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Resum

En aquesta tesi estudiem com excitacions d’alta energia es propaguen a través d’un

plasma no abelià fortament acoblat. Aquest nou estat de la matèria es produeix a les

col·lisions de ions pesats als nostres acceleradors i permet l’estudi d’una etapa de l’evolució

del nostre Univers que va tenir lloc durant els primers microsegons després del Big Bang.

En aquestes condicions extremes de temperatura i densitat, la matèria ordinària de la qual

estem fets es comporta com un fluid perfecte, de fet el més perfecte conegut per la hu-

manitat a dia d’avui. La teoria de les interaccions fortes és posada a prova a una escala

d’energia que tot i ser prou alta per fondre els hadrons, no arriba al punt en què la constant

d’acoblament és prou feble com per permetre una descripció pertorbativa. Al plasma, el

contingut en camps partonics, els quarks i els gluons, deixen de ser els graus de llibertat

rellevants i una descripciò microscòpica en termes de quasi-partícules no és possible. Una

eina molt útil per posar a prova l’autèntic comportament d’aquest fluid fortament acoblat

és l’anàlisi de les modificacions dels jets com a resultat de la seva interacció amb el plasma.

En una primera part introductòria hem donat els conceptes necessaris per a visualitzar

com es desenvolupen les col·lisions d’ions pesats tal i com som capaços d’entendre-les avui

dia. Hem introduit les tècniques més habituals per a descriure la propagació de partons dins

d’un medi deconfinat tant pel règim d’acoblament feble com pel d’acoblament fort, i les

hem fetes servir per obtenir el ràtio de pèrduda d’energia que descriuen la degradació en

l’energia d’aquestes sondes en el seu pas a través del plasma. A acoblament feble, el prin-

cipal mecanisme responsable de la pèrduda d’energia és l’emissió estimulada de gluons,

i interessants fenòmens d’interferència ocorren que condueixen a una dependendència en

la distància recorreguda que va com 𝐿2. Aquests fenòmens són coneguts com efectes de

coherència i el seu estudi esdevé més ric considerant l’emissió de múltiples gluons, tal

com fem a la Part III. La descripció a acoblament fort fa servir holografia per mapejar

una excitació vestida movent-se a través d’un plasma fortament acoblat a una corda que

es propaga en un espai amb dimensions extra que conté un forat negre. Com que la teoria

no abeliana en què es realitza el càlcul no es QCD, sinó que és 𝒩 = 4 SYM, prenem



aquests resultats com una intuïció amb què descriure la propagació d’un partó energètic en

un model de jet quenching per col·lisions d’ions pesats. El diferent nombre de graus de

llibertat entre les dues teories s’espera que dugui a diferències en la distància d’aturada, la

qual es correspon amb el temps que triga l’extrem de la corda en creuar l’horitzó del forat

negre.

Tot i que assumim que els intercanvis amb el medi són prou suaus com per incloure

efectes no pertorbatius, tal com descriu la dualitat gauge/gravetat, els partons energètics

que es produeixen a la col·lisió generalment tenen virtualitats altes, les quals relaxen a

través de particions successives. Aquestes últimes ocorren a escales de longitut que no són

resolubles pel medi, i per tant haurien de procedir com en el buit. Aquesta observació ens

motiva a adoptar una descripció híbrida per a la interacció entre el jet i el QGP, fent servir

cada descripció a l’escala on es suposa que es vàlida. Aquesta descripció fenomenològica

ha demostrat ser molt exitosa en la descripció de les dades de dijets i fotó-jet per diferents

centralitats. A més a més, a través de la combinació de les funcions de fragmentació del

jet principal i del jet secundari d’un dijet, hem trobat un observable que és molt sensible

al mecanisme de pèrduda d’energia concret, el qual és força interessant tenint en compte

la dependència moderada que tenen altres observables. En vistes a les dades que arribaran

en algun punt d’aquest any del run 2 del LHC, hem calculat prediccions per l’energia al

centre de masses de 5.02 ATeV amb especials expectatives en les mesures de fotó-jet, per

les quals l’augment en l’estadística s’estima que serà al voltant d’un factor 10. Aquesta

millorada precisió ens ajudarà a discernir entre els diferents models de pèrduda d’energia

donada l’apreciable separació que les seves prediccions presenten en observables com en

el desequilibri en energia dels parells fotó-jet.

A la següent part del treball extenem el nostre model híbrid amb la inclusió de dos

efectes, l’eixamplament i la resposta del medi, amb especial motivació en la millora de

l’habilitat de les nostres simulacions per descriure els desafiants observables intra-jet, com

per exemple les funcions de fragmentació i les formes de jet. El primer efecte,

l’eixamplament, es deu al moviment Brownià que les sondes experimenten en un bany

termal, i com el seu nom indica tendeix a eixamplar la distribució de les partícules dins



del jet. Aquest mecanisme és un candidat capaç de reproduir el comportament observat

en la modificació de la densitat d’energia transversa dels jets en el medi, que consisteix en

una reducció a 𝑟 mitjanes i un increment a 𝑟 altes. Tot i així, resulta que l’observable que

quantifica aquestes modificacions, les formes de jet, són bastant insensibles a la inclusió

d’aquest efecte degut a l’efectivitat del fort quenching, el qual suprimeix els fragments

més suaus tot deixant una estructura prima que esdevé lleugerament inclinada. No obstant,

mitjançant la restricció del rang de 𝑝𝑇 de les partícules que formen part de l’anàlisi, hem

estat capaços de produir un nou observable que mostra una alta dependència en la força

concreta del mecanisme d’eixamplament. Mesures d’aquest tipus d’observables podrien

fer-se servir per obtenir una extracció directa de la magnitut d’aquest efecte dins del medi.

El segon efecte involucra la conservació general de l’energia i el moment. L’energia

ràpidament termalitzada depositada pels partons energètics modifica el plasma, induint

fluctuacions en la temperatura i la velocitat de les cel·les de l’entorn. Aquesta pertor-

bació es propaga llargues distàncies prenent la forma d’un solc que eventualment decau en

hadrons suaus, les orientacions dels quals guarden una correlació amb la direcció del jet

i per tant produeixen un efecte net fins i tot després de la substracció del rerefons. Nos-

altres estimem l’impacte d’aquest efecte assumint que la pertorbació és petita, el qual duu

a simplificacions importants en la seva implementació. Les conseqüències observables es

fan més patents en les mesures d’intra-jet tals com les formes de jet i les funcions de frag-

mentació, on es veu clarament que la inclusió d’aquesta física concorda amb la tendència

experimental observada, i que esdevé simplement essencial quan s’estableixen compara-

cions amb anàlisis globals en què es tenen en compte totes les partícules de l’esdeveniment

i les seves correlacions.

El plantejament híbrid ja ens ha atorgat un esquema calculacional sistemàticament mil-

lorable, dins del qual podem testejar les prediccions d’acoblament fort a través de la con-

frontació amb mesures experimentals d’observables de jets. Això demostra que aquest

enfocament ara es pot fer servir per explorar i subsegüentment testejar nous observables

com els que hem proposat, els quals ens poden donar indicacions sobre la rellevància de

determinats fenòmens. Aspectes de la física no tinguda en compte fins ara que podrien ser



implementats al nostre esquema, inclouen correccions de 𝑁𝑐 finit, 𝜆 finit, i correccions no

nul·les en 𝑁𝑓/𝑁𝑐 per l’expressió de la pèrduda d’energia, o com aquesta raó canvia en una

teoria fortament acoblada que no és conforme. També es podria considerar la reducció de

l’espai de fases en la fragmentació d’un partó a la cascada de PYTHIA com a resultat de

la pèrduda d’energia, o la possibilitat que interaccions suaus múltiples indueixin particions

addicionals a la cascada. Una millora especialment interessant involucra els efectes de co-

herència, els quals estan relacionats amb el poder de resolució finit del medi, un problema

que s’encara a l’última part de la tesis.

La part final del treball consisteix en el càlcul de l’emissió estimulada de dos gluons en

el context de QCD pertorbativa. Estudiant la resposta completa en diferents límits arribem

a la conclusió que des del punt de vista del plasma la propagació del jet és percebuda com

una col·lecció d’emissors efectius depenenent del poder de resolució, el qual per un plasma

prim és de l’ordre de l’invers de la massa d’apantallament de Debye 𝜇𝐷. Tal com hem dit

abans, al model de jet quenching presentat a aquesta tesis encara li manca aquesta física, i

la seva inclusió s’espera que tingui conseqüències importants pels observables més difer-

encials, una tasca que s’emprendrà en un treball futur.

Aquests són temps molt emocionants per a la física de les interaccions nuclears fortes.

La naturalesa fortament acoblada del QGP fa l’estudi d’aquest sistema extremadament in-

teressant, així com el d’altres sistemes fortament acoblats com els superconductors d’alta

temperatura o els àtoms freds. Hem vist com les preguntes més fonamentals sobre la natu-

ralesa de la fase de la matèria comú a altes temperatures poden ser adreçades amb l’estudi

del jet quenching i de les seves conseqüències observables. Aquesta tesis representa un

esforç en la confrontació de les seductores idees d’holografia amb els experiments. La

possibilitat que una teoria familiar alhora que innegablement desafiant com QCD pot ser

descrita en termes de cordes que es propaguen en dimensions adicionals no és només con-

venient, sinó que absolutament fascinant. Tenint els mitjans per confrontar noves idees

quantitativament, tal i com hem fet al llarg d’aquest treball, nous obervables i noves dades

són essencials si finalment volem entendre les propietats del líquid fortament acoblat que

la Natura ens ha servit.
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Chapter 1

Hot QCD

1.1 QCD

Even though the discovery of Quantum Chromodynamics (QCD) as the theory responsible

of the nuclear strong interactions was made more than half a century ago, major conceptual

and computational problems have not yet been solved. QCD is hard. Its coupling strength

runs with the energy in such a way that for common low energies (long distances) the inter-

action is non-perturbative, yielding a series expansion hopeless. On the other hand, at very

high energies (short distances) the coupling tends to zero and then the theory is tractable.

This is the phenomenon of asymptotic freedom, and it arises as a consequence of the fact

that gluons, the strong force carriers, have colour charge and can therefore interact with

themselves. This important feature of non-abelian theories is in stark contrast with abelian

ones, such as Quantum Electrodynamics (QED), where photons are neutral and one does

not encounter the sort of rich and challenging emergent phenomena characteristic of QCD.

The theory of QCD contains quarks and gluons as the basic degrees of freedom in terms

of which the fundamental Lagrangian is expressed. However, one cannot detect these par-

ticles (in contrast to photons and leptons), but can only access to the great variety of bound

states that quarks produce, the so called hadrons, among which our beloved neutrons and

protons sit. Most of the hadrons mass comes from the energy of the gluons interchanged

among the quarks, and very little from the quark current mass itself.

3



The inability to directly detect partons (i.e. quarks and gluons) represents the well

known confinement problem. The real existence of these partons beyond a convenient

mathematical formulation to describe hadron phenomenology had to be proven through dif-

ferent experiments such as Deep Inelastic Scattering (DIS), where the point-like electron-

quark interaction could be described by use of the Bjorken scaling variable, or others such

as the electron-positron collisions with three or more jet (collimated sprays of hadrons)

events, which represented the indirect discovery of the gluon.

Jets are some of the emergent phenomena in QCD, which arise as a combination of

virtuality relaxing successive splittings, described in terms of partons, and a posterior frag-

mentation from these partons to hadrons when the virtuality reaches the confinement scale

ΛQCD ∼ 200 MeV. Generically, all particles produced in inelastic collisions start being

off-shell, which means that even massless particles can radiate. QCD and QED are to this

respect quite similar, since both theories develop particle showers, although QCD ones are

more stuffed since gluons can radiate and also the strong coupling constant 𝛼𝑠, which plays

a crucial role in emission probabilities, is at collider relevant energies 10 times larger than

the electromagnetic one 𝛼EM.

The major difference between the two theories lies precisely in the fact that QCD is

confined. The formation of hadrons out of partons follows as an unavoidable step in the

system evolution once it has reached the confinement scale. The nature of this process is

non-perturbative and there are no known analytical techniques to describe it; the best we

have so far are phenomenological models such as the Lund string model, which regards

the interaction among coloured objects to be mediated by strings, dynamical objects repre-

senting the energy contained in the QCD vacuum. Due to the finite tension of the strings,

their energy increases as they get stretched up to a certain point in which it is more efficient

to generate a quark-antiquark pair, and the string breaks into two. This string is therefore

confining.

Because of the way the mass of the hadrons depends on their spin, following the linear
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Regge trajectories which come out naturally from a string-like picture, it was originally

thought before the establishment of QCD that string theory was in fact the theory of strong

interactions. With the appearance of holography this idea has been reinterpreted in a very

appealing way: in non-abelian theories with a gravity dual, quarks can be understood as

strings which propagate in a space with an extra dimension. Due to the curvature this higher

dimensional space has, the new coordinate is a measure of the energy scale at which the

theory is being probed. Applications of this correspondence are most useful at the limit

of strong coupling, where these strings become classical and computations notably sim-

plify. The discovery that nuclear matter under extreme temperature conditions behaves as

a strongly coupled fluid, challenging traditional perturbative techniques, has opened a rich

window of phenomenological applications for holography.

In this introductory part of the thesis we will review basic features of the phase transi-

tion that QCD experiences in heavy ion collisions, as well as the study both at weak and

strong coupling of the passage of energetic jets through the created plasma, which are very

useful probes that can help us characterize the properties of this new state of matter.

1.2 An Estimate of the Transition Temperature

Nuclear matter together with the electrons constitute the totality of the matter we experience

in our everyday life. Under standard conditions of temperature and density we have get fa-

miliarized with the different phases substances can have. Intuitively, the choice of a specific

phase can be understood by the condition that the free energy of a system, 𝐴 = 𝑈 − 𝑇𝑆,

should be minimized. For instance, by increasing the temperature 𝑇 at a fixed pressure

of solid water, we will reach a point beyond which the very ordered atomic disposition

that minimizes the internal energy 𝑈 will be abandoned, for the greater the temperature

the greater the weight of the measure of disorder, entropy 𝑆, will have in the free energy

formula. The temperature at which this happens is the melting temperature of ice at a given

pressure.
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This mundane transition doesn’t involve the consideration of the internal structure of

the hydrogen or oxygen nuclei, such degrees of freedom are effectively frozen and the most

convenient description lies at the atomic level. But, what would happen if one increased the

temperature beyond thousands of times the one at the center of the Sun? Is there a regime

where the quarks and gluons lying confined in the nucleons would find it worth it to adopt

other configurations? And what about a cold, but extremely dense system such as a neutron

star; do we expect different configurations there too?

An early attempt to address the possibility of a high temperature phase transition lead

to the MIT bag model [1]. Despite its simplicity, it predicts a transition temperature re-

markably close to the one extracted from more advanced techniques, using only common

thermodynamic relations which involve the counting of hadronic and partonic degrees of

freedom, and the inclusion of a "vacuum energy" in order to account for confinement. We

will briefly summarize its main features next.

This phenomenological model crudely incorporates the effects of asymptotic freedom

and confinement by representing hadrons as bubbles of (perturbative) vacuum, or "bags",

in a confining medium. Inside the bag, quarks and gluons appear as free particles, while

outside they do not due to the presence of a constant vacuum energy density 𝐵, the bag

constant, that keeps them confined. In this way. the hadron mass 𝑀 is given by

𝑀 =
4𝜋

3
𝑅3𝐵 . (1.1)

In order to derive the condition for a deconfinement phase transition between a hadron gas

phase and a quark-gluon plasma phase we basically need to compare their pressures, which

read

𝑃ℎ𝑔 = 𝜈ℎ𝑔
𝑏

𝜋2𝑇 4

90
, 𝑃𝑞𝑔𝑝 = (𝜈𝑏 +

7

4
𝜈𝑓 )

𝜋2𝑇 4

90
−𝐵 (1.2)

where 𝜈𝑏 and 𝜈𝑓 are the bosonic and fermionic degrees of freedom in the quark-gluon

plasma phase respectively, and 𝜈ℎ𝑔
𝑏 are the bosonic degrees of freedom in the hadron gas

phase. We have considered that the hadron gas phase is dominated by the ground state
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at zero chemical potential, meaning we mainly have pions, which are bosons, and then

𝜈ℎ𝑔
𝑏 = 3 for this phase. For the quark-gluon plasma phase one needs to add a term 𝐵𝑉

to the free energy representing the vacuum energy in the confining medium, or in other

words the energy cost of having quarks and gluons free. The gluonic number of degrees of

freedom is 𝜈𝑏 = 2(𝑁2 − 1), while the fermionic ones are 𝜈𝑓 = 2𝑁𝑁𝑓 , with 𝑁𝑓 being the

number of flavours. Inserting the physical quantities 𝑁 = 3 and 𝑁𝑓 = 2, corresponding to

up and down quarks, and equating the pressures gives

𝑇𝑐 =

(︂
45𝐵

17𝜋2

)︂1/4

≃ 144 MeV (1.3)

with a bag constant 𝐵1/4 ≃ 200 MeV from (1.1) by using for instance the proton param-

eters 𝑅 ≃ 1 fm and 𝑀 ≃ 1 GeV. It is a first-order transition despite the name "critical

temperature" used.

This temperature value is confirmed by lattice QCD calculations, which represent the

most reliable and precise computations of non-perturbative effects and shall be discussed

next. The bag model is however not reliable because of its simplicity for regions of the

parameter space such as 𝑇 = 0, 𝜇 ̸= 0, where the transition is only possible for a narrow

range of values of the bag constant, making it difficult to understand physically.

1.3 Lattice QCD at 𝑇 ̸= 0

The correct way to study the thermodynamics of QCD is by analysing the quantum partition

function 𝒵 within the path integral formalism. With this form, the connection between

quantum mechanics and statistical mechanics is almost trivial, since one only needs to

perform a Wick rotation, consisting in the change of variables 𝑡 → 𝑖𝜏 to imaginary time,

and restrict the time integration in the action to be [0, 𝛽] with 𝛽 ≡ 1/𝑇 , where 𝑇 is the
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temperature of the system. Thus we can write the partition function as

𝒵 =

∫︁
𝒟Ψ̄(x, 𝜏)𝒟Ψ(x, 𝜏)𝒜𝑎

𝜇(x, 𝜏)𝑒−
∫︀ 𝛽
0 𝑑𝜏

∫︀
𝑑3𝑥ℒ𝐸(Ψ̄,Ψ,𝐴𝑎

𝜇) , (1.4)

where Ψ̄ and Ψ are the anti-quark and quark fields respectively and 𝐴𝑎
𝜇 is the gluon field.

Here, the 𝜏 coordinate is not really a time; systems in global thermal equilibrium are time

independent.

The partition function 𝒵 corresponds to the trace of the matrix of density of states, tr𝜌,

or in other words to the "thermal bubbles", in opisition to the case at 𝑇 = 0 which repre-

sents the vacuum-to-vacuum transition amplitude. Then, to calculate expectation values of

operators we just define

< 𝒪 >=

∫︀
𝒟Ψ̄(x, 𝜏)𝒟Ψ(x, 𝜏)𝒜𝑎

𝜇(x, 𝜏)𝒪[Ψ̄,Ψ, 𝐴] 𝑒−
∫︀ 𝛽
0 𝑑𝜏

∫︀
𝑑3𝑥ℒ𝐸(Ψ̄,Ψ,𝐴𝑎

𝜇)∫︀
𝒟Ψ̄(x, 𝜏)𝒟Ψ(x, 𝜏)𝒜𝑎

𝜇(x, 𝜏)𝑒−
∫︀ 𝛽
0 𝑑𝜏

∫︀
𝑑3𝑥ℒ𝐸(Ψ̄,Ψ,𝐴𝑎

𝜇)
. (1.5)

The name Lattice QCD corresponds to the numerical evaluation of this quantity, for a

certain operator 𝒪, by discretizing spacetime into 𝑁3
𝑠 𝑁𝜏 cells. The integrals are done via

Monte Carlo algorithms by use of the Metropolis method for importance sampling. This

method works well at zero chemical potential, but presents problems at 𝜇 ̸= 0. The reason

is that the chemical potential would enter the euclidean Lagrangian with a factor 𝑖 that leads

to oscillations of the integrand, making the convergence much worse.

An important operator is now of our particular interest to understand QCD phase tran-

sitions, namely the Polyakov loop operator, defined as

𝐿 =
1

3
tr
(︁
𝒫 eig

∫︀ 𝛽
0 d𝜏 A4(x,𝜏)

)︁
. (1.6)

Given that 𝐿 is gauge independent, we can choose a gauge for the gluon field in which its

𝜏 dependence vanishes, so that

𝑒𝑖𝑔
∫︀ 𝛽
0 𝑑𝜏 𝐴4(x,𝜏) = 𝑒𝑖𝑔𝛽𝐴

𝑎
4(x)

𝜆𝑎

2 = 𝑒−𝛽𝐻𝑖𝑛𝑡 (1.7)

This accepts the interpretation of the interaction energy of an infinitely heavy quark, sitting
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Figure 1-1: Left: The (renormalized) Polyakov loop expectation value ⟨𝐿⟩ as a function of
𝑇/𝑇𝑐, as calculated in [?] for different lattice spacings. Right: Energy density (blue band)
in units of 𝑇 4 as a function of 𝑇 (plot taken from [3]). Reaching 𝑇𝑐 already requires energy
densities of the order of 𝜖 ∼ 1 GeV/fm3, and going to higher temperatures is even more ex-
pensive due to the 𝑇 4 scaling. Pressure and entropy density are also shown, with the results
from Hadron Resononace Gas (HRG) matching lattice data up to moderate temperatures
𝑇 ∼ 180 MeV.

at position x with color current density 𝐽𝑎
𝜇(y) = 𝑖𝑔 𝜆𝑎

2
𝛿(y − x)(1, 0, 0, 0), with the gluon

field 𝐴𝑎
𝜇(y) such that

𝐻𝑖𝑛𝑡 = −𝐿𝑖𝑛𝑡 =
4∑︁

𝜇=0

∫︁
𝑑3𝑦𝐽𝜇,𝑎(y)𝐴𝑎

𝜇(y) = 𝑖𝑔
𝜆𝑎

2
𝐴𝑎

4(x) (1.8)

This means that a vanishing ⟨𝐿⟩ indicates infinite energy for a free quark: this is con-

finement. We can see from the left panel in Fig. 1-1 how this is the case for low temper-

atures and how ⟨𝐿⟩ rapidly increases with a maximum in the susceptibility at the critical

coupling 𝛽𝑐𝑟, which can be mapped to a critical temperature around 𝑇𝑐 ∼ 150 MeV.

The liberation of quarks and gluons in the deconfined phase produces a strong raise in

the energy density around 𝑇𝑐, as can be seen in the right panel of Fig. 1-1. A massless gas

of quarks and gluons has an energy density that is proportional to 𝑇 4, where the proportion-

ality constant reflects the number of massless degrees of freedom. These can be accounted

for in an analogous way as we did in 1.2, and correspond to the Stefan-Boltzmann (SB) non-

interacting limit. While the lattice calculation lies around a 20% below the SB limit above

𝑇𝑐, it rapidly decreases below this temperature due to hadronization: the massive hadrons
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are exponentially suppressed, reducing the equivalent massless degrees of freedom. The

fact that the lattice calculation lies so close to the SB limit in the deconfined phase could

naively lead to think that the QGP behaves almost as a free gas of quarks and gluons; this

turns out to be a poor indicator of the actual nature of the plasma degrees of freedom as we

will see in Section 3.1; indeed, in the limit of infinite strong coupling one obtains thermo-

dynamical quantities which are 75% of the non-interacting limit. Even though asymptotic

freedom of QCD suggests that non-perturbative effects should disappear at large energy

scales and that hot strong-interaction matter approaches ideal gas behavior asymptotically,

the temperatures which are covered by current heavy ion collisions still correspond to a

strongly coupled regime where quasiparticles are absent, as induced from the fact that the

system produced behaves as an almost ideal fluid.

We have seen how the QCD Lagrangian gives indications from first principle calcu-

lations of the existence of a high temperature phase. This phase was, according to the

standard cosmological model, present in the first microseconds after the Big Bang. The

Universe expansion and its cooling down lead us through other lower temperature phases,

all of which still remain obscure to us due to the opacity of the dense Universe until the

decoupling of photons when the CMB was emitted. It would therefore be of unique inter-

est to be able to study systems created in our laboratory which can explore the deconfined

phase of nuclear matter, by generating Little Bangs which resemble these first instants of

our known Universe: this possibility is nowadays materialized by the study of Heavy Ion

Collisons (HIC).

In Fig. 1.3 we can see a sketch of what is known today about the phase diagram of QCD

in the temperature, chemical potential (net baryon density) (𝑇, 𝜇𝐵) plane. Cold nuclear

matter lies at 𝑇 = 0 and 𝜇𝐵 ∼ 0.96 GeV. By going to increasingly higher temperatures,

more hadrons are excited and we have a hadron-resonance gas. Thanks to lattice QCD

calculations, we know that a phase transition occurs along the temperature axis from the

hadron gas to the quark-gluon plasma, which instead of being a sharp phase transition it

behaves as a rapid cross-over. The nature of the transition at non zero chemical potential

along the critical line is first order. At low temperatures and very large densities, only
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Figure 1-2: The QCD phase diagram as we currently understand it (figure from
https://www.ntnu.edu/physics/theoretical/thermqcd)

reachable at the core of neutron stars, the color superconducting phase dominates [4]. In

the figure we can also see drawn some trajectories that heavy ion collisions allow us to

explore. The higher the center of mass energy of the nuclei, the more transparent they are

and therefore the less amount of incoming baryons get stopped at the center of the collision,

so that there is almost no baryon anti-baryon asymmetry and 𝜇𝐵 gets closer to zero. For

the LHC, the entropy per nucleon ratio is high enough that one can effectively consider it

as baryon free.

1.4 Heavy Ion Collisions

In this Section we will review the most important features of the production and evolution

of the system generated in a heavy ion collision. In the last Section we have stated that at

collider accessible temperatures the system is strongly coupled; we will see next which are

its most important signatures in experiments. Given that above the transition temperature

the evolution is well described by hydrodynamics, we will comment on this surprising

collective behaviour and explain the role that transport coefficients play in it.
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1.4.1 Geometry and Flow

In our accelerators we have been colliding nucleus against each other for nearly two decades.

Due to their great speed, close to speed of the light, they are Lorentz contracted along the

longitudinal direction and look to us in the laboratory frame as pancake shaped. Given that

the nucleus have a radius of several femtometers (along which the energy density varies),

the impact parameter at which the collision takes place (see left panel of Fig.1-3) greatly

determines the particle output. The higher the overlap, the higher the number of partici-

pants 𝑁𝑝𝑎𝑟𝑡 in the collision and therefore we expect to produce a greater amount of energy

than for the more peripheral collisions where most of the energy ends up flying down the

beam pipe. The impact parameter 𝑏 is then correlated with multiplicity (total number of par-

ticles produced in the collision), being used nowadays the terminology of centrality classes

in order to classify them. For instance, the 10% highest multiplicity events correspond to

the 10% of events with the smallest 𝑏. Given that the probability of selecting a certain 𝑏

goes like 𝑑𝑏2, and assuming that the probability of colliding (so that the nucleus don’t fly

away without interacting) is approximately 1, we can deduce the range of values for 𝑏 from

the total cross section 𝜎TOT, such that for the 10% most central events we have 0.1 =
𝜋𝑏210
𝜎TOT

.

For a given 𝑏, the in general almond shape overlapping region can be said to have a

certain eccentricity, a quantity that takes into account the average positions in the transverse

plane of every pair of nucleons within 𝜎𝑁𝑁
𝑖𝑛𝑒𝑙 (the cross section for inelastic nucleon-nucleon

collisions at a given
√
𝑠). Its definition is

𝜖𝑛𝑒
𝑖𝑛Φ𝑛 =

< 𝑟𝑛𝑒𝑖𝑛𝜑 >

< 𝑟𝑛 >
, (1.9)

with 𝜖𝑛 being the magnitude and Φ𝑛 the direction. The positions of the nucleons in the

(𝑟, 𝜑) plane have to be obtained from a model describing the nuclear energy density, being

our choice the popular Glauber model as pictured in the right panel of Fig.1-3 (other models

relying on the physics of saturation ([5]) have gained a lot of relevance in the last years,

for which the eccentricities can be quite different from the ones obtained with the Glauber

model. Such models are not studied in this work, see e.g. [6]). The different values of 𝑛
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Figure 1-3: Left: A schematic picture of the transverse plane in a heavy ion collision, taken
from [7]. Both the magnitude and direction of the impact parameter 𝑏 can be determined
on an event by event basis. Ψ𝑅𝑃 is called the reaction plane angle, a parameter mostly
irrelevant for event averaged quantities. Right: A Glauber Monte-Carlo event (Au+Au)
with impact parameter 𝑏 = 6 fm. The darker discs correspond to the participating nucleons.
Figure taken from [8].

label the different possible kind of eccentricities, e.g. 𝑛 = 2 is elliptic, 𝑛 = 3 is triangular...

and so on. Given the almond shape of the collision, one expects the elliptic eccentricity to

be the dominating one, in which case we get

𝜖𝑛𝑒
𝑖2Φ2 =

< 𝑟2𝑒𝑖2𝜑 >

< 𝑟2 >
=

< 𝑦2 − 𝑥2 >

< 𝑦2 + 𝑥2 >
. (1.10)

Eccentricities fluctuate from event to event, so we can use the event averaged squared

eccentricity < 𝜖2𝑛 >.

How important are normal statistical fluctuations compared to geometric fluctuations

associated to the 𝑁𝑝𝑎𝑟𝑡? This is an important question if we want to relate the final particle

distribution to the initial geometry of the collision. Given that the number of charged

particles per rapidity bin measured in a PbPb collision at the LHC at
√
𝑠𝑁𝑁 = 2.76 TeV

is 𝑑𝑁𝑐ℎ/𝑑𝜂 ∼ 1600, and having < 𝑁𝑝𝑎𝑟𝑡 >∼ 400 (twice the number of nucleons per Pb

nucleus), we have the following number of particles per collision per rapidity bin

1

(𝑁𝑝𝑎𝑟𝑡/2)

3

2
<

𝑑𝑁𝑐ℎ

𝑑𝜂
>∼ 3

2

1600

200
= 12 , (1.11)

13



which is a rather large number. This means that within each rapidity bin, normal statisti-

cal fluctuations 1/
√
𝑁 are smaller by 1/

√
12 than the corresponding fluctuations due to the

number of participants (geometry). In addition, by using the full rapidity range, the number

of particles per collision increases by∼ 10. With this estimate we have convinced ourselves

that the long range correlations that might be present in the collision are completely domi-

nated by the geometry (and its fluctuations). How can we quantify these correlations?

We can define the correlation function 𝐶(∆𝜑), that measures the probability to find two

particles who are separated by an angle ∆𝜑 = 𝜑1 − 𝜑2, as

𝐶(𝜑1 − 𝜑2) ≡
< 𝑑𝑁

𝑑𝜑1

𝑑𝑁
𝑑𝜑2

>

< 𝑑𝑁
𝑑𝜑1

>< 𝑑𝑁
𝑑𝜑2

>
= 1 + 2

∞∑︁
𝑛=1

< 𝑣2𝑛 > cos(n(𝜑1 − 𝜑2)) +𝒪(
1

N
) , (1.12)

where the term𝒪(1/𝑁) refers to the order of the rest of correlations which are not geomet-

ric, such as jets, momentum and charge conservation, thermal fluctuations, resonances...

which are typically short range. The coefficients 𝑣𝑛 come from the Fourier series expan-

sion, and correspond to the quantities that are fitted to data.

The measured 𝐶(∆𝜑) for nucleus-nucleus collisions, which corresponds to a projection

in 𝜑 of the 2D two-particle correlation function shown in the left panel of Fig.1-4, can then

be used to extract the flow coefficients 𝑣𝑛. The relatively large value for the coefficient

𝑣2 signals the importance of the elliptic shape of the overlapping region. There is a clear

interpretation based on collective fluid motion: the anisotropic pressure gradients have in-

duced momentum anisotropies, leading to an excess of particles in the directions where the

gradients are greater. This picture would not apply if the system behaved as a free gas of

quarks and gluons, where the low interacting partons would fly in all directions and read-

ily isotropize, washing away the initial geometric profile information. Collective motion

would instead naturally generate flow as a response to eccentricities, such that 𝑣2 ∝ 𝜖2,

𝑣3 ∝ 𝜖3... and so on (see the right panel of Fig.1-4 for a determination of 𝑣2).

As it turns out, hydrodynamic simulations have done an excellent job at describing
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Figure 1-4: Left: The 2D two-particle correlation functions for 2.76 TeV PbPb collisions
for pairs of charged particles with 1 < 𝑝𝑡𝑟𝑖𝑔𝑇 < 3 GeV and 1 < 𝑝𝑎𝑠𝑠𝑜𝑐𝑇 < 3 GeV within the
220 < 𝑁off.tr. < 260 multiplicity bin (figure from [9]). The near side ridge which signals
the presence of long-range rapidity correlations is clearly visible. The sharp peak is due to
jet correlations. Right: Extraction of the 𝑣2 coefficient from the function 𝐶(∆𝜑), which is
the projection in 𝜑 of the 2D two-particle correlation (figure from [10]).

many features of heavy ion collisions (some of which we will comment later on). Generally,

a system is effectively described by hydrodynamics when its typical length scales are larger

than any correlation length in the underlying theory. Therefore, at the scales when the

hydrodynamic description is valid, each point in space is assigned a macroscopic fluid cell,

characterised by its energy density 𝜖, its pressure 𝑃 and its velocity 𝑢𝜇. For a fluid without

conserved charges (as is the case of our interest, a system with very small 𝜇𝐵), the fluid

properties are completely characterised by the stress tensor 𝑇 𝜇𝜈 . Hydrodynamics can then

be viewed as a gradient expansion which in the infinite wavelength limit contains only

the ideal part 𝑇 𝜇𝜈
ideal = (𝜖 + 𝑃 )𝑢𝜇𝑢𝜈 + 𝑃 𝑔𝜇𝜈 , where the convention for the metric is here

mostly plus. Considering the first order corrections to the gradient expansion introduces

new length scales related to viscosities, which measure the system response to perturbations

or deformations and can be encapsulated in the transverse stress tensor Π𝜇𝜈 = −𝜂(𝜖)𝜎𝜇𝜈 −

𝜉(𝜖)∆𝜇𝜈∇ · 𝑢, where 𝜂 and 𝜉 are the shear and bulk viscosities, ∇𝜇 = ∆𝜇𝜈𝑑𝜈 with 𝑑𝜇

the covariant derivative, ∆𝜇𝜈 = 𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈 is the projector into the space components of

the fluid rest frame, and 𝜎𝜇𝜈 is a symmetric traceless tensor in terms of derivatives of the

velocity field.
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By performing fits to data one can extract the parameters and initial conditions that

provide an accurate description of the fireball evolution in terms of hydrodynamics. More-

over, by using the pieces of physics that we already know from lattice QCD, such as the

equation of state 𝑃 (𝜖) or the smallness of the bulk viscosity 𝜉 (as it is for the case of nearly

conformal theories where the (𝜖−3𝑃 )/(𝜖+𝑃 ) ratio is small), one can better constraint the

values of the rest of the parameters, such as the shear viscosity 𝜂.

However, it is rather surprising (at first glance at least) to be able to apply hydrody-

namics to a system such as nuclear collisions. Is it reasonable at all? Under which circum-

stances? We will briefly address these questions next.

1.4.2 On the Validity of Hydrodynamics

Our goal in this section is to obtain a parametric estimate on the conditions a system must

satisfy in order to be within the regime of hydrodynamics, end for which we will need to

gain some intuition on the shear viscosity 𝜂.

The strength of 𝜂 determines the effectiveness in momentum diffusion, or in other words

how momentum is exchanged between regions of space with momentum anisotropies. As

a toy example, imagine two streams of fluid moving in opposite directions which are put in

contact at 𝑦 = 0. Because of Brownian motion, there will be a random walk of momenta

starting at the contact region which will propagate and eventually lead to a equilibrium

situation in region ∆𝑦 after a time ∆𝑡. The momentum transferred to the upper layer is

∆𝑃 𝑥 =

∫︁
𝑦>0

𝑑𝑦 ∆𝑇 0𝑥 =

∫︁ Δ𝑦

0

𝑑𝑦 (𝜖 + 𝑃 )∆𝑢𝑥 =

= −
∫︁ Δ𝑦

0

𝑑𝑦 (𝜖 + 𝑃 )
𝜕𝑢𝑥

𝜕𝑦
𝑦 = −(𝜖 + 𝑃 )

(∆𝑦)2

2

𝜕𝑢𝑥

𝜕𝑦
, (1.13)

where we have used that 𝑇 0𝑥 ≃ (𝜖+𝑃 )𝑢𝑥. By defining the momentum diffusion coefficient

𝐷𝜂 as (∆𝑦)2 = 2𝐷𝜂 ∆𝑡, and comparing the previously obtained expression to the relation
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defining the shear viscosity 𝜂, i.e. ∆𝑃 𝑥/∆𝑡 = −𝜂 𝜕𝑢𝑥/𝜕𝑦, we conclude that

𝐷𝜂 ≡
𝜂

𝜖 + 𝑃
. (1.14)

To proceed we will need some parametric estimates regarding the kinematics of the process.

The spatial extent to which the momentum has spread, ∆𝑦, is proportional to the amount

you move each step, the mean free path 𝑙𝑚𝑓𝑝, times the number of steps ∆𝑡/𝜏𝑐𝑜𝑙𝑙, where

𝜏𝑐𝑜𝑙𝑙 is the time between collisions, which in turn can be expressed as 𝑙𝑚𝑓𝑝/𝑣𝑡ℎ, with 𝑣𝑡ℎ the

typical speed (generally the speed of sounds 𝑐𝑠). With these ingredients, we get

(∆𝑦)2 ∼ (
∆𝑡

𝜏𝑐𝑜𝑙𝑙
) 𝑙2𝑚𝑓𝑝 ∼ 𝑣2𝑡ℎ 𝜏𝑐𝑜𝑙𝑙 ∆𝑡 . (1.15)

By the definition of 𝐷𝜂, this last relation allows us to say that 𝐷𝜂 ∼ 𝑣2𝑡ℎ 𝜏𝑐𝑜𝑙𝑙, which in turn

implies that

𝜂 ∼ (𝜖 + 𝑃 )

𝑛𝜎
𝑣𝑡ℎ , (1.16)

where we used that 𝜏𝑐𝑜𝑙𝑙 ≃ (𝑛𝜎 𝑣𝑡ℎ)−1. Now, by adopting a quasi-particle picture for the

medium constituents, we can consider the energy density 𝜖 to be the typical one, meaning

𝜖 = 𝑛𝐸 ∼ 𝑛 𝑣𝑡ℎ 𝑝, so that (𝜖 + 𝑃 ) ∼ 𝑛 𝑣𝑡ℎ 𝑝𝑡𝑦𝑝 and then the shear viscosity becomes

𝜂 ∼ 𝑝𝑡𝑦𝑝
𝜎

𝑣2𝑡ℎ . (1.17)

This expression does not depend on the density, and is inversely proportional to the cross

section 𝜎. This relation makes manifest the notion that strongly coupled systems have

lower viscosities than weakly coupled ones, a fact which at first can seem counter intuitive.

The way to think about it is by realizing that it is easier for momentum to be transported

away (more viscosity) the less it interacts with nearby regions (lower cross section).

It is worth to stop to discuss when the quasi-particle picture that we have used to de-

rive Eq. 1.17 is valid. By adopting this description we have implicitly assumed that the

system is at a very high temperature 𝑇 such that the mean free path (the typical spacing)
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is parametrically much larger than the De Broglie wavelength associated to the particle,

𝜆DeBrog. ∼ 1/𝑇 . Given that the density 𝑛 ∝ 𝑇 3 and the cross section 𝜎 ∝ 𝛼2
𝑠(𝑇 )/𝜇2

𝐷,

with 𝜇𝐷 the Debye screening mass scaling like 𝜇2
𝐷 ∼ 𝛼𝑠𝑇

2, it all ends up depending on the

running of the QCD coupling constant 𝛼𝑠; only if 𝛼𝑠 ≪ 1, meaning very high 𝑇 , can we

regard the medium constituents as quasi-particles. Given that at collider relevant tempera-

tures 𝛼𝑠 ∼ 0.3, the fireball description in terms of quasi-particles does not seem not be the

most natural one.

For now, we just focus on the essential condition for hydrodynamics to be appliable:

the system size 𝐿 has to be much larger than any other microscopic scale, so that a coarse-

graining can be justified. In our case, this condition translates into 𝐿 ≫ 𝑙𝑚𝑓𝑝, or equiva-

lently 𝜏𝑐𝑜𝑙𝑙 ≪ 𝜏0, where 𝜏0 is the expansion rate of the system as derived from a longitudi-

nally expanding boost-invariant fluid

1

𝑉

𝑑𝑉

𝑑𝑡
= 𝜕𝜇𝑢

𝜇 =
1

𝜏0
. (1.18)

Using the previously derived relations (and also that (𝜖 + 𝑃 ) = 𝑠 𝑇 ) we secure the basic

condition for the regime of applicability of hydrodynamics as

𝜂

𝑠

1

𝑐2𝑠

1

𝑇𝜏0
≪ 1 . (1.19)

We can better quantify the relation by taking some educated values for 𝑇 ≃ 300 MeV,

𝜏0 ≃ 1 fm and 𝑐2𝑠 = 1/3. In this way

0.6

(︂ 𝜂
𝑠

0.3

)︂ (︂
1 fm/c

𝜏0

)︂ (︂
300 MeV

𝑇

)︂
≪ 1 . (1.20)

This simple estimate shows some important features. The lower the shear viscosity over

entropy density ratio 𝜂/𝑠, the more we can rely on hydrodynamics to describe the system.

Strongly coupled systems have large cross sections, and as inferred from (1.17) they possess

small shear viscosities. We will say more about viscosity in strongly coupled plasmas in

section 3.1. On the other hand, we can also get to the regime of validity by going to very
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high temperatures, or fast expansion rates. We have in this way seen how this parametric

estimate gives support to the application of hydrodynamics in a system such as heavy ion

collisions, subject to the circumstances just described.

1.4.3 The Stages of Heavy Ion Collisions

As it seems, we have good reasons to believe that the deconfined phase predicted by lat-

tice QCD for nuclear matter above the critical temperature behaves as a droplet of liquid

undergoing collective motion, an extremely interesting feature that confronts the quasi-

particle picture and challenges our most basic understanding of quantum field theories. In

the following we will sketch our current understanding of the different stages the heavy ion

system experiences, from the two nuclei to the thousands of hadrons flying to our detectors.

At the very beginning of the collision, pressure gradients are so large that the system

cannot be described hydrodynamically, since as mentioned above the latter is an effective

theory relying on an expansion of gradients. In this way, if the system is to behave as a

fluid eventually, there has to be a mechanism of isotropization and thermalization of the

collision debris initially sitting at mid-rapidity. There have been two main roads taken to

describe these physics, namely weakly coupled QCD and strongly coupled 𝒩 = 4 Super

Yang Mills, a supersymmetric relative of QCD. We briefly review the general understading

in the weakly coupled regime first and then we continue with the strongly coupled one.

We have learned from the study of parton distribution functions (PDFs) that gluons

completely dominate the interior of nucleons at small energy fraction 𝑥. Saturation mod-

els, which started with the McLerran-Venugopalan model, state that by going to very low

𝑥 the density of gluons eventually saturates, meaning that gluon recombination becomes

as likely as gluon splitting given their large occupation number, of the order of 1/𝛼𝑠 at the

dominant momentum scale 𝑄𝑠, the saturation scale. This macroscopic number of gluons

liberated at mid-rapidity through the collision behaves coherently initially, and can then be

described in terms of classical fields, converting the problem into solving classical Yang-
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Mills equations in the presence of very strong color sources, a system commonly known as

Color Glass Condensate (CGC).

This state evolves reducing the occupancies due to longitudinal expansion down to a

point where the effective description has to be changed to effective kinetic theory by the

use of the Boltzmann equation, which involves elastic and inelastic scatterings among the

partons in the system. The radiative break up that this stage induces refills the occupation

numbers while isotropizing and bringing the system closer to thermal equilibrium, even-

tually describing the same physics as hydrodynamics itself and therefore completing the

evolution picture. Such a proof of principle calculation has been done recently in [11].

From the strongly coupled regime, and by the use of holography (which is introduced

in Section 3.2) it is also possible to extract important phenomenological insights on the

hydrodynamization of a far from equilibrium system by numerically solving the full non-

linear Einstein equations for the collision of shock waves in the gravity theory; in the gauge

theory dual, these shock waves correspond to lumps of energy propagating at the speed of

light. The formation of the non-Abelian plasma in the gauge theory corresponds to the for-

mation of a black hole in the gravity dual which will relax to equilibrium. By comparing the

pressure from the holographic calculation with the one that would correspond to the system

if it was describable in terms of 𝑇𝜇𝜈 one can measure the hydrodynamization time, which

has found to be remarkably fast, of the order of 1/𝑇 [12, 13], which means that the hy-

drodynamic description of a non-Abelian plasma follows naturally in the strongly coupled

regime. Moreover, by assigning different energy density profiles to the shock waves, one

can explore different center of mass energy collisions, being able to describe the regimes

in which the after collision debris behaves, whether it has been stopped at mid-rapidity or

flows transparently, as described in [14], which is in clear consonance with what is ob-

served from RHIC energies to LHC ones.

More recently the heavy ion community has been wondered by the fact that p-Pb and p-

p collisions of high multiplicity do show some collective motion behaviour, in the sense that
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large ⟨𝑣2𝑛⟩ of the order of Pb-Pb ones are found. The possibility of thermalizing such a small

system is not expected at all, unless we use the insights from holography. From the strong

coupling perspective, any system capable of collapsing into a black hole in the dual theory

will behave hydrodynamically (the question is to what energy would that correspond in real

life collisions, this is QCD). Recent results [15] have confirmed these intuitions, increasing

the perception that holography has much to say about the physics of deconfinement.

The against the vacuum exploding fireball evolution in spacetime can be very well de-

scribed by event by event numerical hydrodynamic simulations which require a few number

of input parameters to initialize, namely the thermalization time 𝜏0, the initial energy den-

sity profile and the transport coefficients (such as shear viscosity 𝜂 and bulk viscosity 𝜒),

and also requires the knowledge of the equation of state, which can be obtained from lattice

calculations.

These transport parameters are different depending on the underlying microscopic dy-

namics assumed to calculate them. A way to test which picture better suits the QGP prop-

erties is to use experimental data to constrain the values of such parameters doing a mul-

tiple parameter fit. The large values found for the flow coefficients ⟨𝑣2𝑛⟩ impose important

bounds on the interplay between the thermalization time (the time at which the system

starts behaving collectively) and viscosity (which regulates the amount of momentum dis-

sipated into heat). The higher the value of 𝜏0, the longer the system will have expanded

isotropically, smearing out the initial eccentricity and therefore reducing the amount of

flow. Viscosity also reduces the strength of flow by producing entropy at expenses of mo-

mentum. These fits to data translate into important constraints on the transport coefficients,

such as the value for the shear viscosity over entropy density ratio 𝜂/𝑠. Recent analysis that

even include the possibility of pre-equilibrium flow (see [16] for more details), therefore

allowing for thermalization time to be larger, give a best fit of 𝜂/𝑠 ≃ 0.135 ≃ 1.7 1
4𝜋

, which

is remarkably close to universal strongly coupled lower bound found in [17].

Due to the expansion of this thermalized system, driven by the thermal pressure, the
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fireball cools and its energy density decreases. When the energy density reaches 𝜖 ∼

1 GeV/fm3, the partons convert into hadrons. These hadrons keep rescattering with each

other for some time, maintaining the expansion flow until the system becomes so dilute that

the average distance between the hadrons surpasses the range of strong nuclear force. At

this moment, the scattering stops and the hadrons decouple, this is the so called freeze out.

By the time this total decoupling happens, the chemical abundances have already been fixed

at the chemical freeze out, which takes place before the kinetic freeze out. The chemical

freeze out signals the moment when inelastic collisions cease, while the kinetic freeze out

corresponds to the point when also elastic collisions cease (elastic collisions include also

the production of short-lived resonances that decay back into the original hadrons). The lat-

ter processes don’t change the chemical composition, but contribute to keep the momenta

of the system thermalized due to the large resonant cross sections. After the decoupling,

hadrons fly to our detectors and the event reconstruction begins.

While the above corresponds to the evolution of the bulk of particles generated in a

heavy ion collision, there are others with higher 𝑝𝑇 (transverse momentum) which are also

produced in the collision (although at lower rates). These rarer hard excitations have so

much energy that don’t get to thermalize, but rather pass through the system becoming very

useful probes with which to test the properties of the short-lived plasma they explore. These

highly energetic particles undergo collinear emissions, developing parton showers which

end up building a collimated spray of particles that is commonly known as jet. This thesis

will describe how these jets interact with the QGP both from a weakly coupled and strongly

coupled perspective, developing a realistic model with which to perform simulations that

are to be compared to data in order to gain information on the microscopic nature of the

plasma.
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Chapter 2

Jet Quenching

QCD jets are essential objects in modern particle physics. Many of the searches for new

physics at the LHC involve the detailed analysis of the production and properties of these

energetic spays of particles that arise from the colour neutralisation of energetic partons

produced in hadronic collisions. Jets also play a central role in the analysis of hot and

dense matter formed in the debris of high energy Pb-Pb collisions (for a recent review of

LHC heavy-ion results see [18]). Since long, these objects have been identified as the most

powerful tomographic tools with which to diagnose the properties of the formed matter

[19]. The tremendous combined capabilities of the LHC (and its associated detectors) have

converted this potential into reality; the copious production of jet samples at LHC energies

enables detailed studies of jet properties in a heavy ion environment [20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

Early LHC results on jet physics in Pb-Pb collisions at
√
𝑠NN = 2.76 TeV have shown

a strong suppression in the jet production rate as compared to proton-proton collisions at

the same energies [32, 33, 34]. This reduction of the jet rate can be understood as a result

of the energy loss experienced by jets on their way out of the collision zone. This phe-

nomenon, known as jet quenching, was identified previously at RHIC by the observation

of a strong suppression in the production of high energy hadrons in heavy ion collisions

[36, 37]. While the latter suppression is mostly sensitive to the energy loss by the hardest

jet fragments, the variety of the observed jet modifications in a heavy-ion environment de-

mands addressing the jets as sources of several partons propagating simultaneously through
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the QCD medium.

At high energies, parton energy loss is controlled by the stimulated radiation of medium-

induced gluons as a result of the scattering with the medium constituents. Many of the prop-

erties of the modification of jets may be inferred from the single-gluon emission rate, first

computed by BDMPS-Z [38, 39, 40]. In a finite length medium, an opacity expansion of the

multiple scattering series resummed in BDMPS-Z was introduced in [41, 42, 43], in which

the expansion parameter may be viewed as the ratio of the medium length to the mean free

path.1 These computations are at the heart of the different formalisms later developed to

address the dynamics of energetic partons in plasma [44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

Generalising this picture in order to treat the interactions of QCD showers with the medium,

one usually relies on working models that iterate the single-gluon emission rate without

considering possible multi-parton correlations. For different Monte-Carlo implementa-

tions, see [54, 55, 56, 57, 58]. Nevertheless, in vacuum jet physics it has been long

understood that interference effects between the shower constituents, known as coherent

branching or angular ordering, are essential to completely describe intra-jet properties in

high-energy colliders [59]. In Part III of this thesis we address this last subject by studying

the coherent in-medium emission of two gluons in 𝑁 = 1 opacity (or in other words, in a di-

lute system where all the medium can be replaced by a single medium exchange/scattering

centre). As a preliminary, and to gain intuition on the physics of radiative energy loss, in

this introductory Part I we also compute the one gluon emission rate at 𝑁 = 1 opacity in

Section 2.3.

The coming Sections of this Chapter are devoted to provide a brief conceptual intro-

duction to the theoretical techniques playing a key role in the description of jet quenching

from a perturbative point of view, by assuming that the relevant energy scale at which 𝛼𝑠

is evaluated corresponds to asymptotically high temperatures, far beyond the reach of cur-

rent accelerators. For realistic values of the temperature, this picture starts losing validity,

the quasi-particle description breaks down and one has to resort to strong coupling com-

putations, which are reviewed in Section 3.3. Nevertheless, the techniques and concepts

1This ratio is usually referred to as the medium opacity.
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extracted from these perturbative calculations are basic for a full understanding of the jet

quenching phenomena in all its regimes, since some of the features arising at weak coupling

might have a counterpart in strong coupling whose presence is a priori less evident.

2.1 Hard Processes

Hard processes are those involving large momentum transfers, which given the running

of 𝛼𝑠 with the energy, they are computable perturbatively and are under good theoretical

control. The complete evolution from the two colliding protons to the jets flying to our

detectors is however still far from being completely understood: parton distribution func-

tions and fragmentation functions from partons to hadrons are in general non-perturbative

quantities which need to be fitted to data (but whose evolution follows the famous DGLAP

evolution equations). Luckily, one can separate the computation of these different pieces

thanks to the factorization theorems in QCD [60], which can be expressed as

𝜎𝐴𝐵→ℎ = 𝑓𝐴(𝑥1, 𝑄
2)⊗ 𝑓𝐵(𝑥2, 𝑄

2)⊗ 𝜎(𝑥1, 𝑥2, 𝑄
2)⊗𝐷𝑖→ℎ(𝑧,𝑄2) (2.1)

meaning that the cross section to produce a hadron ℎ out of two colliding hadrons 𝐴 and 𝐵

corresponds to the convolution of the two PDFs with the hard cross section 𝜎(𝑥1, 𝑥2, 𝑄
2)

and with the probability to find a hadron ℎ with momentum fraction 𝑧 out of a parton 𝑖.

Regarding the medium induced modification of final hadrons distribution, one may

wonder which are the parts in this process that are being affected by the presence of the

QGP. It is well known that nuclear parton distribution functions (nPDFs) are different from

standard PDFs due to the effects of shadowing and anti-shadowing, constructive or de-

structive interference effects among the hadrons within the nuclei [61]. These effects play

a minor role for high 𝑝𝑇 processes, and as such will be neglected throughout this work.

The hard cross section, at high enough energy, can also be considered to be unaffected with

respect to p-p collisions, since by the uncertainty principle the time scale during which the

hard process occurs is ∆𝑡 ∼ 1/
√︀

𝑄2, which is generally much shorter than the time it
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takes for the medium to form. These assumptions have been put to test by studying col-

orless probes (which don’t interact with the medium), such as prompt photon production

processes, where it has been seen how the distribution is (at high 𝑝𝑇 ) unchanged from the

𝑁𝑐𝑜𝑙𝑙 scaled extrapolation of the vacuum case [23]. Also studies of jet quenching in 𝑃𝑏− 𝑝

systems (where no QGP is formed, or at least its size is neglectable compared to the Pb-

Pb case), where no energy loss was observed [123], have confirmed the assumption that

medium modification is a final state effect, an interplay between the parton shower and the

plasma constituents.

2.2 Parton Propagation within the QGP

In this section we will review important aspects on the propagation of a fast projectile

through a color bath, which gets color rotated and gets broadened as well (if we go beyond

the eikonal approximation). We will introduce the gauge invariant Wilson lines and also

perform medium averages in order to see how the jet transport parameter 𝑞 emerges and

which is its physical interpretation.

Due to the high momentum of the incoming parton, which is well above the typical

momentum transferred from the medium, we make the assumption that the momenta of

the projectile is not altered by the interactions with the plasma. The latter can be then

considered as a background field, rendering the problem as a semiclassical one where there

is no medium response, no recoil.

By taking the medium to be a collection of scattering centres, we can compute the

contribution to the 𝑆 matrix of the interaction with one of them as

𝑆1(𝑝
′, 𝑝) =

∫︁
𝑑4𝑥 𝑒𝑖(𝑝

′−𝑝)𝑥𝑢̄(𝑝′)𝑖𝑔𝐴𝑎
𝜇(𝑥)𝑇 𝑎𝛾𝜇 𝑢(𝑝) , (2.2)

where 𝐴𝑎
𝜇(𝑥) is the field produced by the scattering centre. One finds it convenient to use

light-cone coordinates, defined as 𝑥± ≡ 1/
√

2(𝑥0 ± 𝑥3), with a scalar product as 𝑥𝑝 =
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𝑝+𝑥− +𝑝−𝑥+−p⊥x⊥. Due to the huge Lorentz contraction, all the medium dependence in

the 𝑥− coordinate can be neglected as if the whole process happened at a sheet of constant

𝑥−. By using the eikonal approximation, meaning 𝑝′ ≃ 𝑝, one gets

𝑆1(𝑝
′, 𝑝) ≃ 2𝜋𝛿(𝑝′+ − 𝑝+)2𝑝+

∫︁
𝑑x⊥𝑒

−𝑖x⊥(p′
⊥−p⊥)

[︂
𝑖𝑔

∫︁
𝑑𝑥+𝐴−(𝑥+,x⊥)

]︂
, (2.3)

where we used 1
2

∑︀
𝜆 𝑢̄

𝜆(𝑝)𝛾𝜇𝑢𝜆(𝑝) = 2𝑝𝜇 and 𝑝𝜇𝐴𝑎
𝜇 ≃ 𝑝+𝐴

𝑎
−. Now, the contribution of

two scatterings reads

𝑆2(𝑝
′, 𝑝) =

∫︁
𝑑4𝑝1
(2𝜋)4

𝑑4𝑥1𝑑
4𝑥2 𝑒

𝑖(𝑝1−𝑝)𝑥1𝑒𝑖(𝑝
′−𝑝1)𝑥2𝑢̄(𝑝′)𝑖𝑔𝐴𝑎1

𝜇1
(𝑥1)𝑇

𝑎1𝛾𝜇1×

× 𝑖
/𝑝1

𝑝21 + 𝑖𝜖
𝑖𝑔𝐴𝑎2

𝜇2
(𝑥2)𝑇

𝑎2𝛾𝜇2𝑢(𝑝) .

(2.4)

By use of the Dirac equation we can simplify previous expression in the eikonal limit as

𝑆2(𝑝
′, 𝑝) = −𝑖𝑔2(2𝑝+)2

∫︁
𝑑4𝑝1
(2𝜋)4

𝑑4𝑥1𝑑
4𝑥2

𝑒𝑖(𝑝1−𝑝)𝑥1+𝑖(𝑝′−𝑝1)𝑥2

𝑝21 + 𝑖𝜖
𝐴−(𝑥1)𝐴−(𝑥2) . (2.5)

Since the medium is 𝑥− independent, the only non-trivial integral on the internal momen-

tum 𝑝1 is the one in 𝑝1−, which reads

∫︁
𝑑𝑝1−

𝑒𝑖(𝑥1+−𝑥2+)𝑝1−

2𝑝1+𝑝1− + 𝑖𝜖
= −Θ(𝑥2+ − 𝑥1+)

2𝜋𝑖

2𝑝1+
, (2.6)

where consistently with the eikonal approximation we have neglected the transverse mo-

mentum so that 𝑝21 ≃ 2𝑝1+𝑝1−. In this way, the amplitude for two scatterings reads

𝑆2(𝑝
′, 𝑝) = 2𝜋𝛿(𝑝′+ − 𝑝+)2𝑝+

∫︁
𝑑x⊥𝑒

−𝑖x⊥(p′
⊥−p⊥) 1

2
𝒫
[︂
𝑖𝑔

∫︁
𝑑𝑥+𝐴−(𝑥+,x⊥)

]︂2
, (2.7)

where 𝒫 means path ordering of the fields 𝐴𝜇(𝑥). The generalisation to 𝑛 scattering centres

is straightforward, giving

𝑆𝑛(𝑝′, 𝑝) = 2𝜋𝛿(𝑝′+−𝑝+)2𝑝+

∫︁
𝑑x⊥𝑒

−𝑖x⊥(p′
⊥−p⊥) 1

𝑛!
𝒫
[︂
𝑖𝑔

∫︁
𝑑𝑥+𝐴−(𝑥+,x⊥)

]︂𝑛
. (2.8)
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The sum over all possible number of scatterings is then

𝑆(𝑝′, 𝑝) =
∞∑︁
𝑛=0

𝑆𝑛(𝑝′, 𝑝) ≃ 2𝜋𝛿(𝑝′+ − 𝑝+)2𝑝+

∫︁
𝑑x⊥𝑒

−𝑖x⊥(p′
⊥−p⊥)𝑊 (x⊥) , (2.9)

where the object 𝑊 (x⊥) is called a Wilson line and is defined as

𝑊 (x) ≡ 𝒫exp
[︂
𝑖𝑔

∫︁
𝑑𝑥+𝐴−(𝑥+,x)

]︂
. (2.10)

This was derived for an incoming quark; the calculation for an incoming gluon follows

analogously with some replacements such as introducing indices in the adjoint color repre-

sentation for the external fields. The corresponding adjoint Wilson line is then labelled as

𝑊𝐴(𝑥). Here, the only effect of the medium is a color rotation of the projectile as encoded

in the Wilson line. We can go a bit further by relaxing the eikonal approximation such that

𝑝2⊥ ∼ 2𝑝+𝑝−, so that the integral in 𝑝− now gives

∫︁
𝑑𝑝−

𝑒𝑖(𝑥𝑖+−𝑥(𝑖+1)+)𝑝−

2𝑝+𝑝− − 𝑝2⊥ + 𝑖𝜖
= −Θ(𝑥(𝑖+1)+ − 𝑥𝑖+)𝑒

𝑖
𝑝2⊥
2𝑝+

(𝑥𝑖+−𝑥(𝑖+1)+) 2𝜋𝑖

2𝑝+
, (2.11)

making in turn the integral over 𝑝𝑇 to give

∫︁
𝑑2𝑝𝑖⊥
(2𝜋)2

𝑒
𝑖
𝑝2⊥
2𝑝+

(𝑥𝑖+−𝑥(𝑖+1)+)
𝑒−𝑖p𝑖⊥(x𝑖+−x(𝑖+1)+) =

=
𝑝+

2𝜋𝑖(𝑥𝑖+ − 𝑥(𝑖+1)+)
exp{−𝑖𝑝+

2

(x𝑖⊥ − x(𝑖+1)⊥)2

𝑥𝑖+ − 𝑥(𝑖+1)+

} .
(2.12)

This last expression precisely corresponds to the Feynman propagator of a free particle

𝐺0(x(𝑖+1)⊥ − x𝑖⊥;𝑥(𝑖+1)+ − 𝑥𝑖+), and can therefore be written in terms of a path integral

𝐺0(x(𝑖+1)⊥ − x𝑖⊥;𝑥(𝑖+1)+ − 𝑥𝑖+) =

∫︁
𝒟x⊥(𝑥+)exp{𝑖𝑝+

2

∫︁
𝑑𝑥+

[︂
𝑑x⊥

𝑑𝑥+

]︂2
} . (2.13)
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With these ingredients, we can finally reorganise the scattering amplitude as

𝑆(𝑝′, 𝑝) ≃ 2𝜋𝛿(𝑝′+ − 𝑝+)2𝑝+

∫︁
𝑑x⊥𝑒

−𝑖x⊥(p′
⊥−p⊥)×

×
∫︁
𝒟r exp{𝑖𝑝+

2

∫︁
𝑑𝑥+

[︂
𝑑r

𝑑𝑥+

]︂2
}𝑊 (r) .

