

EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE

SERVICES

Rahma Chaabouni

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It

can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

2016

DOCTORAL THESIS

Rahma Chaabouni

Efficient BitTorrent-like Content
Distribution for Cloud Storage Services

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Rahma Chaabouni

Efficient BitTorrent-like Content Distribution

for Cloud Storage Services

Doctoral Thesis

Supervised by:
Dr. Pedro Garćıa-López

Dr. Marc Sánchez-Artigas

Department of Computer Engineering and Mathematics

Tarragona

2016

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Departament d’Enginyeria
Informática i Matemátiques
Av.Paisos Catalans 26,
43007 Tarragona, Spain

Tel: (+34) 977 558 745

I STATE that the present study, entitled “Efficient BitTorrent-like
Content Distribution for Cloud Storage Services”, presented by Rahma
Chaabouni for the award of the degree of Doctor, has been carried out
under our supervision at the Department of Computer Engineering and
Mathematics of this university.

Tarragona, November 7, 2016

Doctoral Thesis Supervisors

Dr. Pedro Garćıa-López Dr. Marc Sánchez-Artigas

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

To the memory of my father,
the first to teach me.

To my beloved mother,
for her prayers for me.

To my dear husband,
for his support and patience.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Acknowledgment

Undertaking this PhD has been a life-changing experience for me that
would not have been possible without the support and guidance I received
from many people.

Foremost, I am deeply indebted to my advisers, Pedro Garcia-Lopez
and Marc Sanchez-Artigas, not only for their great guidance and fruitful
discussions but also for their confidence in giving me the opportunity
to carry on this thesis. This work could not be possible without their
continuous support and guidance. Thank you very much!

I would also like to thank the members of my graduation committee,
for accepting the invitation to join the committee, and for their effort in
reviewing the thesis.

Next, I would like to express my gratitude to all the former and
current members of the AST research group at Rovira i Virgili University.
I especially thank Cristian and Adrian for helping me settle down in
Tarragona. I am also very grateful for the invaluable support received from
two exceptional sisters that I met during my stay in Spain: Fatima and
Reham, thank you for helping me feel like home. Special thanks to my
Tunisian friends in Barcelona: Manel and Ines. I am lucky to have met
you. Also, I would like to thank Imen, whose company in Tarragona has
helped me a lot.

Last but certainly not least, I thank my family for their love, care, and
support: my mother Najoua, my husband Hassen, my brother Ala and my
stepparents: Sara and Moustapha. I sincerely hope that I have made you
proud. This thesis is dedicated to you all.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Contents

1 Introduction 1

2 Background 7

2.1 Content Distribution Paradigms 7

2.1.1 The Client-Server Model 8

2.1.2 The Peer-to-Peer Model 11

2.1.3 The Peer-Assisted Model 12

2.2 The Content Distribution Scenario 14

2.2.1 Download Time in the Client-Server Model 15

2.2.2 Download Time in the Peer-Assisted Model 16

2.3 The BitTorrent Protocol in a Nutshell 18

2.4 Personal Cloud Systems . 22

2.4.1 Overview and Examples 22

2.4.2 Architecture . 25

2.5 The Ubuntu One Trace . 27

2.5.1 The Ubuntu One System 27

2.5.2 Trace Description . 27

3 State of the Art 31

3.1 Content Distribution Paradigms 31

3.1.1 Peer-Assisted Content Distribution 31

3.1.2 The BitTorrent Protocol 33

3.2 Bandwidth Allocation Problem 35

3.3 Bundling in BitTorrent . 37

3.4 Personal Clouds . 39

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

vi Contents

4 Protocol Decision Strategy 43
4.1 Introduction . 44
4.2 Trade-offs Between HTTP and BitTorrent 45

4.2.1 BitTorrent Can Be Efficient for Small Files 45
4.2.2 Download Time with BitTorrent 46
4.2.3 Gain and Offload Ratios 51

4.3 The Protocol Decision Strategy 57
4.3.1 Download Scenario 57
4.3.2 Switching Constraints 58
4.3.3 Switching Algorithm 60

4.4 Application Scenario: Personal Clouds 62
4.4.1 Sharing and Synchronization 62
4.4.2 Extending Personal Clouds with BitTorrent 63
4.4.3 Implication of the Switching Algorithm 67

4.5 Conclusions . 69

5 Bandwidth Allocation Strategy 71
5.1 Introduction . 72
5.2 Bandwidth Allocation Problem 73
5.3 Solving the Equation Gains = τ 74
5.4 Bandwidth Allocation Algorithm 76
5.5 Application Scenario: Personal Clouds 80

5.5.1 Experimental Settings 80
5.5.2 Implications of the Bandwidth Allocation Algorithm 81
5.5.3 Modified Trace: Bigger Shared Files 87
5.5.4 Performance of the Bandwidth Allocation Algorithm 90

5.6 Conclusions . 91

6 Cross-swarm Bundling 93
6.1 Introduction . 94
6.2 Cross-Swarm Bundling Model 95
6.3 Bundling Can Reduce Download Times 97
6.4 Average Case Analysis . 101
6.5 Implementing Bundling in Data Centers 103

6.5.1 Bundling Metric: Expected Gain in Download Time 104
6.5.2 Finding the Optimal Solution 105
6.5.3 Security Concerns 107

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Contents vii

6.6 Application Scenario: Personal Clouds 108
6.6.1 Experimental Settings 108
6.6.2 Implications of Cross-Swarm Bundling 109

6.7 Conclusions . 114

7 Conclusions 115
7.1 Summary and Findings . 115

7.1.1 Summary of contributions 115
7.1.2 Discussion . 118

7.2 Publications . 120
7.3 Directions for Future Works 121

References 122

Appendix A Inverting the Gain’s Formulas 133

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Abstract

With the ever increasing Internet traffic, peer-to-peer (P2P) content
distribution has emerged as an alternative to the traditional client-server
model, especially with the recent bandwidth soar on the edges of the
Internet. Data centers with limited bandwidth budget can benefit from
the upload speed of the clients interested in the same content to improve
the overall Quality of Service (QoS). This can be done by introducing a
P2P protocol, BitTorrent for instance, when the load on a certain content
becomes high.

The main challenge is to decide when is the best time to switch from
the classic distribution protocol (HTTP) to BitTorrent, for each requested
file. In fact, it is commonly assumed that BitTorrent is only efficient with
big files and large sets of users, and that client-server protocols (including
HTTP) perform better in the distribution of small files. However, to
the best of our knowledge, there is no concrete analytic analysis of the
transition point in efficiency between BitTorrent and HTTP. Our first
contribution consists in the investigation of this transition point and the
proposal of an algorithm that provides a simple switching strategy based
on the QoS requirements of the system.

As a result from the introduction of BitTorrent, the data center will be
faced with the challenge of managing its resources among clients that can be
using different download protocols (HTTP and BitTorrent). To this extent,
we calculate the amount of data center bandwidth needed to ensure a given
ratio between the download times in HTTP and BitTorrent and propose a
bandwidth allocation algorithm that decides the most suitable protocol
for each case and provides the corresponding bandwidth allocations at the
swarm level.

Nevertheless, the benefits that can be derived from the introduction of
BitTorrent are tied with the number of simultaneous download requests of

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

x Contents

the same content. This number can be very limited in comparison with the
number of separate download requests related to different files.To increase
the contribution of the clients and benefit from the resources of peers
involved in separate downloads, it is possible to make clients from different
swarms cooperate with their spare bandwidth. We propose cross-swarm
bundling to mitigate the problem of lack of simultaneous download requests.
Cross-swarm bundling is the process of merging two swarms together into
a single one. We prove that this technique can have a positive effect on the
Quality of Experience (QoE), and present a methodology to implement
bundling in data centers based on graph matching techniques.

All our proposals are evaluated using a trace of a Personal Cloud
(Ubuntu One), and the results show that BitTorrent is can improve the per-
formance of these systems when the cloud’s available outgoing bandwidth
is limited.

Keywords Content distribution, Personal Clouds, Online cloud storage,
BitTorrent, QoS, QoE, Bandwidth allocation, Bundling.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

List of Figures

2.1 HTTP message format . 9

2.2 A typical message exchange example for a GET request . . 10

2.3 The file transfer scenario. 15

2.4 General distribution scheme structure 17

2.5 General architecture of Personal Clouds. 26

2.6 Snapshot of the first 20 PUT and GET operations. 28

2.7 Total upload and download volume and operations 29

2.8 CDF of the file sizes and the number of downloads per file. 29

2.9 Needed cloud upload bandwidth 30

4.1 Experimental validation of T bts 50

4.2 Estimated versus experimental gain and offload ratios. . . . 55

4.3 Estimated versus experimental gain and offload ratios . . . 56

4.4 File download scenario . 58

4.5 Synchronization and sharing in Personal Clouds 62

4.6 Global view of the system architecture 64

4.7 Encryption mechanism with BitTorrent 66

5.1 Served bandwidth with and without the algorithm 83

5.2 CDF download times and inter-arrival times 84

5.3 Simultanious clients with and without the algorithm 85

5.4 Net gain percentage and average size of swarms 86

5.5 New bandwidth requirements of the modified traces 88

5.6 Results using the modified traces 89

5.7 Algorithm’s perfomance during the trace simulation 91

6.1 Cross-swarm bundling scenario 96

6.2 Measured download times for small swarms 99

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

xii List of Figures

6.3 Estimated gain in download times 100
6.4 The graph G resulting from the conversion of Gain 107
6.5 The three possible matchings of the graph G. 107
6.6 Measured download times 110
6.7 Values of gainsi,sj at the moment of bundling 111
6.8 Measured ∆QoE for different cloud bandwidth limits. . . . 112
6.9 Percentages of cloud offload and bundled swarms 113
6.10 Bundling overhead . 114

A.1 General shape of the gain ratio: Case A 134
A.2 Delimiter lim2 and intervals for Case II 141
A.3 Delimiter lim2p and lim3 and intervals for Case III 142
A.4 Intervals for Case IV . 142
A.5 Final intervals to be considered for Case B 145
A.6 General shape of the gain ratio: Case B 146

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

List of Tables

2.1 Some of the commonly used HTTP request methods. 9
2.2 Comparison between the content distribution paradigms. . . 13
2.3 Comparison of some Personal Clouds features. 24

4.1 Measured download times for small files 47
4.2 Estimated versus experimental distribution times 48
4.3 Offloaded volume and offload percentages 67
4.4 Data transfer pricing for Amazon S3 68
4.5 Results using file grouping 69

5.1 Operations with gains and losses in download time 82
5.2 Sum of the download times and the net gain percentage . . 82
5.3 Comparison of the results with the three different traces. . . 88

6.1 Bundling experiments list. 98

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

List of Abbreviations

IP Internet Protocol
CDN Content Delivery Network
QoS Quality of Service
QoE Quality of Experience
HTTP Hypertext Transfer Protocol
SSL Secure Socket Layer
TLS Transport Layer Security
HTTPS HTTP over TLS, HTTP over SSL, or HTTP Secure
FTP File Transfer Protocol
P2P Peer-to-peer
CPU Central Processing Unit
MP3 MPEG-1 and/or MPEG-2 Audio Layer III
BT BitTorrent
PC Personal Cloud
URL Uniform Resource Locator
SHA Secure Hash Algorithm
SHA-1 Secure Hash Algorithm 1
AES Advanced Encryption Standard
U1 Ubuntu One
GMT Greenwich Mean Time
Inc. Incorporation
Ltd. Limited company
S3 Simple Storage Service
HTML HyperText Markup Language
RFC Request For Comments
URI Uniform Resource Identifier
URL Uniform Resource Locator
VoD Video on Demand

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

xvi List of Abbreviations

LAN Local Area Network
CDF Cumulative Distribution Function
Kbps Kilo-bits per second
Mbps Mega-bits per second
KBps Kilo-bytes per second
KB Kilo-bytes
MB Mega-bytes
s Seconds

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

List of Symbols

s Swarm
Ls Number of peers in the swarm s
fs The file being downloaded by the peers in s
Fs Size of the file fs
ws Amount of cloud upload bandwidth allocated to s
dmin,s Download speed of the slowest peer in s
Ls Number of peers in s
Ds Aggregated download speed of all the peers in s
Us Aggregated upload speed of all the peers in s
us Average upload speed of the peers in s
ηs Effectiveness of file sharing

T http
s Download time using HTTP for the swarm s
T pa
s Download time for peer-assisted systems using the esti-

mation of Kumar et al. [75] for the swarm s
T bt
s Download time using BitTorrent for the swarm s
xi(t) Rate at which seeds send bits to leecher i at time t
ri(t) Rate at which the leecher i downloads ‘fresh’ content at t
αbt Overhead related to the start-up phase in BT transfers
τ Switching constraint
W Maximum upload capacity of the data center
Gains Gain ratio for s
Offloads Offload ratio for s
switcheds State of the s
SHTTP Set of swarms using HTTP as a download protocol
SBT Set of swarms using BitTorrent as a download protocol
S Set of all the swarms, S = SHTTP ∪ SBT
Ns Number of pieces in fs

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

xviii List of Symbols

ks Number of connections a peer in s has

tbeforesi Expected end download time before bundling for si
taftersi,sj Expected end download time after si and sj are bundled
gainsi (sj) Expected gain that si would experience if it is bundled

with sj
gainsi ,sj Expected weighted gain when si and sj are bundled
Gain Objective matrix
∆QoE Difference in download times before and after bundling
γ Limit on the gain condition on the moment of bundling

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

1
Introduction

In the last few years, we have witnessed a surge of Internet usage all
over the world. With the ever increasing number of Internet users, the
global Internet traffic in 2015 stood at 72.5 exabytes1 per month, and
it is predicted to surpass the zettabyte2 threshold in 2016 and reach 2.3
zettabytes by 2020 [23]. This traffic relies mainly on content distribution,
which represents the cornerstone of the Internet. It ranges from the
distribution of web pages, to online video streaming through the delivery
of large files. This ever increasing amount of traffic makes data delivery
from the data centers to the end-users a challenging task.

With the traditional client-server model, the simultaneous requests of
popular content can create bandwidth bottlenecks, which can affect the
overall performance of the content provider and increase the download
times for the end-users. Peer-to-peer (P2P) content distribution can present
an attractive alternative especially with the recent bandwidth soar on the
edges of the Internet. Data centers with limited bandwidth budget can
benefit from the upload speed of the clients interested in the same content

11 exabytes = 1 million terabytes = 1018 bytes
21 zettabyte = 1 billion terabytes = 1021 bytes

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2 Chapter 1. Introduction

to improve the overall Quality of Service (QoS). This can be done by
introducing a P2P protocol, BitTorrent [24] for instance, when the load on
a certain content becomes high. In fact, the efficiency of the BitTorrent
protocol makes it especially suitable for files shared between a set of devices.
In such scenarios, it is possible to benefit from the common interest of
users in the same file and use their upload bandwidth to offload the data
center from doing all the serving.

The main challenge is to decide when is the best time to switch from
the classic distribution protocol (HTTP) to BitTorrent, for each requested
file. Despite the large amount of research work dedicated to the study of
BitTorrent, most of it is focused on the delivery of large volumes of data to
a large set of end-users. As a matter of fact, it is commonly assumed that
BitTorrent is only efficient with big files and large sets of users, and that
client-server protocols (including HTTP) perform better in the distribution
of small files [124, 125]. However, to the best of our knowledge, there is
no concrete analytic analysis of this transition point in efficiency between
BitTorrent and HTTP. We believe that it is essential to investigate this
transition point in order to be able to select the best protocol for each
file transfer. This can be translated in finding an answer to the following
question:

Question 1 How to decide which protocol (HTTP or BitTorrent) is more
suitable for each file transfer case?

The evaluation of the efficiency of these protocols for each file transfer
scenario can be made based on the current load on the data center and the
characteristics of the files and the clients requesting it. This evaluation
gives the data center the flexibility to adapt the distribution protocols based
on its needs. As a result, the data center will have to manage its resources
among clients that can be using different download protocols (HTTP
and BitTorrent). With systems handling HTTP requests only, there are
several policies to distribute the bandwidth between the different requests
including: equal share, proportional to demand, etc. With BitTorrent
only, there is also important related work in the field [96, 110]. However,
there are no current policies for systems serving both types of clients.
Thus, it is essential to define new policies to optimize the bandwidth usage

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

3

while maintaining the QoS constraints, especially when the data center’s
resources are limited. This challenge can be formalized as the following
question:

Question 2 How to balance the available bandwidth resources between
the concurrent HTTP and BitTorrent swarms?

In answering this question, the main goal is to minimize the share of
data center’s bandwidth reserved for each file transfer while taking into
consideration the overall QoS constraints. To this extent, it is important to
estimate the minimum amount of data center bandwidth needed to ensure
a given QoS level in BitTorrent. Based on this value, the data center can
decide to switch the download protocol for a given swarm from HTTP to
BitTorrent if it (the data center) will save in bandwidth and if this change
of protocol will not jeopardize the QoS constraint.

However, the benefits that can be derived from the introduction of
BitTorrent are tied with the number of simultaneous download requests of
the same content. This number can be very limited in comparison with
the number of separate download requests focused on different files. Thus,
to maximize the benefits from the BitTorrent swarms, it is important
to engage these separate downloads in BitTorrent swarms. So the next
challenge is the following:

Question 3 How to increase the contribution of the clients?

To increase the contribution of the clients and benefit from the resources
of separate downloads, is is possible to make clients from different swarms
cooperate with their spare bandwidth. Swarms can be grouped in pairs
where each swarm of the pair is committed to contribute with a part of
its resources to boost the download process of the other swarm. This
idea is inspired from the concept of bundling which is commonly used in
BitTorrent systems [64].

Bundling is the process of grouping a set of content into a single file for
download. Bundling was mainly used with BitTorrent swarms to mitigate
the problem of availability in unpopular torrents [63, 65, 87, 129, 130].
In data centers, low content availability is not an issue: the data center

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4 Chapter 1. Introduction

is always available to serve the requested files. However, by introducing
cross-swarm bundling, we aim at improving the Quality of Experience
(QoE) of the users.

Thesis contribution In this thesis, we answer all the previously stated
questions and provide the mechanisms and tools to integrate BitTorrent
in data centers. We validate our proposal on online storage services (also
referred to as Personal Clouds), through a trace of a real system. To
summarize, the list of our contributions are:

• We conduct a comparative study between BitTorrent and HTTP. We
first confute the general statement that BitTorrent is not effective
for small files, based on a real experimental study. Then, we propose
an analytic estimation of the distribution time in BitTorrent that
takes into account the overheads related to the nature of the protocol.
In addition, we introduce two general metrics to decide when it is
better to use one protocol with respect to the other: the gain and
the offload ratios. The gain measures the degree of improvement in
terms of download time of BitTorrent relative to HTTP. The offload
ratio quantifies the amount of data that can be offloaded if the peers
adopt BitTorrent. We also propose a dynamic algorithm for the
decision of the most appropriate download protocol. The algorithm
uses simple parameters that can be collected by the system and
predicts the efficacy of HTTP and BitTorrent for each case. The
most suitable protocol is decided based on the predefined constraints.
This algorithm is validated on a real trace of a Personal Cloud and it
proves its efficiency in achieving important savings in terms of cloud
bandwidth.

• We analyze the relationship between the amount of data center
bandwidth allocated to a given group of clients and the resulting
download time. Based on a fixed QoS constraint, we calculate the
amount of seed bandwidth needed to ensure a given ratio between
the download times in HTTP and BitTorrent. We also propose
a dynamic algorithm which uses simple parameters that can be
collected by the system and evaluates the efficacy of using HTTP
and BitTorrent as a distribution protocol for each requested file.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5

Based on the load on the data center and the predefined switching
constraints, the algorithms decides the most suitable protocol for
each case and provides the corresponding bandwidth allocations at
the swarm level. This algorithm can be applied in data center-based
content distribution systems to achieve important improvements in
the overall QoS.

• We propose cross-swarm bundling as a solution to engage more users
in BitTorrent transfers. As far as we know, we are the first to provide
evidence that bundling can be useful to diminish the download time,
even in a very adverse scenario where most of files are small. More
specific to our problem is the investigation of the benefits of inflating
swarms with HTTP users or even of the merge of two HTTP users
to create a BitTorrent swarm. We also study the efficiency of cross-
swarm bundling in data centers through an average case analysis
and identify the cases where it is positive. Finally, we validate our
proposal using a real trace of a Personal Cloud system and compare
the different approaches that can be deployed to deliver content from
the cloud to end users. Our results demonstrate that when the load
is high, bundling can improve significantly the QoE of users without
increasing the data center bandwidth.

Thesis organization The rest of the thesis is organized as follows:

• Chapter 2: Background details the concepts used in this thesis,
mainly the BitTorrent protocol and Personal Clouds. We also present
in this chapter the trace used in the validation of the proposed
algorithms.

• Chapter 3: State of the Art gives an overview of the research
work carried in relation with the subjects of this thesis and illustrates
the key differences between the contributions of the thesis and the
previous works.

• Chapter 4: Protocol Decision Strategy is dedicated to answer-
ing the first question raised in this chapter. It presents a complete
comparison between two content distribution protocols: HTTP and

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6 Chapter 1. Introduction

BitTorrent and a study on the efficiency of each protocol in distribut-
ing small files to small sets of clients. The chapter presents also the
switching algorithm and a complete application scenario of protocol
switching in Personal Clouds.

• Chapter 5: Bandwidth Allocation Strategy is related to the
second question. It presents an efficient algorithm to distribute the
data center’s bandwidth between the different concurrent swarms,
especially when there is a mixture of both BitTorrent and HTTP
clients.

• Chapter 6: Cross-Swarm Bundling responds to the third ques-
tion. It presents the concept of cross-swarm bundling, evaluates the
efficiency of this approach on the QoE, and presents a methodology
to select the pairs of swarms to bundle.

• Chapter 7: Conclusions concludes the thesis. It includes a
summary of the findings, a list of the papers published during the
thesis research and the planned future work.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2
Background

In this chapter, we provide the necessary concepts and definitions to
properly understand the rest of the thesis. We start by introducing the
most common paradigms for content distribution. Next, we present a basic
content distribution scenario and provide an estimation of the download
time using the client-server and the peer-assisted paradigms. After that,
we present a specific peer-to-peer protocol: BitTorrent which is the main
protocol used in the rest of the thesis. Next, we describe Personal Clouds
(online Cloud storage services) which represent the application scenario for
the algorithms proposed in this thesis. Finally, we introduce Ubuntu One,
a Personal Cloud system operated by Canonical Ltd, and explore a trace
of this system to study the clients and file characteristics.

2.1 Content Distribution Paradigms

In this section, we present an overview of the most common content
distribution paradigms currently used to distribute content across the
Internet today. We mainly cover in this section the client-server, the
peer-to-peer and the peer-assisted models.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

8 Chapter 2. Background

2.1.1 The Client-Server Model

The client-server model distinguishes between the providers of a resource
or service, called servers, and the service requesters, called clients. Clients
are responsible for initiating communication sessions by sending requests to
servers. In the client-server paradigm, clients can communicate with servers
only, and they do not interact with each other. Servers are responsible for
responding to their clients by acting on each request and returning results.
One server generally supports numerous clients.

The client-server model is a core network computing concept of the
Internet. However, it presents a major performance drawback when the
server is overloaded with too many clients. In this case, the server’s
performance will experience improper functioning, increased latency or
even total shutdown [27].

The Hypertext Transfer Protocol (HTTP)

Several web technologies and protocols are built around the client-server
model. The Hypertext Transfer Protocol (HTTP) [44] is commonly used for
downloading/uploading data all over the Internet. HTTP is an application-
layer protocol that represents the foundation of data communication for
the World Wide Web. It is mainly used to deliver data (HTML files, image
files, query results, etc.) on the World Wide Web.

HTTP is a request-response, stateless protocol that follows the client-
server paradigm. Each HTTP message is either a request or a response.
RFC1 7231 [46] defines the semantics of HTTP messages and state the
different request methods. These methods indicate the purpose for which
the clients have made the request and what is expected by the client as
a successful result. Table 2.1 presents some of the standardized methods
that are commonly used in HTTP, along with a short description of their
usage.

The HTTP client starts by initiating an HTTP request. The server
processes the request and sends a response back. Any type of data can be

1A Request For Comments (RFC) is a type of publication from the Internet Engi-
neering Task Force (IETF) and the Internet Society (ISOC), the principal technical
development and standards-setting bodies for the Internet.

2Uniform Resource Identifier (URI) is a string of characters used to identify a resource

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.1. Content Distribution Paradigms 9

Table 2.1: Some of the commonly used HTTP request methods.

Method Description

GET Requests data from a specified URI
HEAD Same as GET but returns only HTTP headers
POST Submits data to be processed to a specified resource
PUT Requests that the enclosed entity be stored under the speci-

fied URI2

DELETE Deletes the specified resource
OPTIONS Returns the HTTP methods that the server supports

Figure 2.1: HTTP message format

sent via HTTP. The type of content is specified in the header section of
request and response messages. As a matter of fact, an HTTP message
consists of a message header and an optional message body, separated
by a blank line, as illustrated in Figure 2.1. RFC 7230 [45] states that
most HTTP communication consists of a retrieval request (GET) for a
representation of some resource identified by a URI. It defines the message
exchange as follows:

1. A client sends an HTTP request to a server in the form of a request
message. The message begins with a request line that includes the
method (GET in this case), URI, and protocol version, followed by
other header fields. This header is followed by an empty line that
separates it from the message body. Finally, the message contains
the payload body, if any.

2. A server responds to a client’s request by sending one or more HTTP
response messages, each beginning with a status line that includes
the protocol version, a success or error code, and textual reason

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

10 Chapter 2. Background

Client request:

GET /hello.txt HTTP/1.1

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

Host: www.example.com

Accept-Language: en, mi

Server response:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Hello World! My payload includes a trailing CRLF.

Figure 2.2: A typical message exchange example between a client and a server for a
GET request on the URI: “http://www.example.com/hello.txt” (source RFC 7230 [45]).

phrase. This line is followed by some header fields containing server
information, resource meta-data, and representation meta-data. The
response message also contains an empty line that indicates the end
of the header section, and a message body containing the payload
body.

HTTPS HTTPS [103] (also called HTTP over TLS, HTTP over SSL,
and HTTP Secure) is a variant of HTTP that adds a layer of security
on the data in transit through a Secure Socket Layer (SSL) or Transport
Layer Security (TLS) protocol connection.

Content Delivery Networks

A Content Delivery Network (CDN) is a distributed network of proxy
servers deployed in multiple datacenters located in different geographical
areas. CDNs were mainly designed to speed the delivery of content of
websites with high traffic and global reach. To this extent, a CDN stores
a cached version of its content in multiple geographical locations, called

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.1. Content Distribution Paradigms 11

Points of Presence (PoPs). Each PoP contains a number of caching
servers responsible for content delivery to visitors within its proximity. The
closer the PoP is to the user geographically, the faster the content will be
delivered.

The three key components of a CDN architecture are: the content
provider, the CDN provider and the end-users [95]. The content provider
is the original server than has the original content. The CDN provider is
a proprietary organization or company that provides the infrastructure
facilities to content providers. The end-users are the clients who request
content from the content provider’s website.

Akamai [5, 33] is the most prominent CDN player of the world as of
today. It operates with more than 216,000 servers in over 120 countries
and within more than 1,500 networks around the world3. Akamai delivers
daily Web traffic reaching more than 30 terabits per second, corresponding
to nearly 3 trillion Internet interactions every day.

2.1.2 The Peer-to-Peer Model

A peer-to-peer (P2P) system has a completely decentralized resource
usage and self-organization [113]. In these systems, each entity in the
network has equivalent functionality: it can play both the roles of client
and server. This helps in reducing bottlenecks and enables each entity to
contribute with a part of its own resources (such as storage and bandwidth
capacities, CPU power, etc.). P2P architectures have been employed for a
variety of different application categories [8], including mainly: distributed
computation [7, 114] and content distribution [3, 83].

P2P file sharing (called also P2P content distribution) applications are
probably the most popular P2P applications. Without the need for central
coordination, a peer can download data from other peers and, at the same
time, collaborate with its own bandwidth to deliver data to them. This
technology has evolved and gained in popularity thanks to the increasing
Internet bandwidth.

P2P file sharing became popular in 1999 with the introduction of
Napster [104]. This system was mainly used to share digital audio files,
typically songs, encoded in MP3 format. Napster was the first system

3Akamai, facts & figures https://www.akamai.com/us/en/about/facts-figures.jsp

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.akamai.com/us/en/about/facts-figures.jsp

12 Chapter 2. Background

to recognize that requests for popular content do not need to be sent to
a central server but instead could be handled by many peers that have
the requested content [86]. This system was based on a centralized server
that indexed the users and their shared content [121]. When someone
searched for a file, the server’s role was limited to providing a list of all
the peers that have copies of that file. In 2001, Napster was shut down
due to copyright infringement.

After Napster was shut down, Gnutella [3, 106] emerged as an alterna-
tive that allowed users to download different files other than music, such
as movies and games. Unlike Napster, Gnutella is a decentralized network
that distributes both the search and download capabilities among peers.
These Gnutella peers form an overlay network by forging point-to-point
connections with a set of neighbors [107]. The network uses flooding as the
mechanism to send queries across the network [86]. When a peer receives
the flood query, it sends a list of all content matching the query to the
originating peer.

Nowadays, the BitTorrent protocol is considered as a leading P2P
content distribution protocol. This protocol has been used widely for deliv-
ering large files like movies, books and TV shows. A detailed description
of this protocol is available in the following sections.

2.1.3 The Peer-Assisted Model

In this thesis, we refer to peer-assisted content distribution systems as
partially centralized systems that rely mainly on P2P content distribution
while having a central server to guide and coordinate the peers and help
in the distribution process when needed. Thus, the peer-assisted model
represents the combination of both the client-server and the P2P models.
This model resembles the client-server in that there is sill a central server
where data are stored and which guarantees that all the files are always
available for download. However, in the peer-assisted model, the peers
that are downloading the files also assist in redistributing them. The main
difference between this model and the pure P2P one relies in the existence
of a central server. This server is especially important when the peers
cannot satisfy the demand: there are only a few peers in the system, or
the available peers do not have a full copy of the content, etc.

An example of peer-assisted systems is CloudAngels [115]. It is a peer-

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.1. Content Distribution Paradigms 13

Table 2.2: Comparison between the content distribution paradigms.

Client-server CDN Pure P2P Peer-assisted

Data Flow Centralized Centralized Distributed Hybrid
Control Centralized Centralized Distributed Centralized

QoS Guaranteed Guaranteed Best effort Guaranteed
Scalability Limited High High High

Cost High High Low Medium
Distance from end-users Large Small Small Small

assisted bulk-synchronous content distribution service proposed by Sweha
et al. that aims to improve average distribution times. The system uses
dedicated servers, called angels, that offer their storage and bandwidth
capacities to cache and forward data to the clients.

The peer-assisted model can be also applied in video streaming for
Video on Demand (VoD). In peer-assisted VoD distribution, videos are
streamed from dedicated VoD servers as well as from other online users.
Cha et al. [17] explored the efficacy of P2P techniques on YouTube4

through a trace-driven analysis. Their results showed that the users can
reduce the server workload by 41% when they share videos while they are
watching them. A similar study [67] applied to the MSN Video [91] service
proved that peer-assisted VoD can trim the server bandwidth by 58.2%.

The peer-assisted model can be applied to CDNs [47], too. Akamai
NetSession [131] is an example of a peer-assisted CDN that relies on
both the servers’ infrastructure of Akamai and resources from the clients’
machines. This system uses HTTP/HTTPS to download content from edge
servers and a swarming protocol for downloads from peers. NetSession
was capable of offloading a large fraction (more than 70%) of the traffic to
peers while offering good performance and high reliability [131].

Summary

To summarize, each of the previously described paradigms can be ef-
ficient for a different application scenario. Table 2.2 gives a comparative
overview between these paradigms. The client-server paradigm is char-
acterized with centralized control and data flows. These systems exhibit
limited scalability with the increasing number of requests and the cost of

4YouTube https://www.youtube.com

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.youtube.com

14 Chapter 2. Background

this scalability is generally high.

CDNs are an evolution of the client-server model, created with the
objective of improving the download time. They rely on the replication of
popular data in multiple servers located across the globe. Each download
request is fulfilled by the nearest server, which makes the distance from
the content provider to end-users much smaller. The P2P model has
a completely decentralized self-organization and resource usage. These
systems are characterized by their high scalability, since each arriving
peer contributes with part of its resources while downloading the data.
However, the decentralized nature of these systems can affect the Quality
of Service (QoS). Finally, the peer-assisted paradigms is a combination of
both client-server and P2P. It is based on hybrid (both centralized and
distributed) data flow and a centralized control. The QoS is guaranteed
by the central server while scalability is ensured thanks to the clients’
contributions.

2.2 The Content Distribution Scenario

One of the goals of this thesis is to provide means to determine the most
appropriate content distribution approach/protocol to make the downloads
faster for each file transfer case. In this context, we consider the following
content distribution model. We suppose that there are two main entities in
the system: the data center (or content provider) and the clients interested
in downloading content. The content provider is responsible for delivering
the requested content to the corresponding clients.

Figure 2.3 represents the file transfer scenario: for each file fs being
transferred, we assume that there are Ls clients that wish to download it
within a small window of time. We denote by s the set of these clients.
Each client ci in s has an upload speed ui and a download speed di. We
denote by dmin,s = min

ci∈s
di the download speed of the slowest peer in s, and

by us =
∑
ci∈s

ui
Ls

the average upload speed of the peers in s. We denote by

ws the amount of data center’s upload bandwidth allocated to s and by
Fs the size of the file fs.

Currently, there is a large number of applications that can allow such
transfers. We focus here on two main models: the traditional client-server

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.2. The Content Distribution Scenario 15

Content provider

• ws: amount of bandwidth

allocated to s

Requested file fs:

• Fs: the size of fs

Set of clients s:

• Ls clients

• us: average upload speed of the clients in s

• dmin,s: download speed of the slowest client in s

Figure 2.3: The file transfer scenario.

model, and the peer-assisted model.

