Universitatide BARCELONA

Chloroacetamides as Valuable Synthetic Tools to Access Nitrogen-Containing Heterocycles Using Both Radical and Non-Radical Processes

Juan Andrés Montiel Achong

Abstract

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel•lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

^[WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.]

Universitatide BARCELONA

FACULTAT DE FARMÀCIA I CIÈNCIES DE L'ALIMENTACIÓ

Chloroacetamides as Valuable Synthetic Tools to Access Nitrogen-Containing Heterocycles Using Both Radical and Non-Radical Processes

Universitatide BARCELONA

Facultat de Farmàcia i Ciències de l'Alimentació
Programa de Doctorat: Química Orgànica Experimental i Industrial

Chloroacetamides as Valuable Synthetic Tools to Access Nitrogen-Containing Heterocycles Using Both Radical and Non-Radical Processes

Memòria presentada per Juan Andrés Montiel Achong per optar al títol de doctor per la Universitat de Barcelona

Dirigida per:

Dr. Faïza Diaba
Prof. Josep Bonjoch Sesé

Juan Andrés Montiel Achong

JUAN ANDRÉS MONTIEL ACHONG
Barcelona, 2016

Index

Chapters

1. Introduction 1
2. Dearomative radical spirocyclization from N -benzyltrichloro- acetamides revisited using a copper(I)-mediated atom transfer reaction leading to 2-azaspiro[4.5]decanes 13
3. Unusual rearrangement and dearomatization reactions in $\mathrm{Cu}(\mathrm{I})$ - catalyzed atom transfer radical cyclizations from \quad-(1-phenylethyl)- trichloroacetamides 73
4. Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones 111
5. Intramolecular Radical Non-Reductive Alkylation of Ketones via Transient Enamines 175
6. Synthesis of functionalized pyrrolidines and piperidines from monochloro and dichloroacetamides using non-radical processes.. 227
7. Conclusions 275

ARTICLES

1. Dearomative radical spirocyclization from N-benzyltrichloroacetamides revisited using a copper(I)-mediated atom transfer reaction leading to2-azaspiro[4.5]decanes.
Faïza Diaba, Juan A. Montiel, Agustín Martínez-Laporta, Josep Bonjoch. Tetrahedron Letters. 2013, 54, 2619-2622.
2. Unusual rearrangement and dearomatization reactions in $\mathrm{Cu}(\mathrm{I})$ catalyzed atom transfer radical cyclizations from \mathbf{N}-(1-phenylethyl)trichloroacetamides.
Faïza Diaba, Juan A. Montiel, Josep Bonjoch.
Tetrahedron. 2013, 69, 4883-4889.
3. Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones
Faïza Diaba, Juan A. Montiel, Georgeta Serban, Josep Bonjoch.
Org. Lett. 2015, 17, 3860-3863.
4. Intramolecular Radical Non-Reductive Alkylation of Ketones via Transient Enamines .
Faïza Diaba, Juan A. Montiel, Josep Bonjoch.
Chem. Comm. 2016, 52, 14031-14034.
5. Synthesis of functionalized pyrrolidines and piperidines from monochloro and dichloroacetamides using non-radical processes.
Unpublished results.

ABBREVIATIONS AND ACRONYMS

AIBN	2,2'-azobis(iso-butyronitrile)
aq.	Aqueous
ATRC	Atom Transfer Radical Cyclization
ax	axial
Bn	Benzyl group
br	broad
Bu	Butyl group
c	concentration
${ }^{13} \mathrm{C}$ NMR	carbon-13 nuclear magnetic resonance
${ }^{\circ} \mathrm{C}$	degrees Celsius
calcd	calculated
cat.	Catalytic
Celite®	filtration agent
COSY	correlation spectroscopy
Cy	cyclohexyl group
d	day(s), doublet (spectra)
δ	Chemical shift
DCE	1,2-Dichloroethane
DCM	Dichloromethane
dd	doublet of doublets
ddd	doublet of doublet of doublets
DMF	N,N-dimethylformamide
DMP	Dess-Martin periodinane
DMSO	dimethyl sulfoxide
dr	diastereomeric ratio
dt	doublet of triplets
equiv.	Equivalent
eq	equatorial
Et	ethyl group
EWG	electron withdrawing groups
g	gram
[H]	Reduction
${ }^{1} \mathrm{H}-\mathrm{NMR}$	proton nuclear magnetic resonance
HRMS	high resolution mass spectrum
HSQC	heteronuclear single quantum correlation spectroscopy
Hz	Hertz
IR	infrared spectroscopy
J	coupling constant
LiHMDS	lithium bis(trimethylsilyl)azide
Lit.	Literature
LUMO	Lowest Unoccupied Molecular Orbital
M	molar
m	multiplet
M	metal or molar
M+	molecular ion
m / z	mass to charge ratio
Me	methyl group
mg	milligram
min	minute(s)

mL	milliliter
MoC	Memory of Chirality
mol	mole(s)
mp	melting point
MS	mass spectrometry
Ms	mesyl group (methylsulfonyl)
Mw or $\mu \mathrm{W}$	Microwave
nOe	nuclear Overhauser effect
NOESY	2D nuclear Overhauser effect spectroscopy
p. or pp.	Page
PCC	pyridinium chlorochromate
Ph	Phenyl Group
ppm	parts per million
q	Quartet
R	generalized alkyl group or substituent
R	rectus (configurational)
ref.	Reference
rt	room temperature
rfx.	Reflux
s	singlet
S	sinister (configurational)
sat.	Saturated
t	triplet
t	tertiary
td	triplet of doublets
TBTA	Allyltributyltin
TBTH	tributyltin hydride
TEA	triethylamine
TEMPO	$2,2,6,6-t e t r a m e t h y l p i p e r i d i n-1-y l) o x i d a n y l ~$
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl group
TsOH	p-toluenesulfonic acid
TTMSS	ultrimethylelet
UV	yd

Introduction and Objectives

Haloacetamides are valuable intermediates for the synthesis of lactams using radical and non-radical processes. Trichloroacetamides in particular, introduced in the 1980s, have been widely used for the preparation of favored γ lactams and less favored β - and δ-lactams using atom transfer radical cyclizations (ATRC) or radical reductive cyclizations through the ambiphilic dichloromethylcarbamoyl radical. ${ }^{1}$

Scheme 1.1.

Using the first strategy, the reactions were usually carried out in the presence of $\mathrm{Cu}(\mathrm{I})^{2}$ or $\mathrm{Ru}(I I)^{3}$ catalysts with far fewer reported examples of Fe $\mathrm{FeCl}_{3}{ }^{4}, \mathrm{Ni}-\mathrm{AcOH}^{5}$ or $\mathrm{Ti}(\mathrm{III}) .{ }^{6}$ Usage of $\mathrm{Cu}(\mathrm{I})$ catalysts in ATRC from trichloro-

[^1]acetamides in the presence of $\mathrm{Cu}_{2} \mathrm{O}$ was first reported by Stauffer Chemical company in 1977 for the synthesis of herbicides. Later, CuCl was introduced by Nagashima for the synthesis of γ-lactams from trichloroacetamides in acetonitrile at high temperatures. Usage of "ligand-free-like" conditions by Ghelfi and bidentated ligands by Nagashima allowed the reactions to proceed at lower temperatures and using catalytic amounts of CuCl (Scheme 1.1).

Synthesis of lactams from trichloacetamides using Cu(I) ATRC

Chem. Commun. 2012, 8799.
Tetrahedron 2015, 3642

$\mathrm{R}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{H}, \mathrm{OAc}, \mathrm{OTMS}$

Scheme 1.2.
In our research group, ATRC using CuCl was successfully used for the synthesis of polyfunctionalized 2-azabicyclo[3.3.1]nonanes from trichloroacetamides with electron-deficient, neutral and electron-rich alkenes. ${ }^{7}$ The best results were obtained using CuCl-TPMA (10\%) and AIBN (50\%) as an initiator for continuous activator regeneration in 1,2-dichloroethane (DCE) at $60{ }^{\circ} \mathrm{C}$ in a sealed tube for 48 h . The methodology was then applied to the synthesis of the ABC fragment of Calyciphylline A-type alkaloids ${ }^{8}$ but before settling DCE as the

[^2]best solvent to achieve this transformation, other solvents were examined such as DMF and acetonitrile. In the presence of the latter besides the expected morphan II, azaspiro derivative III was also isolated (Scheme 1.2).

Since this dearomative spirocyclization in the presence of $\mathrm{Cu}(\mathrm{I})$ is unprecedented together with the fact that dearomative radical spirocyclization in general have received very little attention encouraged us to investigate this reaction. The process was studied starting from benzyltrichloroacetamides with different substituents on the nitrogen to achieve the synthesis of 2azaspiro[4.5]decanes present in many natural and synthetic compounds (Scheme 1.3). The results obtained are detailed in chapter 2.

Scheme 1.3.

In our research group 2-azabicyclo[3.3.1]nonane derivatives were also prepared from trichloroacetamides using radical reductive conditions in the presence of AIBN, TBTH or TTMSS and in refluxing benzene. ${ }^{1}$ When the reaction was achieved from N-(α-methylbenzyl)trichloroacetamides instead of benzyltrichloroacetamides, besides the expected morphan \mathbf{V}, normorphans $\mathbf{V I}$ were also isolated. VI derive from an 1,4-H transfer and subsequent 5-exo-trig cyclization (Scheme 1.4). This process involving memory of chirality (MoC) with complete inversion of stereochemistry at the benzylic center is unprecedented. ${ }^{9}$

[^3]
Behavior of dichloromethylcarbamoyl radicals

Chem. Comm. 2012, 8799
Tetrahedron 1997, 1391

Comp. Rend. Acad. Sci. 2001, 513

Scheme 1.4

As a continuation of this work, we decided to explore ATRC in the presence of CuCl from trichloroacetamide IV to see if the behavior of this substrate under non-reductive conditions (Scheme 1.5) follows the same pattern observed before. This study constitutes the second objective of this thesis and the corresponding results are reported in chapter 3.

Scheme 1.5
In our research group, radical chemistry from trichloacetamidocyclohexenes with different kind of double bonds: electron-poor, neutral and electron-rich and either using reductive conditions or under ATRC in the presence of CuCl or Grubbs II generation catalyst, allowed the preparation of different
functionalized morphans. These were used later to achieve the synthesis of the main azatricyclic core of the potent immunosuppressant FR901483 ${ }^{10}$ isolated in 1996 by Fujisawa laboratories. ${ }^{11}$ ABCD diazatetracyclic structure of madangamines D, E and F was also achieved. ${ }^{12}$ These alkaloids were isolated in the 1990s from marine sponges ${ }^{13}$ and present, especially for madangamine F significant in vitro cytotoxic activity against a variety of tumor cell lines. Finally, one of the morphan intermediates prepared using radical chemistry was also successfully used to achieve the tricyclic ABC fragment of Daphnyunnine A-type alkaloids, ${ }^{14}$ a family of natural compounds isolated in the last decade from Daphniphyllum genus ${ }^{15}$ (Scheme 1.6)

Scheme 1.6.

[^4]As outlined before, radical chemistry using ATRC or reductive conditions for the synthesis of morphans, was also achieved from trichloroacetamides with electron-rich alkenes, namely enolacetates VII. These were prepared from the corresponding ketone by reaction with isopropenyl acetate in acid medium.

Radical cyclization of trichloroacetamides upon alkenes with electron-donating groups

CuCl(TPMA) (10\%)
 $\mathrm{Bu}_{3} \mathrm{SnH}$

Objective 3

Asymmetric synthesis of morphans using chiral amines

Scheme 1.7.
The third objective of this project was to examine the methodology of radical cyclization upon alkenes bearing electron-donating groups. Thus, the use of enamines as radical acceptors was a central target of this research project. A possible extension, using chiral amines, to an asymmetric version for morphan synthesis was also considered (Scheme 1.7). The results of this investigation are summarized in chapter 4 and 5.

The precedents for radical reactions involving enamines are depicted in Scheme 1.8. Although some examples of radical reductive additions to preformed enamines have been reported, leading to amino compounds, ${ }^{16}$ the

[^5]Precedents for radical reactions involving enamines

Enamines as radical acceptors:
a) Reductive process
b) Aldehyde alkylation / Photochemical initiation

Enamines as pro-radical cations:
c) Ketone alkylation / Oxidation of enamines

Scheme 1.8
non-reductive radical reaction upon transient enamines to achieve α-alkylated ketones is unprecedented. ${ }^{17,18}$ The most closely related studies to our goal (radical cyclization of trichloroacetamides upon enamines) were developed by Melchiorre, using photo-organocatalysis, in which an α-alkylation of cyclic ketones was promoted by a radical ion pair. ${ }^{19}$ The recent emergence of photochemical procedures ${ }^{20}$ has allowed the radical α-alkylation of aldehydes, with transient enamines acting as radical acceptors. ${ }^{21}$ In a conceptually different approach, the enamine acts as a pro-radical, instead of a radical acceptor as in the above procedures, and a preformed ${ }^{22}$ or transient enamine undergoes

[^6]oxidation. ${ }^{23}$ The resulting cation radical can react with a wide range of radical acceptors, the organocatalyzed version being introduced in MacMillan's seminal work (Scheme 1.8).

Finally, our last objective was to explore the potential of dichloro- and monochloroacetamides for the synthesis of nitrogen-containing heterocycles using non-radical processes. Dichloro- or monochloroacetamides tethered to β or γ-ketones could be valuable intermediates to access functionalized pyrrolidines and piperidines taking advantage of both the acidic character of the proton and the leaving group property of the chloro atom on the carbon next to the carbonyl group (Scheme 1.9). Indeed monohaloketones have been widely used in the Darzens condensation, one of the classical $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond-forming processes. ${ }^{24}$ Nevertheless, only few examples were reported for intermolecular Darzens reaction where the substrate is a haloacetamide ${ }^{25}$ and even fewer for the intramolecular process. ${ }^{26}$ Additionally, we decided to study Darzens reaction from dichloroacetamides since these substrates have been scarcely investigated and only few examples of intermolecular condensation were reported. ${ }^{27}$

[^7]Chapter 1 - Introduction and Objectives

Dichloro- and monochloroacetamides in the synthesis of pyrrolidines and piperidines using non-radical processes

Objective 4

Darzens-type reaction

Scheme 1.9.

Dearomative radical spirocyclization from Nbenzyltrichloroacetamides revisited using a copper(I)-mediated atom transfer reaction leading to 2-azaspiro[4.5]decanes

Tetrahedron Letters. 2013, 54, 2619-2622.

Scheme 2.1.
Few years ago in our research group a new synthetic route for the preparation of morphans from trichloroacetamidocyclohexenes using ATRC in the presence of CuCl was described. ${ }^{1}$ During the preliminary study, before settling 1,2-dichloroethane (DCE) as the best solvent for this transformation, the reaction was investigated in the presence of other solvents such as DMF and acetonitrile. In the presence of the latter, besides the previous morphan II obtained with a lower yield, spirocyclic derivative III was also isolated (Scheme 2.1). Unlike morphan II, which results from cyclization of the dichlorocarbamoyl radical on the cyclohexene double bond in the E-rotamer, III comes from a dearomative spirocyclization in the Z-rotamer followed by a displacement of the chlorine atom in the p-chloroderivative by water during the aqueous workup (Scheme 2.1).

[^8]This unexpected result was the beginning of an investigation aimed at making the spirocyclization the exclusive process by changing the substituent on the nitrogen to a non-acceptor radical.

Didymeline
Bull. Soc. Chim. Fr. 1987, 877

antiangiogenic (Atiprimod)
Br. J. Cancer 2005, 70

Antigastrin activity
J. Med. Chem. 1992, 28

HIV-1 protease inhibitor
Bioorg. Med. Chem. Lett. 2002, 3431

Scheme 2.2.
Our interest in undertaking this study was boosted by the fact that the 2azaspiro[4.5]decane ring is found in a few number of natural compounds. Among these are annosqualine isolated from the stems of Annona squamosal L., Didymeline isolated from Didymeles Madagascariensis and fungal metabolites triticones from the culture broth of the plant pathogenic fungus Drechslera triticirepentis. Additionally, several synthetic products embodying this spirobicyclic structure display diverse biological activities such as antiangiogenic for Atiprimod, a substance developed by the company GlaxoSmithKline, antigastrin and even HIV-1 protease inhibition (Scheme 2.2).

Scheme 2.3.
More interesting was the fact that 2-azaspirodecanes are generally prepared from cyclohexyl- or cyclohexenylmethylamines or through a dearomative process involving a spirocyclization on phenol derivatives in an oxidative process most of the time. To our knowledge, at the beginning of this project, there was only one example of a dearomative spirocyclization on nonactivated benzenes reported by Zard and coworkers using radical chemistry. In this work, formation of the o-chloro derivative is reported using a large excess of Ni in acetic acid, nevertheless the p-derivative was isolated when diphenyldiselenide was employed as a radical trap. Additionally, another xanthate-based oxidative spirocyclization from p-oxygenated N benzylacetamides for the preparation of azaspirocyclic cyclohexadienones was reported by Miranda and coworkers using dilauryl peroxide in more than stoichiometric amount (Scheme 2.3).

Taking into account all these considerations, the first objective of this work was to investigate the scope of the radical spirocyclization in the presence of CuCl from N -benzyltrichloroacetamides with different substituents on the nitrogen atom (Scheme 2.4).

Scheme 2.4.

The trichloroacetamides mentioned before, indicated in scheme 2.4., were easily prepared using a reductive amination from the corresponding aldehydes or ketones and alkyl amines followed by acylation of the resulting secondary amine with trichloroacetyl chloride. Thus, a series of trichloroacetamides bearing different alkyl groups ranging from the bulky t-butyl to the linear non-demanding butyl groups was prepared. Subsequently, more trichloroacetamides were prepared, bearing a t-butyl group on the nitrogen and different substituents on the benzene ring in order to establish the influence of these on the course of the reaction (Scheme 2.4).

Having in hands the different benzyltrichloroacetamides (1a-1e) we set out to explore the ATRC using CuCl as a catalyst as we chose trichloacetamide $1 \mathbf{1 e}$ with the bulky t-Bu group on the nitrogen to develop the methodology. This choice is based on the fact that this substituent locks the substrate in a configuration where it is positioned syn to the carbonyl oxygen ${ }^{2}$ prone to cyclization. ${ }^{3}$ Indeed, examination of NMR spectra for both $\mathbf{1 e}$ and n-butyl derivative $\mathbf{1 b}$ revealed a single set of signals in both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for the former (Figure 2.1), whereas the latter showed two sets of signals corresponding to the two rotamers especially for the protons and carbons close to the nitrogen (Figure 2.2). Additionally the t-butyl group is easily removed in acid media.

Figure 2.1.

[^9]Chapter 2 - Azaspirodecanes

Figure 2.2.

Table 2.1. Synthesis of 2-azaspirodeca[4.5]dienes 3

The first reaction was achieved using 30% of CuCl in acetonitrile and at 80 ${ }^{\circ} \mathrm{C}$. After heating for 16 h and elimination of the solvent, we were pleased to find that the cyclization took place providing spirolactam $\mathbf{2 e}$ as a mixture of two epimers. Nevertheless, purification of $\mathbf{2 e}$ provided a mixture of compounds showing the instability of the chloroderivatives. Fortunately, after a simple treatment with water the corresponding alcohols were formed and were easily separated by chromatography in a 65% yield (entry 1). Using microwave activation allowed us to shorten the reaction time to 15 min but did not bring any improvement to the reaction yield (entry 2). The best results were obtained when the catalyst loading was increased to 60% giving 3 e in 74% yield (entry 3).

The optimal reaction conditions were then applied to the rest of trichloroacetamides 1a-1d, obtaining in all cases alcohols $\mathbf{3}$ as a mixture of

[^10]epimers. As it was expected 1a and 1b with undemanding substituents on the nitrogen gave the worst results (entries 7 and 8) whereas the isopropyl and cyclohexyl derivatives 1c and 1d provided alcohols 3c and 3d respectively, with slightly better yields (entries 5 and 6).

Scheme 2.5.

After settling the t-butyl group as the best substituent for the spirocyclization process, we then explored the scope of this reaction on a number of substituted benzene derivatives (Scheme 2.5). Whereas the 3methylsubstituted benzene 1f provided a result similar to that observed in the unsubstituted series, 2-methyl substituted benzene displayed a completely different behavior, since the trapping of the radical takes place at carbon 2, further elimination in the chloride intermediate provided azaspirodecane 6 with an exocyclic double bond. Finally, the 3,5-difluorobenzylacetamide 1h afforded
chloroderivative $\mathbf{2 h}$ which showed a low reactivity towards water and was stable enough to be purified by chromatography.

Synthesis of azaspirocyclohexadienone 5

Scheme 2.6.
The mixture of alcohols 3 e was oxidized to ketone 4 in excellent yields using Dess-Martin periodinane or TEMPO and further treatment with sulfuric acid provided secondary amide 5 in 76\% yield (Scheme 2.6).

Trapping of chloride 2 e with MeOH and allylamine

Scheme 2.7.

This investigation was concluded studying the reactivity of chloroderivative $\mathbf{2 e}$ formed after ATRC with other trapping reagents like methanol and allylamine. Thus treatment of the reaction crude with methanol provided the corresponding mixture of ethers 8 which was sensitive to air and convert to ketone 4 on standing.

Chapter 2 - Azaspirodecanes

Likewise, when allylamine was used in the quenching step epimeric mixture 9 was obtained (Scheme 2.7).

> Dearomative radical spirocyclization from N-benzyltrichloroacetamides revisited using a copper(I)-mediated atom transfer reaction leading to2-azaspiro[4.5]decanes. Faïza Diaba, Juan A. Montiel, Agustín Martínez-Laporta, Josep Bonjoch. Tetrahedron Letters 54 (2013) 2619-2622.

Dearomative radical spirocyclization from N -benzyltrichloroacetamides revisited using a copper(I)-mediated atom transfer reaction leading to 2-azaspiro[4.5]decanes

Faïza Diaba*, Juan A. Montiel, Agustín Martínez-Laporta, Josep Bonjoch*
Laboratori de Química Orgànica, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain

ARTICLE INFO

Article history:

Received 7 January 2013
Revised 5 March 2013
Accepted 6 March 2013
Available online 15 March 2013

Keywords:

Atom transfer radical cyclization
Azaspirodecanes
Copper
Dearomatization
Heterocycles

Abstract

An atom transfer radical dearomatizing spirocyclization from N -benzyltrichloroacetamides using CuCl regioselectively leads to 2-azaspiro[4.5]decadienes, in which the labile allylic chlorine atom is easily replaced by a hydroxyl group in aqueous medium or by quenching with methanol or allylamine. After oxidation of the target compound, the N-tert-butyl group can be removed from the resulting spirocyclohexanedienone.

© 2013 Elsevier Ltd. All rights reserved.

Spirocyclic structures are prevalent in a variety of natural products. ${ }^{1}$ Among them, the 2-azaspiro[4.5]decane ring system is found embedded in a small number of compounds of diverse biogenetic origin, such as annosqualine, ${ }^{2}$ the fungal metabolites triticones ${ }^{3}$ and spirostaphylotricins, ${ }^{4}$ and some stereoidal alkaloids. ${ }^{5}$ Additionally, several synthetic compounds embodying this framework exhibit a wide range of biological activities, including antiangiogenic (e.g. atiprimod), ${ }^{6}$ antigastrin, ${ }^{7}$ and antiarthritic, ${ }^{8}$ as well as HIV-1 protease inhibiton ${ }^{9}$ (Fig. 1).

2-Azaspiro[4.5]decanes are generally prepared from cyclohexylmethylamine starting materials ${ }^{10,11}$ or through a dearomatizing process as the key step from benzene derivatives. In the latter approach, the typical method to construct the spirocyclic core involves oxidative spirocyclization of phenol derivatives, ${ }^{12,13}$ while there are limited examples of the use of non-activated benzene substrates that could deliver spirocyclohexadienes through a dearomatization. ${ }^{14}$

We have recently been interested in copper(I)-mediated atom transfer radical cyclisation (ATRC) ${ }^{15}$ of trichloroacetamides leading to six-membered ring formation. ${ }^{16}$ During the course of these studies, we disclosed a copper-catalyzed ATRC leading to an azaspirocyclohexadienol as a by-product (less than 10\%) from trichloroacetamide I (Scheme 1).

[^11]Inspired by this unprecedented $\mathrm{Cu}(\mathrm{I})$-catalysed spirocyclization, we went on to explore other ways of constructing spirocycles. In this paper we report the first dearomative spirocyclization of ben-

Antigastrin agent

Atiprimod

Fig. 1. Structures of 2-azaspiro[4.5]decane natural and unnatural products.

Scheme 1. Radical cyclization of trichloroacetamide I.

Table 1
Dearomative radical spirocyclization

${ }^{\text {a }}$ If $(\mathrm{PhSe})_{2}$ was added to the reaction mixture.
zyltrichloroacetamides mediated by $\mathrm{Cu}(\mathrm{I})$ leading to 2-azaspiro[4.5]decane compounds through an ATRC process. ${ }^{17}$

The only precedents for dearomative spirocyclization leading to 2-azaspirodecadienes via a radical process are the following: (i) When working with benzyl derivatives as starting material, the use of Ni-AcOH leads to 1,2 -cyclohexadienes, p-tolyl compounds lead to a mixture of cyclohexadienes, while adding (PhSe) $)_{2}$ to the reaction medium to trap the cyclohexadienyl radical intermediate regioselectivity provides 1,4 -cyclohexadienes. ${ }^{14}$ (ii) Using phenol derivatives as substrates in an oxidative process from xanthates, which is initiated and terminated by dilauryl peroxide, provides spirocyclohexanedienones ${ }^{13}$ (Table 1).

The trichloroacetamides $\mathbf{1}(\mathrm{a}-\mathrm{e})^{18}$ required for our studies were easily available by reductive amination of the corresponding alkylamine with benzaldehyde and acylation of the resulting secondary amines using trichroacetyl chloride (Scheme 2).

Initially, we chose trichloroacetamide $\mathbf{1 e}$ as the preferred substrate to develop the methodology, since the bulky tert-butyl substituent on the nitrogen atom accelerates radical reactions leading to five-membered rings. This well-established helpful effect is due to the favoring of the productive Z rotamer in the proradical haloacetamide. ${ }^{19}$

Using 30% of CuCl and after 16 h of heating at $80^{\circ} \mathrm{C}$, we were pleased to see that the main signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product belonged to a mixture of epimers of spirolactam 2. However, purification of $\mathbf{2}$ on silica gel gave a mixture of compounds, showing the instability of the chloro derivatives. Luckily, a simple treatment of the reaction mixture with water at the end of the reaction generated the corresponding alcohols $\mathbf{3}$, which were stable enough to be easily separated by chromatography in 65% yield and as a $1.4: 1$ mixture of epimers (Table 2, entry 1).

Thus, unlike Zard, ${ }^{14}$ who achieved 1,2 -dihydrobenzenes by a Ni-AcOH-promoted spirocyclisation, ${ }^{20}$ we obtained 1,4 -dihydrobenz-

Scheme 2. Synthesis of trichloroacetamides: 1a ($R=\mathrm{Bn}, 78 \%$); 1b ($R=\mathrm{Bu}, 96 \%$); 1c ($R=i \operatorname{Pr}(98 \%)$; 1d ($R=c \mathrm{Hex}, 96 \%)$; $\mathbf{1 e}(R=t \mathrm{Bu}, 85 \%)$.

Table 2
CuCl-promoted spirocyclization of trichloroacetamides $\mathbf{1}^{\text {a }}$

 1		$\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}]{\mathrm{CuCl}}$		 3	
Entry	R	CuCl [\%]	Time	Yield ${ }^{\text {b }}$ [\%]	Ratio ${ }^{\text {c }}$
1	$t \mathrm{Bu}(\mathbf{1 e})$	30	$16 \mathrm{~h}^{\text {d }}$	65	1.4:1
2	1e	30	15 min	49	3:2
$3^{\text {e }}$	1e	60	15 min	74	3:2
4	1e	60	30 min	68	3:2
5	cHex (1d)	60	15 min	29	3:2
6	$i \operatorname{Pr}(1 \mathbf{c})$	60	15 min	42	2:3
7	$\mathrm{Bu}(1 \mathbf{b})$	60	15 min	17	3:2
8	Bn (1a)	60	15 min	24	2:3

${ }^{\text {a }}$ Unless otherwise noted, all reactions were carried out from 200 mg of trichloroacetamide $\mathbf{1}$ at $80^{\circ} \mathrm{C}$ and using microwave activation.
${ }^{\mathrm{b}}$ Isolated yield of alcohols 3.
${ }^{\text {c }}$ Diastereoisomeric ratio of less and more polar alcohols.
${ }^{\text {d }}$ Reaction carried out at $80^{\circ} \mathrm{C}$ in a sealed tube.
${ }^{e}$ Reaction carried out on a 100 mg scale.
enes after cyclisation and atom transfer using $\mathrm{Cu}(\mathrm{I})$ (Table 1). The sequence involved the generation of the carbamoyldichloromethyl radical, an intramolecular ipso attack on the benzene ring, followed by consecutive regioselective $\mathrm{C}-\mathrm{Cl}$ bond formation on the initially formed cyclohexadienyl radical. ${ }^{21}$ Upon hydrolysis, the lability of the allylic chloride gave the corresponding alcohol 3. Thus, the overall process constitutes a 1,4-carbooxygenation of the benzene ring present in $\mathbf{1}$.

To optimize the process we decided to use microwave activation, but the same catalyst loading, a 15 -minute reaction time and further treatment with water gave the same mixture of alcohols with a lower yield of 49% (entry 2). The best results were obtained with 60% of CuCl , which gave 3e in 74% yield (entry 3). ${ }^{22}$ Prolonging the reaction time to 30 min did not improve the yield (entry 4). ${ }^{23}$ The optimum conditions were then applied to the other trichloroacetamides, and in all cases the corresponding alcohols were obtained in low to moderate yields. As expected, substrates $\mathbf{1 a}$ and 1b, with non-hindering groups, gave the worst results, whereas isopropyl and cyclohexyl substrates provided alcohols 3 with slightly better yields (Table 2).

The mixture of alcohols $3 \mathbf{e}$ was readily converted to the corresponding ketone 4 in excellent yields using Dess-Martin periodinane or TEMPO. Further cleavage of the tert-butyl group in acid medium ${ }^{24}$ provided secondary amide 5 in 76% yield (Scheme 3).

We next sought to explore the scope of the reaction and examined a number of substituted benzene derivatives (Scheme 4). Starting materials were prepared following the same reaction

3 e

4

5

Scheme 3. Synthetic transformations from azaspirolactam 3e.

1f

3f

1g

6

1h

2h

Scheme 4. Substrate scope of the ATRC. Reagents and conditions: CuCl (60%), $\mathrm{CH}_{3} \mathrm{CN}, \mu \mathrm{W}, 8{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$. Compounds $\mathbf{3 f}$ (54\%); $\mathbf{6}$ (21\%); $\mathbf{2 h}$ (42\%).

Scheme 5. Trapping of chloride $\mathbf{2 e}$ with MeOH or allylamine.
sequence of reductive amination and trichloroacetylation as depicted above in Scheme 2. Treatment of 3-methylsubstituted benzene 1f with CuCl gave a result similar to that observed in the unsubstituted series $\mathbf{1 e}$, the allylic alcohol $\mathbf{3 f}$ being isolated as a diastereomeric mixture. In contrast, in the 2-methyl substituted benzene $\mathbf{1 g}$, the trapping of the cyclohexadienyl radical seems to have occurred at $\mathrm{C}-2$, and the chloride derivative evolved to exocyclic methylene derivative $\mathbf{6}$ through an elimination process. Moreover, for steric reasons the spirocyclization was disfavoured with respect to the ortho-unsubstituted derivatives ($\mathbf{1 e}, \mathbf{1 f}$), and a remarkable increase in the de-tert-butylation reaction from $\mathbf{1 g}$ occurred leading to secondary amide 7 in 25% yield (not shown; see Supplementary material). The 3,5-difluorobenzyl derivative $\mathbf{1 h}$ behaved in a particular way, since after the ATRC cyclization the allyl chloride showed a low reactivity in the aqueous medium, and the initially formed chloride $\mathbf{2 h}$, remaining unchanged, was isolated.

Finally, we used trapping reagents other than water for the allylic chlorides formed after the ATRC, starting from $\mathbf{1 e}$ as the radical precursor (Scheme 5). Thus, when MeOH was added to the reaction in the work-up, a mixture of ethers $\mathbf{8}$ was isolated. These were noted to be sensitive to the oxygen atmosphere since substantial amounts of ketone 4 were formed on standing in air. Otherwise, when the reaction mixture containing 2 e was treated with allylamine, an epimeric mixture of dienylallylamine epimers 9 was isolated.

In summary, we have described the first dearomative spirocyclization promoted by CuCl upon a benzene ring. The results obtained with the different trichloroacetamides used in this work again showed the importance of having a bulky group on the nitrogen to achieve the cyclization process. Oxidation of the epimeric alcohol mixture $\mathbf{3 e}$ to the corresponding ketone and further cleavage of the tert-butyl group provided polyfunctionalized 2 -azaspiro[4.5]decadienone 5 , which is now under study for use as a building block in the synthesis of natural and unnatural compounds. ${ }^{25}$

Acknowledgments

Support of this research was provided by the Spanish Ministry of Economy and Competitiveness (Project CTQ2010-14846/BQU).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013. 03.019 .

References and notes

1. Roche, S. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2011, 50, 4068-4093.
2. (a) Yang, Y.-L.; Chang, F.-R.; Wu, Y.-C. Helv. Chim. Acta 2004, 87, 1392-1399; (b) Shigehisa, H.; Takayama, J.; Honda, T. Tetrahedron Lett. 2006, 47, 7301-7306.
3. Hallock, Y. F.; Lu, H. S. M.; Clardy, J.; Strobel, G. A.; Sugawara, F.; Samsoedin, R.; Yoshida, S. J. Nat. Prod. 1993, 56, 747-754.
4. Sandmeier, P.; Tamm, C. Helv. Chim. Acta 1990, 73, 975-984.
5. (a) Sánchez, V.; Ahond, A.; Guilhem, J.; Poupat, C.; Poitier, P. Bull. Soc. Chim. Fr. 1987, 877-884; (b) Bhutani, K. K.; Ali, M.; Sharma, S. R. R.; Vaid, M.; Gupta, D. K. Phytochemistry 1988, 27, 925-928; (c) Siddiqui, B. S.; Usmani, S. B.; Begum, S.; Siddiqui, S. Phytochemistry 1993, 33, 925-928.
6. (a) Rice, L. M.; Sheth, B. S.; Wheeler, J. W. J. Heterocycl. Chem. 1973, 10, 731735; (b) Amit-Vazina, M.; Shishodia, S.; Harris, D.; Van, Q.; Wang, M.; Weber, D.; Alexanian, R.; Talpaz, M.; Aggarwal, B. B.; Estrov, Z. Br. J. Cancer 2005, 93, 70-80.
7. Makovec, F.; Peris, W.; Revel, L.; Giovanetti, R.; Mennuni, L.; Rovati, L. C. J. Med. Chem. 1992, 35, 28-38.
8. Badger, A. M.; Schwartz, D. A.; Picker, D. H.; Dorman, J. W.; Bradley, F. C.; Cheeseman, E. N.; Dimartino, M. J.; Hanna, N.; Mirabelli, C. K. J. Med. Chem. 1990, 33, 2963-2970.
9. Kazmierski, W. M.; Furfine, E.; Spaltenstein, A.; Wright, L. L. Bioorg. Med. Chem. Lett. 2002, 12, 3431-3433.
10. For metal-assisted aminocyclization procedures, see: (a) Solé, D.; Cancho, Y.; Llebaria, A.; Moretó, J. M.; Delgado, A. J. Org. Chem. 1996, 61, 5895-5904; (b) Zhou, C.-Y.; Che, C.-M. J. Am. Chem. Soc. 2007, 129, 5828-5829; (c) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 94889489; (d) Reznichenko, A. L.; Hultzch, K. C. Organometallics 2010, 29, 24-27; (e) Yeh, M.-C. P.; Pai, H.-F.; Hsiow, C.-Y.; Wang, Y.-R. Organometallics 2010, 29, 160-166; (f) Rosen, B. R.; Ney, J. E.; Wolfe, P. P. J. Org. Chem. 2010, 75, 27562759; (g) Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 413-426; (h) Yeh, M.-C. P.; Fang, C.-W.; Lin, H.-H. Org. Lett. 2012, 14, 18301833.
11. For other synthetic approaches, see: (a) Cossy, J.; Bouzide, A.; Pfau, M. J. Org. Chem. 1997, 62, 7106-7113; (b) Bryans, J. S.; Davies, N.; Gee, N. S.; Dissanayake, V. U. K.; Ratcliffe, G. S.; Horwell, D. C.; Kneen, C. O.; Morrell, A. I.; Oles, R. J.; O'Toole, J. C.; Perkins, G. M.; Singh, L.; Suman-Chauahan, N.; O'Neill, J. A. J. Med. Chem. 1998, 41, 1838-1845; (c) Cossy, J.; Bouzide, A.; Leblanc, C. J. Org. Chem. 2000, 65, 7257-7265; (d) Kitagawa, O.; Miyaji, S.; Yamada, Y.; Fujiwara, H.; Taguchi, T. J. Org. Chem. 2003, 68, 3184-3189; (e) Iwasaki, H.; Tsutsui, N.; Eguchi, T.; Ohno, H.; Yamashita, M.; Tanaka, T. Tetrahedron Lett. 2011, 52, 1770-1772; (f) Moriyama, K.; Izumisawa, Y.; Togo, H. J. Org. Chem. 2011, 76, 7249-7255.
12. (a) Rishton, G. M.; Schwartz, M. A. Tetrahedron Lett. 1988, 29, 2643-2646; (b) Santra, S.; Andreana, P. R. Org. Lett. 2007, 9, 5035-5038; (c) Pigge, F. C.; Dhanya, R.; Hoefgen, E. R. Angew. Chem., Int. Ed. 2007, 46, 2887-2890; (d) Ovens, C.; Martin, N. G.; Procter, D. J. Org. Lett. 2008, 10, 1441-1444; (e) Rozhkova, Y. S.; Khmelevskaya, K. A.; Shklyaev, Y. V.; Ezhikova, M. A.; Kodess, M. I. Russ. J. Org. Chem. 2012, 48, 69-77.
13. (a) Ibarra-Rivera, T. R.; Gámez-Montaño, R.; Miranda, L. D. Chem. Commun. 2007, 3485-3487; (b) Gámez-Montaño, R.; Ibarra-Rivera, T.; El Kaïm, L.; Miranda, L. D. Synthesis 2010, 1285-1290.
14. Boivin, J.; Yousfi, M.; Zard, S. Z. Tetrahedron Lett. 1997, 38, 5985-5988.
15. For a review, see: Eckenhoff, W. T.; Pintauer, T. Catal. Rev. Sci. Eng. 2010, 52, 159.
16. Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-Molina, J. M.; Pérez, J. P.; Belderrain, T. R. Chem. Commun. 2012, 8799-8801
17. For a related reaction upon an indole ring leading to spiroindolines, see: a Van der Jeught, S.; De Vos, N.; Masschelein, K.; Ghiviriga, I.; Stevens, C. V. Eur. J. Org. Chem. 2010, 5444-5453; See also: b Kyei, A. S.; Tchabaneko, K.; Baldwin, J. E.; Adlington, R. M.; Stevens, C. V. Tetrahedron Lett. 2004, 45, 8931-8934.
18. Compound 1d was prepared by reductive amination of cyclohexanone using benzylamine, followed by reaction with trichloroacetyl chloride.
19. (a) Stork, G.; Mah, R. Heterocycles 1989, 28, 723-727; (b) Yu, J.-D.; Ding, W.; Lian, G.-Y.; Song, K.-S.; Zhang, D.-W.; Gao, X.; Yang, D. J. Org. Chem. 2010, 75, 3232-3239.
20. When no radical trapping reagent was used, the capture of the cyclohexanedienyl radical probably occurred by an oxidation and later nucleophilic addition.
21. The formation of 1,4 -dienes reflects the known propensity of cyclohexanedienyl radicals for kinetic trapping at the internal position: (a) Beckwith, A. L. J.; O'Shea, D. M.; Roberts, D. H. J. Am. Chem. Soc. 1986, 108, 6408-6409; (b) Crich, D.; Krishnamurthy, V. Tetrahedron 2006, 62, 6830-6840.
22. Reaction procedure: In a 10 mL vessel were placed trichloroacetamide $\mathbf{1 e}$ $(100 \mathrm{mg}, 0.32 \mathrm{mmol}), \mathrm{CuCl}(19 \mathrm{mg}, 0.19 \mathrm{mmol}, 60 \%)$, and acetonitrile $(1 \mathrm{~mL})$.

The stirred reaction mixture was heated at $80^{\circ} \mathrm{C}$ using microwave irradiation for 15 min . After reaching rt, water (1 mL) was added, the mixture was stirred for an additional 1 h , and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated, and purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ AcOEt 98:2) to give separable alcohols $\mathbf{3 e}(70 \mathrm{mg}, 74 \%)$ in a $3: 2$ proportion. Less polar: IR (NaCl , neat): 3529, 3399, 3284, 3039, 2977, 2934, 2870, 1720, 1478, 1399, $1365,1305,1246,1222,1032,1010,895,872,829,775,739,681,582$, $525 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{COSY}\right): \delta 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 3.39(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{br}$ s, $8-\mathrm{H}), 5.88(2 \mathrm{H}, \mathrm{dq}, J=10.4,2 \mathrm{~Hz}, 6-\mathrm{H}$ and $10-\mathrm{H}), 6.23(2 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=10.4,3,2 \mathrm{~Hz}, 7-\mathrm{H}$ and $9-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, HSQC): $27.1\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right), 48.9$ (C-5), 52.3 (C-1), 55.4 (C), 62.3 (C-8), 90.5 (C-4), 125.9 (C-6 and C-10), 133.3 (C-7 and C-9), 165.3 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{C}_{12} \mathrm{NO}_{2} 290.0709\left(\mathrm{M}^{+}+1\right)$. Found: 290.0719. More polar: IR (NaCl , neat): $3254,3034,2972,2871,1713,1474,1400,1367,1306,1245,1216,1015$, 923, $885,777,741,694,682,563,516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 1.43$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $1.58(1 \mathrm{H}$, br s, OH), $3.34(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{br}$ s, $8-\mathrm{H}), 5.96(2 \mathrm{H}$, $\mathrm{dq}, J=10.4,1.6 \mathrm{~Hz}, 6-\mathrm{H}$ and $10-\mathrm{H}), 6.24(2 \mathrm{H}, \mathrm{ddt}, J=10.4,3.6,2 \mathrm{~Hz}, 7-\mathrm{H}$ and $9-$ $\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 27.1\left(\mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}\right), 48.6(\mathrm{C}-5), 52.7(\mathrm{C}-1), 55.4(\mathrm{C})$, 62.1 (C-8), 89.7 (C-4), 126.9 (C-6 and C-10), 132.4 (C-7 and C-9), 165.3 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{C}_{12} \mathrm{NO}_{2} 290.0709\left(\mathrm{M}^{+}+1\right)$. Found: 290.0698.
23. Almost of the reactions from $\mathbf{1 e}$ provided also a variable amount of secondary amide resulting from the cleavage of the tert-butyl group.
24. (a) Rosenberg, S. H.; Rapoport, H. J. Org. Chem. 1985, 50, 3979-3982; (b) Albrecht, D.; Basler, B.; Bach, T. J. Org. Chem. 2008, 73, 2345-2356.
25. As suggested by the reviewers, an extension of the ATRC process reported here to different aromatic rings ${ }^{25 a, b}$ and tethers ${ }^{25 c, d}$ could be of interest: (a) Kaoudi, T.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Z. Angew. Chem., Int. Ed. 2000, 39, 31733; (b) Guindeuil, S.; Zard, S. Z. Chem. Commun. 2006, 665-667; (c) QuicletSire, B.; Zard, S. Z. Chem. Commun. 2002, 2306-2307; (d) Bacqué, E.; El Qacemi, M.; Zard, S. Z. Org. Lett. 2005, 7, 3817-3820.

Dearomative radical spirocyclization from N -benzyltrichloroacetamides revisited using a copper(I)-mediated atom transfer reaction leading to 2-azaspiro[4.5]decanes

Faïza Diaba*, Juan A. Montiel, Agustín Martinez-Laporta and Josep Bonjoch*
Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
faiza.diaba@ub.edu; josep.bonjoch@ub.edu

Table of contents

- Table of ${ }^{13} \mathrm{C}$ NMR data of spirolactams 3 S2
- Experimental and NMR data of trichloroacetamides 1 S3
- Experimental and NMR data of spirolactams 2-3 S7
- Experimental and NMR data of cyclohexadienone 4 S11
- Experimental and NMR data of cyclohexadienone 5 S12
- NMR data of compounds 6-9 S12
- Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 1-9 S15

Table 1. ${ }^{13} \mathrm{C}$ NMR chemical shifts of 2-azaspiro[4.5]decanes $3^{\text {a }}$

	3a R = Bn		3b $\mathrm{R}=\mathrm{Bu}$		3c $\mathrm{R}=\mathrm{Pr}$		3d R = chex		$3 \mathrm{R}=\mathrm{tBu}$		3 f	
	LP	MP										
C-1	53.8	53.3	54.5	54.0	49.6	49.1	50.2	50.6	52.3	52.7	52.5	52.8
C-3	165.8	165.8	165.2	165.7	165.0	165.0	165.1	165.1	165.3	165.3	165.5	165.5
C-4	88.2	88.5	90.6	89.5	89.0	89.8	89.9	89.0	90.5	89.7	90.9	90.0
C-5	49.3	49.7	49.5	49.9	49.2	49.6	49.8	49.4	48.9	48.6	49.9	49.6
C-6, c-10	126.7	125.7	126.9	126.0	126.8	125.8	125.9	126.9	125.9	126.9	121.2	121.9
											126.2	127.2
C-7, C-9	132.4	133.4	132.4	133.3	132.5	133.4	133.3	132.4	133.3	132.4	140.1	140.3
											132.9	132.2
C-8	62.0	62.3	62.0	62.3	62.0	62.4	62.4	62.1	62.3	62.1	65.5	65.6
Other	47.9	47.9	13.7	13.7	19.2	19.2	25.1	25.1	27.1	27.1	20.0	20.4
	128.3	128.3	19.9	19.9	44.2	44.2	25.2	25.2	55.4	55.4	27.1	27.1
	128.4	128.4	28.9	28.9			29.7	29.6			55.4	55.4
	129.0	129.0	43.6	43.7			52.0	52.0				
	134.5	134.5										

[^12]General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution. Chemical shifts are reported as δ values (ppm) relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. All NMR data assignments are supported by COSY and HSQC experiments. Infrared spectra were recorded on a Nicolet 320 FT-IR spectrophotometer. TLC was performed on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$, Merck). The spots were located by UV light or a $1 \% \mathrm{KMnO}_{4}$ aqueous solution. Chromatography refers to flash chromatography and was carried out on SiO_{2} (silica gel 60, SDS, 230-400 mesh). CuCl (99.99\%) was purchased from Sigma-Aldrich and was used as received. All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents and under anhydrous conditions. Drying of the organic extracts during reaction work-up was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Microwave irradiation experiments were performed using a single-mode Discover System from CEM Corporation using standard Pyrex vessel (capacity 10 mL).

- Preparation of trichloroacetamides 1

a. Preparation of trichloroacetamide 1d

Cyclohexanone ($3 \mathrm{~g}, 30.4 \mathrm{mmol}$), benzylamine ($4.36 \mathrm{~mL}, 39.5 \mathrm{mmol}$) and sieves ($4 \AA$, $6 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were stirred at rt for 4 h . The mixture was then filtered on a celite pad, concentrated and treated with $\mathrm{NaBH}_{4}(1.73 \mathrm{~g}, 45.7 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ then at rt for 2 h . After elimination of methanol, brine was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried and the solvent removed to yield a viscous oil which was treated with trichloroacetylchloride ($5.11 \mathrm{~mL}, 45.5$ $\mathrm{mmol})$ and triethylamine ($8.52 \mathrm{~mL}, 61.1 \mathrm{mmol}$) at rt overnight. Water was then added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated and purified by chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $\mathbf{1 d}$ ($9.8 \mathrm{~g}, 96 \%$).

N-Benzyl-2,2,2-trichloro- \mathbf{N}-cyclohexylacetamide (1d)

IR (NaCl , neat): 3086, 3063, 3030, 2936, 2859, 1971, 1951, 1873, 1854, 1806, 1775, 1667, 1495, 1453, 1418, 1362, 1325, 1284, 1243, 1161, 1141, 1029, 997, 891, 840, 823, 811, 736, 700, 670, 605, $531 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.07$ (qt, $\left.1 \mathrm{H}, J=13.2,3.6 \mathrm{~Hz}, \mathrm{H}-4 a x\right), 1.32$ (dt, $2 \mathrm{H}, \mathrm{J}=13.2$, $12.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}$ and H-5ax), 1.49 (q, 2H, $J=12.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}$ and $\mathrm{H}-6 \mathrm{ax}$), 1.66 (d, 1H, J $=13.2 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{eq}), 1.80(\mathrm{~d}, 2 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}$ and $\mathrm{H}-5 \mathrm{eq}), 1.92$ (d, 2H, $J=11.2$ $\mathrm{Hz}, \mathrm{H}-2 \mathrm{eq}$ and $\mathrm{H}-6 \mathrm{eq}$), 4.47 (brt, $1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.60 (s, 2H, CH ${ }_{2} \mathrm{Ar}$),7.17-7.34 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 25.1$ (C-4), 25.6 (C 3 and $\mathrm{C}-5$), 30.9 (C-2 and $\mathrm{C}-6), 47.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $59.3(\mathrm{C}-1), 93.7\left(\mathrm{CCl}_{3}\right), 126.3,126.8,128.4$ (Ar-CH), 137.6 (ipso-C), 160.6 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO} 334.0527\left(\mathrm{M}^{+}+1\right)$. Found 334.0530.

b. General procedure for the preparation of trichloroacetamides 1a-c, 1e-h

	X	R	
$\mathbf{1 a}$	H	Bn	78%
1b	H	Bu	96%
1c	H	Pr	98%
1e	H	$t \mathrm{Bu}$	85%
1f	3 -Me	$t \mathrm{Bu}$	56%
$\mathbf{1 g}$	-Me	$t \mathrm{Bu}$	41%
$\mathbf{1 h}$	3,5 -diF	$t \mathrm{tBu}$	51%

N,N-Dibenzyl-2,2,2-trichloroacetamide (1a) ${ }^{1}$

IR (NaCl , neat): 3063, 3027, 2919, 2870, 1954, 1863, 1812, 1679, 1494, 1452, 1420, 1361, 1304, 1282, 1225, 1198, 1160, 1077, 1030, 947, 848, 813, 739, 698, 665, $506 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 4.58 (s, 2H, CH2Ar), 4.91 (s, 2H, CH 2 Ar), 7.12-7.46 (m, 10H, ArH); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 50.2\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $52.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 93.2\left(\mathrm{CCl}_{3}\right)$, 127.2, 127.8, 127.9, 128.0, 128.8 (Ar-CH), 135.0 (ipso-C), 135.6 (ipso-C), 161.3 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{NO} 342.0214\left(\mathrm{M}^{+}+1\right)$. Found 342.0213.

