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Abstract 

 

Natural disasters, such as landslides triggered by heavy rains, rock deformations and soil 

cracking in presence of temperature changes and other phenomena related to climatic 

actions, show the relevance of investigating the effects of the interactions between the 

atmosphere and the earth ground surface where main human activities develop. The 

prediction of such hazard requires an adequate knowledge of the changes in hydro-

geological conditions under climatic actions. Having advanced constitutive models able to 

predict the thermo-hydro-mechanical response of natural soils in unsaturated and non-

isothermal conditions is also necessary to this end. 

The topic of this dissertation is the modeling of the soil-atmosphere interactions and its 

application to several geotechnical problems. Soil-atmosphere interactions encompass 

heat and mass exchanges (air, water). They have been modeled following Noilhan (1988) 

approach which includes evaporation and transpiration, sensible heat exchange, net 

radiation and heat convected by air and water flow. The modeling of these interactions is 

integrated within a thermodynamic investigation of behaviour of three-phase porous 

medium in order to provide a general comprehension of the addressed problem. A 

thermo-hydro-mechanical code provided with a specific boundary condition for heat and 

mass exchange between the ground and the atmosphere have been enhanced, particularly 

by the addition of a module to cope with transpiration according to vegetation 

characteristics. 

Soil-vegetation-atmosphere interaction model have been coupled with thermo-hydro-

mechanical models in the framework of the finite element code. In order to ensure good 

computational characteristics, the models have been derived from the general frameworks 

of poro-mechanics and hyperplasticity for saturated, unsaturated and non-isothermal 

geological media and implemented using modern algorithms based on the optimization 

techniques such as the interior-point algorithms. 

Studies of several cases have been carried out with the model, all validated with field data. 

They include: (a) the change in moisture content in an experimental field of the National 

Meteorological service in France, (b) the response of a foundation of collapsible silt layer 

and (c) the stability of a rock cliff located at Roque Gageac site - France. Results show the 

ability of the model to represent properly water and heat exchange between the soil and 
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the atmosphere and to successfully overcome difficult modeling issues such as the 

occurrence of traction failure due temperature gradients and plastic zone under the 

foundation. Some practical conclusions have been also shown concerning the bearing 

capacity of a foundation on an unsaturated soil layer and the stability of rock block 

interpreted as a cantilever bean under climatic actions.  
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Resumen 

 

Desastres naturales, tales como el desencadenamiento de deslizamientos, deformación en 

macizos rocosos y fisuración de suelos en presencia de cambio de temperatura y otros 

fenómenos relacionados a acciones climáticas, evidencian la importancia de investigar los 

efectos de las interacciones entre la atmosfera y la superficie de la tierra, donde se 

desarrollan las principales actividades humanas. 

La predicción de tales deslizamientos requiere un conocimiento adecuado de los cambios 

de las condiciones hidrogeológicas bajo acciones climáticas. Con este fin es necesario 

disponer de modelos constitutivos avanzados capaces de predecir la respuesta termo-

hidro-mecánica de suelos naturales en condiciones parcialmente saturadas y no 

isotérmicas  

El objeto de esta tesis es el modelado de las interacciones suelo-atmósfera y su aplicación 

a diversos problemas geotécnicos. Las interacciones suelo-atmosfera contemplan el 

intercambio de calor y masa (aire, agua). Ellas has sido modeladas siguiendo el enfoque 

propuesto por Noilhan (1988) que  incluye flujos de evaporación y transpiración, el calor 

sensible intercambiado, la radiación neta y el calor de convección debido a flujos aire y 

agua. El modelado de estas interacciones se integra dentro de un estudio termodinámico 

del comportamiento del medio poroso no saturado con tal de proveer un entendimiento 

general del problema abordado. Un código termo-hidro-mecánico provisto con una 

condición de contorno específica para el intercambio de calor y masa entre el suelo y la 

atmosfera ha sido mejorado, en particular un modulo para modelar la transpiración de 

acuerdo a las características de la vegetación ha sido añadido. 

El modelo de interacción suelo-vegetación-atmosfera ha sido acoplado con modelos 

termo-hidro-mecánicos en el marco de un código de elementos finitos. A fin de asegurar 

buenas características computacionales, los modelos han sido desarrollados desde marcos 

generales de la poro-mecánica y la hiperplasticidad para medios geológicos saturados, 

parcialmente saturados y no-isotérmicos e implementados usando algoritmos modernos 

basados en técnicas de optimización como algoritmos de punto-interior. 

El estudio de varios casos ha sido llevado a cabo con el modelo propuesto, todos ellos 

validados con datos de campo. Incluyendo: (a) el cambio del contenido de humedad en un 

campo experimental del servicio Meteorológico Nacional en Francia, (b) la respuesta de 



5 
 

una fundación de una capa limo-arcillosa colapsable y (c) la estabilidad de un acantilado 

ubicado en Roque Gageac - Francia. Los resultados muestran la habilidad del modelo para 

representar adecuadamente los intercambios de agua y calor entre el suelo y la atmosfera 

y superar satisfactoriamente problemas complejos de modelación tales como la falla por 

tracción debido a gradientes de temperatura y zonas plásticas bajo fundación. Se 

presentan conclusiones prácticas a cerca de la capacidad de carga de una fundación sobre 

una capa de suelo parcialmente saturada y la estabilidad de un bloque de roca 

interpretado como una viga voladizo sometida a acciones climáticas. 
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Resum 

 

Desastres naturals, tals com el desencadenament d’esllavissades, deformació en massissos 

rocosos, fissuració de sòls en presència de canvis de temperatura i altres fenòmens 

relacionats amb accions climàtiques, evidencien la importància d’investigar els efectes de 

les interaccions entre l’atmosfera i la superfície de la Terra, on es desenvolupen les 

principals activitats humanes. 