2.2.1 Download Time in the Client-Server Model

In the client-server model, it is possible to estimate the data transfer
time of a given file, provided that the transfer bandwidth is known, as
follows:

transfer time =
size of file

bandwidth
. (2.1)

The estimated transfer time is equal to the ratio between the size of the
file being transferred and the bandwidth of the slowest link between the
source host and the destination host.

In the case fs is distributed via HTTP, the distribution time T https is
limited by the download speed of the slowest peer dmin,s or the provider’s
bandwidth ws divided equally between the Ls clients. It can be formulated
as follows:

T https =
Fs

min

{
dmin,s,

ws
Ls

} . (2.2)

Nowadays, with the bandwidth evolution, the download capacities of
the clients are getting higher. If we suppose that the download speed of

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

16 Chapter 2. Background

the clients is not a bottleneck
(
dmin,s >

ws
Ls

)
, the download time becomes

T https = Fs
ws
Ls, which grows linearly with the number of clients Ls.

2.2.2 Download Time in the Peer-Assisted Model

Kumar et al. [75] presented a fluid model for peer-assisted content
distribution based on fluid replication. Using this model, they proposed
an estimation of the download time in peer-assisted systems, as follows:

T pas =
Fs

min

{
dmin,s,

ws + us Ls
Ls

, ws

} , (2.3)

where T pas is the minimum time needed to distribute a file fs of size Fs to
Ls peers. This time depends on the download speed of the slowest peer
dmin,s, the aggregated upload bandwidth of all the nodes divided equally
between all the Ls peers, and the upload bandwidth of the seed(s). The
authors presented in their paper a complete proof of the download time.
The proof was organized into the following four exhaustive cases depending
on the parameter that may be responsible for the transfer bottleneck:

1. Case A: dmin,s ≤ min
{
ws+Ls us

Ls
, ws

}
and dmin,s ≤ us Ls

Ls−1 : In this

case, the download speed of the peers is limited by the download
bandwidth of the slowest peer dmin,s.

2. Case B: dmin,s ≤ min
{
ws+Ls us

Ls
, ws

}
and us Ls

Ls−1 ≤ dmin,s: In Case B,

the transfer is limited by the maximum speed at which a peer can
get data from the other peers, that is us Ls

Ls−1 .

3. Case C: ws+Ls us
Ls

≤ min {dmin,s, ws}: The transfer bottleneck in
this case is limited by the aggregated upload speed of the network
ws + Ls us divided equally between the Ls peers.

4. Case D: ws ≤ min
{
dmin,s,

ws+Ls us
Ls

}
: In this case, the upload band-

width of the seed ws is the maximum limit at which each peer can
download “fresh” content.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.2. The Content Distribution Scenario 17

Figure 2.4: General distribution scheme structure: client ci (i ∈ {1, 2, 3}) downloads
“fresh” data at the rate ri(t) from the seed(s). The data is replicated later to the other 2
clients at a rate xi(t), where xi(t) ≤ ri(t).

For each of the cases listed above, the authors constructed a seeding
rate profile ri(t) which denotes the bit rate at which the seeds send pieces
to a client ci at time t.
The adopted distribution scheme is the following: as soon as a client ci
begins to receive data from the seed, it replicates it to each of the other
(Ls − 1) peers at a rate xi(t), where xi(t) ≤ ri(t), as shown in Figure
2.4. For each case, the distribution scheme consists of Ls application-level
multicast trees, each rooted at a specific seed, passing through one of the
peers and terminating at each of the Ls − 1 other clients.

The authors also presented in the same paper and analytic estimation
of the seeding rate ri(t). This rate depends on the time t, the file size Fs,
the upload speed of the seeds ws, and upload and download speeds of the
clients in s.

ri(t) =



uidmin,s
ηsusLs

, Case A

ui−ηsusLs
Ls−1 + dmin,s, Case B

ui−ηsusLs
Ls−1 + ws+ηsusLs

Ls
, Case C

uiws
ηsusLs

. Case D

(2.4)

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

18 Chapter 2. Background

2.3 The BitTorrent Protocol in a Nutshell

The BitTorrent protocol [24] is a P2P protocol that relies on the
bandwidth of peers to quickly disseminate files in a distributed fashion.
The basic idea in BitTorrent is to divide the file into smaller pieces of equal
size. Each peer interested in downloading the file has to connect to several
other peers simultaneously and download the different pieces from them.

To facilitate the communication between peers, BitTorrent uses a
centralized server called tracker. Any peer that wants to download the
file has to contact the tracker first. The tracker returns a random list of
peers that have that file (or parts of it). Using this list, the downloader
can establish a connection with other peers and request the pieces it does
not have from them.

Pieces represent the transfer unit in BitTorrent. When a peer receives
a new piece, it becomes a source of that piece for other peers. Pieces are
typically downloaded non-sequentially and are rearranged into the correct
order by the BitTorrent client. The BitTorrent client is also responsible
for monitoring the pieces list and checking which pieces are needed and
which ones can be uploaded to other peers.

The first BitTorrent client was released in July 2001 by the protocol’s
inventor Bram Cohen. Since then, many clients have been made available
for a wide variety of computing platforms and operating systems. Among
the most famous clients, we can list: Transmission [119], qBittorrent [117],
Vuze [10], Deluge [29], BitComet [11], and µtorrent [12], the official client
released by BitTorrent, Inc.

Terminology

The main terms used throughout this thesis5 are:

• BitTorrent Client: A BitTorrent client is a computer program
that implements the BitTorrent protocol and which allows users to
transfer data via BitTorrent.

5A complete glossary of the BitTorrent protocol can be found the official BitTorrent
client web page http://help.bittorrent.com/customer/en/portal/articles/179175-
glossary.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://help.bittorrent.com/customer/en/portal/articles/179175-glossary
http://help.bittorrent.com/customer/en/portal/articles/179175-glossary

2.3. The BitTorrent Protocol in a Nutshell 19

• Peer: A peer is an instance of a BitTorrent client running on a
computer on the Internet to which other clients can connect and
transfer data.

• Seed: A seed is a peer that has a full copy of the data.

• Leecher: A leecher is a peer that does not have a full copy of the
data.

• Swarm: A swarm is the collection of all the peers (seeds and leechers)
downloading the same data.

• Tracker: A BitTorrent tracker is a server that keeps track of the
seeds and leechers in the swarm. Periodically, all the peers report
their state to the trackers and receive information about other peers
in the swarm. The tracker is not directly involved in the actual
distribution of the file, it only assists in the communication between
peers.

• Piece: The files transferred using BitTorrent are split into small
pieces (also called chunks) of equal size (typically 512 KB).

• Block: Each piece is split into smaller blocks (typically 16 KB).
Blocks represent the transmission unit on the network.

• Peer set: The peer set is the list of peers sharing the file known by
the client.

• Active peer set: The active peer set is the list of peers to which
the BitTorrent client is currently sending data [98].

• Torrent: A torrent can refer to either a .torrent meta-data file or
all files described by it, depending on the context. The .torrent

meta-data file contains the details about the files to be downloaded
(names, sizes, checksums of all the pieces), along with the address(es)
of the corresponding tracker(s).

• Free riders: Free riders are peers that consume resources and
download data without contributing to the swarm.

• Interested/Not interested: Peer A is interested in peer B when
peer B has pieces that peer A does not have. Conversely, peer A is
not interested in peer B when peer B only has a subset of the pieces
of peer A [78].

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

20 Chapter 2. Background

• Choked/Unchoked: Peer A chokes peer B when peer A decides
not to send data to peer B. Conversely, peer A unchokes peer B when
peer A decides to send data to peer B [78].

• Rarest pieces: The rarest pieces are the pieces that have the least
number of copies in the peer set.

• Availability: The availability is a metric that measures the number
of complete copies of a torrent in the corresponding swarm. The
availability is an indication of the rapidity of the download. The
higher the availability is, the faster the download is likely to be.
When the availability is low, pieces are scarce and peers have to
spend more time downloading the file.

Algorithms

Rarest First Algorithm The rarest-first algorithm is mainly used for
the selection of pieces to download. Knowing the number of copies of each
piece in its peer set, each peer defines a set of the rarest pieces. This set is
updated each time a copy of a piece is added to or removed from its peer
set [78]. Each peer selects the next piece to download randomly from its
rarest pieces set.

Bram Cohen outlines two exceptions to the rarest first peer selection
strategy [24]. The first exception is when the download starts. At that
time, when the peer has nothing to upload, it is important to get a complete
piece as quickly as possible. Since rare pieces’ download would be slower
[24], the first pieces to download by each peer are selected at random. This
is called the random first policy. The second exception is the end-game
mode. This mode starts when all blocks have been received or requested
by a peer, that is at the end of the download. To make download faster,
in end-game mode, the peer requests all blocks not yet received to all the
peers in its peer set that have the corresponding blocks.

Choking Algorithm The choking algorithm is also known as the tit-
for-tat algorithm and it is mainly used for peer selection. It aims at
guaranteeing a reasonable level of upload and download reciprocation to
penalize free riders. We remind that choking is a notification that no data
will be sent until unchoking happens, but the local peer can still download

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.3. The BitTorrent Protocol in a Nutshell 21

from the choked peers. We suppose that each peer ci (seed or leecher)
unchokes a fixed number n of remote peers (by default n = 4).

The choking algorithm is executed periodically (every 10 seconds) by
each peer as follows: First, the local peer ci orders interested remote
leechers according to the rates at which it received data from them, and
ignores leechers that have not sent any data in the last thirty seconds. The
n− 1 leechers with the highest rates are unchoked via a regular unchoke.
In addition, every 30 seconds, an interested peer is chosen at random to
be unchoked via an optimistic unchoke.

Operations

In a BitTorrent transfer, there are two main entities: the original
publisher and the downloaders. The original publisher is typically the file
owner and is the one that decides to make that file available for download
via BitTorrent. The downloaders have to run a BitTorrent client and get
the meta-data .torrent file in order to download the file. Each of these
entities has to follow a few steps, as described bellow, in order to ensure
the distribution of the file.

Creating and publishing torrents When a publisher decides to share
some content, he has to create the meta-data .torrent file. This file is a
bencoded6 dictionary that can be created using most BitTorrent clients
and which contains mainly two keys: announce and info. The first key is
related to the URL of the tracker. The second key maps to a dictionary
that contains information about the file being shared, including: the name
and size of the file, the length of pieces (in bytes), and the list of SHA-1
hashes of all the pieces, etc.

After creating the meta-data file, the initial publisher has to make it
available to the interested downloaders. This can be done directly via
emails, if the publisher wants to share his file with a limited set of peers, or
using a BitTorrent portal. These sites allow users to host their .torrent
files and make them available for other users to find them.

6Bencode is the encoding used by BitTorrent for storing and transmitting the meta-
data information related to a torrent file.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

22 Chapter 2. Background

Downloading torrents and sharing files The entities interesting in
downloading a file using BitTorrent have to get first a copy of the meta-data
.torrent file. As mentioned above, this file can be obtained directly from
the publisher or downloaded from the Internet through special websites.
Once the .torrent is downloaded, it can be opened using a BitTorrent
client and the peer join the swarm.

To join the swarm, the BitTorrent client contacts the tracker to get a
list of the IP addresses of other peers in the swarm in order to build the
initial peer set. This list typically consists of 50 peers chosen at random
in the list of peers currently involved in the torrent [78]. Using this list,
the client establishes direct communication with these peers and starts
downloading (and eventually uploading) the pieces that constitute the
file. The exchange of pieces among peers is governed by the previously
described rarest first and choke algorithms.

2.4 Personal Cloud Systems

Personal Clouds have emerged lately as user-centric solutions that
provide easy management of the users’ data. According to Statista[112], in
2014, there was over 1.1 billion people worldwide using Personal Clouds7.
This represents about 15% of the total world population8 and 37% of the
population using the Internet9. This popularity makes these systems worth
investigating in order to improve further their performance and ensure
their scalability with the increasing number of users.

2.4.1 Overview and Examples

A Personal Cloud is a term generally used to refer to a file hosting
service that allows its users to store, synchronize and share content over

7Number of Personal Cloud users from 2014 to 2019 http://www.statista.com/
statistics/499558/worldwide-personal-cloud-storage-users

8The world population in 2014 was about 7.2 billion according to the Popu-
lation Reference Bureau http://www.prb.org/pdf14/2014-world-population-data-
sheet eng.pdf

9The number of people using the Internet in 2014 was about 3 billion people ac-
cording to the International Telecommunication Union http://www.itu.int/en/ITU-D/
Statistics/Documents/facts/ICTFactsFigures2014-e.pdf

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users
http://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users
http://www.prb.org/pdf14/2014-world-population-data-sheet_eng.pdf
http://www.prb.org/pdf14/2014-world-population-data-sheet_eng.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf

2.4. Personal Cloud Systems 23

the Internet. Garcia et al. [53] propose the following definition: “The
Personal Cloud is a unified digital locker for our personal data offering
three key services: Storage, Synchronization and Sharing. On the one
hand, it must provide redundant and trustworthy cloud data storage for our
information flows irrespective of their type. On the other hand, it must
provide syncing and file exploring capabilities in different heterogeneous
platforms and devices. And finally, it must offer fine-grained information
sharing to third-parties (users and applications).”

Personal Clouds have gained their popularity via consumer products.
Currently, there a wide range of products offering different advantages to
the consumers. The following list includes some of the most popular of
these products.

• Google Drive: Google Drive [57] is the freeware Personal Cloud
launched in 2012 by Google10. Google Drive is available in different
platforms and it offers also an integrated free web-based office suite
(Google Docs [56], Google Sheets [58] and Google Slides [59]).

• Dropbox: Dropbox [38] is a very popular Personal Cloud launched
in 2007 which offers storage, synchronization and sharing capabilities
to its clients. Dropbox operates on different operating systems and
can be accessed via web browsers and desktop and mobile apps. In
March 2016, Dropbox announced that its number of users hit half a
billion users11.

• OneDrive: OneDrive [92], formally called SkyDrive, is the Personal
Cloud launched by Microsoft12 in 2007. OneDrive can be accessed
via a web browser or desktop and mobile devices.

• Box: Box [13] is a Personal Cloud that was founded in 2005. It
offers a freemium business model to provide cloud storage and file
hosting for personal and professional accounts.

• Ubuntu One: Ubuntu One was a file hosting service launched in
2009 by Canonical13 that allowed users to store data in the cloud. In

10Google Inc. https://www.google.com
11ZDnet: Dropbox hits half a billion users http://www.zdnet.com/article/dropbox-

hits-half-a-billion-users/
12Microsoft Corporation https://www.microsoft.com/
13Canonical Ltd. http://www.canonical.com/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.google.com
http://www.zdnet.com/article/dropbox-hits-half-a-billion-users/
http://www.zdnet.com/article/dropbox-hits-half-a-billion-users/
https://www.microsoft.com/
http://www.canonical.com/

24 Chapter 2. Background

Table 2.3: Comparison of some Personal Clouds features.

Google Drive Dropbox Box OneDrive Ubuntu One

Storage nature Private Public Private Private Public
Free storage limit 15 GB 2 GB 10 GB 5 GB 5 GB

Max file size 5 TB 20 GB 250 MB 10 GB 5 TB
Real-time collaboration Yes No No Yes No
Server-side encryption ? Yes Yes ? No

Deduplication No Yes ? ? Yes
P2P syncing No Yes (LAN) No No No

April 2014, Canonical announced that Ubuntu One would be shut
down at the end of July 2014.

To attract a large number of users, Personal Cloud providers try to
extend their systems with different functionalities. Table 2.3 presents a
comparison of the characteristics and functionalities offered by the above
listed products. Based on the nature of the storage back-end, Personal
Clouds can be public when they use third party data centers (such as
Amazon), or private when they use their own infrastructure and do not
outsource the storage task [52]. Among the listed products, only Dropbox
and Ubuntu One use external storage servers. They both use Amazon
Simple Storage Service (S3).

The amount of free storage initially offered to the regular clients differs
from one provider to the other. Currently, Google Drive offers the bigger
quota of free storage (15 GB) which is an important feature that can
attract many users. In addition to the storage limit, some providers put
a constraint on the maximum file size that can be stored. The relatively
low limit on file size put by Box (250 MB) can affect the popularity of this
system, since the users will not be able to store large files (long videos for
instance) in their personal accounts.

Real-time collaboration is an important feature which allows multiple
users to edit a file at the same time. Currently, only Google Drive and
OneDrive offer this functionality to their users through their web-base
office suites. Security is another important factor in Personal Clouds. The
use of these services implies a certain level of trust between the clients
and the service providers. To gain this trust, some Personal Clouds (like
Dropbox and Box) claim to encrypt the users’ data stored in their servers.
Nevertheless, server-side encryption is not enough when the server controls

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.4. Personal Cloud Systems 25

also the encryption keys. That is why it is recommended that users encrypt
their data locally before transmitting them to the server.

To improve their performance and reduce costs, Personal Clouds can
deploy a deduplication mechanism. When a user is uploading a file that
already exists in the storage nodes, the Personal Cloud only creates a
logical relation between the file and the user instead of re-uploading the
existing file. This technique can be applied to different scopes (that is
across all files in the system, across user’s files, etc.), depending on the
privacy policy [52].

P2P syncing is another feature that can be deployed to reduce the
bandwidth cost of Personal Clouds. P2P file syncing is the ability to keep
two or more files identical in different locations without resorting to a
central service [52]. Currently, P2P syncing is only deployed in Dropbox
and it is only limited to synchronization between machines on the same
Local Area Network (LAN).

2.4.2 Architecture

Despite the rapid growth of Personal Clouds, many of the commercial
products are proprietary and their architecture and algorithms are invisible
to the research community[53]. However, there are a few elements that
can be qualified as essential to the functioning of these systems. These
elements are presented in Figure 2.5 that presents a general architecture
of a Personal Cloud. This architecture is inspired from Dropbox’s white
paper for business security [1]. For the sake of simplicity, we do not present
here the authentication and encryption modules.

A typical Personal Cloud follows a 3-tier architecture consisting of: (i)
tier i: the user interfaces, (ii) tier ii: the processing and the notification
services and (iii) tier iii: the meta-data and storage services, as follows:

• User interfaces: The services offered by Personal Clouds can be
utilized and accessed by physical clients through a number of in-
terfaces. Typically these interfaces include web interfaces (accessed
through web browsers), desktop applications and mobile apps.

• Notification service: The notification service is dedicated to mon-
itoring whether or not any changes have been made to the users’
accounts. Whenever a change to any file takes place, the client is

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

26 Chapter 2. Background

Storage service

FTP/SFTP

 User interfaces

Processing service

Metadata servers

Database

 Notification service

Metadata service

Figure 2.5: General architecture of Personal Clouds.

notified in order to synchronize these changes. This service is only
used to notify the clients and it is neither responsible for storing nor
transferring files or meta-data.

• Processing service: The processing service is responsible for pro-
cessing the files and ensuring their delivery to the end-users. To
download a file, the client sends an HTTP GET request to the pro-
cessing service. The latter verifies the existence of the file in the
storage nodes and the file is transferred using the HTTP protocol.

• Meta-data service: The meta-data servers contain all the meta-
data information related to clients and files. Clients’ meta-data
include basic account and user information, such as: email address,
name, and device names. Files’ meta-data group information about
users’ data such as file names and types. The meta-data service is
generally equipped with a local database where all the meta-data is
stored.

• Storage service: The storage service or storage back-end refers
to the physical locations where the users’ data are stored. It can
be local, in the form of local storage servers accessed via FTP, or
external, provided by a third party like Amazon or Google.
To meet the users’ requirements, the storage service must guarantee

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.5. The Ubuntu One Trace 27

the availability of data files stored by users. This can be achieved by
adding redundancy to multiple servers.

Security is an important feature in Personal Clouds. Currently, there
is no standard proposal for security in these systems. Each commercial
product has its own security scheme incorporated in its architecture. For
example, Dropbox uses SSL/TLS to create a secure tunnel for data transfer
and Advanced Encryption Standard (AES) to encrypt the data at rest.

2.5 The Ubuntu One Trace

This thesis aims to provide efficient contributions that can be applied in
a real-world Personal Clouds. To this extent, all the proposed algorithms
are validated using a trace of a real Personal Cloud system: Ubuntu One.
In this section, we present this system, describe the collected trace and
study the users’ and files’ characteristics.

2.5.1 The Ubuntu One System

Ubuntu One (U1) was a file hosting service operated by Canonical
that allowed users to store data in the cloud. U1 was first launched in
May 2009 in beta version14. In April 2014, Canonical announced that
the cloud storage and synchronization features would be shut down at
the end of July 31 of 2014. Like most Personal Clouds, U1 followed a
3-tier architecture that consists of clients, a synchronization service and of
storage and meta-data services. Canonical only owned the infrastructure
for the meta-data service. The actual contents of file transfers were stored
separately in Amazon S3 [60].

2.5.2 Trace Description

The trace was provided by Canonical in the context of the CloudSpaces
project15. The logs were collected during 30 days from their meta-data
servers located in London, based on the behavior of their users.

14The Ubuntu One Blog: http://voices.canonical.com/ubuntuone/2009/05/
15FP7 CloudSpaces Project: http://www.cloudspaces.eu

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://voices.canonical.com/ubuntuone/2009/05/

28 Chapter 2. Background

time operation file_id file_size user_id bandwidth

0.0 GET 1543575822 8189 704866851 0.00198063377558

0.009 GET 15455023 815 1223956618 8.80730388516e-05

0.013 PUT 3457758605 62 4178692664 4.25992850293e-05

0.017 GET 3247597761 46541 1526014448 0.0052131731689

0.043 GET 3246172185 23376 1910373866 0.00514021001153

0.056 PUT 1425838301 638195 2662396472 0.0202350615187

0.146 GET 3146421807 377567 3899301018 0.0562618672846

0.154 PUT 176541977 332 4178692664 0.0002926246516

0.155 PUT 346240330 1622 4178692664 0.00103746461522

0.156 PUT 1541002195 4099406 3420193392 0.00500194245457

0.16 PUT 390089416 398 2311519970 1.33771191207e-05

0.161 PUT 3982622940 117 2311519970 3.12513710003e-06

0.176 PUT 3816660408 1305 1960464888 0.00256607212979

0.189 PUT 52868563 1243 4178692664 0.00063459163559

0.205 PUT 1615006207 4096 4049028426 0.000356344645136

0.207 GET 2807404967 39730 3448366816 0.00750881501985

0.214 PUT 2214900784 8890 4046205577 0.00262076187725

0.233 GET 2832935497 62 2821005149 1.37187488673e-05

0.258 PUT 975132975 1060956 4045930323 0.00647498136511

0.263 GET 3543677586 84985 4174733981 0.0159386453845

Figure 2.6: Snapshot of the first 20 PUT and GET operations in the trace.

We filtered the original trace and focused on the upload and download
operations that were performed during a random day of the trace (January
21st, 2014). For that day, 6, 331, 131 operations performed by 33, 257
distinct client on 4, 095, 057 unique files were logged.

Each line of the filtered trace represents an upload or download op-
eration performed by one user on a given file. For the sake of privacy,
files and user real identifiers are presented in the form of unique hash
codes. For each operation, several information were collected, including:
the timestamp (in seconds), the type of operation (“GET” or “PUT”), the
hash and size (in bytes) of the file in question, the user’s hash identifier
and the corresponding upload/download bandwidth (in KBps). Figure 2.6
presents a snapshot of the first 20 file upload and download operations in
the trace.

Figure 2.7 shows the total uploaded and downloaded volume along with
the total number of upload and download operations measured per hour
during the whole day. The hours are logged according to the Greenwich
Mean Time (GMT). We notice that the peak with the highest number of
upload and download operations corresponds to the hour between 21:00
and 22:00 GMT.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

2.5. The Ubuntu One Trace 29

00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
Time in the 24-hour notation

50

100

150

200

Tr
af
fic

 v
ol
um

e
(in

 G
By

te
s)

Downloaded volume
Uploaded volume

(a) Volume

00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
Time in the 24-hour notation

5

10

15

20

25

Nu
m
be

r o
f o

pe
ra
tio

ns
(x
 1
0,
00

0)

Download operations
Upload operations

(b) Operations

Figure 2.7: Total uploaded and downloaded volume and the number of upload and
download operations per hour during the day January 21st, 2014 for the U1 system.

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

File size in MB

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) File sizes

0 2 4 6 8 10
Number of downloads per file

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Downloads per file

Figure 2.8: CDF of the file sizes and the number of downloads per file in the sample.

Clients and Files Characteristics We focus on this peak hour with
the highest number of upload and download operations. Since we aim
to manage efficiently the upload speed of the cloud, we filter the one-
hour sample to keep only the 225,514 download operations related
to 173,756 distinct files. The number of unique users involved in this
sample is 81,083 users.

Figure 2.8a presents the cumulative distribution function (CDF) of the
file sizes in the sample. We notice that most of the files are small. The
average file size in the sample is about 1 MB, 988.26 KB to be precise.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

30 Chapter 2. Background

21:00 21:15 21:30 21:45 22:00
Time

100

200

300

400

500

600

700

Ba
nd

w
id

th
 (M

bp
s)

Needed bandwidth

Figure 2.9: Needed upload bandwidth over time during the peak hour.

Figure 2.8b plots the CDF of the downloads per file. We notice that about
68.62% of the operations correspond to single downloads. Single downloads
are operations related to files downloaded only once. These files account
for about 89% of the total files downloaded between 21:00 and 22:00. This
means that only 31.38% of the operations correspond to multiple downloads
of the same file and only 11% of the files were downloaded more than once.

Bandwidth Requirements Focusing more on the peak hour, we calcu-
late how much upload bandwidth should be provided by the cloud in order
to satisfy the demand of all the requesting peers. We consider the default
protocol used to distribute the files in Personal Clouds, which is HTTP.

To estimate the bandwidth needs, we went through the trace tracking
the active swarms at each timestamp and summing up all the download
capacities of the active peers. With each new download request, we updated
the amount of data left to be downloaded by each peer. Once a peer has
finished downloading the file, it was removed from the active peers list.
The download times were calculated according to (2.2).

The resulting amount of needed cloud upload bandwidth is presented
in Figure 2.9. This figure will be useful later to set a potential limit on
the cloud seed’s bandwidth when evaluating the efficiency of the proposed
algorithms. It shows that the total need in cloud bandwidth does not
exceed 650 Mbps. So, when evaluating the algorithms, it would be better
to vary the cloud limit W ∈]0, 650[in order to measure the effect of the
seed’s capacity on the algorithm’s performance.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

3
State of the Art

This chapter covers the related work addressed around the different
problems that motivate this thesis. It is organized into sections according
to the different treated topics. Each section is concluded with a small
comparative study of the related work and the contribution of the thesis.

3.1 Content Distribution Paradigms

In this section, we review some of the related work on the content
distribution paradigms related to this thesis. This study includes peer-
assisted content distribution and the BitTorrent protocol.

3.1.1 Peer-Assisted Content Distribution

In this thesis, we refer to peer-assisted content distribution systems as
partially centralized systems that rely mainly on P2P content distribution
while having a central server to guide and coordinate the peers and help
in the distribution process when needed.

These systems have been studied thoroughly in the literature. Karagi-
nannis et al. [73] explore the impact of peer-assisted content distribution

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

32 Chapter 3. State of the Art

systems on the content providers, the Internet Service Providers (ISPs) and
the end users. They demonstrate that these systems can provide significant
benefits for the content provider and end users, but have an adverse impact
on the ISPs. These results are further confirmed in [105], where the authors
prove that the peer-assisted approach can yield substantial performance
gains and capacity savings compared to a pure client/server system and
improve the reliability compared to a pure P2P scenario.

Peer-assisted systems can be used in a wide range of applications. A
prominent example is Amazon’s standard offering for BitTorrent content
distribution in the Amazon Simple Storage Service (S3) [6]. Apart from
the standard REST and SOAP APIs, it is possible to retrieve objects
stored in S3 using BitTorrent. Palankar et al. [94] evaluate the use of
Amazon S3 services for Science Grids. They pay special attention to
the use of BitTorrent in S3 as a cooperative cache that can reduce costs
when transferring large amounts of data. In a similar context, Sweha et
al. [115] proposed to use dedicated servers (called angels) to accelerate
peer-assisted content distribution. These angels are not the original content
providers, nor are they interested in the content. Their main purpose was
to increase the total upload capacities of the swarms by using their storage
and bandwidth capacities to cache and forward parts of the requested files
to the interested peers.

Peer-assisted CDNs have been proposed to reduce the content distri-
bution costs. Michiardi et al. [90] presented a general framework and a
prototype implementation of peer-assisted CDNs. Akamai NetSession [131]
is a commercial system that was proven to offload 70− 80% of the traffic
to the peers without a corresponding loss of performance or reliability.

Peer-assisted content distribution is also applied for online data backup
[118] and Video On Demand (VoD) [67, 116, 122, 128]. In peer-assisted
VoD distribution, videos are streamed from dedicated VoD servers as well
as from other online users. Cha et al. [17] explored the efficacy of P2P
techniques on YouTube1 through a trace-driven analysis. Their results
showed that the users could reduce the server workload by 41% when they
shared videos while they were watching them. A similar study [67] applied
to the MSN Video [91] service proved that peer-assisted VoD could trim
the server bandwidth by 58.2%.

1YouTube https://www.youtube.com

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.youtube.com

3.1. Content Distribution Paradigms 33

3.1.2 The BitTorrent Protocol

BitTorrent [24] is one of the most used protocols for peer-assisted
content distribution. This protocol had attracted the researchers’ attention
and several studies were dedicated to the measurements, analysis [68, 89, 99,
101, 123] and modeling [61, 75, 80, 100] of the BitTorrent ecosystem. Most
of the measurements of BitTorrent involved real torrents and have proven
that BitTorrent is an effective inexpensive tool for content distribution [68].
Some studies [25, 30, 31, 32, 34] were more focused on concrete aspects of
the protocol. Others aimed mainly to provide a measurement data that
can be useful to model BitTorrent systems [99].

In the context of measuring and analyzing BitTorrent, the authors in
[68] monitored a large torrent involving thousands of peers during five
months. Through the collected data, the authors evaluated the performance
of the algorithms used in BitTorrent. Their results confirm that BitTorrent
represents an effective inexpensive means for content distribution. Another
prominent measurement study was carried out by Pouwelse et al. [99]. The
authors focused on four different issues: availability, integrity, flash-crowd
handling, and download performance. The authors aimed with their study
to provide a measurement data that can be useful to model BitTorrent
systems.

Several models were proposed for BitTorrent. One the most popular
models is the one of Qiu et al. [100]. The authors presented a fluid model
and studied the scalability, performance and efficiency of BitTorrent-like
systems. In this thesis, we take advantage of their model to estimate
the effectiveness of file sharing. This metric was thoroughly studied in
their paper and an analytic model was proposed to estimate it. The work
presented by Kumar et al. [75], which presents an important pillar of
this thesis, is related to the modeling of peer-assisted systems in general.
Based on fluid-model arguments, the authors derived explicit expressions
for the minimum distribution time of a general heterogeneous peer-assisted
file distribution system. These expressions are generic and depend on the
file size, the seeds’ upload rates and the leechers’ upload and download
rates. The proposed formulas were validated through comparison with
experimentally measured distribution times using BitTorrent.

Improving BitTorrent’s performance is also an interesting research
topic. A lot of research work has been dedicated to improve the incentive

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

34 Chapter 3. State of the Art

mechanism [80, 98], improve the peer selection strategy [76, 127] and fight
against the problem of free-riders [22, 72].

All this collaborative work has resulted in an ever increasing popularity
of the protocol with different application domains. BitTorrent has proven its
efficiency in the distribution of virtual machine images [109, 102] with a 30x
speedup over traditional approaches. This protocol was also implemented
in a university scenario [40] and helped reducing the number of its servers
from 20 to only 2 central servers, sufficient to keep their 6,500 workstations
updates. BitTorrent has been also proven to be efficient in delivering Video
on Demand (VoD) [9, 26, 67]. It has also been used to distribute large
data inside data centers [69, 70]. Finally, Twitter [49], Facebook [41] and
even the United Kingdom’s government [120] use BitTorrent.

BitTorrent is generally considered efficient for big files and big swarms
only. To the best of our knowledge, there were only a few studies that
compared the performance of BitTorrent with small files. Wei et al.
[124, 125] compared experimentally the BitTorrent and FTP protocols.
They used the comparison to evaluate the use of a decentralized architecture
for distributing data in grid systems. They came to the conclusion that
BitTorrent outperforms FTP when the file size is greater than 20 MB and
when the number of nodes is greater than 10. However, these limits are
only relative to their specific deployment setup and cannot be generalized
in other settings such as regular clients in a wide area network. In [43], this
comparison was extended to include the HTTP protocol and a wider range
of file sizes. However, this work is also very specific to the experiments
settings and the conclusions cannot be generalized. Kumar et al. provided
in [75] the tools for a generic comparison between the client-server and
peer-assisted paradigms. They proposed an estimation of the download
times for each paradigm. Even though their estimation did not consider
the overheads related to the BitTorrent, it can extended and used as a
base for a generic comparison (which is one of the scopes of Chapter 4).

Progress beyond state of the art

Currently, most of the studies related to BitTorrent focused on the
efficiency of this protocol in distributing large files to big swarms. In these
circumstances, BitTorrent has proven its efficiency in reducing the load
on the original content provider and improving the download times for

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

3.2. Bandwidth Allocation Problem 35

end users. On the other hand, it is assumed that client-server protocols,
HTTP for example, are more efficient than BitTorrent when the files and/or
the number of downloaders are small. Nevertheless, the switching point
between BitTorrent and HTTP remains unclear. Wei et al. [124, 125]
proposed 20 MB as a file size limit and 10 as a swarm size limit. However,
these limits are only relative to their concrete deployment and cannot be
generalized.

In Chapter 4, we start by proving through experimentation that even
with swarms with less than 10 clients and files smaller than 20 MB,
BitTorrent can achieve lower download times than HTTP. This confutes the
general assumption that BitTorrent is only efficient with big files/swarms
and confirms the need for a generic study of both protocols in order to
better define the switching point between them. In the same chapter,
we extend the formulas proposed by Kumar et al. [75] to consider the
overheads related to the nature of the protocol. We also propose two
metrics to quantify the performance of BitTorrent compared to HTTP
in terms of download time and bandwidth usage. Finally, we study the
criteria that can be considered in the definition of the switching point and
present a simple algorithm that manages the download protocols based on
the predefined QoS constraints.

