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FOREWORD

Stepping into the scientific world is a marvellous adventure. Such a
world which should not be disconnected from the society we live in,
its interests and challenges. Yet, it is a world that demands intellectual
rigour, personal honesty (with others and most specially with oneself)
and huge personal motivation and effort.

Achieving this balance is a difficult endeavour, and I will not be
the one to pretend that science is objective: It shapes our inner self as
we do it, and we improve it by mixing its method with our personal
choices and experiences.

This thesis is the testimony of the beginning of my journey in this
scientific world. A journey full of uncertainties, difficulties, happy
moments, constant surprises and opportunities to meet all sorts of
interesting people.

It has been long, it has been hard and it has pushed me to overcome
my inner fears of failure. All in all, a great and rewarding experience.

Dear reader, I hope you enjoy this text while reading it as much as I
have enjoyed while developing what is in it. But beware, be critical as
you read, as (positive) critical spirit is what pushes science forward.
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Part 1

INTRODUCTION: BIG DATA, COMPLEX
NETWORKS, MOBILITY AND URBAN SCIENCE

Doing a Doctoral thesis is a long, laborious and excit-
ing task. Often, it can be tortuous and include many de-
tours in the way. This part tries to introduce the reader
to the main motivations behind this work, relevant ques-
tions and objectives set at its start. It also serves to put
into place the starting ingredients from which this thesis
has emerged.

Finally, it helps to understand how this document is struc-
tured, and where to find the relevant information for each
research question posed.






BRAHE, KEPLER AND NETWON OR THE
SYMBIOTIC CIRCLE AMONG DATA,
PHENOMENOLOGY AND THEORY: CHALLENGES
FOR SCIENCE IN THE BIG DATA ERA

But [Computers] are useless. They can only give you answers

— Attributed to Pablo Picasso by William Fifield [76]

The world is becoming increasingly connected. Distances shorten at
the same pace at which correlations among far events strengthen in
a process which has been termed as Globalization. Such a process is
happening in societies which are fast abandoning the analogic world
to step into a digital one, where traces of most of our activities can be
stored, analyzed and exploited. Yet our world has also become noisier:
We live surrounded by a constant flow of inputs, and we are told that
we live in the information age, however, it is becoming harder and
harder to extract knowledge from the processing of such a magma of
different (and often contradictory) elements.

Throughout the history of science, data (experiment) and theory
have always evolved side by side in a symbiotic circle. Hence, the
branch of statistics has emerged as a fundamental tool for experimen-
talists. As R. Fischer put it [77],

To consult the statistician after an experiment is finished
is often merely to ask him to conduct a post mortem ex-
amination. He can perhaps say what the experiment died
of.

We are living a paradigm shift, which is altering many aspects of our
life. The way we do science is not an exception, and we are witness-
ing important changes in the way problems are addressed. Many are
claiming that what matters nowadays is only data, and even have
predicted the "death of theory" (see the provocative piece by Ander-
son [19] and subsequent stir).

To respond to these claims, we can take a historical perspective
going back in time to another paradigm shift, that of the abandon
of geocentric theories for the solar system in favor of the heliocentric
view. In an extremely coarse and overly simplified historical view®

The tale of Brahe, Kepler and Newton presented here is simplistic and many con-
cerns from a historical perspective can be raised regarding their contributions and
those made by others, however, it remains close enough to actual facts as to deliver
the intended message home. It is based in the blog entry [104].



BRAHE, KEPLER AND NETWON OR THE SYMBIOTIC CIRCLE AMONG DATA, PHENOMEN

we can identify three main characters in this story: Tycho Brahe, its
successor Johannes Kepler and the genius of Isaac Newton.

Tycho Brahe was a prominent astronomer of his time, advocate of
the geo-heliocentric theory of the solar system. Whilst he did propose
theories, he was also a proficient observer, who accumulated a precise,
documented and large dataset (for the time) of astronomical observa-
tions. In the last stages of his life, he collaborated with Kepler and
shared his observations with him. Kepler, upon inspecting Brahe’s
observations to contrast his own theories on the movement of celes-
tial bodies, noticed that he could reduce most of them to three basic
phenomenological laws well reproduced in all observations known
as the laws of planetary motion. While he did propose theories on the
structure of the universe, his main legacy remains the three aforemen-
tioned laws. These, in addition to the work by other authors, helped
Newton (and others) to establish the well known framework to de-
scribe not only celestial mechanics but a unified view on the physical
laws of motion. Needless to say, the predictive power of these laws of
motion has been validated over and over by experiments ever since.

And what can we learn from this story? That these three legs sup-
port the structure where scientific and societal advances are built.
Data needs to be carefully and as objectively as possible analyzed
in order to extract phenomenological observations, that later need to
be explained by a unifying framework with predictive power, which
leads again to the data for verification.

Getting back again to the present time, it is obvious that the prob-
lems we face today are different to those posed by the movement
of the stars. The way to face them, however, should not be changed.
The elegance and predictive power of such an approach has always
attracted physicists and mathematicians to try and adapt the model-
ing methodologies developed for physical systems to a wide range
of problems, including social and economical aspects of human life.
These fields, however, require a multi-angled perspective. They can-
not be studied in an isolated manner because human related activ-
ities are composed of many elements interacting at different scales
(temporal, spatial, virtual or analogical) and from which we can only
get partial (albeit rich) information. From a modeling point of view,
this means that the focus needs to be put not only on the elements
forming the systems under study, but also on the interactions among
them.

The study of systems using this perspective has given rise to what
is known as Complex Systems Science. For these types of systems, we
need to use modeling structures that allow us a simple treatment of
interactions among diverse elements, and for this reason, the particu-
lar subfield of complex networks has seen a spectacular rise in recent
times.



1.1 COMPLEX NETWORKS AND STATISTICAL MECHANICS

1.1 COMPLEX NETWORKS AND STATISTICAL MECHANICS

A network or graph (as they are usually called in mathematics) is an
apparently simple structure composed of nodes and relations among
them (edges). These structures encode the interaction (or lack thereof)
among elements of the system (nodes). It usually counts a large num-
ber of nodes, which can belong to a single or a variety of species
(types of nodes).

The power of this approach resides precisely on its simplicity. Hav-
ing roughly two types of elements, these structures are easy to visual-
ize, manipulate computationally, use to store and represent data and
also they are susceptible to be treated analytically in such a way that
non trivial relations among their elements can be explored.

The fact that networks contain a large number of elements and pair-
wise interactions encoded in their edges, has inspired naturally the
interest of theoretical physicists in this field. In particular, clear analo-
gies have been stablished in a statistical treatment of these structures
and the (extremely successful and powerful) tools developed by both
equilibrium and out-of-equilibrium statistical mechanics branches used
in the analysis of natural systems composed by a large number of el-
ements (molecules/atoms) such as gases. The study of conventional
dynamics deployed on top of non trivial interaction patterns like the
ones represented by complex networks, has also enriched the field of
statistical physics itself. Novel types of phase transitions and limita-
tions to the effect of diffusion processes caused solely by the structure
of interaction among nodes have been discovered among other inter-
esting phenomena.

1.1.1  Going beyond binary networks

Basically, the field of complex networks can be subdivided in studies
analyzing the structure (topology) of interaction among elements of a
variety of systems (be them social, biological or others) and the non-
trivial (in the sense of neither being additive nor linear) outcomes of
dynamical processes studied on top of these topologies.

Even though these structures appear to be simple, in recent times,
the need to attain higher levels of concision has provoked the rise of
multiple types of complex networks: Binary, multi-layered, bipartite,
temporal, interconnected networks and many more.

However, extending and adding degrees of freedom or detail to
these structures comes at a cost: The initial idea of simplicity can be
progressively lost, with the obvious risk of losing control over the real
influence of topology on the observed phenomena. For this, models
with tunable features to be used as benchmark are needed. Yet, gen-
erating null models for increasingly complicated structures can be a
difficult task [22]. And with a lack of solid theoretical foundations for

There is a plethora
of literature on the
field of complex
networks, but I
refer the interested
reader to the
reference book by
Newman [128].

For a review of
critical phenomena
in complex
networks see [68].

For a general view
on the different
types of structures
considered in the
field of complex
networks,

see [103].
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these new structures, testing hypothesis on them is essentially impos-
sible. It is my objective in the present work to contribute to this task
by focusing specifically on the case of networks where connections
among elements are numerically quantified.

For reasons provided later, I shall call this structures non-binary
networks, but mostly in the literature those are known as weighted
networks. Weighted networks are a particular type of graphs where
the interactions among nodes are not dichotomic but graded in some
way. They are useful for providing and additional level of detail be-
yond the mere skeleton of interactions among the elements of a given
system. The tradeoff for this increase in information is that by adding
new degrees of freedom, their mathematical and computational han-
dling becomes more complex.

1.2 THE DAWN OF COMPUTATIONAL SOCIAL SCIENCE: MOBILITY
AND URBAN STUDIES

As data-related policies and debate take a central role in our societies,
research fields from the social sciences have turned their attention to
it. Being these fields mainly speculative and based on partial observa-
tions for the majority of the cases through history, the scalability and
availability of new data sources has fostered the appearance of what
has been called Computational Social Science (CSS) [55].

In this aspect, studies centered in the structure of cities are no ex-
ception. Cities are a prominent example of a complex system: They
are alive, interconnected, span multiple scales, contain extremely dif-
ferent actors and are scenario of a huge variety of activities. For this
reasons, the need for a new science of cities [27] has been called out.
Such a science, obviously, must be interdisciplinary by construction,
and should incorporate the use of data, phenomenology and theory
in a consistent manner.

Among the many aspects that may be studied in cities, an interest-
ing one is that of mobility. Not only for obvious ecological, sociologi-
cal and economical aspects (by 2050, it is forecasted that 60% of world
population will live in urban areas [185]) but also as a testing bench-
mark of the limits on the capacity of this new big data paradigm to
generate knowledge.

The study of mobility is not new, taking special importance in the
field of transport theory and planning [60]. Traditionally, the study
of transport needs is performed in two stages: Traffic generation fore-
casting and routing. The first stage consist in predicting the amount
of traffic that will be observed among all the studied locations while
the second one is focused on routing the predicted traffic along the
existing infrastructure. Both stages are clearly related to the network
approach, where locations can be considered as nodes and the con-
nections among them, physical for the later stage (infrastructure) and
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in flow (number of people among locations) in the initial stage, can
be associated to edges.

Focusing on the traffic generation aspect, one can easily associate
the number of people travelling among nodes to the intensity of their
link, hence giving rise to a non-binary, discrete network structure.
Furthermore, such intensity is based on the decisions of the travel-
ers, which may be related to a variety of factors. We are interested in
developing tools that help in avoiding observation biases, and being
able to clearly isolate the different factors that drive mobility. And to
do so, once again, models are needed, as data by itself will never be
able to explain whether an observed phenomena is caused (not corre-
lated) by a given hypothesized ingredient. Hence, from a theoretical
point of view, the connection of this phenomena to weighted complex
networks and their theoretical foundations is natural.

But then, if theory is needed, and new statistics are called for, what
can we, physicist, do about it, specially concerning the proposed new
science of cities? 1 strongly believe that with intellectual humility, we
can try and collaborate with the disciplines that have been studying
these systems (albeit from radically different perspectives such as ur-
ban planning and sociology) for a long time with fruitful results. In
particular, I feel that our role must be focused on providing them
with the right tools for the analysis of the newly available sources of
data, which allow them to separate as much as possible the diverse
factors that may influence an observation and hence help in testing
stablished theories in the different fields. Needless to say, in the pro-
cess of adapting old methodologies to new problems, we must not
renounce to gain knowledge and enrich in turn the field from which
we borrow these tools, reframing questions and revisiting stablished
theories, as we will try to do in the present case.

In consonance with the above, this thesis will try to develop tools
for the analysis of non-binary network with a general applicability in
mind, and exemplify their use in the particular case of urban mobil-
ity. It is not my objective to perform a complete dissertation of their
social causes and consequences, nor its interaction with the city envi-
ronment. That is not the job we physicists of complexity ought to do.
We can provide interesting tools to extract knowledge from data or
more precisely to uncover relations, treat data and answer questions,
and we can even contribute in the framing of such questions. How-
ever, all this remains orphan if no additional insights from experts
regarding phenomena are added to the analysis. Modern problem
embrace a huge variety of fields, and thus must be faced accordingly
by diverse and interdisciplinary teams.

To conclude, I would like to describe the process followed in the
research behind the present work, as this serves to frame it around
my personal motivations. It all started as a quest to explore the pos-
sibility of using weighted networks to study urban mobility from

7
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a mainly empirical point of view, due to the availability of a series
of rich datasets. However, after many failed tries, it became obvious
that attempting a phenomenological approach to these datasets with-
out the proper tools was an impossible task. There were simply too
many different variables involved, and too many metrics one could
measure which were related in non obvious ways. Another issue was
also made patent. Being urban mobility a highly cross-disciplinary
subject, it had been studied by many points of view, yet at the same
time it was hard to find appropriate references and relate their find-
ings, which were expressed using different lexicons and approaches.
Due to this fact, we resolved to go back to square one, developing
appropriate theoretical tools which would allow to revisit our earlier
analysis of the data and to guide the modelling approach to it. This
in turn, opened many interesting questions related to weighted net-
works model generation, which has finally been the principal topic of
the work. Hence, even if the results of this research are presented in a
linear order, i. e, first the theory, then the data analysis, then their ap-
plications, that does not reflect its real chronological development. All
the issues explained in this introduction are ingredients which have
shaped the work presented ahead, where I have tried to convey my
particular approach to combine data observations, phenomenology
and theory to attack a complex and inter-disciplinary problem.



OBJECTIVES AND ORGANIZATION OF THE THESIS

May the force be with you.

— General Dodonna [109]

2.1 ORGANIZATION

The present thesis is structured in four distinct parts: An introduction,
its two main parts and a final conclusion.

In the introduction (Part i) I have placed into context the area in
which the work of this thesis has been developed. I have introduced
some concepts about Complex Systems Science and its relation with
the present information age we live in. I have further motivated the
use of complex networks as structures that can help us in extracting
knowledge from the enormous datasets available to us. While advo-
cating for an interdisciplinary approach to current societal challenges,
I have argued what is my view on the role physicist must play and I
have tried to justify the approach taken in this respect by the present
work.

In Part ii I develop the main mathematical tools that are needed to
generate flexible null models for the analysis of non binary networks.
Chapter 3 serves as introduction to this part of the document and
presents previous work done in null model construction. The prob-
lem to be solved is explicitly defined in mathematical terms. Also the
main mathematical framework of network ensembles used to solve
it is presented. In the subsequent Chapter 4 and Chapter 5 details
for the different Grand Canonical (GC) and Micro Canonical (MC)
ensemble approaches are developed. In Chapter 6 practical issues on
network generation and sampling are discussed and recipes for ex-
plicit simulation of network instances are given. The focus is then set
on the null model that will mostly used for practical applications, the
Multi Edge Configuration Model (MECM). Such a model is used to
exemplify how analytical expectations for network observables can be
obtained and to numerically test predictions made on earlier chapters
concerning ensemble equivalence and other features.

While the Part ii is focused on theoretical aspects of non binary net-
work ensembles, Part iii is devoted to their applications to the analy-
sis of urban mobility data. In Chapter 7 I discuss and introduce some
of the current challenges that urban mobility faces with respect to
data analysis and modeling. The datasets used in this thesis are pre-
sented, their strengths and weaknesses analyzed and we study their
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main temporal, geographical and general features. In Chapter 8 we
show how urban mobility can naturally be described in terms of one
of the different types of non binary networks earlier studied. Taking
this perspective we analyze their main topological and spatial fea-
tures. Chapter 9 deals with the issue of modeling trip generation in
cities. A review of existing models is performed and metrics to assess
model accuracy are introduced and used to determine which of the
present frameworks is more convenient for the forecasting of mobility
generation. Finally, Chapter 10 presents two explicit applications of
the theory developed in Part ii to solve data quality related problems:
Under-sampling problems on the one hand and density problems (re-
lated with analysis and filtering of relevant data from urban mobility
networks) on the other.

The concluding Part iv wraps up the work done by summarizing
the contributions that this thesis represents. Last but not least, in this
part, I discuss current challenges and thoughts, not strictly scientific,
but which are related to the development of this thesis and the gen-
eral scientific and social framework where it has been developed.
Also possible criticism and future research perspectives are briefly
hinted.

The appendices provide additional details on subjects mentioned
along the main text, as well as information about datasets used.

A final note worth mentioning on language. Research is always
performed in group, and the outputs presented in this thesis are not
exception. For this reason, during this text, the pronouns "I'" and "we"
will be used indistinctively in general, except for the cases in which I
would like to express an opinion or personal appreciation, where the
"I" will be explicitly used.
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2.2 WRAPPING UP: OBJECTIVES OF THIS THESIS

The original objectives of this work have obviously suffered many
variations and detours along the way, but in a nutshell, can be grouped
into mainly two different yet interconnected aspects. One places the
focus on theoretical developments while the other is aimed at profit-
ing from the theory to develop real applications for urban mobility
problems.

A. Theoretical aspects: We aim to enunciate, develop and explore

a complete mathematical framework for the study of non-binary
complex networks with prescribed properties. Such an approach,
rooted in the techniques and concepts developed by the field of
classical statistical mechanics and by previous work done on
binary networks, should allow for hypothesis testing and isola-
tion of different factors that drive the formation of these struc-
tures. We want to uncover what can be achieved analytically
and computationally, and to clarify the concepts and connec-
tions that can be stablished between the field of classical statisti-
cal mechanics and that of networks. Based on the above frame-
work, yet focusing explicitly on urban mobility, we would like
to develop tools allowing us to review existing mobility models
and assess their limitations and strengths.

. Applications: From the analysis above, the capacity to effec-
tively generate network samples with prescribed constraints for
a wide variety of cases should naturally emerge. Such struc-
tures, used as generative models, should help in understanding
mobility processes encoded in terms of networks. We want to
successfully apply network theory to study mobility problem by
studying its temporal dimensions, spatial structure and topolog-
ical features. By doing so, we want to expand also the field of
non-binary network data analysis in general. We aim at devel-
oping data normalization and knowledge extraction strategies,
identifying key indicators and metrics and detecting relevant
features in empirical datasets represented in the form of non
binary networks.

Along these lines, all the work done should converge into openly
accessible, ready to use, available tools for network practitioners
willing to adopt the developed methodologies.

11






Part II

MAXIMUM ENTROPY ENSEMBLES OF
NON-BINARY NETWORKS

Some people may find mathematical derivations overwhelm-
ing, even boring. However, these are necessary. Mathemat-
ics is the syntax in which we try to understand the world,
hence, to correctly analyse what it tells us (the data), we
first need to try and predict by writing in its own language
what we expect from it.

In this part of the thesis, all the relevant mathematical
and numerical aspects concerning null model generation
of non binary complex networks are discussed. All later
usage of analytical insights for data analysis refer here.
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ENTROPY, RANDOMNESS AND NETWORK
ENSEMBLES: GENERAL ASPECTS

It ain’t what you don’t know that gets you into trouble. It's what you know
for sure that just ain’t so.

— Adapted from Josh Billings [36]

Science is interested in determining plausible causality relations
between a hypothesis/theory and some observation. It does so by
generating predictions (what one would expect given that the starting
hypothesis were true) and then comparing the predictions to some
observed result of an experiment.

The goal of this part of the thesis is to develop all the method-
ology needed to build models (generate predictions) that allow us to
understand the effect that fixing a given structural property has on a
network. This will allow us to later on quantify such effects and com-
pare them to real data observations to assess whether any observed
feature of a dataset is unexpected or can be explained by some plau-
sible hypothesis. In short, my objective is to generate predictions of
networks that have some pre-defined properties, being otherwise as
random as possible.

Randomness, uncertainty and information are concepts that we use
in our daily lives. They are however hard to define since they cannot
be directly measured. In physics, entropy is a related notion that is
widely used, yet again, one might find trouble upon trying to find a
commonly accepted definition. To overcome these problems, I will fol-
low the path set by previous researchers using an analogy to concepts
of statistical mechanics (including entropy) to the study of complex
networks.

The use of techniques from statistical mechanics to biology, soci-
ology and other areas of human knowledge is not new. Although
the field of Complex networks (which are called graphs in mathemat-
ics) has fostered a lot of interest in recent times, many applications
related to entropy and statistics are much older. Exponential random
graph models (ERG), also called p-star models in sociology, are a good
example. For so-called weighted networks the earlier results using en-
tropy and graphs can be found in transport analysis related areas’.
Also in economics, trade networks have recently been a focus of at-
tention, and many models using non-binary graph structures have
been proposed [31, 158, 71, 59, 175, 80, 122].

See the seminal work by Wilson, well summarized in [191], with abundant references
of previous works within.
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However, in my modest opinion (and up to my limited level of
knowledge of the literature), maximum entropy models for non-binary
graphs® (usually called weighted graphs) are not completely stablished,
studied and specified in the literature3. The reason for this is that
the weighted nature of a graph adds extra degrees of freedom that
need to be handled carefully (and that can produce several views of
weighted networks). For binary networks, in contrast, the presence (or
not) of an edge between two nodes is a dichotomic variable and its
analysis is considerably simpler.

Before reviewing the main mathematical aspects of null model con-
struction using entropy maximizing techniques, recent works which
heavily influenced this thesis deserve a special mention (besides the
historical ones already mentioned). Bianconi and colleagues, and, spe-
cially Coolen* and colleagues devoted substantial work on calculation
of entropies for binary graph structures under a wide variety of con-
straints, and in some cases, also for multiplex structures [33, 124].
This includes network generation [56, 20, 145], information quantifi-
cation [35] and applications to the study of real-world datasets (spe-
cially biological networks [21, 153]).

3.1 PROBLEM DEFINITION

We consider a representation of a network of N nodes, based on an ad-

jacency matrix T composed by positive integer valued entries ti; € IN

which we will call occupation numbers. Each of these entries accounts

for the intensity of the interaction between any given pair of nodes

i and j in the network, measured in terms of discrete events (which

may be trips between locations in a mobility network or messages be-

tween users in social networks for instance). Throughout this thesis

we will consider the case of networks with self-loops®. In general, the

case of interest will be that of directed networks, the undirected case

Origin-  following in principle from the derivation®. Drawing inspiration from
Destination  classical statistical mechanics [135] let’s consider the set of all possible

| matrices o7 atworks that one can build with a given adjacency matrix T, consid-
mobility networks,

which will be used
extensively in
Part iii are in

N

I will use this term instead of the most accepted Weighted graph to avoid confusion,
since as we will see later in this chapter several conceptions of what a weighted
network is can exist.
general directe.d 3 See for instance [134, 12, 32, 84, 176, 80, 122]. In this chapter I will not refer all
and contain the (immense) bibliography on analysis performed on weighted networks, only the
self-loops. cases related to maximum entropy models.
4 Their papers, although highly technical in mathematical terms, attain the most com-
plete and precise description of binary network sparse ensembles in graphs that I
have found in the literature, hence I encourage the interested reader to look into it.
5 In the cases where distinctive differences appear between the case with self-loops
and the case without it, a point will be raised in the text. Otherwise its sufficient
to alter any given summation over occupation numbers to exclude any terms with
repeated indexes.
6 This assertion is not general, but for the cases reviewed in this work, unless explicitly
stated, the adaptation to undirected is straightforward and will not be carried out.
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ering its entries {t;; } as random variables. From such a set, which we
will call ensemble, we can decide to sample network instances with
probabilities P(C(T)), which in its most general form will depend on
some macroscopic observables C(T). An observable is defined as any
general property one can measure from a given realization of an ad-
jacency matrix T as for example the number of binary connections a
node has with others (which is called binary degree, as we will see).
The most detailed observable one can measure is obviously C = T
and the minimal observable for an ensemble to make sense is the
total number of events C(T) =T = Zij tij.

Our objective is to obtain analytical expressions for the probabili-
ties P(C(T)) that would allow us to sample networks in such a way
that some observable (or in general a set of Q observables) has some
predefined statistical properties, the networks being otherwise as ran-
dom as possible. We will call such set of of Q observables constraints
C= {Cq}, each element of which will be a scalar function of T.

3.1.1 A maximum entropy principle: Minimum information as a proxy for
maximal randomness

In order to proceed we need a mathematical characterization of what
constrained networks as random as possible mean. In order to do so, a
maximum entropy principle will be used: The maximally random
ensemble of networks which are compatible with a set of given con-
straints will be that with associated sampling probabilities such that
they use the minimum number of bits to be encoded. In other words,
the ones which provide the minimal amount of information (besides
that encoded in the constraints) per observation or conversely, the
maximum uncertainty’. The measure of the amount of information
encoded in each sampling process described by P(C(T)) will be its
associated entropy8 .

Several concepts of entropy for complex networks have been used
in the literature [16] (including Von Neumann quantum-like entropies
[17, 61]), in the present case, we will restrict ourselves to the most
usual entropy definition, that of Shannon (and Gibbs)°. The reason
for this is that it has a transparent meaning in information theo-
retic terms and also allows to continue with the analogy with clas-

According to Wilson there are up to three different ways into which one can under-
stand entropy: As a measure of probability (in a Boltzmann sense), as a measure of
information (the one being used here) or from a Bayesian statistics point of view.
As I will briefly mention during the development of this work, the three visions
are closely related and can be unified under the present framework, which follows
Jaynes [95]. More details can be found in [191].

Using this definition its easy to see that the less entropic (more informative) net-
work ensemble is one that always gives the same result per observation i. e. displays
minimum variability.

For more details on the properties, derivation and usage of entropy to quantify in-
formation, I refer the reader to the seminal paper by Shannon [163] or Jaynes [95].

17
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sical statistical mechanics problems. It also extends the theory for
tailored random (binary) graph ensembles developed by Coolen and
others [34, 21, 153, 146] to some non-binary cases. The general for-
mula for the Shannon-Gibbs entropy functional reads:

Tip] INTlE TRy 1
s"[P) = ;? (M) P (C(T) = <ln g>r(é(f))>’ (3.1)

— =

where P(C(T)) has been earlier defined. The addition of superscript
I" is for the moment a matter of notation, but will be explained af-
terwards™. For the moment, suffice it to say that we take a subjective
view on entropy, which means that entropy is a quantity related to a
sampling process described in terms of a given probability P: Chang-
ing the variables, the system under study or the definition of P will
change also its associated entropy (we are closing following Jaynes
here).

With the above definition of randomness, we can now specify the
mathematical problem to be solved. It will be a maximization prob-
lem of finding the set of probabilities iP(é (f)) which maximize the
functional form of the Shannon entropy (3.1) and fulfill a number of
conditions or constraints. We will consider two types of constraints:
hard and soft constraints. A hard constraint’* Cy is any condition that
any network belonging to the ensemble must obey exactly. In contrast,
a soft constraint is a condition Cs which need only be fulfilled once it
is averaged over the ensemble. Using this classification of constraints,
two types of ensembles can be broadly distinguished. The ensembles
where all the fixed observables are considered as hard constraints
will be called Micro Canonical Ensembles (MC) and as soon as one
(or more than one) soft constraint is added, we will talk about Grand
Canonical Ensembles (GC)*2.

The problem to be solved when hard constraints are used and their

numerical values C are specified"3 is thus,

max {SF[CPHC(T) - C} . (3.2)
This problem leads to a uniform solution of the form,
P Oa)é
PR(C(T)) = m ZMC = ; 5€(f),é- (3-3)

Note that the set I' over which the sum is performed (which I will call the phase
or ensemble space) is for the moment still not completely defined, more ingredients
will be needed for that.

The subscripts H and S will be used to refer to hard or soft constraints respectively.

In the literature, usually these ensembles are called Canonical, yet, in the present
case, this term will be reserved to specify a specific ensemble within the Grand
Canonical formalism that bears a direct analogy the usual Canonical ensemble stud-
ied in classical statistical mechanics.

Whenever a random variable x is specified (or measured), its fixed numerical value
will be represented as %.
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The summation is performed over all individual (possibly degener-
ated) realizations or configurations of T, which we will call phase
space I''4. By introduction of (3.3) in (3.1) one obtains®

(3-4)

The above formula corresponds to the logarithm of the volume or
subset of the phase space I' where the constraints are exactly fulfilled,
which in the MC ensemble corresponds to the available phase-space
(number of configurations with non-zero sampling probability). We
shall call this particular function the Boltzmann (or I') entropy of any
given ensemble and its interpretation is straightforward in the sense
Wilson calls entropy a measure of probability: It strictly counts the num-
ber of graphs one can generate compatible with the given (hard) con-
straints.
For soft constraints, we have,

A

max {Sr[?]|<é(f)> = é} (3-5)

In this case, we impose that any of the considered soft constraints are
fulfilled on average,

Cq Vq=1Q.

(Cq(M)) = 3 PT(C(T)Cq(T) = (3.6)
r

The solution to this problem gives an exponential family of graphs [13],

Ze&.é(f),

r

PLC(T) = (3.7)

-

where I define & - C(T) = ZqQ 0tqCq(T) for ease in notation (and we
assume there are Q fixed constraints). The partition function Zgc
ensures the normalization of the probabilities and the vector of La-
grange multipliers & is used to enforce the constraints and must be
solved from the constraint equations,

¢ 0 ) = - nzac( 8

q—rﬁq()—ran Ggel(&). (3-8)
The GC entropy hence reads,

$"[Ps] = —&- (C(T)) +InZgc (3.9)

Equations (3.2) and (3.7) refer to the probability of obtaining a particular network realiza-
tion in the T space, not to the probability of obtaining a network with adjacency matrix T.
As we shall see, this distinction is very important for non-binary networks.

To simplify notation, along the thesis we will drop the superscript on the probability
P when representing entropies S" [P].
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A discussion on
the total number of
constraints Q one
can consider for
the problem is
performed in
Chapter 5.

The rh.s. in
equation (3.8)
shows the
generating
function nature of
the partition
function, for which
more details and
discussion is
provided in
Chapter 5.
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If the ensembles are well defined, one expects that both entropies in
(3.4) and (3.9) converge when considering the high sampling limit (see
below).

3.2 COARSE-GRAINED COUNTING OF CONFIGURATIONS:!: F-SPACE,
()-SPACE AND DEGENERACY TERMS

The variables used to describe any network are the entries of its ad-
jacency matrix. Yet, any network structure is the (simplified) repre-
sentation of an underlying system. This relation has been up to now
hidden in the general framework presented and will be made appar-
ent through the concept of the I' and () coarse grained ensemble
representations. This concept exemplifies the view of Jaynes that en-
tropy is fundamentally a subjective quantity: It capitally depends on
what the observer chooses (or not) to measure, consider and observe

in a system?®.

Space Degeneration

5L bl Qp DT

{tisho || {taske || {tisds |- {tidr—2| {tistr—a| | {ti}r F 1

Figure 3.1: Degeneracy, I' and Q) representations explained. Schema show-
ing the different levels of description encoded in the definition of
space used. In the bottom level or I space the description is made
in terms of realizations of the adjacency matrix (which may give
rise to the same form of adjacency matrix T), while in subsequent
Q levels a coarse graining is applied with the corresponding de-
generacy terms, which need to be considered when calculating
the summation of the corresponding partition functions.

A general schema can be seen in Figure 3.1. On the one hand, the
I" space'” of an ensemble is its representation in terms of individ-
ual realizations of network instances. Several elements of this set can
correspond to the same value of T. On the other, the Q space is a

16 To better grasp what this means and its relation to thermodynamic entropies, I en-
courage the reader to the short text [96].

17 Throughout this thesis the concepts of set and space will be used as synonyms in
an obvious abuse of language. Deviations from the use of the world space to refer to
other instances such as metric spaces will be made explicit.
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degenerate representation of an ensemble in terms of an observable

- =

O(T). The relation between both is straightforward,

Y DoM=) 1 (3.10)
Qo r

-

where Do (T) is a degeneracy term counting how many non-degenerate
states of a system give rise to the same observation of O(T). Being
the adjacency matrix the basic representation of a network, the first
Qo space one can think of is O+ = Q. Furthermore, recovering ex-
pressions (3.3) and (3.7), the probability to observe a given adjacency
matrix T is then respectively,

D(M)dx ¢, &

ZMC

Note that we do however pay a price in terms of information with
the change to a more coarse-grained description: If we consider the
entropy of the ensembles (equations (3.4) and (3.9)) we have that,

S2[PQ] = S"[Ps] — (InD(T))

zanGC—&-<6(T’)>—%ZD(T)e&'é(f)lnD(f)
GC O
QpQ1 _ ol B =
SCPR] = $"Pu] — (InD(T))
=InZmc — AV %@(T) InD(T)5 7 &

(3.12)

So we see an entropy reduction, S* < S', because the degrees of
freedom are restricted, or conversely we have a lack of resolution.

—

The addition of a degeneracy term <ln D(T)> breaks the interpreta-
tion of entropies for the MC ensemble as a measure of volume of
the phase space (the Boltzmann interpretation in physics): Even if
all configurations of networks fulfilling the constraints appear with
equal probability, not all configurations of T have the same statistical
weight D(T)/Zmc and hence the entropy of in this space cannot be
considered as a strict counting of compatible configurations only.
This poses a problem in terms of relating entropies between spaces:
The additional entropic term is very difficult (or directly impossible) to
measure in general cases for any ensemble (except for few exceptions)
and its interpretation is difficult. In our analytical calculations, the
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quantity of interest will be the leading terms of Boltzmann entropies
per event in the infinite sampling limit:

r
lim > [EPH] (3.13)

T—o0

which is expected to be an specific (sampling independent) metric quan-
tifying the amount of "freedom" (configurations meeting the consid-
ered constraints) encoded in each ensemble. Sadly, on the numerical
side, the only one that can be evaluated directly while sampling net-
works is the Q) entropy as we will see.

In a nutshell, the difference among both is clear: The entropy in
the T space is related to the probability P" of obtaining in our sampling
process a given, specific, configuration of our system while the entropy
in the Q space is related to the probability P* of obtaining a (possibly
degenerate) configuration of our system described uniquely by the variables
chosen (in our case, T).

3.2.1  Degeneracy terms for non-binary networks

As we have seen, the degeneracy term is of capital importance when-
ever dealing with non-binary networks as it influences vastly the

-

structure of the problems under study. The degeneracy term D1 (T) =
D(T) is in general subtle to compute and to the best of our knowledge,
is seldom considered in the literature. It is entirely determined by the
specifics of the system from which the adjacency matrix has been
obtained [49].

One can construct adjacency matrices from systems in countless
ways and in this work I will consider a specific, albeit quite gen-
eral form usually found in real data: The aggregation of multiple
layers of data [62]. In general, one can consider a multi layered sys-
tem® composed by M levels, each described by an adjacency matrix
T™, m = 1,M. Examples of this procedure range from aggregation
of transportation layers [50], networks generated by accumulation of
information over a certain time span such as Origin-Destination ma-
trices [4], email communications [91], human contacts [85] or even an
aggregation of trading activities in different sectors such as the World
Trade Network [175].

Often in real situations, information is available about the aggrega-
tion of some of these layers, i. e. the overlay network, whose elements
are the result of direct aggregation of all the single-level adjacency
matrices,

M
ty=) tf Vi (3.14)
m

18 The mono-layered case is recovered setting the number of layers to unity.
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Each of these entries correspond to a set of events that quantify the
interaction between node i and j. These events can be either distin-
guishable or indistinguishable, depending on the system under study
and thus contribute in a different way to the degeneracy term D(T).

The systems under consideration are an aggregation of M network
layers containing the same type of events: They can be either a group
of layers composed by distinguishable (which I will call Multi-Edge
networks - ME) or indistinguishable (which will be called Weighted
networks - W) events or even an aggregation of Binary (B) networks.
Despite the multi-layered structure of the studied systems, we only
have access to information about their accumulated value through all
the layers, i.e. the aggregated occupation numbers T = {ti;} (equation
(3.14)).

The degeneracy term is the product of the multiplicity induced
by the nature of the events times the nature of the layers (which in
the only real possible scenario are always distinguishable) D(T) =
D(T)gvents X D(T)Layers. This last term is computed (for each pair of
nodes or state ij) by counting the number of different groupings one
can construct by splitting tij = > ,, t{} (distinguishable or indistin-
guishable) aggregated events into M different layers respecting the
occupation limitation of the considered events: Either only one event
per layer (Binary network) or an unrestricted number (Weighted and
Multi-Edge networks).
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NETWORK TYPE D (T)Events D (f)LAYERS

. TTL tl
Multi-Edge (ME) 3" ;[ Z{tm} I, tn’u = [[;; M= 8
Weighted (W) 1 Hi]’ (M+ZZ mt.ﬂ? 1)

ij
Binary Dist. (BD) T! b (=)
Binary Indist. (BI) 1 ( )
m. 1]

Table 3.1: Degeneracy terms’ formulas. Degeneracy terms corresponding to
the elements of the system and their layers for each case when
considering ensembles with fixed total number of events T.

The resulting degeneracy terms are shown' in Table 3.1, from
which one can extract some preliminary conclusions. The degeneracy
term on layers factorizes in all cases in ij independent terms while the
degeneracy term (only interesting for distinguishable cases) on events
factorizes in two parts: One (which itself factorizes) depending on the
microstructure of T, Hij Dyj(ty;) = Hij (ti)—!)_1 and another depend-
ing on the total number of events T = } ;; tij, T!. For the binary case,
both the distinguishable and indistinguishable scenarios will lead to
the same statistics, since their degeneracy term on events does not de-
pend on the micro-structure {t;;}, see (3.11) (hence on the remainder
of the thesis we will omit the case BD).

19 For the layer degeneracy terms, one proceeds as follows: For each state ij out of
the possible N2 node-pairs (N(N — 1) if not accepting self-loops) one needs to con-
sider the process of allocating ti; events in M possible distinguishable levels. For
the W case this corresponds to the urn problem of placing ti; identical balls in M
distinguishable urns. For the B case one faces the problem of selecting groups of
tij < M urns out of a set of M urns and finally for the ME case one must count
how to place tij distinguishable balls in M distinguishable urns. These problems
are well known and their solution leads to the second column in Table 3.1, with the
product over ij representing the fact that the allocation among the layers for each
node-pair is independent. The event related degeneracy terms are only relevant for
the distinguishable case and are discussed in details in Section A.1.
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() Space (deg.):
2 Nodes

it

@ 1
Variables: Occ. Numbers

I" Space (non-deg):

D(2,1) = 7% = 3 confs.

3 Events

Leo, Pep Leo, Thiago Thiago, Pep

Leo A A A

Thiago

Variables: Names

Figure 3.2: The importance of degeneracy: ME case example. Using a sim-
ple, football inspired, example representing transfer of players
and coaches by a network, we show how three very different net-
work configurations in the I space give rise to equivalent config-
urations of an adjacency matrix T in the Q space (with 3 different
events occupying each one state).

A correct understanding of the degeneracy terms involved in the
network representation of each system is thus crucial to attempt any
statistical analysis of a network. For the case of non-binary networks
this issue is extremely important due to the additional degrees of
freedom added to the topology by the integer adjacency matrix as ex-
emplified in Figure 3.2. What representation to use in each case will
depend on the specifics of the system under study and in our case, on
the application stage I will focus our attention to the ME case. How-
ever, the complete framework in its most general form is here derived
with the double objective of pinpointing the importance of degener-
acy (and differences between obtained results) and completeness.

Modern literature
on so-called
Complex
networks
(starting

with [134] and
many others

such [12, 32, 84,
8ol) seems to have
overlooked the
differences in
non-binary
network systems,
mainly focusing on
the single-layered
Weighted network
case.
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3.3 GRAPHS ARE NOT GASES: SCALING AND THERMODYNAMIC
LIMITS

Some final definitions and concepts are needed to perform a compre-
hensive study of the problem to be solved. Since we have presented
two broad types of ensembles from where to sample networks, the
MC and GC ensembles, a clarification is in order about the relation
between them and the types of study we want to perform on these
ensembles.

Returning once again to the (incomplete) analogy with classical sta-
tistical mechanics, we still need a definition of the concept of ther-
modynamic limit. In physics, the thermodynamic limit is an a useful
concept relating to an infinitely large system. In this context, infinitely
large is intended to mean a system where all secondary effects (in-
complete sample, boundaries, etc.) related somehow to systematic
measuring errors are mitigated and only the main ingredients of a
system remain. Generally, this concept is defined as the system in
which the specific quantities one can measure become independent
of its scaling variable X while its extensive quantities become linear
on X. A broad mathematical description would be to consider a sys-
tem for which all macroscopic observables O(X) that depend on the
scaling variable of interest X (normally the number of particles) such
as energy, or volume, evolve according to,

lim % = Ctnt. (3.15)

X—00

As one can readily realize, graphs are not gases and hence a defi-
nition of a thermodynamic limit is not straightforward (as well as
definitions for volume and energy), and using such term can be mis-
leading. For this reason, I will avoid this term and use instead high
sampling limit. We aim at a limit in the form of (3.15), yet a network
has two simple elements to choose from when looking for a candidate
for the scaling variable X: The number of nodes N or the number of
events T.

3.3.1  Scaling quantities: Number of events T and number of nodes N

The ensembles of graphs that have been constructed for binary net-
works in the literature deal with networks that are sparse (and cleverly
exploit their properties). For these graphs the scaling quantity of in-
terest is the number of nodes N (so X = N in this case). These graphs
are normally defined using (3.15) as families of networks for which
the density p = T(N)/L(N) vanishes as the number of nodes tends
to infinity, being L(N) the number of available node-pairs where to
allocate edges or binary events (in general®® L ~ O(N?)).

For directed graphs we have L = N2 or L = N(N — 1) (no self-loops) and for undi-
rected ones one has L = N(N +1)/2 and L = N(N — 1)/2 respectively.
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Mathematically, this means that the graph-average degree remains
constant in this limit,
lim k= li L C) = i £ _ C 6
Ngnoo N Ngnoo N LZ] (tij) - Ngnoo N = nt. (31 )
We have used that for binary networks, the state occupation num-
bers are dichotomic variables, hence ti; = ©(t;) € {0, 1} and we can
identify the number of events T = }_;; ti; with the number of binary
connections or edges E = Zij O(ty) (©(x) follows the usual defini-
tion of the Heaviside Theta function).
Using the above definition, one can work with constraints that
are homogeneous functions of degree 1 in N (i.e. extensive in N).
Two possible examples are the Erdos-Renyi ensemble [69], where

the ensemble graph-average degree is fixed <l_<> = E/N or the en-
sembles of graphs with a fixed distribution of degrees p(k) [34] (so

(k) = (X8, ¢ ) /N is fixed).

If one wants to extend this idea to non-binary graphs, one encoun-
ters a problem by the addition of new degrees of freedom in the
interaction between nodes. Now three ingredients come into play, the
total number of events T, the number of binary events E and the num-
ber of nodes N. Additionally, T and E are not independent since by
definition T > E. If one tries to use the same definition as in (3.16) for
high sampling limit, one gets,

] I
i § = i 2t = Jim, g = Gt

ST . Zijtij . 3

i t= TRy T NN T
tij ~ONT') = t < 1Vij = tij » O(tyj) = 5= k.

(3-17)

And one is lead to the binary sparse case again, because the occu-
pation of each link asymptotically vanishes, so there is no difference
among binary and non binary sparse graphs. So as we see, defining
a large sampling limit is by no means trivial for the non-binary case
and will depend again on the problem at hand.

3.3.2 High Sampling limit for non-binary, non-sparse networks

In the current case, we are developing our theory to study networks
that represent mobility of users between locations, for this reason I
shall consider N as a fixed number (the set of locations in a city /coun-
try can hardly change once specified by their coordinates). Obviously,
the number of recorded trips depends on the observation time T one
spends gathering data (events). Hence, for infinite time, t;; — oo Vij,
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so, how do we find an specific quantity to determine our high sam-
pling limit? The workaround follows from what we would expect
from a non-binary description of a graph: It must add something
new, hence it must be sufficiently different from a binary graph. We
define the high sampling limit (with fixed number of nodes), follow-
ing what is proposed in Transport analysis [70]. It is expressed as the
limiting case where the number of events T becomes infinite (and so
do the occupation numbers), while the fraction of events allocated to
each node-pair is constant. In other words,

fim ()= tim () =p3VH Ypg =1 Gad

i

The obtained networks will no longer be sparse, since in this limit
limT_, (§) = oco. This can be seen as a nuisance, but also helps
in clarifying the difference between a node-pair with no-events (for
which pgj is strictly 0, and an occupied node-pair. It also helps in
raising another issue recurrently appearing in non-binary networks
and in general not widely discussed. Philosophically, a weighted net-
work should be treated as a fully connected network, where option-
ally some states can take 0 occupation number values (or weight).
The reason for that is what we pinpointed earlier relating to sparse
graphs: All sparse graphs are by definition binary, hence all non-
binary graphs with a well defined high sampling limit should be non-
sparse, and in general display large values of occupation (k ~ O(N)).
A complementary argument is that usually for non-binary networks,
the distribution of existing (non-zero) occupation numbers on states
displays a highly skewed nature. In this case, why should we treat
differently weights with ti; = 0, which are only one unit divergent
of existing weights with t;; = 1, while treating equally the observed
weights (whose maximum value can exceed by far this distance of a
unit 5% > 1)?.

Under the present framework, a limiting situation we can consider
is the sparse limit. In such a limit, T < L(N) and hence states are
weakly populated, ti; < 1 and we deal with a binary network (ti; —
O(ty;) € {0,1}) where any non-binary statistics must converge since
no traces of the non-binary nature of the networks can be observed'.

A final comment must be made about sparse, non-binary, networks:
Although this thesis will not deal with them, future work could in-
volve considering separately the binary and non-binary structure of
such graphs from an ensemble theoretical point of view taking N as
a scaling variable. This would involve defining at least two limits of
the form (3.15) to specify the dependence on it of T and E while keep-
ing sparse properties (optionally an additional dependence should

The analogy to the classical limit of equilibrium statistical mechanics is clear. What is
sometimes called high temperature limit is only a particular case of the classical limit,
whose strict definition is made in terms of the very sparse occupation of the energy
levels of a system.
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be added to account for the number of layers M). Doing so, however,
requires a careful handling of the concept of sparseness due to the
inherent correlations between binary events and events [160].

Finally, I want to make a note about the discrete nature of the stud-
ies that will be carried out. No continuous weights will be consid-
ered, since the extension of this results to the continuous case is by
no means obvious. To my knowledge, this problem related to null
model construction is rarely mentioned in the literature [49, 186, 22]
and is still open today (despite the fact that many weighted networks
are used with continuous weights such as correlation values in con-
nectivity brain networks [173]). Usually it is avoided by setting all
weights discretized according to a minimal unit, yet this minimal unit
is somewhat always arbitrary, since obviously there is no analogue to
Planck’s constant h for graph weights.

3.3.3 Ensemble equivalence

And one may wonder, why do we need a high sampling limit? The
answer to this is related to network normalization on the practical side
and to the concept of ensemble equivalence on the theoretical one.

Usually in real applications, several instances of the same network
are never available to practitioners, however many networks shar-
ing similar statistical properties are discovered (despite diverging in
number of nodes, edges or events). Studying thus ensembles of net-
works sharing the same properties can give insights on how to proper
rescale the variables of interest and study the significance of the ob-
served common patterns.

