1) is a special case of

the Fokker–Planck equation, which describes stochastic processes in which

the system has a continuous sample path. In this case, it means that the

particles’ trajectories can be described by continuous time random func-

tions. This corollary leads to consider the possibility of describing the

dynamics of the system in some direct probabilistic way, so that the path

of a particle would be described by a stochastic differential equation [Chan-

drasekhar, 1949]. This procedure was initiated by Paul Langevin [Langevin,

1908], bringing on the so–called Langevin equation, that is advantageous

in many respects as it is argued in the following section.

1.2.2. Linear potentials: transport and the Langevin equa-

tion

Single–particle experiments [Greenleaf et al., 2007] have given rise to

a novel paradigm in the study of Brownian particles for the trajectories

of individual particles can be accessed. These techniques have a broad

application, for example in investigations of genetic trafficking [Babcock

et al., 2004] in and out of the cell nucleus; indeed, Figure 1.4 includes a

series of images of the mRNA motion within a living cell [Golding and Cox,

2006]. Einstein’s theory on Brownian motion brings about a probability

density function, from which seeking single particle trajectories might be

a demanding job. Nevertheless, Langevin equations implement Newtonian

dynamics to describe Brownian motion by assuming that the influence of

the surrounding medium can be split up in two parts [Chandrasekhar, 1949]:

a systematic part−ηv̂, the dynamic friction; and a fluctuating part ξ̂(t̂) that

comes from thermal motion—both contributions are considered isotropic—.

Hence, the dynamic equation [Langevin, 1908] for the velocity of a Brownian
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1.2. Transport and diffusion

Figure 1.4 – Obtained from [Golding and Cox, 2006]. Single particle tracking. Motion of

a tagged RNA molecule inside an E. coli cell. (a) Series of epifluorescent images of

the mRNA—bright spot—within the cell—grey oval—. Scale bar = 100 µm. (b) x

and y particle position during the time covered in (a) for axis chosen arbitrarily. (c)

Cloud of particle location corresponding to the data in (a) and (b).
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particle of mass m is

m
dv̂

dt̂
= −ηv̂ + ξ̂(t̂) , (1.8)

and so every individual trajectory of any Brownian particle can be readily

obtained by its integration. The fluctuating force ξ̂(t̂) is characterized com-

pletely by the only non–vanishing cumulant—it has zero mean 〈ξ̂(t̂)〉 = 0

indeed—[Ornstein, 1919],

〈ξ̂i(t̂) ξ̂j(t̂′)〉 = 2kBT̂ η δij δ(t̂− t̂′) , (1.9)

where ξ̂i(t̂) are the Cartesian components of the random force, that are

hence Gaussian distributed and independent for different times. It ought

to be noted that the correlation (1.9) at equal times is dictated by the

fluctuation–dissipation theorem [Callen and Welton, 1951; Kubo, 1957;

Kubo et al., 1991]. The delta–correlation in the temporal domain translates

to white noise for the corresponding power spectral density is independent

of the frequency. In terms of physical implications, the fluctuation dissi-

pation theorem is a consequence of causality, microscopic reversibility and

thermodynamics close to equilibrium.

The stationary velocity distribution function may be obtained from the

Fourier transform of the characteristic function, that is built up by the

moments 〈v̂2n〉. The corresponding stationary velocity distribution of the

free Brownian motion described by Equations (1.8) and (1.9) is

W (v̂) =

√
m

2πkBT̂
exp

(
− mv̂2

2kBT̂

)
, (1.10)

hence it is the Maxwell distribution.

Langevin equations point to a second advantage compared with the

Fokker–Planck approach; incorporating any supplementary force to Equa-

tion (1.8) is effortless indeed. Restricting by now to those forces that derive

from a linear potential—i.e. constant forces, F̂ = −∇V̂ (r̂), V̂ (r̂) ∝ r̂—,

the corresponding Langevin equation is

m
dv̂

dt̂
= −ηv̂ + F̂ + ξ̂(t̂) , (1.11)
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1.2. Transport and diffusion

that for the one dimensional case leads to the following solution

v̂(t̂) = v0 e
−ηt̂/m +

F̂

η
(1− e−ηt̂/m) +

1

m

t̂∫
0

e−η(t̂−t̂′)/m ξ̂(t̂′) dt̂′ . (1.12)

The mean velocity in the stationary limit is thus a constant 〈v̂(t̂)〉 = F̂ /η,

and so the mean displacement is to scale linearly with time 〈∆r̂(t̂)〉 ∝ t̂; this

relation accounts for the normal transport. Back to the general Euclidean

d–space, the velocity along any direction û reads

〈v̂û〉 = 〈v̂〉 · û , (1.13)

and so the mean displacement along û is

〈∆r̂û(t̂)〉 ∝ t̂ . (1.14)

The trajectory to be obtained would display a bias towards the force’s direc-

tion. Together with Equation (1.4), Equation (1.14) makes up the primary

framework of transport and diffusion of Brownian particles. Transport is

lead by deterministic Newtonian dynamics, whereas diffusion is a trace of

the random motion caused by thermal fluctuations as a primer source of

disorder; Figure 1.5 illustrates both effects.

The average energy of a Brownian particle in 1− d is

〈E〉 =
1

2
m 〈[v̂(t̂)]2〉 =

1

2
kBT̂ , (1.15)

where 〈[v̂(t̂)]2〉 is computed from the average steady correlation function of

the velocity, and brackets 〈. . .〉 denote time averages. Equation (1.15) is in-

deed the equipartition law of classical statistical mechanics that motivates

the choice for the white noise’s intensity (1.9).

1.2.3. Anomalous regimes

The phenomena of anomalous or complex transport refers to the dynam-

ics where the diffusive regime—characterized by Equations (1.4) and (1.14)—

is not visible even on time scales that exceed by many orders of magnitude
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Figure 1.5 – Obtained from [Bitlloch et al., 2015]. Transport and diffusion. Snapshot of

an experiment of slug bubble injection after 2.5 seconds of microgravity. Bubbles are

injected from the left side and move towards the right, yet they also disperse around

the jet direction.

the picosecond regime—the time scale of the liquid dynamics, and so of

the random kicks that give rise to Brownian movement—. Transport and

diffusion anomalous regimes [Bouchaud and Georges, 1990] are convention-

ally traced by a non–linear growth of either the mean position or the mean

square displacement. Typically, the mean position exhibits a power–law

〈∆r̂û(t̂)〉 ∝ t̂α ; (1.16)

may it be sub–linear, 0 < α < 1, this behavior is referred to as subtransport.

When exponent α = 1 it renders normal transport—Equation (1.14) is

retrieved indeed—, and α > 1 gives rise to supertransport. Concerning the

mean square displacement, it may exhibit a power–law as well

〈∆r̂2
û(t̂)〉 ∝ t̂β, (1.17)

leading to subdiffusion for β < 1 and to superdiffusion for β > 1, yet it may

as well display particle transport that is nondispersive (β = 0) or coherent

over long time intervals [Lindenberg et al., 2007].

In order to dig into the transport and diffusion anomalies, it is often

employed the mean velocity and diffusion coefficients, which are calculated
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1.2. Transport and diffusion

with the trajectories driven by an ensemble of independent particles,

〈v̂û(t̂)〉 =
〈∆r̂û(t̂)〉

t̂
, D̂û(t̂) =

〈∆r̂2
û(t̂)〉
2t̂

, (1.18)

the brackets indicate an ensemble average, and subindex û labels any di-

rection.

Anomalous diffusion means that the central–limit theorem does not

apply at the time scales of interest; the increments along the particle’s tra-

jectory ∆r̂(t̂) = r̂(t̂ + t̂′) − r̂(t̂′) are not distributed independently, they

manifest persistent correlations that are hidden in the dynamics of meso-

or macroscopic time scales. A simple violation of the central–limit theorem

in some intermediate time window ought to be discerned from the mecha-

nisms leading to steady anomalous diffusion. The first scenario may be due

to slow dynamic processes that are likely to spoil the central–limit theorem

on these scales, yet ultimately Fickian diffusion resumes. This situation

is usually engendered by media with constituents of different sizes or by

soft interactions, e. g., polymers. Hence the mean square displacement

displays a crossover from some short–time motion to long–time diffusion.

Since the crossover can span over several decades due to a series of slow

processes occurring in the medium, fits by power–laws are often a satisfac-

tory description. The effect of different time scale processes in diffusion is

carefully discussed in [Katsumi et al., 2005] supported with experimental

evidences. Transient anomalous diffusion has been reported for the move-

ment of telomeres in the nucleus of mammalian cells [Bronstein et al., 2009],

(Fig. 1.6). In the second case—steady anomalous diffusion—, the corre-

lations in the increments decay slowly and the anomalous regime’s extent

can last arbitrarily by tuning suitable control parameters. Steady subd-

iffusive motion has been observed for intracellular transport processes in

living cells [Caspi et al., 2000; Wachsmuth et al., 2000; Tolić-Nørrelykke

et al., 2004; Golding and Cox, 2006; Weber et al., 2010; Jeon et al., 2011;

Tabei et al., 2013], see Figure 1.4, in cell membranes [Horton et al., 2010],

and in hair–bundle—a mechanosensitive organelle in the ear’s apparatus—

motion [Kozlov et al., 2012], among others; superdiffusion is displayed by

in vitro [Köhler et al., 2011; Douglass et al., 2012] and in vivo [Lau et al.,

17



CHAPTER 1. Introduction

(a)

(b)

(c)

Figure 1.6 – Adapted from [Bronstein et al., 2009]. Transient anomalous diffusion. The

measure of individual trajectories of telomeres in the nucleus of eukaryotic cells brings

about subdiffusion at short times and long time normal diffusion. (a) Projection image

of a 3 − d data. Typical distribution of telomeres—bright spots, labelled by green

fluorescent protein—in the stained nucleus of living human cells—U2OS osteosarcoma

cell line—. (b) 3− d motion of a telomere—bright object—as measured over 2 · 103 s.

(c) Log-log plot of 〈r̂2〉/t̂ vs t̂ of the recorded trajectories. The diffusion is anomalous

up to ≈ 100 s where it changes to normal diffusion.

2003; Bursac et al., 2005; Bruno et al., 2009] experiments involving active

media. Anomalous transport is often prompted by embedding a non–linear

potential to the Langevin equation and hence they are thoroughly discussed

in the following section.

1.3. Non-linear potentials

The motion of non–interacting Brownian particles under a linear po-

tential (F̂ is constant) brings about a well established outcome that is in

agreement with the theory of Einstein on the Brownian movement [Ein-

stein, 1905]. However, may a Brownian particle undergo a non–linear

potential, then not only the Stokes–Einstein relation (1.6) might not be
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fulfilled [Blickle et al., 2007; Sancho and Lacasta, 2010], but neither the

transport (1.14) nor the diffusion (1.4) regular definitions might hold [San-

cho et al., 2004; Lindenberg et al., 2007; Sancho and Lacasta, 2010]. The

origin of all these deviations from Einstein’s results might be ascribed to a

very fundamental process that underlies the phenomena of Brownian move-

ment undergoing any non–linear potential: the barrier crossing by thermal

activation. A non–linear potential accounts for a landscape in which there

are some space locations—barriers—that are energetically unfavorable to

the particles, so they have to deplete a great deal of kinematic energy—

provided partially or entirely by thermal fluctuations—in case they attempt

to move into these positions. Therefore, the presence of energetic barriers

ought to affect the probability density function P (r̂, t̂) [Condamin et al.,

2008]. The spatial arrangement, the length scale, the energy height, and

the time behavior of the barriers might be critical for the transport and

diffusion regimes to emerge as it will be remarked later on. By now, the

elementary process of crossing a barrier for a particle driven by thermal

energy is considered, (Fig. 1.7).

1.3.1. Diffusion over a barrier

The problem of thermal noise–assisted escape of a particle bound in

a potential well was addressed by Hans Kramers [Kramers, 1940; Tucker,

2000] in 1940. Using a diffusion–equation approach, devising a specific

Fokker–Planck equation—now called Kramers–Klein equation—, and as-

suming that the barrier height is much larger than the thermal energy

kBT̂ , the inverse of the escape rate k is—details of the derivation can be

found in [Risken, 1989]—

1

k
=

1

kBT̂

x2∫
x1

e−V̂ (x̂)/kB T̂ dx̂

x3∫
xmin

eV̂ (x̂)/kB T̂ dx̂ . (1.19)

By expanding the potential around xmin and xmax and extending the

integration boundaries in both integrals to ±∞, it is obtained the well–
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x1 xmin x2 xmax x3

∆V̂
V̂

(x̂
)

x̂

Figure 1.7 – Sketch of the potential well for calculating the escape rate of a Brownian

particle.

known Kramers’ escape rate

kK =

√
V̂ ′′(xmin) |V̂ ′′(xmax)|

2π
exp

(
−∆V̂

kBT̂

)
, (1.20)

where V̂ ′′ is the second derivative of the potential evaluated at xmin and

xmax, and ∆V̂ ≡ V̂ (xmax) − V̂ (xmin). The Kramers’ escape rate (1.20)

leads to a characteristic time scale for the particles to surmount a barrier

by thermal fluctuations t̂K = k−1
K .

1.3.2. Periodic landscape

The simplest construction for a landscape of barriers would be to con-

sider a periodic arrangement of equally sized barriers of the same height.

A possible formulation of such a potential might be through trigonometric
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Figure 1.8 – 2 − d periodic potential V̂ (x̂, ŷ) obtained by Eq. (1.21) with V0 = 1 and

λp = 1.

functions,

V̂ (x̂) =
V0

2
cos

(
2πx̂

λp

)
, V̂ (x̂, ŷ) =

V0

2

[
cos

(
2πx̂

λp

)
+ cos

(
2πŷ

λp

)]
,

(1.21)

for one or two dimensions (Fig. 1.8).

May a constant force be applied supplementary, the potential will tilt

slightly towards the force’s direction. When this tilting force is as strong

as F̂c = πV0/λp—called critical force—, then the periodic landscape will

exhibit saddle points instead of the minima. Hence, transport regimes are

expected to arrange according to F̂ /F̂c. To one hand, for F̂ /F̂c � 1 par-

ticles would remain at the minima for large sojourn times until they may

escape by thermal fluctuations exhibiting a characteristic escape time t̂K ,

according to the Kramers’ theory. In this scenario, particles are said to be

in the “locked” state. To the other, when F̂ /F̂c � 1 potential wells dis-

appear, and so particles move freely in a flat landscape; the mean velocity

saturates to the free particle value 〈v̂(t̂)〉 = F̂ /η (1.12)—already discussed
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Figure 1.9 – Obtained from [Morton et al., 2008]. Periodic potentials. Top view scanning

electron micrograph (SEM) of a microfabricated post array. Inset: Cross–sectional

SEM image showing individual posts made of Polydimethylsiloxane.

in Section 1.2.1—leading to the so–called “running” state. There is never-

theless an intermediate regime of forces slightly beneath the critical value

in which the “locked” and “running” states combine, as it has been noticed

for a single colloidal sphere under a periodically modulated optical vortex

trap [Lee and Grier, 2006]. In this conditions, different phenomena, such

as giant diffusion [Colet et al., 1989; Lindner et al., 2001; Reimann et al.,

2001; Lindenberg et al., 2005; Lee and Grier, 2006] and dispersionless trans-

port [Lindenberg et al., 2007], come to light.

Finally, it ought to be enlightened that periodic potentials do have

practical applications. Particularly, they are often implemented in sort-

ing [Sancho et al., 2005] experiments of mesoscopic objects—such as colloids

and cells—through arrays of optical traps [Korda et al., 2002; MacDonald

et al., 2003; Grier, 2003], and DNA molecules [Huang et al., 2004] and blood

cells [Morton et al., 2008] in microfabricated arrays, (Fig. 1.9).

1.3.3. Disorder

After the simple construction of a periodic field has been discussed,

in which potential barriers were aligned periodically along space, the more

complex scenario of disordered media is considered. A disordered landscape

is a potential whose attributes—at least one of them—are not periodic. The
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present section is devoted to the particular case in which neither the space

location nor the barriers’ height follow a regular behavior; potential’s ar-

rangement exhibits instead some degree of randomness which is controlled

through a statistical approach. The generation of disorders is profoundly

reviewed in the book of J. Garćıa-Ojalvo and J. M. Sancho [Garćıa-Ojalvo

and Sancho, 1999].

Disorder generation is most often carried out by a random variate with

a Gaussian distribution, and so it is assumed all along this thesis. May

the disorder be static—dynamic disorders are considered in the following

section—, every random variable has a precise space location and exhibits

some dependency on the surrounding disorder values that is controlled by

the correlation function

〈V̂ (r̂) V̂ (r̂′)〉 = g

(
r̂ − r̂′

λr

)
, (1.22)

λr is the disorder’s correlation length. Figure 1.10 depicts an example of

a Gaussian disorder with a prescribed correlation function. When a disor-

dered potential V̂ (r̂) is incorporated to the Langevin equation

m
dv̂

dt̂
= −ηv̂ + F̂ −∇V̂ (r̂) + ξ̂(t̂) , (1.23)

numerical integration ought to be carried out by specific algorithms that

are detailed in Chapter 7.

The interest in studying Brownian motion in disordered milieus goes

back to the last decades of the XXth century, when emerging experimen-

tal techniques in single–molecule measurements [Greenleaf et al., 2007] and

increasing computer facilities brought about new insights into the mecha-

nisms that drive molecular movements in disordered media. At the time

when those techniques emerged, the main focus was on the effects of the

disorder on the diffusion [De Gennes, 1975; Bässler, 1987; Zwanzig, 1988];

afterward, on the mobility [Dunlap et al., 1996] as well as on both [Par-

ris et al., 1997]. The mentioned examples lay within the framework of

the Einstein’s theory of Brownian motion—the mean square displacement

scales as the square root of time—. However, a more recent upsurge of

23



CHAPTER 1. Introduction

−60
−40

−20
0

20
40

60
x̂ −60

−40

−20

0

20

40

60

ŷ
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interest in the Brownian movement in random landscapes came about due

to the observation of a variety of qualitative anomalies—outcome deviat-

ing from Einstein’s predictions—such as non–diffusive regimes [Bouchaud

and Georges, 1990] and other “abnormal” behaviors [Sancho and Lacasta,

2010]. Several theoretical [Reimann and Eichhorn, 2008; Khoury et al.,

2009; Denisov et al., 2010], numerical [Romero and Sancho, 1998; Khoury

et al., 2009, 2011; Lindenberg et al., 2012; Hanes and Egelhaaf, 2012; Evers

et al., 2013] and experimental studies [Evers et al., 2013; Hanes et al., 2013]

have lately shed light on the foundations of anomalous Brownian movement

in disordered milieus.

From the experimental point of view, spatial random potentials may be

a reliable approach for describing diffusion of adsorbing particles at solid

surfaces [Schunack et al., 2002; Xu et al., 2011; De Wijn, 2011; Skaug et al.,

2013], of proteins along DNA molecules [Slutsky et al., 2004; Goychuk and

Kharchenko, 2014], and trafficking in porous media [Dickson et al., 1996;
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1.3. Non-linear potentials

Figure 1.11 – Obtained from [Skaug et al., 2015]. Disordered solid medium. (a) Scanning

electron microscopy (SEM) image of a porous media. (b) Zoom image of the porous

sample including the illustration of possible fluorescent tracer particles.

Skaug et al., 2015] (Fig. 1.11), among others.

1.3.4. Spatiotemporal disorder

Likewise the values of a spatial disorder change from one point to an-

other, disorder’s components may as well evolve non deterministically in

time. In such case, the process will exhibit a spatiotemporal correlation

function,

〈V̂ (r̂, t̂) V̂ (r̂′, t̂′)〉 = g(r̂ − r̂′, t̂− t̂′) . (1.24)

Gaussian spatiotemporal disorders, or also called colored noises, can be

generated by a linear reaction–diffusion Langevin equation with Gaussian

white noise [Garćıa-Ojalvo et al., 1992]. Details on the algorithm are de-

tailed in Chapter 7.

There is a wealth of physical and biological systems and processes that

involve inherent spatiotemporal disorders. In particular, soft matter sys-

tems comprising objects that exhibit non–thermally driven motion can be

accounted spatiotemporal disorders; among others, the cell cytoplasm [Dix

and Verkman, 2008; Trovato and Tozzini, 2014], the cell membrane [Dix and

Verkman, 2008], and monolayers of colonies of gliding bacteria [Baskaran

and Marchetti, 2009; Peruani et al., 2012] (Fig. 1.12). These systems are
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(a)

(c)

(b)

(d)

Figure 1.12 – Adapted from [Peruani et al., 2012]. Spatiotemporal disorder. Clustering

of SA2407 cells. (a),(b) Myxobacterial cells form moving clusters. Arrows indicate

the direction of motion of the moving clusters; the time interval between snapshots is

15 min. (c),(d) The dynamical clustering process reaches a steady state that strongly

depends on cell density. Typical snapshots corresponding to packing fractions of 0.1

in (c), and 0.24 in (d).
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1.3. Non-linear potentials

Figure 1.13 – Obtained from [Medalia et al., 2002]. Macromolecular crowding. Three–

dimensional reconstruction from a peripherial region of a vitrified Dictyostelium cell

imaged by conventional transmission electron micrograph. It concerns a volume of

815 nm by 870 nm by 97 nm. Actin filaments are displayed in reddish; other macro-

molecular complexes, mostly ribosomes, in green; and membranes in blue.

examples of active matter media, whose dynamics may as well be described

by hydrodynamic equations for a macroscopic field [Basu et al., 2008; Sarkar

and Basu, 2011; Marchetti et al., 2013]. There must be a continuous sup-

ply of energy in order to perpetuate a spatiotemporal disorder; equilibrium

systems do not consume energy continuously, their dynamics is character-

ized by the fluctuation–dissipation theorem and describe time evolution of

fluctuations around the minimum free energy or maximum entropy states

instead. For example, cells and the actin cytoskeleton are driven out of

equilibrium by the ATP field.

Soft–matter media are often subjected to macromolecular crowding,

that is, the exclusion of solvent volume resulting from the presence of a

large number of solute particles, such as macromolecules, organelles, poly-

meric networks, colloids and polymers [Höfling and Franosch, 2013]. The

cell cytoplasm is a ubiquitous example of macromolecular crowding: the to-

tal concentration of macromolecules inside the cell—up to 400 g/l—means

that between the 5% and 40% of the total volume is physically occupied

by these molecules [Ellis and Minton, 2003], (Fig. 1.13). The effects of
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crowded environments on Brownian motion have been explored by means

of fluorescent correlation spectroscopy of inert tracer particles in the cy-

toplasm of living cells [Weiss et al., 2004], and by single particle tracking

experiments of nanometer–sized beads in artificial—dextran and sucrose

solutions—crowded fluids [Weiss, 2013].

1.4. Infradamped and overdamped: dimension-

less approaches

A very primary classification of the problem regarding particles under-

going thermal fluctuations and a supplementary random force concerns the

concomitant viscosity to which they are subjected. A low Reynolds num-

ber means that viscosity overwhelms the particles’ inertia [Purcell, 1977],

and so the acceleration can be disregarded because the velocity equilibrates

quickly [Risken, 1989; Parris et al., 1997; Reimann et al., 2001; Reimann

and Eichhorn, 2008]. This scenario mostly applies to biological [Bickel,

2006] and colloidal [Tierno et al., 2010; Démery et al., 2014] systems. In

the opposite—i.e. low friction—inertial forces ought to be taken into ac-

count [Risken, 1989; Sancho et al., 2004; Lindenberg et al., 2007; Marchenko

and Marchenko, 2012; Marchenko et al., 2014] and thus the velocity can

exhibit a non–Maxwellian distribution; examples of this domain are found

in solid state systems [Adelman and Doll, 1977; Poirier and Plyant, 1996;

Yokoyama et al., 2001; Ho, 2002; Goohpattader et al., 2009; De Wijn, 2011].

Chapters 4 and 5 are devoted respectively to the study of Brownian motion

in each of the damping scenarios. The following sections inquire into the

Langevin equations to rule in every approach when a non–linear random

potential is considered, and how they can be scaled.

1.4.1. Underdamped approach

The scenario of low friction is accounted by the Langevin equation (1.23),

including inertial terms. May the length scale λ0 and the energy scale V0

be employed, a proper choice for the characteristic time scale would be
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1.4. Infradamped and overdamped: dimensionless approaches

τ0 = λ0(m/V0)1/2. Accordingly, the scaled dimensionless space r and time

t are

r =
r̂

λ0
, t =

t̂

τ0
; (1.25)

for the rest of scaled dimensionless physical quantities,

V (r, t) =
V̂ (r, t)

V0
, F =

λ0

V0
F̂ , T =

kBT̂

V0
,

ξ(t) =
λ0

V0
ξ̂(t) , γ =

λ0

(mV0)1/2
η . (1.26)

The resulting scaled underdamped Langevin equation is therefore

dv

dt
= −γv + F −∇V (r, t) + ξ(t) , (1.27)

and the noise’s correlation reads

〈ξi(t) ξj(t′)〉 = 2T γ δij δ(t− t′) . (1.28)

1.4.2. Overdamped approach

The overdamped version of the Langevin equation (1.23) stems from

the consideration that the inertial term can be vanished (dv̂/dt̂ = 0), and

so the stochastic differential equation to govern the trajectory of the Brow-

nian particle is—may a multiplicative noise be considered, in which the

temperature could depend upon space, this assumption would fail—

ηv̂ = F̂ −∇V̂ (r̂, t̂) + ξ̂(t̂) . (1.29)

The former scaled dimensionless physical quantities (1.25) and (1.26) hold,

yet the friction parameter η is not defined. May the time scale be τ0 =

ηλ2
0/V0, the scaled overdamped Langevin equation is

v = F −∇V (r, t) + ξ(t) . (1.30)

The fluctuation–dissipation theorem then reads

〈ξi(t) ξj(t)〉 = 2T δij δ(t− t′) . (1.31)
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It ought to be enlightened that the main difference between the overdamped

and the underdamped approach resides in the scaling times, τ0 = ηλ2
0/V0

for the overdamped, τ0 = λ0(m/V0)1/2 for the underdamped. Hence, in

order to compare the outcome of both approaches, time ought to be ad-

justed. The relationship between the scaled time in the underdamped and

the overdamped approaches is thus mandatory. May the underdamped

time scale τ0 = λ0(m/V0)1/2 be employed to scale Eq. (1.29), the result-

ing scaled Langevin equation would be—subindexes are employed for the

scaled quantities that differ from the ones in Eq. (1.30)—

vu =
1

γ
[F −∇V (r, tu) + ξ(tu)] , (1.32)

and the white noise correlation would be equivalent to (1.28). Therefore,

bearing in mind that the scaled space is the same for both approaches,

tu
t

= γ , v = γ vu , D = γ Du , (1.33)

where the diffusion coefficients are computed according to (1.18). Briefly,

time ought to be adjusted by a factor γ—the scaled friction parameter—

in order to compare the results to be obtained with the proposed scaled

Langevin equations (1.27) and (1.30).

Up to now, the key theoretical concepts related to the subject of the

present thesis have been discussed. To end this first part, the following

Chapter (Chap. 2) states the line of argument of the thesis, and summarizes

the leading results and conclusions of each case of study considered within

the framework here detailed.
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CHAPTER 2

The thesis

The present thesis aims at exploring the emerging phenomena regarding

transport and diffusion to exhibit non–interacting Brownian particles being

pulled by an external constant force in a disordered medium. The method

of choice are numerical simulations of the classical Langevin equation in the

overdamped and in the underdamped limit. In order to carry out a robust

study, the scaled stochastic differential equations are considered, so as to

attain widespread results that may accommodate to a myriad of specific

circumstances. It is of particular interest to find out a reduced set of those

leading parameters to rule the physical behavior of the system. May the

chief parameters be identified, they are tuned so as to survey their impact

on the transport and diffusion features.

To grasp the influence of the disorder’s attributes—either spatial or

temporal—on Brownian motion is the main focus of the thesis. Further, the

outcome sheds light into the physical foundations of the anomalous trans-

port and diffusion of non–interacting thermally driven particles on disor-

dered biased landscapes. Complementarily, some refinements are made on

the models and algorithms employed to numerically simulate the stochastic

differential equations concerning each scenario.
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CHAPTER 2. The thesis

2.1. Summary, results and conclusions

The scheme of the second part of this thesis is arranged in different

chapters, each devoted to a particular case of study. The main results ob-

tained and the leading conclusions are also summarized in the following

guide to the thesis.

2.1.1. Brownian Motion in a periodic potential: from un-

derdamping to overdamping

The succeeding Chapter (Chap. 3) comprises a brief study of Brow-

nian motion in a periodic potential concerning different external constant

pulling forces and friction coefficients. It constitutes a preliminary stage

to the forthcoming chapters (Chapters 4 to 6). The mean velocity and

the diffusion coefficients are computed so as to interpret the leading trans-

port features under changing conditions, either concerning the damping—

overdamped/underdamped—or the external force—compared to the criti-

cal force—. According to the attained outcome, some hypothesis are con-

jectured for the subsequent explorations in disordered media: transport

anomalies—if any—would be only of subtransport type (Sec. 1.2.3) when

the disorder is static, enhanced diffusion and superdiffusion are likely to be

reached, and anomalous transport and diffusion regimes might be transient

in dynamic landscapes.

2.1.2. Transport and diffusion of overdamped Brownian par-

ticles in random static potentials

Chapter 4 is devoted to the description of the motion of overdamped

Brownian particles in a totally disordered static potential and subject to

a constant external force. It presents a numerical study of the anomalies

in transport and diffusion in one and in two dimensions. The anomalous
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Figure 2.1 – Left panel: Transport—top—and diffusion—bottom—exponents for different

distributions of disorder; a Gaussian correlation in red, an exponential in gold, and

two power–laws of different exponents in green and blue. Wide horizontal colored

bars indicate each dynamical regime, subtransport and subdiffusion in pale colors,

superdiffusion in bright colors, uncertain diffusion in patterned bars, and normal

transport and diffusion in empty bars. Right panel: Particle positions with respect

to their initial conditions at time t = 1000 (except for panel (D) that t = 250) for

different forces F = 0.6 (A), 1.5 (B), 2.0 (C), 3.0 (D). Inset: Zoom-in of the cloud of

particle positions for the case (A).

regimes are characterized by the time exponents that exhibit the statistical

moments of the ensemble of particle trajectories, (Fig. 2.1)–left panel; they

are also reviewed through the particle displacement distributions and the

clouds of particles—the ensemble’s particle positions at different times—,

(Fig. 2.1)–right panel.

On the one hand, simulations in 1 − d static random potentials of dif-

ferent spatial correlations give rise to anomalous transport and diffusion

regimes. These anomalies span a range of forces that depends upon the po-

tential’s roughness, that can be further associated with an effective corre-

lation length. A larger effective correlation length corresponds to smoother

portraits—i.e. with shallower wells—leading to a recovery of regular trans-

port and diffusion at lower force strengths. Indeed, a power–law correlation

function brings about a smooth potential in which regular Brownian motion

is resumed at weak forces, see Figure 2.1–left panel. On the other, simula-
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tions in 2 − d spaces give rise to a novel representation of the results that

is useful to dig into the physical causes of each anomalous regime. Figure

2.1—to the right—shows the cloud of particles for different pulling forces so

that each panel stands for a particular type of anomaly: subtransport and

subdiffusion (A), normal transport and superdiffusion (B), normal trans-

port and undefined diffusion (C), and normal transport and diffusion (D).

This case of study, with the mentioned results and supplementary material,

leads to a published paper entitled “Transport and diffusion of overdamped

Brownian particles in random potentials” [Suñé et al., 2013].

This case of study bears out that the length scale of the roughness of

the potentials is an essential parameter in the understanding of the effect of

disorder in anomalous regimes. Besides, the shape of the particle density

histograms and the particle clouds—the latter only in 2 − d—have been

proved to be related to the transport and diffusion anomalies.