3.2 Bandwidth Allocation Problem

We have presented in the previous section various research works focused
on how to efficiently distribute content to a set of users. In this section, we
focus on works that aim to improve the bandwidth allocation of a server,
given a restricted bandwidth budget.

In general, independent from the application fields, Sharma et al. [110]
classified the bandwidth allocation strategies into two main categories. The
first category groups static, simple strategies such as uniform allocation,
best-effort or proportional to demand. The second category is related to
dynamic strategies that constantly adjust the allocation in response to fine-
grained client-perceived performance, so as to optimize the performance or
cost objectives of the content distributor. Bandwidth allocation problems
can be mapped onto classic optimization problems with varying complexity.
For instance, [4] sought optimal bandwidth allocation in wireless multimedia

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

36 Chapter 3. State of the Art

networks. The problem was modeled as an NP-complete multiple-choice
knapsack problem [111]. Lagrangean relaxation procedure was used to
develop an efficient heuristic algorithm for this problem. The Portfolio
problem [88] is another common problem onto which resource allocation
problems can be mapped [74, 93]. Zhu et al. [132] addressed the problem of
bandwidth allocation for different service classes in heterogeneous wireless
networks. This problem was modeled as an optimal control problem [15]
and solved using Nash equilibrium. Finally, linear programming’s interior
point primal dual method [126] was proposed in [71] as a solution for
network allocation in wireless cellular and ad hoc networks.

Bandwidth allocation strategies depend on the protocol being used.
In this thesis, we focus mainly on two protocols: HTTP and BitTorrent,
and in this section we review some of research works related to bandwidth
allocation techniques with these two protocols. HTTP servers can de-
ploy several techniques to distribute their resources among the different
simultaneous clients, such as traffic shaping [66, 81, 85] and scheduling
algorithms [14]. Antfarm [96] and V-Formation [97] are two examples of
systems using dynamic bandwidth allocation strategies in BitTorrent-like
swarms. Antfarm is a content distribution system that measures a swarm’s
response curve to seeder bandwidth in order to optimize its uploads among
competing swarms. This system needs to actively measure swarm dynamics
and uses an off-band protocol to motivate users to report performance
data that is later used to do the actual allocation. On the other hand,
V-Formation evaluates the benefit of available bandwidth to competing con-
sumers and targets toward a global allocation of bandwidth that maximizes
the aggregate download bandwidth of consumers.

Progress beyond state of the art In this thesis, we focus on the
bandwidth allocation problem in systems dedicated to deliver files to
different clients that can be using either the HTTP or BitTorrent protocols.
This means that at the same time, the data center is required to serve both
kind of clients: the ones that use HTTP and the ones that use BitTorrent.
To the best of our knowledge, there is no related work that deals with
both kind of protocols. But, there have been some research works that
addressed the bandwidth allocation in HTTP servers and peer-assisted
systems based on BitTorrent separately.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

3.3. Bundling in BitTorrent 37

In Chapter 5, we study the relationship between the amount of band-
width allocated to a swarm of clients and the resulting download time.
Based on a fixed quality of service constraint, we calculate the amount of
seed bandwidth needed to ensure a given ratio between the download times
in HTTP and BitTorrent. Moreover, we propose a dynamic algorithm
that decides the most suitable protocol for each case and provides the
corresponding bandwidth allocations at the swarm level.

3.3 Bundling in BitTorrent

Several extensions have been proposed in the literature in order to
increase the performance of BitTorrent. One of these extensions is bundling.
Bundling consists in grouping a set of contents into a single file for download.
Peers download a bundle that contains both the desired files along with
some other files that make up the bundle.

Bundling in BitTorrent has been reported to increase the availability of
unpopular files. Menasche et al. [87] performed a measurement study on
real BitTorrent swarms and proved the efficiency of bundling in improving
the availability of unpopular torrents and reducing the download times
when publishers were unavailable. Another measurement study, conducted
by Han et al. [64, 65], focused on the prevalence of file bundling in the
BitTorrent ecosystem. The authors noticed that over 70% of the monitored
torrents contained multiple files which proved that bundling was very
common.

Bundling can be static [16] when a pre-determined set of files are
grouped together by the publisher, or dynamic[63] if peers are assigned
complementary content to download at the time they decide to download
a particular file. Though static bundling is easy to implement, it may
result in wasted downloads as every peer has to download the entire bundle.
Dynamic bundling offers more flexibility since it can adapt to the current
state of the publishers which might help in avoiding wasted downloads
[130].

To improve further the benefits of bundling, different download strate-
gies were proposed and evaluated. Lev-tov et al. [79] proposed a dynamic
file selection and download strategy. This strategy allowed peers to dy-
namically select whether to collaborate or not when they were interested

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

38 Chapter 3. State of the Art

in downloading only a small subset of the bundled files. Zhang et al.
[129, 130] introduced the idea of “super bundle” which consisted of a large
collection of files. Clients who requested individual files from this super
bundle were instructed to download additional ones. The set of additional
files was adjusted by the tracker to dynamically adapt the bundles to the
relative file availability.

A prominent work in the field of dynamic bundling is the one of Han
et al. [63] where the authors proposed nine different bundling strategies to
dynamically bundle swarms in pairs. Two different categories of strategies
were proposed: attribute-based and access-history based. Attribute-based
strategies considered the attributes of torrents, such as the title or tag,
and based on the similarity of these attributes, several torrents could be
bundled into a single one. Access-history based strategies, however, were
based on the access pattern of a swarm and considered dynamic parameters
such as popularity, availability, and life cycle.

To select the pairs of swarms to group from the large set of available
combinations, Han et al. use the maximum weight matching algorithm
[39, 50]. In graph theory, a matching is a subset of edges such that none
of the selected edges share a common vertex. With respect to a weighted
graph, a maximum weight matching is a matching for which the sum of the
weights of the matched edges is as large as possible. The first polynomial
time algorithm for maximum matching was proposed in 1965 by Edmonds
[39] and subsequently improved by Gabow and others [48, 50]. Currently,
there are several libraries that can find the maximum weight matchings
for dense graphs in time O(n3) (n is the number of nodes in the original
graph).

Progress beyond state of the art In current literature, bundling have
been limited to grouping two or more BitTorrent swarms into a single one.
To the best of our knowledge, no one have previously studied the effects
of grouping other types of swarms. For instance, if we suppose that a set
of clients downloading simultaneously the same file using HTTP can be
called an HTTP swarm, then we can confirm that nobody has studied the
effects of bundling HTTP swarms together or even an HTTP swarm with
a BitTorrent one.

In Chapter 6, we evaluate bundling on swarms that use the same

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

3.4. Personal Clouds 39

download protocol (all the swarms are using HTTP or all the swarms
are using BitTorrent) and also swarms that use different protocols (some
swarms are using HTTP and some others are using BitTorrent). Moreover,
we go beyond the classic scope of bundling (which is to mitigate the problem
of availability in unpopular torrents [87, 63]), and reveal other benefits of
bundling, focusing mainly of the effects of bundling on the download time.

3.4 Personal Clouds

Personal Clouds refer generally to Dropbox2-like file hosting services
that allow their users to store, synchronize and share content over the
Internet. Personal Clouds have become very popular in the last years.
They have attracted also the researchers’ attention and there has been
several studies related to the data characteristics and usage patterns in
these systems.

The first studies on Personal Cloud systems were carried out by Drago et
al. [37, 36]. In [37], they presented a characterization of Dropbox including
typical usage, traffic patterns, and possible performance bottlenecks, and
compared in [36] the performance of 5 popular providers. Drago et al.
observed the daily activity patterns of the users and have detected that
the service usage is time-based with significant peaks in the upload and
download traffic. The files involved in this traffic followed a long-tailed
distribution with a large percentage of files under 1 MB in size [35]. In the
same context, Gracia et al. [60] studied a one-month long trace of Ubuntu
One3, a Personal Cloud system provided by Canonical. They reveal the
internal architecture of the system, the core components of the system,
as well as the interactions with Amazon S3 (the outsourced data storage
service). The authors confirmed the daily activity patterns of the users
and stated that 90% of the files involved in the upload/download traffic
are smaller than 1 MB. Another measurement example [84] studied the
characteristics of the data stored in a Personal Cloud system for campus
students and revealed that 99% of the files are smaller than 16 MB, and
that most of upload/download requests are for small files. Garcia et
al. [53, 54] went beyond the classic measurement studies, and proposed

2Dropbox: https://www.dropbox.com/
3The Ubuntu One Blog: http://voices.canonical.com/ubuntuone/2009/05/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.dropbox.com/
http://voices.canonical.com/ubuntuone/2009/05/

40 Chapter 3. State of the Art

StackSync, an open-source Personal Cloud framework that provides scalable
file synchronization and sharing among users. Their goal was to provide an
open-source system that can serve as a reference architecture for Personal
Clouds.

Personal Clouds offer to their clients data storage that can be automat-
ically synced across multiple devices, and also shared among a group of
users. To minimize the network overhead, current commercial cloud storage
services employ delta encoding, data compression, and other mechanisms
when transferring updates across users [36, 37]. Li et al. [82] proposed
another optimization to mitigate the excessive traffic usage when transmit-
ting frequent and short data updates. The authors deployed a middleware
between the user’s file storage system and a cloud storage client application
that instantiated a “SavingBox” folder that replaced the default sync folder
used by the cloud storage application. Frequent and short data updates
were detected and batched in the SavingBox, and then pushed to the cloud
storage application after a certain delay. In a similar context, Gonçalves et
al. [55] investigated a trace of Dropbox and found that a large fraction of
Dropbox downloads was associated with same content shared by multiple
devices. Their proposal to introduce network caches could recover 92% of
the costs of serving avoidable downloads.

In an attempt to reduce the load on the central servers, Dropbox
deploys LAN sync [28], a feature that speeds syncing between machines on
the same Local Area Network (LAN). With LAN syncing, Dropbox looks
for the new file on the LAN first, bypassing the need to download the file
from Dropbox servers, thus speeding up the syncing process considerably.

Finally, it is important to mention here that BitTorrent Sync [42, 108]
(Now Resilio Sync4) cannot be considered as a Personal Cloud, as the users’
data are not stored in the Cloud. Instead, it is a P2P file synchronization
tool that relies on the BitTorrent protocol to synchronize data between
the users’ devices.

Progress beyond state of the art In this thesis, we investigate the
effects of using BitTorrent in Personal Clouds. We start by measuring the
effects of using BitTorrent to distribute files that are shared between a set

4In early 2016, Resilio Inc. was spun out of BitTorrent Inc. https://getsync.com/
about/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://getsync.com/about/
https://getsync.com/about/

3.4. Personal Clouds 41

of devices. In such scenarios, it is possible to benefit from the common
interest of users in the same file and use their own upload bandwidth to
offload the cloud from doing all the serving. In Chapter 5, we prove that
BitTorrent can be effective in decreasing outbound traffic and improving
the Quality of Service (QoS) of the system, despite the small size of data
flows and swarms. In Chapter 6, we focus on a new dimension, the Quality
of Experience (QoE), and set as our main goal the reduction of the delay
experienced by devices to get the necessary files and deltas to be “in sync”
again. To achieve this goal, we propose to “inflate” the swarms by grouping
a set of diverse contents into a single .torrent file.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4
Protocol Decision Strategy

In this chapter, we propose a strategy to decide which protocol (HTTP
or BitTorrent) is more suitable for each file transfer scenario. We start by
proving through an experimental example that BitTorrent can outperform
HTTP in the delivery of small files. Next, we propose an accurate esti-
mation of the download time with BitTorrent. This estimation takes into
consideration the delays that can be caused by the start-up phase and the
lack of available pieces. After that, we propose two metrics to study the
trade-offs between the HTTP and BitTorrent protocols. These metrics are
the gain and the offload ratios. The gain ratio measures the improvements
in term of download time, and the offload measures the amount of data that
can be offloaded from the central server using BitTorrent. Next, we propose
a simple algorithm that decides based on the predefined QoS constraints
which protocol is more suitable for each file transfer. Finally, we validate
the proposed algorithm on a real trace of a Personal Cloud and we prove
that it can achieve important savings in terms of cloud bandwidth.

The results presented in this chapter are published in [18] and [20]

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

44 Chapter 4. Protocol Decision Strategy

4.1 Introduction

This chapter aims at providing simple means that can help data centers
decide which protocol should be used for each served file. The chapter is
mainly dedicated to answering the first question raised in the introductory
chapter, which is: “How to decide which protocol (HTTP or BitTorrent) is
more suitable for each file transfer case?”.

To answer this question, we need to study the trade-offs between both
protocols. In general, it is assumed that BitTorrent is only efficient with
big files and big swarms, and that client-server protocols performs better
in the distribution of small files [124, 125]. However, to the best of our
knowledge, no concrete analytic comparison was made on this matter, and
all the conclusions were drawn from experimental results that cannot be
generalized. Thus, a generic study of both protocols is essential to make a
wise decision about which protocol to use.

In this context, it is necessary to provide accurate estimations of the
download times for each approach. An accurate estimation of BitTorrent
should take into account the overheads that can be associated with the use
of this protocol for small files, such as: the start-up phase overhead, and
the overhead related to the lack of available pieces. These overheads are
evaluated in this chapter and an accurate estimation of the download time
with BitTorrent for small files is provided. This estimation is used later
to quantify the gain and offload ratios. The gain ratio measures the gain
in terms of download time that can be obtained using BitTorrent instead
of HTTP, while the offload ratio measures the amount of data that can
be offloaded from the content provider with the use of BitTorrent. The
gain and offload ratios are two key parameters in deciding which download
protocol is more suitable for each file transfer. They can be used to evaluate
the efficiency of each protocol based on the predefined Quality of Service
(QoS) constraints.

The remainder of the chapter is organized as follows: Section 4.2
investigates the trade-offs between HTTP and BitTorrent. It contains an
accurate estimation of the download time using BitTorrent, along with
two metrics to quantify the performance of this protocol compared to
HTTP in terms of download time and bandwidth usage. In Section 4.4,
we present the protocol decision strategy: we study the constraints that

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.2. Trade-offs Between HTTP and BitTorrent 45

can be considered in evaluating the protocols, and propose an algorithm
for managing the download protocols. This algorithm is validated in
Section 4.2 in a real-world scenario using a trace of a Personal Cloud. The
results prove that use of BitTorrent can reduce significantly the costs while
maintaining the performance constraints. Finally, Section 4.5 concludes
the chapter.

4.2 Trade-offs Between HTTP and BitTorrent

In this section, we study the trade-offs between the HTTP and Bit-
Torrent protocols. We start by comparing through experimentation the
distribution times for small files and swarms. We prove that, despite the
general assumptions, BitTorrent can outperform HTTP even when the files
are small and the swarms are composed of a few clients. Next, we propose
an estimation for the download time using BitTorrent that is valid for small
files/swarms, and which takes into consideration the overheads related to
the nature of the protocol. Finally, we present two metrics that measure
the trade-offs between HTTP and BitTorrent: the gain and offload ratios.
The first measure the improvement in download times that can result from
using BitTorrent instead of HTTP. The second measures the amount of
data offloaded from the central server through the use of BitTorrent.

4.2.1 BitTorrent Can Be Efficient for Small Files

In general, it is commonly assumed that BitTorrent is only efficient
with big files and big swarms and that client-server protocols perform
better in the distribution of small files [124, 125]. However, to the best of
our knowledge, no concrete analytic comparison was made on this matter,
and all the conclusions were drawn from experimental results that cannot
be generalized.

To confute this assumption, we run a simple experiment that consists
in distributing small files (1, 5 and 10 MB) from a central server to small
sets of clients (2, 3, 4 and 5 clients). Each file is sent using HTTP and
BitTorrent separately. We use the following common ADSL bandwidth
settings: each client ci has an upload bandwidth ui = 1 Mbps, a download
bandwidth di = 2 Mbps and the bandwidth allocated by the content

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

46 Chapter 4. Protocol Decision Strategy

provider to each transmitted file is ws = 5 Mbps. The measured downloads
time (in seconds) and the amount of data contributed by the clients (in
MB) are reported in Table 4.1.

We notice that even though the files are small, there are some cases
when BitTorrent downloads are faster that HTTP. We also notice that
when the number of peers in the swarm increases, the improvements in
download time using BitTorrent are more important. For instance, with
4 clients downloading a 1 MB file, BitTorrent is ≈ 6% faster than HTTP.
An extra client in the swarm (Ls = 5) can even improve the download to
be ≈ 22% faster than HTTP. Another important advantage of the use of
BitTorrent is the amount of data contributed by the peers. This amount is
quite important even when the files are small. Starting from just 2 peers,
we notice that the contribution ranges from 11% (for Fs = 1 MB) to exceed
30% (for Fs = 10 MB). The peers’ contributions is even more important
when the number of peers is higher. These experimental results confute
the general assumptions and confirm the need for a generic study of both
protocols to make a wise decision about which protocol to use for each file
transfer scenario.

4.2.2 Download Time with BitTorrent

We present an estimation of the download time with BitTorrent, op-
timized for small files/swarms. In this estimation, we reuse T pas , which
was first proposed by Kumar et al. in [75], and extend it to consider the
overheads related to the BitTorrent protocol.

Limitations of T pas

One of the limitations of (2.3), the estimation of the distribution time
in peer-assisted systems, proposed by Kumar et al. [75], is that it does
not take into consideration the overheads that peer-assisted systems may
present compared to the client-server ones. For large files, the download
times are generally long and the small protocol overheads can be neglected.
However, they cannot be ignored for the small ones, for which the download
time is in the order of a few seconds.

To illustrate the important role that this overhead plays in the distri-
bution of small files, we run several experiments distributing a small file

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.2. Trade-offs Between HTTP and BitTorrent 47

T
a
b
le

4
.1
:

M
ea

su
re

d
d

ow
n

lo
a
d

ti
m

es
fo

r
sm

a
ll

fi
le

s
u

si
n

g
H

T
T

P
a
n

d
B

it
T

o
rr

en
t.

T
h

e
se

ed
’s

b
a
n

d
w

id
th

is
li

m
it

ed
to

5
M

b
p

s.
T

h
e

cl
ie

n
ts

a
re

h
o
m

o
g
en

eo
u
s,

ea
ch

h
av

in
g

a
n

u
p
lo

a
d

a
n
d

a
d
ow

n
lo

a
d

sp
ee

d
o
f

1
a
n
d

2
M

b
p
s,

re
sp

ec
ti

v
el

y.
T

h
e

m
ea

su
re

d
d
ow

n
lo

a
d

ti
m

es
a
re

in
se

co
n
d
s

a
n
d

th
e

d
a
ta

fr
o
m

p
ee

rs
a
re

in
M

B
.

L
s

F
s

=
1

M
B

F
s

=
5

M
B

F
s

=
1
0

M
B

T
h
tt
p

s
T

b
t

s
T

h
tt
p

s
−
T

b
t

s

D
a
ta

fr
o
m

T
h
tt
p

s
T

b
t

s
T

h
tt
p

s
−
T

b
t

s

D
a
ta

fr
o
m

T
h
tt
p

s
T

b
t

s
T

h
tt
p

s
−
T

b
t

s

D
a
ta

fr
o
m

p
e
e
rs

p
e
e
rs

p
e
e
rs

2
4

5.
51

-1
.5

1
0.

23
20

21
.5

2
-1

.5
2

2.
9

40
42

.0
6

-2
.0

6
6
.0

8
3

4.
8

5.
47

-0
.6

7
0.

80
24

21
.6

9
2.

31
6.

02
48

42
.7

3
5
.2

7
1
1
.9

7
4

6.
4

6.
03

0.
37

1.
57

32
23

.0
6

8.
94

7.
84

64
42

.8
3

2
1
.1

7
1
7
.6

5
8

6.
25

1.
75

1.
64

40
24

.0
5

15
.9

5
11

.5
9

80
44

.6
8

3
5
.3

2
2
3
.6

4

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

48 Chapter 4. Protocol Decision Strategy

Table 4.2: Estimated versus experimental distribution times with BitTorrent for a 1
MB file.

Number of clients 2 3 4 5

Estimated time (s) 4 4 4 4
Experimental time (s) 5.51 5.47 6.03 6.25

Absolute error (s) 1.51 1.47 2.03 2.25
Relative error (%) 37.75 36.75 50.75 56.25

(1 MB) to several clients. We consider swarms whose size range from 2
to 5 clients and use the same bandwidth settings as in the experiments
used in Table 4.1. For each experiment, we measure the experimental
download times and compare them to the estimated ones using (2.3). Also,
we calculate the corresponding absolute and relative errors.

Table 4.2 groups the results of the experiments. It shows that even
though the absolute error between the measured and estimated download
times is small (a few seconds), it represents an important error percentage
compared to the experimental time and can exceed 50% in some cases.
This confirms the need for a more accurate estimation that includes the
protocol overheads.

Adding the BitTorrent Overheads

The T pas formula lacks mainly two types of overheads, each related to
a different phase of BitTorrent: (i) the overhead related to the start-up
phase and (ii) the overhead related the problem of piece availability in the
download phase.

Overhead related to the start-up phase Before starting the down-
load with BitTorrent, there are a few steps that each leecher needs to
perform: First, the leecher has to get and read the .torrent file that
contains all the meta-info data about the requested content. And then,
it needs to contact the tracker(s) to get a list of other peers sharing or
downloading the same file. Finally, after locating and connecting to the
peers, the BitTorrent client can start exchanging pieces with them.

All these steps are specific to the BitTorrent protocol and they create
an extra overhead, that we call the start-up phase overhead. This overhead

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.2. Trade-offs Between HTTP and BitTorrent 49

depends on the set of peers returned by the tracker, and the moment at
which the remote peers decide to unchoke the local peer [77].

We experimentally studied this overhead and we noticed that is relative
to the architecture of the system. It can be monitored and dynamically
adapted based on the load of the system. We also noticed that it can be
simply modeled as a constant αbt added to the download time.

Overhead related to the download phase In BitTorrent, peers up-
load to each other even though they may only have parts of the file. This
can result in upload interruptions when the uploader has no pieces to
offer to his unchoked peers. Fortunately, this problem has already been
tackled by Qui et al. [100], and the authors proposed a parameter to scale
down the upload speed of leechers. This parameter, denoted as ηs ∈ [0, 1],
measures the effectiveness of file sharing. It can be computed as follows:

ηs = 1− P
{

downloader i has no piece that
his unchoked peers need

}
.

The authors derived this probability and came to the conclusion that
ηs can be expressed as: 1

ηs = 1−
Ns−1∑
ni=0

1

Ns

(
Ns − ni

Ns (ni + 1)

)ks
,

where Ns is the number of pieces of the served file fs, and ks is the number
of connections a peer has.

The authors in [100] focused on the case of large files and concluded
that ηs ≈ 1 when Ns is high (which means that the file is big). However,
if we consider a small file of 1 MB composed of Ns = 4 chunks each of 256
KB, and a peer that has only two connections (ks = 2), the above equation
yields ηs = 0.7069, which means that there is a probability of about 30%
that a peer has no pieces for its unchoked peers. This can affect the
download time and make it relatively longer. Thus, this overhead should
be also considered when estimating the download time in BitTorrent.

1The rectified version of [100], which contains the correct expression of ηs, can be
found at: http://users.encs.concordia.ca/~dongyu/paper/bittorrent.pdf

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

 http://users.encs.concordia.ca/~dongyu/paper/bittorrent.pdf

50 Chapter 4. Protocol Decision Strategy

2 3 4 5 6 7 8 9 10
Ls

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
α
bt
 (i

n
s)

(a) αbt

2 3 4 5 6 7 8 9 10
Ls

0

2

4

6

8

10

12

Do
w

nl
oa

d
tim

e
(in

 s
)

T pa
s

T bt
s

(b) T bt
s versus T pa

s

Figure 4.1: Experimental validation of T bts

Download Time with BitTorrent T bts Considering the above listed
overheads, we can extend (2.3) in order to provide an accurate estimation
of the download time in BitTorrent as follows:

T bts =
Fs

min
{
dmin,s,

ws+ηs us Ls
Ls

, ws

} + αbt. (4.1)

ηs is used to scale down the upload capacity of the swarm in order to
consider the problem of unavailable pieces. αbt, the start-up phase overhead,
is added to the download time.

Experimental Validation

To validate T bts , we ran repeated experiments using a 1 MB file. The
experimental scenario was to distribute the file via BitTorrent starting
with a unique seed. The bandwidth setting was the following: the upload
bandwidth allocated for the file was ws = 5 Mbps. The number of clients
ranged from 2 to 10. Each of them had an upload bandwidth ui = 1 Mbps
and a download bandwidth di = 2 Mbps. In these experiments, we used
the standard Vuze2 client for the BitTorrent seed and clients and a public
tracker3.

2Vuze client: http://www.vuze.com/
3The OpenBitTorrent tracker: https://openbittorrent.com/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.vuze.com/
https://openbittorrent.com/

4.2. Trade-offs Between HTTP and BitTorrent 51

We repeated each experiment 5 times and measured the values of the
download time and the overhead αbt for each client. Figure 4.1a represents
a box-plot of the time interval between the moments when the clients were
launched and when they started downloading the file. This time interval
corresponds to αbt. We notice that this overhead is constant in average
and it is equal to 2.5 seconds for our architecture.

Using this value (αbt = 2.5), Figure 4.1b compares our estimation (T bts),
the one proposed in [75] (T pas), and the experimental results (the box-plots).
We can clearly see that T pas underestimates the download times with an
error rate that can reach 40% in our experiments. On the other hand, our
estimation is more accurate with an error rate reduced to about 10%.

4.2.3 Gain and Offload Ratios

Sometimes the use of BitTorrent may incur a longer download time
compared to HTTP especially when the files are small. The main challenge
is to decide which protocol is more suitable for each file transfer. The key
elements in making the decision are: (i) the gain in download time which
represents the difference in download time between HTTP and BitTorrent,
and (ii) the amount of data that can be offloaded from the central server
with the use of BitTorrent.

The Gain Ratio

To measure the improvement in terms of download time between HTTP
and BitTorrent for a given swarm s, we introduce the gain ratio Gains, as
follows:

Gains =
T https − T bts
T https

.

Gains represents the ratio between the difference in download times
T https − T bts and T https . The gain can take different values that can be
either negative, positive or equal to zero. A positive gain ratio equal to x
means that downloading the file via BitTorrent entails a gain of 100 x%
in download time compared to HTTP, while a negative value of Gains
reflects a loss in download time. A gain ratio equal to zero indicates that
both protocols (BitTorrent and HTTP) have the same estimated download
time. Using (2.2) and (4.1), it is possible to calculate Gains based on

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

52 Chapter 4. Protocol Decision Strategy

the divisors of T https and T bts , which are respectively min
{
dmin,s,

ws
Ls

}
and min

{
dmin,s,

ws+ηs Ls us
Ls

, ws

}
. We study all the possible cases and we

extract the analytic equation of Gains as follows:

Gains =



−αbt dmin,s
Fs

, if dmin,s ≤ ws
Ls

and dmin,s ≤ min
{
ws+ηs us Ls

Ls
, ws

}
1− ws

Ls dmin,s
− αbt ws

Fs Ls
, if ws

Ls
≤ dmin,s and dmin,s ≤ min

{
ws+ηs us Ls

Ls
, ws

}
1− ws

ws+ηs us Ls
− αbt ws

Fs Ls
, if ws+ηs us Ls

Ls
≤ min {dmin,s, ws}

1− 1
Ls
− αbt ws

Fs Ls
, if ws ≤ min

{
dmin,s,

ws+ηs us Ls
Ls

}
.

(4.2)

Proof. We organize the proof into the following four exhaustive cases, based

on the values of min
{
dmin,s,

ws
Ls

}
and min

{
dmin,s,

ws+ηs Ls us
Ls

, ws

}
.

• If dmin,s ≤ ws
Ls

and dmin,s ≤ min
{
ws+ηs us Ls

Ls
, ws

}
dmin,s ≤

ws
Ls

=⇒ T https = Fs
dmin,s

dmin,s ≤ min
{
ws+ηs us Ls

Ls
, ws

}
=⇒ T bts = Fs

dmin,s
+ αbt

Thus, Gains =
Fs

dmin,s
− Fs
dmin,s

−αbt
Fs

dmin,s

= −αbt dmin,s
Fs

.

• If ws
Ls
≤ dmin,s and dmin,s ≤ min

{
ws+ηs us Ls

Ls
, ws

}
{
ws
Ls
≤ dmin,s =⇒ T https = Fs Ls

ws

dmin,s ≤ min
{
ws+ηs us Ls

Ls
, ws

}
=⇒ T bts = Fs

dmin,s
+ αbt

Thus, Gains =
Fs Ls
ws
− Fs
dmin,s

−αbt
Fs Ls
ws

= 1− ws
Ls dmin,s

− αbt ws
Fs Ls

.

• If ws+ηs us Ls
Ls

≤ min {dmin,s, ws}
{
ws
Ls
≤ ws+ηs us Ls

Ls
ws+ηs us Ls

Ls
≤ dmin,s

=⇒ T https = Fs Ls
ws

ws+ηs us Ls
Ls

≤ min {dmin,s, ws} =⇒ T bts = Fs Ls
ws+ηs us Ls

+ αbt

Thus, Gains =
Fs Ls
ws
− Fs Ls
ws+ηs us Ls

−αbt
Fs Ls
ws

= 1− ws
ws+ηs us Ls

− αbt ws
Fs Ls

.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.2. Trade-offs Between HTTP and BitTorrent 53

• If ws ≤ min
{
dmin,s,

ws+ηs us Ls
Ls

}

{
ws
Ls
≤ ws

ws ≤ dmin,s
=⇒ T https = Fs Ls

ws

ws ≤ min
{
dmin,s,

ws+ηs us Ls
Ls

}
=⇒ T bts = Fs

ws
+ αbt

Thus, Gains =
Fs Ls
ws
− Fs
ws
−αbt

Fs Ls
ws

= 1− 1
Ls
− αbt ws

Fs Ls
.

The Offload Ratio

The offload ratio defines the amount of data offloaded from the central
content provider. It is determined by the total amount of data exchanged
between the peers divided by the total volume of downloaded data:

Offloads =
data from peers

total data sent
= 1− data from the central server

total data sent

= 1−

∑
ci∈S

T bts∫
αbt

ri(t)dt

Fs Ls
= 1−

(
T bts − αbt

) ∑
ci∈S

ri(t)

Fs Ls
,

where ri(t) is the seeding rate as described in Chapter 2.

Taking into consideration the seeding rate as defined in (2.4), we can
formulate the offload rates as follows:

Offloads =



1− 1
Ls

if dmin,s ≤ min
{
ws+ηs Ls us

Ls
, ws

}
and dmin,s ≤ us Ls

Ls−1

ηs us
dmin,s

if dmin,s ≤ min
{
ws+ηs Ls us

Ls
, ws

}
and us Ls

Ls−1 ≤ dmin,s

1− ws
ws+ηs Ls us

if ws+ηs Ls us
Ls

≤ min {dmin,s, ws}

1− 1
Ls

if ws ≤ min
{
dmin,s,

ws+ηs Ls us
Ls

}
(4.3)

Proof. The proof of Offloads is organized into the same cases as ri(t), as
follows:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

54 Chapter 4. Protocol Decision Strategy

• If dmin,s ≤ min
{
ws+ηs Ls us

Ls
, ws

}
and dmin,s ≤ us Ls

Ls−1

∑
ci∈S

ri(t) =
∑
ci∈S

ui dmin,s
ηs us Ls

=

dmin,s
∑
ci∈S

ui

ηs us Ls
=

dmin,s ηs Ls us
ηs us Ls

= dmin,s

Thus, Offloads = 1−
Fs

dmin,s
dmin,s

Fs Ls
= 1− 1

Ls

• If dmin,s ≤ min
{
ws+ηs Ls us

Ls
, ws

}
and dmin,s ≥ us Ls

Ls−1∑
ci∈S

ri(t) =
∑
ci∈S

(
ui−ηs us Ls

Ls−1 + dmin,s

)
=

∑
s∈S

(ui−ηsLsus)

Ls−1 + Ls dmin,s

= ηs Ls us−ηs L2
s us

Ls−1 + Ls dmin,s = Ls(dmin,s − ηs us)

Thus, Offloads = 1−
Fs

dmin,s
Ls(dmin,s−ηs us)
Fs Ls

= ηs us
dmin,s

• If ws+ηs Ls us
Ls

≤ min {dmin,s, ws}

∑
ci∈S

ri(t) =
∑
ci∈S

(
ui−ηs us Ls

Ls−1 + ws+ηs us Ls
Ls

)
=

∑
s∈S

(ui−ηsLsus)

Ls−1 + ws + ηs us Ls

= ws + ηs us Ls − L2
s ηs us−Ls ηs us

Ls−1 = ws

Thus, Offloads = 1−
Ls Fs

ws+ηs us Ls
ws

Fs Ls
= ws

ws+ηs us Ls

• If ws ≤ min
{
dmin,s,

ws+ηs Ls us
Ls

}
∑
ci∈S

ri(t) =
∑
ci∈S

ui ws
ηs us Ls

= ηs Ls us ws
ηs us Ls

= ws

Thus, Offloads = 1−
Fs
ws

ws

Fs Ls
= 1− 1

Ls

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.2. Trade-offs Between HTTP and BitTorrent 55

L
s

2 3 4 5 6 7 8 9 10 11 12
F s

 (in
 MB)

1
5

10
15

20
25

G
a
in

s

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

Estimated
Experimental
Gains =0

(a) Gains

L
s

2 3 4 5 6 7 8 9 10 11 12
F s

 (in
 MB)

1
5

10
15

20
25

O
ff
lo
a
d
s

0.2
0.3
0.4
0.5

0.6

0.7

Estimated
Experimental

(b) Offloads

Figure 4.2: Estimated versus experimental gain and offload ratios. The swarms’ sizes
range from 2 to 12 clients and the files from 1 to 25 MB.

Experimental Validation

Since the gain and the offload are key parameters in the protocol
decision process, it is important to verify the accuracy of our estimation
compared to real experimental values. We run experiments using the
same bandwidth distribution as in the previous section. The goal is to
compare the experimental and the estimated gain and offload ratios when
distributing a file to a set of nodes whose number ranges from 2 to 12
nodes. The file size varies from 1 to 25 MB.