The second, purely theoretical reason is related with another as-
pect which is usually loosely defined in statistical physics: Ensem-
ble equivalence. In the present case, following [174] we will say that
two ensembles describing the same system and same constraints are
equivalent if under an appropriate sampling limit their relative Shan-
non entropy or Kullback-Leibler divergence (KL)>?, normalized by
the sampling, vanishes.

limyx oo X! >r ?1:1 In ?;T‘r# =0
limy oo X' Y+ PEIn 2% = 0.
o X Lr TS ingy : (3.19)
1 P 1 P
Alim—ZiPLln—}lj:Alim —In —H
Troo T N e PL(TIC(T) = C)

22 KL is not a symmetric measure, but since we are only interested in the absence of

divergence, we can use either formula in (3.19).

I discuss some
examples of the
problematic
correlations
between binary
events and events
using the GC
ensemble in
Chapter 4.

In Part iii several
examples on the
use of analysis
over different
samples of the
same ensemble is
shown.

For extended
discussion on
ensemble
equivalence for
physical systems
see [183].
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The prior expression can be worked, since by definition the MC en-
semble is a subspace of the GC ensemble (some realizations which
fulfill the constraints on average will do so also exactly), hence:

lim ~ Pl = — Tim “ME — fim L) = &) (3.20)

Tooo I Tooo T T—oo
So it basically means that the logarithm of the probability of observ-
ing deviations from the hard-constraints in the GC ensemble scales
sub-linearly with the total number of events T, and thus the lead-
ing terms of the Boltzmann entropies are asymptotically equal for
both ensembles. An alternative definition, used frequently in statisti-
cal physics, states that the two ensembles will be equivalent if relative
fluctuations for the constraints defined in each case are equal, and
hence vanish because they cannot fluctuate in the MC ensemble,

2

=0 Vq=10Q. (3.21)
GC

In usual physical systems, all ensemble descriptions are equivalent
but this is not always the case for networks. Thus studying con-
straint fluctuations is capital in the GC ensemble, since a statistical
-fluctuating- description of an ensemble of networks will not be of
much use once applied to real data if the relative fluctuations of its
constraints are not zero or bounded, because that would mean that
the information carried by the mean value of the constraints averaged
over the whole ensemble will not be very informative, and hence the
ensemble will not be of much use for null model generation. In Chap-
ter 5 a discussion on the issue of ensemble equivalence for networks
of the type discussed in this thesis is performed.

3.3.4 An important note about the analogy to classical statistical mechan-
ics

A final discussion is important in order to conclude this introduc-
tory chapter. By now, it must be obvious to the reader the constant
analogies that one can establish between non-binary network ensem-
bles and the classical equilibrium statistical mechanics of physical
systems. It is important to make now some points about the limits of
this analogy, in order to gain some perspective and in order to be co-
herent, systematic and frame the conclusions to be learned from our
study.

First and foremost of all, in physical systems, the constraints we de-
fine in the formulation of a problem are clearly related to the concept
of equilibrium. For a GC ensemble description, this means that the La-
grange multipliers we obtain when solving the constraint equations
for these problems have a clear physical interpretation (temperature
and chemical potential mainly). This connection between statistics
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and thermodynamics can be used to make predictions on different
systems, but this is clearly not the case for networks. Unless we find
a way of defining equilibrium states for networks, and evidence that
supports this view, the interpretation of given values of Lagrange
multipliers & for a particular problem (system with set of constraints)
will not be possible to extend to other similar problems with different
details (same constraints fixed at different numerical values). Hence,
extreme care should be taken when trying to do Network thermody-
namics and extracting general conclusions.

Secondly, in usual physical systems, it is obviously impossible to
obtain detailed information about the occupation of each (distinguish-
able) energy state. Hence, a constraint such as T (where the occupa-
tion of each state ij is clearly observed) cannot be considered a macro-
scopic observable. In general, it will be very hard to define either local
or state dependent constraints (in our case that would correspond to
individual entries ti; and also node related variables) and as a re-
sult it should not surprise us that no discussion is performed or even
needed on the entropies associated to what we called the Q space.
Such a discussion, however, can be important also in these cases, and
as we shall see in Chapter 4 (extended discussion in Section A.1) can
lead to interesting and novel results with application also in the field
of classical equilibrium systems.

The last obvious divergence between models concerns the total
number of available states to be filled L. In our case, L is fixed and so
as sampling is increased the occupation of each state increases and
diverges in the high sampling limit. In contrast, for physical systems,
L is extremely large and not fixed but rather grows for each particle
added to the system, hence as N is enlarged to reach the thermody-
namic limit, the occupation of the majority of states is very low. This
however, does not affect the equivalence of ensembles because the
vanishing of relative fluctuations we require is related to constraints,
which we have justified that are global and not local, and so are not re-
lated to individual occupation of states. To conclude, this means that
considering our approach in the high sampling limit to be straightfor-
wardly applicable to a quantum system with discretized states can
entail some difficulties, as it would lead to a system with infinite den-
sity of particles, which in addition should not interact among them
(the majority of cases studied here deal with what one would call
non-interacting, state ij separable Hamiltonians).

Despite all of the above, the insights gained from the present study
can add value in understanding the structure of statistical mechanics
problems in a novel way, as shown by the interpretation some au-
thors have done exploiting the analogies between both cases [174, 74].
For more details, I encourage the interested reader in following the
discussion in Chapter 4 (and most specially the extended part in Sec-
tion A.1).
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3.4 WRAPPING UP: INGREDIENTS OF AN ENSEMBLE

In this section, I have tried to review the main concepts that will be
needed to address the problem of generating non-binary networks
with prescribed constraints. The extended discussion is justified to
clearly establish the minimal ingredients that any trial to study net-
works from an ensemble point of view, inspired by statistical me-
chanics, should cover. They are summarized below in the form of
questions any practitioner should try to answer prior to starting such
an endeavor:

A. System details - Degeneracy: What does the network represent?
Are the events in it distinguishable or not? Is it a multilayer
system? Do we have access to the whole structure?

B. Shared properties - Constraints: What system properties we
expect to be invariant/constrained/conserved in each network
instance and what not? The effects of fixing which observable
do I want to separate from my observations using a null model?

c. Fluctuations - Ensemble type: Is the data fluctuating? Do I
want to consider hard or soft constraints?

D. Normalization - Sampling limit: What will I consider is an
appropriate sampling limit to test equivalence between ensem-
bles/fluctuations of constraints? Which relevant scaling vari-
able should I use?

The above questions need to be clearly solved, otherwise, an ensemble
description of a system will not be unambiguous. Other relevant and
deep mathematical questions, not always easy to solve, such as ergod-
icity, existence and uniqueness escape the scope of this work, which
is intended primarily as a practical tool, however can be important in
some cases and should be reviewed if mathematical inconsistencies
were to be found.

In the next chapters I develop the theory for GC (Chapter 4) and
MC (Chapter 5) ensembles of non-binary, non-sparse, aggregated mul-
tiplex networks for both distinguishable and indistinguishable events,
using the total number of events T as a scaling variable and setting the
number of nodes N and of layers M constant. To conclude this part,
I discuss in Chapter 6 also details on how to generate networks in
the GC ensemble, as well as a practical application to obtain expected
values for network observables (to later compare to real data).

As a final comment, it should be noted that another possible way
to obtain randomized versions of networks keeping magnitudes con-
stant is algorithmic randomization (rewiring) of graphs?3. This possi-
bility however, will not be discussed here for several reasons: Firstly,

The alternatives include edge-switching schemas [156] and stub pairing algo-
rithms [30, 42, 193].



3.4 WRAPPING UP: INGREDIENTS OF AN ENSEMBLE

no analytical insight can be gained from it, which is useful (as we will
see) with regards to understand the structure of the problem at hand
and has many applications such as data normalization. Secondly, the
properties of such algorithmic randomization are not always clear,
and for example an unbiased sampling of graphs can be difficult to
obtain [20] as well as be costly in terms of computational time [56].
Finally, our approach is more flexible since it allows to fix a very gen-
eral type of constraints, which in the case of manual randomization
would need to have algorithms designed on a case-by-case basis.
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By numberless examples it will evidently appear that human affairs are as
subject to change and fluctuation as the waters of the sea agitated by the
winds.

— Francesco Guicciardini [9o]

In this chapter I will deal with all aspects regarding the Grand
Canonical formalism approach to generate networks with prescribed
constraints of two broad types: Those that can be written in the form
of linear combinations of functions of the occupation numbers t;;
and those including also their binary projections ©(t;). For all types
of constraints, the three cases of Multi-Edge, Weighted and Binary
networks will be discussed together with the strengths, insights and
limitations of this approach. Also, explicit examples linking to known
models and usual situations will be explicitly developed. A very spe-
cial case where the total number of events can be fixed as a hard
constraint for the Multi-Edge scenario will also be discussed (and
will be called Canonical Ensemble in analogy to classical Statistical
Mechanics).

However, before starting, one needs to carefully review a crucial
aspect related with the degeneracy terms mentioned in the earlier
chapter, which needs to be taken into account when dealing with
ensembles where the number of events is not fixed as a hard con-
straint and the events are distinguishable. Considering this particular
case introduces notable complications because it demands to imagine
a reservoir' of F > T (distinguishable) events from where to sam-
ple from. However, the distinguishability of all events present in the
reservoir leads to a problem: The degeneracy of choosing T events
out of a reservoir of F distinguishable particles to populate a given
adjacency matrix T reads,

F
DReservoir = <T> . (41)

So the total degeneracy for events reads,

F) L
T/ 1Lt T ty!

@(F,T‘)—< (F=1)(F=2)..(F=T+1),

(4.2)

The very same discussion given here can be performed imaging instead of a reservoir
a set of infinite copies of the system, see Section A.1 and [3].
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which is a quantity that diverges whenever considering the limit
F >> T, prior to considering the high sampling limit (T — o). As it
can be seen, distinguishability introduces correlations between all the
events present both in the networks and in the imaginary reservoir.
However, one needs to take into account that even if the degeneracy
term becomes infinite as the reservoir does, the probabilities to sam-
ple a given adjacency matrix T from the ensemble, given by (3.11),
can still be well defined. The reason for this is that if the total number
of events is not fixed as a hard constraint, one needs to consider a La-
grange multiplier 6 accounting for a closing condition }_;; (tij) =T.
If one considers the scaling of the Lagrange multiplier 6 on F (only
possible for certain types of constraints), one can establish an effective
degeneracy D = Hi]—(T!)V L, (ty;!) which is factorizable, and hence
allows for a statistical description in terms of state ij independent
probabilities (a complete justification of the effective degeneracy term
and its consequences is given in Section A.1).

Once settled the degeneracy term, we can start by constructing en-
sembles of networks for all cases (W, ME, B) considering Q constraints
of the following form,

Cq=) filty) VYqeQ. (4-3)
i

This form only imposes that the considered constraints can be written
as sums of individual functions fq(ti;) of the occupation numbers
for each node pair. The minimal constraint which will be used in all
cases is that of the total number of events T, which will need to be
fixed on average over the ensemble and equal to T and will always
be explicitly separated from the other QQ constraints. The Lagrange
multiplier identified with T will be identified by 6.

Once the constraints are defined, we can note that the term e
appearing in expression (3.11) will factorize, i.e. ,

o8 C(T) _ 0T H el q xafq (tyy) — =zl H zij(ty5). (4-4)

& C(T)

Where we identify z1 = e?, zij =[] q e%afa(tij) This circumstance,

combined with the factorization of the effective degeneracy terms
D(T) x Di;(ty;) into state ij independent terms, leads to®

ty;
[ Iij Dij(tij)zy 245 (ti5)

P(T) = > : (4-5)

Thanks to the soft constraints, summing such a function becomes sim-
ple and can be done individually for each node-pair ij and thus

For ease in notation, through this chapter we shall skip the subindex GC referring
to the grand-canonical partition function and the tilde in the effective degeneracy
terms.
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the partition function factorizes Z = 3 , [ Dij(ti]’)Z?i zij(tyy) =
Hi]- Zi; and we reach state independent probabilities of occupation
qij(ti;) for each node-pair ij,

- Di; (t; )Z 1245 (14
?(T):H it T i (ti;) qu) ti;)

iJ'

Zij = Z Dl) ij ZT Zl]( ])-

;=0

(4.6)

The importance of the degeneracy term becomes now apparent: In
combination with the considered constraints, it determines the ob-
tained statistics (and most notably its independency).

Concerning the Shannon entropies in the Q space,
the formula for the GC ensemble (3.12), we have,

S, and using

SQ[PL] = Z <Z otq (FI(t;)) +0In tij + (In Di; (¢ U)>—1nzij>

_Zsu dijl = ) (S§lay) — (In Dy (ty;))) -

ij

(4.7)

As expected, being the statistics of the occupation terms indepen-
dent, one has additivity for the entropy terms. Note that the surprise
—In ngl (T) is as a function of random variables for each realization of
a network belonging to the ensemble. In this GC case, being a sum of
independent variables with non-diverging first and second cumulant,
its distribution will be gaussian and no outliers are expected, being
its average informative about the number of bits contained in the en-
semble. This means that when averaging numerically over network
realizations, expression (4.7) allows to easily obtain an histogram of
—In P&, whose average value is the GC entropy in the Q space.

Sadly, the prior expression depends on the Lagrange multipliers &
through the constraint equations. Once the values of & are known,
the values for the entropy can be computed, provided one is able to
sum the individual partition functions: In some cases they can be ap-
proximated by analytical expressions for the large sampling limit or
otherwise be computed by numerical simulation. In the next chapter,
we will deal with the calculation of entropies for each case in the MC
ensemble, which allows for a more transparent treatment. This will
also lead us to some considerations about the number of constraints
to be considered.

On the following, we specify two generic forms for the functions
fiqj (tij;) and perform explicit calculations for each case.
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GRAND CANONICAL ENSEMBLES

4.1 LINEAR CONSTRAINTS

Let’s consider firstly fhj (tyy) = agjtij with agj € R > 0 so the con-
straints take the form,
=> afty VqeQ. (4.8)
i
There are many examples of models in the literature with these types
of constraints, and we will review some examples explicitly. In this

ti;

section, it will be useful to redefine3 z;;(ti;) = z;; " = ( 1_[ e%a )

4.1.1  Summing the partition function

Summing the partition function for the three cases considered is sim-
ple and straightforward. Inserting the values in Table 3.1 (see previ-
ous chapter) into (4.9) one can analytically and directly perform the
summation,

‘t
1) - Z D’»J 1] 1]

ti5

1L (Mzey)' 1L Mo
ME: ( ) ZtU:O tZU]' (Tl) eMzi;
_ . Mt —1\ tij —M.
=4 W X o (M )z =0 —zy)™ 2y <
tl
B: Yoo (ty)zg = (T+zip™; ty <M
(4.9)

A minor comment is in order here: The sum for the B case cannot be
carried up to ti; — oo, since by construction the occupation of a state
is limited up to the number of layers M (it is an aggregation of binary
layers).

4.1.1.1  Canonical subcase for ME networks

For the specific case of ME networks, one can distinguish a Canonical
ensemble where both T and N are fixed as hard constraints, and other
constraints are introduced as soft. In this case, the partition function
to be summed is (note that degeneracy term to be used is no longer
effective),

T!
ME __
T ij

(4.10)

3 Note that now, as opposed to (4.4), the definition of zi; no longer depends on the
occupation numbers t;;.
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and hence the explicit probabilities to obtain a given adjacency matrix
are (not state independent),

N tiy; N
. 11 Mz : 1! )
P(T) = : =—— TJ[p™).

Y
(4.11)

The obtained statistics correspond to a multinomial distribution with
probabilities {p$y = zij/ Y i; 215 = (tij) / Xy (tij)} and sampling T.
Note that such magnitudes ought to be specific (sampling indepen-
dent) in the high sampling limit (see (3.18)). In this chapter we will
also consider this case, since it completes the analysis of ME networks,
which will be our main interest in Part iii of this work*.

4.1.2  Explicit statistics

We recover well known probability distributions: Poisson distribution
for the Multi-Edge case [2] (independent of the number of layers M),
Negative Binomial for the Weighted case (being the geometric distri-
bution [176] a special case when M = 1) and Binomial distribution
for the aggregated Binary case (being the Bernoulli distribution [134]
a special case for M = 1).

Mz (Mzi;)
q{\]{lE(tﬁ) =e€ MZU t..]l
ij-
Mt ts — 1Y ¢
aij (ty) = < t >Z§’“ —zi))™ (4-12)

M zi; \'
B _ Y —(M—ty;)
q1]( l]) <t1)> <] +Zi)’> ( +Z1])

The resulting statistics show some important features: On the one
hand, one sees that albeit the degeneracy term changes for Multi-
Edge networks for either case of a monolayer or a multilayer, the
form of the obtained statistics does not. This means that it is not possi-
ble to distinguish a Multi-Edge mono-layered network from an aggregation
of multiple Multi-Edge layers belonging to an ensemble with the same con-
straints. On the other hand, the situation for the other cases changes:
For multiplexes the resulting occupation numbers will have different
statistics from the monoplex case. This has the implication than one
could in principle discern the aggregated nature of a network by in-
spection of their accumulated edge statistics {ti;}, provided that one
had access to enough realizations of a system and that it belongs to

It can be shown that the result of L(N) independent Poisson process with expected
average {(t;j )} is equivalent to a multinomial process over L(N) sites with probabili-
ties {pf} = (tij)/ 2 i (tij)} and total sampling T drawn from a Poisson distribution
with average (T), which as we will see, are the occupation number statistics for the
GC, ME case.
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NETWORK TYPE  (tjj) O'%,”, ﬁ DOMAIN Zij
ME MZij MZij (MZU )_1 [0, )
M]iizjij M(]_Z;ij)z (MZij)_1 [O/])
Zij Zij —1
B M1+Z]ij M(1+Z)ij)2 (MZU) [0,00)

Table 4.1: Relevant moments of occupation number statistics. First and sec-
ond moment of the considered distributions, together with the
relative fluctuations and domain of distribution parameters.

the same ensemble (i.e. the system evolves according to some given,
even if unknown, linear constraints of the form in equation (4.8)).

Finally, we can see that for a large number of layers, the ensem-
bles converge to the ME, as the degeneracy term on (distinguishable)
layers dominates the phase space of the ensembles. In this case, the
total number of layers exceeds by far the typical occupation of a state
M > t = T/L(N), hence zi; ~ (t;;) /M < 1 (see Table 4.1), and one
can confirm the convergence of partition functions to the ME case
taking the limit M — oo while zi; ~ (tij) /M < T in (4.9).

4.1.3 Interpretation of Lagrange multipliers

Another important implication of the obtained statistics is the very
different interpretations encoded in the values zi;. This collection of
values are related to the constraints originally imposed to the net-
work ensemble through the set of Lagrange multipliers {oq} (equa-
tions (3.6) and (4.5)) and can be understood as a posteriori measures
related to the intensity of each node-pair ij. These measures encode
the correlations between nodes imposed by the constrained topology
(note that for local constraints only at the level of nodes we obtain a
factorization zi; = Mx;y;). Table 4.1 reports the two first central mo-
ments of each distribution. For the Multi-Edge case zi; is both directly
mapped to the average occupation of the considered link ij, (ti;) and
to its (relative) importance in the network (see (4.11)). In all the other
cases, however, zi; relates to a probability of a set of events emerging
from a given node, to be allocated to its local links. Obviously, as we
approach the high sampling limit, z;; grows in all cases, but not in
the same linear way (in the W case, for instance, zi; is bounded to
a maximum value of 1). This means that while in all cases zi; is re-
lated to the importance of a given link with respect to the others, the
dependency in all non ME cases is highly non-linear.

A second important feature related to the obtained statistics and
the interpretation of z;; concerns the use of entropic arguments to jus-
tify patterns detected in real networks [97, 140] and the relation of
entropy to hidden variable models [40]. As one can see, not only the
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obtained statistics but also the form of its parameters z;; is not free
and depend on both the degeneracy terms and the considered con-
straints. If the constraints are non-factorizable for instance, no state
independent variables will be reached.

This means that there is only one maximally entropic hidden vari-
able model for each unambiguously defined ensemble, because the
constraints and the degeneracy (fixed by the underlying systems one
is representing) determine the obtained statistics and their parame-
ters. Obviously any probabilistic model can always be tuned so that
the constraint equations match those of real data [15], yet the fact that
other observables of these models (beyond the ones already fixed as
constraints) reproduce well real data cannot be explained invoking a
maximum entropy principle.

In other words, one cannot choose a statistic and a predefined form
of the parameters z;j, and then maximize its associated entropy by
fitting the constraint equations en passant [97]. The way to use entropic
arguments is first to solve the complete problem of specifying all the
constraints and details of the system, obtain predictions (analytically
or by simulation) and then check if these predictions match those of
real data sufficiently well. When this is the case, on can say that the
reason to observe some network property (not fixed in the ensemble
considered) can be possibly explained by an entropic origin.

4.1.4 Constraint equations and fluctuations in high sampling limit

The main difficulty of the soft-constrained maximum entropy frame-
work hereby presented for null model generation is the problem of
solving the constraint equations (3.6) associated to each ensemble. Un-
der the constraints in (4.8) they read,

ME MY i adz;

Cq=(Cq)=) af(ty)=4 W MYgyairs . 413
Y B M}, ad 1:7:;”

With the exception of some particular cases, these equations do not
have an analytical solution and must be obtained numerically. In this
case, the best approach is to maximize the associated log-likelihood
of each model to a set of observations (constraints), yet the difficulty
of each problem increases with the number of constraints since each
fixed magnitude has an associated variable to be solved. Considering
the different statistics obtained, the most difficult case by far is the
Weighted one (W), since the condition that 0 < zi; < 1 imposes a
non-convex condition in the domain of the log-likelihood function to
maximize, while the others are in general easily solved using iterative
balancing algorithms (more will be discussed in Chapter 6).
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Concerning the constraint fluctuations, in each case we have,

Gch _ Zij(a?P (tij) +£Zij(a?)2 <tij>2

5 = . 2 - 2
(Cq) (Zij aq <ti)~>) M (Zij aq <tii>)
B Zij(a?)z (tyj) L@ !

! ( 5 aq <tii>>2 M1 +7q (414)
ro = DIRTRRIAR Y _‘_ﬁqj azl <tzii> (i)
Yi5laq)? ()
where a = 0 for ME case, a = 1 for W case and a = —1 for B case.

We thus see that the fluctuations only disappear for large sampling
for the ME description (by construction, the constraints are extensive
in the occupation numbers t;; and (t;j) o Tp$, pij being an specific
quantity). The maximally random allocation of events will be made
as homogeneous as possible among the states while preserving the
constraints, hence {rq} will in general be large numbers (the denomi-
nator in the sums has L terms while the numerator has L(L —1), being
L the number of available node pairs for the allocation) and relative
fluctuations will be bounded and O(M~"). For very large number of
layers, then the ensembles become equivalent to the ME case, and
fluctuations vanish in the large sampling limit.

The non-vanishing nature of constraint fluctuations in the B and
W cases indicates problems with this limiting behavior which will be
addressed in depth in the next chapter. For the time being, note that
this limit becomes ill defined for the B case, since the total sampling is
limited to max(T) = ML(N), where we obtain a trivial fully connected
network with all node pairs carrying M events. However in such a
case, the considered constraints will be in general violated and the
equalities {Cq = (C4), g = 1,Q} will no longer hold.

We see that even if the GC ensemble will be a useful way of generat-
ing models mimicking properties of real networks, from an ensemble
point of view with fixed number of nodes (and thus sites) L(N) where
to allocate events, it will not be completely well defined for arbitrary
sampling in all cases.

4.1.5 Explicit examples

In the following we provide several examples to illustrate the pos-
sible use of GC ensembles with linear constraints. The schemas to
solve the associated constraint equations are provided in Section 6.1.
We consider here three types of (possibly overlapping) constraints,
those depending on global observables of the networks (total number
of events T and total cost C), those depending on its modular meso-
scopic structure (partition of the nodes of the network into tightly
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Waxman D
Tailored Random Graph
Wilson

fss/

-
Configuration §

Block Model fuu A
Non-Binary Random Graph Z

Figure 4.1: Topology of the phase space of non-binary ensembles with lin-
ear constraints represented. Schematic example of the volume
of phase space for different overlapping examples of ensembles
with linear constraints. The names represent known models in
the literature and the formulas explicit the constraint being en-
forced, which in the case of overlapping squares represent the
combination of different constraints.

connected communities) and those depending on its local node struc-
ture (node strength and strength correlations).

For each example, we present the constraint equations in terms of
<ti)->, which are related to the coefficients z;; via Table 4.1 according
to each case ME, B and W. Note that any of the considered constraints
can be combined to obtain partially overlapping ensembles, whose
degrees of freedom are more and more constrained as the number
of prefixed properties are increased, as schematically presented in
Figure 4.1. In here, we only present a few examples which are related
to known models in the literature, but others could be developed
depending on the needs for null model construction.

4.1.5.1  Global constraints

One can study the effect that fixing global properties of the network
can have on its observables, which is the simplest types of constraints
one can imagine.

NON-BINARY RANDOM GRAPH: FIXED 1  This would be the direct
analogy to the Erdos-Renyi case [69] for binary graphs. In this case
all nodes and node-pairs are statistically equivalent and we only have
one constraint equation (4.13),

= (t). (4.15)

| —

T:Z<tij>:L<t> > %E

i
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The prior equation yields different values for z applying Table 4.1 in
each case. All the node and graph statistics are known since the sum
of independent Poisson distributed variables is a Poisson, the sum
of Binomials is a Binomial and the sum of Negative Binomials with
identical parameters is also a Negative Binomial. For the W case, one
recovers the Weighted random graph model [82]. Once again, it must
be noted that some problems arise in this case when considering the
high sampling limit. We have that for all the edges lim¢ _, z = 1
and hence a condensation with all events being allocated to a single,
yet different for every realization, node-pair, is reached.

In this case we can calculate the relative fluctuation of the constraint
exactly,

5 ME a=0
()_T A1 a
T _7 — — 1. :
B a=-—1

As expected, we observe how the ME and B cases lead to vanishing
relative fluctuations for large sampling (the B case is a fully connected
graph with every node pair carrying M events) while this is not the
case for the W case.

NON-BINARY WAXMAN GRAPH: FIXED 1, C If one considers net-
works where each node pair has an associated cost dij per allocated
event, then an additional global cost constraint can be added. An
example are graphs existing on top of metric spaces defined by an
inter-nodal cost matrix D = {dij} such as those representing mobil-
ity between locations. We can require that the total cost is fixed, hence,
a? = di; and the constraint equations look (4.13),

zij = e%e Yy T= Z (tij) D= Z dij (tij) - (4.17)
ij ij

The model cannot be solved analytically, yet some insights can be
gained. By graphical arguments we can identify z;; = pe Y49 and
we are then lead to the non-binary maximum entropy versions of the
Waxman graph [188]>.

This reasoning can be extended to study the interesting case where
the distribution of costs is also fixed®, which is of particular interest
in the field of OD matrices used to analyze mobility, where the mo-
bility of users using certain types of transports is assumed to follow
particular statistical forms [28, 116]. One can add recursively more

5 Note that for single layer binary graphs, the Waxman graph (a graph whose binary
connections are stablished according to <®(tij )> x e~ Bdij) does not have a strictly
maximally entropically form unless we consider it as sparse pne Y4 <« 1s0 <tij> =
(O(ty)) = pne Pdii /(1 + e Bdii) ~ e Fdis,

6 As done in [35] for the binary case.
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and more constraints concerning the moments of the cost distribu-
tion Dn = 2 i ty dj (or the elements of a binned histogram), which
in all cases will have the linear form (4.8). The solution of the Q + 1
constraint equations becomes, however, increasingly complicated.

4.1.5.2  Mesoscopic constraints: Non-binary Block-model graph. Fixed T, e

The next level of detail one can obtain is to introduce some hetero-
geneity in the mesoscopic structure of the network. The considered
linear constraints also include this possibility by predefining a cer-
tain community structure into which network nodes can be classi-
fied. One can define a set of N, communities to which the nodes
can belong (specified with a set of labels {u;}) and fix the average
number of connections within nodes of the same community, ty.,, =
Zij tij0uu; O/ Zij duw;duw;- In this fashion, we obtain the non-
binary counterpart to a model enforcing a block structure [93]. In this
0, uduuduu .
case, we have zi; = e”e "4* and all nodes belonging to the same
community are statistically equivalent. The solution is analytical and
yields,

L_ZuleL

A more complicated variant of the Block-model where the strengths
of the nodes are also fixed (see below) is discussed in Section B.1.

(] _5uu)- (418)

<tuu/> = méuu +

4.1.5.3 Local constraints: Non-binary tailored random graphs

The final level of detail, prior to freezing entirely the adjacency matrix,
consists in determining node related quantities. In this case, one can
mirror the theory for Tailored Random Network Ensembles proposed
by Coolen et altr. [21, 153, 146] adapted to the present case.

NON-BINARY CONFIGURATION MODEL GRAPH: FIXED § We can

consider fixing also the strength sequence? § to a predefined value.
For each node, we have a pair value of incoming and outgoing strength
counting the number of incoming and outgoing events respectively al-
located to it, s°U = 2 tij and s = Y . tij, and we have Q = 2N

constraints. The resulting equations are,

& _out Xgin
O adMe ;) = XiYj

S Z<tij> §ijn:Z<tij> i=1,N j=1,N.
j

e

Zij

i

(4.19)

7 Naming this graph as configuration model is an abuse of language inspired by the
famous stub-matching algorithm [30, 42, 193]. Throughout this thesis we shall use it
to refer to ensembles with a fixed strength sequence.
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And thus we have an uncorrelated structure for zij, where the N
pairs {xi,yi} are solved from (4.13). In this case, its easy to see that
for the ME scenario with self-loops an analytical solution can be ob-
tained [159] <ti]— > = §§f‘“§ij“ /T. Since usually in real non-binary net-
works the distribution of strengths is highly heterogeneous, this can
be considered as a fundamental null model where to test and check
network metrics and it is fully reviewed in Section 6.4.

Specifically for the ME case, an example of these networks are the
newly proposed activity driven networks aggregated over time [138],
which are composed by a uniform incoming strength distribution and
a heterogeneous outgoing distribution. A complete demonstration of
the equivalence between the models is provided in Section A.2.

FIXED §, %55/ An extension of the above model can be considered
by not only fixing the basic topological structure imposed by the
nodes through their strength values but also fixing second order prop-
erties. In particular, we can fix the graph-average number of events
tss/ joining nodes with given strength pairs § and §’, retaining the
statistical equivalence of nodes with equal strength pairs. We then
have 2N constraints imposed by the strength sequence plus Ngour x
Nin imposed by the correlation structure (where N is the cardinality
of each strength sequence). The constraint equations thus look (4.13),

zij = xiyje~ss’

=3 (tyy) & => (t) i=1,N j=1,N
j i
X5 (i) Ssqusoudgmgins

{gg/: NgNSA, S:],Ns 8/21,NS.

)
|

(4.20)

In this special case the constraint equations can be solved. Being our
main variables the occupation numbers and the sole constraints re-
lated to their strengths, we have that each node-pair joining nodes
with the same pair of §‘.fu", §ij“ will be linked by the same average

value <tij> (zij (s‘-l’“t, sij“l)). So the equations are automatically sat-

isfied when ts3 = <tij> (zij(s,s’)) because the enumeration im-
posed by the constraint equations is complete and all zi; share the
same form.

4.1.5.4 Mixed constraints: Wilson gravity model graph. Fixed C, s

A final model to be considered is the one originally proposed by Wil-
son [190] to unify gravity-like mobility models [70] under a maximum
entropy framework. It merges the cost-constrained model with the
configuration model and is very relevant for the study of urban mo-
bility, as we shall see in Part iii. We have Q = 2N + 1 constraints cor-
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responding to the ones imposed by the node-strength sequence and
a total average cost constraints. The constraint equation thus read,

zij = xyyje ¥4
§?ut:Z<tij> §ijn:Z<tij> i=1,N j=1,N
j i
D :Zdij <tij>-
i

(4.21)

It is important to note, however, that in this case the statistically equiv-
alence of nodes is broken, since for two nodes to be equal we require
that they share the exact same distances to other node classes and
same strength value pairs. This has important implications with re-
gards to the interpretation of the obtained collection of Lagrange pa-
rameters X, Y,y and will be discussed in Section 9.2.2.1.

4.2 LINEAR AND BINARY CONSTRAINTS

A second interesting generic form for the individual functions of oc-
cupation numbers we can consider is fiqj (ty) = agj ty; + d?@(tij ). This
form allows to control both the non-binary topological structure and
its binary projection. The constraints then look,

Cq=) (aJty+aJ0(ty)) VqeQ. (4.22)
D]
In this section it will be useful to redefine the quantities zi; =

e® [Iqe% ad and zj = [] q €% dd which allow to control separately
the binary and non-binary structure.

4.2.1  Summing the partition function

In this case, the partition function can again be computed directly,

- (4.1, 0 5@ (t)
Zij = Z Dll(tlJ)Zij Z4j
Lo tis O(tys
Mtll Zi]})ii-( L]) (

ME: 38 o~ = (Zy (M= —1) +1) (T/F

=\ W chx;:o (MH“A)Zt”Z@(t”) =2 (1 —z5) ™ ™M=1)+1; z5 <1

tij ij ij
ti O (ty; ~
B: th\ﬁ:o (i\ﬁ)zijjzii( : =2y (M +zyM =1) +1; ty <M
(4.23)

4.2.2  Explicit statistics

The obtained statistics are simply Zero Inflated [111] versions (ZI) of
the previous statistics encountered. A zero inflated random variable is
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generated by adding an additional parameter that controls separately
the binary probability of occurrence of the random variable (which in

Elsewhere, ZI ~ our case will be related to the collection {Zi;}).
statistics have been Our coarse-grained description in terms of independent occupation
called generalized b implies that f h state. t t b idered:
FermiBose | Mumbers implies that for each state, two outcomes can be considered:
statistics [84] for Either the edge does not exist (obviously with 0 occupation) or it
networks yet their does exist, in which case the resulting (conditioned) statistics will
use is widespread  have mean value (tij[ti; > 1). We thus obtain Zero-Inflated Poisson

in the field of £ ME case, Zero-Inflated Negative Binomial for W case and Zero-
statistics and . .
modeling. Inflated Binomial for the B case.
. 5O (ty)
gME (1) = Mzu)™ Zj
1) ) tl]' Z‘L) (eMZi]‘ _ ]) + 1
M+t — 1 z5™
w _ by tyj ]
G (tyy) = Zi: (4.24)
I () < ti > Y2y (T —2zi5) M =1) +1

Z@(tij )

B(t.. :< > iy Y .
ql]( IJ) tij % Zij ((1 +Zij)M_]) +1

Note how the binary projection in all cases corresponds to Bernoulli
statistics, Gé(tij) = <®(tij)> (1— <®(tij)>) with,

z(eM*i—1)

B 245 ((1—2z45)"M—1)
<®l)>— w T+zi((1—zy5)"M=1) ~ (4.25)
B Zij((]+lij)M—1)

The statistics conditioned on the non-zero value of each occupation
number retain their original form (Poisson, Negative Binomial and
Binomial), and a useful quantity to analyze is its conditioned average

(tijltyy > 0) = <t$>,
ME M-—Z9
1—e i
Zij 1
<t$> = W M17;i]- (]_(]_Zij)M) . (426)

Zij 1
B M]"‘Zii (1= +z5)M)

Note how <tf]> does not depend on Zij, hence the prior expression

can be inverted to obtain the relation zi; (<ti+j>) (which will be use-
ful to analyze the high sampling limit and associated entropies after-
wards). Sadly, only the ME case yields an analytical expression for
arbitrary M,

Mzt =W (— <tf]> e*<ti+i>> + <t$> : (4.27)
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Figure 4.2: Convergence zi; (<tf]. >) for the ME case with binary constraints.
The result of equation (4.27) is shown together with the equality

line zyj = <t$> One can see the rapid convergence: For <t1+)> =

2.31 we obtain 4 = 0.9 and for <t$> =4.615 one finds - =

() ()

0.99.

Where W(x) corresponds to the Lambert W function [57]. Figure 4.2
shows a plot of equation (4.27) stressing the rapid asymptotical con-

vergence zij — <t$> as <t:> — oo (in fact, the approximation is

clearly good as soon as <t:> ~ 5).
Observe also that

(t) = (®4) (25, 24) <(t§)“> , (4.28)

so unless <t$> is constant, we will encounter important correlations

between the binary and non-binary topology. The introduction of {Z;}
allows us to control separately the binary and non-binary structure of
the networks belonging to the ensemble, however, a non-trivial highly
non-linear relation will be expected in general between both (they
are coupled through the constraint equations). Correlations between
occupation numbers and binary topology are often observed in real
networks too [160] but one should be careful to consider them as
statistically relevant since they may not be a trace of any unexpected
feature of the data.
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A final note must be made about the macroscopic observation of
binary magnitudes at the level of nodes. In general, it is widely ac-
cepted that for non-binary networks, a linear relation between strengths®
s — 57 ti5 and degrees k""" = 3~ ©(ty;) signals the absence of
correlations between non-binary and binary topology. However, this
is not exactly true: A condition (s) o (k) is a necessary but not suffi-
cient condition for (ti;) o (O(t;;)) and we will see a case where this
is made explicit in Section 6.4.

Finally, the average, variance and relative fluctuations of the zero-
inflated statistics are readily calculated.

(ty) = (O(ty)) ()

~ Mz;:
L Zye Y
ME MZl) ]+Zij (eMZij 1 )~ (429)
J— Zij Zij
N\ W Mo mmmaaam
B Zij Zij
14245 (14245) M2y (1= (T4245) M)
In short notation, considering a = 0 for ME, a = —1 forBand a =1
for W,

02, = (©lty)) (t}) {1+ () (1= (@) + 11 ) }
oL, 1 1—(O(ty)) + % (430)
)

<tii>2 - <t:> (O(ty)) ! (©(ty))

Notice how on the large sampling limit (which implies also <t:> —
00), the surviving relative fluctuations are those related with the Bernoulli
statistics of the binary structure. These expressions reflect the bimodal
structure of the state statistics and helps understanding the non-vanishing
relative fluctuations: The relative variance of the occupation numbers

has a maximum for cr%ij/ <ti)->2 lmax = 1+ 2 <<t:> + a/M), van-
ishes for the absence (<®(tij )> — 0) of an edge and converges to the
non-inflated statistics for edges that always exist ((O(t;j)) — 1). The
existence of an edge is a binary event, hence the maximum variability
correspond to the draw situation (50% chance). In such a case, approx-
imately half of the times a graph is created the considered edge will

have (on average) occupation <t$> and the other half occupation 0,

generating important fluctuations on the overall statistics which are
caused by the constrained binary structure of the graph.

8 Here x will be j for the outgoing case and i for the incoming one.
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4.2.3 Constraint equations and fluctuations in high sampling limit

The constraint equations in this case become

Cq=(Cq) =D _(ag (ty) (z)) +af (Oty)) (Zuj,25)  (;5)

D]

And the remarks of the analogous section for the linear case are es-
sentially aggravated: The constraint equations are even more com-
plicated to solve and for the W case, the non-convex maximization
domain is still present (zi; < 1V 1ij).

Analyzing the high sampling limit in this case becomes sketchier
than in the previous section. The reason is that the considered con-
straints are no longer extensive on the sampling T so their relative
fluctuations will never vanish in the high sampling limit, even for
the ME case. Since the analytical formulas become lengthier but no
remarkable different insights from the linear case can be gained, we
will address specifically these applied directly to the explicit exam-
ples considered below.

In the following we provide several examples to illustrate the possi-
ble use of GC ensembles with linear and binary constraints and only
purely binary constraints. We also relate these ensembles to known
models in the literature. The schema to solve the associated constraint
equations is provided in Section 6.1.

In all cases, Cq (©(ty;) will refer to binary constraints (for which
{dgj = 0}) while C4(ty;) will be reserved for linear constraints for
which {aiqj = 0}, also 0 will be the Lagrange multipliers related to the
total number of events.

4.2.4 Explicit examples with binary constraints

We start by considering only binary constraints and a single non-

binary constraint, that of total number of events 7. So zij = e =

z = Cint and Zi; = ]_[q e%ad ad (the constraint that the total number of
events is fixed needs to always be considered). Note from equation
(4.26) that the conditioned averages become independent of each state
ij.

<t;> = (t") ~ @+O(<(T—<T>)3>) =Ctnt = (ty;) o< (O(ty5)) .

(E)
(4.32)

This fact has important implications: We obtain proportionality be-
tween average occupation and probability of occupation per state. All
occupied states become then statistically equivalent and hence the dis-
tribution of existing occupation numbers has a Poisson, Negative Bi-
nomial or Binomial form respectively for the ME, W and B cases with
average (t'), so no heterogeneity in the existing occupation numbers
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Since all nodes
with same degree
pair are
statistically
equivalent, the
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explain the
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is to be expected in these kind of ensembles. Usually in empirical
data [24], the distribution of existing occupation number values is
highly skewed, hence the applicability of these models to reproduce
these situations is limited.

Concerning the relative fluctuations for the constraint associated to
the number of events,

0% L _ a 2 i <®(ti')>2
ﬁ:T 1-f—(E) 1<]+M_]<E>]> (4-33)

we see how again the fluctuations will not vanish due to the binary
nature of the considered phase space.

4.2.4.1  Global constraints: Non-binary Erdos-Renyi graph. Fixed €, T.

The simplest ensemble we can consider would be the non-binary anal-
ogy to the Erdos-Renyi graph with fixed number of events T and bi-
nary connections E = }_;; ©(ti;), where all node-pairs are statistically
equivalent. In this case Z;; = Z = CtntV ij and we have two associated
equations,

T=> (ty)=L{t")(O1)
B (4-34)

Which are trivially solved to obtain (©(t)) = E/L and (t*) = T/E
without need to consider z,Z. In this case we can evaluate the con-
straint fluctuations using directly (4.30),

2

OF 41, ¢—1 ayN

CERLR (1)L

o2 (4-35)
E _ -1 —1

And we observe how the relative fluctuations do not vanish and are
caused by the binary constraints in all cases.

4.2.4.2 Local constraints. Soft configuration model graph lAz, T.

Another interesting example of these kind of ensemb]es is that where
the node binary topology is enforced through the degree sequence k.
In this case, z is constant and Zi; = eXity = viwj. For the probability
of existence of each link we have,

_ _ HceViwj
1+ HcViwj

(O(ty)) He =4¢ W:
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and we obtain the well-known Soft Configuration Model [134, 125]. Con-
cerning the constraint fluctuations we have,

2 )2
— =T E 14+ =) ="
(T)? * < * M) E2
2 2 (4-37)
O-k(i)ut,m _ (ﬁgut,in)—1 B ZX <®(t1])> .
<k‘?ut,in>2 b (kgm)2
1

with x = 1,j depending on the direction considered for the degrees.
Note that in this case the relative fluctuations can become large (~
O(1)) for lightly connected nodes.

4.2.5 Explicit examples with linear and binary constraints

For this last set of examples, we consider networks where both types
of constraints are considered. Two relevant cases are reviewed: That
where the node non-binary topology is fixed through the strength
sequence § with an additional requirement that the total number of
events in a graph E is fixed and the case where the node topology
is determined through the strength and degree sequence pairs 5, K.
Fluctuations of the constraints will not be discussed since they do not
vanish in any case and the expressions can be easily derived from
earlier examples with a bit of algebra.

4.2.5.1  Mixed constraints: Binary constrained non-binary configuration
model graph. Fixed s, E.

In this case we fix the total number of binary connections E and the
strength sequence s. Hence, all nodes with the same strength pairs
are statistically equivalent and we have 2N + 1 constraints. Note that
the only binary constraint considered is general to the whole graph,
hence Zi; = Z = Ctnt. Yet, this does not mean that either the binary
connection probability or the existing average occupation lose their
site-dependency ij. We have,

0 Ocq()ut o‘qi_n _ [
zZyy=ee e ) = Xiy]‘ Ziyj =2
+

D]
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4.2.5.2  Local constraints. Enhanced soft configuration model graph. Fixed
K, s

A final case to consider is that where both the node topology at the

binary and non-binary level is fixed: We control both the degree k

and strength § pair of each node. Such an ensemble has been termed

for the W case as enhanced configuration model [122]. For the general

example, we have 4N constraints and only nodes with equal strength
and degree pairs are statistically equivalent.

Zij = eee“qguteaqijn = X{Yj Zy; = eée&q?me“q;n = Viwj
4 =3 (Oty)) (2,2y) (t) (z5) 1= 1N
j
§§n - Z (©(t)) (4, 2i5) <t:> (zi5) j=1N
i
ket =% (O(ty)) (Zy,zi)  i=1,N
j
R§HZZ<@(tij)>(iﬁ,Zu) ji=1,N
i
(4-39)

This is the most complicated case we consider in this thesis. Note
a general correlation between (ti;) and (O(ty;)), which cannot be
simplified to obtain approximated analytical solutions in any of the
considered cases.

4.3 MAXIMUM LIKELITHOOD SOLUTION FOR DUAL PROBLEM

All the obtained statistics are derived from a maximum entropy method-
ology, and hence the values of & obtained from (3.6) fulfill in all cases
the maximum likelihood principle for model selection for networks [83].
Having a set of candidate statistical models depending on some pa-
rameters & we can choose the set of parameters &* for each model

which maximize the probability in each model to observe T in the Q
space (note that the degeneracy term does not depend on &, hence
we may equivalently maximize the probability to observe the fixed

constraints C in the I space probabilities),

. @(%)ea-é(?) oA e®@C(T)
PTIR) = _ Pr(Cl&) = -
U Zgc(&) (Clat) Zgc(&) (4-40)
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Upon maximization of the prior expression for each variable {a4} we
get,

00 LATIR)| =0 = 34, L7 (Cla)| =0
x* x*
Cq(T) = Cq = 0q, InZgc(&) = (Cq) (&")Vq=1,Q.

(4-41)

We see then that the form of the associated equations for the log-
likelihood maximization problem is no other than the constraint equa-
tions for the statistical models with a maximum entropic form, given
the form of the constraints and of the degeneracy term. This fact pro-
vides us with a useful numerical way of solving the saddle point

equations by maximization of the scalar function £"(C|&), as will be
discussed in Section 6.1.
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4.4 WRAPPING UP: GRAND CANONICAL ENSEMBLE MAIN FEA-

TURES

In this chapter we have developed the Grand-Canonical ensemble for-
malism to generate maximally random networks which fulfill some

prescribed constraints C on average which may be written as linear
functions of the individual occupation numbers {t;;} and/or their bi-
nary projections {O(ti;)}. The main strengths of this formalism have
become apparent:

A.

Specificity: Poisson (ME), Negative Binomial (W) and Binomial
(B) explicit statistics and their zero-inflated version have been
obtained in each case. These recover previously studied ensem-
bles in the literature. Moreover, they are distinctively different
and display important differences in the observed macroscopic
network features, as will be shown in Chapter 6.

Flexibility: We have presented a range of examples where the
models provided can be useful relating them to existing mod-
els in the literature. This gives a glimpse on the generality and
flexibility of the approach to modeling given here.

Equivalence: We have also seen how the obtained statistics be-
come equivalent in the limit where the total number of layers
becomes extremely large, which leads to the ME case.

Maximum likelihood equivalence: I have discussed how the
maximum entropy problem can also be related to a maximum
likelihood problem, which en passant provides a useful way to
attempt the numerical solving of the constraint equations and
to prove several interesting properties of the maximization prob-
lem.