2.1.3. Transport and diffusion of underdamped Brownian

particles in random static potentials

The analogous scenario for Brownian movement in Chapter 4, yet in the

underdamped limit, is handled in Chapter 5. The outcome compares to the

overdamped regime and to the results for a periodic potential. Numerical

results for the transport and diffusion in one–dimensional landscapes ex-

hibit anomalous regimes—subtransport, subdiffusion, superdiffusion, etc.—

(Fig. 2.2)–left panel.

The observed anomalous transport and diffusion are related to the

time dependent probability distributions for the displacements—as for the

overdamped—and for the velocities of the particles, that are useless in the

overdamped regime because particle’s velocities tend to thermalize instan-

taneously. The instantaneous velocity distributions of underdamped Brow-

nian particles disclose appealing properties of the system. For example,

the velocity distribution (Fig. 2.2)–right panel corresponding to a superdif-

fusive regime exhibits two Mawxell distributions centered respectively at
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Figure 2.2 – Left panel: Transport—top—and diffusion—bottom—exponents for different

friction coefficients. Broken lines correspond to the uncertain diffusion regime. Right

panel: Velocity histogram at a fixed time for underdamped Brownian particles (γ =

0.1) subject to an external force F = 0.35 in a random potential. A double Gaussian

distribution is also included, with the requirement that the left Gaussian in each case

should correspond to the Maxwellian distribution centered at 0, and with dispersion

equal to the temperature (T = 0.2).

the deterministic velocities corresponding to the particles at rest—locked

state—and to the particles being propelled at the velocity of the stationary

limit driven by the pulling and the drag forces—running state—. More de-

tailed results and discussion regarding the underdamped approach is carried

out in the publication “Transport and diffusion of underdamped Brownian

particles in random potentials” [Suñé et al., 2014].

The main outcome of this study is that anomalous transport an diffu-

sion regimes occur no matter the damping, yet they come about at higher

forces for high friction conditions—overdamped—than when low friction

is instead considered—underdamped case—. The latter scenario is much

more sensitive to the external applied force’s strength, and the leading

anomalous regimes are more vigorous, since exponents exhibit a greater

deviation from one. In addition, the study of the distribution of instanta-

neous velocities renders a novel insight into the physical basis of anomalous
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Figure 2.3 – Left panel: Portion of a random landscape made up by obstacles of char-

acteristic size 5 and density 0.6. Right panel: Steady diffusion coefficients in the

parallel direction to the external force against the density of obstacles in the medium.

Smoothed curves are best fits to clarify the trends.

behavior.

2.1.4. Brownian motion on random dynamical landscapes

The goal of Chapter 6 is to model overdamped Brownian motion of

tracer particles in densely packed random landscapes of moving deformable

obstacles—spatiotemporal disorder—. Tracer particles cannot surmount

the landscape’s obstacles, which move randomly, assemble, and dissociate

with slower dynamics compared to Brownian motion, (Fig. 2.3)–left panel.

A variety of simulation results for the velocity and diffusion are submitted.

Diffusion coefficients above that of free diffusion are attained, (Fig.

2.3)–right panel. It is a trace of transient superdiffusion that comes about at

short time scales. Indeed, it has been noticed that anomalous transport and

diffusion regimes last as long as the observation—simulation—time reaches

the disorder’s characteristic time. This outcome belongs to the published

work entitled “Brownian motion on random dynamical landscapes” [Suñé
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et al., 2016].

The leading attainment of this review is the settlement of an effective

set of quantities—the characteristic time scale, the width, and the concen-

tration of obstacles—to portray the transport and diffusion of Brownian

particles in a landscape made up by unsurmountable obstacles. Each of

them has a well established effect on the system. The characteristic time

scale constrains the time span of transient anomalies, and thus the sub-

sequent steady transport and diffusion coefficients, (Fig. 2.3)–right panel.

For a given density of obstacles, both trafficking and diffusion are favored

by wider and therefore fewer obstacles, (Fig. 2.3)–right panel. To end, a

high density of obstacles hinders both transport and dispersion.

2.1.5. Methodology

Numerical techniques and algorithms to carry out the numerical simula-

tions referred throughout the thesis are detailed in Chapter 7. It reports a

novel straightforward method to build Gaussian potential landscapes with

arbitrary spatial correlation functions and the only requirement of isotropy.

The method has the particularity that, although it uses the Fourier space,

all its constraints and information are in real space. Figure 2.4 depicts the

generation of random potentials with different correlation functions em-

ploying the numerical recipe detailed in the review “On generating random

potentials” [Suñé et al., 2012]. Furthermore, a refreshing architecture for

simulating random dynamic obstacles is also covered [Suñé et al., 2016].

The novelty of the numerical procedure developed to generate disorder

potentials [Suñé et al., 2012] is that any statistical correlation—isotropic

and periodic in the finite simulation domain—can be employed. All con-

straints can be inferred to real space, and thus Fourier space is left as a

mere stage in the process. With regard to the method to construct a dy-

namic disordered landscape of obstacles of equal height [Suñé et al., 2016],

the average obstacle width and time scales are well controlled quantities,

and the density of obstacles is constant in time. This landscape may ac-
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count for a soft matter or liquid environment in which large obstacles move

slowly leading to crowding effects; it also constitutes a novel approach to

the macroscopic dynamics exhibited by active matter media.

2.1.6. Spare investigations

Skills and proceedings carried out throughout the former chapters may

be useful to attain a description of specific cases of study. Chapter 8 re-

ports two examples of physical systems to be faced within the framework

of the thesis. The first one surveys the physics of particles undergoing

thermal fluctuations, changing viscosities, and confinement to quasi 2 − d
layers—also called interfaces—. The second is a study of Brownian motors;

a two–dimensional ratchet model for the kinesin motor KIF1A is employed

to assess the transport properties of the motor when it travels along micro-

tubules that comprise defects.
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Dissertation on the investigations

39





CHAPTER 3

Brownian motion in a periodic potential: from

underdamping to overdamping

The second part of the thesis begins with a short review on the dy-

namics of Brownian particles in a tilted periodic potential, a system that

accounts for several physical problems; superionic conductors [Fulde et al.,

1975], the damped pendulum with torque [Risken, 1989], Josephson junc-

tions [Longobardi et al., 2011], among others. This framework constitutes

a basic nonequilibrium model of statistical physics that entails a rich mis-

cellany of transport and diffusion phenomena, such as enhanced and giant

diffusion [Lindner et al., 2001; Reimann et al., 2001, 2002; Lindenberg et al.,

2005; Lee and Grier, 2006; Khoury et al., 2009; Lindner and Sokolov, 2016],

orthogonal velocity emergence with respect the driving force [MacDonald

et al., 2003; Lacasta et al., 2005, 2006], and dispersionless anomalous trans-

port [Lindenberg et al., 2007]. Further, such scenario is worthy of consid-

eration still nowadays [Lindner and Sokolov, 2016].

The purpose of this Chapter is to briefly discuss the transport and dif-

fusion features within this simple milieu, so that it brings some clues about

the plausible hypothesis and the parameter choices to consider when ex-
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overdamping

tending the problem to the disordered scenario. The very initial hypothesis

is that, may some deviations from the free Brownian motion occur due to

the interference with periodic arranged barriers of equal size, then, a disor-

dered display of this barriers—whose height can be random—is expected to

increase these deviations, as well as it would bring about novel phenomena

of anomalous transport and diffusion.

3.1. Setting

A conceivable formulation of a periodic landscape of equally sized bar-

riers of the same height might be through trigonometric functions (Sec.

1.3.2). May the potential’s length scale be employed to carry out the scal-

ing transformation (λ0 = λp, hence λ = 1), the periodic potential in two

dimensions reads

V (x, y) = cos(x) + cos(y) , (3.1)

where space isotropy has been assumed. Compared to (1.21), it should

be noticed that constants 1/2 and 2π are included into the energy V0 and

length λp scales respectively.

Langevin dynamics for Brownian motion under a periodic potential (3.1)

and a constant tilting force F are embodied in the following expression—

quantities are scaled according to the transformations in Section 1.4.1—,

dvw
dt

= −γvw −
∂V (r)

∂rw
+ ξ(t) , w = x, y , (3.2)

where the potential reads

V (rw) = cos(rw)− Fw · rw , w = x, y . (3.3)

In one dimension, it looks like an inclined oscillatory function whose bar-

riers tend to decrease as it is being tilted by a stronger constant external

force (Fig. 3.1). Hence, there is a critical force at which the potential
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Figure 3.1 – One dimension inclined periodic potential by different force strengths (3.3).

minima transform into inflection points—or saddle points when a 2 − d

potential is considered—

Fc = 1 . (3.4)

Forces beyond the critical F > Fc lead to a monotonically decreasing po-

tential (F = 1.6 in Figure 3.1).

3.2. Overview of transport and diffusion

May the 1−d space be considered, the mean position and the dispersion

trajectories usually display a long–term linear behavior (Fig. 3.2)—there

is but one exception further analyzed—. Within this scenario of normal

transport and diffusion, it makes sense to determine the steady mean ve-

locity and the diffusion coefficient (1.18). Thus, Figure 3.3 succeeds to

display most of the transport and diffusive features.

Extension to higher dimensions might lead to a richer phenomenology.

The following sections are devoted to the analysis of the most meaningful

transport and diffusion features based on the 1− d outcome (Fig. 3.3), yet

some phenomena inherent to the bidimensional scenario are also discussed.
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periodic potential computed from numerical simulations of Langevin dynamics (3.2)

for 1000 particles distributed uniformly over 20000λ (λ = λp/λ0 = 1). Initial veloci-

ties are distributed according to the Maxwell distribution (Sec. 1.2.2), with temper-
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Figure 3.3 – Mean velocity—left—and diffusion—right—of Brownian movement in a 1−d
periodic potential averaged over the last 1000 units of time for the mean position and

the dispersion trajectories (Fig. 3.2). Dashed lines account for the analytical pre-

dictions for the particle current (3.6) and the diffusion coefficient (3.11) of Brownian

particles in the overdamped regime under a tilted periodic potential.

44



3.2. Overview of transport and diffusion

3.2.1. Transport and symmetry breaking

Transport’s features displayed in Figure 3.3 are unremarkable. The free

Brownian motion limit is attained at very low friction conditions,

γ〈vu〉 = F . (3.5)

The asymptotic mean velocity decreases when dissipation increases—and

so more kinematic energy is dissipated—until it eventually reaches the limit

of overdamped Brownian particles under a non–linear potential [Reimann

et al., 2001, 2002]. There is an exact analytical expression for the particle

current within this limit, that can then be derived by computing the mo-

ments of the first passage times [Reimann et al., 2001, 2002], and coincides

with the Stratonovich’s expression [Stratonovich, 1958; Kuznetsov et al.,

1965],

〈v〉 ≡ 〈ẋ〉 = lim
t→∞

〈x(t)〉
t

=
1− e−LF/T∫ x0+L
x0

dx
L I±(x)

, (3.6)

where L is the period of the periodic potential (L = 2π for the potential

considered in (3.1)),

I±(x) ≡
L∫

0

dz

D0
exp{±[V (x)− V (x∓ z)]/T} , (3.7)

z is an auxiliary scaled space variable. D0 is the scaled diffusion coefficient

for free Brownian particles—in absence of any external field—(1.6), that,

since it is assumed the overdamped scaling approach—see Section 1.4.2—,

D̂0 =
kBT

η
= T

λ2
0

τ0
= D0

λ2
0

τ0
, (3.8)

and so it is

D0 = T . (3.9)

It ought to be noted that 〈vu〉—and Du for the diffusion—to which the

vertical axis of Figure 3.3 refer, involve the underdamped time scale (Sec.

1.4.1), hence the outcome of the simulations compare to the analytical ex-

pressions (3.6)—(3.11) for the diffusion—through a factor γ (Sec. 1.4.2).
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Transport in two dimensions

Recently developed experimental techniques, such as optical tweezers

and micro–assembling techniques, have promoted the implementation of

microfluidic devices capable to separate mixtures of micro–sized particles—

and thus subject to thermal fluctuations—according to their size. These

devices consist of periodic arrays of obstacles, either optical traps [Ko-

rda et al., 2002; MacDonald et al., 2003; Grier, 2003] or microfabricated

posts [Huang et al., 2004; Morton et al., 2008], the dynamics within which

it can be numerically simulated by Langevin equations comprising 2−d pe-

riodic potential energy landscapes [Lacasta et al., 2005, 2006; Sancho and

Lacasta, 2010]. Besides, analytical predictions for the dependence of the

angle between the direction of motion, and the driving force, on a number

of model parameters, have also been provided [Gleeson et al., 2006]. The

underlying mechanism for sorting micro–sized particles is concomitant to

the geometry of the system and the laminar flow induced by a drifting force.

Indeed, a perpendicular component of the mean velocity emerges respect

to the driving force, leading to a symmetry break. Nonetheless, it ought to

be stressed that the potential and thermal fluctuations are completely sym-

metric, so that the phenomenon is not associated with any kind of ratchet

effect.

3.2.2. Enhanced and giant diffusion

Diffusion attains the well–known limit of free particles, in the regime

of a very low friction, and of overdamped Brownian motion submitted to

a non–linear field, at a high dissipation, (Fig. 3.3). For the free–particle

limit, the Stokes–Einstein relation (1.6) holds

γDu = T . (3.10)

On the other hand, the analytical prediction for the effective diffusion co-

efficient for the overdamped Brownian motion in a tilted periodic potential

is [Reimann et al., 2001, 2002]

D = D0

∫ x0+L
x0

dx
L I±(x) I+(x) I−(x)[∫ x0+L
x0

dx
L I±(x)

]3 , (3.11)

46



3.2. Overview of transport and diffusion

where

I+(x) ≡ 1

D0
eV (x)/T

x∫
x−L

dy e−V (y)/T , (3.12)

I−(x) ≡ 1

D0
e−V (x)/T

x+L∫
x

dy eV (y)/T , (3.13)

y is an auxiliary scaled space variable.

In the overdamped regime, the diffusion coefficient exhibits a maxi-

mum around the critical force. This maximum diffusion is well above the

Stokes–Einstein relation for free Brownian motion (3.10), yet it is far from

being giant [Reimann et al., 2001; Lee and Grier, 2006]. Results in Figure

3.3 reveal a pretty good agreement between numerical simulations and the

analytical prediction (3.11). The diffusion coefficient in the underdamped

regime does nonetheless greatly exceeds the Stokes–Einstein relation, lead-

ing to the giant diffusion phenomenon, that has been analytically demon-

strated [Reimann et al., 2001], experimentally observed [Lee and Grier,

2006], and numerically tested [Sancho and Lacasta, 2010]. Obtaining a

greater diffusion coefficient than the free–particles’ outcome is a remark-

able feature, since no other source of randomness is introduced apart from

thermal fluctuations.

The underlying physical motivation for the diffusion coefficient to ex-

ceed the thermal fluctuations’ dispersion without considering any supple-

mentary source of randomness is the bimodal distribution of the particles

in the locked state, in which particles oscillate stochastically around the po-

tential minima, and in the running state, in which the gain from potential

energy balances the dissipative losses. This behavior has been observed

experimentally for atoms and molecules diffusing on surfaces [Senft and

Ehrlich, 1995; Schunack et al., 2002]. The literature on this subject often

invokes Lévy walks or flights [Luedtke and Landman, 1999; Oh et al., 2002;

Shlesinger et al., 1993].
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The maximum dispersion in the overdamped regime is located at the

critical force because it leads to the most favorable scenario for the ensem-

ble of particles to split into the former two states. For lower forces, particles

hardly scape from potential minima—particle current is nearly zero (Fig.

3.3)—; whereas particles tend to glide uninterruptedly over the landscape

when the tilting force transforms the potential’s barriers into inclined sec-

tions. The maximum’s height respect to the free–particle diffusion scales

with a negative power of the temperature [Colet et al., 1989; Lindner et al.,

2001; Reimann et al., 2001; Lindenberg et al., 2005], and so it grows when

T decreases. However, the behavior in the underdamped scenario is slightly

different. The peak’s coordinates and its height depend on the temperature,

friction and external force. It should be gathered (Fig. 3.3) that dispersion

is favored by a low energy dissipation and a landscape of considerably big

barriers (F < Fc), rather than by an otherwise flatter landscape (F ≈ Fc)

in which particles travel under a higher friction.

3.2.3. Dispersionless

A force below that of critical (F = 0.5) (Fig. 3.2)–right, in the low fric-

tion scenario (γ = 0.1), brings about an anomalous regime of diffusion de-

creasing linearly with time, yet with finite velocity of about that of free par-

ticles. This is the so–called dispersionless regime [Lindenberg et al., 2007],

in which particle transport is essentially nondispersive or coherent over

long time intervals at an average velocity that approaches v = F/γ. The

associated distribution of the particle positions (1.1) is far from Gaussian–

like (1.2); it exhibits an exponential distribution instead [Lindenberg et al.,

2007],

P (le, t) =
1

lK
exp

(
le − lt
lK

)
, (3.14)

due to the well–known exponential distribution of first exit times to es-

cape from potential wells (Sec. 1.3.1), and assuming that particles emerge

with velocities narrowly distributed about v ≈ F/γ . lK ≡ (F/γ)tK ,

where tK is the mean exit time—given by the Kramers’ escape rate (1.20)–;

le ≡ (F/γ)te, where te is the actual exit time from a potential well; and
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lt ≡ (F/γ)t is the distance the distribution will have travelled at time t

undistorted. The spatial distribution of particles (3.14) ought to resume

asymptotically to the Gaussian (1.2), and so the dispersionless regime would

be transient. However, it may take a long time to do so, so long that it

would not be reached in some experiments and numerical simulations.

3.2.4. About the simulations

A comment on the time integration step is worthy of consideration, for

its choice is critical for the numerical simulation of (3.2). When dissipation

is low, there likely are particles in the distribution that move at high speeds,

so that they may travel over a distance greater than the potential’s length

scale λ during the time integration step. These particles would artificially

explore the potential landscape. In order to avoid this spurious behavior,

the integration time step must be chosen small—yet, how much?—. An

extremely tinny time step might prevent this bug, yet it would involve a

great computational effort. In order to set up a reasonable and reasoned

time step, it ought to be taken into account the limiting scenario of a large

external force in which the features of the potential are essentially unseen

by the particle. The velocity is hence v = F/γ, and the characteristic time

to explore a distance λ with this velocity is λ times (F/γ)−1. Assuming that

in the presence of the potential the velocity of a particle will hardly exceed

v = F/γ, it should be required the integration time step to be shorter than

λ · (F/γ)−1, for example, 100 times

∆t ≤ 0.01λ
γ

F
. (3.15)

This condition for the integration time step is employed throughout all the

simulations within the underdamped approach (Chap. 5).

3.3. Conjectures

According to the phenomenology that have been reviewed for Brow-

nian particles in a tilted periodic potential at a rather low temperature,
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overdamping

the following hypotheses might be guessed at when Brownian motion goes

through disordered media:

There may be no mechanisms to enhance the mean velocity in an

isotropic static disorder. Hence, transport anomalies—if any—would

be of sublinear type (Sec. 1.2.3); the maximum particle drift ought

to be that of free Brownian motion.

The diffusion peak may be further boosted—a phenomenon already

described and observed for a weak disorder [Reimann and Eichhorn,

2008]—; besides, anomalous superdiffusion is likely to happen.

Anomalous transport and diffusion regimes ought to resume to the

normal behavior at the time scale of a putative dynamic disorder

because every particle is to be promoted to the running state, at least

once, as soon as the potential configuration is completely changed.

The former conjectures prompt the investigations submitted in the fol-

lowing chapters. The next one deals with overdamped Brownian particles

in a totally random static potential.
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CHAPTER 4

Transport and diffusion of overdamped Brownian particles in

random potentials

The scope of this Chapter is the study of motion of overdamped Brow-

nian particles in a totally disordered potential landscape (Sec. 1.3.3) and

subject to a constant external force [Denisov et al., 2010; Suñé et al., 2013].

Overdamped Brownian motion is ubiquitous in biophysics [Weiss et al.,

2004; Tolić-Nørrelykke et al., 2004; Bickel, 2006], where the Reynolds num-

ber is low, and as a result acceleration plays no role because the velocity

equilibrates quickly. However, due to the landscape being static, the present

description applies to the transport and diffusion of particles in disordered

solids [Schunack et al., 2002; Xu et al., 2011; De Wijn, 2011]. “Totally

disordered” means that there is no systematic part in the potential other

than the constant force—responsible for the transport—, that contrasts

with potentials with some periodic component [Khoury et al., 2009, 2011;

Lindenberg et al., 2012], (Chap. 3).

Concerning 1 − d systems, anomalous regimes are observed: subtrans-

port, subdiffusion and superdiffusion. Not only they might be characterized

by the time exponents, as in Section 1.2.3 it is already described, but they
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random potentials

are also likely to match to specific particle density portraits. Besides, the

transport and diffusion attributes are revealed to rely on the disordered

potential’s statistical settings. For what it concerns the 2− d space, it al-

lows the discussion along different directions separately. Mixed anomalies

are then feasible, for example, subdiffusion in the direction perpendicular

to the force and superdiffusion in the parallel direction may coexist. The

2 − d exploration enables the outcome arrangement in clouds of particle

positions at different times, that constitutes a novel and complementary

description of the transport and diffusion attributes, together with the al-

ready employed time exponents and the particle displacement histograms.

4.1. Anomalous exponents in one dimension: im-

pact of the potential correlation function

Recent studies [Khoury et al., 2011] prove that the potential’s spatial

length scale λ, a putative constant force F , and the temperature T influ-

ence the transport and diffusion anomalies of Brownian particles in various

pronounced ways. It ought to be remarked that all the physical quantities

to be employed throughout this Chapter are dimensionless (Sec. 1.4.2).

4.1.1. Correlation functions

Considering the overdamped Brownian movement in the 1 − d scaled

space undergoing a disordered field, the first goal to be attained hereinafter

is to inquire into the effect that the functionality of the disorder’s correla-

tion function g(|x|/λ) (Sec. 1.3.3) may have on the transport and diffusion

phenomena. To follow up this question, three very different types of disor-

dered potentials V (x), with correlation 〈V (x) V (x′)〉 = g(|x − x′|/λ), are

considered:

The well known normal or Gaussian form,

g(|x− x′|/λ) =
1

2
e−

(x−x′)2

2λ2 , (4.1)
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Figure 4.1 – Correlation functions. Gaussian (4.1) in continuous, double–sided exponen-

tial (4.2) in dashed, and power–law (4.4) in dotted lines (λ = 1, ε = 2/3).

which is used here as the reference scenario because it has a well

defined characteristic short spatial length scale λ and no singularity

in the entire domain (Fig. 4.1).

The double–sided exponential correlation,

g(|x− x′|/λ) =
1

2
e−
|x−x′|
λ , (4.2)

whose underlying force Fr = −dV/dx exhibits a singularity at the

origin in the form of a delta correlation δ(x − x′), much like spatial

white noise, see Chapter 7 for further details,

〈Fr(x) Fr(x
′)〉 = −d

2g(|x− x′|)
dx2

=
1

λ2
h(|x− x′|)

=
1

λ2

[
δ(x− x′)− 1

2
e−
|x−x′|
λ

]
.

(4.3)

Figure 4.2 plots the force correlation (4.3) to derive from a double–

sided exponential correlation (4.2).

A correlation function with a power–law tail,

g(|x− x′|/λ) =
1

2

(
1 +

(x− x′)2

λ2

)−ε/2
. (4.4)
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Figure 4.2 – Random force correlation function (4.3) of a random potential with double–

sided exponential correlation (4.2). The arrow accounts for the Dirac-delta function.

The decay of the tail is determined by the exponent ε and by a short

spatial length scale λ (Fig. 4.3).

4.1.2. Setting

The hereinafter outcome stems from the description of the Brownian

motion through stochastic dynamics. Mathematical details concerning

stochastic dynamics may be sought in Section 1.3.3. Langevin equations

v = F −∇V (r, t) + ξ(t) , (4.5)

with

〈ξi(t) ξj(t′)〉 = 2T δij δ(t− t′) , (4.6)

are numerically integrated following a second order Heun algorithm for or-

dinary stochastic differential equations [Garćıa-Ojalvo and Sancho, 1999;

Toral and Colet, 2014], (Chap. 7). The random potential is generated fol-

lowing the explicit procedures described in [Suñé et al., 2012] and in Chap-

ter 7.
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Figure 4.3 – Power–law correlation function (4.4) with different decay tails ε = 1/3—

continuous—and ε = 2/3—dotted—; (λ = 1).

One hundred particles are used in each realization of 100 disordered

potentials, so the statistical averages are over a 10000 event population.

Particles are initially distributed uniformly along a large region of the po-

tential landscape of size 20000λ. Therefore each particle of the 100 in a

given potential is likely to experience a different and independent portion

of the potential. The potential landscape covers N = 223 lattice points

with periodic boundary conditions and a lattice constant ∆ = 0.1. Other

parameter values are T = 0.1 and disorder correlation length λ = 1. In

order to explore different anomalous regimes, the force F is tuned as a

control parameter.

Analogously to Section 3.2.4, the time integration step ∆t should be

chosen so that in each integration step particles do not move over a dis-

tance greater than that associated to the roughness of the potential. That

is, ∆t� λrgh/〈v〉, where λrgh is the length scale of the disorder’s roughness.

In the overdamped approach, the asymptotic mean velocity for particles un-

der large external forces obeys the relation 〈v〉 ∝ F , then ∆t=0.1 may be

settled for the Gaussian and the power–law correlated potentials. However,

a shorter time step ∆t=0.01 is required for the potential with a double–
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random potentials

sided exponential correlation because of the smaller roughness length scale

associated with the singularity exhibited by its first derivative at the ori-

gin (4.3), plotted in Figure 4.2. Further in Section 4.1.5, this point will be

retrieved to a deeper analysis.

In addition to this set of reference parameters, other values are explored

as well: T = 0.05, ∆ = 0.05 (with N = 224), and ∆t=0.005 and 0.001. No

qualitative changes have been noted in the outcome, yet remarkable quan-

titative differences emerge, especially when changing ∆ and ∆t for the

double–sided exponential correlation. This discussion will be addressed in

detail further (Sec. 4.1.5).

4.1.3. Velocity and diffusion trajectories

Transport and diffusion anomalies are explored through the statistical

averages, specifically through first moment and second cumulant of the tra-

jectories x(t)—already described in Section 1.2.3—. From which it can be

obtained respectively the mean velocity, and the diffusion coefficient.

To begin with, the time unfolding of the mean velocity exhibited by

overdamped particles under thermal fluctuations and a Gaussian disor-

der (4.1) is shown in a log-log plot in Figure 4.4 for different values of

the external force. Time independent curves, that is, normal behavior, are

reached only at the limit of strong forces. Nonetheless, for weak forces

straight decreasing trajectories unfold instead. This is a convincing evi-

dence of the existence of anomalous subtransport.

Regarding the diffusion coefficient (Fig. 4.5), anomalous regimes are

also displayed. Indeed, D(t) decreases with a power of time lower than one

either in the absence of a pulling force or being it weak; thus exhibiting

subdiffusion. However, as the strength of the pulling force increases, the

diffusion trajectories switch their trend; for the intermediate forces D(t)

increases in time with an exponent greater than one, leading to superdiffu-

sion anomaly. Eventually, the normal diffusion regime is reached for high

56



4.1. Anomalous exponents in one dimension: impact of the potential correlation

function

10−4

10−3

10−2

10−1

100

101

101 102 103 104 105

〈v
(t

)〉

t

F = 0.2
F = 0.6
F = 1.0
F = 1.4
F = 1.8
F = 2.6
F = 3.0
F = 3.5

Figure 4.4 – Temporal evolution of the velocity. Simulation of the Langevin equation

with a random potential with Gaussian correlation (4.1).

forces, in which the diffusion trajectories D(t) remain constant. It ought to

be noted the occurrence of a fourth special regime though. In this regime,

detected for forces F = 2.6 and F = 3.0, diffusion does not reach a steady

behavior, and thus it might be referred to as an uncertain regime, yet trans-

port is normal. This discussion concerning the uncertain regime is to be

continued later on (Sec. 4.1.6).

4.1.4. Transport and diffusion exponents

As it has already been stated, most trajectories in Figures 4.4 and 4.5

attain to a certain power of time. Therefore, differences among distinct

trajectories may be accounted through their exponents, α (1.16) for the

transport and β (1.17) for the diffusion, to be obtained by fitting a power–

law function of time to the statistical moments 〈x(t)〉 and 〈∆x2(t)〉. β can

be also evaluated from the expression

β = log10

[
∆x2(10t)

∆x2(t)

]
, (4.7)

which gives a series of β values that might converge to a limit. Table 4.1 in-

cludes the transport and diffusion coefficients exhibited by the trajectories

57



CHAPTER 4. Transport and diffusion of overdamped Brownian particles in

random potentials

10−4

10−3

10−2

10−1

100

101

102

103

101 102 103 104 105

D
(t

)

t

F = 0
F = 0.2
F = 0.6
F = 1.0
F = 1.4
F = 1.8
F = 2.6
F = 3.0
F = 3.5

Figure 4.5 – Time trajectories of the diffusion coefficient. Simulation of the Langevin

equation with a random potential with Gaussian correlation (4.1).

in Figures 4.4 and 4.5, as well as those to lead from simulations involving

random potentials with different correlations. Besides, the outcome in Ta-

ble 4.1 is depicted in Figure 4.6 for better analysis.

Overall, the data in Table 4.1 plotted in Figure 4.6 reveals the same

transport and diffusion regimes to be reached despite the differences in

the random potential correlations. That is, roughly speaking, subtransport

(α < 1) and subdiffusion (β < 1) at weak forces, and normal behavior at

high forces (α = 1, β = 1). Meanwhile, for intermediate forces, diffusion

exhibits two different regimes, superdiffusion (β > 1) and uncertain diffu-

sion, where β cannot be determined.

Figure 4.6 also shows the force interval associated with every dynam-

ical regime—transport in the panel to the left, diffusion to the right—

for each of the four types of potential correlations—color coded bars—.

Indeed, subtransport—weakly colored filled bar—and normal transport—

empty bar—appear from left to right on the α plot for every potential.

Subdiffusion—weakly colored filled bar—, superdiffusion—vividly colored

filled bar—, uncertain diffusion—patterned bar—and diffusion—empty bar—
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function

Ga Ex Pw 1/3 Pw 2/3

F α β α β α β α β

0.0 - 0.20 - 0.24 - 0.33 - 0.33

0.2 0.29 0.36 0.27 0.36 0.47 0.88 0.36 0.60

0.4 0.28 0.48 0.34 0.53 0.64 1.29 0.42 0.84

0.6 0.32 0.58 0.34 0.63 0.89 1.56 0.54 1.11

0.8 0.33 0.67 0.32 0.74 1.00 1.45 0.64 1.32

1.0 0.40 0.84 0.46 0.84 1.00 + 0.91 1.54

1.2 0.41 0.96 0.53 0.93 1.00 + 1.00 1.51

1.4 0.58 1.07 0.46 1.03 1.00 0.94 1.00 1.72

1.6 0.64 1.23 0.54 1.12 1.00 0.98 1.00 +

1.8 0.90 1.51 0.66 1.21 1.00 0.99 1.00 +

2.0 0.99 1.60 0.72 1.31 1.00 0.99 1.00 +

2.5 1.00 + 0.84 1.40 n 1.00 0.99

3.0 1.00 + 0.96 1.58 n 1.00 1.00

3.5 1.00 0.98 0.99 1.44 n n

4.0 1.00 0.99 1.01 + n n

4.5 n 1.00 + n n

5.0 n 1.00 + n n

5.5 n 1.00 + n n

6.0 n 1.00 1.00 n n

Table 4.1 – α and β exponents of the velocity and the diffusion coefficient of a set of trajec-

tories displayed by overdamped Brownian particles pulled by varying constant forces

and undergoing different disorder types: Gaussian correlated (4.1) (Ga), double–sided

exponential correlated (4.2) (Ex), and power–law correlated (4.4) with ε = 1/3 (Pw

1/3) and ε = 2/3 (Pw 2/3). “-” means there is no transport. “+” labels those cases

in which the variance trajectories have uncertain time behavior. “n” means that sim-

ulations have been avoided since it is quite clear that the normal regime is expected.