[^13]

N-Benzyl-N-butyl-2,2,2-trichloroacetamide (1b)

IR (NaCl, neat): 3083, 3027, 2958, 2934, 2875, 1975, 1955, 1875, 1810, 1661, 1492, 1453, 1421, 1375, 1306, 1282, 1255, 1217, 1168, $1125,1080,1003,945,928,907,844,809,740,701,667,605,510$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.90$ (brs, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.29 (brs, 2H, CH_{2}), 1.57 and 1.71 (2 brs, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.31 and 3.61 (2 brs, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.70 and 4.97 (2 $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.8\left(\mathrm{CH}_{3}\right), 19.9$ $\left(\mathrm{CH}_{2}\right), 28.2$ and $29.5\left(\mathrm{CH}_{2}\right), 48.1$ and $48.7\left(\mathrm{CH}_{2}\right), 50.7$ and $52.9\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 93.4\left(\mathrm{CCl}_{3}\right)$, 127.0, 127.6, 127.8, 128.8 ($\mathrm{Ar}-\mathrm{CH}$), 135.5 and 136.1 (ipso-C), 160.6 (CO). HRMS (ESITOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO} 308.0370\left(\mathrm{M}^{+}+1\right)$. Found 308.0374.

N-Benzyl-2,2,2-trichloro- \mathbf{N}-isopropylacetamide (1c) ${ }^{1}$

IR (NaCl , neat): 3087, 3065, 3033, 2973, 2933, 2877, 1951, 1861, 1810, 1669, 1495, 1451, 1415, 1373, 1344, 1291, 1202, 1180, 1128, 1068, 1030, 1013, 943, 882, 831, 810, 797, 725, 693, 668, 628, $535 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.28\left(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 4.57(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.18-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 20.6$ $\left(\mathrm{CH}_{3}\right), 46.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 51.0(\mathrm{CH}), 93.7\left(\mathrm{CCl}_{3}\right), 126.3,126.9,128.5(\mathrm{Ar}-\mathrm{CH}), 137.6$ (ipsoC), 160.5 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{NO} 294.0214\left(\mathrm{M}^{+}+1\right)$. Found 294.0204.

N-Benzyl-N-tert-butyl-2,2,2-trichloroacetamide (1e) ${ }^{2}$

IR (NaCl , neat): 3062, 3031, 2966, 2919, 1977, 1961, 1900, 1882, 1820, 1677, 1486, 1449, 1383, 1365, 1354, 1256, 1226, 1185, 1145, 1074, 1026, 984, 912, 879, 838, 810, 739, 695, 665, 587, $502 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 5.04$ (brs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 7.23-7.37 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 28.1\left(\mathrm{CH}_{3}\right), 51.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 61.9(\mathrm{C}), 95.3$ $\left(\mathrm{CCl}_{3}\right), 126.5,127.2,128.4$ (Ar-CH), 138.6 (ipso-C), 160.8 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO} 308.0370\left(\mathrm{M}^{+}+1\right)$. Found 308.0384.

N-tert-Butyl-2,2,2-trichloro-N-(3-methylbenzyl)acetamide (1f) ${ }^{2}$ IR (NaCl , neat): 3001, 2973, 2924, 2873, 1684, 1608, 1483, 1379, $1256,1223,1185,1157,1139,1091,1036,983,903,885,840$, 812, 777, 742, 693, $666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.43(\mathrm{~s}$, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.00$ (brs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 7.07 (brs, 3 H ,

[^14]$\mathrm{ArH}), 7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 21.4\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 51.0$ $\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 61.9(\mathrm{C}), 95.4\left(\mathrm{CCl}_{3}\right), 123.6,127.1,127.9,128.3$ (Ar-CH), 138.1 (C), 138.6 (ipso-C), 160.8 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO} 322.0527\left(\mathrm{M}^{+}+1\right)$. Found 322.0528.

N -tert-Butyl-2,2,2-trichloro- N -(2-methylbenzyl)acetamide (1g) ${ }^{2}$ IR (NaCl , neat): 3067, 2969, 2930, 1679, 1606, 1476, 1460, 1382, 1365, 1350, 1254, 1226, 1183, 1145, 1101, 1050, 982, 885, 840, 823, 812, 768, 753, 696, 666, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 1.45 (s, 9H, $3 \mathrm{CH}_{3}$), 2.28 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 4.93 (brs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 7.127.24 (m, 3H, ArH), 7.34 (d, $1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 19.0$ $\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 48.3\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 61.9(\mathrm{C}), 95.2\left(\mathrm{CCl}_{3}\right), 125.7,126.7,126.8,130.3$ (ArCH), 133.4 (C), 136.6 (ipso-C), 160.8 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO}$ $322.0527\left(\mathrm{M}^{+}+1\right)$. Found 322.0529.

N-tert-Butyl-2,2,2-trichloro- N -(3,5-difluorobenzyl)acetamide (1h) IR (NaCl , neat): 3078, 3064, 3018, 3000, 2976, 2931, 1668, 1625, $1598,1475,1451,1384,1365,1351,1319,1304,1256,1219,1181$, 1153, 1120, 998, 983, 964, 887, 869, 849, 836, 814, 720, 669, 646 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 5.01$ (brs, 2 H , $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.72(\mathrm{tt}, 1 \mathrm{H}, \mathrm{J}=8.8,2.4 \mathrm{~Hz}, \mathrm{ArH}), 6.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100$ $\mathrm{MHz}): \delta 28.1\left(\mathrm{CH}_{3}\right), 50.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 62.2(\mathrm{C}), 94.9\left(\mathrm{CCl}_{3}\right), 102.8(\mathrm{t}, 1 \mathrm{C}, J=25 \mathrm{~Hz}, \mathrm{Ar}-$ CH), 109.4 (d, 2C, $J=26.4 \mathrm{~Hz}$, Ar-CH), 143.2 (t, 1C, $J=8.6 \mathrm{~Hz}$, ipso-C), 160.6 (CO), 163.1 (dd, 2C, $J=247.7,12.4 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{NO}$ $344.0182\left(\mathrm{M}^{+}+1\right)$. Found 344.0185 .

- Representative procedure for the CuCl radical cyclization

In a 10 mL vessel were placed acetamide $\mathbf{1 e}(100 \mathrm{mg}, 0.32 \mathrm{mmol}), \mathrm{CuCl}(19 \mathrm{mg}, 0.19$ $\mathrm{mmol}, 60 \%$) and acetonitrile (1 mL). The mixture was heated with stirring to $80{ }^{\circ} \mathrm{C}$ using microwave irradiation for 15 min . After reaching rt water ${ }^{3}(1 \mathrm{~mL})$ was added, the mixture was stirred for an additional hour and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated and purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}$ 98:2) to give separable alcohols $3 \mathrm{e}(70 \mathrm{mg}, 74 \%$) as a mixture of epimers in a 3:2 proportion.

2-Benzyl-4,4-dichloro-8-hydroxy-2-azaspiro[4.5]deca-6,9-dien-3-one

 (3a)Less polar: $\mathrm{IR}(\mathrm{NaCl}$, neat): 3422, 3223, 3029, 2925, 1717, 1480, 1428, 1307, 1249, 1073, 1028, 958, 917, 887, 846, 820, 743, 701, $677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.43$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 3.15 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-1$), 4.45 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 4.54 (s, 2H, CH2Ar), 5.88 (dq, 2H, $J=10.4,1.6 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.19 (ddt, $2 \mathrm{H}, \mathrm{J}=10.4,3.6,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 47.9\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 49.3(\mathrm{C}-5), 53.8(\mathrm{C}-1), 62.0(\mathrm{C}-8), 88.2(\mathrm{C}-4), 126.7(\mathrm{C}-6$ and $\mathrm{C}-$ 10), 128.3, 128.4, 129.0 ($\mathrm{Ar}-\mathrm{CH}$), 132.4 (C-7 and C-9), 134.5 (ipso-C), 165.8 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 324.0553\left(\mathrm{M}^{+}+1\right)$. Found 324.0558.
More polar: IR (NaCl, neat): 3393, 3063, 3032, 2923, 2883, 2855, 1717, 1479, 1430, 1360, 1306, 1246, 1075, 1026, 956, 883, 849, 825, 739, 701, $677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.65$ (brs, 1H, OH), 3.19 (s, 2H, CH 2 -1), 4.55 (s, 2H, CH ${ }_{2} \mathrm{Ar}$), 4.62 (brs, 1H, H-8), 5.79 (dq, 2H, $J=10.4,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.17 (ddt, 2H, $J=10.4,3.6$, $2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 47.9\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 49.7(\mathrm{C}-5), 53.3(\mathrm{C}-1)$, 62.3 (C-8), 88.5 (C-4), 125.7 (C-6 and C-10), 128.3, 128.4, 129.0 (Ar-CH), 133.4 (C-7 and C-9), 134.5 (ipso-C), 165.8 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ $324.0553\left(\mathrm{M}^{+}+1\right)$. Found 324.0556 .

[^15]
2-Butyl-4,4-dichloro-8-hydroxy-2-azaspiro[4.5]deca-6,9-dien-3-one

 (3b)

Less polar. IR (NaCl, neat): 3428, 3038, 2959, 2931, 2871, 1716, 1479, 1429, 1370, 1306, 1248, 1213, 1188, 1130, 1073, 1032, 921, 888, 864, $845,822,761,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.95(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6$ $\mathrm{Hz}, \mathrm{CH}_{3}$), 1.36 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.29 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-1$), 3.37 (t, 2H, J=7.6 Hz, CH2), 4.53 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 5.96 (dq, $2 \mathrm{H}, J=10.4,2 \mathrm{~Hz}$, $\mathrm{H}-6$ and $\mathrm{H}-10$), 6.25 (ddt, $2 \mathrm{H}, \mathrm{J}=10.4,3.6,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 13.7\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 43.6\left(\mathrm{CH}_{2}\right), 49.5(\mathrm{C}-5), 54.5$ (C-1), 62.0 (C-8), 90.6 (C-4), 126.9 (C-6 and C-10), 132.4 (C-7 and C-9), 165.2 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 290.0709\left(\mathrm{M}^{+}+1\right)$. Found 290.0716.
More polar. IR (NaCl, neat): 3411, 3039, 2960, 2931, 2871, 1716, 1480, 1431, 1305, 1247, 1188, 1099, 1026, 949, 883, 826, $742 \mathrm{~cm}^{-1}$; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.95(\mathrm{t}$, $3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.33(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}-1$), 3.39 (t, 2H, J = $7.6 \mathrm{~Hz}, \mathrm{CH}_{2}$), 4.66 (m, 1H, H-8), 5.89 (dq, 2H, J = 10.4, 2 $\mathrm{Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.24 (ddt, $2 \mathrm{H}, \mathrm{J}=10.4,2.8,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}): \delta 13.7\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 43.7\left(\mathrm{CH}_{2}\right), 49.9(\mathrm{C}-5), 54.0(\mathrm{C}-1), 62.3$ (C-8), 89.5 (C-4), 126.0 (C-6 and C-10), 133.3 (C-7 and C-9), 165.7 (C-3). HRMS (ESITOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 290.0709\left(\mathrm{M}^{+}+1\right)$. Found 290.0711.

4,4-Dichloro-8-hydroxy-2-isopropyl-2-azaspiro[4.5]deca-6,9-dien-3one (3c)

Less polar. IR (NaCl , neat): 3260, 3041, 2973, 2932, 2878, 2850, 1717, 1477, 1426, 1372, 1306, 1231, 1025, 918, 889, 858, 751, 694 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.17\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $10.4 \mathrm{~Hz}, \mathrm{OH}$), 3.24 (s, 2H, CH ${ }_{2}-1$), 4.40 (sept, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}$), 4.53 (dtt, $1 \mathrm{H}, \mathrm{J}=$ $10.4,4,1.2 \mathrm{~Hz}, \mathrm{H}-8$), 5.95 (dq, 2H, $J=10.4,1.6 \mathrm{~Hz}, \mathrm{H}-6$ and H-10), 6.25 (ddt, 2H, $J=$ 10.4, 3.6, $2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 19.2\left(\mathrm{CH}_{3}\right), 44.2(\mathrm{CH})$, 49.2 (C-5), 49.6 (C-1), 62.0 (C-8), 89.0 (C-4), 126.8 (C-6 and C-10), 132.5 (C-7 and C9), 165.0 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 276.0553\left(\mathrm{M}^{+}+1\right)$. Found 276.0557.

More polar. IR (NaCl, neat): 3403, 3038, 2975, 2933, 2878, 1717, 1477, 1426, 1369, 1306, 1231, 1194, 1130, 1018, 947, 889, 863, 826, 804, 744, $679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.18\left(\mathrm{~d}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 1.84($ brd, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OH})$,
3.28 (s, 2H, CH2-1), 4.41 (sept, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}$), 4.66 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 5.87 (dq, 2H, $J=10.4,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.24 (ddt, $2 \mathrm{H}, J=10.4,2.8,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 19.2\left(\mathrm{CH}_{3}\right), 44.2(\mathrm{CH}), 49.1(\mathrm{C}-1), 49.6(\mathrm{C}-5), 62.4(\mathrm{C}-8)$, 89.8 (C-4), 125.8 (C-6 and C-10), 133.4 (C-7 and C-9), 165.0 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 276.0553\left(\mathrm{M}^{+}+1\right)$. Found 276.0554.

2-Cyclohexyl-4,4-dichloro-8-hydroxy-2-azaspiro[4.5]deca-6,9-dien-3-one (3d)

Less polar. IR (NaCl , neat): 3408, 3026, 2938, 2880, 2861, 1694, 1479, 1432, 1306, 1249, 1217, 1181, 1081, 1018, 954, 882, 856, 826, 759, 686, $612 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.09$ (qt, $1 \mathrm{H}, \mathrm{J}=$ $12.8,3.6 \mathrm{~Hz}), 1.25-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 1.70(\mathrm{dm}, 1 \mathrm{H}, J$ $=12.8 \mathrm{~Hz}), 1.74-1.88(\mathrm{~m}, 4 \mathrm{H}), 3.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-1\right), 3.99(\mathrm{tt}, 1 \mathrm{H}, \mathrm{J}=$ $12,4 \mathrm{~Hz}$), 4.66 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 5.87 (dq, $2 \mathrm{H}, J=10.4,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.23 (ddt, $2 \mathrm{H}, \mathrm{J}=10.4,2.8,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 25.1\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 49.8(\mathrm{C}-5), 50.2(\mathrm{C}-1), 52.0(\mathrm{CH}), 62.4(\mathrm{C}-8), 89.9(\mathrm{C}-4), 125.9(\mathrm{C}-6$ and C-10), 133.3 (C-7 and C-9), 165.1 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2} 316.0866\left(\mathrm{M}^{+}+1\right)$. Found 316.0870.
More polar. IR (NaCl , neat): 3244, 3031, 2930, 2854, 1715, 1477, 1449, 1425, 1338, $1306,1247,1215,1191,1143,1080,1030,949,919,890,853,820,759,679,632$, $545 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.08(\mathrm{qt}, 1 \mathrm{H}, J=12.8,3.6 \mathrm{~Hz}), 1.24-1.46(\mathrm{~m}$, 4 H), 1.56 (brs, $1 \mathrm{H}, \mathrm{OH}$), $1.69(\mathrm{dm}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 1.74-1.88(\mathrm{~m}, 4 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-1$), 3.99 (tt, 1H, $J=12,4 \mathrm{~Hz}$), 4.52 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 5.94 (dq, $2 \mathrm{H}, J=10.4,2 \mathrm{~Hz}, \mathrm{H}-$ 6 and $\mathrm{H}-10$), 6.24 (ddt, $2 \mathrm{H}, \mathrm{J}=10.4,4,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 25.1\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 49.4(\mathrm{C}-5), 50.6(\mathrm{C}-1), 52.0(\mathrm{CH}), 62.1(\mathrm{C}-$ 8), 89.0 (C-4), 126.9 ($\mathrm{C}-6$ and $\mathrm{C}-10$), 132.4 (C-7 and C-9), 165.1 (C-3). HRMS (ESITOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2} 316.0866\left(\mathrm{M}^{+}+1\right)$. Found 316.0870.

2-tert-Butyl-4,4-dichloro-8-hydroxy-2-azaspiro[4.5]deca-6,9-dien-3one (3e)

Less polar: IR (NaCl, neat): 3529, 3399, 3284, 3039, 2977, 2934, 2870, 1720, 1478,1399, 1365, 1305, 1246, 1222, 1032, 1010, 895, 872, 829, 775, 739, 681, 582, $525 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.43$ (s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$), 1.98 (brs, $1 \mathrm{H}, \mathrm{OH}$), 3.39 (s, 2H, $\mathrm{CH}_{2}-1$), 4.66 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 5.88 (dq, $2 \mathrm{H}, J=10.4,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.23 (ddt, $2 \mathrm{H}, J=10.4,3,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 27.1\left(\mathrm{CH}_{3}\right), 48.9(\mathrm{C}-5), 52.3(\mathrm{C}-1), 55.4(\mathrm{C}), 62.3(\mathrm{C}-8), 90.5$
(C-4), 125.9 ($\mathrm{C}-6$ and $\mathrm{C}-10$), 133.3 (C-7 and C-9), 165.3 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 290.0709\left(\mathrm{M}^{+}+1\right)$. Found 290.0719.
More polar: IR (NaCl, neat): 3254, 3034, 2972, 2871, 1713, 1474, 1400, 1367, 1306, 1245, 1216, 1015, 923, 885, 777, 741, 694, 682, 563, $516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ MHz): $\delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.58$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 3.34 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-1$), 4.52 (brs, $1 \mathrm{H}, \mathrm{H}-$ 8), 5.96 (dq, 2H, $J=10.4,1.6 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 6.24 (ddt, $2 \mathrm{H}, J=10.4,3.6,2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.1\left(\mathrm{CH}_{3}\right), 48.6(\mathrm{C}-5), 52.7(\mathrm{C}-1), 55.4(\mathrm{C})$, 62.1 (C-8), 89.7 (C-4), 126.9 (C-6 and C-10), 132.4 (C-7 and C-9), 165.3 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 290.0709\left(\mathrm{M}^{+}+1\right)$. Found 290.0698.

2-tert-Butyl-4,4-dichloro-8-hydroxy-7-methyl-2-azaspiro[4.5]deca-6,9-dien-3-one (3f)

Less polar: IR (NaCl , neat): 3434, 3033, 2976, 2917, 2883, 1705, 1459, 1398, 1367, 1311, 1266, 1240, 1214, 1149, 1087, 1038, 1010, 946, 892, 857, 840, 792, 769, 730, 693, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{OH}), 1.96(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right.$), 3.37 (d, $1 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{CH}_{2}-1$), 4.48 (brd, 1 H , $J=6.8 \mathrm{~Hz}, \mathrm{H}-8), 5.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 5.87(\mathrm{dt}, 1 \mathrm{H}, J=10.4,2 \mathrm{~Hz}, \mathrm{H}-10), 6.19$ (dd, H, $J=$ 10.4, 3.2 Hz, H-9); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 20.0\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 49.9(\mathrm{C}-5)$, 52.5 (C-1), 55.4 (C), 65.5 (C-8), 90.9 (C-4), 121.2 (C-6), 126.2 (C-10), 132.9 (C-9), 140.1 (C-7), 165.5 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2} 304.0866\left(\mathrm{M}^{+}+1\right)$. Found 304.0862.
More polar: IR (NaCl, neat): 3434, 2975, 2916, 2883, 1715, 1474, 1398, 1367, 1305, 1266, 1240, 1215, 1148, 1056, 1020, 894, 831, 768, 732, 695, 679, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{OH}), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.96(\mathrm{dd}, 3 \mathrm{H}, \mathrm{J}$ $\left.=1.6,0.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.32\left(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right), 3.34\left(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right)$, 4.30 (dd, 1H, J = 10.8, $4 \mathrm{~Hz}, \mathrm{H}-8$), 5.62 (m, 1H, H-6), 5.90 (ddd, 1H, J=10.4, 2.4, 1.2 $\mathrm{Hz}, \mathrm{H}-10), 6.22$ (dd, H, J = 10.4, $3.6 \mathrm{~Hz}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 20.4$ $\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 49.6(\mathrm{C}-5), 52.8(\mathrm{C}-1), 55.4(\mathrm{C}), 65.6(\mathrm{C}-8), 90.0(\mathrm{C}-4), 121.9(\mathrm{C}-6)$, 127.2 (C-10), 132.2 (C-9), 140.3 (C-7), 165.5 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2} 304.0866\left(\mathrm{M}^{+}+1\right)$. Found 304.0865.

2-tert-Butyl-4,4,8-trichloro-7,9-difluoro-2-azaspiro[4.5]deca-6,9-dien-3-one (2h)

Less polar: IR (NaCl, neat): 2977, 1716, 1464, 1390, 1369, 1346, 1311, 1258, 1226, 1130, 1010, 973, 953, 934, 904, 866, 838, 758, 745, $677 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.47(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-1\right), 5.09(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-8), 5.71(\mathrm{dm}, 2 \mathrm{H}, \mathrm{J}=14 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.1\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{t}, \mathrm{J}=30 \mathrm{~Hz}, \mathrm{C}-8), 51.0(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, \mathrm{C}-5$), 51.8 (C-1), 55.9 (C), 89.2 (C-4), 106.2 (dd, 2C, J = 16.3, 2.3 Hz, C-6 and C-10), 155.5 (dd, 2C, J = 260.1, 11.7 Hz, C-7 and C-9), 164.4 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{Cl}_{3} \mathrm{NO} 344.0181\left(\mathrm{M}^{+}+1\right)$. Found 344.0180.
More polar: IR (NaCl, neat): 3055, 2983, 2940, 1720, 1462, 1390, 1369, 1265, 1226, 1130, 907, 868, 740, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 3.44$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}-1$), $5.02(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=23.6 \mathrm{~Hz}, \mathrm{H}-8), 5.66(\mathrm{dm}, 2 \mathrm{H}, \mathrm{J}=13.6 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.1\left(\mathrm{CH}_{3}\right), 47.1(\mathrm{t}, \mathrm{J}=30 \mathrm{~Hz}, \mathrm{C}-8), 51.2(\mathrm{t}, 1 \mathrm{C}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{C}-5$), 52.5 (t, 1C, J=3.1 Hz, C-1), 55.8 (C), 88.4 (C-4), 106.5 (dd, 2C, J=16.3, 2.3 $\mathrm{Hz}, \mathrm{C}-6$ and $\mathrm{C}-10$), 155.7 (dd, 2C, $J=260.1,11.6 \mathrm{~Hz}, \mathrm{C}-7$ and C-9), 164.6 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{Cl}_{3} \mathrm{NO} 344.0181\left(\mathrm{M}^{+}+1\right)$. Found 344.0182.

- Oxidation of alcohols 3e

Method A:

A suspension of alcohols 3 e ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) and Dess-Martin periodinane (146 $\mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at rt for 2 h . The mixture was then quenched with 1 N NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, dried and concentrated to yield pure 4 (48 $\mathrm{mg}, 97 \%)$.

Method B:

To a solution of alcohols $3 \mathrm{e}\left(65 \mathrm{mg}, 0.22 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ were added successively, at rt and under vigorous stirring TEMPO ($2 \mathrm{mg}, 0.011 \mathrm{mmol}, 5 \%$) , NaBr ($23 \mathrm{mg}, 0.22 \mathrm{mmol}$), a solution of $\mathrm{NaHCO}_{3}(47 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $10 \% \mathrm{NaClO}$ in active chlorine $(0.42 \mathrm{~mL})$ and the mixture was stirred at rt for 1 h . After this time the mixture was treated with saturated NaHCO_{3} solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organics dried to yield 4 alone ($58 \mathrm{mg}, 90 \%$).

2-tert-Butyl-4,4-dichloro-2-azaspiro[4.5]deca-6,9-diene-3,8-dione
(4)

IR (NaCl , neat): 3054, 3024, 2938, 2915, 2882, 1713, 1669, 1632, 1609, 1513, 1462, 1403, 1368, 1322, 1244, 1183, 1154, 1096, 1072, 1032, 1008, 928, 870, 840, 826, $\left.770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $1.47\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-1\right), 6.51(\mathrm{dm}, 2 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10), 6.97(\mathrm{dm}, 2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.1$ $\left(\mathrm{CH}_{3}\right), 50.0(\mathrm{C}-1), 51.3(\mathrm{C}-5), 56.0(\mathrm{C}), 88.0(\mathrm{C}-4), 132.4$ (C-6 and C-10), $143.6(\mathrm{C}-7$ and C-9), 164.5 (C-3), 184.1 (C-8). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ $288.0553\left(\mathrm{M}^{+}+1\right)$. Found 288.0562 .

- tert-Butyl group cleavage

A mixture of 4 ($56 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{SO}_{4} 96 \%(0.5 \mathrm{~mL})$ was heated at $55{ }^{\circ}{ }^{\circ} \mathrm{C}$ for 1 h. The reaction was then let to reach rt, diluted with cold water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was concentrated and the residue purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 75: 25\right)$ to yield 5 ($34 \mathrm{mg}, 76 \%$).

4,4-Dichloro-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (5)
IR (NaCl , neat): 3214, 3154, 3047, 2986, 2873, 2798, 1739, 1668, 1627, 1408, 1366, 1322, 1272, 1252, 1215, 1187, 1093, 1062, 978, 866, 825, $726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.57\left(\mathrm{~d}, 2 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right)$, $6.53(\mathrm{dm}, 2 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9), 7.04(\mathrm{dm}, 2 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 7.23 (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 47.5$ (C-1), 53.8 (C-5), 86.2 (C-4), 132.4 (C-7 and C-9), 143.1 (C-6 and C-10), 167.8 (C-3), 184.0 (C-8). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{NO}_{2} 231.9927\left(\mathrm{M}^{+}+1\right)$. Found 231.9918.

2-tert-Butyl-4,4-dichloro-10-methylene-2-azaspiro[4.5]deca-6,8-dien-3-one (6)

IR (NaCl , neat): 3042, 2959, 2920, 2872, 1712, 1596, 1563, 1476, 1403, 1369, 1296, 1284, 1274, 1258, 1214, 1151, 1121, 1097, 1011, 925, 896, 882, 867, 836, 766, 736, 697, 683, $653 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.39\left(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right.$), 3.56 (d, $1 \mathrm{H}, J=10.4$ $\mathrm{Hz}, \mathrm{CH}_{2}-1$), $5.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\right), 5.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\right), 5.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{HC}=), 5.91$ (ddm, 1H, J=9.6, 5.6 Hz, HC=), 6.22 (d, 1H, $J=9.6 \mathrm{~Hz}, \mathrm{HC}=$), 6.30 (ddd, $1 \mathrm{H}, J=9.6$, 5.6, 1.2 Hz, HC=); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 27.1\left(\mathrm{CH}_{3}\right), 51.8(\mathrm{C}-5), 53.7(\mathrm{C}-1)$,
55.5 (C), 120.8 ($\mathrm{H}_{2} \mathrm{C}=$), 121.7 ($\mathrm{HC}=$), 127.0 ($\mathrm{HC=}=$), 127.3 ($\mathrm{HC}=$), 129.9 ($\mathrm{HC}=$), 141.7 (C-10), 165.6 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO} 286.0759\left(\mathrm{M}^{+}+1\right)$. Found 286.0762.

2,2,2-Trichloro- \mathbf{N}-(2-methylbenzyl)acetamide (7)

IR (NaCl , neat): 3336, 3021, 2926, 1697, 1518, 1462, 1356, 1246, 1051, 820, 751, 736, 679, $640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.55$ and $4.57\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 6.75$ (brs, 1 H , $\mathrm{NH})$, 7.19-7.30 (m, 4H, ArH); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 19.0\left(\mathrm{CH}_{3}\right), 43.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $92.0\left(\mathrm{CCl}_{3}\right), 126.5,128.5,128.7,130.9$, (Ar-CH), 133.9 (C), 136.7 (ipso-C), 161.6 (CO). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{NO} 265.9901\left(\mathrm{M}^{+}+1\right)$. Found 265.9902.

2-tert-Butyl-4,4-dichloro-8-methoxy-2-azaspiro[4.5]deca-6,9-dien-3one (8)

IR (NaCl , neat): 3037, 2976, 2934, 2821, 1722, 1464, 1396, 1367, 1304, 1266, 1239, 1217, 1151, 1089, 1011, 946, 919, 897, 870, 839, 825, $774,735,681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: mixture of diastereomers $\delta 1.42$ and $1.43\left(2 \mathrm{~s}, 9 \mathrm{H}\right.$ each, $3 \mathrm{CH}_{3}$), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.31(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-1$), 3.38 (s, 2H, CH2-1), 3.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 4.50 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 5.95 (dq, 2H, $J=10.8,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10), 6.08(\mathrm{dm}, 2 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10)$, $6.13(\mathrm{dm}, 2 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9), 6.23(\mathrm{dm}, 2 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.1\left(2 \mathrm{CH}_{3}\right)$, 48.5 and $49.2(\mathrm{C}-5), 52.3$ and $53.1(\mathrm{C}-1), 53.3$ and $55.1\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.4(2 \mathrm{C}), 69.0$ and $70.1(\mathrm{C}-8), 90.6(\mathrm{C}-4), 127.1$ and $128.5(\mathrm{C}-6$ and C-10), 130.4 and 130.9 (C-7 and C-9), 165.3 and 165.5 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ 304.0866 ($\mathrm{M}^{+}+1$). Found 304.0860.

8-Allylamino-2-tert-butyl-4,4-dichloro-2-azaspiro[4.5]deca-6,9-dien-3-one (9)

Less polar: IR (NaCl, neat): 3324, 3077, 3032, 2975, 2915, 2879, 1719, 1674, 1555, 1459, 1396, 1366, 1301, 1239, 1217, 1149, 1095, 1011, 917, 870, 826, 775, 739, $680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 1.43 (s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$), 1.50 (brs, $1 \mathrm{H}, \mathrm{NH}$), 3.31 (d, $2 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 3.35 (s, 2H, CH2-1), 3.81 (m, 1H, H-8), 5.12 (ddd, $1 \mathrm{H}, \mathrm{J}=10,1.6,1.2$ $\mathrm{Hz}, \mathrm{CH}_{2}=$), 5.22 (dq, $1 \mathrm{H}, \mathrm{J}=17.2,1.6 \mathrm{~Hz}, \mathrm{CH}_{2}=$), 5.85 (ddm, $2 \mathrm{H}, J=$ $10,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10$), 5.92 (ddt, $1 \mathrm{H}, J=17.2,10,6 \mathrm{~Hz}, \mathrm{CH}=$), 6.17 (ddm, 2H, $J=$ 10, $2.8 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.2\left(\mathrm{CH}_{3}\right), 48.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.9$ (C-5), 50.6 (C-8), $52.9(\mathrm{C}-1), 55.3(\mathrm{C}), 90.1(\mathrm{C}-4), 116.4\left(\mathrm{CH}_{2}=\right), 125.4(\mathrm{C}-6$ and $\mathrm{C}-10)$, 133.1 (C-7 and C-9), 136.6 (CH=), 165.5 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 329.1182\left(\mathrm{M}^{+}+1\right)$. Found 329.1179.

More polar: IR (NaCl, neat): 3324, 3077, 2975, 2929, 2879, 1721, 1461, 1395, 1366, 1302, 1218, 1150, 1094, 1011, 918, 870, 823, 778, 740, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}): \delta 1.42$ (s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$), 1.55 (brs, $1 \mathrm{H}, \mathrm{NH}$), 3.33 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-1$), 3.35 (s, 2 H , $\mathrm{CH}_{2} \mathrm{~N}$), 3.75 (brs, $1 \mathrm{H}, \mathrm{H}-8$), 5.11 (d, $1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{CH}_{2}=$), 5.21 (d, $1 \mathrm{H}, J=17.2 \mathrm{~Hz}$, $\mathrm{CH}_{2}=$), $5.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10,2 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-10), 5.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 6.18(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=$ $10,3.2 \mathrm{~Hz}, \mathrm{H}-7$ and $\mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 27.1\left(\mathrm{CH}_{3}\right), 48.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.6$ (C-5), 50.4 (C-8), $53.3(\mathrm{C}-1), 55.3(\mathrm{C}), 90.3(\mathrm{C}-4), 116.2\left(\mathrm{CH}_{2}=\right), 125.9(\mathrm{C}-6$ and $\mathrm{C}-10)$, 132.6 (C-7 and C-9), 136.8 (CH=), 165.5 (C-3). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 329.1182\left(\mathrm{M}^{+}+1\right)$. Found 329.1179.

- Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 1-5

H1 / Mercury-400F

H1 / Mercury-400F
cdc13/ Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN558E-17
Nom: FAIZA DIABA ope. : F.DIABA
Data: 05/07/12 / Operime
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN558E-17
Nom: FAIZA DIABA
Data: 05/07/12/ Ope.: F.DIABA
Experiment: s2pul
Pulse Sequance: s2pul

[^16]

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Nom: FAIZA DIABA Mostra: TAN558-B-13
Nom: FAIZA DIABA
Data: $04 / 07 / 12 /$ ope.: F.DIABA
Experiment: s2pu1
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
cdc13 / Temp: Ambient / N.Reg: xxx
Usuari: san / Mostra: TAN558-B-13
Nom: FAIZA DIABA
Data: 04/07/12/ Ope.: F.DIABA
Data: 04/07/12 / ope
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cic13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: Xtan387-13
Nom: FAIZA DIABA
Experiment: s2pul : F.DIABA
ulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: 25 C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: Xtan387-13
Nom: FAIZA DIABA
Data: $06 / 02 / 13$ / ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: 25c / N. Reg: Xxxxxxxxx
Usuari: san / Mostra: Xtan386-14
Usuari: san / Mostra: Xtan386-14
Nom: FAIZA DIABA
Data: $06 / 02 / 13$
ta: $06 / 02 / 13$ / Ope.: F.DIABA
Experiment: s2pul
ulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: 25C / N. Reg: xxxxxxxxxx
suari: san / Mostra: XJA104-3
Nom: FAIZA DIABA
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: $25 \mathrm{C} / \mathrm{N}$. Reg: xxxxxxxxxx
Usuari: san / Mostra: xJA104-3
Nom: FAIZA DIABA
Data: $01 / 02 / 13$ / Ope. : F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Jsuari: san / Mostra: JAO60-27
Nom: FAIZA DIABA
Data: $28 / 09 / 12 /$ Ope. : F.DIABA
ata: $28 / 09 / 12$ / Ope
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxx
Usuari: san / Mostra: XJA059-44
Usuari: san / Mostra: XJA059-44
Nom: FAIZA DIABA
Data: 27/09/12/Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

A1 / Mercury-400F
dcl3 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: XJA059-44
Nom: FAIZA DIABA
Data: 27/09/12 / ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdcl3 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: XJA046-34
Usuari: san / Mostra: XJA046-3
Nom: FAIZA DIABA
Nom: FAIZA DIABA
Data: $27 / 07 / 12$ /
Experiment: s2pul : F.DIABA
xperiment: s2pui

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: XJA042-2-43
Nom: FAIZA DIABA
Data: 26/07/12/ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

```
\begin{tabular}{ll}
\(\stackrel{6}{\infty}\) & \\
ल゙ \\
m & \\
\hline
\end{tabular}
```

ハे

[^17]

[^18]

H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: xTAN565-40
Usuari: san / Mostra: xTAN565-40
Nom: FAIZA DIABA
Nom: FAIZA DIABA
Data: $12 / 07 / 12 /$ ope. : F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
dcl3 / Temp: Ambient / N.Reg: xxxxxxxx
Usuari: san / Mostra: JA-074-14
Nom: FAIZA DIABA
Experiment: s2pul
Pulse Sequence: s2pul

6

H1 / Mercury-400F
cdc13 / Temp: 25C / N. Reg: xxxxxxxxxx
Nom: FAIzA diaba
Data: $13 / 02 / 13 /$ ope.: F.DIABA
Experiment: s2pu1
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13/Temp: 25 C / Reg: xxxxxxxxxx
suari: san / Mostra: XJA112-2-73
Nom: fatza diaba
Data: $13 / 02 / 13 / 0$ ope
Experiment: s2pul
Pulse Sequence: s2pul

H1 / Mercury-400F
cdcc13 / Temp: 25C / N. Reg: xxxxxxxxx
Usuari: san / Mostra: XJA112-2-53
Usuari: san / Mostra: XJA112-2-5
Nom: FAIZA DIABA
Data: $13 / 02 / 13 /$ Ope.: F.DIABA
Nom: FAIZA DIABA \quad Data: $13 / 02 / 13$ / Ope.: F.DIABA
Experiment: s2pul

60
ppm

[^19]
cdc13 / Temp: 25C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: JA109-13
Nom: FAIZA DIABA Experiment: s2pul
pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: 25C / N. Reg: xxxxxxxxxx
suari: san / Mostra: JA109-13
Usuar1: san Mostra: JA109-13
Nom: FAIZA DIABA
Data: 08/02/13/Ope.: F.DIABA
Data: $08 / 02 / 13$ / ope.: F. FIABA
Experiment: s2pul
Pulse Sequence: s2pul

180
160
140
120
100
ppm

1 / Mercury-400F
cdc13 / Temp: 25C / N.Reg: Xxxxxxxxxx
Usuari:
Usuari: san / Mostra: XJA106-43
Nom: FAIZA DIABA
ata: $06 / 02 / 13 /$ Ope.: F.DIABA
Experiment: s2pu1
pulse Sequence: s2pul

H1 / Mercury-400F
cdc13/Temp: 25C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: XJA106-43
Nom: FAIZA DIABA
Data: $06 / 02 / 13 /$ Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

[^20]Pulse Sequence: s2pul

H1 / Mercury-400F
cdc13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: XJA106-79
Nom: faiza diaba
ata: $06 / 02 / 13$ / ope.: F.DIABA
Experiment: s2pu1
pulse Sequence: s2pul

H1 / Mercury-400F
cdc13/Temp: 25C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: XJA106-79
Nom: FAIZA DIABA
Data: $06 / 02 / 13$ / Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

Unusual rearrangement and dearomatization reactions in $\mathrm{Cu}(\mathrm{I})$-catalyzed atom transfer radical cyclizations from N -(1-phenylethyl)trichloroacetamides

Tetrahedron. 2013, 69, 4883-4889.

Chapter 3 - Copper-catalyzed ATRC of N-(α-methylbenzyl)trichloroacetamides)

Behavior of N-benzyl and N-(α-methyl)benzyl dichloromethylcarbamoyl radicals

Chem. Comm. 2012, 8799
Tetrahedron 1997, 1391

Scheme 3.1.
In our research group, azabicyclo[3.3.1]nonane derivatives were successfully prepared from trichloroacetamides using ATRC in the presence of CuCl as well as radical reductive conditions in the presence of AIBN, TBTH or TTMSS in refluxing benzene (Scheme 3.1).

Scheme 3.2.

Chapter 3 - Copper-catalyzed ATRC of N-(α-methylbenzyl)trichloroacetamides)

Nevertheless, when the reaction was achieved from N - $(\alpha-$ methylbenzyl)trichloroacetamides type 1 instead of benzyltrichloroacetamides I, under reductive conditions, besides the expected morphans \mathbf{V}, normorphans $\mathbf{V I}$ were also isolated (Scheme 3.1). VI derive from a 1,4-H transfer and subsequent 5 -exo-trig cyclization as it is detailed in Scheme 3.2. This process involving memory of chirality (MoC) with complete inversion of stereochemistry at the benzylic center is unprecedented (Scheme 3.2). ${ }^{1}$

Heterofacial mechanism for the formation of normorphan VI

1b

5-exo-trig

Scheme 3.2.
As a continuation of this work, we decided to explore ATRC in the presence of CuCl from trichloroacetamides type 1 to see if the behavior of these substrates under non-reductive conditions follows the same pattern observed before.

[^21]Table3.1.

Our investigation began by applying the conditions developed previously for the ATRC to $\mathbf{1}$ (55:45 mixture of epimers $\mathbf{1 a}$ and $\mathbf{1 b}$). The results obtained for the different conditions used are summarized in Table 3.1. First, treatment of 1 with $\mathrm{CuCl}(\mathrm{TPMA})(30 \%)$ in 1,2-DCE at $80^{\circ} \mathrm{C}$ for 4 hours provided a highly complex mixture of compounds. After an exhaustive and meticulous chromatographic purification, morphans $\mathbf{2}$ and $\mathbf{3}$ were isolated in 25% and normorphans $\mathbf{4}$ and $\mathbf{5}$ in 29% yield in 1.2:1 ratio for both series (entry 1). Additionally, a minor quantity of
dimeric 6 (17\%) was also obtained as a mixture of diastereomers. Thereafter, microwave activation was employed in order to decrease reaction time (entry 2); while still retaining equal amounts of reagents and performing the reaction in a shorter time (15 min). In spite of this, morphans and normorphans were recovered in lower yields, yet higher for the dimeric compounds 6. Interestingly, when $\mathrm{CH}_{3} \mathrm{CN}$ was used as a solvent and ligand for $\mathrm{Cu}(\mathrm{I})$, a new type of compound was formed (entry 3). Hence only morphan-type compounds and the rearranged 2,2-dichloro-2-phenylacetamide 7 were isolated, the latter being the major product of these reaction conditions. Finally, we applied our recently described ATRC reaction conditions for the synthesis of morphans, in which AIBN was used to ensure the regeneration of $\mathrm{Cu}(\mathrm{I})$ in the reaction medium. Thus, using $\mathrm{CuCI} / T M P A / A I B N$ in a molar ratio of $0.1 / 0.1 / 0.5$ with respect to trichloroacetamide and operating at $60{ }^{\circ} \mathrm{C}$ (entry 4), we obtained the best overall yield (64\%) for morphans and normorphans from 1, while the formation of dearomatized compounds diminished (entry 4). Finally, we carried out the reaction using airstable copper(II) complexes (Table 3.1., entry 5), which unlike copper(I)/TPMA complexes do not need to be managed in inert atmosphere. Moreover, AIBN not only reduces copper(II) to copper(I), but also acts as an oxygen scavenger. However, using the best reaction conditions found for 1 , replacing CuCl by CuCl_{2}, gave poor results, with a conversion of only 50%. Notably, non-dimeric compounds 8 (14\%) and 9 (5\%), arising from a dearomative cyclization process, were isolated. ${ }^{2}$ Additionally, less than 5\% of morphans and normorphans 2-5 were also formed, the starting material 1 being recovered in 48% yield.

An overview of all the results obtained in the different essays showed that as it was expected, reaction of this type of trichloroacetamides under radical conditions follows two main pathways depending on the reaction conditions, leading to morphans 2 and $\mathbf{3}$ and normorphans 4 and 5. However, these are not the only routes the dichlorocarbamoyl radical devises for this substrate in the presence of CuCl since it exhibits a complete different behavior when the two previously optimized conditions were applied onto the starting material mixture 1 (Scheme 3.3.). Employing the optimum radical cyclization conditions for the

[^22]synthesis of morphans led us to three types of products. The initially formed 1(carbamoyl)dichloromethyl radical with the amide Z conformation underwent cyclization upon the α, β-unsaturated nitrile and after chlorine atom transfer diastereoselectively gave 2. The configuration of the new stereogenic center bearing the transferred chlorine atom was in an axial disposition in the resulting rigid azabicyclic ring. In contrast, the same radical in its E conformation evolved through different reaction pathways. The quantitatively most important was a stereospecific process involving a 1,4-hydrogen transfer, which generated a benzylic radical that reacted with the unsaturated nitrile leading to the normorphan derivative, in which the stereogenic benzylic carbon underwent a configurational inversion. It is worth noting that this reaction pathway has never

Scheme 3.3.
been observed in radical reactions using N-(1-phenylethyl)trichloroacetamides other than the previous studies reported by our research group (Scheme 3.2.).

The stereochemistry of the compounds with the normorphan ring established that the radical $1,4-\mathrm{H}$ translocation and further cyclization occur with memory of chirality. Interestingly, Curran ${ }^{3}$ reported during this investigation an example of memory of chirality in rebound cyclizations of α-amide radicals with retention of configuration, initiated from a 1,5-hydrogen transfer from an α methine carboxamide to a vinyl radical (Scheme 3.4). In our case the pathway involves a memory of chirality in rebound cyclizations of benzyl radicals with inversion of configuration, initiated from a 1,4-hydrogen atom transfer from a benzylic methine hydrogen to a 1-(carbamoyl)dichloromethyl radical.

Rebound radical cyclization after 1,5-H migration with retention of configuration

Scheme 3.4.
A third reaction pathway appeared along with the standard radical reaction and the 1,4-hydrogen transfer that allowed the normorphan formation. Thus, a competitive reaction from the same radical intermediate that underwent the 1,4hydrogen translocation was the ipsocyclization on the benzene ring. Surprisingly, the cyclohexadienyl radical was not trapped by a chlorine atom, as occurred in compound 8, but evolved to the dimeric compounds 6 by a radical coupling. Although the stereochemistry of the diastereomeric mixture 6 could not be ascertained due to the difficulty in isolating pure samples of the isomeric compounds, the structure of $\mathbf{6}$ was established. The molecular formula of $\mathbf{6}$, $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}$ was deduced from high-resolution FABMS measurements of its ammonium molecular cluster ion (m / z 688.1774) and NMR data. As far as we know, there are no precedents for the formation of compounds such as 6, from a

[^23]radical cyclization upon a benzene ring with loss of aromaticity and later dimerization. ${ }^{4}$ Finally, the fourth structural type (7) formed from 1 in these radical conditions was only isolated in the reaction when using microwave irradiation and acetonitrile as the solvent. The 1,4-aryl migration reaction from carbon to carbon has been documented, ${ }^{5,6}$ although never previously observed in our studies on radicals from N-benzyltrichloroacetamides. As depicted in Scheme 3.3., the same radical intermediate formed in the spiroannulation process that gives the dimeric compounds 6 evolved through a 1,4-phenyl migration to an α-aminoethyl radical. This was probably trapped by a chlorine atom transfer, giving a 1chloroethylacetamide, which through an acyliminium salt and hydrolysis in the workup led to the acetamide 7 with concomitant loss of acetaldehyde.

[^24]
Unusual rearrangement and dearomatization reactions in $\mathrm{Cu}(\mathrm{I})$-catalyzed atom transfer radical cyclizations from N -(1-phenylethyl)trichloroacetamides.

Faïza Diaba, Juan A. Montiel, Josep Bonjoch. Tetrahedron 69 (2013) 4883-4889.

Unusual rearrangement and dearomatization reactions in $\mathrm{Cu}(\mathrm{I})$-catalyzed atom transfer radical cyclizations from N -(1-phenylethyl)trichloroacetamides

Faïza Diaba*, Juan A. Montiel, Josep Bonjoch*
Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain

A R T I C L E I N F O

Article history:

Received 28 January 2013
Received in revised form 8 April 2013
Accepted 12 April 2013
Available online 16 April 2013

Keywords:

Amides
ATRC
Memory of chirality
Nitrogen heterocycles
Radical reactions

Abstract

Atom transfer radical cyclization of N-(α-methyl)benzyl substituted trichloroacetamide upon α, β-unsaturated nitriles in compounds 1, using CuCl , trispyridylmethylamine (TPMA), and AIBN as a reducing agent, gives morphan derivatives ($\mathbf{2}$ and $\mathbf{3}$) and the unusual normorphans $\mathbf{4}$ and $\mathbf{5}$, as well as the unexpected azaspirodecanes $\mathbf{6}$. Stereospecific formation of normorphans involves memory of chirality in the cyclization step and azaspirodecanes are generated by a radical dearomative ipsocyclization followed by a radical dimerization.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Trichloroacetamides are carboradical precursors that have been applied in the synthesis of nitrogen-containing heterocycles embodying a lactam ring by intramolecular atom transfer ${ }^{1-4}$ and hydride reductive ${ }^{5-7}$ radical processes. The most frequently used catalysts for atom transfer radical cyclizations (ATRC) are $\mathrm{Cu}(\mathrm{I})^{2,8-10}$ and $\mathrm{Ru}(\mathrm{II})^{1,3,4,11,12}$ reagents with several ligand types, with far fewer reported examples of $\mathrm{Fe}-\mathrm{FeCl}_{3}{ }^{10 \mathrm{c}, 13}$ or $\mathrm{Ni}-\mathrm{AcOH} .{ }^{14}$ For radical reductive cyclizations, the $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ procedure is the most general, ${ }^{15}$ TTMSS also being used as the reducing agent. ${ }^{16,17}$

Recently, we have shown under several reaction conditions that $\mathrm{Cu}(\mathrm{I})$ is a useful catalyst for the synthesis of polyfunctionalized 2azabicyclo[3.3.1]nonanes ${ }^{18}$ starting from N -trichloroacetamides tethered with cyclohexenes (Scheme 1). ${ }^{19}$

As a continuation of this work, we were interested in exploring this ATRC process using trichloroacetamide 1 (a mixture of epimers 1a and 1b) as the starting material in which the N-benzyl substituent was replaced by an α-methylbenzyl substituent. In a previous study we found that the reaction of $\mathbf{1}$, using $\mathrm{Bu}_{3} \mathrm{SnH}$ as the promoter of a reductive cyclization process evolved unexpectedly, since besides the envisaged morphans II and III, normorphans IV

[^25]

Scheme 1. ATRC leading to 2-azabicyclo[3.3.1]nonane I.
and \mathbf{V} were also isolated (Scheme 2). ${ }^{20}$ To understand this formation of normorphan compounds from an unusual initial 1,4hydrogen transfer, the reaction was also studied from a theoretical point of view using density functional theory (DFT) methods. ${ }^{21}$

With the aim of gaining further insight into this curious mode of reactivity exhibited by N-(α-methylbenzyl)trichloro-acetamides, we decided to study the behavior of diastereomers $\mathbf{1}$ under the reaction conditions of $\mathrm{Cu}(\mathrm{I})$-tris(2-pyridylmethyl)amine (TPMA) and evaluate if the 1,4 -hydrogen transfer is also a competitive reaction pathway in the ATRC.