(2.14)

In general, to calculate physical quantities what one needs is to average among medium

field configurations such that the overall color is neutralised. Here we show as an example

the average of two Wilson lines in the fundamental representation

1

𝑁
Tr
⟨︀
𝑊 †(x⊥)𝑊 (y⊥)

⟩︀
=

=
1

𝑁
Tr
⟨
𝒫 exp

[︂
𝑖𝑔

∫︁
𝑑𝑥+𝐴−(𝑥+,x⊥)

]︂
𝒫 exp

[︂
−𝑖𝑔

∫︁
𝑑𝑥+𝐴−(𝑥+,y⊥)

]︂⟩
. (2.15)

By expanding the exponentials, we find that the leading contribution is of order 𝑔2. We

transform to Fourier space and obtain

1

𝑁
Tr
⟨︀
𝑊 †(x⊥)𝑊 (y⊥)

⟩︀
1 scatt ≃ 1−𝐶𝐹

∫︁
𝑑2q

(2𝜋)2
|𝑎(q)|2(1−𝑒𝑖(y⊥−x⊥)q) = 1−1

2
𝜎(y⊥−x⊥) ,

(2.16)

where the 𝑎(q) are the Fourier modes of the background field and we have defined 𝜎(∆x⊥)

as the so called dipole cross section. Implicit in this calculation is included the possibility

of having a single scattering centre interacting twice with either the quark or the anti-quark:

these are the so called contact terms and correspond to unitarity corrections. It is useful to

include a scatterer density in (2.16) as 𝑛(𝑥+) =
∑︀𝑁

𝑖=0 𝛿(𝑥+ − 𝑥𝑖+). In this sense, what we

have obtained now is the first term in the 𝑜𝑝𝑎𝑐𝑖𝑡𝑦 expansion. Given that the sum of higher

orders exponentiates, we can resum the average quantity as

1

𝑁
Tr
⟨︀
𝑊 †(x⊥)𝑊 (y⊥)

⟩︀
≃ exp

[︂
−𝐶𝐹

2

∫︁
𝑑𝑥+𝑛(𝑥+)𝜎(y⊥ − x⊥)

]︂
(2.17)

When the density of scatterers is large, one cannot keep only the lowest order opacity terms

and it is convenient to take the the dipole cross section at leading logarithmic accuracy

[], getting only the small distance component as 𝜎(r) ≃ 𝐶r2. Neglecting the logarithm
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is tantamount to neglect rare high momentum transfers on the basis of the multiple soft

scattering approximation. It states that given the large number of scatterings, the most

probable momentum transfer will be the typical one, and one can neglect the possibility of

the rarer and harder ones, whose contribution is encapsulated into the logarithm. The factor

𝐶 is used to define the transport coefficient 𝑞(𝑥+) ≡ 2
√

2𝑛(𝑥+)𝐶, which encapsulates all

the medium properties and dynamics. Then one can write

1

𝑁
Tr
⟨︀
𝑊 †(x⊥)𝑊 (y⊥)

⟩︀
≃ exp

[︂
− 𝐶𝐹

4
√

2

∫︁
𝑑𝑥+𝑞(𝑥+)(y⊥ − x⊥)2

]︂
. (2.18)

We can better understand the role of the 𝑞 parameter by considering the distribution of

particles with a given momentum after going through the medium, which can be obtained

from the 𝑆 matrix as

ℳ(p′
⊥) ≡ 𝑑2𝒩

𝑑p
′2
⊥
∝
∫︁

𝑑𝑝′+𝛿(𝑝′2 −𝑚2)
1

𝑁

⟨︀
|𝑆(𝑝′, 𝑝)|2

⟩︀
. (2.19)

Given that the average squared transverse momentum broadening (times normalization) is

computed as 𝒩 ⟨p2
⊥⟩ =

∫︀
𝑑2p′

⊥ p
′2
⊥ℳ(p′

⊥), we can use (2.14) to write

𝒩
⟨︀
p2
⊥
⟩︀
∝
∫︁

𝑑2p′
⊥

∫︁
𝑑x⊥𝑑x

′
⊥p

′2
⊥𝑒

−𝑖p′
⊥(x⊥−x′

⊥)

∫︁
𝒟r𝒟r′×

× exp

{︃
𝑖
𝑝+
2

∫︁
𝑑𝑥+

(︃{︂
𝑑r

𝑑𝑥+

}︂2

−
{︂

𝑑r′

𝑑𝑥+

}︂2
)︃}︃

1

𝑁
Tr
⟨︀
𝑊 †(r′)𝑊 (r)

⟩︀
.

(2.20)

By replacing p′
⊥ by the operator 𝑖∇Δx⊥ acting on exp(𝑖p′

⊥∆x⊥), integrating by parts twice

and then performing the integration on p′
⊥, we are allowed to write

𝒩
⟨︀
p2
⊥
⟩︀
∝ lim

Δx⊥→0
−∇2

Δx⊥

∫︁
𝒟r𝒟r′ exp

{︃
𝑖
𝑝+
2

∫︁
𝑑𝑥+

(︃{︂
𝑑r

𝑑𝑥+

}︂2

−
{︂

𝑑r′

𝑑𝑥+

}︂2
)︃}︃
×

× 1

𝑁
Tr
⟨︀
𝑊 †(r′)𝑊 (r)

⟩︀
.

(2.21)

In order to simplify this expression, we consider the high energy limit where 𝑝+ ≫ 𝜇,

being 𝜇 the typical momentum transfer from the medium, and then it suffices to project the
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path integral to the path minimizing the action, this is the classical one where 𝑑r/𝑑𝑥+ = 0.

By similar manipulations on the normalization 𝒩 we can write

⟨︀
p2
⊥
⟩︀

= − 1

Tr ⟨𝑊 †(x⊥)𝑊 (x⊥)⟩
∇2

Δx⊥
Tr
⟨
𝑊 †(x̄⊥ −

∆x⊥

2
)𝑊 (x̄⊥ +

∆x⊥

2
)

⟩
, (2.22)

where we used that x̄⊥ = (x⊥ + x′
⊥)/2. For the situations in which the multiple soft

scattering approximation is valid, we conclude

⟨︀
p2
⊥
⟩︀

=
1√
2

∫︁
𝑑𝑥+𝑞(𝑥+) , (2.23)

making clear the interpretation of 𝑞 as the momentum broadening per unit length.

We conclude this section by noting that the Wilson lines introduced here will also be

important for the determination of quark properties at strong coupling, as will be reviewed

in Section 3.3. The formalism here developed has had important applications in jet quench-

ing studies at weak coupling, being the most interesting to us the medium induced radiation

of a parton travelling the QGP. We will not take next the general approach but rather fo-

cus in the leading opacity contribution, which already captures the most important physics

of the process, namely the interference phenomena and the path length dependence of ra-

diative energy loss; this is why we find appropriate to provide the detailed calculation of

stimulated one gluon emission that follows in the next Section. In Part III of the thesis we

will extend the computation within this formalism to the case of two gluon emission, which

follows the same logic and is obtained with the same effective Feynman rules as the one

gluon emission case.

2.3 Single Gluon Emission at 𝑁 = 1 Opacity

We compute the inclusive rate off a hard quark that emits a single soft gluon while it in-

teracts with a single coloured scattering. In the absence of scattering centres, those gluons

originate from the relaxation of virtuality of the microscopic process that generates the en-

ergetic quark. The presence of one scattering centre leads to a modification of the vacuum
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spectrum by changing the transverse momentum of one of the gluons emitted at the pro-

duction vertex. Moreover, the additional momentum transferred to the jet supplemented

by the scattering centre leads to an additional source of radiation of gluons with transverse

momentum of the order of the momentum transfer. This process is the stimulated emission

of gluons in the medium. We explicitly study the effect of interferences among these dif-

ferent physics processes in the final emission rate. We will work in light-cone coordinates

𝑋 = (𝑥+, 𝑥−,𝑥), where 𝑥± ≡ (𝑥0 ± 𝑥3)/2 and 𝑥 = (𝑥1, 𝑥2) denotes a transverse vector,

𝑥 ≡ |𝑥|. For future reference,

2.3.1 Medium model

As the partons produced in a jet shower plough through a QCD medium, they exchange

energy and momentum with its constituents. Since these interactions are mediated by the

exchange of gluons, an effective way to encode those interactions is by analysing the prop-

agation of energetic partons in a fluctuating colour gauge field, 𝐴, sourced by the quarks

and gluons in the medium. For high-energy probes, the light-cone gauge 𝐴+ = 0, with the

plus-momentum component the largest momentum of the parton, is particularly convenient.

In this gauge, typical fluctuating fields in the background will have all other components

of comparable order. Since in the eikonal limit the coupling of a parton of momentum 𝑃 𝜇

to the medium gauge field is proportional to 𝑃 · 𝐴, the contribution of the perpendicular

field components 𝐴𝑖 to the probe-medium interactions is suppressed with respect to the

contribution of the 𝐴− component.

The high-energy approximation also leads to simplifications in the momentum ex-

change with the medium. Assuming that the 𝑝+ component of the probe is much larger

than the momentum exchanged in the medium, 𝑞, the effect of the 𝑞+ exchanged momen-

tum is always suppressed with respect to the transverse momentum exchanges, 𝑞, since by

energy momentum conservation in the vertex the former is always added to the large parton

momentum. This is equivalent to neglecting drag (𝑞+ ≈ 0) for high-energy probes. With

these assumptions, we can model the medium by a gauge field with only one non-vanishing
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component, which takes the form

𝐴−(𝑄) ≡ 𝑡𝑎𝐴𝑎,−(𝑄) = 2𝜋𝛿(𝑞+)

∫︁
d𝑥+𝑒𝑖𝑞

−𝑥+ 𝒜(𝑥+; 𝑞) , (2.24)

where the medium field is real, 𝒜*(𝑥+; 𝑞) = 𝒜(𝑥+;−𝑞).

The medium dynamics leads to the randomisation of the field. From the point of view

of the probe, we may characterise the medium by cumulants of the fluctuating field con-

figurations. Odd cumulants vanish as a consequence of colour neutrality of the medium.

Even n-point medium correlators exhibit correlation lengths of order the inverse medium

exchange. This allows us to approximate the medium average of the background gauge

field to

⟨𝒜𝑎(𝑥+; 𝑞)𝒜* 𝑏(𝑥′+; 𝑞′)⟩ = 𝛿𝑎𝑏𝑚2
𝐷𝑛(𝑥+) 𝛿(𝑥+ − 𝑥′+) (2𝜋)2𝛿(𝑞 − 𝑞′)𝒱(𝑞) , (2.25)

where 𝑛(𝑥+) is the density of scattering centres in the 𝑥+ direction. In the simplest of

cases, a static medium with fixed density and length 𝐿, 𝑛(𝑥+) ≡ 1/𝐿Θ(𝑥+)Θ(𝐿 − 𝑥+).

As a consequence of Lorentz contraction, the correlation length along the 𝑥− direction can

be neglected and we may consider exchanges as instantaneous in 𝑥−. Furthermore, 𝒱(𝑞) is

the scattering potential, usually assumed to be screened at the scale of the Debye mass 𝜇𝐷.

However, in our discussion the exact form of this potential does not matter as long as it is

isotropic in the transverse plane.

The locality in 𝑥+ of the correlator Eq.2.25 also implies that higher-order cumulants

vanish in this high-energy approximation, such that higher-order medium correlators are

simply products of the two point functions Eq.2.25. The 𝑁 = 1 opacity approximation

consists in describing all medium effects by the two point function Eq.2.25. This is a good

approximation when the medium is dilute, 𝛼𝑠𝑛0𝐿 ≪ 1. If the medium is dense, a re-

summation of an arbitrary number of medium exchanges is required. Nevertheless, in this

work we will employ the 𝑁 = 1 opacity approximation as a tool to explore the dynamics

of energetic jet showers in QCD medium, but we will make no assumptions on whether

this approximation correctly captures the properties of the quark-gluon plasma formed in

heavy-ion collisions.
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M1.1 M1.2

Figure 2-1: The two diagrams that correspond to a coming from infinity quark emitting a
gluon induced by a single collision with the medium.

The following diagramatic computation is performed by the use of a set of effective

Feynman rules which are derived in Appendix B, which are very well suited to the hierarchy

of scales we are considering. This formalism can also be applied to the two gluon emission

problem as long as one of the gluons is very soft compared to the other one, which is the

situation we will consider in the original work of Part III of the thesis, and where the use

of these effective rules becomes most powerful.

2.3.2 Radiation from a Quark Coming from Infinity

To start we will consider the gluon stimulated radiation off a coming from infinity on-shell

quark. Despite it is not the situation we are ultimately interested in, it leads to the so called

Gunion-Bertsch spectrum which we will often refer to in Part III. It also useful to clearly

see the essential differences between stimulated radiation in abelian and non-abelian gauge

theories.

The medium induced of an on-shell gluon off an on-shell quark coming from infinity

has three contributions, being the QED-like two of them the ones in Fig.2-1. Using the

standard Feynman rules we can write the amplitude for collision after emission as

𝑀1.1 =

∫︁
𝑞

𝑢̄𝑡(𝑝𝑓 )(𝑖𝑔𝛾𝜇𝑡𝑎𝐴𝜇(𝑞))𝑆(𝑝𝑖 − 𝑘)(𝑖𝑔𝛾𝜈𝑡𝑏𝜖*𝜈,𝜆(𝑘))𝑢𝑠(𝑝𝑖) , (2.26)

where the fermionic propagator is 𝑆(𝑘) =
∑︀

𝑠 𝑢
𝑠(𝑘)𝑢̄(𝑘)𝑠𝐷(𝑘), with 𝐷(𝑘) = 𝑖/(𝑘2 + 𝑖𝜖).

By using the effective Feynman rules derived in Appendix B, we can express this amplitude

as
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M2

Figure 2-2: In this diagram, 𝑀2, it is the emitted gluon who receives a kick from the
medium.

𝑀1.1
∼=
∫︁
𝑞

𝑈𝑎
𝑄(𝑝+,q)𝐷(𝑝− 𝑘)𝑉 𝑏,𝑖

𝐺 (𝑝+, 𝑘+,k) ∼= 2𝑖𝑔2(𝑡𝑎𝑡𝑏)

∫︁
𝑞

𝒜(q)
k𝑖

k2
(2𝑝+) , (2.27)

where it is understood that the index 𝑖 is contra contracted with the gluon transverse po-

larization vector 𝜖*𝜈,𝜆(𝑘). The terms 𝑈𝑎
𝑄(𝑝+,q) and 𝑉 𝑏,𝑖

𝐺 (𝑝+, 𝑘+,k) are the vertices for the

quark interacting with the background field and the quark emitting a soft gluon respectively

(see Appendix B for the expressions). Similarly for the contribution coming from collision

before emission

𝑀1.2 =

∫︁
𝑞

𝑢̄𝑡(𝑝𝑓 )(𝑖𝑔𝛾𝜈𝑡𝑏𝜖*𝜈,𝜆(𝑘))𝑆(𝑝𝑓 + 𝑘)(𝑖𝑔𝛾𝜇𝑡𝑎𝐴𝜇(𝑞))𝑢𝑠(𝑝𝑖) , (2.28)

which in terms of the effective Feynman rules reads

𝑀1.2
∼=
∫︁
𝑞

𝑉 𝑏,𝑖
𝐺 (𝑝+, 𝑘+,k)𝐷(𝑝 + 𝑘)𝑈𝑎

𝑄(𝑝+,q) ∼= −2𝑖𝑔2(𝑡𝑏𝑡𝑎)

∫︁
𝑞

𝒜(q)
k𝑖

k2
(2𝑝+) . (2.29)

Given that gluons have color charge there is yet another diagram to consider as depicted in

Fig. 2-2, where the emitted gluon interacts with the medium

𝑀2 =

∫︁
𝑞

𝑢̄𝑡(𝑝𝑓 )(𝑖𝑔𝛾𝜇𝑡𝑐)𝐺𝜇𝜈(𝑘 + 𝑞)𝑖𝑉 𝜈𝛼𝛽
𝑐𝑏𝑎 (𝑘 + 𝑞,−𝑘,−𝑞)𝜖*𝛼,𝜆(𝑘))𝐴𝛽(𝑞)𝑢𝑠(𝑝𝑖)

∼=
∫︁
𝑞

𝑉 𝑐,𝑖
𝐺 (𝑝+, 𝑘+,k + q)𝐷(𝑘 + 𝑞)𝑢𝑏𝑎𝑐

𝐺 (𝑘+, 𝑞)𝒜(q)

∼= −2𝑖𝑔2[𝑡𝑎, 𝑡𝑏]

∫︁
𝑞

𝒜(q)
(k + q)𝑖

(k + q)2
(2𝑝+) , (2.30)

where the term 𝑢𝑏𝑎𝑐
𝐺 (𝑘+, 𝑞) is the vertex for gluon interaction with the background field and

𝐺𝜇𝜈(𝑘) is the gluon propagator (again, see Appendix B for details). The sum of the three
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diagrams is

𝑀 ≡𝑀1.1 + 𝑀1.2 + 𝑀2
∼= −2𝑖𝑔2[𝑡𝑎, 𝑡𝑏]

∫︁
𝑞

𝒜(q)L(𝑘, 𝑞)(2𝑝+) (2.31)

where we have defined the so called Lipatov vertex as

L(𝑘, 𝑞) =
(k + q)𝑖

(k + q)2
− k𝑖

k2
. (2.32)

It is worth noting that the amplitude is proportional to the commutator of the color matrices,

which means that in abelian theories such as QED, in the high energy limit photon emission

is suppressed. In non-abelian theories instead, the quark can change its charge in several

ways; it gets "repainted". The emission rate is proportional to the squared amplitude and

gives the Gunion-Bertsch spectrum

𝑤
𝑑𝐼

𝑑𝑤
∝
⟨︀
L2
⟩︀
, (2.33)

so that one can appreciate the interference between the QED-like radiation and the genuine

non-abelian contribution.

However, in Nature there aren’t on-shell quarks. When a hard scattering produces

a quark it is an off-shell quark, with a certain virtuality, which can therefore emit even

in vacuum without the need of medium stimulation. The most convenient way to treat

objects which have a finite production time 𝑥+
𝐻 is by the use of the propagators in the

mixed representation as described in Appendix B. With the intuition gained gained in this

Section on the physics of stimulated soft and collinear emissions, we move now to the

computation of the actually relevant amplitudes corresponding to the stimulated emission

of gluons for a quark that was created within the medium.

2.3.3 Radiation from a Quark Created in the Medium

By the use of the mixed representation and the effective Feynman rules in Appendix B we

can correctly take into account the finite time production of the hard probe and in this way

we can resolve the interplay between the emission and collision times, which as we will

36



M1.1 M1.2

Figure 2-3: These new diagrams do now see the quark, in the sense that they know not only
what is going on but also when.

see at the end of the computation lead to important interference phenomena. The updated

version of the QED-like diagrams is shown in Fig. 2-3 and their amplitudes read

𝑀1.1
∼=

∫︁
𝑞

∫︁ 𝑥+
𝑐

0

𝑑𝑥+
𝐸 𝑈𝑎

𝑄(𝑝+,q)𝑄(𝑥+
𝑐 − 𝑥+

𝐸)𝑉 𝑏,𝑖
𝐺 (𝑝+, 𝑘+,k)𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑄(𝑥+
𝐸)

∼= 2𝑖𝑔2(𝑡𝑎𝑡𝑏)

∫︁
𝑞

𝒜(q)
k𝑖

k2
(−1 + 𝑒

𝑖
𝑥+𝑐
𝜏0 ) , (2.34)

where the production time has been set to 𝑥+
𝐻 = 0 and we have defined the formation time

𝜏0 ≡ 2𝑤/𝑘2
⊥, whose physical interpretation will be clear later on. Here 𝑄(𝑥+) ≡ 1/2𝑝+ is

the quark propagator in the mixed representation where the time ordering has been taken

into account and no phase is present since 𝑝− ∼ 0. For collision before emission the

amplitude is now

𝑀1.2
∼=

∫︁
𝑞

∫︁ ∞

𝑥+
𝑐

𝑑𝑥+
𝐸 𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑉 𝑏,𝑖
𝐺 (𝑝+, 𝑘+,k)𝑄(𝑥+

𝐸 − 𝑥+
𝑐 )𝑈𝑎

𝑄(𝑝+,q)𝑄(𝑥+
𝑐 )

∼= −2𝑖𝑔2(𝑡𝑏𝑡𝑎)

∫︁
𝑞

𝒜(q)
k𝑖

k2
𝑒
𝑖
𝑥+𝑐
𝜏0 . (2.35)

Analogously for the emitted gluon scattering as shown in Fig. 2-4 gives

𝑀2
∼=

∫︁
𝑞

∫︁ 𝑥+
𝑐

0

𝑑𝑥+
𝐸 𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑉 𝑐,𝑖
𝐺 (𝑝+, 𝑘+,k + q)𝐺(𝑥+

𝑐 − 𝑥+
𝐸, 𝑘 + 𝑞)𝑢𝑏𝑎𝑐

𝐺 (𝑘+, 𝑞)𝒜(q)𝑄(𝑥+
𝐸)

∼= −2𝑖𝑔2[𝑡𝑎, 𝑡𝑏]

∫︁
𝑞

𝒜(q)
(k + q)𝑖

(k + q)2
𝑒−𝑖𝑥+

𝑐 (1/𝜏1−1/𝜏0)(−1 + 𝑒
𝑖
𝑥+𝑐
𝜏1 ) , (2.36)

where we have defined a new formation time 𝜏1 ≡ 2𝑤/(k⊥ + q⊥)2. One could indeed

check that by setting the production time of the energetic quark to be 𝑡𝐻 → −∞, and by

considering the−𝑖𝜖 prescription implicit in our propagators, we would obtain the results of
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M2

Figure 2-4: The equivalent new version of the old 𝑀2

Section 2.3.2 times an overall phase, as it must be. Given that now the hard quark can emit

even in vacuum, there are still a set of contributions that we must take care of, which are

computed in the next Section.

2.3.4 Vacuum Medium Interference

For a quark created in the medium, at order 𝑔4 we don’t only get the contributions from

the real diagrams of Section 2.3.3 squared, but also must consider the interference between

vacuum emission (order 𝑔) and double medium scattering plus emission (order 𝑔3), whose

interference is also order 𝑔4. The latter are the so called unitarity corrections, and for sim-

plicity we will calculate them in the contact limit, where one identifies the two scatterings

as coming from the same scattering centre. This approximation makes sense when one

considers extremely dilute systems where we necessarily assume that the color correlation

length of the medium is small compared to the mean free path of the gluon, 𝜆𝑔, so that the

scatterer does not get randomized before it collides again.

The vacuum emission (Fig. 2-5) is obtained easily as

𝑀0
∼=

∫︁
𝑞

∫︁ ∞

0

𝑑𝑥+
𝐸 𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑉 𝑏,𝑖
𝐺 (𝑝+, 𝑘+,k)𝑄(𝑥+

𝐸)

∼= −2𝑔 𝑡𝑏
k𝑖

k2
. (2.37)

The following diagrams with two scatterings can already be medium averaged and given

that we are working on the contact limit the two scatterings are indentified as the same,

implying q1 = −q2 and reducing the number of diagrams considerably, a situation in

which the computations greatly simplify. The two first diagrams we consider can be seen
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M0

Figure 2-5: Radiation in vacuum is allowed if the emitting particle is off-shell, as it’s shown
in this diagram 𝑀0

as the convolution of the 𝑀1.1 and 𝑀1.2 ones with an extra scattering for the quark, and

read as

⟨𝑀2𝑀 :1.1⟩ ∼= 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)

∫︁ 𝑥+
𝑐

0

𝑑𝑥+
𝐸 𝑢𝑎

𝑄(𝑝+)
𝑄(0)

2
𝑢𝑎
𝑄(𝑝+)𝑄(𝑥+

𝑐 − 𝑥+
𝐸)

×𝑉 𝑏,𝑖
𝐺 (𝑝+, 𝑘+,k)𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑄(𝑥+
𝐸)

∼= −𝑔3𝐶𝐹 𝑡𝑏 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)
k𝑖

k2
(−1 + 𝑒

𝑖
𝑥+𝑐
𝜏0 ) , (2.38)

⟨𝑀2𝑀 :1.2⟩ ∼= 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)

∫︁ ∞

𝑥+
𝑐

𝑑𝑥+
𝐸 𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑉 𝑏,𝑖
𝐺 (𝑝+, 𝑘+,k)𝑄(𝑥+

𝐸 − 𝑥+
𝑐 )

×𝑢𝑎
𝑄(𝑝+)

𝑄(0)

2
𝑢𝑎
𝑄(𝑝+)𝑄(𝑥+

𝑐 )

∼= 𝑔3𝐶𝐹 𝑡𝑏 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)
k𝑖

k2
𝑒
𝑖
𝑥+𝑐
𝜏0 , (2.39)

where the factor 1/2 multiplying 𝑄(0) comes from Θ(0). The next diagram is called the

dipole contribution as it depicts collisions with both the quark and the emitted gluon, as

shown in the left of Fig. 2-7, and it corresponds to either of the two since in the contact

limit they are indistinguishable. The amplitude reads

⟨𝑀2𝑀 :𝐷𝑖𝑝⟩ ∼= 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)

∫︁ 𝑥+
𝑐

0

𝑑𝑥+
𝐸 𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑢𝑎
𝑄(𝑝+)𝑄(𝑥+

𝑐 − 𝑥+
𝐸)

×𝑉 𝑐,𝑖
𝐺 (𝑝+, 𝑘+,k + q)𝐺(𝑥+

𝑐 − 𝑥+
𝐸, 𝑘 + 𝑞)𝑢𝑏𝑎𝑐

𝐺 (𝑘+)𝑄(𝑥+
𝐸) (2.40)

∼= 𝑔3𝐶𝐴 𝑡𝑏 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)
(k + q)𝑖

(k + q)2
𝑒−𝑖𝑥+

𝑐 (1/𝜏1−1/𝜏0)(−1 + 𝑒
𝑖
𝑥+𝑐
𝜏1 ) .

Finally, the diagram with two scatterings on the emitted gluon, as shown in the right of Fig.
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M2M :1.1 M2M :1.2

Figure 2-6: The two first 𝑀2𝑀 diagrams, where the double scattering in the contact limit is
represented by the red circle.

2-7, gives a very simple result thanks to the contact limit and reads

⟨𝑀2𝑀 :2⟩ ∼= 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)

∫︁ 𝑥+
𝑐

0

𝑑𝑥+
𝐸 𝑒𝑖𝑘

−𝑥+
𝐸−𝜖𝑥+

𝐸𝑉 𝑐,𝑖
𝐺 (𝑝+, 𝑘+,𝑘)

×𝐺(𝑥+
𝑐 − 𝑥+

𝐸, 𝑘)𝑢𝑑𝑎𝑐
𝐺 (𝑘+)

𝐺(0, 𝑘 + 𝑞)

2
𝑢𝑏𝑎𝑑
𝐺 (𝑘+)𝑄(𝑥+

𝐸)

∼= −𝑔3𝐶𝐴 𝑡𝑏 𝑛(𝑥+
𝑐 )𝜇2

𝐷(2𝜋)2
∫︁
𝑞

𝒱(𝑞)
k𝑖

k2
(−1 + 𝑒

𝑖
𝑥+𝑐
𝜏0 ) . (2.41)

Now that we have computed all necessary diagrams we can move on to the computation of

the stimulated one gluon emission rate performed in the next Section.

2.3.5 Radiative Energy Loss

By summing the real and virtual contributions and averaging over colors we get

1

𝑁𝑐

tr(
⟨︀
|ℳ(1)|2

⟩︀
+ 2 Re

⟨︀
ℳ(2)ℳ*

(0)

⟩︀
) = 4𝑔4𝐶𝐹𝑁𝑐𝑛(𝑥+

𝑐 )𝜇2
𝐷(2𝜋)2

×
∫︁
𝑞

𝒱(𝑞)L ·A(1− cos(𝑥+
𝑐 /𝜏1)) , (2.42)

where A is defined through L = A − B with B = k𝑖/k2. The radiation cross section is

proportional to the probability of the process (squared amplitude) times the phase space of

the final gluon 𝑑𝐺 = 𝑑𝑘‖𝑑
2k/2𝑤(2𝜋)3 (where we have factored out the hard quark produc-

tion cross section and its phase space). We can also manipulate this expression to put it in

terms of the medium length 𝐿 and the mean free path 𝜆𝑞 by using 𝜆𝑞 = 1/𝜌 𝜎𝑒𝑙, with 𝜌 the

volumetric density of scattering centres. Given that the factor 𝜇2
𝐷 is a measure of the trans-

verse density of scatterers (since the total charge neutralizes beyond a distance 1/𝜇𝐷 due
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Figure 2-7: The so called dipole diagram 𝑀2𝑀 :𝐷𝑖𝑝 (left) and the double scattering with the
emitted gluon 𝑀2𝑀 :2 (right).

to screening) we can write 𝜇2
𝐷 = 𝐿/𝜆𝑞𝜎𝑒𝑙, allowing us to set our expression in terms of the

elastic scattering cross section, where the latter is defined as 𝜎𝑒𝑙 = 𝑔2𝐶𝐹 (2𝜋)2/2
∫︀
𝑞
𝒱(𝑞).

In this way the gluon emission rate reads

𝑤
𝑑𝐼

𝑑𝑤 𝑑2k⊥
=

2𝛼𝑠𝐶𝐹

𝜋2

𝐿

𝜆𝑔

𝑛(𝑥+
𝑐 )

∫︁
𝑞

̂︀𝒱(𝑞)L ·A(1− cos(𝑥+
𝑐 /𝜏1)) , (2.43)

where we have used 𝑑𝑘‖ ≃ 𝑑𝑤, 𝛼𝑠 ≡ 𝑔2/4𝜋, 𝜆𝑔 = 𝜆𝑞𝐶𝐹/𝐶𝐴 and the potential is normal-

ized. This is the general expression for a defined position (in the direction of the jet) of

the scattering centre. We now want to study for every possible position, with 𝑥+
𝑐 ≡ 𝑧 and

assuming the specific density function 𝑛(𝑧) = 1/𝐿Θ(𝑧)Θ(𝐿− 𝑧), so we may perform the

integral over 𝑧

1

𝐿

∫︁ 𝐿

0

𝑑𝑧(1− cos(𝑧/𝜏1)) =
1

𝐿
(𝐿− sin(𝐿/𝜏1)

1/𝜏1
) = 1− sin(𝐿/𝜏1)

𝐿/𝜏1
, (2.44)

where 𝜏1 is the in-medium formation time of the gluon, 𝜏𝑓 , and plays a crucial role in

stimulated emission physics. With this last step, we can rewrite our final expression for the

energy loss rate as

𝑤
𝑑𝐼

𝑑𝑤𝑑2k⊥
=

2𝛼𝑠𝐶𝐹

𝜋2

𝐿

𝜆𝑔

∫︁
𝑞

̂︀𝒱(𝑞)L ·A
(︂

1− sin(𝐿/𝜏𝑓 )

𝐿/𝜏𝑓

)︂
(2.45)

Thus when the formation time of the gluon is considerably larger than the time of colli-

sion, this rate vanishes, the radiation gets frustrated. This effect is also called the Landau-

Pomeranchuk-Migdal (LPM) effect, in which the medium scatters with our 𝑞𝑔 system too

early to see the gluon decohered from the quark, fact which tends to suppress radiation.

This behaviour arised due to the assumption that the jet was produced in the medium, short
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before it emitted or collided.

One can understand the physics of formation time by asking which is the time at which a

gluon gets decohered from its emitter. For that to happen, the gluon has to be able to resolve

its separation from the quark, i.e. 𝜆⊥ ∼ 𝑟, where 𝜆⊥ is the gluon transverse wavelength

and 𝑟 the system separation. Parametrically, after a time 𝑡 the transverse distance between

the emitter and the collinear gluon is 𝑟⊥ ∼ 𝜃 𝑡, where 𝜃 ∼ 𝑘⊥/𝑤 is the emission angle. By

the uncertainty principle, 𝜆⊥ ∼ 1/𝑘⊥ and then 𝜏𝑓 ∼ 𝑤/𝑘2
⊥, with 𝜏𝑓 being the time at the

moment of resolution.

Incoherent Limit and Path Length Dependence

The rate we have calculated corresponds only to the medium induced radiation, but the total

energy loss also depends on the vacuum radiation. We try to figure out this implications in

the following limit: sending 𝑤 → 0 (this means 𝜏𝑓 ≪ 𝜏𝑐𝑜𝑙𝑙) makes the time dependent part

of the rate vanish and we are left with the simpler form

𝑤
𝑑𝐼𝑚𝑒𝑑

𝑑𝑤𝑑2k⊥
=

2𝛼𝑠𝐶𝐹

𝜋2

𝐿

𝜆𝑔

∫︁
𝑞

̂︀𝒱(𝑞)L ·A (2.46)

We can write L ·A as

L ·A =
1

2
(L2 + A2 −B2) (2.47)

Now, we know that

𝑤
𝑑𝐼𝑣𝑎𝑐
𝑑𝑤

=
𝛼𝑠𝐶𝐹

𝜋2
⟨B2⟩ (2.48)

so that we can express the total energy loss rate as

𝑤
𝑑𝐼𝑡𝑜𝑡
𝑑𝑤

= 𝑤
𝑑𝐼𝑣𝑎𝑐
𝑑𝑤

+ 𝑤
𝑑𝐼𝑚𝑒𝑑

𝑑𝑤
(2.49)

The medium part contains a 𝐿
𝜆𝑔

factor that the vacuum part does not, getting

𝑤
𝑑𝐼𝑡𝑜𝑡
𝑑𝑤

=
𝛼𝑠𝐶𝐹

𝜋2
⟨B2⟩(1− 𝐿

𝜆𝑔

) +
𝛼𝑠𝐶𝐹

𝜋2

𝐿

𝜆𝑔

(⟨L2⟩+ ⟨A2⟩) (2.50)
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When we consider that the gluon has had plenty of time to form, we get such an incoherent

sum of different processes involving radiation. We see that the term proportional to ⟨B2⟩,

which corresponds to radiation in vacuum, gets a reduced probability due to the fact that

considering the medium implies that there’s a certain probability for the quark to scatter

(which is proportional to 𝐿
𝜆𝑔

)

The term ⟨L2⟩ corresponds to the result of section 2, this is the stimulated radiation of

a coming from infinity quark, but gets corrected in (2.50) by the contribution of a gluon

emitted (by an off-shell quark) long before the scattering centre interacts with him (⟨A2⟩).

When this gluon receives a kick from the plasma, it does being a final state gluon (in con-

trast to what we commented in the end of section 2.3.2).

We can learn more things from expression (2.45) regarding the parametric dependence

on the path length travelled by the quark projectile (a full analysis of the integral can be

found in [63]). The integral in 𝑘⊥ is dominated by 𝑘⊥ ∼ 𝑞⊥, and the typical momentum

transferred from the plasma for a standard screened potential is 𝑞⊥ ∼ 𝜇𝐷. We can then see

that the gluon emission rate goes like

𝑤
𝑑𝐼

𝑑𝑤
∼ 1

𝜆

(︂
𝐿− sin

(︂
𝐿𝜇2

𝐷

2𝑤

)︂
2𝑤

𝜇2
𝐷

)︂
. (2.51)

By defining 𝑤𝑐 as the energy that makes the argument of the oscillatory function of order

one, 𝑤𝑐 ∼ 𝜇2
𝐷𝐿 (which means that 𝜏𝑓 ∼ 𝐿), we see that the integral over 𝑤 has two separate

regimes: 𝑤 ≫ 𝑤𝑐 and 𝑤 ≪ 𝑤𝑐. When 𝑤 ≪ 𝑤𝑐, the second term goes to zero, so that the

emission spectrum does not depend on 𝑤. When 𝑤 ≫ 𝑤𝑐, the argument can be expanded.

In this way we get

𝑤
𝑑𝐼

𝑑𝑤
∼

⎧⎪⎨⎪⎩
1
𝜆

𝐿3𝜇4
𝐷

𝑤2 for𝑤 ≫ 𝑤𝑐

𝐿
𝜆

for𝑤 ≪ 𝑤𝑐

(2.52)

This means that for small frequencies, the lost energy from the quark scales like

∆𝐸|𝑤≪𝑤𝑐
∼
∫︁ 𝑤𝑐

0

𝑤
𝑑𝐼

𝑑𝑤
∼ 1

𝜆
𝐿𝑤𝑐 , (2.53)
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while for high frequencies it is

∆𝐸|𝑤≫𝑤𝑐
∼
∫︁ ∞

𝑤𝑐

𝑤
𝑑𝐼

𝑑𝑤
∼ 1

𝜆

𝐿3𝜇4
𝐷

𝑤𝑐

∼ 1

𝜆
𝐿𝑤𝑐 , (2.54)

where one can see how the LPM interference effects suppress emissions at large 𝑤 and

only the lower cut-off 𝑤𝑐 contributes. Noting that both regimes have the same parametric

dependence, we conclude that

∆𝐸 ∼ 1

𝜆
𝐿𝑤𝑐 ∼ 𝐿2 𝑞 , (2.55)

which corresponds to the well known 𝐿2 dependence of radiative energy loss (we have used

that 𝑞 ∼ 𝜇2
𝐷/𝜆). This behaviour arised due to the consideration of the LPM interference

effects; otherwise the dependence would have been only 𝐿. We will use this parametric

dependence for our benchmark studies of jet quenching as described in Section 4.2.3.
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Chapter 3

Strongly Coupled Energy Loss

In this Chapter we will briefly review the ideas behind calculations at asymptotically strong

coupling, far beyond the reach of perturbative techniques, for certain theories which possess

a holographic dual: a map between a non-gravitating gauge theory in 𝑑 dimensions and a

gravity theory of strings in 𝑑 + 1 dimensions. The reason why this is relevant for heavy

ions is that, as we have stressed a number of times in Chapter 1, the fireball produced

in the collisions behaves as a strongly coupled fluid where the quasi-particle picture does

not apply. The techniques introduced in this Chapter suppose nowadays one of the few

tools with which to study such strongly coupled systems, specially in out of equilibrium

situations where lattice calculations are still in its infancy. Holography is for this and other

reasons a very lively topic nowadays, which has led to impressive insights on the physics

and phenomenology of heavy ion collisions.

3.1 Holographic Quark-Gluon Plasma

Gauge/gravity duality is a useful tool to study non-Abelian plasmas. Although no gravi-

tational dual to QCD is known, gauge/gravity duality has provided much insight into the

dynamics of many theories that share many qualitative properties with QCD. The most

widely studied example is𝒩 = 4 SYM. Even though at 𝑇 ̸= 0 the two theories are nothing

alike, the deconfined plasma phases of QCD and SYM have more in common. We will

briefly comment some of these features next:
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+ 𝒩 = 4 doesn’t confine at any scale. Due to is specific field content, its beta function

is exactly zero, a really remarkable property that makes this theory invariant under

conformal transformations. While QCD confines into hadrons at 𝑇 = 0, it becomes

deconfined above 𝑇𝑐.

+ Even though 𝒩 = 4 is a supersymmetric theory, this supersymmetry is broken at

𝑇 ̸= 0. In a thermodynamic context, this can be seen by noting that fermions have

antiperiodic boundary conditions along the Euclidean time circle while bosons are

periodic. This makes supersymmetry a less relevant feature for the characterization

of plasma properties at finite temperature.

- The degrees of freedom between the two theories for 𝑁𝑐 = 3 is quite different.

𝒩 = 4 has a richer field content, and one needs to figure out how to map the physical

quantities from one theory to the other taking this into account. There are, however,

quantities which are independent of the details of the theory and only require that it

possesses a gravity dual (as it is the case of 𝜂/𝑠 bound).

- Most of the calculations using the duality are done in the 𝜆 → ∞ and 𝑁𝑐 → ∞

limits. Even though we are interested in large couplings, one should expect 1/𝜆

corrections, as well as 1/𝑁𝑐 corrections, which have to be calculated to check the

robustness of the infinite limit.

- Even though the difference between fermions and bosons is not important, the dif-

ference between fundamental and adjoint representations degrees of freedom is, spe-

cially for thermodynamics; QCD has 𝑁𝑓 = 3 d.o.f. (at collider relevant tempera-

tures) in the fundamental representation, and most calculations are done assuming

𝑁𝑓 ≪ 𝑁𝑐.

Even though the plasma phases of the two theories are certainly different, we will attempt

to gain insight on the QCD physics by the study of a simpler version, 𝒩 = 4 SYM, which

nevertheless still captures the main physics aspects we are interested in. This supersymmet-

ric theory might not look simple from the field theory point of view, but the large amount of

symmetry it enjoys translates into the simplest dual gravitational description that we know
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of. This is the feature that makes the study of holography in terms of 𝒩 = 4 SYM so

convenient and rewarding. In the coming text we present some of the remarkable lessons

that can be extracted from the use of gauge/gravity duality.

A rather striking result obtained from holography is the fact that thermodynamic quan-

tites don’t seem to depend much on the precise value of the coupling constant [64]

𝑠𝜆=∞

𝑠𝜆=0

=
𝑃𝜆=∞

𝑃𝜆=0

=
𝜖𝜆=∞

𝜖𝜆=0

=
3

4
(3.1)

We understand now why the closeness of the energy density between lattice QCD calcula-

tions and the Stefan-Boltzmann limit shown in Section 1.3 is no proof for a weakly coupled

plasma: an infinitely coupled one is also only about a 25% away.

This is in stark contrast with the behaviour of transport coefficients, which do show a

very different behaviour between weakly and strongly coupled regimes, since for instance

the shear viscosity 𝜂 is inversely proportional to the cross section as derived in section

1.4.2. For the specific case of 𝒩 = 4 one finds [65, 66]

𝜂𝜆→0

𝑠𝜆→0

=
𝐴

𝜆2log
(︁
𝐵/
√
𝜆
)︁ 𝜂𝜆=∞

𝑠𝜆=∞
=

1

4𝜋
, (3.2)

with 𝐴 = 6.174 and 𝐵 = 2.36, and other values for different theories. The first thing we

confirm is that weakly coupled theories cannot achieve low values of the dimensionless

𝜂/𝑠 ratio, making it hard for them to describe almost ideal fluids such as the one created in

our accelerators. Secondly, and perhaps most importantly, it is worth noting that while the

weak coupling regime depends on the details of the specific microscopic theory, the strong

coupling regime does not. This behaviour could be due to the different description of the

plasma degrees of freedom, since at weak coupling one works in terms of quasi-particles

while at strong coupling these are absent. Even though this reasoning has not been proved

yet, these are clear hints that the strong coupling limit shows a remarkable universality

among theories which have a gravity dual. The discovery that the value of 𝜂/𝑠 found for

the QCD plasma in our accelerators is very close to this lower bound works in favour of
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this argument (if one assumes that QCD actually has a dual gravitational description).

There are many features of heavy ion physics which can be understood by the use of

holography, such as the fireball thermalization and its hydrodynamic evolution (as com-

mented in Section 1.4.3), meson melting... and many others which we will not cover here

since they are not in direct relation to the subject of this thesis (for a review see [67]).

Given the importance of the gauge/gravity duality, not only in heavy ion physics but also

in general theoretical physics, we will introduce the basic concepts behind its elucidation

to provide the reader with an intuition on the physics of holography.

3.2 Gauge/Gravity Duality

The renowned holographic conjecture [68], found within the context of string theory, states

that certain large 𝑁 gauge theories at strong coupling (hard to solve) are dual to classical

gravity in higher dimensions (doable). The paradigmatic and most studied example cor-

responds to the 𝒩 = 4 Super Yang-Mills gauge theory in 3 + 1 dimensions (at large 𝑁 ),

which is dual to classical gravity in 𝐴𝑑𝑆5 (Anti de Sitter space) in 4 + 1 dimensions. What

is truly remarkable about this duality is that, in some sense, gravity is regarded as an emer-

gent phenomenon induced by quantum correlations, representing one of the few insights

that we have nowadays on quantum gravity.

Historically, in the quest to find a theory of everything that unifies the known quantum

field theories and gravity in a consistent way, it is natural to ask whether massless spin-2

particles can arise as bound states of lower spin particles (such as photons, leptons, quarks,

gluons...) from a field theory perspective. However, Weinberg-Witten no-go theorem [69]

states that a theory that allows a Lorentz-covariant, conserved current 𝑇 𝜇𝜈 , cannot contain

massless particles of spin > 1 1. This would a priori forbid the possibility of emergent

gravity for all renormalizable QFTs, but the theorem is formulated in a fixed number of

1This theorem does not forbid the graviton from General Relativity, since in this theory there is no con-
served Lorentz-covariant 𝑇𝜇𝜈
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space-time dimensions. In the holographic duality, gravity does not live in the same number

of dimensions as the original theory. This sort of loophole in the theorem is precisely what

makes the duality possible. An early realization of the holographic features of gravity came

from the physics of black holes and the necessity to treat them as thermodynamic objects

possessing an associated entropy, which is proportional to its area.

3.2.1 On Black Holes and the Holographic Principle

Consider an isolated system of mass 𝐸 and entropy 𝑆 in an asymptotically flat space-time.

Let 𝐴 be the area of a sphere that encloses the system and 𝑀𝐴 the mass of a black hole

(BH) with horizon area 𝐴. Indeed, one must have 𝐸 ≤𝑀𝐴. If we now add 𝑀𝐴−𝐸 amount

of energy to the system (keeping 𝐴 fixed), we form a black hole and 𝑆𝐵𝐻 ≥ 𝑆0 +𝑆 ′, being

𝑆 ′ the entropy of the added energy. This means that 𝑆0 ≤ 𝑆𝐵𝐻 = 𝐴
4𝜋𝐺𝑁

, implying that the

maximal entropy inside a region bounded by an area 𝐴 is given by

𝑆𝑚𝑎𝑥 =
𝐴

4𝜋𝐺𝑁

, (3.3)

which is proportional to the area, and not the volume. Recall now the definition of entropy

in quantum statistical physics, given by 𝑆 = −Tr 𝜌 log𝜌, with 𝜌 being the density operator

of the system. If the system is a N-dimensional Hilbert space whose density is 𝜌 = 1
𝑁
I,

then the entropy is maximum and equals to 𝑆𝑚𝑎𝑥 = log𝑁 . We can then conclude that the

"effective" dimension of the Hilbert space for a system inside a region of area 𝐴 is bounded

by

log𝑁 ≤ 𝐴

4𝜋𝐺𝑁

=
𝐴

4 𝑙2𝑝
, (3.4)

where the Planck length is defined as 𝑙𝑝 =
√︁

~𝐺𝑁

𝑐3
. Even though this bound can be vio-

lated for non-gravitating systems, whose number of degrees of freedom is proportional to

the volume rather than the area (such as a lattice of spins with lattice spacing 𝑎, where

𝑆𝑚𝑎𝑥 = 𝑉
𝑎3

log2), we have seen how considerations from quantum gravity have led to a

huge reduction of the number of degrees of freedom. This can be summarized as the Holo-

graphic principle: in quantum gravity, a region of boundary area A can be fully described
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by no more than 𝐴
4𝜋𝐺𝑁

= 𝐴
4 𝑙2𝑝

d.o.f., i.e. one d.o.f per Planck area.

This important principle lies at the core of the AdS/CFT duality, which corresponds

to one of the possible realizations it might adopt. Even though the duality was found by

studying the dynamics of D-branes, relatively recent objects in string theory, it was well

known before that that there exists some special relation between the large 𝑁 limit of gauge

theories and string theory (which contains spin-2 massless excitations that describe the

graviton). Such connection is regarded as one of the key conceptual points of holography

and will be briefly discussed next.

3.2.2 Large N Gauge Theories

When ’t Hooft considered large N gauge theories [70], a remarkable surprise arised, and it

is that the 1/𝑁 expansion can be related to features of string theory. They key point is that

in non-abelian theories, the fields are matrices. For each order in 𝑔2, different topologies

will lead to different powers of 𝑁 : planar diagrams, those which can be drawn on a plane

without crossing lines, are enhanced in 𝑁 with respect to non-planar ones. These planar

diagrams are said to correspond to genus ℎ = 0, the sphere topology2. For any non-planar

diagram, there exists an integer ℎ such that the diagram can be straightened out on a genus-ℎ

surface, but not on a surface with a smaller genus. Moreover, one can see that the power of

𝑁 coming from contracting propagators is given by the number of faces on such a genus-h

surface .

By considering the limit in which 𝑁 → ∞ and 𝑔2 → 0, it is convenient to define the

’t Hooft coupling 𝜆 ≡ 𝑔2𝑁 , where the combination is kept finite. With this arrangement,

each diagram power counting can be expressed as𝒜 ∼ 𝜆𝐿−1𝑁𝜒, where 𝐿 is the number of

loops and 𝜒 is the Euler number, defined as 𝜒 ≡ 𝐹 + 𝑉 −𝐸 (number of faces plus number

of vertices minus number of propagators). In this way, each diagram can indeed be seen

as a partition of the surface into polygons. The Euler number also corresponds precisely to

the combination 𝜒 = 2 − 2ℎ, so that the sum of all connected diagrams can be expressed

2Any orientable two dimensional surface is classified topologically by an integer ℎ, called genus. The
genus is equal to the number of holes a surface has.
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as

log𝑍 =
∞∑︁
ℎ=0

𝑁2−2ℎ𝑓ℎ(𝜆) = 𝑁2𝑓0(𝜆) + 𝑓1(𝜆) +
1

𝑁2
𝑓2(𝜆) + ... (3.5)

where one clearly sees that at large N the leading order is given by planar diagrams (h=0).

In summary, in the ’t Hooft limit the 1/𝑁 expansion corresponds to an expansion in terms

of topology of Feynman diagrams. The observables dominating at leading order of such a

large-N gauge theory corresponds to the so called glueballs, single trace operators 𝒪𝑖(𝑥𝑖)

whose fluctuations are suppressed as in a classical theory. In general, the parametric de-

pendence of the correlation functions of 𝑛 glueballs is

⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩𝐶 =
∞∑︁
ℎ=0

𝑁2−𝑛−2ℎ𝐹 ℎ
𝑛 (...) = 𝑁2−𝑛 + 𝑁−𝑛 + 𝑁−𝑛−2 + ... (3.6)

In this way, it is natural to assign a value for the glueball coupling constant 𝑔 ∼ 1
𝑁

as if it

corresponded to a basic vertex of a tree level scattering amplitude.

From the string theory side, there is a remarkable fact and it is that summing over

topologies automatically includes the interactions of the strings, fully specifying them in

fact. In this sum, one needs to include a kind of "chemical potential" for topology that

gives a weight to the different terms as 𝑒−𝜆𝜒, which appears naturally in a rigorous string

theory derivation. An ℎ = 0 genus surface would correspond to the worldsheet of a string

nucleating from vacuum and later disappearing, a genus ℎ = 1 describes a string that splits

and rejoins before disappearing, and so on. By defining the string coupling as 𝑔𝑠 ≡ 𝑒𝜆, and

considering 𝑛 strings scattering (so that 𝜒 = 2− 2ℎ− 𝑛 now), one gets

𝐴𝑛 =
∞∑︁
ℎ=0

𝑔𝑛−2+2ℎ
𝑠 𝐹 (ℎ)

𝑛 = 𝑔𝑛−2
𝑠 + 𝑔𝑛𝑠 + 𝑔𝑛+2

𝑠 + ... (3.7)

which shares an identical mathematical structure with the large N expansion. In this sense

we can identify the external string states with coupling 𝑔𝑠 = 𝑒𝜆 with the glueballs of cou-

pling 1/𝑁 , and the sum over string worldsheets of genus h with the sum over Feynman

diagrams of genus h. It is then natural to state that each Feynman diagram of genus h can

be considered as a partition of a genus h surface, a triangulation, with string theory as the
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continuum limit that would correspond to the denser triangulations that dominate at strong

coupling. However, the identification between the states of the two theories (single trace

operators with string states) is difficult.

An explicit realization of this correspondence had to wait first for the discovery of D-

branes [71], and then some years more until the seminal work of Maldacena [68]. The

two equivalent interpretations that D-branes dynamics can have within string theory are the

basis from which all the elements of the duality are derived in the different limits, and for

this reason we will give a brief introduction to D-branes and a summary of the main steps

that lead to the stablishment of the famous conjecture.

3.2.3 D-branes as Boundary Conditions

Open strings can have either Dirichlet (𝛿𝑋𝜇 = 0) or Neumann (𝜕𝜎𝑋𝜇 = 0) boundary

conditions. At first sight, Dirichlet condition seems to break Lorentz and translational

symmetry, unless one can image a space-time defect sitting at some location where open

strings can end. Such an object is called a D-brane. For instance, if one has Neumann

conditions in all directions, the open strings can end everywhere, so the brane is space-

filling.

If we consider N Dp-branes (branes of dimension p) sitting at the same location, we

can assign a value to each open string depending on the brane it ends on, as |Ψ, 𝐼𝐽⟩ with

𝐼, 𝐽 = 1, 2, ...𝑁 , so that each open string excitation becomes a NxN matrix (such as the

vector field (𝐴𝛼)𝐼𝐽 or the scalar field (Φ𝑎)𝐼𝐽 )3. In this way, when strings interact joining their

ends, it corresponds to matrix products in the 𝐼, 𝐽 indices. Moreover, string interactions

have a symmetry realized by assigning a phase factor 𝑒𝑖𝜃𝐼 to states whose 𝜎 = 0 end is

at brane 𝐼 , and the factor 𝑒−𝑖𝜃𝐼 to states whose 𝜎 = 𝜋 end is at brane 𝐼 . Then, (Φ𝑎)𝐼𝐼 is

invariant, and (Φ𝑎)𝐼𝐽 is the complex conjugate of (Φ𝑎)𝐽𝐼 . For coincidental branes, since they

are indistinguishable from each other, we can reshuffle indices; there is in fact a 𝑈(𝑁)

3For the simple case of the bosonic string, by deriving the massless spectrum of the open string one
gets a vector field 𝐴𝛼 and 𝐷 − 𝑝 − 1 scalar fields Φ𝑎, corresponding to the Poincaré representations of
(1, 𝑝) ⊗ 𝑆𝑂(𝐷 − 𝑝 − 1). The massless scalar fields can be seen as the Goldstone bosones for breaking
translational symmetries in D-Minkowski.
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symmetry

|Ψ, 𝐼𝐽⟩ → 𝑈𝐼𝐾𝑈𝐽𝐿|Ψ, 𝐾𝐿⟩ , or Ψ→ 𝑈 Ψ𝑈 † , (3.8)

where 𝑈 are unitary matrices. We then conclude that each open string excitation transforms

under the adjoint representation of this 𝑈(𝑁). On the string worldsheet, this corresponds

to a global symmetry, but in space-time, i.e. in the worldvolume of D-branes, this 𝑈(𝑁)

must be a gauge symmetry - in particular, (𝐴𝛼)𝐼𝐽 must be the corresponding gauge bosons.

By general arguments of Lorentz covariance and unitarity, the low energy action has to cor-

respond to Yang-Mills theory (fact that can be checked by explicit scattering computations).

D-branes in the bosonic string always have an open string tachyon, which make them

unstable. By adding superstrings, D-branes of certain dimensions are free of tachyons and

become stable. In general, such D-branes carry a conserved and their worldvolume theory

is supersymmetric. In addition to 𝐴𝛼 and Φ𝑎, there are also massless fermions, so that the

low energy theory corresponds to Super-Yang-Mills theory.

The bosonic part of the massless closed superstring spectrum contain a set of fields a

part of which correspond to differential forms, the so called Ramond-Ramond (RR) fields.

These are generalizations of the Maxwell field 𝐴𝜇, a 1-form whose source is a point parti-

cle. Then a p-dimensional object naturally couples to a p+1 form. In electromagnetism, an

object coupling to the Hodge dual field 𝐴 (meaning *𝐹 = 𝐹 = 𝑑𝐴, so that 𝐹 01 = 𝐹 23 and

𝐹 23 = 𝐹 01) is said to be magnetically charged. One can also dualize a n-form such that

𝑑𝐶(𝐷−𝑛−2) =* 𝑑𝐶(𝑛) couples to a (𝐷 − 𝑛 − 3)-dimensional object; in terms of 𝐶𝑛, this

is a magnetic object. A remarkable situation takes place for Type IIB superstring theory,

where there is a form, the RR field 𝐶(4), whose electric and magnetic part both couple to

a D3-brane, satisfying the self-dual condition 𝐹 (5) =* 𝐹 (5). This condition can be seen

as a realization of the Montonen-Olive duality that relates electric and magnetic charges in

supersymmetric theories with 4 supercharges in 3+1 dimensions. Due to the precise field

content and symmetries present one then concludes that on these stable D3-branes lives the

𝒩 = 4 SYM theory in 4 dimensions.

Up to here, we have treated D-branes as Dirichlet boundary conditions. One can instead
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study the geometry that D-branes themselves source as gravitating objects, an analysis that

we briefly review in the coming text.

3.2.4 D-branes as Space-time Geometries

From another point of view, let’s consider a D3-brane in IIB supergravity (SUGRA), which

corresponds to the low energy effective theory of IIB superstring. Its regime of validity

is when 𝑔𝑠 ≪ 1, so that the quantum corrections are small, and when the energy satisfies

𝐸2 < 1/𝛼′ in order to get massive modes decoupled. One also needs the curvature to

be much smaller than 1/𝛼′ in order to be able to neglect string finite size corrections.

Its Lagrangian can then be expressed as ℒ = 1
16𝜋𝐺𝑁

𝑅 + ... provided that one does the

identification 16𝜋𝐺𝑁 = (2𝜋)7𝑔2𝑠𝛼
′4. Given that the D3-brane is charged under 𝐶(4), by

Gauss law the electric (𝑞3) and magnetic (𝑔3) charges are

𝑞3 =

∫︁
𝑆5

*𝐹 (5) 𝑔3 =

∫︁
𝑆5

𝐹 (5) , (3.9)

which by the self-dual property are equal 𝑞3 = 𝑔3. The Dirac quantization condition implies

𝑞3 = 𝑔3 =
√

2𝜋𝑁 , allowing one to write the D3-brane tension as 𝑇3 = 𝑞3/
√

16𝜋𝐺𝑁 =

𝑁/(2𝜋)3𝑔𝑠𝛼
′2.

Given that the presence of the brane reduces the symmetry to Poincaré (1, 3)⊗ 𝑆𝑂(6),

we try the following ansatz for the metric

𝑑𝑠2 = 𝑓(𝑟)
(︀
−𝑑𝑡2 + 𝑑𝑥2

1 + 𝑑𝑥2
2 + 𝑑𝑥2

3

)︀
+ ℎ(𝑟)

(︀
𝑑𝑟2 + 𝑟2𝑑Ω2

5

)︀
, (3.10)

being the D3-brane sitting at 𝑟 = 0. By solving Einstein’s equations, one finds 𝑓(𝑟) =

𝐻−1/2(𝑟) and ℎ(𝑟) = 𝐻1/2(𝑟), with 𝐻(𝑟) = 1+𝑅4/𝑟4 and 𝑅4 = 4
𝜋2𝐺𝑁𝑇3𝑁 = 4𝜋𝑔𝑠𝑁𝛼

′2.

For the limit in which 𝑟 → ∞, 𝐻 = 1 and the metric reduces to Mink10. For intermediate

situations where 𝑟 ≫ 𝑅, one gets long range corrections from the Coulomb potential in

R6. For the interesting case where 𝑟 → 0, 𝐻 ≃ 𝑅4

𝑟4
and the spacetime acquires an horizon,
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with a geodesically long "throat" at 𝑟 ≃ 0. The metric becomes

𝑑𝑠2 =
𝑟2

𝑅2

(︀
−𝑑𝑡2 + 𝑑x2

)︀
+

𝑅2

𝑟2
𝑑𝑟2 + 𝑅2𝑑Ω2

5 . (3.11)

From this expression we notice that the 𝑆5 has constant radius 𝑅, and that the point at 𝑟 = 0

indeed sits at infinite proper distance away. This metric corresponds then to 𝐴𝑑𝑆5 ⊗ 𝑆5,

where the 𝐴𝑑𝑆5 metric is

𝑑𝑠2𝐴𝑑𝑆5
=

𝑟2

𝑅2

(︀
−𝑑𝑡2 + 𝑑x2

)︀
+

𝑅2

𝑟2
𝑑𝑟2 . (3.12)

With these two approaches we have obtained two different descriptions for D3-branes:

A D-branes in flat Minkowski10 where open strings live

B Space-time metric 𝐴𝑑𝑆5 ⊗ 𝑆5 + 𝐹5 flux on 𝑆5 with only closed strings.