59



CHAPTER 4. Transport and diffusion of overdamped Brownian particles in

random potentials

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6

α

F
β

F

Figure 4.6 – Transport (left) and diffusion (right) exponents for different distributions of

disorder; a Gaussian correlation in red, an exponential in gold, and two power-laws of

different exponents; ε = 1/3 in green, and ε = 2/3 in blue. Wide horizontal colored

bars indicate each dynamical regime, subtransport and subdiffusion in pale colors,

superdiffusion in bright colors, uncertain diffusion in patterned bars, and normal

transport and diffusion in empty bars.

are evident in the β curves for all the potentials considered.

4.1.5. Roughness’ correlation length

It ought to be noted that the force’s span of each dynamical regime (Fig.

4.6) is somehow linked to the correlation of the disorder; in particular,

to its roughness. May an effective correlation length λeff be defined as

g(λeff/λ) = 0.25, it reveals that a larger λeff leads to an earlier—in

terms of force—recovery of the normal transport and diffusion regimes. Fig-

ure 4.7 displays the λeff values—right—of the disorders employed in the

simulations—left—.

It might be noticed that landscapes with shallower wells exhibit larger

λeff . It follows that the smoother a potential is, the weaker the forces

that are needed to achieve normal transport and diffusion for Brownian

motion in these potentials. This inference is in agreement with the inter-
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(Pw 2/3); λ = 1. A vertical shift is implemented for better visualization (2, 1 and -2

potential units respectively for Pw 2/3, Pw 1/3; and Ex). Right: Space correlations

of the former landscapes. Grey circles at 〈V (x) V (x′)〉 = 0.25 provide a measure of

the effective correlation lengths.

pretation of anomalous Brownian motion as a consequence of the interplay

of “locked” and “running” states [Khoury et al., 2011]. Roughly speaking,

in a smoother potential tilted by a force, thermal fluctuations are more

likely to help the particles overcome its barriers, and thus normal behavior

is recovered more easily.

Power–law correlated potentials not only are characterized by the length

scale but also by the tail exponent ε, and thus they require a separate dis-

cussion. From Figure 4.7 it can be seen that λeff is inversely proportional

to ε. Therefore the arguments involving ε might be expected to be anti-

thetical to those invoked for λeff .

However, the λeff argument fails to explain the outcome of the simula-

tions for a double–sided exponentially correlated disorder, which might be

expected to be closer to those of the Gaussian disorder, for they have simi-

lar values of λeff . The reason is that the exponentially correlated potential
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exhibits a second much finer structure of tiny wells due to the shorter spa-

tial scale related to the discretization length ∆. This secondary structure

is hardly affected by the action of the external force because of the large

characteristic slope of the potential. Indeed, once the primary structure

has almost been counterbalanced by F , these secondary tiny wells associ-

ated with the ∆ length scale still remain. That is the reason why both the

superdiffusive and the uncertain diffusive regimes for this disorder prevail

up to higher forces compared to the Gaussian disorder. It may thus be

asserted that, for the double–sided exponentially correlated potential, the

λeff length scale controls the subdiffusive regime, whereas superdiffusion

and uncertain diffusion are controlled by the ∆ length scale.

Transport regimes associated with the Gaussian and double–sided ex-

ponential correlated disorders show the same trend up to a certain force.

From that point, they diverge and the normal transport recovery is delayed

for the exponential case. The force at which the two behaviors begin to

diverge turns out to be precisely the force at which both systems become

superdiffusive, and thus the former argumentation is reinforced. As to the

transport behavior, the secondary scale ∆ leads to a decrease of the ve-

locity of the particles because of the presence of small obstacles and thus

subtransport prevails longer.

These results lead to further consider the case of double–sided expo-

nentially correlated disorder, now with a smaller discretization parameter

than considered above, namely, ∆ = 0.05. Compared to the case with

∆ = 0.1, the smaller discretization parameter is associated with a higher

degree of roughness in the secondary scale. The former reasoning then al-

lows to conclude that the time step ∆t = 0.01 might not be sufficiently

small to accurately capture the behavior of the system. A smaller time

step ∆t=0.001 is hence picked. The behavior of transport and diffusion is

analogous to the case of the exponential correlation with ∆ = 0.1, yet the

subtransport, superdiffusive and uncertain diffusive regimes are extended in

the case of ∆ = 0.05 (Fig. 4.8). This reinforces the idea that the secondary

roughness associated with the ∆ length scale regulates the persistence of
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Figure 4.8 – Transport—left—and diffusion—right—exponents exhibited for Brownian

motion under a disorder with double-sided exponential correlation and different

roughness (∆ = 0.1 and ∆ = 0.05). The time step is adjusted according to the

discretization parameter, ∆t = 0.01 for ∆ = 0.1 and ∆t=0.001 for ∆ = 0.05. Wide

horizontal colored bars label the dynamical regimes—as for in Figure 4.6—.

these anomalous regimes.

4.1.6. Final remarks

A qualitative similarity ought to be noted between behaviors observed

here and in the case of underdamped Brownian particles in a periodic po-

tential [Lindenberg et al., 2007]. In both cases there is a regime of forces

where some particles are in a “running” state of essentially deterministic

velocity v ∼ F while others are in a “locked” or trapped state of zero

velocity. In the current random potentials there is thus a large variation

of the particle distribution and of the motion of the particles for different

realizations of the potentials, leading to anomalous dispersion, and thus to

the uncertain diffusive regime, much as is observed in the underdamped

problem.

Finally, the asymptotic temporal behavior of transport and diffusion
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deserves a comment apart. The time t may compare to a characteristic time

of the system to provide a sense of the temporal extent of the simulations.

One can define the deterministic time t0 that it takes to cover a distance λ

under the action of a force F ,

t0 =
λ

F
, (4.8)

which for the current systems lies in the domain t0 ∼∈ (0.33, 2.0) (according

to the choices for λ and F ). Hence the alluded simulations run as far as five

decades of this characteristic time. Several anomalies are observed over this

full interval while others are shorter, with a duration two or three decades

of this time. Recently this problem has been addressed in [Hanes and Egel-

haaf, 2012], with similar qualitative results: the presence of a subdiffusive

regime. However, it cannot be asserted that even with longer simulation

times normal transport and diffusion will be achieved. While it is com-

monly accepted that at asymptotic times all behaviors will be normal and

diffusive, from the experimental point of view time is finite, and it would

be helpful to know if important anomalies appear in realistic observation

time intervals. These interpretations of the current results are appropriate

provided that the total simulation time is large enough without running

into finite system size effects. The total length of the system is ≈ 8.39 ·105,

but the system is periodic—in a statistical sense (Chap. 7)—, so it should

be avoided covering more than half of this distance, ≈ 4.2 · 105. For a force

of F = 3.5 and a maximum time of t = 105, particles would travel as far

≈ 3.34 ·105, that is, at most of the same order as half the length. For times

much larger than this one can expect finite size effects and, accordingly,

normal behavior.

4.2. Displacement distribution, a novel illustra-

tion of transport and diffusion anomalies

The current section is intended for the behavior of the particle density

representative of the various combinations of behaviors discussed above.

Figure 4.9 unveils the histogram of the relative displacements x(t)− 〈x(t)〉
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of all the particles for various values of the external force and under a Gaus-

sian disordered potential, where the brackets indicate an average over all

the particles. From top to bottom, F = 0.6, 1.8, 2.6 and 4.0. These cases

are chosen as representative of the variety of anomalies: subtransport and

subdiffusion (A), subtransport and superdiffusion (B), uncertain diffusive

regime (C) and finally, the case of both normal transport and diffusion (D).

When particles are pulled by weak forces (F = 0.6) they exhibit sub-

transport and subdiffusion (Fig. 4.9)–A. In such case, the displacement

distribution is asymmetric; it displays a long forward exponential tail and

as a consequence its maximum is shifted towards negative displacements.

This shape is a trace of the particle’s behavior, a few pull ahead but most

are stuck.

When the force increases up to F = 1.8, there is subtransport as well,

yet superdiffusive. In this case, the displacement distribution (Fig. 4.9)–B

is also asymmetric, but now exhibits a backward tail and the maximum

is shifted oppositely, that is, to displacements greater than zero. Hence it

reveals that many particles are still stuck, yet a larger fraction of them now

pull ahead. Note that the dispersion is much larger than in the previous

case.

For a stronger force, F = 2.6, the transport is normal, 〈v〉 ∼ F—

brackets label average over the ensemble of particles—, but the simulation

data is not sufficient to obtain a reliable result to characterize the diffusion.

The distribution in Figure 4.9–C also lacks of symmetry. It shows a very

narrow maximum, which is the signature of the “running” state of most of

the particles, even while there may still be a few particles in the “locked”

state, 〈v〉 ∼ 0, which may become trapped in the few realizations of the

potential that present the deepest wells. Figure 4.14 in the following section

is helpful for a better understanding.

Finally, the figure with the strongest force, F = 4.0 (Fig. 4.9)–D, illus-

trates normal behavior, i.e. normal transport and normal diffusion, with a
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Figure 4.9 – Displacement distribution of the particles P (∆x) for different combinations of

displacements and diffusions. F = 0.6 (A), 1.8 (B), 2.6 (C) and 4.0 (D) at t = 20000.

It is important to pay attention to the horizontal scale in each plot. Plot (D) includes

the representation of a Gaussian function of zero mean (µ = 0) and variance σ2 = 2D t

(D = T = 0.1, t = 20000) in grey.
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Gaussian–like distribution, as confirmed by the solid Gaussian curve (µ = 0,

σ2 = 2D t, D = T = 0.1, t = 20000). Essentially perfect Gaussian behavior

is expected for very large forces.

4.2.1. Transport and diffusion of particles on surfaces

Transport and diffusion in two dimensions exhibit new phenomena be-

cause one can study the orthogonal direction with respect to the force. In

cartesian coordinates the force is written as,

F = F û‖ = F (cos θ î+ sin θ ĵ) , (4.9)

which defines the parallel unit vector û‖. The perpendicular unit vector

is û⊥ = − sin θ î + cos θ ĵ . The simulated trajectories yield the cartesian

components of the average velocity 〈v〉 = (〈vî〉, 〈vĵ〉) and the cartesian

diffusion tensor D = {Dîĵ}. With this information, transport and diffusion

in any direction û can be computed,

〈vû〉 = 〈v〉 · û, Dû = û ·D · û . (4.10)

The choices of the angles at which to perform the simulations can be

made so as to provide the maximum amount of information. If θ = 0, the

cloud of particles might reach the system size quite fast without exploring

the whole landscape. Periodic boundary conditions are not helpful in this

case. This is clearly not a particularly informative choice. On the other

hand, a finite θ along with periodic boundary conditions produces a spi-

raling motion along a torus. Therefore, helpful choices of θ are the ones

that prevent intersection—or statistical correlation—between particle tra-

jectories that coil the torus after each turn while allocating the maximum

number of loops. For the hereinafter outcome, θ has been chosen according

to these arguments.

It has been simulated the motion of overdamped Brownian particles in

a 2− d Gaussian correlated disorder,

g(|r − r′|) =
1

2
e−

(r−r′)·(r−r′)
2λ2 . (4.11)
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F α‖ β‖ β⊥

0.6 0.11 0.43 0.20

1.0 0.18 0.59 0.38

1.2 0.32 1.00 0.42

1.3 0.57 1.36 0.47

1.5 0.80 2.01 0.82

2.0 1.00 + 0.99

3.0 1.00 1.01 1.02

Table 4.2 – Transport (α‖) and diffusion (β‖, β⊥) exponents corresponding to those

trajectories in Figures 4.10 and 4.11. “+” denotes a case where the diffusion coefficient

cannot be extracted from the simulation data.

This correlation is isotropic and does not introduce a bias in any direc-

tion. The simulations were run on a lattice of N2 = 40962 sites with

∆x = ∆y = 0.5. The other simulation parameters were ∆t = 0.1 and

T = 0.03. The temperature is much lower than in the 1 − d simulations

because particles might avoid the highest potential barriers by changing

their direction.

As in the one–dimensional scenario, the first moment and the second

cumulant are computed on the ensemble of trajectories, now separately for

the directions parallel and perpendicular to F . This allows the fitting of

the transport (α‖, α⊥) and diffusion (β‖, β⊥) exponents. These results are

included in Table 4.2. The corresponding time dependence of the velocity

(〈v〉‖, 〈v〉⊥) and the diffusion coefficients (D‖, D⊥) are shown in Figures 4.10

and 4.11.

Along the orthogonal direction (Fig. 4.10)–lower there is no transport

(〈v⊥〉 ≈ 0), yet there is subdiffusive dispersion (Fig. 4.11)–right, as it

should be expected since no force is present [Romero and Sancho, 1998].

The phenomenology in the parallel direction is the same as in the 1−d case.

Nevertheless, there is a new remarkable situation: for intermediate forces

the dispersion displays parallel superdiffusion with perpendicular subdiffu-

sion.
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4.2.2. Clouds of particles

The 2 − d scenario allows a novel representation of the simulations’

outcome that sheds light on the underlying processes to bring about the

already described transport and diffusion anomalous phenomena. Indeed,

by plotting the particles’ positions at different times it might be gathered

some clues to understand their behavior. Figures 4.12 to 4.14 and 4.16 dis-

play the clouds of particle positions for some representative behaviors along

the direction parallel to the external force: subdiffusion with subtransport

(F=0.6) in Figure 4.12, superdiffusion and subtransport (F=1.5) in Figure

4.13, no well defined diffusion in Figure 4.14 (F=2.0), and both normal

diffusion and transport (F=3.0) in Figure 4.16. The clouds are plotted

on the same scales for the x and y directions to highlight the respective

asymmetries.

A feeble force: subtransport and subdiffusion

For small forces, the majority of the particles are expected to be trapped

most of the time. A few of them might undergo short random displacements

with a bias toward the direction of the force. That is seen in Figure 4.12 for

F = 0.6, in which the cloud spreads in the parallel direction showing some

kind of a forward comet tail. Besides, particles in this tail are more likely

to spread along the perpendicular direction as well, since they are the ones

that have avoided the deepest wells along their trajectories. This informa-

tion is complemented by the histograms of the particle positions in both

directions (Fig. 4.12), where the asymmetry in the parallel direction con-

trasts with the symmetry in the perpendicular one. In what concerns the

perpendicular way, it ought to be remarked that despite being symmetric,

the distributions exhibit non–Gaussian shapes. Compare to the distribu-

tions in the following Figures 4.14 and 4.16, in which diffusive regimes are

reached along the perpendicular direction. Indeed the actual histograms

are narrower, thus revealing shorter particle perpendicular displacements,

that might be imputed to the particle trapping to potential wells. It ought

to be remarked that the outcome plotted in Figure 4.11 exhibited perpen-

dicular subdiffusion for F = 0.6.
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Figure 4.12 – F = 0.6. Top–left: Particle positions with respect to their initial con-

ditions at different times. From lower to upper panel: t = 250, 1000, 4000, 16000.

Top–right: Particle displacement distribution, after being subtracted the ensemble

mean displacement, at the same times—the same color key is applied—along the

perpendicular direction to the external applied force. Bottom: Particle displacement

distribution along the external applied force’s bearing.
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A rather weak force: mixed anomaly

In the superdiffusive regime, along the force’s direction (F = 1.5) the

displacement distribution displays a comet-like shape with a larger density

at its head. Compared to the F = 0.6 outcome, there is a large increase of

the dispersion in the parallel direction and, in addition, its asymmetry is

in the opposite direction, i.e., it has a backward long tail. This inference

is corroborated by the histograms concerning the particle displacements

along the force’s bearing (Fig. 4.13)–bottom. Compared to Figure 4.12,

the perpendicular displacement’s distributions are wider, hence unveiling a

decrease of particle trapping, yet Gaussian like distributions aren’t reached.

The histograms concerning the perpendicular bearing still exhibit a trace of

particle confining, for they are more pointed than a Gaussian distribution.

Intermediate forces: undefined diffusion

The intermediate value of the force F = 2.0 corresponds to the regime

in which it is not possible to define an anomalous exponent for the dif-

fusion along the direction of the force. The cloud evolution under this

condition (Fig. 4.14) exhibits a front of particles that travels at a deter-

ministic velocity of about vcloud ≈ F . However, some particles remain stuck

at a few points along the trajectory displayed by the front, revealing that

the landscape hardly comprises unsurmountable obstacles. Indeed, the his-

togram of parallel displacements displays little frequencies at seldom loca-

tions smaller than the ensemble’s mean position (Fig. 4.15). On the other

hand, along the perpendicular direction, the displacements distribution ex-

hibits a Gaussian shape, that is a trace that most of the particles freely

diffuse (Fig. 4.14). Hence a Gaussian function with variance σ2 = 2D⊥ t

fits the histogram, where D⊥ is the asymptotic diffusion coefficient attained

for the trajectory with F = 2.0 in Figure 4.11. This observations reinforce

the argumentation developed earlier for F = 2.6 in the case of unidimen-

sional Gaussian correlated disorder.
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Figure 4.13 – F = 1.5. Top–left: Particle positions with respect to their initial con-

ditions at different times. From lower to upper panel: t = 250, 1000, 2000, 4000.

Top–right: Particle displacement distribution, after being subtracted the ensemble

mean displacement, at the same times—the same color key is applied—along the

perpendicular direction to the external applied force. Bottom: Particle displacement

distribution along the external applied force’s bearing.
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Figure 4.14 – F = 2.0. Left: Particle positions with respect to their initial conditions at

different times. From lower to upper panel: t = 250, 1000, 2000, 4000. Right: Particle

displacement distribution, after being subtracted the ensemble mean displacement,

at the same times—the same color key is applied—along the perpendicular direction

to the external applied force. A Gaussian with µ = 0 and σ2 = 2D⊥ t (D⊥ ≈ 0.16) is

superimposed in every panel.
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Figure 4.16 – F = 3.0. Top–left: Particle positions with respect to their initial conditions

at different times. From lower to upper panel: t = 250, 400, 550, 700. Top–right: Par-

ticle displacement distribution, after being subtracted the ensemble mean displace-

ment, at the same times—the same color key is applied—along the perpendicular

direction to the external applied force. A Gaussian with µ = 0 and σ2 = 2D⊥ t

(D⊥ ≈ 0.13) is superimposed in every panel. Bottom: Particle displacement distri-

bution, after being subtracted the ensemble mean displacement, along the external

applied force’s bearing. A Gaussian with µ = 0 and σ2 = 2D‖ t (D‖ ≈ 0.05) is

superimposed for each time.
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Strong forces: normal transport and diffusion

Finally, for a large force, F = 3.0, normal transport and diffusion in

both directions are recovered. These phenomena are featured in Figure

4.16, in which elliptical clouds travel along the parallel direction with a

velocity vcloud ≈ 3 ≈ F . Although there is normal diffusion along both

directions, the elliptical shape reveals a different diffusion coefficient for

each direction. This result is clearly confirmed by the corresponding his-

tograms (Fig. 4.16), that display a wider Gaussian distribution in the

direction perpendicular to the external force. This is not unexpected, since

the external force breaks the symmetry of the system, that is, it smoothes

the potential barriers along its direction. Indeed, Gaussian functions of dif-

ferent variances (σ2
‖ , σ

2
⊥) fit the parallel and perpendicular distributions

of displacements; σ2
‖ = 2D‖ t and σ2

⊥ = 2D⊥ t, where diffusion coefficients

D‖ and D⊥ are those asymptotic limits for the F = 3 trajectories in Figure

4.11.

4.3. Conclusions

Transport and diffusion of unidimensional overdamped Brownian parti-

cles in totally disordered potentials show anomalous regimes whose strength

and external force dependence in turn depend on the temperature T and

on the statistical properties of the disorder. This dependence can be un-

derstood via the theoretical consideration of anomalous Brownian motion

already developed in [Khoury et al., 2011]. In addition, the length scales of

the roughness of the potentials have been shown to be essential parameters

in the understanding of the effect of disorder in anomalous regimes.

The main practical difference between different kinds of disorder can

be associated with an effective correlation length. Taking the Gaussian

correlation as a reference, power–law correlations present a larger effective

length and, accordingly, shallower wells, which implies that normal regimes

are attained for lower tilting forces. On the other hand, the double–sided

exponential correlation, despite having a similar effective length scale, it
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exhibits a second much smaller length scale associated with the space dis-

cretization length ∆. This length scale causes the appearance of a sec-

ondary structure composed of tiny wells, yet with higher roughness—steep

landscape slopes—. Once the external force is sufficiently strong to over-

come the primary structure (associated with λeff ) the secondary structure

provided by ∆ prevails, and so particles are still being hindered. In order

to recover the standard diffusive regime this remaining structure should be

overcome by increasing the applied force. Both super and uncertain dif-

fusion thus continue to occur up to higher forces because of the continued

simultaneous presence of “running” and “locked” states, the latter now due

to the small wells associated with ∆. More generally, it may be inferred

that when disorder exhibits two different length scales, subdiffusion is as-

sociated with the larger one, and both superdiffusion and and uncertain

diffusion are associated with the shorter one.

The evolution of the particle density in Figures 4.9 and 4.12 to 4.15

reveals other interesting characteristics of the anomalies. Each different

asymmetry of the histogram is related to subdiffusion and superdiffusion

regimes for finite forces. The non Gaussian–like form of these distributions

is thus an indicator that some anomaly is present.

For two dimensions, a completely different behavior of transport and

diffusion is seen between the directions perpendicular and parallel to the

force. It should be especially noted the coexistence of subdiffusion and su-

perdiffusion along different spatial directions.

The uncertain diffusive regime is caused by the finite number of parti-

cles and of realizations of disordered potentials. A small number of locked

particles have a great effect, leading to uncertain behavior of the statistical

moments of the position of the particles.

Finally, concerning either 1 − d or 2 − d results, it should be noted

that transport and diffusion anomalies have not been proved to be steady

state regimes. However, simulation data show that anomalies span sev-
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eral decades of time, which had already been predicted theoretically and

observed experimentally [Hanes and Egelhaaf, 2012; Hanes et al., 2012;

Evers et al., 2013]. Thus, even if the ultimate behavior might be simply

diffusive—that is, “normal”—, the experimentally relevant behavior may

be precisely the anomalous one. Furthermore, the finite time behavior has

proved useful in the estimation of the properties of the system in the asymp-

totic limit [Schmiedeberg et al., 2007; Hanes et al., 2013].

Next Chapter deals with the same problem of Brownian motion under

disordered landscapes, yet considering the underdamped approach.
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CHAPTER 5

Transport and diffusion of underdamped Brownian particles

in random potentials

Particles moving subject to thermal forces and the associated friction

are said to be undergoing underdamped Brownian motion [Risken, 1989;

Sancho et al., 2004; Lindenberg et al., 2007; Marchenko and Marchenko,

2012; Marchenko et al., 2014] when energy dissipation is feeble, so that they

do have inertia. “Associated friction” means that the forces and friction sat-

isfy the fluctuation–dissipation relation [Einstein, 1905; Von Smoluchowski,

1906; Langevin, 1908; Ornstein, 1919]. The underdamped Brownian move-

ment is mostly found in solid state systems [Adelman and Doll, 1977; Gooh-

pattader et al., 2009], such as organic molecules on a Cu(110) surface [Schu-

nack et al., 2002], and benzene on graphite [De Wijn, 2011]. On top of that,

experiments on hydroxide ions in amorphous solid water [Lee et al., 2014],

embedded macromolecules on amorphous ice [McMullan et al., 2015], and

colloids within porous polymer films [Skaug et al., 2015], among others,

disclose the underdamped Brownian movement in disordered mediums to

be worthy. Nonetheless, it might be worth studying the Brownian motion

in the underdamped regime if nothing else to understand the parameter

values at which acceleration can safely be ignored, so that the overdamped
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approach already addressed in Chapter 4 may be thoroughly applied.

The present Chapter reports the numerical results for the transport

and diffusion of underdamped Brownian particles in one–dimensional dis-

ordered and static potentials. The anomalies observed are compared with

those found in Chapter 4 for the overdamped regime and with results for

a periodic potential (Chap. 3). On the other hand, the probability dis-

tributions for the position and velocity of the particles are computed for

they bring about novel clues to dig into the physical basis of the observed

transport and diffusion phenomenology.

5.1. Preliminaries

5.1.1. The model

Likewise in Chapters 3 and 4, the stochastic dynamics description of

Brownian movement is to be employed hereinafter,

dv

dt
= −γv + F − V (x)

dx
+ ξ(t) , (5.1)

with the white noise’s correlation

〈ξi(t) ξj(t′)〉 = 2T γ δij δ(t− t′) . (5.2)

Details upon the Langevin equation under the underdamped approach may

be found in Section 1.4.1. For ease of computational effort and notation,

the 1 − d scenario is considered; extension of the model to two and three

dimensions is in principle straightforward but not within the present scope.

The model for underdamped Brownian movement reduces to four key

parameters: the temperature T , the correlation length λ, the external force

F , and the friction coefficient γ. All the physical quantities to appear all

along this Chapter, such as the former ones, are scaled according to the

procedure described in Section 1.4.1. Surveys of the overdamped Brownian

movement in random static potentials [Khoury et al., 2011; Suñé et al.,
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2013], (Chap. 4), have unveiled the potential’s spatial length scale λ, a

presumed constant force F , and the temperature T to have an impact on

the transport and diffusion anomalies. May the temperature and the cor-

relation length be fixed at T = 0.2 and λ = 1 for the present content, there

remain only two free independent parameters, F , and γ, through which the

underdamped Brownian motion is to be surveyed. This temperature choice

entails that the thermal energy is lower than the mean square amplitude of

the potential—which is appropriate for the particles to clearly perceive the

potential landscape—, but not so low as to make typical potential barriers

unsurmountable.

Concerning the functionality of the disorder’s correlation function, it

has been shown to affect quantitatively, yet not qualitatively, the transport

and diffusion attributes [Suñé et al., 2013], (Sec. 4.1.4). Thus, for the

present purpose, a disorder landscape of zero mean and Gaussian correla-

tion function (4.1) is settled on.

In addition, the periodic potential,

Vp(x) = cos
(x
λ

)
, (5.3)

with the same length scale, is considered for comparison. Its spatial av-

erage over one period is 〈Vp(x)〉 = 0 and its square value integrated over

one period is 〈Vp(x) Vp(x)〉 = 1/2—the angular brackets now indicate an

integral over one spatial period—. These values are the same as the mean

and the mean square of the random potential, and thus the two potentials

are in this sense comparable. The correlation function for (5.3) is

〈Vp(x) Vp(x
′)〉 =

1

2
cos

(
x− x′

λ

)
. (5.4)

A Taylor series expansion of the correlation functions (4.1) and (5.4) yield

the same results up to second order in λ, further supporting the comparison

of results for the two potentials.

The collected observables to inquire into the transport and diffusion

properties of the Brownian movement are the long time behavior of the
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displacement’s first moment for the transport, and the long time behavior

of the variance for the diffusion. Their mathematical description is carried

out in Section 1.2.3.

Notwithstanding, the statistical moments of the instantaneous 1 − d

scaled velocity (v) and its variance might be further considered in the un-

derdamped regime. Concerning the instantaneous velocity’s variance, the

theoretical Einstein’s prediction for free Brownian motion states that,

〈∆v2(t)〉 = T . (5.5)

This relation is checked by the outcome to be covered further in the text.

5.1.2. Numerical setting

Random potentials with the assumed statistical properties can be gen-

erated using routine methods [Suñé et al., 2012], (Chap. 7). The space

at which random potentials are defined should be isotropic and periodic

boundary conditions apply. The positions and velocities of the particles are

obtained by numerical simulation of the Langevin equation using a second

order Heun algorithm for ordinary stochastic differential equations [Garćıa-

Ojalvo and Sancho, 1999; Toral and Colet, 2014], (Sec. 7.5).

For the periodic potential, simulations are averaged over 1000 particles,

whereas more runs are required for the random potential in order to obtain

adequate statistics over distinct random landscapes. Therefore, simulations

with random potentials run for 100 particles over 100 realizations of the

potential with periodic boundary conditions in a space of N = 223 sites,

with ∆ = 0.1 separation in–between. The particles are initially distributed

uniformly along a spatial interval of length 20000λ centered at N∆/10, that

is, distant from any boundaries. These particles thus experience different

and independent portions of the random potential, avoiding statistical cor-

relations. This is clearly not necessary for a periodic potential. For both

potentials an initial Maxwellian distribution of velocities is implemented,
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i.e.,

W (v, t = 0) =
1√
2πT

e−v
2/2T . (5.6)

The time integration step must be chosen carefully, as must the max-

imum simulation time. The choice for the time integration step is settled

on following the discussion in Section 3.2.4, thus according to the condi-

tion (3.15). With regard to the maximum time tmax, it is clearly advisable

not to overtake the time needed for the particles to travel a distance greater

than the half length of the space in which the potential is defined—such

restriction does not apply for a periodic potential—, for the half of the

potential is statistically constrained by the opposite; unwanted correlations

would be injected into the process otherwise. Therefore, assuming the

asymptotic velocity for free Brownian motion v = F/γ, the maximum time

tmax ought not to exceed

tmax <
N ∆

2

γ

F
. (5.7)

5.1.3. The high force regime and the overdamped limit

The hereinafter simulation results may compare to those obtained in

well controlled limits. In the presence of a constant force, F 6= 0, particles

exhibit a net velocity in the direction of the force. When the force is

sufficiently high, it masks the nonlinear potential, and so the system should

behave according the well known Einstein’s results [Risken, 1989] for the

mean velocity and diffusion,

〈v〉 =
F

γ
, D =

T

γ
. (5.8)

In this limit and at long times, the steady state probability distributions

should be the well known Maxwell–Boltzmann distributions,

P (x, t) =
1√

2πD t
exp

[
−(x− 〈v〉t)2/2D t

]
, (5.9)

Wst(v) =
1√
2πT

exp
[
−(v − 〈v〉)2/2T

]
. (5.10)

85



CHAPTER 5. Transport and diffusion of underdamped Brownian particles in

random potentials

The subindex st stands for “steady”. The second limiting scenario is that

of very high friction—overdamped limit—. It is instructive to compare

the results concerning large but finite friction γ with those obtained by in-

tegration of the Langevin equation in the completely overdamped regime,

where the acceleration is set to zero. However, comparison of underdamped

and overdamped results is not straighforward, for that each regime has its

own time scale, see Section 1.4 for further details. Using the transforma-

tions (1.33), large yet finite friction results to be obtained subsequently

compare to those in Chapter 4, in the strictly overdamped limit.

5.2. Transport and diffusion: trajectories and ex-

ponents

Likewise the survey concerning the overdamped approach (Chap. 4), a

systematic numerical study of underdamped Brownian motion for the dis-

ordered potential of correlation function (4.1) has been carried out. The

outcome may compare to the overdamped results reported in Chapter 4

and in [Suñé et al., 2013], as well as to the results to be achieved with un-

derdamped Brownian particles undergoing a periodic potential (5.4). Fig-

ures 5.1 and 5.2 display the transport and diffusion trajectories in logarith-

mic axes so as to find out putative deviations from normal transport and

Fickian diffusion. Normal behavior is associated with constant asymptotic

behavior—independent of time—. Only three forces are displayed, which

nonetheless bring about an iconic overview of the anomalous regimes to be

achieved.