La predicció de tals esllavissades requereix un coneixement adequat dels canvis de les 

condicions hidrogeològiques sota accions climàtiques. Amb aquest fi és necessari disposar 

de models constitutius avançats capaços de predir la resposta temo-hidro-mecànica de 

sòls naturals en condicions parcialment saturades i no isotèrmiques. 

L’objectiu d’aquesta tesi és la modelització de les interaccions sòl-atmosfera i la seva 

aplicació a diversos problemes geotècnics. Les interaccions sòl-atmosfera contemplen 

l’intercanvi de calor i massa (aire, aigua). Elles han estat modelades seguint l’enfoc 

proposat per Noilhan (1988) que inclou fluxos d’evaporació i transpiració, la calor 

sensible intercanviada, la radiació neta i la calor de convecció degut a fluxos d’aire i aigua. 

La modelització d’aquestes interaccions s’integra dins d’un estudi termodinàmic del 

comportament del medi porós no saturat per tal de proveir un enteniment general del 

problema abordat. Un codi termo-hidro-mecànic proveït amb una condició de contorn 

específica per l’intercanvi de calor i massa entre el sòl i l’atmosfera ha estat millorat, en 

particular un mòdul per modelitzar la transpiració d’acord amb les característiques de la 

vegetació ha estat afegit. 

El model d’interacció sòl-vegetació-atmosfera ha estat acoblat amb models termo-hidro-

mecànics en el marc d’un codi d’elements finits. Per tal d’assegurar bones característiques 

computacionals, els models han estat desenvolupats des de marcs generals de la poro-

mecànica i la hiperplasticitat per a medis geològics saturats, parcialment saturats i no-

isotèrmics i implementats utilitzant algoritmes moderns basats en tècniques 

d’optimització amb algoritmes de punt-interior. 

L’estudi de diversos casos ha estat dut a terme amb el model proposat, tots ells han estat 

validats amb dades de camp. Incloent: (a) el canvi del contingut d’humitat en un camp 

experimental del servei Meteorològic Nacional a França, (b) la resposta d’una 

fonamentació d’una capa llimo-argilosa col·lapsable i (c) l’estabilitat d’un penya-segat 
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situat a Roque Gageac – França. Els resultats mostren l’habilitat del model per representar 

adequadament els intercanvis d’aigua i calor entre el sòl i l’atmosfera i superar 

satisfactòriament problemes complexes de modelització tals com la ruptura per tracció 

degut a gradients de temperatura i zones plàstiques sota una fonamentació. Es presenten 

conclusions pràctiques referents a la capacitat de càrrega d’una fonamentació sobre una 

capa de sòl parcialment saturada i l’estabilitat d’un bloc de roca interpretat com una biga 

en voladís sotmesa a accions climàtiques.  
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CHAPTER 1 

 

 

INTRODUCTION AND ORGANIZATION OF THE THESIS 

 

 

Natural disasters, such as landslides triggered by heavy rains, rock deformations and soil 

cracking in presence of temperature changes and other phenomena related to climatic 

actions, show the relevance of investigating the effects of the interactions between the 

atmosphere and the earth ground surface where main human activities develop. 

An example of such disasters is the case of the failure observed in Naples on September 

15th 2001 and mentioned by Gens (2010). In this case, a heavy rainstorm with a rainfall 

intensity of 130–160 mm during 3 hour caused the failure of a foundation on a natural 

loose pyroclastic material which had remained stable for a long time. It was observed that 

maximum collapse settlement reached 200mm, which corresponded to an estimated 

water table rise of 12m. 

Another remarkable case is to the collapse of a large zone of the Pereira Barreto town 

(Gens (2010)) located on the right-hand bank of Tietê River, near the confluence with the 

Paraná River in the North West of Sao Paulo State in Brazil. 

The town is founded on a thick layer of collapsible colluvial soil that overlies a residual soil 

with a thin gravel layer separating colluvium and residual soil. 
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The ground water table rise caused collapse settlements of more than 100mm that 

affected buildings founded in the zone identified as collapsible by SPT and CPT tests in the 

shoreline of the hydroelectric plant.  

The prediction of such hazard requires a good knowledge of the changes in hydro-

geological conditions under climatic actions as well as the availability of advanced models 

able to predict the thermo-hydro-mechanical response of natural soils in unsaturated and 

non-isothermal conditions.  

This dissertation aims to provide advances in the modeling of realistic cases of soil-

atmosphere interactions. For this purpose several directions have been followed: 

(a) development of a module for soil-vegetation-atmosphere interactions, 

(b) development of advance constitutive model frameworks and constitutive laws for the 

response of geological material to mechanical and environmental (suction, temperature) 

actions. (c) development of robust integration algorithms based on optimization 

techniques and modern algorithms. 

The dissertation is divided in nine chapters. Chapter 1 and Chapter 9 contain the 

introduction and  final conclusions of the thesis. 

Chapter 2 addresses the formulation of a model for soil-atmosphere interactions in a 

thermodynamic framework of the equations governing the thermo-hydro-mechanical 

behaviour of porous media (Olivella (1994), Houlsby (2005), Gens (2010)). 

It includes a boundary condition modelling different exchange fluxes between the soil and 

the atmosphere: water (     ), air (     ) and energy (     
) (Penman (1948), Monteith 

(1965) and Noilhan (1996)). 