2. Results and discussion

We began our studies under $\mathrm{Cu}(\mathrm{I})$ radical-generating conditions with the reaction of $\mathbf{1}$ (55:45 mixture of epimers $\mathbf{1 a}$ and $\mathbf{1 b}$, respectively) ${ }^{22}$ using CuCl (30% catalyst) and TPMA (30\%) in

1a

1b

II

IV (X = H)

Scheme 2. Reductive radical cyclization of 1 (Ref. 20).
dichloroethane ($80^{\circ} \mathrm{C}, 4 \mathrm{~h}$) (Table 1, entry 1). The reaction mixture was highly complex, generating morphan, normorphan, and azaspirodecane rings (2-6), as depicted in Scheme 3. A careful chromatographic purification established that morphans 2 and $\mathbf{3}$ had been formed in 25% yield and normorphans $\mathbf{4}$ and $\mathbf{5}$ in 29\% yield in a 1.2:1 ratio in both series. Minor amounts of compounds were also obtained from a spiroannulation that led to dearomatized and dimeric compounds $\mathbf{6}$ as a diastereomeric mixture. The use of microwave irradiation shortened the reaction time to 15 min (entry 2), but resulted in worse yields of compounds 2-5, and only a slight increase in compounds $\mathbf{6}$ generated by radical cyclization upon the benzene ring. Interestingly, when $\mathrm{CH}_{3} \mathrm{CN}$ was used as a solvent and ligand for $\mathrm{Cu}(\mathrm{I})$, a new type of compound was formed (entry 3). Thus, only morphan-type compounds and the rearranged 2,2-dichloro-2-phenylacetamide 7 were isolated, the latter being the major product of these reaction conditions. Finally, we applied our recently described ATRC reaction conditions for the synthesis of morphans, ${ }^{20}$ in which AIBN was used to ensure the regeneration of $\mathrm{Cu}(\mathrm{I})$ in the reaction medium. ${ }^{23}$ Thus, using $\mathrm{CuCl} / \mathrm{TMPA} / \mathrm{AIBN}$ in a molar ratio of $0.1 / 0.1 / 0.5$ with respect to trichloroacetamide and operating at $60^{\circ} \mathrm{C}$ (entry 4), we obtained the best overall yield (64\%) for morphans and normorphans from 1, while the formation of dearomatized compounds diminished (Scheme 3). Finally, we carried out the reaction using air-stable copper(II) complexes (Table 1, entry 5), which unlike copper(I)/TPMA complexes do not need to be managed in inert atmosphere. Moreover, AIBN not only reduces copper(II) to copper(I), but also acts as an oxygen scavenger. However, using the best reaction conditions found for 1, replacing CuCl by CuCl_{2}, gave poor results, with a conversion of only 50%. Notably, non-dimeric compounds 8 (14\%) and 9 (5\%), arising from a dearomative cyclization process, were isolated (Fig. 1). Additionally, less than 5% of morphans and normorphans $\mathbf{2 - 5}$ were also formed, the starting material $\mathbf{1}$ being recovered in 48% yield. The most significant NMR data used for the structural elucidation of
morphans $\mathbf{2}$ and 3, and normorphans 4 and 5 are included in Figs 2 and 3 (see below).

An overview of all the processes from trichloroacetamide 1a is depicted in Scheme 4 (the same processes also occurred from the diastereomer $\mathbf{1 b}$, although the four types of compounds were obtained in a different ratio, as shown in Table 1). The ATRC from trichloroacetamides 1, like the reductive cyclization, led to the competitive generation of morphan (2-3) and normorphan compounds (4-5). The initially formed 1-(carbamoyl)dichloromethyl radical with the amide Z conformation underwent cyclization upon the α, β-unsaturated nitrile and after chlorine atom transfer diastereoselectively gave $\mathbf{2}$. The configuration of the new stereogenic center bearing the transferred chlorine atom was in an axial disposition in the resulting rigid azabicyclic ring.

In contrast, the same radical in its E conformation evolved through different reaction pathways. The quantitatively most important was a stereospecific process involving a 1,4-hydrogen transfer, ${ }^{20,24}$ which generated a benzylic radical that reacted with the unsaturated nitrile leading to the normorphan derivative, in which the stereogenic benzylic carbon underwent a configurational inversion. It is notable that this reaction pathway has never been observed in radical reactions using N-(1-phenylethyl)trichloroacetamides ${ }^{25,26}$ other than in our previous studies on related compounds. ${ }^{20,27}$ The stereochemistry of the compounds with the normorphan ring established that the radical $1,4-\mathrm{H}$ translocation and further cyclization occur with memory of chirality. Interestingly, Curran has recently reported an example of memory of chirality in rebound cyclizations of α-amide radicals with retention of configuration, initiated from a 1,5-hydrogen transfer from an α-methine carboxamide to a vinyl radical. ${ }^{28}$ In our case the pathway involves a memory of chirality in rebound cyclizations of benzyl radicals with inversion of configuration, initiated from a 1,4hydrogen atom transfer from a benzylic methine hydrogen to a 1(carbamoyl)dichloromethyl radical. Notably, in this ATRC protocol working at $60^{\circ} \mathrm{C}$ (Method D) compound $\mathbf{1 b}$ was more prone to giving the 1,4 -hydrogen translocation than $\mathbf{1 a}$, leading to normorphan 5, whereas at a higher temperature (Method A) 1a gave the normorphan compound $\mathbf{4}$ in a higher ratio but lower yield.

As an explanation of this memory of chirality, ${ }^{28,29}$ we assume that the radical intermediate arising from a 1,4 -hydrogen atom shift exhibits a high activation barrier for rotation around the $\mathrm{C}-\mathrm{N}$ single bond. ${ }^{30}$ Its absolute chirality is thus preserved during the course of the reaction, which involves a configuration inversion at $\mathrm{C}-7$ of the normorphans. Undoubtedly, the phenyl group also contributes to the geometric stabilization of the radical intermediate. ${ }^{31}$

To ensure that compound 4 was derived from the cyclization of 1a, with configuration inversion at the benzylic carbon, and was not ent-4, arising from cyclization of $\mathbf{1 b}$ with configuration retention, we decided to correlate trichloroderivative 4 with dechlorinated normorphan 10. The absolute configuration of $\mathbf{1 0}$ (IV in Scheme 2) was established some years ago^{20} by X-ray crystal structure analysis and the specific rotation value is known, $[\alpha]_{D}^{23}-66\left(c 3, \mathrm{CHCl}_{3}\right)$. Reduction of $\mathbf{4}$ with Zn^{32} gave nitrile 10, which unfortunately was contaminated with its epimer at $\mathrm{C}-2$, indicating that the reduction was not highly diastereoselective (Scheme 5). The NMR data of the

Table 1
CuCl -catalyzed cyclization of trichloroacetamides $\mathbf{1}^{\text {a }}$

Entry (method)	Reaction conditions ${ }^{\text {b,c }}$	2/3 ratio	4/5 ratio	6	7-9
1 (A)	CuCl (0.3) TPMA (0.3) DCE, $80{ }^{\circ} \mathrm{C}$	25\% (1.2:1)	29\% (1.2:1)	17\%	-
2 (B)	$\mathrm{CuCl}(0.3)$ TPMA (0.3) DCE, $\mu \mathrm{W} 80{ }^{\circ} \mathrm{C}$	19\% (2:1)	25\% (3:2)	24\%	-
3 (C)	$\mathrm{CuCl}(0.6) \mathrm{CH}_{3} \mathrm{CN}, \mu \mathrm{W} 80{ }^{\circ} \mathrm{C}$	15\% (1.5:1)	-		731%
4 (D)	$\mathrm{CuCl}(0.1)$ TPMA (0.1) AIBN (0.5) DCE, $60{ }^{\circ} \mathrm{C}$	25\% (1.1/1.0)	39\% (1:2)	10\%	-
5 (E)	CuCl_{2} (0.1) TPMA (0.1) AIBN (0.5) DCE, $60{ }^{\circ} \mathrm{C}$	<5\%	<5\%	-	$815 \% 95 \%$

[^26]

Scheme 3. $\mathrm{Cu}(\mathrm{I})$-catalyzed atom transfer cyclization reactions from trichloroacetamides $\mathbf{1}$. Yields refer to isolated compounds and the processes from $\mathbf{1 a}$ and $\mathbf{1 b}$ are considered separately.

Fig. 1. Compounds $\mathbf{8}$ and $\mathbf{9}$ isolated using CuCl_{2} as initial reagent.

2

3

Fig. 2. Key NMR data for stereochemical assignment of morphans 2 and 3.

Fig. 3. Key NMR data for stereochemical assignment of normorphans.
purified reaction mixture matched the published data of the two rotamers of $\mathbf{1 0}$ and showed a new set of signals attributable to compound 11.

Disappointingly, we were not able to obtain a pure sample of $\mathbf{1 0}$, nor the specific rotation for the synthesized 10. However, the specific rotation for the impure sample was $[\alpha] \mathrm{D}^{23}-55$ (c $1, \mathrm{CHCl}_{3}$) with a levorotatory character, as reported for $\mathbf{1 0}$. In conclusion, the precedents for this reaction type and the experimental results ${ }^{33}$ reported here support the postulated memory of chirality for the cyclization of trichloroacetamides 1 leading to normorphans, involving a configuration inversion at the radical carbon.

A third reaction pathway appeared along with the standard radical reaction and the 1,4-hydrogen transfer that allowed the normorphan formation. Thus, a competitive reaction from the same radical intermediate that underwent the 1,4-hydrogen translocation was the ipsocyclization on the benzene ring. ${ }^{34,35}$ Surprisingly, the cyclohexadienyl radical was not trapped by a chlorine atom, as occurred in compound $\mathbf{8}$ (Fig. 1), but evolved to the dimeric compounds $\mathbf{6}$ by a radical coupling. Although the stereochemistry of the diastereomeric mixture $\mathbf{6}$ could not be ascertained due to the difficulty in isolating pure samples of the isomeric compounds, the structure of $\mathbf{6}$ was established. The molecular formula of $\mathbf{6}$, $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}$ was deduced from high-resolution FABMS measurements of its ammonium molecular cluster ion (m / z 688.1774) and NMR data, which is discussed below. As far as we know, there are no precedents for the formation of compounds, such as $\mathbf{6}$ from a radical cyclization upon a benzene ring with loss of aromaticity and later dimerization. ${ }^{36}$

Finally, the fourth structural type (i.e., 7) formed from 1 in the radical conditions was only isolated in the reaction when using microwave irradiation and acetonitrile as the solvent. The 1,4 -aryl migration reaction from carbon to carbon has been documented, ${ }^{37,38}$ although never previously observed in our studies on radicals from N-benzyltrichloroacetamides. As depicted in Scheme 4, the same radical intermediate formed in the spiroannulation process that gives the dimeric compounds $\mathbf{6}$ evolved through a 1,4 -phenyl migration to an α-aminoethyl radical. This was probably trapped by a chlorine atom transfer, giving a 1 chloroethylacetamide, which through an acyliminium salt and hydrolysis in the workup led to the acetamide 7 with concomitant loss of acetaldehyde.

The spectroscopic data of morphans $\mathbf{2}$ and $\mathbf{3}$ are similar to those of the previously reported dechlorinated compounds at C-6 and C-4 (Table 2 for ${ }^{13} \mathrm{C}$ NMR data). Hence, the isomer showing H-8eq (δ 0.61) and $\mathrm{CH}_{3}(\delta 15.6)$ at high fields was assigned the absolute

1,4-aryl
migration \downarrow

*Cl atom transfer
*Hydrolysis via

6

Scheme 4. Overview of the different pathways of the radical dichloromethylcarbamoyl generated from $\mathbf{1 a}$ using $\mathrm{Cu}(\mathrm{I})$.

Scheme 5. Reduction of 4 leading to normorphan (-)-10.

Table 2
${ }^{13} \mathrm{C}$ NMR chemical shifts (δ) of morphans ${ }^{\text {a }}$

Compound	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	CH	CH $_{3}$	CN
$\mathbf{2}$	46.4	162.8	83.6	53.1	59.6	29.3	24.9	27.0	53.7	15.6	118.9
$\mathbf{3}$	46.4	163.3	83.7	53.3	59.6	29.6	26.8	26.6	54.2	17.0	118.8
II-Cl $^{\text {b }}$	46.7	165.9	57.7	31.3	35.7	20.2	29.3	33.8	52.3	15.7	120.7
III-Cl $^{\text {b }}$	46.6	166.3	57.7	31.6	36.1	20.5	31.2	33.7	53.1	17.1	120.6

${ }^{\text {a }}$ In $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$. Values assigned on the basis of COSY and HMQC experiments.
${ }^{\text {b }}$ Compounds II-Cl and III-Cl show the structure of II and III depicted in Scheme 2, but with an equatorial chlorine atom at C-4 and are described in Ref. 20.
configuration ($1 R, 5 R, 6 R$). When the isomer showed H-8eq ($\delta 1.90$) and CH_{3} (δ 17.0) at lower fields, the absolute configuration $(1 S, 5 S, 6 S)$ was assigned for the three stereogenic atoms in the carbocyclic ring. The stereochemistry at C-6 in compounds $\mathbf{2}$ and $\mathbf{3}$ (Fig. 2) was deduced from the chemical shift of H-8ax ($\delta 1.60$ and $\delta 2.04$, respectively), which appeared deshielded (ca. 0.7 ppm) with respect to the chemical shift found in the analogous dechlorinated compounds ($\delta 0.90$ and $\delta 1.42$). ${ }^{20,39}$ This deshielding anisotropic effect is due to the chlorine atom ${ }^{40}$ having a 1,3-diaxial relationship with H-8ax in both morphans. Moreover, the axial chlorine atom
also exerts a deshielding effect (ca. 0.5 ppm) on H-7ax, which has an antiplanar disposition compared with the analogous compounds lacking this heteroatom. The phenomenon was observed in both $\mathbf{2}$ ($\delta 2.01$) and 3 ($\delta 2.29$), compared with the values for the dechlorinated compounds in which H-7ax appears at $\delta 1.49$ and $\delta 1.82$, respectively. This stereochemical assignment agrees with mechanistic considerations, since the configuration at C-6 arose from the transfer of the chlorine atom from the less hindered face of the cyclohexane ring generated after the radical cyclization that locates the chlorine in an axial disposition.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra patterns of normorphans 4 and 5 , in which most of the signals are duplicated due to the presence of Z and E rotamers, ${ }^{41}$ resemble those of the previously reported normorphans lacking the chlorine atom at $\mathrm{C}-2$ (Table 3). Hence, isomer 4, showing chemical shifts $\delta_{\mathrm{H}} 2.31$ and $\delta_{\mathrm{C}} 22.1$ for the methyl group at C-7 (major Z rotamer), was assigned the absolute configuration

Table 3
${ }^{13} \mathrm{C}$ NMR chemical shifts (δ) of normorphans ${ }^{\text {a }}$

Compound	$\mathrm{C}-1$	$\mathrm{C}-2$	$\mathrm{C}-3$	$\mathrm{C}-4$	$\mathrm{C}-5$	$\mathrm{C}-7$	$\mathrm{C}-8$	CHCl_{2}	CO	$7-\mathrm{CH}_{3}$	CN
$\mathbf{4}$											

[^27]$(1 S, 2 R, 5 R, 7 S)$, while isomer $\mathbf{5}$, showing chemical shifts $\delta_{\mathrm{H}} 2.03$ and $\delta_{\mathrm{C}} 28.6$ for the methyl group at C-7 (major Z rotamer), was assigned the absolute configuration ($1 R, 2 S, 5 S, 7 S$). Again, the stereochemistry of the quaternary carbon with chlorine and cyano groups was assigned taking into account the ${ }^{1} \mathrm{H}$ chemical shift of the axial proton bearing a 1,3-diaxial relationship with the axial substituent at C-2. Thus, the H-4ax resonates at $\delta 1.90$ and 1.94 in compounds 4 and $\mathbf{5}$, respectively, in a deshielded chemical shift (ca. 0.3 ppm) with respect to the values reported for the dechlorinated normorphans (Fig. 3).

The NMR data for spiro dimeric compounds 6, each one being a mixture of epimers presumably at the spiro carbon atom, while not allowing a configurational assignment, did enable us to clearly identify the formation of spirocyclohexanediene derivatives. Additionally, the calculation of their dimeric structure was based on the HRMS data. The ${ }^{1} \mathrm{H}$ pattern of the olefinic signals and the chemical shift ($\delta \sim 3.1$) of allylic protons allowed the ground structure of the spirocyclohexanediene ring to be deduced. The counterpart of the five-membered lactam was inferred by the absorption at $1715 \mathrm{~cm}^{-1}$ in the IR spectra and the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the four carbons at $\delta 166.3$ (s), 89.3 (s), 53.5 (s), and 40.2 (d), as average values.

3. Conclusion

In summary, under the atom transfer reaction cyclization conditions, the radical reaction course from 1 followed three different pathways. One evolved as expected to morphans 2 and $\mathbf{3}$ through an ATRC. Another led to normorphans 3 and $\mathbf{4}$ through an initial 1,4hydrogen transfer and rebound cyclization with memory of chirality followed by chorine trapping of the generated radical. In a third pathway, the initially formed 1-(carbamoyl)dichloromethyl radical underwent ipsocyclization upon the benzene ring to give a cyclohexadienyl radical. This in turn evolved to $\mathbf{6}$ as a diastereoisomeric mixture via radical coupling dimerization or, in specific reaction conditions, to the dichloroacetamide $\mathbf{7}$, via a 1,4 aryl radical migration.

4. Experimental section

4.1. General procedures

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in a CDCl_{3} solution at 400 MHz and 100 MHz , respectively. In addition, 2D NMR COSY and HMQC experiments were performed on a Varian instrument. Chemical shifts are reported as δ values (ppm) relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. Infrared spectra were recorded on a Nicolet 205 FT-IR spectrophotometer. HRMS were determined on a Agilent LC/ MSD-TOF apparatus. Optical rotations were taken on a Per-kin-Elmer 241 polarimeter with a $1 \mathrm{~mL}(L=1 \mathrm{dm})$ cell TLC was performed on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$, Merck). The spots were located by UV light and a $1 \% \mathrm{KMnO}_{4}$ or $1.5 \% \mathrm{~K}_{2} \mathrm{PtCl}_{6}$ aqueous solution. Chromatography refers to flash column chromatography and was performed on SiO_{2} (silica gel 60, SDS, 230-400 mesh). TPMA refers to tris(2-pyridylmethyl)amine. Unless noted, the reactions were carried out in argon atmosphere.

4.2. Cyclization reaction procedure

4.2.1. Method A. To a suspension of $\mathrm{CuCl}(9.2 \mathrm{mg}, 0.093 \mathrm{mmol} 30 \%$) in 1,2-dichloroethane (2 mL) were successively added TPMA ($27 \mathrm{mg}, 0.093 \mathrm{mmol}$) and nitrile $\mathbf{1}$ (55:45 mixture of epimers $\mathbf{1 a}$ and $\mathbf{1 b}, 115 \mathrm{mg}, 0.31 \mathrm{mmol}$), and the mixture was heated at $80^{\circ} \mathrm{C}$ for 4 h in a sealed tube. The solution was allowed to reach rt, water (2 mL) was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated and the residue purified by chromatography (hexane/

EtOAc 80:20 to hexane/EtOAc 50:50) to yield 62 mg of a $1: 1.15$ mixture of morphans 2 and 3 and normorphans 4-5, respectively, (54% overall yield) and 18 mg (17\%) of dimeric derivatives 6. The individual yields with respect to the epimeric ratio of the starting material 1 were: normorphan 4 (22\%), morphan 2 (25\%), morphan 3 (25\%), and normorphan 5 (26\%).
4.2.2. Method B. In a 10 mL vessel were placed nitrile $\mathbf{1}(100 \mathrm{mg}$, 0.27 mmol), $\mathrm{CuCl}(8 \mathrm{mg}, 0.081 \mathrm{mmol}, 30 \%$), TPMA (23 mg , 0.080 mmol), and 1,2 -dichloroethane (1 mL). The mixture was stirred and heated to $80^{\circ} \mathrm{C}$ using microwave irradiation for 15 min . After cooling to rt, water (1 mL) was added and the mixture was stirred for an additional hour and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated and purified by chromatography (hexane/EtOAc $80: 20$ to hexane/EtOAc 50:50) to give 44 mg of a $1: 1.25$ mixture of morphans (19\%) and normorphans (25\%) and 22 mg of compounds 6 (24\%).
4.2.3. Method C. In a 10 mL vessel were placed nitrile $\mathbf{1}$ (100 mg , 0.27 mmol), $\mathrm{CuCl}(16 \mathrm{mg}, 0.161 \mathrm{mmol}, 60 \%$), and acetonitrile (1 mL). The mixture was stirred and heated to $80^{\circ} \mathrm{C}$ using microwave irradiation for 15 min . After cooling to rt , water (1 mL) was added, the mixture was stirred for an additional hour and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated, and purified by chromatography (hexane/AcOEt 85:15 to hexane/EtOAc 70:30) to give 33 mg of recovered starting material $\mathbf{1}, 15 \mathrm{mg}(15 \%)$ of a $1.5: 1$ mixture of morphans $\mathbf{2}$ and $\mathbf{3}$ and 26 mg (31\%) of $\mathbf{7}$.
4.2.4. Method D (method of choice). To a suspension of CuCl ($2.7 \mathrm{mg}, 0.027 \mathrm{mmol} 10 \%$) in 1,2-dichloroethane (2 mL) were successively added TPMA ($8 \mathrm{mg}, 0.027 \mathrm{mmol}$), nitrile 1 (100 mg , 0.27 mmol), AIBN ($22 \mathrm{mg}, 0.13 \mathrm{mmol} 50 \%$) and the mixture was heated at $60^{\circ} \mathrm{C}$ for 2 days in a sealed tube. The solution was then allowed to reach rt, stirred with 2 mL of water for an additional hour and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated and the residue purified by chromatography (hexane/ EtOAc 80:20 to hexane/EtOAc 50:50) to yield 70 mg of a $45: 55$ mixture of morphans and normorphans and 9 mg (10\%) of dimeric derivatives 6 .

The separation of the different morphans and normorphans was achieved using an additional chromatography (cyclohexane/EtOAc 90:10). Normorphan 4 ($15 \mathrm{mg}, 26 \%$), morphan 2 ($14 \mathrm{mg}, 25 \%$), morphan 3 ($12 \mathrm{mg}, 25 \%$), and finally normorphan 5 ($23 \mathrm{mg}, 52 \%$) were sequentially eluted. Overall yield of the process was 64% (2:3 ratio morphan/normorphan compounds).
4.2.5. Method E. To a suspension of $\mathrm{CuCl}_{2}(4.6 \mathrm{mg}, 0.034 \mathrm{mmol} 10 \%$) in 1,2-dichloroethane (2 mL) were successively added TPMA (10 mg , 0.037 mmol), nitrile $1(129 \mathrm{mg}, 0.34 \mathrm{mmol})$, and $\operatorname{AIBN}(29 \mathrm{mg}$, $0.17 \mathrm{mmol} 50 \%$), and the mixture was heated at $60^{\circ} \mathrm{C}$ for 2 days under air in a sealed tube. The solution was allowed to reach rt, stirred with 1 mL of water for an additional hour and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were dried, concentrated and the residue purified by chromatography (hexane/EtOAc 80:20 to hexane/EtOAc $50: 50$) to yield 62 mg of $\mathbf{1}(48 \%), 19 \mathrm{mg}(15 \%)$ of $\mathbf{8}$, and $7 \mathrm{mg}(5 \%)$ of $\mathbf{9}$.

4.3. Spectral data for compounds $2-7$

4.3.1. (1R,5R,6R)-4,4,6-Trichloro-2-[(S)-1-phenylethyl]-3-oxo-2-azabicyclo[3.3.1]nonane-6-carbonitrile (2). [$\alpha]_{\mathrm{D}}^{23}-63$ (c 0.6, CHCl_{3}); IR (NaCl , neat): 3059, 3030, 2926, 2855, 2243, 2216, 1670, 1602, 1494, 1446, 1369, 1297, 1270, 1206, 1159, 1095, 990, 826, 805, 779, $735,701,635,612,573 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.61(\mathrm{dm}$, $1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{eq}$), 1.60 (m, 1H, H-8ax), 1.61 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.58(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=3.2,1.2 \mathrm{~Hz}, \mathrm{H}-9), 3.34(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-5), 3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 5.94$ (q, 1H, J=6.8 Hz, CH), 7.30-7.42 (m, 5H,
$\mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 15.6\left(\mathrm{CH}_{3}\right), 24.9(\mathrm{C}-8), 27.0(\mathrm{C}-9)$, 29.4 (C-7), 46.5 (C-1), 53.1 (C-5), 53.7 (CH), 59.6 (C-6), 83.6 (C-4), 118.9 (CN), 127.8, 128.6, 128.9 (Ar), 138.7 (ipso-C), 162.8 (C-3). HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O} 371.0479\left(\mathrm{M}^{+}+1\right)$. Found 371.0478.
4.3.2. (1S,5S,6S)-4,4,6-Trichloro-2-[(S)-1-phenylethyl]-3-oxo-2-azabicyclo[3.3.1]nonane-6-carbonitrile (3). IR (NaCl , neat): 3058, 2919, 2850, 2216, 1671, 1495, 1435, 1368, 1296, 1269, 1204, 1160, 990, 824, 733, 699, 632, $575 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.64\left(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.90(\mathrm{dm}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{eq}), 2.04$ (m, 1H, H-8ax), 2.29 (m, 2H, H-7), 2.33 (dm, 1H, J=14.8 Hz, H-9), 2.43 (dt, 1H, J=14.8, $3.2 \mathrm{~Hz}, \mathrm{H}-9$), 3.34 (br s, 2H, H-1 and H-5), 5.95 $(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}), 7.30-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta 17.1\left(\mathrm{CH}_{3}\right), 26.6(\mathrm{C}-9), 26.8(\mathrm{C}-8), 29.6(\mathrm{C}-7), 46.4(\mathrm{C}-1)$, 53.3 (C-5), 54.2 (CH), 59.6 (C-6), 83.7 (C-4), 118.8 (CN), 127.2, 128.3, 129.0 (Ar), 138.7 (ipso-C), 163.3 (C-3). HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O} 371.0479\left(\mathrm{M}^{+}+1\right)$. Found 371.0490.
4.3.3. (1S,2R,5R,7S)-2-Chloro-6-(1,1-dichloroacetyl)-7-phenyl-7-methyl-6-azabicyclo[3.2.1]octane-2-carbonitrile (4). [$\alpha]_{\mathrm{D}}^{23}-46$ (c 1.0, CHCl_{3}); IR (NaCl , neat): 3058, 3004, 2961, 2244, 1678, 1494, 1465, 1446, 1399, 1265, 1243, 1210, 1175, 1057, 844, 808, 733, 701, 664, $549 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), 8: 2$ mixture of Z / E rotamers: Major rotamer (Z) $\delta 1.91$ (m, 1H, H-4ax), 2.05 (m, 2H, H-8 and H$4 \mathrm{eq}), 2.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46(\mathrm{dd}, 1 \mathrm{H}$, $J=15.6,5.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}), 2.70$ (ddd, $1 \mathrm{H}, J=15.6,12.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3ax), 2.79 (br s, 1H, H-1), 4.48 (t, 1H, $J=5.2 \mathrm{~Hz}, \mathrm{H}-5$), 6.25 (s, 1H, CHCl_{2}), 7.15 (dm, $J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.25-7.38$ (m, 4H, ArH). Minor rotamer (E) 1.88 (m, 2H, H-4ax and H-8), $2.17(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, \mathrm{H}-8)$, $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$ and $\mathrm{H}-4 \mathrm{eq}), 2.58$ (ddd, $J=15.6$, 12, $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 2.79 (br s, 1H, H-1), 4.68 (t, $1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{H}-$ 5), $5.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 7.20-7.47(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz): Major rotamer $\delta 22.1\left(\mathrm{CH}_{3}\right)$, $27.7(\mathrm{C}-4), 29.7(\mathrm{C}-8), 32.9$ (C-3), 55.8 (C-5), 55.9 (C-1), 58.1 (C-2), $65.2\left(\mathrm{CHCl}_{2}\right), 72.7$ (C-7), 119.5 (CN), 125.0, 127.4, 128.6 (Ar), 142.6 (ipso-C), 161.5 (CO). Minor rotamer $\delta 24.6(\mathrm{C}-4), 25.0\left(\mathrm{CH}_{3}\right), 28.5(\mathrm{C}-8), 33.5(\mathrm{C}-3), 57.7(\mathrm{C}-5)$, 58.3 (C-1 and C-2), 64.5 (CHCl_{2}), 70.6 (C-7), 119.9 (CN), 125.2, 128.5, 129.3 (Ar), 143.5 (ipso-C), 164.5 (CO). HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O} 371.0479\left(\mathrm{M}^{+}+1\right)$. Found 371.0476 .
4.3.4. (1R,2S,5S,7S)-2-Chloro-6-(1,1-dichloroacetyl)-7-phenyl-7-methyl-6-azabicyclo[3.2.1]octane-2-carbonitrile (5). [$\alpha]_{D}^{23}-51$ (c 1.0, CHCl_{3}); IR (NaCl , neat): 3058, 3026, 2999, 2950, 2217, 1678, 1496, 1446, 1396, 1266, 1243, 1212, 1071, 10,027, 811, 764, 734, 703, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), 7: 3$ mixture of $Z \mid E$ rotamers: Major rotamer (Z) $\delta 1.94$ (tdd, $1 \mathrm{H}, J=12.4,6,1.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{ax}$), 2.03 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.12 (dd, $J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$), 2.25 (dm, 1 H , $J=12.4 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{eq}$), 2.53 and 2.61 ($2 \mathrm{~d}, 2 \mathrm{H}, J=12.8, \mathrm{H}-8$), 2.73 (ddd, $1 \mathrm{H}, J=15.6,12.4,6.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}), 2.91$ (br s, 1H, H-1), 4.62 (t, 1H, $J=5.2 \mathrm{~Hz}, \mathrm{H}-5), 6.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 7.15(\mathrm{dm}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArH})$, 7.30-7.46 (m, 4H, ArH). Minor rotamer (E) $\delta 1.88$ (tdd, $1 \mathrm{H}, J=13,6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}$), 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.13 (m, 1H, H-3eq), 2.33 (m, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-8\right), 2.61$ (m, 1H, H-3ax), 2.91 (br s, 1H, $\mathrm{H}-1), 4.83(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{H}-5), 5.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 7.30-7.59(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): Major rotamer $\delta 27.7$ (C-4), $28.6\left(\mathrm{CH}_{3}\right), 31.9(\mathrm{C}-8), 32.2(\mathrm{C}-3), 56.2(\mathrm{C}-5), 56.8(\mathrm{C}-1), 59.1(\mathrm{C}-2)$, $66.1\left(\mathrm{CHCl}_{2}\right), 72.3$ (C-7), 117.2 (CN), 126.3, 127.7, 128.2, 128.8, 129.1 ($\mathrm{Ar}-\mathrm{CH}$), 135.7 (ipso-C), 161.8 (CO). Minor rotamer $\delta 24.6(\mathrm{C}-4), 30.9$ (C-8), $32.6\left(\mathrm{CH}_{3}\right), 32.6(\mathrm{C}-3), 57.2(\mathrm{C}-5), 59.1(\mathrm{C}-2), 59.8(\mathrm{C}-1), 64.8$ (CHCl_{2}), 70.3 (C-7), 116.9 (CN), 125.4, 128.4, 128.9, 129.8, 130.6 ($\mathrm{Ar}-\mathrm{CH}$), 136.7 (ipso-C), 164.9 (CO). HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O} 371.0479\left(\mathrm{M}^{+}+1\right)$. Found 371.0485.
4.3.5. 4,4'-(4,4,4', 4'-Tetrachloro-1,1'-dimethyl-3,3'-dioxo-[8,8'-bi2,2'-diazaspiro[4.5]decane]-6,6',9,9'-tetraene-2,2'-diyl)bis(cyclohex-1-
enecarbonitrile) (6). IR (NaCl , neat): 3034, 2976, 2939, 2251, 2216, 1716, 1671, 1640, 1431, 1371, 1310, 1223, 1172, 1087, 980, 910, 857, $732,693,647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.16\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.88(\mathrm{br}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 8 \mathrm{H}), 2.84$ and $3.04\left(2 \mathrm{~m}, 1 \mathrm{H}\right.$ each, $\left.\mathrm{CH}_{2}\right), 3.10$ and 3.15 ($2 \mathrm{br} \mathrm{s}, 1 \mathrm{H}$ each, CH), 3.57 (br s, $2 \mathrm{H}, \mathrm{CHN}$), 3.64 (m, 2 H , CHMe), $5.52(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}), 5.80-6.20(\mathrm{~m}, 6 \mathrm{H},=\mathrm{CH}), 6.58(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.2,14.4\left(\mathrm{CH}_{3}\right), 24.1,25.3,27.1$, 27.2, 27.9, $28.9\left(\mathrm{CH}_{2}\right), 40.0,40.3,40.5(\mathrm{CH}), 49.4,49.5(\mathrm{CH}), 53.4$, 53.5 (C), 59.5, 59.6, 59.7, 59.8 (CHMe), 89.2, 89.7 (C), 112.1, 112.2 (C), 118.7, 118.8 (CN), 123.7, 123.9, 124.0, 124.3 (=CH), 131.5, 132.4, 132.6, 133.2, 133.6 ($=\mathrm{CH}$), 142.4, 142.6, 142.7 ($=\mathrm{CH}$), 166.2, 166.3, 166.4 (CO). HRMS (ESI-TOF): calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{~N}_{5} \mathrm{O}_{4} 688.1774$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$. Found 688.1779.
4.3.6. 2,2-Dichloro-N-(4-cycanocyclohex-3-en-1-yl)-2-phenylacetamide (7). IR (NaCl, neat): 3331, 2924, 2851, 2215, 1681, 1517, 1446, 1315, 1265, 1195, 1086, 888, 827, 727, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.77(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}$, $2 \mathrm{H}), 2.69$ (dm, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}), 7.42(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 25.1\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 44.9(\mathrm{CH}), 88.0\left(\mathrm{CCl}_{2}\right)$, 112.6 (C), 118.6 (CN), 126.5, 128.5, 130.0 (Ar-CH), 139.1 (ipso-C), 141.6 (CH), 165.2 ($\mathrm{C}=\mathrm{O}$). HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ $309.0556\left(\mathrm{M}^{+}+1\right)$. Found 309.0555.
4.3.7. 4-((S)-4,4,8-Trichloro-1-methyl-3-oxo-2-azaspiro[4.5] deca-6,9-dien-2-yl)cyclohex-1-enecarbonitrile (8). IR (NaCl , neat): 3047, 2926, 2852, 2215, 1719, 1639, 1428,1370,1309,1222,1188, 1172,1086, $979,924,855,835,797,730,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta 1.13$ and $1.15\left(2 \mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.89(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 4 \mathrm{H}), 2.89$ and $3.07(2 \mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{q}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.00(\mathrm{tt}, 1 \mathrm{H}$, $J=3.6,1.2 \mathrm{~Hz}$), 5.66 and 5.69 (2ddd, $1 \mathrm{H}, J=10.4,2.4,1.2 \mathrm{~Hz}), 6.04(\mathrm{dm}$, $1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 6.27(\mathrm{dm}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 6.35(\mathrm{dm}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz})$, $6.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.1$ and $14.2\left(\mathrm{CH}_{3}\right), 24.1$ and $25.4\left(\mathrm{CH}_{2}\right), 27.2$ and $27.3\left(\mathrm{CH}_{2}\right), 27.9$ and $28.9\left(\mathrm{CH}_{2}\right), 49.2$ and $49.5(\mathrm{CH}), 53.2(\mathrm{C}), 59.1$ and $59.2(\mathrm{CH}), 87.8\left(\mathrm{CCl}_{2}\right), 112.1$ and $112.2(=$ C), $118.7(\mathrm{CN}), 125.8(=\mathrm{CH}), 126.3(=\mathrm{CH}), 130.5(=\mathrm{CH}), 132.2(=\mathrm{CH})$, 142.3 and $142.5(=\mathrm{CH})$, 166.1 (CO). HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O} 371.0479\left(\mathrm{M}^{+}+1\right)$. Found 371.0478.
4.3.8. 4-((S)-4,4-Dichloro-1-methyl-3,8-dioxo-2-azaspiro[4.5] deca-6,9-dien-2-yl)cyclohex-1-enecarbonitrile (9). IR (NaCl , neat): 3058, 2936, 2853, 2215, 1722, 1668, 1633, 1434, 1371, 1319, 1263, 1219, 1172, 1124, 1080, 1031, 980, 924, 871, 847, 734, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.20$ and $1.21\left(2 \mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.82(\mathrm{~m}$, $1 \mathrm{H}), 2.44(\mathrm{~m}, 4 \mathrm{H}), 2.89$ and $3.11(2 \mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{q}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 6.54(\mathrm{dt}, 1 \mathrm{H}, J=10.4,1.6 \mathrm{~Hz}), 6.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.60(\mathrm{dd}, 1 \mathrm{H}$, $J=10.4,1.6 \mathrm{~Hz}$), 6.67 and 6.68 (ddd, $1 \mathrm{H}, J=10.4,3.2 \mathrm{~Hz}$), 7.05 (ddd, $1 \mathrm{H}, J=10.4,3.2,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.3\left(\mathrm{CH}_{3}\right)$, 24.0 and $25.5\left(\mathrm{CH}_{2}\right), 27.1$ and $27.3\left(\mathrm{CH}_{2}\right), 27.8$ and $29.0\left(\mathrm{CH}_{2}\right), 49.9$ $(\mathrm{CH}), 55.9(\mathrm{C}), 57.8$ and $57.9(\mathrm{CH}), 86.6\left(\mathrm{CCl}_{2}\right), 112.3(=\mathrm{C}), 118.5(\mathrm{CN})$, $132.7(=\mathrm{CH})$, $134.3(=\mathrm{CH}), 142.0(=\mathrm{CH})$, 142.1 and $142.2(=\mathrm{CH})$, 142.2 and $142.4(=\mathrm{CH}), 165.3$ (CO), 184.1 (CO). HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 351.0661\left(\mathrm{M}^{+}+1\right)$. Found 351.0650.

4.4. (1R,2S,5R,7S)-6-Acetyl-7-methyl-7-phenyl-6-azabicyclo [3.2.1]octane-2-carbonitrile (10)

To a solution of $4(27 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ were added at $0^{\circ}{ }^{\circ} \mathrm{NH}_{4} \mathrm{Cl}(23 \mathrm{mg}, 0.43 \mathrm{mmol})$ followed by $\mathrm{Zn}(47.5 \mathrm{mg}$, 0.73 mmol) portionwise. The mixture was allowed to reach rt, stirred for a further 2 h , filtered on a Celite pad, and concentrated. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting solution was washed with brine, and dried. Purification by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ AcOEt $90: 10$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 80: 20\right)$ gave $14 \mathrm{mg}(72 \%)$ of
dehalogenated normorphan $\mathbf{9}^{20}$ and its epimer $\mathbf{1 0}$ as a minor compound.

Acknowledgements

This research was supported by the Ministry of Economy and Competitiveness (MINECO, Spain) through project CTQ201014846/BQU.

Supplementary data

Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds. Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.tet.2013.04.042.

References and notes

1. Nagashima, H.; Wakamatsu, H.; Ozaki, N.; Ishii, T.; Watanabe, M.; Tajima, T.; Itoh, K. J. Org. Chem. 1992, 57, 1682-1689.
2. Iwamatsu, S.; Kondo, H.; Matsubara, K.; Nakashima, H. Tetrahedron 1999, 55, 1687-1706.
3. Seigal, B. A.; Fajardo, C.; Snapper, M. L. J. Am. Chem. Soc. 2005, 127, 16329-16332.
4. McGonagle, F. I.; Brown, L.; Cooke, A.; Sutherland, A. Org. Biomol. Chem. 2010, 8, 3418-3425.
5. Goodall, K.; Parsons, A. F. Tetrahedron 1996, 52, 6739-6758.
6. Quirante, J.; Escolano, C.; Massot, M.; Bonjoch, J. Tetrahedron 1997, 53, 1391-1402.
7. Vila, X.; Quirante, J.; Paloma, L.; Bonjoch, J. Tetrahedron Lett. 2004, 45, 4661-4664.
8. Clark, A. J. Chem. Soc. Rev. 2002, 31, 1-11.
9. (a) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087-1097; (b) Eckenhoff, W. T.; Pintauer, T. Catal. Rev. Sci. Eng. 2010, 52, 1-59; (c) Pintauer, T. Eur. J. Inorg. Chem. 2010, 2449-2460.
10. (a) Bregoli, M.; Felluga, F.; Frenna, V.; Ghelfi, F.; Pagnoni, U. M.; Parsons, A. F.; Petrillo, G.; Spinelli, D. Synthesis 2011, 1267-1278; (b) Casolari, R.; Felluga, F.; Frenna, V.; Ghelfi, F.; Pagnoni, U. M.; Parsons, A. F.; Spinelli, D. Tetrahedron 2011, 67, 408-416; (c) Benedetti, M.; Forti, L.; Ghelfi, G.; Pagnoni, U. M.; Onzoni, R. Tetrahedron 1997, 53, 14031-14042.
11. Edlin, C. D.; Faulkner, J.; Quayle, P. Tetrahedron Lett. 2006, 47, 1145-1151.
12. Thommes, K.; Fernéndez-Zúmel, M. A.; Buron, C.; Godinat, A.; Scopelliti, R.; Severin, K. Eur. J. Org. Chem. 2011, 249-255.
13. Tseng, C. K.; Teach, E. G.; Simons, R. W. Synth. Commun. 1984, 1027-1031.
14. Cassayre, J.; Quiclet-Sire, B.; Saunier, J. B.; Zard, S. Z. Tetrahedron Lett. 1998, 39, 8995-8998.
15. Quirante, J.; Escolano, C.; Merino, A.; Bonjoch, J. J. Org. Chem. 1998, 63, 968-976.
16. Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. J. Chem. Soc., Perkin Trans. 1 1999, 1157-1162.
17. Gandon, L. A.; Russell, A. G.; Güveli, T.; Brodwolf, A. E.; Kariuki, B. M.; Spencer, N.; Snaith, J. S. J. Org. Chem. 2006, 71, 5198-5207.
18. Bonjoch, J.; Diaba, F.; Bradshaw, B. Synthesis 2011, 993-1018.
19. Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-Molina, J. M.; Pérez, P. J.; Belderrain, T. R. Chem. Commun. 2012, 8799-8801.
20. Quirante, J.; Diaba, F.; Vila, X.; Bonjoch, J.; Lago, E.; Molins, E. C. R. Chim. 2001, 4, 513-521.
21. Marin, M.-L.; Zaragoza, R. J.; Miranda, M. A.; Diaba, F.; Bonjoch, J. Org. Biomol. Chem. 2011, 9, 3180-3187.
22. Due to the troublesome separation of enantiopure epimers $\mathbf{1 a}$ and $\mathbf{1 b}$, we decided to carry out the studies with the epimeric mixture since the reaction products were easier to separate.
23. Radicals formed from the decomposition of the free radical initiator $2,2^{\prime}$-azobisisobutyronitrile (AIBN) at $60^{\circ} \mathrm{C}$ continuously regenerate the catalytically active lower oxidation state copper complex (activator) by the abstraction of a halogen atom from the higher oxidation state complex (deactivator), see Ref. 9.
24. For the rare 1,4-hydrogen atom transfer in radical processes, see: (a) Journet, M.; Malacria, M. Tetrahedron Lett. 1992, 33, 1893-1896; (b) Gulea, M.; Lopez-Romero, J. M.; Fensterbak, L.; Malacria, M. Org. Lett. 2000, 2, 2591-2594; (c) Cassayre, J.; Zard, S. Z. J. Organomet. Chem. 2001, 624, 316-326.
25. Ishibashi, H.; Kameoka, C.; Kodama, K.; Kawanami, H.; Hamada, M.; Ikeda, M. Tetrahedron 1997, 53, 9611-9622.
26. Rodríguez-Soria, V.; Quintero, L.; Sartillo-Piscil, F. Tetrahedron 2008, 64, 2750-2754.
27. Quirante, J.; Torra, M.; Diaba, F.; Escolano, C.; Bonjoch, J. Tetrahedron: Asymmetry 1999, 10, 2339-2410.
28. Sasmal, A.; Taniguchi, T.; Wipf, P.; Curran, D. P. Can. J. Chem. 2013, 90, 1-5.
29. (a) Buckmelter, A. J.; Kim, A. I.; Rychnovsky, S. D. J. Am. Chem. Soc. 2000, 122, 9386-9390; (b) Griesbeck, A. G.; Kramer, W.; Lex, J. Angew. Chem., Int. Ed. 2001, 40, 577-579.
30. (a) Bordwell, F. G.; Lynch, T. Y. J. Am. Chem. Soc. 1989, 111, 7558-7562; (b) Renaud, P.; Giraud, L. Synthesis 1996, 913-926; (c) Welle, F. M.; Beckhaus, H.-D.; Rüchardt, C. J. Org. Chem. 1997, 62, 552-558.
31. Autrey, S. T.; Alnajjar, M. S.; Nelson, D. A.; Franz, J. A. J. Org. Chem. 1991, 56, 2197-2202.
32. Cid, M. M.; Pombo-Villar, E. Helv. Chim. Acta 1993, 76, 1591-1607.
33. Additionally, we carried out a reaction with a sample composed mainly of $\mathbf{1 b}$, using $\mathrm{CuCl}(30 \mathrm{~mol} \%)$, TPMA ($30 \mathrm{~mol} \%$) in DCE, under microwave irradiation for 15 min . The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude showed the signals of normorphan 5.
34. Radical spirocyclization upon benzyl derivatives (i.e., lacking the methyl group at the benzylic position) from trichloroacetamides evolves through a cyclohexanedienyl radical trapping with a chlorine atom: Diaba, F.; Montiel, J. A.; Martínez-Laporta, A.; Bonjoch, J. Tetrahedron Lett. 2013, 54, 2619-2622.
35. For a related reaction upon an indole ring leading to spiroindolines, see: (a) Stevens, C. V.; Van Meenem, E.; Eeckhout, Y.; Vanderhoydonck, B.; Hooghe, W. Chem. Commun. 2005, 4827-4829; (b) Van der Jeught, S.; De Vos, N.; Masschelein, K.; Ghiviriga, I.; Stevens, C. V. Eur. J. Org. Chem. 2010, 5444-5453.
36. A related dearomatization followed by a dimerization process of cyclohexadienyl radicals was observed in a classical study of the decomposition of aryl diazonium salts using copper: Hey, D. H.; Rees, C. W.; Todd, A. R. J. Chem. Soc. C 1967, 1518-1525.
37. (a) Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649-9667; (b) Robertson, J.; Palframan, M. J.; Shea, S. A.; Tchabanenko, K.; Unsworth, W. P.; Winters, C. Tetrahedron 2008, 64, 11896-11907.
38. For 1,4 -phenyl radical transfer starting from haloacetamides or related compounds, see: (a) Ishibashi, H.; Nakamura, N.; Ito, K.; Kitayama, S.; Ikeda, M. Heterocycles 1990, 31, 1781-1784; (b) Clark, A. J.; Coles, S. R.; Collis, A.; Debure, T.; Guy, C.; Murphy, N. P.; Wilson, P. Tetrahedron Lett. 2009, 50, 5609-5612; (c) Fuentes, L.; Quintero, L.; Cordero-Vargas, A.; Eustaquio, C.; Terán, J. L.; Sartillo-Piscil, F. Tetrahedron Lett. 2011, 52, 3630-3632; (d) Sandoval-Lira, J.; Hernández-Pérez, J. M.; Sartillo-Piscil, F. Tetrahedron Lett. 2012, 53, 6689-6693.
39. Quirante, J.; Escolano, C.; Diaba, F.; Torra, M.; Bonjoch, J. Magn. Reson. Chem. 2000, 38, 891-893.
40. Abraham, R. J.; Warne, M. A.; Griffiths, L. J. Chem. Soc., Perkin Trans. 2 1997, 881-886.
41. For recent NMR studies on Z and E rotamers in bridged azapolycyclic compounds, see: Sulima, A.; Cheng, K.; Jacobson, A. E.; Rice, K. C.; Gawrisch, K.; Lee, Y.-S. Magn. Reson. Chem. 2013, 51, 82-88.