There is a noticeably difference between those trajectories concerning

simulations with periodic potentials, which attain a stationary quantity,

and those with random potentials, that increase or decrease. Therefore,

transport (1.16) and diffusion (1.17) exponents (Table 5.1) resulting from

power–law fitting to the mean and the variance curves ought to exhibit

contrastive values depending on the type of potential considered.
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Figure 5.1 – Velocity curves. Solid lines are for the random potentials, dashed lines for

the periodic potentials. The grey scale labels different forces, as indicated. In all

cases γ = 0.1.
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Figure 5.2 – Diffusion curves. Solid lines are for the random potentials, dashed lines for

the periodic potentials. The grey scale labels different forces, as indicated. In all

cases γ = 0.1. The black straight line under the dashed trajectory corresponding to

the case with F = 0.35 and a periodic potential is a power–law with exponent −1.
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random periodic

γ = 0.1 γ = 1.0 γ = 4.0 γ = 0.1

F α β α β α β α β

0.2 0.31 0.40 0.50 0.84 0.56 0.80 0.94 0.97

0.25 0.26 0.42 0.56 0.88 0.44 0.88 1.02 1.09

0.3 0.42 0.69 0.54 0.91 0.47 0.89 1.03 *

0.35 0.95 2.07 0.52 0.98 0.57 0.96 1.02 *

0.5 1.03 1.41 0.64 1.11 0.58 1.08 1.00 *

0.7 1.00 1.27 0.57 1.25 0.70 1.25 1.00 0.79

0.85 1.00 1.41 0.72 1.35 0.65 1.39 1.00 0.96

1.0 1.00 ** 0.76 1.41 0.84 1.50 1.00 0.97

1.3 1.00 ** 1.05 1.35 0.89 1.58 1.00 0.97

1.6 1.00 ** 1.03 1.56 1.00 1.32 1.00 1.02

2.0 1.00 ** 1.01 ** 1.00 ** 1.00 0.94

2.3 1.00 0.99 1.00 ** 1.00 ** 1.00 0.97

2.6 1.00 0.99 1.00 1.00 1.00 0.97 1.00 1.01

Table 5.1 – Transport (α) and diffusion (β) exponents. ** indicates that the diffusion

curve does not exhibit a steady behavior as a function of time (“uncertain diffusion

regime”). * indicates the so-called “dispersionless regime” [Lindenberg et al., 2007].

Bold rows are the ones graphed in Figures 5.1 and 5.2.

For a periodic potential—considering multiple forces and underdamp-

ing conditions—, α and β (Table 5.1) are those of normal transport and

diffusion—those values in the two far right columns of Table 5.1 are nearly

one—. There is but an exception for an intermediate range of forces 0.25 <

F < 0.7. In this range of forces, “dispersionless transport” arises [Linden-

berg et al., 2007]. The behavior of the exponents (Table 5.1) concerning a

random potential—considering multiple forces and Stokes friction values—

involves nonetheless a rich variability that ought to be profoundly discussed.

At first glance, the behavior of α and β when increasing the external

force—simulations with a random potential—is homologous for any friction

considered—from underdamping to overdamping conditions—, Figure 5.3

compares fairly good to the pure overdamped outcome (Fig. 4.6) indeed.

Notwithstanding, it should be pointed out that the course from subtrans-

port to supertransport to normal transport, and from subdiffusion to su-

perdiffusion to normal diffusion—as the force strength increases—is much
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Figure 5.3 – Transport—left—and diffusion—right—exponents of underdamped Brown-

ian particles in a random potential as listed in Table 5.1. Broken lines correspond to

the uncertain diffusion regime.

more rapid or abrupt in underdamping conditions than in overdamping.

This remark reveals the external force F to exert a more powerful influence

on Brownian particles for feeble energy dissipation conditions. Such infer-

ence looks to be realistic, for particles in this regime hardly attach to the

potential due to loss of energy [Risken, 1989], but because of the existence

of particularly high barriers. Hence it means that underdamping conditions

favor the transition from locked to running states and hinder the inverse.

Other features of the different dynamical regimes can be understood by

inquiring into the distribution of the positions of the particles being pulled

by different forces, displayed in Figure 5.4. These distributions confirm

the interpretation argued in Chapter 4 and [Suñé et al., 2013], namely,

that anomalous behavior is a consequence of the statistical coexistence of

locked particles, that is, particles trapped in the potential, and running

particles, particles whose dynamics is primarily dictated by the force. This

is a behavior consistent with the notion that the random potential has re-

gions of deep wells or high barriers as well as regions where the potential

is relatively flat. These features are reflected in distributions that are far
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Figure 5.4 – Distribution of particle positions P (∆x, t), where ∆x = x− 〈x(t)〉, at time

t = 20000 of underdamped (γ = 0.1) Brownian particles undergoing either a random

potential with Gaussian correlation (4.1)—left—or a periodic one (5.3)—right—. The

light grey histograms superimposed respectively in (E) and (F) correspond to P (∆x, t)

at t = 100000. Every plot corresponds to a characteristic regime controlled by the

external force F = 0.2 (A–E), 0.35 (B–F), 1.6 (C–G), and 2.3 (D–H). Parabolic curves

correspond to the Maxwell distribution (5.9). In panel (B) two parabolas are fitted

around the two maxima. Exponential functions (5.11) and (5.14) are respectively

fitted to the distributions in panels (A) and (F).
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from Maxwellian—the logarithmic y–axis leads to a parabolic shape when

the distribution is Maxwellian—. The left column of Figure 5.4 shows the

distribution of particles in random potentials, with a constant force of in-

creasing magnitude descending the column. From top to bottom, F = 0.2

(subtransport and subdiffusion), F = 0.35 (normal transport and superdif-

fusion), F = 1.6 (normal transport and uncertain diffusion), and F = 2.3

(the beginning of normal behavior). In the right column, it is shown the

distributions for the same forces when the potential is periodic. The time

at which the distributions in the figure have been computed is t = 20000

and the friction coefficient is γ = 0.1. It might be useful to inspect each

regime apart.

5.2.1. Subtransport and subdiffusion regime

For weak forces (Fig. 5.4) F = 0.2, the distribution exhibits a pro-

nounced asymmetry biased towards the force’s direction, even in the case

of the periodic potential, indicative of motion of particles in the direction of

the force, just like its analogous in the overdamped (Fig. 4.9)–A. It is also

included the distribution at larger times t = 100000 for the periodic poten-

tial, in the form of a paler histogram in panel (E). The distribution seems

to tend towards the symmetric Maxwell distribution. That the particles in

the random potential continue to exhibit anomalous behavior even beyond

this long time, while those in the periodic potential approach Maxwellian

behavior, is already manifested by the trajectories shown in Figures 5.1

and 5.2. The long time required to reach normal behavior may be due to

the weakness of the force, which leads to long anomalous transients before

normal behavior is reached.

A final observation about the very low force anomalous regime, exhib-

ited in panel (A) of Figure 5.4, is in order. The shape of the displacements

distribution might be argued to be a straight consequence of the motion of

particles in the direction of the force, yet there is not a clear explanation

for this rather unexpected asymmetry. The distribution presents a forward

91



CHAPTER 5. Transport and diffusion of underdamped Brownian particles in

random potentials

102

103

104

103 104 105

l 0
(t

)

t

F = 0.2
F = 0.25
F = 0.28

Figure 5.5 – Characteristic length l0(t) associated with the distribution P (∆x, t) in (5.11)

for a random potential, with forces F = 0.2, 0.25, 0.28—solid lines with symbols—.

Fitting curves for these results as given in (5.12)—dashed lines—.

exponential decay that can be fitted by

P (x, t)

∼ A exp(−x/l0(t)), for x ≥ xi ,

∼ 0, for x < xi .
(5.11)

Here xi is the coordinate at which the exponential decay begins; it may be

set to zero by a simple translation. A time dependence of the distribution

is included through the single force–dependent parameter l0(t). Evaluating

it at different times and forces, cf. (Fig. 5.5), it follows a power–law,

l0(t) = a tb. (5.12)

Table 5.2 summarizes the values of the fitted parameters a and b for

various forces as well as the transport α and diffusion β exponents for these

forces taken from Table 5.1.

Taking xi = 0 as the position of the locked state v(t) = 0, the mean

and variance of the—normalized—particle distribution of (5.11) can be

computed,

〈x(t)〉 = l0(t) = a tb, 〈∆x2〉 = l0(t)2 = a2t2b. (5.13)
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F a b α β

0.2 40 0.20 0.31 0.40

0.25 220 0.23 0.26 0.42

0.28 800 0.25 0.30 0.54

Table 5.2 – Parameters of the power–law adjustment (5.12) to l0(t) for forces F = 0.2,

0.25, and 0.28 and its associated transport and diffusion exponents.

These results state that in this subtransport/subdiffusion regime, the trans-

port and diffusion exponents are related by β = 2α. This is an unexpected

and surprising result which was also observed for Brownian motion in a

periodic potential with very weak disorder [Khoury et al., 2011]. The data

in Table 5.2 though manifests certain discrepancy with the former outcome;

whereas it seems likely to infer that β = 2b, it is not so obvious for α = b.

5.2.2. Normal transport and superdiffusion regime

Panels (B-F) in Figure 5.4 correspond to a force F = 0.35. In the ran-

dom potential, the distribution of particles exhibits two peaks. May the

velocities of the two peaks be computed at different times, it is noted that

the left peak essentially does not move (〈v〉 ≈ 0) while the right peak shifts

at a velocity 〈v〉 = 3.55 ≈ F/γ. The stationary peak might thus be assigned

to the particles locked to a position—by traps or barriers—and the mov-

ing peak to running particles pulled through the landscape by the external

force. The increasing separation of the peaks with time leads to superdif-

fusive behavior. However, the average particle velocity is dominated by

the second peak, and thus transport is essentially normal. There are some

particles in the distribution between these two peaks, but the majority are

in one or the other peak.

Particles in a periodic potential exhibit an entirely different behavior.

The distribution of positions is a one–sided exponential that remains unal-

tered for different times; in panel (F) the distribution hardly changes from

t = 20000 to t = 100000. This regime is the so–called dispersionless, and is

a natural outcome of the underdamped Brownian motion in a washboard
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potential [Lindenberg et al., 2007], (Sec. 3.2.1). The one–sided exponential

distribution is a straight consequence of the well–known exponential distri-

bution of the first exit times of particles emerging a potential well [Redner,

2007], (Sec. 1.3.1); which for underdamped particles, to escape at a veloc-

ity v = F/γ, transforms to an exponential spatial distribution [Lindenberg

et al., 2007]. The persistence of this spatial distribution would last un-

til t ∼ l20/2D [Lindenberg et al., 2007], when thermal fluctuations arise,

and so the Gaussian distribution is resumed. l0 = (F/γ)tK is the width

due to dispersion of emergence times of the potential well, where tK is the

mean exit time—given by the Kramers’ escape rate (1.20)—that depends

on the system’s parameters, the temperature, and the external force. May

an exponential function

P (x, t) ∝ exp(x/l0) (5.14)

be adjusted to the distributions in Figure 5.4 (F), then l0 ≈ 5 · 103, hence

the persistence time for the distribution to be exponential like ought to

be clearly greater than the times at which the distribution has been plot-

ted. May l0 = (F/γ)tK be computed, it is of the same order of magnitude

(l0 ≈ 2 · 103) than the result obtained from the fitting of (5.14) to the

simulation outcome.

Back to Figures 5.1 and 5.2, for the present case, F = 0.35 and a peri-

odic potential, it exhibits regular transport and a linear decrease of the dif-

fusion coefficient. Thus, the ensemble of particles moves at a finite constant

ensemble velocity and with a fixed dispersion even though the particles are

persistently subject to thermal fluctuations. This features are just those

of the dispersionless anomalous regime reported in [Lindenberg et al., 2007].

5.2.3. Normal transport and undefined diffusion regime

F = 1.6 leads to the normal transport and undefined diffusion regime.

The time evolution of diffusion in Figure 5.2 exhibits different regimes: an

accelerated initial regime is followed by a superdiffusive one, and finally,

a kind of dispersionless regime. Thus the effective diffusion can not be
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defined. In contrast, the periodic case converges to normal diffusion. The

distribution of particles (Fig. 5.4) (C) exhibits a broader distribution for

the random potential, probably composed of two parts: the quasi–Gaussian

distribution corresponding to the locked states, and a dispersionless forward

distribution corresponding to the finite velocity states. For the periodic po-

tential, a perfect single Gaussian distribution is displayed instead (G).

5.2.4. Normal transport and diffusion regime

Finally, the normal regime for both potentials is recovered at F = 2.3.

Here the distribution is Gaussian centered at the mean value 〈x(t)〉 ∼ 〈v〉t.

5.3. Distributions of velocities

As did the histograms of the positions of the Brownian particles, the

distributions of velocities can also shed light on the observed transport and

diffusion anomalies [Marchenko and Marchenko, 2012; Marchenko et al.,

2014]. Since the instantaneous velocity is a dynamical stochastic variable,

its statistical moments and its distribution can be understood according to

the four regimes discussed for the distributions of positions.

5.3.1. Subtransport and subdiffusion regime

Velocity histograms concerning the subtransport and subdiffusion regime,

F = 0.2, are shown in Figure 5.6. They display a bimodal structure; they

seem to be composed of two Gaussian distributions centered respectively

at 〈v〉 = 0 and at 〈v〉 = F/γ = 2 indeed. Therefore, these two distri-

butions can be related to the population of particles trapped in potential

wells (〈v〉 = 0), and of running particles (〈v〉 = F/γ = 2). Accordingly, the

histograms may be fitted with a function made up of two Gaussian curves,

W (v, t) =
a1√
2πc1

e−(v−b1)2/2c1 +
a2√
2πc2

e−(v−b2)2/2c2 . (5.15)
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Figure 5.6 – Velocity histograms at times t = 100 (A-E), t = 1000 (B-F), t = 10000

(C-G), and t = 100000 (D-H) for underdamped Brownian particles (γ = 0.1) subject

to an external force F = 0.2 in a random potential—left column—and in a periodic

potential—right column—. A double Gaussian distribution (5.15) is also included in

each plot, with the requirement that the left Gaussian in each case ought to correspond

to the Maxwell’s distribution (5.10) with b1 = 0, and c1 = T = 0.2.
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random

t a1 a2 b2 c2

100 0.774±0.009 0.09± 0.01 2.00± 0.07 0.26± 0.07

1000 0.86± 0.01 0.02± 0.01 2.1± 0.3 0.2± 0.3

104 0.88± 0.01 0.01± 0.01 2.1± 0.7 0.2± 0.5

105 0.89± 0.01 0.004±0.015 2± 2 0± 2

periodic

t a1 a2 b2 c2

100 0.78± 0.02 0.08± 0.02 2.0± 0.16 0.28± 0.17

1000 0.88± 0.02 0.02± 0.03 2.3± 0.8 0.3± 0.7

104 0.87± 0.03 0.02± 0.05 2± 1 0.1± 0.9

105 0.88± 0.02 0.02± 0.02 2± 1 0± 1

Table 5.3 – Fitting parameters a1, a2, b2, and c2 upon adjusting (5.15) to the velocity

histograms in Figure 5.6. Errors come from the numerical fitting process.

The constants b1 and c1 are settled on to b1 = 0 and c1 = T , for the

first equilibrium Maxwell distribution in (5.15), so that they account for

the distribution of particles trapped to a potential well. The remaining

time–dependent parameters (a1, a2, b2, and c2) are fitted numerically and

are listed for various times in Table 5.3. Since the population of parti-

cles in the second distribution—running particles—decreases with time,

the relative uncertainty of the fitting parameters concerning this distribu-

tion increases for great times.

The numerical fitting of (5.15) brings about b2 ≈ 〈v〉 = F/γ = 2 and

c2 ≈ 0.2 = T so it might be asserted that the second peak stands for a

Maxwell’s distribution of velocities for those particles that are pulled by

the external force across the potential landscape indeed. The population

of trapped particles is greater than that of running particles (a1 > a2).

It ought to be enlightened that a1 + a2 6= 1 as it might be expected, for

the two Maxwellian distributions are entangled. Comparing the time un-

folding of the distributions, it is gathered that the population of running

particles undergoes a greater decrease for those underdamped particles in

a random potential. The energy barriers of a periodic potential are all of

the same height, thus, when a particle is able to escape from a potential

well, it should remain in the running state until the friction, albeit weak,
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Figure 5.7 – Velocity histograms at time t = 6000 for underdamped Brownian particles

(γ = 0.1) subject to an external force F = 0.35 in a random potential—left panel—

and in a periodic potential—right panel—. A double Gaussian distribution (5.15) is

also included in each plot, with the requirement that the left Gaussian in each case

should correspond to the Maxwellian distribution with b1 = 0, and c1 = T = 0.2.

eventually dissipates enough kinetic energy and the particle resumes the

locked state. Any particle in the running state under a random potential is

otherwise likely to run into an unsurmountable barrier at any time; and so

it might get trapped sooner. Besides, as the time goes on, the ensemble of

particles in a random potential may attach to those deepest potential wells,

therefore the releasing rate is expected to decrease; whereas in a periodic

potential it should be invariable since the wells are all of the same depth.

The steady locked and the running state populations reached in a pe-

riodic potential lead to normal transport and Fickian diffusion (Fig. 5.1)

and (Fig. 5.2). On the other hand, anomalous subtransport and subdiffu-

sion is exhibited in a random potential (Fig. 5.1) and (Fig. 5.2) because of

the unbalanced transition rate between states.
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random

t a1 a2 b2 c2

100 0.377±0.006 0.497±0.007 3.449±0.008 0.247±0.008

400 0.237±0.005 0.598±0.006 3.461±0.005 0.236±0.005

1000 0.176±0.005 0.650±0.006 3.442±0.005 0.238±0.005

4000 0.117±0.005 0.726±0.006 3.450±0.005 0.238±0.005

10000 0.099±0.005 0.90± 0.06 3.451±0.004 0.235±0.004

periodic

t a1 a2 b2 c2

100 0.531±0.014 0.336±0.017 3.443± 0.02 0.22± 0.03

400 0.454±0.018 0.44± 0.02 3.45± 0.03 0.20± 0.02

1000 0.303±0.015 0.516±0.018 3.41± 0.02 0.26± 0.02

4000 0.044±0.017 0.728±0.018 3.437±0.015 0.275±0.015

10000 0.02± 0.03 0.84± 0.02 3.484±0.014 0.22± 0.02

Table 5.4 – Fitting parameters a1, a2, b2, and c2 upon adjusting (5.15) to the histograms

in Figure 5.7 and to the corresponding histograms for other times. Errors come from

the numerical fitting process.

5.3.2. Normal transport and superdiffusion regime

W (v, t) at t = 6000 is plotted in Figure 5.7 for the normal transport

and superdiffusion regime (F = 0.35) displayed in a random potential. It

clearly exhibits two peaks, again corresponding respectively to the locked

and the running states of Brownian particles. The histogram is well fitted

by a two Gaussian function (5.15)—results are included in Table 5.4 for

different times—.

The parameter c2 reveals a small systematic deviation from T = 0.2,

yet b2 fits very well with the deterministic velocity 〈v〉 ≈ 3.5. Therefore,

the distribution of velocities is made of two Maxwellian distributions at

〈v〉 ≈ 0 (locked particles) and 〈v〉 ≈ 3.5 = F/γ (running particles). The

parameters a1 and a2 at all times satisfy the condition a1 + a2 ' 1 upon

normalization of the histogram and because of the two distributions hardly

merge.

It should be noted that, contrary to the behavior in the lower force

regime discussed above, in this higher force regime the population in the
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Figure 5.8 – Time evolution of the weight parameters a1 and a2 of the two Gaussian

functions that parametrize the histogram of velocities for underdamped Brownian

particles (γ = 0.1) under a random potential (r) and a periodic potential (p). The

external force is F = 0.35 for both cases.

running state increases with time, whereas the locked state decreases, for

both the random and the periodic potentials. This behavior is illustrated

by a1—decreasing with time—and a2—increasing with time—in Table 5.4,

and also plotted in Figure 5.8. For a periodic potential, there is a fast mi-

gration of locked particles into the running state, whereas this migration is

slower in a random potential due to the presence of higher energy barriers.

Considering a periodic potential, the fraction of particles in the running

state attains a2 ≈ 1 within the time lasting the simulations, which is con-

sistent with the already discussed dispersionless regime that comes to light

under such setting. However, there is a steady, at least for the observational

time, population of particles in the locked state when a random potential

is otherwise employed, and hence superdiffusion might be observed endless

in that case.

100



5.4. Summary and conclusions

5.3.3. Normal transport and undefined diffusion regime

Normal transport and undefined diffusion is obtained for F = 1.6. The

histogram of the velocities in this regime for both potentials is simply a

steady Maxwell distribution centered at 〈v〉 = 16,

Wst(v) =
1√

2π T
e−(v−〈v〉)2/2T . (5.16)

However, for a random potential at early times (Fig. 5.9), it is observed a

small portion of the distribution centered at the origin, which is a tracer of

the few particles that are still attached to the deepest wells of the random

potential. This is reminiscent of the histogram at lower forces, in which

there is an interplay between the running and the locked states, manifested

by the presence of two Gaussians (Figures 5.6 and 5.7). This observation

supports the description of undefined diffusion in Chapter 4, and [Suñé

et al., 2013], as the interplay of a few locked particles while the majority of

the particles are in the running state.

5.3.4. Normal transport and regime

Finally, the distribution of velocities in the normal transport and nor-

mal diffusion regime is Maxwellian (5.16), centered at 〈v〉 = F/γ = 23.

The force F = 2.3 completely overwhelms the effects of the nonlinear po-

tential, leading to free Brownian motion.

5.4. Summary and conclusions

Transport and diffusion of underdamped Brownian particles in random

potentials and driven by a constant external force exhibit anomalies sim-

ilar to those seen in diffusion of overdamped Brownian particles (Chap.

4), [Suñé et al., 2013]. The present Chapter has been devoted to the effects

of underdamping—as compared to the case of overdamped particles—and

of disorder—as compared to the behavior in periodic potentials—. In gen-

eral, no matter the damping or the potential, when the constant force is
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Figure 5.9 – Velocity histograms at different times for underdamped Brownian particles

(γ = 0.1) subject to an external force F = 1.6 in a random potential. A Gaussian

distribution (5.16) is depicted around the distribution centered at the mean velocity

of free particles 〈v〉 = 16.
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sufficiently strong, the force masks all else and the particles simply move as

pushed by the force, with a distribution due to the thermal noise. However,

anomalous transport and diffusion regimes arise at rather weak forces both

in periodic and random potentials.

Concerning random potentials, the observed anomalies are subtrans-

port, supertransport—weak—, subdiffusion, superdiffusion, as well as un-

defined diffusion. They are arranged in the usual sequence: subtransport

and subdiffusion for the weakest forces, increasing the force superdiffusion

arises, normal transport is resumed subsequently; and eventually Fickian

diffusion is recovered too, after a range of forces in which the dispersion of

the particles’ displacements does not reach a regular behavior, and so the

diffusion coefficient cannot be computed.

Regarding supertransport, it ought to be enlightened its observation—

albeit being it weak—just before normal transport is recovered. However,

it might not be a conclusive proof—due to its weakness—to contradict the

hypothesis that supertransport would not arise under static non-linear po-

tentials (Chap. 3). Further investigations ought to be done in order to

gather more convincing evidences of that scenario.

For the high–friction limit (γ = 4) transport exponents lie between

subtransport (α < 1) and normal transport (α = 1), according to the over-

damped outcome (Chap. 4).

The force span of the transport and diffusion features exhibits some

dependence on the damping of the Brownian motion; the course of anoma-

lies comes about at a weaker forces in the underdamped conditions indeed.

Contrarily, when considering underdamped Brownian motion in a periodic

potential, normal transport and Fickian diffusion are exhibited aside from

some early transients and the well–known dispersionless regime [Linden-

berg et al., 2007].

The histograms of the ensembles of particles’ displacements shed light
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on the physical mechanisms to bring about anomalous transport and dif-

fusion regimes. On top of that, while in the overdamped approach the

kinetic energy is assumed to be instantaneously dissipated by friction, and

so particles come to a standstill, for underdamped Brownian motion the

instantaneous velocity is but a non–zero random variate. Accordingly, the

distribution of instantaneous velocities can be computed and might bring

about additional information about the transport and diffusion clues. It

is gathered that the velocity very rapidly reaches local equilibrium, dis-

playing a Maxwell distribution either around the locked 〈v〉 = 0 state or

around the running 〈v〉 = F/γ state or both. This observation proves that

the origin of the anomalies is the randomness of the barrier crossing pro-

cess, as manifested in the distribution of particle positions. The specific

features of the distribution, such as the weight of each Maxwell distribu-

tion and their time unfolding, are also correlated to the different anomalies.

The present results may help in the understanding of experimental re-

sults on diffusive motion of molecules on solid substrates where friction may

be low [Schunack et al., 2002; De Wijn, 2011; Liu et al., 2012; Lee et al.,

2014; McMullan et al., 2015; Skaug et al., 2015].

Next Chapter is devoted to the study of Brownian motion in disordered

dynamic landscapes made of unsurmountable obstacles.
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CHAPTER 6

Brownian motion on random dynamical landscapes

The previous Chapters deal with the transport and diffusion properties

of mesoscopic particles suspended in a thermal environment and subject to

a nonlinear potential [De Gennes, 1975; Bouchaud and Georges, 1990; San-

cho and Lacasta, 2010]; attention is mainly concerned with static random

potentials indeed [Sancho and Lacasta, 2010; Sancho et al., 2004; Khoury

et al., 2011; Suñé et al., 2013; Suñé et al., 2014]. The reliability of the

achieved outcome is thus hindered to the solid state scenario, in which

potential configurations do not change with time [Schunack et al., 2002;

Xu et al., 2011; De Wijn, 2011]. Nevertheless, Brownian motion is of-

ten employed to describe the motion of a solute immersed in soft matter

mixtures, which may be better accounted by dynamic landscapes. Among

many examples of Brownian motion in a soft matter solution, it could be

mentioned the diffusion of regulatory proteins on DNA molecules [Goychuk

and Kharchenko, 2014], the diffusion of small solutes and macromolecules,

including green fluorescent protein GFP-S65T, fluorescently labelled dex-

trans, and DNAs, in cytoplasm [Dix and Verkman, 2008], the diffusivity

of lipid and protein molecules in flat membranes [Khoshnood and Jalali,

2013], and the tracking of single particles immersed in artificial crowded flu-

ids [Weiss, 2013]. A common property of these type of solutions—composed
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of the Brownian solute, the aqueous solvent and other soft matter entities—

is that they often undergo crowding effects [Ellis and Minton, 2003]; that is,

the available volume for tracer particles to diffuse is drastically reduced by

the presence of other solute particles, such as macromolecules, organelles,

colloids and polymers. There are both experimental and computational

evidences of anomalous transport and diffusion ascribed to the crowding

phenomenon [Höfling and Franosch, 2013]: sublinear power–law increase of

the mean–square displacement as function of the lag time, strongly reduced

and time–dependent diffusion coefficients, persistent correlations in time,

non–gaussian distributions of spatial displacements, heterogeneous diffu-

sion, and a fraction of immobile particles.

The goal of the present Chapter is therefore to model Brownian motion

of tracer particles in densely packed landscapes of moving deformable obsta-

cles which interfere with the movement of the tracer particles. The model

may extend, for example, to portray transport and diffusion in scenarios

such as the cell cytoplasm [Dix and Verkman, 2008; Trovato and Tozzini,

2014], the cell membrane [Dix and Verkman, 2008; Khoshnood and Jalali,

2013], and monolayers of colonies of gliding bacteria [Peruani et al., 2012].

The former examples belong to the active matter realm, and so their

dynamics may, for instance, be described by hydrodynamic equations for

a macroscopic field [Basu et al., 2008; Sarkar and Basu, 2011; Marchetti

et al., 2013]. Notwithstanding, here it is developed a reduced representation

of the active matter media. The model consists in a static random poten-

tial [Suñé et al., 2012], which it is then transformed by a linear Langevin

equation to generate a time–dependent random potential. The resulting

random potential describes a medium (e.g., a surface) of moving wells and

barriers. In order to account for big obstacles that may interfere with the

motion of tracer particles, by the time they are deformed, they associate,

and they stir, the random potential is nonlinearly transformed so that it

brings about a new potential landscape of unsurmountable dynamic obsta-

cles. Such obstacles disrupt the motion of Brownian particles, which would

profoundly affect the velocity, diffusion coefficient [Vilaseca et al., 2011;
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Gori et al., 2016], leading occasionally to the so–called “anomalous diffu-

sion” [Höfling and Franosch, 2013], and chemical reaction rates [Pitulice

et al., 2014; Klann et al., 2011].

Among the several approaches to the theoretical description of Brown-

ian motion in various disordered settings [Stauffer et al., 2008; Jeon et al.,

2014], the present method of choice is again the classical Langevin equa-

tion in the overdamped limit (Chap. 4). Friction is then much larger

than inertial forces—Reynolds number is low, as it is in plenty of biological

systems—. The landscape has no bias, but a constant force F is introduced

so that transport can be studied along with diffusion. A variety of numer-

ical results are submitted for the velocity and diffusion of the overdamped

Brownian particles in this varying crowded landscape, for which it is as-

sumed that the dynamics of the obstacles are slow compared to the time

scales of the random motion of the tracer particles.

6.1. Spatio–temporal disorder

The dynamical landscape of impenetrable obstacles is described by a

spatio–temporal potential U(r, t). The numerical algorithm to generate

this potential is profoundly discussed in Chapter 7. It should be noted that

the dimensionless variables and parameters defined in Section 1.4.2 will be

employed throughout this Chapter.

The random potential U(r, t) will consist of obstacles of a fixed height

in an otherwise flat landscape. The obstacles’ width can vary with time and

they move around on this landscape. The relevant parameters to charac-

terize the obstacle landscape are the height VH of the obstacles, the spatial

disorder length scale λ, which translates to the average obstacle width, the

time scale to0 of the obstacle dynamics, and the density of obstacles ρ.
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Figure 6.1 – 2 − d random potentials U(r, 0) with λ = 2.5, 5, 10, a=0.1 (a controls the

barrier stiffness, see Section 7.2), VH = 2, and Vd= 0.4 (upper row) and −0.2 (bottom

row) (Vd is the height at which V (r, t) is cut to transform to U(r, t), see Section 7.2).

Other parameters: ∆ = 0.5, N = 28. White patches are the flat portions at null

potential, black patches indicate the obstacles of height VH .

6.1.1. Potential’s settings

A discussion on the parameters that set up the potential’s attributes is

worth of consideration:

The obstacles’ height, VH : Brownian particles undergo thermal fluc-

tuations, whose intensity comes from the temperature T , and they

may be as well pulled by an external force F . Therefore, for the

obstacles to be impassable, the following condition ought to rule,

VH − |F | · λ� T . (6.1)

The characteristic length, λ: It is linked to the size of the potential’s

obstacles, hence it is necessary that

λ� N ·∆ , (6.2)
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where N∆ is the size of the system, so as to preserve the statisti-

cal reliability. A characteristic length being not far smaller than the

size of the system would reduce the number of obstacles, and so the

collectivity’s statistical reliability may decrease as well. Figure 6.1 in-

cludes realizations of the disordered field with different characteristic

lengths. The shorter the characteristic length, the smaller the obsta-

cles. The right panel in Figure 6.1 evidences that there may be few

obstacles in a system with λ = 10 and size N · ∆ = 128, hence it

reinforces the assumption made (6.2).

The time scale, to0 : The characteristic time to control the evolution

of the disorder potential should be larger than the time for the par-

ticles to spread by diffusion a distance comparable to the potential’s

characteristic length, that is

to0 �
λ2

2T
. (6.3)

Particles wouldn’t explore the spatial features of the potential oth-

erwise, and thus it might lead to a scenario far from the present

proposal. Figure 6.2 displays the time series of a random potential

with different time scales. It can be gathered that short time scales

lead to rapid deforming and moving obstacles, since the time corre-

lation of the landscape decreases fast. That is, the landscape with

to0 = 100 hardly reshapes from t = 0 to t = 2; whereas for to0 = 0.2

the disorder exhibits no correlation, even concerning consecutive in-

stants at times separated t = 1. Finally, it ought to be noticed that

to0 is equivalent to τ0, the relaxation time of the V0 mode of the ran-

dom dynamic potential in Fourier space, from which is obtained the

obstacle landscape (Chap. 7).

The density of obstacles ρ: It is the ratio of sites at height U(r, t) =

VH to the total occupied system. Assuming that the parameter a is

small so that barrier growth is fast enough to dismiss intermediate

barrier heights, ρ is

ρ =
1

N2VH

∑
i

U(ri , t) , (6.4)
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Figure 6.3 – Obstacle density ρ of the 2 − d random potentials U(r, t) as a function of

Vd. Other parameters: a = 0.1, λ = 5, ∆ = 0.5, and N = 28.

where i labels all the mesh points of the real–space 2 − d lattice.