In principle, both descriptions can be valid for all 𝛼′ and 𝑔𝑠. In A, we have an open string

sector that corresponds to𝒩 = 4 SYM with 𝑈(𝑁) gauge group, and a closed string sector

which contains excitations such as the graviton and the dilaton. However, the couplings

between massless closed and open strings, or between closed strings themselves, go like

𝐺𝑁 ∝ 𝑔2𝑠𝛼
′4, and in the low energy limit 𝐸 → 0, the dimensionless combination 𝐺𝑁𝐸

8 →

0 (since gravity is infrared free). In this way, in the low energy limit A corresponds to a

theory with 𝒩 = 4 SYM plus free gravitons.

Regarding B, since we are dealing with a curved space-time, one has to be careful with

which energy to consider. In A, the energy is defined w.r.t. 𝑡, i.e. the time at 𝑟 = ∞.

At fixed 𝑟, the local proper time is 𝑑𝜏 = 𝐻−1/4𝑑𝑡, and the corresponding energy is 𝐸𝜏 =

𝐻1/4𝐸. For 𝑟 ≪ 𝑅, then 𝐻 ≃ 𝑅4

𝑟4
and the condition 𝐸2𝛼′ → 0 translates to

𝐸2
𝜏

𝑟2√
4𝜋𝑔𝑠𝑁

→ 0 , (3.13)

meaning that for any 𝐸𝜏 we can achieve the low energy limit by going close enough to

𝑟 → 0. We can then state the equivalence between these two descriptions in the low
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energy limit as

𝒩 = 4 SYM with𝑈(𝑁) ←→ IIB string theory in𝐴𝑑𝑆5 × 𝑆5 , (3.14)

a statement which supposes a specific realization of the holographic principle and lies at

the origin of the physical revolution of our times.

The main important result for us consists in the observation that in the limit of large 𝑁𝑐

and large 𝜆, the gravitational dual to𝒩 = 4 SYM in 4𝑑 is described by classical supergrav-

ity on the ten dimensional 𝐴𝑑𝑆5 × 𝑆5 geometry. Moreover, studying the theory at finite

temperature corresponds to adding a black hole to this geometry with a non zero Hawking

temperature, a metric that will call AdS-BH.

Aspects on 𝐴𝑑𝑆 geometry, the matching of symmetries, the state/operator correspon-

dence and in general all the duality toolbox will not be discussed here and we refer the

reader to the reviews [72, 67].

3.3 Energy Loss at Strong Coupling

From the gauge/gravity duality context, the most important result for the goal of this thesis

concerns the study of jet energy loss within a strongly coupled gauge theory, a problem that

has been studied extensively. (See Refs. [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]

for entries into the literature for the propagation of light degrees of freedom.) These stud-

ies can be divided into two general classes: those in which a hard process in a strongly

coupled gauge theory is studied via the gauge/gravity correspondence, for example via an-

alyzing the decay of a virtual external 𝑈(1) field into strongly coupled matter within the

plasma [79, 80, 81, 83, 84]; and those in which single energetic excitations are described as

a string moving in the dual gravitational spacetime whose endpoint is attached to a space-

filling D7-brane and can therefore fall into the horizon [75, 78, 87]. The former has the

advantage that the set-up is fully determined within the strongly coupled theory, while in
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the latter the initial conditions that characterize the hard creation of these excitations need

to be specified. The latter has the advantage that the string describes an isolated excita-

tion whose energy can be tracked, emerging from the initial configuration. These two ap-

proaches lead to qualitatively similar results for certain observables, such as the parametric

dependence of the maximal stopping distance of energetic partons, but differ quantitatively.

While both computations are valid within the context of strongly coupled gauge theories,

it is unclear which is a better proxy for QCD hard processes in strongly coupled medium.

Since the string-based computations provide the energy loss rate explicitly [87], we will

adopt this second approach to extract the energy loss physics that we need to construct our

jet quenching model in Part II of the thesis.

Given the absence of jets in 𝑁 = 4 SYM at strong coupling as we know them from

QCD [76], the usual path that people have take, as stated above, consists in constructing

states which have highly energetic and localized configurations that propagate arbitrarily

far through plasma before thermalizing. A convenient choice is to consider a dressed quark

configuration in terms of the conserved current 𝐽𝜇
baryon which is present when coupling

𝒩 = 4 SYM to a fundamental representation 𝒩 = 2 hypermultiplet. On the gravity side

of the duality, the addition of this hypermultiplet is accomplished by adding a 𝐷7 brane

to the 10𝑑 geometry [88] on which one of the ends of an open string ends. According to

Maldacena, infinitely heavy, static strings are Wilson lines [74] evaluated along the trajec-

tory that the endpoint of the string follows. This is in consonance with our derivation of

the quark propagator in terms of the Wilson line in Section 2.2, so that an identification

between open strings and quarks is quite natural. By allowing the endpoint of the string

to move, one is effectively relaxing the eikonal approximation within the AdS/CFT frame-

work.

The 𝐷7 brane fills a volume of the AdS-BH geometry that extends from the boundary

at 𝑢 = 0 down to a maximal radiate coordinate 𝑢𝑚, wrapping an 𝑆3 of the 𝑆5. In general,

by separating a brane from the rest by a distance 𝑑, we are effectively inducing a mass term

for the open strings stretching from this brane to the others as 𝑀2 = (𝑑/2𝜋𝛼′)2 + .... This

57



means that the gauge symmetry is broken as 𝑈(𝑁)→ 𝑈(𝑁−1)⊗𝑈(1), which can be seen

as a realization of the Higgs mechanism. For our case, this implies that the bare mass 𝑀 of

the hypermultiplet is proportional to 1/𝑢𝑚 [73], meaning that for massless quarks the 𝐷7

brane fills all of the 5𝑑 AdS-BH geometry. The open strings which end on the 𝐷7 brane

representing the dressed 𝑞𝑞 pair can then fall unimpeded toward the event horizon down to

the radial coordinate 𝑢𝑚 where the 𝐷7 brane ends, and if the quarks are light enough, or

massless, they can fall into the horizon.

Therefore, the open string configurations we consider here may be regarded as the dual

description of dressed quarks. Given our heavy ion collisions phenomenological inter-

ests, we consider that weak coupling physics in asymptotically free QCD is responsible

for creating a high energy excitation whose propagation through the plasma is modelled by

studying the dynamics of the same kind of excitation in a strongly coupled 𝒩 = 4 plasma.

We also focus on jets that have vanishingly small size at the moment of creation, which in

the dual gravitational description requires considering strings that are produced arbitrarily

close to the AdS boundary. Since we are also interested in the in-medium propagation of

highly energetic partons with a neglectable mass, we will drive our efforts into the compu-

tation of the light quark energy loss, which involves a more complicated computation than

in the heavy quark case given the absence of stationary regimes.

While the energy loss rate for a heavy quark depends only on the quark’s velocity, 𝜆

and the temperature [73], this is not the case for light quarks. The initial conditions for a

classical string involve two free functions: the initial string profile and its time derivative.

The instantaneous energy loss rate of a light quark depends strongly on the choice of these

initial functions. This is reflected in the dual field theory as the fact that a complete specifi-

cation of an initial state containing an energy quark must also include the characterization

of the gauge field configuration. However, the maximum distance a quark of energy 𝐸 can

travel before thermalizing, ∆𝑥𝑚𝑎𝑥, is rather insensitive to the precise initial conditions. We

will also focus on energetic excitations whose stopping distance is large enough that the

specific initial details on the string profile become irrelevant, since all this information is
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washed away during a transient time of order 1/𝑇 due to the ultrarelativistic propagation

of the string, whose duration is arbitrarily small when compared to the total distance that

the endpoint travels through AdS-BH.

Next we will review the setup that leads to the strongly coupled energy loss rate whose

form we use as an insight from non-perturbative jet/plasma interplay. This is not original

work of this thesis but is rather a result we use for the construction of our model in Part II.

Given its importance for us we reproduce the basic steps of the computation here, where

the full analysis can be found in [87].

In the limit of large 𝜆, where the string action and the energy both scale like
√
𝜆,

quantum fluctuations in the string worldsheet are suppressed and the dynamics of strings

can be described by the classical equations of motion coming from from the Nambu-Goto

action.

𝑆𝑁𝐺 = −𝑇0

∫︁
𝑑𝜏𝑑𝜎

√
−𝑔 , (3.15)

with 𝑇0 ≡
√
𝜆

2𝜋
the string tension, 𝜆 the ’t Hooft coupling, 𝜎 and 𝜏 are the world-sheet

coordinates, 𝑔 ≡ det𝑔𝑎𝑏 with 𝑔𝑎𝑏 = 𝜕𝑎𝑋 · 𝜕𝑏𝑋 the string world-sheet metric and 𝑋𝑀 =

{𝑡(𝜏, 𝜎), 𝑥(𝜏, 𝜎), 0, 0, 𝑢(𝜏, 𝜎)} are the embedding functions. The target space 𝐺𝑀𝑁 metric

is Schwarzschild Anti de-Sitter

𝑑𝑠2 =
1

𝑢2

[︂
−𝑓(𝑥, 𝑢) 𝑑𝑡2 + 𝑑x2 +

𝑑𝑢2

𝑓(𝑥, 𝑢)

]︂
, (3.16)

where 𝑓(𝑥, 𝑢) = ℎ(𝑢) for 0 < 𝑥 < 𝐿 with ℎ(𝑢) = 1 − 𝑢4

𝑢4
ℎ

and 𝑓(𝑥, 𝑢) = 1 otherwise.

The temperature of the plasma is related to the black hole horizon position through 𝑢ℎ =

1/𝜋𝑇 , being the boundary located at 𝑢 = 0. This configuration is the strongly coupled

analogous of the QGP brick studied in perturbation theory; it is a non-physical situation

where a fireball rests without exploding against vacuum, which will nevertheless allow

us to perform analytical calculations from which we expect to extract the most important

features of the problem we want to study.
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One can express the equations of motion in terms of the canonical world-sheet momenta

𝜋0
𝑀 = −𝑇0

𝐺𝑀𝑁√
−𝑔

[︁
(𝑋̇ ·𝑋 ′)𝑋

′𝑁 − (𝑋 ′)2𝑋̇𝑁
]︁

(3.17)

𝜋𝜎
𝑀 = −𝑇0

𝐺𝑀𝑁√
−𝑔

[︁
(𝑋̇ ·𝑋 ′)𝑋̇𝑁 − (𝑋̇)2𝑋

′𝑁
]︁
, (3.18)

where ˙≡ 𝜕𝜏 and ′ ≡ 𝜕𝜎, so that

𝜕𝜏𝜋
0
0 + 𝜕𝜎𝜋

𝜎
0 = 0 . (3.19)

We model the creation of a pair of quarks as a string that originates at

𝑋𝑀
create = {0, 𝑥0, 0, 0, 𝑢0} that subsequently expands, with its endpoints propagating at the

speed of light 𝑐 and in a direction transverse to the string (due to open string boundary

conditions). The physics of our problem leads us to consider strings that initially move

in the 𝑥 direction asymptotically close to 𝑐 and fall only slowly in the holographic di-

rection, corresponding to strings with 𝐸string → ∞ possessing a small inclination, i.e. a

small opening angle in analogy with QCD jets with small 𝜃 ∼ 𝑚
𝐸

=

√
𝐸2−p2

𝐸
. This limit

𝐸string → ∞ makes the string effectively tensionless, with all the pieces of the string trav-

elling at the speed of light. The null string satisfies 𝑔(𝑋null) = 0, so that one has divergent

energy density. To extract meaningful quantities one thus needs to expand around the null

configuration

𝑋𝑀 = 𝑋𝑀
null + 𝜖𝛿𝑋𝑀

(1) + 𝜖2𝛿𝑋𝑀
(2) + ... (3.20)

where 𝜖 is a book-keeping parameter that will eventually be sent to 𝜖 = 1. We also need

to fix the gauge by selecting the worldsheet coordinates as 𝜏 = 𝑡 and 𝜎 via the conditions

𝜕𝜏𝑋null · 𝜕𝜎𝑋null and 𝛿𝑋𝑀
(𝑛) = {0, 𝛿𝑥(𝑛), 0, 0, 0}. We need then to solve the string equations

(3.19) perturbatively in 𝜖, end for which we construct first the null string solutions. Each

null geodesic can be labelled by 𝜎 and parametrized by time 𝑡. The congruence of geodesics

build up a null string, which can be written as 𝑋𝑀
null = {𝑡, 𝑥𝑔𝑒𝑜(𝑡, 𝜎), 0, 0, 𝑢𝑔𝑒𝑜(𝑡, 𝜎)} and
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imply that the null geodesic equations for 𝑥𝑔𝑒𝑜 and 𝑢𝑔𝑒𝑜 are

𝜕

𝜕𝑡

(︂
1

𝑓

𝜕𝑥𝑔𝑒𝑜

𝜕𝑡

)︂
+

1

2𝑓

(︃
1 +

1

𝑓 2

(︂
𝜕𝑢𝑔𝑒𝑜

𝜕𝑡

)︂2
)︃

𝜕𝑓

𝜕𝑥
= 0 (3.21)

−𝑓 +

(︂
𝜕𝑥𝑔𝑒𝑜

𝜕𝑡

)︂2

+
1

𝑓

(︂
𝜕𝑢𝑔𝑒𝑜

𝜕𝑡

)︂2

= 0 . (3.22)

Since the function 𝑓 is piecewise constant in 𝑥, we can integrate these last equations once

and obtain

𝜕𝑥𝑔𝑒𝑜

𝜕𝑡
=

𝑓

𝜉
(3.23)

𝜕𝑢𝑔𝑒𝑜

𝜕𝑡
=

𝑓
√︀

𝜉2 − 𝑓

𝜉
, (3.24)

which means that each geodesic satisfies the null trajectory

𝜕𝑢𝑔𝑒𝑜

𝜕𝑥𝑔𝑒𝑜

=
√︀

𝜉2 − 𝑓 , (3.25)

where 𝜉(𝜎) is a constant of integration that is piecewise time independent in each interval.

In the region 𝑥 < 0 where 𝑓 = 1 one readily obtains

𝑥𝑔𝑒𝑜 = 𝑡 cos𝜎 + 𝑥0, 𝑢𝑔𝑒𝑜 = 𝑡 sin𝜎 + 𝑢0 . (3.26)

Here we can identify 𝜎 as the angle of the geodesic trajectory in the half-plane (𝑥, 𝑢 > 0),

being 𝜎* ≡ min(𝜎) the one labelling the endpoint geodesic.

In the region 0 < 𝑥 < 𝐿 the geodesic equation is solved by

𝑥𝑔𝑒𝑜 =
𝑢2
ℎ

𝑢𝑖𝑛
2𝐹1(

1
4
, 1
2
; 5
4
;

𝑢4
ℎ

𝜁𝑢4
𝑖𝑛

)− 𝑢2
ℎ

𝑢𝑔𝑒𝑜
2𝐹1(

1
4
, 1
2
; 5
4
;

𝑢4
ℎ

𝜁𝑢4
𝑔𝑒𝑜

) , (3.27)

where 𝜁 ≡ 1/(1 − 𝜉20), with 𝜉0 being the integration constant in the range 0 < 𝑥 < 𝐿 as

derived from the geodesic equations. Here, 2𝐹1 is the Gauss hypergeometric function. In

the region 𝑥 > 𝐿, we again have 𝑓 = 1 and the solution asymptotically corresponds to

the expanding semicircular arc of region 𝑥 < 0 with a large endpoint angle 𝜎̄* > 𝜎* (more
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details on this feature and its physical implications in [89]. In this sense, the end of the slab

is seen from 𝑥 ≫ 𝐿 as a point-source emitter for null geodesics in the (𝑥, 𝑢) plane just as

𝑥 = 𝑋0 and 𝑢 = 𝑢0 was.

We can now look into the first order perturbations 𝛿𝑥(1) which, up to
√
𝜖 corrections,

give for the worldsheet energy densitiy and flux

𝜋0
0 = −𝑇0 𝜉 𝜕𝜎𝑢𝑔𝑒𝑜

𝑢2
𝑔𝑒𝑜

√︃
−𝜉

2𝜖 𝜕𝑡𝛿𝑥(1)

, 𝜋𝜎
0 = 0 . (3.28)

This result implies that according to (3.19) the equation of motion for 𝛿𝑥(1) is just 𝜕𝑡𝜋0
0 = 0,

meaning that 𝜋0
0 is time independent and energy is transported along geodesics with 𝜎 =

const.. In order to know the energy density as a function of 𝜎, we use that in 𝑥 < 0 region

𝛿𝑥(1) has to satisfy

𝜕2
𝑡 𝛿𝑥(1) +

2(𝑡 sin𝜎 − 𝑢0)

𝑡 sin𝜎 + 𝑢0

𝜕𝑡𝛿𝑥(1) = 0 , (3.29)

whose solution reads

𝛿𝑥(1) = 𝜑(𝜎) +
sin𝜎(3𝑡 sin𝜎(𝑡 sin𝜎 + 𝑢0) + 𝑢2

0)

3(𝑡 sin𝜎 + 𝑢3
0)

Ψ(𝜎) , (3.30)

where Φ(𝜎) and Ψ(𝜎) are arbitrary smooth functions, with the constrain that Ψ(𝜎*) = 0

due to the requirement that the endpoint moves at the speed of light. One then gets

𝜋0
0 = −𝑇0 csc2𝜎

√︃
csc2𝜎 sin𝜎
𝜖Ψ(𝜎)

+𝒪(
√
𝜖) . (3.31)

We introduce next the maximal stopping distance 𝑥𝑠𝑡𝑜𝑝, the distance at which the endpoint

of the string and hence the whole of it falls below the horizon, something that would even-

tually happen for 𝐿→∞. In the dual gauge theory, this is the distance a jet can penetrate

in the plasma before completely thermalizing. This distance corresponds to

𝑥𝑠𝑡𝑜𝑝 = −𝑢ℎ 2𝐹1(
1
4
, 1
2
; 5
4
; 1
𝜁(𝜎*)

) +
𝑢2
ℎ

𝑢𝑖𝑛(𝜎*)
2𝐹1(

1
4
, 1
2
; 5
4
;

𝑢4
ℎ

𝜁(𝜎*)𝑢𝑖𝑛(𝜎*)4
) . (3.32)

From now on we will focus on the limit 𝑥𝑠𝑡𝑜𝑝 ≫ 𝑢ℎ, which requires that 𝜎* ≪ 1. For the

case of our interest, a jet that traverses the plasma without losing all its energy, we need to
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Figure 3-1: This picture shows different snapshots of the evolution of the string profile
(red curves) in the (𝑥, 𝑢) plane as time goes by. The string is created very close to the
boundary (𝑢 = 0) and then expands. Some of the geodesics (blue lines) whose congruence
build up the string fall into the black hole horizon before the string exits the slab, which
translates into energy loss. The distance at which even the endpoint (black trajectory) is
absorbed by the black hole is called the stopping distance 𝑥stop and depends on the energy
𝐸 of the string and the temperature 𝑇 of the black hole.

know which are the geodesics that fall in the horizon at a certain distance 𝑥, a function we

define as 𝜎ℎ(𝑥). This corresponds to the solution of

𝑥 = −𝑢ℎ 2𝐹1(
1
4
, 1
2
; 5
4
; 1
𝜁(𝜎)

) +
𝑢2
ℎ

𝑢𝑖𝑛(𝜎)
2𝐹1(

1
4
, 1
2
; 5
4
;

𝑢4
ℎ

𝜁(𝜎)𝑢𝑖𝑛(𝜎)4
) , (3.33)

so that 𝜎ℎ(𝑥𝑠𝑡𝑜𝑝) = 𝜎*. We can then compute the outgoing and ingoing energy of the string

as the contribution of all the geodesics above the horizon at the exit and entrance of the

string in the slab of plasma respectively as

𝐸𝑜𝑢𝑡 = −
∫︁ 𝜎ℎ(𝐿)

𝜎*

𝑑𝜎 𝜋0
0, 𝐸𝑖𝑛 = −

∫︁ 𝜎ℎ(0)

𝜎*

𝑑𝜎 𝜋0
0 . (3.34)

By assuming 𝑢0 → 0 (strings created near the boundary) and 𝜎* ≪ 1 (initial momentum in

the 𝑥 direction) we see from (3.31) that 𝜋0
0(𝜎) becomes very concentrated near 𝜎 = 𝜎*. If

we expand Ψ(𝜎) = Ψ′(𝜎*)(𝜎 − 𝜎*) + 𝒪((𝜎 − 𝜎*)
2), we get the leading order expression

for the energy density

𝜋0
0 =

−𝑇0

𝜎2
√︀

2𝜖Ψ′(𝜎*)(𝜎 − 𝜎*)
. (3.35)

With these ingredients we can then obtain the fractional energy lost by the high energy
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parton as it propagates through the slab as

𝐸𝑜𝑢𝑡

𝐸𝑖𝑛

=
𝜎̂ℎ(0)

(︁√︀
𝜎̂ℎ(𝐿)− 1 + 𝜎̂ℎ(𝐿) cos−1

√︁
1

𝜎̂ℎ(𝐿)

)︁
𝜎̂ℎ(𝐿)

(︁√︀
𝜎̂ℎ(0)− 1 + 𝜎̂ℎ(0) cos−1

√︁
1

𝜎̂ℎ(0)

)︁ , (3.36)

where 𝜎̂ℎ(𝑥) ≡ 𝜎ℎ(𝑥)/𝜎*. In the phenomenologically interesting situation where the ener-

getic pair of quarks is created just next to the slab of plasma (meaning fixed 𝑥0, with 𝑢0 = 0

and 𝜎* → 0) one finds that the stopping distance is

𝑥𝑠𝑡𝑜𝑝 =
𝑢ℎΓ( 1

4
)2

4
√
𝜋𝜎*

+ (𝑥0 − 𝑢ℎ) +𝒪(
√
𝜎*) , (3.37)

which means that for small enough 𝜎* one can approximate 𝜎* = 𝒪(𝑢2
ℎ/𝑥

2
𝑠𝑡𝑜𝑝). Given that

the energy of the string is greatest near the endpoint, to leading order in 𝜎* (3.34) gives for

the initial energy

𝐸𝑖𝑛 =
𝜋𝑇0

2𝜎
3/2
*
√︀

2𝜖Ψ′(𝜎*)
, (3.38)

yielding a relation between the initial energy and the stopping distance as

𝑥𝑠𝑡𝑜𝑝 =
𝜋4/3𝒞
𝜋𝑇

(︂
𝐸𝑖𝑛√
𝜆𝜋𝑇

)︂
, (3.39)

where we used 𝑇0 =
√
𝜆

2𝜋
, 𝑢ℎ = 1/𝜋𝑇 and the constant 𝒞, which for optimally prepared

jets (the ones with the highest survival rates) is approximately 𝒞 ≃ 0.526, was analytically

calculated in [85]. Now, by considering a slab of plasma with 𝐿 < 𝑥𝑠𝑡𝑜𝑝 and taking into

account all mentioned assumptions, (3.37) implies 𝜎̂ℎ(𝐿) =
(︀𝑥𝑠𝑡𝑜𝑝

𝐿

)︀2, which we can insert

in (3.36) in order to differentiate with respect to 𝐿 and obtain

1

𝐸𝑖𝑛

𝑑𝐸𝑜𝑢𝑡

𝑑𝐿
= − 4𝐿2

𝜋𝑥2
𝑠𝑡𝑜𝑝

√︁
𝑥2
𝑠𝑡𝑜𝑝 − 𝐿2

. (3.40)

This equation exhibits a path length dependence that is reminiscent of a Bragg-like peak,

in which most of the energy is lost suddenly in a final burst. One can understand this be-

haviour from the fact that most of the energy is concentrated at the endpoint, the segment
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of the string that is the last to thermalize. The energy loss rate in (3.40) is a good approx-

imation to the situation depicted in Fig. 3-1, and can be used to deduce the lost energy by

a quark traversing a supersymmetric strongly coupled plasma. Taking insights from these

results one can model the energy loss rate of partons in a QCD plasma instead, taking into

account the expected differences, due for instance to the different number of degrees of

freedom between the two theories.

The motion of the string through AdS-BH, and specially the deposition of energy into

the black hole, produce metric perturbations 𝛿𝑔𝑀𝑁 whose near boundary behaviour en-

codes the stress tensor of the quark 𝑇𝜇𝜈 . This information can be used to track where the

lost energy from the quark went to, as done first in [90] for the heavy quark. In Chapter 7

in Part II we incorporate this ideas by a simple computation of the medium response to the

jet passage assuming small perturbations in order to account for overall energy momentum

conservation. This is a very important piece of physics that brings together our understand-

ing of jet energy loss and its effects on the rest of the system.
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Part II

The Hybrid Model for Jet Quenching
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Chapter 4

A Hybrid Strong/Weak Coupling

Approach to Jet Quenching

One of the most striking results obtained from heavy ion collisions at the Large Hadron

Collider (LHC) is the strong suppression of high energy jets observed in Pb-Pb collisions

with a center of mass energy of 2.76 TeV per nucleon-nucleon collision [20, 21]. This

suppression, commonly referred to as jet quenching, is due to the energy loss suffered by

the components of the jets on their way out of the hot QCD medium formed in a high energy

heavy ion collision. The phenomenon of jet quenching was discovered prior to the LHC

measurements, without reconstructing individual jets, primarily via the strong reduction in

the number of intermediate-𝑝𝑇 hadrons in heavy ion collisions at RHIC relative to proton-

proton collisions [91, 92]. Jet quenching has come to be seen as one of the most powerful

experimentally accessible tools with which to analyze the properties of deconfined QCD

matter. The large magnitude of the effects of energy loss observed in heavy ion collisions at

the LHC, together with the ability to study the effects of energy loss on many properties of

individually reconstructed jets, increases the potential of these probes to provide accurate

medium diagnostics, provided the mechanism by which they interact with the medium can

be understood with sufficient precision.

One of the reasons why high energy jets are superior to other probes is that their produc-

tion occurs at very high energy scales, 𝑄≫ Λ𝑄𝐶𝐷, which guarantees that their production

spectrum is under good theoretical control, since it can be determined via perturbative
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QCD. Similarly, many of the properties of jets in vacuum are also controlled by physics

at high energy scales and are therefore well understood theoretically. Therefore, observed

deviations of those properties in a heavy ion environment must be due to the interaction of

the different jet components with the hot hadronic medium that the nascent jet traverses on

its way out of the collision zone. In general, the interaction with the medium constituents

will lead to the degradation of the jet energy, but the precise mechanism or mechanisms by

which this occurs depend on the nature of the medium.

Although the production of a hard parton that will become a jet, and the fragmentation

of that parton as it propagates, are controlled by weakly coupled physics at high momentum

scales, the physics of the medium produced in experimentally realizable heavy ion colli-

sions is not weakly coupled. At sufficiently high temperatures the quark-gluon plasma must

be a weakly coupled plasma of quark and gluon quasiparticles. However, in the tempera-

ture range explored by current colliders, namely 𝑇 ∼ 150 − 600 MeV, we know from the

comparison of more and more precisely measured experimental observables to more and

more sophisticated calculations of relativistic viscous hydrodynamics that the quark-gluon

plasma produced in heavy ion collisions is a droplet of strongly coupled liquid that expands

and flows collectively, hydrodynamically (For a review, see Ref. [93]). This fact makes the

quark-gluon plasma a very interesting form of matter that has attracted the interest of sci-

entists in other fields in which other forms of strongly coupled matter arise. However,

this fact also complicates the theoretical understanding of the properties and dynamics of

the medium rather significantly. For this reason, in recent years there has been a growing

interest in strongly coupled techniques that can shed light on the dynamics of the liquid

plasmas that arise as the hot deconfined phases of other non-Abelian gauge theories which

have holographically dual descriptions as gravitational theories in 4+1-dimensional space-

times containing a black hole horizon. The simplest example to which this gauge/gravity

duality has been applied is the plasma that arises at nonzero temperature in strongly cou-

pled 𝒩 = 4 supersymmetric Yang Mills (SYM) theory in the limit of a large number of

colors 𝑁𝑐. Holographic analyses performed in this and other gauge theories have led to

many qualitative insights into the properties of the QCD plasma, its dynamics in heavy ion

collisions, and the dynamics of probe particles propagating through the strongly coupled
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plasma. (See Ref. [67] for a review).

The way in which a high energy excitation interacts with a deconfined non-Abelian

plasma is well understood in two extreme, and unrealizable, limits. At weak coupling, by

which we mean at unrealizably high temperatures at which the coupling constant at the

medium scale is small, perturbative analyses show reliably that the dominant mechanism

of in-medium energy loss is the radiative process of stimulated gluon emission caused by

the scattering of the high energy parton off particles in the medium [38, 40, 43, 41, 44, 45].

The rate of emission of these radiated gluons forms the basis of most current analysis of

jet modification in the environment produced in heavy ion collisions. (See Refs. [52, 50,

94, 95] for reviews.) In addition, many of these studies also include a second energy loss

process, that is in principle subleading for very high energy partons, namely the elastic

transfer of energy to medium constituents, referred to as collisional energy loss [47]. The

second unrealizable limit is the limit in which the coupling constant is assumed to be large

at all relevant energy scales. In this case, gauge/gravity duality has made it possible to

use holographic calculations to analyze the way in which varied energetic probes have

their energy degraded, and are otherwise modified, as they propagate through strongly

coupled plasma [73, 96, 97, 98, 78, 75, 79, 80, 99, 100]. (For a review, see Ref. [67].)

These computations provide detailed dynamical information on the energy loss processes

in this limit. The intuition that comes from these calculations is phrased in terms of the

dual gravitational description, rather than in terms of gauge theory degrees of freedom.

While these two extremes each provide invaluable guidance to understanding energy loss

processes in a heavy ion environment, because the medium is strongly coupled while much

of the physics of jets is governed by weakly coupled high momentum physics, at least

as they are currently constituted neither approach can capture all important aspects of the

dynamics.

The main difficulty in understanding jet dynamics in a strongly coupled QCD medium

resides in the interplay between physics at very different energy scales. After their pro-

duction via a (very) hard scattering, jets relax their large initial virtuality down toward the

hadronic scale via an evolution process of branching into a shower of partons. In vacuum,

this fragmentation process is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
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(DGLAP) equation. This perturbative process is crucial to understanding most jet proper-

ties. In the medium, this evolution occurs while at the same time partons in the developing

shower suffer many soft exchanges of momenta of order the medium temperature 𝑇 , which

alter the fragmentation pattern. Since the momenta transferred in these interactions are

not large, this physics is not weakly coupled just as the physics of the medium itself is

not weakly coupled. This means that a part of the dynamics of jets propagating through

the medium produced in a heavy ion collision is out of the regime of validity of perturba-

tive QCD. Thus, jets are multi-scale probes sensitive to both strongly and weakly coupled

physics. In the long run, their description in controlled calculations will require either a

strongly coupled approach to far-from-equilibrium dynamical processes in QCD or calcu-

lations done via gauge/string duality that incorporate asymptotic freedom at short distance

scales or both. As, at present, neither seems on the horizon we must limit our goals. A

successful phenomenological model that describes the modifications of jets in the medium,

today, must be a hybrid model in which one can simultaneously treat the weakly coupled

physics of jet production and hard jet evolution and the strongly coupled dynamics of the

medium and the soft exchanges between the jet and the medium. In this work, we will

put forward a phenomenological approach which combines different physics mechanisms

at different scales. While there have been other attempts to combine results obtained from

weak and strong coupling [101, 102, 103, 104], our approach is distinct since it focusses

on using different calculational frameworks at the different energy scales.

This Part of the thesis is organized as follows: we describe how we set up our hybrid

approach in Section 4.1. The interaction of partons with a strongly coupled medium is

reviewed in Section 4.2. In Section 4.3 we discuss how to implement these ideas in a simple

Monte Carlo simulation of jets in heavy ion collisions, using a hydrodynamic description

of the spacetime dynamics of the medium. We use this implementation of our hybrid

approach to determine several jet observables, which we confront with data on jet 𝑅AA,

the dijet asymmetry and jet fragmentation function ratios in Chapter 5. In Chapter 6 we

further test our model against boson-jet observables, such as photon-jet and 𝑍0-jet, and

present predictions for the center of mass energy of run 2 at LHC. We also introduce a
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new observable, the ratio of inclusive over associated jet fragmentation functions, which

shows a strong dependence on the precise energy loss mechanism. In Chapter 7 we extend

our hybrid model with the inclusion of broadening and medium back-reaction. We then

compare against intra-jet structure observables and other more recent observables in which

the long-range correlations between a dijet system and the rest of the event can be studied.

4.1 Motivation

As we have stressed in the preceding Introduction, no single theoretical framework is cur-

rently available within which controlled calculations of all important aspects of jet quench-

ing in heavy ion collisions can reliably be carried out. This is so since we must simul-

taneously describe the perturbative dynamics at short distances and the strongly coupled

physics at the medium scale. We will therefore resort to phenomenological modeling of the

main physical processes occurring during the propagation of high energy partons through

strongly coupled plasma. To simplify our analysis, we will focus on high energy, high vir-

tuality jets, since a large separation between the hard and medium scales allows us to better

separate the treatment of these two regimes. In this Section, we will spell out and motivate

the main assumptions behind our model.

Our first assumption is that the exchange of momentum with the medium, which in

the absence of coherence effects among several plasma constituents is of the order of the

temperature 𝑇 , is smaller than the virtuality of any of the jet partons at any stage of the

evolution. For sufficiently high energy jets, this assumption is certainly valid at the early

stages of the evolution process, but it becomes more questionable at the late stages, when

the evolution approaches the hadronization scale. Fortunately, these late stages also happen

at later times, when almost all the partons in the shower are outside of the medium [105].

Since these small momentum exchanges cannot lead to a significant variation of a parton’s

virtuality, we will assume that the splitting kernel at each point in the evolution is as in the

vacuum. This motivates our second assumption: because each splitting that occurs as the

original parton fragments happens at smaller distance scales than the medium can resolve,

we assume that the splitting probabilities are as in vacuum. Keeping the splitting kernel
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unmodified implies, in particular, that, in a probabilistic approach, the emission probability

at each step in the Markovian chain remains independent of the medium dynamics.

It will be important to return to the second assumption above in future work for at least

two reasons. First, we will be assuming that the splitting probability is unmodified even

as the partons lose some of their energy and will thus be neglecting the fact that even in

vacuum the splitting kernel depends on parton energy (through Sudakov logs, which is to

say via the phase space for splitting). Second, we will be neglecting the possibility of addi-

tional splitting induced by multiple soft exchanges with the strongly coupled plasma, which

accumulate into a hard momentum transfer. As such an effect is known to be important in

a weakly coupled plasma with point-like constituents, it will, in the future, be interesting

to investigate how to incorporate it within the hybrid model we are setting up in the present

work. However, assuming the physics at the medium scale to be strongly coupled, as we

shall do throughout, renders any such weakly coupled large momentum transfer processes,

and their modification, subleading in their consequences.

We now wish to apply a prescription for how much energy each parton in the shower

loses as it propagates through the medium. That means that we need to know the temper-

ature of the medium in which a particular parton in the shower finds itself, which in turn

means that we need to know where each parton in the shower is in space and time. The

DGLAP evolution equations that describe the fragmentation of the parent parton and the

evolution of the resulting shower are derived in perturbative QCD in momentum space.

They contain little information about how the process of showering, and the attendant re-

laxation in the virtuality of the individual partons in the shower, develops in space and time.

This space-time information is unimportant in vacuum physics, since the partonic compo-

nents of the jet do not interact with anything; all they do is fragment and in describing

the jet in the final state it is completely unimportant where and when each splitting hap-

pened. However, in a heavy ion environment before the shower emerges from the medium

every parton in the shower interacts with the medium, and the medium itself changes as

a function of space and time. We therefore need to know where and when each splitting

occurs. Based on the analysis of soft gluon emission, most jet Monte Carlo studies assign

a time to each rung of the evolution equation related to the formation time of the emitted
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gluon 𝜏𝑓 = 2𝜔/𝑘2
⊥. However, the detailed implementation varies from one Monte Carlo

implementation to another, which gives a sense of the theoretical uncertainty concerning

the space-time evolution that is common to all in-medium event generators. In this work,

we will use the prescription of Ref. [105] and assign a life-time to each rung of the decay

chain (i.e. to each parton in the shower) determined from their virtuality 𝑄 and energy 𝐸

as

𝜏 = 2
𝐸

𝑄2
, (4.1)

with the factor of two chosen such that in the soft limit it coincides with the standard

expression for the formation time. We will also assume that the strong virtuality ordering

in the QCD shower translates into time ordering, with the hardest splittings occurring first.

This implies that the later stages of the evolution, for which the virtuality is closer to the

hadronization scale, occur at later times.

In between any of the virtuality relaxing splittings, the partons in the jet propagate

through the strongly coupled plasma. The momenta exchanged between these partons and

the medium is of order the medium temperature, and therefore, for plasma temperatures not

far above the deconfining transition, these momentum exchanges are not weakly coupled

processes. This is where strongly coupled dynamics plays a role. From the point of view

of the jet shower, the medium takes energy away from each of the propagating partons

and rapidly turns that energy into heating of, and collective motion of, the medium itself

– which is to say extra soft particles in the final state, moving in random directions (as

a first approximation). This directly yields a reduction in the overall energy of the jet.

This is in stark contrast with the perturbative mechanism of radiative energy loss, where

energy is lost through medium induced radiation of gluons with momenta that are well

above the medium scale and that are typically almost collinear with the initial hard parton

when they are produced. This radiative loss of energy by the hard parton translates into a

loss of energy for the jet in the final state only if the radiated gluons are either (atypically)

produced at large angles relative to the direction of the hard parton or if the radiated gluons

are deflected by their further interactions with the medium [106, 107].
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Figure 4-1: Sketch of two views of the interaction of a high energy jet with the strongly
coupled plasma. In the gauge theory, represented by the white plane at the top of the figure,
an energetic virtual parton propagates through the medium, loses energy, and splits via
(vacuum) DGLAP evolution. There is no (easy) way to describe the strong soft interactions
between the partons and the medium in this representation. In the dual gravitational view,
represented below, the soft interactions are represented by a string trailing behind each
parton, transporting energy from the parton “down” to the horizon which is represented by
the black plane at the bottom of the figure. The parton itself, represented by the endpoints
of the string which is to say by the black lines, is also pulled “downward” toward the
horizon. In this representation, there is no (easy) way to describe the splitting of one string
into two, which is to say the hard splitting process in the gauge theory. In the picture we
represent the splitting vertex at which one string becomes two by a white oval below which
a hypothetical string-splitting curve shown as a blue dashed line trails. At present there is
no known calculation underlying these aspects of the figure.
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In a nutshell, we shall assume that no hard radiative processes occur between the

DGLAP vertices and that the dynamics of these partons in the plasma is analogous to

that of energetic objects propagating through the strongly coupled plasma in a gauge the-

ory with a dual gravitational description. While the theories that possess a gravity dual

do not yet include QCD, we will utilize the powerful ideas of the duality to gain qualita-

tive understanding of the relevant strongly coupled dynamics, an approach that has proved

useful in many contexts. (See Ref. [67] for a review.) However, keeping in mind that

these calculations are not done in QCD itself, we will use the explicit results obtained via

holographic calculations only as indicative, specifically by keeping all of their parametric

dependences while introducing one free dimensionless parameter that we shall fit to data.

We shall describe how we do this in concrete terms over the course of Sections 4.2 and 5.

One important aspect of how we set up our hybrid model is minimalism. We will

keep, as much as possible, only well-understood weakly coupled and strongly coupled

physics and introduce as few as possible (in fact only one for the first exploratory analysis)

phenomenological parameters that govern how we put the two together and that need to be

fixed by fitting to data.

The underlying picture that we are putting forward in this work is sketched in Fig. 4-1.

In the gauge theory, any of the partons of the jet which propagate in plasma may suffer

a hard splitting, governed by the DGLAP equations. In addition to these hard splittings,

these partons possess associated soft fields that interact strongly with the medium. These

have a natural interpretation in a dual gravitational representation: they are strings trail-

ing behind the quark, which is represented by the end point of the string. As noted in

Ref. [78] the string end point itself does not live on the boundary of the spacetime, but

“falls” downward, away from the boundary and toward the horizon, as the system evolves.

In the gravitational representation, the trailing strings carry energy from the quarks “down”

toward the horizon. This represents the process by which each quark loses energy, energy

which subsequently thermalizes, making a little more or a little hotter plasma. Reading the

figure from left to right, one string enters from the left, with its shape controlled by well-

understood gravitational dynamics that describes how the single quark represented by its

endpoint loses energy. Next, a perturbative hard splitting, described in the gauge theory by
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DGLAP, occurs. It is not presently known whether, and if so how, this splitting process can

be described in the gravitational representation. The gravitational description must be sup-

plemented by some induced vertex and an associated line along which string world sheets

merge, but the form of this vertex and string merging line are not known. Nevertheless, the

gauge theory representation demands that after this splitting process, we have two string

end points below each of which a string trails. In fact, if one of the daughter partons is

a gluon, a double string must be formed, trailing below the corresponding endpoint. So,

somehow, the single incident string worldsheet splits into the several world sheets that de-

scribe the decay products of the DGLAP splitting. Again, we describe this process in the

gauge theory because it is not known how to describe it gravitationally.

Since splitting processes happen at short distances, the induced vertex must occur first

as close as possible to the boundary, i.e. where the string end point splits, and only later

propagate toward the horizon as represented in Fig. 4-1 by the blue dashed line. This can

also be interpreted as a delay in the ability of softer modes to resolve the splitting of color

charges. Nevertheless, since the geodesic distance in AdS from the horizon to the boundary

is finite, of order 1/(𝜋𝑇 ), after this short time the string world-sheet is fully split and each

of the objects propagate independently through the strongly coupled plasma.1 After the

transient behavior associated with the splitting, the energy loss of each of the daughter

partons in the strongly coupled plasma is described by the dynamics of their own trailing

string — until each of the daughters itself splits at a new hard vertex, and the process

iterates. We are far from providing a firm theoretical footing for the hybrid physical picture

we have described. Each half of the hybrid is built upon solid ground, but different solid

ground. In this work, we will explore the phenomenological consequences of these ideas

in a simplified model implementation which we hope captures the main features of some

future complete computation.

1 Here, we are describing a delay of order 1/(𝜋𝑇 ) in the response of the energy loss process to a sudden
change in the nature of the object losing energy, namely the splitting process. In Ref. [108] a similar delay
time, also of order 1/(𝜋𝑇 ), arises (and is analyzed quantitatively) in the case where the object losing energy
(a heavy quark being dragged at constant velocity) is unchanged but the temperature of the strongly coupled
medium changes suddenly.
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4.2 In-medium Energy Loss of Energetic Particles

The principal ingredient that remains to be specified in the description of our hybrid model

is the rate of energy loss of energetic particles in the medium. In our model we shall apply

such a prescription to each of the partons in a shower, while those partons find themselves in

a medium with local temperature 𝑇 , with 𝑇 varying as a function of space and time. In this

Section, we specify the different prescriptions for energy loss that we have investigated by

giving them for the case of a single energetic parton propagating through a medium with

constant temperature 𝑇 . Our principal goal is of course to investigate the validity of the

hybrid strong/weak coupling approach to jet quenching that we have described, in which

the shower develops according to a weakly coupled prescription and each parton in it loses

energy according to a strongly coupled prescription. However, to provide benchmarks for

our computations we shall also try employing weakly coupled prescriptions for how each

parton in the shower loses energy in our formalism and compare results obtained in this way

to the results we obtain in our hybrid strong/weak coupling model. In the two subsections

below we specify the details of the strongly coupled and weakly coupled expressions for

parton energy loss that we shall employ.

4.2.1 Parton energy loss at strong coupling from falling semiclassical

strings

In Section 3.3, we have discussed the physics and sketched the derivation of the holo-

graphic energy loss rate that we adopt for the description of the strongly coupled dynamics

of the jet/plasma interplay. Here we briefly review those results in order to put them into

the context of our interest: a realistic modelling of jet quenching physics at actual heavy

ion accelerators.

In Refs. [78, 87], a pair of high energy ‘quark jets’ in the fundamental representation

of the gauge group are produced moving in opposite directions. In Ref. [87] the setup is

such that one of the ‘quark jets’ is incident upon a ‘slab’ of strongly coupled plasma with

temperature 𝑇 , that is finite in extent with thickness 𝑥. The dual gravitational description of
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the ‘quark jet’ is provided via a string whose endpoint falls downward into the bulk, as in the

left portion of the sketch in Fig. 4-1. After propagating for a distance 𝑥 through the plasma

the string, which is to say the quark, emerges into vacuum. The energy 𝐸 of the ‘quark jet’

that emerges from the slab of plasma, as well as its other properties, can be compared to the

initial energy 𝐸in of the parton incident upon the slab and to the properties of the ‘jet’ that

would have been obtained had their been no slab of plasma present [87]. For our purposes,

we are interested in how the energy of the ‘quark jet’ depends on 𝑥, which is to say the

rate of energy loss 𝑑𝐸/𝑑𝑥, whose precise form was derived in Section 3.3. If the high

energy ‘quark’ is produced next to the slab, meaning that it enters it immediately without

first propagating in vacuum, and if the thickness of the slab is large enough that initial

transients can be neglected, meaning 𝑥 ≫ 1/(𝜋𝑇 ), the rate of energy loss is independent

of many details of the string configuration and takes the form [87]

1

𝐸in

𝑑𝐸

𝑑𝑥
= − 4

𝜋

𝑥2

𝑥2
stop

1√︁
𝑥2
stop − 𝑥2

(4.2)

where 𝐸in is the initial energy of the ‘quark’, as it is produced and as it is incident upon

the slab of plasma and where 𝑥stop is the stopping distance of the ‘quark’. Since 𝐸 → 0

as 𝑥 → 𝑥stop, the expression (4.2) is only valid for 1/(𝜋𝑇 ) ≪ 𝑥 < 𝑥stop. The parametric

dependence of 𝑥stop on 𝐸in and 𝑇 was obtained previously in Refs. [75, 78]. For a string

whose initial state is prepared in such a way as to yield the maximal stopping distance for a

‘quark’ produced with a given 𝐸in propagating through the strongly coupled 𝒩 = 4 SYM

plasma with temperature 𝑇 , it is given by

𝑥stop =
1

2𝜅sc

𝐸
1/3
in

𝑇 4/3
, (4.3)

where we have introduced a dimensionless constant 𝜅sc, the subscript signifying “Strong

Coupling”, that in the calculation of Ref. [78] is given by 𝜅sc = 1.05𝜆1/6, with 𝜆 the

´t Hooft coupling. In the case of a slab of plasma in which 𝑇 , and therefore 𝑥stop is con-

stant, the energy loss rate (4.2) can easily be integrated to obtain 𝐸(𝑥) [87]. We shall be

describing the energy loss of partons in a shower that are propagating through a medium

80



whose temperature is changing as a function of space and time as in a heavy ion collision;

in this context what we need from Ref. [87] is 𝑑𝐸/𝑑𝑥, namely (4.2).

The energy loss rate Eq. (4.2) has two characteristic features that distinguish it para-

metrically from analogous perturbative expressions that describe the energy loss of a single

hard parton propagating through (a slab of) weakly coupled plasma with temperature 𝑇 ,

expressions that we shall provide in the following subsection. First, while 𝑥 is not yet

comparable to 𝑥stop the rate of energy loss 𝑑𝐸/𝑑𝑥 is independent of 𝐸in and grows rapidly

with 𝑥, with a characteristic 𝑥2 dependence. Later, though, once 𝑥 has become comparable

to 𝑥stop we see that 𝑑𝐸/𝑑𝑥 depends in a nontrivial (i.e. non-power-law) way on both 𝐸in

and 𝑥 and grows rapidly, diverging as 𝑥 → 𝑥stop and 𝐸 → 0. We note that in spite of the

simple relation between 𝐸in and the stopping distance 𝑥stop, the parametric dependence of

the energy loss rate on the path length 𝑥 is intricate, deviating from a simple power of the

length very substantially at late times.

The energy lost by the energetic parton propagating through the strongly coupled plasma

is quickly converted into hydrodynamic excitations with wave vectors 𝑞 ∼ 𝜋𝑇 and smaller.

This happens over a very short time 1/Γ1, with Γ1 = 2𝜋𝑇 ∼ 𝑇/0.16 the width of the lowest

non-hydrodynamical quasinormal mode of the strongly coupled plasma, determined in the

dual gravitational theory in Ref. [109]. The hydrodynamic excitations are, in turn, dissi-

pated as heat after a damping time 3𝑇𝑠/(4𝑞2𝜂) (for sound waves) or 𝑇𝑠/(𝑞2𝜂) (for diffusive

modes) [110]. If we take the shear viscosity to entropy density ratio to be 𝜂/𝑠 ∼ 2/(4𝜋),

hydrodynamic modes with 𝑞 ∼ 𝜋𝑇 dissipate over a time ∼ (0.5 − 0.6)/𝑇 . Longer wave-

length modes live longer. This means that most of the ‘lost’ energy rapidly becomes part of

the plasma, thermalizing and resulting in a little more, or a little hotter, plasma. From an ex-

perimental point of view, the lost energy becomes extra, soft, hadrons with momenta∼ 𝜋𝑇 .

These extra hadrons will be uniformly distributed in angle, on average, if the passage of the

jet does not induce any substantial collective motion of the plasma, an assumption we will

make for now.

Because we shall focus on reconstructed jet data, which is to say measurements of the

components of the jet that emerge from the plasma, we shall make no attempt to track the

lost energy in our hybrid model. Of course, since the ‘lost’ energy ends up as soft hadrons
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going in all directions, some of it will end up in the jet cone. We will make no attempt to

add soft hadrons corresponding to some of the lost energy to the jets in our model. The

reason that we make no such addition to our jets is that when experimentalists reconstruct

jets from data, they use some background subtraction procedure designed to remove soft

hadrons that are uncorrelated with the jet direction, for example subtracting an 𝜂 ↔ −𝜂

reflection of the event from the real event. This means that if the ‘lost’ energy ends up

perfectly uniformly distributed in angle, it will be subtracted during the jet reconstruction

procedure. If this assumption is correct, the ‘lost’ energy does not appear in the jets as

reconstructed by the experimentalists. We therefore make no attempt to add it to the jets

we obtain from our model. We leave to Section 7 the investigation of fluctuations and

collective flow that can in fact result in the ‘lost’ energy that is deposited in the jet cone

not being fully removed during the background subtraction, meaning that some of it ends

up being counted as a part of the jet. The uncertainty associated with these considerations

means that when we compute jet fragmentation functions in Section 5.3, they may not be

reliable for components of the jet with momenta of order 1-2 GeV.

Although the energy loss rate 𝑑𝐸/𝑑𝑥 in (4.2) was derived within the string-based com-

putation of Refs. [78, 87], the parametric dependence of the stopping distance for ex-

citations with the maximum possible stopping distance for a given energy 𝐸in given by

the expression (4.3) is common to both ways of describing high energy excitations in the

plasma discussed above, which makes it seem a robust expectation from strong coupling

computations within the gravitational description of large-𝑁𝑐 𝒩 = 4 SYM theory. In con-

trast, the explicit value of the dimensionless constant 𝜅sc, and even its dependence on the

´t Hooft coupling, are not robust in the same sense. There is every reason to expect that

the numerical value of 𝜅sc will be smaller in the strongly coupled QCD plasma than in the

strongly coupled 𝒩 = 4 SYM plasma. And, even in the latter theory, the calculations of

Refs. [79, 80] indicate a value 𝜅sc that is 𝒪(1), i.e. finite in the 𝜆 → ∞ limit, rather than

𝒪(𝜆1/6) as in the string-based calculation of Ref. [78]. We shall return to this point in

Section 7.3 when we discuss the implications of the value of 𝜅sc that we shall obtain via

comparison to data in Section 5.

Both Eqs. (4.2) and (4.3) were derived for energetic particles in the fundamental repre-
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sentation of the gauge group, proxies for energetic quarks propagating through the strongly

coupled plasma. However, it is impossible to model hard processes in high energy hadronic

collisions without also having the means with which to include energetic particles in the

adjoint representation, i.e. energetic gluons. In our context, regardless of the identity of the

initial parton produced in a hard scattering, the shower of partons that results and whose

energy loss we shall be following necessarily includes both gluons and quarks. Studies of

high energy particles in the adjoint representation, modeled by double strings propagating

through the plasma, were initiated in Ref. [75] and have shown that these excitations also

have 𝑥stop ∝ 𝐸
1/3
in /𝑇 4/3. Within the string-based picture, because the string configuration

representing an energetic gluon possesses two strings trailing behind the ‘endpoint’ (actu-

ally, in this case, the point where the string folds back upon itself) it is natural to expect

that the stopping distance for a gluon is identical to that for a quark with half the energy of

the gluon [78]. We will further interpret this factor 2 as the large 𝑁𝑐 limit of the ratio of

the Casimirs of the adjoint and the fundamental representations of the color gauge group.

Given these considerations, we will assume that an energetic gluon has the same energy

loss rate Eq. (4.2) but with the prefactor in the stopping distance (4.3) given by

𝜅sc
𝐺 = 𝜅sc

(︂
𝐶𝐴

𝐶𝐹

)︂1/3

(4.4)

with 𝐶𝐴/𝐶𝐹 = 9/4 the ratio of Casimirs, meaning that 𝑥stop for gluons is shorter than that

for quarks with the same energy, but only by a factor of (9/4)1/3.

Because of the small 1/3 power, the difference between the rate of energy loss of quarks

and gluons is smaller in the strongly coupled plasma than would be the case in a weakly

coupled plasma. We will elaborate on the potential consequences of this observation in

Section 5.5.

4.2.2 Comparison with other approaches

The realization that the physics at the medium scale is not weakly coupled has motivated

several previous phenomenological attempts to implement strongly coupled computations

of the in-medium interaction of high energy particles in the modeling of hard processes
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in heavy ion collisions. Before we continue, it is important to compare and contrast our

implementation to those in previous work.

Some early explorations were based on the straightforward use of energy loss rates

based upon results derived for a single heavy or light quark traversing the strongly coupled

plasma of a gauge theory with a holographic description [111, 112, 102, 113, 103, 86, 104].

These computations are all aimed at describing the suppression of the production of a single

high-𝑝T hadron, i.e. the leading hadron in a jet. None of these early explorations included

the calculation of jet observables; we shall analyze three complementary classes of jet

observables in Section 5. These early explorations also do not include the perturbative

QCD evolution of the hard virtual parton. And, as they describe single partons, they cannot

address the question of how the propagation through the strongly coupled plasma does

or does not modify the jet fragmentation function, a question that we shall find plays a

significant role in differentiating between energy loss mechanisms. Furthermore, in some

cases [112, 102, 104] the rate of energy loss of a hard parton is assumed to be a power law

in the parton energy and the propagation distance, whereas we now know from Ref. [87]

that this is true only for partons which do not travel a significant fraction of their stopping

distance, as for those and only those partons 𝑑𝐸/𝑑𝑥 ∝ 𝐸0
in𝑥

2. The complete dependence

of 𝑑𝐸/𝑑𝑥 in (4.2) on 𝑥 and 𝐸in is very different from a power law. In other cases [103],

the energy loss rate employed was based on approximations to the numerical analysis of

Ref. [82], which do not coincide in any limit with the expression derived in Ref. [87]. The

energy loss expressions obtained more recently in Ref. [86] are complementary, in that they

are derived in the dual gravitational theory using semiclassical strings that do not satisfy

standard open string boundary conditions, meaning that it remains to be determined how

they can be used in the description of light quark energy loss.

Among the work that comes before ours, the study that is in many respects most similar

to ours is that described in Ref. [101], although like in the previous work above this study

focusses on hadronic observables rather than computing jet observables as we do. Unlike

in the previous work above, this study involves a Monte Carlo implementation of a shower

in which partons produced at high virtualities evolve down to a hadronic scale. However,

the implementation of the strongly coupled dynamics used in Ref. [101] is very different
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than our own, as it is based on an early interpretation of strongly coupled energy loss in

partonic-like terms advocated in Refs. [114, 76]. In this approach, the energy loss of a hard

parton in strongly coupled plasma is interpreted in the language of radiative energy loss,

except with a momentum transfer from the plasma which grows linearly with propagation

distance. (In the standard weakly coupled perturbative analysis of radiative energy loss, it

is the square of the momentum transfer which grows linearly with propagation distance.)

Based upon this earlier work, the authors of Ref. [101] assumed an energy loss mechanism

in which weakly coupled high momentum gluons are radiated (as at weak coupling) but in

which the momentum transverse to the jet direction that is transferred to the radiated gluons

accumulates linearly with propagation distance (unlike at weak coupling). So, although we

follow Ref. [101] in the sense that we are developing a hybrid model that melds together

features of energy loss in a strongly coupled gauge theory with a Monte Carlo (in our case

PYTHIA) implementation of perturbative splitting in a parton shower, our implementation

of the strongly coupled physics is completely different than that in Ref. [101], since we

(i) treat all strongly coupled processes as occurring at soft, nonperturbative, scales; (ii) use

the energy loss rate derived from a complete strong coupling computation that was not yet

available at the time of the study in Ref. [101]; and (iii) incorporate a feature that is by now

understood to be characteristic of energy loss in a strongly coupled plasma, namely that

the ‘lost’ energy becomes extra heat or extra plasma, which is to say soft particles whose

directions are (for now) uncorrelated with the jet direction.

4.2.3 Perturbative benchmarks: radiative and collisional energy loss

in a weakly coupled plasma

To gauge the sensitivity of the classes of jet measurements that we will use to constrain our

hybrid approach, we wish to compare its results to those in which we replace the strongly

coupled result (4.2) for the energy loss rate of a parton in the shower with a perturbatively

inspired expression for 𝑑𝐸/𝑑𝑥. We shall in fact use two different variants as benchmarks.

In the high parton energy limit, upon assuming weak coupling between the energetic

parton and the medium the dominant mechanism of energy loss is the radiation of nearly
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collinear gluons from the energetic parton that is induced by interactions between the parton

and the medium. If the medium is sufficiently large that many gluons are radiated from the

propagating parton, the energy loss rate for a parton in representation 𝑅 is given, to leading

logarithmic accuracy, by [40]

𝑑𝐸

𝑑𝑥
= −𝛼𝑠

𝐶𝑅

2
𝑞 𝑥 , (4.5)

with 𝛼𝑠 and 𝐶𝑅 being the strong coupling constant and the Casimir of the parton, and where

the jet quenching parameter 𝑞 is the transverse momentum squared picked up by the parton

per distance travelled. While the expression (4.5) describes energy loss in the limit in which

many gluons are radiated, in most phenomenological applications of radiative energy loss

it is assumed that a finite number of hard gluons are emitted from the the energetic partons

and Eq. (4.5) describes the average over many partons with a fixed energy. We have seen

in Section 2.3 how to understand this expression from the one gluon emission rate, which

already captures the interference phenomena (LPM effect) which are responsible for the 𝑥2

parametric dependence.

By dimensional analysis, the jet quenching parameter 𝑞 ∝ 𝑇 3. For a very weakly

coupled plasma at exceedingly high temperatures, temperatures such that leading order,

leading logarithm, perturbative computations are trustworthy, the jet quenching parameter

is given by [115]

𝑞 = 𝐶𝐴𝛼𝑠𝑚
2
𝐷𝑇 log𝐵rad , (4.6)

where 𝑚2
𝐷 = 𝑔2𝑇 2(2𝑁𝑐+𝑁𝑓 )/6 is the square of the Debye screening length of weakly cou-

pled quark-gluon plasma with 𝑁𝑐 colors and 𝑁𝑓 flavors, and 𝐵rad is a jet-energy-dependent

regulator that cuts off large momentum transfers to the plasma. A regulator is necessary

because in a weakly coupled plasma 𝑞 diverges logarithmically with the jet energy 𝐸.

The precise value of 𝐵rad is not currently known, although some authors estimate it to

be 𝐵rad ≈ 1 + 6𝐸𝑇/𝑚2
𝐷. (See Ref. [115] for an extensive discussion of estimates of the

value of 𝐵rad and hence 𝑞 in different approximations.) We shall ignore all logarithms,

lumping them into a prefactor that we shall denote by 𝜅rad, with the subscript referring to
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‘Radiative’, and write

𝑑𝐸

𝑑𝑥
= −𝜅rad

𝐶𝑅

𝐶𝐹

𝑇 3 𝑥 , (4.7)

with 𝐶𝑅/𝐶𝐹 = 1 for an energetic quark and 𝐶𝑅/𝐶𝐹 = 9/4 for an energetic gluon. Al-

though below we shall treat 𝜅rad as a parameter to be fit to data, before we go on we should

estimate its value in a weakly coupled plasma using the leading logarithmic order pertur-

bative calculation, which we denote by 𝜅rad
pert. Combining Eqs. (4.5) and (4.6), we obtain

𝜅rad
pert = 2𝜋𝐶𝐹𝐶𝐴

(︂
2𝑁𝑐 + 𝑁𝑓

6

)︂
𝛼3
𝑠 log𝐵rad . (4.8)

For later reference, we may evaluate this expression for typical values of the strong cou-

pling constant 𝛼𝑠 = 0.2− 0.3, as utilized in fits to the data in Ref. [115], obtaining

𝜅rad
pert ∼ (0.3− 1.0) log𝐵rad ∼ (2− 6) , (4.9)

where in the second equality we have used the expression for 𝐵rad given above for jets with

energy 𝐸 = 100 GeV in a plasma with temperature 𝑇 = 300 MeV. Note that this logarithm

is large, which suggests that, even for the high energy jets at the LHC, leading logarithmic

expressions such as Eqs. (4.5) and (4.6) are inapplicable and a resummation, as advocated

in Refs. [116, 117, 118], may be needed.