Figures 4.2a and 4.2b represent 3-dimensional plots of the results. We
can see that the experimental and estimated surfaces of the Gains are very
close and that the difference between them is slight. This proves that (4.2)
is quite accurate. In fact, the median error rate is about 2.41% (the mean
error is equal to 5.22%). The figure also shows that the gain in download
time Gains tend to increase when the swarm and file sizes increase. This
means that BitTorrent performs better with big files/swarms, but it does
not deny that it can perform well with the small ones too. The Gains = 0
plane, which corresponds to a similar performance between HTTP and
BitTorrent (T https = T bts), separates both the estimated and experimental
surfaces into 2 parts. The parts of the plots above this plane reflect that
BitTorrent outperforms HTTP (T bts < T https), while the parts below reflect

degrades in performance using BitTorrent (T bts > T https). By looking at

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

56 Chapter 4. Protocol Decision Strategy

2 3 4 5 6 7 8 9 10 11 12
Ls

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
Ra

tio

Experimental Gains
Estimated Gains
Experimental Offloads
Estimated Offloads

(a) 1 MB

2 3 4 5 6 7 8 9 10 11 12
Ls

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ra
tio

Experimental Gains
Estimated Gains
Experimental Offloads
Estimated Offloads

(b) 5 MB

2 3 4 5 6 7 8 9 10 11 12
Ls

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ra
tio

Experimental Gains
Estimated Gains
Experimental Offloads
Estimated Offloads

(c) 20 MB

2 3 4 5 6 7 8 9 10 11 12
Ls

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
tio

Experimental Gains
Estimated Gains
Experimental Offloads
Estimated Offloads

(d) 25 MB

Figure 4.3: Estimated versus experimental gain and offload ratios for different file sizes

Figure 4.2a, we can clearly see that most of the plot is above the plane
which means that in most cases, BitTorrent outperforms HTTP.

Figure 4.2b compares the experimental and the estimated Offloads.
The offload is always positive since the use of BitTorrent involves some
cooperation between the clients. However, the median error rate is equal
to 3.47% (the mean error is equal to 14.13%). This is mainly due to the
unpredictable nature of the BitTorrent protocol. Nevertheless, this error
can still be considered among the accepted margin of errors.

Figures 4.3a, 4.3b, 4.3c and 4.3d present some vertical sections of the
previous plots for files of size 1, 5, 20 and 25 megabytes, respectively. The
figures contain the corresponding estimated and experimental values of
both the gain and the offload ratios. We notice that the estimations are

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.3. The Protocol Decision Strategy 57

very close to the experimental results in most cases. For instance, for
the smallest file (1 MB), the error in the gain estimation is moderate for
very small swarms with only 2 or 3 clients. That error could represent an
increase in the download time of a few seconds. However, we notice that
the bigger the swarms is, the closer the estimation gets, in a way that the
error becomes very close to 0 for swarms of size ≥ 4 clients.

4.3 The Protocol Decision Strategy

In this section, we present a simple methodology that data centers
can deploy in order to reduce the load on their servers. The main idea is
to switch the download protocol from HTTP to BitTorrent when there
are simultaneous downloads of the same file. We start by presenting
the download scenario and explain how can BitTorrent be introduced to
offload the central servers. After that, we propose four criteria that define
the switching point from HTTP to BitTorrent. Finally, we present the
switching algorithm which formalizes the protocol decision strategy into
step-by-step operations.

4.3.1 Download Scenario

The download requests that arrive to the data center are HTTP GET
requests sent from different clients. Each request is issued from one client c
and translates its interest in downloading one file f . Using the traditional
model, this request will be fulfilled by the data center and the file f will
be sent directly to c via HTTP.

With our strategy, before sending the file, the data center verifies if f
is already being downloaded by other clients. If it is not the case, then
the file is sent via HTTP as usual. Otherwise, if there are already some
other clients downloading f , the data center decides if it is worth switching
to BitTorrent for the corresponding file. This decision is made based on
the current load on the data center and the characteristics of the clients
downloading the file.

If the data center decides that BitTorrent is not efficient for the swarm,
the file is sent via HTTP. Otherwise, the download protocol is switched
from HTTP to BitTorrent for all he peers requesting f . All these steps

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

58 Chapter 4. Protocol Decision Strategy

c sends an HTTP
GET request for f

Is f already be-
ing downloaded?

f is sent to
c via HTTP

Is it worth it
switching to
BitTorrent?

f is sent to
c via HTTP

f is sent via
BitTorrent

no

yes

no

yes

Figure 4.4: File download scenario

are summarized in Figure 4.4.

4.3.2 Switching Constraints

We presented in the previous section two key parameters that can help
in measuring the trade-offs between HTTP and BitTorrent (i) the gain
ratio which quantifies the gain or loss in time that the leechers might
experience when switching from HTTP to BitTorrent, and (ii) the offload
ratio which gives an estimation of the amount of data that can be offloaded
from the server thanks to BitTorrent.

We remind the reader that the main reason behind the use of BitTorrent
is to offload the data center from doing all the serving. However, the use
BitTorrent can have a negative effect of the QoS. It is clear that if we neglect
a potential increase in download time caused by the use of BitTorrent,
the overall offload ratio will always be the highest possible. However, it
is equally important for the data center to maintain a significant level of
QoS. Thus, it is important to study the trade-off between the offload ratio
and the gain in terms of download times. To do so, the data center can
put different constrains on the parameters. To this extent, we distinguish
the four following cases based on the constraints that can be placed on

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.3. The Protocol Decision Strategy 59

these parameters:

1. The first possible solution is to put no constraints, that is, BitTorrent
is always used when the number of leechers Ls ≥ 2. In this case,
the overall offload ratio will be the highest possible. But, the clients
might experience an excessively longer download time.

2. Another possible solution is to put a limit on the offload ratio: the
data center switches to BitTorrent only when the offload is important.
For example, the data center can decide to switch only when the
estimated offloaded bandwidth is above 50% of the total bandwidth,
regardless of the download time.

3. The third possible case is to fix a gain limit: the data center decides
to switch only when the download time in BitTorrent compared to
HTTP does not exceed a certain threshold. This threshold can be
put on the gain ratio to ensure a minimal bound on the permitted
loss in download time.

4. The last possibility is to fix both the gain and offload ratios. While
this case presents an efficient strategy to be selective, it might be too
strict and could limit the overall offload ratio.

The system administrator is the sole responsible of fixing the switching
constraints based on the system’s requirements. The manager has to take
into account that putting no limits is not a wise decision as it can degrade
significantly the download times, a limit on the offload is beneficial for the
data center, but does not benefit the clients, and fixing both limits can
be too strict and reduce the probability of switching. To this extent, we
consider in this thesis a switching strategy based on the third case. We
pose τ as a gain constraint that satisfies the condition Gains ≥ τ . If τ ≤ 0,
it means that the system tolerates a potential increase in the download
time that could occur because of the switch. However, a positive value of τ
reflects a stricter constraint. For instance, τ = −0.5 means that an increase
up to 50% of the download time is tolerated. Note that a constraint of this
magnitude is possible, because τ = −0.5 could represent, for small files, a
slight increase in the download time, in the order of a few seconds, to be
more precise.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

60 Chapter 4. Protocol Decision Strategy

τ can take different values depending on the services offered by the
data center. The choice of its concrete value is left up to the system
administrator. A possible concrete example of τ is the following: Suppose
that a given service provider cannot gain in bandwidth at the expense of
worsening the download time for premium users who are paying money for
the service. For this type of clients, τ should be always ≥ 0.

4.3.3 Switching Algorithm

For an easy management of the download protocols, we propose Al-
gorithm 1, which is executed for each swarm s upon the arrival of each
new download request on fs. We suppose that our system keeps track of
the state of each swarm s as a boolean value switcheds, where switcheds=
True if the current download protocol is BitTorrent (the switch has already
taken place). Otherwise, switcheds=False.

The algorithm works as follows: First, the system verifies if the file is
already being downloaded by other clients, beside the new requester (line
1). If it is not the case (the new requester is the only requester of fs), the
file is sent via HTTP and the algorithm is terminated (line 23).
In the case where there are already some clients downloading fs, the system
verifies the download protocol already in use to distribute fs (line 2). If fs
is being downloaded by the default protocol (HTTP), the system computes
the estimated gain and compares it with τ (lines 3 and 4). If the resulting
gain is below the constraint, the file will be sent to the requester via HTTP
(line 14 to 16). Otherwise, the distribution protocol will be switched to
BitTorrent (lines 5 to 12). A .torrent file will be created and sent to all
the clients requesting fs.

In parallel, a seed will be launched in the data center. Upon the
reception of the .torrent file, a BitTorrent leecher will be launched inside
each of these clients and they will start downloading the file in BitTorrent,
while offloading the data center from doing all the serving.

If fs is already being distributed by BitTorrent, then the .torrent will
be send to the new requester who can directly join the existing swarm and
start downloading fs via BitTorrent (lines 19 and 20).

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.3. The Protocol Decision Strategy 61

Algorithm 1 Switching Algorithm

Input τ . the switching constraint
Input switcheds . the state of the swarm s
Input Fs . the size of file fs
Input ws . the data center’s upload bandwidth allocated to s

1: if there are other clients downloading fs then
2: if not switcheds then
3: calculate Gains
4: if (Gains ≥ τ) then
5: create a .torrent related to fs
6: launch a BitTorrent seed in the data center
7: for each client ci in s do
8: ci downloads the .torrent from the server
9: ci launches a BitTorrent leecher

10: ci starts BitTorrent transfer
11: end for
12: switcheds= True
13: else
14: for each client ci in s do
15: ci downloads fs via HTTP
16: end for
17: end if
18: else
19: send the .torrent to the new requester
20: launch a BitTorrent leecher inside that requester
21: end if
22: else
23: send fs via HTTP
24: end if

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

62 Chapter 4. Protocol Decision Strategy

User A
User A’s connected devises

(a) Synchronization

User A

User B and user C’s connected devises

User B
User C

(b) Sharing

Figure 4.5: Synchronization and sharing in Personal Clouds

4.4 Application Scenario: Personal Clouds

In this section, we present Personal Clouds as a possible application
scenario of the switching algorithm. We start by describing two scenarios
where BitTorrent can be introduced in Personal Clouds. Next, we present
the necessary elements needed to extend classic Personal Clouds with
BitTorrent features. After that, we outline the possible security concerns
and present the measures to solve them. Finally, we investigate the effects
of the switching algorithm on the U1 trace, previously described in Chapter
2, and we prove that the use of BitTorrent can reduce significantly the
bandwidth cost on the Personal Cloud provider.

4.4.1 Sharing and Synchronization

The protocol switching approach can be applied widely in any cloud-
based system. Personal Clouds are the most appropriate for this proposal
since the developers can tune the client’s implementation to extend it with
the BitTorrent functionalities. The two following common file distribution
scenarios could benefit from the hybrid download strategy:

• Synchronization: One of the key aspects of a Personal Cloud is
file synchronization (called also syncing) which ensures that all the
devices of a given user contain the same, up-to-date, files. This
means that every copy of a file should be identical in all locations.
In Personal Clouds, file synchronization is bi-directional. This means
that a locally modified file is updated in each location where this file

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.4. Application Scenario: Personal Clouds 63

is present. Similarly, if a file is modified remotely, the change will be
automatically updated locally [52]. Figure 4.5a presents an example
of file synchronization. User A is adding a new file fs to his personal
account. During the synchronization process, the same file will be
download by all the other synchronized devices of the user. These
devices represent the elements of the swarm s.

• Sharing: Sharing is an attractive feature that most Personal Clouds
provide. Sharing can be internal, between users inside the service, or
public, involving people from outside the Personal Cloud. Internal
sharing is usually offered as an integrated functionality in the user
interface, whereas public sharing is commonly offered as direct HTTP
links that allow other users to access to certain files or folders [52].
Figure 4.5b presents an example of file sharing. User A is sharing a
file fs with user B and user C. In this case, the file will be downloaded
by all the synchronized devices of the users. All the connected devices
of User B and User C form the swarm s.

Synchronization and sharing are quite common in Personal Clouds. In
[37], the authors analyzed a dataset based on the behavior of read Dropbox
users . They noticed that about 40% of the households had more than one
device linked to the service and that most of these households had up to 4
devices connected. Moreover, about 60% of these households with more
than one device have at least one shared folder. In the U1 trace described
in Chapter 2, we found that more than 11% of the files were downloaded
more than once which corresponds to more than 30% of the measured
download operations.

4.4.2 Extending Personal Clouds with BitTorrent

As an application example, we consider a classic Personal Cloud (Store,
Sync and Share functionalities), enriched with extra components that
allow inter-client content transfers via BitTorrent. The architecture of the
system is presented in Figure 4.6. Compared to the typical architecture of a
Personal Cloud (Figure 2.5), several components are added to accommodate
the BitTorrent behavior, including:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

64 Chapter 4. Protocol Decision Strategy

Clients swarms

HTTP swarms: Shttp

BitTorrent swarms: Sbt

s
10

s
8

s
11 s

13

s
14

s
9

s
12 s

3

s
1

s
4 s

6

s
7 s

5

s
2

Modified Personal Cloud

Classic Personal Cloud Content Delivery Service

Processing

service

Storage

service

Metadata

service

Notification

service

g N

Coordinator Seeder nodes

BitTorrent seeds HTTP seeds
s

8

s
9

s
10

s
11

s
12

s
13

s
14

s
1

s
2

s
3

s
4

s
5

s
6

s
7

Figure 4.6: Global view of the system architecture

• Content Delivery Service : The content delivery service is re-
sponsible for processing the requests coming from the end-users and
ensuring the delivery of the files to the corresponding requesters.
The main components added, compared to the default architecture
(Figure 2.5), are:

– Coordinator: The coordinator is the core component of the
Personal Cloud. It is responsible for managing all the clients’
requests and ensuring they are processed correctly. The coor-
dinator is also responsible for the proper management of the
Personal Cloud’s resources.

– Seeder nodes: The seeder nodes are the entities responsible
for delivering the requested content from the storage back-
end servers to the end-users. To each file being distributed
corresponds one seeder node. In this thesis, we refer to these
seeder nodes as cloud seeds or seeds. We distinguish two types
of seeds: HTTP seeds and BitTorrent seeds depending on the
algorithm adopted to distribute the corresponding requested
content to end-users.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.4. Application Scenario: Personal Clouds 65

• Clients swarms: All the end-user peers are organized into swarms.
We define a swarm by the set of peers that are requesting the same
file. If a file is being downloaded by a single peer, we consider it as a
single-peer swarm. This means that, at a given time, there are as
many swarms as the number of files being downloaded (to each file
corresponds only one swarm and one seeder node). In our model, we
distinguish between two types of swarms:

– HTTP Swarms: The HTTP swarms are the swarms whose
peers are downloading the corresponding file via HTTP. Clearly,
these peers are not collaborating with each other, but grouping
them in swarms is a simple means of control which will help,
later on, in making the switching decision.

– BitTorrent Swarms: Similar to HTTP swarms, BitTorrent
swarms are the swarms whose peers are downloading the corre-
sponding file from BitTorrent seeds via the BitTorrent protocol.
Typically, these swarms are composed of two peers or more.
Since the peers are supposed to collaborate between each other
with the help of the cloud seeds, it makes no sense to have a
single-peer BitTorrent swarm.

In our Personal Cloud system, all the users’ files are uploaded using
HTTP over an encryption layer of SSL/TLS. To download a file, the client
sends an HTTP GET request to the coordinator. The latter verifies the
existence of the file in the storage nodes and decides the download protocol
to be used: HTTP or BitTorrent. The decision is made based on the
load on the seed and the swarms’ characteristics, as detailed in Algorithm
1. In the case of an HTTP download, an HTTP seed is associated with
the requested file, which will be transferred using HTTP (over SSL/TLS).
Otherwise, if the coordinator decides to switch to BitTorrent, a .torrent

meta-data file is created and a corresponding BitTorrent seed in launched.
After that, the recently created .torrent file will be transmitted to the
corresponding clients. These clients, unaware of all these interactions, will
then start downloading the file using the BitTorrent protocol (from the
cloud seeds and/or from the other clients). Evidently, the “old” clients who
arrived before the switch to BitTorrent will also benefit from the switch if
they did not finish the download. In fact, when an “old” client requests

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

66 Chapter 4. Protocol Decision Strategy

c1 c4 c2
c3

Personal

Cloud

(1) Upload file

fs via HTTPS

(2.a) Encrypt fs using a symmetric key Ks

(2.b) Create the meta-data file (.torrent)

(3.a) .torrent & key Ks sent via HTTPS

(3.b) fs is sent encrypted with Ks via BitTorrent
fs

Figure 4.7: Encryption mechanism with BitTorrent: Before being sent to clients c2,
c3 and c4 via BitTorrent, the file fs is encrypted on the server’s side using a one-shot
symmetric key Ks. The .torrent meta-data file is sent, along with the encryption key
Ks via HTTPS.

a new part of the file to be downloaded, he will realize that the transfer
protocol has changed and will automatically adapt to the new one. Thus,
each “old” client will join the swarm with the pieces he already has, which
means that he will be probably contributing to the swarm as soon as he
switches to BitTorrent in a very transparent way.

Security Concerns In most Personal Clouds, all the client-server com-
munication is over HTTPS, which protects against eavesdropping and
tampering with the contents of the communication. To ensure data confi-
dentiality when the transfer protocol is BitTorrent, we deploy a one-shot
symmetric encryption mechanism that uses unique keys to encrypt the files
that will be transferred via BitTorrent. In fact, when the decision of using
BitTorrent for a given file fs is made, the cloud creates a corresponding
meta-data .torrent file, and assigns to fs a unique one-shot symmetric
encryption key Ks (such as a DES or AES key). This key, along with the
.torrent file, are sent to each of the requesters via HTTPS. The file fs
is encrypted by the server using Ks before being sent to the requesters
via BitTorrent. More details are provided in Figure 4.7. When a client

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

4.4. Application Scenario: Personal Clouds 67

Table 4.3: Offloaded volume and offload percentages resulting from the application of
Algorithm 1 using different τ values.

Constraint Offloaded Volume Overall Offload %

τ = −1.0 207.35 GB 16.7183%
τ = −0.5 207.33 GB 16.7170%
τ = −0.2 207.04 GB 16.6938%

τ = 0.0 137.64 GB 11.0979%

τ = 0.2 137.59 GB 11.0942%
τ = 0.5 90.60 GB 7.3055%
τ = 1.0 0.0 GB 0.0%

completes the download, it simply decrypts the protected file with the
received key and the synchronization process terminates. Note that in-
tegrity is already guaranteed by BitTorrent itself, so no additional hash
computations are needed.

4.4.3 Implication of the Switching Algorithm

We applied Algorithm 1 on the trace using the following settings: (i)
the upload speed of the seed allocated to each swarm is ws = 2 Mbps4, (ii)
the clients are homogeneous and have an upload and download speed of
512 Kbps and 1 Mbps, respectively, and (iii) the peers discovery overhead
is αbt = 2.5 seconds.

We went through the trace focusing on the files that have been down-
loaded more than once in order to identify the files with collapsing download
times which are the candidates for the switch to BitTorrent. In other words,
for each file, we checked if there were consecutive download operations
(at time stamps t1 and t2) that came before the end of the theoretical

download time in HTTP: that is, t2− t1 ≤ T https . The download time T https

is calculated using (2.2), based on the settings listed above. After the
identification of these files, we calculated for each case the gain ratio using
(4.2). Depending on the gain value and the τ constraint, we identified
the files that were subject to switching and measured the corresponding
offloaded volume of data using (4.3).

4We remind the readers that ws does not refer to the total upload bandwidth of the
cloud, but to the portion of its bandwidth allocated to the each specific file/swarm

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

68 Chapter 4. Protocol Decision Strategy

Table 4.4: Data transfer pricing from Amazon S3 to Internet in the European region.

Data transfer interval Pricing

The first 1 GB/month $0.0 per GB
Up to 10 TB/month $0.12 per GB
Next 40 TB/month $0.09 per GB

Table 4.3 presents the results of the application of Algorithm 1 on the
trace. The overall offload percentage is calculated based on the percentage
ratio between the offloaded volume and the total downloaded volume for the
whole trace (1,240.25 GB). We vary the values of the switching constraint
τ in order to get a global idea of the gains. We notice that if we fix τ to
tolerate losses of 20% (τ = −0.2), the cloud load can be reduced up to
16%. In the case of stricter constraints: no loss is tolerated (τ = 0), or no
switch unless there is a 20% gain in download time (τ = 0.2), the overall
offload percentage falls down to around 11%. We notice that the stricter
the constraint is, the lower the overall offload is. This is mainly because
stricter constraints reduce the probability of switching to BitTorrent, which
leads to limited offload. A very strict constraint τ = 1.0 can never be
reached (tau = 1.0 ⇒ Gains ≥ 1 ⇒ T bts ≤ 0). Thus, no swarms would
be switching to BitTorrent, which explains why the corresponding overall
offload percentage is equal to 0.

Even though the U1 system is not very popular, our algorithm could
achieve savings up to 16% in terms of cloud bandwidth. We strongly
believe that this offload would be higher on other systems, like Dropbox or
Google Drive, which involve more users and more file sharing.

Monetary Cost To measure the amount of money that can be saved
using our algorithm, we consider a Personal Cloud that uses Amazon
Simple Storage Service (S3) as a storage back-end (like U1). Table 4.4
presents the standard charging rates for data transfer at the time of writing
this thesis5. Using these rates, and fixing the gain constraint to τ = −1,
our switching strategy would lead to savings of about 15% of the overall
data transfer cost. We believe that these savings can be even higher for
systems that involve more sharing than U1.

5More information about the complete and updated rates can be found at http:

//aws.amazon.com/s3/pricing/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://aws.amazon.com/s3/pricing/
http://aws.amazon.com/s3/pricing/

4.5. Conclusions 69

Table 4.5: Results using file grouping

Grouping Period Constraint Offloaded Volume Overall Offload %

10 seconds
τ = −0.2 213.97 GB 17.2526%
τ = 0.0 140.95 GB 11.3658 %

30 seconds
τ = −0.2 214.43 GB 17.2895 %
τ = 0.0 140.95 GB 11.3658 %

Effect of file bundling Bundling consists in grouping a batch of small
files that need to be transferred as a single object. This technique is used
by Dropbox [36] in an attempt to reduce both transmission latency and
control overhead.

If we take a look at (4.2), we notice that Gains and the file size Fs are
related in a way that if Fs increases, Gains will increase too. Similarly,
file bundling should presumably increase the overall offload, too. Here,
we study the effect of applying this technique in our trace. For a given
“bundling period”, we group the files that are requested by the same users
and consider them as a single file, so that a single .torrent file is created
for all of them.

Table 4.5 shows the results of grouping files considering 2 different
bundling periods. We notice that, compared to the results presented
in Table 4.3, bundling is not very effective in this scenario: a slight
improvement of the overall offload percentage in the order of 0.55% for
τ = −0.2 and about 0.26% for τ = 0. Even with a long grouping period of
30 seconds, the increase of the overall offload percentage remains limited: in
the order of 0.03% compared to a bundling period of 10 seconds. However,
these results do not imply that the use of this technique could not be
effective in increasing the offload rate in other systems.

4.5 Conclusions

In this chapter, we presented two metrics that can be used to measure
the efficacy of HTTP and BitTorrent for file transfer: the gain and the
offload ratios. They can be used in many scenarios as a means of evaluation
of the most appropriate download protocol for each case. We used these
metrics to develop a solution for reducing costs in Personal Clouds. The
cloud server can benefit from the spare upload bandwidth of the clients by

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

70 Chapter 4. Protocol Decision Strategy

switching the transfer protocol from HTTP to BitTorrent. Our proposed
algorithm for the management of download protocols studies for each
specific case the benefits that can be derived from the switch. Based on the
threshold fixed on download time, the algorithm predicts the best protocol
to use. Our proposal is validated using a real trace of a Personal Cloud
system.

Even though, we considered the worst case scenario, when clients leave
the system as soon as they finish the download, the results show that about
16% of the provisioned cloud bandwidth can be saved without degrading
the download time service. However, in Personal Clouds, normally peers
stay for a period of time after the synchronization process is over. This
means that they will be more present and will contribute even more. Thus,
we believe that the cloud gains will be even more important in this case.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5
Bandwidth Allocation Strategy

In this chapter, we propose a bandwidth allocation strategy for data
centers in order to manage their available bandwidth among the different
clients. First, we state the bandwidth allocation problem that can occur
when data centers have to server both HTTP and BitTorrent clients
simultaneously. Next, we study the relationship between the amount of
bandwidth allocated to a swarm of clients and the resulting download time.
Based on a fixed QoS constraint, we calculate the amount of data center
bandwidth needed to ensure a given ratio between the download times
in HTTP and BitTorrent. After that, we propose a dynamic algorithm
that decides the most suitable protocol for each case and provides the
corresponding bandwidth allocations at the swarm level. The algorithm
is evaluated later using the U1 trace and the results show important
improvements in the download time experienced by the peers, despite the
limited bandwidth budget.

The results presented in this chapter are published in [21]

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

72 Chapter 5. Bandwidth Allocation Strategy

5.1 Introduction

We consider in this chapter a data center that can deliver files to the
end-users using both protocols HTTP and BitTorrent. This means that at
the same time, the data center is required to serve both kind of clients: the
ones that use HTTP and the ones that use BitTorrent. In these systems,
HTTP is the default protocol used and BitTorrent can be introduced when
there are simultaneous requests from different clients for the same file. We
proposed in the previous chapter, a simple protocol decision strategy that
consists in calculating for each file being downloaded by more than one
client, how much these clients would gain in terms of download time if
they used BitTorrent instead of HTTP. If that gain satisfies the predefined
Quality of Service (QoS) constraint, then BitTorrent is chosen. Otherwise,
HTTP is kept as the download protocol.

The switching decision is made based on the assumption that the data
center allocates the same amount of bandwidth to each file being served.
This means that when the number of files to download increases, the data
center is required to increase its total bandwidth output. Even though
this approach is simple and direct, it is not convenient for data centers
that have bandwidth budget constraints. When the data center’s upload
bandwidth is limited, the different swarms will have to compete over this
bandwidth and it is essential to set some rules to define the bandwidth
allocation strategies. This chapter deals with this bandwidth allocation
problem. It is dedicated to answering the second question addressed in
the introductory chapter which is: How to balance the available bandwidth
resources between the concurrent HTTP and BitTorrent swarms? To the
best of our knowledge, there is no related work that deals with both kind
of protocols. But, there have been some research works that addressed the
bandwidth allocation in HTTP servers and peer-assisted systems based on
BitTorrent separately.

In this chapter, we propose a bandwidth allocation strategy that data
centers can adopt in order to manage their available bandwidth among
the different clients. First, we state the bandwidth allocation problem
in Section 5.2. Next, we study the relationship between the amount of
bandwidth allocated to a swarm of clients and the resulting download time
in Section 5.3. Based on a fixed QoS constraint, we calculate the amount of

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.2. Bandwidth Allocation Problem 73

data center bandwidth needed to ensure a given ratio between the download
times in HTTP and BitTorrent. In Section 5.4, we propose a dynamic
algorithm which uses simple parameters that can be collected by the system
and evaluates the efficacy of using HTTP and BitTorrent as a distribution
protocol for each requested file. Based on the load on the data center
and the predefined switching constraints, the algorithm decides the most
suitable protocol for each case and provides the corresponding bandwidth
allocations at the swarm level. Section 5.5 evaluates the efficiency of
our proposal using the U1 trace: We vary the QoS constraints and the
data center’s bandwidth limits and measure the degree of improvement in
download time of the involved clients using our algorithm (BitTorrent and
HTTP together) compared to the use of HTTP alone. The results show
important improvements in the download time experienced by the peers,
despite the limited bandwidth budget. Finally, Section 5.6 discusses the
results and concludes the chapter.

5.2 Bandwidth Allocation Problem

We consider a data center that has a maximum upload bandwidth equal
to W . This bandwidth is to be shared by the different concurrent swarms
in the system. These swarms can be either HTTP swarms or BitTorrent
swarms. An HTTP swarm is a group of clients downloading the same file
from the data center using HTTP, while a BitTorrent swarm is a collection
of clients downloading a given file via BitTorrent.

To each swarm s, the data center allocates a part ws of its upload
bandwidth W . These bandwidth allocations ws are measured in bandwidth
unit. They should be non-negative (ws ≥ 0,∀s ∈ S) and their sum should
not exceed the data center’s upload budget limit (

∑
s∈S

ws ≤W).

The bandwidth allocation strategy follows these two rules:

Rule 1. HTTP is the default download protocol and each swarm is allocated
a share of the data center’s bandwidth equal to its demand.

Rule 2. The data center can decide to switch the download protocol for a
given swarm s from HTTP to BitTorrent if it (the data center) will save
in bandwidth and if this change of protocol will not jeopardize the QoS
constraint related to the download time of the clients in s.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

74 Chapter 5. Bandwidth Allocation Strategy

Rule 1 defines HTTP as the default download protocol and sets the
share of the data center’s bandwidth allocated to s to be equal to the
aggregated download speeds of the peers in s: ws = Ds, where Ds =

∑
ci∈s

di

is the sum of the download speeds of all the peers in s. When it is possible
to gain in bandwidth, the data center can decide to switch the download
protocol from HTTP to BitTorrent, as stated in Rule 2. This change of
protocols is fixed by a QoS constraint Gains ≥ τ . This constraint defines
the degree of improvement (or degrade) in download time that is accepted
when considering the switch to BitTorrent. For instance, τ = 0.2 requires
an improvement of a least 20% in download time if BitTorrent is used
instead of HTTP. A negative value of τ reflects degrades in download times.
τ = −0.5 means that losses in download time up to 50% are accepted.
The bandwidth allocated to BitTorrent swarms should be the minimum
that satisfies the switching constraint, which represents the solution of
Gains = τ . As the number and size of swarms evolve over time with
new peers joining and leaving, we will need to adapt the assignments and
allocations accordingly since the data center’s upload speed W is limited.

In order to satisfy Rule 2, the data center should be able to determine
the exact amount of bandwidth needed to satisfy the QoS constraint before
switching to BitTorrent. This means that it should be able to estimate
the amount of bandwidth w∗s that can ensure the limit Gains = τ . This
amount is presented in the following section along with a complete proof
in Appendix A.

5.3 Solving the Equation Gains = τ

In order to calculate w∗s , the minimum amount of data center bandwidth
needed to ensure that the switching condition Gains ≥ τ is satisfied, it is
essential to solve the equation Gains = τ and reverse the gain formulation
(4.2). To this extent, we study the behavior of the gain formulas when ws
varies. Based on this constraint, we identify two exhaustive cases in which
the gain equations, as functions of ws, are monotonically decreasing:

• Case A: (Ls − 1) dmin,s ≥ Ls ηs us
• Case B: (Ls − 1) dmin,s ≤ Ls ηs us

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.3. Solving the Equation Gains = τ 75

For each case, we study the behavior of the gain, identify the intervals
delimiters and provide, for each interval, the corresponding equation of w∗s
as a function of the switching constraint τ . The complete details about
the solution are available in Appendix A. But, tor the sake of clarity, we
only include here the solution, presented in (5.1) and (5.2), as follows:

Case A: (Ls − 1)dmin,s ≥ Ls ηs us When the average download
speed of the peers in the swarm s is higher than the upload bandwidth that
the whole swarm can provide, the solution w∗s that satisfies the equation
Gains = τ , is:

w∗s =



Ls dmin,s, ∀τ ∈
]
−∞,−αbtdmin,s

Fs

]
(1−τ)Fs Ls dmin,s
Fs+dmin,s αbt

, ∀τ ∈
[
−αbt dmin,s

Fs
, ηs us
dmin,s

− αbt (dmin,s−ηs us)
Fs

]
√
a2b2−2abc+4ab+c2−ab−c

2 b , ∀τ ∈
[
ηsus
dmin,s

− αbt(dmin,s−ηsus)
Fs

, Ls−1
Ls
− αbtηsus

(Ls−1)Fs

]
Fs[Ls(1−τ)−1]

αbt
, ∀τ ∈

[
Ls−1
Ls
− αbt ηs us

(Ls−1)Fs
, Ls−1

Ls

[
6 ∃, ∀τ ∈

[
Ls−1
Ls

,+∞
[
,

(5.1)

where: a = ηs Ls us, b = αbt
Fs Ls

, and c = τ.

Case B: (Ls − 1)dmin,s ≤ Ls ηs us When the average download
speed of the peers in the swarm s is lower than the upload bandwidth
the whole swarm can provide, the solution w∗s that satisfies the equation
Gains = τ , is:

w∗s =



Ls dmin,s, ∀τ ∈
]
−∞,−αbt dmin,s

Fs

]
(1−τ)FsLsdmin,s
Fs+dmin,s αbt

, ∀τ ∈
[
−αbt dmin,s

Fs
, Ls−1

Ls
− αbt dmin,s

Fs Ls

]
Fs [Ls(1−τ)−1]

αbt
, ∀τ ∈

[
Ls−1
Ls
− αbt dmin,s

Fs Ls
, Ls−1

Ls

[
6 ∃, ∀τ ∈

[
Ls−1
Ls

,+∞
[
.

(5.2)

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

76 Chapter 5. Bandwidth Allocation Strategy

5.4 Bandwidth Allocation Algorithm

In this section, we present the bandwidth allocation algorithm. The
main goal of this algorithm is to optimally manage the data center’s limited
bandwidth among the seeder nodes. It is also responsible for evaluating
for each requested file the most suitable content distribution model: client-
server or peer-assisted, based on the current demand load. Each active
seeder node in the system is associated with a swarm of clients that are
interested in the same file.

It is important to remind here that the default bandwidth distribution
protocol is HTTP, and BitTorrent can be also used when the switching
conditions previously stated are satisfied. The swarms whose peers are using
HTTP as a transfer protocol are referred to as HTTP swarms (SHTTP
is the set of HTTP swarms) and the ones with peers downloading via
BitTorrent are labeled as BitTorrent swarms (SBT is the set of BitTorrent
swarms).