According to (6.4) the upper landscapes in Figure 6.1 have a density

of obstacles ρ ≈ 0.3, whereas for the lower panels ρ ≈ 0.6. With other

parameters fixed, Vd is thus the parameter that sets up the density of

obstacles. The plot in Figure 6.3 reveals a linear relationship between

ρ and Vd . The multiple symbols of a given shape denote repeated runs

at that value of Vd , yet with different seeds for the random number

generator.

6.2. Brownian motion in–between unsurmountable

dynamic obstacles

Trajectories r(t) of tracer particles in the potential U(r, t) with a con-

stant biasing force F are generated through numerical simulations of Langevin

dynamics. In particular, assuming the overdamped approach (Sec. 1.4.2),

the stochastic differential equation describing the spatial wth component

rw(t) (w = x and w = y) of r(t) is given by

drw(t)

dt
= − ∂

∂rw
U(r/λ, t) + Fw + ξw(t). (6.5)
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The term ξ(r, t) is a zero–centered random Gaussian vector that satisfies

the fluctuation–dissipation relation,

〈ξw(t) ξw′(t
′)〉 = 2 δw,w′ T δ(t− t′), (6.6)

where T is the scaled temperature.

A second order Heun algorithm (Sec. 7.5.1) is employed for ordinary

stochastic differential equations to simulate the trajectories predicted by

the Langevin equation (6.5) [Garćıa-Ojalvo and Sancho, 1999; Toral and

Colet, 2014]. The forces derived from the random potential U(r, t) are com-

puted by simple centered discrete derivatives [Suñé et al., 2012], (Sec. 7.3).

At intermediate locations the random force is evaluated by standard linear

interpolation of the forces at the lattice points [Suñé et al., 2012], (Sec.

7.4). As it is customary in the former Chapters, transport and diffusion

properties of the Brownian motion of an ensemble of n particles are sur-

veyed. The specific quantities that are computed with these trajectories

are the mean velocity and diffusion coefficients,

〈v‖(t)〉 =
〈r‖(t)〉
t

, D‖,⊥(t) =
〈∆r2

‖,⊥(t)〉
2t

, (6.7)

where the brackets indicate an ensemble average. The parallel and the

perpendicular directions with respect to the external force F are explicitly

distinguished. It should be noted that 〈v⊥〉 is always zero.

6.2.1. Numerical settings

The characteristic time to0 for the dynamical evolution of the potential

must be greater than the time it typically takes the Brownian particles to

spread over a distance comparable to the characteristic width of a potential

obstacle (Sec. 6.1.1). Unless otherwise indicated, the scaled temperature

is T = 1, and the scaled external force |F | = 0.6. Simulations run up to a

maximum time tmax = 4000. At the other end, the time step of integration

∆t should be much shorter than the time it takes a Brownian particle to

cover the distance λ when pulled by the force F , that is, ∆t � λ/|F |.
Thus, the choice for the integration time step is ∆t = 0.01. The rest
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n N ∆ tmax ∆t |F | T to0 λ ρ VH a

4000 211 0.5 4000 0.01 0.6 1 400 2.5,

5

0.1-

0.9

25 0.1

Table 6.1 – Settings for the further on outcome.

of parameters are settled on according to the discussion in Section 6.1.1:

∆ = 0.5, N = 211, VH = 25 � T + λ|F |, and a = 0.1. Hence there

still remain three control parameters: Vd—or, equivalently, ρ—, λ, and

to0. Typically, the trajectories of 4000 particles are simulated in a single

realization of the random potential of obstacles. Initially the particles are

distributed uniformly in a square area of size 2λ×2λ centered at (N/5, N/5)

and placed on sites with U(r, 0) = 0, thus avoiding locations on top of the

obstacles. Table 6.1 summarizes the parameter choices for the simulation

results to come.

6.2.2. General qualitative overview

In Figure 6.4 the force is directed at an angle arctan 0.5 ≈ 26.57 degrees

with respect to the horizontal axis. Some interesting features of these

simulations may be noticed. Blue patches indicate obstacles, and the light

ones flat portions. In red there are the particles executing Brownian motion.

The discrete x and y coordinates shown here extend from 0 to 120. Patterns

in columns from left to right are for times t = 0, 30, 60, 90. Moving from top

to bottom are four rows of different situations: parameter values to0 = 400,

λ = 2.5, and ρ = 0.6 (first row); to0 = 400, λ = 5, ρ = 0.3 (second row); to0 =

400, λ = 5, ρ = 0.6 (third row), and to0 = 105, λ = 5, ρ = 0.6 (fourth row).

The first and third rows differ only in the obstacle width, and so, since the

density is the same in both cases—to0 as well—, there are more obstacles in

the first row than in the third. Therefore, it reveals that Brownian particles

are able to move around obstacles more readily when there are fewer—albeit

wider—obstacles, in agreement with the results achieved by Monte Carlo

simulations of particle diffusion in 3− d obstructed lattices Vilaseca et al.

[2011]. The second and third rows differ only in the density of obstacles,

which are of the same width. It can be seen that Brownian particles spread

more easily when the density is lower, that is, in the second row. The
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Figure 6.4 – The blue patches indicate the obstacles, and the light ones the flat portions.

In red are the particles executing Brownian motion. Patterns from left to right in

each row are for t = 0 (initial condition), t = 30, t = 60, and t = 90. Moving from

top to bottom the panels are for the parameter values to0 = 400, λ = 2.5, and ρ = 0.6

(first row); to0 = 400, λ = 5, ρ = 0.3 (second row); to0 = 400, λ = 5, ρ = 0.6 (third

row), and to0 = 105, λ = 5, ρ = 0.6 (fourth row). The force |F | = 0.6 is directed at

an angle arctan 0.5 ≈ 26.57 degrees with respect to the horizontal axis.
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Figure 6.5 – Mean parallel velocity curves as a function of time for a set of particles on

static surfaces of different obstacle densities: ρ = 0.1 black trajectories, ρ = 0.3 light

gray trajectories, ρ = 0.7 dark gray trajectories; for λ = 2.5 solid lines, and λ = 5.0

dashed lines. The straight black line is a guide. There are two trajectories for each

choice of parameters, that correspond each one to the 4000 particles average in a

particular realization of the random potential and of the initial conditions—that is,

they only differ from the seed taken for random number generator—.

third row most clearly shows the existence of two separate populations,

one that is pretty much trapped and another that is pulled along by the

constant force. The fourth row shows trapping of practically all of the

Brownian particles that occurs when the obstacle dynamics is extremely

slow, essentially one equivalent to a distribution of static obstacles over the

time scale of this realization.

6.2.3. Static landscapes

As a first stage analysis, it is worthy of consideration the impact of

the obstacle density and the obstacle width on the transport and diffusion

displayed by Brownian particles undergoing a static obstacle landscape U ,

that is to0 →∞. The most iconic outcome in this scenario is plotted in Fig-

ures 6.5 and 6.6. For high obstacle densities (ρ = 0.7, dark gray curves),

and disregarded the characteristic length, both the mean velocity and the

diffusion coefficients decrease with time as t−1, thus exhibiting particle
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Figure 6.6 – Mean parallel and perpendicular diffusion curves corresponding to the sim-

ulation results already displayed in Figure 6.5. Grey scale legend is analogous. There

are two trajectories for each choice of parameters, that correspond each one to the

4000 particles average in a particular realization of the random potential and of the

initial conditions—that is, they only differ from the seed taken for random number

generator—.

trapping in the potential obstacles. This case may be similar to the lowest

row of Figure 6.4, in which the Brownian particles just can’t spread indeed.

Here there is no opportunity to develop two populations, one of trapped

particles and another one running particles, as is seen with fewer obstacles

and/or faster obstacle dynamics. Realizations of the potential, either with

equal λ or not, exhibit differences which are a trace of the transient regime

before all the particles become trapped. This transient regime may depend

upon the landscape region where particles are initially allocated, and so

the reported discrepancies are worthless.

The opposite limit, that is, particles undergoing a landscape with a very

low density of obstacles (ρ = 0.1, black curves), displays a finite velocity,

and a finite perpendicular diffusion coefficient as well. The parallel diffusion

coefficient though grows with time—superdiffusion—mainly due to a remi-

niscence of the superdiffusive mechanism already described in [Sancho et al.,

2004; Khoury et al., 2011; Suñé et al., 2013; Suñé et al., 2014], (Chapters 3
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to 5), that is, particles are split among two populations, few are trapped by

the potential obstacles, whereas the rest undergo ballistic motion pulled by

the external force. Analogously to the high density scope, for low obstacle

density landscapes the width of the obstacles does not affect the outcome

significantly.

For what it concerns a rather low density (ρ = 0.3, trajectories in light

gray), velocity exhibits an erratic transient, yet long lasting, regime that

eventually leads to a decreasing steady trajectory with slope ≈ −1, indi-

cating thus subtransport with nearly all the particles in the locked state.

The results for the associated diffusion coefficients behave uncertain, yet

exhibiting an undoubtably decreasing tendency with time—subdiffusion—

for the perpendicular diffusion coefficient in all cases.

In summary, when obstacles are immobile there may be particles trapped

by the obstacles during the entire simulation, at a rate—trapped to free

particles—that depends on the density of obstacles. The entire ensemble

of particles remains attached to the landscape at high obstacles densities,

while an increasing number of particles are able to move on as the density of

obstacles decreases. Therefore, anomalous transport and diffusion regimes

are observed as the density of obstacles decreases, similar to the results for

static corrugated random potentials when increasing the tilting force [Suñé

et al., 2013], (Chap. 4).

No pulling force

Consider now a zero external force (F = 0). It should be noted that

there is no transport (〈v‖(t)〉 = 0 as well). Some differences arise when com-

paring diffusion trajectories in Figure 6.7 to those in Figure 6.6. Firstly,

superdiffusion no longer appears because there’s no force. For particles un-

dergoing low density potentials, constant diffusion coefficients are reached

instead. As the density increases, subdiffusion regimes arise. Finally, within

potentials exhibiting a high concentration of obstacles, diffusion coefficients

display t−1 behavior, revealing thus particle caging.
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Figure 6.7 – Mean parallel and perpendicular diffusion curves as a function of time for

the same conditions as in Figure 6.5, but with zero external force (F = 0). Black

trajectories label the results to arise from ρ = 0.1, light grey those from ρ = 0.3, and

dark grey the ones with ρ = 0.7. As usual, dashed lines refer to λ = 5, whereas λ = 2.5

are displayed in solid. There are two trajectories for each choice of parameters, that

correspond each one to the 4000 particles average in a particular realization of the

random potential and of the initial conditions—that is, they only differ from the seed

taken for random number generator—.

Figure 6.7 also uncovers the obstacle size to play a remarkable role in

the results. For an ensemble of particles running potentials with a fixed

density of obstacles, diffusion trajectories reach the asymptotic limit t−1

earlier when the length scale is shorter, that is, when the landscape is made

of a great number of narrow obstacles. Therefore, it seems that particle

caging is faster under such circumstances than when there are a few yet

wider obstacles.

It ought to be enlightened that the former inferences concerning static

potentials do apply unchanged for landscapes of extremely slow dynamics.

There is agreement between those results to come from simulations with a

large, yet finite, to0 and the depicted features in Figures 6.5 to 6.7.
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Figure 6.8 – Mean parallel velocity curves as a function of time for a set of particles on

dynamic surfaces of different obstacle densities: ρ = 0.1 black trajectories, ρ = 0.3

light gray trajectories, ρ = 0.7 dark gray trajectories; and widths λ = 2.5 solid lines,

and λ = 5.0 dashed lines. There are two trajectories for each choice of parameters,

that correspond each one to the 4000 particles average in a particular realization of

the random potential and of the initial conditions—that is, they only differ from the

seed taken for random number generator—.

6.2.4. Dynamic landscapes

In the opposite limit of small values of to0—rapid rearrangement of the

obstacles—normal transport and diffusion arise, as it would be expected.

The most revealing scenario might thus be the intermediate case of the mo-

tion of Brownian particles in–between dynamic obstacles, yet moving slowly

compared to the Brownian movement—settings enlisted in Table 6.1—. In

this milieu, transport and diffusion exhibit two different regimes: anoma-

lous for t ≤ to0, and asymptotically (t� to0) settling to a constant value (Fig-

ures 6.8 and 6.9). This behavior is also reported for both Monte Carlo sim-

ulations [Vilaseca et al., 2011] and experimental measurements [Dix and

Verkman, 2008] of diffusing particles undergoing molecular crowding. It is

worth noting that those results concerning a landscape of wider obstacles—

dashed trajectories—seem to exhibit longer transient regimes as well as a

greater discrepancy between repetitions of the simulations. This might be

a consequence of the decrease of statistical population, for that increasing
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the obstacles’ size reduces the amount of obstacles of the landscape.

This asymptotic behavior differs strikingly from the outcome brought

about by a static potential (Sec. 6.2.3). Within such a scenario the asymp-

totic mean velocity as well as the diffusion coefficient can be computed,

hence it can be studied the effect of the remaining control parameters—the

size and density of obstacles—on them. On the one hand, the asymptotic

mean velocity decreases nonlinearly with increasing obstacle density; start-

ing at the free Brownian motion result v‖ = |F | = 0.6 when there are no

obstacles (Fig. 6.10). On top of that, greater velocities are attained for the

wider obstacles; therefore it means that narrower obstacles better hinder

particles’ progress.

On the other, the asymptotic diffusion coefficient along the perpendicu-

lar direction to the force (Fig. 6.11) decreases with increasing obstacle den-

sity, as expected from both random walk models [Vilaseca et al., 2011; Gori

et al., 2016] and from experimental evidences [Dix and Verkman, 2008], and

is lower for narrower obstacles [Vilaseca et al., 2011]. However, along the

direction of the pulling force, the diffusion coefficient reaches a maximum

value greater than that of the free particle diffusion coefficient D = T . This

behavior is indicative of the transient anomalous superdiffusive behavior for

times t ≤ to0 when Brownian motion of some particles is hindered by a small

number of obstacles while other particles move along. This is in agreement

with the steady superdiffusive regime displayed by Brownian particles on a

static landscape of a rather low concentration of obstacles (Fig. 6.6). Now

obstacles do move, which renders this trapping transient. Following this

maximum, when the obstacle density increases, particles undergo mostly

hindered dispersion, and the diffusion coefficient resumes its decrease to a

value beneath that of free Brownian motion.
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Figure 6.9 – Parallel—top—and perpendicular—bottom—diffusion coefficients as a func-

tion of time for a set of particles on dynamic surfaces of different obstacle densities:

ρ = 0.1 black trajectories, ρ = 0.3 light gray trajectories, ρ = 0.7 dark gray trajec-

tories; and widths λ = 2.5—left—, and λ = 5.0—right—. There are two trajectories

for each choice of parameters, that correspond each one to the 4000 particles average

in a particular realization of the random potential and of the initial conditions—that

is, they only differ from the seed taken for random number generator—.
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Figure 6.10 – Asymptotic values of the parallel mean velocity as a function of obstacle

density computed over the last 1000 units of time. Error bars indicate the variations

among realizations as well as the fluctuations in each realization. The smooth curves

are best fits to clarify the trends. The time scale of the obstacle dynamics is t00 = 400.
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Figure 6.11 – Parallel—left—and perpendicular—right—diffusion coefficients computed

over the last 1000 units of time. Error bars are again computed from the fluctuations

and the differences between realizations. Smoothed curves are best fits to clarify the

trends. The obstacle dynamic time scale is to0 = 400.
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6.3. Summary and conclusions

The present Chapter addresses the problem of transport and diffusion

of tracer particles suspended in a thermal environment and subject to a

random potential made of unsurmountable stirring obstacles. Obstacles

are of equal heights—height variations do not matter in this scenario—and

move on a characteristic time scale to0. The average obstacle width and

time scales are well controlled quantities, and the density of obstacles is

constant in time. The density is the fraction of sites at height VH—the

remaining sites are at height 0—. Density’s steadiness is a realistic feature

for most systems, even for a monolayer of colonies of gliding bacteria that

are likely to divide, since the relaxation dynamics of the nonequilibrium

cluster–size distribution is much faster than the proliferation time of the

bacteria [Peruani et al., 2012].

The motion of Brownian particles in the dynamical obstacle landscape

has been numerically simulated through Langevin overdamped equations

for various settings; the control parameters being the obstacle density ρ, the

correlation length—mean obstacle width—λ, and the correlation time to0.

The main inferences of the investigations focus on the intermediate scenar-

ios of landscapes of rather low densities of obstacles moving on a time scale

between that of Brownian motion and the total observation time. In this

scenario, the transient behavior of transport and diffusion over time scales

shorter than to0 mimics that of a static landscape. On the basis of the pre-

vious work in [Suñé et al., 2013] and in Chapter 4, which deals with static

random potential landscapes subject to a constant external force, it may be

concluded that a—dynamical—fraction of the particles are prevented from

moving by the obstacles, whereas the rest of the particles freely diffuse.

This leads to anomalous behavior of both the average velocity along the di-

rection of the force—it is reduced by the stationary trapped particles—and

of the diffusion coefficients, parallel and perpendicular to the direction of

the force. After time to0 these anomalies disappear because the motion of

the obstacles allows previously trapped particles to become loose. There-

fore, transport and diffusion coefficients reach asymptotic constant values,
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which nonetheless depend on the anomalous transient regimes. Indeed,

the parallel diffusion coefficient may increase well above the free diffusion

value because of the greater spread of particles brought about by transient

superdiffusion. Furthermore, at a given obstacle density, wider—and there-

fore fewer—obstacles favor transport and diffusion when compared to the

behavior for narrower—and therefore a greater number—of obstacles, as it

had already been seen for random walk models [Vilaseca et al., 2011].

The outcome discussed throughout this Chapter endorses some of the

phenomena already reviewed in [Höfling and Franosch, 2013]. For example,

diffusion of endogenous lipid granules at short time scales—so that static

landscape simulations should apply—within the fission yeast Schizosaccha-

romyces Pombe [Selhuber-Unkel et al., 2009] undergoes subdiffusive motion

with an exponent that is significantly smaller during interphase than during

any stage of the mitotic cell division, when there is less abundantly pres-

ence of elastic cytoskeletal elements; that is, sublinear power–law increase

of the mean–square displacement tends to exhibit a lower exponent as the

density increases; a behavior that is exhibited in Figures 6.6 and 6.7. On

the other hand, experiments in a broad time range, such as tracking the

motion of telomeres in the nucleus of human osterosarcoma cells [Bronstein

et al., 2009] display a crossover from subdiffusive motion at short time scales

to normal diffusion for longer times, which is also displayed in Figures 6.8

and 6.9. Finally, translational diffusion of DNAs in solutions made crowded

with Ficoll-70 and in in vitro experiments in the cytosol—prepared from

mouse liver—[Dauty and Verkman, 2005], reveals a reduced diffusion coef-

ficient compared to its free diffusion in saline. It means thus that molecular

crowding by mobile obstacles is likely to lower the diffusion coefficient, as

it happens for certain concentrations in Figure 6.11 indeed.

It ought to be remarked that the most suggestive transport and diffusion

phenomena occur at rather low densities 0.1 / ρ / 0.5, which is precisely

the usual volume occupation exhibited by the cell cytoplasm (5%−40%) [El-

lis and Minton, 2003].
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Furthermore, it may be inferred from the present study that an effective

set of quantities to portray transport and diffusion in fluid systems with

large obstacles compared to the size of Brownian particles are the charac-

teristic time scale of the dynamics of the obstacles, their width, and their

concentration. This may constitute a different approach to active matter

media [Basu et al., 2008; Sarkar and Basu, 2011; Marchetti et al., 2013].

Examples of such systems include a number of those presented in the in-

troduction to the present Chapter.

The following Chapter aims at reviewing the numerical techniques em-

ployed throughout the investigations. Notwithstanding that the procedures

employed are well established, some refinements and improvements have

been done. The Chapter hence also includes some novel and original ma-

terial.
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Methodology

The present Chapter is an overview of the various numerical techniques,

algorithms, and mathematics employed to carry out the numerical simula-

tions reported in the former chapters. With regard to the potential land-

scape, it is of particular interest when it includes some amount of disorder

with prescribed statistical properties, since it brings about anomalies in

both transport and diffusion [Suñé et al., 2013; Suñé et al., 2014], (Chap-

ters 4 and 5). Therefore, a numerical technique to generate random poten-

tials with any desired spatial isotropic correlation is built up (Sec. 7.1.1).

Further, other physical scenarios of interest are those in which the disorder

reshapes in time and when it is not made of a distribution of barriers, but

of impassable obstacles [Suñé et al., 2016], (Chap. 6). Mathematical trans-

formations to bring about such landscapes are also detailed (Sections 7.1.2

and 7.2). Force correlations to be derived from random potentials are ana-

lyzed in Section 7.3. In Section 7.4 it is outlined a guide to implement these

forces to the simulations of Brownian movement through Langevin dynam-

ics. Finally, Section 7.5 is devoted to sum up the mathematical methods

to handle stochastic differential equations, such as the Langevin equation.
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7.1. Generation of random potentials

Random potentials with well prescribed statistical properties are ubiq-

uitous in the study of transport and diffusion of Brownian particles in

disorder media. The following sections settle down to the methods to build

random processes with controlled space and time attributes that are em-

ployed throughout this thesis.

7.1.1. Static spatial disorder

A static spatial disorder is a stochastic process that exhibits spatial cor-

relation. That is to say, every random variable concerns a space location

and is subject to aleatory variations, yet it exhibits some sort of statistical

dependence on the remaining variates. However, with respect to time, a

static disorder is independent.

In this section it is conceived a procedure to generate a Gaussian poten-

tial landscape with an arbitrary spatial correlation with the only require-

ment of isotropy. The method has the particularity that, although it uses

the Fourier space as other techniques do, all its constraints and informa-

tion are in real space. Mathematical details of the entire process will be

explained subsequently. Afterwards, the method is applied to three differ-

ent types of disordered potentials with correlations: normal, double–sided

exponential and power–law long tail, which cover illustrative scenarios from

the physical point of view.

Backdrop

The Fourier filtering method (FFM) is a well established procedure

to generate a sequence of random numbers with a prescribed correlation

in real space [Garćıa-Ojalvo et al., 1992; Pang et al., 1995; Makse et al.,

1996]. However, it has some practical disadvantages because it needs the

analytical Fourier transform of the correlation function and presents a finite

cutoff in the range of correlation. This second limitation makes it a low
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efficient method, specially in the limit of large systems, and thus for the

study of long range correlations, since only small fraction of the sequence

of generated numbers is actually correlated. Different versions of the FFM,

such as those in [Pang et al., 1995; Makse et al., 1996], remove its cutoff

in the range of correlations by imposing isotropy and periodic boundary

conditions to the correlation function in real space. However, they still

require an expression for the Fourier transform of the desired correlation

function, which sometimes may lead to cumbersome expressions, like for

the power–law correlation [Pang et al., 1995; Makse et al., 1996]. Following

these previous methods, the current procedure goes one step beyond by

simplifying the calculations in the Fourier space.

To start with, the 1 − d scaled space will be considered; extension to

higher dimensions will be illustrated further. Hence, for the meantime it

is intended for building a Gaussian random potential landscape V (x) with

zero mean and correlation function g(|x|),

〈V (x)V (x′)〉 = g(|x− x′|) , (7.1)

where brackets indicate space average. May the correlation g(|x|) be a

finite, isotropic and decaying function, the correlation in the Fourier space

is, the brackets now indicating an average over the Fourier modes,

〈V(k)V(k′)〉 = 2π G(k) δ(k + k′) , (7.2)

where G(k) is the Fourier transform of the spatial correlation function g(x),

G(k) =

+∞∫
−∞

g(x) e−ikx dx . (7.3)

It should be enlightened that, to obtain (7.2), the expression for the Dirac

delta function has been applied,

δ(k + k′) =
1

2π

+∞∫
−∞

ei(k+k′)x dx . (7.4)
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A Gaussian random variate ζ(k) with null mean and anticorrelation,

〈ζ(k) ζ(k′)〉 = δ(k + k′) , (7.5)

may be straightforwardly obtained by already proved numerical techniques

[Garćıa-Ojalvo et al., 1992; Garćıa-Ojalvo and Sancho, 1999]. Therefore,

from expression (7.2) it can be gathered that the random process in the

Fourier space may be generated by means of such a Gaussian aleatory

variable ζ(k),

V(k) =
√

2π G(k) ζ(k) . (7.6)

Eventually, the Gaussian random potential V (x) is achieved by making use

of the inverse Fourier transform of the aleatory variable in the k–space,

V (x) =
1

2π

+∞∫
−∞

V(k) eikx dk . (7.7)

Numerical algorithm

In order to implement the former discussion to set up a numerical algo-

rithm, discrete space ought to be employed. Indeed, the procedure works in

a finite lattice of N cells and total length L = N∆, where ∆ is the cell size.

Therefore xi denotes the position in the discrete 1−d space, xi = i ·∆→ x

as ∆→ 0. With regard to the Fourier space, the cell size is

∆k =
2π

L
, (7.8)

hence, the Dirac delta function relates to the Kronecker delta,

δ(k + k′) = lim
∆k→0

δµ,−µ′

∆k
, (7.9)

where µ labels any mode in the discrete Fourier space,

kµ =
2πµ

L
. (7.10)

According to (7.8), (7.9) and (7.2), the correlation for the random potential

in the discrete Fourier space is

〈V(kµ) V(kµ′)〉 = G(kµ)N∆ δµ,−µ′ , (7.11)
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where G(kµ) = ∆ · FFTW (−1, g(xj)) . FFTW (−1, g(xj)) labels the dis-

crete Fast Fourier Transform (FFT) of the FFTW C subroutine library

[Frigo and Johnson, 2005]; g(xj) is an array comprising the correlation

function images g(x) at the N mesh points in which real space is been

discretized. For one dimensional systems,

cµ = ∆

N−1∑
j=0

cje
−i2πµj/N = ∆ · FFTW (−1, cj) , (7.12)

is the direct discrete Fourier transform1, where FFTW (−1, cj)
2 is the

numerical algorithm forward FFT of complex numbers cj ; and

cj =
1

N∆

N−1∑
µ=0

cµe
i2πµj/N =

1

N∆
· FFTW (+1, cµ) , (7.13)

is the inverse discrete Fourier transform of cµ .

Analogously to the reasoning applied to the continuous space, the corre-

lation (7.11) may be built by means of the potential V(kµ) in the kµ–space,

V(kµ) =
√
G(kµ) ζµ , (7.14)

where ζµ are complex Gaussian random numbers anti–correlated [Garćıa-

Ojalvo et al., 1992],

〈ζµ ζµ′〉 = N∆ δµ,−µ′ . (7.15)

Therefore, the main steps that configure the numerical algorithm to get

the potential V (x) are:

1. Given the choice of an analytical correlation g(|x|) with the men-

tioned properties, the table of (j, g(xj)), j ∈ (0, N − 1) , is built.

1The relations between continuous and discrete variables are: xj = j∆ and kµ =

2πµ/N . Subindex j is employed instead of the usual i in the expressions concerning the

Fourier Transforms in order to avoid confusion with the imaginary unit i2 = −1.
2The first argument, −1, indicates the direction of the transform. It can be either −1

for forward transform or +1 for backward. Technically, it is the sign of the exponent in

the transform.
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Although g(xj) are purely real numbers in real space, to compute the

discrete Fourier transforms, the imaginary parts ought to be settled

to Im(g(xj)) = 0 3.

2. The random numbers ζµ have special requirements of symmetry to

fulfill the anticorrelation statistics [Garćıa-Ojalvo et al., 1992; Garćıa-

Ojalvo and Sancho, 1999]. A better option is to use N random num-

bers aj = bj/
√

∆ , where bj are Gaussian random numbers with zero

mean an variance 1, obtained from the Marsenne Twister generator

and using the alternative Marsaglia-Tsang ziggurat and Kinderman-

Monahan-Leva ratio methods [Galassi et al., 2009]. One can show

that Fourier transform (7.12) of aj with Im(aj) = 0 gives the desired

random numbers ζµ .

3. After this two steps, one can build V(kµ) by (7.14) (G(kµ) is obtained

applying the FFT (7.12) to g(xj)). The desired random values of the

potential V (xj) are obtained by the inverse discrete Fourier trans-

form (7.13) of V(kµ).

Proofs

To check the process’ success, the correlation of the generated potential

may be compared to the proposed analytical correlation (7.1). In order

to dig into some illustrative scenarios, yet with contrasting mathemati-

cal properties, the method is applied to obtain disordered potentials with

correlations normal, double–sided exponential, and power–law long tail;

see Figure 7.1. It may be gathered that the larger is N, the better is the

agreement between theory and simulations. Nonetheless, for optimizing

statistics and time computing, the parameter choice for the simulation out-

come presented in Figure 7.1 is ∆ = 0.1 and N = 220 .

The normal or so–called Gaussian disordered potential has the following

3FFTW library includes facilities to compute real and half–complex sequences by

generating itself those necessary symmetries. It might be useful to apply these options

once the method has been proved to succeed.
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Figure 7.1 – Simulation results for three types of potential correlation; Gaussian

(Ga) (7.16)(λ = 2), in blank squares; double–sided exponential (Ex) (7.17)(λ = 1),

grey circles; and power–law (Pw) (7.19)(λ = 1, ε = 2/3) in black triangles. Analytical

functions are also plotted in continuous (7.16), dashed (7.17) and dotted (7.19) lines.

correlation,

g(|x− x′|) =
1

2
e−

(x−x′)2

2λ2 , (7.16)

which is well behaved in all spatial domain with a finite characteristic length

λ. This potential has been used in plenty of different situations [Garćıa-

Ojalvo et al., 1992; Garćıa-Ojalvo and Sancho, 1999; Khoury et al., 2009]

and it is reviewed here to bring the standard reference.

The exponential correlated random potential has a statistical correla-

tion,

g(|x− x′|) =
1

2
e−
|x−x′|
λ , (7.17)

with a correlation length λ. This is a double–sided exponential which shows

a discontinuity in the first derivative at the origin (x = 0), and so its second

derivative diverges there. Therefore, it leads to a force whose correlation

diverges at the origin as a Dirac delta, and so it may be regarded as the

analogous force to a Gaussian white noise in space (Sec. 7.3.1).
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Figure 7.2 – Log–log plot of the power–law correlation (7.19) for ε = 1/3 (squares, con-

tinuous curve) and ε = 2/3 (circles, dashed curve). Numerical results are represented

by symbols and analytical functions by lines. λ = 1.

Finally, the power–law correlation decays without any characteristic

length at its tail, and it can be used to explore the role of long ranged

disorder. It is defined as,

〈V (x) V (0)〉 ∝ x−ε, (ε > 0) . (7.18)

However, expression (7.18) has a singularity at he origin (x = 0) that may

induce to incongruences when computing its discrete version. To avoid this

scenario, the following correlation function, inspired in [Makse et al., 1996],

may be proposed instead,

g(|x− x′|) =
1

2

(
1 +

(x− x′)2

λ2

)−ε/2
, (7.19)

which is defined for any real value, including x = x′. ε is the exponent that

regulates the decay process, and λ is here a short length to avoid discon-

tinuities at the origin. It should be noted that for x � λ the power–law

behavior is recovered. In order to enlighten the power–law tail that a corre-

lation of type (7.18) must exhibit, Figure 7.2 displays the outcome for two

random potentials with power–law correlation with exponents ε = 1/3 and

ε = 2/3 in a logarithmic scale. It ought to be noted that the correlation’s
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slope is indeed controlled by the exponent ε.

Figures 7.1 and 7.2 prove that the numerical algorithm outcome is in

agreement with the theoretical predictions. Besides, the numerical algo-

rithm is also tested with differing settings. One one hand, different cell

sizes ∆ =0.05, ∆ =0.1 and ∆ =0.4 have been employed. Thus, in order

to keep the system’s length constant (L = N∆), N = 218, N = 220 and

N = 221 for ∆ =0.4, ∆ =0.1 and ∆ =0.05 respectively. On the other, three

different correlation lengths have been chosen for the normal and exponen-

tial cases: λ =0.5, λ =1 and λ =4. Since the power–law correlation has

no characteristic length, two different long tail exponent values have been

inquired instead, ε =1/3 and ε =2/3 (Fig. 7.2). It has been proven that

the procedure runs for those settings as well.