Effective degeneracy for distinguishable case: The need to add
an effective degeneracy term, taking into account the infinite de-
generacy of configurations with equivalent T while considering
an infinite reservoir (or number of system copies) of distinguish-
able events has been discussed. This fact is capitally important
and its derivation constitutes a renewed view on the deriva-
tion of Maxwell-Boltzmann statistics for the Grand Canonical
ensemble of equilibrium classical statistical mechanics from a
purely statistical view (an extended discussion is provided in
Section A.1).

However, also some weaknesses have been detected:

A. Parameter dependence: All the treatment provided depends

capitally on the ability to solve the associated constraint equa-
tions which allow to obtain &. This will be discussed in detail
in Chapter 6.
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B. Non-vanishing fluctuations: We have seen that all the cases de-
pendent on the binary projection of the occupation numbers,
and even the ones dependent on the occupation numbers for
the W and B case, lead to non-vanishing relative fluctuations in
the infinite sampling limit, indicating some problems in its defi-
nition for some of the ensembles. This feature will be discussed
at length in the next Chapter 5.

c. Explicit entropy calculations: Explicit calculations of entropy
have not been developed and are left for Chapter 5.

From the practitioner point of view, all the results obtained in this
chapter in conjunction with the recipes given in Chapter 6 will be
useful for model generation. One may choose from a wide variety
of situations and with the ingredients provided (most of them imple-
mented in [10]) generate null models in a relatively simple way.

From the theoretical point of view, the obtained results can also
help in relating known network models to maximum entropy models
and/or justify repeatedly observed features in empirical data.
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Only entropy comes easy.

— Anton Chekov

The last ensemble we have left to review is the Micro Canonical one
(MC). This ensemble does not accept fluctuations of the constraints
and hence calculations are considerately more complicated than the
previously studied cases.

The use of this ensemble, however, has some important advantages:
First it allows a transparent computation of entropies and second, it
can be used to understand the connection between the GC ensemble
and the present one in a transparent way.

It also allows to obtain well defined entropies for the probability
of obtaining a given network configuration in the I' space without
resorting to an effective degeneracy term for the case where events
are distinguishable.

Our main interest will be to compute the entropy per event in this
ensemble. More specifically, we are interested in studying the asymp-
totic behaviour of the micro canonical entropy as we approach the
high sampling limit, which counts exactly the logarithm of the num-
ber of network configurations strictly compatible with the chosen con-
straints.

Sr[ﬂ)H] =In Z’MC- (51)

While doing so, we will also discuss the relation between the statis-
tics of the GC ensemble and the conditions under which both can be
regarded as equivalent.

5.1 UNCOVERING THE RELATION BETWEEN ENSEMBLES: CALCU-
LATING THE MICRO CANONICAL PARTITION FUNCTION

The procedure to obtain explicit statistics is two-fold: Firstly, we will
use integral representations of the Kronecker deltas to enforce the
hard constraints of the MC ensemble which will lead us to path-
dependent integrals in the complex plane. We will then try to solve
or approximate these integral forms of the partition function using a
steepest descent method.
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5.1.1 Integral form representation

Taking expression (3.3) for the (uniform) probability to sample a graph
in the MC ensemble and considering the partition function Z one has,

Zme = % D(T)aémé. (5.2)

Where C are the exact values to which one wants to fix the constraints
for each network realization sampled from the ensemble. To do so, we
can express the Kroenecker deltas in its integral form,

dxz = %DwxuﬁX] , (5-3)

considering a counter-clockwise contour integral around the origin in
the complex plane. Introducing them into the prior expression®, we
obtain

ZMcC :§Dw1_[ Zqu . (5.4)
q

We see that the prior expression is related with the grand canoni-
cal partition function of the ensemble considering the transformation
wq = e*Vq =1,Q. We may thus write

Zmc —%D&exp (—&-é—i—lnz(;c(&)) Efj;D&eG(&). (5.5)

Furthermore, for the cases studied in this thesis, the partition func-
tions can be summed and are holomorphic in the domains where
they are defined. Under these conditions and assuming that G(&) has
a unique minimum at &* along the real axis®> , we may represent it as
a Taylor expansion around this point3,

Zmc = eS& )3ED&exp Z Z KCq,CyrsConlar H(
n= Z {q}n
=% r
= eG(oc )eAS
a(Xq/(Xq/pn/(XquG(&)l&* = KTCLqu/Cq//...an|GC'
(5.6)

Taking logarithms, we reach:

ST[PHl =InZme = G(&*) +AS". (5.7)

On the following, D@ will refer to an appropriately normalized differential.

In the next chapter we justify that this indeed holds for the ME and B cases, while is
likely for the W case under sufficient plausible conditions and finite sampling.

To make the handling of the forthcoming equations easier, we use the following
convention for indexes of the sums {q},,: This means all the unique groupings of
elements of {q} (q = 1,Q) taken in groups of n, where ¢ can be repeated and the
order is unimportant.

*
l
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At this point, it is useful to recall the work done for the GC ensemble.
In particular, one can see from (4.40) that G(&) is in fact minus the log-

likelihood function of obtaining a network with given constraints C
under the model given by the GC ensemble and parameters & More-
over, its derivatives with respect to & give rise to the cumulants of the
constraints generated by the GC version of the ensembles with param-
eters &, which, at the extreme point &* fulfil the constraint equations:

G(&) =—-L"(Cl&)
aqIn2cclar —Cq = (Cqdge —Cq =0

0
5+ = 0 an |—'* :_0_2 |
& XqXqr GCla CqC4 GC

aOCq,O(q/,...,(an G(&)‘&* = KT&q Cq/Cq//.,.an |GC'
(5.8)

We can now observe how the entropies of the both ensembles are re-

- =

lated, noting that G(&*) = £ (Cl&") = — (In in(C(T))>GC — ST[Pg]
is in fact, the entropy of the soft-constrained ensemb]e.

InZmce = ST[Pul = ST [Py] +AST. (5.9)

We are thus left with the analysis of the object AS", which we will
call entropy excess of the ensemble and is the contribution to the inte-
gral outside the point & = &*. A specially indicated contour for the
complex plane integration to analyze it will be that passing through
the point &*. Let’s consider such a circuit q(&), which crosses the
point &* in the direction of the imaginary axis. By virtue of Cauchy’s
theorem &*, has to be a saddle point given that it is a minimum in
the direction along the real axis, so, given that the extremum point is
unique, as a first approximation, we may consider that the majority
of the contribution of the integral along the path will come from the
immediate neighborhood of this point. Proceeding in this way, we are
using Laplace’s argument (or conversely a steepest descent approxi-
mation)*.

5.1.1.1 Conditions for ensemble equivalence

In a strict sense, the above reasoning will be exact if we can deform
the integration path of the complex integrals in such a way that all
the terms in the expansion (5.6) are negligible in the high sampling
limit. By negligible, we mean that the contribution of the maxima
overwhelms the rest of the contour, i.e.,

AST

lim — =0. .10
120, Gla) (>:10)

The description given here of the steepest descent approximation is crude and aims
at exploring the relation between ensembles. For a more detailed and technical dis-
cussion one may consult classical books, as for instance [37, 72].
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If the maximum G(&*) grows with our scaling variable T, in such a
way that in the high sampling limit it becomes very steep, then, we
can assume that the contribution of the immediate neighborhood of
the point will dominate the rest of the (unspecified) contour. To look
further into this possibility, let’s consider for the moment a given
(unspecified) transformation g(T)B = & — & on the integral in (5.6)
which leads to,

AST 1 Cq, a/:CqrrreC qn
T MR #Dﬁe"p Z PR (oP)" HB

n2 ™ “{ah

(5.11)

Thus we observe that the main matter of discussion will be the
scaling of the ratio between the joint cumulants of C, k¢ ¢ . ¢ .lcc
,Cyrom

and (g(T))n inside the integral. Yet, by general properties of the cu-
mulants,

K¢ lcc
Cq,CqrCqn
(gq(_’[\_))ﬂ = K?q,cq/...cqanC' (5'12)

so we observe that the saddle point approximation will only be ac-
curate if the cumulants of the scaled constraints ¢ = C(T)/ g(T) of or-
der higher than one vanish with increased sampling. Obviously, any
joint cumulant related with binary constraints will vanish in such a
limit, as the binary constraints (assuming they are graphical) do not
scale with the number of events. Hence, the main matter of concern
will be the linear constraints, which being extensive, require a scaling
g(T) = T. If the first term of the series, which is the largest contri-
bution to the integral in the neighborhood of the maxima, does not
vanish asymptotically, then the series will not do so either. Hence we
require:

C
lim —4— =0vq,q'=1,Q. (5.13)

Note that by general properties of the cumulants, if this term van-
ishes, so will all the others, (and if it does not, the others will not)>.
Hence, if this condition is met, we may thus truncate the expansion
up to a second term to obtain a closed integral (assuming a contour
parallel to the imaginary axis passing through &* joined by an arc at
either side, whose contribution vanishes):

~1/2

eAS" — (2m)Q/2 (det £2(&%))) (5.14)

Note that assuming that the cumulant series can be truncated amounts to consider
the joint distribution of P(C) are Gaussian, since these distributions are the only non-
trivial ones for which the cumulant generating function is a finite-order polynomial
(of degree two) [120].
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Where det Z2(&*) refers to minus the determinant of the Hessian ma-

trix of G(&) evaluated at the saddle point. Each of the elements of

this matrix are known from (5.8) and equate to Gch c , for each entry
’q

q,q’ of the Q x Q constraint correlation matrix 2.

Note, however, that condition (5.10) is weaker than condition (5.13).
For this last case, when evaluating the asymptotic entropy per event
(5.1), we will obtain equivalent entropies for the ensembles if both
the total number of constraints Q and the constraint fluctuations scale
sub-linearly with G(&*). Even if relative fluctuations do not disappear,
in particular cases we might still be able to find an appropriate path
such that the condition of asymptotic equivalence of entropies is met,
yet these cases must be reviewed on a one to one basis. The ME case
with linear constraints in either its Grand Canonical or Canonical
version is the only one for which condition (5.13) is fulfilled, so the
rest of cases must be addressed in a different manner.

5.1.2 Steepest descent approximation: Evaluation of Grand Canonical en-
tropies

We can still try to approximate the integral using a steepest descent
argument for the W and B cases, and for the ME case with binary
constraints, which do not display vanishing relative occupation num-
ber fluctuations. To do so, we need informally that the contribution
to the integral is concentrated around the maximum value of G(&)
in the chosen direction, so, in the following, we review on a case by
case basis the asymptotical behaviour of the maximum G(&*), which
is the entropy of the GC ensemble.

5.1.2.1 Linear constraints:

For cases where linear constraints only are considered, by our defini-
tion of large sampling limit we have (t;;) (z(&")i;) ~ O(T). Moreover,

at o*, <6> —Cand recovering (4.7),

w <th-14j>
g =[emed =4 YV
q (1) (5.15)
B: M
1- <tij>
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so we can evaluate asymptotically the limiting behaviour®

G(&) == ((ty)Inzl((t;)) —In 24 (z5((ti5))))

D]

7

ME: =} ((tij) In(ty) — (tyj) InM — <t1j>lnT) —i—O(%lnT)
~0(h)
W mr (S S (149
TAM ) M
~0(nT)
B: _MZij <<;;]l> In <t<"14]t>> +1In (1 — <;}{>>) +dIn(T)
-4y
=dInT!

(5.16)

Where d = 1 if the events are distinguishable or d = 0 otherwise
for the B case. We observe how while the ME case is well behaved,
this is not the case of the other two. For the W case, the maximum
scales slowly with T, while for the B case it does not scale at all. This
indicates that the approximation of truncating the first terms in the
expansion (5.6) is not sufficient.

Note also that the above expression coincides with our discussion
in the previous chapter on scaling with the number of layers. If for
the W and B cases, we take M ~ O(T), then the approximation is exact
for all models (they all converge to the ME case).

Considering the leading terms in T of the GC entropy per event we
obtain,

. ST[Pg]
lim > =
T—oo
ME (all): —lim4_, Zij <tT”> In <tT”> +InM =— Zi]. p%’ lnp%’ +InM
: M—(ty; ’
B: R SRV RV TV i <<tij> (M —(ti;)) (hl % - 1)
InT! In(LM)!
+dinl = AR

(5.17)

We observe how only the ME case takes a Shannon, state-specific
form (with a constant offset In M generated by the possible ways to
allocate an event into the M state layers) while the other cases lead to
vanishing asymptotic entropies per event.

We do not cover here the Canonical case which leads to multinomial statistics,
treated in the earlier chapter, since it is obvious that by construction it fulfills the
requirements for the saddle point approximation to be exact.
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For the Binary case, the limit corresponds to a fully connected net-
work with all occupation numbers equal to M, because by construc-
tion T < LM, leading to a single configuration in the indistinguish-
able case, while in the distinguishable case one needs to add a fac-
tor accounting for the permutation of (different) events among the L
states and M layers. In this case, the fluctuations of the ensemble dis-
appear and only one configuration is available in the MC ensemble,
so Zmc = 1 and thus the entropy vanishes (or is constant in the case
of distinguishable events). For the GC ensemble, in general, as soon
as T > ML no feasible solutions to the saddle point equations will
exist. This is a clear indication that for this case, the high sampling
limit is not well defined and thus the ensembles in general will not
display adequate asymptotic properties.

For the Weighted case, even if the high sampling limit is correctly
defined (T can grow indefinitely) we also reach vanishing asymptotic
entropies per event. Taking into account (5.15), we have that z{; — 1

as (tij) — oo and thus max {zi‘ } reaches this point in the first place

j
for the most occupied state, and this generates a concentration of
all events on this single state. So, asymptotically, as more events are
added to the system, they are allocated to the same state (only possi-
ble configuration) in a process akin to a Bose-Einstein condensation.
In this situation, again, the saddle point equations in general will not
heave feasible solutions and thus the constraints will in general be

violated.

5.1.2.2 Linear and binary constraints:

For binary constraints, the above reasoning must be adapted. If the
saddle point equations have solutions, then one expects the binary
probability of occupation to be well defined, hence 0 < (O(ty;)) <
1, so for all the cases considered we will be able to separate G(&*)
into two separate contributions, one of which will not scale with T.
Noting,

InZi = dh‘% —In(1—(O(t;;))). (5.18)
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and proceeding in a similar way as previously,

G@)=—> t1]>lnz”+z (ty))Inz;; —In 2y | =

D]

= —Z ((B(t3;)) In (O(ty;)) + (1 —(O(ty))) In(1 = (O (ty;)))) —
ij

— Z (<tij>lnz’{j — <®(tij)> IHAI]-) +dInT!

= Sll;in [:PS] Snon -bin [?5]

Dist: 1
) ¥y : i
Indist: 0

(5-19)

We observe two contributions to the maximum, one coming from the
binary form of the statistics (commonly found also when dealing with
ensemble descriptions of binary networks), which is not expected to
scale? with T, and the other from the non-binary statistics. In an ex-
plicit form, we have,

S Ps] =

non-| bm[
ME: =3 <<tii> Inz; — (O(ty;)) In(eMi — 1)) +InT!
W:— ¥ ((ti5) Inzgy — (O(ty)) In((1 - 25) ™M = 1))
B:—> (<tij> Inzj; —(O(ti;)) In((1+z55)M —1 )) +dInT!
(5.20)

The previous expressions are hard to interpret due to the hidden de-
pendency between z{; and < i >, but in some cases we can study lim-
iting behaviours. For the ME case, we are able to invert the relation

<t$> (zfj) (expression (4.27)) for the general case, so <tf§ > e = Mz’{j
and e{t) —1 ~ e(t). For the W and B case we shall consider the

7 If the binary structure is not completely determined by the binary constraints, then
for some values ij we will have in the high sampling limit that (©(t;;)) — 1, yet, in
this case and given the factorization of the partition function, we can always extract
this contribution and place it with the part of G(&*) that scales with T.
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case M = 1,which is easily invertible (<’c;;>B =1 and <ti+5>w =
1/(1—25)).

ME: T (lnM— >y P Inpg + 3 4 p In <@(tu)>) +0(3InT)

) (In () = 1) ~o(nT)

Ot
( (t)) Inzf; — (O(t)) In((1 +25)M — 1)) + dIn T
1

(5.21)

Basically the same result encountered earlier are repeated. We have
again vanishing entropies for the W and B case.

For the ME case, we see that the usual form for linear constraints is
recovered with a decrease in entropy induced by limited number of
events that can be occupied once the binary structure has been set.

gIME pee
lim ~MorPin — InM — Y pFln )
00 Zp” (©(ty))
(5.22)
=InM— Zpi’;’lnpu—i-Zp%oln O(tyj)) -
D] Y

Again, we see an approximate linear scaling of the maximum (despite
having non relative fluctuations of the individual occupation num-
bers), so while the quality of the approximation will depend in the
general case, we can expect the truncation of the series in (5.6) not to
have dramatic effects (but one would need to analyze the behaviour
of each particular case to be sure).

In these cases, the non-vanishing relative fluctuations of the linear
constraints are clearly caused by an ergodicity breaking in our sam-
pling process: Being the existence of an edge an event drawn from
a Bernoulli distribution, if some states are not occupied when the
binary structure is drawn, then no matter how much sampling we ob-
tain (observation time we wait), there will always be configurations of
the I' space where these states are occupied and which are compatible
with the binary constraints which will be not observed.

As a final note, one can check that as expected, for both linear and
binary constraints, all the obtained entropies converge if instead of
the high sampling limit we consider the sparse case ((tij;) — (O(ty;))).

i
expected number of occupied binary edges. All what is left of the non-

binary entropy contribution besides the effect of the multi-layered
structure is the logarithm of the permutation of events on (single oc-
cupied) states for the distinguishable case. For the indistinguishable

In particular, < > —1 = Mz: = 0,T — (E), with (E) being the
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cases the non-binary entropy is zero as again a single configuration
can be built once the binary structure is fixed.

st
lim —nenbin _ M =
Tt
(O(ty)) (7 (M £ a)zy; (Inz; — 1) X X
— lim <2 S >+dlnE!dlnE!
z¥—0 E

1j ij

(5-23)

where a corresponds to the usual notation for the different cases (a =
OME, a=1Wand a =—1B).

5.2 EXPLICIT COMPARISON OF ENSEMBLE ENTROPIES

To conclude this chapter, we proceed to compare I' entropies of the
hard and soft constrained versions of two examples which are simple
enough to provide a complete analytical overview of the problems
of ensemble equivalence. In these cases, the MC partition functions
can be exactly computed while the GC entropy can be approximated
in the high sampling limit by use of (5.16) and (5.19), so we can an-
alyze the asymptotic behaviour of the entropy excess AS'". This will
allow us to compare the behaviour of the contributions to the integral
around its maximum and at the maximum &* itself.

5.2.1 Linear constraints: Fixed T

The model with fixed number of events is the simplest case with lin-
ear constraints studied in this thesis, but already provides interesting
insights about the behaviour of the different cases. The MC entropies
can be exactly evaluated using the Residue Theorem in (5.4)8,

Dw 1 af
Zmc = % s Zgc(w) = 5 (}Jlino S Zgc(w)
at )
ME: limg 0 —— (eM5)L = (MD)T
dw'
. d _ 141
= W: %hmw—)O 7?(1 —2) ML _ (ML T1+T)
) (T a’ ML _ ($1yd (ML 0
B: = limg,_0 —(1+2z) = (T ( $ )@(ML—T).
: dw?t

(5-24)

The above cases can also be obtained by simple combinatorial argu-
ments. Let’s now compare the behaviour of the entropy excess AS' to
that of the asymptotical GC entropy, which is the contribution to the
integral in the saddle point, G(&*).

Note that for the W case the contour does not include the point z = 1 as it does not
lie within the radius of convergence of Zgc.
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5.2.1.1 Multi-Edge case:
In this scenario, we have z* = T /ML to use in (5.16) and so,

G(&*) = S"[Ps] ~ TIn(ML) + 0(% InT)
1

AS" ~ —O(ilnT) (5.25)
lim Ast =
T oo G(00F) B

And the ensembles are fully equivalent as expected because they ful-
fill both conditions in (5.10) and (5.13). An additional interesting ob-
servation to be made for this case is that if one considers the addi-
tional condition that the relative strength sequence must be fixed, for
gout ain
i %)

12

which (for the case of accepting self-loops) pgj = , one obtains:

. Sr[:PS] %) 0
lim = —lnM:—Zpij In p3;

Tooo

i
P o Py (5.26)

= lnL—Zpsgut ln-p'lﬁ —Zps;n In W
1 )

Where p = 1/L. This is nothing more than a decrease in the entropy
since the ensembles with fixed strength sequence are clearly a subset
of the ensembles with fixed number of events. Such a decrease is intro-
duced in terms of K-L divergence between the "uniform" distribution
of events per node ps = p'/? = 1/N and the constrained distribution
in s, ps, = 81/T in both incoming and outgoing direction?.

5.2.1.2  Weighted case:

: _ _T/im
For this case, we have z = IFE Ve We can then compute the asymp-
totical entropy,
. 1
G&)=S"[Ps]l=—TIn—M 4+ IMIn(1+—]. (527
14 ok M
LM

So by comparison,
AS" ~ —O(InT)

i AST 1 (5.28)
Troo G(&*) ML
And we clearly see how despite having vanishing entropies, even in
this simple case, the two contributions are of the same order. So, in
general, the two descriptions will be highly different, even for finite

sampling™®.

If we wished, by similar, yet more involved arguments we could try to obtain a
formula considering the further case where correlations between §, §’ are considered
in the same fashion as in [153].

In this particular case, by the Central Limit Theorem, P(T) is a Gaussian distribution
and thus the previous result can be obtained also by using (5.14). However, as soon
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5.2.1.3 Binary case:

T/LM
1—T/LMm”

IM-T\ . T
Sxy _ ¢l _
G(&*)=S"'[Ps] = —LMIn (LM )—i—Tln (LM—T)

ASF ~ —O(lll’l (IMM>)

2 M =D
lim As?
Toim G(a*)

Finally, for this example z =
cases,

And analogously to the earlier

~0O(1).

(5-29)

And we see again both contributions to the entropy are of the same
order. Note that, in this particular case, the entropies are still well de-
fined (even being o) because the high sampling limit can be reached,
yet this would not be the case as soon as we impose more complicated
constraints, since the high sampling limit cannot be reached for the
MC ensemble as we have already discussed (in general a fully con-

nected topology will not be compatible with the chosen constraints
and hence Zpc =0).

5.2.2  Linear and binary constraints: Fixed T,E

In this case, even if we cannot obtain a closed expression for the MC
partition function, many analytical work can be done. Again using

as we enforce increasingly complicated constraints, this will no longer be assured
and even this approximation is highly likely to fail.
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(5.4), (4.23) and considering the binomial formula and A(w) from
(5.19),

Dw DA
Zmc = % N #)\Eﬂ Zgcl(w,A)

L
SR P (o LI Pt

=0

L
— (T!)dfjﬁwz‘; 3 <2> (A(w))95, ¢

ME: (5)(ME)T <1+ZE—1( nE-a (b (g)T
=3 we O (et G
B OECF) (125 0O R ).
(5.30)

The above formulas are highly interesting. On the one hand, we ob-
serve the contribution of the binary entropy given by Zmcpin = (£)
which does not depend on T, and for which ((@(t)) = E/L):

- 1 L
ASL. ~0O (2 In <E(L_E)>> : (5.31)

Besides this contribution, we observe a combinatorial factor similar to
the case where we only fixed the total number of events T (see (5.24)),
but with less available states to be allocated, E instead of the total
L states. The final term are the corrections taking into account the
correlation among the binary and non-binary structure. Let’s review
each of the cases separately.

5.2.2.1 Multi-Edge case

In this case, following the asymptotical solution for the saddle point
equations,

. 1
G(&*) = ST [P§] ~ TIn(ME) + 0(; In(27T))
1 R
ASrlion—bin = _E IH(ZWT) (532)
lim AS =0.

T—oo G00*)



72

MICRO CANONICAL ENSEMBLES

So, the entropy corrections belonging to the non-binary structure van-
ish in the high sampling limit, leading to equivalent asymptotic en-
tropies for this ensemble despite the fact that this ensemble clearly
violates (5.13) by having non-vanishing asymptotic relative fluctua-
tions. This result amounts to consider that once the E binary events
have been fixed in each round, we apply a multinomial process of
the T events on the E available states. As we approach the high sam-
pling limit, the combinatorics of the allocation of events on occupied
states overwhelmingly contribute to the phase space of the ensemble,
compared to the entropy generated by the binary structure. Hence,
the ensembles display equivalent entropies per event, despite yield-
ing non-vanishing relative constraint fluctuations. Obviously this is a
particular result whose applicability should be reviewed in each case,
yet, the scaling of G(&*) ~ O(T) (see (5.21)) suggests that this result is
likely to hold for a wide variety of cases.

5.2.2.2  Weighted and Binary cases:

These cases are not interesting to analyze, since the earlier identifi-
cation of ASEOn_bin in (5.30) cannot be performed because one cannot
identify the term in front of the sum with the asymptotic entropy of
the GC and one must hence compute it by comparison with (5.21).
Then, for the case M = 1 (where the relation (t*) (z) can be inverted)
a similar thing to the earlier considered linear case happens, which is
already bad-behaved.

For the B case and M = 1 the non-binary entropy is trivially zero,

while for the W case we have again that,

r r r
lim > [?)H] = lim > [A?S] = lim A? =0 (5-33)
T—o00 T—o00 T—o00
AST .
lim —— =-0(1/E) #0 .
Jim S (1/8) # (5-34)

and hence the contribution of the maxima does not overwhelm the
rest of the integral, and the saddle point argument is essentially not
usable in the general case.
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5.3 WRAPPING UP: MICRO CANONICAL ENSEMBLE MAIN FEA-
TURES

In this chapter we have reviewed the main aspects concerning the MC
ensemble of graphs introduced in Chapter 3. We have represented
the MC partition function using an integral representation of the
Kronecker deltas that enforce the hard constraints in this ensemble
and we have related it to the GC partition function, thus connecting
both statistics. Furthermore, we have discussed the conditions under
which both ensembles can be considered equivalent. Using a steepest
descent approach we have been able to provide explicit entropic ex-
pressions for each case considered in this thesis and their asymptotic
difference in the high sampling limit. The quality of the steepest de-
scent approximation has been discussed and important limitation for
the B and W cases have been highlighted. Two final models consid-
ering simple constraints where the micro-canonical entropies can be
computed have been reviewed to exemplify the aspects of the micro-
canonical formalism discussed in this chapter.
In a nutshell, those are:

A. Number of constraints: The MC treatment has allowed us to
consider the conditions on the number of constraints Q that can
be accepted in relation to T. It must either be constant or scale
sub-linearly with T.

B. Relative fluctuations: The integral treatment has also allowed
us to connect the conditions on relative constraint fluctuations
to those relating to asymptotic equivalence of entropies between
ensembles. We have seen that the former is a stricter condition
than the latter, which has been exemplified for the ME case with
binary constraints.

c. Ensemble equivalence for ME linear case: Furthermore, we
have observed how for the ME case with linear constraints, the
ensembles are equivalent in the large sampling limit because
the relative constraint fluctuations vanish in such a limit. In con-
trast, for the case where binary constraints are also considered,
the ensembles display asymptotically equivalent entropies de-
spite having non-vanishing relative fluctuations. The reason for
this is the non-ergodicity of the considered sampling process
once the binary structure of the graph has been fixed. This dis-
cussion is important as it highlights how requiring the vanish-
ing of constraint relative fluctuations to the scaling variable is
a stronger condition for ensemble equivalence than asymptotic
equivalence of entropies.

D. Ill defined high sampling limit for B case: We have observed
that the ill defined nature of the high sampling limit for the
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B case, hinted in earlier chapters, is expressed here in zero
asymptotical entropies per event. For such a case, the limiting
behaviour is a fully connected topology which cannot display
any variations. So the GC and MC description will only equiv-
alent for the case where solely the total number of events T
is fixed and the high sampling limit is reached (because such
a limit can be reached with the saddle point equations having
graphical solutions). Otherwise, due to the constraints, the limit
cannot be reached and the GC will always display non negligi-
ble fluctuations compared to the MC one.

E. Inadequacy of saddle point approximation for the general W
case: For the W case, the scaling of the maximum around where
the saddle point approximation is performed is so slow that the
contribution outside of its neighborhood cannot be ignored, and
hence, even if the relative entropies per event for both ensem-
bles are zero, the entropy corrections cannot be shown to be
negligible compared to the main entropic term,

r r
lim >8] o A5
T 500 T T 500

AST (5-35)
T oo S [fPS]

hence for any sampling, both ensembles will display relevant,
non-vanishing, differences.

As conclusion, we emphasize that the only case which does not
display any type of problems is the Multi Edge case with linear con-
straints.

In a second term we could consider the Multi Edge case with both
linear and non linear constraints, which, despite yielding non vanish-
ing fluctuations on the constraints, may lead to equivalent entropies
per event once the high sampling limit is taken (but this fact needs to
be reviewed for each particular case). This is a remarkable result, as
it shows that vanishing relative fluctuations is a stricter condition for
ensemble equivalence than equality of leading terms in the scaling
variable T of the entropies. To exemplify this fact, for fixed £ and T
and ME case, we have presented and example where the latter is true
while the GC ensemble displays non vanishing constraint fluctuations
on the scaling variable T.

Finally, I have shown that the rest of cases display pathologies that
cannot be avoided due not only to the ill defined nature of the high
sampling limit considered but also the forms of the statistics obtained
for the GC ensemble. Even if these cases are still useful for null model
construction of networks with prescribed constraints, they present
some fundamental theoretical drawbacks that are specially apparent
when treated under the present, transparent, MC ensemble. Specially
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for the W case, we have seen how even considering the simplest case
where we only fix the total number of events T, important differ-
ences among ensembles appear, casting doubts about its utility to
analyze empirical datasets when more complicated constraints are
considered.
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NETWORK GENERATION AND COMPUTATION OF
MACROSCOPIC OBSERVABLES

Simple things should be simple, complex things should be possible.
— Alan Kay

In prior chapters we have developed the framework to build graphs
with prescribed constraints. Such a framework, however, is useless
unless one is able to obtain explicit expressions for the coefficients
{otq} that are solutions of the constraint equations® in the GC ensem-
ble or equivalently the saddle-point equations of the MC ensemble.
Also, we have still yet to propose practical applications for the analyt-
ical models proposed earlier and to find ways in which to generate
network instances to test our analytical predictions.

In this chapter I provide all necessary details to solve the saddle
point equations for a wide variety of the earlier proposed examples
of networks with different linear and binary constraints. I also pro-
vide details on how to sample networks®> once these coefficients are
obtained. Then, any network practitioner can average whichever net-
work magnitude she/he wants to test against a null model to see its
statistical importance. Another option to avoid simulation is to ana-
lytically derive entire predictions for network observables, and in this
chapter we also provide all the elements to perform this calculation.

Since in the upcoming chapters the non-binary Multi-Edge config-
uration model (MECM) will be used extensively as a null-model to
assess relevance of features for Origin-Destination matrices, we close
this chapter by performing a detailed analysis of this model. Firstly
we highlight how considering the same constraints in the different
treated cases (ME, B and W) leads to distinct features for the network
macroscopic features. Secondly, we focus on the ME case, which is the
one we will be using in the second part of this thesis, and the only
one for which fully analytical solutions to the saddle point equations
can be obtained.

We develop closed expressions for a wide variety of network ob-
servable for this model. Furthermore, we computationally test the
prediction of equivalence between Multi-Edge ensembles with linear

Saddle point equations and constraint equations are two names relating to the same
sets of equations and will be used indistinctively in this thesis.

Generating networks in the MC ensemble can be very tricky depending on the con-
straints, and we only provide in this chapter the ways to generate all proposed
GC models and an algorithm to generate the non-binary Multi-Edge configuration
model in the MC ensemble.
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constraints in this case, since it allows both a very accurate approx-
imate generation of network configurations using different methods
for the MC and the GC ensemble.

6.1 NETWORK GENERATION I: SOLVING THE SADDLE POINT EQUA-
TIONS

The main drawback of the type of formalism presented in this thesis
is related with the solving of saddle point equations. One has one
equation to solve per each added constraint, and in many situations
constraints scale linearly with the number of nodes, hence very large
network will present computational issues for the solving of these
equations. Additionally, as it already has been pointed out, from the
three considered cases (ME, W and B) the W case has to be treated
apart since it includes strong conditions {0 < zij < 1 Vij} which make
the solving of the equations a complicated problem.

As it also has been said, the strategy to use when solving the equa-
tions is to consider an optimization problem of maximizing the like-
lihood associated to the observation of a network with given con-

straints C under each model (see Section 4.3). This way, we only have
to consider the maximization of a scalar function,

&) = Z (In q3j (51215 (&) — In Dy (135))

D]

= Z tu Inzi; (&) + @(tu)lnzu( &) —In Zy; (&)) (6.1)
- ZLU ),
ij

whose partial derivatives equated to zero correspond to the consid-
ered equations to solve.

R a Zis . a Z
a“qu(&) = Z (tij o;qij Y +@(tij)oc;7ﬁl] — a“q anij)

£(&) = In?"(C

(6.2)

The optimization problem to be solved is shown concave for all con-
sidered problems in this thesis. Considering the function in (6.2) and
computing the Hessian of £(&), one has (assuming dq, ad > 0Vij, q),

az (&) :—GZC C’ =

OC,

L
——) (afalof, +aja) of ) +2aay (ty) (1—(B(ty)))) <Ova

i



6.1 NETWORK GENERATION I: SOLVING THE SADDLE POINT EQUATIONS 79

(6.3)

And hence the problem is concave (so any critical points fulfilling
(6.2) will be maxima). For the maximum to exist, we need in the first
place that the considered constraints correspond to a graphical solu-
tion (there must exist at least one network that fulfills the considered
conditions). This is usually not a problem, since normally we want
to match a set of constraints to the values obtained from some real
network, which must be necessarily graphical.

For the ME and B cases (both with linear and binary constraints),
the bounded functions —oco < £i;(&) < 0 to be optimized are continu-
ous for all the domain & € R®Q, which is a convex open set, and at the
boundaries have equal limiting values limg_, 4+ £ij(&) = —oo. Given
the concavity of the problem, we see thus that if the constraints are
graphical, a maximum value must exist and be unique.

It must be noted, however, that for the W case this concavity is
lost as soon as the enforcement {0 < zi; < 1Vij} is imposed on the
domain of the likelihood function. Such a domain is a non-convex set
and in this case, proving the unicity of the maximum is not simple.
Assuming that the domain D = {& € RR|0 < HqQ exaad < 1} is
path connected, we may assume using an informal argument that if
the constraints are graphical, again the maximum will exist and be
unique for finite sampling3. In any case, even if the maximum exists
and is unique, finding it is not a simple task, as no general algorithms
exist for this kind of problem, so each problem must be examined on
a one-to-one basis.

We deal hence with a large-scale, bounded (in all cases {zi; > 0})
maximization problem. In the following subsections we review how
to solve the different proposed cases separating between ME and B
cases and the W case. The first two can be tackled using balancing
algorithms, which allow for fast a robust solving of the equations
whereas the latter case needs to be faced with a brute-force maxi-
mization approach with no guarantee of convergence.

The argument proceeds as follows. Given that the function is concave everywhere
where it is defined (and infinitely differentiable), which is in the interior of the set
given by D, either it has no critical points, has one, or more than one. If it has
no critical points, the function has to be monotonic, but this cannot be since the
limiting bounds are equal in all directions (this is the same argument as for the
earlier ME and B cases). If it has more than one critical points, and they cannot be
in the boundaries, then they must be maxima. However, since the domain is path
connected, we can always join those points along a continuous and differentiable
path, and necessarily along this path some minima should be observed, but this is
prohibited by the concavity of the function. Hence, the maximum needs to be unique
on the path connected domain.

Balancing
algorithms are
very close to what
is known as
Iterative Fitting
Procedures (IPFP)
in economics
literature. and
their mathematical
properties have
been extensively
studied (see [141]
and references
therein).
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EXPLICIT CONSTRAINT ME w B
Linear
T A A A
T,C 1D 2D 2D
§ A F B
8 tsor A A A
5,C B—2S F B—2S
T, tuu A A A
5 tuu B F B—2S
Binary
T,E A A A
T,K A+B 1D+B 1D+B
Linear and Binary
5 E B—2S F B—2S
5K B F B

Table 6.1: Solving the saddle point equations. Strategies for solving the sad-
dle point equations of each explicit example and case. A stands
for analytical calculation, B for balancing Algorithm 1, B — 2§ for
a two step balancing Algorithm 2, F for brute force maximization
and 1D(2D) for uni and bi-dimensional maximization respectively.
All explicit details to solve each case can be found in Section B.1.

Table 6.1 depicts all explicit examples presented in this thesis. The
exact methodology and procedure to solve each case are detailed in
Section B.1.

In any of the proposed algorithms, some numerical precision prob-
lems can arise due to the presence of exponentials, or large powers,
but I leave to the reader the details on how to avoid them. These prob-
lems often arise when dealing with the combined linear and binary
constraints, since from equations (4.25) and (4.26) we have the pres-
ence of terms eM=ii, (1 —z;;)"™ and (1 + z;;)™ which can complicate
the numerical handling.

Here we explain the main ideas behind the balancing algorithm
approach to solve the saddle point equations, which are widely ap-
plicable to the ME and B cases.
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Algorithm 1: Balancing algorithm to solve saddle point equa-
tions for ME and B cases with node-defined constraints.

Input: Node-constraints C (float vector length 2N), maximum
tolerance on node-constraints ey (float), tolerance on
node-variables ¢ (float) and initial guess &™ (float
vector length 2N).

Output: List of node-Lagrange multipliers {a¢q Vq = 1,2N}

begin Initialization

Set ®(0) = gini, Setn = 0.;
end

begin Node-balancing

while maxléq —(Cq) (&) > en or
max I(xgnH) — ocgn)l > g4 do
a1 = g(am, C);
n=n-++
end
Set & = antl;
end
return &

6.1.1 ME and B cases: Balancing algorithms

The most basic form of a balancing algorithm is explained in Algo-
rithm 1. The values zi; = [ | qe™ (ad) can take any positive value for
the ME and B cases, and this means that such a balancing algorithm
will never fall outside of the domains of the function £" (&) and no
additional conditions need to be imposed. A variant of this algorithm
(see Algorithm 2) can be applied when the problem is separable: Any
problem involving constraints at the node level and a single general
constraint involving all the network (such as cost C, total events T
or total binary events £) will be of this type. In this case, one sepa-
rates the problem in two parts: One explores the phase space of the
Lagrange multiplier associated to the global constraints while balanc-
ing (enforcing) the node-local constraints at each step. In doing so,
we reach effectively an almost 1 — D maximization problem which is
concave, hence by simple exploration (gradient descent) the problem
can be solved.

6.1.2 W case: Brute force optimization

As commented before, the W cases are complicated to solve and need
to be examined on a one to one basis. No general algorithm exists
for optimization problems for non-convex problems, and hence it is
difficult to give general guidelines to solve these problems. During
this thesis, the only (approximated) implementation to find solutions

The Algorithms
presented
schematically in
this section can
obviously been
perfected but the
core idea remains
unchanged.
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Algorithm 2: Balancing algorithm to solve saddle point equa-
tions for ME and B cases with node-defined constraints and an
additional graph-general constraint.

Input: Node-constraints C (float vector length 2N), General
constraint Cgen (float), maximum tolerance on
node-constraints en (float), maximum tolerance on
general constraints egen (float), tolerance on
node-variables ¢, (float), tolerance on general variable
eo and node-variables initial guess &™ (float vector
length 2N) and general variable initial guess 0jp;.
Exploration step A0.

Output: List of node-Lagrange multipliers {aq Vq = 1,2N},

general lagrange multiplier 0.
begin Initialization
| Set & =&, (%) = 0. Set g=1,;

end

begin Loglikelihood maximization

while |Coen — (Cgen) (&, 0)| > £gen 07 [0 — 07| > ¢ do

begin General constraint search

Set 0"eW) = @ + qAB.;

if £7(Cl&, 07®) > £T(C|&, 0) then
‘ 0 — e(new)
else
| d=—¢
end
end
begin Node-balancing

Set n= O. Set &(0) = &ini;
(

while max\éq —(Cq &) > en or
(n+1) (n)

max |oq —aq | >eq do
&t = g(&M), C, Cyen, 6)
n=n-+1
end
Set & = a™t!. Set &M = gntT;
end

end

return &, 0
end




6.2 NETWORK GENERATION II: SAMPLING NETWORKS

to the problem has been concerning the non-binary configuration
model (fixed strength sequence §) using a mixed approach includ-
ing pre-conditioning with a gradient descent method and a precision
search using interior point methods. This case serves as example for
the problem of the non-convexity of the domain and is discussed at
length in Section B.2.

6.2 NETWORK GENERATION II: SAMPLING NETWORKS

Once the saddle point equations have been solved, one can proceed to
generate networks and average network observables to obtain bench-
mark values for whichever model considered. Alternatively, it is also
possible to perform analytical approximations to network magnitudes
as we shall see in Section 6.3.

In the following we provide the technical details related to generat-
ing networks in the different ensembles.

6.2.1 Canonical ensemble

For this ensemble it has only been possible to perform calculations
in the Multi-Edge case with linear constraints. In such a case, the
method of generation is simple: For each network configuration, one
must generate a set of multinomial distributed variables with prob-
abilities {pio;? = zij/ Zij zij}. This can be achieved individually with
a simple rejection method. The only drawback of this method is that
the generation cannot be made independent for each edge, and this
limits the amount of memory one can use to generate large networks.
For this reason and due to the fact that different occupation numbers
are correlated, this ensemble is not very useful to work on.

6.2.2 Grand Canonical ensemble

The great advantage of this ensemble is that one can decompose each
network generation in a set of L independent processes. This allows
for paralelization if necessary on the case of large networks. Also, it
further allows a quick an simple way to generate non-sparse networks
for which the number of events T >> L. For each case (ME, W, B) it
suffices to generate networks according to each obtained probability
distribution (Poisson, Negative Binomial, Binomial) for each state (or
pair of nodes) independently, which can be done applying any stan-
dard generation method for the case where purely linear constraints
are considered.

A comment is in order however for the case where binary con-
straints are added. In such a case, the generation need to be per-
formed in a two step-method (yet still independently for each state)
as described in Algorithm 3.
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Algorithm 3: Generating algorithm for Zero-Inflated processes
to be used to generate network realizations for the case where
binary constraints are considered. Note that <tij> = zyj for
Poisson, <tij> = Mzy;/(1 — zi5) for Negative Binomial and
(tij) = Mzyj/(1 + zy;) for Binomial respectively.

Input: State occupation probability (O(t;;)) and Lagrange
multipliers zij. Total trials R.

Output: State ij occupation number t;; € IN.

begin Binary occupation

Generate random number t;

if r < (O(ti;)) then

begin State occupation

Set rr =0. tij = O.,‘

while 77 < R do
Generate ti; with mean <ti)-> (zij) using the
normal version of the statistics in each case;
if tyy > 0 then

| Break
end
end
end
else
| t; =0
end
end
return ty;

The two priorly mentioned ensembles just have a drawback con-
cerning its generation: The quality of the random generator and method
used. One must ensure its quality in order to obtain truly unbiased
network instances for each ensemble.

6.2.3 Micro Canonical ensemble

Generating network realizations on this ensemble can be involved
as enforcing the constraints for each network realization is a compli-
cated process and need to be carried out by rewiring methods. Such
methods need to be designed ad-hoc for each type of constraints
and need to be expressed in terms of Markov processes that select
events from the network and swaps them, conserving the imposed
constraints in each step. Many rewiring algorithms exist, yet not all
of them perform an unbiased sampling of the phase space: Not all net-
work states are equiprobable and great care need to be taken when
using these kind of algorithms. Furthermore, if one wants to build
networks from scratch with prescribed properties (without starting
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from a network instance to be rewired), no general unbiased generat-
ing methods exist.

For the case of binary networks, an exact generation can be achieved
in some cases, see [56, 20]. The case of non-binary networks, how-
ever, becomes more complicated because of the degeneration of the
Q space. For the case of ME networks this is not a problem, since
for sufficiently large sampling ensemble equivalence is assured and
hence one can generate networks using either of the two other pro-
posed ensembles. However, this is indeed a nuisance for the B and
W cases: Depending on the problem at hand, the non equivalence
between ensembles can lead to substantial differences depending on
the generating method chosen for the models.

Apart from the problems in designing the generating algorithm for
these ensembles, these algorithms can be slow for non-sparse net-
works. Being based on rewiring methods, O(T) accepted moves are
required for a single realization, whence this methods can be lengthy
for dense networks. Also, in many cases it will be convenient to as-
sume that the data gathered contains some kinds of errors, which can
be mimicked by using a probabilist framework rather a strictly con-
strained one such as the MC ensemble. Throughout this thesis, the
only MC ensemble we have generated is the non-binary Multi-Edge
Configuration model (MECM).

63 COMPUTING ANALYTICAL PREDICTIONS FOR NETWORK OB-
SERVABLES

An alternative to generating network instances and averaging is to
compute analytically expected quantities for network observables. This
can be done once the constraint equations have been solved and the
Lagrange multipliers & have been obtained. Sometimes exact calcula-
tions can be carried out and in the rest of cases linear approximations
can be used.

Many network metrics widely used in the literature can be written
as a quotient of functions of the occupation numbers M = x(t;)/y(tyi;).
{ti;} are random variables and computing (M) might not be straight-
forward. We thus need to rely on approximations, expanding the ex-
pressions in Taylor series around their mean values and then taking
the ensemble average of the first terms of the sum.

A A A
00 = o (1 8 ) = <]+<y)2 0y

In Section B.3 a
more detailed
discussion on the
only MC ensemble
explored
numerically in this
work is performed.

All analytical
approximations are
to be carried in the
GC ensemble due
to the independent
nature of the
occupation
numbers random
variables involved.
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These expressions can be used to compute expected values and fluc-
tuations of any network metric expressed as a ratio of functions of
the occupation numbers x(ti;),y(ti;) provided that the moments
((x),(x*),(y),(y?)) in the right-hand side can be evaluated. This is
usually the case when x(ti5),y(ti;) are algebraic expressions of {ti;}
(which are uncorrelated random variables in the GC ensemble). For
most metrics M widely used for non-binary networks, the calcula-
tions of the moments of x(ti;) and y(ty;) are lengthy, but follow from
a general methodology without further difficulty*. In Section 6.5 we
will provide explicit examples of this methodology applied to the
MECM case.

64 CHOOSING THE RIGHT NULL MODEL FOR THE RIGHT PROB-
LEM: THE NON-BINARY CONFIGURATION MODEL CASE

To highlight the importance of considering an appropriate null model
for the assessment of real data features, we consider the case of net-
works with a fixed strength sequence applied to a real dataset. Empiri-
cally observed networks usually display highly skewed node strength
distributions, which have important effects in their observables. Hence,
to correctly assess whether some observed feature in a dataset can be
solely explained by the strength distribution, it is crucial to choose
an appropriate null model to compare the data to. This situation is
especially important for instance with regard to community analysis
through modularity maximization for weighted networks, because
the modularity function to be optimized [35] needs as input a predic-
tion from a null model with fixed strengths (Q oc 3_; ; (tij — (tij)) Sus
where {u;} are the community node labels associated to the opti-
mal network partition). The resulting saddle point equations for this
model are

§9ut — <sOut> §11n — <sin> 1= 1,N (65)

1

which particularized to each case read,

ME: { §iout = Mx4 Zj Yj
8§ = My; 2iXi

W: sin _ M o (6.6)
gout _ Y
B: =ML ey
) gin . Xi
§'=My; 2 i iy
The ME case has an analytical solution while the others must be
solved computationally using the methods presented in earlier sec-
tions. For details in the degree of precision attained, refer to Sec-
tion B.2.