A sensitivity analysis on soil, atmosphere and vegetation properties is then presented and 

several conclusions drawn on the main parameters governing soil-vegetation-atmosphere 

interactions. 

Chapter 3 presents a theory of plasticity derived from thermomechanical principles. Two 

consolidated frameworks are revisited: (a) poro-elastoplasticity and (b) hyperplasticity. 

Both frameworks are merge into one thermomechanical consistent framework able to 

model soil response in partially saturated conditions.  
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Thermomechanical bases, for biphasic porous materials are first addressed. It leads to 

identify and couple different types of energies (elastic energy, trapped energy and 

dissipation energy) within the general theoretical framework of plasticity. 

The study of three-phase porous media is addressed by extending the proposed 

thermomechanical approach. 

Derivation of the conjugate variables defining the response of unsaturated soils is first 

presented, then state equations linking the different conjugate variables are derived by 

proposing general layouts for the energy functions    and   . 

A kinematical hardening model is presented to reproduce hysteretic retention curves 

behaviour. 

Chapter 4 contains developments of particular constitutive models of practical importance 

for soil-vegetation-atmosphere interactions problems. Those models are derived within 

the thermomechanical framework studied in chapter 3. 

The addressed models are: 

- Water retention with and without hysteresis 

- Thermo-hydro-mechanical elastic law 

- Suction dependent critical state models of type: (a) Barcelona Basic Model " BBM-

like", Alonso (1990) and (b) Hyperplastic CASM Model "HP-CASM", Yu (2006) 

- Temperature and suction dependent frictional models: Drucker-Prager and 

Matsuoka-Nakai yield criterion. 

 

For the water retention curve, a simplified van Genuchten law is proposed. This law 

admits a closed-form integration and allows for the derivation of an energy potential for 

the air-liquid interface. In this regard, a force potential is presented to model the retention 

hysteresis.  

For the BBM-like and HP-CASM models dissipation potentials, as function of primary 

environmental variables, have been then presented.  

Elastic potentials presented by Houlsby (2005) have been extended in order to consider 

the effects of: (a) suction due to partial saturation, (b) thermal strains due to temperature 

changes and (c) water retention dependency on mean stress.  
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Finally two cohesive-frictional models have been reviewed within the hyperplastic 

framework: the Drucker-Prager and the Matsuoka-Nakai models, with special attention 

paid to the expression of dissipation function and its consequences in terms of material 

dilatant behaviour. 

Chapter 5 addresses the numerical integration of constitutive model studied in chapter 4. 

The advantage of formulating elastoplastic models by defining the internal and the 

dissipation potentials is exploited at time of integration by using mathematical 

programming tools. 

Lagrange functionals (   ) are minimized leading to proper variational structures. These 

structures will allow to determine optimal points which are the solution for the return 

plastic mapping. Two types of integration algorithms will be addressed and their 

advantages and benefits discussed:  

a)  Return mapping by the closest-point projection 

b)  Return mapping by the interior-point method 

Moreover, an additional method, Line-search method, has been included to control the 

time step-size taken at each correction. 

Chapter 6 aims to analyze an experimental fallow field under climatic actions. The field is 

extensively instrumented in order to register soil water content and temperature 

measurements, at different depths in the upper soil layer. Evaporation, long and short 

wave radiation, biomass variation are also measured. 

The soil-atmosphere interaction will show to have a great influence on the topsoil layer. It 

will also show the relevance of transpiration flow over evaporation flow in the 

summertime. It will be seen that this relevance is reversed in winter time.  

The numerical results appeared to well reproduce the field measurements of water 

content ( ) and temperature ( ) at different depths,  thus validating the soil-atmosphere 

model studied in chapter 2. 

Chapter 7 addresses the response of a shallow foundation under climatic actions. The BVP 

model is initially calibrated by comparison with a physical model at laboratory scale 

carried out in the centrifuge of the laboratory of the National Minister of Civil Works. 

The thermo-hydro-mechanical formulation developed in chapter 2 is used to address the 

numerical model.  
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It includes a modified version of the Barcelona Basic Model (BBM2-generalized) and the 

simplified van Genuchten retention law presented in chapter 4. 

Results show the ability of the model to reproduce hydraulic collapse upon wetting of the 

silty layer and the force-displacement curve of the foundation. 

A procedure to evaluate the bearing capacity factors in non-saturated conditions is 

addressed. It is based on Potts (2001) proposal to compute the bearing capacity factors of 

shallow foundations.  

Then the prototype (field scale) is modelled under climatic actions to study their effects on 

the response of the shallow foundation. Then, in order to study the displacements of the 

foundation under climatic actions, it is first loaded to a service load equal to 1/3 of the 

ultimate load and then subjected to climatic actions. A sensitivity study of soil 

permeability is finally addressed. 

Chapter 8 deals with the thermo-mechanical study of a rock massif located in the south of 

France subjected to climatic actions registered in a meteorological station located in the 

area of the massif. The elastic response of the massif is modelled with a hyperelastic linear 

law while the plastic response is modelled with the Drucker-Prager model presented in 

chapter 4.  

The interior-point algorithm presented in chapter 5 is used to integrate the constitutive 

model due to its property of solving partial loading-unloading problems until the final 

solution is reached. 

Results evidence the ability of the model to compute stress response under compression, 

extension and traction path, which are of significative magnitude at the massif face. 

Stability of the most critical part of the massif is finally addressed by deriving a plastic 

limit envelope according to Drucker yield criterion.  