Potential landscape

It is worth to show here how the potential landscapes of the former

three examples look like (Fig. 7.3). The first observation is that the gen-

eral trend of the three cases match because the same seed to generate the

random numbers has been employed. A second observation is that normal

and power–law cases look very similar, but this is because a short scale is

displayed. Finally, strong differences are clearly seen between them and

the exponential case, where the signature of the delta–like correlation of

the force is manifested (Sec. 7.3.1).

Two dimensional space

Generalization to the two dimensional space is straightforward but in-

volves larger computer facilities. Actually, a two dimensional system with

a suitable system size to observe time dependent anomalies will require a

large amount of computational memory. The procedure to generate a dis-

ordered surface with an isotropic space correlation function is analogous

to the 1 − d algorithm (Sec. 7.1.2), yet now the two dimensional Fourier
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Figure 7.3 – Potential landscape for each of the three correlation types: normal correlated

potential (7.16)(λ = 2) (dashed line) has been shifted one unit along vertical axes;

while the one with power–law correlation (7.19)(λ = 1, ε = 2/3) (dotted line) has been

shifted the same amount but opposite, and the double–sided exponential (7.17)(λ = 1)

(solid line) is left in the middle.

transforms to be carried out in a torus geometry. With regard to the nota-

tion, ri
4 is the vector that denotes the position of a cell in the 2− d lattice

space, ri = ∆(i1 · ê1 + i2 · ê2)→ r as ∆→ 0, ê1 and ê2 are unit vectors of

an orthonormal cartesian basis, and i is the set of indices required to label

this cell (i1, i2). Nevertheless, the following plots employ x, y to label the

continuous length axes along ê1 and ê2.

A correlation

〈V (r) V (r′)〉 = g(|r − r′|/λ) , (7.20)

is now proposed with the same symmetries already discussed in both axis.

Its discrete version is,

〈Vi Vj〉 = gij . (7.21)

Transforming gij to the Fourier space G(kµ) = Gµ, the corresponding two

4The bold face notation refers to a vector in a d–dimensional space.
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dimensional potential (7.6) is,

V(kµ) =
√
Gµ ζµ . (7.22)

The cell location in Fourier space is given by kµ = 2π(µ1û1 + µ2û2)/N∆ .

The vectors û1 and û2 are unit vectors of an orthonormal basis in Fourier

space, and the cells are labeled by the cell indices (µ1, µ2). In the continuum

limit kµ → k . ζµ are Gaussian anti-correlated random numbers of zero

mean and correlation

〈ζµ ζµ′〉 = (N∆)2 δµ1,µ2;−µ′1,−µ′2 , (7.23)

that are obtained by the two–dimensional discrete Fourier transforms of5

ai =
bi
∆
, (7.24)

where bi are Gaussian random numbers N(0, 1) with Im(bi) = 0. Anal-

ogously to the one–dimensional case, a real field is recovered when anti–

transforming V(kµ). Again, ∆ is the segment length in both directions of

discretization in real space, and N is the number of discretization points in

any of the two perpendicular directions in space.

The procedure described throughout this section is employed to gener-

ate a corrugated surface with Gaussian correlation (7.25),

〈V (r) V (r′)〉 = g(|r − r′|/λ) =
1

2
e−(r−r′)2/2λ2 . (7.25)

The brackets indicate a spatial average over a system of size L × L, L =

N ∆. The lattice version of this correlation function is

〈Vi Vj〉 = gij =
1

2
e−(ri−rj)2/2λ2 . (7.26)

The Fourier transform of the spatial correlation function gij is

Gµ = πλ2e−λ
2k2
µ/2 . (7.27)

Being the choice for the parameters λ = 5, N = 28, and ∆ = 0.5; the

outcome of the process is displayed in Figure 7.4. A check of the correlation

leading from the simulation is further carried out in Section 7.1.2.

5The FFTW library is also applied to compute two dimensional discrete Fourier trans-

forms.
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Figure 7.4 – 2− d Gaussian random potential V (r) with spatial correlation (7.25).

7.1.2. Dynamic disorder

A dynamic disorder is a stochastic process exhibiting not only spatial

correlation but also temporal. Hence, every random variable concerns both

a space location and a time moment. Statistical dependence is exhibited

among variates concerning different locations at a precise instant, yet also

among variates regarding a precise location at different times.

Formalism

As it has been already shown, it is particularly useful for Gaussian

random processes with symmetric spatial correlation functions to transfer

the discussion to Fourier space [Makse et al., 1996; Suñé et al., 2012]. The

algorithm to simulate the random process takes advantage of properties of

Fourier variables [Garćıa-Ojalvo and Sancho, 1999; Suñé et al., 2012]. The

Fourier transform V(kµ) of V (ri) is conveniently also a Gaussian random

process. In discrete space, may it be paralleled the notation of real space,
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the correlation function in the Fourier space reads

〈Vµ Vµ′〉 = Gµ (N∆)d δµ,−µ′ , (7.28)

where d refers to the space’s dimension. It is next designed a random

dynamical process that at any time preserves the spatial correlation func-

tion (7.20), but whose configuration changes in time as an Ornstein–Uhlenbeck

process for each Fourier mode. The simplest way to accomplish this is to

generate a Gaussian process in Fourier space, with temporal correlation

function

〈Vµ(t) Vµ′(t′)〉 = 〈Vµ(t) Vµ′(t)〉e
− |t−t

′|
τµ . (7.29)

Brackets now denote a double average, one over kµ modes and the other

over time. The parameter τµ is the relaxation time of the Vµ mode, and

the coefficient 〈Vµ(t) Vµ′(t)〉 is exactly as given in (7.28).

The procedure presented in [Garćıa-Ojalvo and Sancho, 1999] is followed

to generate this noise, hence it is assumed that each Vµ evolves according

to the linear Langevin equation

dVµ
dt

= − 1

τ0

G0

Gµ
Vµ +

1
√
τ0

ξµ(t) , (7.30)

〈ξµ(t) ξµ′(t
′)〉 = 2G0 (N∆)d δµ,−µ′ δ(t− t′) , (7.31)

where τ0 is the characteristic time of the µ = 0 mode V0. (7.30) is a set of

decoupled ordinary stochastic differential equations for each Fourier mode

in Fourier space. It can be straightforwardly integrated because of its lin-

earity, leading to the algorithm

Vµ(t+ ∆t) = Vµ(t) exp

[
− G0

Gµτ0
∆t

]
+

√
(N∆)d Gµ

(
1− exp

[
−2
G0

Gµτ0
∆t

])
ζµ ,

(7.32)

where ζµ is a Gaussian random variate anticorrelated (7.15), that is sim-

ulated as already has been described in Section 7.1.16. Thus, the algo-

rithm (7.32) generates a stochastic process at time t + ∆t from its values

6See the point number 2 in the enumeration (Sec. 7.1.1). The expression for aj in a

d-dimensional space is aj = bj/
√

∆d .
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at time t, preserving the spatial correlation g(|r − r′|). (7.29) is indeed

recovered, since the stationary time correlation of each mode is given by

〈Vµ(t) Vµ′(t′)〉st = G(kµ, |t− t′|) (N∆)2 δµ,−µ′ . (7.33)

For the mode µ,

G(kµ, |t− t′|) = Gµ exp

(
− G0

Gµτ0
|t− t′|

)
, (7.34)

decays on a time scale τµ =
Gµ
G0 τ0 . In particular, the decay time of mode

µ = 0 then has the desired value τ0 . Furthermore, this random process is

stationary from the onset since (7.28) is retrieved at any time by setting

t′ = t.

A final brief comment on the convenience of Fourier space rather than

coordinate space in the construction of the spatiotemporal colored noise is

appropriate. There is a straightforward connection between the spatial cor-

relation function (7.25) or (7.26) and the simple Langevin dynamics (7.30).

This greatly helps the computational effort; a direct calculation in real

space might involve complex operators that could seriously slow down the

simulations.

Usage

Starting from the static corrugated surface with Gaussian correlation,

that is to say, the 2 − d random potential displayed in Figure 7.4 (λ = 5,

N = 28, and ∆ = 0.5), the method just described brings about a time

evolution of the field preserving its spatial correlation. The outcome of the

process, setting τ0 = 10 and ∆t = 0.01, is displayed in Figure 7.5, that

exhibits the section portrait between r = (−100, 0) and r = (100, 0) of the

random potential at different times.

In order to check the accuracy of the method, spatial correlation of

the potential at different times may be computed and compared to (7.25).

As Figure 7.6—left—shows, there is agreement between prediction (7.25)
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Figure 7.5 – Random potential V (x, 0, t) with isotropic Gaussian spatial correlation (7.25)

at t = 400 (solid line) shifted one unit along vertical axes, at t = 800 (dashed line)

in the middle, and at t = 1200 (dotted line) shifted the same amount but opposite.

λ = 5, τ0 = 10, and ∆t = 0.01.

and the computational results. On the other hand, the time correlation of

the potential at the Fourier space concerning some wave–vectors may be

computed as well. They ought to compare with the theoretical predictions

to arise from (7.29). Both panels of Figure 7.6 unveil agreement between the

simulations and theoretical predictions to come from the model. Therefore,

the method is proved to work.

7.2. Barrier landscapes

A random process simulated by means of the methods discussed in Sec-

tion 7.1 exhibits a random distribution of barrier heights, either static or

dynamic. To model some physical scenarios may require a landscape made

of impassable obstacles instead (Chap. 6). It turns out to be most conve-

nient to construct a landscape of obstacles of equal height. The following

transformation of the field V (r, t) to a new potential landscape U(r, t) is
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Figure 7.6 – Left: space correlations of the random potential V (r, t) at different times:

t = 400 (blank squares), τ = 800 (grey circles), and t = 1200 (black triangles). The

Gaussian (7.25) spatial correlation imposed is also displayed in red. Right: time

correlation of the random potential Vµ(t) at the Fourier space for different wave–

vectors; k = (0, 0) in blank squares, k = (0, 2) in grey circles, k = (0, 4) in black

triangles, and k = (0, 6) in black rhombi. Theoretical prediction (7.29) has been

included as well for comparison in red for k = (0, 0), yellow for k = (0, 2), green for

k = (0, 4), and blue for k = (0, 6).
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Figure 7.7 – Random potential (λ = 5, N = 28, and ∆ = 0.5) V (x, 0) with spatial

correlation (7.25)—left panel—. Horizontal lines label the potential height at which

V is cut by (7.35) to transform to U ; Vd = 0.4 (dashed dark grey) and Vd = −0.2

(dot–dashed light grey). To the right, there are the cut potentials U(x, 0) from the

transformation (7.35) with Vd = 0.4 (dark grey) and Vd = −0.2 (light grey). In both

cases a = 0.1, VH = 2.

hence implemented,

U(r, t) =
VH

1 + exp [−(V (r, t)− Vd)/a]
. (7.35)

When (V (r, t) − Vd)/a is positive (say, larger than 1), the new field in

the region around r is an obstacle whose maximum height is VH . In the

opposite case, (V (r, t) − Vd)/a negative (say, smaller than −1), the new

potential is essentially zero, see Figure 7.7. It is said “around r” because

the original potential is assumed smooth and slowly varying. Parameter a

controls the barrier stiffness, that is, the sharpness of the boundary between

a flat region and an obstacle. Figure 7.8 shows the 2 − d landscapes that

lead to the 1− d cross sections in Figure 7.7.

In “designing” the potential U(r, t) from V (r, t), it is set out to preserve

the spatial and temporal correlation properties of the original potential.

The left panel of Figure 7.9 captures a plot in logarithmic–normal coor-

dinates showing the spatial correlation function of the original potential—
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Figure 7.8 – 2 − d random potentials U(r) after the transformation (7.35) is applied to

V (r) (λ = 5, N = 28, and ∆ = 0.5) with a = 0.1, VH = 2, and Vd = 0.4 (left panel),

and -0.2 (right panel). Grey scale lines enlighten the sections at which the portraits

in Figure 7.7 are plotted.

solid line—, and the two cases of the new potential displayed in Figure 7.8.

Indeed, the slope of the potential with Vd = 0.4 is essentially identical to

that of the original potential, whereas that of the potential with Vd = −0.2,

while not the same, is close. The difference in the absolute values of the

three lines is due to the fact that the average value of the new potential is

no longer zero and, in fact, it depends on Vd . A comparison of the decay

of temporal correlations of the original and modified potentials also shows

that the new potential captures the behavior of the original one (Fig. 7.9)–

right. The absolute values of the three curves again differ because the mean

value of U being nonzero.

The configuration of obstacles of height U(r, t) = VH separated by flat

regions U(r, t) = 0 at each time allows to define a convenient quantity, the

relative density of obstacles ρ(t), as the ratio of sites at height U(r, t) = VH

to the total occupied system (6.4):

ρ(t) =
1

N2VH

∑
i

U(ri, t) . (7.36)
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Figure 7.9 – Spatial—left—and temporal—right—numerical correlations of the poten-

tials. The solid curve corresponds to the potential V (r, t) with Gaussian correla-

tion (7.25) and λ = 5 and τ0 = 10. The dashed curves are for the potential U(r, t)

with parameter values a = 0.1, VH = 2, and Vd = 0.4 (dark gray) and −0.2 (light
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Here i again labels all the mesh points of the real–space 2 − d lattice.

According to (7.36), the landscape in the left panel in Figure 7.8 has a

density of obstacles ρ = 0.3, and the one to the right, ρ = 0.6. With other

parameters fixed, Vd is the parameter employed to modify the density of

obstacles. The plot in Figure 7.10 reveals a linear relationship between ρ

and Vd . The multiple symbols of a given shape denote repeated runs at

that value of Vd , yet with different seeds for the random number generator.

Furthermore, the fact that Vd determines ρ—other parameters being the

same—, and that Vd is independent of time, establishes that the density ρ is

also statistically independent of time. Obstacles can thus move and deform

over the slow time scale τ0, with ρ oscillating around a steady value. Finally,

it should be noted that the potential’s characteristic correlation length λ is

a measure of the obstacles’ size for the transformed potential U(r, t).
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Figure 7.10 – Obstacle density ρ of the 2− d random potentials U(r, t) as a function of

Vd. Other parameters: a = 0.1, λ = 5, ∆ = 0.5, and N = 28.

7.3. From potentials to forces, simple centered

discrete derivatives

Once the random field V (x) is generated in 1 − d space, the force at

any point i may be derived employing, for example, the simple centered

derivative formula

Fi = −dV (x)

dx
= −V (xi+1)− V (xi−1)

2∆
. (7.37)

On the other hand, from the analytical expression for the correlation func-

tion (7.1) one can obtain the statistical properties of the corresponding

forces F (x) = −V ′(x) as well,

〈F (x)F (x′)〉 = −∂
2g(|x− x′|)

∂x2
=

1

λ2
h(|x− x′|) , (7.38)

which defines the dimensionless correlation function of the force h(|x|).
This relation is also useful to check the correct properties of the numerically

generated force (Fig. 7.11).

Applying (7.38) to the already studied correlation types (7.16), and (7.19)—
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Figure 7.11 – Simulation results for the forces to derive from three types of poten-

tial correlation; Gaussian (7.16)(λ = 2), in blank squares; double–sided exponen-

tial (4.2)(λ = 1), grey circles; and power–law (4.4)(λ = 1, ε = 2/3) in black triangles.

Analytical functions are also plotted in red (7.39), green (7.41) and blue (7.40) lines.

the double–sided exponential correlation is postponed—, it leads to

h(|x|) =
1

2

(
1− x2

λ2

)
e−

x2

2λ2 , (7.39)

for the normal correlation (7.16), and

h(|x|) =
ε

2

[
1− x2

λ2
(1 + ε)

](
1 +

x2

λ2

)−ε/2−2

, (7.40)

for the power–law (7.19). It should be noticed that x′ is fixed to x′ = 0 for

both cases.

7.3.1. The double–sided exponential correlation

The double–sided exponential correlation function (7.17) deserves a

comment apart. It exhibits a cusp at the origin, and thus its first deriva-

tive at x = 0 has a finite jump—Heaviside function—. Since the derivative

of a Heaviside function is a Dirac–δ function, the associated force corre-

lation function includes a Dirac–δ function at the origin. Applying (7.38)
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Figure 7.12 – Magnification of the force correlation (7.17) for the exponential correlated

potential. Blank circles and dotted line label the λ = 1 case. The λ = 2 case is labeled

by blank squares and dot dashed line. Theoretical predictions are drawn in solid lines;

red for λ = 1, green for λ = 2. Points at the origin are the spatial discrete contribution

of the continuous Dirac–δ distributions. Analytical values (7.42)—a cross for λ = 1,

a star for λ = 2—coincide with simulation’s results.

to (7.17), and taking x′ = 0,

h(|x|) = δ
(x
λ

)
− 1

2
e−
|x|
λ . (7.41)

Particularly, at the origin, in the discrete space, it behaves as

h(0) ' λ

2∆
− 1

2
. (7.42)

Figure 7.12 displays the theoretical prediction, based on (7.41) and (7.42),

and the simulation outcome for the force correlation to lead from a random

potential with a double–sided exponential correlation (7.17).

Due to the Dirac–δ distribution at the origin in (7.41), which is ∼ λ/2∆

because of normalization and isotropy, the first simulation points are en-

hanced respect to the rest. Theoretically, only the point for x = 0 might be

enhanced because of the Dirac–δ distribution at the origin. However, since

the simulations run in a discrete space, when computing the derivatives of
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the potential, also at x = ∆ the force correlation shows an enhancement

respect to the exponential curve (7.41) that is expected for x 6= 0. Figure

7.12 shows a magnification of these features for a λ =1, and λ = 2.

7.3.2. Bidimensional space

For a 2− d space, the components of the force Fi = Fi,1 · ê1 +Fi,2 · ê2
7

are obtained as,

8∆ Fi,1 = V (ri1+1,i2+1) + 2 · V (ri1+1,i2) + V (ri1+1,i2−1)

− V (ri1−1,i2+1)− 2 · V (ri1−1,i2)− V (ri1−1,i2−1) ,

8∆ Fi,2 = V (ri1−1,i2+1) + 2 · V (ri1,i2+1) + V (ri1+1,i2+1)

− V (ri1+1,i2−1)− 2 · V (ri1,i2−1)− V (ri1−1,i2−1) .

(7.43)

The notation employed ri1,i2 accounts for ∆(i1, i2). It ought to be reminded

that ri = ∆(i1 · ê1 + i2 · ê2) → r as ∆ → 0, ê1 and ê2 are unit vectors of

an orthonormal cartesian basis, and i is the set of indices required to label

this cell (i1, i2).

7.4. Forces at intermediate locations, linear inter-

polation

Given now the discrete 1 − d potential V (xi), one can generate the

ensemble of discrete forces according to (7.37). However, the Brownian

particle trajectory is defined in a continuous domain of the variable position

x, and thus the discrete forces defined in the array of mesh points ought to

be interpolated in order to get the force at any point of the domain,

F (x) = F (xn) +R[xn, xn+1](x− xn) , (7.44)

7i = (i1, i2) labels any point in a 2 − d grid with discretization length ∆, hence Fi,1

and Fi,2 are the force components along the ê1 and ê2 directions respectively in the space

location (i1, i2).
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where R[xn, xn+1] is the first order Newton Divided Difference Formula,

R[xn, xn+1] =
F (xn+1)− F (xn)

xn+1 − xn
, (7.45)

and x ∈ (xn, xn+1).

In 2− d, the forces at any point r = (r1 , r2) in the continuous domain

are obtained by the interpolation formula [Kunz, 1957],

F1(r) =
F1(Qn,m)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1,n+1 − r1) (r2,m+1 − r2)

+
F1(Qn+1,m)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1 − r1,n) (r2,m+1 − r2)

+
F1(Qn,m+1)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1,n+1 − r1) (r2 − r2,m)

+
F1(Qn+1,m+1)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1 − r1,n) (r2 − r2,m) ,

F2(r) =
F2(Qn,m)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(rn+1 − r1) (r2,m+1 − r2)

+
F2(Qn+1,m)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1 − r1,n) (r2,m+1 − r2)

+
F2(Qn,m+1)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1,n+1 − r1) (r2 − r2,m)

+
F2(Qn+1,m+1)

(r1,n+1 − r1,n)(r2,m+1 − r2,m)
(r1 − r1,n) (r2 − r2,m) ,

(7.46)

where Qi,j = (r1,i , r2,j) with i = n, n + 1; j = m,m + 1, and (r1 , r2) ∈
(r1,n , r2,m ; r1,n+1 , r2,m+1). For ease of notation, it has been assumed

r1,n = ∆ · (i1 = n).

7.5. Stochastic partial differential equations

Stochastic partial differential equations (SPDEs) of a field φ may be

written in the general form for a Euclidean d−space,

∂φ(r, t)

∂t
= f(φ(r, t),∇, α) + g(φ(r, t),∇) η(r, t) , (7.47)
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where the bold–face notation tags a vector in the multidimensional space.

η(r, t) is the noise term that has a correlation

〈η(r, t) η(r′, t′)〉 = ε C

(
r − r′

λ
,
|t− t′|
τ0

)
, (7.48)

where ε is the noise’s intensity, and λ and τ0 are respectively the correlation

length and time. The brackets indicate a space and time averages. For the

Gaussian white–noise case, the function C is the product of two Dirac delta

functions. f designates the deterministic force, that depends on the field

variable φ, its spatial derivatives, and a likely set of control parameters α.

Thus, this force comprises the diffusion term and a reaction term, that may

represent any interaction in the system, such as those concerning chemical

kinetics. g is the random force coupling term; despite employing the same

notation (g) it has nothing to do with the correlation function of a static

spatial disorder.

The numerical analysis of the stochastic partial differential equation on-

sets from the discretization of space, that leads to a set of coupled ordinary

stochastic differential equations on a lattice

∂φi
∂t

= fi(φ(t)) +
∑
j

gij(φ(t)) ηj(t) , (7.49)

where indexes i and j label a point in the hypercubic d−space. It should

be remarked that fi and gij depend on φi.

May the spatiotemporal Gaussian noise be additive, it is presumed that

it has no interpretation problem in any dimension. That is to say, the size

of the lattice cells is assumed to be small compared to other spatial length

scales of the system, yet it is large enough to prevent the spatially extended

noise from producing large fluctuations of the coarse–grained field between

adjacent cells. Hence, the field is assumed to behave smoothly. Further de-

tails on this discussion are addressed in [Garćıa-Ojalvo and Sancho, 1999;

Toral and Colet, 2014].

Were the noise terms of a stochastic differential equation multiplica-

tive instead, they must be interpreted. Gaussian white noise might be
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considered, for physical reasons, the limit of a real noise when its corre-

lation time decreases to zero. Therefore, it has to be interpreted in the

Stratonovich sense, instead of the Itô sense, commonly employed in math-

ematics. These interpretations involve two main differences. On one hand,

in the Stratonovich sense, the multiplicative noise term, as well as the noise

itself, have non–zero mean values, whereas they do have null mean values

in the Itô sense. On the other, within the Stratonovich interpretation, the

stochastic terms follow the general rules of calculus concerning integration

and derivation, yet not within the Itô sense.

From now on, when considering the discrete version of the SPDEs, it

will be assumed that they state in a d−dimensional lattice of Nd cells of

size ∆d, and so space isotropy is presumed as well. Therefore, the total size

of the system is (N∆)d.

7.5.1. The Heun method for the Langevin equation

Considering a white noise term in both space and time, its correlation

in discrete space reads

〈ηi(t) ηj(t′)〉 = 2ε
δij
∆d

δ(t− t′) , (7.50)

indexes i, j label each of them a point in the hypercubic d−space.

Integration of the stochastic partial differential equation (7.47) between

t and t+ ∆t, after choosing the time step ∆t, leads to

φi(t+ ∆t)− φi(t) =

t+∆t∫
t

fi(φ(t′)) dt′ +
∑
j

t+∆t∫
t

gij(φ(t′)) ηj(t
′) dt′ .

(7.51)

That after some transformations, see [Garćıa-Ojalvo and Sancho, 1999] for
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further details, becomes

φi(t+ ∆t) = φi(t) + fi(φ(t)) ∆t+
∑
j

gij(φ(t)) Xj

+
∑
jkl

∂gij
∂φk

gkl(φ(t)) Yjl +O
(

∆t3/2
)
,

(7.52)

where

Xi ≡
t+∆t∫
t

ηi(t
′) dt′ , (7.53)

Yij ≡
t+∆t∫
t

ηi(t
′) dt′

t′∫
t

ηj(t
′′) dt′′ . (7.54)

Since ηi(t) is a Gaussian random variable with zero mean and integration

is a linear operation, Xi is also Gaussian with null mean and a correlation

like (7.50), that is,

〈Xi Xj〉 = 2ε
δij
∆d

∆t . (7.55)

The brackets indicate a spatial average. From which it is straightforwardly

achieved the expression

Xi =

√
2ε∆t

∆d
γi , (7.56)

to generate the random variable Xi . γi are Gaussian random numbers with

null mean and variance equal to 1. They may be generated by means of

pseudorandom algorithms [Garćıa-Ojalvo and Sancho, 1999; Galassi et al.,

2009].

Notwithstanding, the random process Yij is not so easily computed. On

paper, it is a non–Gaussian random variable which cannot be simulated ex-

actly, even though its statistical properties are well established [Mannella,

1989]. May it be considered the particular scenario in which gij is a con-

stant coupling function, the last term in (7.52) vanishes, and thus there is

no need to compute Yij . This case corresponds to an additive noise, like
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the white noise usually employed in the inquiries of this theses. Therefore,

from now on, the assumption gij being a constant is made.

The algorithm to generate a random variable φ that obeys the SPDE (7.49),

considering a constant coupling function gij , is hence,

φi(t+ ∆t) = φi(t) + fi(φ(t)) ∆t+
∑
j

gij(φ(t)) Xj , (7.57)

and constitutes an algorithm of Euler type, which are the lowest–order

algorithms. The following order of approximation is the Heun algorithm,

or also called improved Euler method. For the white noise in time it reads

φi(t+ ∆t) = φi(t) +
1

2

[
fi(φ(t)) + fi

(
φ̃(t)

)]
∆t

+
1

2

∑
j

[
gij(φ(t)) + gij

(
φ̃(t)

)]
Xj ,

(7.58)

where φ̃(t) is given by the Euler algorithm

φ̃i(t) = φi(t) + fi(φ(t)) ∆t+ gij(φ(t)) Xj . (7.59)

The Heun algorithm is a second–order Runge–Kutta method [Garćıa-Ojalvo

and Sancho, 1999].

One last comment on the numerical simulations of SPDEs ought to be

done. Since ∆t needs to be the smallest time scale of the system, it has to

be chosen small enough. A proper choice for the integration time step thus

makes higher–order algorithms unnecessary, because most of the systematic

deviations originate in the deterministic part of the algorithm. And that is

why the Heun method improves the accuracy compared to the simple Euler

algorithm. Nevertheless, improvement might be achieved by increasing the

number of realizations and the quality of the random number generator,

since trajectories are stochastic.
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7.6. Summary

The numerical procedure to generate disorder potentials applies to any

statistical correlation, which must be isotropic and periodic in the finite

simulation domain; notwithstanding, it is worth to remark that V (r) is a

non–symmetric random function. The method relies on two Fourier trans-

forms and one antitransform, yet all the constraints can be inferred to real

space, and thus Fourier space is left as a mere stage in the process, theo-

retically fundamental but numerically practical.

It is also reported the numerical recipe based on [Garćıa-Ojalvo and

Sancho, 1999; Suñé et al., 2012] that brings about time unfolding to the

disorder. The algorithm relies on the Fourier space as well and works out to

preserve the disorder’s spatial correlation at any time. Furthermore, time

properties of the outcome are set up by a time scale parameter. On the

other hand, it is implemented a transformation so as to reshape the disor-

der into a landscape of obstacles of equal height. The proposed procedure

conserves the space and time features of the original potential. The average

obstacle width and time scales are thus well controlled quantities; besides,

the density of obstacles is constant in time. The fixed density is ubiqui-

tous in nature, even for those nonequilibrium systems exhibiting birth and

death processes—such as a monolayer of colonies of gliding bacteria [Pe-

ruani et al., 2012]—, since the relaxation dynamics of the nonequilibrium

cluster–size distribution may be much faster that the proliferation time of

the population.

With regard to the forces to be derived from the random potentials, it

is overviewed the numerical algorithm to carry out the discrete derivative

both in one and in two dimensions. Further, the force correlations are also

inquired. Linear interpolation is required in order to implement this dis-

crete force field to the continuous Langevin equation.

Finally, discretization of stochastic differential equations is reported, as

well as the second–order Heun method to integrate them.
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CHAPTER 8

Spare investigations

The present Chapter reports two cases of study that can be addressed

employing those skills and proceedings acquired along the former chapters.

State of the art in both scenarios is the early stage, in which a description

of the problem is attained by stochastic Langevin dynamics. Besides, nu-

merical simulations have been carried out for those reference scenarios that

entail a low degree of complexity. The outcome reveals some interesting

insights, from which new hypotheses might be made to go on with further

investigations.

8.1. Brownian motion at interfaces

This section deals the physics of particles undergoing thermal fluctu-

ations, different viscosities, and a confining field, in a finite volume. The

potential displays a minimum at a thin—quasi 2 − d—interface to which

particles are attracted, and from which they are promoted by thermal fluc-

tuations. Similarly, it is considered a different viscosity in the interface

respect to the rest of the 3−d space. Both theoretical analysis and stochas-

tic simulations are employed to check the equilibrium and non–equilibrium

properties of the system.
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Figure 8.1 – Pictorial scheme of the system.

8.1.1. Interface attraction

Equilibrium thermodynamics

A thermodynamic system of n particles, occupying a total enclosed

volume V̂ , at temperature T̂ , is considered. At a fixed height ĥ2, there is an

attractive potential, such that particles undergo a force that confines them

at ẑ ≤ ĥ2. Hence, this potential displays two energy states, V̂ (ẑ > ĥ2) = 0,

and V̂ (ẑ ≤ ĥ2) = −V0. V0 is employed as a energy reference to scale the

potential and the temperature. From now on, scaled quantities are assumed

according to this energy scale; space is also scaled by any characteristic

length scale λ0.

h2 splits the volume V into two volumes V1—height h1—, and V2—

height h2—, with a population of particles n1 and n2 respectively, see Fig-

ure 8.1. Therefore, V = V1 + V2, n = n1 + n2.

Thermal equilibrium is assumed in the whole system, so that T is con-
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stant; hence the thermodynamic equilibrium is given by the the equality of

the chemical potentials concerning each of the two subsystems, µ1, µ2,

µ1(T, n1, V1) = µ2(T, n2, V2) . (8.1)

Applying this thermodynamic equilibrium condition, assuming the ideal

gas approximation, and using the macrocanonical partition function, it is

obtained the population of particles in each fraction of volume,

n2

n1
=
V2

V1
eβ , (β ≡ T−1) . (8.2)

In the high temperature limit β → 0,

ρ2 = ρ1 , (ρi ≡ ni/Vi) , (8.3)

where ρ1 is the density of particles in volume V1, and ρ2 in V2. Notwith-

standing, the opposite limit β → ∞ (T → 0) is a priori undetermined.

May (8.2) be rewritten in terms of the total number of particles, n,

n2

n
=

1

1 + V1
V2
e−β

, (8.4)

then the limit β →∞ exists,

n2

n
= 1 . (8.5)

Hence all the particles are in the volume V2. The physical interpretation

of this limit is straightforward: when T → 0 particles can’t overcome the

potential barrier to escape from the volume V2 to V1.