A swarm will switch to BitTorrent if the following conditions are
satisfied:

1. The number of clients in the swarms is higher or equal to 2. In fact,
it makes no sense to use BitTorrent with only one client interested
in the file.

2. The switch to BitTorrent should satisfy the QoS constraint τ . This
means that BitTorrent can be used only when the Gains is higher or
equal than τ .

3. The amount of data center bandwidth allocated in BitTorrent should
be smaller than the one using HTTP. This means that the switch will
only take place if the data center would gain in terms of bandwidth.

The algorithm is executed whenever a change affects a swarm s∗ ∈
S. This change can be related to a modification in one or more of the
parameters of s∗, which corresponds to one or more of the following cases:

• A new peer p∗ wants to download a file fs∗ . If the file is already being
downloaded by other peers, then p∗ will be added to the existing
swarm s∗. Otherwise, a new swarm s∗ will be created containing the
single peer p∗.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.4. Bandwidth Allocation Algorithm 77

Algorithm 2 Bandwidth Allocation Algorithm

Input S . the set of all the current swarms (S = SHTTP ∪ SBT)
Input s∗ . swarm affected by a change
Input W . the data center’s upload bandwidth budget limit
Input τ . the switching constraint

1: if Ls∗ = 1 then . s∗ is a single-peer swarm
2: ws∗ = Ds∗

3: else if Ls∗ > 1 then . s∗ has more than one peer
4: if isBTs∗ = False then . s∗ is a HTTP swarm
5: calculate wbts∗ using (5.1) and (5.2)
6: if wbts∗ ≤ Ds∗ then . switching to BT
7: switch from HTTP to BT
8: isBTs∗ = True . mark s∗ as a BT swarm
9: ws∗ = wbts∗

10: else . not switching to BitTorrent
11: ws∗ = Ds∗

12: end if
13: else . s∗ is a BT swarm
14: ws∗ = wbts∗ calculated using (5.1) and (5.2)
15: end if
16: else . Ls∗ = 0, s∗ no longer exists
17: remove s∗ from S
18: if

∑
s∈S ws + ws∗ = W then . the data center was overloaded

19: for each s in SBT do

20: ws = ws +
ws∑

s∈SBT ws
ws∗ . redistribute ws∗ to BT swarms

21: end for
22: end if
23: end if

24: if
∑

s∈S ws > W then
25: for each s in S do
26: ws =

ws∑
s∈S ws

W . scale down all the bandwidth shares

27: end for
28: end if

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

78 Chapter 5. Bandwidth Allocation Strategy

• A peer p∗ leaves a swarm s∗. If p∗ was not the only peer in the swarm,
then the modified swarm will contain a list of the other remaining
peers. If p∗ was the last peer in s∗, then s∗ will be removed from S.

• The upload or download speed of one or more of the peers in s∗

changes.

The algorithm requires the following input parameters: the set of all
current swarms S, the swarm affected by the change s∗, the data center’s
upload bandwidth limit W and the switching constraint τ . Using these
input parameters, the algorithm identifies for each swarm the most suitable
download protocol (HTTP or BitTorrent) and calculates the amount of
bandwidth to be allocated to the corresponding swarm, as follows:

• If s∗ is a single-peer swarm (Ls∗ = 1), then the data center allocates
to s∗ a share of bandwidth equal to its aggregated download capacity:
ws∗ = Ds∗ (lines 1 and 2). In this case, the file will be distributed
directly from the data center to the single-peer in s∗ using HTTP.

• If the number of peers in s∗ is strictly higher than 1 (lines 3 to 12),
then there are two possible cases:

– If the peers in s∗ are using HTTP to download fs∗ (isBTs∗=
False), the algorithm verifies if it is worth switching to BitTor-
rent. To do so, wbts∗ is calculated according to (5.1) and (5.2).
We remind that wbts∗ measures the minimum amount of data
center bandwidth required to verify the QoS constraint τ when
using BitTorrent for s∗. The algorithm compares later this
bandwidth (ws∗) with the bandwidth allocated by default to
the swarm (which is equal to Ds∗).

∗ If the bandwidth required using BitTorrent is smaller than
the one allocated by default (wbts∗ ≤ Ds∗), then the download
protocol more suitable for s∗ is BitTorrent (lines 4 to 9). In
this case, a .torrent file associated to fs∗ is created. All
the peers in s∗ have to download this .torrent and start
downloading fs∗ via BitTorrent.

∗ If the use of BitTorrent requires more bandwidth than
HTTP, then it is not worth switching to BitTorrent. In this

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.4. Bandwidth Allocation Algorithm 79

case, the data center allocates to s∗ a share of bandwidth
equal to Ds∗ (line 11).

– If s∗ has already switched to BitTorrent, then the algorithm
recalculates wbts∗ : the bandwidth needed to maintain the QoS
constraint τ after the changes in s∗. The amount of bandwidth
allocated to s∗ is equal to wbts∗ .

• If s∗ is an empty swarm (Ls∗ = 0), then the swarm is removed
from the swarms’ list. If the data center was overloaded before the
removal of s∗, then the amount of bandwidth that was previously
allocated to s∗ is redistributed among the BitTorrent swarms (lines
18 to 22). This will prevent the data center’s bandwidth from being
underutilized and will boost the distribution of the files among the
BitTorrent swarms.

When the number of simultaneous requests becomes high, the data
center might be unable to serve all the swarms at their full speed. In
such case, the data center has to scale down all the bandwidth allocations
proportionally to the demand (lines 24 to 28).

Complexity of the Algorithm Our bandwidth allocation algorithm
has a complexity of O(m+n), where n is the maximum number of swarms
and m is the maximum number of clients. O(m+ n) ≈ O(m) since m ≥ n,
the number of clients is always higher (or equal) than the total number
of swarms. Thus, the algorithm’s complexity is linear with the number of
clients in the system.

The coordinator keeps in memory the state of the swarms and the
corresponding clients during each iteration. This corresponds to a maximum
of n × k1 + m × k2 units of storage. k1 (respectively k2) is the size, in
units of storage, required to store the essential information about a swarm
(respectively a client). k1 and k2 are rather small compared to the size of
the files, and they depend on the required information to store for a swarm
and a client, respectively. For example, the information required to store
for a client are mainly: the client’s upload and download bandwidths and
the amount of data left to download. For a swarm, it is important for the
coordinator to keep a track of: the state of the swarm (the boolean value
isBT s) and the list of the clients in the swarm.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

80 Chapter 5. Bandwidth Allocation Strategy

To summarize, we can confirm that the algorithm does not require a
lot of extra computational and memory resources. This claim is further
verified in Section 5.5.4.

5.5 Application Scenario: Personal Clouds

In this section, we evaluate the efficiency of the bandwidth allocation
algorithm on the U1 trace. We first detail the experiments settings and
describe the simulators used for this validation. Later, we present the
implications of Algorithm 2 on the U1 trace. After that, we investigate the
effects of having bigger shared using two new traces that can be derived
from the original U1 trace. Finally, we measure the overhead related to
the application of the algorithm in a Personal Clouds scenario.

5.5.1 Experimental Settings

To evaluate the efficiency of our proposal, we developed a Python1

script that simulates the bandwidth allocation algorithm (Algorithm 2)
and logs the results in two different log files. The first log file is related
to the cloud and it keeps a log of the current state of the cloud. At each
timestamp, several parameters are logged including: the amount of needed
bandwidth, the amount of bandwidth served, and the current number of
swarms and clients. The second log keeps track of the start and end times
of each download. The download times are updated at each timestamp
according to equations (2.2) and (4.1), for HTTP and BitTorrent swarms,
respectively.
In order to evaluate the results, we also developed another script (HTTP-
only simulator) that simulates the default behavior of the cloud, in which
each download operation is treated individually and the download times are
calculated according to equation (2.2). This simulator also keeps similar
logs as the algorithm simulator in order to facilitate the comparison of the
approaches.

1 Python Software Foundation: http://www.python.org

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.5. Application Scenario: Personal Clouds 81

5.5.2 Implications of the Bandwidth Allocation Algorithm

In this section, we present the results of the application of Algorithm 2
on the U1 trace.

Measuring the effect of τ First of all, we run the simulator fixing the
upload bandwidth limit at 300 Mbps and varying the switching constraint
τ between τ1 = −1 and τ8 = 1, to get a first idea of the performance of the
algorithm. We remind here that τ1 = −1 means that losses in download
time up to 100% of the original download time are tolerated. τ8 = 1 means
that only gains in download time equal to at least 100% of he original
download time are accepted.

We measure for each simulation, the download time taken by each
operation and compare them to the ones measured using the HTTP-only
simulator with the same budget limit. It is important to note here that the
download times are measured in seconds with a precision of one millisec-
ond. We classify the operations into three different categories: operations
that have gained in download time with our algorithm, operations that
experienced losses and operations whose download time is left unchanged
for both approaches.

Table 5.1 presents the percentages of the operations in each category.
We notice that for τ ∈ {−1,−0.5,−0.2, 0, 0.2, 0.4}, more than 82% of the
operations benefited from a gain in download time, about 15% kept the
same time and only less 3% of them lost in download time. For stricter
constrains, τ7 = 0.5, the percentage of operations with gains drops to
60.36% and the ones with losses grows to reach 14.45%. With τ8 = 1, the
percentage of gains drops to as low as 1.29%.

To make sure that the cumulative gains are higher than the losses, we
sum all the download times of all operations for both approaches and cal-
culate the total net gain percentage: net gain %. Specifically, net gain %
represents the percentage ratio between the total time gained (or lost) by
using the algorithm (net gain hours = sum http hours − sum algo hours)
and the total download times using HTTP only (sum http hours), as
follows:

net gain % = net gain hours
sum http hours × 100 = sum http hours−sum algo hours

sum http hours × 100.

Table 5.2 presents the total sum of all the download times of all the

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

82 Chapter 5. Bandwidth Allocation Strategy

T
a
b
le

5
.1
:

P
ercen

ta
g
es

o
f

o
p

era
tio

n
s

w
ith

g
a
in

s
a
n
d

lo
sses

in
d
ow

n
lo

a
d

tim
e

resu
lted

b
y

th
e

a
lg

o
rith

m
co

m
p
a
red

to
p
u
re

H
T

T
P

u
se.

T
h
e

clo
u
d
’s

u
p
lo

a
d

b
a
n
d
w

id
th

b
u
d
g
et

lim
it

is
W

=
3
0
0

M
b
p
s.

τ
1

=
−

1
τ
2

=
−

0
.5

τ
3

=
−

0
.2

τ
4

=
0

τ
5

=
0
.2

τ
6

=
0
.4

τ
7

=
0
.5

τ
8

=
1

%
o
f

o
p

e
ra

tio
n

s
w

ith
g
a
in

82.87%
82.87%

82.89%
82.9%

83.43%
83.5

3%
60

.3
6
%

1
.2

9
%

%
o
f

o
p

e
ra

tio
n

s
w

ith
lo

ss
2.23%

2.23%
2.23%

2.31%
2.48%

2.8
5%

1
4.45

%
0.24

%

%
o
f

o
p

e
ra

tio
n

s
w

ith
n

o
d

iff
e
re

n
c
e

14.9%
14.9%

14.88
%

14.79%
14.09%

13.62
%

2
5.1

9%
9
8.47

%

T
o
ta

l
%

100%
100%

100%
100%

100%
10

0%
1
00

%
100

%

T
a
b
le

5
.2
:

T
o
ta

l
su

m
(in

h
o
u

rs)
o
f

a
ll

th
e

d
ow

n
lo

a
d

tim
es

fo
r

a
ll

th
e

o
p

era
tio

n
s

a
n

d
th

e
n

et
g
a
in

p
ercen

ta
g
e

fo
r

th
e

a
lg

o
rith

m
a
p
p
lied

o
n

th
e

o
n
e-h

o
u
r

sa
m

p
le

o
f

th
e

U
1

tra
ce.

T
h
e

clo
u
d

u
p
lo

a
d

b
a
n
d
w

id
th

b
u
d
g
et

lim
it

is
W

=
3
0
0

M
b
p
s.

τ
1

=
−

1
τ
2

=
−

0
.5

τ
3

=
−

0
.2

τ
4

=
0

τ
5

=
0
.2

τ
6

=
0
.4

τ
7

=
0
.5

τ
8

=
1

su
m

h
ttp

h
o
u

rs
2450.2

2450.2
2450.2

2450.2
2450.2

2450.2
2450.2

2450.2

su
m

a
lg

o
h
o
u

rs
2001.9

2001.67
2000.98

1997.05
1952.73

1906.56
2064.4

2142.57

n
e
t

g
a
in

h
o
u

rs
448.3

448.53
449.22

453.15
497.47

543.64
385.8

307.63

n
e
t

g
a
in

%
1
8
.3

%
1
8
.3

1
%

1
8
.3

3
%

1
8
.4

9
%

2
0
.3

%
2
2
.1

9
%

1
5
.7

5
%

1
2
.5

6
%

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.5. Application Scenario: Personal Clouds 83

21:00 21:15 21:30 21:45 22:00
Time

100

200

300

400

500

Se
rv

ed
 b

an
dw

id
th

 in
 M

bp
s

With the algorithm
Without the algorithm

Figure 5.1: Amount of bandwidth served to the clients with and without the algorithm.
The extra served bandwidth with the algorithm comes from the peers involved in
BitTorrent swarms. Settings: W = 300 Mbps and τ = 0.4.

download operations and the net gain percentage based on the U1 one-
hour sample. The first row represents the sum of download times using
HTTP. It is important to mention here that, for HTTP, this sum depends
only on the cloud upload bandwidth budget W . Hence, for the fixed
bandwidth W = 300 Mbps, it is always equal to 2450.2 hours, regardless
of the τ constraint. However, the sum of the download times using the
algorithm with a given cloud bandwidth limit depends highly on the
switching constraint τ .

In Table 5.2, we compare the results with different τ values: The first
constraint is τ1 = −1. Under this constraint, we notice that the algorithm
performs better than the default HTTP-only strategy, with a net gain
in the client’s download time equal to 18.3%. With the three following
constraints: τ2 = −0.5, τ3 = −0.2 and τ4 = 0, the net gain percentage is
also around 18.3%, with slight improvements when τ gets higher. With a
stricter constraint, τ6 = 0.4, the improvement get higher to reach 22.19%.
This improvement is due to the fact that stricter constraints will prevent
swarms with negative gains from switching which will result in an increase
of the total amount of net gain hours.

However, a very strict constraint (τ7 = 0.5 and τ8 = 1) reduces signifi-
cantly the number of probabilities of switching to BitTorrent, which can
affect negatively the performance of the algorithm and limit the benefits
of the approach. The measured gain drops in these cases to 15.75% and

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

84 Chapter 5. Bandwidth Allocation Strategy

10-4 10-3 10-2 10-1 100 101 102 103 104 105
Download time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0
CD
F

Without the algorithm
With the algorithm

0.04 0.06 0.08 0.10 0.12 0.14

0.46

0.48

0.50

0.52

0.54

(a) Download time

10-3 10-2 10-1 100 101
Inter-arrival time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests
BT swarms

(b) Inter-arrival time

Figure 5.2: CDF download times and inter-arrival time of requests and BT swarms
with and without the algorithm. Settings: W = 300 Mbps and τ = 0.4.

12.56%, respectively.

Measuring the peer’s contribution To measure the efficiency of the
algorithm for a specific configuration, we fix the switching constraint to
τ = 0.4 and we suppose that the cloud’s upload budget limit is W = 300
Mbps.

Figure 5.1 shows the efficiency of taking advantage of the upload speed
of the peers. It compares the amount of bandwidth served by the cloud to
the clients without using the algorithm (all files are distributed via HTTP)
versus the total amount that becomes available when using the algorithm.
This latter includes, in addition to the cloud’s upload limit, the upload
speed of the clients who switched to BitTorrent. We notice that the peers’
contribution can reach up to 60% of the total cloud’s budget.

Download and inter-arrival times With the same configuration as
before (W = 300 Mbps and τ = 0.4), we can see in Table 5.1 that the
total number of operations switched to BitTorrent represents only 2.45%
of the operations with multiple downloads. This corresponds to less than
1% of the total number of operations. Despite this limited number of
switched operations, we notice in Figure 5.2a that the download times are
reduced using the algorithm. As a matter of fact, the average download
time without using the algorithm is 39.11 seconds. This time is reduced

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.5. Application Scenario: Personal Clouds 85

21:00 21:15 21:30 21:45 22:00
Time

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f c
lie

nt
s

With the algorithm
Without the algorithm

(a) 200 Mbps

21:00 21:15 21:30 21:45 22:00
Time

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f c
lie

nt
s

With the algorithm
Without the algorithm

(b) 300 Mbps

21:00 21:15 21:30 21:45 22:00
Time

200

400

600

800

1000

Nu
m

be
r o

f c
lie

nt
s

With the algorithm
Without the algorithm

(c) 400 Mbps

21:00 21:15 21:30 21:45 22:00
Time

100

200

300

400

500

600

700

Nu
m

be
r o

f c
lie

nt
s

With the algorithm
Without the algorithm

(d) 500 Mbps

Figure 5.3: Number of simultaneous clients present in the system with and without
the algorithm. Settings: w = 200, 300, 400, and 500 Mbps; τ = 0.4

by 22.19% using the algorithm to only 30.43 seconds. Figure 5.2b presents
the CDF of the inter-arrival times of requests and BitTorrent swarms. The
average inter-arrival rate of the download requests (time between each
arrival of a download request into the system and the next) is 0.0159
seconds. The average inter-arrival rate of the BitTorrent swarms (time
between each creation of a BitTorrent swarm and the next) is 4.5702
seconds.

Simultaneous clients After evaluating the general performance of the
algorithm, we study the effect of the bandwidth limit W on the total number
of simultaneous clients. Figure 5.3 compares the number of simultaneous

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

86 Chapter 5. Bandwidth Allocation Strategy

200 250 300 350 400 450 500
Cloud limit (Mbps)

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
Ne

t g
ai

n
pe

rc
en

ta
ge

 (%
)

Net gain percentage

(a) Net gain percentage

200 250 300 350 400 450 500
Cloud limit (Mbps)

2.150

2.175

2.200

2.225

2.250

2.275

2.300

Sw
ar
m
 s
iz
e
(p
ee

rs
/s
w
ar
m
)

Average swarm size

(b) Average BitTorrent swarms’ size

Figure 5.4: Net gain percentage and average size of the BitTorrent swarms for different
cloud bandwidth limits ranging between 180 and 500 Mbps. The switching constraint
considered here is τ = 0.2.

clients in the HTTP-only mode and using the algorithm for four different
values of W : 200, 300, 400 and 500 Mbps. It is important to mention
here that in our simulator, clients do not stay as seeders in the system.
They leave as soon as they finish downloading the requested files. When
comparing the number of simultaneous peers using each of the approaches,
we note that a lower number of simultaneous peers means that the clients
are downloading faster which proves that the corresponding approach is
more efficient. We notice that with limited bandwidth budget (200 and 300
Mbps), the algorithm performs better than pure HTTP. This due to the
fact that when the cloud has a very limited bandwidth budget, the share
allocated to each swarm will be small. Therefore, the HTTP download
time will be “high” and the overhead of switching to BitTorrent will be
negligible. However, the higher the cloud bandwidth gets, the bigger the
overhead becomes compared to the download time in HTTP. This explains
the degrade in the algorithm’s performance when the cloud’s bandwidth
budget becomes quite high (400 Mbps).

Measuring the effect of W Figure 5.4 summarizes, for different values
of W ranging from 180 Mbps to 500 Mbps, the net gain percentage and
the average size of BitTorrent swarms. Figure 5.4a plots the evolution
of the net gain percentage with the cloud’s bandwidth. Similar to the

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.5. Application Scenario: Personal Clouds 87

aforementioned conclusions, when the bandwidth is small (lower than 320
Mbps), the net gain percentage in download time of the clients is important
(between 17.5% and 21%). However it gets lower with the increasing budget
of the cloud, until reaching negative values when the cloud’s bandwidth is
higher than 420 Mbps. This confirms our previous conclusions that the
algorithm is more efficient when the cloud has very limited bandwidth
resources. Figure 5.4b presents the average number of peers in BitTorrent
swarms. We notice that most of the BitTorrent swarms are very small
with an average size of about 2.22 peers per swarm. This can be due to
the limited sharing in U1 system and to the fact that most of U1 users are
using the service for data backup only.

5.5.3 Modified Trace: Bigger Shared Files

Even though the U1 trace has limited sharing and very small files
(most of the files are smaller than 1 MB), we could achieve relatively
important improvements in the system’s performance. To further validate
our proposal, we modify the trace in order to have bigger shared files. Our
idea is to keep the same arrival pattern of the peers and just increase the
size of the files that were downloaded more than once. We obtain two
different modified traces:

• trace 1: This trace preserves the same arrival pattern as in the
original trace, but we increase the size of the files smaller than 1 MB
by 1 MB. For instance, if a file fs is downloaded more than once
in the original trace sample and has a file size of 100 KB, then, in
trace 1, the same file would be 1 MB (1024 KB) bigger, that is 1124
KB. We chose this value (1 MB) because it represents the mean file
size of all the files in the original trace.

• trace 2: This trace is obtained the same way as trace 1. We choose
a bigger limit on size equal to 5 MB. This means that trace 2 also
preserves the same arrival pattern as in the original trace, but here
we increase the size of the files smaller than 5 MB by 5 MB. For
instance, if a file fs is downloaded more than once in the original
trace sample and has a file size of 1 MB, in trace 2, the same file
would be 5 MB bigger, that is 6 MB.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

88 Chapter 5. Bandwidth Allocation Strategy

21:00 21:15 21:30 21:45 22:00
Time

200

400

600

800

1000
Ba

nd
w

id
th

 (M
bp

s)
Needed bandwidth

(a) trace 1

21:00 21:15 21:30 21:45 22:00
Time

500

1000

1500

2000

Ba
nd

w
id

th
 (M

bp
s)

Needed bandwidth

(b) trace 2

Figure 5.5: New bandwidth requirements of the modified traces

Table 5.3: Comparison of the results with the three different traces. The experiments
settings are the followings: τ = 0.4 for all the traces, W is 300 Mbps for the original
trace, 400 Mbps for trace 1, and 1000 Mbps for trace 2.

original

trace
trace 1 trace 2

Number of operations affected by the change 0 69,286 65,992

(% of the total number of operations) (0%) (30.72%) (29.26%)

Number of operations switched to BitTorrent 1,734 36,727 43,997

(% of the total number of operations) (0.76%) (16.28%) (19.5%)

Number of BitTorrent swarms created 786 9,324 10,763

Average BitTorrent swarm size (peer/swarm) 2.21 3.93 4.08

Average inter-arrival time of BitTorrent swarms (s) 4.570 0.386 0.334

Average download time without the algorithm (s) 39.11 106.09 186.82

Average download time with the algorithm (s) 30.43 52.77 61.08

net gain % 22.19% 50.26% 67.30%

Bandwidth requirements Clearly, when we increase the size of some
files, the amount of bandwidth needed to distribute the requested files to
the peers will increase too. Figure 5.5 presents the new required bandwidth
for both traces and shows that trace 1 and trace 2 require clearly more
bandwidth compared to the original requirements (Figure 2.8). We apply
later our algorithm on both traces and compare the results. We use the
same switching constraint τ = 0.4 and we fix the cloud’s upload budget
limit W to 400 Mbps and 1000 Mbps for trace 1 and trace 2 respectively.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.5. Application Scenario: Personal Clouds 89

21:00 21:15 21:30 21:45 22:00
Time

200

400

600

800

1000

Se
rv

ed
 b

an
dw

id
th

 in
 M

bp
s

With the algorithm
Without the algorithm

(a) trace 1: Served bandwidth

21:00 21:15 21:30 21:45 22:00
Time

500

1000

1500

2000

2500

3000

Se
rv

ed
 b

an
dw

id
th

 in
 M

bp
s

With the algorithm
Without the algorithm

(b) trace 2: Served bandwidth

10-4 10-3 10-2 10-1 100 101 102 103 104 105

Download time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Without the algorithm
With the algorithm

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52

(c) trace 1: CDF download times

10-4 10-3 10-2 10-1 100 101 102 103 104 105
Download time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Without the algorithm
With the algorithm

0.5 1.0 1.52.0 2.53.0 3.54.00.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54

(d) trace 2: CDF download times

10-3 10-2 10-1 100
Inter-arrival time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests
BT swarms

(e) trace 1: CDF inter-arrival times

10-3 10-2 10-1 100
Inter-arrival time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests
BT swarms

(f) trace 2: CDF inter-arrival times

Figure 5.6: Results using the modified traces

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

90 Chapter 5. Bandwidth Allocation Strategy

Results Figure 5.6 and Table 5.3 summarize the results with and without
the algorithm. As we can see in Figures 5.6a and 5.6b, the amount of
bandwidth contributed by the BitTorrent clients can reach up to 100% of
the cloud’s initial limit. In addition, we notice important improvements
in the net gain percentage that increases from about 22% for the original
trace to reach over 50% when the files are bigger than 1 MB and more
than 65% when the files are bigger than 5 MB. In fact, increasing the file
sizes results in increased probability of switching to BitTorrent. Actually,
the percentage of operations switched to BitTorrent grows from 0.76% in
the original trace and reaches 19.5% in trace 2. This leads to a noticeable
decrease in the inter-arrival time of BitTorrent swarms as seen in Figures
5.6e and 5.6f. The frequency of creation of new BitTorrent swarms increases
from 0.21 swarm per second for the original trace to 2.59 swarms per second
for trace 1 and reaches 2.98 swarms per second for trace 2. Similarly, the
average size of the swarms increases from 2.21 peers per swarm to reach
about 4.08 peers per swarm when the sizes of the shared files become
bigger.

5.5.4 Performance of the Bandwidth Allocation Algorithm

To measure the efficiency of the algorithm, we measure the time needed
to simulate the original trace. The simulation of the whole trace (more
than 225, 000 operations) took around 82 minutes until all the downloads
have finished. We also measure the time needed to calculate the bandwidth
distribution for each timestamp (with the arrival of each new download
operation). This time corresponds to one execution round of the algorithm
and we refer to it as the execution time. Figure 5.7a presents the CDF
of this execution time. It varies between 0.005 and 71.566 milliseconds,
depending on the number of clients present in the system. The mean and
median execution times are 15.178 and 8.006 milliseconds, respectively.

To measure the effect of the number of clients and swarms on the
execution time at each round of the algorithm, we depict in Figure 5.7b
the scatter plot of the execution times as a function of the number of
clients/swarms, along with the corresponding polynomial regression of
degree d = 1. The slopes of these lines are equal to 0.016 and 0.017 for the
number of clients and the number of swarms respectively.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

5.6. Conclusions 91

0 10 20 30 40 50 60 70
Execution time in milliseconds (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

median = 8.006 ms
mean = 15.178 ms
max = 71.566 ms
min = 0.005 ms

median = 8.006 ms

mean = 15.178 ms

(a) CDF execution time (b) Execution time per number of
swarms/clients

Figure 5.7: Algorithm’s perfomance during the trace simulation

Summary Based on the U1 trace, we can confirm that even though the
trace involves limited sharing, the bandwidth allocation algorithm achieves
important improvements in the measured download times that can exceed
22%. This improvement depends mainly on the cloud’s bandwidth budget
W and the fixed QoS constraint τ . We notice that the algorithm performs
better when the cloud’s resources are limited and when the QoS constraint
is chosen reasonably.

To validate further our proposal, we modified the original trace in order
to have bigger shared files. The performance of the algorithm improve
significantly with the increase in file size to reach over 65% of the download
time experienced by the peers.

Finally, we measure the performance of the algorithm in terms of
execution time on a regular desktop machine. We prove that the overhead
needed for each iteration is relatively small. The overall performance would
also improve if the algorithm is implemented on a more powerful machine.

5.6 Conclusions

In this chapter, we propose a bandwidth allocation algorithm that
can be implemented in Personal Cloud systems with limited bandwidth
budget. Based on the demand on the cloud and the load on each file, the
cloud server is able to decide whether to use a client-server approach or

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

92 Chapter 5. Bandwidth Allocation Strategy

a peer-assisted one to distribute that file. Our proposed algorithm for
the management of cloud bandwidth achieves important improvements
in terms of download time for the clients, even though in our simulator’s
implementation we were “stricter” on BitTorrent than HTTP. In fact, we
used an estimation of the download time in HTTP that does not take into
account the protocol’s overheads. However, on the other hand, we added
to BitTorrent the potential latency of the peers discovery phase and the
delay that can be caused by pieces unavailability. Moreover, we considered
the “worst case scenario” where the peers leave the system as soon as
they finish the file download, while in reality, the synchronization process
works always in the background without the user being aware of it. This
means that it is more probable that the peers will stay longer, even after
finishing the download and contribute more to the system. Despite that,
the results prove that the use of BitTorrent in Personal Clouds can help
the clients gain in download time, especially when the bandwidth resources
of the seed are limited. In such conditions, the net gain percentage in the
download time of all the peers exceeds 20% of their download time in most
cases, based on a real trace of the U1 system.

The original U1 trace has limited sharing and very small files. For this
reason, we modified it in order to have bigger shared files. The application
of the algorithm on the modified traces results in important improvements
in the download time that exceed 65% of the original download time of all
the peers.

Nevertheless, several extensions can be added to the algorithm. For
instance, it is possible to consider two different values of the switching
constraint based on the load of the seed: τoverloaded and τnot overloaded. This
way, strict constraints can be put when the seed is not overloaded and
loosened them up when the load on the seed increases.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6
Cross-swarm Bundling

In this chapter, we propose cross-swarm bundling to mitigate the
problem of lack of simultaneous download requests on the same file which
limits the benefits of using BitTorrent. Cross-swarm bundling is the
process of merging two swarms together into a single one. We prove in
this chapter that this technique can have a positive effect on the Quality
of Experience (QoE) in Personal Clouds in particular, and data centers in
general. We start the chapter by presenting the concept of cross-swarm
bundling and describe the considered bundling model. Next, we prove
through experimentation and an average case analysis that bundling can
effectively improve the QoE. After that, we present a methodology to
implement bundling in data centers, based on graph matching techniques.
Finally this methodology is evaluated in Personal Clouds using the U1
trace. The results show that cross-swarm bundling is useful to improve the
QoE when the cloud’s available outgoing bandwidth is limited.

The results presented in this chapter are published in [19]

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

94 Chapter 6. Cross-swarm Bundling

6.1 Introduction

The previous chapters have proven BitTorrent to be effective in de-
creasing the outbound traffic, despite the small size of data flows and
swarms. By benefiting from the common interest of peers in the same file,
we provided a methodology to exploit their aggregate upload bandwidth
to offload the data center from doing all the serving. However, the results
of this approach remain limited, as the number of clients simultaneously
interested in the same file is generally small, which poses a limit on the
maximum benefits of BitTorrent. This chapter is dedicated to mitigate
this problem, by answering the third question raised in the first chapter:
How to increase the contribution of the clients?

A good solution to this problem is to “inflate” the swarms of clients
by grouping a set of diverse contents into a single .torrent file. This is
known as bundling in BitTorrent parlance, and was originally proposed
to mitigate the problem of availability in unpopular torrents [87, 63]. In
data centers, low content availability is not an issue, as the central servers
are always available to serve the files. However, we prove in this chapter
that cross-swarm bundling can have a positive effect on the Quality of
Experience (QoE) in Personal Clouds in particular, and data centers in
general. The QoE, also known as the perceived quality of service, measures
the user’s satisfaction with the provided service. Several parameters can
interfere in evaluating the QoE. In this chapter, we focus on the download
time observed by the clients. For each request, we compare the download
times measured using HTTP only and using bundling. The approach that
entails less download time is the one that offers a better QoE.

The goal of this chapter is to maximize the QoE for users, which
requires an answer to the questions of how to decide which swarms should
be grouped together among the large set of swarms, and which are the
criteria for making such a decision? As far as we know, we are the first
to provide evidence that bundling can be useful to diminish the download
time. More specific to our problem is the investigation of the benefits of
inflating swarms with HTTP users or even of the merge of two HTTP
users to create a BitTorrent swarm.

The remainder of the chapter is organized as follows: First, we start
by explaining the concept of bundling and presenting the cross-swarm

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.2. Cross-Swarm Bundling Model 95

bundling model in Section 6.2. Second, we measure in Section 6.3, through
experimentation, the effects of bundling on the download time for the
clients, and prove that this approach can improve the QoE. Section 6.4
presents an average case analysis that predicts the efficiency of bundling
in a data center, based on the characteristics of its clients. Next, a
methodology to implement bundling in data centers is presented in Section
6.5. This methodology is based on graph matching techniques, and it is
later evaluated in Section 6.6 on Personal Clouds using the U1 trace. The
results show that cross-swarm bundling is useful to improve the QoE, when
the data center’s available outgoing bandwidth is limited. Finally, Section
6.7 concludes the chapter.

6.2 Cross-Swarm Bundling Model

Cross-swarm bundling is the process of merging two1 swarms, say si
and sj , together into a single swarm si ∪ sj (see Figure 6.1). The files fsi
and fsj , corresponding to si and sj , respectively, are grouped together and
sent via BitTorrent to the resulting swarm which contains all the peers
from both si and sj . Once a client of a bundled swarm finishes downloading
both files, he can leave the swarm. The amount of data center bandwidth
allocated to the bundle is equal to the sum of the amounts allocated to
each swarm individually before bundling. For instance, if the data center
was allocating wsi to si and wsj to sj before bundling, then the bandwidth
allocated to the bundled swarm will be equal to wsi + wsj .

To evaluate the efficiency of bundling on si and sj , we compare the

download times before and after bundling. We denote by tbeforesi and tbeforesj

the expected end download times for si and sj , respectively, before the
application of bundling.

tbeforesi , respectively tbeforesj , depends on the protocol being used by si,
respectively sj . For example, if the peers in si are using HTTP, then

tbeforesi = thttpsi and it is calculated using (2.2). Otherwise, when the download

protocol is BitTorrent, tbeforesi = tbtsi , as in (4.1). The same applies for sj .

To this extent, we distinguish between three bundling variants, depend-
ing on the download protocol adopted by the grouped swarms.