4 And can be easily implemented using any standard mathematical symbolic software.
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As real world dataset we use the OD matrix generated by taxi trips
in Manhattan for the year 2011 [149, 4]. This dataset will be exten-
sively used in Part iii and details about it can be found in Appendix C.
The OD has been constructed as the aggregation of M = 365 daily
layer snapshots, each node represents an intersection and each weight
the number of trips recorded between them. Even if the network con-
sidered is directed throughout this section we will only show results
in the outgoing direction, as the results in the incoming direction are
qualitatively equal.
To analyze the difference between models, we compute ensemble
expectations for different edge and node related properties suitably
rescaled (fixing the original strength distribution of each dataset) and
then compare the obtained results with the real observed data fea-
tures. The details and
Since the taxi dataset is quite dense (E/L = 0.43), it has enough sam-  precision of the
pling for the wide differences between models to emerge. All cases Zaiiﬁoimsz;vin
have the same number of events T on average, but they are not dis- CZn be found ing
tributed among connections between nodes in the same way for the  Section B.o.
different models. Being zero the most probable value for the geomet-
ric distribution, for the W case with a single layer the connection prob-
ability initially grows distinctively faster than in all the other cases
leading to larger number of binary connections between low strength
nodes (Figure 6.1-A,B). Yet the higher relative fluctuations of the ge-
ometric statistics also generate extremely large maximum weights in
the tail of the existing occupation number distribution (Figure 6.2),
which are concentrated in connections between high strength nodes
(Figure 6.1). Since the total number of events incoming and outgo-
ing each node is fixed, this means that the W case has comparatively
the lowest degrees for the most weighted nodes despite counting the
larger number of binary connections E = } ;; O(ty) = 3 ; kUt =
2_; ki as can be seen in Figure 6.3-A.
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Figure 6.1: Node pair statistics. Binary connection probability (A) and
rescaled average occupation number (B) as function of product
of origin and destination node strength. Results averaged over
r =5-102 and v = 10? realizations for the different models re-
spectively with applied log-binning. The sudden increase for the
binary pair-node connection probability can be clearly seen for
the W case.
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Figure 6.2: Existing occupation number statistics. Existing occupation num-
ber complementary cumulative distribution for the taxi dataset.
Same conditions as Figure 6.1 apply. The presence of extremely
large weights can be seen in the tails of the distributions for both
the W monolayer and multilayer case.

These anomalies for low and high strength nodes respectively for
the W case produce wild asymmetries in the allocation of weights per
node, which can be studied measuring their disparity
Y, =3 tizj/ (Z] ti]->2 (Figure 6.3-B), which quantifies how homo-
geneously distributed are the weights emerging from each node: It
displays a U shaped form with both low and high strength nodes
tending to very strongly concentrate their weights on few connec-
tions. This non-monotonic behaviour is in strong contrast with the
one observed for the taxi data and usually in other datasets [124].
Concerning second order node correlations, the outgoing weighted
average neighbor strength si,, = 3 ; tijsij“/ st (Figure 6.4) again dis-
plays a large range of variation for the W case (with either one or
more than one layer) in contrast with the slight assortative profile of
the real data, the uncorrelated profile of the ME case and the slight
disassortative trend of the B case’. This last case is caused by the com-
bination of two factors: The limitation on the maximum weight of the
edges cannot compensate (with large weights connecting the nodes
with the larger strength) the tendency of large nodes to be connected

In the context of network science, assortativity is associated with an increasing trend
of s}, with increasing node strength s while dissasortativity refers to a decreasing
trend.
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to a macroscopic fraction of the network, which is dominated by low
strength nodes.

10° A =
10" | _ E
. P L e—e Taxis data
S0t} &5 B (M=365) ||
~ ‘,:‘;// W (M=1)
1073 —6;:"/ W (M=365) |4
ME
10"
10° B
10t | |
FORT E
10° == |
|
|
4 I

Figure 6.3: First order node statistics. Rescaled degree (A) and disparity (B).
Same conditions as Figure 6.1 apply. Dashed lines represent log-
binned standard deviation ranges for the real data. The U-shaped
disparity profile is clearly seen for the W cases in sharp contrast
with the monotonous behaviour of both the real data and the ME
model.

Obviously none of the null models used reproduce the real data,
however, the goal in model construction is rather to assess the struc-
tural impact that a given constraint (in this case a strength distribu-
tion) has on the network observables. In this sense, we have shown
that different models provide very different insights about such im-
pacts. In particular, since the taxi dataset a Multi-Edge network (peo-
ple riding taxis are clearly distinguishable), the fact that the B and
ME cases respectively lie closer to the real data comes at no surprise.

Once the model to use is clear, and given that the results for this
particular ME case are completely analytical, we will focus on it to
perform an extended study, since it will be the main model to be
used in Part iii.
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strength. Same conditions as Figure 6.1 apply. Dashed lines rep-
resent log-binned standard deviation ranges for the real data. A

sharp increase is clearly seen for high strength nodes in the W
cases.

65 A CASE STUDY: THE ME CONFIGURATION MODEL

As we have seen in earlier chapters, Multi-Edge networks with linear
constraints are the only ones whose ensembles possess well defined
characteristics. For this kind of networks one can compute exact statis-
tics for the three ensembles considered (Grand Canonical, Canonical
and Micro-canonical) which lead to equivalent results. One can also
compute well defined event specific entropies in the I" space.

Among all possible choices of linear constraints, the case where the
strength sequence is fixed allows for analytical solving of the con-
straint equations. Additionally, arbitrary strength distributions can
be considered, including highly skewed ones, which are commonly
present in real data. This fact turns it in the ideal candidate to act as
null model for skewed datasets, since it balances nicely heterogeneity
and simplicity in generation and analytical treatment. Furthermore, it
is one of the few cases where simple rewiring/generating algorithms
can be used to generate unbiased network instances in the MC ensem-
ble (see Section B.3 for extended discussion). Hence, it is the perfect
model to use as case study to exemplify all the theoretical develop-
ments early developed.
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In this final concluding section, web

compute analytical predictions
for the full edge and node statistics as well as first order correlations
providing not only average expected values for the observables but
also precise bounds for its fluctuations and compare the obtained
results with simulations using a stub-rewiring algorithm (see Sec-
tion B.3 for details on the algorithm, also used in [159], which is
based on the well known binary configuration model [30, 42, 193]),
yielding excellent agreement. By particularizing the general results
to the case of power law distributed strengths, commonly found in
real data [53, 100? , 63, 25], we demonstrate how the null-model ex-
pectations of some widely used non binary network metrics, which
are generally considered a sign of relevant correlations (see [140] and
references therein), can instead in some cases be seen as just a conse-
quence of the particular form of the imposed strength sequence, and
hence may not represent any unexpected property of the network un-
der study. For the sake of simplicity, I will consider equal incoming
and outgoing strength sequences, so the incoming and outgoing La-
grange multipliers will be equal, (out) and (in) superscripts will be
dropped and only results in the outgoing direction will be shown.
For this model, the solution to the saddle point equations reads

§i5;

(tyy) = LT] , (6.7)
the left-hand side is the ensemble average of a random variable, while
the right-hand side is a result expressed in term of the constraints. In
this case the {$;} are the only fixed quantities and hence they must
be taken as the basic variables from which to derive the rest of the
network properties: All nodes sharing the same strength value §; = §
are statistically equivalent, and possess self-averaging properties (like-
wise all edges connecting nodes with the same pair of strength val-
ues). In what follows, we apply the procedure proposed in Section 6.3
to obtain some particular network metrics. More details explaining
the general strategy used in their calculation are given in Section A.3,
stating there only the key results for all metrics considered and leav-
ing to the reader the adaptation to other network magnitudes.

6.5.1 Distribution of existing occupation numbers
We start by computing the distribution of occupation numbers

P(t) = % Z (1, ti;)O(ty5) (6.8)
ij

which has been reported to have broad forms on empirical data for
airport flow [53], cargo ship transport [100], public transport in cities
[? ], commuting [63] or face to face interactions [25] among others.

6 This part of the work was done in close collaboration with Dr. Francesc Font.
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Figure 6.5: The effect of the strength sequence on network observables.

(Upper): Ensemble average of distribution of occupation num-
bers over existing edges (log-binned) and analytical predictions
given by expression (6.9) and its standard deviation (see Sec-
tion A.3, Eq. (A.2y)) for power law distributed strength se-
quences with N = 10* and different exponents for 1000 rep-
etitions. The dependence on sampling § = T/N is apparent.
(Lower): Degree-strength relationship for the same networks as
earlier (average) and theoretical predictions from equation (6.10).
Standard deviation are represented as error bars and lines of con-
stant slope are provided as a guide to the eye.
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The distribution of
a sum of Bernoulli
random variables
is called Poisson
Bernoulli and has
well-studied
properties [157],
albeit their
moments are
difficult to
compute. One can,
however, give
bounds to the error
committed
whenever
assuming a
Poisson
approximation also
for the degrees.
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Applying Eq. (6.4) to the case of P(t) yields,

/2y 8t ty)O(ty) \
(Ple) = < >_ij O(ty;) > B

] e7<tii> <
t!(E)

t
) (e

(6.9)

Figure 6.5 shows the distribution of occupation numbers for existing
edges and its associated standard deviation (see Eq. (A.27)) for three
networks generated using power law distributed strength sequences
(y = 1.5,2.5) and different graph-average strength 5 = T/N. We can
see that the form of the resulting distribution is broad due to the
imposed form of the strength sequence, and hence is not a sign per se

of any interesting property of the multi-edge network being studied.

Moreover, its shape is not stable and strongly depends on the total
number of observed events T.

6.5.2 Degrees and strengths

Having tackled the occupation number statistics of the network, in
what follows we consider its node-related properties. We have that
the strengths s; = Zj ti; will also be Poisson distributed random
variables, being sums of independent occupation numbers. Moreover,
since the binary projection of occupation numbers ©(t;;) are Bernoulli
distributed variables with parameter q(t;; > 0) = 1— e~ (tij) one can
also compute the associated degrees ki of the nodes, which will be
sums of independent Bernoulli random variables. We have that,

(k(81)) = <Z @(tij)> = Z qij(ty; > 0) =
j j

:Z(]—e_<tii>> :N_Ze* X
) j
OR(s) = Z 0o (1) = Y e {t) (1 —e—<tiﬁ>) _
)

j

(6.10)

=N-—(k(s))— ) e 27,
J
which constitutes an extremely accurate prediction (see Fig. 6.5 lower
panel)7 . The asymptotic cases for the ensemble averages are easy to

7 In this case we can even obtain a closed analytical expression for the case of power-

law distributed strengths:

(k(8;) =~ N (1 —rmx e?sp(s)ds>

Smin

N —1 A N
NI (y—1) (@i—smfn)y {r (1 fy,gis“}i“> T (1 —y, §; omax
T T T

(6.11)

)}
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asses: For small strengths we have that § < T/§/ V3’ which leads ex-
pression (6.10) to (k(8)) ~ § (converging to a Poisson distribution for
degrees due to the properties of the Poisson Bernoulli distribution),
while for large strengths one has 83’ >> TVs’ which leads to fully
connected nodes (k(8)) ~ N with vanishing variance.

Results comparing simulations and equation (6.10) are shown in
Fig. 6.5 (lower panel), where an interesting transition is observed for
v < 2: The degrees are exactly equal to the strengths for small values
of § (as expected by conservation of the edges) and evolve to a scaling
of the type k(3) ~ §¥~! that finally leads to a saturation due to the
bounded nature of the observables (k($) < N).

As I already pointed out to the reader in Section 4.2.2, we observe
here clearly that a scaling relation of the kind k(s) ~ sP is not always a
reliable trace of relevant correlations. More concretely, we have seen that
in our framework, and for the case of power-law distributed strength
sequences in particular, it is solely a consequence of the imposed con-
straints. In other cases, it might or might not be an indicator of corre-
lations not imposed by the strength sequence, but one cannot assume
either case a priori: Since this metric heavilly depends on the strength
sequence, it always requires comparison with a null model. Alterna-
tively, this also shows (for the case y > 2) that a relation k(s) ~ s does
not necessarily imply t = Ctnt [24].

6.5.2.1 Disparity, Average neighbor properties and general metrics

In recent times, efforts have been devoted to extend well-known mag-
nitudes on binary graphs to weighted graphs: Having appropriate
null-models for multi-edge graphs permits to assess the applicabil-
ity of such weighted extensions [12]. To this end, one can use the re-
sults of the GC ensemble to compute with high accuracy any network
metric expressed in terms of tij: As an example we consider widely
used magnitudes such as the disparity Y(si) = ) ; tizj /s? [160] and
weighted neighbor average strength s}V, (si) = 2_; tijsj/si [24]. Using
again (6.4), one reaches after some algebra the following expressions

(Y2(81)) ~ (6.12)

148;

A e o
(s (80)) ~ (1 +T3> (1 —2““’> (6.13)

15 o S R
1+ 538 <1+ (T2 -1, (zsi+§) )

F

where T, = 3 §T'. The average values and their fluctuations are in
excellent agreement with the simulations, as can be seen from Fig.
6.6 panels A, B, E, F.

The results show several interesting features: On the one hand, the
expectation for the disparity is not Y2(8) ~ k; ' as assumed under a

Where T'(s, x) is the incomplete gamma function.
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Figure 6.6: The accuracy of the GC predictions. Ensemble average (A, E)
and standard deviation (B, F) for individual node disparity Y,
and weighted neighbor average strength s}y, for power law dis-
tributed sequences with 5§ = 1000 and vy = 2.5. C, D, G, H: His-
togram of relative error between theory and simulations aver-
aged over 1000 repetitions for the values in Figs. A, E and B, F.
A single outlier corresponding to the lowest value of o for both
the disparity and the average neighbor strength is not shown in

the histogram on Figs. C, G.
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total random allocation of edge weights [158], but rather decays as
Y ~ §;1 and rapidly converges to a plateau, independent of the cho-
sen strength distribution. The weighted average neighbor strength
displays an almost flat behavior which is a correct indicator of ab-
sence of correlations at the node level. On the other hand, the fluctu-
ations of both magnitudes decay in a power law form as the strength
of the node increases: This fact can be easily understood as increased
connectedness imply higher availability of sampling.

6.5.2.2 Comparison between simulated and predicted values for macro-
scopic observables

To quantify the precision of our predictions, we computed the his-
tograms of the relative error generated per node when calculating a
given property z, €(z) = ((z)si — (2)m)/(z)si, where the subindices si
stand for the Micro-Canonical (MC) simulations and th for the (GC)
theoretical predictions in equations (6.12) and (6.13). The histograms
in Fig. 6.6 panels C, D, G, H show the accuracy of the obtained re-
sults, providing numerical evidence for the equivalence between the
MC simulations and the GC predictions, which is expected in the
limit where an infinite sampling of events T — oo is available. Even
when this requisite is not met, the use of the theory presented here
constitutes an excellent approximation as shown in Fig. 6.7, where
the relative error averaged over all nodes between ensemble expected
GC magnitudes and simulations is shown for the different metrics
considered for a increasing ranges of values of sampling.

I thus provide here experimental validation of the predicted equiv-
alence between ensembles, developed in earlier chapters. Also, the
presented case has served as example to show how to apply all the
aspects derived in this chapter: We have generated networks using
a MC approach and compared the predictions for macroscopic ob-
servables with the GC ensemble analytical approximations using lin-
ear approximations that yield excellent results. Furthermore, we have
shown how differences between simulated and predicted values tend
to dissapear as the sampling of the networks is increased.
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mean ¢ (5)

O

Figure 6.7: Convergence between ensembles with increased sampling. Rel-
ative error between ensemble average predictions and simula-
tions, averaged over all nodes for degree, disparity and average
neighbor strength for different values of sampling § = T/N for
1000 repetitions each point, vy = 2.5 and N = 2000.
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6.6 WRAPPING UP: NETWORK GENERATION MAIN TRICKS AND
TIPS

In this last chapter of the first part of the thesis, we have mainly

reviewed technical details and possible applications of the previous

theoretical discussions performed in earlier chapters. In a nutshell,

the present chapter can be understood as a manual for practitioners

and mainly provides advices and instructions to effectively generate

network instances for the wide variety of earlier discussed examples.
More specifically and reviewing what is done here,

A. Saddle point solving: We have provided all necessary explicit
algorithms to solve the saddle point equations, with special dis-
cussion devoted to the W case.

B. Network generation: We have discussed the generation of net-
works in all ensembles considered, and given explicit recipes
for both the Canonical and Grand Canonical ensemble. For the
MC ensemble we have discussed the main problems of network
generation and only provided a specific example for the non
binary ME configuration model.

C. Analytical prediction of macroscopic examples: In order to
avoid simulation, we have provided also a recipe to analytically
approximate expected values and fluctuations of common net-
work metric and observables. Furthermore we have exemplified
such a recipe for the case of the non binary ME configuration
model.

D. Experimental comparison of cases: By making use of the all
of the above, we have proceeded to discuss the differences that
can be observed whenever generating ensembles with the same
constraints for different cases ME, W and B.

E. Experimental validation of ensemble equivalence for ME lin-
ear case: For the non binary ME configuration model, we have
shown ensemble equivalence by calculating analytically in an
extreme precise way predictions for average values and fluctu-
ations for network metrics in the GC ensemble. Then we have
compared them with MC simulations of the same model and
validated that the (small errors) between predictions and simu-
lations tend to disappear in the high sampling limit.

The take home message of this part of the thesis is that in order
to perform a meaningful analysis on a given network, a practitioner
needs to be able to select an appropriate null model, which not only
depends on the endogenous constraints one considers but also on the
very nature of the process one is modelling [49]. This work provides
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researchers with a range of maximum entropy (and maximum likeli-
hood) models to choose from, covering a wide spectra of possibilities
for the case of non binary networks. Each of this models is not wrong
or even right in a general case despite yielding very different predic-
tions for the same sets of constraints, but just more or less appropriate
depending on the problem at hand one wants to study [186].

As a rule of thumb, when in doubt, one should use the Multi-Edge
description, since it is the case which has the most desirable prop-
erties: Vanishing fluctuations, event specific entropies, well defined
high sampling limit, ensemble equivalence and easiness to solve the
constraint equations. Furthermore, we have seen that such a case is
the limiting one for all once M — oo. Finally, usually real data col-
lected tends to be time-stamped, which introduces an effective distin-
guishability between the events forming a network, hence converting
the Multi-Edge description in highly satisfactory.

To conclude this part of the thesis, a careful word of advice need
to be once more repeated: The blessing of big data may also be its
dearest danger! High dimensionality data sets require sophisticated
null-models to detect the effects of the system constraints on the given
observables and hence comparison with a null model to assess the rel-
evance of observed features in real data is always needed. The present
application of ensemble theory to networks aims to draw attention to
this problem and to close this gap for the case of non binary networks.



Part III

DATA ANALYSIS AND MODELLING OF URBAN
MOBILITY

Any mathematical formulation, physical theory or scien-
tific hypothesis is incomplete if it remains unchallenged.
Data on phenomena extracted from the real world, despite
its many possible limitations, is the only way by which
we can test our predictions and conjectures. In this part,
we proceed to apply the mathematical theory developed
earlier to study empirical datasets on human urban mo-
bility. Additionally we propose explicit, ready-to-use ap-
plications of the ensemble approach earlier developed to
solve open problems in the field. Also a critical review on
existing models on mobility generation is performed.






URBAN MOBILITY DATA: OVERVIEW

The purpose of computing is insight, not numbers.

— Richard Hamming [92]

We live in the so-called Big Data era. Most of our daily activities
on either the virtual or real world leave a trail of breadcrumbs in the
form of data that is captured and stored by external agents (more
often than not private corporations). The increased pervasiveness of
information and communication technologies is enabling the tracking
of human mobility at an unprecedented scale. This in turn is foster-
ing research on mobility from indirect sources, based on the avail-
ability of these data sources (and the willingness of their owners to
share them). Massive call detail records from mobile phone activities
[88, 38] and the use of global positioning systems (GPS) in large vehi-
cle fleets [28] for instance, are generating extraordinary quantities of
positional and movement data available for researchers who aim to
understand human activity in space. Other data sources, such as ob-
servations of banknote circulation [46, 181], online location-based so-
cial networks [152, 151], radio frequency identification traces [51, 148],
or even virtual movements of avatars in online games [180] have also
been used as proxies. These studies have provided valuable insights
into several statistical aspects of human mobility, uncovering distinct
features of human travel behavior such as scaling laws [46, 168] or
predictability of trajectories [169] among others.

Besides empirical studies, the surge of available data on human
mobility has also opened the door to validate, revisit and innovate on
abundant previous work on theoretical models of mobility at several
scales. Such models can have diverse applications in a wide variety
of disciplines ranging from epidemiology to urbanism [94, 29, 52, 23],
with special importance in city planning and policy action [27].

Despite the potential hinted by this successful studies, the theoret-
ical development of tools and techniques for handling massive data
sets of human mobility and for assessing their possible biases is still
a road full of obstacles. Besides ethical and moral questions concern-
ing data-acquisition, privacy and data-ownership, also methodologi-
cal problems (old and new) are still open.

One could argue that the main challenges are the size of the data
analyzed, the multiple scales involved, the highly skewed statistical
nature of human activities [129] and the lack of strict control on the
data collection processes and protocols. Enunciating those in the form
of open questions, this boils down to:
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A. Sampling: How much sampling is needed to get an accurate
picture of a mobility process? How can we compare datasets
with different sampling?

B. Normalization: How can we compare mobility traces generated
by the same mechanism in distinct environments (different geo-
graphical layouts with different characteristic scales)?

c. Characterization: Does mobility data exhibit common patterns?
Can we characterize them into intensive indicators (indepen-
dent of size and or sampling)?

D. Modelling: Can we explain the origin of the detected common
patterns? Or, at least, can we exploit them for predictive pur-
poses?

E. Validation: Human generated data usually displays highly skewed
distributions and highly non-gaussian statistics. How can we ap-
propriately validate proposed models of mobility? Which qual-
ity indicators must we use?

This second part of the thesis, is devoted myself to the analysis of
mobility demand at urban scales, understanding mobility as the pro-
cess by which people choose the destination of their trips in cities. To
do so, I shall consider that the two main elements shaping this process
are the decisions taken by the citizens (on average) and the context in
which they take them, that is, the city. These decisions are affected by
the constraints or limitations of their personal circumstances (budget
or expected gain from a trip) but also by the context. Not all places
in a city are equally important or appealing nor equally visited. Once
more, we must emphasize that this thesis is not concerned with the
routing of the trips, once their origin and destination has been chosen.
It is centered on the previous stage, that of establishing the origin and
destination of each trip.

I am thus interested in people moving in cities. It does seem nec-
essary then to face the questions enunciated above and tackle the
challenges they contain. In the subsequent three chapters I will try
to do so while exploiting the theoretical tools developed in the first
part of this document. In this chapter in particular, I review the main
methodological problems I believe a practitioner faces when dealing
with urban mobility data and I present the solutions adopted in the
present case. I shall put special emphasis on the solutions that net-
work science offer to this particular data mining problem.

In Chapter 8, I describe the main common empirical features of ur-
ban mobility considering temporal, topological® and spatial patterns
from a network science point of view. In Chapter g I perform a critical

1 In this part of the thesis, whenever referring to topology we mean the features of a
certain dataset from a network yet spatially agnostic perspective.
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review on existing models of mobility and their validation/applica-
bility. Finally, Chapter 10 is devoted to the application of the insights
and methodologies developed in the present thesis to solve specific
urban human mobility related problems.

7.1 PEOPLE IS WEIRD: EMPIRICAL DATASETS FOR THE ANALYSIS
OF URBAN MOBILITY

We want to study real mobility problems, hence, in order to perform
a comprehensive study of urban displacements, we need a reliable
source of empirical data. Furthermore, since we want to deal with
data normalization challenges, we want this data to accurately track
the activity generated by the same process in distinct urban environ-
ments.

Throughout this thesis, the main source of data used will be that
generated by Taxi displacements. I have at my disposal time-stamped
datasets that contain GPS trajectories of taxis in four different cities,
which are located in 3 different continents (with inhabitants corre-
spondingly having diverse cultures). Those are New York (NY) and
San Francisco (SF) located in North America, Singapore (SI) located
in Asia and Vienna (VI) located in Europe.

Sadly, two out of the four datasets are not public yet the majority
of the analysis will be centred in the dataset containing the most sam-
pling® which happens to be public, that of the borough of Manhattan
in New York. In all cases, the studied trajectories are only those where
the taxis were occupied by customers and thus these datasets repre-
sent their mobility choices and not those of the drivers.

Albeit one can obtain traces of human mobility from a variety of
sources, the use of Taxi fleets acting as proves has many advantages.

To begin with, all the data at our disposal are evidently generated
by displacements using the same mode of transport. Also, one can
consider each trip as a statistically independent event from the oth-
ers, since in a city with enough population, the probability of a person
taking enough taxis as to be able to bias an entire dataset seems ex-
tremely remote (in contrast to the skewed profiles of activity detected
for online social networks such as geo-located Twitter activity [114] or
Foursquare [131]). This allows a safe aggregation of all user generated
traces to obtain a dataset from where to extract statistically sound
conclusions. These two factors are important to consider since a vari-
ety of studies on human mobility using other data sources [46, 168]
have been shown to generate somewhat spurious macroscopic statisti-
cal features that can be explained by the aggregation of a diversity of
modes of transport [194] and specific user characteristics [88, 133].

During this part of the thesis, the adjectives big or small will be used as synonyms of
dense or sparse, relating to the total sampling of each dataset.

Appendix C
contains all
detailed
information about
the datasets used
in this thesis.
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Furthermore, for this mode of transport a direct relation between
distance travelled and costs for the user can be established (the more
distance/time one travels, the more one pays) so the possibility to
introduce budget related mobility constraints is clearly open. This
might not be so obvious for the case of public transport records [?
] because of the existence of Fare zones3. Also, Taxi trips are well
defined trajectories between two points in space and time, and this
data is not opportunistically recorded (such as Foursquare check-ins
[131] or call detail records (CDR) [88]). Yet, it is passively obtained
without asking users to fill in tedious surveys (with the possibility of
errors) as would be the case of usual census studies [117]).

One of the possible shortcomings of our datasets is that although
they are extensive, their coverage of the entire population under study
might be limited. Data from taxis, or from other vehicle fleets [28] are
typically obtained from a single company, which usually represents
only a small fraction of the actual number of vehicles circulating in
a city. In our case, however, the dataset obtained from the city of NY
does overcomes this limitation as all the yearly generated trips are
recorded, and I will precisely use this situation to effectively tackle
the problem of limited sampling in Section 10.1.

Even if Taxi data seems to be satisfactory for the objectives at hand,
one must not forget that this corpus of data is also prone to errors
derived from imprecisions of the GPS. In our case, I will be only in-
terested in the starting and ending points of trips (as to simplify the
already complicated analysis). To eliminate unreliable data, we have
matched those points with the nearest intersection obtained from the
street network (openly available from [132], see Figure 7.1) for the
different cities. All trips with either (or both) the starting and end-
ing point further away from immediate walking distance (200 m) of
an existing intersection have been eliminated from the dataset. More
details are provided in Appendix C.

Finally, a note must be made about commuting: We are interested
in mobility in cities caused by spontaneous actions of everyday life,
and hence we shall not focus ourselves here in the phenomenon of
commuting. Commuting is understood as the movement of people
from their homes to fixed work places and vice-versa, which displays
strong temporal and spatial correlations which are very likely not
captured by Taxi datasets. Other passive recording methodologies
such as Call Details Records (CDR) of data from online social me-
dia (OSM) most surely do not capture this fact either, although [114]
shows that CDR and Twitter data lead to quantitative similar results
when focused on urban environments. They are nevertheless more
susceptible to be affected by it, since taxis seem an unlike source of
transportation for everyday use.

It is true that in some cases taxis also have defined Fare zones, but the vast majority
of trips happen in general within the main urban zone.
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7.2 CITIES ARE COMPLICATED: THE CORRELATION-CAUSALITY
PROBLEM

Now that we have obtained an accurate proxy of human mobility at
urban scales, we must consider the layout in which these trajectories
are generated: The city.

Recently, a science of cities [27] has been proposed to study urban
systems from a complexity science perspective. Cities are alive en-
tities where many processes happen simultaneously. They are com-
posed by many interacting sub-systems which are highly heteroge-
neous and co-evolve at many temporal scales. Cities are thus inher-
ently anisotropic, densely populated and highly distinctive in terms
of geographical layout, form and size across the world. In fact, there
does not seem to be a consensus on how to measure their spatial ex-
tent [119]. Furthermore, cities concentrate various groups of people
with diverse cultures, motivations, objectives and life standards.

The interaction between all these ingredients shapes the traces one
is able to observe while tracking mobility. The data we record is
clearly a mix of individual freedom (represented by each person mo-
bility choices), their constrained reality (budget, needs) and their adap-
tation to this reality.

To accurately understand a mobility process, one must try to isolate
its characteristics as much as possible from the underlying framework
where it is developed, which in this case is the already diverse urban
context. We must hence take special care in analyzing the intrinsic
dynamics of mobility within the city at the temporal and spatial level,
in order to see whether a meaningful analysis can be carried out and
at which level of detail.

Furthermore, if our objective is to study the same phenomenon in
different contexts (mobility using taxis) and we are implicitly assum-
ing that such a phenomenon shares common traits in the different
cities, one must be able to effectively compare the different datasets
accounting for differences in sampling (number of trips recorded),
geographical layout (associated typical scales) and possibly tempo-
ral dynamics. In the subsequent parts of this chapter we analyze the
different common features the data shares when regarded from an
urban point of view.
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Figure 7.1: Different layouts for the same mobility process. Maps of the
four different cities for which we have data on Taxi displace-
ments with the considered intersections for trip matching over-
printed using black dots. The SE, SI and VI cases include the
airport as it concentrates a relevant fraction of the total traffic.
Background maps obtained from [132] and image generated us-
ing [142].

7.2.1 Cities are different: Same phenomena in different layouts

For the reasons given above, directly comparing urban mobility datasets
can be problematic, as the influence of the specific geographical lay-
out of each city can heavily influence the observed mobility patterns
on it. In our case, the four different cities for which we have data have
very different geographical structures as can be seen in Figure 7.1:
While the borough of Manhattan or the city-state of Singapore are
islands, Vienna is situated in the mainland and San Francisco in a
peninsula.

Not only their shapes are different, but also their sizes. Accordingly,
for each city, the definition of large distance may vary depending on
its extension and density: The relative position of distinctive spots
such as Airports (which usually accumulate a macroscopic fraction
of the observed Taxi traffic), which may be situated at different dis-
tances from the center, influence heavily space dependent quantities.
If we compare the four different cities at hand using a distance based
metric such as the distribution of trip lengths (Figure 7.2)%, we clearly
observe an initial sudden increase (people tend not to ride taxis for
very short distances) followed by a steady exponential decrease (in
accordance with studies in other cities [116]). Such a decrease, how-
ever, has different slope for each city under study due to varying size.
It is furthermore interrupted at a value of 20 km (the order of magni-

In all cases where lengths are considered in this thesis, those are approximated
considering the projected Euclidean distance between starting and ending points
for each trip.
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Figure 7.2: Geographical layout effects on occupied trip length distribu-
tion. The presence of airports which accumulate a large portion
of the traffic in the SI,VI and SF datasets at different distances
from the city center induce notable changes in the tail of the
distribution of trip lengths (A), which can otherwise be approx-
imated by an exponential function as seen in (B), where the dis-
tribution of distances shorter than d = 10 km is shown with
rescaled values over the conditioned mean.

tude of the distance between airports and city centres) with a sudden
increase for VI and SF, since the airport in these cases is isolated from
the city while in Singapore the airport is embedded in the island and
the effect is smoothed.

To avoid these problems related to geography, one must use null
models that effectively balance the different city layouts and leave
us with a somewhat context independent picture of the phenomenon
of mobility. To this end, one can generate a mobility network con-
sidering each location of the city as a node. Such networks are usu-
ally called Origin-Destination matrices (OD) and each of their inte-
ger valued entries count the number of trips between two given lo-
cations [70, 60, 189]. This modelling framework combined with con-
siderations made earlier about the basic ingredients at work when
facing the problem of mobility generation makes this problem fully
compatible with the ensemble treatment derived in the first part of
this thesis.

Although the network approach may be seen as a convenient way
to wash away geographical effects, there is still one issue which must
be discussed. Networks are discrete objects but points in space from
where we build these networks, in contrast, live by nature in a con-
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tinuous metric. Wherefore the way to aggregate these points is not
unique and can have a significant effect in our analysis. Consider-
ing the methodology I followed to filter the data, a logical choice to
do this aggregation is to consider the intersections of each city (Fig-
ure 7.1) as the nodes from which the network is formed, assigning
trips to events connecting the closest nodes to their starting and end-
ing points. However, this is only one of the possible ways to perform
this aggregation and so deserves a comment>.

Finally, even if the network approach seems convenient to tackle the
geographical differences across datasets, there are still a few issues
related to city structure and activity that must be observed. They are
mainly two: a) Which is the right (network) null model to choose? and b)
How can we deal with the temporal dimension of taxi trips and seasonality
effects using a static description such as an aggregated network?

7.2.2  Cities are heterogeneous: Anisotropy of population density and activ-
ity

In principle, choosing the right constraint we would be able to build
the appropriate null model to compare to the data applying the for-
malism earlier derived. The main problem reduces now to finding
realistic constraints and understanding the type of network under
study. As previously mentioned and shown in Section 6.4, different
Taxi trips represent fully distinguishable events, and hence we shall
deal with Multi-Edge networks (ME). This has several positive impli-
cations. These models have well defined properties in the high sam-
pling limit and hence, by using its definition, one is provided with an
effective normalization strategy for datasets of different size.

Recalling the definition of high sampling limit, (3.18), the important
variables at play will be those related to the relative fraction of trips
allocated between intersections, that is:

Py = b ty

Y Zij {ii

hence a natural scaling variable for occupation related metrics will be
the total number of observed trips T.

In all the datasets studied, the distribution of strength per node
(total number of people entering and leaving each location), either in
the incoming or outgoing direction, is highly anisotropic across space
and also displays highly skewed distributions (see Figure 7.3): There
are orders of magnitude of difference between the trip generation/at-
traction of nodes in the city. Furthermore, the spatial allocation of
these nodes is not arbitrary but depends on the specifics of the city.

)
~ 7 1
= (7.1)

5 The non unique way to aggregate spatial points is known as modifiable area problem
(MAUP) [48, 192] in geography studies and remains an standing open problem.
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Figure 7.3: Node distribution of strengths across different cities. Spatial
inhomogeneities of outgoing strength distribution (A) and its
highly non-gaussian distribution (B). Intersections are repre-
sented as squares in the map whose color corresponds to their
outgoing strength using a logarithmic based scale. Figure B uses
log-binning for the representation of the curves.
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Considering the detected anisotropies, the most basic null model
balancing easiness of use and approximation to reality would then
be the already studied Multi Edge non binary configuration model
(MECM, see Section 6.5). By using such a model, we assume that the
mobility needs and accessibility are given by external factors such
as population and density of work places or infrastructures, hence
each node has a certain attractivity which macroscopically, is related
to the total number of taxi trips entering and leaving each location
(incoming and outgoing strength pairs per node § = (s°4,s'")). The
dynamics of change of all these factors encoded in the attractivity of
a node change slowly in time (in a timescale of years), at a pace much
slower than the typical time a urban trajectory takes. Hence assuming
them as "initially given" is a good starting point for the analysis.

7.2.3  Cities are alive: Circadian rhythms and seasonality effects

While the built structure of cities evolves slowly in time, many dy-
namic and behavioural processes that take place within a city unfold
relatively fast, and in principle could be strongly variable across time.
However, human activity in cities exhibits highly regular patterns
when observed over well defined periods of time, such as circadian
or weekly rhythms. Cities are not an exception, and as alive entities,
display cyclic behaviours at different scales (daily, day of the week,
weekly, monthly and so on). If we are to use a static description of
mobility, to what extent are we missing those dynamics?

The good news in this case are that Taxi trip generation seems to
be very stable across time, and although it shows some seasonal
fluctuations, these can be considered as second order effects. Fig-
ure 7.4 shows the temporal trip statistics of the four available datasets.
The number of recorded trips as our observation time advances (Fig-
ure 7.4-A) can be very well fitted by a linear relation, indicating that
the trips generated per day are concentrated around their mean value.
In fact, their distribution closely resembles that of a gaussian distri-
bution, see the quantile-quantile plot in Figure 7.4-B.

The effects of weekly activities can be seen in Figure 7.4-C, where
the number of trips averaged per weekday is shown: Taxi usage peaks
on Fridays and Saturdays (leisure days where people tend to go out)
and drop on Sundays with a stable behaviour during work days. The
overall variation, however, does not lie further away than two stan-
dard deviations from the mean in any case.

Finally, city circadian rhythm can also be observed in the hourly dis-
tribution of trip starting times. As expected, a valley is observed dur-
ing night times when activities in the city significantly decrease. Fur-
thermore, the general statistics of trip generation across hours in the
city validate our original hypothesis of event independence among
trips. Figure 7.5 shows that the inter-event time distributions between
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Figure 7.4: Temporal statistics of trip generation across cities. Fraction of
generated trips in the datasets as a function of elapsed days (A)
and quantile-quantile plot of distribution of generated trips per
day compared to a normal distribution (B) with linear coefficient
of determination R?. The trip generation is very stable across
time at day level. Variabilities are detected when computing av-
erages across weekdays (C) and day-hours (D), yet the statistics
are not extreme with the higher variability not exceeding two
standard deviations in each case (the values are standardized).
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Figure 7.5: Evidence of hourly Poisson trip generation across cities. Com-

plementary cumulative distribution of hourly inter-events start-
ing trip times aggregated over the entire days of the dataset and
rescaled over their mean values. Outliers lying further away than
five times the mean of the distribution (< 2.5% of the data in the
worst case) have been omitted and subsampling considering only
trips generated by 500 randomly chosen taxis has been applied to
the NY and SI cases to account for dataset finite resolution (sec-
onds). Transparency has been applied to each of the 24 lines in
each plot representing a given hour of the day as to appreciate
the concentration of points. A line generated with exponential
synthetic data corresponding to inter-event statistics of Poisson
generated events is also shown.



7.2 CITIES ARE COMPLICATED: THE CORRELATION-CAUSALITY PROBLEM

successive trips agree very well with an exponential distribution, sig-
nature of Poisson trip generation.

To study yearly seasonal effects, one can take the NY dataset which
spans a complete year. As can be clearly seen in Figure 7.6, holidays
and extraordinary events (in that year the hurricane Irene hit New
York and this can be seen with a substantial decrease of Taxi trips)
affect the statistics, which are otherwise very stable (but clearly not
random!).
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Figure 7.6: Seasonal yearly dynamics of Taxi trip generation in the New
York dataset. Number of recorded trips per day over the entire
year. Dotted lines mark the start of each week (Mondays) and
filled lines the start of each month. The effect of the hurricane
Irene and also holidays is apparent together with the weekly cir-
cadian rhythms.

All the above observations suggest that temporal patterns are suffi-
ciently regular with regards to mobility and hence can be overlooked
at a first level of approximation. If one wishes to go further, the ob-
servations indicate that the next step to consider would be an hourly
separated analysis (also static in each case) with increasing level of de-
tail accounting for weekday-weekend separation and finally seasonal
effects.

In this case, I will restrict my analysis to a static picture, yet all of
the proposed tools and considerations can be refined using the above
reasoning to take into account the different variations caused by cyclic
effects. To discard the effects that unexpected events on particular
days (such as hurricanes) may have on the dataset, the statistics of
daily trip generation will be approximated as gaussian and all days
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with values exceeding two standard deviations from the mean will be
eliminated from the datasets.
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7.3 WRAPPING UP: CONSIDERATIONS ABOUT URBAN MOBILITY
ANALYSIS FROM A NETWORK PERSPECTIVE

In the present chapter, that serves as introduction to this second part
of the thesis, important preliminary considerations about the method-
ological challenges to be faced when studying urban mobility pat-
terns have been presented. Apart from considerations about general
issues to keep in mind in mobility analyses, the main ingredients and
assumptions we will consider are discussed. In a nutshell, the discus-
sion can be grouped in different aspects:

A. Empirical Data: The justification for the use of Taxi data and its
strength and weaknesses compared to other mobility sources
have been discussed. Also the filtering procedure applied to
datasets is described.

B. Spatial dimension: A network approach has been proposed to
mitigate the effects that different city layouts have on distance
based observables.

c. Temporal dimension: An analysis of temporal patterns has been
performed to justify the static framework used for the analysis
that will be carried out due to recurrent periodicity of trip gen-
eration.

D. Null model choice: Based on observed spatial anisotropy and
skewness of node related features, the choice of the MECM stud-
ied in earlier chapters as null model has been justified.

E. Common pattern detection: In all the studies carried out in the
different datasets, common patterns have been observed which
justify the purpose of this part of the thesis of analysing general
features in mobility data across different cities.

To conclude this introductory chapter, I emphasize the practical ap-
proach taken in this document: My aim is to provide interested read-
ers with appropriate, ready-to-use tools and methodologies for the
analysis of mobility. While the specific applications presented here
apply to the case of Taxi mobility, they are discussed with the focus
placed on generality, with the aim to be easily adaptable to other sit-
uations.






URBAN MOBILITY NETWORKS EMPIRICAL
FEATURES

It does not make any difference how beautiful your guess is. It does not
make any difference how smart you are, who made the guess, or what his
name is ? if it disagrees with experiment it is wrong. That is all there is to it.

— Richard p. Feynman [75]

In the preceding chapter, I have tried to justify the modelling point
of view that we will take with regards to the analysis of urban mo-
bility. While advocating for the network approach, I have mentioned
that since Taxi trips performed by different customers are clearly dis-
tinguishable events, if one wishes to study mobility networks one
must do so taking as reference the earlier introduced Multi-Edge
structures (ME). These structures are generated from the data by ag-
gregating over a certain timespan T (depending on each dataset) all
trips recorded between a given set of locations taken as nodes (road
intersections). Obviously, the longer our observation time is, the more
total trips will be recorded in the dataset and eventually, if we were
to wait a very large (infinite) amount of time, we should in principle
recover a fully connected network, i.e. an adjacency matrix where all
entries are non-zero. This is so because in principle there are no for-
bidden connections between nodes (all trips can be performed) yet
we obviously expect some of them to be much more frequent than
others.

Having said all of the above, a relevant question to ask now is
whether given the conditions fulfilled by Origin Destination matri-
ces (ODs), those can be conveniently modelled as ME structures or
not*.

8.1 BUT CAN ORIGIN-DESTINATION MATRICES REALLY BE MOD-
ELLED USING MULTI-EDGE NETWORKS?

Recalling our previous theoretical work on Multi-Edge networks, it is
worth noticing that mainly two characteristics will be useful on our
analysis. On the one hand, we know that overlay multi-layered net-
works (non-binary networks constructed by aggregation of individual
layers) are totally indistinguishable from Multi-Edge networks with
a single layer once we observe their statistics. On the other hand, we

Mobility networks are usually called Origin-destinations matrices (ODs) in transport
terminology [60, 189]. We shall use both words indistinctly.
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know that the L possible states (pairs of nodes) where trips can be al-
located should display Poisson related statistics and that for a given
sampling T, the expected number of observed trips is Tpg? where p{y
is a property of the node-pair independent of the sampling?

The combination of the two prior characteristics gives us a simple
way to check whether we can model Origin-Destination matrices as
Multi-Edge networks. Given that the generation of trips over days
fluctuates around a stable value as seen in Figure 7.4-A, we can relate
the sampling T(t) with the time dimension by using a simple linear
relation T(7) « 7. If we assume that the constraints under which ur-
ban mobility is generated do not change over time, we can take our
datasets and slice them in a series of aggregated snapshots over a cer-
tain time period T/, and then study the statistics of pi; = ti;(t’)/T(t')
averaged over the different temporal slices. We will expect two things:

A. For two arbitrary snapshots with different sampling T, 1/, for
all the intersections their values pi;(t) and pij(t’) should lie
very close. This will give us an effective way to normalize our
measures.

B. We should be able to calculate the two first central moments of
the variables pi; by knowing that they are quotients of Poisson
distributed random variables. They should correspond to the
empirically measured ones over time slices of any duration. For
Poisson distributed variables we have, using (6.4),

N )y Eyltma) .
P <Zi]‘ ti >T, M o T(Tmax) P (Tmax]
012%'|T' ~ 11— <pii>;

<pi)'> ‘T’ <T>T’ <pij >_/r

(8.1)

To validate these hypothesis I have split the available data into n-
equal daily time intervals and computed the relative dispersion of
the values accumulated over the entire data set P(Tmax) around the

measured values (p) .,

e = f)('rmax) — <p/(T/)>~lr, (82)

(P(t')) -

where Tmax is the time at the end of the full observation period and
the averages are performed over all the time slices of length t’ (Ta-

A clarification on notation: For a random variable x, & corresponds to its measured
value in the empirical dataset, (x)., to its (empirical) average over timespans of
duration t/ and (x) to its ensemble average. X(T) corresponds to the aggregated
value of random variable x over a timespan T.



8.1 BUT CAN ORIGIN-DESTINATION MATRICES REALLY BE MODELLED USING MULTI-EDGE NETWORK

DATASET TIME WINDOWS N <pi)~>: Einter (£ STD) OUTLIERS

NY 359 0.008 % 0.09 0.03
SI 23 0.007 £ 0.09 0.09
SF 28 0.038+0.18 0.07
VI 31 0.017 £0.13 0.04

Table 8.1: Variability of node-pair statistics over time. Average relative
number of trips between intersections (pij)  computed using
daily temporal snapshots of the dataset and averaged over the full
network compared to final values at the end of the observation
period (equation (8.2)). Time units with a total number of trips
at least two standard deviations apart from the adjusted yearly
mean have not been considered in the average to account for sea-
sonal variations. For the pairs of intersections ij, only pairs with at
least one non-zero appearance on the time slicing have been con-
sidered for the graph-average. The fraction of data with absolute
relative error larger than two standard deviations is also reported
as Outliers.

ble 8.1). The graph-average of ¢ is very close to zero and highly con-
centrated around this value for all the time windows considered3.

Figure 8.1 shows the correlation between the relative error and
the relative importance of occupied links. The fact that } ; pij(7) =
Y4 (Pij). = 1, coupled with second order seasonality effects induces
an uneven distribution of errors: An overestimation of some values
in the collection {<pi]- >T} will forcefully induce an underestimation in
some other values of the collection. Despite this issue, we can clearly
see that the vast majority of the mass of relative errors is concen-
trated around zero (see points in background for Figure 8.1). For the
NY case, seasonality effects are washed out (and hence fluctuations
are much smaller) since a complete year - n; = 365 - is available
for averaging, as opposed to roughly a month of data for the other
datasets.