The Boltzmann distribution

Further, this scenario may be addressed employing the Boltzmann dis-

tribution, that accounts for the probability measure of a system to be in

any of the various possible energy states. Concerning the current system,

in which there is but one energy profile along the vertical direction (z), the

distribution is

P (z) =
1

C1
e−V (z)/T , (8.6)
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where V (z) is any potential to bring about the two energy states at V1,

V (z > h2) = 0, and V2, V (z < h2) = −1. A plausible choice for the

potential would be—h2 = 1 without loss of generality—,

V (z) =
1

2

[
tanh

(
z − 1

a0

)
− 1

]
, (8.7)

for it is a continuous and derivable function; a0 states for the steepness of

the potential increase from V (z < 1) = −1 to V (z > 1) = 0. z is the

vertical coordinate, and C1 is the normalizing factor,

C1 =

h∫
0

dz e−V (z)/T , (8.8)

the system to be defined from z = 0 to z = h.

Stochastic Dynamics

Trajectories of an ensemble of n particles in an enclosed system of vol-

ume V , at a temperature T , and undergoing a potential (8.7), are simulated

by Langevin equations for each particle i = 1, ... , n—assuming the over-

damped approach in its scaled version (Sec. 1.4.2)—

dxi
dt

= ξx(t) ,

dyi
dt

= ξy(t) , (8.9)

dzi
dt

= − dV (z)

dz
+ ξz(t) .

The fluctuation–dissipation theorem for each component reads

〈ξw(t) ξw(t′)〉 = 2T δ(t− t′) , (w = x, y, z) . (8.10)

The scaling length parameter has been chosen to be z0, the coordinate—

the height—such that V̂ (z0) = −V0/2. As usual, a second order Heun

algorithm for ordinary stochastic differential equations (Sec. 7.5.1) is em-

ployed to simulate the trajectories predicted by (8.9).
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Figure 8.2 – Normalized particle position histogram for temperatures T = 0.2 (left) and

T = 0.8 (right). Superimposed are the Boltzmann distribution (8.6) in black, and

the potential V (z) (8.7) in grey dashed lines—the right hand scale for the potential

applies to the left panel as well—.

Results

Simulations run up to t = 2000 with an integration step ∆t = 0.01,

for n = 4000 particles in a volume V = L × L × h, L = 40, h = 10, at

different temperatures T = 0.2, 0.4, 0.6, 0.8, 1; and a0 = 0.2. At grater

times than the diffusive scale ∼ h2

2T , the system is expected to attain the

thermodynamic equilibrium, for the whole vertical space is explored. The

histogram of particle’s locations along vertical direction (z) at the end of

simulations t = 2000, when equilibrium is expected to be reached, is plotted

in Figure 8.2 for T = 0.2 and 0.8.

Results in Figure 8.2 display a fairly good agreement with the Boltz-

mann distribution (8.6). The concordance is better at low temperatures

because in this scenario there are less fluctuations. Similarly to the func-

tion of the potential, P (z) displays a soft profile between the concentrations

in V2 and V1. The effect of this transition region may be measured com-

puting the ratio of particles at V2, n2, over the total n. The outcome

should then compare to the theoretical prediction (8.4), that in the current
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T n2/n z2→1 = z− n2/n z2→1 = 1 n2/n z2→1 = z+

0.2 0.87 0.82 0.92 1.0 0.93 1.39

0.4 0.51 0.89 0.53 1.0 0.56 1.32

0.6 0.33 0.92 0.34 1.0 0.37 1.28

0.8 0.25 0.94 0.26 1.0 0.29 1.24

1.0 0.21 0.95 0.22 1.0 0.24 1.22

Table 8.1 – Ratio of particles in volume V2 to the total. Results are obtained by integra-

tion of (8.6) with various temperatures and upper limits for the integral z2→1.

0.1

1

1 10

n
2
/n

β

z = z−
z = 1
z = z+

Therm. prediction

Figure 8.3 – Comparison between the data in Table 8.1 and the thermodynamic predic-

tion (8.11).
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scenario reads—assuming h2 = 1—,

n2

n
=

1

1 + V1
V2
e−β

=
1

1 + (h− 1) e−β
. (8.11)

n2/n is computed by integration of (8.6) with (8.7) up to a coordinate z2→1.

A first choice for z2→1 might be 1, the abscissa where the confining potential

has drop one half V (1) = −1/2. Further, other values would be; z2→1 = z−,

that corresponds to the abscissa where the transition between the two

plateaus is half done (P (z−) = [e1/T − 1]/(2 C1)), and z2→1 = z+, that

corresponds to the shortest abscissa such that [P (z+)C1 − 1] < 0.1. Figure

8.2 displays z2→1 = z−, 1, and z+ for the corresponding settings. Results

for the ratio n2/n, for the three z2→1 choices, and various temperatures,

are enlisted in Table 8.1.

Figure 8.3 reveals that the current results exhibit a fairly good accord

with the thermodynamic prediction (8.11). In particular, the best criteria

to compute the ratio of particles at V2 n2/n is to integrate the Boltzmann

distribution (8.6) up to z+.

8.1.2. Brownian movement at two viscosities with interface

attraction

Considering again the scheme in Figure 8.1, it is assumed that particles

undergo a different viscosity (γ2 , γ1) depending on whether they are in V2,

or in V1; in addition to the potential (8.7). Analogously to the function

employed to characterize the attracting potential (8.7), the scaled friction

along the vertical coordinate might be,

γ(z) =
1

2

[
1 + γ0 − (1− γ0) tanh

(
z − 1

a0

)]
, (8.12)

where γ0 = γ1/γ2 (γ2 is been employed as the scaling viscosity); see Figure

8.4.
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The set of adimensional stochastic differential equations that describe

this scenario in the overdamped approach (Sec. 1.4.2) is,

dxi
dt

=
1

γ(z)
ξx(t) ,

dyi
dt

=
1

γ(z)
ξy(t) , (8.13)

dzi
dt

=
−1

γ(z)

dV (z)

dz
+ T

d

dz

(
1

γ(z)

)
+

1

γ(z)
ξz(t) ,

where ξw(t) (w = x, y, z) are independent Gaussian random variates of zero

mean, variance 1, and correlation according to the fluctuation–dissipation

theorem,

〈ξw(t) ξw(t′)〉 = 2 γ(z)T δ(t− t′) . (8.14)

Now the scaling characteristic time is τ0 = (z2
0 γ2)/V0 (Sec. 1.4.2). The

term with the space derivative of the viscosity in (8.13) arises from the Itô

interpretation of the overdamped Langevin equation compatible with the

Fokker–Planck equation for a multiplicative noise. This term provides a

steady friction independent result of the integration of the Langevin equa-

tion (8.13), even though γ does depend on the position z; in agreement with

the steady non equilibrium distribution obtained from the corresponding
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Figure 8.5 – Normalized particle position histogram for temperatures T = 0.2 (left) and

T = 0.8 (right). Superimposed is the Boltzmann distribution (8.6) in black.

Fokker–Planck equation [Sagués et al., 2007; Sancho, 2015].

Results

Simulations of (8.13) by a Heun algorithm (Chap. 7.5.1) run for the

same settings than in the former scenario (V = L×L× h, L = 40, h = 10,

n = 4000, a0 = 0.2), up to t = 1000. Now, the control parameters are T

and γ0. The term T d
dz

(
1

γ(z)

)
in (8.13) exhibits a strong dependence on

the parameter γ0. Therefore, ∆t should be shorter the lower is the quotient

between frictions γ0. In particular, for the current simulations, ∆t = 0.0025

for γ0 < 0.5; ∆t = 0.01 otherwise.

From Figure 8.5 it is gathered that the ensemble’s distribution is pre-

served, despite the friction does change along the vertical direction, as it

is foreseen through the discussion of the viscosity’s derivative term added

to the Langevin equation (8.13). The Boltzmann distribution (8.6) is dis-

played indeed. Accordingly, from this data, it may be computed the fraction

of particles in the volume V2 over the total, n2/n, employing z+, as stated

in Section 8.1.1. Figure 8.6 compares the attained values to (8.11), and they
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Figure 8.6 – Comparison between the simulation data and the thermodynamic predic-

tion (8.11).

display almost a perfect alignment.

Particle displacements

The distribution of particle displacements accounts for the probability

that a particle has moved a certain distance during a time lag. This dis-

tribution is quantified in terms of the self part of the van Hove correlation

function,

Gs(∆w,∆t) =
1

n

〈
n∑
i=1

δ(w + wi(τ)− wi(t+ ∆t))

〉
, (8.15)

where 〈·〉 labels ensemble averaging; w = x, y, z. The distribution of particle

displacements is a ubiquitous interpretation of experimental findings [Skaug

et al., 2013]. From the simulation data in the former section, Gs(∆w,∆τ)

is computed separately for w = x, y, z.

When γ0 = 1, and so the friction is constant for the whole system, the

distribution exhibits the expected Gaussian functionality in the plane xy
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Figure 8.7 – Distribution of particle displacements along the vertical direction z for

time lags ∆t = 1, 2, 3; γ0 = 1. Superimposed functions are the Gaussian distribu-

tions (8.16). T = 0.4.

where particles must undergo free Brownian motion,

Gs(∆w,∆t) =
1√

2π σ2
e−∆w2/(2σ2), (8.16)

where σ2 = 2T∆t, and w = x, y. However, may the particles’ displacements

be computed along the vertical axis, along which particles are attracted

according to (8.7), the outcome exhibits a more peaked cusp at the mean

value than the Gaussian function does (Fig. 8.7). The probability for the

particles to undergo displacements ∆z ≤ 1 is thus enhanced. It should be

noted that 1 is indeed the range of the potential, that exerts a force to the

particles that tends to confine them at z ≤ 1. Displacements ∆z > 1 attain

nonetheless to the Gaussian distribution.

Concerning the scenario in which particles undergo two different vis-

cosities, the distribution of displacements are no longer Gaussian–like in

any direction. The distribution of particle displacements along x, y is now

accounted by a combination of weighed Gaussian distributions (w = x, y),

Gs(∆w,∆t) =
n2

n
f2(∆w, σ2) +

(
1− n2

n

)
f1(∆w, σ1), (8.17)
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2 (circles), and 3 (triangles); γ0 = 0.1. Superimposed are the weighed Gaussian

distributions (8.17) in the left plot. T = 0.4.

where f2(1)(∆w, σ2(1)) are Gaussian functions (8.16), with σ2
2 = 2T∆t, and

σ2
1 = 2 T

γ0
∆t. The fraction of particles in V2 employed in Figure 8.8—left—

comes from the results already plotted in Figure 8.6.

However, the distribution of displacements along the vertical direction

z does not exhibit any well known functionality. Besides, for the time lags

considered, the distributions are altered by the finite size of the system; the

data in Figure 8.8—right—is constrained between z = −10 to z = 10, for

the length of the system in z is h = 10.

Finally, comparing the particle displacements concerning cases with the

same viscosity (Fig. 8.7) to those with a viscosity gradient (Fig. 8.8), it

ought to be noted that the viscosity does affect the distribution. In contrast,

it has been shown in Figures 8.5 and 8.6 that the population of particles

in each state remains constant despite different viscosities being considered.
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Figure 8.9 – Potential landscape (8.18) at z = 0. Parameters choice: a0 = 0.2, b0 = 10,

A = 4, B = 1, and φ = 5.

8.1.3. Intermittent molecular hopping

Studies on the mobility of molecules on a solid–fluid interface reveal

desorption–mediated displacements to be universal to portray the diffusion

in these physical milieus [Skaug et al., 2013]. Applying Langevin dynamics,

as in Section 8.1.2, attention is now committed to modeling the solid–fluid

interface diffusion. A 3−d periodic attracting potential may be considered

as a first approximation,

V (x, y, z) =
1

2

[
tanh

(
z − 1

a0

)]
1 + e−2A(1−B)

1 + e−f(x,y)
, (8.18)

f(x, y) = A

[
cos

(
2π

b0
(x+ φ)

)
+ cos

(
2π

b0
(y + φ)

)
− 2B

]
. (8.19)

a0 is the steepness of the potential along z, b0 is the period of the potential

wells in the xy plane, A constrains the slope of the wells, B their width,

and φ is a phase to shift the potential along the xy surface. Figure 8.9 plots

a realization of the potential.

It might be nonetheless useful to define an effective radius of the po-

tential wells; for such purpose, the following constraint about the field
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component in the xy plane is assumed,

1 + e−2A(1−B)

1 + e−f(x,y)
= 0.9 . (8.20)

Hence the radius of the potential wells is,

rpw =
b0
2π

arccos

{
−1

A
ln

[
1

0.9

(
1 + e−2A(1−B)

)
− 1

]
− 1 + 2B

}
. (8.21)

The space derivative of (8.18) brings about the force to which particles are

subjected,

Fw =− ∂V

∂w
=
πA

b0

[
tanh

(
z − 1

a0

)
− 1

] [1 + e−2A(1−B)
]

sin
[

2π
b0

(w + φ)
]

ef(x,y)
[
1 + e−f(x,y)

]2 ,

(8.22)

Fz =− ∂V

∂z
=
−1

2

[
a0 cosh2

(
z − 1

a0

)]−1
[
1 + e−2A(1−B)

][
1 + e−f(x,y)

] , (8.23)

where w = x, y, and f(x, y) is defined in (8.19).

With regard to the viscosity, it is assumed to exhibit the same 3 − d
dependence than V (x, y, z), so that,

γ(x, y, z) = γ(z)
1 + e−2A(1−B)

1 + e−f(x,y)
, (8.24)

γ(z) being defined in (8.12), and f(x, y) in (8.19).

Results

Experimental results on tracking individual molecules, such as fatty

acid molecules [Honciuc et al., 2008], and different polymers [Skaug et al.,

2013], at a planar interface between a liquid and a solid—fused silica for

example—are employed as a reference for the choice of the simulation pa-

rameters. According to the mean–square displacement results at short

times, molecules undergo Fickian–like diffusion within a square compart-

ment with reflective boundaries of size L = (2.4± 0.9)µm [Honciuc et al.,
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2008], so the characteristic length scale is set to z0 = 2.4µm. The flow

cell of the experiments used to be of height ≈ 0.12 mm [Honciuc et al.,

2008], for that h = 50 is employed. “Jumping” is inferred to undergo ac-

tivation barriers of ≈ 50 kJ/mol [Honciuc et al., 2008]—and so the energy

scale is V0 = 50 (NA)−1 kJ, NA is the Avogadro number—, which corre-

sponds to a temperature choice T = 0.05. However, other temperatures

will also be explored. A standard diffusion coefficient for these type of

molecules in bulk solution may be D̂ ≈ 103 µm2/s [White, 1955]. The char-

acteristic time scale τ0 = (z2
0 γ2)/V0, already defined in Section 8.1.2, may

be rewritten in terms of the temperature, the scaling diffusion coefficient

(D̂ = kB T̂ /γ1; γ1 is the dimensioned viscosity in the bulk), the scaled

viscosity, and the dimensioned length scale,

τ0 =
T z2

0

γ0 D̂
=
T

γ0
5.76 · 10−3 s . (8.25)

The scaled viscosity, as well as the temperature, will be the tuning parame-

ters of the simulations. According to Section 8.1.2, the integration step ∆t

ought to be ∆t = 0.0025 for γ0 < 0.5, and ∆t = 0.01 otherwise. The lasting

parameters are: n = 400 particles, t = 4000, a0 = 0.2, γ0 = 0.2, L = 40,

b0 = 2, A = 8, B = 0.5, and φ = 1. With this choice, the effective radius of

the potential wells (8.21) is rpw = 0.41, so that the effective area of a well is

≈ 3.04µm2, of the same order of magnitude than L2 ≈ 5.76µm2—the area

of the square compartment in which molecules undergo Fickian diffusion—.

Considering the population of particles trapped in the potential wells n2

respect to the total n for different temperatures and scaled viscosities (Fig.

8.10)1, it should be gathered that, at T = 0.05 and T = 0.1, particles cannot

surmount the potential barriers once they are trapped in a well, n2/n→ 1.

The hereunder analysis focuses on temperatures T = 0.1 and T = 0.2;

the latter exhibits a steady fraction of particles at the interface n2/n 6= 1,

1It ought to be enlightened that, until the end of Section 8.1, figures might display

dimensioned quantities, and so axes would allude to dimensional scales. However, the

“hat” notation—employed in the thesis to label dimensioned quantities—is not applied

to the axis labels to appear until the end of the present Section. Anyway, physical units

will be displayed in–between brackets when axes are dimensional.
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Figure 8.10 – Fraction of trapped particles in the potential wells for different temperatures

T = 0.05 (dark grey), 0.1 (black), and 0.2 (light grey); and friction quotients γ0 = 0.2

(solid), 0.5 (dashed), and 1 (dotted). In order to compute n2, it is employed z+,

see Section 8.1.2.

a [s−1] γ0 = 0.2 γ0 = 0.5 γ0 = 1

T =0.1 0.14± 0.01 0.20± 0.01 0.44± 0.01

T =0.2 6.66± 0.07 13.36±0.08 31.7± 0.6

Table 8.2 – Exponential decay of the confinement time (tc) distributions.

and splitting of the trajectories concerning different viscosities. Indeed,

the steady fraction of particles attached to the interface n2/n increases

according to the difference of friction between the two phases.

Trajectories in the plane z = 0 (T = 0.2, γ0 = 0.2) display confinement

into the potential wells punctuated by rare hops (Fig. 8.11). The confine-

ment time distributions for different temperatures and frictions are plotted

in Figure 8.12. Disregarding those points at t = 0 s, they may be fitted by

a an exponential function, whose slope is the inverse of the characteristic

confinement time. The outcome for the confinement time is summarized in

Table 8.2.

The distribution of displacements (8.15) at the xy plane for adsorbed–
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Figure 8.11 – Few of the 400 trajectories at the z = 0 plane simulated according to the

parameters choice detailed in the beginning of this section.
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Figure 8.12 – Distribution of confinement times in the potential wells for T = 0.1 (left)
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f(t) = b exp(−at) excluding the points at t = 0 s.
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D̂xy [µm2/s] γ0 = 0.2 γ0 = 0.5 γ0 = 1

T = 0.1 2.1± 0.6 4.3± 0.5 8.8± 0.4

T = 0.2 178± 8 360± 10 470± 30

Table 8.3 – 1− d diffusion coefficient in the plane xy for the interface.

desorbed molecules at an interface, that undergo Fickian diffusion along the

bulk excursions, has been showed to possess long algebraic tails [Bychuk

and O’Shaughnessy, 1995],

Gs(∆w) ≈ r∗−2

(
r∗

∆w

)3

, (∆w > r∗) , (w = x, y) , (8.26)

where r∗ = (D̂t∗)1/2 is the diffusion length, corresponding to the re–

adsorbing time t∗; D̂ is the bulk diffusivity. The distributions of molec-

ular displacements at different time intervals for the simulation with T =

0.1 (Fig. 8.13)—left—reveals a rather good agreement with the theoretical

prediction (8.26). In particular, fitting (8.26) to the ∆t = 0.4 s points leads

to r∗ = (0.114 ± 0.002)µm for γ0 = 0.2, and r∗ = (0.177 ± 0.007)µm for

γ0 = 1. Notwithstanding, the T = 0.2 distributions of molecular displace-

ments do not exhibit a well known functionality. From the diffusion length

r∗, it can be calculated the corresponding re–adsorbing time t∗—applying

the bulk diffusion coefficient D̂ = 103 µm2/s—, t∗ = (1.30 ± 0.05) · 10−5 s

for γ0 = 0.2, and t∗ = (3.1± 0.3) · 10−5 s for γ0 = 1.

The mean square displacement of the trajectories in the xy plane scales

linearly with time after an initial transient regime. Hence, the ubiquitous

Einstein–Smoluchowski expression (1.3), brings about the diffusion coeffi-

cient D̂w, that should be equivalent regardless of the direction because of

space isotropy in the xy plane; the 1− d diffusion coefficients in the inter-

face are summarized in Table 8.3.

8.1.4. Random confinement

Instead of considering a set of periodically distributed wells that adsorb

particles (Sec. 8.1.3), now the potential barriers may be stochastic. Bearing
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Figure 8.13 – Distributions of displacements (8.15) at the xy plane (w = x, y) for different

time steps ∆t = 0.2 s (squares), ∆t = 0.4 s (circles), and ∆t = 0.6 s (triangles). Grey

symbols label simulation results for γ0 = 0.2, whereas those for γ0 = 1 are in black.

To the left, T = 0.1, and T = 0.2 to the right. The curves in the left panel are the

fitting of (8.26) to the ∆t = 0.4 s data.

in mind the pictorial scheme in Figure 8.1, the potential to adsorb the

particles at the interface V2 is the one already defined in (8.7), yet its

amplitude ought to be a random variate. Hence,

V̄ (x, y, z) = V0(x, y) V (z) , (8.27)

where V (z) is equivalent to (8.7), and V0(x, y) is the random potential

height at any point (x, y). V0(x, y) is a Gaussian random process with a

spatial Gaussian correlation—assuming space isotropy—,

V0(x, y) ∝ g(|r − r′|/λ) = e−(r−r′)2/2λ2 . (8.28)

r and r′ are vectors in the xy plane, and λ is the correlation length. It

can be numerically simulated by the algorithms developed in [Suñé et al.,

2012], (Sec. 7.1); being generated in N = 1024 lattice sites, with a dis-

cretization length ∆ = 0.05, and λ = 1, V0(x, y) is plotted in Figure

8.14. From the random attractive potential V̄ (x, y, z), the forces on the

xy plane are obtained by simple centered discrete derivatives [Suñé et al.,
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Figure 8.14 – Barrier height of the adsorbing potential (8.27) to the interface with spa-

tial Gaussian correlation (8.28). Simulation runs for N = 1024 lattice sites, with a

discretization length ∆ = 0.05, and λ = 1.

2012], (Sec. 7.3). Then standard linear interpolation of the force at the

lattice points is employed to assess the force at intermediate locations [Suñé

et al., 2012], (Sec. 7.4).

Results

Simulations of the set of Langevin equations (8.13), with the viscosity

functionality (8.12) along the vertical axis, and the random adsorbing po-

tential (8.27), are run for 400 particles. V0(x, y) is defined in a 2− d lattice

space with N = 1024 squared cells of side ∆ = 0.05. Other parameters

are t = 4000, a0 = 0.2, and h = 50, as in Section 8.1.3. Several tempera-

tures and friction quotients are considered, for the integration time step ∆t

ought to be adapted according to Section 8.1.2. The heat map in Figure

8.15 displays the particle density in the interface (z ≤ 3.5µm, according to

the criteria adopted in Section 8.1.1; z+ = 1.46 · 2.4µm for T = 0.1) for

T = 0.1 and γ0 = 0.2. It ought to be enlightened that there is a strong

correlation (Fig. 8.16) between the particle density heat map (Fig. 8.15)
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Figure 8.15 – Particle density in the interface (z ≤ 3.5 µm) for Brownian particles

adsorbed by a random potential (8.27) at a high viscosity interface (8.12). T = 0.1

and γ0 = 0.2.

and the barrier height landscape (Fig. 8.14).

The rate of attached particles to the interface motivates the choice for

the temperature T = 0.1, since it exhibits a rather high fraction of attached

particles, yet there is still some population of free particles diffusing in the

bulk (Fig. 8.17). Unlike the intermittent molecular hopping (Fig. 8.10),

now the steady n2/n does not split for different values of the quotient

between viscosities.

Notwithstanding, the behavior of particles is expected to attain that

of intermittent molecular hopping (Sec. 8.1.3), that is, the trajectories at

the interface to exhibit confinement at certain regions—the most probable

are the darkest ones in Figure 8.15—interspersed by rare hops through the

bulk. Therefore, the confinement time distributions might be computed so

as to reach the characteristic confinement time (Fig. 8.18).

The confinement time distributions for T = 0.1 exhibit an exponen-

tial decay that depends on the quotient of viscisities a(γ0 = 0.2) = (1.68±
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Figure 8.17 – Fraction of trapped particles at the interface for different temperatures

T = 0.05 (dark grey), 0.1 (black), and 0.2 (light grey) and friction quotients γ0 = 0.2

(solid), 0.5 (dashed), and 1 (dotted). In order to compute n2 it is employed z+ (Sec.

8.1.2).
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points at t = 0 s.

0.02) s−1, a(γ0 = 0.5) = (2.13±0.03) s−1, and a(γ0 = 1) = (3.10±0.03) s−1.

Additionally, the particle detach mediated displacements (8.15) at the in-

terface might be also computed (Fig. 8.19). They do not seem to fulfill any

regular functionality.

The mean square displacement of the trajectories at the interface scale

linearly with time, after a likely transient regime, hence the diffusion co-

efficient can be worked out by fitting the Einstein–Smoluchowski equa-

tion (1.3). The diffusion coefficient to come out from the data of the sim-

ulations is D̂xy = (150± 20)µm2/s.

8.1.5. Summary and conclusions

Although being it at an early stage, some conclusions can be gathered

from the study of Brownian motion with 2 − d confinement and changes

of viscosity; wouldn’t they bring about astonishing disclosures, they might

serve as a foundation to further hypotheses if nothing else.
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Figure 8.19 – Distributions of displacements (8.15) at the xy plane (w = x, y) for T = 0.1

and different time steps ∆t = 0.2 s (squares), ∆t = 0.4 s (circles), and ∆ = 0.6 s

(triangles). Dark–grey symbols label simulation results for γ0 = 0.2, black symbols

are employed for γ0 = 0.5, and light–grey symbols for γ0 = 1.

The population of confined particles can be computed by equilibrium

thermodynamics arguments, as well as by integration of the Boltzmann dis-

tribution, that adjusts to the histogram of particles’ positions. It has been

developed a criteria to settle on the coordinate up to which integration of

the Boltzmann distribution should be carried out in order to attain the

theoretical prediction.

Numerical simulations of stochastic dynamics have been run for three

different scenarios. All of them consider two different potential energy

states and viscosities along the vertical direction, yet they differ from each

other concerning space’s functionality of these quantities. In the first sce-

nario, there is only vertical dependence, whereas horizontal dependency is

considered for the others, either periodic or random. It has been inquired

into the population of particles at each state and its dependency on γ0—the

quotient of viscosities—, the particles’ displacements distributions—both

in vertical and horizontal directions—, the confinement times distribution,
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8.2. Two–dimensional ratchet model for KIF1A

and the mean square displacement in the xy plane—those last two only for

the second and third scenarios—.

It ought to be enlightened that several experimental and theoretical pre-

vious works have been employed to substantiate the design of these different

scenarios, the parameters choices, and the analyses of the results [White,

1955; Bychuk and O’Shaughnessy, 1995; Honciuc et al., 2008; Skaug et al.,

2013].

8.2. Two–dimensional ratchet model for KIF1A

Kinesines are molecular motors that move along microtubules, hollow

cylindrical tubes of 12 nm radius—RMT—and several micrometers long.

In addition to the polarity brought about by the αβ dimers, that associate

forming linear protofilaments, microtubules also exhibit a left–handed helix

of pitch 12 nm due to the dislocation from one linear protofilament to an-

other [Chrétien and Wade, 1991]. Hence, the motion of a motor would dis-

play a twisty trajectory around the microtubule [Yajima and Cross, 2005].

The aim of this section is to study the motion of kinesin motors through

simulations of Langevin stochastic dynamics in 2− d spaces.

8.2.1. The model

Consider a KIF1A motor that can move in a two–dimensional surface;

its position in the plane is r = x êx + y êy . In order to mimic the KIF1A–

microtubule binding energy, the surface over which the motor travels will

be modeled as an oblique Bravais lattice with primitive vectors ai, i = 1, 2,

forming an angle θ > 0 (Fig. 8.20). Latin indices will be employed to label

the primitive directions of the lattice, and greek indices to the cartesian

directions. The nodes of the lattice,

R(n1, n2) = n1 a1 + n2 a2 , (8.29)

where n1, n2 are integer numbers, correspond to the binding sites of the

motor. The set (n1, n2) indicates a given primitive cell in the lattice, de-
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θ

Figure 8.20 – Oblique Bravais lattice with primitive vectors a1 and a2 of size l1 and l2

respectively, forming an angle θ. Gray parallelogram—the primitive cell of the lattice.

Gray circles—nodes of the cell.

limited by the nodes {(n1, n2), (n1 + 1, n2), (n1, n2 + 1), (n1 + 1, n2 + 1)}.
The two primitive vectors are:

a1 = l1 êy ,

a2 = l2(− sin θ êx + cos θ êy) , (8.30)

where li, i = 1, 2 are the periodicities for each primitive direction. The

reciprocal basis qi reads:

q1 = 2π
a2 × êz
|a1 × a2|

=
2π

l1
(cot θ êx + êy) ,

q2 = 2π
ez × a1

|a1 × a2|
= −2π

l2
csc θ êx . (8.31)

The motor can be in two possible states k = 1, 2; k = 1 labels the

strongly–bound state, in which the motor attaches to a potential landscape

U1(x, y) that exhibits minima at the Bravais lattice’s nodes, and k = 2 the

weakly–bound state, meaning that the motor diffuses through a flat poten-

tial U2(x, y)—and against a constant force if so—. The motor is assumed

to decay from state k = 2 to the state k = 1 with exponentially distributed

decay times of mean τ . Decay processes are delocalized in space. Antithet-

ically, excitations from state k = 1 to the state k = 2 occur only when the
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Figure 8.21 – Sawtooth linear potential (8.32) (i = 1, j = 4, µ11 = 1, µ12 = 0.9, µ13 =

0.65, µ14 = 0.35) for the motor–track interaction. Gray—the zone where transitions

are allowed: excitation is localized with exponentially distributed excitation times

of mean τ∗ from U1 to U2, and decay is delocalized with exponentially distributed

decay times of mean τ from U2 to U1. Dashed line—excitation time starts when the

particle’s potential energy is lower than U∗. See more details in the text.

motor approaches a node in the lattice; that is, motors can be prompted

to the weakly–bound state k = 2 only if their potential energy is below

U∗, a smaller energy than V0—the potential’s U1(x, y) height—. Again, an

exponential distribution of exciting times is assumed, with mean time τ∗.

It is well established that the potential U1(x, y) ought to be asymmetric,

so as to enable a biased advance of the motor prompted by thermal fluc-

tuations and ATP consumption; microtubules, the substrates along which

motors are propelled, do have a polar configuration indeed. A common

choice to mimic such structure is a sawtooth wave landscape. The oblique

Bravais lattice of primitive vectors defined in (8.30) is employed in order

to build up a two dimensional oblique sawtooth landscape. Indeed, the

potential is assumed to be periodic in the a1 and a2 directions, with pe-

riodicities l1 and l2 respectively. A possible choice would be U = V1 + V2,

with Vi, i = 1, 2 being a sawtooth 1−d function in each primitive direction

of the Bravais lattice. Each 1−d sawtooth may be constructed by a Fourier
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series,

Vi(x, y) = V0

∑
j=1

µij
j

sin(j · qi · r) ; i = 1, 2 , (8.32)

that leads to a continuous smooth landscape (Fig. 8.21) with analytic

derivatives at each point.

Langevin dynamics is employed to simulate the motion of the motor,

for which it is assumed the overdamped approach2,

η ṙ = −δk1∇U − F + ξ(t) . (8.33)

η is the friction coefficient fulfilling the Einstein’s relation D = kBT/η

(D is the diffusion coefficient), the nabla operator is ∇ ≡ (∂x, ∂y), F is

a constant external force, and ξ is a random force vector with zero mean

satisfying 〈ξα(t) ξβ(t′)〉 = 2kBT η δαβ δ(t− t′), α, β = x, y. δk1 and δαβ are

Kronecker’s deltas.

The motion of unidimensional KIF1A motor uses to be remarkably dif-

fusive, D ≈ 20 − 40 nm2 ms−1 [Okada and Hirokawa, 1999; Okada et al.,

2003]. In bidimensional space, the diffusion tensor should be isotropic, so

that diffusion on and off–axis is the same.