The expression (4.7) captures the leading 𝑥 and 𝑇 dependence of radiative energy loss at

weak coupling. We shall treat 𝜅rad as a free parameter, fitting it to one piece of experimental

data and then asking how a model in which we use the expression (4.7) to describe the

energy loss of the partons in a shower fares in comparison to other data.

One reason why it makes sense to treat 𝜅rad as a parameter to be fit to data is that not all

of the energy radiated from the initial parton corresponds to jet energy loss. At emission,

the radiated gluons are nearly collinear with the energetic parton, meaning that if the gluons

are energetic enough they remain part of the jet. This corresponds to medium modification

of the branching probability within the shower, without significant energy loss from the

jet cone. However, the subsequent rescattering and further splitting of the radiated gluons
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can serve to rapidly soften the gluons, and decorrelate their directions with that of the

energetic parton. This decorrelation between the directions of the radiated gluons and the

jet direction is expected to be most efficient for the softer radiated gluons and less efficient

for the harder radiated gluons [106]. What this means is that the 𝜅rad that we need should

be smaller than that obtained in the perturbative calculations, smaller by a factor that is at

present hard to estimate.

Note that we do not propose our simplified approach as a competitor to more sophisti-

cated Monte Carlo methods for analyzing the effects of radiative energy loss on jets being

developed by others [54, 55, 57, 56, 119, 120]. It is in fact clearly inferior, since we do

not track the radiated gluons, treating them as ‘lost’. This approach makes sense in our

hybrid model, where the lost energy rapidly becomes soft thermal radiation. It does not

make sense quantitatively here. Our goal is solely to have a benchmark against which to

compare our hybrid model.

Finally, and with the aim of exploring the sensitivity of different observables to the

path-length dependence of the jet energy loss, we will study a somewhat more extreme

model for energy loss at weak coupling in which we assume that 𝑑𝐸/𝑑𝑥 is given by a

collisional rate. Collisional energy loss is subdominant to radiative energy loss at weak

coupling in the high parton energy limit, and for this reason it is neglected in many studies.

However, it has been pointed out [47] that, while subdominant, these processes play an

important role, especially for heavy quarks moving through the plasma. Here, we shall

not advocate any underlying dynamical picture on the basis of which to justify including

collisional processes. What we shall do, simply, is to introduce a third model in which,

like in our hybrid model, parton branching within the shower proceeds as in vacuum and in

which the energy loss of each parton in the shower is given by the collisional energy loss

rate in a weakly coupled plasma, whose parametric dependence takes the form [47]

𝑑𝐸

𝑑𝑥
= −𝜅coll

𝐶𝑅

𝐶𝐹

𝑇 2 , (4.10)

where we treat 𝜅coll (this time the subscript signifies “Collisional”) as a fit parameter to

be constrained by one piece of experimental data. This expression captures the leading
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temperature, energy and path length dependence of the perturbative collisional rate. For

an ultra-relativistic parton in a weakly coupled plasma, 𝜅coll is given to leading logarithmic

order in perturbation theory by [47]

𝜅coll
pert = 𝐶𝐹𝜋𝛼

2
𝑠

(︂
2𝑁𝑐 + 𝑁𝑓

6

)︂
log𝐵coll . (4.11)

where, as before, 𝐵coll regulates the effect of large momentum transfer scatterings in the

medium and is understood to be proportional to the parton energy. The precise expression

for 𝐵coll depends on the criteria used in the regularization; see Ref. [47] for a compilation

of expressions from the literature. As in the case of radiative energy loss, we can substitute

𝛼𝑠 = 0.2− 0.3 into (4.11) and estimate the value of 𝜅coll if we assume that these values of

𝛼𝑠 are small enough for a leading logarithmic calculation to be relevant, obtaining

𝜅coll
pert ∼ (0.25− 0.6) log𝐵coll ∼ 1.6− 3.3 , (4.12)

where in the second equality, we have used 𝐵coll = 6𝐸𝑇/𝑚2
𝐷. As in the case of radiative

energy loss, the logarithmic factor is large which means that it is doubtful that these values

of 𝛼𝑠 are small enough for these leading logarithmic expressions to be reliable.

We have chosen the ratio of Casimirs appearing in both Eqs. (4.7) and (4.10) such that

the parameter 𝜅rad (or 𝜅coll) that we shall obtain by fitting our expressions for the radiative

(or collisional) energy loss to data is that for the energy loss of a quark moving through a

weakly coupled plasma, while a gluon gets an additional factor 𝐶𝐴/𝐶𝐹 .

4.2.4 The Effects of Flow on the Rate of Energy Loss

In the previous Section, we have specified the rate of energy loss for an energetic parton

traversing static plasma with some constant temperature 𝑇 . In order to use these expres-

sions in the description of how an energetic parton loses energy as it traverses the expand-

ing, flowing, cooling, plasma created in a heavy ion collision, we will exploit the fact that

the expansion, flow and cooling of this fluid are described well by nearly inviscid hydro-

dynamics. This implies that the dynamic medium can be described as a collection of fluid
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cells that are each close to thermal equilibrium, locally. As is standard in fluid mechanics,

local thermal equilibrium should be understood from a coarse-grained point of view: at

every fluid cell there is a macroscopic system of size much larger than any microscopic

scale, such as the inverse temperature of the cell. From this coarse-grained perspective, the

temperature and the velocity of the fluid cell change from point to point, and from time to

time.

We assume that the temperature 𝑇 appearing in the formulae for 𝑑𝐸/𝑑𝑥 varies in space

and time, and at each point in spacetime passed by the energetic parton is given by the tem-

perature of the fluid at that point in spacetime. The basic assumption behind this adiabatic

prescription is that the length scale on which an infinitesimal energy loss occurs is small

compared to the length scale over which 𝑇 changes.

It is clear from their derivations that Eq. (4.2) (or Eq. (4.7) and (4.10)) describe the rate

of energy loss of an energetic parton moving through this fluid in the local fluid rest frame.

If this is not the collision center-of-mass frame, 𝑑𝐸/𝑑𝑥 in that frame must be obtained via

a Lorentz transformation. Incorporating the effects of fluid flow on the rate of energy loss

has significant effects on our results at large rapidity, since it is at large rapidity that the

boost between the local fluid rest frame and the collision center-of-mass frame becomes

large.

Let us denote the rate of energy loss in the local fluid rest frame by

𝑑𝐸𝐹

𝑑𝑥𝐹

= ℱ𝐹 (𝑥𝐹 , 𝐸
𝐹
in) , (4.13)

where the function ℱ𝐹 (𝑥𝐹 , 𝐸
𝐹
in) is given by the right-hand side of Eq. (4.2) (or Eq. (4.7)

and (4.10)) and where we have highlighted in the notation that 𝑑𝐸𝐹/𝑑𝑥𝐹 depends upon

the distance 𝑥𝐹 that the parton has travelled in the local fluid rest frame and, in the case

of Eq. (4.2), upon the initial energy 𝐸𝐹
in that the parton had when it was produced at a

splitting point in the shower, again as evaluated in the local fluid rest frame. In making

this statement, we have assumed that the effects of the spatial and temporal gradients in the

fluid on 𝑑𝐸𝐹/𝑑𝑥𝐹 can be neglected.2 We now Lorentz transform the rate of energy loss

2The effects of spatial and temporal gradients in the fluid on the rate of energy loss of an infinitely heavy
quark moving through strongly coupled plasma have been computed, to lowest order in fluid gradients [?, ?,
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(4.13) back to the collision center-of-mass frame, obtaining a result that we shall denote by

𝑑𝐸

𝑑𝑥
= ℱ(𝑡, 𝐸in) , (4.14)

where 𝑡 is the time in the collision center-of-mass frame since the parton was produced and

𝐸in is the energy that the parton had, in that frame, when it was produced. We can change

from 𝑥 to 𝑡 at will because throughout our treatment we are assuming that the energetic

partons in the shower move at (very close to) the speed of light. The functions ℱ𝐹 and ℱ

are related explicitly by a Lorentz transformation that we present next.

In the local fluid rest frame, the change in the four-momentum of a parton which prop-

agates for an infinitesimal time 𝑑𝑡𝐹 is given by

𝑑𝑃 𝜇
𝐹 = ℱ𝐹

(︀
𝑥𝐹 , 𝐸

𝐹
in

)︀ 𝑃 𝜇
𝐹

𝐸𝐹

𝑑𝑡𝐹 , (4.15)

where and 𝑃 𝜇
𝐹 and 𝐸𝐹 are the four momentum and energy of the parton in the local fluid rest

frame and ℱ𝐹

(︀
𝑥,𝐸𝐹

in

)︀
is the functional form of the rate of energy loss in that frame, in the

notation that we introduced in Eq. (4.13), and is given by the right-hand side of Eq. (4.2)

in our hybrid model or by the right-hand side of one of the expressions Eq. (4.7) or (4.10)

in our control models. In writing the expression (4.15) we have used our assumption that

the exchanges of momentum and energy between the parton and the medium do not change

the direction of the parton significantly.

The Lorentz structure of the expression (4.15) simplifies the boost back to the collision

center-of-mass frame. First of all, it is easy to show that

𝑑𝑡𝐹
𝐸𝐹

=
𝑑𝑡

𝐸
, (4.16)

where 𝑡 and 𝐸 are the time and energy in the collision center-of-mass frame. Second, after a

Lorentz transformation, 𝑃 𝜇
𝐹 → 𝑃 𝜇 and 𝑑𝑃 𝜇

𝐹 → 𝑑𝑃 𝜇, with 𝑃 𝜇 and 𝑑𝑃 𝜇 the four-momentum

?]. They can be significant early in a collision, before hydrodynamization. Once the fluid is hydrodynamic,
these effects are small. We expect that the same is true for the effects of fluid gradients on the rate of energy
loss of a massless parton moving through the plasma, but we defer checking this by explicit calculation to
future work.
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and the infinitesimal four-momentum loss in the collision center-of-mass frame. Therefore

𝑑𝑃 𝜇

𝑑𝑡
= ℱ𝐹

(︀
𝑥𝐹 , 𝐸

𝐹
in

)︀ 𝑃 𝜇

𝐸
, (4.17)

where the arguments of ℱ𝐹 are still expressed in terms of quantities in the local fluid rest

frame.

We next express the initial parton 𝐸𝐹
in in the local fluid rest frame as a function of

quantities in the collision center-of-mass frame via the Lorentz transformation

𝐸𝐹
in = 𝐸in 𝛾𝐹 (1−wv) , (4.18)

where w = P/𝐸 is the velocity of the parton in the collision center-of-mass frame and v

is the local velocity of the fluid in the same frame, which is to say it is the velocity vector

for the boost between the two relevant frames. 𝛾𝐹 is the gamma factor of the local fluid

velocity v.

The relation between 𝑥𝐹 and 𝑥, the distances travelled in the two frames, requires fur-

ther discussion. In the derivation of the rate of energy loss by one of the partons in the

shower, 𝑥𝐹 is the distance that that parton has travelled through the fluid. However, as par-

tons propagate through the hot plasma created in an heavy ion collision, the temperature

and velocity of the fluid at their location in space and time changes. We will assume that

𝑥𝐹 is the accumulated distance of the parton summed in such a way that each infinitesimal

contribution 𝑑𝑥𝐹 is evaluated in the local fluid rest frame. This means that (if the rate of

energy loss depends on 𝑥𝐹 , as in Eq. (4.2) and Eq. (4.7), the energy lost by a parton travers-

ing some 𝑑𝑥𝐹 depends on the total 𝑥𝐹 accumulated by that parton over its previous passage

through the flowing plasma. With this prescription, which neglects gradient effects, we

have

𝑑x𝐹 = w𝑑𝑡 + 𝛾𝐹 (w𝐿 − v) 𝑑𝑡 , (4.19)

where w𝑇 ,𝐿 are the transverse and longitudinal components of the parton velocity in the

collision center-of-mass frame. After some algebra, the increment in the accumulated dis-
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tance is given by

(︂
𝑑𝑥𝐹

𝑑𝑡

)︂2

= w2 + 𝛾2
𝐹

(︀
v2 − 2vw + (vw)2

)︀
. (4.20)

Summing over the previous history of the parton, we obtain

𝑥𝐹 (𝑡) =

∫︁ 𝑡

𝑡0

𝑑𝑡
√︁

[w2 + 𝛾2
𝐹 (v2 − 2vw + (vw)2)] , (4.21)

where 𝑡0 is the creation time of the parton. We have used (4.17), (4.18) and (4.21) in (4.22),

(4.23) and (4.24). The result takes on the surprisingly simple form

ℱ(𝑥,𝐸in) = ℱ𝐹 (𝑥𝐹 , 𝐸
𝐹
in(𝐸))) (4.22)

where 𝐸𝐹
in and 𝑥𝐹 are the initial energy and the path length in the local fluid rest frame.

These are related to quantities defined in the collision center-of-mass frame by

𝐸𝐹
in = 𝐸in 𝛾𝐹 (1−wv) , (4.23)

𝑥𝐹 (𝑡) =

∫︁ 𝑡

𝑡0

𝑑𝑡
√︁

[w2 + 𝛾2
𝐹 (v2 − 2vw + (vw)2)] , (4.24)

where w ≡ p/𝐸 is the parton velocity, v and 𝛾𝐹 are the fluid velocity and Lorentz factor,

𝑡0 the time the parton was produced and 𝑡 is the observation time, all in the collision center-

of-mass frame.

The result (4.22) implies that if the rate of energy loss does not depend explicitly on the

energy of the parton or the distance that the parton has travelled through the medium, as in

the case of the collisional rate in Eq. (4.10), the fluid velocity will have no effect on 𝑑𝐸/𝑑𝑥.

In the case of the radiative energy loss rate in Eq. (4.7), or for the strongly coupled rate of

energy loss Eq. (4.2) that we employ in our hybrid model, one expects that including the

effects of fluid flow on the energy degradation of jets will be particularly important for jets

at large rapidity.

As a simple but illustrative example, let us consider the energy lost by an energetic par-

ton propagating through a fluid that is experiencing Bjorken flow, namely boost-invariant
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longitudinal expansion with no transverse flow. If the parton has a large rapidity, the fluid

that it is propagating through has a large longitudinal velocity meaning that there is a sub-

stantial boost between the local fluid rest frame and the collision center-of-mass frame.

Assuming that both the parton and the boost invariant fluid are produced at the same time,

the longitudinal velocity of the parton coincides with the fluid velocity at its location. If

the parton travels a distance 𝐿 in the collision center-of-mass frame during a time 𝑡, then

according to Eq. (4.24) the distance that the parton travels through the fluid in the local

fluid rest frame is

𝑥𝐹 (𝑡) =

∫︁ 𝑡

0

|w𝑇 | 𝑑𝑡 =
𝐿

cosh 𝑦
, (4.25)

where w𝑇 and y are the transverse velocity of the parton its rapidity respectively. For

particles with significant rapidity 𝑦, say 𝑦 > 1, we see that the distance they travel in the

local fluid rest frame is substantially less than the distance they travel in the collision center-

of-mass frame. If the rate of energy loss is given by the expression in Eq. (4.7) inspired by

radiative energy loss, this is the principal effect of flow on the energy loss suffered by an

energetic parton. If the rate of energy loss is given by the strongly coupled form Eq. (4.2),

as in our hybrid model, this effect is important but it is also important to note that 𝐸in is

also different in different frames. Using (4.23),

𝐸𝐹
in =

𝐸in

cosh 𝑦
(4.26)

in this simple Bjorken flow. The effect of this diminution in 𝐸𝐹
in on the rate of energy loss

Eq. (4.2) is complex. On the one hand, reducing 𝐸𝐹
in reduces the rate of energy loss. On the

other hand, it reduces 𝑥stop which increases the rate of energy loss. The net effect, which is

specially important for the jet quenching species dependence given the different quark and

gluon jets abundances at different rapidities, is not clear a priori. We retake this discussion,

in posession of the full Monte Carlo simulation results, in Section 5.5.

94



4.3 Monte Carlo Implementation

The implementation of the hybrid model that we have described requires several steps, be-

ginning with the generation of jets and the modification of their evolution due to energy

loss, but also including the hydrodynamic calculation of the space and time dependence of

the bulk medium created in the heavy ion collision. The procedures used for the calcula-

tions reported in this work are presented in this Section.

We generate hard processes using PYTHIA 8.183 [121]. Since at the LHC center of

mass energy and in the range of momentum relevant for our analysis (𝑝T ∼ 𝒪(100GeV)),

the modification of the nuclear parton distribution functions with respect to the proton ones

is very small [122, 123], we simulated high energy jet production in proton-proton colli-

sions at
√
𝑠 = 2.76 TeV. Since these events are later embedded into a hydrodynamic model

for the bulk matter produced in the nucleus-nucleus collisions, we do not include the un-

derlying event in the PYTHIA treatment of the proton-proton collision in our calculation.

We use the PYTHIA 𝑝T-ordered shower to evolve the hard process from the initial virtual-

ity down to a typical hadronic scale of 𝑄0 = 1 GeV, at which we stop the evolution. At

this scale, vacuum event generators switch to phenomenological models of hadronization,

like the Lund string model which is incorporated into PYTHIA. For a number of reasons,

the nonperturbative hadronization process is expected to be altered in a heavy ion collision

relative to that in vacuum. For example, most of the soft hadrons in a heavy ion collision

will be formed via the coalescence of quarks and gluons from the expanding and cooling

plasma rather than directly from partons produced initially and their fragments [?, ?]. Fur-

thermore, even if we only look at hadrons that are formed via fragmentation, hadronization

in this setting is still modified by the presence of the medium via changes in how color

flows [124, 125, 126, 127, 128, 129]. In order to avoid complicating the interpretation of

our results with currently unconstrained hadronization dynamics, throughout this analysis

we will work at the partonic level and focus on observables that are less sensitive to the

hadronization process. For example, in jet observables these corrections are, at least in

vacuum, smaller than 10% [130].

On an event by event basis, the events generated by PYTHIA each initiate a decay chain
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which will be the starting point for our implementation of medium effects. As we have

argued in Section 4.1, in our hybrid model we shall neglect the possibility that the presence

of the medium may result in modification of the splitting probabilities, or modification

to the locations in space and time where splitting occurs obtained via Eq. (4.1). We are

neglecting the fact that the reduction in the available energy due to the loss of energy of

a parton in the shower leads to a reduction in the phase space available when that parton

subsequently splits. In this exploratory study we will neglect such phase space effects and

assume that the overall structure of the decay chain remains the same even after we make

the partons in the shower lose energy.

We place the point of origin of each of the dijet processes generated by PYTHIA in the

plane transverse to the collision axis at a location selected with a probability proportional

to the number of binary collisions at that location in the transverse plane as dictated by the

ensemble-averaged MC-Glauber initial conditions [8], where for simplicity we are neglect-

ing all effects of event-by-event fluctuations. The showers generated by the dijets proceed

in space and time according to Eq. (4.1), propagating outward along their (randomly se-

lected) direction of motion. Since the dijet production process is hard, dijets are produced

very early (𝜏 ∼ 1/𝑄), prior to the proper time at which the plasma produced in the collision

hydrodynamizes, 𝜏hydro. We will assume that during the short proper time before 𝜏hydro, the

jets propagate unperturbed.3 After 𝜏hydro, the jets encounter the hydrodynamically expand-

ing plasma and the different fragments of the jet suffer energy loss, according to (4.2) in our

hybrid strong/weak coupling model or according to (4.7) or (4.10) in our models of weakly

coupled radiative or collisional energy loss. To determine the local properties of the plasma

at the position of the fragments, we embed the jet shower into a set of hydrodynamic simu-

lations of Pb-Pb collisions at
√
𝑠 = 2.76 ATeV and 5.02 ATeV provided to us by Shen and

Heinz, based upon the codes developed by them and their collaborators in Refs. [131] and

3This is an assumption that could be improved upon in future, once the analysis of the early pre-
equilibrium energy loss of heavy quarks in Ref. [108] is extended to light quarks. That analysis indicates
that energy loss sets in only after a delay time of order 1/(𝜋𝑇 ) after the moment during the collision when
the energy density is at its maximum, 𝑇 being the temperature at the time of hydrodynamization. In addition,
the analysis of the collision of sheets of energy density in Ref. [14] indicates that if the sheets are thin enough
there is a prior delay of order 1/(𝜋𝑇 ) between the collision time and the time when the energy density peaks.
The results of Refs. [108, 14] together indicate that there will surely be some energy loss before 𝜏hydro but
that it is not expected to be large.
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[132]. These 2+1-dimensional simulations, with boost-invariant longitudinal expansion,

incorporate an equation of state from Ref. [133] (referred to there as the s95p-v1-PCE150

equation of state) that incorporates results from lattice QCD calculations and from a hadron

resonance gas at low temperatures. With this equation of state, it is possible for us to set the

𝑇𝑐 below which we stop parton energy loss within a range 145 MeV < 𝑇𝑐 < 170 MeV that

reflects results for the range of crossover temperatures from current lattice calculations, see

for example Refs. [134, 3]. We shall employ this variation in our choice of 𝑇𝑐 as a device

with which to estimate the systematic uncertainty in the results that we obtain from the

computations that we shall perform using our hybrid model. Because we are not concerned

with the evolution below 𝑇𝑐, we evolved the initial conditions using viscous hydrodynamics

alone, with no cascade afterburner. For simplicity, the hydrodynamic calculations employ

a temperature-independent 𝜂/𝑠 = 1/(4𝜋). Since in the simulations of Ref. [131, 132] the

hydrodynamic fields are initialized at 𝜏hydro = 0.6 fm, we will take this as our hydrody-

namization time. From these simulations we determine the temperature of the plasma at

each point in space and time, and hence the spacetime-dependent temperature that each

parton in the fragmenting shower encounters on its way through and eventually out of the

expanding, cooling, droplet of plasma. We use this spacetime-dependent temperature to

integrate the different expressions for the energy loss rate 𝑑𝐸/𝑑𝑥 discussed in Section 4.2

over the path of each parton in the shower during its lifetime, i.e. from the time when it is

produced in a splitting process to the time when it itself splits.

The procedure described above assigns an energy loss to each of the virtual partons

in the shower. However, it does not determine how the lost energy is distributed among

the several particles that are produced when each virtual parton splits, or decays. Consis-

tent with the assumption that the medium does not change the splitting probabilities in the

shower, since these splitting probabilities depend on the energies of the daughter partons

only through the fraction of the parent parton energy that each daughter obtains as a result

of the splitting we choose to distribute the energy lost by the parent parton as a reduction

in the initial energy of each of the daughters according to this fraction. As they themselves

propagate through the medium subsequently, these decay partons loose additional energy

until they split again. Therefore, the total energy lost by a particular final parton that es-
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capes from the medium depends on the detailed history of splitting and propagation that

led to that parton.

Since the goal of this work is to study the effect on high energy jets of energy loss

in strongly coupled plasmas, we will not describe the degradation of the jet energy in the

hadron gas produced after the plasma cools through the QCD phase transition at 𝑇 ∼

𝑇𝑐. We focus only on the energy loss as the jet propagates through the strongly coupled

plasma with 𝑇 > 𝑇𝑐. To ensure that we do not apply the strong coupling results to the late

time resonance gas, we will stop the computation of energy loss when the temperature of

the system falls below 𝑇𝑐, which we identify with the crossover temperature of the QCD

transition that separates the plasma from the hadron gas. Since the QCD transition is a

cross-over, 𝑇𝑐 is not sharply defined and its precise value depends on the procedure used to

determine it.

Finally, in addressing RHIC data we will employ an identical procedure except that we

start with hard dijets produced (by PYTHIA) in collisions with
√
𝑠 = 200 GeV per nucleon

and we replace the hydrodynamic profile for LHC collisions with that for RHIC collisions,

also obtained from Ref. [131, 132].

In the next Section, we describe how we reconstruct the jets in our hybrid model and

compare them, in various ways using various measured observables, to jets reconstructed

from heavy ion collision data.
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Chapter 5

Comparison with Single-Jet and Dijet

Data for
√
𝑠 = 2.76 ATeV and

Predictions for Observables at
√
𝑠 = 5.02 ATeV

We have described the implementation of our hybrid model in full detail in the two previous

Sections. All that remains is to choose the one dimensionless free parameter 𝜅sc, defined

in Eq. 4.3, that we have introduced into our description of the energy loss of an individual

parton in the PYTHIA shower as it propagates through the strongly coupled plasma and the

model will then be fully specified. As explained in Section 4.2, we are assuming that the

strongly coupled dynamics fixes the parametric dependence of the energy loss rate 𝑑𝐸/𝑑𝑥,

given in Eq. (4.2), and the stopping distance 𝑥stop, given in Eq. (4.3), but not the overall

normalization of 𝑥stop. Therefore, our model possesses one free parameter, which we need

to fit to data. Once this has been done, we will be able to study different jet observables

and extract the effect of the medium on each of them.
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5.1 Jet Reconstruction and Jet 𝑅AA at
√
𝑠 = 2.76 ATeV

The first observable that we shall compute is 𝑅AA for jets, as a function of 𝑝𝑇 , the transverse

momentum of the jet, and as a function of the centrality of the heavy ion collision.1 The

jet 𝑅AA is the ratio of the number of reconstructed jets with a given 𝑝𝑇 that we find in

heavy ion collisions in a given centrality bin to the number of jets with that same 𝑝𝑇 in

𝑁binary proton-proton collisions with the same 𝑝𝑇 , where 𝑁binary is the number of proton-

proton collisions that occur in a heavy ion collision of the given centrality, according to a

Glauber model. Because the production cross-section for jets is a rapidly falling function

of 𝑝𝑇 , if the jets in a heavy ion collision have lost energy due to the passage of the partons

in the jet through the strongly coupled medium this results in 𝑅AA < 1. To determine

the prediction of our model for the jet 𝑅AA, we need to reconstruct jets both in heavy ion

collisions within our model (as described in previous sections, including the effects of

energy loss) and in proton-proton collisions as described by PYTHIA with the underlying

event switched off, as explained in Section 4.3. To obtain the principal results of this

work, we generated 300,000 PYTHIA events with 𝑝𝑇 greater than a cut that we set to

50 GeV for collisions with centralities in each of four ranges (0-10%, 10-30%, 30-50%

and 50-70%). We varied the 𝑝𝑇 cut to make sure that the jet spectrum in the (higher)

range of 𝑝𝑇 where we performed our analyses was insensitive to the value of the cut. We

1The “centrality” of a collision between heavy ions refers to its impact parameter. Nearly head-on col-
lisions, with the smallest impact parameters, are referred to as central collisions; peripheral collisions, with
large impact parameter, are noncentral. The impact parameter is not directly measured, but it is nevertheless
possible to bin heavy ion collision data as a function of impact parameter, for example using the fact that the
total number of hadrons produced in a heavy ion collision is anticorrelated with the impact parameter of the
collision. Central collisions have the highest multiplicity; peripheral collisions the lowest. Experimentalists
therefore bin their events by multiplicity, using that as a proxy for the impact parameter. The terminology
used refers, for example, to the “0-10% centrality bin” and the “10-20% centrality bin”, meaning the 10%
of events with the highest multiplicities (and lowest impact parameters) and the next 10% of events with the
next highest multiplicities (and next lowest impact parameters). The correlation between event multiplicity
and impact parameter is described well by the Glauber model of multiple scattering [135, 8], which relates
the event multiplicity to the number of nucleons that participate in the collision (𝑁part) which in turn can be
related via a geometrical calculation to the impact parameter of the collision. In our calculations, we take
the tabulation of the range of impact parameters that corresponds to a given centrality bin defined via the
multiplicity distribution for Pb-Pb collisions at the LHC from Ref. [136]. When we distribute the points of
origin of our PYTHIA jets in the transverse plane, we do so with a probability distribution for the impact
parameter 𝑏 dictated by the number of collisions at each 𝑏 within the range corresponding to a given central-
ity bin. In order to then apply our energy loss prescription to the partons in the PYTHIA shower, we embed
the PYTHIA jet in the hydrodynamic solution from Ref. [131, 132] corresponding to the mean value of the
impact parameter in the interval associated with the given centrality bin.
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used the PYTHIA events without modification to describe jets in proton-proton collisions.

As described in Sections 4.2 and 4.3, to describe quenched jets in heavy ion collisions

we embed the PYTHIA events in a hydrodynamic description of the matter produced in a

heavy ion collision and apply our prescription for energy loss to each parton in the PYTHIA

shower. We then analyze the output of our model calculations of quenched jets in heavy

ion collisions and of proton-proton jets using FastJet [137], with which we reconstruct jets

using the anti-𝑘𝑡 algorithm [138]. Defining a jet, via any reconstruction algorithm, requires

the specification of a resolution parameter, 𝑅. This parameter can be understood as the

opening angle (in radians) of the jets we reconstruct, although the precise meaning of 𝑅 is

different for different reconstruction algorithms. We shall set the reconstruction parameter

in the anti-𝑘𝑡 algorithm to 𝑅 = 0.3 for Pb-Pb collisions at LHC energies and to 𝑅 = 0.2

for Au-Au collisions at RHIC energies because we shall compare the predictions of our

model to jet measurements from LHC and RHIC data that employ these values of 𝑅. As

we have discussed in Section 4.3, the output of our model is partons not hadrons, and we

are reconstructing jets from those partons. For this reason, we will focus on jet observables

that are relatively insensitive to details of the hadronization process.

In order to fit the value of the one free parameter 𝜅sc in our parametrization (4.2) and

(4.3) for the rate of energy loss 𝑑𝐸/𝑑𝑥 of each of the partons in the PYTHIA shower, we

calculate 𝑅AA for jets with 100 ≤ 𝑝𝑇 ≤ 110 GeV in the range of pseudorapidities−2 ≤ 𝜂 ≤

2 in the 0-10% most central Pb-Pb collisions at LHC energies, with collision energy
√
𝑠 =

2.76 TeV per nucleon pair. This quantity has been measured by the CMS collaboration, and

in the data it lies between 0.42 and 0.51. (For this and for all experimental data quoted in

our work, we have added the statistical and systematic errors in quadrature.) We find that

we can reproduce this measured result with our model as long as we choose 𝜅sc between

0.32 and 0.41. In determining this range of allowed values of the parameter 𝜅sc we have

included the theoretical uncertainty in the critical temperature 𝑇𝑐, discussed in Section 4.3,

as well as the uncertainty that enters via the uncertainty in the experimentally measured

quantity. The latter dominates the uncertainty in the extracted value of 𝜅sc. Henceforth,

in all our plots we will show a band of results obtained from our model corresponding

to varying 𝜅sc between 0.32 and 0.41, a range that incorporates both experimental and
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Figure 5-1: Jet 𝑅AA as a function of 𝑝T for different centralities in our hybrid model for jet
quenching in strongly coupled plasma compared to preliminary CMS data from Ref. [139].
The results of our calculations in our hybrid strongly coupled model, shown by the colored
bands, are completely specified once we have fixed the one free parameter in the model
so that the model agrees with the left-most data point in the top-left panel, namely the jets
with 100 GeV < 𝑝T < 110 GeV in the most central collisions. Once this point has been
fitted, the 𝑝T dependence and centrality dependence of 𝑅AA are outputs of the model.
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Figure 5-2: Predictions of our hybrid strongly coupled model for jet 𝑅AA as a function
of 𝑝T for central Pb-Pb collisions at the LHC with

√
𝑠 = 2.76 TeV per nucleon (left) and

Au-Au collisions at RHIC with
√
𝑠 = 200 GeV per nucleon (right). In both cases, we only

show our results for collisions in the 0-10% centrality bin.

theoretical uncertainty.

With 𝜅sc now fixed, the first results that we obtain from our model are the dependence

of the jet 𝑅AA on 𝑝𝑇 and on the centrality of the collision, for Pb-Pb collisions at
√
𝑠 =

2.76 TeV. We show our results in Fig. 5-1. We see that our hybrid model predicts a jet

𝑅AA that is only weakly 𝑝𝑇 -dependent, in agreement with the preliminary CMS data from

Ref. [139]. The evolution of the jet 𝑅AA with increasing centrality is consistent with the data

until we get to the most peripheral bin, for which our model predicts less quenching than is

seen in the data. This discrepancy may be due in part to the fact that we are not including the

energy loss in the hadronic phase in our computation, since peripheral collisions will spend

less time in the plasma phase making the time spent in the hadronic phase proportionally

more relevant.

In Fig. 5-2 we further explore the 𝑝T and
√
𝑠 dependence of the jet 𝑅AA within our hy-

brid approach. In the left panel, we extend our computation of jet suppression down to

15 GeV for the most central LHC collisions, using a sample of PYTHIA jets generated

with 𝑝T greater than a 10 GeV cut. Because the jet production cross-section falls rapidly

with 𝑝T, in order to have sufficient statistics over this wide range in 𝑝T we generated several

independent samples of jets, each with 𝑝T greater than a higher value of the cut than in the

sample before, employing cuts of 10, 35 and 50 GeV. We then merged each sample with

the previous one away from these cuts. In this way we were able to obtain a sample of jets

with reasonable statistics for 𝑝T ranging all the way from 15 GeV to 270 GeV. Even over
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this extended range of 𝑝T, the jet suppression factor 𝑅AA varies relatively little with trans-

verse momentum. This is in qualitative agreement with 𝑅CP measurements by ATLAS [25]

and charged jet 𝑅CP measurements by ALICE [28], which both report suppression measure-

ments down to this range of 𝑝T with a similarly weak dependence on 𝑝T. Nevertheless, at

present we refrain from a quantitative comparison with these data, for two reasons. 𝑅CP is

the ratio of the number of jets with a given 𝑝T in central collisions to an expectation based

upon data in peripheral collisions, rather than an expectation based upon data in proton-

proton collisions as in 𝑅AA. Given the disagreement that we see between our model and the

data in the peripheral bin at the higher values of 𝑝T displayed in Fig. 5-1, we cannot make

a direct comparison between our results at lower values of 𝑝T in Fig. 5-2 and measure-

ments of 𝑅CP. And, since we are working at the partonic level, we are at present hesitant

to compare our results to measurements of jets defined via charged hadrons only, rather

than calorimetrically. In the right panel of Fig. 5-2, we repeat our analysis for the lower jet

energies available in RHIC collisions with a center of mass energy of
√
𝑠 = 200 GeV per

nucleon, extending our analysis down to 12 GeV using a sample of PYTHIA jets generated

with 𝑝T greater than a 5 GeV cut. We chose the jet reconstruction parameter 𝑅 = 0.2, as

in Ref. [140]. Our results are in good agreement with the preliminary experimental mea-

surements reported by the STAR collaboration in Ref. [140], at present still with significant

systematic uncertainties. However, we have again refrained from making a direct compar-

ison since, as before, it is not easy to compare our partonic jet results with the charged

jet measurements reported in Ref. [140]. Also, in making these measurements the STAR

collaboration requires the presence of a semi-hard (𝑝T = 5−7 GeV) charged hadron within

the jet, a criterion that is hard for us to reproduce from our partonic computation.

The predictions of our model for both the momentum dependence and the centrality

dependence of jet suppression are in encouraging agreement with experimental data. To

avoid over-interpreting this agreement, it is important to assess the sensitivity of the jet

𝑅AA observable to the underlying dynamics of the energy loss. To gauge this sensitivity, we

have repeated the analysis for the two other models of the energy loss rate 𝑑𝐸/𝑑𝑥 described

in Section 4.2. In Fig. 5-3 we show the jet suppression factor 𝑅AA in two centrality bins

for the strongly coupled (red), radiative (grey) and collisional (blue) energy loss models.
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Figure 5-3: Jet 𝑅AA as a function of 𝑝T for LHC collisions in two different centrality bins for
the three energy loss models from Section 4.2, as compared to preliminary CMS data [139].
Each of the three models for the rate of energy loss 𝑑𝐸/𝑑𝑥 includes one free parameter,
and in each case we have fitted the value of this parameter to obtain agreement between the
model and the data for 100 GeV < 𝑝T < 110 GeV in the most central (0− 10%) collisions.

In all three models, as in Fig. 5-1 we have fitted the one free parameter in our description

of 𝑑𝐸/𝑑𝑥 to the left-most data point in the left panel, finding 0.97 < 𝜅rad < 1.8 for

the parameter 𝜅rad defined in the expression (4.7) for 𝑑𝐸/𝑑𝑥 in our model for weakly

coupled radiative energy loss and 1.8 < 𝜅coll < 3.0 for the parameter 𝜅coll defined in

the expression (4.10) for 𝑑𝐸/𝑑𝑥 in our model for weakly coupled collisional energy loss.

Remarkably, despite the fact that the energy dependence and the path-length dependence

of the three different expressions (4.2), (4.7) and (4.10) are very different for the three

quite different energy loss mechanisms that we are modelling, the 𝑝T dependence and the

centrality dependence of the jet 𝑅AA are quite similar in all three models.

5.2 Dijet Asymmetry at
√
𝑠 = 2.76 ATeV

After constraining and then confronting the three models with data on the jet suppression

𝑅AA, we turn now to a different jet observable, the dijet imbalance 𝐴𝐽 [20, 21]. Follow-

ing the data analysis procedure used in the analysis of the experimental data reported in

Ref. [22], in our Monte Carlo simulation we select events containing dijet pairs recon-

structed with the anti-𝑘𝑡 algorithm with jet reconstruction parameter 𝑅 = 0.3 in the pseu-

dorapidity range |𝜂| < 2 such that the leading jet has 𝑝T1 > 120 GeV and the subleading jet

has 𝑝T2 > 30 GeV. The asymmetry variable is then defined as 𝐴J ≡ (𝑝T1 − 𝑝T2)/(𝑝T1 + 𝑝T2).
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Figure 5-4: Red bands show the probability distributions for the dijet imbalance 𝐴𝐽

in LHC collisions with four different ranges of centrality predicted by our strongly cou-
pled hybrid model. The jet momenta are smeared, according to the prescription given in
Ref. [141] in order to mimic background subtraction effects. Experimental data points are
taken from Ref. [22]. As a comparison, we show the distributions of the dijet imbalance 𝐴𝐽

in the proton-proton collisions that we have obtained from PYTHIA, including the (cen-
trality dependent) momentum smearing needed in order to make a fair comparison to the
heavy ion results.
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Figure 5-5: Probability distribution for the smeared dijet imbalance 𝐴𝐽 for three different
models of the rate of energy loss 𝑑𝐸/𝑑𝑥 in LHC heavy ion collisions in two different ranges
of centrality.

Since the data presented by both ATLAS [20] and CMS [21, 22] for this observable are not

fully unfolded from resolution effects, a direct comparison of the result of our computations

with data is not possible. However, the CMS collaboration has demonstrated that a simple

centrality and momentum dependent smearing procedure can reproduce the systematics of

such effects, at least for 𝛾-jet observables, and has provided an explicit parameterization

for such smearing in that type of measurement [141]. Since the corresponding parameter-

ization for dijet measurements is not yet available, we will use the procedure advocated in

Ref. [141] also for dijets. The result of these computations is a prediction from our strongly

coupled hybrid model for the probability distribution for 𝐴𝐽 for heavy ion collisions at the

LHC with four different centrality bins shown in Fig. 5-4. The centrality dependence of the

smearing function is illustrated by the violet points which show the results of applying the

(centrality dependent) smearing to proton-proton events from PYTHIA. The energy loss

experienced by both jets in the dijet pair tends to increase 𝐴𝐽 in heavy ion collisions, more

so in more central collisions. We see this in Fig. 5-4 as the widening of the asymmetry

distribution in more central collisions, both in the predictions of our model and in the data.

We see from the figure that there is good agreement between the predictions of our model

and measurements made using LHC data.

As before, before over-interpreting the good agreement between the strongly coupled
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hybrid model prediction for the dijet asymmetry distribution and the data, in Fig. 5-5 we

show the (smeared) results for the dijet asymmetry distribution in events with two different

ranges of centrality if we use the strongly coupled (red), radiative (grey) and collisional

(blue) models for the rate of energy loss 𝑑𝐸/𝑑𝑥. As in the case of the jet suppression

𝑅AA, our results for the 𝐴𝐽 distribution is only weakly dependent on our choice of the

underlying model. Even though the three different models have quite different path-length

dependence for 𝑑𝐸/𝑑𝑥, all three models lead to similar dijet asymmetries. Although it is

a small effect, we do notice here that the strongly coupled model yields a slightly larger

dijet imbalance in the most central collisions and that this means it is in somewhat better

agreement with the data than the other two models. Nevertheless, the larger message of

Fig. 5-5 is the approximate agreement between the predictions of three models with energy

loss rates that feature very different path-length dependence, indicating that the these types

of jet observables have only limited sensitivity to the shape of the underlying medium, as

observed previously in Ref. [?].

5.3 Fragmentation Functions Ratio at
√
𝑠 = 2.76 ATeV

We have seen that inclusive jet observables like the jet suppression factor 𝑅AA and the dijet

asymmetry 𝐴𝐽 are not particularly sensitive to the differences between the three energy

loss models that we are investigating. This motivates us to investigate more differential

observables such as jet fragmentation functions. From our model, we can compute par-

tonic fragmentation functions, which are probability distributions for the fraction of the

total jet momentum that is carried by an individual parton in the final state jet. In Fig. 5-6,

we show the ratio of the partonic fragmentation function for the quenched jets in our hy-

brid strongly coupled model with 𝑑𝐸/𝑑𝑥 as in (4.2), as well as for the analogous weakly

coupled radiative and collisional energy loss models with 𝑑𝐸/𝑑𝑥 as in (4.7) and (4.10),

to the fragmentation function for a PYTHIA jet in vacuum with the reconstructed jet en-

ergy in the same interval as for the quenched jets. This ratio is analogous to the frag-

mentation function ratio measured in Pb-Pb collisions at the LHC by both ATLAS and

CMS [24, 143, 142], but of course they measure the fraction of the total jet momentum that
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Figure 5-6: Ratio of the partonic level fragmentation function for our quenched jets to that
for proton-proton jets in the same reconstructed jet 𝑝𝑇 interval 100 < 𝑝𝑇 < 300 GeV, for
jets with 0.3 < |𝜂| < 2 and for different centrality bins. The data points are the analogous
experimentally measured fragmentation function ratio from Ref. [143], for hadrons rather
than partons.

109



is carried by individual hadrons whereas our calculation is performed at the parton level.

As in the experimental analysis in Ref. [24, 143], we determine the jet axis and momen-

tum using the anti-𝑘𝑡 algorithm with 𝑅 = 0.3 and we then search for all the partons in a

cone with radius 𝑟 ≡
√︀

(∆𝜑)2 + (∆𝜂)2 < 0.3 centered on the jet axis and use the pro-

jection of the parton momentum onto the jet axis to define 𝑧 = 𝑝parton

‖ /𝑝jet. Since we have

stopped the DGLAP evolution in PYTHIA for each parton that reaches a minimum virtual-

ity 𝑄0 = 1 GeV, we stop our computation of the fragmentation function ratio in Fig. 5-6 at

ln(1/𝑧) = ln(100) = 4.6. This also reduces our sensitivity to the effects of hadronization

on the fragmentation function, which we are leaving out of our partonic calculation. For 𝑧

values smaller than our cut, the effects of hadronization become more important, since the

dynamics of hadronization can soften particles below 1 GeV.

The overall message from Fig. 5-6 is that the fragmentation function of a quenched

jet is very similar to that of a vacuum jet with the same energy as the quenched jet. This

was first pointed out in Ref. [24] and remains the case in the data from Ref. [143] that we

have shown in the Figure, and it is also the case for our hybrid strongly coupled model.

The collisional model that we have set up as a foil in this work does not share this feature.

The fragmentation function ratio predicted by the collisional model lies below the data

over several decades of 1/𝑧, meaning that this model can be ruled out by the comparison

of its fragmentation function to the data. The fragmentation function ratio predicted by

our hybrid strongly coupled model does best, comparing reasonably well with the data in

Fig. 5-6. The weakly coupled radiative model fares in between, predicting a fragmentation

function ratio that is in some tension with the data, particularly in mid-centrality collisions.

It should be noted that since in the case of radiative energy loss the ‘lost’ energy is expected

to include some moderate-𝑝T particles that initially stay within the jet cone, the assumption

that we are making in our implementation of this model that all of the ‘lost’ energy be-

comes soft particles moving in directions that are uncorrelated with the jet direction may

be suspect here. If so, our calculation of the fragmentation function in our implementation

of radiative energy loss is incomplete.

Note that in comparing our model calculations of the fragmentation function ratio to

data in Fig. 5-6 we are ignoring the softest part of the fragmentation function ratio shown

110



in the Figure. We do so for two reasons. First, although we have ended our partonic calcu-

lation at 𝑄0 = 1 GeV and cut the figure of at 𝑧 = 1/100 precisely to reduce this problem,

comparison of our partonic fragmentation functions to the data on hadronic fragmentation

functions may not be appropriate at the smallest 𝑧’s we have plotted, given that hadroniza-

tion tends to soften softer partons. Second, the low 𝑝T particles that populate the smallest 𝑧

region that we have plotted in Fig. 5-6 have momenta that are small enough that many of

them could certainly come from the thermal distribution of particles formed as the quark-

gluon plasma cools and hadronizes. The background subtraction procedure used in the

analyses of experimental data will subtract such particles, on average, if they are uncorre-

lated with the jet direction. This subtraction may not be perfect, however, either because

of fluctuations in the bulk droplet of plasma or because some of the energy lost by the jet,

which we are assuming ends up as a little hotter or a little extra plasma, may also manifest

itself in collective motion of the plasma, meaning that although the ‘lost’ energy becomes

soft particles these soft particles might not be completely uncorrelated with the jet direc-

tion. For both these reasons, the subtraction of whatever fraction of the ‘lost’ energy ends

up in the jet cone may not be complete. We have checked that adding only one soft particle

per jet can result in a substantial upturn in the fragmentation function ratio at ln(1/𝑧) & 4,

and for this reason we will not compare to the data in this regime. In Section 7 of this

part of the thesis we will estimate the effect of the medium response to the jet passage by

a complete Monte Carlo simulation, which takes into account that the thermalized energy

is still correlated with the direction of the jet and it can have implications for this sort of

observables.

We have observed that the collisional model leads to a much stronger depletion of

the quenched fragmentation functions relative to what is measured in data, over several

decades of 𝑧. This is a direct consequence of the lack of path-length dependence in 𝑑𝐸/𝑑𝑥

in this model, meaning that our conclusion that this model is disfavored seems robust.

The radiative model seems to be marginally in agreement with the data. Remarkably, the

weaker modification of the in-medium fragmentation function within the strongly coupled

hybrid model achieves the best qualitative agreement with the fragmentation function ratio

in the experimental data. A more quantitative, and more definitive, statement along these
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lines would require including hadronization in our strongly coupled hybrid model, would

require investigating where the energy ‘lost’ by the jet ends up rather than just assuming that

it becomes soft particles uncorrelated with the jet direction, and would require including

the soft particles corresponding to the plasma itself in our model and subtracting them

during jet reconstruction as in the analyses of experimental data. We leave some of these

investigations for Section 7 of this thesis.

5.4 Predictions for Single-Jet and Dijet Observables at
√
𝑠 =

5.02 ATeV

In this Section we provide predictions for Pb-Pb collisions at
√
𝑠 = 5.02 ATeV for the

single jet and dijet observables that we presented in detail in previous Sections. This is

the center of mass energy per nucleon in the Heavy Ion Run II of LHC, which will deliver

much of the data we want to confront our hybrid model with somewhere late this year 2016.

We study 106 dijet events in p-p collisions at
√
𝑠 = 5.02 TeV generated by PYTHIA

8.183 [121] without any underlying event. For each of the centrality bins we consider,

we embed these hard scattering processes into the hydrodynamic simulations along the

lines of those in Ref. [131], but now these are simulations of heavy ion collisions with
√
𝑠 = 5.02 ATeV. We then follow the procedure for determining the energy loss outlined

in Section 4.3. As in our previous computations, we smear our predictions to simulate

resolution effects. However, we use the smearing functions determined at
√
𝑠 = 2.76 ATeV,

since they are yet unknown at
√
𝑠 = 5.02 ATeV.

Fig. 5-7 shows the hybrid strong/weak coupling model predictions for the suppression

factor 𝑅jet
𝐴𝐴 of jets in heavy ion collisions with

√
𝑠 = 5.02 ATeV reconstructed with the

anti-𝑘𝑇 algorithm with 𝑅 = 0.3. We do not fit even a single parameter here, or anywhere in

this Section. The model is fully constrained by the data on collisions with
√
𝑠 = 2.76 ATeV,

with its one parameter having been fixed as described in Section 5.1. The width of the dis-

played bands is a combination of our theoretical uncertainties (estimated by varying the

temperature 𝑇𝑐 below which we stop quenching, see Section 4.3) together with the experi-
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Figure 5-7: Hybrid model prediction for Jet 𝑅AA as a function of 𝑝T for different centralities
at
√
𝑠 = 5.02 ATeV. The single model parameter has been fitted to

√
𝑠 = 2.76 ATeV data

previously and no additional parameters have been introduced.

mental uncertainties in the data that we use to fix the one parameter in each model. Both the

centrality dependence and the transverse momentum dependence of 𝑅jet
𝐴𝐴 in collisions with

√
𝑠 = 5.02 ATeV are very similar to what we have seen previously at

√
𝑠 = 2.76 ATeV,

with a slight increase in the suppression of 𝑅jet
𝐴𝐴 at the higher collision energy. Similar

conclusions can be drawn from the strong coupling predictions for the dijet imbalance in

collisions with
√
𝑠 = 5.02 ATeV, displayed in Fig. 5-8. The centrality dependence and the

momentum dependence of this observable are very similar at the two collision energies as

well.

The sensitivity of these predictions to the form we assume for the rate of energy loss

is examined in Fig. 5-9. As at the lower collision energy, this set of predictions shows

little discriminating power to our choice among the three models for the rate of energy

loss that we have investigated. The strongly coupled form (4.2) for 𝑑𝐸/𝑑𝑥 leads to a

slightly large suppression and a slightly bigger dijet imbalance than the two control models

(4.7) and (4.10), bottom-left panel of Fig. 5-9, but the effect is small compared to current
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Figure 5-8: Hybrid model predictions for the dijet imbalance 𝐴𝐽 in Pb-Pb collisions at√
𝑠=5.02 ATeV with different centralities. Both the theoretical calculations and the proton-

proton reference are smeared according to the prescription in Ref. [141].
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Figure 5-9: Model dependence of dijet observables for Pb-Pb collisions with
√
𝑠 =

5.02 ATeV. Upper panel: Jet 𝑅AA as a function of 𝑝T for LHC collisions in two different cen-
trality bins for the three energy loss models from Section 4.2.1 and Section 4.2.3. Lower
panel: Dijet imbalance distribution in two different centrality bins for the three energy loss
models.
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Figure 5-10: Partonic fragmentation functions for jets of 100 < 𝑝T
jet < 300 GeV in

heavy ion collisions with
√
𝑠 = 5.02 ATeV for three different models for the rate of energy

loss and for four different centralities. Jets are reconstructed with the anti-𝑘𝑇 algorithm
with 𝑅 = 0.3. The jet fragments consist of final state partons within a cone of angle
𝑟 = 0.3 around the jet axes determined by the reconstruction algorithm. These partons are
classified with respect to the longitudinal variable 𝑧 = 𝑝‖/𝑝jet with 𝑝‖ the momentum of
the fragments along the jet axis.

uncertainties. Some separation among models is observed with increasing centrality, top

right panel of Fig. 5-9, although the largest centralities are more and more sensitive to the

energy lost by energetic partons during the hadronic phase of the collision, which we are

neglecting.

Finally, in Figure 5-10 we compare the predictions for partonic fragmentation functions

obtained from the three models for the rate of energy loss. These are, again, similar to one

another. The modest separation between the model predictions at intermediate values of 𝑧

observed at
√
𝑠 = 2.76 ATeV is also observed at

√
𝑠 = 5.02 ATeV. However, the model

predictions separate most in the region of log 𝑧 > 3.5 where they cannot be relied upon. In

this softest region of the fragmentation function, there is an additional contribution that is

not included in the model: the backreaction of the medium to the jet passing through it will
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Figure 5-11: Left panel: Ratio of quark-initiated jets to gluon-initiated jets with |𝜂| < 2
as a function of centrality for different models. Right panel: Ratio of quark-initiated jets
to gluon-initiated jets as a function of jet pseudorapidity for p-p collisions in vacuum,
according to PYTHIA.

result in additional soft particles in the jet cone.

5.5 Species Dependence of Jet Suppression

In order to investigate the potential species dependence that different quenching mecha-

nisms may present, specially motivated by the relative weight that the energy loss formulas

atribute to the color charge dependence, we show in the right panel of Fig. 5-11 the ratio

of the number of quark-initiated jets to the number of gluon-initiated jets (𝑁𝑞/𝑁𝑔) with jet

momenta in the range 100 < 𝑝T < 150 GeV and |𝜂| < 2 as a function of centrality for

the three models we have studied. We have defined the species of the jet-initiator from our

PYTHIA “data” (in a way that is impossible to do in experimental data) as the identity of

the parton that initiated the DGLAP shower to which the hardest particle in the jet belongs.

Despite the manifest differences between the relative suppression of quarks compared to

gluons among the different models, or the different way in which they affect the substruc-

ture of the jet (as studied in Section 5.3), there is not much of a strong separation among

the three bands. As expected, though, it is the strongly coupled energy loss the one where

the differences between quark initiated jets and gluon initiated jets are less pronounced.
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Figure 5-12: Pseudorapidity dependence of jet 𝑅𝐴𝐴 in our hybrid model for
√
𝑠 =

2.76 ATeV (left) and
√
𝑠 = 5.02 ATeV (right).

If we did not include flow effects, for those models in which the energy loss rate con-

tains physical quantities which need to be boosted to the local fluid rest frame (for radiative

energy loss (4.7) and more importantly for the strongly coupled rate (4.2)) jets at large

rapidity would suffer way more quenching than the ones at mid rapidity. Given the great

difference in the relative abundance of quark initiated jets with respect to gluon initiated

jets as a function of rapidity, as depicted in the right panel of Fig. 5-11 for the vacuum case,

the incorrect omission of flow effects would lead to a strong separation of the models when

calculating 𝑁𝑞/𝑁𝑔. This fact stresses the need of performing realistic Monte Carlo simula-

tions in order to effectively assess the true importance of a certain effect when everything

else is also taken into account.

We close this section by noting that despite the substantial rapidity dependence of the

species-dependence of jet production, and of jet quenching, the resulting net jet 𝑅AA is

remarkably independent of rapidity in our hybrid model, as shown in Fig. 5-12. This was

noted previously in Ref. [144], and we find the same behavior in our control models in

which we choose the dependence of 𝑑𝐸/𝑑𝑥 according to either one of the expressions

(4.7) or (4.10). Although given the strong species-dependence manifest in the right panel

of Fig. 5-11 the flatness of the rapidity dependence seen in Fig. 5-12 appears coincidental,

it is in agreement with experimental results from the ATLAS collaboration [32]. Our un-

derstanding of this flatness comes from the fact that the 𝑅AA of quark or gluon initiated jets
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is not different enough to make the difference in species abundance seen in the left panel

of Fig. 5-11 translate into a decrease of quenching. A model which showed such a raise in

𝑅AA would be treating quark and gluon jets too differently and its predictions would be in

tension with experiments.

5.6 Significance of the Extracted Parameters

We have seen in Section 5 that our hybrid approach, with perturbative QCD (via PYTHIA)

describing the parton splitting that occurs within a jet while at the same time each parton

in the jet loses energy according to the expression (4.2) for 𝑑𝐸/𝑑𝑥 for a light quark trav-

eling through strongly coupled plasma, derived via a holographic calculation in Ref. [87],

is very successful in describing the available jet data at the LHC. After fixing the one free

parameter in the model, defined in (4.3), using the measured value of the suppression factor

𝑅AA for jets in one 𝑝T-bin in the most central Pb-Pb collisions at the LHC, we obtain a com-

pletely satisfactory description of the dependence of the jet 𝑅AA on both 𝑝T and centrality

as well as of the dijet asymmetry 𝐴𝐽 , including its centrality dependence. In addition, we

make predictions for the jet 𝑅AA at RHIC. We also find that the (small) deviations between

the fragmentation functions of quenched jets measured in heavy ion collisions at the LHC

and those of vacuum jets with the same energy as the quenched jets compare well with the

corresponding fragmentation function ratios described by our hybrid model.

The above successes are important, but they should not be over-interpreted. The current

uncertainties in the measurements of jet 𝑅AA translate into a significant dispersion in our

theoretical computations, reflected in the width of all the colored bands in our plots in

Section 5. And, partly as a consequence of these uncertainties and partly as a consequence

of the insensitivity of inclusive jet observables to the mechanism by which energy is lost,

we have found that present measurements of the jet suppression factor 𝑅AA and the dijet

asymmetry 𝐴𝐽 are described almost as well if we use the models for 𝑑𝐸/𝑑𝑥 motivated by

weakly coupled radiative or collisional energy loss that we have described in Section 4.2.

The comparisons between the partonic fragmentation function ratios that we can compute

in our models and the fragmentation functions measured at the LHC that we have made in
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Strong Coupling Radiative Collisional
Parameter 0.32 < 𝜅sc < 0.41 0.97 < 𝜅rad < 1.8 1.8 < 𝜅coll < 3.0

Table 5.1: Values of the fit parameters needed in the specification of 𝑑𝐸/𝑑𝑥 in our three
different energy loss models, in each case as extracted by comparing model predictions
for 𝑅AA for jets with 100 GeV< 𝑝T <110 GeV in central Pb-Pb collisions at the LHC to
experimental data.

Section 5.3 do favor the hybrid strongly coupled approach over the model with collisional

energy loss and, to some degree, over the model with radiative energy loss. However, this

is a comparison between a partonic calculation and a hadronic measurement, so perhaps

we should not take the fact that the data favors the strongly coupled energy loss rate as

definitive.

The success (or partial success in the collisional case) of all these energy loss mecha-

nisms, which arise from very different pictures of the underlying dynamics, crucially de-

pends on the freedom to choose the overall strength of energy loss by fitting one model

parameter to data. It therefore becomes important to confront the parameters extracted

from data to expectations from theoretical calculations.

The three models for 𝑑𝐸/𝑑𝑥 that we have tested in this work each include one free

parameter that we have fitted to experimental measurements of 𝑅AA for jets with 100 GeV<

𝑝T <110 GeV in central Pb-Pb collisions at the LHC. We have collected the values of these

parameters obtained via fitting to this data in Table 5.1. See Eqs. (4.3), (4.7) and (4.10) for

the definitions of the parameters.

The values of 𝜅rad and 𝜅coll in the weakly coupled radiative and collisional models

for 𝑑𝐸/𝑑𝑥 obtained via our fit to data should be compared to expectations based upon

perturbative calculations given in Eqs. (4.8) and (4.9) and in Eqs. (4.11) and (4.12). We

see that our fit to data corresponds to a value of the strong coupling constant 𝛼𝑠 that is

smaller (larger) than the range 0.2 < 𝛼𝑠 < 0.3 that we used in making the estimate (4.9)

for 𝜅rad (the estimate (4.12) for 𝜅coll.) In the case of radiative energy loss, as we discussed

in Section 4.2 it may be that we are underestimating 𝜅rad because we are neglecting the fact

that much of the ‘lost’ energy is initially radiated in the form of gluons moving in the same

direction as the jet, meaning that some of this radiated energy may remain correlated with
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the jet direction. If this is so, by neglecting this we would be overestimating the energy loss

at a given 𝜅rad and hence our fit would be underestimating 𝜅rad.

As we have discussed in Section 4.2 and as is manifest in Eqs. (4.8) and (4.11), be-

cause of rare radiative or collisional processes in which a large momentum is transferred

the perturbative evaluation of 𝜅rad or 𝜅coll leads to logarithms of ratios of scales, 𝐵rad and

𝐵coll, which may depend on the kinematics of the colliding objects and whose evaluation

is beyond the accuracy of current theoretical calculations. Since the precise expressions

for both 𝐵rad and 𝐵coll are unknown, it is best to think of our fits to data as constraining

the product of the appropriate power of 𝛼𝑠 times the appropriate large logarithm, as in the

middle expressions in Eqs. (4.9) and (4.12). Our fits yield relatively large values for this

product, both in the case of radiative energy loss and in the case of collisional energy loss.

If the logarithmic corrections were small, as would be required for the simple perturbative

expansion to be accurate, our analysis would yield such large values of 𝛼𝑠 that perturbation

theory would clearly be invalid. Or, if small values of 𝛼𝑠 are chosen, as in the last expres-

sions in Eqs. (4.9) and (4.12), then the logarithms become large which again invalidates the

simple perturbative expansion, in this case pointing towards the need for a resummation

as discussed in Refs. [116, 117, 118]. Note also that despite our simplified approach to

energy loss, our results are compatible with those of more sophisticated approaches, such

as those described in Ref. [115], when the large logarithms are evaluated as prescribed in

those works. The bottom line for the two weakly coupled models that we have introduced

as benchmarks is that within our model context they can describe LHC data on jet 𝑅AA and

the dijet asymmetry 𝐴𝐽 if we choose values of the single parameter in each model that

correspond to values of 𝛼𝑠 that are large enough to make the reliability of a perturbative

calculation questionable. At the same time, as we saw in Section 5.3 the collisional model

cannot reproduce LHC data on the fragmentation function ratio and the radiative model is

in some tension with this data, at best in marginal agreement with it.

We now turn to the strongly coupled model. The comparison of the value of 𝜅sc that

we have obtained via fitting our results to jet observables measured in heavy ion collisions

at the LHC to the value obtained in theoretical calculations performed holographically, i.e.

via gauge/gravity duality, is of necessity uncertain. The holographic calculations that we
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have employed were done in large-𝑁𝑐, strongly coupled 𝒩 = 4 SYM theory, not in QCD.