Unusual rearrangement and dearomatization reactions in $\mathrm{Cu}(\mathrm{I})$-catalyzed atom transfer radical cyclizations from N -(1-phenylethyl)trichloroacetamides

Faïza Diaba*, Juan A. Montiel, Josep Bonjoch*

Supporting information

- ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of product 2-9

H1 / Mercury-400F
cdcl3 / Temp: Ambient / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: JA094-26
Nom: FAIZA DIABA
Data: 19/12/12 / Ope.: F.DIABA Experiment: s2pul

Pulse Sequence: s2pul

H1 / Mercury-400F
cdcl3 / Temp: Ambient / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: SJA094-36
Nom: FAIZA DIABA
Data: 11/01/13 / Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

6.989

717
-76.
-76.

H1 / Mercury-400F
cdcl3 / Temp: Ambient / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: kJA001-30
Nom: FAIZA DIABA
Data: 02/11/11 / Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul

cdcl3 / Temp: Ambient / N.Reg: 199/2013

Nom: FAIZA DIABA N $-\cdots \quad$.
Data: 18/01/13 / opef: A.LINARES Experiment: s2pu

Equip: Mercury-400F
C13 / Solvent: cdcl3 / Temp: 25 C N.Reg: 199/2013

Usuari: san / Mostra: JA089-X-17
Data: 18/01/13 15:15:27 h./ Ope.: and Linares

Pulse Sequence: s2pul


```
H1 / Mercury-400F
cdcl3 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: xja076-26
Nom: FAIZA DIABA
Data: 02/11/12 / Ope.: F.DIABA
    Experiment: s2pul
Pulse Sequence: s2pul
```


80
60
40
20
ppm

```

Equip: Mercury-400F
H1 / Solvent: CDC13 / Temp: 25 C
N.Reg: 937/2013

Usuari: san / Mos
Data: 07/03/13 14:20:01 h./ Ope.: ANA LINARES

Pulse Sequence: s2pul


Equip: Mercury-400F
C13 / Solvent: cdcl3 / Temp: 25 C
N.Reg: 937/2013

Usuari: san / Mostra: ja118-17
Nom: FAIZA DIABA
Data: 08/03/13 07:52:35 h./ Ope.: ANA LINARES

Pulse Sequence: s2pul



180
140
120
100
80

Equip: Mercury-400F
H1 / Solvent: cdcl3 / Temp: 25 C
N.Reg: 881/2013 tra: JA118-23

Usuari: san / Mos
Data: 05/03/13 13:57:28 h./ Ope.: ANA LINARES

Pulse Sequence: s2pul


Equip: Mercury-400F
C13 / Solvent: cdcl3 / Temp: 25 C
N.Reg: 881/2013

Usuari: san / Mostra: JA118-23
Nom: FAIZA DIABA
Data: 05/03/13 14:04:35 h./ Ope.: ANA LINARES

Pulse Sequence: s2pul



180



\title{
Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones
}

Org. Lett. 2015, 17, 3860-3863.

The third objective of this thesis work was to expand the methodology developed in our research group for the radical cyclization of trichloroacetamides upon electron-rich alkenes, namely enol acetates I, prepared from ketone 1 by reactions with isopropenylacetate in acid media, to the corresponding enamines II as radical acceptors (Scheme 4.1). Thus a study was carried out to examine the scope of the radical cyclization from enamines II under reductive or nonreductive conditions and then plan an asymmetric synthesis of morphans using chiral amines.


Scheme 4.1.

\section*{Synthesis of normorphan 2a}



Carbamoylation
ene, rfx, 2 h



The haloform reaction


\section*{Scheme 4.2.}

Using the classical conditions for the preparation of enamines, ketone 1a was treated with pyrrolidine (1.2 equiv) and a catalytic amount of \(p-\mathrm{TsOH}\) in refluxing benzene for two hours. Surprisingly, after solvent removal no signals in the \({ }^{1} \mathrm{H}\) NMR spectrum of the expected enamine were detected, instead those corresponding to normorphan 2a were unmistakable. The new C-C bond formed in 2a results from a nucleophilic attack of the enamine generated in situ on the trichloroacetamide carbonyl group with the concomitant release of a trichloromethyl anion as a leaving group (Scheme 4.2). Indeed, a peak corresponding to \(\mathrm{CHCl}_{3}\) was observed in the \({ }^{1} \mathrm{H}\) NMR spectrum of the crude reaction mixture when it was recorded in deuterated benzene. The iminium intermediate is then, converted to the corresponding ketone during purification.


Scheme 4.3.

Even if reactions featuring a trihalomethyl anion as a leaving group are well established (e.g., the haloform reaction), they have not been reported from trichloroacetamides using enamines as nucleophiles.

Additionally, the reaction itself is a carbamoylation of a ketone. To our knowledge there is only one example in the literature describing an intermolecular \(\alpha\) carbamoylation of a ketone from the corresponding enolate and nitrourea under ultrasound activation and phase transfer catalysis. Moreover, in the literature, there are only three examples of intramolecular C-carbamoylation: i) photomediated radical reactions of dithiocarbamates, ii) electrophilic cyclization upon alkenes for the preparation of \(\alpha, \beta\)-unsaturated lactams and iii) ruthenium catalyzed hydrocarbamoylation of allylic formamides (Scheme 4.3).


Scheme 4.4.
Interestingly, the 6-azabicyclo[3.2.1]octane (normorphan) ring is present in many natural compounds including peduncularine, the principal alkaloid of the Tasmanian shrub Aristotelia peduncularis (Elaeocarpaceae), actinobolamine the main degradation product of the antitumor compound actinobolin, aphanorphine, isolated from the blue-green alga Aphanizomenon flos-aquae and also in securinine, an alkaloid with a fused indolizidine ring structure found in the shrub Securinega suffructicosa. Additionally various synthetic compounds embodying the normorphan moiety are pharmacologically interesting showing among others analgesic property and dopamine reuptake inhibition.

Taking in account all these considerations, we decided to investigate this unprecedented reaction as a new efficient route for the obtention of normorphans.

\section*{Table 2.1.Synthesis of normorphan 2a}
\begin{tabular}{cccccc}
\hline & & & & \\
\hline
\end{tabular}

Thus, starting from 1a, to improve the reaction conditions, microwave heating was explored in initial experiments to accelerate the process. At \(120^{\circ} \mathrm{C}\), after only 15 min, a full conversion was observed, but the target 2a was isolated in only a moderate yield (53\%, Table 4.1., entry 2 ). No improvement was obtained by switching to acetonitrile as the solvent (entry 3), but when the reaction was carried out with more than a stoichiometric amount of pyrrolidine and without the TsOH catalyst, 2a was isolated in a better yield ( \(85 \%\), entry 4) after only 5 min heating at \(100{ }^{\circ} \mathrm{C}\). A similar result was attained using solvent-free mode and conventional heating in a sealed tube (78\%, entry 5). Moreover, when a substoichiometric amount of pyrrolidine ( 0.5 equiv) was used, the yield improved further to reach \(91-94 \%\) in a 1 g scale synthesis (entry 6). Finally, it was found that the pyrrolidine loading can be diminished to \(20-25 \%\) with little effect on the yield (entry 7). Additionally, the process was also activated by the use of primary amines (e.g., benzylamine and allylamine), although large amounts were required and the yield was lower (entries 8-9).

Table 4.2. Synthesis of normorphans \(\mathbf{2 b - 2 e}\)
Methodology applied to other nitrogen-substituted trichloroacetamides

\begin{tabular}{cccccc} 
Entry & \(R\) & Conditions & Pyrrolidine (eq) & Time & 2 yield (\%) \\
\hline 1 & \(\mathrm{Me} \mathrm{(1b)}\) & A & 2 & 5 min & 96 \\
2 & \(\mathrm{Me} \mathrm{(1b)}\) & B & 5 & 5 min & 55 \\
5 & \(\mathrm{Allyl}(\mathbf{1 c})\) & A & 2 & 5 min & 82 \\
6 & \(\mathrm{Allyl}(\mathbf{1 c})\) & B & 1 & 5 min & 78 \\
3 & \(\operatorname{Prg}(\mathbf{1 d})\) & A & 2 & 5 min & 60 \\
4 & \(\operatorname{Prg}(\mathbf{1 d})\) & B & 5 & 10 min & 50 \\
7 & \(\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OEt})_{2}(\mathbf{1 e})\) & A & 2 & 5 min & 88 \\
8 & \(\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OEt})_{2}(\mathbf{1 e})\) & B & 1 & 5 min & 71 \\
\(\mathrm{~A}: \mu \mathrm{W}, 100{ }^{\circ} \mathrm{C}\), Toluene & \(\mathrm{B}:\) Solvent free, \(100{ }^{\circ} \mathrm{C}\) & & & \\
\hline
\end{tabular}

The applicability of the methodology was subsequently explored on trichloroacetamides in which the benzyl group was replaced by primary or \(\alpha\) branched alkyl groups (compounds \(\mathbf{1 b - 1 e}\) ). We tested the best set of reaction conditions previously obtained for the model starting material 1a: the microwave protocol with toluene as a solvent (Method A) and the solvent-free procedure under conventional heating (Method B). When using compounds other than the \(N\)-benzyl derivative 1a, method B afforded lower yields than method A, which was attributed to the low homogeneity of the trichloroacetamide ( \(\mathbf{1 b} \mathbf{b} \mathbf{- 1 e}\) ) and pyrrolidine mixture. The microwave procedure worked very well with trichloroacetamides bearing linear substituents at the nitrogen atom, while the yield decreased when the \(\alpha\)-position was branched (isopropyl substituent as in 1d).


Scheme 4.5.

The methodology was also applied to enantiopure trichloroacetamide 3. Unlike 1, 3 required 2 equiv of pyrrolidine and a prolonged reaction time to achieve a full conversion, leading to the diastereomers 4 and 5 in a 1:1.3 ratio and acceptable yields (Scheme 4.5). The two diastereomers 4 and 5 were submitted to \(\mathrm{LiAlH}_{4}\) reduction to provide the corresponding amino alcohols which after debenzylation gave enantiopure normorphans 8 and its enantiomer ent-8. We then used these new sterically demanding secondary amines to explore the asymmetric organocatalyzed synthesis of normorphan 2.


Scheme 4.6.

When trichloroacetamide 1a was treated with 8, the chemical yield of the carbamoylation was good ( \(70 \%\) yield), but the enantioselectivity was very poor \([(+)-2 \mathbf{a}<20 \%\) ee]. A short screening of organocatalysts gave disappointing results (Scheme 4.6); although chemical yields ranged from good to excellent, the enantiomeric excess was again unsatisfactory, except for \((S)\)-prolinamide. When the latter was used ( 0.5 equiv, DMSO, rt, 64 h ), the reaction afforded (-)\(\mathbf{2 a}\) in \(50 \%\) yield and \(63 \%\) ee. These preliminary results are in line with previously noted difficulties in the organocatalyzed desymmetrization of 4aminocyclohexanones.


Scheme 4.7.
After these disappointing results, we examined the scope of the intramolecular carbamoylation reaction for the synthesis of more structurally complex normorphan compounds. First, \(\alpha\)-methyl-substituted cyclohexanone 9 was treated with benzylamine to promote the carbamoylation of the ketone, the process took place regioselectively from the less substituted carbon, leading to normorphan 10, which was also obtained after treating 9 with pyrrolidine (1.5 equiv, solvent-free, 73\%). Interestingly, an epimerization at C-3 occurred in the basic reaction medium.

Application of the carbamoylation conditions to azaspirodecane 11 led to the epimeric mixture of azatricyclic compounds 12a and 12b (2:1 ratio) in a good yield. This heterocycle constitutes the ring core of the pentacyclic natural product cephalocyclidin \(A\). The structure of the major compound 12a was determined by X-ray crystallographic analysis (Scheme 4.7).


\section*{Scheme 4.8.}

Additionally, we were interested in extending this reaction to achieve the six-membered ring scaffold from trichloroacetamide 13 (Scheme 6). However, the enlargement of the side chain bearing the trichloroacetamide moiety had a significant impact on the reaction course. Thus, treatment of 13 with pyrrolidine gave the anti-Bredt compound 14 instead of lactam 13a. The structure of this unprecedented type of anti-Bredt ring (3-azabicyclo[4.3.1]dec-5-ene) which constitutes the backbone of synthetic analgesic Eptazocine, \({ }^{1}\) was elucidated by NMR data and secured by X-ray crystallographic analysis.

\footnotetext{
\({ }^{1}\) Takemoto, T.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc., 1993, 115 , 84778478.
}

\section*{Synthesis of lactone 16}






16









Scheme 4.9.

Finally, as it was expected treatment of trichloroacetate 15 with pyrrolidine at \(100{ }^{\circ}\) - y yielded the corresponding carbamate 16 alone rendering the presence of the nitrogen atom as indispensable for this cyclization to succeed (Scheme 4.9).

Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones
Faïza Diaba, Juan A. Montiel, Georgeta Serban, Josep Bonjoch.
Org. Lett. 2015, 17, 3860-3863.

\title{
Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones
}

\author{
Faïza Diaba, \({ }^{*, \dagger}\) Juan A. Montiel, \({ }^{\dagger}\) Georgeta Serban, \({ }^{\dagger}\) and Josep Bonjoch \({ }^{*}{ }^{\dagger}\) \\ \({ }^{\dagger}\) Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain \\ \({ }^{\dagger}\) Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, Nicolae Jiaga 29, 410028-Oradea, Romania
}

S Supporting Information

\begin{abstract}
An unexpected \(\mathrm{C}-\mathrm{C}\) bond cleavage was observed in trichloroacetamide-tethered ketones under amine treatment and exploited to develop a new synthesis of normophans from 4-amidocyclohexanones. The reaction involves an unprecedented intramolecular haloform-type reaction of trichloroacetamides promoted by enamines (generated in situ from ketones) as counter-reagents. The methodology was applied to the synthesis of compounds embodying the 6-azabicyclo[3.2.1]octane framework.
\end{abstract}

Methodologies involving the inter- or intramolecular formation of carbon-carbon bonds at the \(\alpha\)-position of ketones are important tools for the construction of molecular frameworks in organic synthesis. \({ }^{1}\) Nevertheless, to our knowledge, the \(\alpha\)-carbamoylation of ketones remains an "orphan" procedure. \({ }^{2,3}\) Whereas the feasibility of using intramolecular amide enolate alkylation (IAEA) in lactam synthesis is known, \({ }^{4}\) the umpolung version in which the amide carbonyl acts as an acceptor against an \(\alpha\)-carbonyl (ketone) group, such as a nucleophile, is unreported. The only procedures for the intramolecular C-carbamoylation described to date are carbamoyl radical, \({ }^{5}\) electrophilic, \({ }^{6}\) and Ru-catalyzed \({ }^{7}\) cyclizations upon alkenes (Scheme 1).

Scheme 1. Intramolecular Carbamoylation


As part of our continuing interest in synthesizing lactams from trichloroacetamides, \({ }^{8}\) we report here an efficient method to synthesize the azabicyclic normorphan ring, based on an intramolecular carbamoylation of ketones. The 6-azabicyclo [3.2.1] octane (normorphan) nucleus is the backbone of peduncularine \({ }^{9}\) and actinobolamine, \({ }^{10}\) and appears as a structural subunit in several other alkaloids. \({ }^{11}\) Additionally, various normorphans are pharmacologically interesting \({ }^{12}\) (Figure 1).


Peduncularine


Actinobolamine


DAT Inhibitor

Figure 1. Normorphan compounds.

Among the vast array of synthetic procedures to achieve compounds embodying the 6 -azabicyclo[3.2.1]octane skeleton, \({ }^{13,14}\) a scarcely used approach involves a ring-closing C1C7 bond formation. Apart from our studies on the radical cyclization of \(\alpha\)-aminomethyl radicals, \({ }^{15}\) and those of Grainger using carbamoyl radicals, \({ }^{5,11}\) there are no other precedents for this disconnection in a synthetic plan toward the aforementioned bridged azabicyclic ring.

We began with the aim of extending our methodology for the radical cyclization of trichloroacetamides upon electron-rich alkenes, previously reported using enol acetates (i.e., 1A) as radical acceptors, \({ }^{8 \mathrm{~b}}\) to the corresponding enamines, i.e. 1B (Scheme 2). During this study, it was serendipitously discovered that when ketone \(\mathbf{1}^{8 \mathrm{~b}}\) was treated with pyrrolidine ( 1.2 equiv) and a catalytic amount of TsOH in toluene at reflux, normorphan 2 was isolated in \(68 \%\) yield (Scheme 2) instead of the expected enamine of \(\mathbf{1}\). After this surprising result, a synthetic study of the methodology toward 6azabicyclo[3.2.1] octanes using amine-promoted carbocyclization of trichloroacetamide-tethered ketones was undertaken.

Although organic reactions featuring trichloromethyl as a leaving group are well established (e.g., the haloform

\footnotetext{
Received: June 26, 2015
Published: July 21, 2015
}

Scheme 2. Enol Acetate vs Enamine Formation from Trichloroacetamide 1

reaction), \({ }^{16}\) they have not been reported from trichloroacetamides using enamines as nucleophiles.

To improve the reaction conditions, microwave heating was explored in initial experiments to accelerate the process. At 120 \({ }^{\circ} \mathrm{C}\), after only 15 min , a full conversion was observed, but the target 2 was isolated in only a moderate yield (53\%, Table 1, entry 1). No improvement was obtained by switching to acetonitrile as the solvent (entry 2 ), but when the reaction was carried out in solvent-free mode without the TsOH catalyst and using conventional heating in a sealed tube, \(\mathbf{2}\) was isolated in a better yield ( \(78 \%\), entry 3 ). Moreover, when a substoichio-

Table 1. Synthesis of Normorphans \(2^{a}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline entry & compd & method \({ }^{\text {a }}\) & amine (equiv) & time (min) & yield (\%) \({ }^{\text {b }}\) \\
\hline 1 & 1a & \(B^{c}\) & 1.2 & 15 & \(53^{\text {c }}\) \\
\hline 2 & 1a & \(\mathrm{B}^{c}\) & 1.2 & 15 & \(56^{\text {c }}\) \\
\hline 3 & 1a & A & 1.2 & 15 & 78 \\
\hline 4 & 1a & A & 0.5 & 5 & \(94{ }^{\text {d }}\) \\
\hline 5 & 1a & A & 0.25 & 5 & 80 \\
\hline 6 & 1a & B & 2 & 5 & 85 \\
\hline 7 & 1a & A & \(1{ }^{e}\) & 5 & 50 \\
\hline 8 & 1a & A & \(5^{f}\) & 5 & \(58^{g}\) \\
\hline 9 & 1b & A & 5 & 5 & \(55^{h}\) \\
\hline 10 & 1b & B & 2 & 5 & 96 \\
\hline 11 & 1c & A & 1 & 5 & 78 \\
\hline 12 & 1c & B & 2 & 5 & 82 \\
\hline 12 & 1d & A & 5 & 10 & 50 \\
\hline 13 & 1d & B & 2 & 5 & 60 \\
\hline 14 & 1 e & A & 1 & 5 & 71 \\
\hline 15 & 1 e & \(\mathrm{B}^{i}\) & 2 & 5 & 88 \\
\hline
\end{tabular}
\({ }^{a}\) Unless otherwise noted, the reaction was carried out with 200 mg of \(\mathbf{1 a}\) or 100 mg of \(\mathbf{1 b} \mathbf{- 1 e}\), using pyrrolidine as the amine. Method A: The reaction was carried out from trichloroacetamide 1 at \(100{ }^{\circ} \mathrm{C}\) in solvent-free mode. Method B: \(\mu \mathrm{W}, 100{ }^{\circ} \mathrm{C}\) in toluene ( 1 mL ). \({ }^{b}\) Yields refer to pure compounds isolated by flash chromatography. \({ }^{c}\) At 120 \({ }^{\circ} \mathrm{C}, \mu \mathrm{W}, p-\mathrm{TsOH}\) ( 0.06 equiv), and solvent ( 2 mL ): toluene or acetonitrile (entries 1 and 2). \({ }^{d} 1 \mathrm{~g}\) scale. \({ }^{e}\) Benzylamine was used. \({ }^{f}\) Allylamine was used. \({ }^{g} 35 \%\) of 1 was recovered. \({ }^{h} 31 \%\) of 1 was recovered. \({ }^{i} 200 \mathrm{mg}\) scale.
metric amount of pyrrolidine ( 0.5 equiv) was used, the yield improved further to reach \(91-94 \%\) after only 5 min of reaction in a 1 g scale synthesis (entry 4). Finally, it was found that the pyrrolidine loading can be diminished to \(20-25 \%\) with little effect on the yield (entry 5). Additionally, the process was also activated by the use of primary amines (e.g., benzylamine and allylamine), although large amounts were required and the yield was lower (entries 7-8).

The new type of \(\mathrm{C}-\mathrm{C}\) bond formation here described is probably based on a nucleophilic attack of an enamine generated in situ on a trichloroacetamide carbonyl group, with a concomitant release of the trichoromethyl anion as a leaving group. Indeed, a peak corresponding to \(\mathrm{CHCl}_{3}\) was observed when recording the NMR spectrum of the crude reaction mixture in deuterated benzene.

The applicability of the methodology was subsequently explored on trichloroacetamides in which the benzyl group was replaced by primary or \(\alpha\)-branched alkyl groups (compounds \(\mathbf{1 b}-\mathbf{1 e}\) ). We tested two reaction conditions: the solvent-free procedure under conventional heating (Method A), used in the N -benzyl series, and a microwave protocol with toluene as a solvent (Method B, Table 1, entries 9-15). When using compounds other than the \(N\)-benzyl derivative 1a, Method A afforded lower yields than Method B, which was attributed to the low homogeneity of the trichloroacetamide ( \(\mathbf{1 b} \mathbf{- 1 e}\) ) and pyrrolidine mixture. The microwave procedure worked very well with trichloroacetamides bearing linear substituents at the nitrogen atom, while the yield decreased when the \(\alpha\)-position was branched (isopropyl or \(\alpha\)-methylbenzyl substituents, as in 1e and 3).

The methodology was also applied to enantiopure trichloroacetamide 3. Unlike 1, 3 required 2 equiv of pyrrolidine and a prolonged reaction time to achieve a full conversion, leading to the diastereomers 4 and 5 in a 1:1.3 ratio and acceptable yield (Scheme 3).

Scheme 3. Cyclization of Trichloroacetamide 3


3


2 h


4 (26\%)
\(+\)


5 (35\%)

Evidence for the configuration of \(4(1 S, 5 S)\) and \(5(1 R, 5 R)\) was provided by NOESY experiments, which showed offdiagonal cross-peaks connecting \(\mathrm{H}-4 \mathrm{eq}\) and \(\mathrm{CH}_{3}\) in 4 and \(\mathrm{H}-\) 4 eq and aromatic protons in 5 . This stereochemical elucidation agrees with the chemical shift of \(\mathrm{H}-4 \mathrm{eq}\), which is shielded ( \(\delta\) \(1.04)\) in 5 with regard to \(4(\delta 2.20)\), indicating that \(\mathrm{H}-4 \mathrm{eq}\) is held below the benzene ring in 5 (see Supporting Information (SI)).

The two diastereomers 4 and 5 were submitted to \(\mathrm{LiAlH}_{4}\) reduction to provide the corresponding amino alcohols 6 and 7, respectively (not shown; see SI), which after debenzylation gave enantiopure normorphan 8 and its enantiomer ent-8 (Scheme 4). We then used these new sterically demanding secondary amines (i.e., 8) \({ }^{17}\) to explore the asymmetric organocatalyzed synthesis of normorphan 2.

When trichloroacetamide 1 was treated with 8 , the chemical yield of the carbamoylation was good ( \(70 \%\) yield), but the

Scheme 4. Synthesis of Enantiopure 8 and ent-8

enantioselectivity was very poor \([(+)-2<20 \%\) ee). A short screening of organocatalysts gave disappointing results (see SI); although chemical yields ranged from good to excellent, the enantiomeric excess was again unsatisfactory, except for ( \(S\) )prolinamide. When the latter was used ( 0.5 equiv, DMSO, rt, 64 h ), the reaction afforded (-)-2 in \(50 \%\) yield and \(63 \%\) ee. These preliminary results are in line with previously noted difficulties in the organocatalyzed desymmetrization of 4aminocyclohexanones. \({ }^{8,19}\)

At this point, to examine the scope of the intramolecular carbamoylation reaction, the synthesis of more structurally complex normorphan compounds was undertaken (Scheme 5).

Scheme 5. Synthesis of Other Normorphans


When the \(\alpha\)-methyl-substituted cyclohexanone \(9^{20}\) was treated with benzylamine to promote the carbamoylation of the ketone, the process took place regioselectively from the less substituted carbon, leading to the normorphan 10 , which was also obtained after treating 9 with a secondary amine such as pyrrolidine (1.5 equiv, solvent-free, 73\%). Interestingly, an epimerization at C3 occurred in the basic reaction medium.

The reaction was extended to additional substrates, including the azaspiranic trichloroacetamide \(11,{ }^{21}\) which led to the azatricyclic compound \(\mathbf{1 2}\) as an epimeric mixture (2:1 ratio) in a good overall yield. This new heterocycle constitutes the ring core of the structurally unique pentacyclic alkaloid cephalocyclidin A. \({ }^{22}\) The structure of the major compound 12a was determined by X-ray crystallographic analysis (see SI).

Additionally, we were interested in extending this reaction to achieve the six-membered ring scaffold from trichloroacetamide \(13^{23}\) (Scheme 6). However, the enlargement of the side chain bearing the trichloroacetamide moiety had a significant impact on the reaction course. Thus, treatment of 13 with pyrrolidine gave the anti-Bredt compound \(14^{24}\) instead of lactam 13a. The structure of this unprecedented type of anti-Bredt ring (3-

Scheme 6. Synthesis of anti-Bredt Azabicyclo 14

azabicyclo[4.3.1]dec-5-ene) \()^{25}\) was elucidated by NMR data and secured by X-ray crystallographic analysis (Figure 2).


Figure 2. X-ray structure of 14.

Not unexpectedly, trichloroacetate 15 behaved differently under pyrrolidine treatment, leading to the corresponding carbamate 16 (see ref 26 ). \({ }^{26}\) Thus, the presence of the nitrogen atom (i.e., the trichloroacetamide group) is essential for the accomplishment of the process since the oxygenated analog did not provide a cyclization product.

In summary, a direct synthesis of the 6 -azabicyclo[3.2.1]octane ring, prevalent in a range of biologically active compounds, from an unprecedented \(\alpha\)-carbamoylation of ketones is reported. The process involves an intramolecular reaction of trichloroacetamides promoted by enamines (generated in situ from ketones) as counter-reagents. The lactam functionalization of this heterocycle promises several future applications, notably including the conversion of this building block to the corresponding homoderivative bearing a morphan nucleus. \({ }^{27}\)

\section*{ASSOCIATED CONTENT}

\section*{Supporting Information}

Experimental procedures, spectroscopic and analytical data, NMR spectra of new compounds, and X-ray data for 12a and 14 (CIF). The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/ acs.orglett.5b01832.

\section*{AUTHOR INFORMATION}

\section*{Corresponding Authors}
*E-mail: faiza.diaba@ub.edu.
*E-mail: josep.bonjoch@ub.edu.

\section*{Notes}

The authors declare no competing financial interest.

\section*{ACKNOWLEDGMENTS}

Support for this research was provided by the Spanish MINECO (Project CTQ2013-41338-P).

\section*{REFERENCES}
(1) (a) Stereoselective Synthesis of Drugs and Natural Products; Andrushko, V., Andrushko, N., Eds.; Wiley-VCH: New York, 2013; part 2.1, Chapters 7-28. (b) Vander Wal, M. N.; Dilger, A. K.; MacMillan, D. W. C. Chem. Sci. 2013, 4, 3075-3079.
(2) (a) For a related transformation involving an intramolecular trapping of an isocyanate arising from a \(N\)-monosubstituted trichloroacetamide, by a dienolate generated from an enone, see: Nishikawa, T.; Koide, Y.; Adachi, M.; Isobe, M. Bull. Chem. Soc. Jpn. 2010, 83, 66-68. (b) For an example of intermolecular carbamoylation of ketones using nitrourea under sonochemical PTC, see: Pazdera, P.; Simbera, J. Org. Prep. Proced. Int. 2011, 43, 297-301.
(3) For intermolecular C-carbamoylation processes not involving ketone compounds, see inter alia: (a) Lemoucheux, L.; Seitz, T.; Rouden, J.; Lasne, M.-C. Org. Lett. 2004, 6, 3703-3706. (b) Yasui, Y.; Tsuchida, S.; Miyabe, H.; Takemoto, Y. J. Org. Chem. 2007, 72, 58985900. (c) Yoshimitsu, T.; Matsuda, K.; Nagaoka, H.; Tsukamoto, K.; Tanaka, T. Org. Lett. 2007, 9, 5115-5118. (d) Kamijo, S.; Hoshikawa, T.; Inoue, M. Tetrahedron Lett. 2011, 52, 2885-2888. (e) Roy, S.; Roy, S.; Gribble, G. W. Tetrahedron 2012, 68, 9867-9923.
(4) Latif, M.; Yun, J. I.; Seshadri, K.; Kim, H. R.; Park, C. H.; Park, H.; Kim, H.; Lee, J. J. Org. Chem. 2015, 80, 3315-3520.
(5) Grainger, R. S.; Welsh, E. Angew. Chem., Int. Ed. 2007, 46, 53775380. For carbamoylation of methoxybenzenes: (b) Millán-Ortiz, A.; López-Valdez, G.; Cortez-Guzmán, F.; Miranda, L. D. Chem. Commun. 2015, 51, 8345-8348.
(6) (a) Yasui, Y.; Takemoto, Y. Chem. Rec. 2008, 8, 386-394. (b) Yasui, Y.; Kakinokihara, I.; Takeda, H.; Takemoto, Y. Synthesis 2009, 2009, 3989-3993.
(7) (a) Armanino, N.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 6814-6817. (b) Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 1125-1131.
(8) Using \(\mathrm{Bu}_{3} \mathrm{SnH}\) or (TMS) \({ }_{3} \mathrm{SiH}\), see: (a) Quirante, J.; Escolano, C.; Merino, A.; Bonjoch, J. J. Org. Chem. 1998, 63, 968-976. (b) Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. J. Chem. Soc., Perkin Trans. 1 1999, 1157-1162. (c) Diaba, F.; Pujol-Grau, C.; Martínez-Laporta, A.; Fernández, I.; Bonjoch, J. Org. Lett. 2015, 17, 568-571. Using Cu(I)/ AIBN, see: (d) Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-Molina, J. M.; Pérez, P. J.; Belderrain, T. R. Chem. Commun. 2012, 48, 8799-8801. Using Grubbs' catalyst, see: (e) Diaba, F.; Martínez-Laporta, A.; Bonjoch, J. J. Org. Chem. 2014, 79, 9365-9372. (9) (a) Roberson, C. W.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 11342-11348. (b) Hodgson, D. M.; Shelton, R. E.; Moss, T. A.; Dekhane, M. Org. Lett. 2010, 12, 2834-2837 and references therein. . (10) Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. J. Chem. Soc., Chem. Commun. 1990, 1412-1414.
(11) Betou, M.; Male, L.; Steed, J. W.; Grainger, R. S. Chem. - Eur. J. 2014, 20, 6505-6517 and references therein. .
(12) For normorphans as dopamine transporter inhibitors, see: Quirante, J.; Vila, X.; Bonjoch, J.; Kozikowski, A. P.; Johnson, K. M. Bioorg. Med. Chem. 2004, 12, 1383-1391.
(13) For classical approaches, see: Bonjoch, J.; Mestre, E.; Cortés, R.; Granados, R.; Bosch, J. Tetrahedron 1983, 39, 1723-1728 and references therein. .
(14) For some recent procedures, see: (a) Winkler, J. D.; Fitzgerald, M. E. Synlett 2009, 2009, 562-564. (b) Campbell, C. L.; Hassler, C.; Ko, S. S.; Voss, M. E.; Guaciaro, M. A.; Carter, P. H.; Cherney, R. J. J. Org. Chem. 2009, 74, 6368-6370. (c) Casavant, B. J.; Hosseini, A. S.; Chemler, S. R. Adv. Synth. Catal. 2014, 356, 2697-2702. (d) Liu, T.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 5871-5874.
(15) Quirante, J.; Vila, X.; Escolano, C.; Bonjoch, J. J. Org. Chem. 2002, 67, 2323-2328.
(16) For some examples on the leaving ability of \(\mathrm{CX}_{3}\) groups, see: (a) Zucco, C.; Lima, C. F.; Rezende, M. C.; Vianna, J. F.; Nome, F. J.

Org. Chem. 1987, 52, 5356. (b) Morimoto, H.; wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2006, 45, 3146-3150. (c) Gerfaud, T.; Wei, H.L.; Neuville, L.; Zhu, J. Org. Lett. 2011, 13, 6172-6175. (d) Zhu, C.; Wei, W.; Du, P.; Wan, X. Tetrahedron 2014, 70, 9615-9620.
(17) For the use of normorphans as organocatalysts, see: List, B.; Coric, I.; Grygorenko, O.; Kaib, P. S. J.; Komarov, I.; Lee, A.; Leutzch, M.; Pan, S. C.; Tymtsunik, A. V.; van Gemmere, M. Angew. Chem., Int. Ed. 2014, 53, 282-285.
(18) Diaba, F.; Bonjoch, J. Org. Biomol. Chem. 2009, 7, 2517-2519.
(19) For a recent first example of very efficient organocatalytic desymmetrization of prochiral 4-aminocyclohexanones, see: Yamagata, A. D. G.; Datta, S.; Jackson, K. E.; Stegbauer, L.; Paton, R. S.; Dixon, D. J. Angew. Chem., Int. Ed. 2015, 54, 4899-4903.
(20) Racemic 9 was prepared in a six-step sequence (see Supporting Information).
(21) Diaba, F.; Martínez-Laporta, A.; Bonjoch, J. J. Org. Chem. 2014, 79, 9365-9372.
(22) Kobayashi, J.; Yoshinaga, M.; Yoshida, N.; Shiro, M.; Morita, H. J. Org. Chem. 2002, 67, 2283-2286.
(23) Vila, X.; Quirante, J.; Paloma, L.; Bonjoch, J. Tetrahedron Lett. 2004, 45, 4661-4664.
(24) For natural products with bridgehead double bonds, see: Mak, J. Y. W.; Pouwer, R. H.; Williams, C. M. Angew. Chem., Int. Ed. 2014, 53, 13664-13688.
(25) For synthetic approaches to 3-azabicyclo[4.3.1]decanes, see: (a) Hall, H. K., Jr. J. Org. Chem. 1963, 28, 3213-3214. (b) Orvieto, F.; Botta, M.; Corelli, F.; Harper, S. Synth. Commun. 1999, 29, 36353649.
(26)

(27) For classical examples of the normorphan transformation to morphan compounds, see: (a) Legseir, B.; Henin, J.; Massiot, G.; Vercauteren, J. Tetrahedron Lett. 1987, 28, 3573-3576. (b) Nkiliza, J.; Vercauteren, J.; Léger, J.-M. Tetrahedron Lett. 1991, 32, 1787-1790.

\title{
Synthesis of Normorphans through an Efficient Intramolecular Carbamoylation of Ketones
}

\author{
Faïza Diaba** \({ }^{\dagger}\), Juan A. Montiel \({ }^{\dagger}\), Georgeta Serban \({ }^{\ddagger}\), and Josep Bonjoch \({ }^{*, \dagger}\) \\ faiza.diaba@ub.edu, josep.bonjoch@ub.edu \\ \({ }^{\dagger}\) Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain \\ \# Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, Nicolae Jiaga 29, 410028-Oradea, Romania
}

\section*{Table of contents}
- Experimental and NMR data of compounds 1-16 S2-S14
- Copies of \({ }^{1} \mathrm{H}\) NMR and \({ }^{13} \mathrm{C}\) NMR spectra of compounds 1-16 S15-S37
- X-ray structures for compounds 12a and \(\mathbf{1 4}\) S38-S44

\section*{EXPERIMENTAL SECTION}
1. General information. \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra were recorded in \(\mathrm{CDCl}_{3}\) solution. Chemical shifts are reported as \(\delta\) values ( ppm ) relative to internal \(\mathrm{Me}_{4} \mathrm{Si}\) and \({ }^{13} \mathrm{C}\) NMR spectra are referenced to the deuterated solvent signal \(\left(\mathrm{CDCl}_{3}: 77.00 \mathrm{ppm}\right)\) and \(\left(\mathrm{CD}_{3} \mathrm{OD}, 49.3 \mathrm{ppm}\right)\). All NMR data assignments are supported by COSY and HSQC experiments. Infrared spectra were recorded on a Nicolet 320 FT-IR spectrophotometer. TLC was performed on \(\mathrm{SiO}_{2}\) (silica gel 60 \(\mathrm{F}_{254}\), Merck) or on \(\mathrm{Al}_{2} \mathrm{O}_{3}\) (aluminium oxide 60 F 254 neutral, Merck). The spots were located by UV light or a \(1 \% \mathrm{KMnO}_{4}\) aqueous solution. Chromatography refers to flash chromatography and was carried out on \(\mathrm{SiO}_{2}\) (Silica Flash P60, Wet \& Dry, 200-500 mesh) and when indicated on \(\mathrm{Al}_{2} \mathrm{O}_{3}\) (aluminium oxide 90 standardized, Merck). Drying of the organic extracts during reaction work-up was performed over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). HPLC analyses for the determination of enantiomeric excess were carried out using a DAICEL CHIRALPAK IC column \((250 \times 4.6\) mm I.D., \(5 \mu \mathrm{~m}\); Chiral Technologies Europe) on a Waters model 2487 Dual Absorbance Detector and set at the wavelength of 230 nm . The HPLC resolution of compound \(\mathbf{2 a}\) was achieved using isopropanol, \(0.5 \mathrm{~mL} \mathrm{~min}^{-1}\) as the mobile phase.

\section*{2. Synthesis of trichloroacetamides \(\mathbf{1}^{1}\)}


\section*{4-( \(N\)-Methyltrichloroacetamido)-1-cyclohexanone (1b)}

A mixture of 4-( \(N\)-methyl)aminocyclohexane ethylene \(\operatorname{acetal}^{2}(1.5 \mathrm{~g}, 8.76 \mathrm{mmol})\) and \(10 \% \mathrm{HCl}\) aqueous solution ( 50 mL ) was stirred at rt overnight. The mixture was basified with \(10 \% \mathrm{NaOH}\) solution and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and the residue treated with \(\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.5 \mathrm{mmol})\) and trichloroacetyl chloride \((1 \mathrm{~mL}, 9 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) \((5 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\) then at rt for 1 h . The mixture was poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). After chromatography (Hexane/ \(\mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 2\) to \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) ) 1b was isolated as a white solid (1.5 g, \(63 \%\) ): mp 120-121 \({ }^{\circ} \mathrm{C}\); IR (KBr) 3051, 3014, 2965, 2887, 2826, 1718, \(1662 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.90-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.51\) (brs, 4 H\(), 2.95\) and \(3.24\left(2 \mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.84\) (br \(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 28.1\) and \(28.5\left(\mathrm{CH}_{2}\right), 30.8\) and \(32.5\left(\mathrm{CH}_{3}\right), 39.5\left(\mathrm{CH}_{2}\right)\),

\footnotetext{
\({ }^{1}\) For the synthesis of 1a, see: Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. Heterocycles 1999, 50, 731-738. For the synthesis of 3, see: Quirante, J.; Torra, M.; Diaba, F.; Escolano, C.; Bonjoch, J. Tetrahedon: Asymmetry 1999, 10, 2399-2410.
\({ }^{2}\) W. J. Greenlee, Y. Huang, J. M. Kelly, S. W. McCombie, A. Stamford and Y. Wu, in US 2005/0038100 A1, Schering-Plough Corp., USA, 2005.
}
55.2 and \(56.2(\mathrm{CH}), 93.4\left(\mathrm{CCl}_{3}\right), 160.3(\mathrm{CO}), 208.6(\mathrm{CO})\); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\) calcd for \(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{NO}_{2}\) 272.0006; found 272.0008.


\section*{4-( \(N\)-Allyltrichloroacetamido)-1-cyclohexanone (1c)}

A mixture of allylamine ( \(1.6 \mathrm{~mL}, 20.81 \mathrm{mmol}\) ), 1,4-cyclohexanedione monoethylene acetal ( 2.5 \(\mathrm{g}, 16 \mathrm{mmol}\) ) and \(4 \AA\) molecular sieves ( 2 g ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})\) was stirred at rt for 4 h , filtered on a short celite pad, and concentrated. The residue was dissolved in \(\mathrm{MeOH}(20 \mathrm{ml})\) and treated with \(\mathrm{NaBH}_{4}(1.21 \mathrm{~g}, 19.2 \mathrm{mmol})\) at \(0^{\circ} \mathrm{C}\) and stirred at rt for 1 h . The mixture was concentrated, water was added and the mixture was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and the resulting viscous oil was dissolved in THF ( 3 mL ) and treated with \(10 \%\) HCl solution ( 30 mL ) overnight. The mixture was basified with 2.5 NaOH solution and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and to the resulting residue in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})\) were added dropwise at \(0{ }^{\circ} \mathrm{C} \mathrm{Et}_{3} \mathrm{~N}(4.46 \mathrm{~mL}, 32.01 \mathrm{mmol})\) and trichloroacetyl chloride ( \(2.67 \mathrm{~mL}, 24.01 \mathrm{mmol}\) ). The mixture was stirred at rt for 1 h , water was added and the mixture was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography (Hexane: \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1\) ) to yield 1c as a white solid ( \(2.3 \mathrm{~g}, 48 \%\) for the 4 steps): mp 104-105 \({ }^{\circ} \mathrm{C}\); IR (KBr) 3013, 2957, 2947, 2877, 2860, 1728, \(1674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}\), \(400 \mathrm{MHz}) \delta 2.06\) and \(2.22(2 \mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.96\) and \(4.38\left(2 \mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 4.94\) (br \(\mathrm{s}, 1 \mathrm{H}), 5.15-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.6\) and \(29.3\left(\mathrm{CH}_{2}\right)\), \(39.5\left(\mathrm{CH}_{2}\right), 47.0\) and \(51.6\left(\mathrm{CH}_{2}\right), 56.8(\mathrm{CH}), 93.4\left(\mathrm{CCl}_{3}\right), 117.4\) and \(118.9\left(\mathrm{CH}_{2}\right), 132.6\) and \(133.9(\mathrm{CH}), 159.7(\mathrm{CO}), 207.8(\mathrm{CO}) ;\) HRMS (ESI-TOF) \(\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{NO}_{2}\) 298.0163; found 298.0172 .


\section*{4-( \(N\)-Isopropyltrichloroacetamido)-1-cyclohexanone (1d)}

Operating as above from isopropylamine ( \(2.15 \mathrm{~mL}, 25.02 \mathrm{mmol}\) ) and 1,4-cyclohexanedione monoethylene acetal ( \(3 \mathrm{~g}, 18.6 \mathrm{mmol}\) ), 1d was obtained as a white solid ( \(2.3 \mathrm{~g}, 48 \%\) for the 4
steps): mp 130-131 \({ }^{\circ} \mathrm{C}\); IR (KBr) 2972, 2889, 1719, \(1679 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta\) 1.34 and \(1.44\left(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.\) each, \(\left.\mathrm{CH}_{3}\right), 1.86(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.30-\) \(2.60(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{qd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 4.843 .53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.5\) and \(19.7\left(\mathrm{CH}_{3}\right), 26.6\) and \(28.6\left(\mathrm{CH}_{2}\right), 39.4\) and \(39.5\left(\mathrm{CH}_{2}\right), 49.8\) and \(53.6(\mathrm{CH}), 51.1\) and \(57.1(\mathrm{CH}), 94.1\) and \(94.4\left(\mathrm{CCl}_{3}\right), 158.3\) and \(158.8(\mathrm{CO}), 208.0\) and 209.7 (CO); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{2} 300.0319\); found 300.0326 .


\section*{4-[ N -(2,2-Diethoxyethyl)trichloroacetamido]-1-cyclohexanone (1e)}

A mixture of \(N\)-(2,2-diethoxyethyl)-4-aminocyclohexanone ethylene acetal \({ }^{3}\) ( \(3 \mathrm{~g}, 11 \mathrm{mmol}\) ) and \(10 \% \mathrm{HCl}\) solution ( 30 mL ) was stirred at rt overnight. The mixture was basified with solid \(\mathrm{K}_{2} \mathrm{CO}_{3}\) and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated to yield 4-[(2,2diethoxyethyl)aminolcyclohexanone as a yellowish oil enough pure to be used in the next step without further purification: IR (NaCl) 3327, 2977, 2933, 2906, 2873, \(1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.23\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.70(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{ddd}, J=\) \(14.8,10,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{dt}, J=14.8,6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{tt}, J=8,3.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta\) \(15.2\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right)\), \(38.2\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{CH}_{2}\right), 53.4(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right), 102.0(\mathrm{CH}), 211.1\) (CO); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{NO}_{3} 230.1751\); found 230.1758 .

To a mixture of the previous 4-[(2,2-diethoxyethyl)amino]cyclohexanone and \(\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL}\), 12.8 mmol ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})\) was added trichloroacetyl chloride ( \(1.15 \mathrm{~mL}, 10.2 \mathrm{mmol}\) ) dropwise at \(0^{\circ} \mathrm{C}\) and the mixture was stirred at rt for lh . The mixture was poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathbf{1} \mathbf{e}\) was isolated as a pale yellow solid ( \(2.86 \mathrm{~g}, 69 \%\) for the 2 steps): mp \(79-80^{\circ} \mathrm{C}\); IR (KBr) 2975, 28961719, \(1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.20\left(\mathrm{td}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.06(\mathrm{qd}, J=12,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H})\), 2.37-2.54 (m, 4H), 3.33 (d, \(J=5.2 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(3.55(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{tt}, J=11.6,3.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.4\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 39.6\) \(\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 56.8(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 93.4\left(\mathrm{CCl}_{3}\right), 99.4(\mathrm{CH}), 160.6(\mathrm{CO}), 208.1(\mathrm{CO})\); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{Na}]^{+}\)calcd for \(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NNaO}_{4} 396.0507\); found 396.0509.

\footnotetext{
\({ }^{3}\) Diaba, F.; Bonjoch, J. Org. Biomol. Chem. 2009, 7, 2517-2519.
}

\section*{3. Cyclization procedures}

3.1. Typical procedure using solvent-free conditions (Method A)
(1RS,5RS)-6-Benzyl-6-azabicyclo[3.2.1]octane-2,7-dione (2a) \({ }^{4}\)
A mixture of \(\mathbf{1 a}(1 \mathrm{~g}, 2.87 \mathrm{mmol})\) and pyrrolidine \((0.12 \mathrm{~mL}, 1.46 \mathrm{mmol})\) was heated at \(100^{\circ} \mathrm{C}\) for 5 min in a sealed tube. After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 3: 1\right) \mathbf{2 a}\) was obtained as a white solid ( \(0.614 \mathrm{~g}, 94 \%\) ): mp \(90-92^{\circ} \mathrm{C}\); IR (KBr) 3087, 3065, 3032, 3006, 2969, 2955, 2916, 2894, 1725, 1686, \(1602 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.78-1.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\) 4), \(2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.03(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 2.34-2.49\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.60(\mathrm{dtd}, J=12\), \(5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.24(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.31\) and 4.78 ( \(2 \mathrm{~d}, J=\) \(15.0 \mathrm{~Hz}, 1 \mathrm{H}\) each, \(\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 7.29-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.0(\mathrm{C}-4)\), 34.8 (C-3), 35.8 (C-8), 45.3 ( \(\mathrm{CH}_{2} \mathrm{Ar}\) ), 54.4 (C-5), 58.0 (C-1), 128.0, 128.1, 128.8 (CHAr), 136.2 (C-ipso), 170.8 (C-7), 202.1 (C-2); HRMS (ESI-TOF) \(m / z:[M+H]^{+}\)calcd for \(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}\) 230.1176; found 230.1174 .

\subsection*{3.2. Typical procedure using microwave activation (Method B)}

In a 10 mL vessel, a mixture of \(\mathbf{1 a}(0.1 \mathrm{~g}, 0.29 \mathrm{mmol})\) and pyrrolidine \((0.048 \mathrm{~mL}, 0.58 \mathrm{mmol})\) in toluene ( 1 mL ) was heated with stirring to \(100^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 3: 1\right) \mathbf{2 a}\) was obtained as a white solid ( \(56 \mathrm{mg}, 85 \%\) ). (1RS,5RS)-6-Methyl-6-azabicyclo[3.2.1]octane-2,7-dione (2b) IR ( NaCl ) 2955, 2885, 1723, \(1686 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax})\), 2.07 (d, \(J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 2.38-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 2.66(\mathrm{~m}, \mathrm{H}-\) 8 eq ), \(2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.\) ), \(3.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}\) NMR ( 100 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(26.4(\mathrm{C}-4), 28.1\left(\mathrm{CH}_{3}\right), 34.6(\mathrm{C}-3), 35.1(\mathrm{C}-8), 56.8\) (C-5), \(57.7(\mathrm{C}-1), 171.1\) (C7), 202.1 (C-2); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2} 154.0863\); found 154.0865.

\section*{(1RS,5RS)-6-Allyl-6-azabicyclo[3.2.1]octane-2,7-dione (2c)}

IR ( NaCl ) 3083, 2957, 2920, 2883, 1722, \(1690 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.94\) (dtd, \(J\) \(=14.4,8.8,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}), 2.07(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.29(\mathrm{dm}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\) 4 eq ), 2.43-2.56 (m, 2H, 3-CH \(), 2.64\) (dtd, \(J=12,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 3.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}\),

\footnotetext{
\({ }^{4}\) For the yields corresponding to the other substrates, see the article.
}
\(1 \mathrm{H}, \mathrm{H}-1\) ), 3.70 (ddt, \(J=15.6,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.91 (m, 1H, H-5), 4.28 (ddt, \(J=15.6,5.6,1.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 27.2(\mathrm{C}-4), 34.8(\mathrm{C}-3)\), \(35.7(\mathrm{C}-8), 44.0\left(\mathrm{CH}_{2}\right), 54.4(\mathrm{C}-5), 58.1(\mathrm{C}-1), 118.7\left(\mathrm{CH}_{2}\right), 132.1(\mathrm{CH}), 170.7(\mathrm{C}-7), 202.1(\mathrm{C}-\) 2); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}\) 180.1019; found 180.1020.
(1RS,5RS)-6-Isopropyl-6-azabicyclo[3.2.1]octane-2,7-dione (2d)
m.p. 86-87 \({ }^{\circ} \mathrm{C}\); IR (KBr) 2972, 2945, 2879, 1716, \(1679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta\) \(1.27\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}), 2.05(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.23(\mathrm{~m}\), \(1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 2.48-2.66\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{CH}_{2}\right.\) and \(\left.\mathrm{H}-8 \mathrm{eq}\right), 3.16(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}\), H-5), 4.37 (heptet, \(J=6.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.2\) and \(20.6\left(\mathrm{CH}_{3}\right), 30.1(\mathrm{C}-\) 4), 34.9 (C-3), 37.4 (C-8), \(43.6(\mathrm{CH}), 52.0(\mathrm{C}-5), 58.7\) (C-1), 170.4 (C-7), 202.7 (C-2); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2}\) 182.1176; found 182.1176.
(1RS,5RS)-6-(2,2-diethoxyethyl)-6-azabicyclo[3.2.1]octane-2,7-dione (2e)
IR ( NaCl ) 2976, 2932, 2885, 1725, \(1694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.22(2 \mathrm{t}, J=6.8\) \(\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\) ), 1.92 (dtd, \(\left.J=13.6,7.6,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}\right), 2.07(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.38\) (m, 1H, H-4eq), 2.44-2.60 (m, 2H, 3-CH2), 2.64 (dtd, \(J=11.6,5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 3.16\) (d, \(J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.25(\mathrm{dd}, J=14,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=14,4.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.75(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5), 4.65(\mathrm{dd}, J=6.4,4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta\) 15.2 and \(15.3\left(\mathrm{CH}_{3}\right), 27.2(\mathrm{C}-4), 34.9(\mathrm{C}-3), 35.9(\mathrm{C}-8), 44.3\left(\mathrm{CH}_{2}\right), 56.3(\mathrm{C}-5), 57.8(\mathrm{C}-1), 62.9\) and \(63.4\left(\mathrm{CH}_{2}\right), 100.7(\mathrm{CH}), 171.4(\mathrm{C}-7), 202.5(\mathrm{C}-2)\); HRMS (ESI-TOF) \(\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NNaO}_{4}\) 278.1363; found 278.1371.

\section*{4. Cyclization of 3 and related reactions}




A mixture of \(\mathbf{3}(1 \mathrm{~g}, 2.76 \mathrm{mmol})\) and pyrrolidine \((0.453 \mathrm{~mL}, 5.51 \mathrm{mmol})\) was heated at \(100^{\circ} \mathrm{C}\) in a sealed tube for 30 min . After chromatography (hexane/EtOAc \(3: 2\) to \(2: 3\) ), 4 ( \(96 \mathrm{mg}, 14 \%\) ), a mixture of \(\mathbf{4}\) and \(\mathbf{5}(174 \mathrm{mg}, 26 \%, 1: 1.2)\) and \(\mathbf{5}(142 \mathrm{mg}, 21 \%)\), were sequentially isolated.
(1S,5S)-6-[(S)-1-Phenylethyl]-6-azabicyclo[3.2.1]octane-2,7-dione (4)
\([\alpha]_{\mathrm{D}}^{23}=+195.8\left(c 1, \mathrm{CHCl}_{3}\right) ; \operatorname{mp} 144-145^{\circ} \mathrm{C}\); IR ( NaCl , neat) 3057, 3027, 2969, 2978, 2955, 2892, 2876, 1711, \(1677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.67\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\), 1.89-1.98 (m, 1H, H-4), 1.95 (d, \(J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\) ), 2.18-2.27 (m, 1H, H-4), 2.41-2.48 (dm, \(J\)
\(=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 2.54(\mathrm{dd}, J=17.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.64(\mathrm{ddd}, J=17.2,10.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}\), H-3), 3.22 (d, \(J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\) ), 3.66 (br s, \(1 \mathrm{H}, \mathrm{H}-5\) ), 5.51 ( \(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.41(\mathrm{~m}\), \(5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 17.1\left(\mathrm{CH}_{3}\right), 30.2(\mathrm{C}-4), 35.1(\mathrm{C}-3), 37.4(\mathrm{C}-8), 50.2\) (CH), 52.6 (C-5), 58.6 (C-1), 127.0, 127.9, 128.8 (CHAr), 139.9 (C-ipso), 170.6 (C-7), 202.6 (C-2); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}\) 244.1332; found 244.1325.
(1R,5R)-6-[(S)-1-Phenylethyl]-6-azabicyclo[3.2.1]octane-2,7-dione (5)
\([\alpha]_{D}^{23}=-347.5\left(c 1, \mathrm{CHCl}_{3}\right) ;\) m.p. \(90-92{ }^{\circ} \mathrm{C}\); IR ( NaCl , neat) \(3060,3029,2971,2879,1721,1686\) \(\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.00-1.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.48-1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.65(\mathrm{~d}, J\) \(\left.=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 2.10(\mathrm{ddd}, J=17.2,10.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)\), \(2.19(\mathrm{dd}, J=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.53-2.61(\mathrm{dm}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.19(\mathrm{~d}, J=5.6 \mathrm{~Hz}\), \(1 \mathrm{H}, \mathrm{H}-1\) ), 3.97 (br s, 1H, H-5), 5.59 (q, \(J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\) ), 7.31-7.38 (m, 3H, ArH), 7.42-7.47 (m, \(2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.3\left(\mathrm{CH}_{3}\right), 28.4(\mathrm{C}-4), 35.0(\mathrm{C}-3), 37.3(\mathrm{C}-8), 49.2\) (CH), 51.8 (C-5), 58.4 (C-1), 127.2, 128.2, 128.7 (CHAr), 139.7 (C-ipso), 170.1 (C-7), 202.6 (C-2); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2} 244.1332\); found 244.1325 .


4


5

Reduction of \(\mathbf{4}\) and \(\mathbf{5}\) with \(\mathrm{LiAlH}_{4}\)

\section*{(1S,2R,5S)-6-[(S)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan-2-ol (6)}

To a solution of \(4(100 \mathrm{mg}, 0.411 \mathrm{mmol})\) in THF ( 3 mL ) was added a 1 M solution of \(\mathrm{LiAlH}_{4}\) in THF ( \(1.23 \mathrm{~mL}, 1.23 \mathrm{mmol}\) ) and the mixture was stirred at rt for 3 h . The mixture was quenched with few drops of water, filtered on a short celite pad wich was rinsed with MeOH . The combined filtrates were dried, concentrated and purified by chromatography \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\) ) yielding the corresponding aminoalcohol 6 as a white solid ( \(80 \mathrm{mg}, 84 \%\) ).

\([\alpha]_{\mathrm{D}}^{23}=-18.2\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 108-109^{\circ} \mathrm{C} ;\) IR \((\mathrm{NaCl}\), neat \() 3364,3060,3024\), 2931, 2863, 1666, \(1598 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19(\mathrm{tdd}, J=\) \(12.8,5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}), 1.27(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 1.32\) (d, \(J=\) \(6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\) ), 1.46-1.58 (tdd, \(\left.J=12.7,10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}\right), 1.65-\) 1.74 (m, 1H, H-4eq), 1.83 (dtd, \(J=11.2,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 1.86-1.94\) (m, 1H, H-3eq), 2.31 (br s, 1H, H-1), 2.65 (dd, \(J=10,5.6 \mathrm{~Hz}, \mathrm{H}-7\) pro-R), \(2.83(\mathrm{~d}, J=10 \mathrm{~Hz}\), H-7pro-S), 3.08 (br t, \(J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 3.68 (q, \(J=6.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.74 (ddd, \(J=10.4,6,2.4\) \(\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.21\) (tt, \(J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\) ), 7.25-7.32 (m, 2H, ArH), 7.33-7.37 (m, 2H, \(\mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.\), \() \delta 23.8\left(\mathrm{CH}_{3}\right), 29.3(\mathrm{C}-3), 29.7(\mathrm{C}-4), 34.5(\mathrm{C}-8), 43.2(\mathrm{C}-\) 1), 51.4 (C-7), 54.9 (C-5), \(62.1(\mathrm{CH}), 71.5\) (C-2), 126.6, 127.2, 128.2 (CHAr), 147.0 (C-ipso); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}\) 232.1696; found 232.1693.

\section*{(1R,2S,5R)-6-[(S)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan-2-ol (7)}

Operating as above from \(5(200 \mathrm{mg}, 0.822 \mathrm{mmol})\), a 1 M solution of \(\mathrm{LiAlH}_{4}\) in THF ( 2.46 mL , 2.46 mmol ) and THF ( 5 mL ) aminoalcohol 7 was obtained as a white solid ( \(137 \mathrm{mg}, 72 \%\) ).

\([\alpha]_{\mathrm{D}}^{23}=-26.9\left(c 1, \mathrm{CHCl}_{3}\right) ;\) m.p. \(96-98^{\circ} \mathrm{C}\); IR ( NaCl , neat): 3300, 3078, 3021, 2970, 2931, 2868, 2773, 1951, 1878, 1813, 1637, \(1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.15(\mathrm{tdd}, J=13.2,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}), 1.27(\mathrm{~d}, J=\) \(11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 1.36\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.42-1.54(\mathrm{tdd}, J=13.0\), \(10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 1.83-1.93\) (m, 2H, H-3eq and H-8eq), 2.34 (br s, 1H, H-1), 2.86 (d, \(J=10.4 \mathrm{~Hz}, \mathrm{H}-7\) pro-S), \(2.90(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}\), H-7 pro-R), 2.99 (br t, \(J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.75\) (q, \(J=6.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.76 (m, 1H, H-2), 7.21 (tt, \(J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}\), \(100 \mathrm{MHz}) \delta 24.4\left(\mathrm{CH}_{3}\right), 28.9(\mathrm{C}-3), 29.2(\mathrm{C}-4), 35.3(\mathrm{C}-8), 42.8(\mathrm{C}-1), 50.7(\mathrm{C}-7), 53.9(\mathrm{C}-5)\), \(60.5(\mathrm{CH})\), 71.6 (C-2), 126.6, 127.4, 128.1 (CHAr), 146.2 (C-ipso); HRMS (ESI-TOF) \(\mathrm{m} / \mathrm{z}:\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}\) 232.1696; found 232.1694.

\section*{Debenzylation of \(\mathbf{6}\) and 7}

\section*{(1R,2S,5R)-6-Azabicyclo[3.2.1]octan-2-ol (ent-8)}

A suspension of \(7(110 \mathrm{mg}, 0.48 \mathrm{mmol})\) and \(10 \% \mathrm{Pd} / \mathrm{C}(11 \mathrm{mg}, 10 \%)\) in \(\mathrm{EtOH}(5 \mathrm{~mL})\) was stirred under 1 atm \(\mathrm{H}_{2}\) at rt for 2 days. The mixture was then filtered on a short celite pad which was washed with EtOH . The solution was concentrated and the residue was purified by chromatography \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) / \mathrm{MeOH} 70: 30\right)\) to afford ent-8 as a white solid (49 mg, 82\%).
 \([\alpha]_{\mathrm{D}}^{23}=-7.69(c 1.26, \mathrm{MeOH}) ; \mathrm{mp} 163-165^{\circ} \mathrm{C}\); IR ( NaCl , neat) \(3305,2938,2878\) \(\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.39-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}\), H-8ax), \(1.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 1.76\) (dtd, \(J=11.6,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 1.82\) (m, 1H, H-3eq), 2.30 (br s, 1H, H-1), 2.83 (dd, \(J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\) pro-R), 3.14 (d, \(J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\) pro-S), 3.35 (br t, \(J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 3.72 (ddd, \(J=9.6,6,2.8\) \(\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{C}\) NMR (100 MHz, \(\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 28.6\) (C-3), 31.7 (C-4), 37.3 (C-8), 43.7 (C-1), 46.0 (C-7), 54.9 (C-5), 71.9 (C-2); HRMS (ESI-TOF) \(m / z:[M+H]^{+}\)calcd for \(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}\) 128.1070; found 128.1070.

\section*{(1S,2R,5S)-6-Azabicyclo[3.2.1]octan-2-ol (8)}

A mixture of aminoalcohol 6 ( \(300 \mathrm{mg}, 1.296 \mathrm{mmol}\) ), \(10 \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg}, 20 \%)\) in \(\mathrm{MeOH}(28\) mL ) was stirred under \(1 \mathrm{~atm} \mathrm{H}_{2}\) at rt for 3 d . After filtration, concentration and chromatography 8 was isolated ( \(107 \mathrm{mg}, 65 \%\) ), 6 was also recovered ( 54 mg ).

5. Screening of catalysts for the asymmetric synthesis of \(\mathbf{2 a}\)





TBDPSO

\(\mathrm{Et}_{3} \mathrm{~N}\) (2eq)
82\%, 16 ee

\(73 \%\), 42 ee

\(\mathrm{Et}_{3} \mathrm{~N}\) (1eq)
\(80 \%\), 25 ee

\(\mathrm{Et}_{3} \mathrm{~N}\) (2eq)
55\%, 10 ee



\section*{6. Preparation of 9}

(1RS,2RS,4RS)-4-(Benzylamino)-2-methylcyclohexanol (I)
To a mixture of 7-methyl-1,4-dioxaspiro[4.5]decan-8-one ( \(4 \mathrm{~g}, 23.5 \mathrm{mmol}\) ) in \(\mathrm{MeOH}(40 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\) was added \(\mathrm{NaBH}_{4}(0.98 \mathrm{~g}, 25.85 \mathrm{mmol})\) portionwise and the mixture was stirred at rt for 1 h . The mixture was then concentrated, brine was added and the aqueous extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and the residue was treated with \(10 \% \mathrm{HCl}\) solution ( 40 mL ) and THF ( 4 mL ) overnight. The mixture was extracted with \(\mathrm{CHCl}_{3}\), the organics were dried, concentrated and to the resulting residue ( 2.6 g ) dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (30 mL ) were added benzylamine ( \(2.17 \mathrm{~mL}, 19.85 \mathrm{mmol}\) ) and \(4 \AA\) molecular sieves ( 6 g ). The mixture was stirred at rt for 4 h then it was filtered on a short celite pad and concentrated to yield a viscous oil which was treated with \(\mathrm{NaBH}_{4}(0.83 \mathrm{~g}, 21.9 \mathrm{mmol})\) in \(\mathrm{MeOH}(25 \mathrm{~mL})\) at 0 \({ }^{\circ} \mathrm{C}\) then at rt for 1 h . The mixture was concentrated, brine was added and the aqueous extracted with \(\mathrm{CHCl}_{3}\). The organics were dried, concentrated and the residue was left at \(-25^{\circ} \mathrm{C}\) with some drops of ether. After about 2 days \(\mathbf{I}\) crystallize alone ( \(1.4 \mathrm{~g}, 27 \%\) for the 4 steps): m.p. \(97-9{ }^{\circ} \mathrm{C}\); IR (KBr) 3265, 3168, 3066, 3030, 2986, 2946, 2921, 2869, 2821, \(1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}\), \(400 \mathrm{MHz}) \delta 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.02\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.44(\mathrm{~m}, 2 \mathrm{H})\), 1.52 (br s, 1H, NH), \(1.88-1.01(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{tt}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{td}, J=10.8,4.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 18.5\left(\mathrm{CH}_{3}\right), 31.8\) \(\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 38.5(\mathrm{CH}), 40.4\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 55.5(\mathrm{CH}), 76.1(\mathrm{CH}), 126.9,128.0\), 128.4 (CHAr), 140.6 (C-ipso); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO} 220.1696\); found 220.1701.

\section*{(2RS,4RS)-4-(N-Benzyltrichloroacetamido)-3-methylcyclohexanone (9)}

To a solution of \(\mathbf{I}(700 \mathrm{mg}, 3.19 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})\) were added triethylamine \((0.67 \mathrm{ml}\), 4.79 mmol ) and trichloroacetyl chloride ( \(0.39 \mathrm{ml}, 3.51 \mathrm{mmol}\) ) dropwise at \(0^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h , water was added and the aqueous extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography ( \(\mathrm{Hex} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\) to \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 9: 1\) ) to yield the corresponding trichloroacetamide ( \(810 \mathrm{mg}, 70 \%, 2.22 \mathrm{mmol}\) ) which was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})\) and treated with Dess-Martin Periodinane ( \(1.88 \mathrm{~g}, 4.44 \mathrm{mmol}\) ) for 1 h at rt . The mixture was then washed with saturated \(\mathrm{NaHCO}_{3}\) solution then with saturated \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Hex}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\right)\) to
yield 9 ( \(726 \mathrm{mg}, 91 \%\) ): mp 92-93 \({ }^{\circ} \mathrm{C}\); IR ( NaCl ) 3089, 3064, 3031, 2970, 2935, 2870, 1716, \(1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.00\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.64(\mathrm{~m}\), \(6 \mathrm{H}), 4.54(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.11-7.42(\mathrm{~m}, 5 \mathrm{H}\), \(\mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.3\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 43.2\) \((\mathrm{CH}), 47.7\left(\mathrm{CH}_{2}\right), 57.1(\mathrm{CH}), 93.5\left(\mathrm{CCl}_{3}\right), 126.2,127.2,128.6(\mathrm{CHAr}), 136.9(\mathrm{C}-i p s o), 160.5\) (CO), 209.3 (CO); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO}_{2} 362.0476\); found 362.0476.

\section*{7. Cyclization of 9}


A mixture of \(9(50 \mathrm{mg}, 0.14 \mathrm{mmol})\) and benzylamine \((0.075 \mathrm{ml}, 0.69 \mathrm{mmol})\) was heated in a sealed tube at \(100{ }^{\circ} \mathrm{C}\) for 15 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 9: 1\right) \mathbf{1 0}\) was obtained contaminated with the other diastereomer ( \(30 \mathrm{mg}, 90 \%, 91: 9\) ).
(1RS,3RS,5RS)-6-Benzyl-3-methyl-6-azabicyclo[3.2.1]octane-2,7-dione (10)
IR ( NaCl ) 2962, 2930, 2872, 2858, 1720, \(1688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.05(\mathrm{~d}, J=\) \(\left.6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46(\mathrm{ddd}, J=13.8,10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}), 1.96(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\) 8ax), 2.26 (ddt, \(J=13.8,8,3.2,1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 2.51\) (m, 1H, H-3), 2.59 (dtd, \(J=11.6,4.8,2.8 \mathrm{~Hz}\), \(1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 3.27(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5), 4.26\) and \(4.84(2 \mathrm{~d}, J=14.8 \mathrm{~Hz}\), 1 H each, \(\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 7.25-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9\left(\mathrm{CH}_{3}\right), 36.8(\mathrm{C}-\) 4), 37.2 (C-8), \(39.6(\mathrm{C}-3), 45.3\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 54.7(\mathrm{C}-5), 57.8(\mathrm{C}-1), 128.0,128.2,128.9\) (CHAr), 136.2 (C-ipso), 171.7 (C-7), 204.3 (C-2); HRMS (ESI-TOF) \(\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}\) 244.1332; found 244.1338 .
8. Cyclization of 11




In a 10 mL vessel, a mixture of \(\mathbf{1 1}^{5}(39 \mathrm{mg}, 0.1 \mathrm{mmol})\) and pyrrolidine ( \(0.042 \mathrm{~mL}, 0.5 \mathrm{mmol}\) ) in toluene ( 0.5 mL ) was heated with stirring to \(90^{\circ} \mathrm{C}\) using microwave irradiation for 10 min . After careful chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 1\right), \mathbf{1 2 b}(7 \mathrm{mg}, 26 \%)\) and \(\mathbf{1 2 a}(15\) \(\mathrm{mg}, 55 \%\) ) were sequentially obtained.
(2RS,6SR,9aSR)-2-[ \(N\)-(Methoxycarbonyl)- N -methylamino]-tetrahydro-1H,5H-6,9a-methanopyrrolo[1,2-a]azepine-5,7(6H)-dione (12a).
IR (KBr) 2953, 2919, 2873, 1723, \(1694 \mathrm{~cm}^{-1} ; 1 \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.93-1.05(\mathrm{~m}, 2 \mathrm{H}\), \(\mathrm{H}-1\) and H-9), 2.08 (dd, \(J=12.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\) ), 2.14-2.24 (m, 1H, H-9), \(2.40(\mathrm{~d}, J=11.6\) Hz, 1H, H-10ax), 2.50-2.56 (m, 1H, H-10eq), 2.60 (dd, \(J=17.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 2.72\) (dt, \(J\) \(=17.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.26(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{H}-6), 3.43(\mathrm{dd}, J=11.6\), \(8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.50(\mathrm{dd}, J=11.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.0\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{C}-9), 35.3(\mathrm{C}-8), 37.0(\mathrm{C}-1), 41.4(\mathrm{C}-3), 44.1(\mathrm{C}-\) 10), \(53.0\left(\mathrm{CH}_{3}\right), 57.4(\mathrm{C}-2), 62.7(\mathrm{C}-6), 67.0(\mathrm{C}-9 \mathrm{a}), 156.6(\mathrm{CO}), 168.9(\mathrm{C}-5), 202.1(\mathrm{C}-7)\). HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\) 267.1339; found 267.1341.
(2RS,6RS,9aRS)-2-[ \(N\)-(Methoxycarbonyl)- \(N\)-methylamino]-tetrahydro-1H,5H-6,9a-methanopyrrolo[1,2-a]azepine-5,7(6H)-dione (12b).
IR (KBr) 2955, 2915, 2880, 1721, \(1694 \mathrm{~cm}^{-1} ; 1 \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.99\) (dd, \(J=13.2\), \(10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-9\right), 2.23(\mathrm{dd}, J=13.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 2.34(\mathrm{~d}, J=11.6\) \(\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{ax}), 2.48\) (dd, \(J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{eq}), 2.61\) (dt, \(J=18,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq})\), 2.75 (dt, \(J=18,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.07\) (br s, \(1 \mathrm{H}, \mathrm{H}-3\) ), \(3.21(\mathrm{~d}, 1 \mathrm{H}, J=4.8\) \(\mathrm{Hz}, \mathrm{H}-6), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.97(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.62(\mathrm{tdd}, J=10.4,8.8,7.6\) \(\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.4\left(\mathrm{CH}_{3}\right), 34.5(\mathrm{C}-9), 35.5(\mathrm{C}-8), 36.3(\mathrm{C}-1)\), \(42.4(\mathrm{C}-3), 43.5(\mathrm{C}-10), 52.9\left(\mathrm{CH}_{3}\right), 56.0(\mathrm{C}-2), 61.0(\mathrm{C}-6), 65.8(\mathrm{C}-9 \mathrm{a}), 156.5(\mathrm{CO}), 171.5(\mathrm{C}-\) 5), 202.1 (C-7); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\) 267.1339; found 267.1340 .



\footnotetext{
\({ }^{5}\) Diaba, F.; Martínez-Laporta, A.; Bonjoch, J. J. Org. Chem. 2014, 79, 9365-9372.
}

\section*{9. Preparation of \(\mathbf{1 3}\)}


Part 1: A mixture of 1,4-dioxaspiro[4.5]decane-8-carbaldehyde \({ }^{6}\) ( \(3.32 \mathrm{~g}, 19.5 \mathrm{mmol}\) ), benzylamine ( 2.40 mL ) and molecular sieves ( \(4 \AA, 6 \mathrm{~g}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})\) was stirred at rt for 4.5 h . The mixture was filtered on a celite pad, concentrated and treated with \(\mathrm{NaBH}_{4}(1.48 \mathrm{~g}\), 39.0 mmol ) in MeOH at \(0^{\circ} \mathrm{C}\) and at rt for 4 h . The mixture was concentrated, brine was added and the aqueous extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography ( \(\mathrm{EtOAc} / \mathrm{MeOH} 9: 1\) ) to yield the corresponding secondary amine ( \(3.46 \mathrm{~g}, 68 \%\) ). Part 2: A solution of the previous amine ( \(1 \mathrm{~g}, 3.83 \mathrm{mmol}\) ) in 2 N HCl solution \((115 \mathrm{~mL})\) was stirred at rt overnight. The mixture was basified with 2.5 N NaOH solution and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated to yield 4-[(benzylamino)methyl]cyclohexanone ( \(787 \mathrm{mg}, 94 \%\) ) which was used in the next step without further purification. Part 3: To a solution of the previous amino ketone ( \(391 \mathrm{mg}, 1.80 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) ( 3 mL ) were added successively \(\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}, 2 \mathrm{mmol})\) and trichloroacetyl chloride \((0.30 \mathrm{~mL}, 2.70 \mathrm{mmol})\) at \(0{ }^{\circ} \mathrm{C}\) then the mixture was stirred at rt for 2 h . The mixture was diluted in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\), washed with 1 M HCl solution then with brine. The organics were dried, concentrated and purified by chromatography (hexane/EtOAc 1:1) to yield trichloroacetamide \(13(605 \mathrm{mg}, 93 \%)\) as a yellowish solid: mp \(112-114{ }^{\circ} \mathrm{C}\); IR (KBr) 3031, 2934, 2860, 1713, 1675 ; \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400\) \(\mathrm{MHz}) \delta 1.37-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.45(\mathrm{~m}, 5 \mathrm{H}), 3.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\), \(\left.\mathrm{NCH}_{2}\right), 5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.22-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.2(2\) \(\left.\left.\left.\mathrm{CH}_{2}\right), 33.9(\mathrm{CH}), 40.2\left(2 \mathrm{CH}_{2}\right), 52.7 \mathrm{CH}_{2}\right), 54.2 \mathrm{CH}_{2}\right), 93.2\left(\mathrm{CCl}_{3}\right), 127.0,128.1,128.9(\mathrm{CHAr})\), 135.1 (C-ipso), 161.3 (CO), 210.8 (CO). HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO}_{2} 362.0476\); found 362.0475 .

\section*{10. Cyclization of 13}



\footnotetext{
\({ }^{6}\) Rosowsky, A.; Forsch, R. A.; Moran, R. G. J. Med. Chem. 1989, 32, 709-715.
}

\section*{3-Benzyl-5-chloro-3-azabicyclo[4.3.1]dec-5-ene-4,7-dione (14)}

A mixture of \(\mathbf{1 3}(100 \mathrm{mg}, 0.27 \mathrm{mmol})\) and pyrrolidine \((0.11 \mathrm{~mL}, 1.38 \mathrm{mmol})\) in toluene \((0.1\) \(\mathrm{mL})\) was heated at \(100^{\circ} \mathrm{C}\) for 15 min in a sealed tube. After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 95: 5\) ) 14 was obtained as a white solid ( \(47 \mathrm{mg}, 59 \%\) ): IR ( KBr ) 3061, 3031, 2944, 2884, 1718, \(1652 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.56-1.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 1.96(\mathrm{dtd}\), \(J=14.4,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.25(\mathrm{dd}, J=12.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.59\) (ddd, \(J=12.8,4,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-10\right), 3.34\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2\right), 4.47\) \(\left(\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.89\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.30-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 26.4\) (C-9), 34.4 (C-8), 39.0 (C-1), 40.8 (C-10), 49.4 (C-2), 50.9 ( \(\mathrm{CH}_{2} \mathrm{Ar}\) ), 118.8 (C-5), 128.1, 128.6, 129.0 (CHAr), 136.6 (C-ipso), 140.4 (C-6), 164.9 (C-4), 198.2 (C-7); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNO}_{2}\) 290.0942; found 290.0953.

\section*{11. Reaction of \(\mathbf{1 5}\) with pyrrolidine}


A mixture of \(\mathbf{1 5}^{7}(70 \mathrm{mg}, 0.27 \mathrm{mmol})\) and pyrrolidine \((0.033 \mathrm{ml}, 0.40 \mathrm{mmol})\) in toluene \((0.05\) \(\mathrm{mL})\) was heated in a sealed tube at \(100^{\circ} \mathrm{C}\) for 15 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathbf{1 6}\) was isolated as a yellowish oil ( \(37 \mathrm{mg}, 65 \%\) ): IR ( NaCl ) 2955, 2875, \(1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\), \(400 \mathrm{MHz}) \delta 1.83-1.95(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{dt}, J=14.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{ddd}, J\) \(=15.4,10,6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.45(\mathrm{~m}, 4 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.9\) \(\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 30.9\left(2 \mathrm{CH}_{2}\right), 37.3\left(2 \mathrm{CH}_{2}\right), 45.8\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 68.6(\mathrm{CH}), 154.2(\mathrm{CO})\), 210.4 (CO); HRMS (ESI-TOF) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3} 212.1281\); found 212.1274.

\footnotetext{
\({ }^{7}\) Kleinpeter, E.; Heydenreich, M.; Koch, A.; Linker, T. Tetrahedron 2012, 68, 2363-2373.
}


\footnotetext{
VNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN687L26
Nom: FAIZA
Nom: FAIZA DIABA
Data: 20/04/15 / Ope. : F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul
}



VNMRS400F / Num. Inv. 205984
cdc13/Temp: 25C / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: JAM295-F2
Nom: JUAN-ANDRES MONTIEL ACHONG
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(04 / 05 / 15 /\) Ope.: J.MoNTIEL
Experiment: s2pul
Pulse Sequence: s2pul




M400F / Num. Inv. 1009191
CDC13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM426-ULTX
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(14 / 04 / 15\) / Ope.: J MONTTET
Data: 14/04/15 / Ope.: J.MONTIEL
Pulse Sequence: s2pul