Experimental results on KIF1A [Okada et al., 2003] also reveal a stall

force Fs ≈ 0.1 pN, and a rotational pitch P1 of a few hundreds of nanome-

ters [Yajima and Cross, 2005]. In order to fit these quantities, the shape of

the potential landscape is critical. Considering the unidimensional scenario

as the reference, numerical results for a single monomeric KIF1A motor in

1 − d exhibit a stall force of ≈ 0.1 pN when the ratchet potential has an

asymmetry ā = 0.2 [Oriola and Casademunt, 2013]. In the present model,

the asymmetry āi = ai/li is not a parameter itself, but it is determined by

the choice of the coefficients µij . Two harmonics may be enough to gener-

ate an asymmetric landscape; however, āi is limited because, for µi2 ≥ 1,

2Unlike the rest of the thesis, in this Section it is employed quantities that do have

dimensions, yet the “hat” notation to distinguish from scaled quantities is avoided for

ease of notation.
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Figure 8.22 – Top: 2 − d potential built in a Bravais lattice by (8.32) with µ11 = 1,

µ12 = 0.9, µ13 = 0.65, µ14 = 0.35, µ21 = 1, and µ22 = 0.4. Red dashed—directions

along which 1 − d sections of the potential are plotted in the lower panels. Center:

Potential section along êy , a1. Gray—partial derivative of the potential, its roots

(intersections of the gray dashed lines) label the maxima and minima of the potential.

l1 = 7.9 nm, a1 = 1.9 nm. Bottom: Potential section along a2. Gray—partial

derivative of the potential. l2 = 6.0 nm, a1 = 2.6 nm.
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Figure 8.23 – Tajectory of a motor for F = 0 superimposed to the potential landscape.

The arrow points at the mean velocity’s direction.

the potential displays a second local minimum in each period that would

bring about a worthless outcome. This restriction is overcome by the em-

ployment of higher order harmonics. For example, may it be considered a

landscape built by (8.32) up to the fourth harmonic along a1, with µ11 = 1,

µ12 = 0.9, µ13 = 0.65, µ14 = 0.35, and up to the second along a2, with

µ21 = 1, µ22 = 0.4, asymmetries are ā1 = 0.24 and ā2 = 0.39, see Figure

8.22.

In vitro experiments [Okada and Hirokawa, 1999; Okada et al., 2003;

Nishinari et al., 2005] reveal a proper choice for the rest of parameters to

be: τ = τ∗ = 4 ms, θ = 0.45π, and V0 = 20 kBT .

8.2.2. Simulations

May a Heun algorithm (Sec. 7.5.1) be applied to simulate the Langevin

equation (8.33), including a potential landscape (8.32), with parameters

as in Figure 8.22, it is obtained an ensemble of trajectories like the one

displayed in Figure 8.23.
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Figure 8.24 – Simulations with 1000 motors in a landscape generated by (8.32) with

µ11 = 1, µ12 = 0.9, µ13 = 0.65, µ14 = 0.35, µ21 = 1, and µ22 = 0.4. Squares—

velocity–force curve—, circles—rotational pitch—.

In such case, it may be computed the rotational pitch,

P1 = vy t = 2π RMT
vy
vx

= 2π RMT (v̄ csc θ + cot θ) , (8.34)

v̄ ≡ v1/v2, that ought to compare with the experimental findings [Yajima

and Cross, 2005]. Simulation results for the stationary velocity and the

rotational pitch against the external force are included in (Fig. 8.24). It

is gathered that experimental and computational outcome for the velocity

at zero load [Okada et al., 2003; Oriola and Casademunt, 2013], the stall

force [Okada et al., 2003] and the rotational pitch [Yajima and Cross, 2005]

are attained.

8.2.3. Perspectives

Now that the two–dimensional ratchet model for KIF1A has been demon-

strated to account for the properties that have been checked by in vitro

experiments of the motor, the next step on the investigation would be to

introduce some amount of disorder into the potential. That is to say, in the

periodic ratchet (Fig. 8.22), there may be certain potential wells to which

the motor would not be able to attach, meaning that it should change its
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trajectory to avoid them. This scenario would mimic the presence of de-

fects in microtubules, and is expected to alter the kinesin’s velocity, and so

its functionality, just like as it has been observed experimentally in vitro

employing crowding agents to increase the effective viscosity of the solu-

tion [Sozański et al., 2015].
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Catalan résumé of the thesis – Resum en català de la tesi

Introducció

El moviment Brownià

El moviment Brownià és el bellugueig aleatori que efectuen les part́ıcules

de tamany micromètric quan estan suspeses en un dissolvent. Des de la seva

descoberta a finals del segle XVIII, ha esdevingut un element central en la

formulació probabiĺıstica de la mecànica estad́ıstica i ha estat objecte per-

manent d’investigacions fins a l’actualitat.

La formulació en termes matemàtics del moviment Brownià fou origi-

nalment desenvolupada per Albert Einstein [Einstein, 1905] i Marian von

Smoluchowski [Von Smoluchowski, 1906], i constitúı una evidència defini-

tiva de la composició atomı́stica de la matèria. No obstant, Paul Langevin

feu una adaptació de les idees d’Einstein i von Smoluchowski; fent ús

la dinàmica de Newton, permeté l’obtenció de la trajectòria descrita per

una part́ıcula sotmesa al moviment Brownià [Langevin, 1908; Lemons and

Gythiel, 1997]. La formulació de Langevin a través de les anomenades equa-

cions diferencials estocàstiques consisteix en separar el balanç de forces en

una part determinista i una altra aleatòria, la caracterització de la qual es

deu a l’aportació feta per Leonard Ornstein [Ornstein, 1919], que estabĺı

les bases del soroll blanc—un procés aleatori generat per mitjà de nombres

aleatoris distribüıts de forma Gaussiana i no correlacionats—.

189
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Transport i difusió

Quan el moviment Brownià té lloc en un solvent simple, és a dir, en

absència de forces externes, els desplaçaments que efectuen les part́ıcules

exhibeixen una distribució Gaussiana de mitjana nul·la i variança propor-

cional al temps. Aquest resultat fou raonat per Einstein [Einstein, 1905],

que al mateix temps fou capaç de determinar que la constant que rela-

ciona la dispersió del conjunt de desplaçaments i el temps és el coeficient

de difusió—el mateix que Adolf Eugen Fick havia establert per a la di-

fusió d’espècies qúımiques en solucions aquoses [Fick, 1855]—, i que aquest

depèn de la constant de Boltzmann, la temperatura, i el coeficient de fricció.

Per altra banda, si les part́ıcules estan sotmeses a una força externa en

una determinada direcció, la velocitat mitjana del conjunt serà no nul·la—

la mitjana de la distribució de desplaçaments ja no serà zero—i, per tant,

hi haurà transport. En aquestes condicions, el primer moment—el valor

mig—de la distribució de desplaçaments presenta un creixement lineal amb

el temps.

Tanmateix, l’aparició de tècniques experimentals—marcatge mitjançant

protëınes fluorescents, pinces òptiques i magnètiques, microscopia de força

atòmica, entre d’altres [Greenleaf et al., 2007]—que permeten el seguiment

de part́ıcules sotmeses al moviment Brownià en ambients complexos, tals

com el citoplasme cel·lular [Golding and Cox, 2006; Dix and Verkman,

2008], membranes [Khoshnood and Jalali, 2013], solucions artificials com-

plexes [Weiss, 2013], o superf́ıcies sòlides desordenades [Xu et al., 2011;

De Wijn, 2011], ha permès observar desviacions—anomalies—en els resul-

tats clàssics del transport i la difusió, és a dir, dependències no lineals

de la mitjana i la dispersió respecte el temps. Els ambients en els quals

s’oberven aquestes anomalies es poden caracteritzar per mitjà de potencials

no–lineals, ja siguin periòdics—existeix una unitat que es repeteix de forma

recursiva—, o bé aleatoris—l’estructura del potencial no segueix un ordre

determinat, si bé pot presentar propietats estad́ıstiques concretes—. La
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caracteŕıstica comuna en els potencials no–lineals és la presència de bar-

reres que les part́ıcules superen per fluctuacions tèrmiques [Kramers, 1940].

Aquestes barreres modifiquen la distribució dels desplaçaments, donant lloc

a les desviacions del transport i la difusió.

La tesi

L’objecte de la present tesi és explorar les anomalies del transport i

la difusió de part́ıcules Brownianes independents—en absència d’interacció

mútua—sotmeses a una força externa constant i a un potencial desordenat.

El mètode emprat és la simulació numèrica de les equacions de Langevin

clàssiques en els règims de sobreesmortëıment—alta fricció, part́ıcules ideal-

ment sense inèrcia, règim sovint manifestat en contextos biològics i de

matèria tova—i d’infraesmortëıment—baixa dissipació de l’energia cinètica,

aproximació vàlida t́ıpicament en sòlids—.

En concret, la tesi indaga en les causes que motiven l’aparició de les es-

mentades anomalies i la influència que hi tenen les propietats del potencial

desordenat, la força externa, la temperatura, el coeficient de fregament—

únicament en l’aproximació d’infraesmortëıment—, etc. En paral·lel, s’han

desenvolupat noves tècniques numèriques—reformulant tècniques existents—

per tal de simular les equacions dinàmiques estocàstiques en cadascun dels

escenaris contemplats, aix́ı com per optimitzar la generació de desordres en

l’espai i el temps.
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Resultats

El primer cas tractat és l’estudi del moviment Brownià en un poten-

cial periòdic. Aquesta avinentesa constitueix un punt de partida sobre el

qual edificar les hipòtesis que articularan la resta d’exploracions, les quals

són: el transport anòmal és sublineal per un desordre estàtic; en un medi

desordenat els fenòmens de difusió gegant i superdifusió són afavorits; el

transport i la difusió anòmals requereixen l’atrapament estacionari d’una

certa fracció de la població de part́ıcules Brownianes.

Pel que fa als contextos amb presència de desordre, el primer cas d’estudi

és el moviment Brownià sobreesmortëıt en un potencial aleatori estàtic in-

clinat. Les simulacions numèriques en aquest escenari inclouen casos uni-

dimensionals i bidimensionals. Els règims de transport i difusió anòmals

es caracteritzen a través dels exponents de les funcions temporals de la

mitjana i la variança de la distribució de desplaçaments; però també dels

histogrames dels desplaçaments i—en el cas bidimensional—de la forma

del núvol de punts que representa els desplaçaments efectuats per cada

part́ıcula en diferents instants de temps. En una dimensió, l’estudi contem-

pla potencials desordenats amb diverses propietats estad́ıstiques. Existeix

un paràmetre, la longitud efectiva caracteŕıstica de la rugositat del poten-

cial, que afecta els resultats. Si bé en tots els casos estudiats s’observa la

mateixa seqüència d’anomalies—subtransport i subdifusió, superdifusió, i

difusió indefinida—a mesura que s’incrementa la força externa—finalment

s’obté transport i difusió normals—, el rang de forces pel qual esdevé cada

fenòmen varia en funció de la longitud efectiva caracteŕıstica de la rugositat

del potencial. En efecte, com més gran és aquest paràmetre, el potencial

presenta una forma més suau i això fa que la seqüència d’anomalies i, per

tant, el reestabliment del transport i la difusió normals, es produeixi per una

força menor. Aquesta constatació, juntament amb les formes que s’observen

en els histogrames dels desplaçaments i en els núvols de punts, reforcen la

interpretació que relaciona les anomalies amb la divisió de la població de

part́ıcules entre aquelles que estan atrapades en els pous més profunds del
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potencial, i les que són propulsades lliurement per la força externa [Khoury

et al., 2011]. Resulta destacable, en el cas bidimensional, la coexistència

d’anomalies de caràcter oposat en la direcció de la força—superdifusió—i

la seva perpendicular—subdifusió—.

El cas anàleg a l’anterior, però considerant el règim d’infraesmortëıment,

ofereix la possibilitat d’estudiar la distribució de velocitats instantànies del

conjunt de part́ıcules. Aquesta mostra clarament la separació de la població

de part́ıcules en l’estat de velocitat zero—part́ıcules atrapades—i en el de

velocitat no nul·la, corresponent a part́ıcules lliures propulsades per la força

externa. En aquest règim, s’observen les mateixes anomalies en el transport

i la difusió independentment del coeficient de fricció. S’aprecia també un

t́ımid fenòmen de supertransport, si bé els resultats no són prou concloents

per contravenir una de les hipòtesis fetes.

Tornant al règim d’alta dissipació, el tercer estudi contempla l’escenari

en que el medi bidimensional on difonen les part́ıcules presenta una alta con-

centració d’obstacles mòbils i deformables—de dinàmica sensiblement més

lenta que la del moviment Brownià de les part́ıcules—que les part́ıcules

no poden superar. El transport i la difusió en aquest escenari presenta

dos règims clarament diferenciats. Per una banda, per temps inferiors a

l’escala de temps caracteŕıstica del moviment dels obstacles, es poden pro-

duir anomalies; per l’altra, es recupera el transport i la difusió normals quan

el temps de simulació sobrepassa aquest valor. Aquest fet provoca que, mal-

grat la presència d’obstacles que interfereixen en el moviment Brownià, el

coeficient de difusió pugui ser més gran que el corresponent a la difusió de

part́ıcules lliures. Finalment, l’estudi fixa el conjunt de paràmetres efec-

tius que determinen el comportament del sistema: el temps caracteŕıstic

dels obstacles, que estableix la durada dels règims transitoris anòmals i,

per tant, els coeficients estacionaris del transport i la difusió; la densitat

d’obstacles, a major densitat, menor transport i difusió; i el tamany dels

obstacles, obstacles de tamany més gran—per una mateixa concentració—

afavoreixen el transport i la difusió.
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Pel que fa als aspectes metodològics, s’ha refinat el mètode per generar

desordres Gaussians amb una correlació espacial arbitrària amb l’únic re-

queriment d’isotropia per a la funció de correlació. El nou algorisme fa ús

de l’espai de Fourier de forma transitòria en el procés, però totes les condi-

cions són imposades en l’espai real. Per altra banda, també s’ha dissenyat

una transformació adient per transformar un desordre—conformat per pous

i barreres—en un conjunt d’obstacles de la mateixa alçària. La transfor-

mació permet controlar el tamany caracteŕıstic dels obstacles i preserva la

densitat d’obstacles quan el potencial d’origen és un desordre espaciotem-

poral.

Per últim, la tesi inclou dos casos inacabats d’aplicació del moviment

Brownià en contextos f́ısics concrets i propers a treballs experimentals.

Per una banda, s’estudia les propietats de pat́ıcules Brownianes sotmeses

a un potencial que les confina en una interf́ıcie on la viscositat és més ele-

vada que a la resta del volum. L’estudi s’efectua a través de simulacions de

l’equació de Langevin, que incorpora un terme addicional quan la viscosi-

tat no és constant en tot el sistema. A partir dels resultats, es determinen

diverses magnituds, com la població de part́ıcules atrapades a la interf́ıcie,

la distribució dels desplaçaments de les part́ıcules i dels temps de confi-

nament, o la variança dels desplaçaments—per determinar el coeficient de

difusió en el cas que la dispersió sigui lineal amb el temps—. L’estudi con-

templa tres escenaris diferents—tots ells tenen en comú l’existència de dos

estats energètics i dues viscositats en la direcció vertical—en funció de la

dependència espacial del potencial i la viscositat: en el primer cas només

depenen de l’alçada, mentre que en els altres dos també presenten una de-

pendència en les coordenades del pla xy, periòdica en l’un, aleatòria en

l’altre.

Per l’altra, el segon cas presenta un model bidimensional en forma de

dent de serra pel motor molecular Brownià KIF1A. En la fase vigent de

l’estudi, s’ha dissenyat el potencial i s’han escollit els paràmetres de forma

que els resultats de les simulacions de l’equació de Langevin en el règim
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sobreesmortëıt reprodueixin els valors experimentals de certes magnituds

f́ısiques conegudes, com la velocitat en l’eix del microtúbol i l’avanç de les

trajectòries helicöıdals descrites pels motors. L’objectiu final de la investi-

gació és, no obstant, introduir desordre en el sistema en forma d’obstacles

immòbils distribüıts aleatòriament que interfereixin en el moviment dels

motors.

Els resultats d’aquesta tesi han estat publicats en diversos articles, la

referència dels quals es troba en la secció següent.
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Nomenclature

α Transport power–law exponent. Set of control parameters (Chap. 7)

β Diffusion power–law exponent. Inverse of the temperature (Chap. 8)

δ() Dirac–delta function

δij Kronecker delta

∆ Distance between lattice points of the discretized space

∆t Time integration step

∆V̂ Height of a potential barrier (Chap. 1)

∆r̂(t̂) Increments of the position of a Brownian particle concerning a time scale

where the particle moves significantly

ε Noise intensity

ε Exponent of a power–law correlation function

η Phenomenological friction coefficient

η(r, t) Noise term in the generalized stochastic partial differential equation for-

mulation (Chap. 7)

ηj(t) Noise term in the generalized stochastic partial differential equation for-

mulation in a discrete space (Chap. 7)

γ Scaled dimensionless phenomenological friction coefficient

199



NOMENCLATURE

γ() Scaled friction with spatial dependence (Chap. 8)

γ0 Quotient between two viscosities γ1, γ2 (Chap. 8)

γ1, γ2 Viscosity at each volume V1, V2 (Chap. 8)

γi Gaussian random numbers with null mean and variance equal to 1 (Chap.

7)

λ Scaled characteristic length scale

λ0 Length scale

λp Length scale of a periodic potential

λr Correlation length of a random potential

λrgh Scaled length scale of the disorder’s roughness

µ Expected value of a Gaussian distribution (Chap. 4). Index for any mode

in the discrete Fourier space (Chap. 7)

µ1, µ2 Chemical potential of a thermodynamic system (Sec. 8.1)

µi Coefficients of the Fourier series that are employed to build up the 1 − d
sawtooth potentials in Section 8.2

∇ Vector differential operator,

∇ ≡
n∑
i=1

êi
∂

∂xi

in the Cartesian coordinate system Rn with coordinates (x1, . . . , xn) and

orthonormal basis {ê1, . . . , ên}

ν Kinematic viscosity

φ A phase to shift a potential along the xy surface (Chap. 8)

φ(r, t) A field that follows a stochastic partial differential equation in an Euclidean

d−space (Chap. 7)

φi A discrete field that follows a stochastic partial differential equation in an

Euclidean discrete d−space (Chap. 7)

φ̃(t) Intermediate step of the Heun method; field to be obtained by employ-

ing the Euler algorithm to integrate a stochastic partial differential equa-

tion (Chap. 7)
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NOMENCLATURE

ρ Density of a fluid. Density of obstacles of a random landscape made of

obstacles

ρ1, ρ2 Density of particles

σ2 Variance of a Gaussian distribution

σ2
1 , σ

2
2 Variance of each Gaussian distribution concerning each volume (Sec. 8.1)

τ Mean of a exponential distribution of decay times (Sec. 8.2)

τ0 Time scale (Chap. 1). Relaxation time of the V0 mode of a random

dynamic potential in Fourier space (Chap. 7)

τµ Relaxation time of the Vµ mode of a random dynamic potential in Fourier

space

τ∗ Mean of a exponential distribution of exciting times (Sec. 8.2)

ξ(t) Scaled dimensionless Gaussian white noise

ξi(t) Cartesian components of scaled Gaussian white noise

ξµ µ mode of the Gaussian white noise in Fourier space

ξ̂(t̂) Random force. Gaussian white noise

ξ̂i Cartesian components of Gaussian white noise

ζ(k) Anticorrelated Gaussian random variate in Fourier space

ζµ Complex Gaussian random numbers anti–correlated ascribed to the dis-

crete Fourier modes

θ Angle

A Auxiliary constant in mathematical formulation

a It may refer to any auxiliary parameter or fitting constant throughout the

thesis. However, in Chapters 6 and 7 it is the parameter that controls bar-

rier stiffness of obstacles when a random distribution of barriers transforms

into a random distribution of obstacles of the same height

a0 Steepness of the hyperbolic tangent function for the potential in Chapter

8

a1, a2 Weight of each Gaussian curve that fits the distribution of velocities

ai Horizontal distance of the shortest side of a sawtooth potential (Chap. 8.2)
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NOMENCLATURE

aj Random numbers obtained by transforming bj

ai Bravais lattice primitive vectors (Chap. 8)

ā Asymmetry of a ratchet potential (Chap. 8.2)

B Auxiliary constant in mathematical formulation

b It may refer to any auxiliary parameter or fitting constant throughout the

thesis

b0 Period in the xy plane of a 3− d periodic potential potential

b1, b2 Mean velocity for each Gaussian curve that fits the distribution of velocities

bj Gaussian random numbers with zero mean and variance 1

C() Spatiotemporal noise correlation function

C1 Normalizing factor of a Boltzmann distribution

c1, c2 Width—variance—of each Gaussian curve that fits the distribution of ve-

locities

cj Array of complex numbers in discrete real space

cµ Discrete Fourier transform of any sequence of complex numbers ascribed

to real space

D0 Scaled diffusion coefficient for free Brownian particles

Du Scaled diffusion coefficient employing the underdamped characteristic time

scale

D‖ Diffusion coefficient along the external force’s direction

D⊥ Diffusion coefficient along the direction perpendicular to the external force

D̂ Diffusion coefficient

D̂0 Diffusion coefficient for free Brownian particles

D̂i1 ,..., id Tensor components in an Euclidean d–space

D̂xy Diffusion coefficient at an interface (Sec. 8.1)

D̂û Component along û of the Cartesian diffusion tensor

D Scaled diffusion tensor
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NOMENCLATURE

D̂ Diffusion tensor

d Dimension of an Euclidean space

E Energy

êi Unit vectors of an orthonormal cartesian basis, also labelled êw

F Scaled scalar force

Fc Scaled critical force

Fr Scaled force derived from a random potential

Fs Stall force for a molecular motor (Chap. 8.2)

F̂ 1− d scalar force

F̂c Critical force

F Scaled dimensionless force vector in Euclidean d-space

F̂ Force vector in Euclidean d-space

f() Deterministic force term in the generalized stochastic partial differential

equation formulation (Chap. 7). Any presumed function in mathematical

formulation

f2(1)(∆w, σ2(1)) Gaussian functions (Chap. 8.1.2)

fi Deterministic force term in the generalized stochastic partial differential

equation formulation in a discrete space

G(kµ, | t− t′ |) Stationary time correlation function of a dynamic random poten-

tial in Fourier space

Gs(∆w,∆t) Self part of the van Hove correlation function

G(k) Fourier transform of the spatial correlation function g(| x− x′ |)

Gµ Fourier transform of the discrete spatial correlation function gij

g() Correlation function. Random force coupling term in the generalized

stochastic partial differential equation formulation (Chap. 7)

gij Discrete spatial correlation function. Random force coupling term in the

generalized stochastic partial differential equation formulation in a discrete

space
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NOMENCLATURE

h Total height of a thermodynamic system of volume V, h = h1 + h2 (Sec.

8.1)

h(x) Force correlation function

hi Scaled height (Sec. 8.1)

ĥ2 Height at which there is an attractive potential (Sec. 8.1)

i Imaginary unit, i2 = 2. Counter variable. Label of any point in a 2 − d
grid

i1 , i2 Set of indices to label a cell in the 2− d real discrete space

î Unit vector in the direction of the x axis of a Cartesian coordinate system

j Counter variable

ĵ Unit vector in the direction of the y axis of a Cartesian coordinate system

k Escape rate of a thermally driven particle over an energy barrier (Chap.

1). Fourier mode of a unidimensional space (Chap. 7). Counter variable

kB Boltzmann’s constant

kK Kramers’ escape rate

kµ Fourier mode in a discrete 1− d space

k Fourier mode in a d–dimensional Fourier space

kµ Fourier mode in a discrete d–dimensional Fourier space

L Period of a periodic potential (Chap. 3). Length of the sides in the xy

plane of a volume V (Chap. 8)

L Characteristic length of the compartment in which particles attached to

an interface undergo Fickian diffusion (Sec. 8.1.3), taken from [Honciuc

et al., 2008]

l0 Characteristic length of an exponential distribution of particle displace-

ments (Chap. 5)

le Distance travelled at the free-particle velocity v = F/γ during the actual

exit time te

li Periodicities for each primitive direction of a Bravais lattice (Chap. 8)
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NOMENCLATURE

lK Distance travelled at the free-particle velocity v = F/γ during the mean

exit time tK

lt Distance travelled at the free-particle velocity v = F/γ during time t

m Mass. Counter variable (Chap. 7)

N Number of lattice points in which space is discretized to define a random

potential

NA Avogadro number

n Number of identical particles of an ensemble. Counter variable (Chap. 7)

n1, n2 Number of particles in a volume V1, V2 (Chap. 8.1). Integer numbers that

correspond to the binding site of a KIF1A motor in a 2− d lattice (Chap.

8.2)

P () Distribution of displacements

P1 Rotational pitch (Chap. 8.2)

Qn,m Notation employed for the interpolation of the force at any point from the

grid of forces derived from a 2− d potential

qi Primitive vectors of the reciprocal basis of a Bravais lattice (Chap. 8)

RMT Radius of a microtubule (Chap. 8.2)

R[xn, xn+1] First order Newton Divided Difference Formula

R(n1, n2) Vector that points to a node of a 2− d lattice (Chap. 8)

r Scaled modulus of the position vector

rh Hydrodynamic radius of a sphere immersed in a solvent

rpw Effective radius of the 3− d periodic potential wells (Chap. 8)

rw Components of the scaled vector position along the w = x, y, z cartesian

axes

r‖ Component of the position vector along the external force’s direction

r⊥ Component of the position vector along the direction perpendicular to the

external force

r∗ Diffusion length corresponding to the re–adsorbing time t∗ (Chap. 8)

205



NOMENCLATURE

r Scaled dimensionless position vector in Euclidean d-space

ri Vector that denotes the position of any cell in the real 2− d lattice space

r̂ Modulus of the position vector

r̂ Position vector in Euclidean d-space

r̂′ Vector position

T Scaled dimensionless absolute temperature

T̂ Absolute temperature

t Scaled dimensionless time

t0 Scaled deterministic time that it takes to cover a distance λ under the

action of a force F within the overdamped regime

tc Confinement time of a particle in a potential well (Chap. 8)

te Scaled escape time from a potential well

tK Scaled Kramers characteristic escape time

tmax Maximum time, that corresponds to the time needed for free Brownian

particles to travel a distance greater than the half length of the space in

which a random potential is defined

tu Scaled time employing the underdamped characteristic time scale

t′ Scaled dimensionless time

t∗ Re–adsorbing time, time spent in a bulk excursion for a Brownian particle

under interface attraction (Chap. 8)

to0 Dimensionless obstacle dynamics time scale

t̂ Time

t̂K Kramers characteristic escape time. Inverse of the Kramers’ escape rate

t̂′ Time

U(r, t) Scaled dimensionless random potential of equal height obstacles

Ui(x, y) 2− d potential landscapes that a KIF1A motor undergoes (Chap. 8.2)

U∗ Energy level (Sec. 8.2)
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NOMENCLATURE

û Unit vector in any Euclidean d-space

V Scaled volume

V () Scaled dimensionless potential

V0 Energy scale

V0(x, y) Random potential height at any point xy (Chap. 8)

V1, V2 Volumes in which the total volume V splits

Vd Scaled height at which V (r, t) is cut to transform to U(r, t)

VH Scaled obstacles’ height of a dynamic random potential made of obstacles

Vi Potential in discrete real space

Vp() Scaled periodic potential

V(k) Fourier transform of the field V (x)

Vµ Fourier transform of the potential in discrete real space

V̂ Volume

V̂ () Potential energy

V̄ (x, y, z) 3− d random attracting potential to an interface (Chap. 8)

v Scaled modulus of the velocity vector

vu Scaled 1−d velocity employing the underdamped characteristic time scale

vw Components of the scaled vector velocity along the w = x, y, z cartesian

axes

v‖ Component of the velocity vector along the external force’s direction

v⊥ Component of the velocity vector along the direction perpendicular to the

external force

v Scaled dimensionless velocity vector in Euclidean d-space

vu Scaled velocity vector employing the underdamped characteristic time

scale

v̂ 1− d velocity

v̂û Velocity component along direction û
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NOMENCLATURE

v̂ Velocity vector in Euclidean d-space

v̄ Quotient of velocities (Chap. 8.2)

W () Distribution of velocities

Wst() Steady velocity distribution

w Dummy variable that accounts for any of the 3− d Euclidean coordinates

x, y, z

Xi Random process in the time integration of the Langevin equation (Chap.

7)

x Scaled 1− d position

xi Auxiliary coordinates for the unidimensional integral of the Boltzmann’s

factor to obtain the Krammers’ escape rate

xmin, xmax Coordinates of the potential’s minimum (maximum) when it displays

a barrier over which thermally driven particles escape (Chap. 1)

x̂ 1− d position

Yij Random process in the time integration of the Langevin equation (Chap.

7)

y Scaled 1− d position

ŷ 1− d position

z Scaled 1− d position

z0 Coordinate such that V̂ (z0) = −V0/2, that is employed to scale the length

variables in Chapter 8

z2→1 Upper limit for the integral of the Boltzmann distribution to obtain the

ratio n2/n (Chap. 8)

z+ Particular choice for the upper limit for the integral of the Boltzmann

distribution to obtain the ratio n2/n (Chap. 8)

z− Particular choice for the upper limit for the integral of the Boltzmann

distribution to obtain the ratio n2/n (Chap. 8)
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J. Garćıa-Ojalvo, J. M. Sancho, and L. Ramı́rez-Piscina. Generation of spatiotem-

poral colored noise. Phys. Rev. A, 46:4670–4675, 1992.

C. W. Gardiner. Handbook of Stochastic Methods. Springer, 1985.

P. G. de Gennes. Brownian motion of a classical particle through potential barriers.

Application to the helix-coil transitions of heteropolymers. Journal of Statistical

Physics, 12(6):463–481, 1975.

212



BIBLIOGRAPHY

J. P. Gleeson, J. M. Sancho, A. M. Lacasta, and K. Lindenberg. Analytical ap-

proach to sorting in periodic and random potentials. Phys. Rev. E, 73:041102,

2006.

I. Golding and E. C. Cox. Physical nature of bacterial cytoplasm. Phys. Rev.

Lett., 96:098102, 2006.

P. S. Goohpattader, S. Mettu, and M. K. Chaudhury. Experimental investigation

of the drift and diffusion of small objects on a surface subjected to a bias and

an external white noise: Roles of Coulombic friction and hysteresis. Langmuir,

25(17):9969–9979, 2009.

M. Gori, I. Donato, E. Floriani, I. Nardecchia, and M. Pettini. Random walk

of passive tracers among randomly moving obstacles. Theoretical Biology &

Medical Modelling, 13:13, 2016.

L. G. Gouy. Sur le mouvement Brownien. Comptes Rendus, 109:102, 1889.

I. Goychuk and V. O. Kharchenko. Anomalous features of diffusion in corrugated

potentials with spatial correlations: Faster than normal, and other surprises.

Phys. Rev. Lett., 113:100601, 2014.

W. J. Greenleaf, M. T. Woodside, and S. M. Block. High–resolution, single–

molecule measurements of biomolecular motion. The Annual Review of Bio-

physics and Biomolecular Structure, 36:171–190, 2007.

D. G. Grier. A revolution in optical manipulation. Nature, 424:810–816, 2003.

R. D. L. Hanes and S. U. Egelhaaf. Dynamics of individual colloidal particles

in one-dimensional random potentials: a simulation study. Journal of Physics:

Condensed Matter, 24(46):464116, 2012.

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U.

Egelhaaf. Colloids in one dimensional random energy landscapes. Soft Matter,

8:2714–2723, 2012.

R. D. L. Hanes, M. Schmiedeberg, and S. U. Egelhaaf. Brownian particles on

rough substrates: Relation between intermediate subdiffusion and asymptotic

long-time diffusion. Phys. Rev. E, 88:062133, 2013.

P. Hänggi and F. Marchesoni. 100 years of brownian motion. Chaos, 15:026101,

2005.

213



BIBLIOGRAPHY

J. W. Haus and K. W. Kehr. Diffusion in regular and disordered lattices. Physics

Reports, 150:263–406, 1987.

W. Ho. Single-molecule chemistry. The Journal of Chemical Physics, 117:11033,

2002.
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Madrid. Giant acceleration of free diffusion by use of tilted periodic potentials.

Phys. Rev. Lett., 87:010602, 2001.

P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi, and A. Pérez-
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