There are by now large classes of theories with known gravitational duals, but the gravita-

tional dual of QCD itself (if one exists) is not known. Present holographic calculations are

therefore best used to gain qualitative insights, like for example the form of 𝑑𝐸/𝑑𝑥 in (4.2)

and the parametric dependence of 𝑥stop in (4.3). But there is no one right answer for how to

compare a numerical value of 𝜅sc extracted via comparison to experimental measurements

— of course in QCD — to a numerical value of 𝜅sc computed in𝒩 = 4 SYM theory. That

said, it is a generic expectation that the stopping distance 𝑥stop will be longer, meaning that

𝜅sc will be smaller, in strongly coupled QCD plasma than in strongly coupled𝒩 = 4 SYM

plasma with the same temperature because QCD has fewer degrees of freedom than𝒩 = 4

SYM theory by a factor≈ 0.4. There are various prescriptions in the literature for how this

reduction in the energy density of the plasma at a given temperature may affect holographic

calculations of various quantities, but this has not been investigated for the stopping dis-

tance of a light quark. And, of course, the QCD plasma differs from that in 𝒩 = 4 SYM

theory in other ways also.

The comparison of the value of 𝜅sc that we have extracted via comparison with data

to theoretical expectations originating in holographic calculations is further complicated

by the fact that, as we have discussed in Section 4.2, theorists have developed several

different ways of modeling jets in 𝒩 = 4 SYM theory, given that jets are not actually

produced in hard processes in this theory. Different values of 𝜅sc are obtained in 𝒩 = 4

SYM theory depending on whether a jet is modeled as a single string moving through the

plasma, in which case 𝜅sc
𝒩=4 = 1.05𝜆1/6 [78], or via analyzing the decay of a virtual

external 𝑈(1) field into 𝒩 = 4 SYM matter with initial virtuality 𝑞 and initial position in

the holographic direction 𝐷/𝑞 with 𝐷 an unknown factor that is of order unity, in which

case 𝜅sc
𝒩=4 = 1.24𝐷1/3 [79]. Although these two estimates of 𝜅sc differ parametrically,

the first being of order 𝜆1/6 while the second is of order unity, their numerical values are

similar. If we set 𝑁𝑐 = 3, the ’t Hooft coupling is 𝜆 ≡ 𝑔2𝑁𝑐 = 12𝜋𝛼𝑠 meaning that if

we choose 0.2 < 𝛼𝑠 < 0.3 this corresponds to 7.5 < 𝜆 < 11.3 or 1.4 < 𝜆1/6 < 1.5. So,

combining the two estimates, we learn that if we apply an 𝒩 = 4 SYM theory calculation

done with 𝑁𝑐 → ∞ and 𝜆 → ∞ to 𝒩 = 4 SYM theory with 𝑁𝑐 = 3 and 7.5 < 𝜆 < 11.3

122



we conclude that 1.2 . 𝜅sc
𝒩=4 . 1.6, with the lower end of the range uncertain by a factor

that is of order unity. From this we conclude that the value of 𝜅sc that we have extracted by

comparing our results to experimental data on 𝑅AA for jets in the QCD plasma produced in

LHC collisions is smaller than that in 𝒩 = 4 SYM theory by a factor of about 1/3 to 1/4,

meaning that 𝑥stop is longer in the QCD plasma produced in a heavy ion collision than in

the 𝒩 = 4 SYM plasma by a factor of about 3 to 4.

We conclude that the hybrid strongly coupled approach to jet quenching that we have

developed is in good agreement with all the various measured jet observables to which we

have compared it in Section 5 when we take all the parametric dependence of 𝑑𝐸/𝑑𝑥 and

𝑥stop from the expressions (4.2) and (4.3) derived for the 𝒩 = 4 SYM plasma, and set the

numerical value of 𝑥stop in the QCD plasma longer than that in the 𝒩 = 4 SYM plasma as

expected, longer by a factor of 3 to 4.
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Chapter 6

Boson-Jet Correlations, Including

Predictions for
√
𝑠 = 5.02 ATeV

Collisions and for Z-jet Correlations

The extensive exploration in Chapter 5 has demonstrated that the hybrid model that we have

developed describes currently available inclusive jet and dijet data from LHC heavy ion col-

lisions rather successfully. This gives us considerable confidence in the model framework.

However, this class of observables proves not to be very sensitive to whether we choose

𝑑𝐸/𝑑𝑥 as in (4.2) (or (4.7) and (4.10)). The distinctions between the strongly coupled

form for 𝑑𝐸/𝑑𝑥 and our two control models provided by these observables are not suffi-

cient to differentiate between these different hypotheses for the microscopic dynamics of

energy loss, at least with present uncertainties. The strongly coupled form for 𝑑𝐸/𝑑𝑥 does

provide a better description of the dijet imbalance, but its predictions are not sufficiently

distinct from those of the control models. We must, therefore, consider further observables.

In deciding how to go further, we face a choice. We could start adding more physics to

the model, which would allow us to confront new classes of observables. For example, if

we were to add in the transverse momentum kicks that the medium delivers to the shower

partons passing through it, and the recoil that the shower partons delivers to the medium,

we could engage with jet shape observables. This is an attractive prospect, but we defer

it to Chapter 7. Before adding to the model, and in particular before adding a second free
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parameter, it is our responsibility to first ask whether there are further observables that our

present model, with its single parameter already fixed as described in the previous Section,

could reasonably be expected to describe. This is our goal in this Chapter. For most of the

remainder of this Chapter, we turn to observables involving jets back-to-back with either an

energetic and isolated photon or a Z-boson. We will keep the parameter 𝜅sc in our hybrid

model fixed exactly as in the previous Section, and confront our model with existing data

on three different observables describing 𝛾-jet correlations in Pb-Pb collisions at
√
𝑠 =

2.76 ATeV. As before, our model describes the data well, although it is fair to note in

advance that the statistical error bars on these measurements are substantial because to this

point the data sets of 𝛾-jet events have not been large. Nevertheless, the confrontation of

the hybrid model with these three new sets of data provides a strong independent validation

of our hybrid model, which has no further adjustable parameters.

Our central purpose now is to use our hybrid model to provide predictions for the mea-

surements that the data sets with higher statistics by about an order of magnitude that are

anticipated late this year will make possible. To this end, we provide predictions for three

𝛾-jet observables and three Z-jet observables in Pb-Pb collisions at
√
𝑠 = 5.02 ATeV. In

making these predictions, we will keep the parameter 𝜅sc in the hybrid model and the pa-

rameters 𝜅rad and 𝜅coll in the control models set to the same values that we obtained in the

previous Chapter by fitting to one data point at
√
𝑠 = 2.76 ATeV. The principal change in

going from
√
𝑠 = 2.76 ATeV to

√
𝑠 = 5.02 ATeV is a (modest) increase in the temperature

of the plasma. The principal effects of this increase arise from the explicit temperature

dependence in (4.2) or (4.7) and (4.10), and so are included in our analysis. We are leav-

ing out any small decrease in the values of the 𝜅’s that may arise if the plasma becomes

slightly less strongly coupled, anticipating that this effect will likely be too small to be

resolved given other uncertainties, both theoretical and experimental.

Although the observables that we study in this Section are similar in some respects to

those that describe dijet events, since neither 𝛾’s nor Z-bosons interact strongly with the

plasma, when one triggers on an energetic 𝛾 or Z-boson the jets produced in the same hard

scattering have points of origin that are distributed through the collision volume differently

than is the case for dijet pairs, where selection bias favors points of origin closer to the
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surface where at least one of the jets will suffer less energy loss. This means that the jets

produced in association with a 𝛾 or a Z-boson sample a different path-length distribution

than the jets in dijet pairs. A second difference between boson-jet events and dijet events

is that both 𝛾’s and Z-bosons are much more likely to be produced in association with a

quark jet than with a gluon jet. The third difference is that since the 𝛾 or Z-boson suffers no

energy loss, as they do not interact with the medium, their energy and direction are good

proxies for the initial energy and initial direction of the hard parton (usually, the quark)

going in the opposite direction. This is quite different than in the case of dijet events,

where generically both jets should be expected to have lost some energy. Of course, the

hard parton opposite a 𝛾 or Z-boson may split into more than one jet; in the analysis of

𝛾-jet and Z-jet correlations, it cannot be assumed that the boson is back-to-back with only

one jet in the final state.

6.1 Generation and Selection of Monte Carlo Events

For our study of photon-jet correlations we analyzed 105 hard scattering processes, in

PYTHIA 8.183 [121] p-p collisions at
√
𝑠 = 2.76 TeV and another 105 such events in

PYTHIA p-p collisions at
√
𝑠 = 5.02 TeV. We require at least one photon with a transverse

momentum above a desired cut, typically choosing 𝑝T
𝛾 > 𝑝T

cut = 60 GeV, and with a

pseudorapidity in the range |𝜂𝛾| < 1.44. We set the 𝑝T
min parameter in PYTHIA (basically,

the minimum momentum transfer in the hard processes that PYTHIA is sampling) safely

lower than 𝑝T
cut, for example choosing 𝑝T

min = 40 GeV if we are recording events that

include a photon with 𝑝T
𝛾 > 60 GeV, since PYTHIA does not reliably reproduce the photon

spectrum all the way down to its 𝑝T
min.1 The Monte Carlo implementation of these hard

scatterings and their embedding into the heavy ion environment is completely analogous to

the one performed in the study of the observables of previous Chapter; we refer the reader

to Section 4.3 for the details.

Next, we analyze the 105 events in order to “measure” each observable that is of in-

1For one of our observables, we wanted to include photons with 𝑝T
𝛾 > 𝑝T

cut = 40 GeV in our analysis.
For this observable, we ran 105 events with 𝑝T

min = 20 GeV.
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terest to us. In doing so, we only analyze the (modified) parton showers coming from the

hard scattering. We do not include any of the particles that would be created as the hydro-

dynamic fluid freezes out. This means that we do not have any background particles and

we therefore do not perform any background subtraction in our calculation of observables.

When we compare to data, we of course compare to measurements made after the experi-

mentalists have done their background subtraction. For this reason, for those observables

which have not been fully unfolded in the experimental analysis we include the smearing

procedure described in previous Chapter.

Although we of course know (from PYTHIA) exactly which photons in our events are

the photons coming from the originating hard process (prompt photons) and which photons

are instead produced in the parton shower (fragmentation photons), we do not use this

information in our computation of observables. Instead, we perform an isolation analysis

of all high energy photons in our Monte Carlo data, patterned upon what experimentalists

must do. This procedure allows us to study a sample of photons which is closer to that in

experimental analyses, since in experiments prompt and fragmentation photons can only

be distinguished via isolation cuts, with finite efficiencies. As it turns out, quenched jets

associated with prompt photons constitute about 80% of our final “data” sets, with about

20% coming from fragmentation of jets in events without a prompt photon.

For readers who would like a little more detail, our procedure is as follows. We select

events containing at least one photon with 𝑝T
𝛾 > 𝑝T

cut and |𝜂𝛾| < 1.44. After quenching the

parton showers in these events as described above, following the analysis of Refs. [23, 145]

we consider a photon to be isolated if the sum of the energy of all the particles within a

cone around this photon of radius ∆𝑟 ≡
√︀

∆𝜑2 + ∆𝜃2 = 0.4 is below 5 GeV. Contrary

to what is done in the analysis of experimental data, we perform this isolation cut at the

partonic level, instead of at the hadronic level. In the unlikely situation that two or more

isolated photons are found in a single event, we treat the one with the highest transverse

momentum as the leading photon. Next, we construct a sample of photon-jet pairs from

our sample of isolated photons. We reconstruct jets using the anti-𝑘𝑇 algorithm [137, 138],

typically choosing 𝑅 = 0.3, and keep those events in which we find an associated jet at

an angular distance ∆𝜑 > 7𝜋/8 from the isolated photon. This angular cut suppresses the
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contribution of events in which the isolated photon is a fragmentation photon and events

with more than one associated jet to our final photon-jet sample.

We generate a sample of Z-jet events via an analogous procedure. We select 105

PYTHIA events in which a hard scattering process produces a Z-boson with 𝑝T
𝑍 > 𝑝T

cut,

again typically choosing 𝑝T
cut = 60 GeV. We need not worry about fragmentation Z-

bosons: the large mass of the Z makes it very unlikely that they are produced in the parton

showers. We therefore need not apply any isolation procedure: any Z is a prompt Z. For the

sake of simplicity, we use the same 𝑝T and 𝜂 cuts applied to photon events. We reconstruct

jets using the anti-𝑘𝑇 algorithm as before, again typically choosing 𝑅 = 0.3, and obtain our

Z-jet sample by requiring an associated jet at an angular distance ∆𝜑 > 7𝜋/8 from the Z.

In experimental measurements, Z-bosons are reconstructed through their di-muon decay.

Since high energy muons are not modified at all by their passage through the plasma, and

since the properties of the associated jets are the same no matter how the Z-boson decays,

to increase the size of our sample we simply do not allow our Z-bosons to decay, keeping

all of them in our sample.

6.2 Photon-Jet Observables: Comparison with Experimen-

tal Results at
√
𝑠 = 2.76 ATeV and Predictions for

√
𝑠 = 5.02 ATeV

We use the Monte Carlo samples of photon-jet events, prepared and quenched as described

above, to construct different observables which can be confronted with experimental data.

In this section, we describe these observables, we show the results obtained from our model

for collisions at
√
𝑠 = 2.76 ATeV and compare them to data, and we provide the predictions

that we obtain from our model for collisions at
√
𝑠 = 5.02 ATeV.

We first construct the photon-jet imbalance. This is analogous to the dijet imbalance,

except that here we have a photon instead of a leading jet. In the case of dijets we define the

associated jet as the jet in the pair that has less transverse momentum, meaning that the ratio

of the transverse momentum of the associated jet to that of the leading jet is less than one by
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Figure 6-1: Distribution of the transverse momentum imbalance of photon-jet pairs, 𝑥𝐽𝛾 ≡
𝑝T

jet/𝑝T
𝛾 , for Pb-Pb collisions. The left and right panels show the 0-10% and 10-30%

most central events, respectively. The upper panels show our results for collisions with√
𝑠 = 2.76 ATeV, as well as data from Ref. [145]. The lower panels show our predictions

for heavy ion collisions with
√
𝑠 = 5.02 ATeV, anticipated for late this year.

definition. This is not so in the case of the photon-jet imbalance, since the associated jet can

have more or less transverse momentum than the photon. Defining 𝑥𝐽𝛾 ≡ 𝑝T
jet/𝑝T

𝛾 , this

observable can be less than or greater than one. For example, in p-p collisions in vacuum,

an associated jet can have more transverse momentum than the photon if there is a second

jet in the event, in the same hemisphere as the photon. In a heavy ion collision, the energy

loss experienced by the partons propagating through the medium pushes 𝑥𝐽𝛾 downwards.

However, if the passing jet sweeps particles from the plasma into the jet cone this can in

principle push 𝑥𝐽𝛾 upwards, but this effect is expected to be small at large energies. Our

hybrid model neglects this possibility, meaning that in every event in our sample 𝑥𝐽𝛾 is less

than (or equal to) what it would have been in the absence of the medium.

In Fig. 6-1, we show the distribution of the imbalance in the transverse momentum of

the associated jet relative to that of the photon, 𝑥𝐽𝛾 , for events with two different centralities

and for events with two different collision energies. Following the conventions established
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in the experimental analyses in Refs. [23, 145], these distributions are normalized to the

total number of photons, rather than to the total number of photon-jet pairs; integrating

each of the curves in Fig. 6-1 therefore yields a number below one. Also as in the experi-

mental analysis, we only consider photons with transverse momentum 𝑝T
𝛾 > 60 GeV. The

associated jet is reconstructed with the anti-𝑘𝑇 algorithm with 𝑅 = 0.3; we only count

events in which the associated jet has a transverse momentum 𝑝T
jet > 30 GeV. The widths

of the colored bands that illustrate our results in this Figure — and in many Figures that

follow — incorporate both the uncertainty that comes from varying 𝑇𝑐 between 145 and

170 MeV and the uncertainty that comes from varying our model parameter 𝜅sc over its

allowed range 0.32 < 𝜅sc < 0.41, determined in Section 5.1. That is, we obtain four curves

by repeating our calculation of the observable in question, here 𝑥𝐽𝛾 , with 𝑇𝑐 and 𝜅sc each

set to its lowest and its highest value, and plot the band that extends from whichever one of

the four curves is lowest to whichever curve is highest at each point in the Figure.

As a reference, in Fig. 6-1 we display the 𝑥𝐽𝛾 distribution in p-p collisions at the same

nucleon-nucleon energy as predicted by PYTHIA, i.e. with no medium-induced parton en-

ergy loss. In order to mimic the effects of jet-energy resolution on the transverse momen-

tum of the associated jet obtained in the analysis of the Pb-Pb data after the subtraction

of the background, in our p-p results we have smeared the momenta of the associated jets

obtained from our Monte Carlo calculation with a centrality-dependent Gaussian broad-

ening. The parameters of this smearing, reported in Ref. [141], were tuned to reproduce

the measured distributions after embedding PYTHIA-generated photon-jet samples into real

lead-lead events. For this reason, the smeared proton-proton distribution is not identical in

the left and right panels of Fig. 6-1, which display our results for Pb-Pb collisions with two

different centralities. For the present, these smeared p-p results are the correct reference to

which both the experimental results as measured by the CMS collaboration [22] and our

results for quenched jets in Pb-Pb collisions should be compared. (See Ref. [146] for fully

unfolded experimental results to come.) Given that in our Pb-Pb simulations there is no

background, and consequently no background subtraction effects, in obtaining the results

represented by the colored bands in Fig. 6-1 we have applied the same smearing procedure

to our simulated quenched jets. The smearing parameters are at present known only for
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√
𝑠 = 2.76 ATeV, not for

√
𝑠 = 5.02 ATeV. For the present, we have decided to employ

the same smearing parameters at the higher collision energy. Our predictions therefore as-

sume that the effects of background subtraction on these observables are similar at these

two collision energies.

The differences between the (smeared) proton-proton Monte-Carlo data and the results

of our in-medium calculations displayed in Fig. 6-1 are due to energy loss. The sample

of isolated photons we have used to construct these distributions is dominated by prompt

photons, which do not lose momentum when traversing the plasma.2 The partons in the

showers that become the associated jets, however, interact strongly with the medium and

lose energy according to (4.2) as they propagate through it. In some cases, this pushes the

transverse energy of the associated jet below 30 GeV, meaning that the event does not get

counted as a photon-jet in our Pb-Pb analysis although it was counted in our p-p analysis.

This is why the integrals of the curves illustrating our Pb-Pb results in Fig. 6-1 are smaller

than the integrals of our p-p results. More on this below. In other cases, when the transverse

energy of the associated jet remains above 30 GeV, the effect of the energy loss is to reduce

𝑥𝐽𝛾 , displacing the photon-jet imbalance distribution toward smaller values of 𝑥𝐽𝛾 .

Keeping in mind that we fixed the single parameter in our hybrid model by comparing it

to the single-jet suppression 𝑅𝐴𝐴, see Section 5.1, it is remarkable how well the photon-jet

imbalance distribution that we obtain from our model agrees with CMS measurements in
√
𝑠 = 2.76 ATeV collisions in both centrality bins in Fig. 6-1. The fact that only one side

of photon-jet pair loses energy makes the interpretation of this observable cleaner than in

the case of the dijet imbalance. Of course, at present the large statistical uncertainties in

the photon-jet measurements is a limitation on their use to differentiate between different

model assumptions for the rate of energy loss 𝑑𝐸/𝑑𝑥, which is to say a limitation on their

use as diagnostics of the mechanism of energy loss. We illustrate this point Section 6.4,

where we present the results that we obtain by repeating our photon-jet and Z-jet calcu-

lations using the control models for 𝑑𝐸/𝑑𝑥 in (4.7) or (4.10). We find that these control

models make predictions that are distinct from those of our hybrid strong/weak coupling

2The small fraction of fragmentation photons which fulfill the isolation requirement do suffer energy loss
via the quenching of the partons from which they originate. This effect is small for this observable, but it can
have consequences for more differential observables, as we will discuss below
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Figure 6-2: Fraction of events with an isolated photon in which we find a photon-jet pair,
which is to say in which we find an associated jet with 𝑝T

jet > 30 GeV at an azimuthal
angle more than 7𝜋/8 away from that of the isolated photon. We plot this fraction as a
function of the photon transverse momentum, in collisions with

√
𝑠 = 2.76 ATeV (left)

and
√
𝑠 = 5.02 ATeV (right). The colored band shows the results from our hybrid model,

with its strongly coupled form for the rate of energy loss. For comparison, the violet dots
show the smeared p-p calculations (see text for details). Our results for

√
𝑠 = 2.76 ATeV

are compared to CMS data [145].

model, with 𝑑𝐸/𝑑𝑥 given by (4.2), but the distinctions are too small to be resolved by the

present data, with their statistical uncertainties.

Given these considerations, perhaps the most important results that we can use our

model to provide are our predictions for the upcoming runs of the LHC, at
√
𝑠 = 5.02 ATeV,

where the photon-jet data sets are expected to be larger by about an order of magnitude and

the statistical uncertainties are expected to be substantially smaller than at present. For this

reason, in the lower panels of Fig. 6-1 we show the predictions of our hybrid model, with

its strongly coupled form for the rate of energy loss, for the photon-jet imbalance distribu-

tion in Pb-Pb collisions at
√
𝑠 = 5.02 ATeV. We have applied the same kinematical cuts

used in current measurements (and our calculations) at
√
𝑠 = 2.76 ATeV. The imbalance

distribution shows little dependence on the collision energy.

To further test the success of our hybrid approach, we now turn to exploring other

photon-jet observables. In Fig. 6-2 we show the fraction of isolated photons that come

with an associated jet, as reconstructed with the anti-𝑘𝑇 algorithm with 𝑅 = 0.3, that

has 𝑝T
jet> 30 GeV and ∆𝜑 > 7𝜋/8. We plot this quantity, which we denote by 𝑅𝐽𝛾 ,

as a function of the transverse momentum of the isolated photon for heavy ion collisions

with
√
𝑠 = 2.76 ATeV (left) and

√
𝑠 = 5.02 ATeV (right). In the plots in Fig. 6-2, the
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smeared proton-proton PYTHIA simulations are represented by the violet dots, the results

of our hybrid strong/weak coupling model are represented by the colored band, and the

experimental results from Ref. [145] for
√
𝑠 = 2.76 ATeV are the black data points.3 The

broad 𝑥𝐽𝛾 distribution seen in Fig. 6-1 implies that this ratio must be an increasing function

of 𝑝T
𝛾 for both collision energies, since the 30 GeV cut on the associated jet energy is

more and more easily satisfied as the momentum of the photon is made larger and larger.

Quenching reduces 𝑅𝐽𝛾 since it pushes the energy of some of the associated jets below

30 GeV. As for the photon-jet imbalance distribution, we find good agreement between

the 𝑅𝐽𝛾 obtained from our hybrid model and that measured in present experiments with
√
𝑠 = 2.76 ATeV, in this case for all values of the photon momenta.4 Our predictions for

heavy ion collisions with
√
𝑠 = 5.02 ATeV are shown in the right panel of Fig. 6-2. As

before, this observable shows little sensitivity to the collision energy, at least within these

kinematical cuts.

We have also analyzed the spectrum of jets produced in association with an isolated

photon. In Fig. 6-3, we show the ratio of the spectrum of associated jets in Pb-Pb colli-

sions to that in proton-proton collisions, 𝐼𝐴𝐴, for two different ranges of photon transverse

momenta, 60 GeV< 𝑝T
𝛾 <80 GeV and 𝑝T

𝛾 > 80 GeV. The observable 𝐼𝐴𝐴, and in partic-

ular its suppression below 1, can be thought of as the photon-jet analogue of the single-jet

suppression 𝑅𝐴𝐴, but instead of being constructed for inclusive jets as 𝑅𝐴𝐴 is, 𝐼𝐴𝐴 is con-

structed using only the associated jets back-to-back with an isolated photon. This implies

that the distribution of the jet energies as well as the fragmentation pattern and hence the jet

masses, of the p-p jets and of the Pb-Pb jets that enter into the calculations of 𝐼𝐴𝐴 and 𝑅𝐴𝐴

are different. Furthermore, the distribution of the point in the transverse plane at which

the hard scattering event that produces a jet selected in an 𝐼𝐴𝐴 analysis is quite different

from that for the jets selected in an 𝑅𝐴𝐴 analysis. It is therefore striking that even though

we fitted the single parameter in our hybrid model to a single measured value of 𝑅𝐴𝐴,

when we compare the results for the photon-jet 𝐼𝐴𝐴 obtained from the model with data at

3Note that the ratio of the integral of the photon-jet imbalance in Pb-Pb collisions to that in p-p collisions,
see Fig. 6-1, is the ratio of 𝑅𝐽𝛾 for all photons with 𝑝T

𝛾 > 60 GeV in Pb-Pb collisions to that in p-p collisions.
The fact that the colored band lies below the violet dots in Fig. 6-2 was therefore foreshadowed in Fig. 6-1.

4Note that in order to extend our calculations of 𝑅𝐽𝛾 down to 40 GeV< 𝑝T
𝛾 <50 GeV we used a sample

of Monte Carlo events with the PYTHIA parameter 𝑝T
min set to 20 GeV.
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Figure 6-3: Ratio of the transverse momentum spectra of jets associated with an iso-
lated photon in Pb-Pb collisions to that in p-p collisions, as a function of the jet trans-
verse momentum, for two different ranges of the photon transverse momentum and for√
𝑠 = 2.76 ATeV (upper panels) and

√
𝑠 = 5.02 ATeV (lower panels). The hybrid model

with its strongly coupled form for the rate of energy loss describes the available CMS data
at
√
𝑠 = 2.76 ATeV well.
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√
𝑠 = 2.76 ATeV, displayed in the upper panels of In Fig. 6-3, we see such good agreement,

for both ranges of the photon energy and over the whole range of jet 𝑝T. In the lower panels

of Fig. 6-3, we show the predictions from our hybrid model with its strongly coupled rate of

energy loss for heavy ion collisions with
√
𝑠 = 5.02 ATeV. As for the previous photon-jet

observables, the spectrum of the associated jets hardly changes between these two collision

energies.

The agreement between the predictions of our hybrid strong/weak coupling model, with

its PYTHIA branching and its strongly coupled form for the rate of energy loss, for all of

these photon-jet observables and the data available today is very encouraging. Having fixed

the single parameter in our model using a single measurement of 𝑅𝐴𝐴 for inclusive jets,

without introducing any new parameters we have obtained a good description of the exper-

imental data for a total of 5 different observables, one involving inclusive jets, one involv-

ing dijets, and three involving photon-jets, all with their centrality and energy dependence.

These observables sample different in-medium path length distributions of the quenched

jets, different shapes of the original jet spectrum, different fragmentation patterns and jet

mass distributions, and different quark vs. gluon compositions of the observed jets. De-

spite all these differences, our model is able to describe the systematics observed in all the

data correctly. To avoid over-reaching in drawing conclusions, however, it is important to

explore the predictions of the different control models described in Section 4.2.3 for these

observables. The results of this analysis can be found in Section 6.4. There are distinctions

between the predictions of the control models and our hybrid model, but these distinctions

are small compared to the statistical uncertainties in present data. It is therefore not possible

at present to use the agreement between our hybrid model and photon-jet data to argue that

the data favors a strongly coupled form for the rate of energy loss. We therefore await the

higher statistics data expected later this year in collisions with
√
𝑠 = 5.02 ATeV, and have

provided the predictions of our hybrid model for all three photon-jet observables for colli-

sions at this higher energy. We have also provided such predictions for Z-jet observables

below, in Section 6.3. In addition, it is important to investigate the predictions of our hybrid

model for intra-jet observables like fragmentation functions, as we shall do in Section 6.5.

These are all paths toward using jet data in the service of understanding the dynamics of
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the interaction between energetic partons and strongly coupled plasma. In particular, once

the statistical precision of the experimental data increases we look forward to identifying

deviations between the predictions of our hybrid model and various experimental data as

this will allow us to begin to see, quantify, and understand the effects of the physical effects

that we are leaving out in our present simple, one-parameter, hybrid model.

6.3 Z-Jet Observables: Predictions for
√
𝑠 = 5.02 ATeV

In this section, we turn to the Z0-jet observables that are complementary to the photon-jet

observables of the previous Section. The large Z-mass ensures that Z-bosons seen in a

heavy ion collision were almost without exception produced promptly, in hard processes

dominated by short-distance physics: it is extremely unlikely for a Z-boson to be produced

during the fragmentation of a parton in a jet, unless the jet energy is much higher than

is relevant to us. The Z-boson production mechanism is therefore under good theoretical

control.5 Furthermore, because of their large width and short lifetime, Z-bosons decay

during the very early stage of a heavy ion collision, even prior to plasma formation. The

Z-bosons that are identified in heavy ion collisions are those that decayed leptonically, in

particular via 𝑍0 → 𝜇+𝜇−. This means that their decay products do not interact strongly

with the pre-equilibrium partonic matter or with the strongly coupled plasma, once it forms.

Z-bosons are in this respect similar to prompt photons, making Z-jet events similar in their

utility to photon-jet events. The Z-jet events come with the added advantage almost all

Z’s are prompt Z’s. As consequence, the experimental identification of Z-bosons via their

𝜇+𝜇− decays do not require isolation cuts, which leads to an arguably cleaner determination

of the associated jet energy. The only disadvantage of Z-jet events is that Z’s are less

numerous than photons.

We construct the same class of observables for Z-jet events that we constructed for

photon-jet events in the previous Section. Because of the low statistics of Z-boson pro-

duction in
√
𝑠 = 2.76 ATeV collisions, no constraining measurements exist at present for

5Note, of course, that modifications of the nuclear parton distribution function in the relevant intermediate
𝑥-region can alter the production rate of Z-bosons, by modifying the composition of the initial flux of partons.
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Figure 6-4: Distribution of the transverse momentum imbalance of Z-jet pairs, 𝑥𝐽𝑍 ≡
𝑝T

jet/𝑝T
Z, for Pb-Pb collisions with

√
𝑠 = 5.02 ATeV. The left and right panels show the

0-10% and 10-30% most central events, respectively. Here and below, the colored bands
show the results from our hybrid model, with its strongly coupled form for the rate of
energy loss and the violet dots show the smeared p-p calculations for comparison.

the Z-jet observables that we shall construct.6 We therefore present predictions for these

observables in the
√
𝑠 = 5.02 ATeV heavy ion collisions coming soon in LHC heavy ion

Run 2. We have chosen the same kinematical cuts for the Z-jet observables that we (and the

CMS collaboration) have used in photon-jet observables, to facilitate comparison between

our results for the two cases. Of course, once the experimentalists decide on the cuts that

they will use for their Z-jet analyses of the data-to-come, we can re-run our analyses with

their cuts.

In Fig. 6-4, we show the distribution of the Z-jet imbalance observable 𝑥𝐽𝑍 ≡ 𝑝T
jet/𝑝T

Z,

in heavy ion collisions with two different ranges of centrality with
√
𝑠 = 5.02 ATeV. In

both cases the colored band shows the predictions of our hybrid model, with its strongly

coupled form (4.2) for the rate of energy loss, for Pb-Pb collisions and the violet dots

show the distribution of 𝑥𝐽𝑍 for p-p collisions as predicted by PYTHIA. As we did in our

analysis of photon-jet observables, we have smeared the momenta of the associated jets

in both our Pb-Pb and p-p calculations. For the present, before better guidance becomes

available once experimentalists have begun the analysis of LHC Run 2 data, we have used

the same smearing functions here as we (and the CMS collaboration) used for the photon-

jet observables that we discussed in the previous Section. We obtained the 𝑥𝐽𝑍 distributions

in Fig. 6-4 from a sample of events in which we required a Z-boson with 𝑝T
𝑍 > 60 GeV

6For preliminary low-statistics measurements of Z-jet correlations at
√
𝑠 = 2.76 ATeV, see Ref. [?].
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Figure 6-5: Fraction of events with a Z-boson in which we find a Z-jet pair, which is to
say in which we find an associated jet with 𝑝T

jet > 30 GeV at an azimuthal angle more than
7𝜋/8 away from that of the Z-boson, in collisions with

√
𝑠 = 5.02 ATeV.

and an associated jet reconstructed using the anti-𝑘𝑇 algorithm with 𝑅 = 0.3 that has

𝑝T
jet > 30 GeV and is separated in azimuthal angle from the Z-boson by ∆𝜑 > 7𝜋/8. We

required that both the Z and the associated jet have |𝜂| < 1.6. As in the case of the 𝑥𝐽𝛾

distribution in photon-jet events, the 𝑥𝐽𝑍 distribution is broad in p-p collisions, indicating

the importance of events with a Z and two jets, in particular those arising from initial

state radiation. This means that at present Z-bosons are not substantially better as taggers

of the associated jet energy than photons are, which motivates the future development of

methods to suppress events with more than one jet in the final state. Because the transverse

momentum of the 𝑍-boson and its 𝜇+𝜇− decay products do not change in the medium,

the difference between the Pb-Pb distribution and the p-p distribution in our calculation is

entirely due to the energy lost by the partons in the associated jet in the Pb-Pb collisions

due to their passage through the strongly coupled plasma. As for photon-jet events, we

see a reduction in the integral of 𝑥𝐽𝑍 , analyzed further below, and a displacement of the

distribution toward smaller 𝑥𝐽𝑍 . The magnitude of this displacement is comparable to the

corresponding shift in the 𝑥𝐽𝛾 distribution in photon-jet events, see Fig. 6-1. As in that

case, there are clear but small distinctions between the results we obtain with our hybrid

model, shown in Fig. 6-4, and those we obtain when we use our control models for the rate

of energy loss (4.7) and (4.10) instead. We present these in Section 6.4.

In Fig. 6-5, we compute the fraction of Z-bosons in our sample that come with an associ-

ated jet, as reconstructed with the anti-𝑘𝑇 algorithm with 𝑅 = 0.3, that has 𝑝T
jet > 30 GeV

139



0

0.5

1

1.5

2

30 40 50 60 70 80 90 100

I A
A

Jet PT

0 − 30% Centrality

P jet
T > 30 GeV

∆φ > 7π/8

60 < PZ0

T < 80 GeV

Strong Coupling

√
𝑠 = 5.02 ATeV

0

0.5

1

1.5

2

40 50 60 70 80 90 100 110 120 130

I A
A

Jet PT

0− 30% Centrality

PZ0

T > 80 GeV

Strong Coupling

√
𝑠 = 5.02 ATeV

Figure 6-6: Ratio of the transverse momentum spectra of jets associated with a Z-boson
in Pb-Pb collisions with

√
𝑠 = 5.02 ATeV to that in p-p collisions as a function of the jet

transverse momentum, for two different ranges of the Z-boson transverse momentum.

and ∆𝜑 > 7𝜋/8. We plot this quantity, which we denote by 𝑅𝐽𝑍 , as a function of the trans-

verse momentum of the Z-boson. We show the results obtained from our smeared proton-

proton PYTHIA simulations as the violet dots and the predictions for Pb-Pb collisions from

our hybrid strong/weak coupling model as the colored band. As in the photon-jet case,

as the partons in the associated jet shower lose energy the total energy of the associated

jet can drop below our 𝑝T
jet = 30 GeV cut, meaning that energy loss leads to a reduction

of the Z-jet yield as a fraction of the number of Z-bosons. This makes the integral under

the colored bands in Fig. 6-4 less than that under the violet dots there, and it pushes the

colored band in Fig. 6-5 below the violet dots. The qualitative behavior and magnitude of

this reduction is comparable to the reduction in the analogous photon-jet observable, see

Fig. 6-2.

Finally, in Fig. 6-6 we analyze the spectrum of jets produced in association with a Z-

boson. We show the ratio of the spectrum of associated jets in Pb-Pb collisions to that

in p-p collisions, 𝐼𝐴𝐴, for two different ranges of Z-boson transverse momenta, 60 GeV<

𝑝T
Z <80 GeV and 𝑝T

Z >80 GeV. The effect of energy loss on this observable is again

comparable to its effects on the analogous photon-jet observable, see Fig. 6-3.

In Section 6.4, we repeat the analysis of 𝑅𝐽𝑍 and 𝐼𝐴𝐴 for jets produced in association

with a Z-boson in our control models, where we use the expressions (4.7) and (4.10) for

the rate of energy loss. We find that these observables exhibit little sensitivity to the form

of 𝑑𝐸/𝑑𝑥, meaning little sensitivity to the microscopic dynamics via which the partons in
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the jet shower interact with the strongly coupled plasma.

In Sections 6.2 and 6.3, we have provided predictions for three photon-jet observables

and three Z-jet observables in heavy ion collisions with
√
𝑠 = 5.02 ATeV obtained from

our hybrid strong/weak coupling model, with fragmentation taken from PYTHIA and a rate

of energy loss (4.2) as at strong coupling. We await the data that will come from LHC

heavy ion Run 2 with considerable anticipation.

6.4 Model Dependence of Boson-Jet Correlations

In this Section, we study the sensitivity of the different photon-jet and Z-jet observables that

we have considered in Sections 6.2 and 6.3 to the microscopic mechanism responsible for

energy loss. To do so, we repeat our analysis with the strongly coupled form for the rate of

energy loss (4.2) that we use in our hybrid model replaced by one or other of the expressions

(4.7) and (4.10) that define our two control models, which are inspired by the radiative and

collisional energy loss mechanisms. As in the strong coupling case, these expressions for

𝑑𝐸/𝑑𝑥 also contain a single parameter which is fitted to the single-jet production rate at

one transverse momentum and centrality. The values of the parameters obtained from these

fits are summarized in Table 5.1.

In Fig. 6-7 we show the results that we have obtained from the hybrid strong/weak

coupling model and our two control models for the photon-jet observables that we have an-

alyzed in heavy ion collisions with
√
𝑠 = 2.76 ATeV. The procedure for determining each

of the observables is identical for all models and is described in Section 6.2. These plots

make clear that the uncertainties in the present low-statistics data are too large to make it

possible to use the photon jet imbalance or the spectrum of jets produced in association

with isolated photons or the fraction of isolated photons with an associated jet to differ-

entiate between microscopic models of the dynamics of energy loss. Within the current

uncertainties, all the models agree with the CMS data displayed in these plots. The photon-

jet imbalance in central collisions, top left panel of Fig. 6-7, does have modest power to

discriminate between the strongly coupled model and the control models. This indicates

that the higher statistics photon-jet data sets anticipated in LHC heavy ion Run 2 could shed
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Figure 6-7: Computations of several photon-jet observables using three different mod-
els of the energy loss mechanism for heavy ion collisions with

√
𝑠 = 2.76 ATeV. The

distributions of the transverse momentum imbalance of photon-jet pairs for two different
centralities are displayed in the upper panels. The middle panel shows the ratio of the trans-
verse momentum spectra of jets produced in association with an isolated photon in Pb-Pb
collisions to that in p-p collisions for two different centralities. The lower panel shows the
fraction of isolated photons produced in association with a hard jet with 𝑝T

jet > 30 GeV at
an azimuthal angle more than 7𝜋/8 away from that of the isolated photon. Data are taken
from Ref. [145].
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light on the microscopic dynamics via which jets lose energy, as well as on the quantitative

validity of the simplifying assumptions inherent in our hybrid model.

To better compare our computations with future higher statistics data from LHC heavy

ion Run 2, we also explore the model predictions of the different energy loss mechanisms

for both photon-jet observables, displayed in Fig. 6-8, and Z-jet observables, displayed in

Fig 6-9, in heavy ion collisions with
√
𝑠 = 5.02 ATeV. As at the lower collision energy,

little discriminating power is observed. Again as at the lower collision energy, there is

some separation among the predictions of our hybrid model with its strongly coupled rate

of energy loss and the control models in the photon-jet and Z-jet momentum imbalance

distributions in the most central collisions, displayed in the upper-left panels of Figs. 6-8

and 6-9, respectively.
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Figure 6-8: Predictions for several photon-jet observables computed with three different
models of the energy loss mechanism in heavy ion collisions with

√
𝑠 = 5.02 ATeV. The

distributions of the transverse momentum imbalance of photon-jet pairs for two different
centralities are displayed in the upper panels. The middle panel shows the ratio of the
transverse momentum spectra of jets produced in association with an isolated photon in Pb-
Pb collisions to that in p-p collisions for two different centralities. The lower panel shows
the fraction of isolated photons produced in association with a hard jet with 𝑝T

jet > 30 GeV
at an azimuthal angle more than 7𝜋/8 away from that of the isolated photon.
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Figure 6-9: Predictions for several Z-jet observables computed with three different models
of the energy loss mechanism in heavy ion collisions with

√
𝑠 = 5.02 ATeV. The distribu-

tions of the transverse momentum imbalance of Z-jet pairs for two different centralities are
displayed in the upper panels. The middle panel shows the ratio of the transverse momen-
tum spectra of jets produced in association with a Z-boson in Pb-Pb collisions to that in p-p
collisions for two different centralities. The lower panel shows the fraction of Z-bosons
produced in association with a hard jet with 𝑝T

jet > 30 GeV at an azimuthal angle more
than 7𝜋/8 away from that of the isolated photon.
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6.5 Fragmentation Functions of Associated Jets: Boson-

Jet and Dijet

We now turn to the analysis of a more differential class of jet observables, namely frag-

mentation functions. We saw in Fig. 5-6 of Section 5.3 that the predictions of our hybrid

model and of our two control models for the ratio of the partonic fragmentation function of

inclusive jets in PbPb collisions to that in p-p collisions are distinct for the three models.

This motivates the hope that the higher statistics measurements expected from the coming

LHC run may serve to distinguish between models. And, it motivates us to compute the

predictions of all three models for the partonic fragmentation functions of jets produced in

association with an isolated photon or a Z-boson. We shall present the results of these cal-

culations in Section 6.5.1. We were initially surprised to see that the partonic fragmentation

function ratio for jets produced in association with bosons turn out to be more similar for

the three models we are considering than was the case for inclusive jets. Understanding this

effect, which we shall do by the end of Section 6.5.1, leads us, in Section 6.5.2, to introduce

a new observable constructed from the fragmentation functions of jets in dijet pairs in Pb-

Pb collisions, without the need for any p-p reference. This turns out to be the observable

that is most effective at differentiating among our three models of any observable that we

have considered to date.

Unlike the more inclusive observables described in the previous Section, the hadronic

fragmentation functions that experimentalists measure are quite sensitive to hadronization

effects. However, the dynamics of hadronization, even in vacuum, are not under full theo-

retical control. In fact, the predictions of different Monte Carlo event generators for frag-

mentation functions can differ among themselves, and in comparison with p-p data, by as

much as 20% as shown in Refs. [147, 148]. Since the modification of the fragmentation

functions in Pb-Pb collisions with respect to those in p-p collisions is itself on the order

of several tens of percent at most (see the measurements reported in Ref. [24, 30, 142])

and since there are differences in hadronization dynamics (in particular, differences in the

patterns of color recombination) for jets in Pb-Pb and p-p collisions [127, 128, 129], it will

be challenging to compare the ratios of partonic fragmentation functions in Pb-Pb colli-
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sions to those in p-p collisions — ratios which we calculate in our models in Section 6.5.1

— to data. The in-medium effects of interest are comparable in magnitude to the known

uncertainties coming from our lack of understanding of hadronization dynamics. This is

strong further motivation for the importance of the observable that we introduce in Sec-

tion 6.5.2: the ratio of the fragmentation function of inclusive jets in Pb-Pb collisions to

that of the associated jets in dijet pairs. Since this is the ratio of the fragmentation functions

of two different classes of jets in Pb-Pb collisions, with no need for a p-p reference, many

hadronization uncertainties will cancel.

We shall restrict our calculations to partonic fragmentations throughout this Section,

meaning that our calculations are not sensitive to hadronization and so are not affected by

its challenges. The observable that we introduce in Section 6.5.2 is the one in this Section

for which this will to the greatest degree possible also be true in experimental data. For this

observable, as for those we calculate in Section 6.5.1, however, the fragmentation functions

describing fragments with the lowest 𝑝T’s cannot be described reliably by our hybrid model

or by the two control models because none of these models include the contribution to the

low-𝑝T component of a jet arising from the wake in the recoiling plasma that the jet plowing

through it produces [149, 110, 90, 150, 151, 152].

6.5.1 Fragmentation Functions of the Associated Jets in Photon-Jet

and Z-jet Pairs

Fragmentation functions are defined as the distribution of hadrons within a jet with a given

fraction 𝑧 of the total longitudinal momentum 𝑝‖ of the jet. Longitudinal, here, means in

the direction of the jet axis. In p-p collisions, where most of the activity in events with hard

jets comes from hadrons produced via the fragmentation and subsequent hadronization

of the virtual partons produced in an initial elementary partonic collision, fragmentation

functions provide us with information about how the showering process via which the large

virtuality of the initial partons relaxes takes place. Furthermore, since final state effects

are negligible, 𝑝‖ obtained from the energy of a jet reconstructed with a sufficiently large

reconstruction radius provides a good proxy of the initial energy of the hard parton that
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fragmented to form the jet. This means that the 𝑧-fraction of the final fragments are directly

related to one of the QCD evolution variables. This is not the case in Pb-Pb collisions.

We have already mentioned one of the complications in Pb-Pb collisions: at low 𝑝T,

some of the particles in a reconstructed jet did not originate from the initial hard parton

that was produced in the initial elementary partonic collision. Some soft particles recon-

structed in the jet come, instead, from the hadronization of moving quark-gluon plasma, set

in motion by the momentum that the jet passing through it transfers to the medium through

which it is passing. Operationally, this enters the analysis because in analyzing jets in Pb-

Pb collisions it is necessary and standard to do a background subtraction to remove the

hadrons formed from the quark-gluon plasma, and this background subtraction procedure

is based upon the assumption that the momenta of these hadrons is uncorrelated with the

direction of the jet. To the extent that this is the case, the background subtraction removes,

on a statistical basis, particles in the jet cone that are not part of the jet itself. However,

since the interaction of the jet with the plasma transfers momentum to the plasma, this back

reaction (or recoil) effect means that the background subtraction procedure cannot remove

all the particles from the medium: there is no way to disentangle all of them from the prod-

ucts of the jet shower; some of them must end up incorporated into jet observables. This

means that, in Pb-Pb collisions, fragmentation functions at low 𝑝T are sensitive to physi-

cal processes other than jet fragmentation. Addressing these additional physical processes

requires a dynamical treatment of the response of the medium to the passage of the jet,

which is beyond our current model implementation and will be studied in Chapter 7. For

this reason, the results of our calculations become less reliable at small 𝑧. In this section,

we will look at jets with 𝑝T > 30 GeV, meaning that 𝑝‖ > 30 GeV. So, ln(1/𝑧) = 2.7 or

ln(1/𝑧) = 3.5 corresponds to fragments with 𝑝T > 2 GeV or 𝑝T > 1 GeV. We will plot

our results out to larger values of ln(1/𝑧), smaller values of 𝑧, but the effects of medium

recoil that we are not including become more and more important for ln(1/𝑧) & 3. In

Section 6.5.2 where we consider inclusive jets and dijets, rather than jets produced in asso-

ciation with a boson, we will look at jets with 𝑝T > 80 GeV, meaning that our results there

will be reliable out to somewhat larger values of ln(1/𝑧).

There is a second complication in interpreting jet fragmentation functions in Pb-Pb
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collisions, and this is that the 𝑝‖ of a jet, as reconstructed from the final state, is less than

the energy of the initial hard parton that fragmented into the jet because the partons in the

jet have lost energy as they propagate through the strongly coupled medium produced in

the Pb-Pb collision. At least some of the “lost” energy (according to the data [21, 153], a

significant amount of it) ends up as soft particles moving at large, random, angles relative

to the jet axis, and is not included when the jet is reconstructed. Therefore, even when

they are reconstructed with a large reconstruction radius, the total energy of the quenched

in-medium jets is smaller than the total energy of the hard partons originating from an

elementary partonic collision. This means that when a jet is reconstructed in a Pb-Pb

collision, it is impossible to make an experimental determination of the energy of the initial

hard parton. Consequently, if one constructs a fragmentation function using the standard

definition of 𝑧, namely the ratio between the momentum of an individual hadron to the 𝑝‖

of the whole jet as reconstructed, this 𝑧 is not directly related to the evolution variable in

a DGLAP shower and, more generally, is simply hard to interpret. We will nevertheless

report the predictions of our hybrid model and the two control models for fragmentation

functions computed in this standard way, for comparison to future data.

Because we are looking at jets produced in association with a photon or Z-boson, how-

ever, there is an obvious alternative. We can define 𝑧𝛾 or 𝑧𝑍 (we shall denote these variables

generically as 𝑧𝐵) as the ratio of the momentum of an individual hadron in the jet to the

momentum of the 𝛾 or Z-boson, using the momentum of the electroweak boson in the event

(which cannot have lost any energy since it does not interact with the quark-gluon plasma)

as a proxy for the momentum of the initial hard parton that later fragmented and lost en-

ergy, forming the jet that the experimentalists reconstruct7. This is an improvement but it

is not a panacea: we have seen in the previous Section that even in p-p collisions there is

a broad distribution of the momentum imbalance between a boson (photon or Z) and the

associated jet in a boson-jet event. One significant contributor to this imbalance is the fact

that in many events the elementary hard scattering process produces one photon or Z plus

more than one hard parton, not just one. Regardless, this imbalance is entirely due to per-

turbative vacuum QCD physics, not to any in-medium effects. This means that even when

7 See Ref. [149] for a similar definition of the scaling variable.
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Figure 6-10: Predictions of our hybrid model, with strongly coupled energy loss for the
partons in a PYTHIA shower, as well as our two control models for the partonic fragmen-
tation function ratios (fragmentation function for jets in Pb-Pb collisions over that for jets
in p-p collisions) for jets produced in association with an isolated photon (upper panels) or
a Z-boson (lower panels) in Pb-Pb collisions at

√
𝑠 = 5.02 ATeV at two centralities (left

and right panels). The fragmentation functions are constructed with respect to the variable
𝑧𝐽 = 𝑝parton‖ /𝑝jet‖ .

we construct fragmentation functions using 𝑧𝛾 or 𝑧𝑍 , we are not reliably dividing by the

actual momentum of the initial hard parton that fragmented into the jet we are looking at.

Still, by using 𝑧𝛾 or 𝑧𝑍 in Pb-Pb collisions we are using a variable that is as good a proxy

for what we want as is the case in the standard fragmentation function in p-p collisions.

We first compute the fragmentation functions constructed with respect to the recon-

structed energy of the jet produced in association with a photon or Z-boson. (We use the

standard variable 𝑧, but here we denote it 𝑧𝐽 to emphasize that its denominator is the mo-

mentum of the reconstructed jet. It is defined by 𝑧𝐽 ≡ 𝑝parton‖ /𝑝jet‖ .) In Fig. 6-10 we plot the

ratio of the fragmentation functions in Pb-Pb to p-p as obtained in our framework for jets

of 𝑝T > 30 GeV produced in association with isolated photons (upper panels) and Z-bosons

(lower panels) with 𝑝T > 60 GeV. We have performed these simulations for two different
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Pb-Pb centralities, 0− 10 %, shown on the left panels and 10− 30 %, shown on the right.

Both photons and Z-bosons are required to have |𝜂| < 1.4 while the jets are constrained

to |𝜂jet| < 1.6. The energy and direction of the jet axis are reconstructed with the anti-𝑘𝑇

algorithm with radius 𝑅 = 0.3. Following the experimental analyses of inclusive fragmen-

tation functions in Ref. [30], these fragmentation functions are constructed by including all

particles surrounding the jet axis within an angular distance in 𝜂-𝜑 space of 𝑟 = 0.3. Since

our simulations do not include the underlying event, these correspond to particles from the

hard scattering process that remain correlated with the jet direction. (As noted above, in

the analysis of experimental data a background subtraction is done, but soft particles from

the plasma that is in motion following the jet will not be subtracted. This means that our

calculations should not reproduce the data-to-come at large values of ln(1/𝑧𝐽).)

The general features of the fragmentation function ratios plotted in Fig. 6-10 are very

similar to those that we found for inclusive jets in Chapter 5. All the models display an

enhancement of the hardest part of the fragmentation function in Pb-Pb collisions relative

to p-p collisions. This is a generic behavior of any mechanism that removes soft particles

from the jet, either via energy loss as here or via deflecting them into a direction far from

that of the jet [106]. Removing soft particles increases the fraction of jets with a few hard

fragments, which leads to the increase in the hard part of the fragmentation function. For

all models there is also a depletion in the Pb-Pb fragmentation function at intermediate

𝑧𝐽 . This is the expected result from quenching, which tends to reduce the energy of the

fragments that propagate in plasma. Remarkably, for the energy range of bosons and jets

explored in those figures, and with our current uncertainties, the pattern of fragmentation at

large and intermediate 𝑧𝐽 is indistinguishable among the three models we explore, despite

their very different path length and energy dependences. We comment further on this below.

At smaller values of 𝑧𝐽 , the hybrid model with its strongly coupled energy loss suppresses

soft fragments more than the control models. However, this separation between models

occurs in a regime where the fragments have momenta smaller than 2 GeV, meaning that our

calculations of fragmentation functions are not reliable there. Adding in the contributions

from a medium that has picked up momentum from the jet passing through it, meaning

that it is not completely removed by the background subtraction, would push the Pb-Pb
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Figure 6-11: Predictions of our hybrid model and our two control models for the partonic
fragmentation function ratios (Pb-Pb over p-p) for jets produced in association with a bo-
son as a function of 𝑧𝐵 = −pparton

𝑇 p𝐵
𝑇 /(𝑝T

𝐵)2 for two different centralities for photon-jet
(upper) and Z-jet (lower) events in Pb-Pb collisions at

√
𝑠 = 5.02 ATeV.

fragmentation functions up in this soft region by an amount that our model does not permit

us to estimate at present.

In Fig. 6-11 we reanalyze the fragmentation function ratios, this time using the boson

momentum 𝑧𝐵 to define the scaling variable according to 𝑧𝐵 ≡ −pparton
𝑇 p𝐵

𝑇 /(𝑝T
𝐵)2, with

p𝐵
𝑇 the transverse momentum of the isolated photon or Z-boson.8 As already mentioned,

our main motivation for redefining the scaling variable is to have a better proxy for the jet

energy prior to quenching. If all bosons were prompt, their momentum would be insensitive

to in-medium effects and energy loss would only affect the numerator of 𝑧𝐵. For those

prompt bosons, the mismatch between the boson and the initiator parton of the jet originates

entirely in vacuum processes. This is the case for 𝑍-jet correlations, where the possibility

of producing a 𝑍 in a jet shower is highly suppressed. In contrast, in the isolated photon

8Because of the fluctuations of the rapidity of the centre of mass of the elementary partonic collision
that leads to boson-jet events, the rapidity of the boson and the jets do not need to be correlated, unlike the
transverse momentum. For this reason, to construct 𝑧𝐵 we have chosen to use only transverse momenta and
chosen not to project the momenta of fragments along the boson direction.

152



sample we use, there is a small fraction of fragmentation photons even after we make our

isolation cut, and for these photons energy loss effects are present via the quenching of their

parent parton. Therefore, for photons, there is also a small dependence of the denominator

of 𝑧𝐵 on quenching; the effect of this small dependence on the fragmentation function ratio

depends on the 𝑧𝐵 range.

Note that as a consequence of the broad distribution of the boson-jet imbalance even in

p-p collisions, 𝑧𝐵 can be larger than one: there are jets with 𝑝T larger than the momentum of

the boson they are associated with. Those events populate the region of negative log 1/𝑧𝐵 in

Fig. 6-11. In this region, all models lead to an enhancement of the in-medium fragmentation

function of jets associated to photons. At first this seems puzzling, but there are in fact

two reasons for this effect. The first is the fact that jet quenching does reduce the energy

of fragmentation photons, as their parent partons lose energy. The second reason comes

from imposing an isolation cut on photons in the events in our calculations, which do not

include the particles corresponding to the medium. Since quenching affects all partons

in our events, prompt photons in events with more than one jet are more isolated in our

Pb-Pb simulations than in vacuum. This leads to an enhancement of the fragmentation

function ratio for jets produced in association with isolated photons in the region of 𝑥𝐽 >

1. However, it is not clear to us whether this effect will persist in a full simulation of

photon-jet events in which particles from the Pb-Pb background are incorporated in the

sample. We leave the study of the fate of this enhancement for future work. For the 𝑍-jet

correlation neither of these two effects are present, and the negative log 𝑧𝐵 region is slightly

suppressed, as expected.

The ratio of fragmentation functions also exhibits a non-trivial structure in the vicin-

ity of log 1/𝑧𝐵 ∼ 0.5 (𝑧𝐵 ∼ 0.6). This structure is correlated with the position of the

maximum of the in-medium boson-jet imbalance in Figs. 6-1 and 6-4, 𝑥𝐽𝛾 ∼ 0.6 and

𝑥𝐽𝑍 ∼ 0.6. Since the maximum of the in-medium imbalance distribution is shifted towards

smaller 𝑥 values, the non-monotonic behavior of the fragmentation function ratio in this

region reflects the behavior of the imbalance distribution. Indeed, the relative abundance of

associated jets with 𝑥𝐽𝛾 ∼ 0.6 or 𝑥𝐽𝑍 ∼ 0.6 is enhanced in Pb-Pb collisions with respect

to 𝑝-𝑝. The fact that all three models exhibit the same behavior is a consequence of the
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coincidence of the imbalance distribution in the three models.

As for fragmentation functions constructed with the variable 𝑧𝐽 , here too the strongly

coupled model only separates from the control models for soft particles where the physics

of how the medium responds to the passage of the jet, physics that none of our models

includes, becomes important.

In summary, the analysis of the fragmentation functions of jets produced in associa-

tion with photons and Z-bosons indicates that mechanisms of energy loss that do not in-

crease the number of hard fragments in jets, like the ones we have explored, lead to robust

modifications to the fragmentation pattern of these jets. This also means that this type of

observable is not very sensitive to the microscopic mechanism of parton energy loss.

We close this section by recalling our initial motivation — the separation between the

predictions of our models for the fragmentation functions of inclusive jets seen in Fig. 5-6

— and asking why that separation between model predictions is less in the fragmentation

functions for jets produced in association with photons and Z-bosons seen in Figs. 6-10 and

6-11. The answer comes in understanding the selection effects in a sample of “inclusive

jets”. Because the jet production spectrum is a steeply falling function of 𝑝T, and because

usually two or more jets are produced in an event, most of the jets in a sample of inclusive

jets are the most energetic jet in an event. In selecting a sample of inclusive jets, one

is preferentially selecting jets that are the jet in their event that has lost the least energy.

In contrast, when one selects jets by first identifying an isolated photon or Z-boson and

then reconstructing an associated jet there is no such selection effect. This means that,

on average, the inclusive jets whose fragmentation functions are shown in Fig. 5-6 have

travelled through the medium over a shorter path-length and, again on average, they are

jets that fragmented less. Fewer fragments, i.e. a jet with a lower jet mass and a smaller

opening angle and a harder fragmentation function, means that within the jet there are

fewer partons losing energy in the medium, and therefore means less energy loss. Both

these effects are likely small compared to the event-by-event variation. But, on average,

inclusive jets contain somewhat fewer fragments9 and traverse somewhat less plasma. What

9There are actually two reasons why they contain somewhat fewer fragments. First, as we shall see only
in the next Section, even in p-p collisions the higher energy jet in a dijet pair — and this is what most jets in
an inclusive jet sample are — tends to have a harder fragmentation function. And, second, jets with fewer,
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are the consequences in our models of the fact that in going from Fig. 5-6 to Figs. 6-10 and

6-11 there is an increase in path length? The path-length dependence of 𝑑𝐸/𝑑𝑥 in (4.2)

is stronger than in the control models (4.7) and (4.10) meaning that in the mid-range of 𝑧

where we see the effects of quenching (say 1 < log 1/𝑧 < 3) we expect the increase in

path length to push the predictions of our hybrid strongly coupled model down relative to

the control models. What are the consequences of the fact that in going from Fig. 5-6 to

Figs. 6-10 and 6-11 the jets become wider and there is some reduction in the energy of the

partons within them? In (4.2), a reduction in the energy of the partons means a reduction

in the stopping length 𝑥stop and an increase in 𝑑𝐸/𝑑𝑥. So, for this reason also we expect

to see the predictions of our hybrid strongly coupled model pushed down relative to those

of the control models. And, this is indeed what we see. Unfortunately, the predictions of

the hybrid model get pushed down just to the extent that in Figs. 6-10 and 6-11 they are

essentially on top of the predictions of the control models.

In the next Section, we show that it is possible to select a sample of jets in which the

predictions of the hybrid strongly coupled model for the fragmentation functions in the

mid-range 1 < log 1/𝑧 < 3 are pushed down even farther.

6.5.2 Fragmentation Functions of the Associated Jets in Dijet Pairs

Motivated by the results and discussion above, we now turn our attention to the fragmenta-

tion functions of the associated (less energetic) jets in dijet events. Whereas in the inclusive

jet sample of Fig. 5-6 we have selected jets that are likely to be those among the jets in their

event that have been quenched the least, by selecting associated jets in dijet events we will

likely be selecting those that have been quenched the most. That means we will be selecting

those that have, on average, traversed a longer path-length of medium and those that were

produced, on average, with a larger jet mass and jet opening angle and that, on average,

contained more, and therefore lower energy, fragments before quenching.

In the left panel of Fig. 6-12, we show the ratio of fragmentation functions for jets of

80 < 𝑝T < 300 GeV with 0.3 < |𝜂| < 2 produced in association with a jet of 𝑝T > 120

harder, fragments lose less energy [155] in the plasma produced in a Pb-Pb collision and so are even more
likely to end up being the higher energy jet in a dijet pair.
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Figure 6-12: Left: Model predictions for the Pb-Pb to p-p ratio of fragmentation functions
of associated jets (lower energy jets) in dijet events at

√
𝑠 = 5.02 ATeV with a leading jet

of 𝑝T > 120 GeV. Right: Same for inclusive jets with the same range of 𝑝T and 𝜂 as the
associated jets in the left panel. The right panel is similar to Fig. 5-6, but is for a different
𝑝T range and is for the higher LHC heavy ion Run 2 collision energy.