Chapter 9 addresses the final conclusions and advances future lines of research. 
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CHAPTER 2 

 

MODELING OF SOIL-VEGETATION-ATMOSPHERE INTERACTIONS 

 

2.1)      Introduction 

 

The interactions between the ground and the atmosphere play a central role in the 

analysis of the natural risks associated to slope movements. Since a long time, 

precipitations, together with toe erosion and seism, have been recognized as one of the 

main triggering factors of landslides. However, there are relatively little cases where direct 

relationships could be established between occurrence and features of landslides and the 

characteristics of the rainfall (intensity, duration, frequency and spectrum history). As 

pointed by (Leroueil, 2001), slopes respond mainly to changes in pore pressure. The 

relationship between the pore pressure and the rainfall is complex. It depends, on the one 

hand, on soil permeability and consolidation parameters and, on the other hand, on the 

interactions with the atmosphere, including infiltration, runoff, evaporation and 

evapotranspiration. Vegetation plays often a non-negligible role by intercepting part of the 

rainfall, limiting the runoff, releasing back vapor to the atmosphere, providing the soil 

with root reinforcement, creating settlements or increasing soil permeability by 

desiccation.  

The objective of the present chapter of the dissertation is to provide an insight on the 

study of the interaction "soil-water-energy balance” over the slopes of soils within a 

thermomechanical framework for porous media. The main components of the soil-water-

energy balance are summarized in Fig. 2.1 and will be developed in this chapter. 

The chapter is composed by five sections in addition to the introduction and the 

conclusions. The second section introduces the notation used along the chapter. The third 

section introduces the energy balance and mass balances of water and air considering the 

terms belonging to a boundary soil-atmosphere. The fourth section addresses the 

modeling of the interaction fluxes between the soil and the atmosphere considering a 
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fallow field. The fifth section addresses a thermomechanical formulation for a multiphase 

porous medium following (Olivella, 1995), (Gens A. , 2010) and (Houlsby & Puzrin, 2005). 

Finally, the sixth section presents relevant conclusions of the soil-vegetation-atmosphere 

interaction obtained by sensitive analysis of synthetic problems. 

2.2)      Notation and Terminology 

 

Notation for Atmospheric and Vegetation Fluxes 

   Potential evaporation  

  Slope of relation temperature vs. saturated water vapor pressure 

   Net incoming solar radiation 

  Psychrometric constant 

  Latent heat of vaporization 

   Vapor pressure deficit 

     
 Heat flux 

   Aerodynamic resistance 

   Plant surface resistance 

    Leaf Area Index 

   
 Aerodynamic resistance 

    Vegetation fraction 

   Actual Evaporation (Evapo-transpiration) 

   
 Absolute humidity at the atmosphere 

   Absolute humidity at the ground 

  Karman’s constant 

   tability factor 

   Wind velocity 

   Screen height 

   
Roughness length (high over soil surface at which    and     are 

measured) 

  Water potential 

   Matrix potential 
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   Gravitational potential 

  Osmotic (solute) potential 

   Water pressure potential (related to the turgor pressure) 

   Surface stomatal resistance 

     
 Minimum surface stomatal resistance 

   Coefficient for photo synthetically active radiation  

   Stress factor coefficient 

   Vapor pressure density coefficient 

   Air temperature coefficient 

   wilting point 

    Field capacity 

   Anaerobiosis point 

   Global radiation 

   
 Limit global radiation 

    Water potential at the bulk leaf 

   
 Critical threshold for the water potential 

   
 Water potential at stomatal closure 

   
 Soil-root resistance 

   
 Plant-canopy resistance 

   
 Water potential at root layer 

   Plant pressure potential 

   Specific heat at constant pressure 

   Relative plant growth 

   Leaf surface 

   Plant volume / Cell volume 

   Plant weight 

   Ratio of leaf surface over plant weight 

   Ratio of net assimilation 

   Maximum canopy weight 

  Cell surface 
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   Relative hydraulic conductivity of the cell 

  Precipitation 

   Turgor pressure 

   Yield critical threshold 

    Volume of the cell wall chamber 

   Irreversible extensibility coefficient 

  
  Rate of increase of cell wall chamber 

   Flux of gas 

   Gas leakage coefficient 

      Atmospheric flux of air 

      Atmospheric flux of water 

  
  Mass fraction of vapor in the gas phase 

    Surface runoff 

   Water leakage coefficient 

   Sensible heat flux 

   Convected heat flux 

   Specific heat of gas 

    Atmospheric density 

   Atmospheric temperature 

   Ground temperature 

   Free energy of vapor 

    Free energy of liquid water 

    Free energy of air 

   Atmospheric long wave radiation 

   Albedo 

    Stephan Boltzmann constant 

    Emissivity 

   Actual transpiration flux 
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Notation for thermomechanical approach to three-phase porous medium 

   Specific internal energy per unit mass of solid phase 

   Specific internal energy of air-water interface 

   Specific internal energy of liquid phase 

   Specific internal energy of gas phase 

   Density of solid skeleton 

  Porosity 

  Dry density 

   Density of pore liquid 

   Density of pore gas 

   Partial fraction of liquid density per unit mass of skeleton 

   Partial fraction of gas density per unit mass of skeleton 

  ̃ 
 Net flow of energy in the porous skeleton 

   
 Net flow of energy in the liquid 

   
 Net flow of energy in the gas 

   Conductive heat flux 

  
  Partial fraction (  

   ) per unit mass of dry density  

   Liquid porosity 

   Gas porosity 

   Darcy flux of liquid 

   Darcy flux of gas 

  
  Diffusive flux of vapor Fick-type 

  
  Diffusive flux of dissolved air Fick-type 

   Solid velocity 

   Unit volume of solid 

  
  Net flow of vapor 

  
  Net flow of dissolved air 

   
  Diffusion velocity of vapor 

  
  Air velocity 

  
  Unit volume of water 
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  Unit volume of vapor 