1For the sake of simplicity, we only consider bundling two swarms at a time.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

96 Chapter 6. Cross-swarm Bundling

fsj

wsj

s
j

wsi

s
i

Bundling

fsi

wsi
+wsj

s
i
∪ s

j

fsj fsi

Figure 6.1: Cross-swarm bundling scenario

• HTTP-swarm bundling: an HTTP swarm is grouped with another
HTTP swarm. In this case, bundling implies switching from HTTP to
BitTorrent, and thus, will increase the number of BitTorrent swarms
at the expense of HTTP ones.

• BitTorrent-swarm bundling: a BitTorrent swarm is bundled
with another BitTorrent swarm. This is the most known vari-
ant of bundling and it has been widely studied in the literature
[63, 79, 87, 129]. Bundling BitTorrent swarms will result in bigger
swarms, resulting in more collaboration between the peers.

• Hybrid-swarm bundling: an HTTP swarm is bundled with a
BitTorrent swarm. Hybrid-swarm bundling implies having more,
bigger BitTorrent swarms and fewer HTTP ones.

To the best of our knowledge, only BitTorrent-swarm bundling was
studied in the literature. We are the first to propose and evaluate the two
other variants: HTTP-swarm and hybrid-swarm bundling.

taftersi,sj is the expected end download time after the swarms are bundled.
It is estimated using (4.1), since the download protocol used for the bundled

swarms is always BitTorrent. The file size considered to calculate taftersi,sj is
Fsi + Fsj . The data center’s outgoing bandwidth allocated to the bundle

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.3. Bundling Can Reduce Download Times 97

is wsi + wsj , that is the aggregation of the bandwidth that were allocated
to each swarm separately.

6.3 Bundling Can Reduce Download Times

The idea of bundling two different swarms in order to improve the
QoE might seem controversial at first sight. To quantify the real effects of
this approach, we ran experiments comparing both approaches (separate
versus bundled swarms) in a campus scenario, and compare the measured
download times of different peers for each approach.

Experimental settings We prepared the set of experiments listed in
Table 6.1, using all the combinations of swarms of sizes between 1 and 3
peers downloading small files: 1, 2 and 3 MB. The sizes of the swarms
and the files were intentionally chosen to be small, in order to represent
the typical swarms in a Personal Cloud [20, 21, 60]. We measured the
download times for each of these swarms using HTTP and BitTorrent and
then, for each combination of two swarms, we measured the download
times when they are bundled together.

For HTTP transfers, we used HFS2: HTTP File Server, which is a
file sharing server that supports bandwidth control. BitTorrent transfers
were performed using the Vuze3 Java BitTorrent client which is available
under the GNU General Public License. The clients considered in these
experiments were homogeneous and had each an upload speed of 512 Kpbs
and a download speed equal to 1 Mbps. The original content provider
(the server in case of HTTP transfer and the original seed in the case of
BitTorrent) had an upload speed limit ws = 1 Mbps, reserved for each
file transfer. When the files were bundled and the swarms were merged
together, this bandwidth limit was of 2 Mbps, the sum of bandwidths that
would be allocated to each swarm separately.

Effects of bundling on the download time Figure 6.2 represents
the experimental results with all the download times measured for each
experiment. We notice that generally, the download time with bundling is

2HFS: HTTP File Server http://www.rejetto.com/hfs/
3Vuze: http://www.vuze.com/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.rejetto.com/hfs/
http://www.vuze.com/

98 Chapter 6. Cross-swarm Bundling

T
a
b
le

6
.1
:

B
u
n
d
lin

g
ex

p
erim

en
ts

list.

E
x
p

id

S
e
ttin

g
s

E
x
p

id

S
e
ttin

g
s

E
x
p

id

S
e
ttin

g
s

s
1

s
2

s
1
∪
s
2

s
1

s
2

s
1
∪
s
2

s
1

s
2

s
1
∪
s
2

L
s
1

F
s
1

L
s
2

F
s
2

L
s
1
2

F
s
1
2

L
s
1

F
s
1

L
s
2

F
s
2

L
s
1
2

F
s
1
2

L
s
1

F
s
1

L
s
2

F
s
2

L
s
1
2

F
s
1
2

1
1

1
1

1
2

2
1
6

2
1

2
3

4
4

3
1

2
2

2
2

4
4

2
1

1
2

1
3

2
1
7

2
1

3
3

5
4

3
2

2
2

3
2

5
4

3
1

1
3

1
4

2
1
8

3
1

3
1

6
2

3
3

2
2

1
3

3
5

4
1

1
1

2
2

3
1
9

3
1

1
2

4
3

3
4

2
2

2
3

4
5

5
1

1
2

2
3

3
2
0

3
1

2
2

5
3

3
5

2
2

3
3

5
5

6
1

1
3

2
4

3
2
1

3
1

3
2

6
3

3
6

3
2

3
2

6
4

7
1

1
1

3
2

4
2
2

3
1

1
3

4
4

3
7

3
2

1
3

4
5

8
1

1
2

3
3

4
2
3

3
1

2
3

5
4

3
8

3
2

2
3

5
5

9
1

1
3

3
4

4
2
4

3
1

3
3

6
4

3
9

3
2

3
3

6
5

1
0

2
1

2
1

4
2

2
5

1
2

1
2

2
4

4
0

1
3

1
3

2
6

1
1

2
1

3
1

5
2

2
6

1
2

2
2

3
4

4
1

1
3

2
3

3
6

1
2

2
1

1
2

3
3

2
7

1
2

3
2

4
4

4
2

1
3

3
3

4
6

1
3

2
1

2
2

4
3

2
8

1
2

1
3

2
5

4
3

2
3

2
3

4
6

1
4

2
1

3
2

5
3

2
9

1
2

2
3

3
5

4
4

2
3

3
3

5
6

1
5

2
1

1
3

3
4

3
0

1
2

3
3

4
5

4
5

3
3

3
3

6
6

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.3. Bundling Can Reduce Download Times 99

0 5 10 15 20 25 30 35 40 45
Experiment ID

10

20

30

40

50

60

70

Do
w
nl
oa
d
tim

e
(in
 s
ec
on
ds
)

HTTP
BitTorrent
Bundle

Figure 6.2: Separate versus aggregated swarms: Measured download times for small
swarms (Lsi ∈ {1, 2, 3}) downloading small files (Fsi ∈ {1, 2, 3 MB}).

higher than the regular downloads via HTTP or BitTorrent. Nevertheless,
there some cases when the measured download times with bundling are
lower than with separate swarms, especially when both swarms were using
HTTP before bundling (Experiments 36 and 45, for example). For the
swarms which were already using BitTorrent, we notice that, in most cases,
bundling does not improve the download time.

More concretely, we take the example of two identical swarms s1 and
s2, each composed of 3 peers downloading a 3 MB file (Experiment 45
in Figure 6.2 and Table 6.1). When these swarms are downloading the
files separately using HTTP (respectively BitTorrent), the experienced
download times for the peers in s1 and s2 range from 73 to 77 seconds
(respectively 36 to 44 seconds). When s1 and s2 are bundled into a swarm
composed of the same 6 peers downloading a 6 MB file, the experienced
download times are between 61 and 63 seconds. This means that in the
case of two HTTP swarms, bundling has resulted in an improvement in
download time higher than 10% of the original time, for all the peers.
However, when the swarms were using BitTorrent, bundling has caused a
loss in download time of around 35%.

Effects of bundling on the redundant data sent In addition to the
improvement in download time with HTTP swarms, we notice that the

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

100 Chapter 6. Cross-swarm Bundling

F
s
1
 (in MB)

1 2 3 4 5 6 7 8 9 10
F s 2

(in MB)

1 2 3 4 5 6 7 8 910

Es
tim

at
ed

 g
ai

n
(in

 %
)

5
10
15
20
25
30

HTTP-HTTP
HTTP-BT
BT-HTTP

(a) Ls1 = Ls2 = 2 peers

L
s
1

1 2 3 4 5 6 7 8 9 10

L s 2

1 2 3 4 5 6 7 8 910

Es
tim

at
ed

 g
ai

n
(in

 %
)

10
20
30
40
50
60
70

HTTP-HTTP
HTTP-BT
BT-HTTP

(b) Fs1 = Fs2 = 1 MB

Figure 6.3: Estimated gain in download times for different combinations of swarms.

use of bundling has reduced the amount of redundant data sent from the
original content provider. In fact, for the same experiment (Experiment
45), and with 2 separate HTTP swarms, the content provider has to
send the size of the file fs1 (respectively fs2) to each of the 3 peers in
both s1 (respectively s2). This means that the total amount of data sent
by the content provider (without considering package losses) is equal to
3× 3 + 3× 3 = 18 MB.
When the swarms are bundled, the amount of data to be sent by the content
provider is doubled to 36 MB, which corresponds to sending a 6 MB file to
6 peers. Nevertheless, after bundling, the measured peers’ contribution to
the aggregated swarm is equal to 21.33 MB, which represents nearly 60%
of the total data to be sent (60% of the 36 MB). The content’s provider
contribution in this case is estimated to 36 − 21.33 = 14.67 MB. Thus,
compared to separate HTTP transfers, we can confirm that bundling can
reduce the load on the original content provider, and in this case it has
eliminated over 18% of the data transfer cost on the provider’s side.

Evaluating bundling variants Figure 6.3 presents an overview of the
combinations of swarms to bundle that can lead to an improvement in
download time. Each swarm si is defined by the number of peers Lsi and
the size Fsi of the corresponding file fsi . In each of the sub-figures, we fix
one of these two parameters and evaluate the estimated gain values for

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.4. Average Case Analysis 101

each combination, taking into account all the possible download protocol
combinations. We notice that the combinations where both swarms use
HTTP before bundling lead to the highest improvements in download times.
Nevertheless, we notice that even some HTTP-BitTorrent combinations can
entail positive values of the gain when the file sizes (Figure 6.3a) and the
swarm sizes (Figure 6.3b) get bigger. However, we notice a total absence
of positive gains for BitTorrent-swarm bundling combinations.

Summary Based on real experiments, we can confirm that cross-swarm
bundling can reduce download time even in the adverse scenario where
files are small. But not only this, it also helps in reducing the outgoing
bandwidth on the content provider’s side thanks to the contribution of
peers. A key observation is that bundling two HTTP swarms performs
better than any other type of bundling and that the gain in download time
tends to increase when the sizes of the swarms and/or the files increase.

6.4 Average Case Analysis

From a data center’s perspective, it is important to evaluate the effi-
ciency of bundling before implementing a bundling mechanism. In this
section, we focus on the case of bundling two HTTP swarms, the most
common one in Personal Clouds. We propose the following notation related
to the average characteristics of a swarm in the system:

• L̄: average size of a swarm,

• w̄: average data center upload bandwidth allocated to a swarm,

• F̄ : average file size,

• ū: average upload speed of the clients in a swarm,

• η̄: average value of the efficiency of file sharing,

• dmin: minimum download speed of the clients,

• t̄before : average download time before bundling,

• t̄after : average download time after bundling.

Following this notation, we can estimate t̄before and t̄after , using (2.2)
and (4.1), as follows:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

102 Chapter 6. Cross-swarm Bundling

t̄before =
F̄

min
{
dmin,

w̄

L̄

} . (6.1)

t̄after =
2F̄

min

{
dmin,

w̄ + η̄L̄ū

L̄
, 2w̄

} . (6.2)

To compare both approaches, the service provider has to identify the
bottleneck limiting the transfer of the files from the storage nodes to
the end users. Using (6.1) and (6.2), we study all the possible values

of min
{
dmin,

w̄
L̄

}
and min

{
dmin,

w̄+η̄L̄ū
L̄

, 2w̄
}

and we compare t̄before and

t̄after for each possible case of the bottleneck, as follows:

1. Case 1: dmin ≤ w̄
L̄

and dmin ≤ min
{
w̄+η̄L̄ū

L̄
, 2w̄

}
. When the transfer

bottleneck is the download speed of the peers, bundling is not efficient.

2. Case 2: w̄
L̄
≤ dmin and 2w̄ ≤ min

{
dmin,

w̄+η̄L̄ū
L̄

}
. When the data

center’s bandwidth is the bottleneck, bundling is efficient, if and only
if the average swarm is composed of at least 2 peers.

3. Case 3: w̄
L̄
≤ dmin and w̄+η̄L̄ū

L̄
≤ min {dmin, 2w̄}. When the upload

capacity of the swarm is the bottleneck, bundling is efficient, if and
only if the swarm’s upload capacity is higher than the amount of
data center bandwidth allocated to the swarm.

4. Case 4: w̄
L̄
≤ dmin and dmin ≤ min

{
w̄+η̄L̄ū

L̄
, 2w̄

}
. When the data

center’s bandwidth and the download speed of the peers are the bot-
tlenecks before and after bundling respectively, bundling is efficient,
if and only if the download capacity of the clients is higher than the
data center’s bandwidth.

Proof. The proof is organized into the same cases as above. We consider
bundling efficient, if and only if, the download time resulted from bundling
is lower than the original download time. This means that bundling is
efficient, if and only if, t̄before > t̄after .

1. Case 1: dmin ≤ w̄
L̄

and dmin ≤ min
{
w̄+η̄L̄ū

L̄
, 2w̄

}
.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.5. Implementing Bundling in Data Centers 103

{
dmin ≤ w̄

L̄
=⇒ t̄before = F̄

dmin

dmin ≤ min
{
w̄+η̄L̄ū

L̄
, 2w̄

}
=⇒ t̄after = 2F̄

dmin

Since F̄ > 0 and dmin > 0 =⇒ t̄after > t̄before .

2. Case 2: w̄
L̄
≤ dmin and 2w̄ ≤ min

{
dmin,

w̄+η̄L̄ū
L̄

}
{
w̄
L̄
≤ dmin =⇒ t̄before = F̄ L̄

w̄

2w̄ ≤ min
{
dmin,

w̄+η̄L̄ū
L̄

}
=⇒ t̄after = F̄

w̄

It follows that
(
t̄before > t̄after ⇐⇒ L̄ > 1

)
.

3. Case 3: w̄
L̄
≤ dmin and w̄+η̄L̄ū

L̄
≤ min {dmin, 2w̄}.{

w̄
L̄
≤ dmin =⇒ t̄before = F̄ L̄

w̄
w̄+η̄L̄ū

L̄
≤ min {dmin, 2w̄} =⇒ t̄after = 2F̄ L̄

w̄+η̄ L̄ ū

Thus,
(
t̄before > t̄after ⇐⇒ η̄ L̄ ū > w̄

)
.

4. Case 4: dmin ≤ w̄
L̄

and dmin ≤ min
{
w̄+η̄L̄ū

L̄
, 2w̄

}
.{

w̄
L̄
≤ dmin =⇒ t̄before = F̄ L̄

w̄

dmin ≤ min
{
w̄+η̄L̄ū

L̄
, 2w̄

}
=⇒ t̄after = 2F̄

dmin

Thus,
(
t̄before > t̄after ⇐⇒ L̄ dmin > 2w

)
.

Summary Based on this analysis, we can conclude that the efficiency of
cross-swarm bundling in data centers depends on the transfer bottleneck.
When the data center has plenty of bandwidth to satisfy the demands of the
clients, it is not worth bundling. However, when the outgoing bandwidth
is scarce, cross-swarm bundling presents a potential solution to reduce the
download time for the clients.

6.5 Implementing Bundling in Data Centers

In this section, we present the methodology to implement cross-swarm
bundling in data centers. We start by calculating the gain in download

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

104 Chapter 6. Cross-swarm Bundling

time that will result from bundling. This gain represents the metric on
which the bundling decision will be made. Later, we present a methodology
to select the pairs of swarms to bundle based on graph matching techniques.
Finally, we present a solution to the security issues that can be associated
with cross-swarm bundling.

6.5.1 Bundling Metric: Expected Gain in Download Time

The number of requests managed by the data center can be relatively
high especially at peak hours. This means that there are numerous bundling
choices among the different swarms of clients. This makes the task of
choosing the pairs4 of swarms to be bundled a challenging one. Since the
goal of this chapter is to improve the QoE, we consider a bundling strategy
based on the expected gain in download time that the peers in a given
swarm si will experience if si is bundled with another swarm sj . The idea
is to estimate for each pair of swarms the expected gain in download time
and based on the obtained values, group the pairs that would benefit the
most.

gainsi(sj) measures the gain/loss that si would experience if it is
bundled with sj . This gain can be defined as the normalized ratio of
the difference between the expected end download times before and after
bundling, as follows:

gainsi(sj) =
tbeforesi − taftersi,sj

tbeforesi

. (6.3)

tbeforesi and taftersi,sj are calculated using (2.2) and (4.1), as explained in
Section 6.2. gainsi(sj) gives an estimation of the gain from the perspec-
tive of the swarm si, while gainsj (si) presents the estimation from the
perspective of sj . To complete the picture, we present in (6.4) gainsi,sj ,
which represents a weighted aggregation of the gain ratios of both swarms
si and sj . The weights are allocated based on the number of clients in each
swarm (Lsi and Lsj).

gainsi,sj =
Lsi gainsi(sj) + Lsj gainsj (si)

Lsi + Lsj
. (6.4)

4To simplify the process of bundle selection, we only consider bundles of two swarms.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.5. Implementing Bundling in Data Centers 105

gainsi,sj is positive if the bundling will result in a notable improvement
in the download time for at least one of the swarms. This is the case when
both swarms would gain in download time or when the loss of one swarm
is lower that the gain of the other. gainsi,sj is negative if the bundling will
result in a notable degrade in the download time (at least for one swarm).
This is the case when both swarms would lose in download time or when
the gain of one swarm is lower than the loss of the other. It is important
to note here that the gain is symmetric: gainsi,sj = gainsj ,si .

The objective matrix We consider now the set of all the swarms
managed by the data center and we suppose there is a total of n swarms.
To evaluate the efficiency of bundling for each pair of swarms, we calculate
the matrix Gain. Each row in the matrix corresponds to a swarm si and
the columns represent the set of potential swarms to be bundled with.
Each element (i, j) in Gain represents the estimated gain in download time
that can result from bundling si and sj , which corresponds to gainsi,sj ,
calculated using (6.4). Since gainsi,sj = gainsj ,si and as it makes no sense
to bundle the same swarm with itself, we only calculate the gains when
i < j. Thus, Gain is a strictly upper triangular matrix. Gain is called
the objective matrix, and it contains all the expected gains (or losses) in
the download times, for all the combinations of bundles. This matrix will
serve later to find the optimal set of swarms to bundle.

Gain =


0 gains1,s2 gains1,s3 · · · gains1,sn
0 0 gains2,s3 · · · gains2,sn
0 0 0 · · · gains3,sn
...

...
...

. . .
...

0 0 0 · · · 0

 . (6.5)

6.5.2 Finding the Optimal Solution

The number of swarms managed by a data center can be very high.
This makes the task of choosing the right combination of swarms to bundle
very challenging. In fact, for n different swarms, the total number of
possible combinations is:

(
n
2

)
×
(
n−2

2

)
×
(
n−4

2

)
. . ..

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

106 Chapter 6. Cross-swarm Bundling

From this large set of combinations, our goal is to find the “optimal”
set of swarm pairs that maximizes the total sum of the gains. To do so,
we follow the same strategy as Han et al. in [63]. We use the maximum
weight matching algorithm [39, 50] to select the pairs of swarms that
should be bundled together by converting the objective matrix Gain into
an undirected weighted graph G = (V,E,w), where w is the set of weights
that are associated with the edges. Each vertex in V represents a swarm.
Each edge in E connecting two swarms (say si and sj) signals the possibility
of bundling these swarms together. The weight of the edge connecting si
and sj is equal to gainsi,sj .

In graph theory, a matching M in G is a subset E′ ⊆ E such that no
two edges in E′ share a common vertex. M is called maximal, if it is not a
subset of any other matching in G. In other words, any extra edge added
to M will make M no longer a matching.
With respect to a weighted graph, a maximum weight matching is a
matching for which the sum of the weights of the matched edges is as large
as possible. The first polynomial time algorithm for maximum matching
was proposed in 1965 by Edmonds [39] and subsequently improved by
Gabow and others [48, 50]. Currently, there are several libraries that can
find the maximum weight matchings for dense graphs in time O(n3), where
n is the number of nodes in the original graph.

Example Let’s consider a simple example where the data center is
managing n = 4 swarms simultaneously: S = {s1, s2, s3, s4}. The total
number of combinations of pairs of swarms is:

(
4
2

)
×
(

2
2

)
= 4!

2!×2! × 1 = 6.
The corresponding objective matrix is:

Gain =


0 gains1,s2 gains1,s3 gains1,s4
0 0 gains2,s3 gains2,s4
0 0 0 gains3,s4
0 0 0 0

 . (6.6)

This matrix can be converted into the graph G presented in Figure 6.4.
Each node in G represents one of the swarms in the system. Each edge
connecting two swarms signals the possibility of bundling these swarms
together. The weight of the edge connecting si and sj , where i < j, is
gainsi,sj .

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.5. Implementing Bundling in Data Centers 107

s3 s4

s1 s2

gains1,s2

gains1,s3

gain
s
1 ,s

4 gain s2
,s3

gains2,s4

gains3,s4

Figure 6.4: The graph G resulting from the conversion of the objective matrix Gain.

s3 s4

s1 s2

gains1,s2

gains3,s4

(a) M1

s3 s4

s1 s2

gains1,s3
gains2,s4

(b) M2

s3 s4

s1 s2

gain
s
1 ,s

4

gain s2
,s3

(c) M3

Figure 6.5: The three possible matchings of the graph G.

From the graph G, three possible matchings, M1,M2 and M3, are
possible. These matchings are presented in Figure 6.5. The application
of the maximum weight matching algorithm will result in choosing one of
these matchings based on the corresponding sum of weights. For instance,
if we consider that:
gains1,s2 + gains3,s4 ≥ max

{
gains1,s3 + gains2,s4 , gains1,s4 + gains2,s3

}
,

then the result of the maximum weight matching algorithm will be M1.
This means that s1 should be bundled with s2 and s3 with s4.

6.5.3 Security Concerns

Cross-swarm bundling implies that each swarm will get a copy of a
non-requested file along with the requested one. When the files are public,
like in the BitTorrent ecosystem, this concept does not pose any security
problem. However, in systems like Personal Clouds, where files should
be only sent to the authorized entities, cross-swarm bundling can cause a
security issue.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

108 Chapter 6. Cross-swarm Bundling

To enforce security when the data center decides to bundle two swarms
si and sj , each of the corresponding files fsi and fsj is encrypted separately
with a one-shot symmetric key, such as a DES or AES key. We denote by
Ksi (respectively Ksj) the key used to encrypt fsi (respectively fsj). After
encrypting fsi and fsj , the data center creates two meta-data .torrent

files. To ensure content delivery with BitTorrent, both .torrent files are
sent to the peers in si and sj . However, the keys are only sent to the
entities authorized to get the content: Ksi is only sent to the clients in si
and Ksj is only sent to the clients in sj . The keys and the .torrent files
are sent to each of the requesters via HTTPS.

6.6 Application Scenario: Personal Clouds

This section is dedicated to the validation of our bundling strategy.
This strategy is validated in Personal Clouds, using the U1 trace described
in Chapter 2. The results prove that bundling can improve significantly
the QoE without increasing the cloud’s bandwidth consumption.

6.6.1 Experimental Settings

To evaluate the efficiency of our proposal, we developed a Python5

simulator that uses the U1 trace and re-simulates the arrival pattern of
the clients. The simulator implements the following strategies:

• HTTP ONLY: This strategy represents the default behavior of a
Personal Cloud where HTTP is the only download protocol used to
distribute the files from the storage servers to the end users.

• MAX GAIN: This scenario corresponds to the application of cross-
swarm bundling. At each timestamp, the objective matrix Gain is
calculated. The choice of swarms to bundle is made based on the
application of the maximum weight matching algorithm.

• MAX GAIN> γ: This scenario is similar to the previous one.
However, it adds an extra constraint for the swarms to be bundled in
order to avoid taking bundling decisions that could lead to notable
degrades in performance. To this extent, the objective matrix Gain is

5Python Software Foundation: http://www.python.org

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.python.org

6.6. Application Scenario: Personal Clouds 109

filtered before being converted to a graph, and only the combinations
(si, sj) that satisfy the condition gainsi,sj > γ are considered. γ is
a real value which can be set by system administrator. γ can be
positive or negative based on the current load on the data center.
A negative value of γ means that losses of up to γ times of the
original download time are tolerated. For instance, γ = −1 means
that the bundles considered are the ones that can lead to an increase
in download time equal to the original download time at most. Based
on our experiments, we have noticed that putting such a limit is very
important to prevent degrading the download time for the clients.
Note that the MAX GAIN scenario corresponds also to the case
MAX GAIN> γ where γ = −∞.

In our implementation of the simulator, we use the NetworkX6[62]
graph matching library. Networkx is based on the “blossom” method for
finding augmenting paths and the “primal-dual” method for finding a
matching of maximum weight, both methods invented by Edmonds [50].

To evaluate the efficiency of cross-swarm bundling, we propose ∆QoE
as the difference (in seconds) between the download time experienced
by a given user downloading a file with HTTP and the download time
experienced by the same user downloading the same file after being bundled
with another swarm. A positive value of ∆QoE reflects an improvement in
download time compared to the use of HTTP only, while a negative value
means that bundling has affected negatively the download time and made
it longer. ∆QoE = 0 when there is no change in the download times.

6.6.2 Implications of Cross-Swarm Bundling

We exploit the previously described trace sample of U1 and re-simulate
the arrival pattern of the peers to validate our approach. We run the
simulator with different limits γ ∈ {−0.25,−0.5,−0.75,−1,−2,−5,−∞}.
We collected the logs of each experiment and evaluated our proposal
comparing the results with the ones obtained using HTTP alone.

6NetworkX is a Python software package for the creation, manipulation, and study
of the structure, dynamics, and functions of complex networks. Networkx is available
under the BSD license at: https://github.com/networkx

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://github.com/networkx

110 Chapter 6. Cross-swarm Bundling

HTTP
ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

10-2

10-1

100

101

102

103

Do
w

nl
oa

d
tim

es
 (i

n
se

co
nd

s)

(a) W = 200 Mbps

HTTP
ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

10-2

10-1

100

101

102

Do
w

nl
oa

d
tim

es
 (i

n
se

co
nd

s)

(b) W = 250 Mbps

HTTP
ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

10-3

10-2

10-1

100

101

102

Do
w

nl
oa

d
tim

es
 (i

n
se

co
nd

s)

(c) W = 300 Mbps

HTTP
ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

10-3

10-2

10-1

100

101

102

Do
w

nl
oa

d
tim

es
 (i

n
se

co
nd

s)

(d) W = 350 Mbps

Figure 6.6: Measured download times for different cloud bandwidth limits.

Figure 6.6 presents the download times for all the download operations
in the trace for different cloud bandwidth limits W ∈ {200, 250, 300, 350
Mbps}. Compared with the HTTP ONLY scenario, we notice that bundling
performs better under smaller bandwidth limits. Surely, when W gets
higher, the download times are shorter and the overall performance of the
system improves. However, in these cases, bundling does not improve the
download times and sometimes it can even degrade the performance of the
system. This result agrees very well with our analysis in Section 6.4.

Importance of γ Figure 6.7 shows the importance of the γ constant. It
depicts a box plot of the values of the bundling metric gainsi,sj for each
couple (si, sj) at the moment of bundling. When γ = −∞ (MAX GAIN
scenario), the bundling combinations output by the graph matching library

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.6. Application Scenario: Personal Clouds 111

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-103

-102

-101

-100
0

ga
in

s i
,s

j

(a) W = 200 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-103

-102

-101

-1000

ga
in

s i
,s

j

(b) W = 350 Mbps

Figure 6.7: Values of the bundling metric gainsi,sj at the moment of bundling.

can lead to important degradation in download time. In fact, the expected
gainsi,sj in that scenario can reach -102 which reflects a resulting download
100 times longer than the original one. This proves that setting γ to a
reasonable value is very important to prevent degrading the download time
for the clients.

This importance can be further perceived in Figure 6.8. This figure
presents the ∆QoE for all the download operations in the trace for different
cloud bandwidth limits. ∆QoE is measured in seconds, and it is calculated
for each download operation as the difference between the download time
measured with HTTP ONLY and the one using bundling. We remind
that a positive value of ∆QoE reflects an improvement in download time
compared to the use of HTTP alone, while a negative ∆QoE means that
the use of bundling has affected negatively the download time and made it
longer. We notice that when bundling was deployed with γ = −∞, most
of the clients have experienced an increase in download time of about 10
seconds. Nevertheless, when γ is small, the majority of the operations have
witnessed an improvement in download time of a few seconds.

Percentage of bundled swarms Figure 6.9a presents the percentage
of bundled swarms as a function of γ. For the selected values of γ, this
percentage varies, depending on the cloud’s bandwidth budget W , between
8% and 94%. We notice that the number of bundled swarms increases
with γ. As a matter of fact, when γ is smaller, the bundling combinations

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

112 Chapter 6. Cross-swarm Bundling

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-102

-101

-1000
100

101

102

∆
Q
oE

 (i
n

se
co

nd
s)

(a) W = 200 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-102

-101

-1000
100

101

102

∆
Q
oE

 (i
n

se
co

nd
s)

(b) W = 250 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-102

-101

-1000
100

101

102

∆
Q
oE

 (i
n

se
co

nd
s)

(c) W = 300 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-102

-101

-100
0

100

101

∆
Q
oE

 (i
n

se
co

nd
s)

(d) W = 350 Mbps

Figure 6.8: Measured ∆QoE for different cloud bandwidth limits.

that satisfy the condition gainsi,sj > γ are more limited which explains
the limited percentage of bundled swarms. When γ = −∞, the number of
bundled swarms is the highest possible (around 90% of the swarms). This
is because the application of the bundling algorithm will always result in
bundling when there are 2 or more non-bundled swarms.

Cloud bandwidth usage In addition to the improvement in download
time, the use of bundling does not increase the usage of the cloud’s band-
width a lot. Figure 6.9b depicts the cloud offload percentages for different
combinations of γ and W . This percentage represents the difference be-
tween the cloud bandwidth usage with and without bundling. A positive
value reflects less bandwidth usage, while a negative value means that
bundling requires more bandwidth. In our experiments, the measured

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

6.6. Application Scenario: Personal Clouds 113

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

0

20

40

60

80

100
Bu

nd
le

d
sw

ar
m

s
(in

 %
)

W=200 Mbps
W=250 Mbps
W=300 Mbps
W=350 Mbps

(a) Bundled swarms percentage

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

−4

−3

−2

−1

0

Cl
ou

d
of

flo
ad

 (i
n

%
)

W=200 Mbps
W=250 Mbps
W=300 Mbps
W=350 Mbps

(b) Cloud offload percentage

Figure 6.9: Percentages of cloud offload and bundled swarms

cloud offload ranges between −5% and 1%. In accordance with the analysis
in Section 6.4, we notice savings in cloud bandwidth utilization when the
∆QoE is positive.

Performance In evaluating the performance of cross-swarm bundling,
it is equally important to measure the computational overhead needed to
select the pairs of swarms to bundle. This overhead is mainly caused by
the calculation of the objective matrix and the application of the graph
matching library. As mentioned above, in our simulator’s implementation,
we use the NetworkX [62] library. This library is in Python and it is
distributed with the BSD license. As mentioned in the official website7,
NetworkX offers a function that computes a maximum-weighted matching
of a graph in O(n3) time, where n is the number of nodes in a graph.

To quantify this overhead, we measure the delay needed for our sim-
ulator to calculate the objective matrix and apply the graph matching
function. Figure 6.10 presents this delay for one simulation of the trace
(W = 350 Mbps and γ = −0.25). We notice that the execution time grows
exceptionally with the number of swarms. Even though we used a regular
machine in our simulations, the time needed to select the pairs of swarms
to bundle remains reasonable, in the order of a few milliseconds.

7max weight matching: http://networkx.readthedocs.io/en/stable/reference/
generated/networkx.algorithms.matching.max weight matching.html

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.matching.max_weight_matching.html
http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.matching.max_weight_matching.html

114 Chapter 6. Cross-swarm Bundling

0 100 200 300 400
Number of swarms

0

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
in

 m
s

Figure 6.10: Overhead related to the calculation of the objective matrix and the
application of the graph matching function.

Summary Based on the U1 trace, we confirm that cross-swarm bundling
can be useful to improve QoE in Personal Clouds, especially when the
available outgoing bandwidth is small. In this case, cross-swarm bundling
can have a positive side effect by reducing the server side bandwidth
requirements. The study of the trace has also proven the importance of
filtering the objective matrix before applying graph matching in order to
avoid taking bundling decisions that could lead to degrades in the QoE.

6.7 Conclusions

In this chapter, we propose to use cross-swarm bundling in order to
improve the QoE for the clients by leveraging their spare upload capacities.
To this extent, we present a methodology to implement this feature in
Personal Clouds. Our proposal is validated using a real trace of U1. The
results prove the efficiency of the approach in improving the QoE for the
clients compared to the classic distribution methods.

Bundling can be adopted by Personal Clouds to improve their per-
formance and gain more clients. Our future plans include the study and
evaluation of new bundling metrics. We plan also to extend the idea of
bundling to systems (other than Personal Clouds) with bigger shared files.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

7
Conclusions

In this chapter, we conclude our work with a summary of the contribu-
tions and results. The chapter contains also a list of the papers published
during the dissertation research and some suggestions for future work.

7.1 Summary and Findings

In this section, we provide a list of the thesis contributions and a
corresponding discussion on the related topics.

7.1.1 Summary of contributions

We present here the contributions of this thesis and map them with
the three questions raised in Chapter 1. The first question was related to
the choice of the most suitable protocol, and it was formulated as follows:

Question 1 How to decide which protocol (HTTP or BitTorrent) is more
suitable for each file transfer case?