We thus observe a clear validation of a sort of conservation law im-
plicit in our formulation of high sampling limit for Multi-Edge net-
works (see (3.18)). Now that we know that {pj;} statistics are (very)
stable across time, we can similarly compute their higher order statis-
tics by observing their relative fluctuations.

From Figure 8.2 we observe how the relative fluctuations of {pi;}
for a wide range of values do conform to our expect theoretical val-
ues (8.1) (see background points). It can be however observed how for
large values of {(pi;)_ } a plateau is reached, most possibly caused by

Days with abnormal number of trips further away than 2 standard deviations from
the mean have not been considered for the slicing (< 5% of data in the worst case).
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Figure 8.1: The effect of sampling on intersection pair temporal stability.
Correlation between measured values of intersection pair (ps;)
averaged over daily slices and relative dispersion around the
mean (8.2) for the aggregated data over the entire observation pe-
riod. Error bars represent standard deviations on the log-binned
data. Raw data is shown in the background. For visual clarity,
NY panel only shows a random subsample of 1/100 of the origi-
nal points.
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Figure 8.2: Relative fluctuations of {p;;} over time. Relative fluctuations of
{pi;} as a function of the average values {<pij >} for the daily sliced
values of all the datasets. Dashed lines represent theoretical pre-
dictions from (8.1). Error bars represent standard deviations on
the log-binned data. Raw data is shown in the background. For
visual clarity, NY panel only shows a random subsample of
1/100 of the original points.

time fluctuations which generate gaussian-like statistics on the most
important node-pairs due to the Central Limit Theorem*.

From the observations above, we can hence conclude that our datasets
represented in an OD can indeed be well modelled using a maximum
entropy Multi-Edge description.

8.2 TOPOLOGICAL PATTERNS

Now that we have uncovered the relevant rescaling variable on our
datasets, we proceed to analyze their main topological properties,
bearing always in mind the need to compare our results with those
obtained by the chosen MECM model.

Since our statistics are time-stamped, we can study the temporal
evolution of their global topological variables in Figure 8.3. The rel-
ative number of nodes covered follows a fast saturation curve, with
> 60% of the total nodes covered when only 10% of the observation
time is considered in the worst case. This is not the case for the ac-

For highly used nodes, the seasonal and weekly fluctuations become relevant and
our analysis does not take this into account, since it considers all days as samples
from the same process.
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The picture for an
alternative
scenario such as
considering a
Weighted case is
numerically
explored and found
to be distinctively
different in

Section D.5.
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In Section A.4, a
detailed list of
network metrics
used in this thesis
can be found, with
explicit formulas
and descriptions of
their use and
meaning.
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Figure 8.3: Temporal evolution of number of distinct observed nodes N(7)
and binary edges E(t). Fraction of distinct observed nodes rel-
ative to the total number of nodes present in the accumulated
data (circles) and distinct observed binary edges relative to total
number of node-intersections (x-markers) as relative observation
time T/Tmax advances. A majority of the nodes is covered with
very few days of accumulated data while the growth of observed
binary edges is very slow and tends to saturate. A vertical line
marking 10% of relative observation time has been added for
visual clarity.

cumulated number of binary edges £ which grows at a much slower
pace. In fact, for the densest of our datasets (NY), at the end of the
observation time we only have covered 45% of the total node-pairs
L = N? which indicates a significantly skewed distribution of trips
among binary edges (we have seen in contrast that the trip genera-
tion rate is almost constant in the preceding section, Figure 7.4).

Focusing now on the static picture of all trips aggregated by the
end of the observation period Tmax, Figure 8.4 displays the (rescaled)
node related properties of the generated ME networks with the em-
pirical data. We have already seen that the strength distribution is
highly skewed (Figure 7.3), and now we see that, at the node level,
the empirical features do not diverge much from MECM predictions
(dotted lines): The assortativity profile (s}y,,) is almost flat and the
empirical degrees are only slightly smaller than the predictions of
the MECM. This difference causes greater discordance between em-
pirical data and model predictions in the disparity profile. For small
sampling, the overall differences are hard to notice (SF and VI) while
for NY and SI they become obvious.
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Figure 8.4: Empirical taxi Multi-edge network node properties. Rescaled
strength distribution (A) and node related properties as function
of strength [degrees (B), disparities (C) and average weighted
neighbor strength (D)]. Results show averages over log-binned
bins in the x axis. The properties of the raw data display close
properties to those of a MECM averaged over r = 103 instances
(dotted lines).

The resemblance between data and MECM impedes to clearly quan-
tify differences between both using only log-log plots and thus a
closer look is called for. To further explore at a finer scale the differ-
ences between empirical data and null model, Figure 8.5 displays the
relative differences between node features, ex = (X — (X)yrem)/ () MECM

(x being strengths, degrees, disparities and weighted neighbor strengths).

Obviously the strengths are coincident> while the difference in de-
grees grows up to only the —30% in the worst case for medium strength
nodes. Small strength nodes coincide with the configuration model
due to the correlation between strength and degrees (s = 1 =
k = 1) and large strength nodes are almost fully connected and thus
also coincide with the model (k ~ N). Medium sized nodes have less
connections than expected, hence concentrate more of their incoming-
outgoing trips in these, but this cannot explain the relative differences
observed in disparity® (much larger than those seen in the node de-

The small differences for low-strength nodes are caused by biased and finite sam-
pling (statistics are only computed for realizations where nodes have non-zero
strength values) but this effect quickly vanishes in all datasets.

Disparity values are difficult to interpret and compare to a null model where degrees
are not fixed, because the disparity Y,; € [1/ki, 1] is a bounded measure. We use
them in the thesis as they are considered a standard quantity in weighted (usually
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Spearman’s [171]
rank correlation
coefficient is a
measure of the
association in rank
or importance
among two sets of
variables.
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Figure 8.5: Relative difference ¢ = (X — (X)pmpem)/ (X)MECM Petween em-
pirical node properties of Figure 8.4 and configuration model
predictions. The relative errors for strengths (A) are non-existent
while node degrees (B) are slightly smaller for the empirical
dataset, as well as incoming node neighbor correlations (D).
More relevant differences are detected for disparities (C).

grees): Such an hypothesis can be tested and is rejected by applying
a model fixing both strengths and degrees, as done in detail in Ap-
pendix D. Finally, the assortativity profile is clearly ascending, indi-
cating that nodes of small strength tend to connect with larger-than-
expected weights among themselves.

Apparently, the directionality of the network does not seem to be
important as trends in outgoing and incoming direction are qualita-
tively equal, however, taking a look at node asymmetry, we observe
some differences. Relative differences between node incoming and
outgoing strengths are encoded in the asymmetry coefficient:

gout __ ain
AS =S TS

1 sout ain
87+ 85

—1<Af <1, (8.3)

Their graph-average across nodes, as well as the Spearman correla-
tion coefficient among incoming and outgoing strengths is reported
in Table 8.2. Significant’ ranking correlation exists between the vari-
ables, but it is not perfect. Concerning the strength asymmetry, even

sparse) networks literature. It is used to compare empirical weight allocations among
nodes to a node-based null model that assumes uniform random weight allocation
per link.

7 In this case, the word significance is used in a wide sense, meaning that in all cases
the coefficients display values larger than 0.8.
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DATASET SPEARMAN  AS (+sTD)
NY 0.94 —0.254+0.40
SI 0.8¢9 —0.09 + 0.41
SF 0.87 —0.28 +0.48
VI 0.84 —0.144+0.48

Table 8.2: Assessing directionality importance in the empirical Taxi net-
works. Average graph node asymmetry and Spearman rank cor-
relation coefficient comparing outgoing and incoming strength se-
quence pairs (s°%, s");. p values correspond to alternative hypoth-
esis of uncorrelated variables are in all cases p ~ 0.

if a conservation rule applies to strengths, i.e. T =} ; sg’ut =, sh,
the graph averaged values are negative, indicating that the incoming-
strength distribution is more heterogeneous (see Figure 7.3) than the
outgoing one (hubs® accumulate a larger share of the total incoming
traffic). Taxis tend to be booked for trajectories from centres of attrac-
tion towards scattered locations, hence nodes on average accumulate
larger incoming than outgoing trips.

Figure 8.6 displays edge related properties where wider differences
between configuration model and empirical data are seen: The oc-
cupation number distribution displays larger values in the tail which
follows a slow decaying trend (for the cases of VI and SF with smaller
sampling, similar to a power-law, although concavity appears for the
NY and SI denser datasets).

We can study the rescaled average weight of links according to their
incoming and outgoing node strengths in Figure 8.7.

Zij 6§?ut155§iin/s/tij
Zij 5§iout,s 6§§nrsl

5(3,8') (8.4)

In such a plot, a configuration model prediction corresponds to the
over-printed white lines (§°"'§" = Ctnt). We see that the apparent
scaling of conditioned average occupation number as product of their
source and destination node strengths is roughly linear.

At a finer level of detail, Figure 8.8, we show the quotient between
expected values of the model and empirical data®. There, we can
clearly observe that links among small nodes have distinctively larger
occupation than expected (also among hubs) and also among same-
strength nodes (values along the diagonal §°"t ~ gy,

So in a nutshell, we have an intricate structure where nodes can be
roughly classified into three groups:

Throughout this part of the thesis, hub is used to refer to nodes with large values of
incoming or outgoing strength.

Since the comparison is done with one run of the model, we set undetermined values
0/0 =1and 0/K = oo > 4 for K # 0 throughout the thesis for this kind of plots.
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Figure 8.6: Empirical taxi Multi-edge network occupation number distri-
bution. Configuration model dotted lines are computed over a
single realization of the model.
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Figure 8.8: Comparison between empirical data and MECM at edge level.
Relative scaled occupation number as function of starting and
ending node strength comparing empirical data and MECM
model over a single run. Both cases are normalized over the bins.

A. Low sized nodes™: Their naturally coincident degree and strength
induces small differences with configuration model predictions
in degree or disparity. Their connection pattern is noisy, since
they connect to hubs but there are also many statistically (un-
expected) trips between pairs of scattered locations that induce
instabilities in their average neighbor strength values.

B. Medium sized nodes: These constitute a relevant fraction of nodes
in the network and display interesting features. On the one
hand, they are unbalanced favouring being destination of trips.
On the other hand, they accumulate less binary edges than ex-
pected. Their binary edges thus carry over-expected traffic, di-
rected mainly to nodes belonging to the same group (as seen
in the assortativity profile and throughout the diagonal in Fig-
ure 8.8).

c. Large sized nodes: These nodes are connected to a large fraction
of the system and hence their properties are averaged out in
general. Their main difference with regards to a configuration
model is the slightly larger values of occupation on the links
connecting them, which cause larger values in the distribution

10 During this part of the thesis, node-size, node-importance and node-strength will be
used to refer to the same concept.
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of existing occupation numbers. In general, they tend to pro-
duce more trips than they receive.

The previous list being made, we must bear in mind that the differ-
ences observed are not extreme and that hence the main zero-approximation
features of this network are well explained by their skewed strength
distributions, which can be attributed to exogenous factors such as
population, job or housing density. However, additional factors add
many more trips between some connections than there should be
under random conditions. Hence, the distribution of node strengths
across the city has a strong influence on the trip allocation, and needs
to be taken into account when modelled, but needs extra ingredients

In Section 1024 to fully account for the observed pattern of connections.
methodology is

proposed to filter
out the influence 8.3 SPATIAL PATTERNS

of MECM features.
A final important analysis is related to space: We have observed the
topological and temporal features of the networks under study, but
we cannot forget that we deal with a network rooted in a metric
space. The first law of geography, enunciated by W. Tobler [182], states
roughly,

Everything is related to everything else, but near things
are more related than distant things.

We see that at very dense environments such as a city and with re-
gards to mobility this is also true. Distance does have an effect on trip
frequency as seen by the characteristic exponential decay detected in
many transportation systems (also taxis). In Figure 8.9 we can observe
how being the null model agnostic with respect to node distances, its
probability to allocate longer trips is larger and its form smoother (ra-
tio between average trip distance d43%/dMFM s 0.7 for NY, 0.6 for
SI, 0.9 for SF and o.7 for VI), hence, this feature of the empirical data
can be marked as distinctive. In Figure 8.9, the internodal distance
distribution for each geographical layout is also shown to emphasize
the fact that even if the MECM model allocates trips at random, the
geographical distribution of node strengths plays a very important
role in shaping the obtained trip distance distribution™.

From a network point of view, one can cluster the nodes into spa-
tially cohesive regions. To do so, we have used a standard network

11 Our findings partially confirm those in [115], where a combination of an exponential
decrease of radial density of strength in nodes around local centers and a gravity-
like model for traffic prediction with power law deterrence function (see Chapter 9)
is assured to be the cause of the observed exponential trend in the distribution of trip
lengths, which is obtained from Taxi displacements and other sources. Sadly enough,
in that study the authors do not apply a distance agnostic value so it is hard to assess
whether only the strength allocation could already produce the exponential decrease
observed in trip distances.



12

13

8.3 SPATIAL PATTERNS

10° NY Sl

107
10
10
10°
107
10:7 = Internodal distances
100 H ... mEecM

107 f — Empirical

107

p(d)

10 T T T T T T T T T
10°
10°

p(d)

10°
10
10°

10°

0 5 10 15 20 25 0 5 10 15 20 25 30
dlkm] d[km]

Figure 8.9: The effect of cost on displacements. Histogram showing the
trip length distribution for the empirical datasets compared to
MECM with linear binning (internodal distance distribution is
also shown).

analysis tool that is useful for community detection in directed, non-
binary graphs. A community is understood as a partition of labels
{ui Vi = 1, N} over a set of nodes that accumulate more intra-group
connections than those that would be expected under a null model.
A common way to find such a partition consists on optimizing an
objective function known as the graph-modularity Q [127]:

Q= l 2 (b5 — (65 ) Sy (8:5)

D]

Several methods are available for this, in this case, I have used an
implementation of the Louvain algorithm [39] openly available [184].
In order to assess the significance' of the obtained modularity values,
we have simulated r = 10 samples of networks with the MECM and
computed a histogram of their modularity and number of detected
clusters N from which we have extracted z-scores for these magni-
tudes'3. From the results displayed in Table 8.3, we see that even if in

Absolute modularity values are uninformative about the community structure of the
network, they must be compared to averaged realizations of the null model.

The statistics of these random variables are approximately Gaussian. As a reminder,
a z score for an observed variable % is computed as,

(8.6)
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Refer to [79] for a
comprehensive
review on
community
detection methods.
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DATASET Q(zq) Ne (zn,)
NY 0.007 (968) 92 (0.6)
SI 0.19 (502) 9 (-8.8)
SF 0.14 (115) 56 (—22)
VI 0.28 (104) 46 (—45)

Table 8.3: Community structure empirical network scores. Empirical mod-
ularity Q and total number of clusters N, obtained from applica-
tion of the Louvain modularity optimization method on the em-
pirical datasets and corresponding z scores compared to configu-
ration model averaged over r = 10 runs.

some cases the obtained values of modularity might be seen as small,
they are always relevant™. Figure 8.10 shows a map of the cohesive
regions detected by the algorithm.

Taking a closer look, we see that even if the effect of distance is
patent, communities do not form totally cohesive regions mainly due
to the effect of hubs. Since they are connected to a macroscopic frac-
tion of the system, their influence combined with the topological
resemblance between empirical networks and configuration model
blurs the spatial form of the detected communities.

Such spatial coherence, however, supports the theory of city poli-
centricity [? ]. Even though city centres are undeniably the most busy
areas in terms of mobility, economic activity, traffic and others, the in-
fluence of other areas has a strong influence in a variety of processes,
among which, mobility. The city organizes itself in hierarchical lev-
els that are intrinsically related with their spatial layout. In our case,
the paradigmatic case is Singapore, since on the one hand it is an is-
land and on the other their city areas are naturally delimited by the

A deep discussion  presence of a significant geographical obstacle (a mountain).
on the theory of The spatial analysis shows how the mobility in the city is shaped
P O:Zf’:ﬁ;?% fa;i by mainly two competing forces: The extremely heterogeneous topo-
cityyfrom 4 logical (and spatial) distribution of activities (encoded in the node
geographical point strengths) and the cost associated with trips, which favours the emer-
of view lies outside  gence of communities spanning spatially compact domains which is
of the scop :Z of thj: blurred by the influence of hubs (their spatial agnostic influence can
recomm entd ;lfé . also be felt in the anomalies to the exponential regime detected in trip

is [119] and lengths in Figure 8.9).
references therein.

14 It is important to note that community detection algorithms are spatially-agnostic
and hence no information about node relative-coordinates is provided as input,
wherefore a spatially coherent node partition can be considered as moderately sur-
prising fact.
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Figure 8.10: Emerging spatially cohesive communities from modularity
optimization. Map displaying the emerging cohesive commu-
nities obtained from the modularity optimization (only stable
clusters spanning more than 1% of the system are shown). Color
encodes group partition while size is proportional to incoming
node strength.
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84 WRAPPING UP: MAIN FEATURES OF URBAN MOBILITY NET-
WORKS

In this chapter we have performed a comprehensive analysis on the
Taxi empirical datasets represented as non-binary networks. Many
common features to the four considered datasets have been detected,
both at the spatial and topological level:

A. Stable time statistics for node-pair sites: We have confirmed
that a Poisson description, rescaled by the total number of trips
in a given time period, is compatible with the temporal statis-
tics of trips among pairs of nodes present in the data. This is an
evident signature that a maximum entropy modelling approach
considering Multi-Edge structures with linear constraints as stud-
ied in Part ii constitutes an excellent framework for the study of
these datasets.

B. Topological patterns close to configuration model: At the topo-
logical level, we have confirmed our hypothesis that the distri-
bution of node importance, which is empirically detected by the
strength of each node is the main driving force shaping the mo-
bility in the city. A zero order approximation to model these
networks is thus the MECM, which yields expectations for the
main network observables within the same order of magnitude
as those empirically observed. However, some differences have
been pinpointed:

o Edge-level differences: The main topological differences
detected at the node-pair level are the tendency of hubs to
accumulate larger number of trips in the links connecting
them and also the statistically relevant presence of trips
among scattered locations. Also, a significant tendency of
nodes to connect to other nodes with similar strength is
observed.

e Node-level differences: The differences at edge level are
seen here with a slight assortative profile (nodes with small
strengths tend to connect with more trips than expected to
nodes with equal or larger strengths). This in turn causes
an overall decrease in the expected number of binary con-
nections per node (degrees) which is specially important
for nodes with medium size.

c. Spatial effects of cost and hubs: We have extracted communi-
ties from the network that conform spatially coherent regions,
in sharp contrast with the null model. This is probably caused
by the exponentially decaying shape of the trip length distribu-
tion, which is altered by the presence of trips directed towards
large hubs such as airports lying at far distances from the city.
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D. Node unbalance: The effect of the considered transportation
mode (taxis) is patent in the unbalance in out and in strength
detected at node level. Hubs tend to be origin of trips rather
than destinations, while mid sized nodes tend to be destina-
tions rather than origins. We hypothesize that the correlation at
the spatial level between the locations of the latter places with
other transportation means such as large bus, metro or train sta-
tions might be behind this fact, and thus needs to be taken into
account on an overall analysis of city mobility from a multiplex
perspective [81].

The qualitative and quantitative coincidence of features among the
datasets show that indeed we can detect common features to diverse
Taxi urban mobility datasets despite their different geographical lay-
outs. With the insights obtained in this chapter, we will now proceed
to examine ways into which such structures can be reproduced using
models, as to be able to find mechanisms that explain the origin of
their characteristics beyond simple city structure.

Finally, since we have seen that the influence of strengths over-
whelms the secondary order effects that also have an effect on mo-
bility, in Section 10.2 we propose a methodology to filter out their
contribution. This will also allow for effective network visualization
applications. It is worth noting also that the techniques used here and
some of the conclusions drawn from them are coincident with a large
study [118] based on call detail records (CDR) over a large number of
spanish cities. In this case, trips are clustered into four groups (which
may be identified with the elements in each of the quadrants in Fig-
ure 8.8), one of which are the trips between small strength locations.
Such trips, termed "random", are shown to have larger expression
than under a random model (using a variant of the MECM model),
and to have a relative weight {,/T increasing with population (sam-
pling in our case).






=

URBAN MOBILITY MODELLING

One important idea is that science is a means whereby learning is achieved,
not by mere theoretical speculation on the one hand, nor by the undirected
accumulation of practical facts on the other, but rather by a motivated
iteration between theory and practice.

— George E. P. Box [43]

Up to the present moment we have evaluated and surmounted the
main technical issues to be faced for the analysis of OD matrices in ur-
ban environments. Using these insights, we have uncovered common
temporal, topological and spatial patterns in our datasets. We have
argued that these common features are best made apparent when
studying the datasets under the common frame of Multi-Edge net-
works. Our ultimate objective is to profit from the obtained insights
and develop practical applications related to urban mobility.

One of these applications is related to forecasting traffic generation
in cities. Several predictive models exists for traffic production® fore-
casting at general scales, and it is time to test whether these models
can perform also well in the city environment.

The objective of this chapter is to review the existing models pro-
posed in the literature on human mobility and assess the challenges
that the adaptation of these models to the urban environment pose.
In order to begin, however, we have already seen that the majority of
statistics encountered are highly skewed and non-gaussian, so prior
to any discussion we need to develop indicators in order to quantify
to which extent any proposed model aiming to predict trip genera-
tion (an OD for a city) performs adequately when compared to an
empirical sample.

In this chapter, I start by developing a collection of indicators to
quantify the quality of any proposed model of trip generation. To
do so, we shall use a combination of information theoretical related
metrics, topological metrics and matrix similarity indicators. Then,
using the tools developed, I perform a critical review of the existing
models to finally assess which performs better in the current taxi case
under study. We will study three broad classes of models: Heuristic,
Opportunistic and Maximum entropy based models.

Traffic generation deals with the prediction of how many people travel from two
given places, while traffic routing or allocation relates to which trajectories this trips
take. The latter case lies outside of the scope of the present thesis.
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9.1 MODEL VALIDATION

The first thing to do when facing the problem of model validation is
to define what we mean by it. In the present context, for any given
model, our aim is to detect its shortcomings and its successes with
regards to reproduction and estimation of empirical data. Since, as
we have seen, our records -even if studied from an aggregated, static,
point of view- display a highly intricate topological and spatial struc-
ture, assessing model quality must be a holistic process.

The inherent heterogeneous nature of the studied data forces us to
take a multi-angled perspective with regards to model validation. It
is highly unlikely that a single general metric will be able to capture
the effectiveness of any model to reproduce real data, and so that
is why we will have to use a diversity of indicators. A natural ques-
tion emerges: What will be the best model, that which gets right the
majority of the data (small nodes-trips) or the most influential (large
nodes-trips, a minority)?

The answer to this question is that neither will be: The aim of model
validation is to detect the strengths and weaknesses of each consid-
ered trip generation mechanism, which should be the ultimate ob-
jective with regards to explanatory modelling. Hence, we shall use
a cocktail of indicators taking different perspectives to explore the
likeness between data and predictions.

We will focus on information theory related indicators (such as en-
tropies), topological ones studying the network structure of the pre-
dicted ODs and finally similarity metrics related to matrix compari-
son. For all these indicators, we will also need to consider their sensi-
bility to sampling, which as we have seen is an important dimension
to be taken into account.

9.1.1 Topological metrics

We have made extensive use of network metrics in the previous Chap-
ter 8. Those are fully described in the Appendix (Section A.4) and
place the emphasis on the pattern of connections among nodes. When-
ever possible, the assessment of differences between model and data
should be done by analyzing relative differences between indicators
at node level, since most of these metrics span multiple orders of
magnitude. However, log-log plots should be used with care as their
limited resolution provides limited information for models close to
real data, as seen in Section 8.2.

At the node level, we shall focus the analysis on the predicted bi-
nary degree per node and assortativity profile* as we have been doing

We have seen that disparity values Y, are highly dependent on the binary structure
of the network, and hence not very informative for non-sparse networks, but we
report them here for completeness.
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in previous chapters. At the edge level, we will put the emphasis on
the average occupation of binary links as a function of the strength of
their source and destination nodes.

Finally, since we have taken a Multi-Edge network description, all
the indicators are scaled (i.e. lie in the range [0, 1]) as to limit the
influence of sampling on them.

9.1.2 Information metrics

Any complete model should be able to provide not only average val-
ues for expected trips between locations T, but also the probabilistic
form from which those averages are obtained, P(T). Ideally, such a
probability should be derived from first principles (a generating mech-
anism), allowing to test with empirical data whether the proposed
generating mechanism is correct or not.

If a probability of occurrence for a given instance of a network is
given, then we can define an ensemble of networks for this model
(even if it is not a maximum entropy one), an we can extract some
information theoretical related measured from it.

From P(T), one can define likelihood and entropy measures. One

can measure the surprise per event —£ (TImodel)/T = -1 'In P(%Imodel)

of the empirical OD, T according to the model defined by P(T|model).
Furthermore, given that we know that the statistics of of the observed
networks should behave as Multi-Edge network structures, we can
compute the maximum likelihood estimation of the difference per
event between the I' entropy of the model and the empirical data
based on a single run,

tdata tdata J’Ep}odel J’El_l}odel
_ -y 1 P
— In — . (9.1)
T T

Ideally, in the previous expression we should use (tij) instead of
f‘i‘}(’del for any given model, however we will use this approximation,
given that some of the models we will examine do not yield analyti-
cal expectations for {(ti;j)}. This indicator can be interpreted as the
average amount of information (bits)? per event that is needed to dif-
ferentiate any instance from the proposed model from the empirical
data.

In some cases, for simplicity, we will also present the relative log-
likelihood of empirical data to belong to the proposed model relative
to the loglikelihood of the empirical data considering Poisson statis-
tics for the pairs of nodes ij with average equal to the empirical one

The base of the logarithm defines the scale of the units of information used. For
instance, using a base 2 logarithm one would be using bits. We will use the natural
logarithm for simplicity in the calculations.
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network literature,
see for instance

[35].
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tij, in order to simplify model comparison. The baseline for this cor-
responds to,

L
iy

tos
A tij) Y
Lo=tnP({ty} {(ty)PH=> In e () {107 (9-2)
O]
with (tij) = t;; Vij. Incompatible Loglikelihood values will not re-
ported in tables (such as cases where (tij) = 0 <ty or [ti; — (tij) [ >
0).

Being the statistics of {ti;} highly heterogeneous (see Figure 8.6-
A), the only shortcoming of loglikelihood measures is that they place
larger emphasis on the tails of the distribution of occupation numbers,
hence models predicting larger values for the maximum weights are
favoured over others, even if the latter ones my capture better the
overall network structure*.

9.1.3 Similarity metrics

To compare matrix structures, we will use two different indicators.
A global indicator capturing the overall similarity between expected
and empirical networks and the correlation between recorded and
predicted individual occupation numbers.

A recently used global indicator is the Common Part of Commuters
(CPC), introduced in [113] based on a similar index developed in
biological studies (the Sorensen-Dice indicator [67, 170]).

i~ (fdata fmodel
Zzijl{?jata>o mln(tij ’tij )
fdata tmodel *
Zij tij + Zij|{g‘jata>o tij

The different versions of this indicator have values in the range [0, 1],
where CPC = 1 indicates total coincidence between data and model
and CPC = 0 total disagreement. However, for sparse data sets with a
skewed distribution of {fi)-} values, equation (9.3) may return values
excessively lower than 1, even for models very close to reality. To
mitigate the effects that finite sampling have on the datasets, in some
cases (those where analytical expectations of expected values can be
obtained) we will use a slightly modified version of the indicator:

23 gm0 min(E, (tmode’))
tdata model \
PIRTR Zij\tf;“ﬁ>0 <tij >

Additionally, plots comparing the pairs (‘E‘i’ljata, frf].wdel) have been pop-
ularized after its introduction in [164]. Since the visual plots on a

CPCsample = (9:3)

CPC =

(9-4)

Albeit not shown, this causes for instance the configuration model to display greater
likelihood for the Weighted case than the Multi-Edge one in the comparison done
in Section 6.4, even if the latter captures much better the topological features of the
network.
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f (CPCopmme) cpc  RZ  £(T)/T AST/T
0.0001 0.63 0.996 -108.45 1.003 -0.57
0.001 0.65 1.000  -7.24 0.946 -0.53
0.01 0.71 1.000  0.32 0.726 -0.37
0.1 0.84 1.000  0.94 0.332 -0.13
1 0.94 1.000 1.00 0.090 -0.03

Table 9.1: Evolution of global model performance indicators with sam-
pling for the NY dataset. f stands for the fraction of uniform
and random subsampling on original dataset. Average values per-
formed over r = 1000 instances. Standard deviations in all cases
smaller than 1/1000. R? and AS"/T computed using ‘E?]f’ta = i
and {99! obtained from a single run of the Poisson model (see

(9-2)).

log-log plot may be misleading (we will always plot empirical data
against a single run of any given model), we also report the coef-
ficient of determination R? in all tables , based on the comparison
between real data and average values of the model on the existing
edges, assuming an identity relation 2@ = {odel,

2
Z ;5| fdata (fI:I}Odel - {data)
ij Itij >0 \ "j ij

RZ=1-— 5
Z . {data _ J’Edata
ijlifaa>0 \ Hij ij

9.1.4 The effect of sampling

As has been already pointed out, for distributions displaying slow-
decaying tails, total available sampling on empirical data is expected
to have an important influence on the observed metrics. To test this
hypothesis, we have proceeded to subsample the NY dataset to dif-
ferent levels fractions f of the original data to see the evolution of the
proposed indicators as less and less data is considered. To this end,
we proceed to generate instances of a Multi-Edge network with Pois-
son node-pair statistics (tij) equal to the empirical measured ones t{;
for each level of subsampling f and compute the proposed indicators.
Results are displayed in table Table 9.1.

We observe how the CPC indicator computed over a single instance
displays important variations with sampling. The effects of sampling
are also patent on the coefficient of determination R? and for the
event specific proposed indicators. Due to this dependence, all results
comparing model to reality will be shown related to the ones obtained

We use this indicator as a general measure of quality of the fit between model and
data, yet, it has many limitations due to the heterogeneity of the underlying data, as
can be seen by its negative values which indicate bad agreement between both.
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by comparing empirical data with one run of a Poisson model with
{<tij> = ’E‘.Ejata}, which will enable us to assess to which extent any
indicator is far or close to the empirical data. Note, however, that in all
cases for finite sampling the observed realizations are less informative
than the ensemble entropy (AS"/T < 0) because the observation will
be sparser in number of binary links on average®.

9.2 CRITICAL REVIEW OF EXISTING MODELS

Modelling is a verb that is used to identify two similar yet different
processes in a variety of fields. In some cases it refers to better under-
stand an observed phenomenon by postulating a (microscopic) mech-
anism by which such a macroscopic observable may be reproduced.
In others, it refers to a framework to be applied in practical situations,
i.e. to generate estimates of a given (unknown) quantity of interest
with the highest possible precision, without explicit explanatory pri-
mary objective. From a historical scientific point of view, normally the
latter view tends to integrate elements of the first view in an iterative
process that ends up conforming a complete theory.

Trouble is, specially with the advent of the Big Data era and its
focus on empirism, that this symbiotic cycle seems to be slightly dis-
rupted. More often than not models are considered to predict the future
or to explain phenomena, when, if confronted to an objective and crit-
ical analysis they partially fail at either of them.

Whenever quantifying how good a model is (compared to another)
several aspects need to be taken into account:

A. Equal grounds comparison: Models need to be compared on
equal grounds. Step zero thus is to consider the same number
of trips per model, and, if possible, the same number of con-
straints.

B. Input importance, not parameters: For any given model, the
importance does not lie on the number of parameters it contains,
but rather on the relation input/output: Fitting parameters is
a technical issue, but the important matter here refers as how
much we feed the model externally and how good the outcomes
of it are.

c. Feasibility of parameter fit: Of course, models need to have an
application. Hence, if dependent on a set of parameters, these
need to be able to be calculated /estimated from real data with
adequate precision and in a non-arbitrary fashion.

6 Note that £ — (E) = Zij(G)(‘Eij) —T4e(ty)) = Zij\{-lj -0 e~ > 0, even more so
if the distribution of {{;} is heterogeneous and favours small values of occupation

numbers, as is the case with real data.
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D. Normalization and skewness: We have seen that human mobil-
ity processes display highly heterogeneous structures, and fat
tailed statistics are ubiquitous to data describing it. Hence, spe-
cially care should be taken with regards to data normalization
across different datasets (any model should provide insights
about this) and influence of finite size effects. Also, some mod-
els might be better than others to reproduce a given aspect of
the data, but fail in other aspects: A balanced view concerning
as many angles of view as possible is beneficial for model as-
sessment.

E. Large sampling limit: Finally, any model should yield predic-
tions valid in a certain range of sampling, and also for the level
of data-density at which fluctuations do not matter anymore (a
sort of high sampling limit).

Based on the above criteria, we review the two majoritarian ap-
proaches used in mobility modelling literature. To this end, we will
discuss the general approach behind each one of them and exemplify
them presenting and analyzing one (of the many) model versions be-
longing to each type.

9.2.1  Empirical models

Historically, the first approaches to model human mobility were per-
formed in economics and sociology based on empirical observations.
Those pointed out that, as we have been stressing through this the-
sis, perceived cost and importance are two key elements that affect the
number of trips between two given locations. Mainly two ways of as-
sociating cost to distance and to number of lost opportunities have been
proposed.

One constitutes what is known as the family of gravity models of
transportation while the other has given rise to rank based models. In
either case, the problem with these models is that in general they are
not expressed in mathematical terms suitable for analytical treatment.
Hence, no probabilities can be associated to each model P(T) and
no entropy, surprise nor insights about high sampling limits can be
obtained. This is so because more often than not, those models are
based on analogies but not in complete theories developed from first
principles and hence those can be interpreted as interesting starting
points (they do seem to represent real data acceptably) but should
not be considered as satisfactory models.

9.2.1.1  The family of gravity models of transportation

A first step towards modelling mobility was based on an analogy
with a physical law which gave rise to the term gravity law of trans-
portation proposed by Zipf in [198]. This model is based on assuming
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that each location has a mass M; (which can be related to population,
job availability, interest...) and that the number of trips between two
locations can be approximated by:

<ti]‘> = KMiMjf(dij). (9.6)

Where K is a normalizing constant ensuring that }_;; (tj) = T and
f(di;) is an arbitrary (decreasing) function of the cost or distance,
known as deterrence function. Its most common version uses a power
law f(di;) = di_jy but also exponential versions are present in the
literature. In the urban context, we will only consider exponential
versions of the deterrence function for any model, because there are
self-loops in our empirical data (and f(dy;) = d;* diverges at the
origin) and because the typically dense environment of the city does
not allow for representative distances to span multiple orders of mag-
nitude, hence the effect of a power law relation is not expected to be
important.
For the attractivity of each location, versions ranging from power
law dependency on population M; = Pf’ ,node strength M; = (§?ut’m) B
and others have been proposed. All these parameters are fitted by
Foravery — multilinear (logarithmic) regression of the observed values {{;}.
complete review, This approach is extremely popular in a variety of fields and has
:}ch;zzo:na;z become mainstream due to its simplicity [99, 107, 100, 87]. While it
gravity laws of 1S MOt based on any model, hypothesis or mathematical formulation,
transportation see  just a loose analogy, its advocates defend that its "overwhelming em-
[70]. pirical evidence of success" validates the proposition. However, it is
a model very prone to overfitting through a circular process. It is de-
signed by construction to optimize the regression {(t;)} vs {1i; }, yet
it is validated using again the same regression. In the end, its based
on optimizing a fit of a single (increasing) function based on 3 param-
eters. Such a problem is common to other approaches depending on
parameters that need to be fitted (for instance [101]).

Precisely because we already know that distance and importance
influences mobility, the effectiveness of the fitting method comes at
no surprise. Due to this fitting procedure, different exponents, de-
pendencies and forms for the deterrence function are observed for
different geographical layouts. Furthermore, this method is highly
dependent on sampling: The logarithmic multilinear regression only
takes into account existing edges and only those that have values
larger than unity (and as we have seen, those with value 1 are major-
ity due to their skewed distribution and for sparse cases the majority
of inter-node links are not occupied and hence are not considered
in the fit). It is an approach that takes as input 2N inputs relating

In Section D.sa node strength and importance and 3 additional parameters. For the
multilinear  reasons provided above, we will not consider this approach in the
regression analysis subsequent parts, since in our opinion, it is more a fitting procedure
in the spirit of the . L. . .
gravity models of ~ than a complete model able to provide insights. Also, using a relation
transportation is
performed for
completeness, and

its shortcoming
made patent.
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for attractivity of the type M; = § {3 (in the incoming or outgoing di-
rection) leads to inconsistencies when considering different sampling
and 3 # 1, because either the incoming rescaled strength p in = §ii“ /T
or the outgoing one are not conserved, and hence pi; will change, in
clear contradiction with our empirical observations, see Section 8.1.

9.2.1.2  Other empirical models

More recently, other types of models have also been proposed from
the field of computer science. A prominent example is what I call Se-
quential gravity model [114]. This model allocates trips in a configuration-
like fashion stochastically according to probabilities that are updated
at each step,

si*(t)f(dyj)

> st (t)f(dy;)

being s}n(t) the incoming strength of location j at the time of allo-
cation of the trip t. For the deterrence function an exponential form
f(dij) = e Y45 has been proposed with an exponent not fitted by em-
pirical data but obtained from a universal function depending on the
area under study. This is an interesting feature, since on the one hand
avoids some of the problems caused by the modifiable area problem
(MAUP, see Section 7.2) while on the other hand hints at the existence
of some common dependence on distance across (very) different ge-
ographic areas (the model is validated using an extensive dataset on
regional human mobility).

The problem of this model is that while it has a mechanistic ex-
planation, it requires total knowledge by the travellers of the current
state of the system: each user emerging from a given location takes
a decision based on the actual state of allocation of trips. Moreover,
while the algorithmic description is an interesting step, developing
mathematical formulations is difficult due to the history dependent
nature of the stochastic process involved in the trip allocation. Finally,
problems may arise in its algorithmic implementation when the num-
ber of trips is extremely large (large sampling limit) since the naive
complexity of the algorithm is O(TN) because the probabilities need
to be recomputed at each timestep, and thus averaging over instances
becomes a laborious task. This model uses 2N inputs (node strengths)
plus an additional parameter 7.

A final empirical model worth mentioning, which is a good repre-
sentative of the opportunistic approach in cities (see below) is that
proposed in [131]. Its authors propose that the probability to move
from two given locations 1i,j reads,

Pisi(t) = 97)

Pimj & (ranki(j))™%  ranki(j) =Hw: d(i,w) <d(Lj)}. (9.8)

It is a model where the probability of transition between places de-
pends on the density of points of interest or destinations (POls) be-
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tween them measured as a rank, not on distance. In their interest-
ing study using foursquare check-in data, the authors show that dis-
tance alone is not a good indicator of mobility in dense environments
such as the urban habitat because observed trip distributions differ
when observed in different cities (as we have seen in previous chap-
ters). Their measurements show that the value of the rank exponent
o = 0.84 is highly stable across all the cities studied, but no particular
justification is given for this. This finding again suggests a universal-
ity in human mobility behaviour across cities (which differ in size and
form). The novelty of this model is that its formulation is continuous
across space (no network aggregation is needed avoiding the MAUP).
Again this model uses 2N inputs and one parameter and the version
provided by its authors has complexity O(T) albeit it can be speeded
using a multinomial node based approach to O(L) (in a similar way
as the Radiation model, see below) to avoid problems related to high
sampling limits. However, precisely the fact that the model formu-
lation is continuous leads to inconsistencies in the large sampling
limit (in such a limit, one expects that the density of points between
locations diverges, making some kind of aggregation necessary and
hence calling for the introduction of weighting in the computation of
ranks).

9.2.2  Analytical models

The insights provided by the aforementioned empirical models in-
spired some authors to propose analytically tractable models taking
into account both approaches. In a broad manner, those can be classi-
fied in entropic models and opportunistic ones, albeit in some cases
applying suitable transforms, both models can be related.

9.2.2.1 Entropic models

What we call entropic models are those related to conservation laws
that can be circumscribed in an ensemble non-binary description of
a mobility process in the framework provided in the first part of this
thesis. As we have seen, an appropriate approach for human mobility
is the one provided by Multi-Edge structures with linear constraints.
For the particular case where strengths and average trip distance is
fixed, we reach an expression reminiscent of the previously intro-
duced gravity laws,

(tij) = xiyje Yo, (9.9)

This was first developed by A.G. Wilson [190]. One may be tempted
to relate this model with the previous gravity models but their differ-
ences are noteworthy: In this case, a non arbitrary way of obtaining
{xi},{yj} and vy, which is not based on a fit on empirical data, can be
prescribed. Also, a particular form for the probabilities associated to
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each entry ty; is provided and discussion on sampling is also possible.
It uses hence 2N + 1 parameters that are obtained from 2N + 1 inputs
by likelihood maximization and its complexity is O(L).

Some authors argue that its main weakness is that it relies on a gen-
eral maximization rule and not a mechanistic description at the agent
level. Why should people be interested in maximizing entropy? While
this is certainly true, this is not a model aimed at explaining human
psychology (highly diverse, complicated and complex) but rather a
modelling methodology that balances predictive power with analyt-
ical tractability, allowing to derive conclusions from clearly identi-
fiable constraints (that of fixed average cost per trip). Additionally,
it allows to increasingly introduce information (constraints) to the
model (as we will see in Section 10.1). It only assumes fixed alloca-
tion of importance in the places of the city, fixed average trip distance
and otherwise total randomness expressed mathematically as maxi-
mization of entropies.

It is obvious that any redefinition of the perceived cost between
locations dj;j can lead to a huge variety of deterrence functions f(ds;),
Wilson himself showed how to recover Stouffer’s opportunistic model
(see below) using this framework. We have furthermore shown that
the statistics of t;; in our empirical observation do behave according
to this model, hence to follow the path opened by entropic model, we
need to focus on uncovering the particular relation between strengths
and importance in a city (job, housing or POI density for instance)
and a good predictor for perceived cost”. Finally, it is patent that even
if for each city the indicator y may differ, if the model is successful at
reproducing real data, it means that the starting hypothesis are likely
to be true (fixed cost per trip), hence no contradiction may be found in
disparity of Lagrange multipliers values across different geographical
layouts [26]. Also, even if it is not a model defined in continuous
space (it requires binning), since the computation of parameters is
performed from first principles, its sensibility to the MAUP is small
(the solutions of the Lagrange multipliers might change with binning,
but the starting hypothesis remains unchanged).

In relation to the criticism expressed against the model from eco-
nomic fields and spatial geography [150], for me, the problem of the
model lies not on the methodology itself, but on the conclusions Wil-
son and others draw from it. One must resist the temptation to dis-
close a universal relation between (x;, ${"") and (yj, §). This would be
misleading since each value x; (yj) depends not only on the strength
of the node i(j), but also on the geographical layout of the network
(encoded in the cost matrix D), the average trip cost d =D/T and the
total incoming and outgoing strength sequence. This is so because all

Different metrics can be used such as topological network distances [144], Manhat-
tan, time to destination [197] and others. However, the cost does not need to be
necessarily a formal metric in the strict mathematical sense.
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the values are obtained from an overall maximization, and thus care
should be taken when trying to interpret parameters such as y using
analogies like the relation between temperature and Boltzmann’s 3
in classical statistical physics. v is loosely related to the average cost

of a trip, and indeed for two ODs T; and T, rooted in the same geo-
graphical layout with the same strength sequence but with different
di > dy, we expect Y1 < 2. But this might not necessarily be true
if the strength sequences for the two networks (or their geographical
layout) are different. Conversely, for a given OD, a change of cost of
trips, would incur in a change of the number of trips among loca-
tions, which would in turn change the strength sequence considered
and conversely would alter all of the considered Lagrange multipliers.
This means, once again, that interpretations of the Lagrange multipli-
ers are hard, and hence theories "not far from equilibrium" analyzing
the effects that change of travel costs may have are complicated to
do analytically, as there is no guarantee that the Lagrange multipli-
ers change smoothly (and hence a constant approximation is correct)
with the constraints, because they are in no ways related to an equi-
librium situation, as would be the case for physical systems.

9.2.2.2  Opportunistic models

Opportunistic models are related to the idea proposed by Stouffer
that humans move between locations depending on the density of op-
portunities between them, not on distance alone. Stouffer enunciated
mathematically this idea in his famous paper presenting the Interven-
ing Opportunities model [177]. In our notation®, his model states:

Zj\dije[d,d+Ad] <tij> ~ 1 §i)~ (d,d+ Ad)
Ad Si;(0,4) Ad
A N (9.10)
Sij(ry,r2) = Z &,
]'|di]'€[1‘],T‘2}

The cost di; may be measured in terms of time, perceived cost or
euclidean distance in space and is continuous in its original formula-
tion. §§“ is related to the number of opportunities at location j. Stouffer
states that any desired metric may be used to account for distances
and any desired function may be used to relate opportunities and
distance, or opportunities and city traits, and hence his model is fully
flexible (yet he uses euclidean distances in a discretized grid and pro-
portionality between strengths and opportunities). The model uses
2N inputs and one or various parameters relating the density of op-
portunities and observed traffic for each location. Subsequent authors

The original model assumes somehow a continuous description where
Z]‘I'd_i,-e[d,d +Ad) tlj is identified as Ay and x is a cuITlulatlve measure of oppor-
tunities, which initially Stouffer relates to housing density but ends up stating it to
be proportional to what we know as aggregated incoming node strength.



9.2 CRITICAL REVIEW OF EXISTING MODELS 149

have re-interpreted the model: Apart from the previously work done
by Wilson, including it in the collection of entropic models (and hence
displaying all positive previously mentioned aspects) other authors
have succeeded in relating it to a stochastic model [154].

More recently, in [164] a novel opportunistic approach was pro-
posed, which in addition yielded interesting analytical results giving
birth to what has been called the Radiation model. The radiation model
is based on assuming that each user that wishes to move (there are
89" such users in each location) is interested in reaching the place j
nearest to his present location i that has the maximum value z; (su-
perior to his current value z;) of a random variable z that encodes
the opportunities present in each place. Hence, for each place k, i
random trials of the random variable z are drawn and its maximum
value in each location is chosen. Then, the user selects the closest
location to his home such that this maximum value is greater than
the one obtained at their current location. Mathematically, it can be
proven that the trips between locations can be finally expressed as?,

(1) = 529}

’ gin (9.11)
p.l) XX " n ) T .
j (8in+ 8" + S45(0, d)) (3" + Sy5 (0, d))

1 )

The latter expression corresponds to a multinomial process centered
in each node with §$" trials over normalized probabilities 2P ).m =1
(this implementation is much faster than the stochastic based ap-
proach described and allows to rapidly obtain network instances).
This model has attracted a lot of attention due to its lack of fitting pa-
rameters and exceptional predicting power defended by its authors.
However, some caveats can be identified. First of all, it needs as input
2N values related to population plus an additional parameter to estab-
lish the proportionality relation between population and strength of a
location (or otherwise only 2N incoming and outgoing strength input
pairs). Additionally, the model in its present form entails some math-
ematical and algorithmic problems when considering the high sam-
pling limit. First of all, concerning its stochastic version, the model
relies on maximum value statistics, but if the number of trips is effec-
tively infinite, the model predicts no movement at all (the maximum
value of z will coincide with maxz in every location), also its com-
plexity is larger than O(NT), complicating the generation of samples
and subsequent averaging. Furthermore, considering its node-based
multinomial form (complexity’® O(L)) one can see that while the out-
going number of trips is conserved for each location (§°f = (s°))

9 In here, we have adapted the original expression in terms of our variables, substitut-
ing population by node strength. Note also, that this model predicts zero flows for
nodes with either zero incoming or outgoing strength, and hence for sparse datasets,
it must be adapted (it must also be adapted to allow self-loops).