   
  Diffusion velocity of dissolved air 

  
  Water velocity 

  
  Partial density of species k in phase i 

  
  Unit volume of air 

  
  Unit volume of dissolved air 

  Power input to the porous volume 

  
  Absolute velocity of air-liquid skin 

  
  Specific internal energy of vapor 

  
  Specific internal energy of dissolved air 

  
  Apparent mass density of vapor 

  
  Apparent mass density of dissolved air 

   Liquid pressure 

   Gas pressure 

   Force of air-liquid interface 

   Gravity 

   Traction force at solid skeleton 

   Degree of saturation 

    Stress tensor 

    Strain rate tensor 

    Rotational tensor 

  Specific entropy of porous medium 

 ̃  Specific entropy of porous skeleton 

   Specific entropy of liquid 

   Specific entropy of gas 

   Specific entropy of air-liquid interface 

  ̃ 
 Net flow of entropy in the mineral and in the air-liquid interface 

   
 Net flow of entropy in the liquid 

   
 Net flow of entropy in the gas 

  Dissipation of porous medium 
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 Net flow of entropy in the air-liquid interface 

  Temperature in the porous medium 

2.3)      Presentation of soil-atmosphere interactions 

 

The generic term of "soil-water balance" was introduced by Blight (1997) to express the 

flux of mass that crosses the interface between the ground and the atmosphere. It would in 

fact be more accurate to call it “soil-water-energy balance" as the flow of heat coming from 

and released back to the atmosphere proved to be determinant. This flow affects the 

evapo-transpiration taking place on ground surface and sometimes affects considerably 

the proper thermo-mechanical response of slope exposed to strong changes in 

temperature, Samat (2011). The most relevant fluxes of heat, water and air taking place at 

both the atmosphere and the upper soil layer interacting with the atmosphere that built 

the “soil-water-energy balance", are summarized in Fig. 2.1. 

 

Figure 2.1: Fluxes of the “Soil-Water-Energy Balance”, after Bear (1972) & Blight (1997). 
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Regarding the energy flux, the main atmospheric flux is due to the radiation. This flux 

reaches the earth surface in such a way that it can be represented by three clearly 

differentiated components: (a) the first component reaches directly the soil surface 

through the atmosphere with a shortwave length and is usually named direct solar 

radiation   , (b) the second component is modified by the interaction with the 

atmosphere (part of it is reflected by the clouds and/or absorbed by the atmosphere). It 

reaches the soil surface in the form of a longwave and is usually named atmospheric 

radiation    and (c) finally, the third component corresponds to the reflected radiation by 

the soil surface: ground radiation. 

The remaining heat fluxes contributing to the total heat flux are: (a) on the one side, the 

flux convected to the atmosphere as consequence of the free energies responses of liquid 

water, vapor and air to the atmospheric heat    and (b) on the other side the flux advected 

through the atmosphere by temperature changes   . 

Thus, taking into consideration all the present phases in a porous medium and their 

interactions and accepting the thermal equilibrium between them, the energy balance for 

a general porous volume with a boundary  atm in the border with the atmosphere 

(such that      atm     ) Fig. 2.1 can be detailed as: 

 

Figure 2.2: Energy storage and energy fluxes involved in a three-phase porous medium in contact with the 
atmosphere, after Noilhan (1996) , Gens (2010), Gran (2015). 
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The storage energy in the porous skeleton is defined by the energy in the mineral 

    (1   ) and the energy in the air-water interface  ∑  
  . The storage energy in the 

pore liquid and in the pore gas are given by the terms El  lSl  and Eg  g(1  Sl) , 

respectively. Where   is the dry density and  l  
 

l
 ⁄ ,  g  

 
g

 ⁄   are the partial fractions 

of liquid and gas unit masses per unit mass of skeleton.  

The net flows through the boundary    are: (a) the net flow of energy in the mineral and in 

the air-water interface   ̃ 
, (b) the net flow of energy in the liquid j

El
, (c) the net flow of 

energy in the gas j
Eg

 and (d) the net flow of energy by conduction ic.  

The first law of thermodynamics states that the rate of increase of internal energy in the 

porous volume   is equal to the power input to the volume given by: (a) energy input at 

the boundaries and (b) the rate of work of body forces.  

Ascribing  ̃ ,    and    as the specific energy of the skeleton, the specific energy of the 

liquid phase and the specific energy of the gas phase, respectively,   as the power input to 

the porous volume and    as the heat flux , the first law of thermodynamics is stated as: 

∫
 

  
( ̃                 (    ) )

 

   ∫(  ̃ 
    

    
)     

 

 ∫ (     )       

    

 ∫  

 

   ∫    ∫    

  

     

(2.1) 

where flows of energy in the atmospheric boundary      take particular forms which 

depend on the atmospheric variables.  

The water flux       at the atmospheric boundary      is the result of the sum of: net 

precipitation, evaporation, transpiration, water flux drained at soil surface due to full 

saturation or gravity and flux of water vapor advective in the gas phase.  

Mass balance of water expressed with: soil porosity, degree of saturation and density 

ratios   
  -   

 , is given by: 

∫
 

  
(   

        
  (    ))

 

   ∫(  
    

 )⏟      
   

     ∫ (     )       

    

 ∫    

 

   

(2.2) 
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where  w is a sink/source term and jw is the total flux of water, advective and diffusive 

within porous medium.  Expressions for the flow of water in the atmospheric boundary 

are studied in detail in section 2.4.1. 