GeV in Pb-Pb collisions to that in p-p collisions. By the associated jet in a dijet pair we

will always mean the jet with the lower energy. For comparison, in the right panel of

Fig. 6-12 we have analyzed inclusive jet fragmentation in a lower energy range, such that

the momentum of the inclusive jets is in the same range as the momentum of the associated

jets in the left panel of Fig. 6-12. Although by careful comparison to Fig. 5-6 we see that

the modification pattern seems to be slightly dependent on the jet energy, the basic features

in the right panel of Fig. 6-12 and in particular the ordering of the predictions of the three

models, is the same as in Fig. 5-6. The inclusive jets are selected in a way that makes them

likely to be the less quenched jets in their event with, on average, a shorter path length and

fewer fragments. The jets in Section 6.5.1, selected via having been produced in association

with photons or Z-bosons, have no such selection effects. And, the associated jets in the

left panel of Fig. 6-12 are selected in a way that makes them likely to be the more quenched

jets in their event with, on average, a longer path length and more fragments. Sure enough,

we see that the predictions of our hybrid strongly coupled model — with a 𝑑𝐸/𝑑𝑥 that

depends strongly on path-length and that increases at lower energies as 𝑥stop decreases —

are pushed lower than those of the control models in the left panel of Fig. 6-12.

The model-dependence of the fragmentation function ratios seen by comparing the left

and right panels of Fig. 6-12 is striking: the ordering of the predictions of the three models

is opposite in the two panels, with the hybrid strongly coupled model predicting the least
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Figure 6-13: Model predictions for the ratio of the fragmentation functions of inclusive
jets to the fragmentation functions of associated jets in dijet events whose most energetic
jet has 𝑝T > 120 GeV in Pb-Pb collisions at

√
𝑠 = 5.02 ATeV. Both the inclusive jet and

associated jet samples are constrained to the same 𝜂 and 𝑝T range, see the text. We see
a striking, and robust, separation between the predictions of our hybrid strongly coupled
model and our two control models. We also show the same ratio, constructed with the same
kinematic cuts, for inclusive and associated jets in p-p collisions. The ratio in p-p collisions
should not be compared to that in Pb-Pb collisions: each stands on its own and has its own
implications. (Comparisons between Pb-Pb and p-p are shown in Fig. 6-12.) Here, the p-p
results illustrate the differences between jets selected inclusively and jets selected by asso-
ciation with a leading jet in vacuum, with no jet quenching. And, the comparison between
the Pb-Pb results from the different models shows how the interplay between these differ-
ences and the path-length and energy dependence of different expressions for 𝑑𝐸/𝑑𝑥 yields
predictions for this ratio that depend sensitively on the underlying microscopic dynamics
of jet quenching.
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depression of the fragmentation function of the inclusive jets and the most depression of the

fragmentation function of the associated jets. Seeing this motivates us to introduce a new

observable in Fig. 6-13 in which we, in effect, take the ratio of the right panel of Fig. 6-12

to the left panel of Fig. 6-12. That is, we propose to compare the fragmentation function of

inclusive (which is to say leading) jets to the fragmentation function of associated (lower

energy) jets in Pb-Pb dijet events. To avoid trivial kinematic differences between the ener-

gies of the inclusive and associated jets, we have constructed this ratio with jets in the same

interval of 𝑝T and rapidity, 80 < 𝑝T < 300 GeV and 0.3 < |𝜂| < 2. As in Fig. 6-12, the as-

sociated jets whose fragmentation functions constitute the denominator in the ratio plotted

in Fig. 6-13 are produced in association with leading jets of 𝑝T > 120 GeV. (We have not

investigated other choices of leading jet 𝑝T.) The predictions of our hybrid strongly coupled

model and of our two control models for this new observable are displayed in Fig. 6-13.

This observable yields the largest separation between the predictions of our models of any

observable that we have investigated. This means that it is particularly sensitive to the

underlying microscopic dynamics behind the modification of jets in medium.

The new observable that we have introduced in Fig. 6-13 has the added virtue that its

construction does not require fragmentation functions from jets in p-p collisions. It is the

ratio of the fragmentation functions of differently selected Pb-Pb jets with the same kine-

matics. This means that none of the uncertainties coming from the differences in the way

hadronization occurs in Pb-Pb collisions and p-p collisions come into play. Our calcula-

tions behind Fig. 6-13 are, like those in Section 6.5.1, calculations of partonic fragmenta-

tion functions. Here, though, we expect that the ratio of fragmentation functions displayed

in Fig. 6-13 should be a better predictor for the same ratio of the hadronic fragmentation

functions that experimentalists can measure than in the case of any of the other fragmen-

tation function ratios that we have constructed because much of the uncertainty in our un-

derstanding of hadronization should cancel in this ratio. Of course, in the softest region, at

the smallest 𝑧’s, it continues to be the case that we are leaving out contributions to the frag-

mentation functions from the moving quark-gluon plasma, set in motion by the jet passing

through it. This effect should at least partially cancel in the ratio plotted in Fig. 6-13; this is

yet one more advantage of using the ratio of fragmentation functions of differently selected
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jets with the same kinematics in the same Pb-Pb collisions, without introducing jets from

p-p collisions.

In Fig. 6-13 we have also plotted (as purple dots) the same ratio of the fragmentation

function of inclusive jets to that of associated jets for p-p collisions from PYTHIA, with the

same kinematic cuts as in our Pb-Pb analysis. We show this solely to confirm that even in

the absence of any medium there is a difference between the inclusive jets and the asso-

ciated jets. Selecting inclusive jets selects jets with fewer and therefore harder fragments.

Selecting associated jets selects jets with more and therefore softer fragments. In Pb-Pb

collisions, then, in the presence of a medium the differences between the rates of energy

loss come into play as we have discussed. This effect, plus the difference between the path

lengths seen by inclusive and associate jets on average, are amplified by the different path-

length and energy dependence of the rates of energy loss in our hybrid strongly coupled

model and our two control models. The result is the large separation between the predic-

tions of the models for the ratio plotted in Fig. 6-13, making this ratio so discriminating.

We look forward to seeing experimental measurements of this ratio; they have great poten-

tial to teach us about the microscopic dynamics that results in the observed modification of

jets in heavy ion collisions.

6.6 Summary of Results

In these first two Chapters we have explored a broad range of jet observables in Pb-Pb col-

lisions at LHC energies within the context of the hybrid strong/weak coupling model that

we introduced in Section 4.1. This is a phenomenological approach to the physics of jet

quenching in which we aim to synthesize the very different types of physical processes in-

volved in the production, branching, and subsequent in-medium dynamics of jets in heavy

ion collisions. In particular, our model separates the short distance physics which controls

the production and hard branching evolution of jets, which behaves as in vacuum, from the

longer distance processes that control the interaction of the jet shower with the strongly

coupled fluid produced in energetic heavy ion collisions. Our goal is to describe the short

distance physics with standard tools for describing the weakly coupled physics of jets in
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vacuum, in particular with PYTHIA, and to describe the longer distance processes using

insights from calculations done using strong coupling methods. In particular, to model the

long distance physics we adopt results obtained by analyzing the rate of energy loss 𝑑𝐸/𝑑𝑥

of an energetic massless parton propagating through the hot liquid plasma of strongly cou-

pled 𝒩 = 4 SYM theory, as obtained via gauge/gravity duality. We apply these results

in QCD upon assuming that the differences between the hot liquid plasma phases of the

two theories can be absorbed in a single parameter which controls the stopping distance

of energetic excitations in plasma. We fitted this one model parameter to jet 𝑅𝐴𝐴 data in

Section 5.1. Our model, now fully specified, yields a very good description of the suite of

inclusive jet observables and dijet observables discussed in Chapter 5 and, as our explicit

analysis in this Chapter shows, of all currently available data on photon-jet correlations.

All these observables in sum span a wide range of energies, originate from different hard

production processes with different primordial spectra, and correspond to jet samples with

different selection biases, different ratios of quark jets to gluon jets, different fragmen-

tation patterns and jet mass distributions, and that traverse different distributions of path

lengths. Nevertheless, we have obtained a satisfactory description of all of these observ-

ables using our simple, hybrid, implementation of strongly coupled dynamics — namely

by taking jets from PYTHIA and applying the strongly coupled rate of energy loss 𝑑𝐸/𝑑𝑥

parton-by-parton to the partons in a parton shower.

Although at one level we are pleased by the now increasingly many successes of our

hybrid model approach, at another level they are frustrating. Our model is simple, gluing

together two rather different descriptions of physics at different scales and in so doing

incorporating much unknown physics into just one parameter. Of course the first goal in

creating such a model is to capture some of the physics correctly, and it seems that we

have done that. However, it could be even more interesting to see the model breaking down

and to use ways in which it fails to describe some feature of some experimental data to

understand which of the aspects of the physics that the model leaves out are important, and

how, and why, and where. The string of successes in the comparison between the results

of our model calculations and experimental data preclude investigations of this nature at

present.
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All that said, our explicit analysis of two control models with parametrically differ-

ent expressions for 𝑑𝐸/𝑑𝑥 cautions us that we should not rush to conclude from the suc-

cesses of our hybrid model that the experimental measurements of the various jet, dijet and

photon-jet observables favor the strongly coupled form for 𝑑𝐸/𝑑𝑥 over other possibilities.

Rather, we must acknowledge that these observables are not strongly sensitive to the para-

metric form of the rate of energy loss 𝑑𝐸/𝑑𝑥. The experience that we have gained from our

analysis suggests that as long as the vacuum-like branching processes that are at the core of

jet dynamics are described well, any mechanism that is able to quench particles, in particu-

lar the softer partons in a jet, can capture the bulk features of the measured distributions of

jet observables, including the various dijet and photon-jet asymmetries and correlations, as

long as the parameter that governs the overall magnitude of 𝑑𝐸/𝑑𝑥 is chosen appropriately.

Nevertheless, it is certainly heartening and perhaps even remarkable that the range of

values of the one parameter in our hybrid strong/weak coupling model, 𝜅sc, that we find

provides a good description of so much jet data agrees so well with a priori expectations.

𝜅sc should be smaller than but of order one, exactly as we have obtained. A stopping length

for energetic partons in the strongly coupled QGP of QCD that is three to four times longer

than that in the strongly coupled 𝒩 = 4 SYM plasma with the same temperature, as we

find, is an eminently reasonable result.

These conclusions are all conclusions that we reached in Chapter 5. The analyses of

photon-jet observables presented in this Chapter serves to reinforce them in many ways.

Looking ahead, we hope that among the many calculations from our hybrid model that

we have presented the ones that will be most important will be the many predictions that we

are making for experimental measurements that are anticipated in the near future. These

can be grouped into three categories, the first two of which are:

∙ We have provided the predictions of our hybrid model for inclusive jet observables,

dijet observables, and photon-jet observables in heavy ion collisions with collision

energy
√
𝑠 = 5.02 ATeV, in anticipation of LHC heavy ion Run 2. This is particularly

important for the photon-jet observables. The present data have low statistics, and

correspondingly large error bars, making the fact that our hybrid model describes

them well less impressive than it could be. In the run to come, the statistics will
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be greater by about an order of magnitude, meaning that the error bars should be

significantly smaller, making the confrontation between the predictions of our model

and these measurements much more constraining.

∙ We have provided the predictions of our hybrid model for Z-jet observables, which

we hope will be tested in future LHC runs.

Confrontation between these predictions and the data to come should serve either to further

strengthen our confidence in the approach to jet quenching that we have introduced or

to identify and quantify ways in which it fails, ideally pointing toward which aspects of

the physics that we have left out are most important and guiding the improvement of the

model. It is also possible that as the experimental uncertainties shrink measurements of

these observables could serve to differentiate between the different assumptions about the

dynamics of parton energy loss, and consequent different forms for 𝑑𝐸/𝑑𝑥. However, the

distinctions between the predictions of our hybrid model and our two control models for

these observables are small, limiting the discriminating power of these observables even as

the experimental uncertainties shrink.

It seems clear that in order to find observables that provide more discrimination among

the different possible dynamical processes via which the partons in a shower lose energy as

they traverse the strongly coupled plasma we will need to investigate intrajet observables.

Utilizing those observables that involve the angular shape of jets must wait, as it will re-

quire adding further physics to the model, including for example the transverse momentum

picked up by the shower partons as they interact with the medium, and so must involve the

addition of at least one new parameter to the model. There is good motivation for such

investigations, which we will address in Chapter 7. With the one parameter model that we

have constructed here, the class of intrajet observables that we may be able to describe is

those constructed from fragmentation functions:

∙ The third category of predictions that we have made are predictions for various ratios

of fragmentation functions. We have taken advantage of having a tool with which

we can compute multiple observables (here, fragmentation functions for jets in p-p

collisions, inclusive jets and jets in dijet pairs in Pb-Pb collisions, and jets produced
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in association with photons or Z-bosons in either Pb-Pb or p-p collisions) in varying

kinematic regimes to search for new discriminating observables which are particu-

larly sensitive to differences between mechanisms of energy loss. We have provided

the results of our hybrid model calculations for ratios between partonic fragmentation

functions in photon-jet and Z-jet events in Pb-Pb collisions to those in p-p collisions,

but for reasons that we have understood qualitatively these turn out not to be par-

ticularly discriminating. Also, these predictions are sensitive to differences between

hadronization dynamics in Pb-Pb and p-p collisions that are not under good theoreti-

cal control at present, reducing the reliability of our predictions for these ratios. The

most discriminating observable that we have found is the ratio of the fragmentation

function of inclusive jets in Pb-Pb collisions to the fragmentation functions of jets in

the same kinematic regime, in the same collisions, that are the lower energy jets in

a dijet pair. (We refer to the latter as associated jets.) Unlike most jet observables,

this measurement does not require any p-p reference data. And, since the ratio we

propose is constructed from jets in the same kinematic regime in the same PbPb col-

lisions, differing only in how they were selected, we expect that many of the theoreti-

cal uncertainties associated with the modification of hadronization in medium should

cancel. This makes the ratio of partonic fragmentation functions that we compute a

better proxy to the ratio of fragmentation functions that experimentalists will mea-

sure. Furthermore, we find that the predictions of our hybrid strong/weak coupling

model and our two control models for this ratio, see Fig. 6-13, are well separated

over a wide range of 𝑧, making the discriminating power of this observable robust

even after the softening of the fragmentation functions expected after hadronization.

And, perhaps best of all, we have a good qualitative understanding of why this ratio

is such a discriminating observable. First, in Pb-Pb collisions as in vacuum inclusive

jets tend to contain fewer, harder, fragments than associated jets on average. Second,

the distribution of the path length of the medium through which a sample of inclusive

jets has propagated is, on average, shorter than that for a sample of associated jets.

Both these effects mean that, on average, the inclusive jets have lost less energy than

the associated jets. And, we have shown that both these effects push the predictions
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of our hybrid strong/weak coupling model and our control models apart. Measure-

ment of this ratio of fragmentation functions should be a particularly effective way

to gain information about the dynamics via which energetic partons lose energy as

they traverse strongly coupled plasma. The experimental determination of this ratio

in the imminent LHC heavy ion Run 2 can therefore shed light on the microscopic

dynamics of jets in quark-gluon plasma.

6.7 Improvements to our Current Implementation

In this Section we summarize the main simplifications taken in our implementation, some

of which have already been addressed throughout the presented work and will be tackled in

Chapter 7. Such improvements are well motivated indeed, given the increase in the quantity

and quality of data on jet observables at both the LHC and RHIC anticipated in the near

future.

Some of the improvements that should be investigated come from the phenomenolog-

ical aspects of our model. The effects of adding hadronization to the model should be

studied, as although this would open up new uncertainties it would also open up the possi-

bility of comparing to new observables. As we have discussed in Section 5.3, it would be of

considerable interest to try to follow the energy lost by the quenched jet and to investigate

the degree to which the fraction of the ‘lost’ energy that happens to become soft particles

within the jet cone is or is not subtracted during the jet reconstruction procedure used in

the analysis of experimental data.

A particularly important effect that we have not included in our computation is the

kicks in transverse momentum (transverse to the initial jet direction) that the fragments

in the shower will all pick up as they propagate through the medium, losing energy. For

simplicity, we have assumed that all the in-medium partons maintain their direction of prop-

agation. The inclusion of transverse momentum broadening would have little effect on 𝑅AA,

which is dominated by the hardest fragments, and therefore would not have much effect on

the extracted value of 𝜅sc. However, as stressed in Ref. [106], it would increase the dijet
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imbalance somewhat, since some of the soft fragments would get kicked out of the jet cone.

We should mention, however, that this effect is unlikely to be pronounced because partons

in the shower that become soft due to energy loss are very likely already being removed

from the jet via the consequent large Bragg-like increase in 𝑑𝐸/𝑑𝑥 in (4.2). Including

transverse momentum broadening would make it possible to interpret other interesting ob-

servables. For example, in our present calculation our dijets are just as back-to-back as

dijets in proton-proton collisions. This is consistent with present data on the distribution

of the azimuthal angle separating jets in a dijet pair [20, 21, 22] and the distribution of the

azimuthal angle separating the photon and the jet in gamma-jet events [23]. However, at

present it would not be sensible for us to compare our model to these data since there is no

way within our model for these angular distributions to be different in Pb-Pb collisions than

in proton-proton collisions. After adding transverse momentum broadening to our model,

we could then use the data that (at present) show no significant change in the distribution of

the dijet or photon-jet azimuthal separation angle from proton-proton to Pb-Pb collisions

to constrain the new component of the model. We can further imagine using this data and

a suitable variant of our hybrid model to separately constrain the probability that a hard

parton is scattered by a large angle, thus looking for evidence of the presence of point-like

quark and gluon quasiparticles [154]. So, incorporating transverse momentum broaden-

ing into our hybrid approach would result in a loss in minimalism and an increase in the

number of parameters that would need to be fitted to data but it would mean that the model

could be confronted with data on further observables, including the distributions we have

just mentioned or, for example, various measures of jet shapes.

Another feature of the dynamics of energy loss that we have not implemented is the

effects of finite resolution on the interaction between the shower and the medium. In a

finite medium, the separation of the jet fragments in the transverse direction in position

space as they propagate through the plasma must be finite. As has been explicitly shown for

radiative processes [155], structures with a transverse size smaller than a given resolution

scale must act coherently as seen by the medium. This reduces the effective number of

propagating partons seen by the medium, and makes the ‘effective partons’ harder than

anticipated. If 𝜅sc is left unchanged, these dynamics would tend to increase 𝑅AA, reduce
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the dijet asymmetry and make the fragmentation functions more similar to their vacuum

counterparts. Of course, including these effects would result in a larger fitted value of 𝜅sc.

There has been recent progress in the implementation of the effects of finite transverse

resolution at strong coupling by the study of the propagation of a string with a kink near

one of its endpoints in AdS-BH [156]. This configuration is the strongly coupled analogous

of a three jet event, and by opening the angle of the kink the authors can gauge when the

energy loss of the quark-gluon half of the string becomes comparable to the energy loss of

a fully decoupled system. In this way the resolution power of the strongly coupled plasma

can be determined and it would be of great interest to incorporate this effect into our hybrid

model, a task we will leave for future work.

We will in this thesis nevertheless perform a relevant calculation in Part III involving

multi gluon emission, and also by studying the different limits in which these emissions

occur we can assess the relevant times at which the medium is capable of resolving the

multipartonic system. The results presented there support the picture in which in medium

jets are regarded as a collection of effective emitters, an effect that as said above could have

important phenomenological consequences and could be put to test within the framework

of our hybrid model for jet quenching.

In the next and last Chapter of this Part of the thesis we will improve our hybrid model

by considering the effect of transverse momentum broadening that the jet experiences as a

result of its interaction with the thermal color bath, which is a priori expected to modify

the transverse energy distribution of jets, as can be quantified by the use of the jet shapes

observable. We will also estimate the implications of medium response to the energy de-

posited by the jet, which makes the plasma locally hotter and faster and therefore induces

background correlations with the jet direction, an effect that is expected to be most visi-

ble when analyzing the more challenging intra-jet observables. Dedicated analysis of the

study of the “lost energy” published by the CMS collaboration also represent an essential

tool with which to compare our assumptions about the jet/plasma interplay and allow for a

detailed examination of the spectra and angular distribution of the thermalized energy.
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Chapter 7

Transverse Momentum Broadening and

Medium Response

In this Chapter we extend the hybrid strong/weak coupling model for jet quenching, which

combines perturbative and non-perturbative physics in a phenomenological way, by includ-

ing dynamics beyond pure energy loss. Colored projectiles in the quark-gluon plasma get

broadened through transverse kicks while transferring energy to the thermal system. The

jet passage modifies the hydrodynamic background, locally making it a bit hotter and faster.

Such effect can be estimated by assuming small perturbations and quantified by matching

the excited stress energy tensor to the total lost momenta by the individual partons of the

shower. The energy flow from the jet to the medium translates into soft radiation at large

angles, which is correlated with the jet direction. We find that including these physics is

crucial to understanding the internal, soft structure of high energy jets and its connection

with the rest of the system

7.1 Broadening

The first physical process we will supplement our hybrid model with is the implementa-

tion of transverse momentum broadening of the propagating partons in the plasma. The

multiple soft exchanges that a parton suffers when traversing a medium leads to a random

change of its momentum. In addition to energy loss, which for very energetic particles may
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be viewed as mostly affecting the momentum of the parton along its direction of motion,

elastic-like processes can change the direction of propagation, supplementing the parton

with some additional momentum perpendicular to its original direction of propagation. If

the parton suffers multiple soft exchanges, this transfer of momentum may be thought of as

a gaussian (white noise like) stochastic process. As a consequence, the transverse momen-

tum distribution of partons after traversing a medium of a fixed length L is approximately

gaussian, with a width that scales with the medium length, 𝑄2
⊥ = 𝑞𝐿. In this relation, 𝑞

is the momentum broadening parameter, which codifies the typical square momentum that

the medium transfer to the probe per unit length. In perturbative (radiative) energy loss

computations, this medium parameter determines the intensity of radiation of medium in-

duced gluons by the parton while it ploughs through the plasma. Therefore, in this limit the

energy loss and broadening processess are correlated. At strong coupling, the transverse

momentum broadening was first determined in in different limits in [157, 96, 158]. How-

ever, unlike perturbation theory, a strong correlation between the dynamics responsible for

broadening and for the induced energy loss of probes in the plasma has never been stab-

lished (for some attempts to relate these mechanism based on a parton based interpretation

of strong coupling, see [114, 76]).

In this Section, we will discuss the effect of broadening in our model. Since our con-

struction is designed to account for the effects of a strongly coupled medium in jet ob-

servables, we will assume no a priori relation between the broadening parameter and the

energy loss. This amounts to introducing an additional parameter, 𝑞, that we attempt to

fix to data. Quite surprisingly, we will observe a remarkable insensitivity of many jet ob-

servables to this process, which makes it very difficult to extract the precise value of this

medium parameter from these computations. We will introduce a new observable which

exhibits sensitivity to in-medium broadening as a possible way to constrain the value of the

momentum broadening parameter 𝑞 from experimental data.
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7.1.1 Introduction of Broadening in the Hybrid Approach

Our implementation of broadening will rely in the multiple soft exchange approximation,

characterised by a gaussian distribution of transverse exchanges. Since the medium is dy-

namical, with a strong longitudinal and transverse expansion that makes the energy density

and velocity at each point of the fluid to change with time, we will assign at each point

a local transverse momentum broadening parameter. We will assume that the local value

of this parameter is determined solely by the local temperature at the point. Many other

jet quenching studies follow a similar approach but, instead, assume a simple scaling of

𝑞 with the local energy density. Nevertheless, strong coupling computations indicate that,

at least for theories with a gravity dual, the momentum broadening parameter scales with

temperature as

𝑞 = 𝐾𝑇 3 . (7.1)

with 𝐾 a theory-dependent constant. For very energetic particles, in the infinitely strongly

coupled large 𝑁 limit of 𝒩 = 4 SYM, 𝐾 = 𝐾𝒩=4 ≃ 24 (for 𝜆 = 10) as extracted from

[157]. Following the spirit of our hybrid approach, we will assume that all the difference

in degrees of freedom and symmetries between𝒩 = 4 and SYM can be recast in the value

of 𝐾. Therefore, we will treat 𝐾 as and additional free parameter of our setup and explore

its consequences in jet data. For comparison, the 𝑞 extracted by the jet collaboration [115]

based on a perturbative analysis of high-momentum particle suppression yields 𝐾𝑝𝑒𝑟𝑡 ≃ 5.

Most computations of in-medium energy loss and broadening of jets are performed

in the limit of a static fluid at rest. However, we will study the interactions of jets with

a strongly expanding medium which is well described by hydrodynamics. Similar to our

treatment of energy loss in expanding plasma in previous Chapters, we will extend the com-

putation to a dynamical medium by applying the static medium results in the local fluid rest

frame. As usual, this approximation assumes that gradient correction effects in this quan-

tity are small. This prescription implies that all the momentum degradation of the particle

is computed in the fluid rest frame of the local cell the parton traverses at a given time. In

particular, the momentum degradation in the longitudinal direction is ascribed to energy
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loss, as detailed in Section 4.3, while the broadening of momentum by soft exchanges af-

fects momentum components transverse to the parton in this frame. Therefore, in general

the direction in which the momentum is broadened may not be transverse to the parton

propagation in the collision rest frame. The detailed transformation and approximations

between the fluid frame and the collision frame can be found in Apendix A.

Following our Montecarlo approach, we perform a full simulation of jets in medium.

For the analysis performed in this section, we studied 500.000 jet events, generated and

evolved with PYTHIA 8.183. Hard processes are distributed in the transverse plane ac-

cording to binary collisions. Those jets are embedded in the hydrodynamic background of

Ref. [131, 132]. We follow the trajectories of all the particles generated by the jet shower

as they traverse the hot matter created in the collision. During the life time of each particle,

we discretise its trajectory and at each point we add to its momentum a random transverse

momentum according to a gaussian distribution of width 𝑞𝑑𝑡𝐹 with 𝑑𝑡𝐹 the length of the

discretised time interval in the fluid frame1. Following our prescription above, the addition

of momentum is performed such that the partons are kept on mass shell. As a consequence,

broadening dynamics alone leads to a small quenching of jets. This forces us to evaluate

the impact of these new dynamics on the quenching parameter of our model 𝜅sc, which we

evaluate in the next Section.

7.1.2 Insensitivity of Jet Observables to Broadening

As already mentioned, the small degradation of energy introduced by our implementation

of broadening, leads to a small increases on the energy loss suffered by jets when travers-

ing the medium for a fixed value of 𝜅sc. To test this sensitivity, and following our previous

work, we have refitted the value of 𝜅sc for the different values of the 𝐾 broadening param-

eter. As shown in Fig. 7-1, the effect of broadening is small. In this plot, the width of the

band is controlled by the theoretical uncertainties of the model, as well as the uncertainty

of the data point used to fix the model. For typical values of K between the perturbative es-

timate and the strong coupling of 𝒩 = 4, 𝐾 ≃ 5, 24 respectively, the effect of broadening

implies a reduction of less than 5% in the value of 𝜅sc reported in our previous work, which
1We have checked that our results do not depend on the choice of 𝑑𝑡𝐹
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Figure 7-1: Strong coupling energy loss parameter 𝜅𝑆𝐶 dependence on broadening param-
eter 𝐾.

is significantly smaller than the theoretical uncertainties expressed by the width of the band

in this plot. As a test of sensitivity, we have extended our computations to unrealistically

large values of 𝐾, more than 3 times larger than the value in 𝒩 = 4 SYM. Even at those

extreme values, 𝐾 𝜅sc is only reduced by about 10%.

Having fixed the dependence of the quenching parameter 𝜅sc on the broadening param-

eter 𝐾, we can explore its effect in different observables. We first consider the suppression

factor of jets as a function of the jet reconstruction parameter 𝑅 in the anti-𝑘𝑡 algorithm.

This parameter controls the (anti-𝑘𝑡) distance of particles from the jet axis that are con-

sidered as part of the jet. The larger the parameter R the larger the size of the jet in 𝜂-𝜑

plane. Because of this, the dependence of the suppression factor on the jet size has been

traditionally considered as a measure of the modification for the angular distribution of jet

energy as a consequence of in-medium interactions. According to this expectations, broad-

ening effects should have an imprint in this observables, since the soft exchanges with the

medium transport jet fragments at large angles away from the jet. However, this is not what

we observe in our simulation.

In Fig. 7-2 we show the R dependence of 𝑅AA for 𝐾 = 0, i. e. no broadening (left), and

for 𝐾 = 50 (right) for jets |𝑦| < 2. For comparison, we show the suppression of anti-𝑘𝑡

jets with R=0.3 as measured by CMS in the same interval of momentum and rapidity. The
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left most data point is the one we use to constrain the value of 𝜅sc in both cases. There-

fore, these two simulations have different values of 𝜅sc although the difference is small, as

already explained. In both simulations, although the suppression factor shows a very weak

dependence on the reconstruction radius R, wide (large R) jets tend to be more suppressed

than narrow (small R) jets. Within our model, this trend is easy to understand. When com-

paring jets at the same energy, wide jets possess more fragments that narrow jets. Since

the larger the number of partons traversing the medium the larger the lost energy, wide jets

are naturally more suppressed. The same qualitative dependence of the suppression factor

with the jet size has been recently observed in holographic computations [89, 159]. Mea-

surements of the R-dependence of 𝑅AA by the CMS collaboration at this high energy show

very little sensitivity to the jet radius, similar to our simulations, although experimental

uncertainties do not allow us to constrain the small decrease of the suppression factor with

R.

In spite of the extreme broadening introduced by having 𝐾 = 50, the 𝑅 dependence

of this observable is almost identical in the two panels of Fig. 7-1. The origin of this

independence on 𝐾 lies in the strong quenching of jets by the plasma. Since this quenching

implies a large energy loss, all soft fragments which could be easily decorrelated from the

jet axes by multiple scattering are strongly quenched, reducing their energy to medium

scale. For this observable, the medium acts as a filter, which suppresses all soft fragments;

the jet sample that dominates the inclusive spectrum is then biased to contain few or just one

hard parton (at scale 𝑄0) while propagating through the plasma. For those jets, therefore,

the extreme broadening only leads to a rotation of the jet axis, but does not change the

intrajet distribution nor the energy loss.

The strong modification of the intrajet structure is clearly illustrated by the analysis

of jet shapes in quenched jets. Jet shapes are defined as the fraction of the jet energy

reconstructed with a given anti-𝑘𝑡 parameter R contained in an annulus of width 𝛿𝑟 (in

𝜂 − 𝜑 space) surrounding the jet axis. Following the analysis in [27], we construct the
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Figure 7-2: Dependence of 𝑅𝐴𝐴 on jet radius 𝑅 for 𝐾 = 0 (no broadening, left panel)
and 𝐾 = 50 (right panel). We also show the CMS data from [139] which we use to refit
𝜅sc for the different values of 𝐾.

differential jet shapes as

𝜌(𝑟) ≡ 1

𝑁jets

1

𝛿𝑟

∑︁
jets

𝑟max=𝑅∑︀
𝑖∈ 𝑟±𝛿𝑟/2

𝑝𝑖,track
𝑡

𝑝jet
𝑡

, (7.2)

where the tracks in the sum don’t necessarily have to belong to the jet constituents defined

through the anti-𝑘𝑡 clustering. For this reason the final jet shape distribution is multiplied

by the event averaged factor
⟨
𝑝jet
𝑡 /
∑︀𝑁bins

𝑖=0 𝑝track
𝑡 (𝑟𝑖)

⟩
so that it is normalized to one. The

sum over jets includes all jets with 𝑝jet
𝑡 > 100 GeV and 0.3 < |𝜂| < 2. We show the result

of this analysis in Fig. 7-3, where we compare the quenched to the unquenched (p-p) jet

shape for two different centrality classes and for different values of 𝐾. For reference, we

also show the experimental results for this ratio, as measured by the CMS collaboration

[27].

The strong suppression of strong fragments described above is clearly illustrated by the

suppression of the jet shape at large r. Jet shapes are strongly peaked at small r values; for

jets with R=0.3, with most (96%) of the jet energy concentrated in 𝑟 < 0.2. As 𝑟 increases,

the jet energy is distributed in softer and softer fragments. As we can see, the strong in-

medium quenching strongly depletes the large 𝑟 contribution of the jet shape, as compared

to the vacuum shape. This depletion is almost independent of the jet broadening param-

eter. Similarly, the small 𝑟 behaviour of the jet shape is almost identical to the vacuum

173



0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2 0.25 0.3

0-10% Centrality

100 < P jet
T < 300 GeV

0.3 < |η| < 2, r < 0.3

P parton
T > 1 GeV

P
b
P
b
/
p
p

r

K=100
K=50
K=40
K=20
K=0

CMS Data

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2 0.25 0.3

10-30% Centrality

P
b
P
b
/p

p

r

K=100
K=50
K=40
K=20
K=0

CMS Data

Figure 7-3: Left: Jet shapes ratio of PbPb/pp for different values of the broadening pa-
rameter 𝐾 as compared to CMS data [27] for 0-10% centrality (left) and 10-30% centrality
(right).

one, which shows that jets with only one fragment propagating through the plasma only

suffer an overall energy shift. We have in fact tested that the final jet energy distribution is

well approximated by the shape distribution of jets which only possess one fragment dur-

ing in-plasma propagation, showing that multi-partonic structures are strongly suppressed.

Therefore, the effect of broadening is only to tilt the jet axis of those single parton jets,

which does not alter the final shape distribution. Since those single partons are as energetic

as the jet, the deflected angle is small, even for the extreme values we consider in the Fig.

7-2.

It is also important to note that the trend of our numerical simulations is opposite to

the experimental measurement. Indeed, the results of [27] indicate an enhancement of

soft particles at large angles as a result of the in-medium interaction. This enhancement,

which has little contribution to the overall jet energy, points to the existence of soft modes

correlated with the jet axis. Within our current implementation, which is dominated by the

extreme assumption that all the lost energy is thermalised immediately after the collision,

no such enhancement is produced. Nevertheless, the collective reaction of the medium

to the deposited jet energy leads to an additional source of correlations in the emission of

particles from the fireball. In the next Section we will explore the influence of this dynamics

on shape observables.
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7.1.3 A Broadening-Sensitive Observable

Before describing the recovery of the jet energy, we would like to finish our study of broad-

ening by identifying an observable with potential direct sensitivity of the broadening pa-

rameter 𝑞 (or 𝐾 in our implementation). The main reason for the insensitivity to broad-

ening of the observables discussed in the previous section is that they are dominated by

energetic partons in the plasma, whose direction is altered very little by the soft in-medium

exchanges. Similarly, as we have observed, soft particles in plasma are strongly suppressed.

This does not mean that reconstructed jets do not possess soft particles, but rather that those

particles are only produced by the fragmentation of the hard partons outside the medium,

and therefore equally insensitive to the in-medium broadening. For this reason, in this Sec-

tion we introduced an observable which focusses in semi-hard partons, sufficiently soft to

be deflected by soft exchanges, but sufficiently hard to survive in-medium propagation.

This new observable is, in essence, a more differential version of a jet shape. Instead of

determining the 𝑟 distribution of all the jet energy, we focus on the distribution of jet energy

carried by particles in a certain interval of transverse momentum. Denoting this observable

as Ψ𝑝T(𝑟),

Ψ𝑝T(𝑟) ≡ 1

𝑁jets

1

𝛿𝑟

∑︁
jets

𝑟max=2𝑅∑︀
𝑖∈ 𝑟±𝛿𝑟/2

𝑝𝑖,track
𝑡

𝑝jet
𝑡

, (7.3)

where the particles in the sample are constrained to have a transverse momentum in the

range 10 < 𝑝T < 20 GeV and the jets satisfy the same cuts as the ones entering 𝜌(𝑟).

Analogously to the standard jet shapes we multiply the final distribution by the factor⟨
𝑝jet
𝑡 /
∑︀𝑁bins

𝑖=0 𝑝track
𝑡 (𝑟𝑖)

⟩
, with the difference that now it doesn’t normalize it to one due to

the restricted 𝑝T range of the selected tracks.

In Fig. 7-4 we show the prediction of our model for this observable for several values

of the broadening 𝐾, selecting particles in the interval 10 < 𝑝T < 20 GeV. The selection

of these cuts follows two requirements: on the one hand, partons must be hard with respect

to the medium temperature to ensure that no possible collective effects affect the measure-

ment; this is safely achieved by th lower 𝑝T cut of 10 GeV. On the other hand, the partons
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Figure 7-4: Special version of jet shapes ratio where the parton 𝑝𝑇 cuts are 10 < 𝑝𝑇 < 20
GeV.

of this observable cannot be too hard, so that the in-medium deflection significantly alters

their direction of propagation; we have found that the upper cut of 𝑝T < 20 GeV serves this

purpose well. Therefore, unlike the less differential observables described in the previous

section, Ψ𝑝T(𝑟) shows significant sensitivity to the value of 𝐾. Indeed, as 𝐾 grows, the

partons in this momentum range are more and more transported to distances farther away

from the jet, populating the large 𝑟 region and depleting the collinear (𝑟 = 0). Certainly,

this observable is strongly sensitive to hadronisation effects, which are not under good the-

oretical control. Nevertheless, the observed sensitivity to in-medium broadening, absent

in any of the other observables studied, encourages us to suggest the exploration of this

measurement for a direct extraction of the in medium broadening.

7.2 Medium Back-reaction

In this Section we will incorporate another important feature to our description of quench-

ing dynamics in plasma: the conservation of the lost energy. In our implementation up

to now, the energy lost by energetic partons was assumed to be completely decorrelated

from the jet axis and to be quickly transformed into a medium effect. This assumption was
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motivated by the holographic analysis of the stress tensor associated to an energetic parton

performed in [90, ?], which showed that, indeed, after a short time of order 1/𝑇 all the

energy dumped into the medium was rapidly converted into a hydrodynamic excitation of

the system. These results showed in a field theory computation, 𝒩 = 4 SYM, that the

collective response of the plasma to the jet passage, first described in [160, 110, 161, 162]

did indeed take place, in spite of the fact that the probes of the system are small compared

to medium scale. As a consequence of this back-reaction, the quark-gluon plasma does

not behave only as a passive absorber of QCD jets, but its dynamics are altered as a con-

sequence of the addition of the energy and momentum supplemented by the jet. In this

Section we will provide a simple account of this collective response by providing a sim-

plified description of this back-reaction without introducing additional parameters into the

model.

The mechanism we will describe is not exclusive to strong coupling, although this sce-

nario provides a natural realization for this collective response. Even in perturbative QCD

analysis, the interaction and subsequent radiation of the medium induced gluons responsi-

ble for energy loss at strong coupling lead to a rapid degradation of the emitted gluon mo-

menta. This degradation may be viewed as a rapid transfer of energy from hard (jet) modes

to soft (medium) modes and it has been described recently in detail in [107, 163, 164, 152].

From the point of view of the radiative energy loss, the extreme assumption we will do is

that no (experimentally sensitive) information of the short time distribution of energy as-

sociated to the energy loss survives the strong interaction with the medium. Note that this

is well supported at strong coupling, while the perturbative distributions in a dense system,

in which the multiple soft scattering approximation is valid, still exhibit some sensitivity

to this initial distribution. For perturbative based analysis in which the system is treated as

dilute, and therefore emitted gluons do not suffer significant interactions, the back-reaction

dynamics we describe in this Section are irrelevant.
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7.2.1 The Spectrum of Medium Particles Associated to Quenched Jet

Energy

Following the discussion above, in this Section we will describe a simple implementation of

the back-reaction of the plasma to the passage of an energetic source. We will characterize

the medium response to the transfer of momentum by analyzing the induced velocity and

temperature variations of the hydrodynamic behaviour of the quark-gluon plasma fluid.

Since the total energy deposited by a typical jet in heavy ion collisions (𝒪 ∼ 20 GeV),

is small when compared to the total energy per unit rapidity of the event (𝒪 ∼ 1 TeV),

similarly to [160, 110, 161, 162] we will treat the incorporation of additional momentum

to the medium as a small perturbation (for studies on the non-linear response of the plasma

see [165, 166, 150, 167]). For simplicity, we will also assume that the unperturbed fluid is

well described by a boost invariant flow. Although in our simulations of the lost energy we

take into account transverse flow, in this first study of back-reaction effects we will neglect

the effect of the background fluid velocity in the transverse plane. Consequently with this

assumption, we will also assume that the freeze-out of the hot plasma occurs at at fixed

proper time hyper surface. Within this approximations, we will be able to give a simple

expression of the modified emission spectrum associated to the jet passage determined

solely by the amount of energy and momentum lost by the jet.

In a boost invariant fluid with no transverse velocity, the disturbance associated to the

jet may be characterised by a perturbation of the velocity field

𝛿𝑢𝜇 =
(︀
0, 𝛿𝑢𝑖, 𝛿𝑢𝜂

)︀
, (7.4)

where 𝛿𝑢𝑖 goes through 𝑖 = 1, 2 and 𝛿𝑢𝜂 are the variations of the velocity field in the

transverse plane and space-time rapidity directions. The disturbance is also determined by

the change in temperature of the plasma 𝛿𝑇 . These perturbed fields may not be boost

invariant and in general will depend in all space-time directions. Within our assumptions,

variations along the proper time direction are quadratic in fluctuations. At a fixed proper
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time 𝜏 , the total momentum stored in the perturbation of the plasma is

∆𝑃 𝑖
⊥ = 𝑤 𝜏

∫︁
𝑑2𝑥⊥ 𝑑𝜂 𝛿𝑢𝑖

⊥ , ∆𝑃 𝜂 = 𝜏𝑤

∫︁
𝑑2𝑥⊥ 𝑑𝜂 𝛿𝑢𝜂 (7.5)

where we have used that the variation of the fluid stress tensor is 𝛿𝑇 𝜏
𝑎 = 𝑤𝛿𝑢𝑎 with 𝑤 =

𝜖 + 𝑝 the enthalpy for 𝑎 = 1, 2, 𝜂. Similarly, for an almost perfect fluid with small shear

viscosity we may neglect non-dissipative effects on entropy production and compute the

increase in entropy associated to the perturbation from the flux of the entropy current across

the fixed 𝜏 hyper-surface

∆𝑆 =
𝜏𝑠

𝑐2𝑠

∫︁
𝑑𝜂 𝑑2𝑥⊥

𝛿𝑇

𝑇
, (7.6)

where 𝑠 and 𝑐𝑠 are the entropy density and speed of sound of the unperturbed fluid which,

within the boost invariant assumption, only depend on the proper time 𝜏 .

Both Eq. (7.5) and Eq. (7.6) are valid at all fixed time hyper-surface and, in particular,

in the freeze-out hyper-surface. At this time, both these expressions determine all the mo-

menta and entropy produced by the source of the disturbance. Following our assumption

that all the momentum lost by the jet decorrelates completely from the shower and incor-

porates into the plasma, ∆𝑃 𝑖
⊥ and ∆𝑃 𝜂 equal the transverse momentum and momentum

rapidity lost by the jet in the plasma respectively. Since in our implementation of energy

loss we have assumed that the rapidity of the jet remains approximately constant, we set

∆𝑃 𝜂 = 0.

The entropy production associated to the jet passage may also be constrained by the

total energy carried by the particles produced by the perturbation. To do so, we will employ

the standard Cooper-Frye prescription in order to determine the perturbed spectrum

𝐸
𝑑𝑁

𝑑3𝑝
= 1

(2𝜋)3

∫︀
𝑑𝜎𝜇 𝑝𝜇 𝑓(𝑢𝜇𝑝𝜇) . (7.7)

Assuming for simplicity a Boltzmann distribution 𝑓(𝐸) = exp {−𝐸/𝑇}, and expanding
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to leading order in the perturbation we get

𝐸
𝑑∆𝑁

𝑑3𝑝
=

1

(2𝜋)3
𝜏

∫︁
𝑑2𝑥⊥ 𝑑𝜂 𝑚𝑇 cosh(y − 𝜂) e−

mT
T

cosh(y−𝜂)

×
{︀
𝑝𝑖⊥

𝛿𝑢𝑖
⊥

𝑇
+ 𝜏 2𝑝𝜂

𝛿𝑢𝜂

𝑇
+

𝑚𝑇

𝑇

𝛿𝑇

𝑇
cosh(y − 𝜂)

}︀
,

(7.8)

where 𝑚𝑇 =
√︀

𝑚2 + 𝑝2𝑇 is the transverse mass of the emitted thermal particle. Note that

this expression is only valid for particles of momentum 𝑝 comparable to the decoupling

temperature 𝑇 . Even if the perturbation is small, its effect on the thermal distribution of

particles significantly away form the typical momentum is exponentially enhanced.

The expression in Eq. (7.8) is general and independent on the space-time dependence

of the perturbed hydrodynamic fields. To proceed further we will assume that during the

space-time evolution of the perturbation over the boost invariant background, the space-

time rapidity of the disturbance remains approximately constant. Since high-energy jets

propagate at a fixed space-time rapidity 𝜂𝑗 equal to their momentum rapidity 𝑦𝑗 , 𝜂𝑗 = 𝑦𝑗 ,

the previous assumption implies that the perturbation is narrow around the momentum

rapidity of the jet, which allows us to perform the 𝜂 integration in Eq. (7.8) by replacing

𝜂 → 𝑦𝑗 . Imposing that the momentum of the emitted particles equals the lost momentum

of the jet

∆𝐸 =

∫︁
𝑑3𝑝

𝑑∆𝑁

𝑑3𝑝
𝐸 , ∆𝑃⊥,𝑖 =

∫︁
𝑑3𝑝

𝑑∆𝑁

𝑑3𝑝
𝑝⊥,𝑖 , (7.9)

and together with Eq. (7.5) and Eq. (7.6) we can fix the relation of the produced entropy and

the energy lost as well as the enthalpy of the gas after decoupling and express the spectrum

of particles emitted off the boosted, heated up fluid cell as

𝐸
𝑑∆𝑁

𝑑3𝑝
=

1

32𝜋

𝑚𝑇

𝑇 5
cosh(y − yj) e−

mT
T

cosh(y−yj)

×
{︀
𝑝⊥∆𝑃⊥ cos(𝜑− 𝜑𝑗) +

1

3
𝑚𝑇 ∆𝑀𝑇 cosh(y − yj)

}︀
.

(7.10)

where 𝑝𝑇 , 𝑚𝑇 , 𝜑 and 𝑦 are the transverse momentum, transverse mass, azimuthal angle

and rapidity of the emitted thermal particle, ∆𝑃𝑇 and ∆𝑀𝑇 = ∆𝐸/ cosh 𝑦𝑗 are the trans-

180



ferred transverse momentum and mass from the source with 𝜑𝑗 and 𝑦𝑗 its azimuthal angle

and rapidity. Note that this spectrum is the correction to the one body distribution of par-

ticles emitted by the hot plasma. As a consequence, this distribution may be negative, as

it may occur for the emission of particles opposite to the jet direction in the transverse

plane. Those negative values simply mean that the perturbed thermal source emits less

particles in the direction opposite to the jet propagation than the unperturbed one. This is a

consequence of the global push of the fluid along the direction of lost momentum.

This closed expression, which only depends on the momentum lost by the jets in the

plasma and on the kinematics of the jet, will be the basis for our analysis of back-reaction.

Under the physical assumptions employed in this derivation, this spectrum allow us to

provide an estimate on the effect of collective response of the plasma to the jet passage

without having to model explicitly the complicated process of relaxation of the energy

lost by the jet. As stated, this expression is only valid for thermal particles emitted with a

momentum comparable to the mean momentum in the fluid cell and it significantly deviates

for semi-hard particles produced in the plasma. Nevertheless, we will use this expression

also for that range as a first estimate. In the next Section we will explain how we have

implemented this spectrum in our analysis of jets propagating within hot QCD plasma.

7.2.2 Implementation of Back-Reaction, Background Model and Jet

Hadronisation

The implementation of the simplified expression Eq. (7.8) for the spectrum of back-reacted

particles demands further modelling for a proper description in heavy ion collisions, which

we now address. The three main aspects that we will need to incorporate into our descrip-

tion are the effect of radial flow and chemical composition of the fireball, the implemen-

tation of a background to properly account for the negative contribution from the induced

spectrum, and the generation of particles consistent with the one body distribution Eq. (7.8).

Furthermore, since the particles produced after decoupling are hadrons, we will also need

to consider the hadronisation of our quenched jet samples, which we have not included in

our previous implementation of the hybrid model. In this section we will discuss these four
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aspects sequentially.

As we have stated, our derivation of Eq. (7.8) neglects the effect of the flow fields of the

unpertubed fluid in the transverse direction and, as a consequence, the effect of radial and

azimuthal flow. The effect of the latter is small in most central collisions, but the former

has important consequences for the spectrum of particles produced by the fireball. As it

is well known, the radial boost of the velocity field leads to a spectrum which is harder

than that of a fixed temperature source at the decoupling temperature, as a consequence

of a thermal blue shift. Another consequence of radial flow is the different spectrum of

particles which have different masses, getting the more massive hadrons a harder spectra

than the lighter ones. Because of the thermal blue shift, Eq. (7.10) produces a much softer

spectrum than the experimentally measured one, which significantly affects the influence

of back-reaction dynamics on jet observables. Because of the different spectrum of massive

particles, Eq. (7.10) also underestimates significantly the number of particles with an en-

ergy few times the temperature. For this reasons, we will correct in part the deficiencies of

the model by employing in our implementation of Eq. (7.10) effective temperatures which

differ from the decoupling temperature and that are species dependent. To gauge the effect

of the chemistry, we will consider the plasma to be composed mainly by pions and protons,

leaving a more detailed study of the hadrochemestry of back-reaction to future work. By

fitting the measured particle spectra [168] to a spectrum consistent with Eq. (7.8), we will

use the following (momentum dependent) temperatures for pions and protons

𝑇𝜋(𝑝T) = 0.21 𝑝T
0.28 GeV Tp(pT) = 0.4 GeV (7.11)

with 𝑇𝜋 forced to lie within the range [0.19, 0.4] GeV for any 𝑝𝑇 together with a proton

to pion ratio of 0.05. This values provide a good description of both the proton and pion

spectrum in the region of 𝑝T < 3 GeV (up to the region of very small momentum 𝑝T ∼ 0.5

GeV where the measure yield contains a large contribution from resonant decays and we

get maximum deviations of 10%), and therefore are well described by the boosted thermal

distribution at that momentum.

As we have already discussed, a characteristic feature of Eq. (7.10) is that for jets with
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small ∆𝑀𝑇 , the perturbed spectrum of particles emitted at large azimuthal angle with re-

spect to the jet direction becomes negative. This reflects the fact that a boosted fluid cell

will emit less particles along the opposite direction of the boost when compared to the non-

perturbed case. This negative contribution therefore depletes momentum in that region of

azimuth as compared to analysis performed assuming an unperturbed background. To best

determine the implications of the effect, we will embed our jet sample in an oversimplified

background, whose sole purpose is to provide sufficient thermal particles as to neutralise

the negative contribution in the induced spectrum. The background is constructed by gen-

erating an ensemble of pions and protons which is flat in 𝜑 and 𝜂 that reproduces the

measured particle yield and spectra, without including azimuthal flow. As we will stress in

the next Section, the addition of this contribution will force us to introduce a background

subtraction procedure in our analysis of in-medium jets. We will describe this procedure in

detail in Section 7.2.3.

On an event by event basis, we determine the lost momentum by all the partons in the

jet shower2 as well as in initial state radiation following our hybrid strong/weak coupling

model as described in Section 4.3 . Since each of the propagating partons loses energy

into the medium, each of them generates its own wake induced by its lost momentum. In

the linearised approximation we have employed, the multiple generated wakes do not alter

each other, and the final spectrum is the superposition of the spectrum generated by each

propagating parton. At hadronisation, each of the induced wakes generates an ensemble of

particles consistent with the one body distribution Eq. (7.10) computed from the kinematics

of each parton and its lost momentum. This ensemble in general contains particles in

the region of azimuthal angle in which Eq. (7.10) becomes negative, which we will call

negative particles. These negative particles are neutralised by removing a particle from the

background which is sufficiently close in 𝜂 − 𝜑 space and in transverse energy 3.

2For the back-reaction analysis we include all particles of the jet shower, independently on whether they
belong to jets of a fixed reconstruction radius.

3Negative particle neutralisation proceeds as follows: by looking into the particles surrounding the neg-
ative one within a cone of 𝑅 ∼ 0.3, start a loop looking for the best candidate in terms of 𝐸𝑇 and angular
position in 𝜂−𝜑 plane, which means that we want to minimize Δ𝐸𝑇 and Δ𝑟, the difference in transverse en-
ergy and angular position with respect to the negative particle respectively. Select as a provisional candidate
an arbitrary background particle, setting a Δ𝐸𝑚𝑖𝑛

𝑇 and a Δ𝑟𝑚𝑖𝑛, then update candidate if the next particle
in the loop satisfies one of the following two conditions: 1) Δ𝐸𝑇 < Δ𝐸𝑚𝑖𝑛

𝑇 and Δ𝑟 < Δ𝑟𝑚𝑖𝑛 + 0.05;
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To take into account the effect of fluctuations into the reconstructed in-medium jets, we

generate the back-reacted ensembles via a simple Metropolis algorithm designed to satisfy

the conservation of the lost jet energy. The procedure contains the following steps. First we

generate an independent list of particles from the one body distribution Eq. (7.10) until the

sum of their energies reaches the lost energy. This ensemble randomly selects pions and

protons such that the average ratio coincides with the average measure yield. Whenever

a negative particle is produced, as defined above, its contribution to the net energy and

momentum of the ensemble is negative. This initial list also sets the number of negative

particles. From this initial ensemble, whose four-momentum in general will not coincide

with the lost jet momentum, we randomly select a particle which we substitute with a new

particle according to Eq. (7.10). If the change improves four-momentum conservation, it is

accepted. Otherwise, the change may be accepted with a probability distribution

𝑊 (𝑝𝜇new ensemble) = 𝑒−(𝑝𝜇new ensemble−Δ𝑃𝜇)
2

/𝑒−(𝑝𝜇ensemble−Δ𝑃𝜇)
2

, (7.12)

where 𝑝𝜇new ensemble is the four momentum of the candidate ensemble, 𝑝𝜇ensemble the one of

the previous ensemble, and ∆𝑃 𝜇 is the lost four-momentum of the hard event. The pro-

cedure is repeated until each of the four components of 𝑝ensemble is within 400 MeV of the

total lost momentum4. The ensemble generated after this procedure conserves energy and

momentum (within the tolerance above) and possess a one body distribution identical to

Eq. (7.10), which we have explicitly checked.

Since the medium response manifests itself in the form of modified distributions for

hadrons, namely pions and protons in our approach, we are forced to consider the hadro-

nisation of jet showers to properly account for the effect of medium back-reaction in final

observables. Hadronisation leads, generically, to a softening of the typical jet fragments; a

failure to introduce these dynamics would significantly underestimate the effect of thermal

source since the typical partonic fragment is much harder than its associated hadrons. Nev-

ertheless, because of its non-perturbative nature, hadronization in vacuum still remains a

or 2) Δ𝐸𝑇 < Δ𝐸𝑚𝑖𝑛
𝑇 + 0.1 GeV and Δ𝑟 < Δ𝑟𝑚𝑖𝑛. We have checked that by this procedure we can

simultaneously satisfy the transverse energy and angular coincidence conditions to a very reasonable degree
4We have explicitly checked that changing this threshold does not significantly change our results
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fundamental problem and presents serious challenges for its phenomenological modelling.

Furthermore, the modification of the models that are successfully applied to vacuum QCD

processes due to the presence of a heavy ion environment is not yet understood. As an

example, the change of colour flows in the jet shower as a result of soft exchanges with

the medium has been argued to lead to significant effects in certain regions of phase space

[128], but its overall description remains yet unclear. Because of all these uncertainties,

in this work we will adopt a simplified model for the in-medium hadronisation, which has

been widely use in the literature. The main assumption is that hadronisation of high energy

jets occurs in the same way as in vacuum, keeping, in particular, the same colour correla-

tions in spite of the in-medium exchanges. Although several different prescriptions exist,

in this work we will employ the Lund string model as implemented in PYTHIA acting on

the medium-modified shower generated by our hybrid approach. We defer the analysis of

the impact of different models for future work.

7.2.3 The Effect of Back-Reaction in Jet Observables

After the implementation of energy loss of hard processes via the hybrid model described in

Section 4.3, the medium response to the energy lost in the plasma and the thermal-like back-

ground in which the quenched hard events are embedded, as described in Subsection 7.2.2,

we obtained a full event simulation from which to extract medium modified observables. In

contrast to our previous work from previous Chapters, the inclusion of a background forces

us to implement a background subtraction procedure, making our analysis of quenched

events much closer to the actual analysis of jet data at the LHC. The medium response

to the jet passage makes this complicated procedure absolutely necessary. For hard jets

produced together with an uncorrelated (to the jet) background, several stablished tech-

niques (see for example [169, 170, 171]) allow for a systematic removal of the effect of

background particles from jet observables. This procedure, generally referred to as back-

ground subtraction, is routinely applied to jet measurements at the LHC and, at least in p+p

collisions, efficiently removes the effect of large soft (non-pertrubative) backgrounds from

theoretically controlled hard processes. However, in a heavy ion environment, a strong
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medium response as the one describe above correlates part of the background with the jet

direction, which makes the outcome of the subtraction procedure unclear. To gauge the

effect of the dynamical medium in jet samples analysed as if the background was uncorre-

lated to the jet, we will implement a full background subtraction procedure to analyse the

events produced within our framework. In particular we have implemented a version of

the so called noise/pedestal background subtraction procedure [172, 25]; the details of our

implementation can be found in Appendix D.
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Figure 7-5: Dependence of 𝑅𝐴𝐴 on the jet radius R for 𝐾 = 0 with the inclusion of back-
reaction effects. The left plot shows this observable for 40 < 𝑝𝑗𝑒𝑡𝑇 < 100 GeV, while the
right one has 100 < 𝑝𝑗𝑒𝑡𝑇 < 300 GeV.

As in Section 7.1, we first consider the R-dependence of jet suppression. In Fig. 7-5

we show jet 𝑅AA as a function of 𝑝T for central events for a long interval of jet momenta and

for different anti-𝑘𝑡 radii. In the right panel, we show our results for 100 < 𝑝T < 300 GeV

in comparison with CMS measurements of 𝑅AA for 𝑅 = 0.3 jets. Note that, similarly to

broadening, back-reaction alters the jet suppression factors, which made us re-tune our

model. Nevertheless, this retuning only modifies the value of 𝜅sc at the percent level,

which is much smaller than the theoretical uncertainty reported in previous Chapters. As

for broadening, 𝑅AA in this region shows a very small dependence on reconstruction radii,

consistent with LHC data [139].

Due to the same filtering of multi-partonic jets in medium described in Section 7.1,

the suppression factor 𝑅AA shows a small decrease, with increasing jet radius. However,

this effect is milder than in the broadening case, since back-reaction puts part of the lost

energy from hard partons back into the jet cone by correlating medium particles with the jet
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axis. Nevertheless, the wide angular distribution of the spectrum of back-reacted particles,

Eq. (7.10), implies that even for the relatively large radius of 𝑅 = 0.5 explored in Fig. 7-5,

the recovered energy is small. For even larger reconstructed jet radius, the full jet energy

is recovered and 𝑅AA approaches unity. However, for those large radius, fluctuations in the

background make the reconstruction algorithm we have implemented uncertain5.

In the right panel of Fig. 7-5 we show the jet 𝑅AA for smaller jet 𝑝T for different values

of 𝑅. As previously reported in the left panel of Fig.5-2, the suppression factor shows

a mild increase with 𝑝T, in agreement with ATLAS data. In spite of the lower energy,

the effect of back-reaction in the explored range of radius is small, similarly to higher

momentum jets. This is in apparent contrast with 𝑅CP measurements reported by ALTAS

in [25], which indicate that the suppression of jets decreases with radius in this range of

momenta 6, although with sizeable systematic uncertainties. Nevertheless, this contrast

points towards possible improvements of our model7, which we will discuss in Section 7.3.

To further study the 𝑅 dependence of jet suppression in our model, and motivated by

the ALICE analysis reported in [35], in Fig. 7-6 we show the ratio of spectra of jets in Pb-

Pb collision at different radii to that of 𝑅 = 0.2. For comparison, we show the same ratio in

p+p collisions as simulated by PYTHIA. An important advantage of this observable is that

it is constructed with Pb-Pb data only. This leads to a significant reduction of the theoretical

uncertainties in our model, since the errors of the spectra at different radii are correlated.

This is the reason why the widths of the theoretical predictions displayed in Fig. 7-6 are

significantly narrower than those of 𝑅AA. Because of this cancellation of uncertainties, this

observable clearly shows that within the range of R studied, wider jets lose more energy

than narrower jets. In vacuum, the number of jets with a given 𝑝T increases as R increases,

since wider jets include a larger fraction of the initial partonic energy. Therefore, the ratio of

spectra of jets of R=0.2 to that of jets with a given R decreases with R. In the medium, this

general trend is also observed. However, this ratio reduces more slowly with increasing R.

5We have explicitly tested the recovery of jet energy by embedding our simulations in a homogenous
background with no fluctuations.

6Since ATLAS repots 𝑅CP as opposed to 𝑅AA, in Fig. 7-5 and since our simulations do not reproduce the
suppression in peripheral events due, in part, to the lack of energy loss in the hadronic phase (see [173, 174])
we do not directly compare to those data

7Note that the background subtraction method implemented in this work is not completely equivalent to
the one implemented in [25].
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function of the reconstructed jet 𝑝𝑡. The colored bands correspond to the hybrid model and
the dots are the vacuum simulations as described by PYTHIA. The shift upwards of the
PbPb results are due to the fact that in our model wider jets lose more energy.

Since energy loss affects all radii, and in particular, both the numerator and the denominator

in Fig. 7-6, the fact that all spectra are more similar in medium than in vacuum shows that

wider jets lose more energy.