10 We do not consider here the computation of Sy values.
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MODEL COMPLEXITY INPUTS P(T) CALIBRATION T — oo
GRAVITY - 2N+3 - Yes No
SEQ O(NT) 2N+1 T Multinomial Yes Yes
RAD O(N) 2N N Multinomial No No
WILSON O(L) 2N +1 L Poisson Yes Yes
MECM O(L) 2N L Poisson No Yes

Table 9.2: Comparing network generation models. All models conserve the
total number of trips T and T — oo indicates whether the model
is well defined in the high sampling limit so that {pff} are well
defined.

and the scaling on T behaves according to a ME description, the in-
coming strength cannot be matched to the original data (<sin> £ §in),
and hence py; predictions must be necessarily wrong, which is in con-
tradiction with our observations. Finally, some problems related to
normalization have been pointed out by other authors and doubts on
its exceptional predicting power with regards to other models have
been raised [123].

Some additions have been proposed [195, 101, 196, 144] and also
a space-continuous extension [165] but the essence of the model re-
mains unchanged. Due to recent interest, we shall use it as represen-
tative of the Opportunistic family of analytical models in our compar-
ison.

The main features of all considered models are depicted in Table 9.2.

9.3 SO WHICH IS THE BEST PERFORMING MODEL FOR THE TAXI
CASE?

To compare the different approaches taken, we proceed to generate
predictions using different models belonging to each of the types ex-
plained. As empirical model we use the Sequential gravity model
and as analytical models we use the radiation model to represent the
opportunistic class of models and Wilson’s doubly constrained, max-
imum entropy gravity model with exponential deterrence function
to represent the family of entropic ones. Also, as baseline, we use
the MECM studied in earlier chapters, which, after all, is a distance-
agnostic model only taking into account the density of sinks and
sources of mobility in the city and which we know from earlier chap-
ters that performs moderately well as a first level of approximation.
In Table 9.3 we present the general model indicators earlier pro-
posed for each model (additional graphics showing network struc-
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ture and correlation (ffjata, ’Erfj“’del) can be found in Section D.5 of the
Appendix).

The first important aspect to notice is the earlier mentioned prob-
lem of the sampling. As datasets become sparser, the quality of our in-
dicators decreases enormously reaching the extreme case of VI where
almost all models display equally (poor) results. At first sight we see
how loglikelihood and entropic measures are only appropriate tools
to discriminate the quality of models with the same underlying mech-
anisms, and specifically for entropic measures, this is only true in the
case where large sampling is available''. However, the level of detail
provided by network related topological features (see Section D.1) is
still a good tool to discriminate among models.

Furthermore, as we already know, we see that the MECM performs
acceptably well despite being agnostic with respect to distances (in
fact, for the SF case it ranks among the best performing models). It
displays distinctively better results than the Radiation model, and
similar (and in some cases superior) results as the Sequential gravity
model. In my opinion, this model should always be used as bench-
mark in this kind of studies, and we hope it will be more adopted in
the future (as for instance in [118]), as it serves as a good basis to as-
sess the capacity of other models to take into account the importance
of distance.

The Radiation model fails completely at predicting flows in the
city environment (finding confirmed in [115]). The reasons behind
this fact can be seen both on the topological structure of the result-
ing networks and the trip distance distribution. The structure of the
network is extremely assortative and trips tend to over-concentrate
among large sized nodes (see under-expected binary degrees, large
disparity values and extreme assortative profile in Figure D.1), which
are mostly concentrated around city centres (with the exception of
airports), fact which can be seen in the very fast decay of the trip
distance distribution. This is due to the extreme density of the city
environment, i.e. high strength locations of the city accumulate so
many opportunities that hardly any trips are allocated (starting or
ending) outside these areas. Also, it is worth noticing the extreme
heterogeneity of obtained results (see large bars of the box-plot in
Figure D.2), which suggest a high level of variation among different
instances of the same model.

The Sequential gravity model can be considered as a middle ground
between the MECM and the Wilson model. Despite being different,

Note that for VI and SF, |AS" /T| for the empirical Poisson model displays worse
results (larger absolute values) than either the MECM, WILSON and SEQ models.
As already pointed out, the reason behind this is that for the empirical models over
a single run, the probability to observe a sparser network with E < E is large leading
to less informative realizations. This circumstance is only partially avoided averaging
the results sufficiently over model instances, since it strongly depends on sampling
(the further min {{; } >1, the better).

In Section 10.1 a
possible solution to
the sampling
problem is
proposed, studied
and applied.
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MODEL (CPCsampLe) R2 L/T AST/T
NY
SEQ 0.60 0.13 - -0.20
RAD 0.05 -145.84 0.001  -5.07
WILSON 0.69 0.47 0.38 0.29
MECM 0.64 0.42 0.51 0.44
Empirical 0.94 1.00 0.09 -0.03
SI
SEQ 0.34 -0.77 - -0.62
RAD 0.04 -69.05  2.05 -4.34
WILSON 0.37 0.19 1.92 0.40
MECM 0.30 0.08 2.26 0.62
Empirical 0.78 0.94 0.53 -0.25
SF
SEQ 0.21 -5.41 - -0.08
RAD 0.07 -76.42  0.14 -3.26
WILSON 0.23 -0.65 3.05 0.15
MECM 0.23 -0.13 3.07 0.18
Empirical 0.70 0.46 0.77 -0.40
VI
SEQ 0.04 -6.08 - 0.02
RAD 0.04 -42.28  6.91 -2.08
WILSON 0.04 -2.95  5.50 0.11
MECM 0.03 -3.00  5.85 0.13
Empirical 0.65 -1.86 0.93 -0.52

Table 9.3: Comparing global performance model indicators. Average val-
ues performed over r = 100 instances (Sequential model averaged
over r = 10 due to slow convergence). R?> computed using ’E?J.‘Odd
over a single run and t{#% obtained from empirical data using
non-zero entries. Standard deviation for (CPC) < le —4 in all
cases not reported.
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at its basis, the form of expected average trips does not differ from
the Wilson model, yet its generating mechanism is essentially like a
biased Micro Canonical configuration model. The apparently surpris-
ing small values of entropy excess AS" /T are explained precisely by
this fact: The micro-canonical nature of the model heavily constrains
its variability or randomness, and this is reflected in information re-
lated indicators. Another consequence of the configuration-like inspi-
ration of the model is related to convergence. If no self-loops are al-
lowed, then the algorithm has no guarantee of being able to match all
node-stubs [65] (and this problem grows in importance as the skew-
ness of the underlying strength distributions grow). Even if self-loops
are allowed, this results in the majority of final trips allocated along
the process resulting in self-loops, and hence distinctive difference
appear between in and out binary degree pairs per node (specially
for large strength nodes) as can be seen in Figure D.4 (Appendix).

Finally, Wilson’s model is distinctively the best performing model.
Although it is true that it uses and additional parameter with respect
to the other models, its performance allows us to extract some con-
clusions from the observed mobility. Essentially, Wilson’s model only
adds an additional ingredient to the city layout encoded in the distri-
bution of node strengths, that of average fixed cost per trip, i.e. the
(small but distinctive) influence of cost in displacements. Since scat-
tered locations tend to be at large distance from high strength nodes,
the assortative network profile from empirical data which the MECM
could not reproduce is partially (but not fully) recovered (see Fig-
ure 9.1 and Figure 9.2), because trips among small (but close) nodes
are favoured. Also, having fixed the average cost of displacement, the
trip distribution is very closely reproduced (Figure 9.4).

Even if this model is the best performing among the ones consid-
ered here, the most interesting information one can extract from it is
by putting the focus on the aspects of mobility it fails to properly char-
acterize. And the most noteworthy aspect continues to be the general
presence of abnormally large flows among locations in the tail of the
distribution of values of t;; and the over-expression of trips among
origin and destination low-strength nodes. The only exception being
Vienna, in which case the distance of the airport to the center of the
city combined with its isolation favours highly concentrated short

trips between airport nodes (hence max {’E‘f].ata} < max {’Eli’)?"dd }).

The values

v, {xi}, {y; } for
the Wilson model
have been obtained
solving the
associated saddle
point equations of
the model using
the recipe in
Section B.1 with
error in all cases
inferior to 107
The package to do
s0 is implemented
in [10].
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Figure 9.1: Relative difference ¢ = (X — (X)wiison)/ (X)Wilson P€tWeen em-
pirical node properties and Wilson model predictions. Relative
strength difference (A), degree (B), disparity (C) and node neigh-
bor strength correlation (D) averaged using logarithmic binning
over r = 10? instances of the model.
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Figure 9.2: Comparison between empirical data and Wilson model at edge
level. Relative scaled occupation number as function of starting
and ending node strength comparing empirical data and Wilson
model over a single run. Both cases are normalized over the bins.
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In my opinion, this model is very flexible and adaptable because
it adds the possibility to encode known info using our theoretical
developments, such as for instance the intrinsic importance of trips
among special pair of locations due to their sociological importance,
which can hardly be captured by any model. Precisely this circum-
stance will be used in the upcoming chapter to generate realistic and
precise predictions of mobility based on existing data. As conclusion,
it is worth noticing that our results agree well with those depicted in
[112], where a similar comparison is performed (however, for the Wil-
son model the 'y value is not extracted from maximum likelihood ar-
guments). The results described here also confirm the lines of though
presented in [118] and discussed in earlier chapters.
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9.4 WRAPPING UP: MAIN APPROACHES TO OD MODELLING AND
IMPORTANT ASPECTS OF MODEL VALIDATION

In this section we have performed an exhaustive analysis of different
approaches to model trip generation in the form of Origin-Destination
matrices. We have presented different types of models and reviewed
its main ingredients, strengths and weaknesses. In order to do so,
tirstly we have justified, reviewed and introduced a range of indica-
tors focusing on different aspects of mobility that allow for a holistic
assessment of models. The main conclusions drawn are summarized
below.

A. Model indicators: We have presented three types of model in-
dicators: Network topology metrics, information indicators and
matrix similarity indicators. For each of them, their main char-
acteristics are:

¢ Topology indicators: Network related measures, while spa-
tially agnostic, are a good tool to assess model performance
beyond single number indicators and are able to give an
overview of the performance of each model while not be-
ing extremely affected by sampling.

¢ Information indicators: We have seen how entropy related
measures are only good indicators to discriminate among
models belonging to similar ensembles but with different
constraints (hard-constrained models cannot be evaluated
in equal terms to soft-constrained unless all node-pair have
large sampling, which is hardly the case for real data). Sim-
ilar principles apply to likelihood measures, which tend
to give better result for models predicting large weights
(close to real data in the tail), with less regard for precision
for small values of trip occupation. However, this kind of
indicators are only robust for datasets where a large frac-
tion of node-links are occupied, E ~ L and cannot be used
to compare models with different underlying generating
mechanisms, hence must be used with care.

e Matrix similarity indicators: We have also seen that ma-
trix similarity indicators are prone to be affected by sam-
pling, yet, are useful in providing information encoded
in single numbers (specially the CPC index) to concen-
trate model performance in simple indicators, and also are
useful for comparison of models generated with different
mechanisms and underlying statistics.

B. Model review: Among all the considered models, for the taxi
datasets, we have justified that the most promising approach
is the one provided by the entropic models earlier presented.
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Even in the distance-agnostic case of the MECM, it beats or
performs equally well than other proposed models, with the
additional advantage of displaying flexible and convenient ana-
lytical properties (such as adequate behaviour in the large sam-
pling limit). We have furthermore confirmed the importance of
city layout and node-strength allocation across the city, and the
non-negligible influence of distance or cost-perception, which
is needed to accurately model human flows. However, we have
also seen that these two ingredients cannot solely account for
the observed traffic. Context-dependent, intrinsic sociological
and urban features of each city need to be accounted to explain
the most frequently observed trips.

Concerning explicitly the urban environment, I feel that the rea-
son behind the failure of the radiation model (but in general all
opportunistic-based models) to capture the essentials of mobility are
not only related to the large spatial concentration of highly busy lo-
cations, but mainly because they are all based in assuming a certain
radial isotropy around nodes in the city, which is in clear contrast
with observations (for a complete critique see [119]). A possible way
to merge the success of entropic models (such as Wilson’s one) with
the reasoning behind opportunistic based ones, would possibly be to
break this radiality and consider the cost associated to distance to
opportunities falling in a certain (not radial) region of space between
two given points (such a model would also introduce the insights of
the earlier mentioned empirical-ranked model [131]).

Along these lines, and given that the interplay among node impor-
tance and distances seem to play a prominent role in shaping mobility,
exploring the possibility of embedding ODs in non-conventional met-
ric spaces such as hyperbolic planes (which have been shown to be
able to capture interesting features of binary complex networks [108,
41, 161, 14, 45]) could seem a promising approach.

For the afore-mentioned reasons, we argue that in the future, ef-
forts coming from the complexity physics side of research should be
focused in interpreting the relation between cost and distance (and
the way humans perceive it [105]) and also in relating incoming and
outgoing traffic (strengths) of each location with city and urban at-
tributes or indicators. Concerning the models, effort should be fo-
cused not in presenting new "successful" models with new data, but
rather in expanding in a critical way the ones already present, or at
least, performing systematic reviews such as the one performed here
(or for instance [112]) in order to discard, update and improve them.
Otherwise, given the enormous richness of data available (but bearing
in mind the limitations of such data and the challenges they pose), it
will be very hard to extract meaningful, universal conclusions related
to mobility.



9.4 WRAPPING UP: MAIN APPROACHES TO OD MODELLING AND IMPORTANT ASPECTS OF MODEL VA

In a nutshell, what we must bear in mind is that, quoting the fa-
mous aphorism by George E. P. Box [44]:

Essentially, all models are wrong, but some are useful.

The importance of models lies in their weaknesses rather than in their
strengths: What pushes science forward is the critical exercise of as-
sessing the limitations of any proposed theory and try to address
them, rather than highlighting their exploits.






PUTTING MAXIMUM ENTROPY NON BINARY
NETWORK MODELS TO USE: APPLICATIONS TO
MOBILITY

You look at science (or at least talk of it) as some sort of demoralising
invention of man, something apart from real life, and which must be
cautiously guarded and kept separate from everyday existence. But science
and everyday life cannot and should not be separated.

— Rosalind Franklin [121]

All the results presented in this thesis until the present moment are
either developments on a theoretical side or a purely data exploration
and analysis perspective. In this final chapter, my aim is to present
two practical examples that may help in depicting how we can exploit
the previously gained insights on urban human mobility to solve data
related problems.

Using the maximum entropy framework for model generation and
the greatly stable topological and temporal statistics uncovered in the
previous analysis can be extremely helpful for facing matters ranging
from sampling to visual representation of networks, for which, in the
following, two examples are shown.

10.1 SOLVING THE SAMPLING PROBLEM: TAXI SUPERSAMPLING

In some scenarios, fully grasping a certain mobility-related phenomenon
may require modelling the entire population of interest. For instance,
it was shown that the fraction of taxi trips that can be shared in the
city of New York is an increasing (albeit not simple) function of the
number of daily taxi trips [149]. Hence, if a certain data set covers
only a fraction of the daily taxi trips performed in a city, the taxi
sharing potential cannot be fully unveiled. The above discussion mo-
tivates the need of extrapolating urban mobility data starting from
a subset of the population of interest. Although a number of urban
mobility studies have applied such methods [139, 172], a definition
and assessment of a statistically rigorous extrapolation methodology
is so far lacking.

In this section we fill these gaps by introducing a methodology to
tackle the problem of obtaining an accurate picture of a mobility pro-
cess when only a limited observation of it is available, both in time
and volume. Based on our previous observations related to the nor-
malization, stability (Chapter 7 and Chapter 8) and performance of
maximum entropy trip generation models (Chapter 9) and exploiting
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the regularity of trip allocation among intersections encoded in {pg;},
we use a maximum entropy approach combining empirical data to
model the occurrence of the core of frequent trips with an exponen-
tial gravity model [190, 70, 2] modelling the least-frequent trips.

We apply the method to accurately reconstruct the NY data set us-
ing small fractions sub-sampled from only a month of recorded data.
We finally assess and validate the statistical accuracy of the proposed
supersampling methodology using the model validation tools earlier
developed.

The general maximum entropy based theory for model generation
earlier derived allows us to efficiently exploit both the observed tem-
poral stability features and the heterogeneous topological properties
of the network to solve the supersampling problem at hand. Assuming
that the mobility process is driven by some general (unknown) con-
straints, such as population density or budget, we have earlier shown
that for any desired level of sampling T4 the statistics of trips for each
pair of nodes can be well described by a set of L independent Poisson
processes with mean (ti;) = Tapss.

It seems clear that from knowing the real values of the collection
{p%?}, supersampling a mobility data set would be a trivial operation

of generating L independent Poisson processes using the provided
proportionality rule. Therefore, the problem now reduces to inferring
the collection of values {pﬁ’} from an available data set. We assume
that only one snapshot of the aggregated mobility network is avail-
able to this end (thus assuming no temporal information is available
on the trip data) as is usually the case in mobility studies. The maxi-
mum likelihood estimation of such values corresponds to

A

fis
=2 =Py (10.1)

P imL = =

There is, however, a practical issue in this formula related with the
normalization condition for the random variables {p;;} and the pres-
ence of empty intersection pairs in the available observed data, as
already pointed out in Chapter 8 (see specially Section 8.1). For such
intersections, using the formulas above, we have that pi; = ‘Eij =0,
whereas their real p{j value is unknown but fulfils p; € [0, Pmin ~

T-1]. Since by definition both collections {p%’} and {pi;} need to be

normalized, and denoting the set of active edges as € = {ijlﬂj > 0},

we have,
D PF=1= D P+ ) Py
ij ijlije& Hljge (10 2)
2 Pu= ) Py+0=1,
ij ij\ijGS

from which we see that }_i;jce PY < 2 ijce Pij = 1-
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Hence, in general we cannot consider the empirically observed
probabilities pij as a good proxy for the real values of p$; unless the
number of empty intersection pairs is very reduced. Given that the
percentage of active edges (pairs of nodes for which t;; > 0) is a very
slowly increasing function of the sampling (see Figure 8.3), inferring
directly the set of probabilities {pﬁ’} empirically would take an enor-
mous data set — note that even with over a year of data for the NY
dataset only roughly 45% of edges are covered.

For the reasons given above, a simple proportionality rule using
equation (10.1) is not a good supersampling strategy, specially for skewed
and sparse data sets.

10.1.1  Inferring intersection pair trip shares {p{j}
Based on the previous discussion, we now present the methodology
for supersampling an urban mobility data set that consists in inferring
the collection of {p} values from a set of aggregated empirical trips
{tij}. We should bear in mind that despite the maximum likelihood
formula in equation (10.1) cannot be directly used for the empty in-
tersection pairs in the data, it does perform well for non-empty inter-
sections (see Figure 8.1).

The maximum entropy based framework can naturally combine
any constraint driven model with the rich information encoded in
the trip sample. We propose a method to predict trips based on the
theory mentioned earlier: Taking the L intersection pairs (being them
active edges in the data set or not), we split them into two parts, the
subgroup of trusted trips defined as Q = {ij[ti; > tmin} and its com-
plementary part Q€. The value tmin is a threshold modelling a mini-
mal statistical accuracy that depends on the amount of data available,
and which may be set to 1 in practical applications. We keep the pro-
portionality rule pi; o tij for the trusted trips, while for the remain-
ing trips we apply a doubly constrained exponential gravity model.

In other words, we generate a collection of {pfj’} values,

W o yeo
P%’:{ TPy (10.3)

Xiyje_ydij RS Q¢

The values y and {x;,y; } are the 2N + 1 Lagrange multipliers satisfy-
ing the following equations

TSy = T X ge

ilijeQ ilijeQc
§ T ) by = Ty ) xe Y
jlijeq jlijeQc

D-T ) dypy = T ) dyxye "™, (109
ijlijeQ ijlijeqC
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I chose the doubly
constrained
exponential
gravity model
because it has been
shown to be the
best performing
model in

Chapter 9,
however, we could
have chosen any
other maximum
entropy models
discussed earlier.



164

Equations (10.3)
are solved using
the balancing
Algorithm 2 and
its implementation
is provided in [10].
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where D = Zij ’Eij dy;j is the total euclidean distance of the observed
trips (dij stands for the distance between intersections i and j). Note
that, by construction, the values are properly normalized, i.e., 3 ;; p%} =
Y ijea Pij + X ijeqc xiyje Y =1

The model presented earlier needs to deal with the issue of inac-
tive nodes that do not appear in the original data due to poor sam-
pling, i.e., nodes for which § = 0 either in the incoming or outgoing
direction. This issue has a minor impact in our case due to the pre-
viously observed rapid coverage of the number of active nodes (see
Figure 8.3). In any case, it can be solved: given that the geographic
positions of the nodes are available, we could always artificially as-
sign a certain relative strength to the nodes not present in the data
using complementary call detail records [114], census data or points
of interests (POI) data, or assign them some values according to a cho-
sen distribution depending on the data at hand. For simplicity, in our
case we have chosen to keep only the nodes present in the original
data.

10.1.2  Assessing the quality of the supersampling methodology

To test the supersampling methodology, we have proceeded to select a
timespan of the NY data set corresponding to an observation period
of T = 1 month (February 2011) from which we further randomly sub-
sample different fractions f used as training sets to compute {p%’} ap-
plying equations (10.3) and (10.4). We then reconstruct the OD using
the proportionality rule {<t1j> = poi";)} for both the complete and
reduced data set, Ty = T(t/ =1 year) and T4 = T(tr = 1 month). Fi-
nally, we compare the model predictions with the set of empirically
observed trips in these periods.

The results for the supersampling method quantified using some
of the earlier developed indicators® (see Chapter 9) are summarized
in Table 10.1 and a specific example for f = 0.1 (reconstruction using
only 10% of the original data of the monthly data set compared to
yearly data) is shown in Figure 8.1 for different network indicators

Rgond is a modification of the R? indicator defined in (9.5), using the average occu-
pation conditioned on link existence (ti;ti; > 0) = (ti;) (1 — e (ti))~ T instead of

(tij), with also a change in the denominator,
Z N t+,m0del o ,Edata 2
ijltdze>o |\ ij

—  \?2
Z R t+,mode1 _ t+,model
ijligm>0 ij ij

Both indicators tend to converge for high sampling, so differences with respect to
this indicator are negligible. For the case of the CPC indicator, since in this case
explicit expression for {<tij >} are always available, we will use the version less prone
to sampling effects (9.4) (instead of (9.3)). This chapter is based on the published
work [4] and we keep the original formulation appearing there.

RZ 1—

cond —

APPLICATION
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T = 1 month T =1 year
f fo  L/Lo CPC R? fo CPC R?

cond cond

1.00 0.8855 146 0.92 1.00 | 0.07090 0.78 0.91
0.75 0.6417 1.64 0.83 0.98 |0.05138 0.76 0.89
0.50 0.4014 1.88 0.77 0.94 | 0.03214 0.74 0.86
0.25 0.1711 226 0.68 0.83 | 0.01370 0.69 0.78
0.10 0.0492 2.64 0.60 0.65 | 0.00394 0.65 0.63

0.01 0.0012 - 0.58 0.21 | 0.00010 0.66 0.26

0.005 0.0003 - 0.59 0.12 | 0.00002 0.66 0.18

MECM - - 0.57 -0.87 - 0.64 -0.22
Empirical 1 1 1 1 1 1 1

Table 10.1: Validation of the supersampling method. See details on each
indicator in Section 9.1. The number of trusted trips fed to the
model relative to the entire number of generated trips fq =
2 ijlijeo ty /T4 is reported in the third column. The Supersam-
pled models with different fractions f are only generated using
subsamples of the training set (1 month observation period). Em-
pirical stands for the model generated using the empirical proba-
bilities pi; (equation (10.1)) of the full data set and MECM stands
for the multi-edge configuration model applied to the full data
set.

proposed. For comparison, results using both the MECM and the em-
pirical values {ps;} using the information encoded in the complete
dataset are also shown.

We observe an accurate reconstruction of the mobility network for
a wide range of values of f, which shows the validity of the proposed
supersampling methodology. At the global scale, even at extreme lev-
els of subsampling, our model is successful at reconstructing the orig-
inal dataset. Also at the topological scale, despite the heterogeneity
in the underlying distributions, the methodology generates very accu-
rate predictions. The predictions for the least frequently visited nodes
display higher relative errors due to the presence of inactive nodes in
the training dataset (1.6% of total nodes for f = 0.1).

Upon close inspection, our inferred values {pﬁg’} slightly over-estimate

165

low-valued weights and underestimate large-valued weights and strengths,

yet the errors are small as we can see in Figure 10.1-B. See Figure 10.1-
B (green line) and Figure 10.1-E (green dots) where we can observe a
gap around t ~ 100 and <t:> ~ 100, respectively, which corresponds
to the separation between the trusted empirical data (separated points
in the background belonging to the group of trusted trips Q) and the
reconstructed trips (clustered cloud of points). The minor seasonal
fluctuations found in our temporal analysis (Chapter 7 and Chap-
ter 8) together with these over- and under-estimations explain the mi-
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Figure 10.1: Supersampling results. Main network differences between real
data accumulated over a year and Supersampled model from
real one month data with f = 0.1 subsampling. (a)-(d) Relative
error (((x) —&)/& with % being a magnitude measured from the
aggregated yearly network) between reconstructed network us-
ing supersampling and original data for outgoing degrees (a),
strengths (b) and average neighbor strength (d) (similar results
for incoming direction not displayed). The complementary cu-
mulative distribution function of both edge lengths and trips
lengths (c) is also shown. (e) Comparison between empirical
{t;} values and model prediction over a single run. Configu-
ration model expectation from a single run using the full year
data set is also shown for comparison. All results averaged over
100 repetitions of the model, error bars represent standard de-
viations on the log-binned data and raw data is shown in the
background. For visual clarity, panel e) only shows a random
subsample of 1% of the raw data in background.
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nor limitations of the model to reproduce perfectly the entire yearly
data set.

The second order effects induced by the seasonality of recorded
data can also be seen in the performance of our methodology un-
der extreme levels of subsampling (using around 1% of the sample
monthly data to feed the model or less). In these circumstances, the
model is still able to produce a good prediction of the empirical data,
yet it reproduces better the accumulated yearly mobility rather than
the monthly one since the inherent seasonal variations of traffic be-
tween certain intersection pairs are smoothed by the aggregation pro-
cedure.

Furthermore, in the event that enough historical data were avail-
able, we could achieve even better results by computing the collection
{(pij).} with an appropriate T period (depending on the granularity
of the data) and approximating pgy =~ (pij). for the group of trusted
trips (equation (10.4)). Such a procedure, which may be extended to
overcome the minor limitations imposed by the seasonality of the
data and other improvements related with the presence of non-active
nodes could be derived to perfect the method. Figure 8.1 and Fig-
ure 8.2 in earlier chapters are generated using precisely this proposed
methodology.

10.1.3 Extension of the static supersampling in time

The above method has been used here to reconstruct a static (aggre-
gated) sample of a mobility process represented as an OD from a
limited dataset. However, given that we have detailed knowledge of
the temporal dynamics of trip generation in the city of NY, an exten-
sion can be derived to distribute trips in time if needed: Taking into
account the exponential nature of inter-events times between trips
(Figure 7.5) and the change of its average among different hours (Fig-
ure 7.4), together with the static picture provided by the entire col-
lection of {pi";’} given by (10.3) and the close-to-gaussian statistic of
daily trip generation we could readily implement the proposed Algo-
rithm 4.

Using the static procedure to infer {p%?}, we could use Algorithm 4
to distribute trips in time, taking as input the collections {p{}} and
the average and standard deviation of number of trips generated per
day type and hour (see Figure 7.4) and an inflation factor f. In a nut-
shell, for each day we generate T4 trips Gaussianly (see Figure 7.4 A
and B) with average and standard deviation empirically introduced
but augmented by a factor f. We then distribute the T4 trips among
the different hours according to a probability qy, (Figure 7.4 D) and
the different intersections according to pS5. Finally, the t% trips allo-
cated per hour in each intersection are distributed in time according
to exponential inter-event times with average 3600/ (po%’qh). This
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Algorithm 4: Trip time and intersection supersampling algo-
rithm.

Input: Number of intersections N, City intersection pair
invariants {p%?Vij = 1...N?} (float vector), Weekday
average and standard deviations of trip generation
{(Tday, G-zrday)dVd = 1...7} (float vector), Hourly
probability of trip allocation {qVh = 1...24} (float
vector), number of days to sample dqqys (int), inflation
factor f and starting time To.

Output: List of generated trips (i,j, T)Vt = 1...T (vector with

each entry a 3 float tuple).

begin Initialization

Set d = 0. Set L = 0. Set T = To;
end
begin Day generation
while d < dgqys do
Generate Ty trips according to Gaussian distribution of
parameters Tgay, G%day ;

begin Hourly generation
for h=0,24 do
begin Intersection generation

fori=1,N do
forj=1,Ndo
Set v/ =1,

Generate ti; trips according to
Poisson distribution of parameter
<tij> = T_dp%)qh}

begin Trip generation

fort = ]/tij do

Generate a time interval dt
according to an Exponential
distribution of parameter

3600/ tij;
T+ =dt;
Append (i,j,t) to L
end
end
end
end
end
T+ = 3600;
end
end
d+=1;
end
end

return L
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procedure has been used to assess the impact of taxi sharing in the
city of Vienna [5].
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10.2 SOLVING THE NON-SPARSITY PROBLEM: OBTAINING NET-
WORK BACKBONES USING GRAPH FILTERING

The previous example shows how one can exploit temporal stability
of trip allocation to effectively reconstruct limited datasets. In this
final example, we will try to tackle the opposite problem. We want to
extract the most relevant information of our network while reducing
as much as possible its numbers of elements.

We have seen that urban taxi mobility Origin-Destination matri-
ces display network features lying not far away from the predictions
yielded by assuming a null model where the strength of each location
is fixed (the MECM studied in detail in Section 6.5). We have further
seen that the statistics of each node pair can be very well represented
by Poisson statistics (Section 8.1). Combining the two prior facts we
can derive a simple filter that allows us to tackle problems that arise
by the non sparse nature of the networks under study.

Heavily dense? graphs such as OD present important computa-
tional and graphical handling challenges to network science practi-
tioners. In particular, extracting qualitative information using data
exploration techniques [54] is problematic due to the high number of
binary edges present in the data. Also many network algorithms are
designed to be efficient in sparse structures and hence their applica-
bility is severely limited when networks possess many binary edges.

The usual form to tackle this problem is to apply different filtering
algorithms to the networks under study. A naive way to do so is by
applying a simple cut-off rule: Just keep the binary edges with occu-
pation number values {;; exceeding a given threshold t*". However
this has many undesired and uncontrolled effects, since it erases low-
occupied binary edges without taking into account their statistical
significance. This in turn may alter the topological properties of the
networks under study and introduce a typical scale on complex net-
works which are inherently heterogeneous and whose characteristics
usually span multiple scales.

Many sophisticated variants pivoting around the same principle

Foraveryrich  of filtering applying a cut-off rule have been proposed and shown
_discussionon o be effective in reducing the density on a variety of graphs (most
filtering ‘;’;{‘Z rl;itcg notably human migration flows and trading networks [86]), however,
see[167],  these methodologies are not directly based on statistical plausibility
includinga ~ arguments since they do not make any reference to a null model.
rigorous Other authors have proposed to follow a different line of attack: Pro-
t;z;zng ZZZZZPZZZZ cedures have been proposed which filter out binary edges according
in[162] see 0 @ given null model [162, 143] with a tunable confidence parameter
comment in [166]) o (associated to a probability) which determines the severity of the

applied to human filter. Their only divergence lies in the choice of null model.
migration data.

2 In the context of this section, dense loosely refers to a network having a large number
of binary edges.
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In the two cases mentioned both the binary and weighted structure
of networks is considered, yet [143] focuses on the observed occupa-
tion number distribution at a global scale while [162] puts the em-
phasis at the local level of the nodes. [162] considers a null model
that assumes a uniform allocation of total occupation among the k
outgoing (and incoming) binary edges of a node while [143] uses
naive bayesian models taking into account a fixed weight and degree
distribution.

All the previously mentioned techniques do preserve the heteroge-
neous scale of the filtered networks and provide a sort of simplified
(sparse) backbone of a network, with can be handled with more ease,
and where network features can be more easily studied. The obvious
problem with this approach is that such features heavily depend on
the null model considered.

When talking about network backbones, it is worth emphasizing that
our primary objective in the present case is to obtain a resulting net-
work where the most relevant edges are maintained and which ob-
viously contains distinctively less binary edges and events than the
original one. In consequence, our focus is not placed in obtaining a
graph as sparse as possible where all nodes remain connected, because
there is no reason to suppose that some (unimportant) nodes should
remain connected to the network at the end of the process. Evidently,
what we mean by "most relevant edges" remains to be defined, and
in our case, we will identify those binary edges with the ones having
exceedingly more and less trips than what would be prescribed by
the considered null model.

In our case, we do know that most of the characteristics encoun-
tered in urban mobility data are close to those generated by the
MECM. Hence, we consider that the binary structure (node degrees)
is rather a consequence of the strength distribution rather than an ad-
ditional feature to be taken into account, and consequently the null

model must be modified. The proposed filter
is inspired by the
. ) ) one proposed in
10.2.1  The binary edge Poisson filter [162] and [143],

yet using a
The filtering we propose is based on assuming certain statistics for ~ different null
the node pair occupation numbers t;;. The parameters determining Z;iili::dme thod
the statistics of the null model may be varied, and in this example ¢ e pinary
I will use the Poisson form corresponding to the non-binary MECM  edges. Another
due to the fact that its solution is analytical and it is specially helpful =~ example of similar
for the case at hand. But it must be emphasized that any statistics f?:;gzjmn be found
derived from the examples of non binary maximum entropy ensem- '
bles presented in Part ii can be used for the null model, according
to the needs of the practitioner, as long as the complete form of the
probability distribution for the occupation of each pair of nodes is
known.
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For a given confidence level 0 < o < 1 and for every considered
node pair ij with expected null model statistics qnyn(tij), the filter
works as depicted in Figure 10.2-A: It computes the pair of values
(tmin, tmax) at minimal distance from the mean that fulfil the condition

tmaX
P(tmin, tmax) = Z qnull(tij) Z o (10.5)
t

min

Then, if the empirical ’Eij lies within the interval [tiin, tmax], it is re-
moved, otherwise it is kept3. o in this case can be considered as the
complementary of a p-value: It is equivalent to the probability to dis-
card a binary edge, assuming that it is generated by statistics corre-
sponding to ppun(tij)-

Due to the integer value of the occupation number statistics, the
equivalence is not exact for small values of <tij> lnun (Which are the
most commonly found in real data due to the inherent skewness of
the considered distributions). This can be seen in Figure 10.2-B, where
we test the filter on network instances produced precisely by the
null model. The average empirical rejection probability P(tmin, tmax) is
shown to converge to the expected confidence level o as the sampling
is increased (hence Poisson statistics converge to Gaussian statistics).
We must additionally take into account that, due to the non smooth
integer nature of the statistics, the manner of choosing the values of
the bounds tmin, tmax is not unique. In the present case, I have chosen
an incremental method starting from the closest integer value t to the
expected mean (tij) [nn as described in Algorithm 5.

10.2.2 Testing the filter on the null model
The filtering
algorithm is To test the effectiveness of the method, I have applied it first on sam-

implemented in  ples generated using the assumed null model (with self loops), for

[10] and freely which
available. ’

§(.Jut§1'n

(tij) Inun = IT] (10.6)
and I have taken as input the original strength sequences of the NY,
SI, SF and VI taxi datasets. The skewness of the occupation number
distribution favours small average values of {;; (and (tij) [nn) and
thus « (and also P(tmin, tmax)) can only be considered lower bounds
to the empirical fraction of removed binary edges 1 —fg = 1—E/T in
any practical situation (Figure 10.2-C).

3 Obviously, variants of the method can be envisaged, for instance, subtracting the
contribution of the null model to the remaining edges, i. e.keeping the values ti; —
tmin if tij < tmin and tij — tmax conversely. However, this procedure leads to signed
networks with positive and negative edges, and hence will only be considered for
visualization purposes.
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Algorithm 5: Graph filtering algorithm for node pair occupa-
tion number selection.

Input: Empirical occupation number ti;, expected average
occupation number (tij) |, confidence level .

Output: Filtered occupation number t.

begin Initialization

Setp =0;

if ‘<tij> bt — [ (ti5) |nullH < ‘<tij> bt — | (ti5) |null“ then

Set t = Rtij> |null—|/ tmin =t tmax = t+1;

Set k = —1.

end

else
Sett = L<tij> |nullJ/ tmin=t—1, tmhax =1,
Setk = —1.
end

end

begin Bound search

while p < « do

if k > 0 then
t = tmaxs
tmax = tmax + 1;
if t,;;; > —1 then

| k=—k.
end
end
else
t = tmin, tmin = tmin — 1;
k = —k.
end
P =P+ Pnun(t).
end
end
if t,,;, < 0 then
‘ tmin = 0.
end

begin Selection

if ’Eij € [tmin, tmax) then
|l t=0.

end

else
‘ t= {ij .

end

end
return t
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A last step prior to applying our filtering method to the four taxi
datasets is necessary in order to choose an appropriate confidence
level « for each case (cities display wild differences in sampling). Fig-
ure 10.2-D shows the average surviving degree (k = E/N.,) evo-
lution with 1 — o after filtering on instances of the null model. We
observe a smooth decreasing behaviour only interrupted when the
filter returns an empty net (which happens for 3 normal o in the case
of VI and SF, 40 for SI and 50 for NY)*. Once reached this point, we
can be sure that whatever remains after applying the filter to real data
contains absolutely no traces of any MECM-like edge5.

10.2.3 Testing the filter on the empirical Taxi datasets

Having validated our filtering algorithm on a synthetic sample and
studied its effects, I proceed to apply it to our four taxi datasets. Re-
sults of the application of the filtering procedure are displayed in
Table 10.2. Following a standard approach, we have chosen confi-
dence levels inspired by z values of a standardized Gaussian distri-
bution. For the sparser datasets (SF and VI) we have chosen a level
of three sigmas oz, = 0.997, for the SI dataset a level of four sigmas
a4 = 0.99994 and for the significantly denser dataset of NY a level
of five sigmas o5; = 0.9999994, which are all displayed as vertical
lines in Figure 10.3-D.

Obviously, when applying the filter to real data the decrease in the
number of binary edges is by no means as pronounced as for the
MECM, yet, a distinctive number of binary edges are removed even
at small levels of confidence as shown in Figure 10.3 (50% in the worst
case at @ = 0.68 confidence level), fact which validates our previous
insights (Section 8.2) that the observed OD networks display close
features to those of a purely random network with fixed strengths.
Additionally, even if the decrease in the number of binary edges is
pronounced, still a macroscopic part of the network is recovered, as
seen by the fraction of remaining connected nodes. Considering the
resulting average degree of the filtered datasets, in all cases we ob-
tain k ~ O(1 —100) for the confidence level chosen, fact which eases
considerably their analysis. Finally, it is worth noting that even if the
reduction of binary edges is important, in all cases the minimal value
of the occupation number distribution is tmin =~ 1, in stark difference
with the situation attained would we apply a thresholding filter: In
this case, to obtain an analogous reduction on the number of edges
we would need to apply a threshold tyyes > tmin which would bias

4 To quantify the severity of the filter, we use the standard o quantification referring
to the « level corresponding to a two-tailed normal gaussian cumulative probability
function.

5 As usual in statistics involving hypothesis testing, the o parameter is somewhat
arbitrary. In here we only propose a rule of thumb methodology that we seem fit to
apply in the general case.
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Figure 10.2: Testing the graph filter on the null model. (A) Schematic ex-
ample of filtering procedure: For a given confidence level «,
the pair (tmin, tmax) determines the maximum bounds such
that P(tmin, tmax) = « for the given null model determined by
(tij) lnun- In this case, the binary edge with t; occupation is re-
jected by the filter while t; is accepted. (B) Complementary av-
erage empirical rejection probability 1 — P(tmin, tmax) compared
to the expected one 1 — «, as sampling is increased both con-
verge but always o < P(tmin, tmax). (C) Empirical acceptance
probability (fraction of surviving binary edges fg) as a func-
tion of the complementary confidence level 1 — . « can only
be considered as a lower bound to the real rejection probability
due to the discrete nature of the statistics, the limited sampling
and the skewness of the occupation number distribution. (D)
Choosing the right confidence level: Average surviving degree
k = £/N- for the filtering applied to null model samples us-
ing a single run. Vertical lines marking the different gaussian o
confidence levels have been added for clarity.
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DATASET 11— E fe fr N tain  trmres OVERLAP
NY 6-10=7 6.5-10> 0.09 0.44 0.99 1 54 0.51
SI 6-10"°> 1.3-10° 0.03 0.22 0.85 1 11 0.56
SF 3-1073 4.3-10% 0.01 0.07 0.32 3 12 0.36
VI 3-10°3 5.103 0.02 0.07 0.33 3 4 0.67

Table 10.2: Filtering parameters and global results for the different empir-
ical datasets. The table shows the fractions of surviving binary
edges (fg, also total number of edges shown E), events (f) and
nodes (fn) after filtering with confidence level o has been ap-
plied. It also show the minimal nonzero value of the observed
occupation number sequence after filtering £, and the value
that would need to be applied in order to obtain a reduction of
fe using a naive threshold filter. Overlap represents the fraction
of surviving edges after applying the filter that would also be
present if we applied a naive thresholding approach to obtain the
same number of edges.

and alter the structure of our empirical network obtaining limited
overlap between edges present in one or the other network (see last
Additional plots ~ columns in Table 10.2).

showing the effect To explore on the effects of the filtering on network features we
Of;t?eﬁ :ter Ogltélg focus on the case with the higher sampling, that of NY (similar re-
‘ ;;2 SV(;fmn' be sults obtained for the other datasets, see Section D.2). As shown in
found in  Figure 10.4, the heterogeneous nature of the networks under study
Section D.2. js never lost with increasing values of o. The distribution of occu-
pation numbers (Figure 10.4-E) remains broad and the distribution
of node strengths (Figure 10.4-A) remains very stable after the ini-
tial change due to the elimination of the majority of random trips
(which normally display small occupation values, hence the bump
that progressively appears in their distribution as the filter becomes
more strict). In contrast, macroscopic observables depending on the
binary edges such as the node degrees (Figure 10.4-B) or the disparity
(Figure 10.4-C) are altered. This causes the network features to pro-
gressively lose their MECM-like characteristics and approach those
hinted in our previous analysis (Section 8.2): The positive slope of
the assortativity profile (Figure 10.4-D) becomes pronounced (small
nodes are over-connected among them) and the relation between de-
gree and strength ceases to be linear. One can see, however, that the
filter does not alter the node-hierarchy of the network. In Table 10.3,
we measure the spearman rank-correlation coefficient between node
attributes for the remaining nodes after filtering and their original
values, and we see how their strength value ordering is not greatly

altered in either case (albeit with different intensity for each city®).

6 Since the number of nodes is not maintained specially for the smaller datasets, the
rank comparison in this case becomes difficult.
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Figure 10.3: Applying the graph filter on the empirical datasets. (A-C) Em-
pirical node fy, binary edge fg and event fT acceptance proba-
bility (fraction of surviving elements) as a function of the com-
plementary confidence level 1 — «. (D) Average surviving de-
gree (k = E/N) for the empirical datasets. Vertical lines marking
the different o levels and an identity dashed line for the fg plot
have been added for clarity.
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Figure 10.4: Graph filter sensitivity to confidence level o for the case of
NY. Empirical network features after filtering for different con-
fidence levels « for the case of NY. A-D Node related features
preserving heterogeneity: The strength distribution (A) and (in-
creasing) assortativity profile (D) remain widely stable after the
first level of filtering, while binary edge related magnitudes
such as the degree (B) and disparity (C) suffer wider changes.
EF Edge related features: The existing trip distance distribution
(F) is mostly unaffected by the filter and neither is the tail of the
existing occupation number distribution (E).

APPLICATION
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DATASET Ps Pk Py, Psw, €3
NY 0.99 0.96 0.85 0.94 -0.21
SI 0.92 0.86 0.77 041 -0.21
SF 0.74 0.59 0.55 0.45 0.05
VI 0.55 0.34 0.27 026 -0.11

Table 10.3: Filtering parameters and topological results for the different
empirical datasets. The table shows the spearman correlation
p between the strengths s, degrees k, disparities Y, and aver-
age neighbor strength s}V, of the surviving nodes after filtering
and the original data. Only the outgoing direction is shown as
results in the incoming direction are quantitatively equal. Also
the relative difference ¢35 = (d¢ — d)/d for the average trip cost
a = Zij {ij dl]/ Zi]’ ‘Ei]' is shown.

Finally, while the shape of the distribution of trip lengths remains
largely unaltered, the average length of the trips significantly de-
creases (up to a —20%) fact which shows the favour of empirical data
towards short trips” as seen by the spatially cohesive regions obtained
in our earlier modularity analysis (see Section 8.3).

10.2.4 Exploiting the symmetry of the filter to extract relevant features
from the empirical networks: Under and over used trips

An important feature of our filtering procedure is that by construc-
tion it is symmetrical with respect to edge removal, because it uses
a two-tailed statistical test. Hence from its result, one may decide
to generate the mobility network of under-used trips or conversely
the network of unexpectedly (according to the null model) over-used
trips. Both pictures provide different information about the trans-
portation phenomenon at study. Obviously, due to the implicit conser-
vation rule in the MECM (the total number of trips and the strength
of each node is conserved) both networks are correlated: Over-used
trips must be compensated with under-used ones. However, there
exist still degrees of freedom for each of the two networks, so study-
ing them separately is still interesting to identify possible sociological
factors that inhibit trips among two particular pairs of locations for
instance. In general, due to the asymmetry of the Poisson distribution
for small occupation numbers, we expect the number of under-used
trips to be smaller than that of over-used ones. However, this differ-
ence is expected to balance as sampling is increased (as we reach a
fully connected network, however difficult this might be). For NY the

The only case where this is not true is SF, but in this case the presence of the airport
distinctively isolated from the rest of the nodes, which concentrates a large share of
the (unexpected) traffic, compensates this fact.
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proportion of under-used trips after filtering relative to the total is
0.26 and it decreases for SI (0.1) and SF (0.1) until it disappears for
VL

From the obtained networks, one may want to classify their edges
according to importance. However, with regards to "importance" of a
given edge, one may identify it with their "unexpectedness" (accord-
ing to a null model) or from their resulting occupation. We take nor-
malized z-scores of each surviving edge to quantify the former level
of importance while the edge residual occupation Ay = i — (tij),
to express the latter.