```

पNMRS400F / Num. Inv. 205984
cac13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM426-ULTX
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: $15 / 04 / 15$ / Ope.: J.MONTIEL
Experiment: s2pul
Pulse Sequence: s2pul

```


```

VNMRS400F / Num. Tnv. 205984
cde13 / Temp: 25c / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN698CRU
Nom: FAIZA DIABA
Data: 29/04/15
: 29/04/15 / Ope.: f.diaba
Experiment: s2pul
Pulse Sequence: s2pul

```



VNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25 C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN698CRYS
Nom: FAIZA DIABA
Data: \(03 / 05 / 15 /\) Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul


VNMRS400F / Num. Tnv. 205984
cdc13/Temp: \(25 \mathrm{Cc} / \mathrm{N}\). Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN698CRYS
Nom: FAIZA DIABA
Data: \(03 / 05 / 15 /\) ope.:
Experiment: s2pul
Pulse Sequence: s2pul



H1/Mercury-400F
H1 / Mercury-400F
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM26X-81
Ssuari: san / Mostra: JAM26X-81
Nom: FAIZA DIABA
Data: \(10 / 10 / 13 /\) Ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul



M400F / Num.Inv. 1009191
M400F / Num. Tnv. 1009191
cdc13 / Temp: 25C / N.Reg: xxxxxxxxxx
cdc13 / Temp: 25c / N.Reg: Xxxxxxx
Usuari: san / Mostra: TAN688-C2-5
Usuari: san / Mostra: TAN688-C2-5
Nom: FAIZA DIABA
Data: 14/05/15 / Ope.: F.DIABA
Pulse Sequence: s2pul


M400F / Num.Inv. 1009191
cdc13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN688-C2-5
Nom: FAIZA DIABA
Data: \(14 / 05 / 15\) / ope.: F.DIABA
Pulse Sequence: s2pul
x (.)

Data: \(14 / 05 / 15\) / Ope.: F.DIABA



M400F / Num. Inv. 1009191
CDC13 / Temp: 25 C / N.Reg: XXXXXXXXX
Usuari: san / Mostra: XJAM467-C2-7
Usuari: san / Mostra: XJAM467-C2
Nom: FAIZA DIABA
Data: \(16 / 06 / 15\) / Ope.: F.DIABA
Dul 16/06/15 / Opa
Pulse Sequence: s2pul


M400F / Num. Inv. 1009191
CDC13 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: xxxxxxxxxx
Usuari: san / Mostra: XJAM467-C2-7
Nom: FAIZA DIABA
Data: \(16 / 06 / 15 /\) Ope.: F.DIABA
Pulse Sequence: s2pul



VNMRS400F / Num.Inv. 205984
cdc13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM432-55
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 17/04/15 / ope.: J.MONTIEL
Experiment: s2pul
Pulse Sequence: s2pul



M400F / Num. Inv. 1009191
cdc13 ( Terp: 25C / Nis
cdc13 / Temp: 25 C / N.Reg: xxxxxx
Usuari: san / Mostra: xtan700-21
Nom: FAIZA DIABA
Data: \(12 / 05 / 15 /\) ope.:
Pulse Sequence: s2pul


M400F / Num.Inv. 1009191
cdc13 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: xxxxxxxxxx
Usuari: san / Mostra: xtan700-21
Nom: FAIZZA DIABA
Data: \(12 / 05 / 15\) / Ope.: F.DIABA
Pulse Sequence: s2pul




\footnotetext{
H1 / 400 Temp: 25C / N.Reg: xxxxxxxxx
Usuari: san / Mostra: JAM202-75x
Nom: JUAN-ANDRES MONTIEL ACHONG
a: \(23 / 06 / 14\) / Ope.: J.MONTTEL
Experiment: s2pul
Pulse Sequence: s2pul
}

ざ \({ }^{\circ}\)


H1 / 400
cdc13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM218-45x
Nom: JUAN-ANDRES MONTEL
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 17/09/14 / Ope.: J.MONTIEI
Experiment: s2pul
Pulse Sequence: s2pul


\footnotetext{
\(\mathrm{H} 1 / 400\)
cdc13
cac13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM218-45x
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 17/09/14 / Ope.: J.MONTIET
Experiment: s2pul
Pulse Sequence: \(\mathbf{s 2 p u}\)
}
(




Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(16 / 09 / 14 /\) Ope.: J.MONTIEL
Data: 16/09/14 / Ope.: J. MONTIEL
Experiment: s2pul
Pulse Sequence: s2pul


\footnotetext{

Usuari: san / Mostra: JAM217-20x
Nom: JUAN-ANDRES MONTIEL ACHONG
a: 16/09/14 / Ope.: J.MONTIEL
Experiment: s2pul
Pulse Sequence: s2pul
}



H1 / 400
cd3od / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: TAN641s
Nom: FAIZA DIABA
Data: \(23 / 10 / 14\) / ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul


H1 / 400
cd3od / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: tan641s
Nom: FAIZA DIABA
Data: \(23 / 10 / 14 /\) Ope.:
ta: 23/10/14 / Ope.: F.DIABA
Pulse Sequence: s2pul


VNMRS400F / Num.Inv. 205984
cdc13 / Temp: 25C / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: TAN678CRYSTALS
Nom: FAIZA DIABA
Data: \(24 / 02 / 15\) / Ope.: F.DIABA
Data: \(24 / 02 / 15\) / ope.: F.DIABA
eriment: s
Pulse Sequence: s2pul





UNMRS400F / Num. Inv. 205984
cdc13/Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM500-45
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 28/05/15 / Ope.: J.MONTIEL
Pulse Sequence: s2pu.



VNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM500-45
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 28/05/15 / Ope.: Ј. MONTIEL
Pulse Sequence: s2pul



> M400F / Num. Inv. 1009191 cdc13 / Temp: 25c / N.Reg: xxxxxxxxx Usuari: San / Mostra: X717-Y-30 Nom: FAAZA DIABA Data: 11/06/15/ Ope.: F.DIABA Pulse Sequence: s2pul


M400F / Num. Inv. 1009191
cdc13 / Temp: 25 C / N.Reg: xxxxxxxxxx
Nom: FAIZA DIABA
Nom: FAIZA DIABA
Data: \(11 / 06 / 15\) / ope.: F.DIABA
Pulse Sequence: s2pul
\begin{tabular}{|c|}
\hline \(\Gamma^{77.311}\) \\
\hline \(\bigcirc 76.679\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & ppm \\
\hline
\end{tabular}


M400F / Num. Tnv. 100919
cdc13 / Temp: \(25 c /\).
cdc13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: xtan717-Y-20
Nom: FAIZA DIABA
Data: \(11 / 06 / 15 / o\)
Pulse Sequence: s2pul



M400F / Num.Inv. 1009191
cdc13 / Temp: 25 C / N. Reg: xxxxxxxxxx
Usuari: san / Mostra: xTAN717-Y-20
Nom: FAIZA DIABA
Data: \(11 / 06 / 15\) / Ope.: F. DIABA
Pulse Sequence: s2pul
\(\frac{\complement^{77.321}}{\substack{76.000}}\)



VNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25 C / N. Reg: Xxxxxxxxxx
Usuari: san / Mostra: JAM170-SM
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(22 / 06 / 15\) / Ope.: J. MONTIEL
Pulse Sequence: s2pul




H1 / 400
cdc13 / Temp: \(25 C /\) N. Reg: xxxxxxxxxx
Usuari: san / Mostra: XJAM191-14
Nom: FAIZA DIABA
Data: 08/06/14 / ope.: F.DIABA
Experiment: s2pul
Pulse Sequence: s2pul
(in


\(\mathrm{H} 1 / 400\)
cdc13/


\footnotetext{
\(\mathrm{H} 1 / 400\)
cdc13 \(/ 4\)
cdc13 / Temp: Ambient / N.Reg: xxxxxxxxxx
Cdc13 (Temp: Ambient/N.Reg:
Usuari: san / Mostra: JAM52-26
Nom: JUNN-ANDRES MONTIEL ACHONG
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(31 / 03 / 14\) / Ope.: J.MONTIEL
ta: \(31 / 03 / 14\) / Ope.
Experiment: s2pul
Pulse Sequence: s2pul
}


\section*{X-Ray Crystallographic Data}

CCDC 1408342-1408343 contain the supplementary cristallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request /cif

\section*{X-Ray Crystallographic Data for compound 12a}


Table 1. Crystal data and structure refinement for 12a
\begin{tabular}{|c|c|}
\hline Identification code & mo_D43TB103_0m_a \\
\hline Empirical formula & C13 H18 N2 O4 \\
\hline Formula weight & 266.29 \\
\hline Temperature & 100(2) K \\
\hline Wavelength & 0.71073 Å \\
\hline Crystal system & Monoclinic \\
\hline Space group & P 21/n \\
\hline Unit cell dimensions & \[
\begin{array}{ll}
\mathrm{a}=9.4119(2) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=7.6136(2) \AA & \beta=104.1660(10)^{\circ} . \\
\mathrm{c}=18.3824(5) \AA & \gamma=90^{\circ} .
\end{array}
\] \\
\hline Volume & 1277.20(6) \(\AA^{3}\) \\
\hline Z & 4 \\
\hline Density (calculated) & \(1.385 \mathrm{Mg} / \mathrm{m}^{3}\) \\
\hline Absorption coefficient & \(0.103 \mathrm{~mm}^{-1}\) \\
\hline F(000) & 568 \\
\hline Crystal size & \(0.336 \times 0.206 \times 0.178 \mathrm{~mm}^{3}\) \\
\hline Theta range for data collection & 2.285 to \(30.513^{\circ}\). \\
\hline Index ranges & \(-13<=\mathrm{h}<=12,-10<=\mathrm{k}<=9,-20<=\mathrm{l}<=26\) \\
\hline Reflections collected & 3200 \\
\hline
\end{tabular}

Independent reflections
Completeness to theta \(=25.000^{\circ}\)
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on \(\mathrm{F}^{2}\)
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
\(2481[\mathrm{R}(\mathrm{int})=0.0372]\)
60.1 \%

Semi-empirical from equivalents
0.7461 and 0.4606

Full-matrix least-squares on \(\mathrm{F}^{2}\)
2481/0/174
0.895
\(\mathrm{R} 1=0.0568, \mathrm{wR} 2=0.1220\)
\(\mathrm{R} 1=0.0905, \mathrm{wR} 2=0.1328\)
n/a
0.284 and -0.293 e. \(\AA^{-3}\)

Table 2. Atomic coordinates ( \(\mathrm{x} 10^{4}\) ) and equivalent isotropic displacement parameters \(\left(\AA^{2} \mathrm{x}\right.\) \(10^{3}\) ) for mo_D43TB 103_0m_a. U(eq) is defined as one third of the trace of the orthogonalized \(\mathrm{u}^{\mathrm{ij}}\) tensor.
\begin{tabular}{lrrrr}
\hline & & & \\
\hline & x & y & z & \(\mathrm{U}(\mathrm{eq})\) \\
\hline & & & & \\
\hline \(\mathrm{O}(1)\) & \(785(2)\) & \(9039(2)\) & \(4229(1)\) & \(29(1)\) \\
\(\mathrm{O}(2)\) & \(4468(2)\) & \(11574(2)\) & \(4113(1)\) & \(32(1)\) \\
\(\mathrm{O}(3)\) & \(10084(2)\) & \(5308(2)\) & \(3197(1)\) & \(24(1)\) \\
\(\mathrm{O}(4)\) & \(9023(2)\) & \(4414(2)\) & \(4112(1)\) & \(22(1)\) \\
\(\mathrm{N}(1)\) & \(4987(2)\) & \(8704(2)\) & \(3864(1)\) & \(16(1)\) \\
\(\mathrm{N}(2)\) & \(8056(2)\) & \(6683(3)\) & \(3371(1)\) & \(21(1)\) \\
\(\mathrm{C}(1)\) & \(3682(2)\) & \(5984(3)\) & \(4052(1)\) & \(17(1)\) \\
\(\mathrm{C}(2)\) & \(2802(2)\) & \(7050(3)\) & \(4508(1)\) & \(19(1)\) \\
\(\mathrm{C}(3)\) & \(1923(2)\) & \(8547(3)\) & \(4096(1)\) & \(20(1)\) \\
\(\mathrm{C}(4)\) & \(2548(2)\) & \(9465(3)\) & \(3504(1)\) & \(18(1)\) \\
\(\mathrm{C}(5)\) & \(2850(2)\) & \(8020(3)\) & \(2965(1)\) & \(17(1)\) \\
\(\mathrm{C}(6)\) & \(4182(2)\) & \(7158(3)\) & \(3482(1)\) & \(16(1)\) \\
\(\mathrm{C}(7)\) & \(5341(2)\) & \(6289(3)\) & \(3145(1)\) & \(19(1)\) \\
\(\mathrm{C}(8)\) & \(6802(2)\) & \(6737(3)\) & \(3708(1)\) & \(19(1)\) \\
\(\mathrm{C}(9)\) & \(6578(3)\) & \(8562(3)\) & \(4047(2)\) & \(27(1)\) \\
\(\mathrm{C}(10)\) & \(4108(3)\) & \(10105(3)\) & \(3865(1)\) & \(22(1)\) \\
\(\mathrm{C}(11)\) & \(8105(3)\) & \(7911(4)\) & \(2768(2)\) & \(33(1)\) \\
\(\mathrm{C}(12)\) & \(9129(2)\) & \(5463(3)\) & \(3538(1)\) & \(17(1)\) \\
\(\mathrm{C}(13)\) & \(10019(3)\) & \(2946(3)\) & \(4247(2)\) & \(28(1)\) \\
\hline
\end{tabular}


Table 1. Crystal data and structure refinement for mo_D43TB83_0ma_a.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
mo_D43TB83_0ma_a
C16 H16 Cl N O2
289.75

100(2) K
\(0.71073 \AA\)
Orthorhombic
Pna 21
\(a=7.9657(2) \AA \quad \alpha=90^{\circ}\).
\(\mathrm{b}=14.5166(3) \AA\)
\(\beta=90^{\circ}\).
\(\mathrm{c}=12.0126(3) \AA\)
\(\gamma=90^{\circ}\).
1389.08(6) \(\AA^{3}\)

4
\(1.385 \mathrm{Mg} / \mathrm{m}^{3}\)
\(0.275 \mathrm{~mm}^{-1}\)
608
\(0.505 \times 0.337 \times 0.224 \mathrm{~mm}^{3}\)
2.201 to \(30.539^{\circ}\).
\(-9<=\mathrm{h}<=11,-20<=\mathrm{k}<=16,-16<=\mathrm{l}<=16\)
4291

Independent reflections
Completeness to theta \(=25.242^{\circ}\)
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on \(\mathrm{F}^{2}\)
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
\(3139[\mathrm{R}(\mathrm{int})=0.0232]\)
99.8 \%

Semi-empirical from equivalents
0.7461 and 0.6682

Full-matrix least-squares on \(\mathrm{F}^{2}\)
3139 / 1 / 181
1.098
\(\mathrm{R} 1=0.0467, \mathrm{wR} 2=0.1283\)
\(\mathrm{R} 1=0.0493, \mathrm{wR} 2=0.1370\)
0.02(4)
n/a
1.000 and -0.631 e. \(\AA^{-3}\)

Table 2. Atomic coordinates ( \(\times 10^{4}\) ) and equivalent isotropic displacement parameters \(\left(\AA^{2} \mathrm{x}\right.\) \(10^{3}\) )
for mo_D43TB83_0ma_a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
\(\qquad\)
\begin{tabular}{lrlll}
\(\overline{\mathrm{Cl}(1)}\) & \(4431(1)\) & \(6960(1)\) & \(3593(1)\) & \(43(1)\) \\
\(\mathrm{O}(1)\) & \(2462(2)\) & \(6473(1)\) & \(6000(2)\) & \(22(1)\) \\
\(\mathrm{O}(2)\) & \(6843(2)\) & \(5313(2)\) & \(2716(2)\) & \(26(1)\) \\
\(\mathrm{N}(1)\) & \(8298(2)\) & \(5708(2)\) & \(4287(2)\) & \(16(1)\) \\
\(\mathrm{C}(1)\) & \(3939(3)\) & \(6269(2)\) & \(6051(2)\) & \(16(1)\) \\
\(\mathrm{C}(00 \mathrm{~K})\) & \(5119(3)\) & \(6664(2)\) & \(6922(2)\) & \(20(1)\) \\
\(\mathrm{C}(2)\) & \(6659(3)\) & \(6070(2)\) & \(7258(2)\) & \(22(1)\) \\
\(\mathrm{C}(3)\) & \(5942(3)\) & \(4954(2)\) & \(5762(2)\) & \(17(1)\) \\
\(\mathrm{C}(4)\) & \(7394(3)\) & \(5483(2)\) & \(6308(2)\) & \(18(1)\) \\
\(\mathrm{C}(5)\) & \(4879(3)\) & \(5695(2)\) & \(5233(2)\) & \(15(1)\) \\
\(\mathrm{C}(6)\) & \(5337(3)\) & \(6019(2)\) & \(4225(2)\) & \(18(1)\) \\
\(\mathrm{C}(7)\) & \(6894(3)\) & \(5643(2)\) & \(3657(2)\) & \(18(1)\) \\
\(\mathrm{C}(8)\) & \(8279(3)\) & \(6092(2)\) & \(5428(2)\) & \(18(1)\) \\
\(\mathrm{C}(9)\) & \(9850(3)\) & \(5242(2)\) & \(3907(2)\) & \(19(1)\) \\
\(\mathrm{C}(10)\) & \(9998(3)\) & \(4309(2)\) & \(4461(2)\) & \(18(1)\) \\
\(\mathrm{C}(11)\) & \(10880(3)\) & \(4211(2)\) & \(5452(2)\) & \(21(1)\) \\
\(\mathrm{C}(12)\) & \(10842(3)\) & \(3379(2)\) & \(6038(3)\) & \(25(1)\) \\
\(\mathrm{C}(13)\) & \(9924(4)\) & \(2639(2)\) & \(5618(3)\) & \(27(1)\) \\
\(\mathrm{C}(14)\) & \(9085(4)\) & \(2724(2)\) & \(4610(3)\) & \(26(1)\) \\
\(\mathrm{C}(15)\) & \(9123(3)\) & \(3554(2)\) & \(4031(3)\) & \(23(1)\)
\end{tabular}

\author{
Intramolecular Radical Non-Reductive Alkylation of Ketones via Transient Enamines
}

Chem. Comm. 2016, 52, 14031-14034.

\section*{Normorphans vs Morphans}

Synthesis of normorphans from trichloroacetamides


Objective 4: synthesis of morphans from dichloroacetamides


\section*{Scheme 5.1}

In the previous chapter, we reported a new route for the synthesis of normorphans from trichloroacetamides through the corresponding enamines. The process involves a nucleophilic substitution induced by the enamine formed in situ upon the amide carbonyl group. This result prevented us from continuing our radical cyclizations upon electron-donating substituted alkenes. Nevertheless, we envisioned that replacing one of chlorine atoms of the trichloromethyl group by a hydrogen would guarantee the formation of the enamine and thus suppress the nucleophilic attack on the acetamide allowing us to proceed with our radical cyclizations.

Table 2.1. Synthesis of morphan 3a


After ensuring formation of the enamine by treatment of 1a with pyrrolidine (1 equiv) under reflux of benzene for only 5 min , the mixture was submitted to standart radical conditions in which TTMSS (1.1 equiv) and AIBN (1 equiv) were added slowly ( 30 min ). After an additional hour and purification by chromatography, we were glad to find that not only the cyclization had taken place on the enamine double bond, but the ketone functionality was preserved, providing morphan 3a in moderate yield (Table 1, entry 1). Increasing the quantity of both pyrrolidine and TTMSS to 2 equiv. increased the yield slightly to \(45 \%\) (entry 2), and a similar yield was obtained when all the reagents were put together in a one-pot reaction after 4 h of reflux (entry 3 ). The reaction time was dramatically reduced to \(5-10 \mathrm{~min}\) under microwave heating at \(80{ }^{\circ} \mathrm{C}\) (entries 4 and 5 ) and the best result ( \(77 \%\) ) was obtained with 5 equiv of pyrrolidine (entry
6). Running the reactions with a lower loading of either TTMSS or AIBN, or both, provided 3a with lower yields, 54-65\%, (entries 7-9), while switching to toluene under the same optimized conditions significantly reduced the yield (entry 11). Curiously, a better yield was obtained when the reaction was carried out using toluene as a solvent but at a lower temperature (entry 12).


Scheme 5.2.
Regarding the mechanism leading to \(\mathbf{3 a}\), in order to rule out the ionic pathway we performed some control experiments using the best conditions previously achieved (table 5.1, entry 5), and by omitting in the reaction vessel: a) AIBN; b) TTMSS and c) both AIBN/TTMSS. In all cases morphan 4 was isolated in low yields (5-10\%), with the partial recovery of starting material, suggesting that even if the ionic pathway might ensue, the radical pathway proposed in scheme 5.2. is more favored for this reaction.

Thus, after the generation of enamine 2, the chloromethylcarbamoyl radical I (generated in the presence of AIBN and TTMSS) adds to the electronrich double bond and leads to \(\alpha\)-aminoalkyl radical II, which can be oxidized in
situ to the corresponding iminium salt III and hydrolyzed during purification. The iminium salt could also be formed through a chlorine atom-transfer to the \(\alpha\)-amino radical, followed by elimination of the chlorine atom at C-6. Nevertheless, when the reaction was carried out in deuterated benzene, the \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra of the reaction crude showed signals corresponding to a cyclization intermediate different from those of \(\mathbf{2 a}\). In particular, the presence of a proton at \(\delta 3.88\) and signals at \(\delta 88.1\) for the corresponding methine carbon and a quaternary carbon at \(\delta 145.9\) for C-7 and C-6, respectively, is in accordance with those expected from enamine IV. The latter is formed by deprotonation of iminium III promoted by pyrrolidine. Indeed, after completion of the reaction, a white precipitate corresponding to the conjugated acid of pyrrolidine was isolated. To confirm the structure of IV, ketone 3a was treated with 1 equiv of pyrrolidine in deuterated benzene in an NMR tube. After only 15 min, signals belonging to IV ( \(40 \%\) conversion) were observed. Additionally, the reaction mixture was submitted to reduction using \(\mathrm{NaBH}_{4}\) in methanol in the same reaction vessel, and after purification, amine 5 was isolated alone in \(61 \%\) yield.

Table 5.2. Synthesis of morphans 3b, 3d-3f
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline &  & AIB & TMSS &  &  & \begin{tabular}{l}
'Me \\
sone
\end{tabular} \\
\hline 1 & \(R^{1}\) & \(R^{2}\) & Method & AIBN (eq) & Temp. ( \({ }^{\circ} \mathrm{C}\) ) & Yield (\%) \\
\hline 1b & Me & Cl & B & 1 & 60 & 71 \\
\hline 1b & Me & Cl & C & 1 & 60 & 36 \\
\hline 1d & Pr & Cl & B & 1 & 60 & 38 \\
\hline 1d & Pr & Cl & C & 0.25 & 60 & 45 \\
\hline 1 e & \(t \mathrm{Bu}\) & Cl & B & 1 & 80 & 25 \\
\hline 1 e & \(t \mathrm{Bu}\) & Cl & C & 0.25 & 60 & 70 \\
\hline 1 e & \(t \mathrm{Bu}\) & Cl & \(\mathrm{C}^{\text {a }}\) & 0.25 & 60 & 58 \\
\hline 1 f & Bn & Me & \(\mathrm{C}^{\text {b }}\) & 1 & 60 & 40 \\
\hline \(1 f^{c}\) & \(B n\) & Me & \(\mathrm{C}^{\text {b }}\) & 1 & 60 & 26 \\
\hline 1 g & Bn & H & B or C & 1 & 80 or 60 & - \\
\hline \multicolumn{7}{|l|}{Method B: \(\mu \mathrm{W}\), Benzene, 5 min , TTMSS (2eq); Method C: \(\mu \mathrm{W}\), Toluene, 5 min , TTMSS (2eq) \({ }^{a_{t}}\)-BuOH used as solvent. \({ }^{b_{1}}\) equiv. TTMSS. \({ }^{c}{ }_{\mathrm{Br} \text { instead of } \mathrm{Cl}}\)} \\
\hline
\end{tabular}

The best reaction conditions were then applied, with slight modifications to dichloroacetamides 1b-1e where the benzyl group was substituted by methyl, allyl, isopropyl, and \(t\)-butyl groups respectively. In all cases, morphan derivatives \(\mathbf{2 b} \mathbf{- 2 e}\) were obtained in moderate to good yields (table 5.2), except in the case of 1c where the 5 -exo cyclization on the allyl chain competes with the 6 -endo process obtaining an inseparable mixture of compounds (table 5.3, entry 1). Only when a substoichiometric quantity of AIBN was used, morphan 3c was isolated in a poor yield (entry 2). As expected, when pyrrolidine was omitted from the reaction mixture leaving the alkene chain alone with the chlorocarbamoil radical, pyrrolidinone 6 was isolated in an acceptable yield (entry 3). The reaction was also extended to chloro- and bromopropanamide \(\mathbf{1 f}\) and \(\mathbf{1 g}\) for the synthesis of the corresponding morphan related to kopsone. In both cases morphan 3 f was isolated as a unique diastereomer with the right relative configuration in an acceptable yield (table 5.2).

Table 5.3. Synthesis of \(\mathbf{3 c}\) and 6


Synthesis of the tricyclic core of FR901483
This work

(2.5:1, epimeric ratio)

Previous work


Scheme 5.3.

As an application of the methodology developed herein we carried the reaction with azaspirodichloroacetamide 7 for the synthesis of an advanced intermediate of the potent immunosuppressant FR901483. The best results were obtained using toluene as a solvent and at \(60{ }^{\circ} \mathrm{C}\) (conditions C ) obtaining the diazatricyclic derivative 8 with \(34 \%\) of yield together with its epimer at C-2 (14\%). It's worth noting that the same product was obtained in a previous work from the corresponding trichloroacetamidocyclohexanone \(\mathbf{V}\) using a three steps sequence involving: i) preparation of the enol acetate, ii) ATRC in the presence of Grubbs II catalyst, iii) reduction of the dichloro derivative using zinc (Scheme 5.3).


Scheme 5.4.
Additionally, we found that the reaction worked quite well for the preparation of the 7 -membered ring derivative 11 from dichloroacetamide 10. The best results were obtained with benzene as a solvent and using the original optimized conditions. Although the 3-azabicyclo[4.3.1]decane ring is embedded in numerous natural products and some synthetic pharmacologically active compounds, there are few synthetic procedures for this bridged azabicyclic system (Scheme 5.4).

\section*{Radical reaction from trichloroacetamides 12}


Hypothetical mechanim for the formation of 13


Scheme 5.5.

With these results in hand, we were curious to check our reaction conditions on trichloroacetamides 12 which readily react with pyrrolidine conducing to the corresponding normorphans. When trichloroacetamides 12 were treated with pyrrolidine in the presence of AIBN and TTMSS in benzene at \(80{ }^{\circ} \mathrm{C}\), morphans 3 were obtained with low to acceptable yields, normorphans 9 being isolated as traces. Even this shows that the formation of the radical and its addition to the enamine is faster than addition of the enamine on the carbonyl group, with substrates 12a, 12b, and 12d a new type of compounds 13 was isolated resulting from a Smiles rearrangement through a four membered ring after aromatization (Scheme 5.5).

\author{
Intramolecular Radical Non-Reductive Alkylation of Ketones via Transient Enamines. \\ Faïza Diaba, Juan A. Montiel, Josep Bonjoch. Chem. Comm. 2016, 52, 14031-14034.
}

Cite this: Chem. Commun., 2016, 52, 14031

Received 17th October 2016,
Accepted 9th November 2016
DOI: 10.1039/c6cc08356k
www.rsc.org/chemcomm

\title{
Intramolecular radical non-reductive alkylation of ketones via transient enamines \(\dagger\)
}

\author{
Faïza Diaba,* Juan A. Montiel and Josep Bonjoch*
}
Enamines as radical acceptors:


Enamines as pro-radical cations:
d) Ketone alkylation/ Oxidation of


Scheme 1 Radical reactions involving enamines.
\(\alpha\)-carbamoylation of the ketone in a process in which the initially formed enamine induced a substitution in the amide carbonyl group. \({ }^{11}\) This result prevented us from continuing the radical cyclization studies from trichloroacetamides involving electron-donating substituted alkenes \({ }^{12,13}\) (Scheme 2). However, we envisioned that replacing the trichloroacetamide with a dichloroacetamide would suppress the nucleophilic attack on


Scheme 2 Radical cyclization with enamines.
the acetamide group. Here, we report an efficient one-pot procedure for intramolecular \(\alpha\)-alkylation of ketone-tethered dichloroacetamides (e.g. 1) based on a radical-polar crossover reaction in the presence of AIBN and \(\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiH}\) (TTMSS) under microwave activation, where an in situ generated enamine (e.g. 2) is the radical acceptor in the cyclization process (Scheme 2).

We began by preparing enamine 2 from ketone 1a with pyrrolidine ( 1 equiv.) in refluxing benzene (for only 5 min ) under standard radical reaction conditions, in which TTMSS (1.1 equiv.) and AIBN ( 1 equiv.) were added slowly ( 30 min ). After an additional hour and workup, we were encouraged to find that not only had the cyclization taken place on the enamine double bond, but the ketone functionality was also preserved,

Table 1 Synthesis of morphan 3a
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline Entry & Method \({ }^{\text {a }}\) & Amine (equiv.) & TTMSS (equiv.) & \begin{tabular}{l}
AIBN \\
(equiv.)
\end{tabular} & \[
\begin{aligned}
& \text { Yield }^{b} \\
& (\%)
\end{aligned}
\] \\
\hline 1 & A & 1 & 1.1 & 1 & 32 \\
\hline 2 & A & 2 & 2 & 1 & 45 \\
\hline 3 & A & 2 & 2 & 1 & \(39^{\text {c }}\) \\
\hline 4 & B & 2 & 2 & 1 & \(47^{d}\) \\
\hline 5 & B & 2 & 2 & 1 & 39 \\
\hline 6 & B & 5 & 2 & 1 & 77 \\
\hline 7 & B & 5 & 2 & 0.5 & 60 \\
\hline 8 & B & 5 & 1.2 & 1 & 65 \\
\hline 9 & B & 5 & 1.5 & 0.5 & 54 \\
\hline 10 & B & 5 & 2 & 1 & \(57^{e}\) \\
\hline 11 & C & 5 & 2 & 1 & \(42^{f}\) \\
\hline 12 & C & 5 & 2 & 1 & 75 \\
\hline
\end{tabular}
\({ }^{a}\) Unless otherwise noted, the reaction was carried out from 200 mg of 1a. Method A: the reaction was carried out in benzene ( 4 mL ) under reflux for 1 h after addition of a solution of TTMSS and AIBN over 30 min . Method B: \(\mu \mathrm{W}, 80^{\circ} \mathrm{C}\) in benzene \((1 \mathrm{~mL})\) for 5 min . Method \(\mathrm{C}: ~ \mu \mathrm{~W}\), \(60{ }^{\circ} \mathrm{C}\) in toluene ( 1 mL ) for \(5 \mathrm{~min} .{ }^{b}\) Yields refer to pure compounds isolated by flash chromatography. \({ }^{c}\) 1a and all the reagents were put together in a one-pot reaction under reflux of the solvent for \(4 \mathrm{~h} .{ }^{d}\) Time reaction: \(10 \mathrm{~min} .{ }^{e}\) At \(60{ }^{\circ} \mathrm{C} .{ }^{f}\) At \(80{ }^{\circ} \mathrm{C}\).
providing morphan 3a in moderate yield (Table 1, entry 1). Increasing the quantity of both pyrrolidine and TTMSS to 2 equiv. increased the yield slightly to \(45 \%\) (entry 2 ), and a similar yield was obtained when all the reagents were put together in a one-pot reaction after 4 h at reflux (entry 3). The reaction time was dramatically reduced to \(5-10 \mathrm{~min}\) under microwave heating at \(80^{\circ} \mathrm{C}\) (entries 4 and 5 ) and the best results ( \(75-80 \%\) ) were obtained with 5 equiv. of pyrrolidine (entry 6 ). Running the reactions with a lower loading of either TTMSS or AIBN, or both, provided 3a with lower yields, 54-65\%, (entries 7-9), while switching to toluene under the same optimized conditions significantly reduced the yield (entry 11). Curiously, a better yield was obtained when the reaction was carried out using toluene as a solvent but at a lower temperature (compare entries 10 and 11 with 12).

Before postulating a mechanism for the cyclization, the following blank experiments were performed using the best reaction conditions (Table 1, entry 6): (i) without AIBN; (ii) without TTMSS, and (iii) with pyrrolidine alone, in order to discard an ionic mechanism. In all cases, minor amounts ( \(5-10 \%\) ) of morphan 4 were isolated (see Scheme 3), and the starting material was partially recovered. This suggests that although a competitive ionic process might occur, the radical pathway proposed in Scheme 3 would be more favored.

The formation of 3 a could be explained by the following scenario. After the generation of enamine 2 , addition of the chloromethylcarbamoyl radical I (generated in the presence of AIBN and TTMSS) to the electron-rich double bond occurs and leads to the formation of \(\alpha\)-aminoalkyl radical II, which can be oxidized in situ \({ }^{14}\) to the corresponding iminium salt III and

Less than 8\% heating in benzene



Scheme 3 Proposed radical cyclization pathway.
hydrolyzed during purification. The iminium salt could also be formed through a chlorine atom-transfer to the \(\alpha\)-amino radical, followed by elimination of the chlorine atom at C-6. \({ }^{15}\) Nevertheless, when the reaction was carried out in deuterated benzene, the \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra of the reaction crude showed signals corresponding to a cyclization intermediate different from those of 3a. In particular, the presence of a proton at \(\delta 3.88\) and signals at \(\delta\) 88.1 for the corresponding methine carbon and a quaternary carbon at \(\delta 145.9\) for C-7 and C-6, respectively, is in accordance with those expected from enamine IV. The latter is formed by deprotonation of iminium III promoted by pyrrolidine. Indeed, after completion of the reaction, a white precipitate corresponding to the conjugated acid of pyrrolidine was isolated. To confirm the structure of \(\mathbf{I V}\), ketone 3a was treated with 1 equiv. of pyrrolidine in deuterated benzene in an NMR tube. After only 15 min , signals corresponding to IV ( \(40 \%\) conversion) were observed. Additionally, the reaction mixture was submitted to reduction using \(\mathrm{NaBH}_{4}\) in methanol in the same reaction vessel, and after purification amine 5 alone was isolated in \(61 \%\) yield. \({ }^{16}\)

After slight modifications, the best reaction conditions were then applied to dichloroacetamides \(\mathbf{1 b} \mathbf{- 1 e}\) with different substituents in the nitrogen atom (Scheme 4a). In all cases, morphan derivatives (3b-3e) were obtained in moderate to good yields except in the case of \(3 \mathbf{c}\), where the 5 -exo cyclization on the allyl chain competes with the 6 -exo process. As expected, when working without pyrrolidine, the only compound isolated was lactam 6. The reaction was also extended to chloro- and bromopropanamides \(\mathbf{1 f}\) and \(\mathbf{1 g}\), and in both cases, morphan \(\mathbf{3 f}\) was isolated as a unique diastereomer. \({ }^{17}\) When using chloroacetamide \(\mathbf{1}\left(\mathrm{R}_{2}=\mathrm{H}\right)\), the reaction did not work. The reaction was extended to additional substrates (Scheme 4b), including dichloroacetamide 7, which led to compound 8 with the azatricyclic core of FR901483 \({ }^{13 b}\) as an epimeric mixture ( \(2.5: 1\) ratio, \(8 / 9\) ) in a \(48 \%\) overall yield. Additionally, we found that the reaction worked quite well for the preparation of the 7-membered ring derivative \(\mathbf{1 1}\) from dichloroacetamide 10. Although the 3 -azabicyclo[4.3.1]decane ring is embedded in numerous natural products \({ }^{18}\) and some synthetic pharmacologically active compounds, \({ }^{19}\) there are only a few synthetic procedures for this bridged azabicyclic system. \({ }^{20}\)

With these results in hand, we were interested in exploring the above reaction conditions with trichloroacetamides 12, which readily react with pyrrolidine, leading to the corresponding normorphans. \({ }^{11}\) When 12a-d were treated with pyrrolidine in the presence of AIBN and TTMSS ( 2 equiv.) in benzene at \(80^{\circ} \mathrm{C}\), morphans 3a-d were obtained in low to acceptable yields (Scheme 5). \({ }^{21}\) This result showed that the formation of the radical and its addition to the enamine is faster than the nucleophilic attack of the enamine on the carbonyl group. Also, as shown previously, in the formation of 3 from dichloroacetamides, the radical pathway is favored over an ionic reaction. In addition, a new type of compound \(\mathbf{1 3}\) was isolated from trichloroacetamides 12, arising from an unusual radical Smiles rearrangement through a four-membered ring \({ }^{22}\) after aromatization of the initially formed 4 -aminocyclohexene ring. \({ }^{23}\)

In summary, a new intramolecular addition of radicals (carrying electron-withdrawing groups) to the distal terminus

a)




Scheme 4 Scope of the radical cyclization. Reaction performed from 100 mg of dichloroacetamide, pyrrolidine (5 equiv.), AIBN (1 equiv.), and TTMSS (2 equiv.). Yield after isolation by chromatography. \({ }^{a}\) In benzene. At \(80^{\circ} \mathrm{C}\) for \(10 .{ }^{b} 0.25\) equiv. of AIBN were used. \({ }^{c} 1\) equiv. of TTMSS was used. \({ }^{d}\) As \(\mathbf{1 f}, \mathrm{Br}\) instead Cl .
of an enamine double bond is reported in the context of a straightforward route to morphans \({ }^{24}\) from dichloroacetamidocyclohexanones using a one-pot reaction in the presence of pyrrolidine, AIBN and TTMSS under microwave activation. This five-minute reaction provides 2 -azabicyclo[3.3.1]nonane derivatives with their carbonyl function being preserved. The process is of interest from the mechanistic point of view and compares favorably with the twostep synthesis of morphans from silyl enol ethers. \({ }^{12}\) Further studies are in course to explore the scope of this methodology for the synthesis of other nitrogen-containing heterocycles.

Financial support for this research was provided by the Ministry of Economy and Competitiveness of Spain (Project CTQ2013-41338-P).


Scheme 5 Radical reaction from trichloroacetamides.

\section*{Notes and references}

1 For enamine-mediated stereoselective catalytic reactions, see: (a) C. F. Barbas, III, Angew. Chem., Int. Ed., 2008, 47, 42; (b) B. List, Angew. Chem., Int. Ed., 2010, 49, 1730.
2 E. Arceo, I. D. Jurberg, A. Alvarez-Fernández and P. Melchiorre, Nat. Chem., 2013, 5, 750.
3 For intermolecular radical processes involving enamines leading to amino compounds, see inter alia: (a) P. Renaud and S. Schubert, Angew. Chem., Int. Ed., 1990, 29, 433; (b) S. Schubert, P. Renaud, P.-A. Carrupt and K. Schenk, Helv. Chim. Acta, 1993, 76, 2473. For intramolecular radical processes involving enamines leading to amino compounds, see inter alia: (c) L. Ripa and A. Hallberg, J. Org. Chem., 1998, 63, 84; (d) J. M. Aurrecoechea, C. A. Coy and O. J. Patiño, J. Org. Chem., 2008, 73, 5194.
4 For reactions upon preformed enamines leading to alkylated ketones using photo-induced radical reactions, see: (a) G. A. Russell and K. Wang, J. Org. Chem., 1991, 58, 3475; (b) B. Hu, H. Chen, Y. Liu, W. Dong, K. Ren, X. Xie, H. Xu and Z. Zhang, Chem. Commun., 2014, 50, 13547.
5 For \(\mathrm{Et}_{3} \mathrm{~B}\)-initiated addition of an alkyl radical to preformed \(N\)-silyloxy enamines, see: H.-J. Song, C. J. Lim and S. Kim, Chem. Commun., 2006, 2893.
6 E. Arceo, A. Bahamonde, G. Bergonzini and P. Melchiorre, Chem. Sci., 2014, 5, 2438.
7 (a) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (b) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (c) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075.
8 (a) H.-W. Shih, M. N. Vander Wai, R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 13600; (b) A. Bahamonde and P. Melchiorre, J. Am. Chem. Soc., 2016, 138, 8019.

9 K. Narasaka, T. Okauchi, K. Tanaka and M. Murakami, Chem. Lett., 1992, 2099.

10 (a) D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322, 77; (b) A. Mastracchio, A. A. Warkentin, A. M. Walji and D. W. C. MacMillan, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 20648.
11 F. Diaba, J. A. Montiel, G. Serban and J. Bonjoch, Org. Lett., 2015, 17, 3860.
12 For silyl enol ethers as radical acceptors, see: (a) J. Quirante, C. Escolano, F. Diaba and J. Bonjoch, J. Chem. Soc., Perkin Trans. 1, 1999, 1157; (b) J. Quirante, M. Torra, F. Diaba, C. Escolano and J. Bonjoch, Tetrahedron: Asymmetry, 1999, 10, 2399.

13 For enol acetates as radical acceptors in ATRC processes, see: (a) F. Diaba, A. Martínez-Laporta, J. Bonjoch, A. Pereira, J. M. MuñozMolina, P. J. Pérez and T. R. Belderrain, Chem. Commun., 2012, 48, 8799; (b) F. Diaba, A. Martínez-Laporta and J. Bonjoch, J. Org. Chem., 2014, 79, 9365; (c) F. Diaba, A. Martínez-Laporta, G. Coussanes, I. Fernández and J. Bonjoch, Tetrahedron, 2015, 71, 3642.
\(14 \alpha\)-Amino radicals are known to be easily oxidized to iminium derivatives: (a) H. Fujihara, S. Fuke, M. Yoshihara and T. Maeshima, Chem. Lett., 1981, 1271; (b) Ref. 4a; (c) J. Santamaria, J. Pure Appl. Chem., 1995, 67, 141. For oxidation of a radical intermediate by-hydrogenatom abstraction promoted by AIBN, see: (d) M. L. Bennasar, T. Roca and F. Ferrando, Org. Lett., 2006, 8, 561 and references therein.
15 A similar atom-transfer mechanism has been reported for the alkylation of enamides with electrophilic radicals: G. K. Friestad and Y. Wu, Org. Lett., 2009, 11, 819.
16 Traces of the C-6 epimer of 5 were also observed in the NMR spectra, but not isolated.
17 The equatorial disposition of the methyl group was revealed by the absence of a \(\gamma\)-effect at C-9. For \({ }^{13} \mathrm{C}\) NMR data of morphans, see: J. Quirante, C. Escolano, F. Diaba, M. Torra and J. Bonjoch, Magn. Reson. Chem., 2000, 38, 891.
18 Inter alia, see: (a) Y. Nishiyama, Y. Han-ya, S. Yokoshima and T. Fukuyama, J. Am. Chem. Soc., 2014, 136, 6598; (b) K. Fujioka, N. Miyamoto, H. Toya, K. Okano and H. Tokuyama, Synlett, 2016, 621; (c) Y. Nishiyama, S. Yokoshima and T. Fukuyama, Org. Lett., 2016, 18, 2359.
19 Q. Chen, X. Huo, Z. Yang and X. She, Chem. - Asian J., 2012, 7, 2543.
20 (a) H. K. Hall Jr., J. Am. Chem. Soc., 1960, 82, 1209; (b) H. K. Hall Jr., J. Org. Chem., 1963, 28, 3213; (c) F. Orvieto, M. Botta, F. Corelli and S. Harper, Synth. Commun., 1999, 29, 3635; (d) C. F. Heinrich, I. Fabre and L. Miesch, Angew. Chem., Int. Ed., 2016, 55, 5170.

21 Normorphans, as in Scheme 1, were isolated in a negligible ratio if any as minor compounds.
22 (a) E. Bacqué, M. El Quacemi and S. Z. Zard, Org. Lett., 2005, 7, 3817; (b) Z.-M. Chen, X.-M. Zhang and Y.-Q. Tu, Chem. Soc. Rev., 2015, 44, 5220.

23 For aromatization of 4 -aminocyclohexenes to anilines, see: (a) T. Ishikawa, E. Uedo, R. Tani and S. Saito, J. Org. Chem., 2001, 66, 186; (b) J. Cossy and D. Belotti, Org. Lett., 2002, 4, 2557; (c) M. T. Barros, S. S. Dey and C. D. Maycock, Eur. J. Org. Chem., 2013, 742; (d) K. Taniguchi, X. Jin, Y. Yamaguchi and N. Mizuno, Catal. Sci. Technol., 2016, 6, 3929.
24 For a review on 2-azabicyclo[3.3.1]nonanes (morphans), see: J. Bonjoch, F. Diaba and B. Bradshaw, Synthesis, 2011, 993.

\section*{Supporting information}

\section*{for}

\title{
Intramolecular radical non-reductive alkylation of ketones via transient enamines
}

Faïza Diaba,* Juan A. Montiel, and Josep Bonjoch*
faiza.diaba@ub.edu, Josep.bonjoch@ub.edu

Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain

\section*{Table of contents}
- Experimental and NMR data of compounds 1-13 S2-S14
- Copies of \({ }^{1} \mathrm{H}\) NMR and \({ }^{13} \mathrm{C}\) NMR spectra of compounds 1-13 S15-S36

\section*{EXPERIMENTAL SECTION}