Another interesting feature of this observable is that the deviation between the vacuum

and medium ratios increases as the momentum of the jet increases. This fact is a con-

sequence of the strong suppression of jets with several in-medium partons. Low 𝑝T jets

contain, on average, a smaller number of partons propagating simultaneously in medium.

Therefore, the low 𝑝T region is dominated by jets that at medium scale are formed by only

one parton, for which the energy loss is independent of the reconstruction radius. As the

𝑝T becomes larger, the average number of partons per jet increases, and the medium filters

out the contribution of jets with high partonic content, which are more abundant the larger

the jet radius. Although a direct comparison with the semi-inclusive jet measurements per-

formed by ALICE is not possible, our analysis highlights the potential that this type of

measurements have in discerning the mechanisms of jet quenching.

Paralleling the discussion in Section 7.1 we now turn to jet shapes ratio, shown in Fig.
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7-7 for two different centralities, to further explore the angular structure of the suppres-

sion mechanism. To gauge the effect of hadronisation and background subtraction on one

hand, and back-reaction on the other, in both panels we show the jet shape computed at

hadronic level with and without back-reaction. As discussed in the broadening section, the

hybrid model is very effective at quenching the many soft and medium partons populating

the jet. As a consequence, without back-reaction the effect of energy loss is to increase

the importance of narrow jets in the quenched jet sample, leading to a depletion of the

modified jet shape at large transverse distances. Note that the only difference between the

non back-reacted simulations in Fig. 7-7 and the 𝐾 = 0 simulations displayed in Fig. 7-3

is hadronisation and jet reconstruction. The partonic distributions in Fig. 7-3 give rise to

narrower distributions than the hadronic ones displayed in Fig. 7-7, a natural consequence

of the non-trivial angular distribution of the Lund strings connecting the hard partons in

the jet. The sizeable contribution of hadronisation effects in this observable agrees with the

general analysis of narrow jets performed in [175].

Despite the hadronic uncertainties, the measured jet shape distribution shows a remark-

able increase of the jet energy at large 𝑟, i. e. at large angular distance from the jet axis. It

is important to keep in mind that the large enhancement displayed in the ratio of jet shapes

does not mean that in-medium jets become significantly wider than vacuum jets. Bot for

PbPb and pp most of the jet energy is concentrated at small 𝑟. However, in PbPb jets the

fraction of the jet energy contained in the region of 𝑟 > 0.2 is larger than in pp, but in

both cases this fraction is small. The measured jet shapes points towards the existence of

in-medium dynamics that can transport small fractions of jet energy to large angles. The

hadronisation of the wakes associated to the hydrodynamic response to the deposition of

energy provides such a mechanism. Although within our current implementation of back-

reaction effects we obtain a clear enhancement of jet shape at large angle with respect to

the non back-reacted case, it is clear from Fig. 7-7 that this energy transport to large angles

is insufficient to describe LHC data. As we will elaborate in Section 7.3, the jet shape

analysis is most sensitive to semi-hard particles in the region of 𝑝T > 1 GeV, in which the

small field approximation of Eq. (7.10) is not valid. Nevertheless , the discrepancy of our

simulations with data may point to the existence of a more efficient mechanism of energy
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Figure 7-7: Jet shapes ratio of PbPb/pp comparing our system with and without back-
reaction effects for 0-10% centrality (left) and 10-30% centrality (right).

transport at large angles into semi-hard partons. We defer this discussion to Section 7.3.

We now turn to an intrinsically hadronic observable: jet fragmentation functions. These

show the distribution of relative momentum of the tracks along the jet axis with respect to

the total jet momentum, 𝑧 ≡ cos 𝜃 𝑝𝑡𝑟𝑎𝑐𝑘/𝑝𝑗𝑒𝑡. Unlike in previous Chapters where we only

analyzed partonic fragmentation functions, the inclusion of hadronisation allows us to do

a direct comparison with experimental measurements. However, we must keep in mind

that the hadronisation process is not under good theoretical control and that we have only

implemented a simplified prescription which assumes no changes in the colour flow of in-

medium jets. The study of different prescriptions for hadronisation within our model will

be studied elsewhere.

Results for jet fragmentation functions are shown in Fig. 7-8 for 0-10% and 10-30%

centrality. Both panels display the ratio between PbPb over pp (hadronic) fragmentation

functions compared to data. We include two bands, one for the simulation with back-

reaction and the other without it. Since the fluctuations in our simplified background do not

coincide with those of an actual heavy ion collision, we need to correct for the difference

in jet energy resolution, as described in Appendix D, in order to do a fair comparison with

CMS data [27]. To subtract the background we use the 𝜂 reflection procedure described in

[27], which is the reason why the 𝜂 cut has to be greater than the jet radius 𝑅 = 0.3.

By comparing the results of our simulations with and without back-reaction, the jet

fragmentation functions clearly show which is the effect of the medium response. The

hard part of the jet is practically independent of the background dynamics, with an al-
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most identical distribution of hard fragments8. Both simulations show and enhancement of

hard fragments at large 𝑧 (small log 1/𝑧) values. Such enhancement is due to the already

discussed filtering of the small energy partons of the jet responsible for the narrowing of

the jet shape distribution, which also hardens the jet. Such enhancement seems therefore

generic to any mechanism of energy loss which reduces significantly the soft components

of jets (see [176] for a similar effect in a perturbative-based jet quenching Monte Carlo

[177, 178]). The small-z part of the fragmentation function is sensitive to back-reaction ef-

fects. The emission of soft particles by the jet-induced wake compensates the suppression

of soft fragments due to energy loss and leads to an overall enchantment of soft tracks in

the PbPb jets with respect to pp jets. The comparison between back-reacted and no back-

reacted simulations also shows the range of momenta at which back-reaction becomes ef-

fective, 𝑝T ∼ 2.5 GeV, where our approximate approach to the wake distribution Eq. (7.10)

significaly underestimates particle production.

The back-reacted fragmentation function is in general qualitative agreement with the

measured modifications by CMS. At large 𝑧, the central value of the measured data points

do not show an enhancement, although the uncertainties are large. At small 𝑧 a soft

enhancement with respect to pp jets is observed, which is similar to that introduced by

medium back-reaction, although the experimental data shows a larger magnitude for such

effect starting at larger values of 𝑧 than in our simulations. A better description of back-

reaction dynamics and a better understanding of hadronisation of medium-modified jets

could bring our simulations to a much closer agreement with this challenging observable.

Nevertheless, it is worth mentioning that the disagreement between the PYTHIA Monte

Carlo simulations of p-p events and the fragmentation functions of the small 𝑅 jets can

be as large as 30%, a number which is comparable to the size of medium modifications

themselves. Despite this fact, it is interesting to note that back-reaction dynamics have a

large impact into the small 𝑧 description of jet fragmentation function. In the next Section

we will explore other observables which are more sensitive to the soft particles emitted as

a consequence of medium response.

8The small differences between the two simulations can be understood as the small change in recon-
structed jet momentum associated to the addition of soft particles to the jet.
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Figure 7-8: Jet fragmentation functions ratio of PbPb/pp comparing our system with and
without back-reaction effects for 0-10% centrality (left) and 10-30% centrality (right).

7.2.4 Recovering the jet energy and missing 𝑝T

As we have seen, medium back-reaction has important consequences for the distribution

of soft particles in hard di-jet (and in general multi jet) events. However, an important

feature that makes the inclusion of these effects superior to other implementations that do

not take into account the response of the medium is full energy conservation in the overall

event. As we have stressed, one of the main assumptions of our model, supported by strong

coupling computations, is that all the lost energy by the jet is quickly incorporated into the

collective motion of the quark-gluon plasma and it is therefore recovered in the form of soft

particles with a wide angular distribution given by Eq. (7.10). In this section we will study

the spectrum and angular distribution of the lost energy by studying the so called “missing

𝑝T" observables introduced recently by CMS [179] which we will describe below. Note

that this is an intrinsically hadronic observable, and therefore, hard to control theoretically

without significant modelling. Nevertheless, we will observe several qualitative features of

our implementation which are common to the experimentally measured distribution which

indicates that our treatment, although simplified, captures the main aspects of the collective

reaction of the plasma to the deposited jet energy.

Following [179], the missing 𝑝T analysis consists in studying the conservation of mo-

mentum in heavy ion events which include hard jets of a given anti-𝑘𝑡 radius. In this

analysis, the momenta of each of the particles of the event is projected along the jet axis,
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as determined by the anti-𝑘𝑡 algorithm. This projection is given by

/𝑝
‖
T

= −𝑝T cos (ΦDijet − Φ) , (7.13)

where 𝑝T is the transverse momentum of the track, while Φ and ΦDijet are the azimuthal

angles of the track and dijet respectively. The dijet angle is defined as the bisection between

the azimuthal angles of the dijet pair. With this convention, /𝑝‖T is positive for tracks in the

subleading jet hemisphere and negative otherwise. By momentum conservation, the sum of

all the /𝑝‖T in an event is zero. However, in the experimental analysis only charged tracks with

|𝜂| < 3 are considered, and therefore, the net /𝑝‖T does not cancel identically. Nevertheless,

studying the approximate cancellation of this momentum component as a function angular

distance from the jet we can extract valuable information about the distribution of the lost

jet energy. Note that in this analysis, the jet reconstruction algorithm is only used to select

the event sample and to determine the jet axis and no background subtraction is performed.

We start by computing the /𝑝‖T distribution sliced in ∆ bins, where ∆ is the distance in

𝜂−𝜑 plane of the track with respect to the dijet angle in the hemisphere of the jet to which

it is closest. We consider di-jet pairs with leading and subleading transverse momenta

𝑝T
𝐿 > 120 GeV and 𝑝T

𝑆 > 50 GeV respectively and with both jets within |𝜂| < 2. These

two jets are required to be back-to-back, which translates into ∆𝜑 > 5𝜋/6. Finally, after

identifying the di-jet pair, only those di-jets with both jets |𝜂| < 0.6 are considered. The

result of this analysis is shown in Fig. 7-9 for our full simulations including medium

response (right) and, for comparison, without medium back-reaction (left). In both plots,

the net /𝑝‖T at each ∆ of all charged tracks with |𝜂| < 3 is given by the solid points; the

contribution to this net momentum of tracks in different momentum bins are codified by

the coloured histograms. In both plots, the solid line shows the accumulative sum in ∆ of

/𝑝‖T , for all 𝑝T bins in our PbPb simulation; for comparison, the dashed line shows the same

sum for the 𝑝− 𝑝 events as determined by our PYTHIA tune. Note that the /𝑝‖T distribution

generated by the PYTHIA tune we use is not identical to the p-p measurements reported

in [179]. This small discrepancy illustrates the difficulty in quantitatively describing this

hadronic observable.
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Figure 7-9: Missing 𝑝𝑇 plots 𝐴𝐽 inclusive as a function of ∆ in PbPb collisions for
𝑅 = 0.3 jets with quenching only (left) and quenching plus medium response (right). The
inclusion of back-reaction clearly shows how the energy is recovered due to soft particles
in the subleading jet hemisphere, in consonance with experimental results, implying that
the absence of the effect gives a flawed physical description of jet quenching.

The comparison of the two panels clearly shows the effect of medium back-reaction.

While the accumulated /𝑝‖T tends to zero as ∆ increases for the simulations in the left panel,

in the right panel it saturates at a fixed value similar to 20 GeV. This saturation value in-

dicates the average energy lost by the dijet pair, which compares well with the simple

estimates in [106]. The medium response transforms the lost energy into softer particles

in the range of ∼ 0.5 − 2 GeV, which move preferentially along the direction of the most

quenched jet, the subleading jet, as shown by the enhancement of soft /𝑝‖T observed in the

left panel of the figure. The figure also shows explicitly the wide angular region in which

the lost jet energy is distributed, since the soft enhancement survives up to large distances

∆ ∼ 1. As already explained, back-reaction dynamics do not change the hard part compo-

nents of the jet and therefore, the red histogram is almost identical in both panels, signaling

that most of the hard fragments lie in the leading jet hemisphere. The experimentally mea-

sured distributions are very similar to our simulations. Nevertheless, our implementation of

medium back-reaction in-general gives a larger fraction of softer particles in the sublead-

ing jet hemisphere and an underestimate of the distribution of semi-hard, 2 < /𝑝‖T < 8 GeV
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particles. We will defer the discussion of the origin of this discrepancy to Section 7.3.

We now study the dependence of the /𝑝‖T distribution on the di-jet asymmetry 𝐴𝐽 =

(𝑝T
𝐿 − 𝑝T

𝑆)/(𝑝T
𝐿 + 𝑝T

𝑆). In Fig. 7-10 we show the integrated value of /𝑝‖T over the an-

gular separations ∆ for di-jet events reconstructed with anti-𝑘𝑡 R=0.3 in bins of the di-jet

asymmetry for two different centralities. The larger the di-jet asymmetry the larger the mo-

mentum imbalance between the leading and associated jet. In Pb-Pb collisions, events with

a larger momentum imbalance are associated, in average, with larger in-medium losses of

the subleading jets. Nevertheless, the wide 𝐴𝐽 distribution in 𝑝− 𝑝, which is controlled by

strong radiative processes associated to the production of hard di-jet events also leads to a

non-trivial /𝑝‖T distribution in those events, independent of the exchanges with the plasma.

To focus on in-medium effects, in Fig. 7-10 the (vacuum) p-p distribution is subtracted

from the Pb-Pb one. As in the previous plot, the contribution of the different particle mo-

mentum ranges is shown by the coloured histograms and the solid points correspond to the

contribution of all bins. The error bar shows the theoretical uncertainty.

These distributions clearly show both the effect of energy loss and medium back-

reaction in the event. On the one hand, for both centralities and for all values of 𝐴𝐽 ,

particles of momentum 𝑝T > 2 GeV are enhanced in the direction of the leading jet and sup-

pressed in the direction of the associated jet, as compared to p-p, as shown by the negative

value of the different histograms in the figure. This is a natural consequence of energy loss,

since the associated jet loses on average more energy than the leading jet, which suppresses

the momentum of the fragments that form the jet. Consistently with this interpretation, the

net negative contribution of this region of momenta increases with increasing asymmetry

and centrality. Soft particles are, on the contrary, enhanced in the subleading jet direction

in Pb-Pb with respect to p-p. Within our implementation, the emission of particles corre-

lated to the jet axis in this momentum range is totally controlled by medium back-reaction.

The collective response of the plasma is oriented along the direction of the net deposition

of momentum, which coincides with the subleading jet direction. The amount of /𝑝‖T in soft

momenta completely balances the momenta in hard particles and, therefore, the number

of soft fragments in the subleading jet direction increases with centrality and 𝐴𝐽 . These
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Figure 7-10: Missing 𝑝T plots of the difference between PbPb and pp collisions, ∆ in-
clusive as a function of 𝐴𝐽 for 𝑅 = 0.3 jets for 0-10% (left) and 10-30% centrality
class. Quenching suppresses the hard particle contribution in the subleading jet hemi-
sphere, whose energy has been thermalized and transformed into softer hadrons. The effect
is somewhat milder in the more peripheral centrality class as it is expected due to the
smaller size of the fireball.

features are also present qualitatively in the missing-𝑝T measurements reported by the CMS

collaboration [179], although, as already stressed, the precise momentum breakdown of the

/𝑝‖T-distribution differs from our computations, specially in the semi-hard region.

Finally, we turn to the dependence of the /𝑝‖T distribution in the reconstruction radius

𝑅. In Fig. 7-11 we show the /𝑝‖T distribution as a function of the angular separation ∆

for different values of the jet reconstruction parameter. In analogy with the jet asymmetry

dependence of /𝑝‖T , we show the difference between Pb-Pb and p-p events, to focus on the

medium contribution to the /𝑝‖T distribution. As in the previous plots, the colour histograms

show the contribution of different 𝑝T-ranges and the solid points the average value per ∆-

bin. The error bars include the theoretical and experimental uncertainties. As shown in Fig.

7-9, momentum conservation is (approximately) recovered when summing over all ∆ bins.

As already mentioned, in this analysis the reconstruction algorithm is only employed

to determine the sample of events over which the /𝑝‖T distribution is computed as well as

the jet axis. By varying the anti-𝑘𝑡 R, while keeping the momentum cuts on the di-jet

fixed, we include jets with softer fragmentation patterns. In the leading jet direction, the
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Figure 7-11: Evolution in 𝑅 of the missing 𝑝𝑇 observable, 𝐴𝐽 inclusive and sliced in ∆,
for the difference between PbPb and pp collisions. There is some hint of 𝑅 dependence,
despite the big error bars (specially for the first ∆ bin), that signals the fact that wider jets
contain more partons which feed the soft particle content by interacting with the plasma.
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bias introduced by the filtering mechanism described in the previous sections enhances the

contribution of jets with small partonic partonic activity, suppressing the R dependence

of the different observables. The associated jets are, however, less sensitive to this bias

and their partonic activity increases with R. Since jets with a larger number of fragments

lose more energy, the enhancement of hard fragments along the leading jet direction at

small ∆ grows with R. Despite the large error bars both in our predictions and in data, this

enhancement is present in both the Fig. 7-11 and in experiments [179]. Beyond the first

∆ bin, as shown by the comparison in Fig. 7-9, the distribution of /𝑝‖T in the medium is

dominated by medium effects. The large ∆ dependence of the /𝑝‖T distribution shows very

little sensitivity to 𝑅, which may be understood as a consequence of the wide angular region

in which energy is recovered, controlled by Eq. (7.10). Remarkably, all these features are

in qualitative agreement with the experimental distributions reported in [179].

As we have seen, the combination of energy loss and medium back-reaction is able to

reproduce many qualitative features of the different missing 𝑝T distributions reported by the

CMS collaboration. At the quantitative level, however, the agreement is not complete. In

the next Section we will discuss the possible sources of this disagreement which will moti-

vate possible future directions for improving our understanding of jets in strongly coupled

plasma.

7.3 Discussion

In this Chapter we have described the origin, implementation and observable consequences

of two important effects for our hybrid model of jet quenching: transverse momentum

broadening and medium response to the jet passage.

Our discussion of transverse momentum broadening is based on a gaussian-like noise

term associated to Brownian motion. This approximation captures the bulk of the momentum-

transfer distribution but neglects rare large angle momentum transfers, which may be po-

tentially used to determine at which scale the medium fluctuations behave as quark and

gluon quasi-particles [154]. Quite surprisingly, we have found that the transverse momen-

tum transfers have small impact on typical jet observables such as the jet spectrum and jet
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shapes, even for large values of the new free parameter 𝐾 ≡ 𝑞/𝑇 3. The reason is that the

strong quenching described by our hybrid approach removes many of the softer partons

within the jet as it propagates in the medium. This "filtering" effect bias the quenched jet

distribution to configurations in which jets only have one fragment, for which the broaden-

ing leads to an overall change in direction. This effect, which is easily captured by a Mon-

tecarlo implementation of jet dynamics, makes intra-jet observables, such as jet-shapes,

insensitive to the momentum transfer. This insensitivity also difficults the direct extraction

of the jet quenching parameter from traditional jet observables. By restricting the 𝑝T-range

of the tracks entering the analysis to be 10 < 𝑝T
parton < 20 GeV, we have proposed a special

kind of jet shape which exhibits a sensitivity of 𝐾 (see Fig. 7-4) and which could be used

to determine the broadening parameter experimentally.

Unlike broadening, intrajet observables are sensitive to the collective response of the

plasma to the jet passage. Motivated by holographic computations, our implementation

of energy loss assumes that all energy and momentum is incorporated into hydrodynamic

motion. As explicitly demonstrated by the computations in [90, ?], this leads to the gen-

eration of hydrodynamic wakes, which make effective the overall energy and momentum

conservation of the event. We have only performed an approximate analysis of this re-

sponse, based on the assumptions of perturbations on top of a boost invariant fluid. This

simplification has allowed us to determine the spectrum of the particles generated from the

hadronic decay of the wake that each energetic parton generates due to its interaction with

the plasma, without having to incorporate additional parameters to the model. By com-

paring our computations with and without medium back-reaction we have stablished that

indeed, this collective effects have important consequences for jet-shapes, fragmentation

function and missing-𝑝T observables as discussed in Sections 7.2.3 and Section 7.2.4.

The comparison of our simplified approach with intrinsically hadronic observables,

such as jet fragmentation functions or /𝑝‖T distribution is encouraging. As we have dis-

cussed, our simplified approach to medium back-reaction and hadronisation is able to de-

scribe many of the qualitative features of the measured distributions, such as the soft en-

hancement of fragmentation functions, the wide angular distribution of the lost jet energy,

or the 𝐴𝐽 and 𝑅 dependence of the /𝑝‖T distribution. The medium response of the plasma to

199



the deposited energy is an effective mechanism to transport the lost energy to large angles,

as suggested by data. It is also an unavoidable consequence of a large deposition of energy

into soft modes, as expected at strong coupling, but also in a dense perturbative medium

[107, 163, 164, 152]. However, a quantitative comparison with those observables demands

a more sophisticated incorporation of medium response.

In all those observables, the main source of discrepancy between our simulation and

the experimentally measured distribution is a consequence of the incorrect description of

semi-hard particles 2 < 𝑝T < 8 GeV. This is precisely the region in which our simplified

implementation of medium response is less accurate. Indeed, even if the modifications of

the flow field induced by the deposited energy are small, their effect in the final particle

production can be large in the tail of the thermal distribution. Technically, this is a con-

sequence of the exponential dependence on the flow fields of the final particle spectrum,

Eq. (7.7). For particles with a typical momentum significantly larger than the medium

temperature, this exponential dependence leads to two main effects: 1) a significant (expo-

nential) enhancement of the overall yield of semi-hard particles, as a consequence of the

larger temperature of the fluid cell; and 2) a narrower distribution of the emission pattern

along the direction of the energy deposition [162]. Both these effects tend to increase the

contribution of semi-hard partons from the medium response along the jet direction, which

can potentially bring the /𝑝‖T distribution closer to data. Similarly, an enhanced contribution

of these semi-hard partons could potentially increase the effect of medium back-reaction

in jet shape distributions, incrementing the fraction of the jet energy at large 𝑟. However,

unlike our simplified expression Eq. (7.10), the correct description of this semi-hard region

depends explicitly on the space-time dependence of the momentum deposition [162]. It

would be interesting to investigate the effect of the full flow profile as predicted by holo-

graphic computations [90, ?] in the final particle production spectrum.

The observed quantitative disagreement may point towards a different physical mecha-

nism as a source of the medium modification of jet properties. A salient example of a mech-

anism able to increase the rate of semi-hard partons correlated to the jet is medium induced

gluon radiation, the dominate mechanism for perturbative energy loss. In a purely pertur-

bative approach, most of the jet energy degradation is due to the emission of additional
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semi-hard gluons. As already mentioned, in a dense medium in which the emitted gluons

re-scatter and radiate prior to escaping the collision zone, a very quick degradation of the

primordial radiation spectrum down to medium has been observed [107, 163, 164, 152],

which leads to a rapid thermalization of the emitted energy [152]. These approaches also

lead to a qualitative agreement with /𝑝‖T-distribution [163] but fail to reproduce the soft en-

hancement of fragmentation function [180]. Approaches that treat the medium as dilute,

such that the emitted gluons do not re-scatter, are able to reproduce the large r-enhancement

of jet shapes [181], since the emitted gluons remain correlated with the jet direction; it

would be interesting to analyse the /𝑝‖T-distribution in those approaches. Since our approach

is based on the assumption that the physics of jet energy loss are strongly coupled, we will

not consider this mechanisms further.

Another physical process which has not been incorporated into our approach is finite

resolution effects. In the current implementation of jet medium interaction, we have as-

sumed that irrespective of the transverse separation of the partonic shower, all partons can

interact with the medium (provided they are formed sufficiently early). However, on phys-

ical grounds, when two or more colour sources propagate through the plasma sufficiently

close to one another, their interaction with the system must be indistinguishable from the

interaction of an equivalent colour source with a colour charge equal to the net change of

the partonic system. This physics has been observed in the interference pattern of gluon

emissions in a (perturbative) QCD antenna [124, 125, 126], and also in analysis of jet prox-

ies at strong coupling via holography [89, 156]. The main effect that the inclusion of these

dynamics would have into our model is that for narrow jet fragmentation patterns, the co-

herence in-medium loss of the partonic system as a single effective emitter does not alter

the internal structure of the jet, independently of how soft the fragments are. Therefore,

these coherence effects could improve the quantitative comparison of our model with jet

shapes and fragmentation functions data. A natural future extension of the work of this

thesis is to assess the relevance of such an effect by its inclusion in a full Monte-Carlo

evolution such as the one we have already developed. To best understand these effects, in

Part III of this thesis we will determine the two gluon emission rate for an energetic parton

traversing a thin QGP. This academic problem is simple enough to be doable analytically
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while at the same time allows for the coherence physics we are after to emerge, supporting

the effective emitters picture and validating our computational framework which we will

exploit in future extensions of our work.
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Part III

Jet Formation and Interference in a

Thin QCD Medium
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Chapter 8

Two-Gluon Emission Rate from a Hard

Parton in a Thin QGP

In heavy-ion collisions, an abundant production of high-energy QCD jets allows to study

how these multiparticle sprays are modified as they pass through the quark-gluon plasma.

In order to shed new light on this process, we compute the inclusive two-gluon rate off

a hard quark propagating through a color deconfined medium at first order in medium

opacity. We explicitly impose an energy ordering of the two emitted gluons, such that the

“hard” gluon can be thought of as belonging to the jet substructure while the other is a

“soft” emission (which can be collinear or medium-induced). Our analysis focusses on

two specific limits that clarify the modification of the additional angle- and formation time-

ordering of splittings. In one limit, the formation time of the “hard” gluon is short compared

to the “soft” gluon formation time, leading to a probabilistic formula for production of and

subsequent radiation off a quark-gluon antenna. In the other limit, the ordering of formation

is reverted, which automatically leads to the fact that the jet substructure is resolved by the

medium. We observe in this case a characteristic delay: the jet radiates as one color current

(quark) up to the formation of the “hard” gluon, at which point we observe the onset of

radiation of the new color current (gluon). Our computation supports a picture in which

the in-medium jet dynamics are described as a collection of subsequent antennas which are

resolved by the medium according to their transverse extent.

For typical medium-induced gluons, all correlations are suppressed as their formation
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time over the medium length [182], see also [183]. For large media, this allows to treat

multiple medium-induced branchings in terms of a cascade [107, 184], see also [185, 186].

The large separation of scales, related in turn to the medium length and the mean free

path, can also potentially lead to significant radiative corrections to transverse momentum

broadening and energy loss in the medium [187, 118, 188] and, in general, to medium

transport coefficients [117, 118]. See also [189, 190] for related work in next-to-leading

order corrections to the medium-induced spectrum. The emission spectrum of two gluons

with comparable formation times was analysed for the case of a dense medium in [191].

These approaches, however, consider the gluon transverse momenta to be of the order of

the medium scale and therefore do not explicitly study the interplay between emissions of

the former kind and genuine vacuum emissions, either short- or long-distance ones, which

can take place in the context of high-energy jets. In this Chapter of the thesis, we aim at

providing further analytical insight into these situations, complementary to the numerical

analysis of the rate at first order in medium opacity presented in [192].

The study of coherence effects for in-medium jets is a relatively new subject. In

[124, 125, 193, 126, 194, 195] the single gluon emission rate off two classical colour cur-

rents was computed in different approximations. The main finding of these studies may be

summarised as the emergence of a new scale, the medium resolution scale, which controls

the ability of the medium to resolve the number of colour emitters that traverse the plasma.

If the transverse separation of the colour sources is larger than this scale, the medium is

able to interact independently with each of the sources, and the medium-induced radiation

spectrum consists of the superposition of the induced spectrum from each of the colour

currents. If the transverse separation is small compared to this scale, the system interacts

coherently with the propagating currents and the medium-induced spectrum coincides with

that of a single colour charge in the overall colour representation of the system of currents.

The phenomenon of medium resolution has also been recently found in the dynamics of

energetic colour objects plunging through infinitely strongly coupled gauge theory plasmas

[156]. These findings lead to the suggestion of a new picture for jet dynamics in heavy-ion

collisions where, from the point of view of the medium, the jet shower is organised in terms

of effective emitters, according to the medium resolution scale [155].
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In this Chapter we study the coherent branching of soft gluons in jet showers by directly

analysing the double-inclusive gluon emission rate. The two gluons have well separated

energies, which are both much smaller than the quark energy. We will model the medium

as a single scattering centre which interacts once with a jet shower at a given distance from

the hard production vertex that generates the shower. This medium model corresponds to

the leading order in opacity expansion for a medium which can be situated at any distance

from the hard vertex. Since we can place the interaction at will, this scattering centre

may be also viewed as a chronometer, which tests the jet shower at different times. The

double inclusive emission rate in the 𝑁 = 1 opacity approximation was analysed in [192]

for realistic values of the medium parameters. However, our computation is not aimed

at describing the gluon emission rate in a realistic model of the hot matter produced in

ultra-relativistic heavy-ion collisions but rather to understand how in-medium interactions

generically affect the gluon radiation pattern.

8.0.1 Computing the Amplitude and Cross Section

We start by definining the momenta of the quark, the “hard” and the “soft” gluons which

are given by 𝑃 = (𝑝+, 0,0), 𝐾𝐻 = (𝑘+
𝐻 , 𝑘

−
𝐻 ,𝑘𝐻) and 𝐾𝑆 = (𝑘+

𝑆 , 𝑘
−
𝑆 ,𝑘𝑆), respectively. In

our computation we assume the following energy ordering 𝑝+ ≫ 𝑘+
𝐻 ≫ 𝑘+

𝑆 . This is the

conventional ordering of a vacuum shower leading to the double-logarithmic enhancement

of gluon emissions. In the presence of the medium, such an ordering allows us to study

how the hard jet substructure builds up in the presence of a probing, soft gluon which can

be either collinear or medium-induced.

We also assume that the energy of both gluons is much larger than the typical momen-

tum transfer from a medium exchange 𝑞, 𝑘+
𝑆 ≫ 𝑞. In order to consistently neglect the

radiation from the scattering centre, we will focus solely on collinear emissions with re-

spect to the quark; this means that the emission angles of both of the gluons, 𝜃𝐻 = 𝑘𝐻/𝑘
+
𝐻

and 𝜃𝑆 = 𝑘𝑆/𝑘
+
𝑆 , are small. However, we will make no assumptions about the relative

magnitude of the emission angles 𝜃𝐻/𝜃𝑆. To account for all relevant medium effects, we

will allow the transverse momentum of one of the gluons, 𝑘𝑆, to be of the order of the
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in-medium momentum transfer 𝑞. The gluonic fields of the medium can be effectively

described by a collection of static scattering centres as already described in Section 2.3.

These assumptions simplify significantly the computation of the emission amplitudes.

Since we are focusing in the rate in which both the gluons and the quark possess a much

larger energy than the medium momentum transfer, we can use an eikonal approximation

for the QCD Feynman rules that allows us to exploit this separation of scales at ampli-

tude level. For ease of computation we will work in the mixed representation where the

minus-component of the momenta is Fourier transformed to configuration space. Although

the eikonal Feynman rules are well-known, we have re-derived them in Appendix B to

clearly state our approximations and for the readers convenience. To discuss how we have

organised our computation, we proceed to list the main ingredients.

In the eikonal limit, the quark and triple-gluon vertices conserve spin and helicity, re-

spectively. It is useful to absorb the spin and polarization of the propagating degrees of

freedom of adjacent propagators into properly contracted vertices, see Appendix B. In our

present calculations, we will be using two types of eikonal emission vertices which are

justified by the ordering of energies we have assumed. First, emissions of gluons off the

energetic quark come with the factor

𝑉 𝑎,𝑖
𝐺 (𝑝+;𝑘𝐼, 𝑘

+
𝐼 ) ≡ 𝑉 𝑎,𝑖

𝐺 (0, 𝑝+;𝑘𝐼, 𝑘
+
𝐼 ) = 2𝑖𝑔 𝑡𝑎

𝑝+

𝑘+
𝐼

𝑘𝑖
𝐼 , (8.1)

where 𝐼 = 𝐻,𝑆, while the gluon splitting brings a factor

Γ𝑎𝑏𝑐,𝑖
𝐺 (𝑘𝐻, 𝑘

+
𝐻 ;𝑘𝑆, 𝑘

+
𝑆 ) = 2𝑔 𝑓𝑎𝑏𝑐1

𝑧
𝜅𝑖

𝑆 , (8.2)

where we have defined 𝑧 ≡ 𝑘+
𝑆 /𝑘

+
𝐻 and

𝜅𝑆 ≡ 𝑘𝑆 − 𝑧 𝑘𝐻 (8.3)

is the relative momentum of the emission. Both effective vertices are transverse vectors

and are proportional to the relevant colour factor. The four-gluon vertex does not exhibit

the 1/𝑧 enhancement of Eq. (8.2), and it is therefore negligible in this kinematic limit. The
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same argument holds for the gluon splitting into a quark-antiquark pair.

The momentum in Eq. (8.3) deserves some discussion. Naively, the strong ordering in

the energy of the gluon suggests that we may drop the apparently subleading contribution

𝑧𝑘𝐻 in the definition of 𝜅𝑆. However, this can only be done if 𝑘𝐻 and 𝑘𝑆 are of the same

order. This is the case when both gluons are medium-induced. However, in this work we

will be interested in exploring the emission rate when the angles in transverse space 𝜃𝐻 and

𝜃𝑆 are comparable, which implies that 𝑘𝐻 is parametrically (in 1/𝑧) larger than 𝑘𝑆.

Since there is only one non-vanishing component of the medium potential, the effective

interaction vertices become scalars, and read

𝑢𝑎
𝑄(𝑝+) = 2𝑖𝑔 𝑡𝑎 𝑝+ , (8.4)

𝑢𝑎𝑏𝑐
𝐺 (𝑝+) = 2𝑔 𝑓𝑎𝑏𝑐 𝑝+ , (8.5)

where we have amputated the medium field in the definition of the vertex; for details see

Appendix B.

Having absorbed all spinor and helicity structures into the vertices, the internal par-

tons are simply described by scalar propagators. Keeping the leading energy correction on

the position of the poles, the propagation of the gluons in the mixed representation, see

Eq. (B.9), may be expressed as

𝐷𝐺(𝑥+;𝑘𝐼, 𝑘
+
𝐼 ) ≡ 𝐷(𝑥+;𝑘𝐼, 𝑘

+
𝐼 ) =

Θ(𝑥+)

2𝑘+
exp

[︂
−𝑖 𝑘

2
𝐼

2𝑘+
𝐼

𝑥+ − 𝜖𝑥+

]︂
, (8.6)

where again 𝐼 = 𝐻,𝑆 and Θ(𝑥) is the Heaviside theta-function. The propagation of the

quark is identical to that of the gluon; however, since we are taking the quark to have a

much larger energy, we will adopt the strict eikonal limit, 𝑘𝐻/𝑝
+, 𝑘𝑆/𝑝

+, 𝑞/𝑝+ ≪ 1 ,

𝐷𝑄(𝑥+; 𝑝+) ≡ 𝐷(𝑥+;0, 𝑝+) =
Θ(𝑥+)

2𝑝+
𝑒−𝜖𝑥+

. (8.7)

The 𝜖-prescription in the propagators above suppresses the propagation of modes in the

distant past and future. Finally, all in-coming and out-going particles have to be multiplied

by the appropriate phases, embodying energy-momentum conservation, and by spinor or
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Figure 8-1: Two-gluon emission off a quark with 𝑁 = 1 interactions with the medium. We
also include the diagrams with the substitution 𝐻 ↔ 𝑆.
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Figure 8-2: Two-gluon emission off a quark with 𝑁 = 1 unitarity corrections. We also
include the diagrams with the substitution 𝐻 ↔ 𝑆.
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Figure 8-3: Sequential two-gluon emission off a quark and with 𝑁 = 1 interactions with
the medium.

polarization vectors for quarks and gluon, respectively; see Appendix B for more details.

These eikonal rules are the building blocks with which we construct the double gluon

emission rate. Neglecting the four-gluon vertex, the full computation of this process in-
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Figure 8-4: Sequential two-gluon emission off a quark with 𝑁 = 1 unitarity corrections.

volves the calculation of 15 real amplitudes, summarised in Figs 8-1 and 8-3. Also, a total

23 additional non-vanishing virtual corrections, or double-Born diagrams, which involve

the interference between double scattering amplitudes with vacuum diagrams, need to be

considered. These are summarised in Figs. 8-2 and 8-4. All relevant Feynman rules are

summarised in Appendix B.3. After squaring the real diagrams, the full rate is composed

of 248 combinations.

Given the large number of diagrams that needs to be computed and squared, in this

work we have used an automated procedure to compute this cross section. We have coded

the Feynman rules outlined in the previous section in Mathematica, where we perform all

integrations, sums and colour algebra via symbolic computations. The amplitude of these

processes can be written as

ℳ𝑎𝑏
(0)𝜆𝜆′ = 𝜀𝑖𝜆(𝑘𝐻)𝜀𝑗𝜆′(𝑘𝑆)

∑︁
𝑘

𝑚𝑎𝑏,𝑖𝑗
𝑘 , (8.8)

ℳ𝑎𝑏
(1)𝜆𝜆′ =

∫︁
𝑥+

∫︁
𝑞

𝜀𝑖𝜆(𝑘𝐻)𝜀𝑗𝜆′(𝑘𝑆)𝒜𝑐(𝑥+; 𝑞)
∑︁
𝑘

𝑚𝑎𝑏𝑐,𝑖𝑗
𝑘 (𝑥+; 𝑞) , (8.9)

ℳ𝑎𝑏
(2)𝜆𝜆′ =

∫︁
𝑥+.𝑥′+

∫︁
𝑞,𝑞′

𝜀𝑖𝜆(𝑘𝐻)𝜀𝑗𝜆′(𝑘𝑆)𝒜𝑐(𝑥+; 𝑞)𝒜𝑑(𝑥′+; 𝑞′)
∑︁
𝑘

𝑚𝑎𝑏𝑐𝑑,𝑖𝑗
𝑘 (𝑥+, 𝑥′+; 𝑞, 𝑞′) ,

(8.10)

where the basic building blocks are the amputated amplitudes 𝑚𝑎𝑏𝑋𝑌,𝑖𝑗
𝑘 (. . .). The first two

superscripts {𝑎, 𝑏} relate to the colour structure and the latter two {𝑖, 𝑗} relate to the indices
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of the two out-going transverse momenta, with {𝜆, 𝜆′} being their respective polarizations.

The superscripts 𝑋 and 𝑌 and the number of arguments relate to the number of insertions

of the medium field. In the argument of the function we have suppressed the kinematics of

the emitted gluon. The subscript 𝑘 simply designates the particular diagram under consid-

eration, and the sum runs over all diagrams in Figs. 8-1 and 8-3 for Eq. (8.9) and Figs. 8-2

and 8-4 for Eq. (8.10). The vacuum terms are also trivially found from these diagrams.

Thus, Eq. (8.8) is the sum of all vacuum amplitudes, Eq. (8.9) is the sum of diagrams with

one medium insertion, and Eq. (8.10) is the sum of all non-vanishing amplitudes with two

medium insertions. We will refer to ℳ(1) as medium-real diagrams, and ℳ(2) will be

referred to as medium-virtual diagrams.

Of course, all the amplitudes in Eqs. (8.8)-(8.10) are also proportional to the amplitude

of the hard process that created the out-going quark. Since this simply factorises into the

Born cross-section for quark production, we will always suppress it.

To illustrate the procedure, we describe here how to compute one of the amputated

amplitudes, namely the upper left diagram of Fig. 8-1, which reads

𝑚𝑎𝑏𝑐,𝑖𝑗
1 (𝑥+; 𝑞) =

∫︁
𝑥+
𝐻 ,𝑥+

𝑆

𝑒𝑖𝑘
−
𝐻𝑥+

𝐻+𝑖𝑘−𝑆 𝑥+
𝑆 𝑉 𝑎,𝑖

𝐺 (𝑝+;𝑘𝐻, 𝑘
+
𝐻 )𝐷𝑄(𝑥+

𝑆 − 𝑥+
𝐻 ; 𝑝+)

× 𝑉 𝑏,𝑗
𝐺 (𝑝+;𝑘𝑆, 𝑘

+
𝑆 )𝐷𝑄(𝑥+

𝐻 − 𝑥+; 𝑝+)𝑢𝑐
𝑄(𝑝+)𝐷𝑄(𝑥+ − 𝑥+

0 ; 𝑝+) , (8.11)

where the gluons are on-shell: 𝑘−
𝐻 = 𝑘2

𝐻/(2𝑘+
𝐻 ) and 𝑘−

𝑆 = 𝑘2
𝑆/(2𝑘+

𝑆 ). In order to alleviate

the notation, we have also defined the integrals

∫︁
𝑥+

=

∫︁ ∞

−∞
d𝑥+ , (8.12)∫︁

𝑞

=

∫︁
d2𝑞

(2𝜋)2
, (8.13)

and usually we will set 𝑥+
0 = 0 if not stated otherwise.

In this amputated amplitude, 𝑖 and 𝑗 are transverse space indices that denote the trans-

verse momentum component of the soft and hard gluons, while 𝑎 and 𝑏 are their respective

colour indices. The positions 𝑥+
𝐻 , 𝑥+

𝑆 and 𝑥+ denote the position in configuration space
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where the hard and soft emissions and the scattering with the medium take place. Finally,

the two phase factors appearing in the integrand are a consequence of the external leg in-

sertion. To deal with the colour algebra we use the ColorMath package [196].

Following these simple rules, we introduce all amplitudes in Mathematica, which we

also use to square them. The 𝑥+
𝐻 and 𝑥+

𝑆 integrals in the amputated amplitude, see Eq. (8.11),

and the transverse momentum multiplication are performed symbolically. Formally, we

take advantage of the medium average Eq. (2.25) to write for the square of the medium-

real amplitudes

⟨
⃒⃒
ℳ(1)

⃒⃒2⟩ =
∫︀
𝑥+,𝑥′+

∫︀
𝑞,𝑞′⟨𝒜𝑐(𝑥+; 𝑞)𝒜* 𝑐′(𝑥′+; 𝑞′)⟩

∑︀
𝑘,𝑘′ 𝑚

𝑎𝑏𝑐,𝑖𝑗
(𝑘) (𝑥+; 𝑞)𝑚*𝑎𝑏𝑐′,𝑖𝑗

(𝑘′) (𝑥′+; 𝑞′)

= 𝜇2
𝐷

∫︀
𝑥+

∫︀
𝑞
𝑛(𝑥+)𝒱(𝑞)

∑︀
𝑘,𝑘′ 𝑚

𝑎𝑏𝑐,𝑖𝑗
(𝑘) (𝑥+; 𝑞)𝑚*𝑎𝑏𝑐,𝑖𝑗

(𝑘′) (𝑥+; 𝑞) , (8.14)

where the sum of all repeated indices is assumed and we have used
∑︀

𝜆 𝜀
𝑖
𝜆(𝑘)𝜀𝑗𝜆(𝑘) = 𝛿𝑖𝑗 in

order to contract the transverse indices. A similar strategy can be followed for the medium-

virtual amplitudes, which are added by multiplying them with the vacuum amplitudes such

that

⟨ℳ(2)ℳ*
(0)⟩ =

∫︁
𝑥+,𝑥′+

∫︁
𝑞,𝑞′
⟨𝒜𝑐(𝑥+; 𝑞)𝒜𝑐′(𝑥′+; 𝑞′)⟩

∑︁
𝑘,𝑘′

𝑚𝑎𝑏𝑐𝑐′,𝑖𝑗
(𝑘) (𝑥+, 𝑥′+; 𝑞, 𝑞′)𝑚*𝑎𝑏,𝑖𝑗

(𝑘′)

= 𝜇2
𝐷

∫︁
𝑥+

∫︁
𝑞

𝑛(𝑥+)𝒱(𝑞)
∑︁
𝑘,𝑘′

𝑚𝑎𝑏𝑐𝑐,𝑖𝑗
(𝑘) (𝑥+, 𝑥+; 𝑞,−𝑞)𝑚*𝑎𝑏,𝑖𝑗

(𝑘′) . (8.15)

In particular, when calculating contact terms (i.e. diagrams with two insertions on the same

propagator, denoted with a circle in Figs. 8-2 and 8-4) we use the half-value prescription for

the Heaviside function, Θ(0) = 1/2, which yields the correct answer for the double-Born

diagrams. The full medium-induced spectrum at first order in opacity is then

⟨|ℳ1OP|2⟩ = ⟨
⃒⃒
ℳ(1)

⃒⃒2⟩+ 2Re⟨ℳ(2)ℳ*
(0)⟩

= 𝜇2
𝐷

∫︁
𝑥+

∫︁
𝑞

𝑛(𝑥+)𝒱(𝑞)𝑤(𝑥+; 𝑞) , (8.16)
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where

𝑤(𝑥+; 𝑞) =
∑︁
𝑘,𝑘′

[︁
𝑚𝑎𝑏𝑐,𝑖𝑗

(𝑘) (𝑥+; 𝑞)𝑚*𝑎𝑏𝑐,𝑖𝑗
(𝑘′) (𝑥+; 𝑞) + 𝑚𝑎𝑏𝑐𝑐,𝑖𝑗

(𝑘) (𝑥+, 𝑥+; 𝑞,−𝑞)𝑚*𝑎𝑏,𝑖𝑗
(𝑘′)

+ 𝑚𝑎𝑏,𝑖𝑗
(𝑘) 𝑚* 𝑎𝑏𝑐𝑐,𝑖𝑗

(𝑘′) (𝑥+, 𝑥+; 𝑞,−𝑞)
]︁
. (8.17)

The spectrum of emitted gluons is then

d2𝑁1OP

dΩ𝑘𝐻 dΩ𝑘𝑆

≡ 1

𝜎Born
𝑞

d2𝜎1OP

dΩ𝑘𝐻 dΩ𝑘𝑆

=
1

2𝑝+
⟨|ℳ1OP|2⟩ , (8.18)

where the factor 1/(2𝑝+) is the quark flux and the phase space for the gluons is given by

dΩ𝑘 ≡ (2𝜋)−3d2𝑘 d𝑘+/(2𝑘+). Unitarity is enforced by demanding that the full ⟨|ℳ1OP|2⟩ →

0 when the medium momentum exchange vanishes, 𝑞 → 0. In other words, an exact can-

cellation of medium-real and medium-virtual diagrams takes place in this limit, such that

no double-counting with the pure vacuum cross section is allowed. We have explicitly

checked that our expressions respect this condition.

8.1 Analysis of the Induced Rate

The strategy of computing the full amplitude in an automatised form allows us to deal

with the many diagrams we have computed in a simple and effective way. However, the

answer that this computation yields is lengthy and we have not been able to reduce it to a

simple form. Therefore, in this section we will explore two particularly interesting limits

of this expressions in which we have managed to express the answer in a closed form. This

analysis is complementary to the numerical analysis of the full rate performed in [192].

Prior to taking these two limits, some general considerations about the full square ma-

trix are in order. The analysis of the colour structure of both the real and virtual contribu-

tions allows us to separate the full answer into only two non-vanishing colour structures

(after averaging over colours). The total rate may be expressed as

𝑤(𝑥+; 𝑞) = 𝐶2
𝐹𝐶𝐴𝑤𝑄(𝑥+; 𝑞) + 𝐶𝐹𝐶

2
𝐴𝑤𝐺(𝑥+; 𝑞) , (8.19)
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where the elements 𝑤𝑄 and 𝑤𝐺 are functions of the kinematic variables. This general

structure admits a simple interpretation. The full rate may be understood as the sum of

two different physical processes: i) the emission of two gluons off the high-energy quark,

𝑤𝑄; and ii) the emission of a hard gluon off the high-energy quark which, in turn, emits an

additional soft gluon 𝑤𝐺. These emissions can occur either as originated from the initial

virtuality of the hard vertex that creates the energetic quark or as a result of the interaction

of the system with the medium. Note that in the infinite quark energy limit, the change of

momentum of the quark as a result of the interaction and emission processes is negligible.

This implies that, effectively, only the gluon scatters and terms proportional to 𝐶3
𝐹 are

suppressed by powers of the quark energy.

The expressions for 𝑤𝑄 and 𝑤𝐺 may also be organised according to their dependence

on the position of the scattering centre, 𝑥+. In general, we can express these two terms as

𝑤𝐼(𝑥
+; 𝑞) =

𝑁𝐼∑︁
𝑖=1

𝒫(𝑖)
𝐼 (𝑞)

{︁
1− cos

[︀
𝑥+/𝜏

(𝑖)
𝐼 (𝑞)

]︀}︁
(8.20)

where 𝐼 = 𝑄, 𝐺, 𝑁𝑄 = 2 and 𝑁𝐺 = 19 is the number of independent terms for the two

distinct colour structures and the functions 𝒫(𝑖)
𝑄 , 𝒫(𝑖)

𝐺 , 𝜏 (𝑖)𝑄 , 𝜏 (𝑖)𝐺 are rational functions of

products of the four momenta of the three partons as well as of the transferred momenta.

These are, in general, complicated expressions which we have not been able to simplify to

a compact form, and shall therefore not be presented here. In the following subsections we

will show instead the results obtained by the consideration of two distinct kinematic limits.

It is interesting to note that all the dependence of the full rate, Eq. (8.20), on the position

of the scattering centre, 𝑥+, occurs in the form of cosine-like phase factors. These phases

indicate interference effects between the vacuum production of the quark, at 𝑥+
0 = 0, and

the medium scattering processes. For single gluon emission these interferences are well

known, and are the precursors of the Landau-Pomeranchuk-Migdal (LPM) effect. In the

context of radiation induced by a single scattering, this effect can be understood as the

frustration of the induced radiation when the scattering centre is placed too close to the hard

vertex, at a distance shorter than the formation time of the emitted gluon, 𝜏 = 2𝑘+/(𝑘−𝑞)2.

While in the single emission rate all the cross section is characterised by this single time-
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scale, in the double-gluon emission rate several time-scales appear.

This distinct 𝑥+ dependence of the total rate allows us to treat differently the kinematic

factors 𝒫(𝑖)
𝐼 and the formation factors 𝜏

(𝑖)
𝐼 when expanding the rate in different kinematic

regions. The limits we will explore invoke certain assumptions about the momenta of the

partons and the transferred momenta, for 𝑎𝑛𝑦 medium length 𝐿. In fact, the dependence

of any scale related to the medium length only enters in the computation via the phase

factors, as 𝐿 appears in the limits of integration of 𝑥+. Therefore, interferences are solely

dependent on the relative magnitude of the formation factor 𝜏 (𝑖)𝐼 and the medium length. For

this reason, when taking kinematic limits, it is consistent to expand the kinematic factors

𝒫(𝑖)
𝐼 and 𝜏

(𝑖)
𝐼 to different orders since apparently subleading terms in 𝜏

(𝑖)
𝐼 may be enhanced

by the medium length. In the next two subsections we will specify the limits we explore

and describe this approximation in more detail.

8.1.1 Expansion Parameters

We now specify the parameters which we use to expand the symbolically computed cross

section. First of all, as it is clear from the Feynman rules in sec. 8.0.1, the energy of

the quark disappears from the final rate, since there is a cancellation between the 𝑝+-

dependence of the eikonal vertices and the eikonal quark propagators. This is only true

in the strictly infinite quark energy limit that we adopt. Secondly, the structure of these

rules also indicates that the rate depends on the energies of both emitted gluons via the

combination

𝑧 =
𝑘+

𝑆

𝑘+
𝐻

, (8.21)

which, by assumption, is small.

We analyse the double emission rate as a function of the emission angles of the two

gluons. Assuming both these angles are small, these are trivially related to the momentum

of the emitted gluons via

𝜃𝐻 =
𝑘𝐻

𝑘+
𝐻

, 𝜃𝑆 =
𝑘𝑆

𝑘+
𝑆

. (8.22)
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In terms of these angles, the variable 𝜅𝑆, defined in Eq. (8.3), is independent of 𝑧. To make

this scaling explicit, we may write 𝜅𝑆 as

𝜅𝑆 = 𝑘+
𝑆 (𝜃𝑆 n𝑆 − 𝜃𝐻 n𝐻) (8.23)

with n𝑆 (n𝐻) the unit transverse vector along the direction of 𝑘𝑆 (𝑘𝐻). This form motivates

us to organise the computation in terms of the (dimensionless) ratio of angles

𝑟 =
𝜃𝐻

𝜃𝑆

. (8.24)

In addition to the momenta of both gluons, the medium interaction introduces an additional

dimension-full quantity, namely the momentum transferred by the scattering centre, 𝑞. In

order to properly take limits of the full rate, we need to consider the relative magnitude

of this momentum transfer to other dimension-full quantities in the rate. Motivated by

the fact that the single-gluon medium-induced rate is dominated by gluons with transverse

momenta of order the transferred momentum, we choose to organise our computation in

terms of the (dimensionless) ratio

𝑞 =
𝑞

𝑘𝑆

=
1

𝑧𝜃𝑆

𝑞

𝑘+
𝐻

. (8.25)

This ratio ensures that, as long as we keep 𝑞 finite, the softest gluon in the amplitude

may be medium-induced. This choice of scaling introduces a non-trivial dependence of

the emission rate on the variable 𝑧. This may be best illustrated by considering the ratio

between the transferred momentum and the transverse momentum of the hard gluon

𝑞

𝑘𝐻

= 𝑞
𝑧

𝑟
. (8.26)

Although by construction we have assumed that 𝑧 is small in the Feynman rules, the in-

troduction of the scaling Eq. (8.25) leads to a different behavior depending on the relative

magnitude of 𝑧 and 𝑟. By keeping 𝑞 fixed, the limit 𝑧 ≪ 𝑟 implies that the transverse

momentum of the hard gluon is much greater than the medium momentum transfer; com-
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plementary, for the limit in which 𝑟 ≪ 𝑧 the transverse momentum of the hard gluon is

much smaller than the momentum transfer. These are the two limits that we will explore in

the next subsection. We will leave the analysis of the region 𝑟 ∼ 𝑧, in which the transverse

momentum of both gluons are comparable to the medium transfer, for future work.

These two particular limits also have a close relation to two distinct space-time pictures

of the emissions. In the limit of small 𝑧, the hard gluon is formed early in the medium. The

two hardest partons, the quark and the hard gluon, will therefore form an effective dipole,

or antenna, that is probed by the emission of the softest parton in the cascade. This situation

is close in spirit to the one studied in [124, 125, 193, 126, 194, 195]. In the opposite limit,

the formation times of the soft gluon is shorter than the hard one, allowing it to be emitted

earlier in the cascade. This is a novel situation that we study for the first time in detail.

8.1.2 Emission Rate in the Soft Limit

We start by studying the double induced gluon rate in the limit 𝑧 ≪ 𝑟, i. e.,

𝑧 → 0 , with
{︀
𝑟, 𝑞, 𝜃𝑆, 𝑘

+
𝐻

}︀
fixed . (8.27)

As already discussed, in this limit Eq. (8.26) implies that 𝑘𝐻 decouples from the medium

scale. This means that the medium-induced rate of the hard gluon is power suppressed

and, to leading order in 𝑧, the rate of emission of this gluon is dominated by the vacuum

processes associated to the hard vertex. Note also that the (vacuum) formation times of the

two gluons are strongly ordered,

𝜏𝐻
𝜏𝑆

=
𝑧

𝑟2
, (8.28)

with 𝜏𝐻 = 2𝑘+
𝐻/𝑘

2
𝐻 and 𝜏𝑆 = 2𝑘+

𝑆 /𝑘
2
𝑆 the vacuum formation times of the hard and soft

gluons, respectively. Therefore, at leading order in 𝑧, the hard gluon is effectively emitted

from the hard vertex since it is formed at an arbitrarily short time.

We expand the prefactors 𝒫(𝑖)
𝑄 and 𝒫(𝑖)

𝐺 in Eq. (8.20) to leading order in 𝑧, which means

that we only keep terms that diverge as 𝑧−2. In this limit, only 1 out of the 2 𝒫(𝑖)
𝑄 and
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10 out of the total 19 𝒫(𝑖)
𝐺 terms remain. The phase factors of those terms, 𝜏 (𝑖)𝑄 and 𝜏

(𝑖)
𝐺 ,

possess different leading 𝑧 behavior, 𝑧−1. Following the discussion around Eq. (8.20) (on

the presence of a new scale, the position of the scattering centre from the hard vertex, 𝑥+)

induces us to expand the phase factors 𝜏
(𝑖)
𝑄 , 𝜏 (𝑖)𝐺 to a different 𝑧-order than the prefactors

𝒫(𝑖)
𝑄 and 𝒫(𝑖)

𝑄 . Performing this limit, several cancellations occur and we ultimately were

able to bring the cross section to a closed form.

Following the notation of Eq. (8.19), the term associated to the emission of the two

gluons by the quark, proportional to the colour factor 𝐶2
𝐹𝐶𝐴, is in the leading z-limit given

by

𝑤𝑄(𝑥+; 𝑞) =
4𝑔2

𝑘2
𝐻

×
(︀
−8𝑔4

)︀ 𝑘𝑆 · 𝑞
(𝑘𝑆 + 𝑞)2 𝑘2

𝑆

{︂
1− cos

[︂
(𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂
, (8.29)

where we have expressed all the factors in terms of products of the final momenta. This

expression admits a simple physical interpretation. This part of the cross section is the

product of the vacuum probability of emitting a gluon off the hard quark (in the soft limit),

∼ 1/𝑘2
𝐻 , times the 𝑁 = 1 opacity spectrum for the medium-induced emission of a soft

gluon by the same quark [42, 41] (which is the expression we obtained for single gluon

emission in Section 2.3.5). For later convenience, let us define the vectors,

𝐴𝑞 =
𝑘𝑆 + 𝑞

(𝑘𝑆 + 𝑞)2
, 𝐵𝑞 =

𝑘𝑆

𝑘2
𝑆

, 𝐿𝑞 = 𝐴𝑞 −𝐵𝑞 , (8.30)

where the latter vector is often referred to as the Lipatov vertex. In terms of these functions,

the 𝑁 = 1 opacity expression for the single gluon emission may be expressed as [42, 41]

−𝑘𝑆 · 𝑞
𝑘2

𝑆(𝑘𝑆 + 𝑞)2
=

1

2

(︀
𝐿2

𝑞 + 𝐴2
𝑞 −𝐵2

𝑞

)︀
. (8.31)

We will refer back to this decomposition in sec. 8.2.

We now turn to the 𝐶𝐹𝐶
2
𝐴 contribution in the same limit. After expanding the prefactors

and the phase factors in the manner described above, we find convenient to express the full
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answer in terms of the vectors

𝐴𝑔 =
𝜅𝑆 + 𝑞

(𝜅𝑆 + 𝑞)2
, 𝐵𝑔 =

𝜅𝑆

𝜅𝑆
2
, 𝐿𝑔 = 𝐴𝑔 −𝐵𝑔 , (8.32)

where 𝜅𝑆 has been defined in Eq. (8.3). These functions are analogous to those of Eq. (8.31)

but, since they are functions of 𝜅𝑆 they may be viewed as the transverse momentum of

the soft gluon as measured with respect to the hard one. In terms of these functions, the

contribution to the cross section in which the hard gluon emits the soft one is given by

𝑤𝐺(𝑥+; 𝑞) =
4𝑔2

𝑘2
𝐻

× 4𝑔4
{︂(︀

𝐿2
𝑔 + 𝐴2

𝑔 −𝐵2
𝑔 −𝐴𝑞 ·𝐿𝑔

)︀{︂
1− cos

[︂
(𝜅𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂
−𝐿𝑞 ·𝐴𝑔

{︂
1− cos

[︂
(𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂
+ 𝐿𝑞 ·𝐿𝑔

{︂
1− cos

[︂(︂
(𝜅𝑆 + 𝑞)2

2𝑘+
𝑆

− (𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

)︂
𝑥+

]︂}︂
+𝒞
(︀
𝑘+

𝐻 ,𝑘𝐻; 𝑘+
𝑆 ,𝑘𝑆

)︀
sin

[︂
𝑘2

𝑆

2𝑘+
𝑆

𝑥+

]︂
sin

[︂
𝑞 · 𝑘𝐻

𝑘+
𝐻

𝑥+

]︂}︂
, (8.33)

where we have defined the function1

𝒞
(︀
𝑘+

𝐻 ,𝑘𝐻; 𝑘+
𝑆 ,𝑘𝑆

)︀
= −1

4

𝑘+
𝑆

𝑘+
𝐻

𝜅𝑆 · 𝑘𝐻

𝑘2
𝐻 𝑘2

𝑆 𝜅𝑆
2

(8.34)

Since 𝒞 does not depend on 𝑞, after integration over transferred momenta with the isotropic

distribution 𝒱(𝑞) in Eq. (2.25), the last term of Eq. (8.33) vanishes. Therefore, similarly to

Eq. (8.33), this contribution to the full rate is also proportional to the vacuum probability

of emitting a hard gluon, ∼ 1/𝑘2
𝐻 . Combining Eq. (8.29) and Eq. (8.33) we may express

the full answer for the double-inclusive gluon rate as

⟨|ℳ1OP|2⟩
⃒⃒
𝑧≪𝑟

= 𝒫vac (𝑘𝐻)× 𝒫(1)
ant (𝑘𝑆) , (8.35)

1In spite of the explicit fraction 𝑘+𝑆 /𝑘+𝐻 in Eq. (8.34), this term is of the same 𝑧-order as the rest of the
terms in Eq. (8.33).
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where 𝒫vac is the vacuum 𝑞 → 𝑞 + 𝑔 splitting function in the soft limit

𝒫vac(𝑘𝐻) =
2𝐶𝐹 𝑔2

𝑘2
𝐻

, (8.36)

and 𝒫(1)
ant is the emission rate of soft gluons off a hard quark-gluon dipole at first order

in medium opacity, which we have derived in Appendix C using the method of classical

currents employed in [194]. 𝒫(1)
ant is given in Eq. (C.15) and Eq. (C.17), which we reproduce

here for the readers convenience,

𝒫(1)
ant = 4𝑔4𝐶𝐴𝜇

2
𝐷

∫︁
𝑥+

∫︁
𝑞

𝑛(𝑥+)𝒱(𝑞)

×

{︃
𝐶𝐹 (𝐿2

𝑞 + 𝐴2
𝑞 −𝐵2

𝑞)

{︂
1− cos

[︂
(𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂

+ 𝐶𝐴

[︃ (︀
𝐿2

𝑔 + 𝐴2
𝑔 −𝐵2

𝑔 −𝐴𝑞 ·𝐿𝑔

)︀{︂
1− cos

[︂
(𝜅𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂
−𝐿𝑞 ·𝐴𝑔

{︂
1− cos

[︂
(𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂
+ 𝐿𝑞 ·𝐿𝑔

{︂
1− cos

[︂(︂
(𝜅𝑆 + 𝑞)2

2𝑘+
𝑆

− (𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

)︂
𝑥+

]︂}︂]︃}︃
, (8.37)

which only depends on two dynamical time-scales,

𝜏𝑞 =
2𝑘+

𝑆

(𝑘𝑆 + 𝑞)2
, 𝜏𝑔 =

2𝑘+
𝑆

(𝜅𝑆 + 𝑞)2
(8.38)

which are the formation times of the soft gluon when emitted collinear to the hard quark,

𝜏𝑞, and to the hard gluon, 𝜏𝑔.