The air flux at the atmospheric boundary      is given by the existing gradient between 

the gas pressure at the soil surface and the atmospheric pressure      . 

Mass balance of air expressed with: soil porosity, degree of saturation and density ratios 

  
  -   

 , is given by: 

∫
 

  
(   

 (    )     
    )

 

   ∫(  
    

 )⏟    
   

     ∫ (     )       

    

 ∫    

 

   

(2.3) 

where  a is a sink/source term and ja is the total flux of air within porous medium which 

considers the air dissolved in the liquid. Expression for the flow of air in the atmospheric 

boundary is studied in detail at section 2.4.2. 

In the following section, mathematical expressions for the atmospheric fluxes giving rise 

to the "natural boundary condition" concerning the  soil-atmosphere interactions are 

addressed. 

2.4)      Formulation of atmospheric fluxes at boundary      

 

The atmospheric actions by the fluxes      ,       and       on ground surface encompass 

exchanges of mass of fluids and heat at     , Gran (2015).  

They include evaporation, transpiration, rainfall, solar radiation, atmospheric radiation, 

wind, among others, Carreras (1991) and Noilhan (1988). In particular, the vegetation 

cover is imposed at the upper soil layer in terms of transpiration (water uptake at root 

level by plants) and heat exchanges. 

At the last instance, atmospheric fluxes acting at the soil-atmosphere boundary      are 

controlled by the three state variables: liquid pressure, gas pressure and temperature. 
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2.4.1)    Description of atmospheric water flux        

 

Atmospheric water flux is defined as the sum of: (a) precipitation P, (b) ground evapo-

transpiration   , (c) advective flux of vapor   
     and (d) surface runoff    , fluxes acting at 

the ground surface. 

Precipitation P corresponds to the net rainfall reaching the ground surface since part of 

the real rainfall is intercepted by the canopy       . 

Evaporation is the process whereby liquid water is converted to water vapor 

(vaporization) and removed from the evaporating surface; water evaporates from a 

variety of surfaces, such as lakes, rivers, pavements and soils. 

 Transpiration is the result of the vaporization of liquid water contained in plant tissues to 

the atmosphere. Crops predominately lose their water through stomata, which are small 

openings on the plant leaf through which gases and water vapor passes.  

Apart from the water availability in the topsoil, the potential evaporation from a cropped 

soil is mainly determined by the fraction of the solar radiation reaching the soil surface. 

This fraction decreases over the growing period as the crop develops and the crop canopy 

shades more and more of the ground area. When the crop is small, water is predominately 

lost by soil evaporation, but once the crop is well developed and completely covers the 

soil, transpiration becomes the main process. 

The determination of evapo-transpiration has been of concern to agriculturalists and 

hydrologists. The most usual methods consider that the actual evapo-transpiration     is 

equal to the maximum value allowed by the heat present in the medium, called the 

“potential evapo-transpiration”   .  

It is essentially true for irrigated fields or for climates with positive water balance. For 

arid, semi-arid and non-irrigated areas the availability of water may limit evapo-

transpiration and the actual     flux may drop below the potential    flux. 

2.4.1.1)     Modeling Evaporation and Transpiration 

 

The most rational approach to calculate potential evaporation    was introduced by 

Penman (1948). It is based on the energy balance at the soil surface and is given by the 

expression,  
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  (
  

  ⁄ )  
       (    )    

 (    )  (   )
 

(2.4) 

where  (
  

  ⁄ ) is the slope of the temperature versus saturated water vapor pressure 

curve at the prevailing air temperature,  (
 
  ⁄ ) is the latent heat of vaporization of water, 

  is the psychrometric constant (   
  

 ⁄ ) and    (
  

 ⁄ ) is a term accounting for the 

vapor pressure deficit.    is given by the expression (       (  
      

 )  (    

  
   ⁄ )) where   

  (   ) is the actual vapor pressure of air,   
    (   ) the saturated vapor 

pressure of air and    (km/d) the wind velocity.  

Penman equation for evaporation flux has been adopted as standard by the Food and 

Agriculture Organization (FAO).  

An updated version of Eq. 2.4 has been proposed by Monteith (1965) to include the 

contribution of transpiration flux. The potential evapo-transpiration flux reads: 

  (
  

  ⁄ )  

  
(     )

 (    )
⁄       

    (  
  

  
⁄ )

 

(2.5) 

where    is the conductive energy flux (sensible heat).    is the aerodynamic resistance of 

ground surface and    is the plant surface resistance.    is computed as 
  

      
⁄ , where 

        is the bulk stomatal resistance of the well-illuminated leaf and         is the 

effective leaf area index.  

The equation has been validated on a reference cropped field, defined by the following 

characteristics: (a) crop of grass with a fixed height of      , (b) an albedo equal to 

     and (c) a surface resistance equal to    
 ⁄ . 

Blaney and Criddle (1950), Turc (1954), Thornthwaite (1954) proposed alternative 

expressions to predict the actual evaporation    with less parameters.  In this regard, 

Thornthwaite proposed the following empirical equation: 

   
      (

    

∑(  ⁄ )
   )

 

 

(2.6) 

Where    
(  ) is the monthly evaporation,   ( ) is the mean monthly temperature,   

is the mean daily temperature and   is a side constrained expression       given by the 

polynomial: 
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          (∑(  ⁄ )
   

)
 

        (∑(  ⁄ )
   

)
 

      ∑(  ⁄ )
   

      

(2.7) 

The Thornthwaite work was carried out in humid regions and his proposal may not be 

suitable for arid sites.  