To answer this question, we started by confuting the general assumption
that BitTorrent is only efficient with big files and big swarms and that client-

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

116 Chapter 7. Conclusions

server protocols perform better in the distribution of small files. To this
extent, we compared in Chapter 4, the experimental download times with
BitTorrent and HTTP. The results proved that, in contrast with general
assumptions, BitTorrent can entail better performance than HTTP. The
measured improvement in download time reached 22%. Another important
advantage of the use of BitTorrent is the amount of data contributed
by the peers. This amount is quite important even when the files are
small. Starting from just 2 peers, we noticed that the contribution ranged
from 11%, for a 1 MB file, to exceed 30%, for a 10 MB file. The peers’
contributions was even more important when the number of peers is higher.
We also provided in Chapter 4 an accurate estimation of the download
time with BitTorrent, optimized for small files/swarms. In this estimation,
we reused a fluid model proposed by Kumar et al. [75], and extended it to
consider the overheads related to the BitTorrent protocol.

In the same context, we proposed two metrics to study the trade-offs
between HTTP and BitTorrent. These metrics are the gain and the offload
ratios. The gain ratio measures the improvements in terms of download
time that can be obtained using BitTorrent instead of HTTP, while the
offload ratio measures the amount of data that can be offloaded from
the content provider with the use of BitTorrent. These metrics are two
key parameters in deciding which download protocol is more suitable for
each file transfer case. Using them, we proposed in the same chapter, an
algorithm that decides the most suitable protocol and the efficiency of each
protocol based on the predefined Quality of Service (QoS) constraints.

The next challenge addressed in this thesis is related to the allocation
of the data center’s resources, as follows:

Question 2 How to balance the available bandwidth resources between the
concurrent HTTP and BitTorrent swarms?

Chapter 5 was dedicated to answering this question. We presented in
this chapter a bandwidth allocation algorithm that can be implemented in
data centers which are required to serve both HTTP and BitTorrent clients,
and which have limited bandwidth resources. Several studies addressed
bandwidth allocations in HTTP servers and peer-assisted systems based
on BitTorrent separability. But, no related work dealt with both kind of
protocols. With our bandwidth allocation algorithm, the data center is

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

7.1. Summary and Findings 117

able to decide whether to use a client-server approach or a peer-assisted one
for each requested file, and to determine the exact amount of bandwidth
that should be allocated to that swarm in order to maintain the QoS
constraints.

The last problem tackled in this thesis is related to the small number of
clients simultaneously interested in the same file. This small number can
pose a limit on the maximum benefits of BitTorrent. Thus, it is important
to find ways to increase the clients’ collaboration. This leads to the third
question, which is:

Question 3 How to increase the contribution of the clients?

A good solution to this problem is to “inflate” the swarms of clients
by grouping a set of diverse contents into a single .torrent file, through
cross-swarm bundling. In Chapter 6, we investigated the potential of
bundling in a scenario that includes both HTTP and BitTorrent clients.
To the best of our knowledge, only bundling of BitTorrent swarms was
studied in the literature. In this thesis, we extended this concept and
we proposed and evaluated two new bundling variants: the bundling of
HTTP swarms, and the bundling of an HTTP swarm with a BitTorrent
one. Moreover, we went beyond the classic usage goal of bundling, which
is to improve the availability of unpopular torrents, and proposed it as a
means to improve the QoE. Actually, the idea of bundling two different
swarms in order to improve the QoE might seem controversial at first
glance. But, we proved through experimentation and an average case
analysis that bundling can effectively improve the QoE, and even reduce
the load on the original content provider. Finally, we proposed in the same
chapter, a methodology to implement bundling in data centers, based on
graph matching techniques.

To summarize, in this thesis, we proposed two different ways to shift
part of the burden of file delivery to the end users, through the use of
BitTorrent, as follows:

1. Simultaneous downloads: BitTorrent can be used between the
users requesting the same content at close time intervals. The main
idea is to switch the download protocol from HTTP to BitTorrent
when there are simultaneous downloads of the same file.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

118 Chapter 7. Conclusions

2. Cross-swarm bundling: When the number of clients simultane-
ously interested in the same file is small, the chances of using BitTor-
rent are limited. Another possible way to make the different clients
cooperate is through cross-swarm bundling.

Both techniques were applied in a concrete use case. We selected Per-
sonal Clouds as an application scenario since the developers can easily tune
the client’s implementation to extend it with the BitTorrent functionalities.
The results proved that BitTorrent can effectively improve the performance
of these systems by reducing the download times and the load on the
central servers.

7.1.2 Discussion

In this section, we discuss some topics related to the main contributions
of this thesis, and which were not discussed in the previous chapters.

Conservative evaluation In the evaluation of the benefits of using
BitTorrent, we have been conservative in three different aspects: the first
is in the measurement of the download times with HTTP, the second is in
the management of the peers’ resource and the third one is in the choice
of the data set.

1. Conservative in favor of HTTP: In Chapter 4, we have proposed
an estimation of the download time with BitTorrent that takes into
consideration the overheads related to the protocol. However, the
estimation of the download time with HTTP 2.3 we considered does
not take into account the latency related to the protocol headers.
Besides, this estimation does not consider the encryption overhead
due to the use of HTTPS (which is the transfer protocol used in
Personal Clouds in general).
However, this does not affect negatively the results of our proposals.
As a matter of fact, we are being “stricter” on the BitTorrent side.
This means that when we include these overheads, the overall im-
provements resulting from the use of BitTorrent will be even more
important.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

7.1. Summary and Findings 119

2. Conservative in the managements of the peers’ resources:
In this thesis, we only consider the worst case scenario when the
peers leave the swarm as soon as they finish download. However, this
is not always the case, especially in Personal Clouds. In fact, Personal
Cloud clients do not disconnect as soon as they finish syncing or
downloading a shared file. Instead, they generally continue working
on the device and the Personal Cloud program keeps running in the
background. To this extent, we believe that if we consider that peers
stay in the system after they finish download, the benefits from using
BitTorrent will increase significantly.

3. Conservative with the data set: The U1 trace used in the vali-
dation of the proposed strategies and which presented in Chapter 2,
has very limited sharing and involves very small files. To this extent,
we believe the benefits of our proposals will be even more important
when applied in other systems that involve more sharing and bigger
file sizes.

Mobile clients An important problem that can be related to the use of
BitTorrent on mobile devices, is data cost. In fact, the use of BitTorrent
on mobile clients that are on 3G/4G means that clients will upload data,
resulting in extra costs on the clients’ side. This problem can be easily
recovered by limiting the use of the approach to mobile clients that are on
WiFi only.

Actually, Personal Clouds try to limit the cellular network usage. In
particular, with Dropbox, the files that have been updated or added to the
account are only downloaded with a specific request of the user, when the
device is on a cellular network. However, on a WiFi network, the updates
are automatically downloaded [2].

Other application scenarios All our contributions related to the use
of BitTorrent in data centers are not limited to Personal Clouds. Actually,
they can applied in any scenario, provided that it is possible to extend
the clients’ implementation to accommodate the BitTorrent protocol. For
instance, they can be applied in any web-based application, if the client’s
web browser is equipped with a BitTorrent extension.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

120 Chapter 7. Conclusions

Our contributions can also be applied in edge computing. In fact, with
the recent technological advances, the frontier of computing applications,
data and services is pushed away from centralized servers to the edges of
the network [51]. This means that the users can be assimilated to mini-data
centers, that can publish and share content all over the Internet. However,
the resources of such mini-data centers are still limited, and they can be
easily overloaded with requests. In this case, BitTorrent can present an
excellent solution to reduce the load on these edges.

Collaboration technologies present also a good application example.
These systems involve different people working on a common task to
achieve their goals, and P2P technologies perform really well in these cases.

7.2 Publications

This section gives a list with the papers published during the dissertation
research.

List of Conference Papers

• Rahma Chaabouni, Pedro Garćıa-López, Marc Sánchez-Artigas, Sandra
Ferrer-Celma, and Carlos Cebrian. “Boosting Content Delivery With Bit-
Torrent in Online Cloud Storage Services.” In Proceedings of 13th IEEE
International Conference on Peer-to-Peer Computing (P2P’13). Trento,
Italy. Pages 1-2. (Demo paper, Core C1)

• Rahma Chaabouni, Marc Sánchez-Artigas, and Pedro Garćıa-López.
“Reducing Costs in the Personal Cloud: Is BitTorrent a Better Bet?” In Pro-
ceedings of 14th IEEE International Conference on Peer-to-Peer Computing
(P2P’14). London, UK. Pages 1-10. (Full paper, Core C1)

• Rahma Chaabouni, Marc Sánchez-Artigas, Ala Chaabouni, and Pedro

Garćıa-López. “Improving the QoE in Personal Clouds with Cross-Swarm

Bundling”. In Proceedings of 41st IEEE Conference on Local Computer

Networks (LCN’16). Dubai, UAE. Pages 1-9. (Full paper, Core A1)

1Source: Computing Research and Education Association of Australasia, CORE,
2014, http://portal.core.edu.au/conf-ranks/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://portal.core.edu.au/conf-ranks/

7.3. Directions for Future Works 121

List of Journal Papers

• Xavier León, Rahma Chaabouni, Marc Sánchez-Artigas, and Pedro
Garćıa López. “Smart Cloud Seeding for BitTorrent in Datacenters.”
In IEEE Internet Computing, Volume 18, July-Aug. 2014, Pages 47-54.

(Quartile Q12)

• Rahma Chaabouni, Marc Sánchez-Artigas, Pedro Garćıa-López, and
Llúıs Pàmies-Juàrez. “The Power of Swarming in Personal Clouds Under
Bandwidth Budget”. In Journal of Network and Computer Applications,
Volume 65, April 2016, Pages 48-71. (Quartile Q12)

• Rahma Chaabouni, Marc Sánchez-Artigas, Ala Chaabouni, and Pedro

Garćıa-López.“Torrentifying Personal Clouds with Cross-Swarm Partial

Bundling ”. (Under submission)

Other Contributions

• Rahma Chaabouni. “Reducing Costs in Personal Clouds.” 1st URV
Doctoral Workshop in Computer Science and Mathematics, Llibres URV,
Tarragona, Spain, 2014, Pages 5-7.

• Rahma Chaabouni. “Cross-Swarm Bundling in Personal Clouds: Per-

spectives and Limitations” 2nd URV Doctoral Workshop in Computer

Science and Mathematics, Llibres URV, Tarragona, Spain, 2015, Pages 1-4.

7.3 Directions for Future Works

There are several directions to build on the work that we presented in
this dissertation. We outline the following ones:

• New perspectives for BitTorrent: We have revealed new aspects
and domains for the use of BitTorrent. We have proven that this
protocol can be efficient in the most adverse scenarios when the file
size and the number of peers are very small. With these contribu-
tions, we believe we have opened up new perspectives to the use of
BitTorrent and extended its domains beyond the classic scenarios to
incorporate it in complex systems such as between data centers and

2Source: Scimago Journal & Country Rank, 2015, http://www.scimagojr.com/

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.scimagojr.com/

122 Chapter 7. Conclusions

end users. As stated in the previous section, it is possible to integrate
BitTorrent in a variety of use cases, such as: edge computing and
collaboration systems.

• Other bundling metrics: In Chapter 6, we have proposed a
bundling strategy based on the expected gain in download time
that the peers in both swarms would experience. However, we be-
lieve it is equally important to evaluate the efficiency of bundling
using new metrics, such as the amount of data that can be offloaded
from the content provider. This could be interesting in a context
where the content provider has very limited bandwidth budget and
where the peers can tolerate excessive losses in download times. It is
even possible to combine both approaches and build new bundling
strategies based on both the expected gain in download time and
offload in data center’s bandwidth.

• Partial bundling: Another important proposal is to limit the
contribution of the peers in the bundled swarms. Instead of having
to download both files entirely, peers in a swarm can only cooperate
with part of the other swarm’s file. To this extent, it is possible
to fix a partial bundle size δ that represents a minimum limit of
the contribution of the peers. Peers who have contributed with δ%
of the data of the other swarm, can leave the system. This offers
more flexibility to the peers and could probably improve the overall
benefits that can be driven from cross-swarm bundling.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Bibliography

[1] Dropbox for Business Security. https://www.dropbox.com/static/business/
resources/Security Whitepaper.pdf.

[2] Dropbox help center: How does syncing work? https://www.dropbox.com/en/
help/82.

[3] E. Adar and B. A. Huberman. Free riding on Gnutella, 2000.

[4] K.-M. Ahn and S. Kim. Optimal bandwidth allocation for bandwidth adaptation
in wireless multimedia networks . Computers & Operations Research, 30(13):1917
– 1929, 2003.

[5] Akamai Technologies, Inc. Akamai Technologies, Inc. https://www.akamai.com/.

[6] Amazon Web Services, Inc. Using BitTorrent with Amazon S3. Available at
http://docs.aws.amazon.com/AmazonS3/latest/dev/S3Torrent.html.

[7] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@Home:
An Experiment in Public-resource Computing. Commun. ACM, 45(11):56–61,
Nov. 2002.

[8] S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-peer Content
Distribution Technologies. ACM Comput. Surv., 36(4):335–371, Dec. 2004.

[9] S. Annapureddy. Providing video-on-demand using peer-to-peer networks. In In
Internet Protocol TeleVision (IPTV) Workshop, WWW 06, pages 238–247, 2006.

[10] Azureus Software, Inc. Vuze BitTorent client. http://www.vuze.com/.

[11] BitComet Development Group . BitComet. http://www.bitcomet.com/.

[12] BitTorrent, Inc. µtorrent. Light. Limitless. Elegant, efficient torrent downloading.
http://www.utorrent.com/.

[13] Box Inc. Box. Your files on any device, from anywhere. https://www.box.com.

[14] H. Bryhni, E. Klovning, and O. Kure. A comparison of load balancing techniques
for scalable Web servers. IEEE Network, 14(4):58–64, Jul 2000.

[15] A. E. Bryson. Optimal control-1950 to 1985. IEEE Control Systems, 16(3):26–33,
Jun 1996.

[16] N. Carlsson, D. L. Eager, and A. Mahanti. Using Torrent Inflation to Efficiently
Serve the Long Tail in Peer-AssistedContent Delivery Systems, pages 1–14. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.dropbox.com/static/business/resources/Security_Whitepaper.pdf
https://www.dropbox.com/static/business/resources/Security_Whitepaper.pdf
https://www.dropbox.com/en/help/82
https://www.dropbox.com/en/help/82
https://www.akamai.com/
http://docs.aws.amazon.com/AmazonS3/latest/dev/S3Torrent.html
http://www.vuze.com/
http://www.bitcomet.com/
http://www.utorrent.com/
https://www.box.com

124 Bibliography

[17] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I Tube, You Tube,
Everybody Tubes: Analyzing the World’s Largest User Generated Content Video
System. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC ’07, pages 1–14, New York, NY, USA, 2007. ACM.

[18] R. Chaabouni, P. Garcia-Lopez, M. Sanchez-Artigas, S. Ferrer-Celma, and C. Ce-
brian. Boosting Content Delivery with BitTorrent in Online Cloud Storage Services.
In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference
on, pages 1–2, Sept 2013.

[19] R. Chaabouni, M. Sanchez Artigas, A. Chaabouni, and P. Garcia Lopez. Improving
the QoE in Personal Clouds with Cross-Swarm Bundling. In Local Computer
Networks (LCN), 41st Annual IEEE Conference on, 2016.

[20] R. Chaabouni, M. Sanchez-Artigas, and P. Garcia-Lopez. Reducing costs in the
personal cloud: Is bittorrent a better bet? In Peer-to-Peer Computing (P2P),
14-th IEEE International Conference on, pages 1–10, Sept 2014.

[21] R. Chaabouni, M. Sanchez-Artigas, P. Garcia-Lopez, and L. Pamies-Juarez. The
Power of Swarming in Personal Clouds Under Bandwidth Budget . Journal of
Network and Computer Applications, 65:48 – 71, 2016.

[22] A. L. H. Chow, L. Golubchik, and V. Misra. Improving BitTorrent: A Simple
Approach. In Proceedings of the 7th International Conference on Peer-to-peer
Systems, IPTPS’08, pages 8–8, Berkeley, CA, USA, 2008. USENIX Association.

[23] Cisco Systems, Inc. White paper: Cisco VNI Forecast and Methodology, 2015-2020,
June 2016.

[24] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on Economics
of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[25] C. Dale and J. Liu. A Measurement Study of Piece Population in BitTorrent. In
IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, pages
405–410, Nov 2007.

[26] C. Dana, D. Li, D. Harrison, and C. n. Chuah. BASS: BitTorrent Assisted Stream-
ing System for Video-on-Demand. In 2005 IEEE 7th Workshop on Multimedia
Signal Processing, pages 1–4, Oct 2005.

[27] S. Das, S. Tewari, and L. Kleinrock. The Case for Servers in a Peer-to-Peer World.
In 2006 IEEE International Conference on Communications, volume 1, pages
331–336, June 2006.

[28] M. Dee. Inside LAN Sync, October 2015. https://blogs.dropbox.com/tech/
2015/10/inside-lan-sync/.

[29] Deluge Team. Deluge BitTorrent Client. http://deluge-torrent.org/.

[30] P. Dhungel, X. Hei, D. Wu, and K. W. Ross. A Measurement Study of Attacks on
BitTorrent Seeds. In 2011 IEEE International Conference on Communications
(ICC), pages 1–5, June 2011.

[31] P. Dhungel, D. Wu, and K. W. Ross. Measurement and mitigation of BitTorrent
leecher attacks. Computer Communications, 32(17):1852 – 1861, 2009.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://blogs.dropbox.com/tech/2015/10/inside-lan-sync/
https://blogs.dropbox.com/tech/2015/10/inside-lan-sync/
http://deluge-torrent.org/

Bibliography 125

[32] P. Dhungel, D. Wu, B. Schonhorst, and K. W. Ross. A Measurement Study of
Attacks on BitTorrent Leechers. In Proceedings of the 7th International Conference
on Peer-to-peer Systems, IPTPS’08, pages 7–7, Berkeley, CA, USA, 2008. USENIX
Association.

[33] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally
Distributed Content Delivery. IEEE Internet Computing, 6(5):50–58, Sept. 2002.

[34] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi. Detecting Bittorrent
Blocking. In Proceedings of the 8th ACM SIGCOMM Conference on Internet
Measurement, IMC ’08, pages 3–8, New York, NY, USA, 2008. ACM.

[35] I. Drago. Understanding and Monitoring Cloud Services. PhD thesis, University
of Twente, 2013.

[36] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. Benchmarking Personal
Cloud Storage. In Proceedings of the 2013 Conference on Internet Measurement
Conference, IMC’13, pages 205–212. ACM, 2013.

[37] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras. Inside
Dropbox: Understanding Personal Cloud Storage Services. In Proceedings of
the 2012 ACM Conference on Internet Measurement Conference, IMC ’12, pages
481–494. ACM, 2012.

[38] Dropbox, Inc. https://www.dropbox.com/.

[39] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[40] Ernesto. Dutch University Uses BitTorrent to Update Workstations, March 2008.
Available at https://torrentfreak.com/university-uses-utorrent-080306/.

[41] Ernesto. Facebook Uses BitTorrent, and They Love It, June 2010. Available
at https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-
100625/.

[42] J. Farina, M. Scanlon, and M.-T. Kechadi. BitTorrent Sync: First Impressions
and Digital Forensic Implications. Digital Investigation, 11, Supplement 1:S77 –
S86, 2014. Proceedings of the First Annual {DFRWS} Europe.

[43] G. Fedak, H. He, and F. Cappello. BitDew: A data management and distribution
service with multi-protocol file transfer and metadata abstraction. Journal of
Network and Computer Applications, 32(5):961 – 975, 2009. Next Generation
Content Networks.

[44] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. https://www.ietf.org/rfc/
rfc2616.txt, June 1999.

[45] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. https://www.ietf.org/rfc/rfc7230.txt, June 2014.

[46] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. https://www.ietf.org/rfc/rfc7231.txt, June 2014.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.dropbox.com/
https://torrentfreak.com/university-uses-utorrent-080306/
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc7230.txt
https://www.ietf.org/rfc/rfc7231.txt

126 Bibliography

[47] B. Florescu and M. I. Andreica. Towards a Peer-Assisted Content Delivery
Architecture. In Proceedings of the 18th International Conference on Control
Systems and Computer Science (CSCS) (ISSN: 2066-4451), volume 2, pages
521–528, Bucharest, Romania, May 2011.

[48] H. N. Gabow. Implementations of algorithms for maximum matching on nonbi-
partite graphs. PhD thesis, Stanford University, 1973.

[49] L. Gadea. Murder: Fast datacenter code deploys using BitTorrent, July 2010.
Available at : https://blog.twitter.com/2010/murder-fast-datacenter-code-
deploys-using-bittorrent.

[50] Z. Galil. Efficient Algorithms for Finding Maximum Matching in Graphs. ACM
Comput. Surv., 18(1):23–38, Mar. 1986.

[51] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere. Edge-centric computing: Vision and
challenges. SIGCOMM Comput. Commun. Rev., 45(5):37–42, Sept. 2015.

[52] P. Garcia-Lopez, A. Moreno, M. Sanchez-Artigas, M. Vukolic, H. Harkous, T. Pa-
paioannou, H. Zhuang, and S. Langridge. CloudSpaces: Deliverable 2.1 Roadmap
of outcomes. http://cloudspaces.eu/deliverables, 2013.

[53] P. Garcia-Lopez, M. Sanchez-Artigas, C. Cotes, G. Guerrero, A. Moreno, and
S. Toda. StackSync: Architecturing the Personal Cloud to Be in Sync.

[54] P. Garcia-Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, and J. Lenton. StackSync:
Bringing Elasticity to Dropbox-like File Synchronization. In Proceedings of the
15th International Middleware Conference, Middleware ’14, pages 49–60. ACM,
2014.

[55] G. Gonalves, I. Drago, A. P. C. da Silva, A. B. Vieira, and J. M. Almeida. The
Impact of Content Sharing on Cloud Storage Bandwidth Consumption. IEEE
Internet Computing, 20(4):26–35, July 2016.

[56] Google Inc. Google Docs. https://www.google.com/docs/about/.

[57] Google Inc. Google Drive. https://www.google.com/intl/en/drive.

[58] Google Inc. Google Sheets. https://www.google.com/sheets/about/.

[59] Google Inc. Google Slides. https://www.google.com/slides/about/.

[60] R. Gracia-Tinedo, Y. Tian, J. Sampe, H. Harkous, J. Lenton, P. Garcia-Lopez,
M. Sanchez-Artigas, and M. Vukolic. Dissecting UbuntuOne: Autopsy of a Global-
scale Personal Cloud Back-end. In Proceedings of the 2015 ACM Conference on
Internet Measurement Conference, IMC ’15, pages 155–168. ACM, 2015.

[61] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements,
Analysis, and Modeling of BitTorrent-like Systems. In Proceedings of the 5th ACM
SIGCOMM Conference on Internet Measurement, IMC ’05, pages 4–4, Berkeley,
CA, USA, 2005. USENIX Association.

[62] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network Structure,
Dynamics, and Function using NetworkX. In G. Varoquaux, T. Vaught, and
J. Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11
– 15, 2008.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent
https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent
http://cloudspaces.eu/deliverables
https://www.google.com/docs/about/
https://www.google.com/intl/en/drive
https://www.google.com/sheets/about/
https://www.google.com/slides/about/

Bibliography 127

[63] J. Han, T. Chung, S. Kim, H. chul Kim, J. Kangasharju, T. T. Kwon, and Y. Choi.
Strategic bundling for content availability and fast distributionin BitTorrent.
Computer Communications, 43(0):64 – 73, 2014.

[64] J. Han, T. Chung, S. Kim, T. T. Kwon, H.-c. Kim, and Y. Choi. How Prevalent is
Content Bundling in BitTorrent. In Proceedings of the ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’11, pages 127–128. ACM, 2011.

[65] J. Han, S. Kim, T. Chung, T. T. Kwon, H.-c. Kim, and Y. Choi. Bundling
Practice in BitTorrent: What, How, and Why. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, pages 77–88. ACM, 2012.

[66] R. Houdaille and S. Gouache. Shaping HTTP Adaptive Streams for a Better User
Experience. In Proceedings of the 3rd Multimedia Systems Conference, MMSys
’12, pages 1–9, New York, NY, USA, 2012. ACM.

[67] C. Huang, J. Li, and K. W. Ross. Peer-Assisted VoD: Making Internet Video
Distribution Cheap. The 6th International Workshop on Peer-to-Peer Systems, 02
2007.

[68] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. Al Hamra, and L. Garces-
Erice. Dissecting BitTorrent: Five Months in a torrent’s lifetime. In Passive and
Active Network Measurement, pages 1–11. Springer, 2004.

[69] S. James and P. Crowley. Fast Content Distribution on Datacenter Networks.
In Proceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems, ANCS ’11, pages 87–88, Washington,
DC, USA, 2011. IEEE Computer Society.

[70] S. James and P. Crowley. Experimental analyses of data distribution on data
center networks. In IEEE P2P 2013 Proceedings, pages 1–10, Sept 2013.

[71] D. Julian, M. Chiang, D. O’Neill, and S. Boyd. QoS and fairness constrained
convex optimization of resource allocation for wireless cellular and ad hoc networks.
In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 2, pages 477–486, June
2002.

[72] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding. In Proceedings
of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-peer Systems,
P2PECON ’05, pages 116–121, New York, NY, USA, 2005. ACM.

[73] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should Internet Service
Providers Fear Peer-assisted Content Distribution? In Proceedings of the 5th ACM
SIGCOMM Conference on Internet Measurement, IMC ’05, pages 6–6, Berkeley,
CA, USA, 2005. USENIX Association.

[74] O. Karsu and A. Morton. Incorporating balance concerns in resource allocation
decisions: A bi-criteria modelling approach. Omega, 44:70 – 82, 2014.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

128 Bibliography

[75] R. Kumar and K. Ross. Peer-Assisted File Distribution: The Minimum Distribution
Time. In Hot Topics in Web Systems and Technologies, 2006. HOTWEB ’06. 1st
IEEE Workshop on, pages 1–11, Nov 2006.

[76] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering and Sharing Incen-
tives in BitTorrent Systems. In Proceedings of the 2007 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’07, pages 301–312, New York, NY, USA, 2007. ACM.

[77] A. Legout, G. Urvoy-Keller, and P. Michiardi. Understanding BitTorrent: An
Experimental Perspective. Technical report, I.N.R.I.A. Sophia Antipolis, France,
2005.

[78] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest First and Choke Algorithms
Are Enough. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, IMC ’06, pages 203–216, New York, NY, USA, 2006. ACM.

[79] N. Lev-tov, N. Carlsson, Z. Li, C. Williamson, and S. Zhang. Dynamic file-selection
policies for bundling in BitTorrent-like systems. In Quality of Service (IWQoS),
2010 18th International Workshop on, pages 1–9, June 2010.

[80] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. Bittorrent is an Auction:
Analyzing and Improving Bittorrent’s Incentives. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication, SIGCOMM ’08, pages
243–254, New York, NY, USA, 2008. ACM.

[81] K. Li and S. Jamin. A measurement-based admission-controlled Web server. In
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 2, pages 651–659 vol.2,
2000.

[82] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang, and Y. Dai.
Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services. In
Proceedings of the 14th International Middleware Conference, Middleware ’13,
pages 307–327, 2013.

[83] J. Liang, R. Kumar, and K. W. Ross. Understanding KaZaA, 2004.

[84] S. Liu, X. Huang, H. Fu, and G. Yang. Understanding Data Characteristics and
Access Patterns in a Cloud Storage System. In Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 327–334,
May 2013.

[85] T. S. Loon and V. Bharghavan. Alleviating the Latency and Bandwidth Problems
in WWW Browsing. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 1997.

[86] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey and Comparison
of Peer-to-peer Overlay Network Schemes. Commun. Surveys Tuts., 7(2):72–93,
Apr. 2005.

[87] D. S. Menasche, A. A. Rocha, B. Li, D. Towsley, and A. Venkataramani. Con-
tent Availability and Bundling in Swarming Systems. In Proceedings of the 5th

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

Bibliography 129

International Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’09, pages 121–132. ACM, 2009.

[88] R. C. Merton. Lifetime Portfolio Selection under Uncertainty: The Continuous-
Time Case. The Review of Economics and Statistics, 51(3):247–57, August 1969.

[89] M. Meulpolder, L. D’Acunto, M. Capotă, M. Wojciechowski, J. A. Pouwelse,
D. H. J. Epema, and H. J. Sips. Public and Private BitTorrent Communities:
A Measurement Study. In Proceedings of the 9th International Conference on
Peer-to-peer Systems, IPTPS’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX
Association.

[90] P. Michiardi, D. Carra, F. Albanese, and A. Bestavros. Peer-assisted content
distribution on a budget . Computer Networks, 56(7):2038 – 2048, 2012.

[91] Microsoft Inc. MSN Video. https://www.msn.com/en-us/video.

[92] Microsoft Inc. One Drive. Do more wherever you go. https://onedrive.live.com/.

[93] R. Nikjah and N. C. Beaulieu. Strict suboptimality of selection amplify-and-forward
relaying under global channel information. IEEE Transactions on Communications,
57(10):2918–2922, October 2009.

[94] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon S3 for
science grids: a viable solution? In Proceedings of the 2008 international workshop
on Data-aware distributed computing, DADC ’08, pages 55–64, New York, NY,
USA, 2008. ACM.

[95] A.-M. K. Pathan and R. Buyya. A Taxonomy and Survey of Content Delivery
Networks . Technical report, Grid Computing and Distributed Systems Laboratory,
University of Melbourne, 2007.

[96] R. S. Peterson and E. G. Sirer. Antfarm: Efficient Content Distribution with
Managed Swarms. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’09, pages 107–122, Berkeley, CA, USA,
2009. USENIX Association.

[97] R. S. Peterson, B. Wong, and E. G. Sirer. A Content Propagation Metric for
Efficient Content Distribution. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 326–337, New York, NY, USA, 2011. ACM.

[98] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani. Do
Incentives Build Robustness in Bit Torrent. In Proceedings of the 4th USENIX
Conference on Networked Systems Design and Implementation, NSDI’07, pages
1–1, Berkeley, CA, USA, 2007. USENIX Association.

[99] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The BitTorrent P2P File-Sharing
System: Measurements and Analysis. In Peer-to-Peer Systems IV, pages 205–216.
Springer, 2005.

[100] D. Qiu and R. Srikant. Modeling and Performance Analysis of BitTorrent-like
Peer-to-peer Networks. In Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIG-
COMM ’04, pages 367–378. ACM, 2004.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.msn.com/en-us/video
https://onedrive.live.com/

130 Bibliography

[101] A. H. Rasti and R. Rejaie. Understanding Peer-level Performance in BitTorrent: A
Measurement Study. In Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on, pages 109–114, Aug 2007.

[102] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh, and D. Rubenstein.
VMtorrent: virtual appliances on-demand. In SIGCOMM, pages 453–454, 2010.

[103] E. Rescorla. HTTP Over TLS. https://www.ietf.org/rfc/rfc2818.txt, May
2000.

[104] Rhapsody International Inc. Napster. http://us.napster.com/.

[105] I. Rimac, S. Borst, and A. Walid. Peer-assisted content distribution networks:
Performance gains and server capacity savings. Bell Labs Technical Journal, 13:59
– 69, 2008.

[106] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Peer-
to-Peer Computing, 2001. Proceedings. First International Conference on, pages
99–100, Aug 2001.

[107] S. Saroiu, K. P. Gummadi, and S. D. Gribble. Measuring and Analyzing the
Characteristics of Napster and Gnutella Hosts. Multimedia Syst., 9(2):170–184,
Aug. 2003.

[108] M. Scanlon, J. Farina, and M. T. Kechadi. BitTorrent Sync: Network Investiga-
tion Methodology. In Availability, Reliability and Security (ARES), 2014 Ninth
International Conference on, pages 21–29, Sept 2014.

[109] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben. Efficient Distribution
of Virtual Machines for Cloud Computing. In Parallel, Distributed and Network-
Based Processing (PDP), 2010 18th Euromicro International Conference on, pages
567–574, 2010.

[110] A. Sharma, A. Venkataramani, and A. A. Rocha. Pros & cons of model-based
bandwidth control for client-assisted content delivery. In 2014 Sixth International
Conference on Communication Systems and Networks (COMSNETS), pages 1–8,
Jan 2014.

[111] P. Sinha and A. A. Zoltners. The Multiple-Choice Knapsack Problem. Operations
Research, 27(3):503–515, 1979.

[112] Statista. Number of personal cloud storage users. http://www.statista.com/
statistics/499558/worldwide-personal-cloud-storage-users/.

[113] R. Steinmetz and K. Wehrle. What Is This “Peer-to-Peer” About?, pages 9–16.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[114] W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson.
A new major SETI project based on Project SERENDIP data and 100,000 personal
computers. In C. Batalli Cosmovici, S. Bowyer, and D. Werthimer, editors, IAU
Colloq. 161: Astronomical and Biochemical Origins and the Search for Life in the
Universe, page 729, Jan. 1997.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

https://www.ietf.org/rfc/rfc2818.txt
http://us.napster.com/
http://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users/
http://www.statista.com/statistics/499558/worldwide-personal-cloud-storage-users/

Bibliography 131

[115] R. Sweha, V. Ishakian, and A. Bestavros. Angels in the Cloud: A Peer-Assisted
Bulk-Synchronous Content Distribution Service. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 97–104, July 2011.

[116] R. Sweha, V. Ishakian, and A. Bestavros. AngelCast: Cloud-based Peer-assisted
Live Streaming Using Optimized Multi-tree Construction. In Proceedings of the
3rd Multimedia Systems Conference, MMSys ’12, pages 191–202, New York, NY,
USA, 2012. ACM.

[117] The qBittorrent project. qBittorrent. Free and reliable P2P BitTorent client.
http://www.qbittorrent.org/.

[118] L. Toka, M. Dell’Amico, and P. Michiardi. Online data backup: A peer-assisted ap-
proach. In 2010 IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P), pages 1–10. IEEE, 2010.

[119] Transmission Project. Transmission. A Fast, Easy and Free BitTorent Client.
https://transmissionbt.com/.

[120] H. Treasury. Combined Online Information System, June 2010. Available at
https://data.gov.uk/dataset/coins.

[121] J. Tyson. How the Old Napster Worked. http://computer.howstuffworks.com/
napster2.htm.

[122] J. Wang, C. Huang, and J. Li. On ISP-friendly Rate Allocation for Peer-assisted
VoD. In Proceedings of the 16th ACM International Conference on Multimedia,
MM ’08, pages 279–288, New York, NY, USA, 2008. ACM.