1. General information. \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra were recorded in \(\mathrm{CDCl}_{3}\) solution. Chemical shifts are reported as \(\delta\) values (ppm) relative to internal \(\mathrm{Me}_{4} \mathrm{Si}\) and in benzene\(\mathrm{D}_{6}(7.16 \mathrm{ppm}),{ }^{13} \mathrm{C}\) NMR spectra are referenced to the deuterated solvent signal ( \(\mathrm{CDCl}_{3}\) : 77.00 ppm ) and benzene- \(\mathrm{D}_{6}\) (128.4 ppm). All NMR data assignments are supported by COSY and HSQC experiments. Infrared spectra were recorded on a Nicolet 320 FT-IR spectrophotometer. TLC was performed on \(\mathrm{SiO}_{2}\) (silica gel \(60 \mathrm{~F}_{254}\), Merck) or on \(\mathrm{Al}_{2} \mathrm{O}_{3}\) (aluminium oxide 60 F254 neutral, Merck). The spots were located by UV light or a \(1 \%\) \(\mathrm{KMnO}_{4}\) aqueous solution. Chromatography refers to flash chromatography and was carried out on \(\mathrm{SiO}_{2}\) (Silica Flash P60, Wet \& Dry, 200-500 mesh) and when indicated on \(\mathrm{Al}_{2} \mathrm{O}_{3}\) (aluminium oxide 90 standardized, Merck). Drying of the organic extracts during reaction work-up was performed over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\).

\section*{1. Synthesis of dichloroacetamides \(\mathbf{1 a - 1 g}, 7\) and 10}


1a: To a solution of 4-(benzylamino)cyclohexan-1-one \({ }^{1}\) ( \(11 \mathrm{~g}, 54.11 \mathrm{mmol}\) ) and triethylamine ( \(11.31 \mathrm{~mL}, 81.16 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL})\) was added dichloroacetyl chloride ( \(6.24 \mathrm{~mL}, 64.93 \mathrm{mmol}\) ) dropwise at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 1\right)\) to yield 1 a as a white solid ( \(10.5 \mathrm{~g}, 62 \%\) ): mp \(86-88^{\circ} \mathrm{C}\); IR ( NaCl ) 3088, 3062, 3029, 2956, 2873, 1716, 1670 \(\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 2\) rotamers) \(\delta 1.82-2.02(\mathrm{~m}, 2 \mathrm{H})\), 2.02-2.20 (m, 2H), 2.36-2.56 (m, 4H), 4.59 and \(4.62(2 \mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 6.08\) and \(6.39(2 \mathrm{~s}, 1 \mathrm{H}), 7.14-\) \(7.46(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 2\) rotamers) \(\delta 28.6\) and \(30.0\left(\mathrm{CH}_{2}\right), 39.5\) and \(39.6\left(\mathrm{CH}_{2}\right)\), 45.8 and \(47.4\left(\mathrm{CH}_{2}\right), 54.0\) and \(55.9(\mathrm{CH}), 64.9\) and \(66.5(\mathrm{CH}), 125.5\) and 126.4 (CH), 127.2 and 128.2 (CH), 128.6 and \(129.3(\mathrm{CH}), 136.1\) and 137.3 (C), 163.8 and 164.8 (CO), 207.9 and 208.7 (CO); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 314.0709\); found 314.0710.

\footnotetext{
\({ }^{1}\) Diaba, F.; Pujol-Grau, C.; Martínez-Laporta, A.; Fernández, I.; Bonjoch, J. Org. Lett. 2015, 17, 568-571.
}


1b: A mixture of 4-(methylamino)cyclohexanone ethylene acetal \({ }^{2}(3.82 \mathrm{~g}, 22.31 \mathrm{mmol})\) and \(10 \% \mathrm{HCl}\) solution ( 100 mL ) was stirred at rt overnight. The mixture was basified with \(10 \% \mathrm{NaOH}\) solution and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and the residue ( \(1.3 \mathrm{~g}, 10.22 \mathrm{mmol}\) ) was treated with \(\mathrm{Et}_{3} \mathrm{~N}(2.14 \mathrm{~mL}, 15.33\) mmol ) and dichloroacetyl chloride ( \(1.18 \mathrm{~mL}, 12.26 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})\) at \(0{ }^{\circ}{ }^{\circ} \mathrm{C}\) then at rt for 1 h . The mixture was poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and after chromatography \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathbf{1 b}\) was isolated as a white solid ( \(1.05 \mathrm{~g}, 43 \%\) over the 2 steps): \(\mathrm{mp} 126-127^{\circ} \mathrm{C}\); IR ( NaCl ) 3004, 2953, 2873, 1716, \(1664 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\), 2 rotamers) \(\delta 1.84-2.24\) (m, \(4 \mathrm{H}), 2.42-2.62(\mathrm{~m}, 4 \mathrm{H}), 2.88\) and \(3.07(2 \mathrm{~s}, 3 \mathrm{H}), 4.67\) and \(4.85(2 \mathrm{~m}, 1 \mathrm{H}), 6.27\) and 6.29 \((2 \mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 2\) rotamers) \(\delta 28.2\) and \(29.0\left(\mathrm{CH}_{2}\right)\), 28.6 and 30.0 \(\left(\mathrm{CH}_{3}\right), 39.5\left(\mathrm{CH}_{2}\right), 52.4\) and \(54.9(\mathrm{CH}), 65.6\) and \(66.4(\mathrm{CH}), 163.2\) and \(163.5(\mathrm{CO}), 208.0\) and 208.7 (CO); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO}_{2}\) 238.0396; found 238.0395.


1c: A mixture of allylamine ( \(1.6 \mathrm{~mL}, 20.81 \mathrm{mmol}\) ), 1,4-cyclohexanedione monoethylene acetal ( \(2.5 \mathrm{~g}, 16.0 \mathrm{mmol}\) ) and \(4 \AA\) molecular sieves \((2 \mathrm{~g})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})\) was stirred at rt for 4 h then filtered on a short celite pad and concentrated. The residue was treated with \(\mathrm{NaBH}_{4}(1.21 \mathrm{~g}, 19.2 \mathrm{mmol})\) in \(\mathrm{MeOH}(20 \mathrm{ml})\) at \(0{ }^{\circ} \mathrm{C}\) then at rt for 1 h . The mixture was concentrated, quenched with water extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and the resulting viscous oil was treated with \(10 \% \mathrm{HCl}\) solution \((30 \mathrm{~mL})\) overnight. The mixture was basified with \(10 \% \mathrm{NaOH}\) solution and extracted with

\footnotetext{
\({ }^{2}\) W. J. Greenlee, Y. Huang, J. M. Kelly, S. W. McCombie, A. Stamford and Y. Wu, in US 2005/0038100 A1, Schering-Plough Corp., USA, 2005.
}
\(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and the residue was treated with \(\mathrm{Et}_{3} \mathrm{~N}(4.46 \mathrm{~mL}, 32.01 \mathrm{mmol})\) and dichloroacetyl chloride ( \(2.67 \mathrm{~mL}, 24.01 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) \((25 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\) then at rt for 1 h . The mixture was poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to yield \(\mathbf{1 c}\) as a white solid ( \(1.3 \mathrm{~g}, 43 \%\) over the 4 steps): mp \(84-86{ }^{\circ} \mathrm{C}\); IR ( NaCl ) 3007, 2985, 2959,2923, 1717, \(1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 2\) rotamers) \(\delta 1.84-\) \(2.26(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 4 \mathrm{H}), 3.88-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.86(\mathrm{M}, 1 \mathrm{H}), 5.12-5.38(\mathrm{~m}, 2 \mathrm{H})\), 5.76-5.96 (m, 1H), 6.20 and \(6.31(2 \mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 2\) rotamers) \(\delta\) 28.7 and \(29.8\left(2 \mathrm{CH}_{2}\right)\), \(39.6\left(2 \mathrm{CH}_{2}\right), 45.1\) and \(45.9\left(\mathrm{CH}_{2}\right), 53.3\) and \(55.6(\mathrm{CH}), 64.7\) and \(66.5(\mathrm{CH}), 116.9\) and \(117.5\left(\mathrm{CH}_{2}\right), 133.0\) and \(133.7(\mathrm{CH}), 162.9\) and \(164.5(\mathrm{CO}), 208.1\) and 208.8 (CO); HRMS (ESI-TOF) m/z: [M+H] calcd for \(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 264.0553\); found 264.0556.


1d: Operating as above from isopropylamine ( \(2.15 \mathrm{~mL}, 24.97 \mathrm{mmol}\) ) and 1,4cyclohexanedione monoethylene acetal ( \(3 \mathrm{~g}, 18.6 \mathrm{mmol}\) ), 1d was obtained as a white solid ( \(1.72 \mathrm{~g}, 34 \%\) for the 4 steps): mp 133-135 \({ }^{\circ} \mathrm{C}\); IR ( NaCl ) 3044, 3004, 2967, 2891, \(1715,1655 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\), 2 rotamers) \(\delta 1.34\) and 1.41 (2 d, \(J=6.8\) \(\mathrm{Hz}, 6 \mathrm{H}), 1.85\) and \(2.23(2 \mathrm{~m}, 2 \mathrm{H}), 2.06\) and \(2.83(2 \mathrm{qd}, J=12.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.241\) (m, 2H), 2.47-2.58 (m, 2H), 3.36-3.60 (m, 1H), 4.45-4.60 (m, 1H), 6.17 (s, 1H); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 2\right.\) rotamers) \(\delta 19.6\) and \(20.3\left(\mathrm{CH}_{3}\right), 27.0\) and \(29.1\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right)\), 48.5 and \(49.6(\mathrm{CH}), 52.6\) and \(55.9(\mathrm{CH}), 67.0\) and \(67.8(\mathrm{CH}), 162.0\) and \(162.4(\mathrm{CO})\), 208.2 and 209.7 (CO); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 266.0709\); found 266.0707.




1e: To a mixture of \(t\)-butylamine ( \(4.04 \mathrm{~mL}, 38.42 \mathrm{mmol}\) ) and 1,4-cyclohexanedione monoethylene acetal ( \(3 \mathrm{~g}, 19.2 \mathrm{mmol}\) ) was added titanium(IV) isopropoxide \({ }^{3}(7.10 \mathrm{~mL}\), 24.01 mmol ) and the mixture was stirred at it under argon atmosphere for 2.5 h . Ethanol ( 60 mL ) and \(\mathrm{PtO}_{2}(0.3 \mathrm{~g}, 10 \%)\) were then added and the mixture was stirred under a hydrogen atmosphere ( 50 psi ) and at rt overnight. The mixture was then filtered on a short celite pad and concentrated to yield a viscous oil which was treated with \(10 \% \mathrm{HCl}\) ( 38 ml ) overnight. The mixture was basified with a saturated \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) solution and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and the residue was treated with \(\mathrm{Et}_{3} \mathrm{~N}(2.74 \mathrm{~mL}, 19.67 \mathrm{mmol})\) and dichloroacetyl chloride ( \(1.51 \mathrm{~mL}, 15.75\) \(\mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\) then at rt for 1 h . The mixture was poored into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to yield 1 e as a white solid ( \(2.06 \mathrm{~g}, 38 \%\) ). \(\mathrm{mp} 183-184{ }^{\circ} \mathrm{C}\); IR ( NaCl ) 3071, 2979, 2960, 2923, 2882, 1708, \(1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 1\) rotamer) \(\delta 1.53(\mathrm{~s}, 9 \mathrm{H})\), 2.04-2.17 (m, 2H), 2.33-2.58 (m, 6H), 4.11 (br s, 1H), 6.28 (s, \(1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 1\right.\) rotamer) \(\delta 29.6\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 55.1\) (CH), 59.3 (C), 67.4 (CH), \(166.5(\mathrm{CO}), 208.8(\mathrm{CO})\); HRMS (ESI-TOF) m/z: [M+H]+ calcd for \(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2} 280.0866\); found 280.0862 .


1f: To a solution of 4-(benzylamino)cyclohexanone ( \(1 \mathrm{~g}, 4.92 \mathrm{mmol}\) ), and triethylamine ( \(1.03 \mathrm{~mL}, 7.38 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}\) ) was added 2-chloropropionyl chloride ( 0.62 mL , 6.40 mmol ) dropwise at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to yield \(\mathbf{1 f}\) as a yellowish oil ( \(1.1 \mathrm{~g}, 76 \%\) ): IR \((\mathrm{NaCl}) 3087\), 3061, 3030, 2954, 2871, 1716, \(1653 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 2\) rotamers) \(\delta 1.63\) (d, J=6.4 Hz, 3H), 1.68-2.18 (m, 4H), 2.30-2.58 (m, 4H), 4.32-4.52 (m, 2H), 4.68-4.98 (m, 2H), 7.14-7.41 (m, 5H); \({ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\), 2 rotamers) \(\delta 20.8\) and 21.1 \(\left(\mathrm{CH}_{3}\right), 28.8\) and \(30.2\left(\mathrm{CH}_{2}\right)\), 289.0 and \(30.9\left(\mathrm{CH}_{2}\right)\), 39.6 and \(39.7\left(\mathrm{CH}_{2}\right), 45.1\) and 46.7 \(\left(\mathrm{CH}_{2}\right), 50.0\) and \(50.1(\mathrm{CH}), 52.4\) and \(55.4(\mathrm{CH}), 125.3\) and \(126.4(\mathrm{CH}), 126.9\) and 127.6 \((\mathrm{CH}), 128.4\) and \(129.0(\mathrm{CH}), 137.4\) and \(138.2(\mathrm{C}), 169.0\) and \(170.1(\mathrm{CO}), 208.1\) and

\footnotetext{
\({ }^{3}\) Palmer, J. T. et al. J. Med. Chem. 2005, 48, 7520-7534.
}
209.1 (CO); HRMS (ESI-TOF) m/z: [M+H]+ calcd for \(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{CINO}_{2}\) 294.1255; found 294.1254.



1g: To a solution of 4-(benzylamino)cyclohexanone ( \(1 \mathrm{~g}, 4.92 \mathrm{mmol}\) ) and triethylamine ( \(1.03 \mathrm{~mL}, 7.38 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}\) ) was added 2-bromopropionyl chloride ( 0.67 mL , 6.40 mmol ) dropwise at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to yield 1 f as a yellowish oil ( \(1.01 \mathrm{~g}, 60 \%\) ): IR ( NaCl ) 3087, 3060, 3029, 2956, 2871, 1716, \(1652 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\), 2 rotamers) \(\delta 1.65-\) 1.77 (m, 0.9 H ), 1.78 and \(1.94\left(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.\) ), 1.86-2.04 (m, 2H), 2.07-2.18 (m, 1.1 H), 2.31-2.59 (m, 4H), \(4.32(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80\) (d, \(J=18.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 4.97 (tt, \(J=12,4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 100\) MHz , 2 rotamers) \(\delta 21.4\) and \(21.9\left(\mathrm{CH}_{3}\right)\), 28.6 and \(30.0\left(\mathrm{CH}_{2}\right)\), 29.1 and \(31.1\left(\mathrm{CH}_{2}\right)\), 38.8 and \(39.3(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right), 39.8\) and \(39.9\left(\mathrm{CH}_{2}\right), 45.2\) and \(47.0\left(\mathrm{CH}_{2}\right), 52.6\) and 55.8 \((\mathrm{CH}), 125.2\) and \(126.5(\mathrm{CH}), 127.0\) and \(127.7(\mathrm{CH}), 128.6\) and \(129.1(\mathrm{CH}), 137.5\) and 138.4 (C), 169.3 and 170.5 (CO), 208.2 and 209.3 (CO); HRMS (ESI-TOF) m/z: [M+H]+ calcd for \(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrNO}_{2}\) 338.0750; found 338.0745 .


7: To a solution of 3-[(Methoxycarbonyl)(methyl)amino]-1-azaspiro[4.5]deca-8-one \({ }^{4}\) (0.3 \(\mathrm{g}, 1.25 \mathrm{mmol})\) and triethylamine \((0.26 \mathrm{~mL}, 1.87 \mathrm{mmol})\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})\) was added dichloroacetyl chloride ( \(0.14 \mathrm{~mL}, 1.5 \mathrm{mmol}\) ) at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99.5: 0.5\right)\) to yield 7 as a white solid ( \(0.31 \mathrm{~g}, 70 \%\) ): mp \(76-77^{\circ} \mathrm{C}\); IR ( NaCl ): 3010, 2955, 2913, 2886, 1713,

\footnotetext{
\({ }^{4}\) Diaba, F.; Martínez-Laporta, A.; Bonjoch, J. J. Org. Chem. 2014, 79, 9365-9372.
}

1694, 1680, \(1674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) RMN ( 400 MHz ): \(\delta 1.72-1.85\) (m, 2H), 2.04 (td, \(J=12.4 \mathrm{~Hz}\), \(1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dtd}, J=15.6,5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})\), 2.91 ( \(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\) ), \(2.94(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{td}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}\), \(\mathrm{H}-2\) ), 3.76 (s, 3H, CH3O), 4.01 (dd, J=10, \(8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\) ), 4.84 (br s, 1H, H-3), 6.05 (s, \(\left.1 \mathrm{H}, \mathrm{CHCl}_{2}\right) .{ }^{13} \mathrm{C}\) RMN ( 100 MHz ): \(\delta 29.4\left(\mathrm{CH}_{2}\right.\) and \(\left.\mathrm{CH}_{3}\right), 33.0\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 38.2\) \(\left(\mathrm{CH}_{2}\right), 48.1\left(\mathrm{CH}_{2}\right), 52.0(\mathrm{CH}), 53.1\left(\mathrm{CH}_{3}\right), 65.2(\mathrm{C}), 66.8(\mathrm{CH}), 156.9(\mathrm{CO}), 161.8(\mathrm{CO})\), 209.5 (CO); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} 351.0873\) (M+1). Found 351.0877.


10: To a solution of 4 -[(benzylamino) methyl]cyclohexanone ethylene acetal \({ }^{5}(7.18 \mathrm{~g}\), 27.47 mmol ), and triethylamine ( \(5.74 \mathrm{~mL}, 41.21 \mathrm{mmol}\) ) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})\) was added dichloroacetyl chloride ( \(3.17 \mathrm{~mL}, 32.96 \mathrm{mmol}\) ) dropwise at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred at \(r t\) for 1 h then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and treated with \(10 \% \mathrm{HCl}(100 \mathrm{~mL})\) and THF ( 10 mL ) overnight. The mixture was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\), the organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to yield 10 as a white solid ( \(5.13 \mathrm{~g}, 58 \%\) ): mp 99\(101^{\circ} \mathrm{C}\); IR ( NaCl ) 3030, 2932, 2861, 1711, \(1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 2\) rotamers) \(\delta 1.36-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.50(\mathrm{~m}, 5 \mathrm{H}), 3.31\) and \(3.38(2 \mathrm{~d}\), \(J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.71\) and \(4.77(2 \mathrm{~s}, 2 \mathrm{H}), 6.21\) and \(6.35(2 \mathrm{~s}, 1 \mathrm{H}), 7.15-7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})\); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 2\right.\) rotamers) \(\delta 30.1\left(\mathrm{CH}_{2}\right), 34.4\) and \(35.5(\mathrm{CH}), 40.2\left(\mathrm{CH}_{2}\right)\), 49.9 and \(52.2\left(\mathrm{CH}_{2}\right), 51.7\) and \(51.9\left(\mathrm{CH}_{2}\right), 64.5\) and \(65.2(\mathrm{CH}), 126.3\) and \(127.8(\mathrm{CH})\), 127.9 and \(128.3(\mathrm{CH}), 128.9\) and \(129.3(\mathrm{CH}), 135.1\) and \(135.8(\mathrm{C}), 164.5\) and 164.6 (CO), 209.8 and 210.9 (CO). HRMS (ESI-TOF) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO}_{2}\) 328.0866; found 328.0889.

\section*{2. Synthesis of enamine 2}

A mixture of \(1 \mathbf{a}(100 \mathrm{mg}, 0.32 \mathrm{mmol})\) and pyrrolidine ( \(0.027 \mathrm{~mL}, 0.32 \mathrm{mmol}\) ) in benzene ( 1 mL ) was heated to reflux for 5 min then concentrated to yield enamine 2 as a yellowish oil. \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}, 2\right.\) rotamers) \(\delta 1.38-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.88-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.10-\) \(2.30(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.86(\mathrm{~m}, 4 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 4.19\) and \(4.76(2 \mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}\) \(=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94\) and \(6.16(2 \mathrm{~s}, 1 \mathrm{H}), 6.85-7.25(\mathrm{~m}, 5 \mathrm{H}\),

\footnotetext{
\({ }^{5}\) Diaba, F.; Montiel, J. A.; Serban, G.; Bonjoch, J. Org. Lett. 2015, 17, 3860-3863.
}
\(\mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\), 2 rotamers, some of the signals corresponding to the minor rotamer are not listed) \(\delta 25.4\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 46.4\left(\mathrm{CH}_{2}\right)\), \(47.84\left(\mathrm{CH}_{2}\right), 53.8\) and \(55.9(\mathrm{CH}), 66.5\) and \(67.3(\mathrm{CH}), 90.0\) and \(90.3(\mathrm{CH}=), 126.3(\mathrm{CH})\), 127.4 and \(127.5(\mathrm{CH}), 128.9\) and \(129.0(\mathrm{CH}), 129.5(\mathrm{CH}), 138.3\) and \(139.5(\mathrm{C}), 142.3\) and \(142.5(\mathrm{C}), 164.4\) and 164.7 (CO).

\section*{3. Synthesis of morphans 3a-3f}


Typical procedure for the radical cyclization using microwave activation from 1a. In a 10 mL vessel were placed 1a ( \(200 \mathrm{mg}, 0.64 \mathrm{mmol}\) ), pyrrolidine ( \(0.266 \mathrm{~mL}, 3.18\) \(\mathrm{mmol})\), AIBN ( \(105 \mathrm{mg}, 0.64 \mathrm{mmol}\) ) and TTMSS ( \(0.39 \mathrm{~mL}, 1.27 \mathrm{mmol}\) ) in benzene ( 1 mL ) and the mixture was heated with stirring to \(80{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3 \mathbf{a}^{6}\) was obtained as a white solid ( \(\left.120 \mathrm{mg}, 77 \%\right)^{7}\).


3b: IR ( NaCl ) 2942, 2880, 1708, \(1624 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)\) 1.81-1.91 (m, \(1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}\) ), 2.11 (ddt, \(J=13.6,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.26 (dq, \(J=13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\) 9), 2.29-2.38 (m, 1H, H-8eq), 2.38-2.44 (m, 2H, CH2-7), \(2.44(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)\), 2.70 (dd, \(J=18.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67(\mathrm{~m}, 1 \mathrm{H}\), \(\mathrm{H}-1) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.7(\mathrm{C}-8), 31.9(\mathrm{C}-9), 33.8\left(\mathrm{CH}_{3}\right), 33.9(\mathrm{C}-7), 35.0\) (C-4), 44.4 (C-5), 53.3 (C-1), 168.4 (C-3), 210.8 (C-6); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\) calcd for \(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2}\) 168.1019; found 168.1017.

\footnotetext{
\({ }^{6}\) For NMR data of 3a see: Quirante, J.; Escolano, C.; Diaba, F.; Bonjoch, J. J. Chem. Soc., Perkin Trans. 1 1999, 1157-1162.
\({ }^{7}\) For the yields of \(\mathbf{3 b}\)-3f see the article.
}

 \(J=14,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}\) ), 2.13 (ddt, \(J=13.6,2.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.20 (dq, \(J=\) \(13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.27-2.35 (m, 1H, H-8eq), 2.35-2.53 ( \(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}-7\) and \(\mathrm{H}-4\) ), 2.74 (dd, \(J=18.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.60(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\) ( \(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1\) ), 4.61 (ddt, \(J=15.2,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}\) ), 5.19-5.26 (m, 2H), 5.80-5.92 (m, 1H); \({ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.2(\mathrm{C}-8), 32.2(\mathrm{C}-9), 34.0(\mathrm{C}-7), 34.9(\mathrm{C}-4), 44.2(\mathrm{C}-5)\), \(48.1\left(\mathrm{CH}_{2}\right), 50.3(\mathrm{C}-1), 117.7\left(\mathrm{CH}_{2}\right), 132.9(\mathrm{CH}), 167.9(\mathrm{C}-3), 210.9(\mathrm{C}-6)\); HRMS (ESITOF) \(\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}\) 194.1176; found 194.1168.


3d: mp 114-115 \({ }^{\circ} \mathrm{C}\); IR ( NaCl ) 2966, 2942, 2873, 1714, \(1620 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400\) \(\mathrm{MHz}) \delta 1.27\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93\) (tdd, \(J=13.6\), \(4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}\) ), 2.08 (dq, \(J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.14 (dq, \(J=13.2,2 \mathrm{~Hz}\), \(1 \mathrm{H}, \mathrm{H}-9\) ), 2.19-2.29 (m, 1H, H-8eq), 2.36 (dd, \(J=15.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\) ), 2.45 (dd, \(J=\) \(18.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\) ), 2.56 (ddd, \(J=15.6,14,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\) ), 2.71 (dd, \(J=18.8,7.6\) \(\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1), 4.64\) (sept, \(J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.0\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 33.0(\mathrm{C}-8), 33.4(\mathrm{C}-9), 33.8(\mathrm{C}-7), 35.4\) (C-4), 43.7 (C-5), 47.0 (C-1), 47.4 (CH), 167.9 (C-3), 211.2 (C-6); HRMS (ESI-TOF) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}\) 196.1332; found 196.1332.


3e: mp 133-135 \({ }^{\circ} \mathrm{C}\); IR (NaCl) 2990, 2959, 2943, 2913, 2870, 1716, \(1622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93(\mathrm{tdd}, J=14,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.08-\)
2.19 ( \(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-9\) ), 2.19-2.27 (m, 1H, H-8eq), 2.34 (dd, \(J=15.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\) ), 2.372.45 ( \(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4\) ), 2.53 (ddd, \(J=15.2,14,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\) ), 2.68-2.76 (m, 2H, H5 and \(\mathrm{H}-4), 4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 28.7\left(\mathrm{CH}_{3}\right), 33.2(\mathrm{C}-7), 33.7(\mathrm{C}-8\) and C-9), 37.1 (C-4), 43.8 (C-5), 47.4 (C-1), 58.0 (C), 168.5 (C-3), 211.3 (C-6); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2} 210.1489\); found 210.1487.


3f: mp 189-191 \({ }^{\circ} \mathrm{C}\); IR ( NaCl ) 3062, 3029, 2961, 2936, 2870, 1710, \(1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.22\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\) (ddd, \(J=13.2,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}\), H-8ax), 2.07 (dt, \(J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.14-2.26 (m, 2H, H-8eq and H-9), 2.27-2.34 (m, 1H, H-7), 2.40 (dd, J=15.2, 4.8 Hz, 1H, H-7), 2.78 (m, 2H, H-4 and H-5), 3.68 (br s, \(1 \mathrm{H}, \mathrm{H}-1\) ), 4.04 (d, J= \(15 \mathrm{~Hz}, 1 \mathrm{H}\) ), 5.35 (d, J= \(15 \mathrm{~Hz}, 1 \mathrm{H}\) ), 7.25-7.38 (m, 5H); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.5\left(\mathrm{CH}_{3}\right), 29.3(\mathrm{C}-8), 32.9(\mathrm{C}-9), 35.1(\mathrm{C}-7), 39.4(\mathrm{C}-4), 48.5\) \(\left(\mathrm{CH}_{2}\right), 50.6(\mathrm{C}-1\) and C-5), \(127.6(\mathrm{CH}), 127.9(\mathrm{CH}), 128.8(\mathrm{CH}), 137.4(\mathrm{C}), 171.9(\mathrm{C}-3)\), 210.5 (C-6); HRMS (ESI-TOF) m/z: [M+H]+ calcd for \(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}\) 258.1489; found 258.1485.

\section*{4. Obtention of 4}

In a 10 mL vessel were placed \(\mathbf{1 a}\) ( \(100 \mathrm{mg}, 0.32 \mathrm{mmol}\) ), pyrrolidine ( \(0.13 \mathrm{~mL}, 1.59 \mathrm{mmol}\) ) and benzene ( 1 mL ) and the mixture was heated with stirring to \(80{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min. The mixture was then purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) to provide recovered \(\mathbf{1 a}\) ( \(31 \mathrm{mg}, 31 \%\) ) and 4 ( \(6 \mathrm{mmg}, 7 \%\) ) as a white solid.


4: \(\mathrm{mp} 85-87^{\circ} \mathrm{C}\); IR ( NaCl ) 3065, 3055, 3031, 2944, 2932, 2875, 2864, 2852, 1714, 1652 \(\mathrm{cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.81\) (tdd, \(\left.J=12.8,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}\right), 1.99(\mathrm{dm}\), \(J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.17-2.26 (m, 1H, H-8eq), 2.35 (ddd, \(J=16.4,12.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}\), H-7ax), 2.49 (dd, \(J=16.4,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{eq}), 2.70\) (dq, \(J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 3.08 (br s, 1H, H5), 3.73 (br s, 1H, H-1), \(4.03(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\) 4), \(5.39(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.5(\mathrm{C}-9)\),
28.9 (C-8), 35.0 (C-7), 48.5 ( \(\mathrm{CH}_{2}\) ), 50.3 (C-1), 53.4 (C-5), 54.1 (C-4), 127.8 (CH), 128.0 (CH), 129.0 (CH), 136.3 (C), 165.7 (C-3), 206.7 (C-6); HRMS (ESI-TOF) m/z: [M+H]+ calcd for \(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClNO}_{2} 178.0942\); found 178.0937.

\section*{5. Synthesis of 6}


In a 10 mL vessel were placed \(\mathbf{1 c}(100 \mathrm{mg}, 0.38 \mathrm{mmol})\), \(\operatorname{AIBN}(63 \mathrm{mg}, 0.38 \mathrm{mmol})\) and TTMSS ( \(0.23 \mathrm{~mL}, 0.76 \mathrm{mmol}\) ) in toluene \((1 \mathrm{~mL})\) and the mixture was heated with stirring to \(60{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to AcOEt\()\) 6 was obtained as a white solid ( \(42 \mathrm{mg}, 57 \%\) ). \(\mathrm{mp} 70-71^{\circ} \mathrm{C}\); IR ( NaCl ) 2957, 2872, 1715, \(1668 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78-1.93(\mathrm{~m}, 2 \mathrm{H})\), 1.98-2.09 (m, 3H), 2.38-2.62 (m, 6H), 2.89 (dd, \(J=9.6,6 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.46 (dd, \(J=9.6,7.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.48(\mathrm{tt}, J=12,4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.7\left(\mathrm{CH}_{3}\right), 26.6(\mathrm{CH})\), \(29.2\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 48.2(\mathrm{CH}), 50.0\left(\mathrm{CH}_{2}\right), 174.2(\mathrm{CO}), 209.3(\mathrm{CO})\); HRMS (ESI-TOF) m/z: [M+H] calcd for \(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}\) 196.1332; found 196.1334.

\section*{6. Synthesis of 8}


8
In a 10 mL vessel were placed 7 ( \(100 \mathrm{mg}, 0.28 \mathrm{mmol}\) ), pyrrolidine ( \(0.12 \mathrm{~mL}, 1.43 \mathrm{mmol}\) ), AIBN ( \(47 \mathrm{mg}, 0.29 \mathrm{mmol}\) ) and TTMSS ( \(0.18 \mathrm{~mL}, 0.57 \mathrm{mmol}\) ) in toluene \((0.5 \mathrm{~mL})\) and the mixture was heated with stirring to \(60{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} / \mathrm{MeOH} 49.5: 49.5: 1\right) \mathbf{8}\) ( \(27 \mathrm{mg}, 34 \%\) ) then \(\mathbf{9}\) (11 \(\mathrm{mg}, 14 \%\) ) were isolated. \({ }^{8}\)

\footnotetext{
\({ }^{8}\) For NMR data of 8 and 9 see ref. 4.
}

\section*{7. Synthesis of 11}


In a 10 mL vessel were placed \(\mathbf{1 0}\) ( \(100 \mathrm{mg}, 0.30 \mathrm{mmol}\) ), pyrrolidine ( \(0.13 \mathrm{~mL}, 1.52 \mathrm{mmol}\) ), AIBN ( \(50 \mathrm{mg}, 0.30 \mathrm{mmol}\) ) and TTMSS ( \(0.19 \mathrm{~mL}, 0.61 \mathrm{mmol}\) ) in benzene ( 1 mL ) and the mixture was heated with stirring to \(80{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 1: 1\right) \mathbf{1 1}\) was obtained ( \(40 \mathrm{mg}, 51 \%\) ) as a white solid. mp 200-202 \({ }^{\circ} \mathrm{C}\); IR ( NaCl ) 3060, 3029, 2928, 2868, 1708, \(1641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\) ) \(\delta 1.64-1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 1.85-2.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-9\right.\) and \(\left.\mathrm{CH}_{2}-10\right)\), 2.05 (br \(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1\) ), 2.33 (ddd, \(J=17,7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\) ), 2.54 (ddd, \(J=17,10.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}\), \(\mathrm{H}-8\) ), 2.77 (br s, \(1 \mathrm{H}, \mathrm{H}-6\) ), 2.76-2.90 (m, 2H, CH2-5), 3.44 ( \(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-2\) ), 4.49 (d, J= \(\left.14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.79\left(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ) 27.3 (C-9), 27.8 (C-1), 33.6 (C-10), 34.7 (C-8), 38.5 (C-5), 42.2 (C-6), \(50.8(\mathrm{C}-2), 51.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 127.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.7(\mathrm{CH}), 137.2(\mathrm{C}), 171.7(\mathrm{C}-4)\), 211.6 (C-7); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}\) 258.1489; found 258.1487.

\section*{8. Synthesis of 5}


In a 10 mL vessel were placed 1a ( \(200 \mathrm{mg}, 0.64 \mathrm{mmol}\) ), pyrrolidine \((0.266 \mathrm{~mL}, 3.18\) \(\mathrm{mmol}), \operatorname{AIBN}(105,0.64 \mathrm{mmol})\) and TTMSS ( \(0.39 \mathrm{~mL}, 1.27 \mathrm{mmol}\) ) in benzene ( 1 mL ) and the mixture was heated with stirring to \(80^{\circ} \mathrm{C}\) using microwave irradiation for \(5 \mathrm{~min} . \mathrm{MeOH}\) \((0.5 \mathrm{~mL})\) was added and the mixture was treated with \(\mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.64 \mathrm{mmol})\) at 0 \({ }^{\circ} \mathrm{C}\) then at it for 1 h . The reaction mixture was concentrated, water was added and the mixture extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organic extracts were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NH}_{3}\right) / \mathrm{MeOH} 9.5: 0.5\right)\) to yield 5 as a white
solid (115 mg, 61\%). \({ }^{9} \mathrm{mp} 89-91^{\circ} \mathrm{C}\); IR (NaCl) 3029, 2932, 2872, 2777, \(1634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.32-1.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7\) and \(\mathrm{H}-8), 1.64(\mathrm{dd}, \mathrm{J}=13.2,2 \mathrm{~Hz}, 1 \mathrm{H}\), \(\mathrm{H}-9\) ), 1.77 (br s, 6H), 1.91 (dq, \(J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\) ), 2.16 (br s, 1H, H-6), 2.35 (br s, 1H, H-5), 2.44 (dd, \(J=18,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\) ), 2.56 (br s, 4H), 2.98 (d, \(J=18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\) 4), 3.41 (br s, \(1 \mathrm{H}, \mathrm{H}-1\) ), \(3.95(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.34\) (m, 5H, ArH); \({ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.9(\mathrm{C}-7), 23.3\left(\mathrm{CH}_{2}\right), 27.9(\mathrm{C}-8), 30.8(\mathrm{C}-\) 5), \(31.3(\mathrm{C}-4), 31.5(\mathrm{C}-9), 48.2\left(\mathrm{CH}_{2}\right), 50.6(\mathrm{C}-1), 51.5\left(\mathrm{CH}_{2}\right), 66.0(\mathrm{C}-6), 127.2(\mathrm{CH})\), 127.8 (CH), 128.5 (CH), 137.9 (C), 171.0 (C-3); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\) 299.2118; found 299.2125.

\section*{9. Radical cyclization from trichloroacetamides 12a-12d}


Typical procedure for the radical cyclization using microwave activation from 12d. In a 10 mL vessel were placed 12d ( \(100 \mathrm{mg}, 0.33 \mathrm{mmol}\) ), pyrrolidine ( \(0.14 \mathrm{~mL}, 1.66\) \(\mathrm{mmol})\), AIBN ( \(54.6 \mathrm{mg}, 0.33 \mathrm{mmol}\) ) and TTMSS ( \(0.20 \mathrm{~mL}, 0.66 \mathrm{mmol}\) ) in benzene ( 1 mL ) and the mixture was heated with stirring to \(80{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min. After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\) 13d ( \(14 \mathrm{mg}, 16 \%\) ) was isolated then \(\mathbf{2 d}(37 \mathrm{mg}\), \(57 \%) .{ }^{10}\)


13d: IR (NaCl) 3249, 3069, 2960, 2929, 2870, 2818, 1643, \(1617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}\), 400 MHz ) \(\delta 1.04\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.\) ), 2.01 (m, 4H), \(3.29(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 4.05\) (m, 1H), 5.21 (br s, 1H, NH), 6.54 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.06 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR

\footnotetext{
\({ }^{9}\) The other epimer at C-6 was observed as traces in some fractions but was not isolated.
\({ }^{10}\) For the products obtained with the other substrates and their yields see the article.
}
\(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.6\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{CH}), 43.1\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 112.1\) (CH), 121.1 (C), 130.3 (CH), 147.1 (C), 171.4 (CO); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)calcd for \(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\) 247.1804; found 247.1799.


13a: \({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.98-2.02(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})\), \(4.40(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}\), 2H), 7.15-7.32 (m, 5H, ArH); \({ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.4\left(\mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 43.4\) \(\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 112.1(\mathrm{CH}), 119.9(\mathrm{C}), 127.3(\mathrm{CH}), 127.4(\mathrm{CH}), 128.6(\mathrm{CH}), 130.4\) (CH), 138.4 (C), 147.2 (C), 172.2 (CO); HRMS (ESI-TOF) m/z: [M+H] calcd for \(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\) 295.1805; found 295.1796.


13b: IR (NaCl) 3292, 3094, 2964, 2926, 2850, 2822, 1646, \(1617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}\), \(400 \mathrm{MHz}) \delta 2.01(\mathrm{~m}, 4 \mathrm{H}), 2.73\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.28(\mathrm{~m}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 5.38\) (br s, 1H, NH), \(6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100\) \(\mathrm{MHz}) \delta 25.5\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{3}\right), 42.8\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 112.1(\mathrm{CH}), 121.0(\mathrm{C}), 130.5\) (CH), 147.3 (C), 172.9 (CO); HRMS (ESI-TOF) m/z: \([\mathrm{M}+\mathrm{H}]^{+}\)calcd for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\) 219.1492; found 219.1489.

cdc13 / Temp: Ambient / N.Reg: \(x x x x x x x x x x\) Cdc13ri: ssan / Mostra: column-64
Nour: JUAN-ANDRES MONTIEL ACHONG
Nom: JUAN-ANDRES MONTIEL ACCONG
Data: \(27 / 05 / 14 /\) Ope.: J.MONTIEI
Data: 27/05/14 / Ope.: J. MONTIEL
Experiment: s2pul
Pulse Sequence: s2pul


Usuari: san / Mostra: column-64
Nom: JUAN-ANDRES MONTIEL ACHONG
Nom: JUAN-ANDRES MONTIEL ACHONG
Experiment: s2pul



VNMRS400F / Num.Inv. 205984
CDC13 / Temp: \(25 \mathrm{C} /\) / N.Reg: xxxxxxxxxx
CDC13 / Temp: 25 C / N.Reg: XXXXX
Usuari: san / Mostra: JMM528-33
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(20 / 10 / 15 /\) Ope.: J.MONTIEL
Data: 20/ale sequence: s2pul


VNMRS400F / Num. Inv. 205984
CDC13 / Temp: \(25 \mathrm{C} / \mathrm{N} . \operatorname{Reg}: ~ \mathrm{xxxxxxxxxx}\)
Usuari: san / Mostra: JMM528-33
Nom: JUAN-ANDRES MONTIEL ACHONG
Pulse Sequence: s2pul


vnMRS400F / Num. Inv. 205984
cdc13 / Temp: 25 C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JMM296C3-68
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(14 / 05 / 16 /\) Ope.: J. MONTIEL
Pulse Sequence: s2pul


vsmrs 400F / Num. Inv. 205984
cdc13 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: xxxxxxxxxx
Usuari: san / Mostra: JMM529-67
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(02 / 07 / 15 /\) Ope.: J. MONTIEL
Pulse Sequence: s2pul



Usuari: san / Mostra: JaM688-67
Nom: JUAN-ANDRES MONTIEL ACHONG
Data : \(14 / 01 / 16\) / Ope :
J.MONTIEL
Pulse Sequence: s2pul






VNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25 C / N. Reg: xxxxxxxxxx Usuari: san / Mostra: JAM591X2-27
Nom: JUAN-ANDRES MONTIEL ACHONG Nom: JUAN-ANDRES MONTIEL ACBONG
Data: \(03 / 12 / 15\) / Ope : : J.MONTIEL

Pulse Sequence: s2pul

cdc13/Temp: Ambient / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JMM167-28
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 02/05/14 / Ope.: J.MONTIEL Experiment: s2pul

Pulse Sequence: s2pul
~~N
正












VNMRS400F / Num. Inv. 205984
VMMRS400E/ Num. Inv. 205984
cdc13 / Temp: \(25 \mathrm{C} / \mathrm{N} \cdot \mathrm{Reg}: ~ \mathrm{xxxxxxxxxx}\)
Usuari: san / Mostra: JaM696x2-32
Nom: JUAN-ANDRES MONTIEL ACBONG
Data: \(18 / 02 / 16 /\) Ope.: J.MONTIEL
Pulse Sequence: s2pul

Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(28 / 10 / 15 /\) Ope.: J.MONTIEL
Pulse Sequence: \(\mathbf{s 2 p u 1}\)

\(\int n\)
\(=\)\begin{tabular}{r}
7.290 \\
7.264
\end{tabular}
VNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25 / N.Reg: Xxxxxxxxxx
Usuari: sen / Mostra: JMM617-32x
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(28 / 10 / 15\) / Ope.: J.MONTIEL
Pulse Sequence: s2pul

\footnotetext{

}



\footnotetext{
H1 / 400
cdc13 / Temp: \(25 C /\) N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: J JuM264-64
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(13 / 11 / 14\) / Ope.: J. MONTIEL
Experiment: s2pul
Pulse Sequence: s2pul
}


\begin{tabular}{lllllllllll}
200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & ppm
\end{tabular}



NNMRS400F / Num. Inv. 205984
cdc13 / Temp: 25 C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JMM656-34
Nom: JUAN-ANDRES MONTIEL ACHONG
Pulse Sequence: s2pul


VNMRS400F / Num.Inv. 205984
cdc13 / Temp: 25 C / N. Reg: xxxxxxxxxx
cdcl3 / Temp: \(25 C\) / N.Reg: Xxxxx
Usuari: san / Mostra: JaM656-34
Usuari: san / Mostra: JMM656-34
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 30/11/15 / Ope.: J. MONTIEL
Pulse Sequence: s2pu1
( \(\stackrel{\text { en o }}{\circ}\)



\[
\begin{aligned}
& \text { VNMRS400F / Num. Tnv. 205984 } \\
& \text { cdc13 / Temp: 25c / N.Reg: XXxxxxxxx } \\
& \text { Usuari: san / Mostra: JMM597x2-27 } \\
& \text { Nom: JUNA-ANDRES MoNTIEL ACBONG } \\
& \text { Data: 09/10/15 / Ope.: J.MONTIEL } \\
& \text { Pulse Sequence: s2pul }
\end{aligned}
\]