More recent theories allow evaluating the actual evapo-transpiration flux as the ratio 

potential/resistance in a electrical analogy (sellers et al., (1986)). More specifically, they 

interpret the latent heat, the sensible heat and the vapor fluxes as resulting from a system 

driven by two potentials: the jump in temperature and relative humidity across the 

surface and a number of resistances provided by both the soil and the plant. An illustration 

of such theory is presented in Fig. 2.3.  

 

Figure 2.3: Resistances Model for the Atmospheric-Vegetation-Soil Upper layer  

 

The layer in contact with the soil surface is composed of a network defined by a set of 

resistances and water potentials, through which the evapo-transpiration fluxes develops. 

Two vegetation systems are considered to act in parallel with ground evaporation   : a 

simple grass cover – non lignified – (left side of the figure) and a canopy (central part). The 

non lignified system is described by several resistances to flow movement, put in series:  

   
 (soil/plant),    

 (plant) and    
 (plant/atmosphere) that control the transpiration flux 

   under the gradient existing between ground water potential at the level of plant root 

   
 and water potential prevailing above at the level of plant leafs    .    is the absolute 

humidity at the ground cover level.  
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Similarly, the canopy system is described by resistances    
 (soil/canopy),    

 (canopy) and 

   
 (canopy/atmosphere), transpiration flux    and water potentials     (water potential 

at depth of canopy roots) and     (water potential at leafs elevation).    is the absolute 

humidity at the canopy level.  

The figure depicts the heat balance of the system that includes the sensible heat fluxes    

and    as well as the latent heat  convected by evapo-transpiration.  

Within this framework, Noilhan (1996) proposed a formulation where the evaporation 

flux is driven by the difference in vapor concentration at leaf level, between the air and the 

leaf, according to the expression: 

  [
  

   
]  (     )  

     

  (
  
  

)
 

⏟    
 

  
⁄

(   (    )    (   (  ))) 
(2.8) 

 

where the term            is the aerodynamic resistance, k is the von Karman’s constant 

(often taken as 0.4),  is a stability factor, veg is the vegetalized surface per unit area of 

ground (to remove transpiration from Eq. 2.8) and     and     are the absolute humidity 

of the atmosphere and the ground respectively, (     ) is the complement to the 

vegetation fraction,    is the wind velocity,    is the ground surface roughness length 

(often assimilated to canopy height),    is the screen height (height at which the wind 

velocity and the absolute humidity of the atmosphere are measured). 

The absolute humidity (   ) should be strictly measured at height   . Instead, it is 

computed from the state variables just below ground surface assuming a constant profile 

of wind speed between the ground surface and   , see Fig. 2.4. 
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Figure 2.4: Profiles of wind speed above, within, and below the canopy vegetation: (a) real profile, (b) simplified 
assumed profile. 

 

The ground absolute humidity    is computed from gas density    and vapor mass 

fraction   
  by the expression         

 (   (  )). The vapor mass fraction can be in 

turn determined through the psychrometric law: 

  
  (  

 )
 
    (

     

   (  )    
) 

(2.9) 

 where s is the suction existing at the soil surface. From Eq. 2.9 the total evaporation flux 

can be rewritten as an explicit function of the mass fraction of water vapor: 

  (     )  
     

  (
  
  

)
 (         

 (   (  ))) 

 

 

 

(2.10) 

Vaporization from the crop stomata, is a complex process that starts with the soil water 

being taken by the vegetation at the root level and ends with the water being expelled via 

the stomata.  

It encompasses interactions between the soil and the vegetation, on the one hand, and the 

vegetation and the atmosphere on the other hand.  

potential  
  ⁄  

Evaporation flux 
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The transpiration flux strictly represents the loss of water vapor from leaves. This flux is 

controlled at the level of leafs by the release of vapor molecules by stomata Fig. 2.5, whose 

opening and closure are activated by specialized cells called “guard cells”.  

 

Figure 2.5: Guard cells and Open stomata of a tobacco leaf, after Damon et al. (2007). 

 

Transpiration flux maintains a depressed water column in the plant that traduces in an 

intake of water at the level of roots.  There is thus a continuous stream of water from the 

roots to the upper parts of the plant that provides the plant with both the minerals and the 

required water mass to carry out photosynthesis.  

More than     of water taken by the roots is lost by transpiration while the remaining 

10% participate to plant growth.  

There are many factors involved in the transport of water and minerals in plants where 

the xylem (lignified tissue) is the principal water-conducting tissue (Embryophyta). 

Among them, the following environmental factors have important effects on transpiration 

process: (a) light, it speeds up transpiration by warming the leaf and opening stomata; (b) 

air humidity, it is related to the driving potential for transpiration at the level of leafs. A 

decrease in air humidity increases transpiration because of the greater difference in water 

concentration; (c) wind, it increases the rate of transpiration because of the constant 

removal of humid air close to the leafs; (d) temperature, it provides heat for water 

evaporation; (e) soil water content, it is related to the driving potential for transpiration at 

the level of roots. The intake of water by the roots provides the plant with water and 

nutrients, keeps the osmotic pressure at the required level for maintaining the turgor 

pressure within plants cells and thus allowing the stomata to play its regulator role for the 
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transpiration Fig. 2.6; (f) Carbon Dioxide concentration – It has a negative effect on 

transpiration. High carbon dioxide levels in the air around the plant usually cause the 

guard cells to lose turgor pressure and the stomata to close.  