[123] L. Wang and J. Kangasharju. Measuring large-scale distributed systems: case of
BitTorrent Mainline DHT. In IEEE P2P 2013 Proceedings, pages 1–10, Sept 2013.

[124] B. Wei, G. Fedak, and F. Cappello. Scheduling Independent Tasks Sharing Large
Data Distributed with BitTorrent. In Proceedings of the 6th IEEE/ACM Interna-
tional Workshop on Grid Computing, GRID ’05, pages 219–226, Washington, DC,
USA, 2005. IEEE Computer Society.

[125] B. Wei, G. Fedak, and F. Cappello. Towards efficient data distribution on
computational desktop grids with BitTorrent . Future Generation Computer
Systems, 23(8):983 – 989, 2007.

[126] S. J. Wright. Primal-dual interior-point methods. Siam, 1997.

[127] C. J. Wu, C. Y. Li, and J. M. Ho. Improving the Download Time of BitTorrent-
Like Systems. In 2007 IEEE International Conference on Communications, pages
1125–1129, June 2007.

[128] N. Zeilemaker, M. Capotă, A. Bakker, and J. Pouwelse. Tribler: P2P Media
Search and Sharing. In Proceedings of the 19th ACM International Conference on
Multimedia, MM ’11, pages 739–742, New York, NY, USA, 2011. ACM.

[129] S. Zhang, N. Carlsson, D. Eager, Z. Li, and A. Mahanti. Dynamic File Bundling
for Large-scale Content Distribution. In Proceedings of the 2012 IEEE 37th
Conference on Local Computer Networks (LCN 2012), LCN ’12, pages 601–609.
IEEE Computer Society, 2012.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.qbittorrent.org/
https://transmissionbt.com/
https://data.gov.uk/dataset/coins
http://computer.howstuffworks.com/napster2.htm
http://computer.howstuffworks.com/napster2.htm

132 Bibliography

[130] S. Zhang, N. Carlsson, D. L. Eager, Z. Li, and A. Mahanti. Towards a Dynamic
File Bundling System for Large-Scale Content Distribution. In MASCOTS 2011,
19th Annual IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, Singapore, 25-27 July,
2011, pages 472–474, 2011.

[131] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs,
B. Wishon, and M. Ponec. Peer-assisted Content Distribution in Akamai Netsession.
In Proceedings of the 2013 Conference on Internet Measurement Conference, IMC
’13, pages 31–42, New York, NY, USA, 2013. ACM.

[132] K. Zhu, D. Niyato, and P. Wang. Optimal Bandwidth Allocation with Dynamic Ser-
vice Selection in Heterogeneous Wireless Networks. In Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE, pages 1–5, Dec 2010.

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

A
Inverting the Gain’s Formulas

The goal of this appendix is to reverse the equations of the gain
and get, for a given swarm s and a given file of size Fs, the amount of
bandwidth needed to be provided by the seed w∗s that satisfies the condition
Gains = τ . To emphasize the fact that w∗s is variable and its value can
change significantly the gain ratio, we denote the Gains by Gains(w

∗
s), as

follows:

Gains(w
∗
s) =



−αbt dmin,s
Fs

, if dmin,s ≤ w∗s
Ls

and dmin,s ≤ min
{
w∗s+ηs us Ls

Ls
, w∗s

}
1− w∗s

Ls dmin,s
− αbt w

∗
s

Fs Ls
, if

w∗s
Ls
≤ dmin,s and dmin,s ≤ min

{
w∗s+ηs us Ls

Ls
, w∗s

}
1− w∗s

w∗s+ηs us Ls
− αbt w

∗
s

Fs Ls
, if w∗s+ηs us Ls

Ls
≤ min {dmin,s, w∗s}

1− 1
Ls
− αbt w

∗
s

Fs Ls
, if ws ≤ min

{
dmin,s,

w∗s+ηs us Ls
Ls

}
.

Each of the interval condition is referred to by a case, as in the original
paper [75]:

• Case I: dmin,s ≤ w∗s
Ls

and dmin,s ≤ min
{
w∗s+ηs us Ls

Ls
, w∗s

}
,

• Case II: w∗s
Ls
≤ dmin,s and dmin,s ≤ min

{
w∗s+ηs us Ls

Ls
, w∗s

}
,

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

134 Appendix A. Inverting the Gain’s Formulas

• Case II: w∗s+ηs us Ls
Ls

≤ min {dmin,s, w∗s} ,

• Case IV: ws ≤ min
{
dmin,s,

w∗s+ηs us Ls
Ls

}
.

While inverting this equation and in order to be able to define correctly
the interval delimiters, we need to distinguish two different cases based on
the maximum of (Ls − 1) dmin,s and Ls ηs us:

• Case A: (Ls − 1) dmin,s ≥ Ls ηs us

• Case B: (Ls − 1) dmin,s ≤ Ls ηs us

Case A: (Ls− 1)dmin,s ≥ Ls ηsus

The general shape of the Gains(ws) function is given in Figure A.1. In
the following sections, we investigate the values o the interval delimiters:
lim1, lim2, lim3 and lim4, and the corresponding gain values: Gains(lim1),
Gains(lim2), Gains(lim3) and Gains(lim4).

Gain

ws
lim4 lim3 lim2 lim1

1

gain(lim1)

gain(lim2)

gain(lim3)

gain(lim4)

case IV case III case II case I

Figure A.1: General shape of the gain ratio as a function of the upload speed of the
seed for case A when (Ls − 1) dmin,s ≥ Ls ηs us

lim1 and Gains(lim1) The conditions of Case I are the followings:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

135


dmin,s ≤ w∗s

Ls

dmin,s ≤ w∗s+ηs Ls us
Ls

dmin,s ≤ w∗s

Ls≥1
ηs us≥0
=⇒

{
dmin,s ≤ w∗s

Ls
≤ w∗s

dmin,s ≤ w∗s
Ls
≤ w∗s+ηs Ls us

Ls

=⇒ w∗s ≥ Ls dmin,s
=⇒ lim1 = Lsdmin,s

The corresponding Gains(lim1) for Case I is as follows:

Gains(lim1)
caseI
= Gains(Ls dmin,s)

caseI
= −αbt.dmin,s

Fs

Resolution of the equation Gains(w
∗
s) = τ, ∀τ ∈]−∞,−αbt dmin,s

Fs
]

We have τ ∈]−∞,−αbt.dmin,s
Fs

] and Gains(w
∗
s) = τ .

This leads to Gains(w
∗
s) ∈]−∞,−αbt dmin,s

Fs
], thus w∗s ≥ Ls dmin,s.

Thus, ∀τ ∈] −∞,−αbt dmin,s
Fs

], the optimal bandwidth that should be al-
located to the swarm without violating the constraint Gains(w

∗
s) ≥ τ , is

w∗s = Lsdmin,s.

∀τ ∈
]
−∞,−αbt dmin,s

Fs

]
,
(

Gains(w
∗
s) = τ

)
⇒ (w∗s = Ls dmin,s)

lim2 and Gains(lim2) The conditions of Case II are as follows:
dmin,s ≥ w∗s

Ls

dmin,s ≤ w∗s+η.s Ls us
Ls

dmin,s ≤ w∗s

=⇒

{
w∗s ≥ dmin,s
w∗s ≥ Ls (dmin,s − ηs us)

=⇒ w∗s ≥ max (dmin,s, Ls (dmin,s − ηs us))
=⇒ lim2 = max (dmin,s, Ls (dmin,s − ηs us))

Case A
=⇒ lim2 = Ls (dmin,s − ηs us)

Let’s verify whether lim1≥lim2:

lim1 − lim2 = Ls dmin,s − Ls (dmin,s − ηs us)
= Ls dmin,s − Ls dmin,s + Ls ηs us

= Ls ηs us ≥ 0 (because Ls ≥ 1, ηs ≥ 0 and us ≥ 0)

The corresponding Gains(lim2) for Case II is as follows:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

136 Appendix A. Inverting the Gain’s Formulas

Gains(lim2)
caseII

= 1− Ls dmin,s−Ls ηs us
Ls dmin,s

− αbt(Ls dmin,s−Ls ηs us)
Fs Ls

= ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

This formula should be verified using the gain formula for Case III since
the two cases share the same border lim2:

Gains(lim2)
caseIII

= 1− Lsdmin,s−Ls ηs us
Lsdmin,s−Lsηsus+ηsLsus −

αbt(Lsdmin,s−Lsηsus)
Fs Ls

= ηs us
dmin,s

− αbt (dmin,s−ηs us)
Fs

We need now to verify whether Gains(lim2)≥Gains(lim1):

Gains(lim2)−Gains(lim1) = ηs us
dmin,s

− αbt (dmin,s−ηs us)
Fs

+
αbt dmin,s

Fs

= ηs us
dmin,s

+ αbt ηs us
Fs

≥ 0

Thus, Gains(lim2) ≥ Gains(lim1)

Resolution of the equation Gains(w
∗
s) = τ, ∀τ ∈

[
− αbt.dmin,s

Fs
, ηs us
dmin,s

−
αbt(dmin,s−ηs us)

Fs

]
We have Gains(w

∗
s) = τ and τ ∈

[
−αbt dmin,s

Fs
, ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

]
This means that Gains(w

∗
s) ∈

[
−αbt dmin,s

Fs
, ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

]
which

corresponds to the formula of the gain related to Case II.
Let’s try now to invert that formula in order to get an estimation of w∗s :

Gains(w
∗
s) = τ

case II⇐⇒ 1− w∗s
Ls.dmin,s

− αbt.w
∗
s

Fs Ls
= τ

⇐⇒ 1− τ = w∗s

(
1

Ls dmin,s
+ αbt

Fs Ls

)
⇐⇒ w∗s =

(1−τ)Fs Ls dmin,s
Fs + dmin,s αbt

We can then conclude that:

∀τ ∈
[
− αbt dmin,s

Fs
, ηs us
dmin,s

−αbt(dmin,s−ηs us)
Fs

]
,(

Gains(w
∗
s) = τ

)
⇒ w∗s =

(1−τ)Fs Ls dmin,s
F+dmin,s αbt

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

137

lim3 and Gains(lim3) The conditions of Case III are the followings:{
w∗s+ηs Ls us

Ls
≤ dmin,s

w∗s+ηs Ls us
Ls

≤ w∗s
=⇒

{
w∗s ≤ Ls(dmin,s − ηs us)
w∗s ≥

ηs Ls uq
Ls−1

=⇒ lim3 = ηs Ls us
Ls−1

Let’s verify whether lim2≥lim3:

lim2 − lim3 = Ls (dmin,s − ηs us)− ηs Ls us
Ls−1

= Ls
Ls−1 (Ls (dmin,s − ηs us)− dmin,s)

≥ 0 (because Ls > 1 and dmin,s ≤ Ls (dmin,s − ηs us))
The corresponding Gains(lim3) for Case III is:

Gains(lim3)
caseIII

= Gains

(
ηs Ls us
Ls−1

)
caseIII

= 1−
ηs Ls us
Ls−1

ηs Ls us
Ls−1 +ηs Ls us

−
αbt

ηsLs us
Ls−1

Fs Ls

= 1− ηs Ls us
ηs Ls us+ηs Ls us (Ls−1) −

αbt ηs us
(Ls−1)Fs

= 1− 1
Ls
− αbt ηs us

(Ls−1)Fs

This expression needs to be verified also using the gain formula for case IV
since the two cases share the same border lim3:

Gains(lim3)
caseIV

= Gains

(
ηs Ls us
Ls−1

)
caseIV

= 1− 1
Ls
−

αbt

(
ηs Ls us
Ls−1

)
Fs Ls

= 1− 1
Ls
− αbt ηs us

(Ls−1)Fs

We need now to verify whether Gains(lim3)≥Gains(lim2):

Gains(lim3) − Gains(lim2)

= 1− 1
Ls
− αbt ηs us

(Ls−1)Fs
− ηs us

dmin,s
+

αbt(dmin,s−ηs us)
Fs

=
[
1− 1

Ls
− ηs us

dmin,s

]
+
[
αbt dmin,s

Fs
− αbt ηs us Ls

Fs (Ls−1)

]
=

[
1

Lsdmin,s
+ αbt

Fs(Ls−1)

]
(Ls(dmin,s − ηsus)− dmin,s)

≥ 0 (since Ls > 1 and dmin,s ≤ Ls(dmin,s − ηs us))

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

138 Appendix A. Inverting the Gain’s Formulas

Thus, Gains(lim3) ≥ Gains(lim2)

Resolution of the equation Gains(w
∗
s) = τ, ∀τ ∈

[
ηs us
dmin,s

−
αbt(dmin,s−ηs us)

Fs
, 1− 1

Ls
− αbt ηs us

(Ls−1)Fs

]
We have:

{
Gains(w

∗
s) = τ

τ ∈
[
ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

, 1− 1
Ls
− αbt ηs us

(Ls−1)Fs

]
This means that:

Gains(w
∗
s) ∈

[
ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

, 1− 1
Ls
− αbt ηs us

(Ls−1)Fs

]
which corresponds to the formula of the gain related to Case III.
Let’s try now to invert that formula in order to get an estimation of w∗s .

Gains(w
∗
s) = τ

case III⇐⇒ 1− w∗s
w∗s+ηs Ls us

− αbt w
∗
s

Fs Ls
= τ

Since the resolution of this equation is quite complex, we can simplify it
by introducing the following symbols: a = ηs Ls us, b = αbt

Fs Ls
and c = τ .

The simplified equation becomes:

1− w∗s
w∗s+a − bw

∗
s = c

To solve this second degree equation, we use an online solver 1 and obtain
the following solutions:

w∗s1 =
√
a2 b2−2 a b c+4 a b+c2−a b−c

2 b

ws∗2 =
−(
√
a2 b2−2 a b c+4 a b+c2+a b+c)

2 b

Clearly, w∗s2 < 0, so it cannot be considered as a solution. Then, we can
conclude that:

∀τ ∈
[
ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

,1− 1
Ls
− αbt ηs us

(Ls−1)Fs

]
,(

Gains(w
∗
s) = τ

)
=⇒ w∗s =

√
a2 b2−2 a b c+4 a b+c2−a b−c

2 b

where a = ηs Ls us, b = αbt
Fs Ls

, and c = τ

1The online solver is available at: http://www.wolframalpha.com

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

http://www.wolframalpha.com

139

lim4 and Gains(lim4) The conditions of Case IV are as follows:{
w∗s ≤

w∗s+ηs Ls us
Ls

w∗s ≤ dmin,s
=⇒

{
w∗s ≤

ηs Ls u
Ls−1 (lim2)

w∗s ≤ dmin,s

We need compare dmin,s and ηs Ls us
Ls−1 in order to verify lim3.

dmin,s − ηsLsus
Ls−1 =

(Ls−1) dmin,s−ηs Ls us
Ls−1 =

Ls (dmin,s−ηs us)−dmin,s
Ls−1

≥ 0 (because Ls > 1 & dmin,s ≤ Ls(dmin,s − ηsus))
Thus lim3’s definition is correct and there no analytic definition for

lim4. We can suppose that it can be equal to 0 since w∗s can only be
positive (or equal to 0). So, we can suppose that lim4 = 0, even thought
attaining that limit means that the download might be interrupted.

We need now to calculate lim
w∗s→0

Gains(w
∗
s) that will be considered the

upper bound of the gain values:

lim
w∗s→0

(Gains(w
∗
s))

caseIV
= lim

w∗s→0

(
1− 1

Ls
− αbt w

∗
s

F Ls

)
= 1− 1

Ls

Resolution of the equation Gains(w
∗
s) = τ,∀τ ∈

[
1− 1

Ls
− αbtηsus

(Ls−1)Fs
,

1− 1
Ls

[
We have: Gains(w

∗
s) = τ and τ ∈

[
1− 1

Ls
− αbt ηs us

(Ls−1)Fs
, 1− 1

Ls

[
This means that Gains(w

∗
s) ∈

[
1− 1

Ls
− αbt ηs us

(Ls−1)Fs
, 1− 1

Ls

[
, which corre-

sponds to the formula of the gain related to Case IV. Let’s try now to
invert that formula in order to get an estimation of ws:

Gains(w
∗
s) = τ

case IV⇐⇒ 1− 1
Ls
− αbt w

∗
s

Fs Ls
= τ

⇐⇒ αbt w
∗
s

Fs Ls
= 1− 1

Ls
− τ

⇐⇒ w∗s = Fs Ls
αbt

(
Ls (1−τ)−1

Ls

)
⇐⇒ w∗s = Fs [Ls (1−τ)−1]

αbt

We can then conclude that:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

140 Appendix A. Inverting the Gain’s Formulas

∀τ ∈
[
1− 1

Ls
− αbt η u

(Ls−1)Fs
, 1− 1

Ls

[
,(

Gains(w
∗
s) = τ

)
⇒ w∗s = Fs [Ls (1−τ)−1]

αbt

General conclusion for Case A: The equation: Gains(w
∗
s) = τ has

the following solution:

w∗s =



Ls dmin,s, ∀τ ∈
]
−∞,−αbtdmin,s

Fs

]
(1− τ)Fs Ls dmin,s
Fs + dmin,s αbt

, ∀τ ∈
[
−αbt dmin,s

Fs
,
ηs us
dmin,s

− αbt (dmin,s − ηs us)
Fs

]
√
a2b2 − 2abc+ 4ab+ c2 − ab− c

2 b
, ∀τ ∈

[
ηs us
dmin,s

− αbt(dmin,s − ηs us)
Fs

, 1− 1

Ls
− αbt ηs us

(Ls − 1)Fs

]
Fs [Ls (1− τ)− 1]

αbt
, ∀τ ∈

[
1− 1

Ls
− αbt ηs us

(Ls − 1)Fs
, 1− 1

Ls

[
6 ∃, ∀τ ∈

[
1− 1

Ls
,+∞

[
Where: a = ηs Ls us, b = αbt

Fs Ls
and c = τ .

Case B: (Ls− 1)dmin,s ≤ Ls ηsus
In this case, the intervals and the delimiters are not as evident as in

Case A. So let’s start first by studying the limits in the gain cases and try
to locate the cases based on their order.

Fixing the interval delimiters

For each interval, we part from its constraints and determine the range
of values of w∗s in each of these intervals. The goal is to verify if theses
intervals are disjoint and do not superimpose.

1. lim1 (Case I)
dmin,s ≤ w∗s

Ls

dmin,s ≤ w∗s+ηs Ls us
Ls

dmin,s ≤ w∗s

=⇒ dmin,s ≤ w∗s
Ls

=⇒ w∗s ≥ lim1 = Ls dmin,s

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

141

2. lim2 (Case II)


dmin,s ≥ w∗s

Ls

dmin,s ≤ w∗s+ηs Ls us
Ls

dmin,s ≤ w∗s

=⇒


w∗s ≤ Ls dmin,s = lim1

w∗s ≥ dmin,s
w∗s ≥ Ls(dmin,s − ηs us)

Case B
=⇒

w
∗
s ≤ lim1

w∗s ≥ dmin,s = lim2

Comparing lim1 and lim2: We know that Ls > 1 and dmin,s > 0.
Thus Ls dmin,s > dmin,s ⇒ lim1 > lim2

Figure A.2: Delimiter lim2 and intervals for Case II

3. lim3 and lim2p (Case III)

{
w∗s+ηs Ls us

Ls
≤ dmin,s

w∗s+ηs Ls us
Ls

≤ w∗s
⇒

{
w∗s ≤ Ls(dmin,s − ηsus) = lim2p

w∗s ≥
η Ls us
Ls−1 = lim3

Comparing lim2p and lim2: Based on the conditions of Case B,
we already know that lim2p ≤ lim2

Comparing lim3 and lim2:

lim3 − lim2 = ηs Ls us
Ls−1 − dmin,s

=
ηs Ls us−(Ls−1) dmin,s

Ls−1

= 1
Ls−1 (dmin,s − Ls (dmin,s − ηs us))

≥ 0 (because Ls > 1 and dmin,s ≥ Ls(dmin,s − ηs us))
⇒ lim3 ≥ lim2

Comparing lim3 and lim1:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

142 Appendix A. Inverting the Gain’s Formulas

lim3 − lim1 = ηs Ls us
Ls−1 − Ls dmin,s =

ηs Ls us−Ls(Ls−1).dmin,s
Ls−1

=
(Ls (dmin,s−ηs us)−L2

s dmin,s)
Ls−1

Since

{
dmin,s ≥ Ls(dmin,s − ηs us)
L2
s dmin,s ≥ dmin,s

=⇒ L2
s dmin,s ≥ Ls(dmin,s − ηs us)

Thus lim3 − lim1 ≤ 0 =⇒ lim1 ≥ lim3

Figure A.3: Delimiter lim2p and lim3 and intervals for Case III

4. lim4: (Case IV)

{
w∗s ≤

ws+ηs Ls us
Ls

w∗s ≤ dmin,s
=⇒

{
w∗s ≤

ηs Ls us
Ls−1

w∗s ≤ dmin,s

=⇒

{
w∗s ≤ lim3

w∗s ≤ lim2

lim3≥lim2=⇒ w∗s ≤ lim2

Figure A.4: Intervals for Case IV

Interpretation of the superimposed cases

Based on Figure A.4, we can distinguish 3 intervals where there are
superimposed cases which are:

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

143

• Interval 1:]−∞, lim2p] =]−∞, Ls (dmin,s − ηs us)] : superimposi-
tion of Cases IV and III,

• Interval 2: [lim3, lim1] =
[
ηs Ls us
Ls−1 , Ls dmin,s

]
: superimposition of

Cases II and III,

• Interval 3: [lim1,+∞[= [Ls dmin,s,+∞[: superimposition of Cases
I and III.

Let’s check interval by interval the implications of such a superimposition.
For each interval we will define the new constraints resulting from the
intersection of the corresponding cases and define accordingly the gain
expression. The goal is to demonstrate that the solution will be the same
for both cases.

1. Interval 1:


Case IV :

{
w∗s ≤ dmin,s
w∗s ≤

w∗s+ηs Ls us
Ls

Case III :

{
w∗s+ηs Ls us

Ls
≤ dmin,s

w∗s+ηs Ls us
Ls

≤ w∗s

=⇒ w∗s = Ls ηs us
Ls−1

Verification of the gain expression in both cases: Let’s now
verify that Gain(ws, s) has the same expression in both cases IV and
III when w∗s = ηs Ls us

Ls−1 .

Gains

(
Ls ηs us
Ls−1

)
case IV

= 1− 1
Ls
−

αbt
ηs Ls us
Ls−1

Fs Ls
= 1− 1

Ls
− αbt ηs us

Fs (Ls−1)

Gains

(
ηs Ls us
Ls−1

)
case III

= 1−
ηs Ls us
Ls−1

ηs Ls us
Ls−1 +ηs Ls us

−
αbt

ηs Ls us
Ls−1

Fs Ls

= 1− 1
1+(Ls−1) −

αbt.ηs us
Fs (Ls−1)

= 1− 1
Ls
− αbt.ηs us

Fs (Ls−1)

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

144 Appendix A. Inverting the Gain’s Formulas

For this interval, both cases have the same expression. Thus, we can
just consider just one of the cases instead of working with both. The
best choice seems to be Case IV since it has a simpler formulas.

2. Interval 2:
Case II :


dmin,s ≥ w∗s

Ls

dmin,s ≤ w∗s+ηs Ls us
Ls

dmin,s ≤ w∗s

Case III :

{
w∗s+ηs Ls us

Ls
≤ dmin,s

w∗s+ηs Ls us
Ls

≤ w∗s

=⇒ w∗s = Ls (dmin,s − ηs us)

Verification of the gain expression in both cases: Let’s now
verify that Gains(w

∗
s) has the same expression in both Cases II and

III, when w∗s = Ls (dmin,s − ηs us).

Gains(Lsdmin,s)
case II

= 1− Ls (dmin,s−ηs us)
Lsdmin,s

− αbt Ls (dmin,s−ηs us)
Fs Ls

Gains(Lsdmin,s)
case III

= 1− Ls(dmin,s−ηsus)
Ls(dmin,s−ηsus)+ηsLsus −

αbtLs(dmin,s−ηsus)
Fs Ls

= 1− Ls(dmin,s−ηsus)
Ls dmin,s

− αbt Ls (dmin,s−ηs us)
Fs Ls

For this interval, both cases have the same expression. Thus, we can
just consider just one of the cases instead of working with both. The
best choice seems to be Case II since it has a simpler formulas.

3. Interval 3:
Case I :


dmin,s ≤ w∗s

Ls

dmin,s ≤ w∗s+ηs Ls us
Ls

dmin,s ≤ w∗s

Case III :

{
w∗s+ηs Ls us

Ls
≤ dmin,s

w∗s+ηs Ls us
Ls

≤ w∗s

Ls>1
=⇒ dmin,s = w∗s+ηs Ls us

Ls
≤ w∗s

Ls

Ls≥1
ηsus≥0
=⇒

{
dmin,s = w∗s+ηs Ls us

Ls

ηs Ls us = 0
=⇒ w∗s = Ls dmin,s

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

145

Verification of the gain expression in both cases: Let’s now
erify that Gains(w

∗
s) has the same expression in both Cases II and

III when w∗s = Ls dmin,s.

Gains(Ls.dmin,s)
case III

= 1− Ls dmin,s
Ls dmin,s+ηs Ls us

− αbt Ls dmin,s
Fs Ls

ηs us=0
= 1− 1− αbt dmin,s

Fs

= −αbt dmin,s
Fs

case I
= Gains(Ls dmin,s)

For this interval, both cases have the same expression. Thus, we can
consider just one of the cases instead of working with both. The best
choice seems to be Case I since it has a simpler formulas.

After the verification of the superimposed intervals, we can just consider
the following intervals (Figure A.5).

Figure A.5: Final intervals to be considered for Case B

Inverting the gain

The goal of this section is to derive a potential equation of the gain ratio
as a function of the seed’s upload speed. The general shape of that function
is given in Figure A.1. We have already defined the intervals delimiters:
lim1 and lim2 and lim3. We just need to verify the corresponding gain
values: Gains(lim1),Gains(lim2) and Gains(lim3) that should be equal
to the ones already defined in Case A.

lim1 and Gains(lim1) We have already found that lim1 = Ls dmin,s.
The corresponding gain has been already calculated and verified for both
Case I and Case II. It is equal to: Gains(lim1) = −αbt dmin,s

Fs
.

Resolution of the equation Gains(w
∗
s) = τ,∀τ ∈

]
−∞,−αbtdmin,s

Fs

]

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

146 Appendix A. Inverting the Gain’s Formulas

Gain

ws
lim3 lim2 lim1

1

gain(lim1)

gain(lim2)

gain(lim3)

case IV case II case I

Figure A.6: General shape of the gain ratio as a function of the upload speed of the
seed for Case B when max(dmin,s, Ls (dmin,s − ηs us)) = dmin,s

Since τ ∈
]
−∞,−αbt dmin,s

Fs

]
and Gains(w

∗
s) = τ .

This leads to Gains(w
∗
s) ∈

]
−∞,−αbt dmin,s

Fs

]
, thus, w∗s ≥ Ls dmin,s.

Thus, ∀τ ∈
]
−∞,−αbt dmin,s

Fs

]
, the optimal bandwidth that should be

allocated to the swarm without violating the constraint (Gains(w
∗
s) ≥ τ)

is w∗s = Ls dmin,s.

∀τ ∈
]
−∞,−αbt dmin,s

F

]
, (Gains(w

∗
s) = τ)⇒ (w∗s = Ls dmin,s)

lim2 and Gains(lim2) We have already found that lim2 = dmin,s.

Now, we need to calculate Gains(dmin,s) for both Cases II and IV and we
should obtain the same value to which we will refer to as: Gains(lim2).

Gains(dmin,s)
case II

= 1− dmin,s
Ls dmin,s

− αbt dmin,s
Fs Ls

= 1− 1
Ls
− αbt dmin,s

Fs Ls

case IV
= Gains(dmin,s)

We obtain finally that: Gains(lim2) = 1− 1
Ls
− αbt dmin,s

Fs Ls
.

Resolution of the equation Gains(w
∗
s) = τ,∀τ ∈

[
− αbt dmin,s

Fs
, 1− 1

Ls
−

αbt dmin,s
Fs Ls

]
Since τ ∈

[
−αbt dmin,s

Fs
, 1− 1

Ls
− αbt dmin,s

Fs Ls

]
and Gains(w

∗
s) = τ .

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

147

This leads to Gains(w
∗
s) ∈

[
−αbt dmin,s

Fs
, 1− 1

Ls
− αbt dmin,s

Fs Ls

]
, which corre-

sponds to the formula of the gain related to Case II.
Let’s try now to invert that formula in order to get an estimation of w∗s :

Gains(w
∗
s) = τ

case II⇐⇒ 1− ws
Ls dmin,s

− αbt ws
Fs Ls

= τ

⇐⇒ 1− τ = ws

(
1

Ls dmin,s
+ αbt

Fs Ls

)
⇐⇒ ws =

(1−τ)Fs Ls dmin,s
Fs+dmin,s αbt

We can then conclude that:

∀τ ∈
[
− αbt dmin,s

Fs
,1− 1

Ls
− αbt dmin,s

Fs Ls

]
,

(Gains(w
∗
s) = τ)⇒ w∗s =

(1−τ)Fs Ls dmin,s
Fs+dmin,s αbt

lim3 and Gains(lim3) the definition of these parameters is very similar
to the one done for lim4 and Gain(lim4, s) in Case A.

Since ws can only be positive (or equal to 0), we can suppose that lim3 = 0
even thought attaining that limit means that the download might be
interrupted.

We need now to calculate lim
w∗s→lim3

Gains(w
∗
s) that will be considered as the

upper bound of the gain values:

lim
w∗s→lim3

(Gains(w
∗
s))

caseIV
= lim

w∗s→0
1− 1

Ls
− αbtw

∗
s

Fs Ls
= 1− 1

Ls
= Gains(lim3)

Resolution of the equation Gains(w
∗
s) = τ, ∀τ ∈

[
1− 1

Ls
− αbt dmin,s

Fs Ls
, 1−

1
Ls

[
We have: Gains(w

∗
s) = τ and τ ∈

[
1− 1

Ls
− αbt dmin,s

Fs Ls
, 1− 1

Ls

[
This means that Gains(w

∗
s) ∈

[
1− 1

Ls
− αbt dmin,s

Fs Ls
, 1− 1

Ls

[
which corre-

sponds to the formula of the gain related to Case IV.

Let’s try now to invert that formula in order to get an estimation of w∗s .

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

148 Appendix A. Inverting the Gain’s Formulas

Gains(w
∗
s) = τ

case IV⇐⇒ 1− 1
Ls
− αbt w

∗
s

Fs Ls
= τ

⇐⇒ αbt ws
Fs Ls

= 1− 1
Ls
− τ

⇐⇒ w∗s = Fs Ls
αbt

(
Ls (1−τ)−1

Ls

)
⇐⇒ w∗s = Fs [Ls(1−τ)−1]

αbt

We can then conclude that:

∀τ ∈
[
1− 1

Ls
− αbt dmin,s

Fs Ls
, 1− 1

Ls

[
,

(Gains(w
∗
s) = τ)⇒ w∗s = Fs (Ls (1−τ)−1)

αbt

General conclusion for Case B: The equation: Gains(w
∗
s) = τ has

the following solution.

w∗s =



Ls dmin,s, ∀τ ∈
]
−∞,−αbt dmin,s

Fs

]
(1−τ)Fs Ls.dmin,s
Fs+dmin,s αbt

, ∀τ ∈
[
−αbt dmin,s

Fs
, 1− 1

Ls
− αbt dmin,s

Fs Ls

]
Fs [Ls(1−τ)−1]

αbt
, ∀τ ∈

[
1− 1

Ls
− αbt dmin,s

Fs Ls
, 1− 1

Ls

[
6 ∃, ∀τ ∈

[
1− 1

Ls
,+∞

[

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

UNIVERSITAT ROVIRA I VIRGILI
EFFICIENT BITTORRENT-LIKE CONTENT DISTRIBUTION FOR CLOUD STORAGE SERVICES
Rahma Chaabouni

	Introduction
	Background
	Content Distribution Paradigms
	The Client-Server Model
	The Peer-to-Peer Model
	The Peer-Assisted Model

	The Content Distribution Scenario
	Download Time in the Client-Server Model
	Download Time in the Peer-Assisted Model

	The BitTorrent Protocol in a Nutshell
	Personal Cloud Systems
	Overview and Examples
	Architecture

	The Ubuntu One Trace
	The Ubuntu One System
	Trace Description

	State of the Art
	Content Distribution Paradigms
	Peer-Assisted Content Distribution
	The BitTorrent Protocol

	Bandwidth Allocation Problem
	Bundling in BitTorrent
	Personal Clouds

	Protocol Decision Strategy
	Introduction
	Trade-offs Between HTTP and BitTorrent
	BitTorrent Can Be Efficient for Small Files
	Download Time with BitTorrent
	Gain and Offload Ratios

	The Protocol Decision Strategy
	Download Scenario
	Switching Constraints
	Switching Algorithm

	Application Scenario: Personal Clouds
	Sharing and Synchronization
	Extending Personal Clouds with BitTorrent
	Implication of the Switching Algorithm

	Conclusions

	Bandwidth Allocation Strategy
	Introduction
	Bandwidth Allocation Problem
	Solving the Equation Gainwsbrs
	Bandwidth Allocation Algorithm
	Application Scenario: Personal Clouds
	Experimental Settings
	Implications of the Bandwidth Allocation Algorithm
	Modified Trace: Bigger Shared Files
	Performance of the Bandwidth Allocation Algorithm

	Conclusions

	Cross-swarm Bundling
	Introduction
	Cross-Swarm Bundling Model
	Bundling Can Reduce Download Times
	Average Case Analysis
	Implementing Bundling in Data Centers
	Bundling Metric: Expected Gain in Download Time
	Finding the Optimal Solution
	Security Concerns

	Application Scenario: Personal Clouds
	 Experimental Settings
	Implications of Cross-Swarm Bundling

	Conclusions

	Conclusions
	Summary and Findings
	Summary of contributions
	Discussion

	Publications
	Directions for Future Works

	References
	Appendix Inverting the Gain's Formulas