```

VNMRS400F / Num.Inv. 205984
Usuari: san / Mostra: JNM628X2-61
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 23/01/16 / Ope.: J.MONTIEL
Pulse Sequence: s2pul

```


Synthesis of functionalized pyrrolidines and piperidines from monochloro and dichloroacetamides using non-radical processes

Unpublished results

Table 6.1. Synthesis of lactam 3a.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} \\
\hline 1 & Toluene & \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) & E & 13 & 45 \\
\hline 2 & Toluene & Toluene & E & 6 & 18 \\
\hline 3 & \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) & \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) & E & 17 & 30 \\
\hline 4 & Toluene & \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) & \(\mathrm{E}^{\alpha}\) & 31 & 45 \\
\hline 5 & Toluene & \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) & F & 35 & 40 \\
\hline \multicolumn{6}{|l|}{E : a) At rt for 2 h ; b) Add \(\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{eq})\) and dichloroacetylchloride (1.2eq) at \(0^{\circ}\) then at rt for 1 h . F: One pot \(\mu \mathrm{W} .5 \mathrm{~min} .60^{\circ} \mathrm{C} .{ }^{\alpha} 2\) eq of methylvinylketone for 4 h .} \\
\hline
\end{tabular}

In the last part of this PhD we decided to investigate the synthesis of lactams from dichloro- and monochloroacetamides tethered to \(\beta\) - and \(\gamma\)-ketones using Darzens conditions.

Our study began by the preparation of dichloroacetamide 2a with a tert-butyl group on the nitrogen using a one-pot procedure. First tert-Butylamine was treated with methyl vinyl ketone in toluene for one hour at \(\mathrm{rt}^{1}\) then triethylamine and dichloroacetyl chloride were incorporated to the reaction mixture at \(0{ }^{\circ} \mathrm{C}\). After an additional hour of stirring at rt, we were delighted to see that the reaction went farther providing piperidinone \(3 \mathbf{a}(45 \%)\) besides the expected dichloroacetamide \(\mathbf{2 a}\) (13\%) (Table 6.1., entry 1). The best results were obtained when 2 equiv. of methyl vinyl ketone were used and by prolonging the reaction time for the acylation step (entry 4). Using microwave activation for both steps reduced the reaction time dramatically ( 5 min each) without altering the global yield of the process (entry 5).

\footnotetext{
\({ }^{1}\) Calow, A. D. J.; Carbó, J. J.; Cid, J.; Fernández, E.; Whiting, A. J. Org. Chem. 2014, 79, 51635172.
}

Chapter 6 - Synthesis lactams using non-radical processes


Scheme 6.1.
The methodology was then applied, to other amines providing the corresponding dichloroacetamides \(\mathbf{2 b} \mathbf{- 2 e}\) with acceptable yields (Scheme 6.1).

Table 6.2. Darzens reaction from dichloroacetamides 2
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Epoxidation of compounds 2} \\
\hline &  &  &  & \\
\hline \multicolumn{3}{|c|}{2} & 4 & \\
\hline Entry & \(R\) (2) & Base (equiv) & Conditions & 4 Yield (\%) \\
\hline 1 & \(t \mathrm{Bu}\) (2a) & NaOMe (1.5) & \(\mathrm{MeOH}, \mathrm{rt}, 30 \mathrm{~min}\) & 4a (67) \\
\hline 2 & \(t \mathrm{Bu}\) (2a) & NaOMe (1.0) & \(\mathrm{MeOH}, \mathrm{rt}, 30 \mathrm{~min}\) & 4a (71) \\
\hline 3 & \(t \mathrm{tBu}\) (2a) & NaOMe (0.5) & \(\mathrm{MeOH}, \mathrm{rt}, 15 \mathrm{~min}\) & 4a (33)* \\
\hline 4 & \(t \mathrm{Bu}\) (2a) & NaOMe (0.5) & Toluene, rt, 15 min & 4a (72) \\
\hline 5 & \(t \mathrm{Bu}\) (2a) & tBuOK (1) & Toluene, rt, 30 min & 4a (54) \\
\hline 6 & \(\operatorname{Pr}\) (2b) & NaOMe (0.5) & Toluene, rt, 15 min & 4b (61) \\
\hline 7 & \(\operatorname{Pr}\) (2b) & tBuOK (1) & Toluene, rt, 30 min & 4b (60) \\
\hline 8 & Allyl (2c) & NaOMe (0.5) & Toluene, rt, 15 min & 4c (63) \\
\hline 9 & Allyl (2c) & tBuOK (1) & Toluene, rt, 30 min & 4c (83) \\
\hline 10 & Bn (2d) & NaOMe (0.5) & Toluene, rt, 15 min & 4d (62) \\
\hline 11 & Bn (2d) & tBuOK (1) & Toluene, rt, 30 min & 4d (74) \\
\hline 12 & \begin{tabular}{l}
\[
\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}
\] \\
(2e)
\end{tabular} & NaOMe (0.5) & Toluene, rt, 15 min & 4e (46) \\
\hline & \begin{tabular}{l}
\[
\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}
\] \\
(2e)
\end{tabular} & tBuOK (1) & Toluene, rt, 30 min & 4e (37) \\
\hline \multicolumn{5}{|l|}{30\% of S.M recovered} \\
\hline
\end{tabular}

With dichloroacetamides \(\mathbf{2}\) in hands, we set out to explore their behavior under Darzens conditions (Table 6.2). Thus, when 2a was treated with 1.5 equiv sodium methoxide in methanol, epoxide 4 a was isolated in \(67 \%\) yield (entry 1). A better yield was obtained when a stoichiometric amount of MeONa was used (entry 2) and a similar yield furnished when a substoichiometric quantity NaOMe was employed in toluene (compare entry 3 and 4). Switching to the more hindered tBuOK, gave 4a with a lower yield (entry 5). The best reaction conditions using either NaOMe or tBuOK were then applied to dichloroacetamides \(\mathbf{2 b} \mathbf{- 2 e}\) providing in all cases the corresponding epoxides 4 with acceptable to good yields.

Chapter 6 - Synthesis lactams using non-radical processes

Mechanism for the formation of 4a from 2a


Mechanism for the dealkylation process from 2a




\section*{Scheme 6.2.}

Formation of \(\mathbf{4 a}\) from \(\mathbf{2 a}\) could explained by the following scenario. After deprotonation, the \(\alpha\)-dichloroamide adds to the carbonyl group and then an intramolecular \(\mathrm{SN}_{2}\) reaction provided epoxide 4a (Scheme 6.2).

On the other hand, in some essays we isolated traces of amides 5 resulting from a dealkylation process. Indeed, the \(\alpha\)-hydrogen adjacent to the carbonyl group, could be abstracted by the base triggering the cleavage of the carbonnitrogen bond via a retro-aza-Michael reaction. \({ }^{2}\)

\footnotetext{
\({ }^{2}\) For examples of the dealkylation of amides in the presence of bases see: (a) Sahasrabudhe, K.; Gracias, v.; Furness, K.; Smith, B. T.; Katz, K. E.; Reddy, D. S.; Aube, J. J. Am. Chem. Soc. 2003, 125, 7914-7922. (b) Swindell, C. S.; Patel, B. P.; deSolmsl, S. J. J. Org. Chem. 1987, 52, 2346-2355.
}

Chapter 6 - Synthesis lactams using non-radical processes


Scheme 6.2.
Even if we did not have time to explore all the synthetic possibilities of the intermediates prepared herein, piperidinone 3a was successfully dehalogenated by treatment with Zn powder, to afford \(\mathbf{6 a}\) with an excellent yield. Nevertheless, our allylation attempts using radical chemistry furnished the allylated derivatives 8 in very poor yields. Additionally, we observed that epoxides 4 were instable providing the corresponding diones on standing. \({ }^{3}\)

\footnotetext{
\({ }^{3}\) (a) Mamedov, V.A.; Nuretdinov, I.A.; Subgatullina, F.G. Russ Chem Bull, 1988, 37, 1950-1951.
(b) Mamedov, V.A., Litvinov, I.A., Kataeva, O.N. et al. Monatsh. Chem. 1994, 125, 1427-1435.
}

Chapter 6 - Synthesis lactams using non-radical processes

\section*{Synthesis of chloroacetamides 9}

\(\xrightarrow[\begin{array}{c}\text { b) } \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C} \\ \text { then } \mathrm{CICOCHCl}_{2}, \text { rt }\end{array}]{\text { a) rt, Toluene }}\)

\(\mathrm{R}=t \mathrm{Bu} \quad 9 \mathrm{a}(39 \%)\)
Bn 9b (67\%)
Allyl 9c (43\%)

Scheme 6.3
After the results obtained with dichloroacetamides \(\mathbf{2}\) for the preparation of epoxides 4 we were encouraged to see the behavior of monochloroacetamides 9 under the optimized cyclization conditions. Amides 9 were prepared using the same methodology reported previously for 2 (Scheme 6.3).

Table 6.3. Synthesis of \(\mathbf{1 0}\) and \(\mathbf{1 1}\) from 9


When chloroacetamides 9 were treated with either MeONa or tBuOK, two main pathways were observed. Starting from 9a with the bulky \(t\)-butyl group on the nitrogen atom only pyrrolidine 10a was isolated resulting from a nucleophilic attack of the enolate generated from the ketone on the chloromethyl group.

Chapter 6 - Synthesis lactams using non-radical processes

Nevertheless piperidone 11b and 11c were isolated alone when the reaction was achieved from 9b and 9c respectively and in the presence tBuOK as a base (table 6.3).


\section*{Scheme 6.4}

Finally, we decided to investigate Darzens reaction from dichloroacetamide 12, which could be prepared from chloropropanone and tertbutylamine and further acylation with dichloroacetyl chloride. However, when the one-pot reaction was performed, pyrrolidine 13 was isolated alone with a moderate yield (32\%, from \(t \mathrm{BuNH}_{2}\) ). After formation of 12 (not detected in the reaction crude), the cyclization took place spontaneously to afford polyfunctionalized pyrrolidine 13.

\title{
Supporting information
}

\section*{for}

\section*{Chapter 6}

Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain

Table of contents
- Experimental and NMR data of compounds 2-13

S2-S15
- Copies of \({ }^{1} \mathrm{H}\) NMR and \({ }^{13} \mathrm{C}\) NMR spectra of compounds 2-13 \(\quad\) S16-S37

\section*{EXPERIMENTAL SECTION}
1. General information. \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR spectra were recorded in \(\mathrm{CDCl}_{3}\) solution. Chemical shifts are reported as \(\delta\) values (ppm) relative to internal \(\mathrm{Me}_{4} \mathrm{Si}\) and \({ }^{13} \mathrm{C}\) NMR spectra are referenced to the deuterated solvent signal ( \(\left.\mathrm{CDCl}_{3}: 77.00 \mathrm{ppm}\right)\). All NMR data assignments are supported by COSY and HSQC experiments. Infrared spectra were recorded on a Nicolet 320 FT-IR spectrophotometer. TLC was performed on \(\mathrm{SiO}_{2}\) (silica gel \(60 \mathrm{~F}_{254}\), Merck). The spots were located by UV light or a \(1 \% \mathrm{KMnO}_{4}\) aqueous solution. Chromatography refers to flash chromatography and was carried out on \(\mathrm{SiO}_{2}\) (Silica Flash P60, Wet \& Dry, 200-500 mesh). Drying of the organic extracts during reaction work-up was performed over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\).

\section*{1. Synthesis of \(2 a-3 a\)}


\subsection*{1.1. Typical procedure (Method A)}

A mixture of tert-butylamine ( \(2.818 \mathrm{~mL}, 27.34 \mathrm{mmol}\) ) in toluene ( 100 mL ) was added methyl vinyl ketone ( \(4.435 \mathrm{~mL}, 54.68 \mathrm{mmol}\) ), were stirred at rt for \(2 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})\), \(\mathrm{Et}_{3} \mathrm{~N}(5.72 \mathrm{~mL}, 41.04 \mathrm{mmol})\) and dichloroacetylchloride ( \(3.16 \mathrm{~mL}, 32.85 \mathrm{mmol}\) ) were added successively at \(0^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h , then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to afford \(\mathbf{2 a}(31 \%)\) and \(\mathbf{3 a}(45 \%)\)

\subsection*{1.2. Typical procedure using microwave activation (Method B)}

In a 10 mL vessel, a mixture of tert-butylamine ( \(0.144 \mathrm{~mL}, 1.37 \mathrm{mmol}\) ) and methyl vinyl ketone ( \(0.13 \mathrm{~mL}, 1.37 \mathrm{mmol}\) ) in toluene ( 1 mL ) was heated with stirring at \(60{ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.29 \mathrm{~mL}, 2.05 \mathrm{mmol})\) and dichloroacetylchloride ( \(0.16 \mathrm{~mL}, 1.64 \mathrm{mmol}\) ) were added successively and heated at 60 \({ }^{\circ} \mathrm{C}\) using microwave irradiation for 5 min . After chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), 2a (122 \(\mathrm{mg}, 35 \%\) ) and \(\mathbf{3 a}\) ( \(140 \mathrm{mg}, 40 \%\) ) were isolated.

\section*{N -(tert-butyl)-2,2-dichloro- N -(3-oxobutyl)acetamide (2a)}


2a
IR ( NaCl ) 1713, \(1673 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 1\) rotamer): \(\delta 1.46\) (s, 9H, \(t-\mathrm{Bu}\) ), 2.20 (s, 3H, CH3), 2.82 (t, J=7.2 Hz, 2H, CH2CO), 3.71 (t, J=7.2 Hz, 2H, CH2N), 6.42 (s, \(1 \mathrm{H}, \mathrm{CHCl}_{2}\) ); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 28.3\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{3}\right), 39.4\left(\mathrm{CH}_{2}\right), 45.1\) ( \(\mathrm{CH}_{2}\) ), 58.8 (C), 66.5 (CH), 164.1 (CO), 205.6 (CO); HRMS (ESI-TOF) m/z: [M+H]+ Calcd for \(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 254.0709[\mathrm{M}+\mathrm{H}]^{+}\); Found 254.0707.

1-(tert-butyl)-3,3-dichloro-4-hydroxy-4-methylpiperidin-2-one (3a)


3a
IR ( NaCl ) v 2966, 2930, \(1671 \mathrm{~cm}^{-1}\); \(\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{( } \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.45(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.60\) (s, 3H, CH \({ }_{3}\) ), 2.05 (ddd, \(J=14.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.42 (ddd, \(J=14.4 \mathrm{~Hz}\), \(10.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.53 (br s, \(1 \mathrm{H}, \mathrm{OH}\) ), 3.35 (ddd, \(J=12 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}\), \(\mathrm{H}-6), 3.49\) (ddd, \(\left.J=12 \mathrm{~Hz}, 10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.6\) \(\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 31.1(\mathrm{C}-5), 39.3(\mathrm{C}-6), 58.8(\mathrm{C}), 75.1(\mathrm{C}-4), 92.4(\mathrm{C}-3), 163.6(\mathrm{C}-2)\); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{2} 254.0709\left(\mathrm{M}^{+}+1\right)\). Found 254.0701.

\section*{2. Synthesis of \(2 \mathrm{~b}-\mathrm{e}\)}


\section*{2,2-dichloro-N-isopropyl- N -(3-oxobutyl) (2b):}

To a solution of isopropylamine ( \(2.349 \mathrm{~mL}, 27.34 \mathrm{mmol}\) ) in toluene ( 100 mL ) was added methyl vinyl ketone ( \(2.279 \mathrm{~mL}, 27.35 \mathrm{mmol}\) ). The mixture was stirred at rt for 2 h . Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(5.72 \mathrm{~mL}, 41.04 \mathrm{mmol})\) and dichloroacetylchloride ( \(3.16 \mathrm{~mL}, 32.85\) mmol ) were added successively at \(0^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h , then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified
by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to afford \(\mathbf{2 b}(4.52 \mathrm{~g}, 69 \%)\) as a solid. IR ( NaCl\() 2977\), 2941, 1717, \(1670 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 82: 18\) rotamer ratio) major rotamer \(\delta\) \(1.26\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.80\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.47\) (t, J=7.6 Hz, 2H, CH2N), 4.41 (sept, \(J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H})\); minor rotamer \(\delta 1.23\) (d, J=7.2 Hz, 6H, \(2 \mathrm{CH}_{3}\) ), \(2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.61(\mathrm{t}, J\) \(=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 4.34 (sept, \(\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ) major rotamer20.4 \(\left(\mathrm{CH}_{3}\right), 30.0\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 41.9\left(\mathrm{CH}_{2} \mathrm{CO}\right), 49.3(\mathrm{CH}), 65.9(\mathrm{CH})\), \(163.0(\mathrm{CO}), 206.8(\mathrm{CO})\); minor rotamer \(19.7\left(\mathrm{CH}_{3}\right), 30.2\left(\mathrm{CH}_{3}\right), 38.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 44.0\) ( \(\mathrm{CH}_{2} \mathrm{CO}\) ), \(48.9(\mathrm{CH}), 65.1(\mathrm{CH}), 163.5(\mathrm{CO}), 205.5(\mathrm{CO})\); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\) Calcd for \(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 240.0553[\mathrm{M}+\mathrm{H}]^{+}\); Found 240.0556.


\section*{2,2-dichloro-N-allyl-N-(3-oxobutyl) (2c):}

Operating as above from allylamine ( \(2.051 \mathrm{~mL}, 27.34 \mathrm{mmol}\) ) and methyl vinyl ketone ( \(2.279 \mathrm{~mL}, 27.35 \mathrm{mmol}\) ). Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})\), \(\mathrm{Et}_{3} \mathrm{~N}(5.72 \mathrm{~mL}, 41.04 \mathrm{mmol})\) and dichloroacetylchloride ( 3.16 mL , 32.85 mmol ) were added ( \(3.16 \mathrm{~mL}, 32.85 \mathrm{mmol}\) ), to afford 2c (4.21g, 65\%) . IR (NaCl) 3089, 3014, 2991, 1718, \(1675 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}\), \(400 \mathrm{MHz}, 70: 30\) rotamer ratio) major rotamer \(\delta 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.82(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}\), \(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\) ), 3.58 (t, \(J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), \(4.15(\mathrm{dt}, J=4.8,2 \mathrm{~Hz}, 2 \mathrm{H}), 5.18-5.32(\mathrm{~m}\), 2H), 5.78-5.91 (m, 1H), \(6.17(\mathrm{~s}, 1 \mathrm{H})\); minor rotamer \(\delta 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.82(\mathrm{t}, \mathrm{J}=6.8\) \(\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\) ), 3.71 (t, \(J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 3.97 ( \(\mathrm{brd}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}\) ), 5.16-5.26 ( \(\mathrm{m}, 2 \mathrm{H}\) ), 5.72-5.83 (m, 1H), \(6.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ) major rotamer 30.1 \(\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.7\left(\mathrm{CH}_{2}\right), 64.7(\mathrm{CH}), 117.9\left(\mathrm{CH}_{2}\right), 132.3(\mathrm{CH})\), 164.0 (CO), 206.9 (CO); minor rotamer \(30.2\left(\mathrm{CH}_{3}\right)\), \(41.7\left(\mathrm{CH}_{2} \mathrm{CO}\right)\), \(41.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.0\) \(\left(\mathrm{CH}_{2}\right), 65.0(\mathrm{CH}), 117.9\left(\mathrm{CH}_{2}\right), 131.8(\mathrm{CH}), 163.7(\mathrm{CO}), 205.8(\mathrm{CO})\); HRMS (ESI-TOF) \(\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}\)Calcd for \(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO}_{2} 238.0396[\mathrm{M}+\mathrm{H}]^{+}\); Found 238.0399.


2d

\section*{2,2-dichloro- N -benzyl- N -(3-oxobutyl)acetamide (2d):}

Operating as above from benzylamine ( \(3.761 \mathrm{~mL}, 27.34 \mathrm{mmol}\) ) and methyl vinyl ketone ( \(2.279 \mathrm{~mL}, 27.35 \mathrm{mmol}\) ). Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})\), \(\mathrm{Et}_{3} \mathrm{~N}(5.72 \mathrm{~mL}, 41.04 \mathrm{mmol})\) and dichloroacetylchloride ( 3.16 mL , 32.85 mmol ) were added ( \(3.16 \mathrm{~mL}, 32.85 \mathrm{mmol}\) ), to afford \(\mathbf{2 d}(5.33 \mathrm{~g}, 68 \%)\) as a solid. IR ( NaCl ) 3087, 3063, 3030, 3008, 2946, 1714, 1668 \(\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 57: 43\) rotamer ratio): major rotamer \(\delta 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\), 2.78 (t, \(J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\) ), \(3.57\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.\) ), \(4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.22\) (s, 1H), 7.19-7.40 (m, 5H, ArH) ; minor rotamer \(\delta 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}\), \(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\) ), \(3.65\left(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.\) ), \(4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.\) ), \(6.83(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.40\) (m, 5H, ArH); \({ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ) major rotamer \(30.0\left(\mathrm{CH}_{3}\right), 40.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.0\) \(\left(\mathrm{CH}_{2} \mathrm{~N}\right)\), \(52.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 64.8(\mathrm{CH}), 126.4(\mathrm{CH}), 128.0(\mathrm{CH}), 129.0(\mathrm{CH}), 135.3(\mathrm{C}), 164.0\) (CO), \(206.7(\mathrm{CO})\); minor rotamer \(30.0\left(\mathrm{CH}_{3}\right), 41.2\left(\mathrm{CH}_{2} \mathrm{CO}\right), 41.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right)\), 65.0 (CH), 127.5 (CH), 127.6 (CH), 128.7 (CH), 136.1 (C), 164.2 (CO), 205.9 (CO); HRMS (ESI-TOF) m/z: [M+H]+ Calcd for \(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 288.0553[\mathrm{M}+\mathrm{H}]^{+}\); Found 288.0547.


2e

\section*{2,2-dichloro-N-benzyl-N-(3-oxobutyl)acetamide (2e):}

Operating as above from 2,2-dimethoxyethan-1-amine ( \(5.19 \mathrm{~mL}, 47.63 \mathrm{mmol}\) ) and methyl vinyl ketone ( \(3.58 \mathrm{~mL}, 57.36 \mathrm{mmol}\) ). Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(9.95 \mathrm{~mL}, 71.45\) mmol ) and dichloroacetylchloride ( \(5.49 \mathrm{~mL}, 57.16 \mathrm{mmol}\) ) were added succesively, to afford \(\mathbf{2 e}(9.26 \mathrm{~g}, 68 \%)\) as a solid. IR ( NaCl ) v 2996, 2942, 2918, 2836, 1715, \(1678 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\), 63:37 rotamer ratio): major rotamer \(\delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84\) (t, J=6.4 Hz, 2H, CH 2 CO ), \(3.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.62(\mathrm{t}\), \(J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), ), \(4.39\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.60(\mathrm{~s}, 1 \mathrm{H})\); minor rotamer \(\delta 2.19\) (s, 3H, CH \({ }_{3}\) ), \(2.84\left(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right.\) ), \(3.35\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.\) ), \(3.43(\mathrm{~s}\), \(6 \mathrm{H}, \mathrm{OCH}_{3}\) ), 3.72 (t, \(J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), \(4.59\left(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.84(\mathrm{~s}, 1 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\) major rotamer \(30.2\left(\mathrm{CH}_{3}\right), 41.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.7\) \(\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.9\left(\mathrm{OCH}_{3}\right), 103.1(\mathrm{CH}), 165.0(\mathrm{CO}), 207.2(\mathrm{CO})\); minor rotamer \(30.2\left(\mathrm{CH}_{3}\right)\), \(41.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), \quad 55.9\left(\mathrm{OCH}_{3}\right), 64.9(\mathrm{CH}), 102.7(\mathrm{CH}), 164.5\) (CO), 206.2 (CO); HRMS (ESI-TOF) m/z: [M+H]+ Calcd for \(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2} 286.0607\) [M+H]+; Found 286.0611.

\section*{3. Synthesis of piperidinone 4}

3.1. Typical procedure using sodium methoxide (Method A)

\section*{3-tert-butyl-1-chloro-6-methyl-7-oxa-3-azabicyclo[4.1.0]heptan-2-one (4a)}


To a solution \(\mathbf{2 a}\) ( \(100 \mathrm{mg}, 0.3934 \mathrm{mmol}\) ) in toluene ( 1 mL ) was added sodium methoxide \(30 \% \mathrm{wt}(0.038 \mathrm{~mL}, 0.197 \mathrm{mmol})\). The mixture was stirred at rt for 15 minutes. The solution was quenched with water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to yield \(\mathbf{4 a}(62 \mathrm{mg}, 72 \%)\). IR ( NaCl ) v 2983, 2934, \(1673 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.43(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.66\) (s, 3H, CH 3 ), 2.05 (ddd, \(J=14.8,12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.21 (ddd, \(J=14.8 \mathrm{~Hz}, 4,2 \mathrm{~Hz}\), \(1 \mathrm{H}, \mathrm{H}-5\) ), 3.16 (td, \(J=12.8,4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.31 (ddd, \(J=12.8,5.6,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ); \({ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 17.9\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 30.5(\mathrm{C}-5), 37.7(\mathrm{C}-6), 59.0(\mathrm{C}), 65.3\) (C-4), 80.9 (C-3), 162.4 (C-2); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{CINO}_{2} 218.0942\) \(\left(\mathrm{M}^{+}+1\right)\). Found 218.0047.

\subsection*{3.2. Typical procedure using Potassium Tert-butoxide (Method B)}

3-allyl-1-chloro-6-methyl-7-oxa-3-azabicyclo[4.1.0]heptan-2-one (4c)


To a solution of \(\mathbf{2 c}(100 \mathrm{mg}, 0.420 \mathrm{mmol})\) in toluene ( 1 mL ) was added potassium tertbutoxide \(1 \mathrm{M}(0.420 \mathrm{~mL}, 0.420 \mathrm{mmol})\). The mixture was stirred at it for 30 minutes. Then quenched with water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to afford \(\mathbf{4 c}(70 \mathrm{mg} 83 \%)\). IR ( NaCl ) \(v\) 3083, 3008, 2928, 2855, \(1675 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.13\) (ddd, \(J=15.2,12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.23\) (ddd, \(J=15.2 \mathrm{~Hz}, 4.8,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.97\) (ddd, \(J=12.8,6,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.34 (td, \(J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.92 (ddt, \(J=15.2\), \(6,1.2 \mathrm{~Hz}, 1 \mathrm{H}\) ), 4.10 (ddt, \(J=15.2,6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.78(\mathrm{~m}, 1 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.3\left(\mathrm{CH}_{3}\right)\), \(29.3(\mathrm{C}-5), 41.1(\mathrm{C}-6), 51.1\left(\mathrm{CH}_{2}\right), 65.9(\mathrm{C}-4)\), 79.3 (C-3), \(118.2\left(\mathrm{CH}_{2}\right), 131.9\) (CH), 162.3 (C-2); HRMS (ESI-TOF) m/z: [M+H] \({ }^{+}\)Calcd for \(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClNO}_{2}\) 202.0629; found 202.0631.

\section*{3-isopropyl-1-chloro-6-methyl-7-oxa-3-azabicyclo[4.1.0]heptan-2-one (4b)}


4b
Operating as above from 2b ( \(100 \mathrm{mg}, 0.348 \mathrm{mmol}\) ) and potassium tert-butoxide 1 M ( \(0.348 \mathrm{~mL}, 0.348 \mathrm{mmol}\) ) in toluene ( 1 mL ), 4b was isolated ( \(51 \mathrm{mg}, 60 \%\) ) as a solid. IR \((\mathrm{NaCl})\) v 2976, 2932, 2923, 2932, 2874, \(1667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.10\) (d, J=6.8 Hz, 3H, CH3), 1.11 (d, J=6.8 Hz, 3H, CH3), \(1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.\) ), 2.02 (ddd, \(J=\) 14.8, 12.8, \(6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.26 (ddd, \(J=14.8 \mathrm{~Hz}, 4,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 3.02 (ddd, \(J=12.8\), \(6,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.13\) (td, \(J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.1\) \(\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right), 29.6(\mathrm{C}-5), 34.8(\mathrm{C}-6), 46.1(\mathrm{CH}), 65.4(\mathrm{C}-4), 79.7(\mathrm{C}-3)\), 161.7 (C-2);


Operating as above from \(\mathbf{2 d}\) ( \(100 \mathrm{mg}, 0.348 \mathrm{mmol}\) ) and potassium tert-butoxide 1 M ( \(0.348 \mathrm{~mL}, 0.348 \mathrm{mmol}\) ) in toluene ( 1 mL ), 4d was isolated ( \(64.5 \mathrm{mg}, 74 \%\) ) as a solid. IR \((\mathrm{NaCl}) ~ v 3086,3062,3030,2961,2928,1654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.68(\mathrm{~s},}\) \(3 \mathrm{H}, \mathrm{CH}_{3}\) ), 2.07 (ddd, \(J=14.8,12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.17 (ddd, \(J=14.8 \mathrm{~Hz}, 4.4,2 \mathrm{~Hz}\), \(1 \mathrm{H}, \mathrm{H}-5\) ), 2.93 (ddd, \(J=12.4,5.6,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.30\) (td, \(J=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 4.47 ( \(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 4.72 ( \(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 7.21-7.36 (m, 5H, ArH) ; \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.3\left(\mathrm{CH}_{3}\right), 29.3(\mathrm{C}-5), 41.2(\mathrm{C}-6), 51.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 65.9(\mathrm{C}-\) 4), 79.3 (C-3), \(127.8(\mathrm{CH}), 128.0(\mathrm{CH}), 128.7(\mathrm{CH}), 136.1(\mathrm{C}), 162.8(\mathrm{C}-2)\)

\section*{1-chloro-3-(2,2-dimethoxyethyl)-6-methyl-7-oxa-3-azabicyclo[4.1.0]heptan-2-one} (4e)


Operating as above from \(\mathbf{2 e}(200 \mathrm{mg}, 0.699 \mathrm{mmol})\) and sodium methoxide \(30 \% \mathrm{wt}(0.348\) \(\mathrm{mL}, 0.348 \mathrm{mmol}\) ) in toluene ( 2 mL ), \(4 \mathbf{e}\) was isolated ( \(80 \mathrm{mg}, 46 \%\) ) as a solid. \(\mathrm{IR}(\mathrm{NaCl})\) \(v\) 2990, 2939, 2835, \(1672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16(\mathrm{~m}\), \(2 \mathrm{H}, \mathrm{H}-5), 3.13\) (ddd, \(J=15.2,7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 3.41 (d, \(J=4.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{3}\) ), 3.44 (d, \(J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\) ), 3.48 (td, \(J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), \(4.69(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}\), \(\mathrm{CH}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.2\left(\mathrm{CH}_{3}\right), 29.4(\mathrm{C}-5), 43.9(\mathrm{C}-6), 51.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.2\) \(\left(\mathrm{OCH}_{3}\right) 66.0(\mathrm{C}-4), 79.3(\mathrm{C}-3), 102.9(\mathrm{CH}), 162.8(\mathrm{C}-2)\); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClNO}_{4} 250.0841\left(\mathrm{M}^{+}+1\right)\). Found 250.0846.

\section*{4. Preparation of 6}


1-(tert-butyl)-4-hydroxy-4-methylpiperidin-2-one (6a)


6a
To a solution of \(\mathbf{3 a}(734 \mathrm{mg}, 2.888 \mathrm{mmol})\) in \(\mathrm{MeOH}(7 \mathrm{~mL})\) at \(0^{\circ} \mathrm{C}\) was added \(\mathrm{NH} 4 \mathrm{Cl}(927\) \(\mathrm{mg}, 17.329 \mathrm{mmol})\) and Zn powder ( \(1.88 \mathrm{~g}, 28.89 \mathrm{mmol}\) ) portionwise. The solution was stirred at rt overnight, filtered on a celite pad, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\) to \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1 \%, \mathrm{SiO}_{2}\) ) to yield 6a ( \(516 \mathrm{mg}, 97 \%\) ) IR (NaCl): \(v=3407,3342,3272,2965,2928,1615,1599,1576 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}\), 400 MHz ): \(\delta=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 1.46\) (s, 9H, \(t\)-Bu), 1.73 (ddd, \(J=13.6 \mathrm{~Hz}, 10 \mathrm{~Hz}, 5.6\) \(\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 1.88 (m, 1H, H-5), 2.44 (bs, 1H, OH), 2.6 (d, J=17.6 Hz, 1H, H-3), 2.68 (d, J=17.6 Hz, 1H, H-3), 3.38 (ddd, \(J=12.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.55 (ddd, J \(=12.4 \mathrm{~Hz}, 10 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=28.2\left(\mathrm{CH}_{3}\right), 28.8\) \(\left(\mathrm{CH}_{3}\right), 35.8\) (C-5), 41.1 (C-3), 48.2 (C-6), 58.6 (C), 67.5 (C), 171.5 (C-2); HRMS (ESITOF): Calcd for \(\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{2} 186.1489\left(\mathrm{M}^{+}+1\right)\). Found 186.1484.

\section*{5. Degradation Products}

4-chloro-1-isopropyl-4-methylpiperidine-2,3-dione (7b)


IR ( NaCl ) v 2993, 2971, 2932, 2917, 2872, 1739, \(1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{2} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ~}\) \(\delta 1.20\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\) (ddd, \(J=16,14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.48 (ddd, \(J=14.8 \mathrm{~Hz}, 6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 3.34 (ddd, \(J=13.2,7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.13\) (ddd, \(J=14.8,13.2,4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.85(\mathrm{p}\), \(J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.1\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 25.3\)
\(\left(\mathrm{CH}_{3}\right), 36.3\) (C-5), 36.9 (C-6), 45.9 (CH), 66.3 (C-4), 155.8 (C-2), 184.3 (C-3); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{CINO}_{2} 204.0786\left(\mathrm{M}^{+}+1\right)\). Found 204.0785.
6. Preparation of 8 and epi-8


In a 10 mL vessel, a mixture of \(\mathbf{3 a}\) ( \(100 \mathrm{mg}, 0.39 \mathrm{mmol}\) ), AIBN ( \(32 \mathrm{mg}, 0,20 \mathrm{mmol}\) ) and TBTA ( \(0.305 \mathrm{~mL}, 0.98 \mathrm{mmol}\) ) in benzene ( 1 mL ) was heated with stirring at \(100{ }^{\circ} \mathrm{C}\) using microwave irradiation for 45 min. After chromatography (CyHex:AcOEt 9:1, \(\mathrm{SiO}_{2}\) ), it was obtained \(8(6 \mathrm{mg}, 6 \%)\),
(3S,4S)-3-allyl-1-(tert-butyl)-3-chloro-4-hydroxy-4-methylpiperidin-2-one (8)
\({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.83\) (ddd, J=14, 10.4, \(4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.35 (ddd, \(J=16,8.8,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.80 (ddt, \(J=14.4,9.6,0.8 \mathrm{~Hz}\), \(1 \mathrm{H}, \mathrm{H}-6\) ), 2.76 (ddt, \(J=14.8,9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\) ), 2.89 (ddt, \(J=14.8,9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}\), \(\mathrm{CH}_{2}\) ), 3.46 (ddd, J = 15.2, 11.6, \(6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 5.01-5.22 (m, 2H), 6.01-6.11 (m, 1H); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.1\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 32.5(\mathrm{C}-5), 39.6(\mathrm{C}-6), 41.8\left(\mathrm{CH}_{2}\right)\), 58.0 (C-1), 73.8 (C-3), 74.4 (C-4), 117.6 ( \(\mathrm{CH}_{2}\) ), 136.5(CH), 167.5 (C-2); HRMS (ESI-TOF) \(\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]+\) Calcd for \(\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{CINO}_{2} 260.1412\); found 260.1412.


A mixture of \(3 \mathbf{a}\) ( \(100 \mathrm{mg}, 0.39 \mathrm{mmol}\) ), AIBN ( \(32 \mathrm{mg}, 0.20 \mathrm{mmol}\) ) and TBTA ( 0.305 mL , 0.98 mmol ) in benzene ( 1 mL ) was heated to reflux for 4 h . After chromatography (CyHex:AcOEt 9:1, \(\mathrm{SiO}_{2}\) ), epi-8 was isolated as an amorphous solid ( \(32 \mathrm{mg}, 16 \%\) ).
(3S,4S)-3-allyl-1-(tert-butyl)-3-chloro-4-hydroxy-4-methyl-piperidin-2-one (epi-8)
\({ }^{1} \mathrm{H}\) NMR \(\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.83\) (ddd, J=14, 10.4, \(4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.14(\mathrm{dt}, J=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.80(\mathrm{ddt}, J=14.4,9.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}\), H-6), 3.31 (ddd, J=11.6, 5.2, 1H, CH2), 3.26 (ddd, J = 11.6, 5.2 Hz, 1H, H-6), 3.40 (ddd, \(\left.\mathrm{J}=14.4,8.4,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.03-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.90-6.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}\right.\),
\(100 \mathrm{MHz}) \delta 24.1\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{C}-5), 39.7(\mathrm{C}-6), 42.9\left(\mathrm{CH}_{2}\right), 58.1(\mathrm{C}-1), 73.8\) (C-3), 74.4 (C-4),118.0 ( \(\mathrm{CH}_{2}\) ), \(133.6(\mathrm{CH}), 167.8\) (C-2); HRMS (ESI-TOF) m/z: [M+H]+ Calcd for \(\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{CINO}_{2}\) 260.1412; found 260.1414.

\section*{7. Preparation of 9 and 10}


\subsection*{7.1. Typical procedure}

\section*{N -allyl-2-chloro- N -(3-oxobutyl)acetamide (9b)}

To a solution of allylamine ( \(1.00 \mathrm{~mL}, 13.36 \mathrm{mmol}\) ) in toluene \((50 \mathrm{~mL})\) was added methyl vinyl ketone ( \(1.08 \mathrm{~mL}, 13.36 \mathrm{mmol}\) ) and stirred at rt for 2 h . Then, \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}\) ( \(2.79 \mathrm{~mL}, 20.04 \mathrm{mmol}\) ) and 2-chloroacetylchloride ( \(1.28 \mathrm{~mL}, 16.04 \mathrm{mmol}\) ) were added successively at \(0^{\circ} \mathrm{C}\). The mixture was stirred for 1 h , then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to yield \(9 \mathbf{~}(1.83 \mathrm{~g}, 67 \%)\) as a yellow oil. \(\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.\), 70:30 rotamer ratio) major rotamer \(\delta 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.81\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)\), \(3.56\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.02(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dt}, \mathrm{J}=4.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.18-5.26(\mathrm{~m}\), 2H), 5.77-5.87 (m, 1H); minor rotamer \(\delta 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.81(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\), \(\mathrm{CH}_{2} \mathrm{CO}\) ), \(3.63\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.\) ), 3.96 (br d, J = \(5.6 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(4.23(\mathrm{~s}, 2 \mathrm{H}), 5.15-\) \(5.19(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\) major rotamer \(30.1\left(\mathrm{CH}_{3}\right)\), \(41.1(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 42.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 51.6\left(\mathrm{CH}_{2}\right), 117.5\left(\mathrm{CH}_{2}\right), 132.7(\mathrm{CH}), 166.9(\mathrm{CO})\), \(207.2(\mathrm{CO})\); minor rotamer \(30.3\left(\mathrm{CH}_{3}\right), 41.1(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2} \mathrm{CO}\right)\), \(42.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.2\) \(\left(\mathrm{CH}_{2}\right), 117.2\left(\mathrm{CH}_{2}\right), 132.5(\mathrm{CH}), 166.5(\mathrm{CO}), 205.9(\mathrm{CO})\); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClNO}_{2} 204.0786\left(\mathrm{M}^{+}+1\right)\). Found 204.0785.