10.2.4.1 Under-used trips

In this case, both the values of z and A convey similar information
as they are very correlated (spearman correlation rank p > 0.7 in all
cases among both variables) while being very broadly distributed (see
additional Figure D.10 in Section D.2). Also, contrary to the case of
over-used trips, no general direct relation can be made among either
indicator and the strength of the nodes at the start and end of these
trips for all the datasets. This may indicate that exogenous (sociolog-
ical, city dependent) factors determine these "anomalies". However,
the very existence of this trips with non zero, yet under-expected,
values is a noteworthy fact even at small levels of sampling (SF).

10.2.4.2  Quer-used trips

For over-used trips, however, the z-score and A metrics provide dif-
ferent information as they are related in a non-trivial way. Focusing
on the types of nodes they connect, Figure 10.5 shows the average
values of both metrics as function of the origin and destination node
original strength (prior to filtering). We observe how the bulk of un-
expected trips lie in the diagonal §™ ~ §°"* (due to the assortativity of
the network), with trips among small nodes favouring large z-scores
while trips among top-visited locations having large residuals. Large
z-scored edges correspond to random taxi trips taken by users for
particular, non-generalizable purposes. It remains to be seen if this
circumstance is only particular to taxi modes of transport or could
be detected in other source of mobility data, but these kind of trips
would correspond to the detected "random" trips mentioned in [118]
(see discussion in Section 8.2), whose contribution grows with city
size (population and thus sampling) with respect to the other kinds of
flows. Edges with large residuals connect mainly hubs, but also pairs
of intermediate locations display large number of residuals (termed
"integrated" flows in [118]), which are probably caused by sociologi-
cal factors which cannot be accounted for using a simple tconstrained
framework like the entropic models earlier proposed.

The overall observations may lead the reader to believe the exis-
tence of a clear anti-correlation among both metrics, however, their
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Figure 10.5: Over-used trips z-scores and residuals allocation. Average z-
score (top) and residual (bottom) as function of the non-filtered
strength of the origin and destination nodes whom they connect
is shown (bottom). The fact that hubs tend to be connected by
large residuals while scattered locations display large z-score

values is apparent.
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Figure 10.6: Over-used trips z-scores and residuals correlation. Correlation
among z-scores and residuals Ay of edges surviving after filter-
ing the empirical datasets. Overprinted white lines correspond
to average values using log-binning.

relation is more complicated and non-monotonous, see Figure 10.6.
For cities with large sampling, among the trips with the largest resid-
uals we find also some of the trips with the largest z-scores.

To finish this section, we proceed to show a visual representation of
the filtered networks under study. Even if the filter is successful at ob-
taining the backbones of the considered networks, visualizing graphs
with 0(10%) binary edges is a complicated endeavour. For this reason,
and for visualization purposes, we have applied first the proposed
filters with the chosen confidence levels to each of the subgraphs of
over-used trips and only then have we applied a thresholding proce-
dure keeping only the top 100 binary edges with largest residual Ay.

Obtaining  The result is shown in Figure 10.7. It must be stressed once again that
informative,  even choosing such a small subgroup of edges, the overlap between
””?”“S?i T.twor.k doing so choosing edges with the largest residuals compared to the
:;Z;ZZZ;ZH;Z edges with the top occupation (choice that would be made using a
represents and ~ standard thresholding approach) is only partial (0.77 NY, 0.84 SI, 0.68
active area of  SF and 0.92 for VI). Visualizations are shown in Figure 10.7.
research i the Obtaining sound and unbiased conclusions from network visual-
growing field of e . .
Data-  1zation is a complicated issue because one needs to carefully choose
visualization [54]. ~ What to represent. In the present case, my intention is focused on
highlighting several aspects of the networks under study: We can ob-
serve that the strength distribution is widely distributed (node size is

proportional to outgoing strength). Airports concentrate a large por-
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Figure 10.7: Network representation of the four filtered datasets. Network
representation displaying the top 100 edges with top residuals
Ay (over-used trips). Edge thickness is proportional to residual
value and edge colors is a blending of the colors of parent and
child nodes being connected, node size to outgoing strength
(original network) and node color to community assigned by
modularity maximization on the original network. Nodes are
placed according to their original geolocalized coordinates.

tion of the total traffic but now large nodes appear not only concen-
trated around the city center. This is specially evident in the case of
Singapore (and also Vienna), where a polycentric [? ] structure (nodes
distributing trips among close locations which in turn are connected
to other larger nodes and the city centre) is apparent. We can also
further see that setting apart airports, the allocation of highly used
binary edges seems to be really dependent on context specific prop-
erties of the nodes (sociological importance) and hence no apparent
pattern with relation to node strength nor distance is visually appre-
ciated. This is one of the main reasons why gravity-like inspired mod-
els (partially) fail when applied to urban environments, as already
pointed out in Chapter 9.

As a final remark, we must acknowledge the difficulty of assessing
the effectiveness of a filtering procedure on a given dataset. By con-
struction, any procedure will provide output results, whose plausibil-
ity cannot be evaluated using a non-arbitrary criterion. The effective-
ness of the filtering method must be instead checked with external
sources of data and knowledge from the studied process.

In the present section, we have provided an example of applica-
tion of the knowledge developed in previous parts of this thesis re-
garding the underlying statistical structure of the considered datasets
and their associated null models. Although I have particularized to
a given example, the applicability of the method is general and com-
patible with any of the models studied in Part ii. We here provide
statistical-based procedure which, in contrast to thresholding methods,
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allows to detect and quantify statistically relevant data features using
a starting hypothesis (null model) based on a maximum entropy prin-
ciple. We thus aim to contribute to solve the problem of assessing the
impact that data thresholding techniques [78] have on complicated
structures and multi-dimensional datasets represented using graphs.

APPLICATION
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10.3 WRAPPING UP: APPLICATIONS OF MAXIMUM ENTROPY MOD-
ELS TO KNOWLEDGE EXTRACTION FROM EMPIRICAL DATA

In this final section of the thesis we have shown two particular appli-
cations of the theory developed combined with the data-exploration
insights obtained in previous chapters. Others could be devised, but
in this particular case we have tackled two problems that have also
recurrently mentioned in the text, specially in the introductory part
concerning data analysis (Chapter 7).

A. Sampling: We have proposed and implemented a procedure
that exploits the temporal stability of inter-node statistics {pff}
(shown in Chapter 8) together with the high effectiveness of Wil-
son’s doubly constrained exponential gravity model to model
urban mobility (discussed in Chapter 9) to reconstruct a pic-
ture of a mobility process using only limited samples of aggre-
gated data. The procedure has been tested on the NY dataset
(for which a ground truth is available since all yearly trips are
recorded) and its effectiveness shown up to extreme levels of
subsampling. Furthermore, an extension to apply what we call
supersampling procedure to richer data sets where temporal infor-
mation is available has been proposed and the limitations of the
method have been discussed.

B. Feature extraction and network visualization: Inspired by the
existing literature on graph-trimming, we have developed a fil-
tering procedure that allows to separate the contribution of ran-
dom trips given by the structure of the city (or any of the en-
tropic null models developed in Part ii) from the distinctive,
non-random unexpected features of urban mobility. Given that,
as we had seen in Section 8.2, an important part of taxi trips can
be explained by the city layout, the application of such a filter
using as base the MECM model is highly effective. On the one
hand it allows to significantly reduce the number of trips and
binary edges of the networks, thus easing its analysis in terms
of computation costs. On the other hand, it allows to extract
features of the four considered datasets and to study separately
the under-expected and over-expected trips. The filter has been
used visualize the datasets.

The success of both our reconstruction and simplification methods,
even using very small amounts of data, points out the composite
structure of the network of urban mobility: Taxi displacements are
characterized by a core of unexpected trips coupled with trajectories
generated at random but conditioned by the structural constraints of
the city such as population distribution and mobility costs. At the
same time, the core of unexpected trips can be split among a non-
negligible groups of over-expressed trips among scattered locations
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generated by particular user necessities distributed randomly in the
spatial layout of the city and a group of edges with large occupation
connecting preferably hubs (either local or global) and reinforcing the
assortative nature of the network of displacements.

This chapter provides complementary tools to those used in Chap-
ter 8 for the study of mobility networks and closes the part of the the-
sis devoted to the analysis of empirical data. Analyzing non-binary
network structures is a complicated task, but the methods here used
are fully general and could be extended to many different cases of
non binary network studies (not necessarily related to mobility). The
addition of entropic models based on constraint hypothesis helps
in extracting knowledge from such complicated structures. Also, the
flexibility of our modelling framework allows to focus on testing dif-
ferent aspects of the topology and also to visualize them in an infor-
mative manner.

Finally, the implications concerning the success of the applied su-
persampling methodology are two-fold: On the one hand, for the par-
ticular case of urban mobility, the stationarity of the temporal patterns
could be exploited to save space and effort in recording mobility data.
On the other hand, our method opens the possibility of efficiently
scale up data from reduced fleet of vehicles in cases where a full
knowledge of the system is needed.



Part IV

CONCLUSIONS

A research never truly ends, it is just merely delimited
in time due to personal constraints. Nevertheless, for any
work done, lessons must be extracted from it and an evalu-
ation on what has and has not been achieved must be per-
formed. This final part recapitulates all the research done
in this thesis, reviews possible criticism and sketches fu-
ture interesting research directions, based on my personal
opinion and experience.






CONCLUSIONS AND PERSPECTIVES

One never notices what has been done; one can only see what remains to be
done.

— Marie Sklodowska Curie [58]

11.1 OBJECTIVE REVIEW AND CONTRIBUTIONS

The analysis of urban mobility data has been our case study to ex-
emplify the possibilities that network science can offer with regards
to data analysis. More particularly, we have shown that non binary
networks, which are particular types of graph where the interactions
among elements are graded, provides an interesting framework to do
sO.

However, by choosing such tools, we have quickly realized how
non binary networks are complicated structures to analyze, as their
degrees of freedom are considerately larger than those of binary net-
works (where interactions among elements are dichotomic). In the
first part of this work, our aim has thus been to provide tools to
study them in a systematic and consistent manner.

In order to create recipes to guide this systematic approach, we
have started our study focusing on theoretical foundations for the
generation of non binary network models with flexible prescribed
properties. The objective is to use them to generate null models mim-
icking properties of real data, to assess the structural impact (and
possible causality) these properties have on other measurable metrics
of the system under study:.

Our work has first placed into context our research, circumscribing
it on non-sparse networks with integer weights. For these structures,
the need for defining asymptotic limits and a relevant scaling vari-
able different to what is commonly used for ensemble descriptions
of sparse binary networks has been discussed. For the case at hand,
we have set a convenient scaling variable related to the number of
recorded events used to connect nodes.

Drawing inspiration from classical statistical mechanics, we have ar-
gued that using a maximum entropy principle to tackle this challenge
is a promising approach, yet important considerations must be made
about the structure of the systems under study in order to allow for
a precise ensemble treatment of the problem.

We have classified non binary networks which can be obtained by
aggregation of different layers of information into three distinct gen-
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eral groups, depending on the distinguishability of the events form-
ing them (Multi Edge, Weighted and Binary networks). This taxon-
omy naturally includes in our framework previous work done by
other authors and allows to clearly establish differences among their
starting hypotheses.

For all the considered cases, we have explored ensembles with hard
and soft constraints, circumscribing our analysis to a particular (yet
quite usual) form for the considered constraints. This analytical study
has lead us to realize that given our starting hypotheses and our def-
inition of asymptotic limits, the only types of ensembles likely to be
observed in real data would be the ones composed by distinguish-
able elements (ME case). Furthermore, this case is the only one with
well defined asymptotic properties and for which the treatment for
both soft and hard constraints leads to equivalent results. Even for
this ME case, the only total harmony among ensembles is obtained
for constraints expressed as linear forms of the occupation of events
in each state (pair of nodes), which is the case that can be naturally re-
lated to the Maxwell-Boltzmann statistics studied in classical physical
systems.

Motivated by this fact, we have explored the similitude and differ-
ences among network ensembles and the corresponding usual equi-
librium statistical mechanics ones. In doing so, we have derived the
Maxwell-Boltzmann statistics of occupation of discrete energy levels
for the Grand Canonical ensemble in a completely consistent way
from the point of view of particle distinguishability. Also, we have
identified two different (yet related) conditions that clarify the con-
cept of ensemble equivalence among soft and hard constrained ensem-
bles. We have seen how equivalence of asymptotic ensemble entropies
is a weaker condition than strict vanishing of constraints fluctuations
relative to the scaling variable for the soft constrained ensemble. In
this sense, we have shown how for the ME case with constraints de-
pending on the binary occupation of events in each state the former
condition is met while the later is not, while the ME case with linear
constraints meets both conditions and thus is the only situation that
leads to strict ensemble equivalence among the cases studied in this
thesis.

We have consequently focused on this specific case, where we have
extended the previous work by other authors into a completely tun-
able null model that includes many constraints that may be of interest
in real world applications. These include fixing event cost statistics,
strength distribution, node strength correlations, community struc-
ture, occupation number distribution and also quantities depending
on the binary structured of the networks.

Once the limits of our theoretical work have been explored, and
with practical applications in mind, we have proceeded to put it in
practice in order to generate samples of our proposed models for the
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three earlier mentioned ME, W and B cases. In this sense, we have pro-
vided all necessary ingredients to simulate the variety of null models
studied and additionally openly made accessible a software package
to do so for a majority of the considered examples of constraints.
We have further provided an effective way to obtain analytic expecta-
tions for network related magnitudes to complement those obtained
by simulation, and we have made use of them to experimentally test
our prediction of ensemble equivalence for the Multi Edge case with
linear constraints. In order to highlight the importance of choosing
the right model for each system, we have studied the particular en-
semble of non binary networks where the strength of each node is
fixed. This case has also served to study the strong impact that fixing
this feature, which tends to be heterogeneously distributed in em-
pirically observed networks derived from human activities, has on
overall topological indicators.

With the appropriate set of tools developed in the first part of this
thesis, we have faced the analysis of urban mobility data. To begin, a
general overview on the available data sources (taxi displacements in
New York, Singapore, San Francisco and Vienna) has been made, and
we have discussed their limitations, as well as the filtering procedure
used in each case to clean them. We have performed a general analysis
on the temporal aspects of data to justify the aggregation of all tem-
poral data in a static picture, thus disregarding dynamic effects. The
taxi trips have been shown to suffer from hourly, weekday and sea-
sonal fluctuations (in decreasing order of importance), yet we have
argued that, if sufficient data were available, a detailed analysis us-
ing the same proposed methodologies could be done particularizing
to each case (on a hourly, week-day, month, etc... basis). The analysis
of these effects has shown that they are common to the four studied
datasets. We have then defended that the diverging geographical lay-
outs of the different cities studied justify the network approach taken
to study urban mobility to try and isolate geographical-dependent
related factors from overall common, "universal", traits.

Taking the non binary network point of view, we have confirmed
that datasets of taxi displacements among locations display statisti-
cal properties compatible with a description in terms of maximum
entropy Multi Edge network ensembles with linear constraints, as-
suming a fixed (quenched) quantity p{j that characterises each inter-
section pair ij. The distribution of urban activities, encoded in the
observed trips emerging and entering each node, is highly heteroge-
neous in the four studied datasets. In order to assess their influence
on the observed mobility, we have made use of the earlier studied
Multi Edge configuration model (MECM). We have found that the
concentration of activities in the urban context plays an important
role in shaping the observed mobility, albeit distances and an array
of sociological factors account also for variations among empirical
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data and the MECM. This study has allowed us to uncover common
network mobility features present in the four studied datasets and
also relating them to others analyzing different, yet similar, sources
of data. Those common features include exponential decay of trip
lengths, heterogeneous strength distribution, moderately assortative
profile of node strengths, large tails in the distribution of trip occur-
rences, over-expression of trips among low strength valued nodes and
also the presence of spatially cohesive communities of over-connected
nodes.

Once the main topological characteristics of empirical datasets have
been studied, we have performed an exhaustive review of existing
proposed models of urban mobility from a theoretical point of view,
discussing also issues related to their practical implementation to the
urban context. We have implemented the models and tested their
quality to reproduce taxi urban mobility. To do so, we have first
presented indicators commonly used to assess their quality and we
have also proposed new ones aiming to provide a complete view on
model performance with the addition of entropy measures and net-
work topology related indicators. The practical implementation of the
models has allowed us to show ME entropic models as the best per-
forming ones, balancing explanatory power, ease of use and analyti-
cal treatment. This procedure has also made patent that despite the
usually large amounts of data available for these kind of studies, the
non-sparse nature of the studied networks provokes a strong depen-
dence of model indicators on sampling, specially (and sadly) those
related with entropic quantities studied in the earlier part of the the-
sis. This fact is aggravated by the heterogeneity of the distribution
of occupation number values (trips among locations), which justifies
the need of simulation and benchmark measures in every empirical
study to control for sampling effects.

We have then focused on analyzing the best performing model,
which has been Wilson’s original formulation of the gravity law of
transportation, a maximum entropy model enforcing the total strength
of each node and the average perceived cost of trips, assumed to
be proportional to euclidean distances. Despite capturing to a good
extent the urban mobility process, even this constrained model can-
not fully account for the observed patterns of connections, highlight-
ing the limitation of simple models to capture complicated, human-
dependent activities. The main sources of discrepancy for all datasets
being the unexpected long tail of the occupation number distribution
(some particular intersection pairs ij displaying very large occupation
values) and the over-represented weight of trips connecting nodes
with low values of strength.

Summing up all the above observations, in the last chapter of this
thesis we have tried to produce useful applications to apply to the
field of urban mobility problems.



11.1 OBJECTIVE REVIEW AND CONTRIBUTIONS

Taking into account the ability of a strength-constrained and cost
constrained model to correctly describe the majority of trips, com-
bined with the stability of intersection pair ij specific values (inde-
pendent of the sampling) and the flexibility of the framework ear-
lier developed, we have proposed a partially data-driven model that
is highly effective at reconstructing mobility processes from limited
samples. This model allows to reconstruct a mobility process from
(very) limited samples, and has been tested on the NY dataset, exem-
plifying how it could be used to generate traffic predictions based on
historical or partial data.

We have also tackled the problem of extracting noise from observa-
tions of urban mobility datasets by devising a filtering methodology,
inspired in previous work by other authors but making use of our
developed null models. Such a filter can be used to subtract from
empirical data the contribution of any of the earlier developed null
models. In particular, given the large contribution detected by the
strength distribution in explaining the observed mobility patterns, we
have exemplified its use on our four datasets taking as example the
MECM. As a novelty, the ability to produce samples of our proposed
null models has allowed us to study the effect of the filter on random
instances of the model, which has helped us in tuning the parameters
to use when applying it to the empirical datasets. The application
of the filter has confirmed our earlier characterization of the empiri-
cal networks. Additionally, being our filtering procedure symmetric,
it has further allowed us to divide the remaining trips in over-used
and under-used trajectories, which can be then studied separately. We
have produced also visualizations of the datasets to exemplify how
the proposed filter methodology, based on statistical arguments and
an underlying null model, is different to thresholding procedures.

To conclude, and connecting with the objectives set at the beginning
of this journey, and with the (artificial) debate exposed in the intro-
duction between empirical knowledge, theory and data it is worth
summarizing the conclusions drawn from our work. First of all, even
if our datasets are very large, we have seen with the help of an ap-
propriate theory, how, paradoxically, they are still not dense enough
to provide complete information about the mobility process. At the
same time, our theory, as flexible as it can be, can never fully account
for the observed phenomenological patterns, being them dependent
on a large variety of uncontrolled social factors. Yet, the merging of
both in a symbiotic cycle can provide us with useful tools to apply in
real world situations, as exemplified in the last chapter of this thesis.
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11.2 POSSIBLE CRITICISM AND FUTURE RESEARCH PERSPECTIVES

Before concluding this work, it is a healthy exercise to ask ourselves
about the limitations of the study just presented and put forward new
ideas for future research.

Concerning the first part of the Thesis, the obvious critique one
can make is that the framework presented only explores a limited
subset of all the possible maximum entropy non binary network en-
sembles. The techniques here proposed, while general, can only fully
be exploited for moderately to large graphs if one is able to analyti-
cally sum the involved partition functions and their associated saddle
point equations (which we have only been able to do for some cases
of linear compositions of state ij independent functions). Also, as
we have seen, considering more involved types of aggregation mech-
anisms to generate networks would imply the calculation of more
complicated degeneracy factors®. Despite all this, exploring in this
framework novel degeneracy terms (to study different aggregation
network techniques for instance) is an interesting perspective.

Another critique one may do is that no completely new techniques
are presented or developed. While this is partially true, and I have
mainly adapted the methodologies from other problems (notably bi-
nary network ensembles) and the earlier (partial) work of other au-
thors on the field (most prominently Wilson), the global structure
given here has allowed to formalize and expand the treatment of the
problem, while unifying and most specially clarifying earlier work
under a common framework. The most relevant example of this is the
identification of several types of non binary networks and the study
of their sharp differences even under the same set of constraints. An-
other important aspect that has been clarified are the conditions for
equivalence among hard and soft constrained examples.

Concerning future research from the point of view of stablishing
the theoretical foundations of non binary network ensembles, I feel
that two important and interesting problems are worth facing: That
of the separation between binary and non binary network structure
and that of continuous weights. Both issues are clearly joined and in
a nutshell facing them amounts to answering two questions. Firstly,
under which (quantifiable) conditions can we separate (uncorrelate) the bi-
nary and non binary structure of a graph? As we have seen, solving this
question would allow for the development of a new range of maxi-
mum entropy network ensembles with scaling parameters N (number
of nodes) and T (events). Secondly, is there a natural way of discretizing
weights? In order to expand our theory to networks with continuous
weights, we must search for a graph equivalent of Planck’s constant

A prominent example we tried to explore was that of book randomization: If one
creates networks from a text by joining consecutive words and wants to randomize
it, one must take as degeneracy a quantity known as chromatic number [102], whose
calculation is already a complicated endeavour (it is a NP problem).
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h, while exploring in detail the consequences of thresholding connec-
tions due to resolution limits of our data recording devices.

Finally, I feel that more research is needed to understand and estab-
lish a range of null models that serve as benchmarks for testing pro-
posed models on non binary networks related phenomena. In every
study concerned with the analysis of a topology using empirical data,
the use of an appropriate null model is imperative in order to separate
correlation from causality provoked by the structure itself. While ran-
domization might be seen as sufficient tool, further theoretical work
is needed to understand its relation to analytical models and their
possible biases (a variety of rewiring schemas exist). Also, analytical
models are important as their flexibility allows to develop a range
of applications for data analysis that purely computational methods
cannot provide. An interesting expansion for our framework would
be to obtain fully closed analytic solutions for the I' entropies of ME
using a micro-canonical formalism for the cases of fixed strength and
strength correlations, by application of similar tools as those in [21],
that would also allow the study of event switching rewiring algo-
rithms for the case of non-binary networks [145], which would pos-
sibly allow to explore the Micro Canonical ensemble in an unbiased
manner.

We now focus on the second part of this work. In the first place,
possible concerns can be raised with regards to data issues about the
"universality” of the conclusions drawn from four limited datasets
of taxi displacements. Those are totally valid concerns, furthermore
considering that the datasets have been filtered using a particular pro-
cedure and that their sampling is limited. However, many common
traits have been identified with other studies using other types of
data (mainly call detail records and geolocalized data from online
social media). For this reason, future research would be to analyze
different datasets (on urban mobility) representing other modes of
transports to establish what are common traits and what are not with
regards to taxis using our systematic approach. That would also al-
low to confirm to which extent our detected features are "universal"
(we have seen already that differences are observed across the stud-
ied datasets). In particular, an interesting corpus of data to consider is
that of shared bicycle systems® since studying the effect of cost relat-
ing distance and physical geography (terrain steepness) would be an
interesting project. Along this lines, studying the performance of our
models using progressively larger areas, starting at the urban level
and going to regional and national level would allow to investigate
further on the relation between distance and user cost perception.

Closing the data related issues, an important (unresolved) problem
that must be faced is that of the MAUP. We must study and try to
obtain a non-arbitrary methodology to aggregate continuous points

2 See for instance https://en.wikipedia.org/wiki/Bicycle-sharing_system.
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into discrete structures for the case of networks, specially for the ur-
ban context.

From the urban mobility modelling point of view, two main re-
search directions can be sighted. On the one hand, we have seen
that pairs of trips among remote locations are over-represented and
these could be added in the form of stochastic perturbations to the
constrained models proposed in this thesis. Another improvement
would be the possibility of studying in depth non-isotropic oppor-
tunity based models or cost perception (where users focus not on
radial areas for choice of destination but in arbitrary ones). Finally, ex-
ploration of embedding of mobility networks into hyperbolic spaces
using simple rules would be a good idea to try and detect possible
social/infrastructural system weaknesses inhibiting traffic among cer-
tain locations.

For the applications part, an interesting project would be to try and
find datasets behaving approximately like the studied W or B cases3,
which would allow for the detection of possible truly multiplex maxi-
mum entropy structures and to infer their number of layers M and/or
their typical structure and fluctuations*. Concerning the urban mobil-
ity aspects, our data-driven proposed model could be implemented
for the design of efficient (predictive) taxi dispatching systems.

To conclude, I must emphasize that this work is incomplete as long
as the tools hereby developed are not used in conjunction with other
researchers to extract conclusions about the urban environment. To
understand the coupling among the city layout, cost perception, land
used and psychological factors the participation of a diverse team of
individuals is called for. Hence, an obvious research perspective is to
devote efforts to publicise the work done and to prompt other dis-
ciplines in using these models, indicators, applications and software
tools, and also to raise objections to the statements drawn from my
analysis of the data.

11.3 CLOSING PERSONAL REMARKS

A PhD dissertation is not only a research process but in general also
serves as an introduction to the scientific world for young researchers.
This has indeed been my case, and I cannot conclude this work with-
out stating some personal (non strictly scientific) opinions derived
from my experiences in this time in the Complexity Science commu-
nity.

We have argued that due to the mathematical properties displayed by the W case, it
is unlikely that empirical observations may exhibit these properties, yet, one cannot
be completely sure whether this model would help to describe a particular dataset.
This is specially interesting for the case of neural studies for example, where differ-
ent samples of the same process are available and could serve in characterizing an
average healthy brain model and its associated ensemble [186].
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A first philosophical question is related to the fuss on data related
studies. While there is little doubt that large quantities of data have
enriched our understanding and tools to explore problems from an
empirical point of view, I feel little discussion is devoted to the social
implications about data ownership and the limitations it imposes to
scientific research. Big data is held by private corporations, and in
general, can only be accessed by selected research groups for partic-
ular questions, casting doubts on reproducibility of obtained results
and stating a "de facto" hierarchical structure in the research com-
munity. We should not renounce to gain knowledge from these plat-
forms, but the scientific community should neither resign from the
important role it can have as policy actor in leading this debate and
raising questions about the social utility, perils and implications that
private tracking of personal activities has on the society.

Another philosophical issue is related to confirmation bias and the
never ending race of scientific publishing. Not only must we ask
where the data we use comes from and whether our findings will
be reproducible, but also our attention must be doubled with respect
to empirically obtained results. What helps fellow researchers is not
only good story-telling and communication but also transparency.
More discussion should be devoted on what works and what does
not, on limitations as well as strengths of models, on availability of
implemented software and on good and constructive peer-reviewing
process. All in all, a certain lowering of expectations is needed: Chart-
ing unknown territory is very difficult, so doing it collectively should
make it simpler.

All this requires time, sure, but also would imply a reduction in the
number of published papers. And this is good news, for it will ease lit-
erature research and thus reduce the problem and fear of constant re-
discovery of models® (it will also simplify the assessment of research
quality). It also requires enforcing interdisciplinary work: A real di-
alogue among open minded scientists from different disciplines to
share tools and merge methodologies under a common framework.
Funding institutions mention recurrently this idea, but in practice
very few incentives are laid for interdisciplinary research: Presenting
results in boundary fields is complicated, takes time, a lot of effort and
is commonly received with scepticism, but is the only way in tackling
many important upcoming research challenges.

Notwithstanding all of the above, many interesting initiatives, tools,
methodologies, reviewing structures, data and code sharing platforms
and practices are emerging. And obviously I do not mean to question
the fact that excellent research is being produced under the current
framework, yet I feel that being science founded in the (positive) crit-

In this sense, I have tried to cite all the material from which I have drawn inspiration
for this work. Given that the problem under study has been studied from many
fields, I apologize in advance if I have missed important references unbeknown to
me.
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ical spirit of people, these and other political related questions con-
cerning research should be voiced and discussed in the open, spe-
cially by researchers in early-stages of their careers.



RESUM DE LA TESI EN CATALA

L’idioma és la columna vertebral d’una cultura, I"iinic instrument |[...] que
[n’lassequra la seva preservacid, [...] una experiencia sense repeticio
possible. [...] Veiem el mén amb els nostres ulls i l'interpretem amb la
nostra parla.

— Manuel de Pedrolo [64]

12.1 INTRODUCCIO

L’abaratiment i popularitzacié de tecnologies de geolocalitzacié d’alta
precisié han propiciat 1’aparicié, en poc temps, d’enormes bases de
dades a escales temporals i espacials molt precises que permeten
I'estudi de dinamiques de moviment de persones en molts ambients.
Aix0 possibilita I’analisi de fenomens de mobilitat en entorns delimi-
tats i densos con les ciutats.

Tipicament, 1’analisi de la mobilitat se centra en la representaci6 de
matrius d’origen i destinacié (OD) que recullen els trajectes recollits
entre totes les parelles de destinacions que hi ha presents a les dades.
Aquestes matrius, es poden considerar un exemple de xarxes com-
plexes on cada localitzaci6 és un node que esta connectat a d’altres
nodes amb enllacos, que es graduen d’acord al nombre de trajectes
enregistrats entre les diferents destinacions.

L’estudi general de les anomenades "xarxes complexes" ha exper-
imentat un gran auge en els darrers temps. Aquesta popularitat, es
deu, en part, al fet que les estructures de xarxa sén intuitivament sim-
ples de representar, tractar i analitzar. Majoritariament, els estudis
dedicats a xarxes s’han centrat en aquelles més simples per les quals
les interaccions entre nodes es poden codificar de manera dicotomica:
O bé hi ha interacci6 i s’estableix un enllag (de valor 1) o no n’hi ha,
amb la conseqiient manca d’enllag (valor o).

Una part important de 1'estudi de xarxes complexes rau en desen-
volupar algoritmes i tractaments que ens permetin generar models
amb propietats prefixades. Aquests models es poden llavors emprar
per comparar si la generaci6 d’estructures mantenint certes propietats
duen a prediccions que s’adiuen a dades empiriques. Per les xarxes
binaries, aquests tipus de models estan molt ben treballats. Per al cas
de xarxes pesades (com les OD de mobilitat), multiples desafiaments
resten sense resoldre a 1'hora d’enfocar el seu analisi ja que la inclusi6é
d’una nova "dimensié" quantificant la fortalesa dels enllagos en com-
plica I'aparent simplicitat. En particular, la principal necessitat per
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tot estudi empiric basat en xarxes pesades és la disposar de models
nuls flexibles que permetin aillar els diferents factors que afecten les
observacions d"una manera sistematica.

El nostre objectiu en la primera part d’aquesta tesi ha estat el de
desenvolupar un marc teoric que permeti I’analisi d’aquestes estruc-
tures de manera sistematica per poder analitzar la influencia dels
diferents possibles factors que determinen la observacié d"un fenomen
que es pugui modelitzar amb una xarxa pesada. Tot seguit, en la seg-
ona part, apliquem la teoria desenvolupada per exemplificar-ne 1'as
en un estudi de mobilitat en entorns urbans emprant dades de de-
splagaments en taxi per 4 ciutats diferents.

12.2 TEORIA DE COL-LECTIVITATS APLICADA A XARXES NO-BINARIES

En aquesta part de la tesi, emprant eines manllevades de la mecanica
estadistica de sistemes fisics en equilibri, apliquem un principi de
maxima entropia per a resoldre el problema matematic de generar
xarxes amb certes propietats prefixades.

12.2.1  Caracteritzacié general del marc teoric

En primer lloc, analitzem les diferents maneres que hi ha d’entendre
una xarxa pesada d’acord amb el mecanisme darrere de la seva con-
struccié. En particular, identifiquem 3 possibles casos rellevants en
funcié o no de la distingibilitat dels esdeveniments que formen la
xarxa (que anomenem Xxarxes pesades -W-, agregades -B- o multi-
enllag -ME-) i n’estudiem les diferencies. També establim de man-
era precisa el problema matematic a resoldre, els seus limits asimp-
totics i les possibles discrepancies respecte la formulacié mecanico-
estadistica usual.

Per cadascun dels tres casos, considerem dos tipus de col-lectivitats,
la Micro-canonica (MC - on totes les propietats que volem fixar es
compleixen de manera exacta) i la Gran Canonica (GC - on les propi-
etats de les xarxes obtingudes es mantenen només en promig sobre
la col-lectivitat). En particular, estudiem els casos on les propietats
prefixades depenen de funcions lineals del pes dels enllacos entre
els nodes o de funcions que depenen de l'estructura dicotomica de
la xarxa. De tots els casos estudiats, constatem que sols un, aquell
on els esdeveniments que formen la xarxa sén completament distin-
gibles (ME), té propietats matematiques convenients per als limits
asimptotics establerts. Aquest cas es correspon de manera natural a
la formulaci6 per estudiar processos de mobilitat.
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12.2.2  Generacid practica de xarxes

Emprant la teoria desenvolupada, hem creat eines tedriques, com-
putacionals i de programari obert per a generar xarxes pesades dels
tres tipus estudiats anteriorment, tot exemplificant-ne 1'tis per a una
serie de casos concrets. En particular, desenvolupem un estudi com-
plert del principal model que usarem per establir la influencia de
'estructura urbana sobre els fenomens de mobilitat, el model config-
uracional no binari amb mdltiples connexions (MECM). Per a aquest
model, exemplifiquem com seguint la nostra teoria hom pot generar
prediccions exactes per observables sense necessitat de simulaci6 i
demostrem la prediccié teorica de com el seu tractament emprant
els dos tipus de col-lectivitats estudiades (GC i MC) porta a resultats
equivalents.

12.3 ANALISI DE XARXES DE MOBILITAT URBANA

Amb les eines teoriques desenvolupades en la tesi, procedim a en-
carar l'estudi de sets de dades de mobilitat humana en entorns ur-
bans. Per fer-ho, explorem els possibles desafiaments que planteja
I'analisi de dades empiriques d’aquests fenomens a gran escala, el
possible paper que hi poden jugar els models nuls i les eines asso-
ciades que es poden desenvolupar. També realitzem un estudi critic
dels principals models de generacié de prediccions de mobilitat exis-
tents i la limitaci6 de la seva aplicaci6 a ’entorn urba.

12.3.1  Caracteristiques rellevants de les xarxes empiriques de mobilitat

En primer lloc presentem les dades emprades, corresponents a de-
splagaments en taxi per 4 ciutats (Nova York, Viena, San Francisco
i Singapur) i en discutim les fortaleses i limitacions, aixi com el pro-
cediment emprat per filtrar-les. Tot seguit, les representem mitjangant

xarxes pesades OD i mostrem com les seves propietats espacio-temporals

son altament regulars. Aquestes, es poden descriure de manera molt
satisfactoria emprant un formalisme de xarxa com els estudiats en la
primera part de la tesi.

La conveniencia del punt de vista de xarxa per a aquest analisi
es justifica per 1’observacié de trets comuns als quatre sets de dades
estudiats, a pesar de les seves notables diferéncies geografiques. En
particular, observem una estructura general molt heterogenia amb
diferencies notables entre el trafic acumulat pels diversos nodes. Em-
prant com a model nul el MECM, observem en tots els casos divergen-
cies comunes respecte a aquest: El patr6é de connectivitat tendeix a re-
forcar les connexions entre nodes de trafic semblant i a més, es pot ob-
servar una estructura modular on es formen comunitats espacialment
coherents de nodes. Finalment, observem una sobre-representacio re-
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specte al model nul de trajectes entre nuclis petits i també 'existencia
d’enllagos particulars que acumulen una porcié6 anormalment gran
del trafic total.

12.3.2 Critica i avaluacié de models existents de generacié de demanda de
trafic

Un cop observades caracteristiques comunes en els sets de dades es-
tudiats, procedim a fer un analisi dels diferents models proposats en
la literatura per descriure el moviment huma.

Per tal de fer una comparacié sistematica de models, introduim
diferents indicadors (alguns d’establerts en la literatura i d’altres de
nous) per a quantificar la qualitat de cada model des d'un punt de
vista global. Tot seguit, per als principals apropaments al problema,
en presentem les principals virtuts i procedim a aplicar-los per a aval-
uar la seva precisi6 pel cas urba.

Observem com clarament el model millor per a descriure de man-
era aproximada les observacions es correspon amb un model de max-
ima entropia com els estudiats en la primera part de la tesi, on es fixa
l'atractivitat de cada localitzaci6 (el trafic que acumula) perd també
el cost mig dels trajectes avaluat en termes de distancia euclidia entre
localitzacions, anomenat model de Wilson. A pesar del bon rendi-
ment del model entropic, constatem que aquest model encara falla
considerablement per descriure el trafic entre les localitzacions més
transitades, aixi com el trafic entre localitzacions menys utilitzades.

12.4 APLICACIONS

Per finalitzar l'estudi practic, en aquesta part procedim a introduir
possibles aplicacions de la teoria que explotin al mateix temps les car-
acteristiques empiriques observades en les dades i les virtuts i feble-
ses dels models entropics per a capturar-ne les propietats.

12.4.0.1 Model hibrid per la prediccié de demanda

Des del punt de vista de modelatge, hem explotat el fet que el nos-
tre treball teoric és altament flexible combinat amb la gran estabilitat
espacio-temporal de les dinamiques de trajectes observada en el nos-
tre estudi empiric per a resoldre el problema de I’extrapolaci6 de sets
de dades reduits. En particular, hem proposat un model hibrid que
explota les qualitats del model entropic de Wilson per capturar la ma-
joria de moviments amb la capacitat d’inferir aproximadament el pes
dels trajectes més emprats utilitzant sets reduits de dades historiques.
Aquest model, s’ha demostrat capag de reproduir de manera acurada
escenaris de mobilitat emprant per al seu "entrenament" petites quan-
titats de les dades originals. Per a aquest estudi hem emprat les dades
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de Nova York, ja que és el set de dades més extens i que esta complert
(conté tots els trajectes de taxi registrats a la zona sense excepcio).
Degut al seu exit, aquest model es pot emprar facilment per a
generar prediccions basades en dades historiques o per a estudiar
fenomens urbans que requereixin un coneixement aproximadament
complert dels fenomens de mobilitat que es produeixen a la ciutat.

12.4.0.2 Filtratge i extraccié de I'estructura basica de xarxes de mobilitat

Finalment, hem explotat la capacitat analitica dels nostres models
nuls per a dissenyar una metodologia que permet explorar de manera
efectiva les desviacions entre dades i els models proposats. Basant-
nos en el treball d’altres autors, hem proposat un meétode de filtratge
que permet eliminar la contribucié d"un model nul sobre les dades
empiriques. La capacitat de generar instancies dels models nuls per-
met estudiar l'efecte del filtre sobre aquests i determinar per cada
cas d’estudi els parametres adients per la seva configuracié. A més,
aquest filtre permet estudiar de manera separada els enllacos pels
quals els trajectes observats queden sota la prediccié dels models i
els casos on aquests queden per sobre, fet que pot portar a la iden-
tificacié de problemes urbanistics o sociologics particulars. A més,
aquest procediment elimina gran quantitat d’enllagos "no rellevants"
i permet una visualitzaci6é aproximada de les xarxes estudiades.

12.5 CONCLUSIONS

Aquesta tesi s’ha desenvolupat amb un objectiu principalment practic
en ment: El de proporcionar eines i exemples dutilitzacié de models
nuls de xarxes pesades per a 'estudi de dades empiriques. En aquest
sentit, s’han desenvolupat marcs tedrics que han permes la generacié
computacional de xarxes amb propietats prefixades que han estat im-
plementats en programaris de lliure accés. Aquest desenvolupament
tedric també ha permes desenvolupar eines per I’analisi de dades em-
piriques, tant a nivell teoric com d’aplicacions de modelitzacié d"una
banda i de visualitzaci6 i "simplificaci¢" de xarxes de l’altra.
Finalment, un producte secundari interessant de tot aquest estudi
ha estat la de refinar alguns aspectes de 1'estudi de la mecanica es-

203

tadistica d’equilibri de sistemes fisics habituals per al cas de la col-lecitivitat

Gran Canonica de sistemes de particules distingibles.

En global, el desenvolupament d’aquesta tesi mostra que el tre-
ball teoric i la modelitzacié matematica son, avui en dia, eines més
necessaries que mai per a extreure coneixement fiable dels extensos
sets de dades que les tecnologies mobils posen a la nostra disposicié.
L’aplicacié d’aquests pel cas de mobilitat urbana vol exemplificar-ne
la importancia per a un cas particular i contribuir a ressaltar la ne-
cessitat del treball interdisciplinari per a resoldre els desafiaments
cientifics del present i del futur.
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APPENDICES

As it is usually said, the devil is in the detail. This part pro-
vides additional material that support the statements in
the main text, and contains technical information for the
interested reader.






MATHEMATICAL DETAILS

A.1 EFFECTIVE DEGENERACY TERM FOR DISTINGUISHABLE PAR-
TICLES IN THE GRAND-CANONICAL ENSEMBLE

The correct counting of configurations in a Grand Canonical ensem-
ble is a controversial issue spanning more than a century (see [178,
126, 179, 187] for details and extended discussion), ever since Gibbs
used it to establish the relation in classical statistical mechanics be-
tween the Canonical and Grand-Canonical Ensembles of an ideal gas.
In the present case, we provide a complete computation of both the
complete degeneracy term D(T,F) and the effective degeneracy term
@({tij}) for the case of a GC ensemble of distinguishable particles
considering linear constraints. The treatment given with respect to a
reservoir of particles here is fully equivalent to the one provided in [3]
using the technique of copying identical systems, and both conform
the usual way this problem is tackled in classical equilibrium statis-
tical mechanics [135]. We show the case for a monoplex (M = 1) for
simplicity but the extension to general number of (distinguishable)
layers M is straightforward and follows from the derivation.

Imagine we have a reservoir composed of F particles such that F >
T. Now we select T (distinguishable) particles out of these F particles
and distribute them in the occupation levels T= {tij}. In this case, the
degeneracy of a given configuration T is:

) B\~ (F\ T 1 F
o(t,n = (1)o7 = () o T

Alternatively, we may consider that from the group of F particles, we
select first ty7, then from the remaining F —t1; we select t;, and
we do that recursively up to t;. In this case, we are led to the same
expression:

(ij)—1
D(T’,F):<F><F_t”>...<F_Z‘] t“) (A2)
t ti2 tij

B 1 F! B <F>T! (A3)
H{—jti)'!(]:_zw‘{—jtij)! T H{—jti)'!

The degeneracy term depends both on the size of the reservoir of
events and on the actual adjacency matrix considered (in fact, one
could consider an adjacency matrix with L + 1 levels, being the other
level the void where the F — T particles are located). The first term
is the way of selecting T out of F distinguishable events while the
second term refers to the microscopic allocation of the T events in the
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different levels. The degeneracy term diverges (as expected), since
any configuration T can be exchanged with the (infinite elements of
the reservoir) and give rise to a different configuration.

1 F!

(T, F li
fim D(T,F) = [T; tiy! Fooo (F—T)!

1 (A4)
=—— lim F(F-1)..(F-T—-1) =
Hij tij! Fl—I>rc}o ( ) )
Even if this degeneracy term diverges once the limit for infinite F is
taken, the probabilities are well defined in the Q space. For the MC
ensemble we have,

. (E)%% 10z &
P(T,F) = v ’ (A.5)
ZMC
6T -Aré LA 1
1 C,C
— ' (A.6)
Hij ti! 5 F S

210071 X yTs 1= [T 0!

The prior expression not depend on F (due to the Kroenecker delta’s
involved), and hence is independent of the reservoir or number of
system copies, .

For the C ensemble a similar thing happens,

F 14
(e Iy 2
Zc

tyj
W) o A
2 T-0 5T,T ZT|Ztij:T (tf}') (A7)

(ZF:"' 1

_ | Zu

- tij ! 1 T
B (Zi)‘ Zi)')

Finally, for the GC ensemble we have,

F tl]
P(T,F) = & )Hutu' 2t 112 Y

P(T,F) =

ZGC

- (1 Erz (D!
tij! i
Y Z'Fr:o ( )ZT ZT|Zt1,_TT (Hu i?ﬂ)

_ (zr245)" (5!
(1} tij* ) Yo (Plzr Xijz)T

(pplme) G

tij! 14zt Zij Zi]')F

D]

D]

(A.8)
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In this case, the statistics are not independent on F, since the distin-
guishability of events does induce correlation between all events in
the system. However, the statistics are still well defined. In particular,
introducing auxiliary fields {e"} we can construct a generating func-
tion for the statistics of ti; and obtain their moments by derivation.
In doing so, we obtain,

K({hi}) =InZgc({hy}) = Fin(1+zr ) z5e™9) +C. (A.9)

D]

Where C includes all degeneracy terms that do not incorporate nor
depend on {hy;}. By derivation, we have:
ZTZij
———<F
1+z7 Zij Zij h

0'%1,' = aﬁiiK({hij}N{hii}:G = <tij> (] — <t]1:]>>

(ti5) = Oy K({hi Dl g = F

(A.10)
(tij) (tr)
O-%ij/tkl = ahijrhle({h’ij}N{hij}:(_j - _Uf
of _ 1 L hzl.
(ty)>  (ty) F (ty) () F

Note that in the limit F — oo the marginal statistics become inde-
pendent (the relative fluctuations among different pairs ij, kl decay
to zero with a rate O(F~")). Also note that the occupation numbers
are well defined (and cannot exceed in any case the total number
of events F available for allocation). In any case, the average values
depend on F due to the closing constraint equation,

- g FTlyE L
T_iZ).<t”>_F1+ZTZU~Zﬁ — ZTiZjZl]_

T/F
1—T/F
(A.11)

Inserting this relation in the average occupation numbers we have,
A Zij

ty) = T=—"— (A.12)

< ]> Zij Zij

and for the partition function and the probabilities in this ensemble

we have,

. \F .
e (1) < (.5)
G~ I G

F! T\ ()
- - . b ij
P(T,F) = F—TII, ) (1 F) I (F > .

D)

Which is multinomial allocation of F events in L states which on aver-
age have {(t;j)} occupation and the void state with F— Y (tij) = F— T
average occupation.
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Considering the infinite reservoir limit for the partition function,
we have:

o\ —F
. . T T it t
pi zec =i (1) = om0 [Tl
i
(A.14)

And for the probabilities (using Stirling’s approximation for the fac-
torial),

F—o0 F—-T tij !

D)

(A.15)

The prior expression obviously does not depend on F and corre-
sponds to a set of independent Poisson random variables with mean
(ty)- .

Considering from the beginning an effective degeneracy term D(T) =
[T (t;;1)~" allows to obtain absolutely the same results and simpli-
fies enormously the calculations. However, the treatment we have
given the problem here, is more elegant and allows a clear discrete
and distinguishable treatment of the problem.