The factorised form Eq. (8.35) admits a simple physical interpretation of the emission

rate. In this limit, in which the hard gluon cannot be medium-induced, its production is

totally dominated by vacuum physics, and its rate is determined by the vacuum splitting

function. Since, as shown in Eq. (8.28), the formation time of the hard gluon is parametri-

cally smaller than that of the soft gluon, the hard gluon is emitted early. From the point of

view of the medium, the system behaves as a quark-gluon antenna right after the hard ver-

tex. Therefore, the scattering centre interacts with this two-parton systems simultaneously.
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The emission pattern includes several interferences effects, encoded in the intricate 𝑥+ de-

pendence of the rate, which are a result of the simultaneous propagation of this multi-parton

system. We will discuss this pattern in detail in sec. 8.2.

8.1.3 Emission Rate in the Collinear Limit

We now explore a different limit for the emission rate in which the hard gluon is not forced

to be emitted first. To do so, we will consider the emission rate in the limit in which the

ratio of angles goes to zero first (𝑟 → 0) and then look for terms leading in the ratio of

energies 𝑧 ≪ 1. The scaling of the momentum transferred with the transverse momentum

of the medium gluon, Eq. (8.25), implies that the order of limits does not commute, since,

as expressed in Eq. (8.26), in this limit the transverse momentum of the hard gluon, 𝑘𝐻 ,

becomes parametrically smaller than 𝑞. The limit we performed may be summarised as,

𝑟 → 0, 𝑧 → 0, with
{︀
𝑞, 𝜃𝑆, 𝑘

+
𝐻

}︀
fixed . (8.39)

It is easy to see from Eq. (8.28) that in this limit the formation time of the hard gluon is

parametrically longer than that of the soft emission.

As before, we expand the pre-factors 𝒫(𝑖)
𝑄 and 𝒫(𝑖)

𝐺 to leading order in 𝑟, which corre-

sponds to 𝑟−2. In this limit, only 1 out of the 2 terms in 𝒫(𝑖)
𝑄 and 7 out of the 19 terms

𝒫(𝑖)
𝐺 are non-vanishing, and all of them depend on 𝑧 as a power, 𝑧−2. Unlike the previous

case, not all the phase factors of the surviving terms possess the same leading 𝑟 limit: 6

of the phase factors 𝜏
(𝑖)
𝐺 are 𝒪(𝑟0) and the remaining one is 𝒪(𝑟2). The presence of the

additional scale 𝑥+ allows us to keep the latter apparently suppressed time-scale, which

becomes important at times of order 𝑟−2. Nevertheless, in the leading 𝑟 limit, all 6 terms

with 𝒪(𝑟0) phases cancel identically, leading to

𝑤𝑄(𝑥+; 𝑞) =
4𝑔2

𝑘2
𝐻

× (−8𝑔4)
𝑘𝑆 · 𝑞

𝑘2
𝑆 (𝑘𝑆 + 𝑞)2

{︂
1− cos

[︂
(𝑘𝑆 + 𝑞)2

2𝑘+
𝑆

𝑥+

]︂}︂
, (8.40)

𝑤𝐺(𝑥+; 𝑞) =
4𝑔2

𝑘2
𝐻

× 4𝑔2
𝑞2

𝑘2
𝑆 (𝑘𝑆 + 𝑞)2

{︂
1− cos

[︂
𝑘2

𝐻

2 𝑘+
𝐻

𝑥+

]︂}︂
. (8.41)

As in the previous limit, both terms of the emission amplitude are proportional to 𝒫vac,
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Eq. (8.36), which implies that the production of the hard gluon proceeds as in vacuum.

This is a consequence of the fact that in this limit 𝑘𝐻 is parametrically smaller than 𝑞.

Due to LPM interference, the medium-induced rate is collinear finite [42, 41], implying

that gluons with 𝑘𝐻 ≪ 𝑞 cannot be medium-induced and, therefore, have to have been

generated in the hard vertex that creates the jet.

The soft gluon emission rate depends on two distinct time-scales. The emission rate of

soft gluons off the quark, 𝑤𝑄(𝑥+; 𝑞), is identical in both limits, Eq. (8.29) and Eq. (8.40),

which, as we have discussed coincides with the 𝑁 = 1 opacity spectrum. This spectrum

is controlled by the formation time of the soft gluon in medium 𝜏𝑞. The contribution to

the rate coming from emissions off the hard gluon, 𝑤𝐺(𝑥+; 𝑞), is different in this limit.

This rate no longer depends on the time-scale 𝜏𝑔, as Eq. (8.33). The time-scale controlling

interferences in Eq. (8.41) is the formation time of the hard gluon, 𝜏𝐻 = 2𝑘+
𝐻/𝑘

2
𝐻 .

The appearance of 𝜏𝐻 in the emission rate leads to a simple consequence. If the scatter-

ing centre interacts with the quark-gluon system prior to the formation of the hard gluon,

𝑥+ ≪ 𝜏𝐻 , the emission rate is dominated by radiation off the quark, since the Eq. (8.41)

vanishes. After 𝜏𝐻 , the emission rate may be understood as the incoherent superposition of

the radiation off the quark plus the radiation off the gluon. At these late times, the rate of

emission off the hard gluon is given by the Gunion-Bertsch term [197],

lim
𝑟→0

𝐿2
𝑔 =

𝑞2

𝑘𝑆
2 (𝑘𝑆 + 𝑞)2

, (8.42)

where 𝐿𝑔 is defined in Eq. (8.32), which corresponds to the emission of a soft gluon of

momentum 𝑘𝑆 off a hard on-shell gluon generated infinitely far away from the scattering

centre. This rate differs from the emission rate of the soft gluon off the quark, Eq. (8.40),

which is the 𝑁 = 1 spectrum.

This difference in the emission rate implies that after the formation of the gluon, this

new source of colour does not radiate in-medium as an independent new source produced

at 𝜏𝐻 , which would lead to an equivalent 𝑁 = 1 spectrum off the hard gluon. The origin

of the different rates at asymptotic late times may be understood from the analysis of the

antenna spectrum, Eq. (8.37). First of all, we note that in the limit Eq. (8.39), the time-
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scales that control the emission from the colour dipole are parametrically suppressed with

respect to 𝜏𝐻 . In the small r limit

𝜏𝐻
𝜏𝑞

= 𝒪
(︁ 𝑧

𝑟2

)︁
,

𝜏𝐻
𝜏𝑔

= 𝒪
(︁ 𝑧

𝑟2

)︁
,

𝜏𝐻
𝜏𝑞
− 𝜏𝐻

𝜏𝑔
= 𝒪

(︁𝑧
𝑟

)︁
. (8.43)

Because of this separation of time-scales, the relevant limit of the antenna spectrum Eq. (8.37)

is to consider 𝑥+ → ∞, which implies that all phase factors average out to zero. In this

incoherent limit, together with Eq. (8.39), the part of the antenna spectrum proportional to

𝐶𝐴 is

lim
𝑟→0

(︀
𝐿2

𝑔 +
(︀
𝐴2

𝑔 −𝐴𝑞 ·𝐴𝑔

)︀
−
(︀
𝐵2

𝑔 −𝐵𝑞 ·𝐵𝑔

)︀)︀
=

𝑞2

𝑘𝑆
2 (𝑘𝑆 + 𝑞)2

, (8.44)

which coincides with the Gunion-Bertsch rate found in the two-gluon cross section.

This observation leads to a simple interpretation of the full double emission rate. If

the scattering centre is placed early compared to 𝜏𝐻 , the interaction of the vacuum jet with

the medium is identical to the interaction of a hard quark with the scattering centre; the

emission of the hard gluon occurs after the scattering, and proceeds as in vacuum. If, on

the contrary, the interaction with the scattering centre occurs at a time long compared to 𝜏𝐻 ,

then the hard gluon has time to form via vacuum processes, leading to the generation of an

in-medium antenna. From this time on, it is the quark-gluon dipole the one that interacts

with the medium. We will discuss the consequences of this interpretation in sec. 8.2.

8.2 Discussion

In this Chapter we have discussed two particular kinematic regions, summarised in Eq. (8.27)

and Eq. (8.39), of the emission rate of two gluons in a thin (opacity 𝑁 = 1) medium. These

limits are particularly interesting because they allow us to cleanly separate vacuum and

medium emissions. As we have discussed, in both those kinematic regions the emission

of one of the gluons, the hard gluon, is dominated by vacuum-like processes produced at

the hard vertex that creates a jet, while the soft gluon is medium-induced. By choosing

this kinematics, we have focused on understanding how the multi-parton state associated
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to the propagation of a jet in plasma interacts with a QCD medium. However, this limit

prevents us from studying how the emission of new partons by medium-induced processes

interferes with the evolution of the jet shower, which demands the analysis of the rate when

both emitted gluons can be medium-induced. This is a more intricate analysis which we

leave for future work. Other analyses of the rate of emission of two gluons of comparable

momentum from an on-shell quark propagating in the plasma can be found in [192, 191].

As we have shown, within these regions the emission pattern of soft gluons is controlled

by the emission spectrum off a hard quark-gluon dipole in medium, Eq. (8.37). This type

of dipoles has been recently used to understand emissions by multiple colour sources in

plasma and led to a rich interference structure [124, 125, 193, 126, 194, 195]. The partic-

ular case of opacity 𝑁 = 1 for a colour singlet antenna was analysed in detail in [194].

Although the main lessons of the interference emission pattern of the quark-gluon antenna

may be inferred from the analysis of the colour singlet antenna in [194], for completeness

we discuss those features below.

The antenna emission rate is controlled by three distinct time-scales: the in-medium

formation times of soft gluons emitted off the quark, 𝜏𝑞, and off the gluon, 𝜏𝑔, defined in

Eq. (8.38) and a third time-scale, intrinsically multi-partonic, which combines kinematic

information of both constituents of the antenna,

𝜏−1
res =

1

𝜏𝑞
− 1

𝜏𝑔
=

2𝑞 − 𝑘𝑆 − 𝜅𝑆

2
n, (8.45)

with n = 𝑘𝐻/𝑘
+
𝐻 a vector in transverse space whose modulus is the opening angle of the

quark-gluon system, n2 = 𝜃2𝐻 . This time-scale controls the interference between medium-

induced emissions of the two sources.

To understand how these interferences occur, let us first consider the induced spectrum

off the quark-gulon dipole when the angle of the antenna 𝜃𝐻 is large. In this limit, the

stimulated emissions off the quark and off the hard gluon are independent of one another.

The medium-induced spectrum off each of the propagating sources is dominated by gluons

emitted with a typical transverse momentum with respect to the source of order 𝜇𝐷; this

means that medium-induced gluons off the quark have 𝑘𝑆 ∼ 𝜇𝐷 while the induced gluons
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off the hard gluon have 𝜅𝑆 ∼ 𝜇𝐷. Therefore, the induced spectrums will be well separated

from one another if the angle of the dipole 𝜃𝐻 ≫ 𝜃med, with 𝜃med = 𝜇𝐷/𝑘
+
𝑆 being the

typical emission angle with respect to the emitting source. In this limit, as a consequence

of Eq. (8.23), medium-induced gluons off the quark have 𝜅𝑆 ≈ 𝑘+
𝑆 𝜃𝐻 ≫ 𝑘𝑆 and induced

gluons off the hard gluon have 𝑘𝑆 ≈ 𝑘+
𝑆 𝜃𝐻 ≫ 𝜅𝑆. This condition is sufficient to show

that, up to corrections of order 𝜃2med/𝜃
2
𝐻 , the antenna spectrum Eq. (8.37), is the incoherent

superposition of the stimulated spectrum off the quark and off the hard gluon.

Complementary, soft gluon emission off the antenna suffers from strong interferences

for 𝜃𝐻 ≪ 𝜃med. In this limit, for typical induced gluons 𝜅𝑆 ≈ 𝑘𝑆 ∼ 𝜇𝐷, which implies that

𝜏𝑞 ≈ 𝜏𝑔, 𝐴𝑞 ≈ 𝐴𝑔, 𝐵𝑞 ≈ 𝐵𝑔 and 𝐿𝑞 ≈ 𝐿𝑔. The antenna spectrum is reduced to

𝑤
(1)
ant
(︀
𝑥+;𝑘𝑆, 𝑘

+
𝑆

)︀⃒⃒⃒
𝜃𝐻≪𝜃med

= 𝐶𝐹

[︂
1− cos

𝑥+

𝜏𝑞

]︂ (︀
𝐿2

𝑞 + 𝐴2
𝑞 −𝐵2

𝑞

)︀
+ 𝐶𝐴

[︂
1− cos

𝑥+

𝜏res

]︂
𝐿2

𝑞 , (8.46)

which is the medium-induced spectrum off the quark plus an additional interference term

encoding the emission off the gluon. In the small dipole limit, for typical induced gluons

Eq. (8.45) yields 𝜏−1
res ∼ 𝜇𝐷𝜃𝐻 . Therefore, interferences between the two sources suppress

the emission off the hard gluon if at the relevant observation time 𝑥+ the transverse size of

the dipole is 𝜆 = 𝜃𝐻𝑥
+ ≪ 𝜆res, with

𝜆res =
1

𝜇𝐷

(8.47)

the transverse resolution scale, which in this dilute medium equals the inverse typical mo-

mentum transferred by the medium.

The characteristic time-scale for medium-induced radiation is the formation time of

the emitted gluon, 𝜏𝑞. At this time, the typical transverse size of the quark-gluon dipole

is 𝜆 ∼ 𝜆res 𝜃𝐻/𝜃res. Therefore, for induced gluons with 𝜃res ≫ 𝜃𝐻 the transverse size of

the dipole at emission is small compared to the transverse resolution scale and the spec-

trum is totally dominated by the emission off the hard quark. Nevertheless, the condition

𝜃res ≫ 𝜃𝐻 depends on the frequency of the soft gluon, and at fixed 𝜃𝐻 only a fraction of the
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induced spectrum, with 𝑘+
𝑆 ≪ 𝜇𝐷/𝜃𝐻 , is suppressed by interference effects. Since LPM in-

terference suppresses induced radiation with formation time larger than the medium length

𝐿, the medium-induced spectrum has a maximum frequency of emission, 𝜔𝑚𝑎𝑥 ∼ 𝜇2
𝐷𝐿

[41, 42, 43]. Therefore, if the dipole opening angle 𝜃𝐻 ≪ 1/𝜇𝐷𝐿, all the medium-induced

spectrum off the gluon is cancelled by interference, and the full emission spectrum off the

quark-gluon dipole is given by the medium-induced radiation off a hard quark. The mul-

tipartonic system interacts with the plasma as a single colour charge, the total charge of

the system, as long as its maximal transverse size in the medium 𝜃𝐻𝐿 ≪ 𝜆res. As we have

seen, the rich interference structure associated to the medium resolution scale 𝜆res emerges

in the soft limit of the double gluon emission rate, Eq. (8.35), in which the emission of a

hard gluon may be viewed as the production of an in-medium antenna.

The emergence of the antenna interference pattern suggests a simple organising princi-

ple to understand the dynamics of jet showers in medium based on the resolution scale, as

already suggested in [155]. A basic element of this picture is that, similarly to vacuum, jet

showers may be best understood as a collection of in-medium antennas, that are dynami-

cally generated in the process of relaxation of the virtuality of the jet. Our computations

in the small angle regime support this picture. As we have seen in sec. 8.1.3, the emis-

sion of soft gluons by a quark-gluon system generated in vacuum explicitly depends on

the formation time of the gluon 𝜏𝐻 . While for short times 𝑥+ ≪ 𝜏𝐻 the emission pattern

off the quark-gluon system is just that off a quark, after 𝜏𝐻 both the quark and the hard

gluon contribute to the emission spectrum. This agrees with the common approximation of

considering 𝜏𝐻 as the time in which the hard gluon decorrelates from the hard quark. Nev-

ertheless, disregarding the trivial differences in colour factors, the emission spectrums of

the quark and gluon are not identical. Therefore, a naive iteration of the medium-induced

spectrum after the formation of the hard gluon leads to the incorrect emission rate.

As we have shown, the emission rate off the hard gluon is predicted from the antenna

picture in the small angle limit, provided the antenna forms after 𝜏𝐻 . The physical origin

of the discrepancy between the iteration of the 𝑁 = 1 opacity spectrum, Eq. (8.40), and

the antenna prediction is easy to understand. As it is well known, in the totally incoherent

limit (𝜏𝑞 ≪ 𝑥+) the emission rate can be expressed as Eq. (8.31), which we reproduce here
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for convenience,

−2𝑘𝑆 · 𝑞
(𝑘𝑆 + 𝑞)2𝑘𝑆

2 = 𝐿2
𝑞 + 𝐴2

𝑞 −𝐵2
𝑞 , (8.48)

which shows that the emission rate is the sum of the stimulated emission off an on-shell

quark, 𝐿2
𝑞 , the medium broadening of a soft gluon produced in the hard vertex, 𝐴2

𝑞 , and a

unitarity correction which subtracts strength from the vacuum emission rate of soft gluons

off the quark, 𝐵2
𝑞 . The difference in the in-medium rate off the hard gluon lies precisely in

a different 𝑣𝑎𝑐𝑢𝑢𝑚 emission rate of soft gluons by the quark-gluon antenna. As shown in

Eq. (C.12), because of the interference with the quark, the vacuum emission of soft gluons

off the hard gluon is proportional to

𝒫𝐺

vac ∝ (𝐵𝑔 −𝐵𝑞)
2 , (8.49)

where the dependence in 𝐵𝑞 reflects the interference with the quark. This vacuum rate

vanishes in the limit of 𝜃𝐻 ≪ 𝜃𝑆, since, on the formation time of the vacuum soft gluon,

the transverse size of the quark-gluon dipole is negligible. This does not imply that the

in-medium rate vanishes, since, in the limit Eq. (8.39), 𝜏𝐻 ∼ 1/𝑘+
𝐻𝜃𝑆𝑟

2 and the dipole has a

(parametrically) long time to separate, leading to a large transverse separation at formation

time ∆ = 𝜃𝐻𝜏𝐻 ∼ 𝑧/𝑟𝑘𝑆. As a result of vacuum interference, the emission off the gluon

coincides with the emission off an on-shell gluon generated infinitely far away from the

scattering centre, since no soft gluons are produced in vacuum in this kinematic lint.

The small angle approximation explored in sec. 8.1.3 is, however, insensitive to the the

medium resolution scale 𝜆res. For typical in medium radiation with 𝑘𝑆 ∼ 𝜇𝐷, at the time the

hard gluon forms the transverse size of the dipole is 𝜆 = 𝜆res 𝑧/𝑟 ≫ 𝜆res and the antenna is

totally resolved. For this reason, at times long compared to 𝜏𝐻 the two gluon emission rate,

Eq. (8.40) and Eq. (8.41), coincides with the spectrum of a fully resolved (𝑥+ → 0) small

angle antenna, Eq. (8.46). Unfortunately, the limit in which 𝑟 → 0 first is inadequate to

explore the interplay between 𝜆res and the formation of the hard gluon. In future work we

plan to address the limit 𝑟 ∼ 𝑧 → 0 to understand how the formation of the antenna affects

the resolution of the colour structure of the propagating dipole.
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Chapter 9

Conclusions and Outlook

In this thesis we have studied how high energetic excitations propagate through a non-

abelian strongly coupled plasma. This new state of matter is produced at heavy ion col-

lisions in our accelerators and allows us to study a stage of the evolution of our Universe

that occurred during the first microseconds after the Big Bang. In this extreme conditions

of temperature and density the ordinary matter that we are made of behaves as a an almost

perfect fluid, the most perfect known by mankind up to now in fact. The theory of strong

interactions is tested at an energy scale that even though it is high enough to melt hadrons, it

does not get to the point where the coupling constant is low enough to allow a perturbative

description. In the plasma, the partonic field content, the quarks and gluons, cease to be

the relevant degrees of freedom and a microscopic description in terms of quasi-particles

is not possible. A very useful tool to put to test the actual behaviour of this strongly cou-

pled fluid is the analysis of jet modifications as a result of their interactions with the plasma.

In a first introductory part we have given the concepts needed to picture how heavy

ion collisions develop as we are able to understand it today. We have introduced the tech-

niques commonly used to describe parton propagation within a deconfined medium both

from the weak coupling and strong coupling regime, and used them to obtain energy loss

rate equations that describe the energy degradation of these probes in their passage through

the plasma. At weak coupling, the main mechanism responsible for energy loss is induced

gluon emission and interesting interference phenomena occur that lead to a dependence on
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path length of 𝐿2. These are known as coherence effects and their study becomes richer by

considering multi-gluon emission, as it is done done in Part III. The strongly coupled pic-

ture uses holography to map a dressed excitation moving through a strongly coupled plasma

into a string propagating in a higher dimensional space containing a black hole. Since the

non-abelian theory in which the calculation is done is not QCD, but 𝒩 = 4 SYM, we

take these results as an insight to describe energetic parton propagation in a model of jet

quenching in heavy ion collisions. The different number of degrees of freedom of the two

theories are expected to lead to differences in the stopping distance, which is the time that

it takes to the endpoint of the string to cross the black hole horizon.

Even though we assume that the exchanges with the medium are soft enough to include

non-perturbative effects, as described by gauge/gravity duality, the energetic partons that

are produced in the collision generally have a high virtuality which they relax by successive

splittings. The latter occur at length scales that are not resolvable by the medium, and they

should proceed as in vacuum. This observation motivates us to adopt a hybrid description

for the interplay between the multi scale jet and the QGP, using each description at the

scale it is supposed to be valid. This phenomenological description has proven to be very

successful in describing dijet and photon-jet data at different centralities. In addition, by

the combination of the fragmentation functions of the leading and subleading jet in a dijet

pair, we have found an observable highly sensitive to the specific energy loss mechanism

(see Fig. 6-13), which is remarkable given the moderate dependence that other jet observ-

ables have. In view of the coming data sometime this year from run 2 at the LHC, we

have computed predictions for the
√
𝑠 = 5.02 ATeV center of mass energy with special

expectations on photon-jet measurements, for which the increase in statistics is presumed

to be around a factor 10. This greatly improved precision will help us discriminate among

the different models for energy loss given the sizeable separation their predictions present

in observables such as photon-jet imbalance (see Fig. 6-8).

In the next part of the work we extend our hybrid model by the inclusion of two effects,

broadening and medium response, which should help us improve the ability of our simu-
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lations to describe the challenging physics of intra-jet observables such as jet shapes and

fragmentation functions. The first effect, broadening, is due to the Brownian motion that

probes experience in a thermal bath, and it will tend to broaden the distribution of particles

within the jet. This represents a candidate mechanism capable of reproducing the observed

behaviour in the modification of the transverse energy density of quenched jets, consisting

in a depletion at mid 𝑟 and an enhancement at larger 𝑟. As it turns out, the observable

quantifying such modifications, the jet shapes, are rather insensitive to the inclusion of this

effect due to the effectiveness of the strong quenching, which removes the softer fragments

leaving a narrow structure that gets mildly tilted. However, by restricting the 𝑝𝑇 range of

the tracks entering this analysis, we have been able to produce a new observable which

shows a remarkable dependence on the precise strength of the broadening mechanism (see

Fig. 7-4). Measurements on this kind of observables could be then used to obtain a direct

extraction of the actual in-medium broadening.

The second effect involves overall energy-momentum conservation. The rapidly ther-

malized energy deposited by the energetic partons modifies the plasma, inducing temper-

ature and velocity fluctuations in the surrounding fluid cells. This perturbation propagates

long distances in the form of a wake and eventually decays into soft hadrons, whose ori-

entations keep a correlation with the jet direction and therefore produce a net effect even

after background subtraction. We estimate the size of this effect by assuming that the

perturbation is small, leading to important simplifications in its implementation. The ob-

servable consequences are best noticed in intra-jet measurements such as jet shapes and

fragmentation functions, where it is clearly seen that the inclusion of such physics is in

good agreement with the observed experimental trend, and it becomes simply unavoidable

when comparisons against global measurements are performed (see Fig. 7-9). Despite this

improvement, the tension present in the description of jet shapes points towards potential

improvements of our model, such as the inclusion of coherence effects or a more rigorous

analysis of medium back-reaction.
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The hybrid approach has already provided us with a systematically improvable calcula-

tional framework within which we can test strongly coupled predictions for jet quenching

by confronting them quantitatively with experimental measurements of jet observables.

This demonstrates that this approach can now be used to explore and subsequently test new

observables. Some of the physics effects left out so far, which could be implemented in our

framework, include finite 𝑁𝑐, finite 𝜆, and nonzero 𝑁𝑓/𝑁𝑐 corrections to (4.2), or how this

energy loss rate changes in a strongly coupled theory that is not conformal. One could also

consider the reduction in the phase space for the fragmentation of a parton in the PYTHIA

shower as a consequence of the energy loss, or the possibility that multiple soft interactions

with the medium induce additional splittings in the shower. A particularly interesting im-

provement involves coherence effects, which are related to the finite resolution power of

the medium, a problem to which the last content of thesis is devoted.

The final part of this work consists in the computation of the inclusive two gluon stim-

ulated emission within the context of perturbative QCD. By studying the full answer in

different kinematical limits we arrive to the conclusion that jet propagation is perceived

from the point of view of the plasma as a set of effective emitters depending on the reso-

lution power, which for a thin plasma it is of the order of the Debye screening mass 𝜇𝐷.

As stated above, this physics is a missing piece of the Monte Carlo jet quenching model

presented in this thesis and its inclusion is expected to have important consequences for the

more differential observables, a task that will be undertaken in future work.

These are very exciting times for the physics of strong nuclear interactions. The strongly

coupled nature of the QGP makes the study of this system extremely interesting, like other

strongly coupled systems such as high temperature superconductors or cold atoms. We

have seen how the very fundamental questions about the nature of the high temperature,

strongly coupled phase of ordinary matter can be addressed by the study of jet quenching

and its observable consequences. This thesis represents an effort in the confrontation of

the seductive ideas of holography with experiments. The possibility that a rather familiar,

although undeniably challenging theory such as QCD can indeed be described in terms of
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strings which propagate in higher dimensions is not only convenient, but absolutely fasci-

nating. Having the means to quantitatively confront new ideas, as we have done throughout

the presented work, new observables, and new data is critical if we are eventually to un-

derstand the properties of the strongly coupled liquid quark-gluon plasma that Nature has

served us.
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Appendix A

Transverse Kicks Kinematics

We now study the broadening of the parton via a transverse kick of magnitude 𝑞 in the rest

frame of the fluid. The description of the random probability function will be done later.

The kick is such that the energy of the quark (in the fluid frame) remains unchanged, and

so does its virtuality.

The parton starts with a four momentum 𝑃 𝜇 = 𝐸𝐹 (1,w𝐹 ), and ends with a momentum

𝑃
′𝜇 = 𝐸𝐹 (1,w′

𝐹 ) such that w′2
𝐹 = w2

𝐹 . In this frame, this condition is achieved by adding

a longitudinal momentum transfer in addition to the transverse kick

w′
𝐹 =

√︃
1− 𝑞2

𝐸2
𝐹w

2
𝐹

w𝐹 +
𝑞

𝐸𝐹

e⊥ (A.1)

where e⊥ is a vector perpendicular to the parton velocity in the rest frame of the fluid . In

terms of the lab frame quantities

𝐸2
𝐹𝑤

2
𝐹 = 𝐸𝐹 − 𝐸(1− 𝑤2) (A.2)

with 𝐸𝐹 = 𝐸 𝛾𝐹 (1−wv), with 𝛾𝐹 the Lorentz factor of the fluid velocity v. We would

like to express now all vectors in terms of lab frame quantities. We define the four vector

𝑊𝑇 =
1

𝑊 0
𝐹

(𝑊 − (𝑊 · 𝑢)𝑢) (A.3)
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which is transverse to the fluid velocity 𝑢 ·𝑊𝑇 = 0. In the fluid frame this four vector has

components 𝑊𝑇 = (0,w𝐹 ), and therefore

𝑃
′𝜇 = 𝑃 𝜇 + 𝛽𝐸𝐹𝑊

𝜇
𝑇 + 𝑞𝑒𝜇⊥ , 𝛽 =

√︃
1− 𝑞2

𝐸2
𝐹w

2
𝐹

− 1 (A.4)

and the four vector 𝑒𝜇⊥ must satisfy the conditions

𝑢 · 𝑒⊥ = 0 , 𝑊 · 𝑒⊥ = 0 , 𝑒2⊥ = −1 (A.5)

To construct the general form of 𝑒⊥ we ned to find a basis which fulfils those conditions.

One such vector 𝑒𝜇1 is easy to find. To construct the second one we start from the first

𝑙𝜇2 = (0,
w

|w|
× w × v

|w × v|
) , 𝑒𝜇1 = (0,

w × v

|w × v|
) (A.6)

and then 𝑙𝜇2 satisfies two of the three conditions. We obtain the vector we want 𝑒𝜇2 as

𝑒𝜇2 =
1√
𝑁

(𝑙𝜇2 + 𝛼𝑊 𝜇
⊥) , 𝑊⊥ = 𝑊 − 𝑊 2

𝑢 ·𝑊
𝑢 (A.7)

where we have introduced the transverse part of the parton velocity 𝑊⊥. The parameters

are found to be

𝛼 = − (𝑙2 · 𝑢) (𝑢 ·𝑊 )

(𝑢 ·𝑊 )2 −𝑊 2
, 𝑁 =

(𝑢 ·𝑊 )2 −𝑊 2(1 + (𝑙2 · 𝑢)2)

(𝑢 ·𝑊 )2 −𝑊 2
(A.8)

Note that the orthogonolaity relation 𝑒1 · 𝑒2 = 0 is also satisfied. Having dealt with the

kinematics, we can now streamline the procedure for determining the transverse kicks. At

every time step interval in the lab frame, 𝑑𝑡, the parton acquires a mean transversed mo-

mentum squared given by ∆𝑄2 = 𝑞 𝑑𝑡𝐹 , where the relation between 𝑑𝑡𝐹 and 𝑑𝑡 is given by

Eq. 4.21. We will model the jet transport parameter 𝑞 = 𝐾𝑇 3 with 𝑇 the local tempera-

ture. In this time interval, a random momentum of magnitude 𝑞 is generated according to a

gaussian probability distribution with width ∆𝑄2.
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Appendix B

Effective Feynman Rules in the Eikonal

Limit

Here we will shortly review the relevant Feynman diagram technique applied in the light-

cone gauge in the mixed representation, which is quite similar to the so-called time-ordered

perturbation theory. Choosing the gauge vector to be purely “minus”, 𝑛 ≡ (0, 1,0), leads to

the gauge condition 𝑛 ·𝐴 = 𝐴+ = 0 for the gluon field. In particular, the gluon polarization

vector becomes

𝜀𝜆(𝑘) =

(︂
0,

𝑘 · 𝜀𝜆(𝑘)

𝑘+
, 𝜀𝜆(𝑘)

)︂
. (B.1)

B.1 Propagators

The scalar (Feynman) propagator for massless particles in vacuum reads

𝐷(𝑘) =
𝑖

𝑘2 + 𝑖𝜖
, (B.2)
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In terms of this, the quark and gluon propagators read

𝑆(𝑘) =
∑︁
𝑠

𝑢𝑠(𝑘)𝑢̄𝑠(𝑘)𝐷(𝑘) , (B.3)

𝐺𝜇𝜈(𝑘) =
∑︁
𝜆

𝜀*𝜇𝜆 (𝑘)𝜀𝜈𝜆(𝑘)𝐷(𝑘) , (B.4)

respectively, where

∑︁
𝑠

𝑢𝑠(𝑘)𝑢̄𝑠(𝑘) = /𝑘 , (B.5)

∑︁
𝜆

𝜀*𝜇(𝑘)𝜀𝜈(𝑘) = −𝑔𝜇𝜈 +
𝑘𝜇𝑛𝜈 + 𝑘𝜈𝑛𝜇

𝑘 · 𝑛
− 𝑘2 𝑛𝜇𝑛𝜈

(𝑘 · 𝑛)2
. (B.6)

The transverse part of the polarization vectors satisfy
∑︀

𝜆 𝜀
* 𝑖
𝜆 𝜀𝑗𝜆 = 𝛿𝑖𝑗 . Since all propagat-

ing partons are put on-shell, the latter term in Eq. (B.6) is irrelevant for our analysis. The

gluon propagator is symmetric, and the only non-vanishing components read

𝐺−−(𝑘) =
𝑘2

(𝑘+)2
𝐷(𝑘) , 𝐺−𝑖(𝑘) =

𝑘𝑖

𝑘+
𝐷(𝑘) , 𝐺𝑖𝑗(𝑘) = 𝛿𝑖𝑗𝐷(𝑘) , (B.7)

where 𝑖 = (1, 2). In the next subsection we will show that in the eikonal limit all the

vertices become transverse and diagonal in spin and polarization, which allows them to

absorb all the quark/gluon dependence (numerators). This leaves us with the momentum

flow and pole structure which are encoded exlusively in the scalar part of the propagator.

We will work in the mixed representation, with (light-cone) time, energy and transverse

momentum. For instance, energy-momentum conservation in a 𝑞(𝑙) → 𝑞(𝑝) + 𝑔(𝑘) takes

the following form

(2𝜋)4𝛿(4)(𝑝 + 𝑘 − 𝑙) = (2𝜋)3
∫︁

d𝑥+ 𝑒𝑖(𝑝
−+𝑘−−𝑙−)𝑥+

𝛿
(︀
𝑝+ + 𝑘+ − 𝑙+

)︀
𝛿 (𝑝 + 𝑘 − 𝑙) ,(B.8)

and similarly for the four-gluon vertex. While external particles are naturally required to
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be on-shell, the mixed representation also allows to put all internal propagators on-shell

𝐷(𝑥+; 𝑘) ≡ 𝐷(𝑥+;𝑘, 𝑘+) =

∫︁ ∞

−∞

d𝑘−

2𝜋
𝑒−𝑖𝑘−𝑥+

𝐷(𝑘) , (B.9)

=
Θ (𝑥+)

2𝑘+
𝑒−𝑖𝑘−𝑥+−𝜖𝑥+

, (B.10)

with 𝑘− = 𝑘2/(2𝑘+) in the last line. The 𝜖-prescription regulates the behavior of the

propagator at infinity. We note that we have to keep in mind that any integration of an

external point involves the additional phases as in Eq. (B.8).

B.2 Leading Eikonal Vertices

Here we derive the relevant vertices and demonstrate their behavior in the eikonal approx-

imation. This means that we only keep terms that are enhanced by a factor 𝑧−1, where 𝑧 is

the fraction of a small energy over a large one. This automatically leads to the preservation

of (quark) helicity and (gluon) polarization that floats through the vertices.

The triple gluon vertex reads

𝑖𝑉 𝜇𝜈𝜎
𝑎𝑏𝑐 (𝐾1, 𝐾2, 𝐾3) = 𝑔𝑓𝑎𝑏𝑐

[︀
(𝐾1 −𝐾2)

𝜎𝑔𝜇𝜈 + (𝐾2 −𝐾3)
𝜇𝑔𝜈𝜎 + (𝐾3 −𝐾1)

𝜈𝑔𝜇𝜎
]︀
,(B.11)

where all momenta are incoming and 𝑓𝑎𝑏𝑐 is the SU(3) structure constant. Enforcing

energy-momentum conservation in the vertex, we will define the emission vertex describ-

ing 𝑔(𝐾1 + 𝐾2) → 𝑔(𝐾1) + 𝑔(𝐾2), where the momentum flow follows the time flow,

as

Γ𝑎𝑏𝑐
𝐺 (𝐾1, 𝐾2) = 𝜀*𝜇(𝐾1)𝜀

*
𝜎(𝐾2) 𝑖𝑉

𝜇𝜈𝜎
𝑎𝑏𝑐 (−𝐾1, 𝐾1 + 𝐾2,−𝐾2) 𝜀𝜈(𝐾1 + 𝐾2)

= 2𝑔𝑓𝑎𝑏𝑐

[︂
1

𝑧
(𝜅 · 𝜀2) (𝜀2 · 𝜀12) + (𝜅 · 𝜀1) (𝜀2 · 𝜀12)−

1

1 + 𝑧
(𝜅 · 𝜀12) (𝜀1 · 𝜀2)

]︂
,

(B.12)

where 𝜅 ≡ 𝑘2 − 𝑧𝑘1, 𝑧 ≡ 𝑘+
2 /𝑘

+
1 and 𝜀𝑖 ≡ 𝜀(𝑘𝑖). In the eikonal approximation we

only keep the leading 𝑧 term in Eq. (B.12). We will however keep the apparently sub-
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leading contribution to 𝜅 since |𝜅| ∼ 𝑘+(𝜃1 +𝜃2) and we are interested in arbitrary angular

ordering. The eikonal triple-gluon vertex becomes completely transverse and reads

Γ𝑎𝑏𝑐,𝑘
𝐺 (𝑘1, 𝑘

+
1 ;𝑘2, 𝑘

+
2 ) = 2𝑔𝑓𝑎𝑏𝑐 1

𝑧
𝜅𝑘 , (B.13)

where we have dropped a diagonal matrix for the propagation of the polarization. This

ensures that the polarization of the hardest gluon is conserved in the vertex. On the other

hand, including one gluon field from the medium in the triple gluon vertex leads to

𝜀*𝜇(𝐾1)𝐴
𝑐
𝜎(𝐾2) 𝑖𝑉

𝜇𝜈𝜎
𝑎𝑏𝑐 (−𝐾1, 𝐾1 −𝐾2, 𝐾2) 𝜀𝜈(𝐾1 −𝐾2)

= 2𝑔𝑓𝑎𝑏𝑐𝑘+
1 𝐴

𝑐−(𝐾2) 𝜀1 · 𝜀12 . (B.14)

Using the decomposition in Eq. (2.24) for the medium potential and applying the transfor-

mation to the mixed representation allows us to define a triple-gluon interaction vertex

𝑈𝑎𝑏
𝐺 (𝑥+; 𝑘+, 𝑞) = 2𝑔 𝑘+ 𝑓𝑎𝑏𝑐𝒜𝑐(𝑥+, 𝑞) , (B.15)

= 𝑢𝑎𝑏𝑐
𝐺 (𝑘+)𝒜𝑐(𝑥+, 𝑞) , (B.16)

where the transversality of the vertex is again suppressed.

Following the same approach as for the gluons, we will define properly contracted

QCD vertices that absorb the numerators of the propagators. For the emission of a gluon,

𝑞(𝐾1 + 𝐾2)→ 𝑞(𝐾1) + 𝑔(𝐾2), we define

𝑉𝐺(𝐾1, 𝐾2) = 𝑢̄𝑡(𝐾1)
(︀
𝑖𝑔𝛾𝜇𝑡𝑎

)︀
𝜀*𝜇𝜆 (𝐾2)𝑢

𝑠(𝐾1 + 𝐾2) , (B.17)

where 𝑡𝑎 is the SU(3) generator in the fundamental representation. In the eikonal limit, we

take advantage of 𝑢̄𝑡(𝐾1)𝛾
𝜇𝑢𝑠(𝐾1 + 𝐾2) = 2𝐾𝜇

1 𝛿
𝑡𝑠 + 𝒪(𝐾2/𝐾1), which conserves spin,

to define

𝑉 𝑎,𝑖
𝐺 (𝑘1, 𝑘

+
1 ;𝑘2, 𝑘

+
2 ) = 2𝑖𝑔 𝑡𝑎

1

𝑧
𝜅𝑖 , (B.18)

240



where again 𝜅 ≡ 𝑘2 − 𝑧𝑘1 and 𝑧 ≡ 𝑘+
2 /𝑘

+
2 and we have suppressed a diagonal matrix for

the spin components. For the interaction with the medium we simply replace the polariza-

tion vector 𝜀*𝜇𝜆 (𝐾2) in Eq. (B.17) by the medium field 𝐴𝜇(𝑄), and find

𝑈𝑄(𝑥+; 𝑘+, 𝑞) = 2𝑖𝑔 𝑘+ 𝑡𝑎𝒜𝑎(𝑥+, 𝑞) , (B.19)

= 𝑢𝑎
𝑄(𝑘+)𝒜𝑎(𝑥+, 𝑞) . (B.20)

We note that the newly defined emission vertices, Eq. (B.13) and Eq. (B.18), allow us

to absorb all spin and polarization information contained in the numerator of the quark

and gluon propagators. We are therefore left with scalar propagators and the vertices for

emission and interaction. The interaction vertices, Eq. (B.15) and Eq. (B.19), are scalars as

well.

B.3 Effective Feynman Rules

As a summary, we provide a list of graphical rules that can be used in order to calculate

any diagram in light-cone perturbation theory in the mixed representation.

x+
0 x+

1

p

= 𝐷
(︀
𝑥+
1 − 𝑥+

0 ; 𝑝+,𝑝
)︀
, (B.21)

x+
0 x+

1

p

= 𝐷
(︀
𝑥+
1 − 𝑥+

0 ; 𝑝+,𝑝
)︀
, (B.22)
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p

k, i, a

= 𝑉 𝑎,𝑖
𝐺 (𝜅, 𝑧) , (B.23)

p

k, i, c

ab

= Γ𝑎𝑏𝑐,𝑖
𝐺 (𝜅, 𝑧) , (B.24)

p

q

= 𝑈𝑄(𝑥+; 𝑝+, 𝑞) , (B.25)

ab p

q

= 𝑈𝑎𝑏
𝐺 (𝑥+; 𝑝+, 𝑞) . (B.26)

Finally, we will discuss the situation where the same parton line interacts twice with the

medium. Due to the instantaneous nature of the interactions, see Eq. (2.25), the scalar

propagator in between the two medium-insertions reduces to Θ(0)/(2𝑘+) = 1/(4𝑘+) and

the double-interaction is denoted by a circle instead of two crosses. Since we can perform

the integrations over the medium-momentum explicitly, we obtain the following two rules

= −1

2
𝛼𝑠𝐶𝐹

∫︁
d𝑥+ 𝑛(𝑥+) , (B.27)

=
1

2
𝛼𝑠𝐶𝐴

∫︁
d𝑥+ 𝑛(𝑥+) , (B.28)

where, in order to obtain explicit expressions, we have assumed that 𝒱(𝑞) = (𝑞2 +𝑚2
𝐷)−2.

However, in our Mathematica code we have calculated these diagrams using the automated

procedure similarly to all the other diagrams.

Additionally, all newly produced final-state partons, i.e., partons that propagate from

some vertex to the cut, have to be multiplied by the appropriate polarization vector, for

gluons, or spinor, for fermions, and by the appropriate phase 𝑒𝑖𝑝
−𝑥+ , where 𝑝 is the parton
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momentum and 𝑥+ the position of the last vertex. We summarise these rules below:

x+

p

= 𝑒−𝑖𝑝−𝑥+

𝑢𝑠(𝑝) , (B.29)

x+

p

= 𝑒−𝑖𝑝−𝑥+

𝑢̄𝑠(𝑝) , (B.30)

x+

p

= 𝑒−𝑖𝑝−𝑥+

𝜀𝑖𝜆(𝑝) , (B.31)

and similarly for final-state particles,

x+

p

= 𝑒𝑖𝑝
−𝑥+

𝑢̄𝑠(𝑝) , (B.32)

x+

p

= 𝑒𝑖𝑝
−𝑥+

𝑢𝑠(𝑝) , (B.33)

x+

p

= 𝑒𝑖𝑝
−𝑥+

𝜀* 𝑖𝜆 (𝑝) , (B.34)

where the “cut” (corresponding to 𝑥+ = ±∞) is represented by a small vertical line.
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Appendix C

Short Derivation of the Antenna

Spectrum in Medium

Since soft gluon radiation can be treated as a classical process, we can apply methods from

classical Yang-Mills theory to obtain the amplitude for an emission off one of the legs of

the antenna, which reads

ℳ𝑎
𝜆,1 = 2𝑖𝑔

∫︁
𝑞

∫︁ ∞

0

d𝑥+
[︀
𝑇 · 𝒜(𝑥+; 𝑞)

]︀𝑎𝑏
𝑞𝑏1

×
{︂

𝜅1 − 𝑞

(𝜅1 − 𝑞)2
−
[︂

𝜅1 − 𝑞

(𝜅1 − 𝑞)2
− 𝜅1

𝜅2
1

]︂
𝑒𝑖

(𝜅1−𝑞)2

2𝑘+
𝑥+

}︂
· 𝜀𝜆(𝑘) , (C.1)

where

𝜅1 = 𝑘 − 𝑘+

𝑝+1
𝑝1 , (C.2)

is the transverse momentum of the gluon 𝑘 with respect to the transverse momentum of one

of the legs of the antenna and [𝑇 · 𝒜]𝑎𝑏𝑞𝑏1 = 𝑖𝑓𝑎𝑏𝑐𝒜𝑏𝑞𝑐1. The full amplitude, corresponding

to emissions off both legs reads simplyℳ𝑎
𝜆,1+2 =ℳ𝑎

𝜆,1 +ℳ𝑎
𝜆,2. The inclusive one-gluon

cross section reads then

d𝑁

d3𝑘
=

1

(2𝜋3)2𝑘+

∑︁
𝜆,𝜆′,𝑎,𝑎′

⟨ℳ𝑎
𝜆,1+2ℳ

*,𝑎′
𝜆′,1+2⟩ , (C.3)

245



where the brackets ⟨. . .⟩ imply the medium average defined in Eq. (2.25). The medium-

induced spectrum is obtained from this after redifining the potential as

𝒱(𝑞)→ 𝒱(𝑞)− (2𝜋)2𝛿(𝑞)

∫︁
𝑞′
𝒱(𝑞′) , (C.4)

in order to account for virtual corrections in a completely analogous way to the medium-

virtual diagrams considered in the Feynman diagram technique utilized in the main text.

A very similar situation to the one we are considering in the current work is the emission

of a soft gluon off a colour dipole, or usually called an “antenna”. We will label each of

the emitters in this case simply by “1” and “2”, and their kinematics is given by 𝑝𝑖 =

(𝑝+𝑖 , 𝑝
−
𝑖 ,𝑝𝑖) while the momentum of the emitted gluon is 𝑘 = (𝑘+, 𝑘−,𝑘). Using the

results in [194], we will here generalise their results for an antenna in a general colour

configuration.

In vacuum, the square of the emission amplitude summed over colours and polarizations

reads

𝒫(0)
ant (𝑘) ≡

∑︁
𝜆

⃒⃒⃒
ℳ(0)

𝜆

⃒⃒⃒2
= 4𝑔2

(︂
𝑞21

1

𝜅2
1

+ 𝑞22
1

𝜅2
2

+ 2𝑞1 · 𝑞2
𝜅1 · 𝜅2

𝜅2
1𝜅

2
2

)︂
, (C.5)

where

𝜅𝑖 ≡ 𝑘 − 𝑧𝑖𝑝𝑖 , (C.6)

with 𝑧𝑖 ≡ 𝑘+/𝑝+𝑖 is the light-cone momentum fraction, is the transverse momentum of the

emitted gluon with respect to the emitting antenna constituent.

In order to simplify the colour algebra, we have introduced the colour vectors 𝒬𝑎
1 and

𝒬𝑎
2 that obey the property 𝒬𝑎

1 + 𝒬𝑎
2 = 𝒬𝑎

3, where 𝒬2
3 ≡ 𝒬𝑎

3 · 𝒬𝑎
3 is the total charge of

the antenna. These vectors are defined such that for a quark 𝒬2
𝑞 = 𝐶𝐹 , while for a gluon

𝒬2
𝑔 = 𝐶𝐴, where 𝐶𝐹 = (𝑁2

𝑐 − 1)/(2𝑁𝑐) and 𝐶𝐴 = 𝑁𝑐. Finally, by squaring this relation

we solve for the cross-term to find𝒬1 ·𝒬2 = (𝒬2
3−𝒬2

1−𝒬2
2)/2. The possible QCD 1→ 2
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splittings give

𝒬2
1 = 𝒬2

2 = 𝐶𝐹 , and 𝒬2
3 = 𝐶𝐴 for 𝑔 → 𝑞 + 𝑞 , (C.7)

𝒬2
1 = 𝒬2

2 = 𝒬2
3 = 𝐶𝐴 for 𝑔 → 𝑔 + 𝑔 , (C.8)

𝒬2
1 = 𝒬2

3 = 𝐶𝐹 , and 𝒬2
2 = 𝐶𝐴 for 𝑞 → 𝑞 + 𝑔 . (C.9)

While the first two situations were analysed in references [124, 125, 193, 126, 194, 195],

we are mostly interested in the latter process for the moment. Let us also introduce a

compact notation that will prove very useful in the following sections. First, we define the

building blocks

𝐴𝑎
1 ≡ 𝒬𝑎

1

𝜅1 − 𝑞

(𝜅1 − 𝑞)2
, (C.10)

𝐵𝑎
1 ≡ 𝒬𝑎

1

𝜅1

𝜅2
1

, (C.11)

where the former will come in handy for the medium part. Note that 𝐴𝑎 and 𝐵𝑎 are both

transverse vectors and vectors in colour space; dropping the superscript “𝑎” simply defines

the corresponding transverse vector. The same goes for any other similarly defined vector

below.

For the colour configuration (C.9), the vacuum emission antenna spectrum takes the

form

𝒫(0)
ant (𝑘) = 4𝑔2

[︀
𝐶𝐹𝐵

2
1 + 𝐶𝐴

(︀
𝐵2

2 −𝐵1 ·𝐵2

)︀]︀
. (C.12)

Due to the colour algebra, the antenna quark radiates as a free one. This comes about due

to the combination of the radiation inside the cone off the antenna legs and the large-angle

radiation outside the cone by the total charge. Additionally, the gluonic antenna leg can

radiate inside the cone.

Proceeding now to the situation where one medium interaction is allowed, we define
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the currents

𝐿𝑎
1 ≡ 𝐴𝑎

1 −𝐵𝑎
1 , (C.13)

𝐶𝑎 ≡ 𝐴𝑎
1 + 𝐴𝑎

2 , (C.14)

where the former, Eq. (C.13), is often referred to as the “Lipatov vertex”. Using this no-

tation, it is possible to write the squared amplitude, after taking the medium average and

summing over spins and colours, 𝒫(1)
ant (𝑘) ≡

∑︀
𝜆⟨|ℳ

(1)
𝜆 |2⟩, as

𝒫(1)
ant (𝑘) = 4𝑔4𝐶𝐴𝑚2

𝐷

∫︁
𝑞

𝒱2(𝑞)

∫︁ ∞

0

d𝑥+ 𝑛
(︀
𝑥+
)︀
𝑤̃

(1)
ant
(︀
𝑥+; 𝑘, 𝑞

)︀
, (C.15)

where

𝑤̃
(1)
ant
(︀
𝑥+; 𝑘, 𝑞

)︀
= 2

[︂
1− cos

𝑥+

𝜏1

]︂
𝐿𝑎

1 ·𝐶𝑎 + 2

[︂
1− cos

𝑥+

𝜏2

]︂
𝐿𝑎

2 ·𝐶𝑎

− 2

[︂
1− cos

𝑥+

𝜏12

]︂
𝐿𝑎

1 ·𝐿𝑎
2 , (C.16)

and 𝜏1 = 2𝑘+
⧸︀

(𝜅1 − 𝑞)2, 𝜏2 = 2𝑘+
⧸︀

(𝜅2 − 𝑞)2 and 𝜏12 =
(︀
1/𝜏1 − 1/𝜏2

)︀−1. While

𝜏1 and 𝜏2 are simply the formation times of a medium-induced gluon off either of the

legs of the antenna, 𝜏12 sets the time-scale for interference effects. Performing the colour

decomposition, as given by Eq. (C.9), allows us to write

𝑤̃
(1)
ant
(︀
𝑥+; 𝑘, 𝑞

)︀
= 𝐶𝐹

[︂
1− cos

𝑥+

𝜏1

]︂ (︀
𝐿2

1 + 𝐴2
1 −𝐵2

1

)︀
+ 𝐶𝐴

{︃[︂
1− cos

𝑥+

𝜏2

]︂ (︀
𝐿2

2 + 𝐴2
2 −𝐵2

2 −𝐴1 ·𝐿2

)︀
−
[︂
1− cos

𝑥+

𝜏1

]︂
𝐴2 ·𝐿1 +

[︂
1− cos

𝑥+

𝜏12

]︂
𝐿1 ·𝐿2

}︃
. (C.17)

In order to make some sense out of this complicated expression, let us take the completely

coherent scattering limit, i.e. 𝑥+ → ∞. In that case we can neglect all the cosines, and
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Eq. (C.17) reduces to

lim
𝑥+→∞

𝑤̃
(1)
ant
(︀
𝑥+; 𝑘, 𝑞

)︀
= 𝐶𝐹

[︀
𝐿2

1 + 𝐴2
1 −𝐵2

1

]︀
+ 𝐶𝐴

[︀
𝐿2

2 +
(︀
𝐴2

2 −𝐴1 ·𝐴2

)︀
−
(︀
𝐵2

2 −𝐵1 ·𝐵2

)︀]︀
. (C.18)

Here we clearly see the expected features. In the medium, the Lipatov vertex gives rise to

the Gunion-Bertsch spectrum, represented by 𝐿2
𝑖 . Secondly, the pure vacuum spectrum is

affected by broadening, effectively replacing the vacuum spectrum with a broadened one

with the appropriate weight. For the emission off the quark, since all interferences cancel,

this is represented by 𝐴2
1 −𝐵2

1. For the emission off the gluon, due to the presence of the

interference in the term proportional to 𝐶𝐴 in Eq. (C.12), we replace the complete vacuum

contribution completely analogously. A similar systematic was found for the 𝑞𝑞 antenna in

[194].

The analysis of the antenna spectrum has thus provided us with crucial information.

Whenever the medium scattering takes place long after the gluon formation and interfer-

ence times, we simply see that 𝒞(1) subtracts a piece of the vacuum radiation from 𝒞(0) with

a proper weight (see Eq. (C.15)) and replaces it with broadening. In addition to this, all

colour charges radiate a Gunion-Bertsch spectrum. Naturally, in the general case, for finite

scattering times we obtain a quite complicated interference pattern, Eq. (C.17). This can

however be used to be compared to the two gluon (one hard, one soft) emission off a quark

analysed in the main text, where the antenna picture has to appear naturally in the situation

where the formation time of the hard gluon is exactly zero.
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Appendix D

Description of the Background

Subtraction Procedure

In the following we will describe the elements and logic steps taken to subtract the heavy

ion background included in this work. The pion and proton background has been generated

with a Monte Carlo distribution which is flat in the 𝜂−𝜑 space and describes the measured

𝑝𝑇 spectra and yield in [168] as a function of centrality. To subtract the background we

have used the iterative noise/pedestal subtraction procedure. For the observables which

involve jets with 𝑝𝑇 > 100 GeV we have used a different version than for the observables

that cover up to this 𝑝𝑇 , according to the procedure adopted in the different experiments

to which we confront our simulation. For the high 𝑝𝑇 method, which covers most of the

observables shown, the steps we take are the following:

(𝑖) Discretize the 𝜂− 𝜑 space in cells of size 0.091 × 0.087. Sum the transverse energy

𝐸𝑇 of all particles falling into the same cell.

(𝑖𝑖) Compute the average transverse energy and the deviation per rapidity strip, i.e. ⟨𝐸𝑇 (𝜂)⟩

and 𝜎(𝜂) =
√︁
⟨𝐸2

𝑇 (𝜂)⟩ − ⟨𝐸𝑇 (𝜂)⟩2.

(𝑖𝑖𝑖) Subtract from each cell the average plus a contribution proportional to the deviation,

and set the value to zero if it becomes negative, i.e.

𝐸̂𝑖
𝑇 = max (𝐸𝑖

𝑇 −
⟨︀
𝐸𝑇 (𝜂𝑖)

⟩︀
− 𝛽 𝜎(𝜂), 0) (D.1)
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(𝑖𝑣) Run anti-𝑘𝑇 clustering algorithm using all calorimetric cells different from zero. The

cells are introduced as null 4-vectors with transverse momentum 𝐸𝑇 (the total trans-

verse energy of the cell), with a 𝜑 and 𝜂 corresponding to the geometric center of the

cell.

(𝑣) Repeat step (𝑖𝑖) excluding all cells belonging to a jet with transverse energy above

𝐸cut
𝑇 .

(𝑣𝑖) Repeat steps (𝑖𝑖𝑖) and (𝑖𝑣) using the values obtained in previous step.

This procedure involves fixing two parameters, namely 𝛽 and 𝐸cut
𝑇 , which in general de-

pend on the jet radius and the 𝑝𝑇 range under study. The factor 𝛽 controls the effect of back-

ground fluctuations. For an idealistic homogeneous background there would be no need for

a 𝛽 different from zero. For an increasingly from cell to cell fluctuating background one

needs to increase this factor accordingly, at the expense of potentially overkilling the signal

of interest. The value of 𝐸cut
𝑇 decides whether a group of cells should correspond to signal

and be therefore excluded from the background estimation.

These two should be chosen under the guidance that the 𝑝𝑇 of a jet embedded into a

background which is after subtracted is, in average, as close as possible to the original one

(below 2% for jets with 𝑝𝑇 ∼ 100 GeV), which would mean that one has a good jet energy

scale (JES). This test is done with Monte Carlo simulations using PYTHIA jets.

For the low 𝑝𝑇 region, the adopted procedure uses the same space discretization and

follows as:

(𝑖) Reconstruct jets through anti-𝑘𝑡 with all radius using the uncorrected 𝐸𝑇 of all the

calorimetric cells introducing them as null vectors.

(𝑖𝑖) Select a set of seed jets with R=0.2 which have at least a constituent cell with 𝐸𝑇 > 3

GeV and whose cell with maximum transverse energy has to satisfy 𝐸max
𝑇 / ⟨𝐸𝑇 ⟩ > 4,

where ⟨𝐸𝑇 ⟩ is the average transverse energy of the cells within the jet.
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(𝑖𝑖𝑖) Compute the average transverse energy and the deviation per rapidity strip, i.e. ⟨𝐸𝑇 (𝜂)⟩

excluding those cells that belong to the seed jets.

(𝑖𝑣) Subtract from each cell the average transverse energy for that rapidity strip, 𝐸̂𝑖
𝑇 =

𝐸𝑖
𝑇 − ⟨𝐸𝑇 (𝜂𝑖)⟩

(𝑣) The second subtraction uses a combination of the seed jets with 𝑅 = 0.2 of previous

step with updated kinematics satisfying 𝑝jet𝑇 > 25 GeV and a set of seed track jets

with 𝑝jet𝑇 > 10 GeV. Track jets are built using only tracks with 𝑝track𝑇 > 4 GeV and

with reconstruction radius 𝑅 = 0.4.

(𝑣𝑖) Recompute the average transverse energy ⟨𝐸 ′
𝑇 (𝜂)⟩ excluding those cells that lie

within ∆𝑅 = 0.4 from the seed jet axis, where ∆𝑅 is the distance in 𝜂 − 𝜑 space.

(𝑣𝑖𝑖) Subtract the new average energy from all cells and update all the kinematics for jets

of all radii. Only the jets with 𝐸𝑇 > 20 GeV will go into further analysis.

(𝑣𝑖𝑖𝑖) In order to suppress the contribution of combinatorial jets, we impose that the recon-

structed jets have to lie within ∆𝑅 = 0.2 of a track jet (defined above) with 𝑝𝑇 > 7

GeV.

For the specific purposes of this work, and depending on the precise observable we want

to compare to, we will need to apply corrections on the jets extracted in PbPb events. For

all observables we will apply the JES correction, which takes into account the remaining

average disagreement between generator level jets and embedded jets. Then, for data that

is not unfolded the jet energy resolution (JER) effects are included. This amounts to smear-

ing the jet energies with a gaussian whose width corresponds to 𝜎𝑒𝑥𝑡𝑟𝑎 =
√︀

𝜎2
LHC − 𝜎2

𝑤𝑒,

where we take into account that the JER from the real background measured at CMS is

different from the one of our simplified background. This a jet 𝑝𝑇 dependent function that

is calculated with Monte Carlo simulations by fitting the energy reconstruction efficiency

(reconstructed jet energy over generator level jet energy as a function of generator level jet

energy) for each jet 𝑝𝑇 bin with a gaussian and extracting the corresponding 𝜎.
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To compare to unfolded data we will perform the simplest version of the so called bin-

by-bin unfolding. This affects basically the jet spectrum measurements, and the correction

applied consists in multiplying the measured quenched distribution by the ratio of two other

spectrums, the generator level PYTHIA jet spectrum over the reconstructed PYTHIA jet

spectrum.
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