\section*{\(N\)-(tert-butyl)-2-chloro- N -(3-oxobutyl)acetamide (9a)}

Operating as above from tert-butylamine ( \(1 \mathrm{~mL}, 9.515 \mathrm{mmol}\) ) and methyl vinyl ketone ( \(0.772 \mathrm{~mL}, 9.515 \mathrm{mmol}\) ), Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(1.99 \mathrm{~mL}, 14.27 \mathrm{mmol})\) and chloroacetylchloride ( \(0.91 \mathrm{~mL}, 11.42 \mathrm{mmol}\) ) were added successively, to afford 9a ( 822 \(\mathrm{mg}, 39 \%\) ) as a yellow oil. ; \({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}\),
\(\mathrm{CH}_{3}\) ), 2.78 (ddd, \(J=8,4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\) ), 3.64 (ddd, \(J=7.6,4.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 4.1 (s, 2H, CH2Cl); \({ }^{13} \mathrm{C}\) NMR \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 28.5\left(\mathrm{CH}_{3}\right), 30.3\left(\mathrm{CH}_{3}\right), 39.8\left(\mathrm{CH}_{2} \mathrm{~N}\right)\), \(44.0\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 45.2\left(\mathrm{CH}_{2} \mathrm{CO}\right), 57.9(\mathrm{C}), 166.8(\mathrm{CO}), 206.7(\mathrm{CO}) ;\) HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{ClNO}_{2} 220.1099\left(\mathrm{M}^{+}+1\right)\). Found 220.1101.


\section*{N-benzyl-2-chloro- N -(3-oxobutyl)acetamide (9c)}

Operating as above from benzylamine ( \(1 \mathrm{~mL}, 9.15 \mathrm{mmol}\) ) and methyl vinyl ketone ( 0.743 \(\mathrm{mL}, 9.15 \mathrm{mmol})\), Then \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})\), \(\mathrm{Et}_{3} \mathrm{~N}(1.91 \mathrm{~mL}, 13.73 \mathrm{mmol})\) and chloroacetylchloride ( \(0.88 \mathrm{~mL}, 10.99 \mathrm{mmol}\) ) were added successively, to afford \(9 \mathrm{c}(1 \mathrm{~g}\), \(43 \%\) ) as a yellow oil. IR ( NaCl ) v 3086, 3062, 3031, 2999, 2948, 1714, \(1657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 57: 43\) rotamer ratio): major rotamer \(\delta 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.80\) (t, \(J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\) ), \(3.59\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.\) ), 4.05 (s, 2H, CH2Cl), 4.67 (s, 2H, \(\mathrm{CH}_{2} \mathrm{~N}\) ), 7.18-7.40 (m, 5H, ArH) ; minor rotamer \(\delta 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.68(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}\), \(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\) ), 3.61 ( \(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\) ), 4.32 ( \(\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)\), 7.18-7.40 (m, 5H, ArH); \({ }^{13} \mathrm{C}\) NMR ( \(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\) ) major rotamer \(30.1\left(\mathrm{CH}_{3}\right), 41.3\) \(\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 41.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 42.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.7(\mathrm{CH}), 126.4(\mathrm{CH}), 128.0(\mathrm{CH})\), \(129.1(\mathrm{CH}), 136.0(\mathrm{C}), 164.2(\mathrm{CO}), 207.2(\mathrm{CO})\); minor rotamer \(30.2\left(\mathrm{CH}_{3}\right), 41.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right)\), \(41.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 42.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.9\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 48.9(\mathrm{CH}), 127.6(\mathrm{CH}), 127.8(\mathrm{CH})\), 128.8(CH), 136.8 (C), 167.2 (CO), 205.9 (CO); HRMS (ESI-TOF) m/z: [M+H]+ Calcd for \(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{2} 254.0942[\mathrm{M}+\mathrm{H}]^{+}\); Found 254.0941.

\section*{8. Preparation of 10 and 11}


\subsection*{8.1. Typical procedure using Sodium Methoxide (Method A)}

4-acetyl-1-(tert-butyl)pyrrolidin-2-one (10a)


10a
To a solution of \(9 \mathbf{a}(266 \mathrm{mg}, 1.21 \mathrm{mmol})\) in \(\mathrm{MeOH}(3 \mathrm{~mL})\) was added sodium methoxide \(30 \% \mathrm{wt}(0.23 \mathrm{~mL}, 1.21 \mathrm{mmol}\) ). The mixture was stirred at rt for 30 minutes. The solution was quenched with water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to afford \(\mathbf{1 0 a}(70 \mathrm{mg}, 32 \%)\) IR ( NaCl ) v 3465, 3433,2975, 2933, 1714, \(1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.40\) (s, 9H, CH3 ), 2.21 (s, 3H, CH3), 2.51 (dd, \(J=16.8,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\) ), 2.62 (dd, \(J=16.4 \mathrm{~Hz}\), \(10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\) ), 3.13-3.22 (m, 1H, H-5), 3.54 (dd, \(J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.67 (dd, J \(=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.6\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 35.3(\mathrm{C}-\) 3), 43.3 (C-4), 46.2 (C-5), 54.3 (C), 172.2 (C=O), 206.4 (C=O); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2} 184.1332\left(\mathrm{M}^{+}+1\right)\). Found 184.1332.


\subsection*{8.2. Typical procedure using Potassium Tert-butoxide (Method B)}

3-allyl-6-methyl-7-oxa-3-azabicyclo[4.1.0]heptan-2-one (11c)


To a solution of \(9 \mathbf{c}(200 \mathrm{mg}, 0.98 \mathrm{mmol})\) in toluene ( 2 mL ) was added potassium tertbutoxide \(1 \mathrm{M}(0.98 \mathrm{~mL}, 0.98 \mathrm{mmol})\), were stirred at rt for 30 minutes. The solution was quenched with water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to afford \(\mathbf{1 1 c}(98 \mathrm{mg}, 60 \%)\). IR \((\mathrm{NaCl}) v\)

3081, 3016, 2919, \(1660 \mathrm{~cm}-1\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\) ) \(\delta 1.48\) (s, 3H, \(\mathrm{CH}_{3}\) ), 2.03 (ddd, \(J=14.8,12.4,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.12 (ddd, \(\mathrm{J}=14.4,4,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.93 (ddd, J=12.4, \(5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.31 ( \(\mathrm{s}, \mathrm{H}-3\) ), 3.38 (td, J = 12.8, \(4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.86 (ddt, J = \(15.2,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07\) (ddt, J = 15.2, 5.6, 1.2 Hz, 1H), 5.13-5.19 (m, 2H), 5.67-5.78 (m, 1H); \({ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.5\left(\mathrm{CH}_{3}\right), 29.3(\mathrm{C}-5), 41.1(\mathrm{C}-6), 49.4\left(\mathrm{CH}_{2}\right)\), 57.6 (C-3), 59.9 (C-4), \(117.6\left(\mathrm{CH}_{2}\right), 132.3(\mathrm{CH}), 166.8(\mathrm{C}-2)\); HRMS (ESI-TOF) m/z: [M+H]+ Calcd for \(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2}\) 168.1019; found 168.1023.


3-benzyl-6-methyl-7-oxa-3-azabicyclo[4.1.0]heptan-2-one (11b)


11b
Operating as above from 9b ( \(250 \mathrm{mg}, 0.985 \mathrm{mmol}\) ) and potassium tert-butoxide 1 M ( \(0.985 \mathrm{~mL}, 0.985 \mathrm{mmol}\) ) in toluene ( 2.5 mL ), 11b was isolated ( \(112 \mathrm{mg}, 47 \%\) ). IR ( NaCl ) \(v\) 3086, 3062, 3030, 2962, 2928, \(1655 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.48(\mathrm{~s}, 3 \mathrm{H}\), \(\mathrm{CH}_{3}\) ), 1.94 (ddd, \(J=14.4,12.4,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\) ), 2.06 (ddd, \(J=14.4 \mathrm{~Hz}, 4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\) 5), 2.89 (ddd, \(J=12.4,6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.34 (td, \(J=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\) ), 3.38 (s, \(\mathrm{H}-3), 4.47\left(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.72\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.21-7.36\) (m, \(5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.5\left(\mathrm{CH}_{3}\right), 29.3(\mathrm{C}-5), 41.2(\mathrm{C}-6), 50.2\left(\mathrm{CH}_{2} \mathrm{~N}\right)\), 57.6 (C-3), 59.9 (C-4), \(127.5(\mathrm{CH}), 127.9(\mathrm{CH}), 128.7(\mathrm{CH}), 136.6(\mathrm{C}), 167.2(\mathrm{C}-2)\); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2} 218.1176\left(\mathrm{M}^{+}+1\right)\). Found 218.1176.

\section*{9. Preparation of 13.}


1-(tert-butyl)-3,3-dichloro-4-hydroxy-4-methylpyrrolidin-2-one (13)
To a solution of tert-butylamine \((0.5 \mathrm{~mL}, 4.76 \mathrm{mmol})\) and potassium carbonate \((1.3 \mathrm{~g}\), 9.515 mmol ) in acetonitrile ( 14 mL ) at \(0^{\circ} \mathrm{C}\) was added chloroacetone ( \(0.392 \mathrm{~mL}, 4.76\) mmol ), and potassium iodide ( \(870 \mathrm{mg}, 5.24 \mathrm{mmol}\) ). The mixture was stirred at rt for 4 h . The resulting solution was filtered on a celite pad, concentrated and purified by a flash chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\) to yield 1 -(tert-butylamino)propan-2-one (94\%). \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) \((12 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.94 \mathrm{~mL}, 6.74 \mathrm{mmol})\) and dichloroacetylchloride ( \(0.52 \mathrm{~mL}, 5.40 \mathrm{mmol}\) ) were added successively at \(0^{\circ} \mathrm{C}\). The mixture was stirred at rt for 1 h , then poured into water and extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The organics were dried, concentrated and purified by chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{SiO}_{2}\right)\), to yield 13 ( \(370 \mathrm{mg}, 32 \%\) global) as an oil. IR ( NaCl ) v 3429, 3401, 3379, 2979, 2936, 2916, 2896, \(1703 \mathrm{~cm}^{-1}\); \({ }^{1} \mathrm{H}\) NMR ( \(\mathrm{CDCl}_{3}, 400\) \(\mathrm{MHz}) \delta 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.77\) (br s, OH), 3.41 (d, \(J=10 \mathrm{~Hz}, 1 \mathrm{H}\), \(\left.\mathrm{CH}_{2}\right), 3.45\left(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.7\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right)\), 53.9 (C-5), 55.2 (C), 76.2 (C-4), \(90.1\left(\mathrm{CCl}_{2}\right), 165.3\) (C=O); HRMS (ESI-TOF): Calcd for \(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{CINO}_{2} 240.0553\left(\mathrm{M}^{+}+1\right)\). Found 240.0556.


VNMRS 400A 01072015 JAM534-35-H1
NNMRS400F / Num. Inv. 205984 .
Usuari: san / Mostra: JAM534-35
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 01/07/15 / Ope.: J.MONTIEI


VNMRS400A_01072015_JAM534-35-C13
VNMRS400F/Num.Inv. 205984
cdcla / Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: JAM534-35
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 01/07/15 / Ope.: J.MONTIEL


VNMRS 400A_01072015_JAM534-82-H1
VNMRS 400
cdcle / Num. Inv. 205984
Temp: \(25 \mathrm{C} / \mathrm{N} . \operatorname{Reg}:\) XXxxxxxxxx
Usuari: san / Mostra: JAM534-82
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(01 / 07 / 15\) / Ope.: J.MONTIEL


VNMRS 400A_01072015_JAM534-82-C13
Cdcl3/Temp: 25C / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: JAM534-82
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(01 / 07 / 15\) / Ope.: J.MONTIEL

으우물




VNMRS400A_26042016_AT019-72-H1
VNMRS400A_26042016_AT019-72-H1
VNMRS400F/ Num.Inv. 205984
cdcle / Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: AT019-72
cdcl3 / Temp: 25C / N.Reg: Xxxxxxx
Usuari: san / Mostra: ATTO19-72


VNMRS400A_27042016_AT019-72-C13
VNMRS400F/Num.Inv. 205984
cdele / Temp: 25C / N. Reg: XXXXXXXXXX
Usuari: san Mostra: AT019-72
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 27/04/16 / Ope.: J.MONTIEI




VNMRS 400A_09062016_BLANCO-H1
VNMRS400F-/ Num.Inv. 205984
cdcl3 / Temp: 25C / N. Reg: Xxxxxxxxxx
Usuari: san / Mostra: BLANCO
Nom: FAIZA DIABA
Data: 09/06/16 / Ope.: F.DIABA


VNMRS400A_09062016_BLANCO-C13
VNMRS400F / Num.Inv. 205984
cdclel3 / Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: BLANCO
Nom: FAIZA DIABA
Data: \(09 / 0 / 16\) / Ope. F DIABA
\[
\begin{aligned}
& \text { Nom: FAIZA DIABA } \\
& \text { Data: } 09 / 06 / 16 / \text { ope.: F.DIABA }
\end{aligned}
\]




VNMRS400A_16072016_JAM814-141-C13
VNMRS400F/Num.Inv. 205984
cdcla / Temp: \(25 \mathrm{C} /\) N.Reg: XXXXXXXXXX
Usuari: san / Mostra: JAM814-141
Nom: JUAN-ANDRES MONTEL ACHONG
Data: \(16 / 07 / 16 /\) Ope.: J.MONTIEL


VNMRS 400A_01032016_AT004-3-H1_rep_20_59_02
VNMRS 400F / Num. Inv. 205984
cdcl3 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: Xxxxxxxxx
cdcl3 / Temp: 25C / N.Reg: Xxxxxxxxxx
Nom: FAIZA DIABA
Data: 01/03/16 / Ope.: F.DIABA


VNMRS400A_01032016_AT004-3-C13
VNMRS400 \(/\) Num.Inv. 205984
cdcle /Temp: \(25 \mathrm{C} / \mathrm{N} . \mathrm{Reg}^{-13}\) XXXXXXXXXX
Usuari: san / Mostra: AT004-3
Nom: FAIZA DIABA
Data: 01/03/16/ Ope.: F.DIABA



M400AQ_14062016_JAM796-33-C13
M4000/ Num.Inv- AF/004285
cdcle/Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / MOstra: JAM796-33
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 13/06/16 / Ope.: J.MONTIEL



VNMRS400A_30042016_JAM759-17-H1
VNMRS400F/ Num.Inv. 205984
cdcl3 / Temp: \(25 \mathrm{C} / \mathrm{N} . \operatorname{Reg:~XXXXXXXXX}\)
Usuari: san / Mostra: JAM759-17
cdcl3 / Temp: 25C N.Reg: XXXXX
Usuari: san / Mostra: JAM759-17
Data: 30/04/16 / Ope.: J.MONTIEL


VNMRS400A_30042016_JAM759-17-C13
VNMRS400F / Num.Inv. 205984
cdcla / Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: JAM759-17
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 30/04/16/ Ope.: J.MONTIEL


VNMRS 400A_02052016_JAM761-65-C13
VNMRSAOOF / Num.Inv. 205984
cdc13 / Temp: 25 C / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: JAM761-65
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(02 / 05 / 16 /\) Ope.: J.MONTIEL



VNMRS400A_20072016_JAM815-50-H1

Usuari: san / Mostra: JAM815-50
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(20 / 07 / 16\) / Ope.: J.MONTIEL


VNMRS400A_21072016_JAM815-50-C13
VNMRS400F/Num.Inv. 205984
cdcl3/Temp: \(25 \mathrm{C} / \mathrm{N} . \mathrm{Reg:} \mathrm{XXXXXXXXXX}\)
Usuari: san / Mostra: JAM815-50
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 21/07/16 / Ope.: J.MONTIEL



VNMRS 400A_22102015_XMI011-32-H1
VNMRS400F / Num. Inv. 205984
cdcl3 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: XXxxxxxxx
Usuari: san Mostra: XMINA
Data: 22/10/15 / Ope.: F.DIABA


VNMRS400A_22102015_XMI011-32-C13
VNMRS400F/Num.Inv. 205984
cdcl3/Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: XMI011-32
Nom: FAIZA DIABA
Data: \(22 / 10 / 15 /\) Ope.: F.DIABA


7b
VNMRS400A_14072016_AT020X2-26-H1
cdel3 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: : xxxxxxxxxx
Usuari: san / Mostra: AT020x2-26
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 14/07/16 / Ope.: J.MONTIEI





VNMRS 400A_07042016_JAM738X2-11-H1
VNMRS 400 F / Num. Inv. 205984
cdcl3 / Temp: \(25 \mathrm{C} / \mathrm{N} . \operatorname{Reg}\) : XXXXXXXXXX
Usuari: san / Mostra: JAM738x2-11
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(07 / 04 / 16\) / Ope.: J.MONTIEL

:
NnNNNNN


NNMRS400A_07042016_JAM738x2-11-C13
VNMRS400F-/ Num.Inv. 205984
cdcl3 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM738x2-11
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(07 / 04 / 16 /\) Ope.: J.MONTIEL



VNMRS400A_10052016_AT025X2-11-H1
VNMRS400 \({ }^{-}\)/ Num.Inv. 205984
cdcl3 / Temp: 25C / N.Reg: Xxxxxxxxxx
Usuari: san / Mostra: AT025×2-11
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(10 / 05 / 16\) / Ope.: J.MONTIEL


VNMRS400A_09052016_AT025X2-11-C13
VNMRS400F/ Num.Inv. 205984
cclel3/Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: AT025X2-11
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 09/05/16 / Ope.: J.MONTIEL
Data: 09/05/16/ Ope.: J.MONTIEL



M400AFF 26052016 JAM771-106-H1
M400F / Num. Inv.-1009191
CDC13 / Temp: 25C / N.Reg: xxxxxxxxxx
Usuari: san / Mostra: JAM771-106
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(26 / 05 / 16 /\) Ope.: J.MONTIEL



VNMRS 400A_24102016_JAM788-25-H1
VNMRS400F- Num. Inv. 205984
cdcla / Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / MOstra: JNMT88-25
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(24 / 10 / 16 /\) Ope.: J. MONTIEL


VNMRS400A-24102016_JAM788-25-C13
VNMRS400'/Num.Inv. 205984
cdcls / Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: JAM788-25
Nom: JUN-ANDRES MONTIEL ACHNG
Data: \(24 / 10 / 16\) / Ope.: J.MONTIEL




VNMRS 400A_23102016_JAM787-34-H1
VNMRS400F/Num.Inv. 205984
cdcl3 / Temp: \(25 \mathrm{C} / \mathrm{N} . \mathrm{Reg:} \mathrm{XXXXXXXXXX}\)
Usuari: san / Mostra: JAM787-34
Usuari: san / Mostra: JAM787-34
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: 23/10/16 / Ope.: J.MONTIEL


VNMRS400A_23102016_JAM787-34-C13
VNMRS400F/Num.Inv. 205984
cdsla/Temp: 25c / N.Reg: XXXXXXXXXX
Usuari: san /Mostra: JAM787-34
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(23 / 10 / 16\) / Ope.: J. MONTIEL


VNMRS 400A_27052016_JAM674-56-H1
VNMRS400F / Num.Inv. 205984
cdcl3 / Temp: \(25 \mathrm{C} / \mathrm{N}\). Reg: XXXXXXXXXX
cdcl3 / Temp: 25C / N.Reg: XXXX
Usuari: san / Mostra: JAM674-56
Nom: FAIZA DIABA
Data: 27/05/16 / Ope.: F.DIABA


VNMRS 400A_27052016_JAM674-56-C13
VNMRS400A_27052016_JAM674-56-C13
VNMRS400F/Num.Inv. 205984
cdcl3/Temp: 25C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: JAM674-56
Nom: FAIZA DIABA
Data: \(27 / 05 / 16 /\) Ope.: F.DIABA
Data: 27/05/16 / Ope.: F.DIABA

VNMRS 400A_21072016_JAM818-36-H1
VNMRS400F-/ Num.Inv. 205984
VNMRS400F / Num.Inv. 205984
ccclel3/Temp: 25 C / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: JAM818-36 Usuari: san / Mostra: JAM818-36 Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(21 / 07 / 16\) / Ope.: J.MONTIEL
Data: 21/07/16 / Ope.: J.MONTIEL

\[
\begin{aligned}
& \text { || || | || || }
\end{aligned}
\]

VNMRS 400A_22072016_JAM818-36-C13
VNMRS400F / Num.Inv. 205984
cdcla/ Temp: 25C/N.Reg: XXXXXXXXXX
Usuari: san/ MOStra: JAM818-36
Nom: JUAN-ANDRES MONTEL ACHONG
Data: 22/07/16/Ope.: J.MONTIEL



12c

VNMRS 400A_09092016_AT049-12-H1
VMRRS400F-/ Num.Inv. 205984
cdcla / Temp: 25C / N.Reg: XxXxxxxxxx
Usuari: san / MOstra: ATO49-12
Nom: JUAN-ANDRES MONTEL ACHONG
Data: 09/O9/16 / Ope. J MONTIEL
Data: 09/09/16 / Ope.: J.MONTIEL


VNMRS400A_09092016_AT049-12-C13
VNMRS400F/Num.Inv. 205984
cdcla/Temp: 25c / N.Reg: XXXXXXXXXX
Usuari: san / Mostra: AT049-12
Nom: JUAN-ANDRES MONTIEL ACHONG
Nom: JUAN-ANDRES MONTIEL ACHONG
Data: \(09 / 09 / 16\) / Ope.: J.MONTIEL



2373-2016_VNMRS400F_03062016_JAM780-36-H1
Equip: VNMRS400F / Num. Inv. 205984
H1 / Solvent: cdcl3 / Temp: 25 C
N. Reg: \(2373 / 2016\) / Temp: 25

Usuari: san / Mostra: JAM780-36
Nom: FAIZA DIABA
Data: \(03 / 06 / 16\) 12:32:02 h./ Ope.: ANA LINARES


2373-2016_VNMRS400F_03062016_JAM780-36-C13
Equip: VNMRS400F / Num. Inv. 205984
N.Reg: 2373/2016

Usuari: san / Most
Nom: FAIZA DIABA
Nom: FAIZA DIABA


Conclusions

CuCl mediated ATRC for the synthesis of 2- azaspiro[4.5]decanes


Diaba, F.; Montiel, J. A.; Martínez-Laporta, A.; Bonjoch, J. Tetrahedron Lett. 2013, 54, 2619-2622.

In conclusion, during this PhD work we have demonstrated that chloroacetamides are valuable and versatile intermediates for the synthesis of different nitrogen containing heterocycles using either radical or non-radical processes. In the first place, we reported the first dearomative spirocyclization under ATRC conditions using a \(\mathrm{Cu}(\mathrm{I})\) catalyst to access 2-azaspiro[4.5]decanes by treatment of benzyltrichloroacetamides with substoichiometric quantities of CuCl , in acetonitrile and with microwave activation. The results obtained with the different trichloroacetamides used in this study show the importance of having a bulky group on the nitrogen to achieve the cyclization process. The unstable chlorides obtained at the end of the reaction, were easily transformed into more stable alcohols, ethers or amines by a simple quenching with water, methanol or allylamine respectively. Additionally, oxidation of the epimeric alcohol mixture to the corresponding ketone and further cleavage of the \(t\)-butyl group provided a polyfunctionalized 2-azaspiro[4.5]decane derivative, which can be used as a building block to construct more complex structures.

CuCl mediated ATRC from \(N\)-( \(\alpha\)-methylbenzyl)trichloroacetamides


Diaba, F.; Montiel, J. A.; Bonjoch, J. Tetrahedron 2013, 69, 4883-4889.

In the second place, when \(N\)-( \(\alpha\)-methylbenzyl)trichloroacetamides were submitted to the ATRC conditions described before for the synthesis of morphans, the radical course of the reaction followed two main pathways. The first one, as expected, provided morphans through an ATRC from the 1(carbamoyl)dichloromethyl radical with the amide Z-conformation, which underwent cyclization upon the \(\alpha, \beta\)-unsaturated nitrile followed by a diastereoselective chlorine atom transfer. In the second pathway, as observed under reductive conditions, the same radical in its \(E\) conformation underwent a 1,4-hydrogen transfer generating a benzylic radical that reacts with the unsaturated \(\alpha, \beta\)-nitrile with configurational inversion at the quaternary stereogenic center. Here also, after a diastereoselective chlorine transfer, normorphan derivatives were isolated. It is worth noting that this stereospecific formation of normorphans involving memory of chirality (MoC) in the radical
cyclization, together with the one reported earlier by our research group, are examples of this scarce phenomenon.

\section*{Synthesis of morphans from 4-trichloroacetamidocyclohexanones}


Diaba, F.; Montiel, J. A.; Serban, G.; Bonjoch, J. Org. Lett. 2015, 17, 3860-3863.

Additionally, as a result of an investigation aimed at the preparation of enamine from 4-trichloroacetamidocyclohexanone and pyrrolidine, we discovered a new route for the synthesis of 6-azabicyclo[3.2.1]octane ring (normorphan) present in many natural and non-natural compounds. The 5 min reaction was achieved under solvent-free conditions or using microwave activation in toluene. The process involves an unprecedented intramolecular \(\alpha\) carbamoylation of ketones or an intramolecular haloform-type reaction of trichloroacetamides promoted by enamine (generated in situ) as counterreagents. The methodology was applied to enantiopure \(N-(\alpha-\) methylbenzyl)trichloroacetamidocyclohexanone providing the expected normorphans which were separated and converted to the corresponding amino alcohols for their future use as organocatalysts.


The methodology was successfully extended to additional substrates to provide the azatricyclic structure that constitutes the ring core of the pentacyclic natural product cephalocyclidin A (a). Additionally, enlargement of the side chain bearing the trichloroacetamide had a significant impact on the course of the reaction since it provided the anti-Bredt seven-membered ring alone (b). The structure of this unprecedented type of anti-Bredt ring (3-azabicyclo[4.3.1]dec-5ene) is present in many natural compounds with few reported methodologies for its preparation.

Radical synthesis of morphans from 4-dichloroacetamidocyclohexanones


Diaba, F.; Montiel, J. A.; Bonjoch, J. Chem. Comm. 2016, 52, 14031-14034

The results previously obtained with trichloroacetamides led us to use dichloroacetamides instead to achieve the radical process. Thus a new route for the synthesis of 2-azabicyclo[3.3.1]nonanes was reported using a radical cyclization of dichloroacetamide-tethered ketones in the presence of pyrrolidine, AIBN and TTMSS and under microwave activation. In a five-minute one-pot process, after the generation of an enamine, intramolecular addition of a carbamoylchloromethyl radical, and oxidation of the \(\alpha\)-aminoalkyl radical intermediate, the resulting iminium salt evolved to the corresponding enamine and, after a workup, to the alkylated ketone. The methodology was successfully applied to the synthesis of the tricyclic core of immunosuppressant FR901483 and also to the preparation of the 3-azabicyclo[4.3.1]decane structure through formation of the seven membered ring.


The synthesis of functionalized pyrrolidines and piperidines from linear monochloro- and dichloroacetamides using non-radical chemistry was investigated. These chloroacetamides were easily prepared from methyl vinyl ketone and the corresponding amine followed by treatment with dichloro or chloroacetyl chloride in a one-pot reaction. Here also, the \(t\)-butyl group on the nitrogen allowed the reaction to go further providing the corresponding polyfunctionalized piperidine with an acceptable yield. The cyclization process was also achieved using Darzens conditions in the presence of sodium methoxide or potassium \(t\)-butoxide to afford the above mentioned epoxides with good yields.

Application of the methodology to monochloroacetamides provided the piperidine or the pyrrolidine ring depending on the nature of the substituent on the nitrogen atom.```


[^1]:    ${ }^{1}$ For a recent review see: Coussanes, G.; Vila, X.; Diaba, F.; Bonjoch, J. Synthesis 2016 (accepted).
    ${ }^{2}$ For a recent review see: Clark, A. J. Eur. J. Org. Chem. 2016, 2231-2243.
    ${ }^{3}$ Nagashima, H.; Wakamatsu, H.; Ozaki, N.; Ishii, T.; Watanabe, M.; Tajima, T.; Itoh, K. J. Org. Chem. 1992, 57, 1682-1689.
    4 (a) Tseng, C.K.; Teach, E.G.; Simons, R.W. Synth. Commun. 1984, 1027-1031. (b) Benedetti, M.; Forti, V.; Ghelfi, G.; Pagnoni, U.M.; Onzoni, R. Tetrahedron 1997, 53, 14031-14042. (c) De Campo, F.; Lastécouères, D.; Verlhac, J. B. Chem. Commun. 1998, 2117-2118.
    ${ }^{5}$ Cassayre, J.; Quiclet-Sire, B.; Saunier, J.B.; Zard, S. Z. Tetrahedron Lett., 1998, 39, 8995 -8998.
    ${ }^{6}$ Diaba, F.; Gomez-Bengoa, E.; Cuerva, J. M.; Bonjoch, J.; Justicia, J. RSC Advances 2016, 6, 55360-55365.

[^2]:    ${ }^{7}$ Diaba, F.; Martínez-Laporta, A.; Bonjoch, Pereira, A.; Muñoz-Molina, J. M., Pérez, P. J.; Belderrain, T. R. Chem. Commun. 2012, 48, 8799-8801.
    ${ }^{8}$ Diaba, F.; Martínez-Laporta, A.; Coussanes, G.; Fernández, I.; Bonjoch, J. Tetrahedron 2015, 71, 3642-3651.

[^3]:    ${ }^{9}$ For a recent review see: Gloor, C. S.; Dénès, F.; Renaud, P. Free Radical Res. 2016, 1-10; DOI: 10.1080/10715762.2016.1232485.

[^4]:    ${ }^{10}$ Diaba, F.; Martínez-Laporta, A.; Bonjoch, J. J. Org. Chem. 2014, 79, 9365-9372.
    ${ }^{11}$ For a review on the biology and synthesis of FR901483, see: Bonjoch, J.; Diaba, F. in Studies in Natural Products Chemistry, Bioactive Natural Products (Part L); Atta-ur-Rahman, Ed.; Elsevier: Amsterdam 2005; Vol. 32, pp 3-60.
    ${ }^{12}$ Diaba, F.; Pujol-Grau, C.; Martínez-Laporta, A.; Fernández, I.; Bonjoch, J. Org. Lett. 2015, 17, 568-571.
    ${ }^{13}$ Amat, M.; Pérez, M.; Ballette, R.; Proto, S.; Bosch, J. The Alkaloids, 2015, 74, 159-199.
    ${ }^{14}$ Diaba, F.; Martínez-Laporta, A.; Coussanes, G.; Fernández, I.; Bonjoch, J. Tetrahedron 2015, 71, 3642-3651.
    ${ }^{15}$ For a review, see: Kang, B.; Jakubec, P.; Dixon, D. J. Nat. Prod. Rep. 2014, 31, 550-562.

[^5]:    ${ }^{16}$ (a) For intermolecular radical processes involving enamines leading to amino compounds, see inter alia: Renaud, P.; Schubert, S. Angew. Chem. Int. Ed. 1990, 29, 433-434; (b) Schubert, S.; Renaud, P.; Carrupt, P.-A.; Schenk, K. Helv. Chim. Acta 1993, 76, 2473-2489. For intramolecular radical processes involving enamines leading to amino compounds, see inter alia: (c) Ripa, L.; Hallberg, A. J. Org. Chem. 1998, 63, 84-91; (d) Aurrecoechea, J. M.; Coy, C. A.; Patiño O. J., J. Org. Chem. 2008, 73, 5194-5197.

[^6]:    ${ }^{17}$ (a) For reactions upon preformed enamines leading to alkylated ketones using photo-induced radical reactions, see: (a) Russell, G. A.; Wang, K. J. Org. Chem., 1991, 56, 3475-3479; (b) Hu, B.; Chen, H.; Liu, Y.; Dong, W.; Ren, K.; Xie, X.; Xu, H.; Zhang, Z. Chem. Commun. 2014, 50, 13547-13550.
    18 For $\mathrm{Et}_{3} \mathrm{~B}$-initiated addition of an alkyl radical to preformed N -silyloxy enamines, see: Song, H.J.; Lim, C. J. ; Kim, S. Chem. Commun. 2006, 2893-2895.
    ${ }^{19}$ Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438-2442.
    ${ }^{20}$ (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102-113. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322-5363. (c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075-10166.
    21 (a) Shih, H.-W.; Vander Wai, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am.Chem. Soc. 2010, 132, 13600-13603. (b) Bahamonde,A.; Melchiorre, P. J. Am. Chem. Soc. 2016, 138, 80198030.
    ${ }^{22}$ Narasaka, K.; Okauchi, T.; Tanaka, K.; Murakami, M. Chem. Lett. 1992, 2099-2102.

[^7]:    ${ }^{23}$ (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77-80. (b) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20648-20651.
    ${ }^{24}$ For selective reviews on Darzens reactions, see: (a) Rosen, T. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 409-439. (b) Ballester, M. Chem. Rev.1955, 55, 283-300. (c) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Tetrahedron 1999, 55, 6375-6386. (d) Yuan, J. Y.; Liao, X. C.; Wang, H. M.; Tang, M. S.; J. Struct. Chem. 2008, 49, 818-827. (e) Sweeney, J. Eur. J. Org. Chem. 2009, 4911-4919.
    ${ }^{25}$ For intermolecular Darzens reaction from haloacetamides see: (a) Tung, C. C.; Speziale, A. J.; Frazier, H. W. J. Org. Chem. 1963, 28, 1514-1521. (b) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Ortega-Morales, O.; Garcia-Cervera, E.; Rosas-Nexticapa, M.; Pool-Gomez, E.; Lopez-Ramos, M.; Rodriguez-Hurtado, F.; Chan-Salvador, M. Steroids 2016, 112, 20-35. (c) Li, B.; Li, C. J. Org. Chem. 2014, 79, 8271-8277 and the references therein. (d) Ma, N.; Wu, K.; Huang, L. Eur. J. Med. Chem. 2008, 43, 893-896. (e) Komori, K.; Taniguchi, T.; Mizutani, S.; Monde, K. Kuramochi, K.;Tsubaki, K. Org. Lett. 2014, 16, 1386-1389. (f) Mizutani, S.; Komori, K.; Taniguchi, T.; Monde, K.; Kuramochi, K.; Tsubaki, K. Angew. Chem., Int. Ed. 2016, 55, 9553-9556.
    ${ }^{26}$ For intramolecular Darzens reaction from haloacetamides see: (a) Fisyuc, A. S.; Poendaev, N. V. Molecules, 2002, 7, 119-123. (b) Guo, J.; Sun, X.; Yu, S. Org. Biomol. Chem. 2014, 12, 265268.
    ${ }^{27}$ (a) Mamedov, V. A.; Nuretdinov, I. A.; Subgatullina, F. G. Russ. Chem. Bull. 1988, 37, 19501951. (b) Mamedov, V. A.; Litvinov, I. A.; Kataeva, O. N.; Rizvanov, I. Kh.; Nuretdinov, I. A. Monatsh. Chem. 1994, 125, 1427-1435.

[^8]:    ${ }^{1}$ Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-Molina, J. M.;Pérez, J. P.; Belderrain, T. R. Chem. Commun. 2012, 48, 8799-8801.

[^9]:    ${ }^{2}$ Lewin, A.; Frucht, M.; Chen, K.; Benedetti, E.; Di Blasio, B. Tetrahedron 1975, 31, 207-215.
    ${ }^{3}$ (a) Stork, G.; Mah, R. Heterocycles 1989, 28, 723-727; (b) Yu, J.-D.; Ding, W.; Lian, G.-Y.; Song, K.-S.; Zhang, D.-W.; Gao, X.; Yang, D. J. Org. Chem. 2010, 75, 3232-3239.

[^10]:    ${ }^{4} \mathrm{LP}$ and MP refer to the less polar and the more polar alcohols respectively.

[^11]:    * Corresponding authors. Tel.: +34 934024540; fax: +34 934024539.

    E-mail addresses: faiza.diaba@ub.edu (F. Diaba), josep.bonjoch@ub.edu (J. Bonjoch).

[^12]:    ${ }^{a}$ Values were assigned on the basis of gCOSY and gHSQC spectra in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$. LP and $\mathbf{M P}$ refer to the diastereomer less polar and the diastereomer more polar respectively.

[^13]:    ${ }^{1}$ A. R. Surrey, M. K. Rukwid, J. Am. Chem. Soc. 1955, 77, 3798-3801.

[^14]:    ${ }^{2}$ J. Boivin, M. Yousfi, S. Z. Zard, Tetrahedron lett. 1997, 38, 5985-5988

[^15]:    ${ }^{3}$ In the case of $\mathbf{8}$ and $9,1 \mathrm{~mL}$ of methanol or allylamine were added respectively.

[^16]:    H1 / Mercury-400F
    cdc13 / Temp: 25 C / N. Reg: xxxxxxxxxx
    cdc13 / Temp: 25C / N.Reg: xxxxxxx
    Usuari: san / Mostra: TAN538-21-26
    Nom: FAIZA DIABA
    Data: $11 / 06 / 12 /$ ope.: F.dIABA
    Experiment: s2pul
    Experiment: s2pul
    Pulse Sequence: s2pul

[^17]:    H1 / Mercury-400F
    cdc13/TTemp: Ambient / N.Reg: xxxxxxxxxx
    Isuari: san / Mostra: YJA028-134
    Nom: FAIZA DIABA
    a: 02/07/12 / ope.: F.DIABA
    Experiment: s2pul
    Pulse Sequence: s2pui

[^18]:    H1 / Mercury-400F
    cacl3 / Temp: Ambient / N.Reg: xxxxxxxxxx
    Usuari: san / Mostra: ja031-97
    Nom: FAIZA DIABA
    Nom: : FAIZA DIABA
    Data: $06 / 07 / 12 /$ ope.: F.DIABA
    Experiment: s2pul
    Pulse Sequence: s2pul

[^19]:    H1 / Mercury-400F
    cdc13/ Temp: 25 C / N. Reg: xxxxxxxxx
    Usuari: san / Mostra: XJA101-55
    Nom: FAIZA DIABA
    Data: 04/02/13/Ope.: F.DIABA
    Experiment: s2pul
    Pulse Sequence: s2pul

[^20]:    
    $\stackrel{\circ}{\sim}$

[^21]:    ${ }^{1}$ For a recent review see: Gloor, C. S.; Dénès, F.; Renaud, P. Free Radical Res. 2016, 1-10; DOI: 10.1080/10715762.2016.1232485.

[^22]:    ${ }^{2}$ For the structures of 7 and 8 see scheme 3.3., 9 has the same structure of 8 but with a carbonyl group instead of a chloro atom in the allylic position.

[^23]:    ${ }^{3}$ Sasmal, A.; Taniguchi, T.; Wipf, P.; Curran, D. P. Can. J. Chem. 2013, 90, 1-5.

[^24]:    ${ }^{4}$ A related dearomatization followed by a dimerization process of cyclohexadienyl radicals was observed in a classical study of the decomposition of aryl diazonium salts using copper: Hey, D. H.; Rees, C. W.; Todd, A. R. J. Chem. Soc. C 1967, 1518-1525.
    ${ }^{5}$ (a) Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649-9667; (b) Robertson, J.; Palframan, M.
    J.; Shea, S. A.; Tchabanenko, K.; Unsworth, W. P.; Winters, C. Tetrahedron 2008, 64, 1189611907.
    ${ }^{6}$ For 1,4-phenyl radical transfer starting from haloacetamides or related compounds, see: (a) Ishibashi, H.; Nakamura, N.; Ito, K.; Kitayama, S.; Ikeda, M. Heterocycles 1990, 31, 1781-1784; (b) Clark, A. J.; Coles, S. R.; Collis, A.; Debure, T.; Guy, C.; Murphy, N. P.; Wilson, P. Tetrahedron Lett. 2009, 50, 5609-5612; (c) Fuentes, L.; Quintero, L.; Cordero-Vargas, A.; Eustaquio, C.; Terán, J. L.; Sartillo-Piscil, F. Tetrahedron Lett. 2011, 52, 3630-3632; (d) Sandoval-Lira, J.; HernándezPérez, J. M.; Sartillo-Piscil, F. Tetrahedron Lett. 2012, 53, 6689-6693.

[^25]:    * Corresponding authors. E-mail addresses: faiza.diaba@ub.edu (F. Diaba), josep.bonjoch@ub.edu (J. Bonjoch).

[^26]:    ${ }^{\mathrm{a}}$ For structures of compound $\mathbf{2 - 7}$, see Schemes 3 and 4 . For compounds $\mathbf{8}-\mathbf{9}$, see Fig. 1.
    ${ }^{\mathrm{b}}$ Reaction times: (A) 4 h ; (B) 15 min ; (C) 15 min ; (D and E) 48 h .
    ${ }^{\text {c }}$ Conversion: (A) 100\%; (B) 100\%; (C) 66\%; (D) 100\%; (E) $50 \%$.

[^27]:    ${ }^{\text {a }}$ In $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$. Values assigned on the basis of COSY and HMQC experiments.
    ${ }^{\text {b }}$ Compounds IV-Cl and $\mathbf{V}-\mathrm{Cl}$ show the structure of $\mathbf{I V}$ and $\mathbf{V}(\mathrm{X}=\mathrm{Cl})$ depicted in Scheme 2, and are described in Ref. 20.