We must however notice that the entropies in the I" space (equation
(3.4)) will not be intensive in the high sampling limit. The reason for
this can be understood in the MC ensemble: Considering the com-
plete degeneracy term which includes the reservoir, if such a term is
infinite (as we have justified), then the probabilities in (3.3) for obtain-
ing a single configuration of the network vanish leading to infinite I
entropies. A possible solution to unify the entire framework is to note
that since this effective degeneracy term is not an integer number, one
can always multiply by a constant® like 11,

- T (Tt
DM = =——— =

O]

(A.16)

to use as degeneracy term instead of the true value in Table 3.1). This
has no effect on both the MC and C ensembles (T = 2_ij tij exactly
for each configuration with non-zero probability). In doing so, no
reference is needed to the reservoir and the entropies in the I' space

In fact, we can multiply the degeneracy by any constant and the probabilities in the
Q space will remain unchanged.

A\ _ 7 F=T A\ N
lim P(T,F) = H Ll?? e ! lim (F T) = H () ” e =
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become sample independent and equivalent to those in the MC and
C ensembles for linear constraints:

ST : <tii> tu
fn i e G N E () &P

Y

(A.17)

The substitution between the variable T and the value T can be un-
derstood relating to the closing condition that (T) = T. This (macro-
scopic) condition imposes limitations on the number of configura-
tions to be counted, which impose a coupling between the Lagrange
multiplier zt and the size of the reservoir considered F. For the case
with linear constraints such relation can be inverted and an effective
degeneracy term can be obtained, but this is not the case when bi-
nary constraints are considered (or the binary distinguishable case
is considered). Hence, in these cases, we shall accept the substitu-
tion T ~ (T) = T as an approximation in order to be able to obtain
an effective factorization of degeneracy that allows the GC partition
function to be computed. This approximation amounts to consider
that the relative difference between both is negligible compared to
the size of the reservoir F. A final additional reason for accepting this
approximation is that the saddle point approximation of the MC par-
tition function leads to the same approximated statistics of the GC
ensemble computed using the substitution, see Chapter 5.

The treatment given in this appendix to the Grand Canonical en-
semble of distinguishable events is fully general and may also be used
in other statistical mechanics related problems. It is also fully consis-
tent with the assumption of particle distinguishability (throughout
the entire calculation) and valid for any sampling in T.

Note that one could be tempted to use for the GC partition function
an alternative expression (as done in [73]):

F 00
Z&C:Flim Z(ZTZC)T:Z zTZzij 2(1—ZTZZU')_
710 T—0 i i
(A.18)

Yet this expression is not consistent because it mixes a distinguishable
treatment in the calculation of the Canonical partition function which

leads to (Z )zl))T with an indistinguishable treatment for the re-
maining part of the calculation depending on T. Also, this leads to
correlated statistics at the occupation number level {t;;} and contra-
dicts the numerical experiments (see Section 6.5.2.2).



212

MATHEMATICAL DETAILS

A.1.1  An important note concerning the application of this result to classi-
cal statistical mechanics

All the considerations given here to the Grand-Canonical ensemble
of distinguishable particles can be applied to classical statistical me-
chanics of state separable Hamiltonians, taking into account the lim-
itations highlighted in Section 3.3.4, since the constraints considered
in this case are linear on the occupation number values (energy E =
> i ni¢i and number of elements N =} ; ny).

The analogy to systems with discrete energy levels {¢;} is direct?,
thus complementing the usual description in terms of occupation of
states for the Grand-Canonical ensemble, adding the case of fully dis-
tinguishable particles without resorting to the famous Gibbs correc-
tion factor N! (or the classical limit). Obviously, in nature, the particles
populating energy levels are either bosons or fermions, and are never
fully distinguishable, but if we were to treat with fully distinguish-
able particles, the correct counting would be the one provided here
(valid in any range, not only in the classical limit).

Also, note that the equivalence of both the bosonic and fermionic
description of these systems does not depend on the temperature
of the system, but rather on the average occupation of its states. In
the classical limit, the average occupation of each state is very small,
(tij) < 1Vij, hence the sampling is very limited and the distinguisha-
bility or not of particles makes no difference, all converging to Pois-
son distributed variables (due to the law of small numbers or rare
events).

Concerning the statistical mechanics of classical particles, the above
discussion motivates the need to slightly generalize the usual text-
book expression of the Grand Canonical ensemble (see for instance

equation 13, p.94 in [135]).

F
. (N)
Z =1 E D(F,N)Z-~"". A.
GC Flm - ( ) C (A.19)

D(F, N) being a degeneracy factor that counts in how many ways we
can select N particles out of F that give rise to the same Canonical
partition function for N elements Z,(CN). This factor depends on the
specifics of each system and is subtle to compute. Let’s review the
examples in [135], p.96-100 for instance.

For a set of classical harmonic oscillators, the partition function is
described in terms of collective normal modes of vibration, which
are non-degenerate for the system, not on particles. This means that
D(F,N) = 1 in this case and we recover the usual expression. For
the case where quantum harmonic oscillators are considered, again

2 See Chapter 6 in the classical reference book [135] for instance
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the description is made in terms of energy eigenvalues allocated to
particles (which are non-degenerate).

F
: N N 1
Zgc = lim Z z0 = —. (A.20)
F%m% ( C ) 1 —ZZ(C])

In contrast, for a set of independent, non-interacting, strictly dis-
tinguishable particles (ideal gas), our complete calculation would be

needed (the particles being independent mean that Z(CN) = (Z(C] ) ™).

F
, P\ (o™ (1)
ZGgc = Fh_r&% <N> (ZC ) 2N = exp(zZ¢e ). (A.21)

However, for the Canonical partition function calculated in terms of
energy states of particles in a box, those energy states are calculated
not taking into account the distinguishability of particles, but taking
already the classical limit (n; < 1¥ny = ny! ~ 1 where n; is the
number of particles in state of energy ¢;), hence again D(F,N) =1
and no incoherence is found.

F
Zgc = Fll_I)Il Z Z e PE Z 1
N E|> ini=N {(ndl X niei=E3 , =N

— lim Z Z e BEZ (N 1r1d1st)

F—oo N E\ZITLL

11m Z Z He Bries
N {ni}l 3 ini=N i (A.22)
F o (N dist)

~ li —BEMC
Jim > Z_ ¢ N!

) 1 N! —Brues
= lim NI Z T Ue Briei

N (nadl Xini=

Fo N
= lim — (Z,(C”) = exp(zZ(C”)
— N!

Note that in this last example, the classical limit is already taken
while computing the canonical (or micro-canonical) partition func-
tion, hence even if the calculation is made in terms of indistinguish-
able elements, the final result identical to Maxwell-Boltzmann pois-
son statistics should not come as a surprise.
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This model has
been developed to
explain the
dynamics of face to
face

interactions [51],
for which diverse
datasets are
available at the
project www.
sociopatterns.
org.

MATHEMATICAL DETAILS

A.2 ACTIVITY DRIVEN MODEL WITH m = 1 AND ITS EQUIVA-
LENCE TO THE ME NON BINARY CONFIGURATION MODEL

In this short section I show how the model appearing in [138] is a
particular case of the MECM.

In their model, the authors consider a fixed activity a; for each
node defined as,

>

Si i

ai = S5 —?§1 (A.23)
which is a pre-defined (quenched) node property. At each time step,
we choose a node with probability p = a; to be activated and it shots
m edges to randomly considered nodes with probability 1/(N —1 )T
I.e., the probability per unit time At to have an event joining i and
any other node is mj7At and hence at time T the number of
events joining two any given nodes is a Poisson distribution with
mean m’tﬁ. For the ME configuration model we get Poisson edge
statistics for any given node with mean (tij) = xiy; where the La-
grange multipliers {x, y} are related with the outgoing and incoming
strength values of each node. However, the probability per unit time
of incoming links is uniform across nodes hence y; = K, <tij> = Kxi
and x; o< (s$"(7)). Since the incoming probability of connection per
unit time between any pair of nodes is uniform m/(N — 1), we have
that <sin> (t) = mT and finally,

(tij) (1) = pi(t) = mTx; = mra; (A.24)

One clearly sees that the resulting strength distribution of this net-
work will be a Poisson homogeneous distribution for the incoming
case and exactly equal to the activity distribution for the outgoing
case. If one disregards the directionality of links and considers the
network after T time, one has that,

(si)(1) = (s3" 4 sI") = mr(ai + ; a;) = mt(a; + ﬁ)

(A.25)

and moreover,

<ki(’f|(li)> = (N —1)(1 —efﬁ) +Z(] _ef'rai) _
. (A.26)

1
=(N=1D@2—enT)—) e ™
i

And one gets exactly the same results as obtained in the mentioned
paper with the addition of obtaining an explicit form for the degree
distribution at time .


www.sociopatterns.org
www.sociopatterns.org
www.sociopatterns.org

A3 TAYLOR APPROXIMATION OF ME NON-BINARY CONFIGURATION MODEL ENSEMBLE METRICS

A.3 TAYLOR APPROXIMATION OF ME NON-BINARY CONFIGURA-
TION MODEL ENSEMBLE METRICS

I gather here the expressions for the standard deviation of all the
metrics considered in Section 6.5.

> Qi Q2 1 SRl R
"”’(”‘<E>2<] o T [1 ZQJ <E>2Q1> (A.27)

0\2( ~ 2 (138 +azs + a8+ ap (A.28)
2 (8 +1)*
1
Sr ~ b1 +bo + 282 + b33 (A.29)

S

where E is the number of present edges and I have defined the
following notation:

dij (t) = ei<tij> <ti]‘>t /t'< ij> = §§]/T (A:—}O)
Q] = Z qij (t) Z ql) ql) (A~31)
)

Q2= (qi(t)? Ry = ZU —q45(0))? (A.32)

ij ij
=—4(T3-T1T3) by =21,/T} (A.33)
ap =217 — 21,17 by = —2/1? (A.34)
a =2 ([—T-1Z — 51_2] Tz + 41_1 T3) (A.35)
ay =T+ 20,17 + 4151, — 713 (A.36)
b = (T [T+ T3] - 13) 12 (A37)
by = (_—T—ZZ +T—1 ﬁ_z +3T3} —T—4) Trs (A.38)

with T, = ¥ ; 8. The calculations leading to these results are admit-
tedly tedious, but follow directly from (6.4) and are of no particular
difficulty beyond algebraic manipulation and careful reordering of
the sums. As an illustrative example, consider the disparity Y;(si) for
node 1, defined as
t2,
Yz(Si) = % (A39)
S

Identifying x = }_; t% and y = sZ, (6.4) can be readily apphed In or-

j i
der to approximate (Y2 (s;)) and oy,, we need to compute (x), (y), (x?), (y?)
and (xy). Let me show in full detail, as an illustrative example, how

to compute <x2> in this case. First, we expand x? as follows,

X _Zt =) Z [t +2t5t5] +th, (Ago)

Jk#)
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so that when the ensemble average is taken, all products factorize
(they correspond to different pairs of values ij, which are indepen-
dent),

(A=Y () (t +Z Y2 ()] + (th) (Agn)
kA

Finally, since the variables ti; are Poisson-distributed, we can com-
pute their moments (<tiz).> = <tij> (1+ <tij >)), and using that <tij> =
$18;/T, and after some algebra, we get to

178 (21, 4T 6T

2 2°i 2 3] a3 2 A2 | oA

Xy ==+ =4+ = T+ §T + 84 A.g2
) T <T12 T13>1 <T1 )1 ' 4

The rest of the terms can be computed in a similar vein, leading to

1,88 o
6= ks W)= (A43)
1
Bt (5h . Vo (4h ) e,
(xy) = th + (Tzz —H) S <T22+3> S (A.44)
1 1 1
(y?) =38! + 683 +782 +5 (A.45)

Finally, inserting (A.42)-(A.45) into (6.4) and some simplification leads
to the desired result, (6.12) and (A.28).

A.4 NETWORK METRICS

Throughout the present thesis many network related properties are
used. In this appendix, they are listed with their corresponding for-
mula and a short explanation of what they account for.

A. Strength s: Total number of incoming or outgoing events (trips)
to a given location (node),

out Z tij S;n = Z tij. (A.46)
i

B. Degree k: Total number of incoming or outgoing binary connec-
tions (connections with non-zero occupation),

kc{ut _ Z @(tij) k%n = Z @(tij)- (A47)
j i

c. Node strength or degree asymmetry A$, AX: Relative difference
between outgoing and incoming strength (Can also be computed
for degrees). This value is strictly bounded (1 < Ag < —1) and
values close to 1 indicate majority of outgoing connections and
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conversely values close to —1 majority of incoming connections,
with zero values indicating balanced nodes.

Sc.)ut _ Si'n kqut _ ki_n
Af = éut iln A!f = kéut kiln' (A'48)
sy s i K

. Node disparity Y,i: Measures the concentration of occupation
numbers across binary connections of a given node. It is strictly
bounded (1 > Y2i > 1/ky). Values close to unity indicate strong
concentration of events on few binary links,

- t2 ,
QNN EL B P EL I (A.49
(Zj tij) (Zl tij)

. Average weighted neighbor strength: Measures the tendency
of nodes to be connected to other nodes by more or less occu-
pied edges. A increasing trend is known as assortative profile
and a decreasing trend is known as dissassortative. Both indicate
the over occupation of links connecting nodes to other higher
(lower or equal) strength nodes. The uncorrelated profile for
Multi-Edge networks is flat.

.. cin gout
w |out Zj tl)s]' w |in o Z tl)

Yty Ly

. Conditioned average occupation number on origin destina-
tion strength product: Measures the average occupation of links
connecting nodes with outgoing and incoming strength product
lying in a given binning.

(A.50)

Zl] tl)ésoutsés;ns/
Zl) 6 Oufsésms/

tij|s°“‘:s,s§“:s’(33,) (A51)
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. Conditioned connection probability on origin destination strength

product: Measures the average binary connection probability of
links connecting nodes with outgoing and incoming strength
product lying in a given binning.

, Zl) @(tl))é outs S;nsl
G(tij”SOUt:S’S;HZS/(SS ) - Zl] 6 out 6 ing/s ’ (A52)

. Network modularity Q: Measures the degree to which a given
node partition of the network into C labelled groups {ci|Vi =
1...C} accumulates over-expected intra-connecting events accord-
ing to a given null model.

QT (T) ) —Z (i ) Scrc- (A53)
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B.1 CONSTRAINT EQUATION SOLVING PROCEDURE FOR ALL EX-
PLICIT EXAMPLES CONSIDERED

We provide the explicit details for the solving of the saddle point
equations here on a one-by-one case basis, reviewing all the exam-
ples presented in this thesis. Note however that the examples which
involve the solution of a one-dimensional equation will not be dis-
cussed here (noted 1D and 2D in table 6.1), as it is generally an easy
problem to be solved with standard methods.

B.1.1 Linear constraints

I provide here either the average values <tij> or zi; which are the sin-
gle parameters (besides the number of layers M) which determine the
different occupation statistics (Poisson, Negative Binomial, Binomial).

A. Fixed T: zy; = z. In all cases the direct analytical solution is to
use (tij) = (t) = T/L.
B. Fixed T, C: zij = ze Y4,
e ME: Solve C/T = 24 dij e*Vdii/Zij e Y% by standard
1-D methods. Then, z = T/ 2 i e Ydy,
e W: Solve by brute force optimization with z > 0, vy > 0 and
ze Y4y < 1.

e B: Solve using Algorithm 2 with node balacing for

A

= ! , (B.1)

T e
Y 14z e vy

2

and general constraint search on .
c. Fixed & Zij = X{Yj.
e ME: Direct analytical solution x; = A‘f”t/ T1/2, yj = §§n/ T1/2,

e W: Solve by brute force optimization with x;,y; > 0 and

XiyYj < ]Vl]
e B: Solve using Algorithm 1 with
(n+1) gout
X — #
MY o
Y (B.2)
(n+1) gin
Yj = ==
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p. Fixed § iq¢: zij = xiyje*ss’. In all cases the direct analytical

solution is to use (tij) = Y ¢/ ts58 soutd o without needing to
solve zy;.
E. Fixed 5, C: zy5 = xiyje_Vdii.

e ME: Solve using Algorithm 2 with node balacing for

K1) gout
i - Mz-ygn)eiydij
7 (B.3)
(n+1) gin
Yj = Mzixi('nA»])e—ydij ’

and general constraint search on 7.
e W: Solve by brute force optimization with xi,y; > 0,y > 0
and xiyje*"dii < 1V4ij.

e B: Solve using Algorithm 2 with node balacing for

(n+1) gout
X - y(MWe vy
)
ML, v
i Y5 € B )
. (B-4
(n+1) _ gin
Yj ) _—vdy

M) . i
Zl ]+X£n+1 )yj(n)efydij

and general constraint search on .

. e E— Suiud
F. Fixed T, tuu: zij = ze™ 2t

N T_ N VA
solution is to use (ty/) = tuuduu + %(1 —buu)-

“i*. In all cases the direct analytical

G. Fixed sty zij = xiyje”

e ME: Solve using Algorithm 1 with

(n+1) gout
Xi = fuyws N (n)
(l‘n]l +qu Ygq (175uqui)
Yqxq duqu (B.5)
(n+1) 3in 5
y] - fu~u-N121 4

it (n+1)
————+M} xq (1—=0ugu:)
qugnléuquj q atj

and once the algorithm has been balanced, apply:
_ (A
M3 Xqdugu 2 g Yqdu

e W: Solve by brute force optimization with x;,y;, e > 0
O udusu .2
and x;yje oY <1V

Xu

e (B.6)

e B: Solve using Algorithm 1 with

(n+1) gout
X = ——
1 {uiuile,L y(“) ]
Mg —my (1 +8uquy)
):q xXq duquy T+x; “ygq (B 7)
(n+1) _ gin '
Yj T TR T ’

it X
—r ) M — 4 (14+duw:)
qusqn]ﬁucpj q 1+x£1n l)yj(n) R
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and once the algorithm has been balanced, reapply it with:

(eocu)(n—H) _ {uuNi ;
M2 g Xaduqu 2 g Tiy g (emymm Ougru
(B.8)

to obtain e®v.

B.1.2 Binary constraints

In all these scenarios, z is obtained in the following form, once it =
T/ (E) is known:

e ME: In this case we have an analytical solution z(£+) = W(—tte ") +
t* (equation (4.27)).

e W: In this case one needs to invert by standard 1-D methods the
z 1

equation (4.26) t* = My%, 57wy

e B: In this case one needs to invert by standard 1-D methods the
equation (4.26) t* = M%ZW
As for zi; or (O(ty;)), we have:

A. Fixed T, E: Zi; = Z. In all cases the direct analytical solution is to
use (O(ty)) = E/L.

B. Fixed T, l:{: Zi; = viwj. In all cases solve using Algorithm 1 with

1 icout
i (n)
HeY;
) l+ucx§1n)yl~[n) (B 9)
(n+1) kin
W = GEnD)
. HeXy
' ]+ucx(n+”y.( )

He=<¢ W: (1—z)"M_1 (B.10)

B.1.3 Linear and Binary constraints
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e ME: Solve using Algorithm 2 with node balacing for

(n+1) gout
Xq = ()
Y (M MXTY;
sy, %o 7
MZZJ' Mx!n]y.[n)
1+z(e i ) 1) (B 11)
y(n+1) _ gin '
j x'(n+])eMX,En+])U;n) 7
5 j
Mz}, Mo T (1)
T+z(e 1 -1

and general constraint search on Z.

e W: Solve by brute force optimization with x;,y; > 0, Z > 0
and x;y; < 1Vij.

e B: Solve using Algorithm 2 with node balacing for

(n+1) gout
X = Y ()
t Mz y;" (g y M
z
j ]+X£n)y(n) i((1+x(n]y(n))M7‘|>+‘|
A (B.12)
(n+1) _ sin
Yj = . ) T
z .
i ]+X(n+1]yjn] z<(1+x£n+])y§n))M—1)+l
and general constraint search on .
B. Fixed §, k: Zij = XiYyj and Zij = Viwj.
e ME: Solve using Algorithm 1 with
(n+1) gout
Xq = VNCYNEY
(n) n) yiMe Y
Mvi 35w WROMCY
1+vf“)wj(“)(e i
y(nH) _ gin
j (1) MXEnJr]) (n)
(n) m__ X e )
Mw Zivl (m+1) (n)
]+v(an(n)(eMXi -1
© (B.13)
V(TL+]) _ fout
i - (n+1)_(n+1)
w)fn)[elvlXi Yj —1)
j (m+1). (n+1)
vgn“)w]f“)(eMxi Yj 1)1
(m+1) kin
w, =
j ) Mxi(n+1)ygn+1)
vi (e ) -1)
Zi ] ngn+1)y‘(n+1)
vE“* )w]gn)[e i j —1)+1

e W: Solve by brute force optimization with x,y; > 0, Z > 0
and xy; < 1Vij.
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e B: Solve using Algorithm 1 with

X(n+1) _ gout
i - (m) (n) (n)
My 5 () (™M
7 1+X(n)y ™) vgn)w].(n)([1+X£n]y[n)]Mfl>+1
y(n+1) _ §in
) x(n+1) (]+X£n+1) (n]]M

(m+1) cout
i - Z WJ'(H)((]+X1'(,H+”U)'(“+”)M 1
j V[n]wgn)((]+x1'('n+l)yj'(n+1))M71)+]
(n+1) _ kin
j - Z Z](n+1)((1+xgn+1) §“+]))M 1
i v£n+1)w_(n)(”JrXEHJr])ygn+1))M7])+]

(B.14)

B.2 EXPLICIT SADDLE POINT EQUATION SOLVING FOR NON-BINARY
CONFIGURATION MODEL W CASE

In the general scenario of solving the constraint equations for the
W case, both with linear and binary constraints, the difficulty of the
problem depends on the number of constraints and varies with the
particular restrictions of the considered case. Even in the simple cases
no convergence of the proposed resolution method is assured, yet in
this section we provide explicit details on how to try to solve the case
where we wish to fix the strength pair of each node. Such an example
is implemented in the freely available, open source package ODME
[10].

The weighted case includes the restriction that 0 < xjy; < 1V1i,j
and hence the Likelihood maximization is performed on a non-convex
domain. The balancing approach in Algorithm 1 is then not satisfac-
tory, since there is no explicit enforcement for the values {x,y} to
remain in the domain of the Loglikelihood function one wants to
maximize. The scalar function being considered is

LW = KM, {t;}) + M Z In(1 —xy;)+ Z 8" Inx; + Z §§-n Iny;
ij i j
(B.15)
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with derivatives,

W §0ut y)
0, L = —
Xq s Xq ; ] _qu)
W §in Xi
Ay LY = w—M; g
2
d. . LW _ _daq gout 4 MZ _XdYj (B.16)
e xg Y = \1—xqy;
By b = —29t (g4 M ( L )
Yqy1™s U%] q - 1*Xiyq
M
0 W= —
o T~ xqu)?
subject to the conditions that,
0 <xy; < 1Vi,j €{1.N} (B.17)

In principle, the problem is concave, and thus finding a solution to
the saddle point equations gives the global maximum. Sadly, for real
cases this concavity is lost as soon as the explicit domain constraint
is included 0 < xyy; < 1. Hence, there is no general algorithm that
can be applied with assured results, and obtaining a solution to the
saddle point equations will not be guaranteed in all cases (specially
for large N or a very skewed distribution of strengths).

We thus deal with a large scale, non-concave (non-convex), bounded
and constrained maximization (minimization) problem.

B.2.0.1 DPreconditioning

Basically, the difficulty of the problem derives from the form of the
strength sequence {§°"!, §"}. The more skewed this distribution is, the
more difficult the problem is to solve, for a given fixed N. For easy
problems, a good way to pre-condition the problem is to first solve
the easier, bounded, unconstrained convex problem of finding,

min [—LZV(X)}

0<xi <P iel[l..N]
0<y;<p' jel.N]
BeR™.

(B.18)

The problem of this method is that it does not consider all the avail-
able phase space (see figure B.1): The solution lies in the hyper-volume
defined by the axis and Ymax(Xmax) = Xmhy, Which is a larger vol-
ume than that defined by the axis and xmax < B, Ymax < p~1. Usu-
ally, a good choice is B = 1. If the distribution of of strengths is very
skewed, the optimal solution most likely lies outside the second area,



B.2 EXPLICIT SADDLE POINT EQUATION SOLVING FOR NON-BINARY CONFIGURATION MODEL W CAS

10 : : ,
[ Pre-conditioning Phase-Space
A Complete Phase-Space

8_

oF

k

4l

2k

0 : : V7

0.0 0.5 1.0 1.5 2.0

x

Fmax

Figure B.1: Non-convexity of phase space for W case. Sketch of a plane
projection of the phase space hyper volume with 3 = 1.5 for
the maximization problem in the W case. The preconditioning
method looks for solutions inside the area delimited by the green
rectangle. The orange area represents the domain of the £Y
function, which is clearly non-convex.

but the suboptimal solution within this region serves as precondition-
ing for the complete maximization problem thanks to the convexity
of the function (without considering the domain).

We have implemented this preconditioning procedure using a trun-
cated Newton TNC method [130] from the Scipy suite [98].

B.2.0.2 Constrained problem

Since the loglikelyhood function is not defined outside of the domain,
we use an interior point method to solve the problem adding L non-
linear inequalities of the form 0 < x;y; < 1 (L = N? for the case
without selfloops and L = N(N — 1) otherwise). The implementation
is done in CVXOPT [18], but it has an obvious limitation given by the
use of memory, which grows very fast with the number of nodes of
the given network. Additionally, as early mentioned, the convergence
of the algorithm is not assured due to the non-convexity of the com-
plete problem, yet in our case we obtained very satisfactory results
for the particular data analyzed.
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CASE |AC]| Emax
ME 1-10-8 6-1014
BM=2365 1-107 1-10°13
W (M =365 7-10°° 5.10712
WM =1) 0.05 4.108

Table B.1: Results of the maximization problem. Norms associated to the
best solution for the Taxi dataset (N = 4091).

B.2.1 Precision

For all three cases considered in Section 6.4 (ME and B solved by
application of Algorithm 1 and W case by brute force), we analyze
the precision of our solving approach by computing the euclidean
norm of the absolute error and the maximum of the absolute relative
error among the nodes,

IAC| = \/Z(Acq)z - \/Z(Cq —(C) 2
q q

|AC
Emax = Max —.

q

(B.19)

The resulting values for each example are reported in table B.1.

B.3 MICROCANONICAL ENSEMBLE NETWORK GENERATION FOR
MECM

The simulations presented in Section 6.5 have been performed using
the MC ensemble by applying the well-known configuration model
schema [30, 42, 193] (this method was also used in [159]).

The generating algorithm for directed networks is based on the idea
of taking each strength sequence and adding §"* and §§“ "stubs" to
each node, that are later chosen at random in pairs (one from each di-
rection) and joined. The only modification applied with respect to the
original formulation is to link stubs permitting multiple connections

between nodes (accepting also self-edges).

B.3.1 Power-law distributed strength sequences

Since in the non binary ensemble approach, the high sampling limit
is defined in terms of T =, §;, to test our analytical predictions we
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use power-law synthetic distributions generated with tunable graph-
average strengths

1 Smax

8(V, Smin, Smax) = W Z Nssliy. (B.20)

Smi .
min Smin

For the case of Yy > 2, we have applied a minimum cut-off s;in
on the strength sequence, while for the case vy € (1,2] a maximum
cut-off s;mqx has been applied to limit the average strength of the se-
quence (which would be unbounded in the case of infinite sampling).
The source code allowing the generation for both directed and undi-
rected multi-edge networks in different ensembles and the details of
the algorithms used together with the strength sequences used in Sec-
tion 6.5 are provided in [11] for public use.

B.3.2  Why to allow self-loops? Unbiased sampling

When treating with the ME configuration model, we have always
dealt with directed networks with allowed self-loops. The reason for
this is twofold: On the one hand the resulting saddle point equations
for the hidden variables {xi} can be exactly solved analytically while
on the other hand the simulation using a stub-rewiring algorithm for
power law distributed strengths with v < 2 becomes feasible.

On the analytical side, in the case of not allowing self-loops, then
the N saddle point equations (one for each node i) take the form

(X = Z] Xj)/

$i :XiZXj =xi(X—x%4i), (B.21)
i#Al

which correspond to a set of coupled equations and cannot be solved
analytically. If nevertheless we chose to use the solutions for the
case of self-loops to this case (x; = ;77 '/2), we have that (s;) =
3 (1 — %) so the relative error committed is ¢ ) = ls;s('s)l = % whose
importance depends on the strength of each node but does not van-
ish in the high sampling limit (T,8 — 00). Even if the relative error
is small, note that the absolute error is Ts< s)s and depending on the
strength sequence chosen, this can become quite large. For non-broad
distributed strength sequences with finite mean and standard devia-
tion, this is not a problem even for the worst case scenario, since
$max/T < 1 independently of the sampling. Considering the case of
skewed distributions (the paradigmatic case power law), we have that

the condition &max = s”‘% needs to be analyzed.
For a power law distribution, the maximum value of a distribution
given a sample size can be shown to have a Fréchet distribution, with

2—y

the ratio emax scaling as Sm% ~ N? and we thus see that the only
problem (if we fix the average strength of the distribution 3) will come
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when vy € (1,2], in which case, we will have to manually set an ap-
propriate value for the ratio emax = Smax /T for our calculation to
have an acceptable accuracy (bear in mind that since s qx is broadly
distributed in such case, the choice will not be random nor general).
Anyhow, the absolute error committed in the approximation will still
grow linearly with T.

The other problem comes from the simulation side. A configura-
tion approach as the one presented earlier, discarding absolutely the
configurations where self-edges are present is not feasible in practice
for heterogeneous strength sequences. In the GC ensemble (which is
equivalent to the MC in the large event limit T — c0), the probability
to obtain exactly 0 self loops SL (ti; = 0Vi = 1, N) while sampling an
ensemble that allows them is,

P(SL=0) = H e_i = exp (—f) . (B.22)

which can be seen to be problematic for skewed distributions even for
relatively low sampling T. In particular for power law distributions,
when approaching the limit v < 3, s2/5 will be a large number and
this probability will quickly vanish. Otherwise, if no self-loops are
allowed in a stub-matching schema, there is no guarantee of conver-
gence (one can easily find counter-examples with 3 nodes where the
rewiring algorithm could fail) and this fact worsens specially as hubs
gain importance in the system (y < 3).

For the reasons provided above, approaches as the ones done in
[159], although approximate, may lead to uncotrolled errors and should
be avoided when dealing with networks where no self-loops are al-
lowed. It is true that we do not provide here a proof that the stub
matching algorithm samples the phase space of the MC ensemble in
an unbiased manner, but based in the coincidence with empirical re-
sults, we assume the goodness of our approximation, since the effects
of a possible bias are not detected in our analysis.
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DATASETS

In this appendix, all details concerning data sources, acquisition and
filtering are provided, as well as an overview of its main features. I
have mainly used 4 datasets of Taxi trajectories in this thesis, two of
which are openly available. Table C.1 provides an overview of the
data.

The New York dataset has been obtained from the New York Taxi
and Limousine Commission for the year 2011 via Freedom of Infor-
mation Law request and is the same as the one used in [149], an open
version of the same data for various years is openly available’. The
San Francisco dataset is freely available from [106]>. Both the Vienna
and Singapore datasets were provided to the MIT SENSEable City
Lab by AIT and the Singapore government respectively and are not
openly accessible. However, the Vienna data has also been used in
other projects3.

The NY dataset spans over an entire year and collects all Taxi trips
generated in the area of New York, while the other datasets span
roughly a month and contain records provided by a single operator.
The total number of taxis in San Francisco count an official figure of
14944 while for Vienna, we do not have information on how many
taxis the datasets is constituted by, but there are around 3500 active
taxis from information provided by AIT. For Singapore the official
figure is 25176°.

I have applied the same filtering procedure to all the datasets®: Only
trips performed while the Taxi were occupied by customers were con-
sidered in the analysis. From these trips, I have only kept the ones
with starting and ending GPS positions within 200 m of an intersec-
tion present in the considered area of study. Such an area has been
obtained by considering the Manhattan borough (NY), the entire is-
land of Singapore (SI), and both the urban areas of Vienna and San
Francisco including the road to the airport (SF and VI). The intersec-
tions have been obtained from [132] (see Figure 7.1) considering only
primary and secondary level roads and by merging all repeated ele-
ments corresponding to every given intersection by hand using [142].

http://publish.illinois.edu/dbwork/open-data/.
http://www.crawdad.org/epfl/mobility/.

See http://casualdata.com/senseofpatterns/ for instance.

Retrieved 2012-10-29 from http://www.sfmta.com/.

From http://en.wikipedia.org/wiki/Taxicabs_of_Singapore).

I would like to acknowledge the help of Dr. Michael Szell and Mr. Aldo Treville in
this matter.
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DATASET  Nraxis T Praxis UTM ZONE DATES
NY 13052 146986835 1 18 1/01/2011-
31/12/2011
SI 15915 8873029 0.6 48 14/02/2011-
13/03/2011
SF 537 435670 0.35 10 17/05/2008-
10/06/2008
VI - 284541 - 33 28/02/2011-
31/03/2011

Table C.1: Information on the different Taxi datasets. Ny, refers to the to-
tal number of different Taxis present in the dataset while ptayis to
its fraction related to the estimated total city taxis. T refers to the
total number of recorded trips. Used UTM zones for projection in
trip intersection matching are also shown.

All trip coordinates were provided in longitude-latitude pairs us-
ing the WGS84 ellipsoid but have been projected to euclidean UTM
coordinates using the zones specified in Table C.1.

We have decided to keep the self-loops present in the data for sim-
plicity (albeit their fraction is completely negligible). In the analy-
sis, all trips including both week-ends and week-days are considered,
since the pattern for weekly trips shows a continuous increase in the
number of trips peaking on Friday and followed by a sudden drop
on Sundays (see Figure 7.4).

In the cases where subsampling a dataset has been needed (NY), we
have used uniform random subsampling of trips from the datasets.

The availability of data relating each taxi to its trajectories for the
NY, SI and SF datasets allows for statistical independence testing of
the different vehicles (proves). The analysed data shows that most
of the taxis share similar performance in terms of the distribution
of trips performed (see Figure C.1 albeit some deviations from a
Gaussian behaviour are observed). This, coupled with the fact [139]
that individual taxi mobility traces are in large part statistically in-
distinguishable from the overall population, justifies that their indi-
vidual traces (corresponding to sets of trips performed by different
customers which can be considered as independent events) can be
safely aggregated for the analysis.
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Figure C.1:
ber of trips performed per Taxi for the datasets where data is
available compared to Gaussian distribution. p~, denotes the
fraction of non-outliers in the data lying closer than 2 std from

the mean which have been excluded from the histogram.






ADDITIONAL DATA EXPLORATION AND MODEL
VALIDATION

In this appendix we present complementary figures related to model
validation and filtering treated in Chapter 9 and Chapter 10.

D.1 ADDITIONAL MODEL VALIDATION GRAPHICS: MOBILITY MOD-
ELS COMPARISON TO EMPIRICAL DATA

This section shows additional figures for the Radiation and Sequential
gravity model to complement the discussion in Chapter 9.
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Figure D.1: Comparison between Taxi empirical data and Radiation model

at node level. Rescaled strength distribution (A) and node re-
lated properties as function of strength [degrees (B), disparities
(C) and average weighted neighbor strength (D)]. Results show
averages over log-binned bins in the x axis. Dotted lines display
Radiation model predictions averaged over r = 102 instances.
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Figure D.2: Comparison between empirical data and Radiation model at
node-pair level. Box-plot showing correlation between relative
scaled occupation number between model predictions and data
over a single run. Solid lines mark the [5%, 95%] interval, me-
dian marked as red horizontal line and average value with grey

dotted point.
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Figure D.3: Radiation model occupation number and trip length distribu-
tion. Occupation number distribution (A) and trip length dis-
tribution (B). Dotted lines correspond to the model while filled
lines to empirical data. Logarithm (A) and linear bins (B) have

been used respectively.
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node properties and Sequential gravity model predictions. Rel-
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binning averaged using r = 10 instances of the model.
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Figure D.6: Sequential gravity model occupation number and trip length
distribution. Occupation number distribution (A) and trip
length distribution (B). Dotted lines correspond to the model av-
eraged over 1 = 10 instances while filled lines to empirical data.
Logarithm (A) and linear bins (B) have been used respectively.
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D.2 ADDITIONAL FILTER DETAILS

In this section we provide additional information regarding the filter
developed in Section 10.2.

D.2.1 A note on self-loops for visualization

As shown in Section B.3, the analytical uncorrelated form for the
MECM t;; §‘f“t§§“ can only be considered if self-loops are allowed in
the model (and in the data). In Appendix C, we have argued that we
decided to keep self-loops in our treatment due to the fact that they
represent a negligible fraction of the total trips, and that (although
not usual) they can represent realistic taxi trips (circular trips and
short trips with di; < 200 m). From the present analysis, however,
the unexpectedness of the large level of self-loops detected becomes
patent, as their relative contribution after filtering to the total number
of edges grows up to 1% (NY), 4% (SF and SI) and even 15% (VI) only
for the over-used trips. For this reason, with respect to visualization,
self-loops have been deleted. However, all the results obtained display
no qualitative nor quantitative differences when adding them.

D.2.2 Effect of the filter in empirical data for SI, VI and SF datasets
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D.2.3 Under used trip features
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The procedure to
solve the saddle
point equations for
the MEECM
model is
implemented in

[10].

ADDITIONAL DATA EXPLORATION AND MODEL VALIDATION

D.3 HYPOTHESIS TESTING USING A MULTI EDGE ENHANCED CON-
FIGURATION MODEL

In Section 8.2 it is shown how empirical data features of the taxi
mobility datasets represented as Multi-Edge structures are close to
those predicted by a configuration model, the main exception being
the node disparities, which are related to the way nodes allocate their
strength among existing connections.

We have hypothesized that the relevant observed differences may
be caused by the slight differences observed in the node-degree pro-
file (see Figure 8.5). In this section, we use the Multi-Edge enhanced
configuration model (MEECM) as an example of hypothesis testing
with incremental constraints to test this statement. This model keeps
fixed not only the strength of all the nodes but also their degrees.

To proceed, first we need to solve the saddle point equations using
the recipes provided in Section B.1. In the present case, for each city,
we have 4N Lagrange multipliers, four for each node corresponding
to outgoing and incoming strength and degree respectively. The re-
sults of the balancing algorithm are provided in Table D.1, using as
evaluation metrics the graph average and standard deviation of rela-
tive error between constraints.

As we can see, despite the large number of variables (4N) to be
solved corresponding to the Lagrange multipliers of the degree and
strength directed sequence {(s°, si", ko, kin); 1 = 1, N} the preci-
sion of the obtained solution is acceptable on average with average
below 6% for strengths and 2% for degrees (see Figure D.11-A,B).
However the general precision of the balancing algorithm depends
both on the number of variables (depending on N) and the skewness
of the degree and strength distribution®.

We have simulated v = 1000 instances of the MEECM model and
repeat the plots in Figure 8.5 substituting the reference configuration
model by the MEECM.

At the node level, Figure D.11, obviously strength and degree val-
ues coincide (thus validating the quality of our solving procedure for
the saddle point equations). Disparity values display quantitatively
the same differences with respect to the considered model for NY,
while for the other datasets the empirical data displays distinctively
larger disparity values for large nodes. Concerning the assortativity,
since there are less binary connections available, the probability for
small nodes to connect to other small nodes increases, and hence the
average values of neighbor strengths for small nodes become smaller
than in the MECM. However, this trend is not maintained because
for hubs (that for SI, VI and SF are not connected to the entire sys-
tem), the general average occupation of links increases, and hence the

In contrast, the precision obtained for the easier case of only fixing the strength
sequence is much higher, see Section B.2.1.
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average neighbor strengths (D).

weight of connections towards small nodes is increased with respect
to the MECM, fact which influences the statistic that now displays
an inverted U-concave shape across node strengths (this also explains
the smaller values of disparity observed for this model for hubs).

At the edge level, Figure D.12, we see that the empirical connection
between hubs are still over-occupied with respect to the model, lead-
ing to fat tails in the distribution of occupation numbers (not shown).
The connections among very small nodes still are not explained. How-
ever, (specially for small sampling) the pattern for mid-sized nodes is
approximately recovered, yet these nodes still display tight areas of
connection distinctively different from the MEECM model across the
diagonal §°ut ~ §/in,

In a nutshell, we can thus say that the observed differences in assor-
tativity and disparity profiles between the MECM and empirical data
are not due to the smaller value of node degrees, since the addition
of 2N extra constraints does not lead to a substantial improvement of
the distance between empirical data and model predictions.
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ey (+STD)

DATASET gyouvr (£STD)
NY 0.002+0.115 0.001 £0.044
SI —0.007 £0.269 0.003 +£0.108
SF 0.00008 £0.032 —0.0006+0.013
VI 0.053 £0.180 0.045 +£0.308

DATASET ggovr (£STD) gsiv (£STD)
NY —0.0001 £ 0.050 0.0002 +£0.03
SI —0.0009 +£0.016 0.003+0.014
SF —0.0003+£0.013 —0.0001+£0.010
VI 0.0019 £0.009 —0.00001 +0.004

datasets and MEEMC.

Table D.1: Precision of the maximization problem solutions for the taxi
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Figure D.12: Comparison between empirical data and MEECM at edge
level. Relative scaled occupation number as function of start-
ing and ending node strength comparing empirical data and
MEECM model over a single run. Both cases are normalized
over the bins.
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D.4 PITFALLS OF NAIVE EMPIRICAL MODELLING: GRAVITY LAW
MULTIVARIATE FITS

In this section we perform a multivariate fit on our data to apply
the usual gravity model obtained from multivariate fit to exemplify
the weaknesses of the method. For each of the datasets, we fit the
relations,

ln<tij>1 = X1 11’1§(i)ut+ 31 ln§§n—y1 dij +1InK;

. D.1
ln<ti]->2 :oc21n§(fut+[321n§§n—yzlndij+an2. ( )

We also set In0 = 0 to avoid problems related with the presence of
self-loops for the power law case. Firstly, thought, to test the sensibil-
ity of this analysis to sampling, we also provide a synthetic sample
using the MECM (for which we known that « = 3 = 1T and y = 0) for
each dataset. The fits are performed using an Ordinary Least Squares
(OLS) implemented in [155] and their results are shown in Table D.2.
While the multivariate analysis correctly predicts a very negligible de-
pendence on distance (small v values) for the MECM samples, a first
observed drawback is that both exponents are significantly different
from 1. Note also that the R? values are not close to the theoretical
value of 1 (and the quality of the fit obviously decreases significantly
with less sampling).

Concerning the multivariate analysis on the datasets we only dis-
play results for the densest case of NY, since in the other cases the
sampling is insufficient (the results of the fit are very close to the ones
displayed in Table D.2). For the NY case, results are showed in Ta-
ble D.3, where we also display the CPC values obtained by the model.
Taking into account that the MECM model obtains CPCaiecm = 0.65
using the same inputs and with no fitted parameters, the limitations
of the fitting procedure become apparent: they do not even beat the
spatially agnostic model.
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MODEL x B Y R?
NY
Exp 0.74 080 2e-5 0.85
Pow 0.74 080 0.02 0.85
SI
Exp 0.180 0.184 1e-07 0.33
Pow 0.19 0.184 0.005 0.33
SF
Exp 0.08 0.09 1e-7 0.22
Pow 0.08 0.09 0.006 0.22
VI
Exp 0.01  0.02 -1e-6 0.06
Pow 0.01 0.02 0.005 0.06
Table D.2: Multivariate fit of synthetic samples of the MECM. The adjusted
R? represent OLS model output results, values transcribed up to
the last concordant decimal value in their 95% confidence inter-
vals. The divergence of values «, 3 # 1 is noteworthy, as well as
its dependence on sampling.
MODEL x B 2% R? CPC
Exp 0.5 0.5 0.002 0.61 0.65
Pow 0.6 05 062 063 o0.60
Table D.3: Multivariate fit of of the NY dataset. The adjusted R? repre-

sent OLS model output results, values rounded up to last concor-
dant decimal value in their 95% confidence intervals. CPC com-
puted with number of trips of the models normalized to match

>y (ty) =T



D5 MULTIPLEX DETECTION: ANALYSIS OF INDIVIDUAL EDGE STATISTICS {tij} OVER DIFFERENT SA]

D.5 MULTIPLEX DETECTION: ANALYSIS OF INDIVIDUAL EDGE STATIS-
TICS {tij} OVER DIFFERENT SAMPLES OF THE SAME PROCESS

In Chapter 4 the possibility to study the edge related statistics of
different network samples generated by the same process is proposed
as means to find a correct ensemble to model the system under study:.
An example of this is shown in Section 8.1, where the study of the
rescaled node-pair occupation numbers {p;; = tij/T} is performed
for the Taxi datasets using different daily aggregated time slices and
coincidence with Poisson statistics is detected.

In the following I investigate numerically the different possible out-
comes we could find starting from a given distribution of {<tij >}
values, comparing the Multi-Edge case (regardless of the number of
layers) and Weighted cases with M = 1 and M = 50 respectively. In
doing so, I show how on the one hand that a linear approximation
to the values of both (pi;j) and O'%ij in the form of (6.4) provides a
good asymptotic estimate of the real values, and on the other hand
that this prediction can be used to assess the statistics of {ti;} and
even the number of aggregated layers M of the original system.

Using a linear approximation of the form (6.4), the corresponding
values (pi;) and O'%ij for the different cases read,

ME: <pij>linear = <tij> / <T> = f)i)'
G%ij |linear = (]ri)ﬁij (] *f)ij)
W: <pij>linear:f)ij (1 +M71(Zﬁi2j_ﬁij)>
' 52,
61231]' |1inear = (}jf’ij“ _ﬁij) + pﬁ(] + Zf)%) — Zf)l])

(D.2)

From which one sees that asymptotically, the relative fluctuations
are distinctive in each case and follow,

o2
ME: PO~ ((T) Pi) !
(pij)
W: i ~M!
(pij)°
All the simulations
I have simulated r = 107 different instances of a fixed collection of involving random
L = 99992 {(tij)} quenched values distributed as p((t)) ~ (t)~ Y  numbers in this
with y = 3/2 (in order to obtain very large (T) = 3_; (tij)), gener- Thesis h”;e been
ating at each run a collection of random variables pi; = ti;/ Zij tij. f;;f OGrSnze nsing
I compare <pi]~ > to the results of equations (D.2) in Figure D.13. As library [89].
one can see, the approximation of (pij) by (Pij) .., i Very good
(within relative errors of 1/1000) for the 3 cases while the approx-
imation for 0]29 fails for small values of (p), but this is caused by

(D.3)
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Figure D.13: Accuracy of linear approximation for p;; moments. Simula-

tion of L = 99992 random variables py; = tij/T, using a fixed

distribution of occupation numbers (t) distributed according

to p((t)) ~ (t)”Y with y = 1.5 and (T) = 954573797 ~ 10°.
Results averaged over T = 107 repetitions. Dotted and dashed
grey lines are set as guides to the eye according to (D.2) and

(D.3) respectively. In the negative binomial case we have set
M = 50.

sparse sampling in the simulation and not by inadequacy of the mea-

sured values (the error is reduced as number of reps r increases). The
discrepancies are seen for very small values of <p15> ~0O((Mr)~ ).

It is important to note, however, that the approximation (pij) =
Pij does not hold in general (see figure D.14) since for extremely

skewed distributions the additional terms are important and thus one

needs to apply the complete expression (in the geometric case or the

negative binomial case with small number of layers).
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