 

Figure 2.6: Water diffuses into guard cells which cause them to open. On hot/dry days, the guard cells have less 
water, they relax and the stoma closes. 

Potassium ions play an important role in transpiration as they are an important factor of 

guard cell activity. The blue part of the spectrum’s light triggers the active transport of 

potassium into the cell, which increases the solute concentration and causes inward water 

movement due to osmosis. When potassium ions passively leave the cells, they carry water 

molecules, which makes diminishing turgor pressure and cause stomatal closure.  

Notwithstanding the complexity of living systems, from a pure modeling point of view, the 

upward movement of water in plants is considered as related to the gradient of water 

potential   expressed by the sum: 

             (2.11) 

 

where    is the gravity potential,    the matrix potential (related to water surface 

tension),   the osmotic potential (due to difference in solute concentration) and    the 

water pressure potential. According to the “cohesion-tension” theory, early developed by 

(Dixon & Joly, 1894), these potentials interact to maintain an upward gradient of total 

water potential from roots to plant leafs, see Fig. 2.7. Four transport mechanisms are 

distinguished, see for example Taiz L. & Zeiger, E., (2010):  

a) At leaf level, transpiration occurs as the result of gradient in relative humidity 

between leaf and atmosphere. Because transpiration is the main mechanism of 

nutrient transport, plants must transpire even in presence of water deficit. To 

provide the conditions for permanent transpiration, stomata regulate the outflow 
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of water molecules through the opening and closing of guard cells in order to 

maintain the relative humidity close to saturation in the air between the mesophyll 

cell of  leafs,  Fig. 2.7. During stomata closure, water total potential leaf is close to 

zero (HR = 100%). At time of stomata opening, vapor goes out and leaf becomes 

negative. 

b) Transpiration flux is balanced by water income from the xylem. Xylem contains 

sap, which is water with essentially inorganic ions, thus having a negative osmotic 

potential . In addition, capillary actions balance gravity (       ) and, 

because xylem walls are stiff, they do not apply any pressure on the sap (Pr = 0). 

Water will then move to the leafs when leaf becomes lower than xylem osmotic 

pressure. The difference between both potentials generates matric suction in the 

xylem.      

c) Water lost by the xylem is balanced by an inflow of water coming from the root. 

Because nutrients are consumed during sap transport, osmotic potential is more 

negative at roots than at leafs level.  This gradient is compensated by matrix 

suction gradient leading to an upward gradient in water total potential.  Root cells 

are indeed provided with flexible membrane that pressurized the inner fluid 

(Pr > 0). 

d) Roots take water from the soil thanks to the existence of the gradient of osmotic 

suction that counteracts the gradient of water pressure/suction. 

According to this theory, transpiration is essentially a flux-controlled process to which the 

plants have to adapt by regulating water potentials through chemo-thermo-hydro-

mechanical actions at cell level. In front of the complexity of the coupled CTHM processes 

in living systems, a common approach in agricultural engineering considers modeling 

transpiration by applying directly the vapor flux existing at canopy level, Sellers et al. 

(1986);  Noilhan & Planton, (1988).   

This type of model expresses the transpiration flux at canopy level as driven by the 

difference between vapour density of the atmosphere (  ) and the leaf. Because relative 

humidity within the leaf is close to 100%, the latter is taken equal to vapour density at 

saturation    , that depends only on leaf temperature (taken equal to atmosphere 

temperature    ):  

  [
  

   
]      

 

(     )
 (       (   )     (   )) 

(2.12) 
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Figure 2.7: Transpiration-Cohesion-Tension mechanism (Transpiration Pull Theory) for the “Soil–Plant–Air” 
System. 

 

   
 

 ⁄   is the atmosphere resistance on top of the leaf, taken equal to the aerodynamic 

resistance previously defined,    
 

 ⁄   is the leaf resistance provided by the stomata  

(Jarvis, 1976) and veg is the vegetation fraction. ra and rs are supposed to act in series. 

According to Noilhan & Mahfouf (1996), the stomatal resistance rs is defined by four 

functions F1, F2, F3 and F4 of common use in agricultural engineering:  

   
     

   
 [

  (  )

  ( )    (    
)    (   )

] 
(2.13) 

    

     
 is the minimum surface resistance and depends on plant type. For different forest 

canopies, it has been observed that the relation 
     

   ⁄  remains nearly constant.  
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Function   (  ) takes into account the effects of the photosynthetically active radiation 

  , assumed equal to     of the global radiation. It is evaluated following Dickinson 

proposal (Dickinson, 1984): 

   

  (
   
   

 
  

   
)

(
   
   

 
  

   
)  

     

     

 

(2.14) 

where     provides the upper limit of    and ranges between    
  ⁄  for a forest to 

    
  ⁄  for a crop.  

Function   ( ) expresses the plant capacity to extract water from the soil at a given water 

content  and is called the stress factor. It is approximated by a broken line with four 

segments : 

   

{
  
 

  
 

        

    

      
           

            

   

    
    

 

(2.15) 

   is the water content at the wilting point. It is the threshold below which plants cannot 

extract any more water and has been identified as corresponding to suction around 

1.5 MPa (Jacquemin & Noilhan, 1990).     provides the “field capacity”, defined as the 

water content remaining in a soil column after downward gravity drainage. It has been 

associated by Richards (1950) to values of suction between          to          and by 

Wetzel & Chang (1987) to an upper threshold of hydraulic conductivity, estimated equal to 

0.1 mm/day (note that these values are characteristics to agricultural soils, mainly 

composed by silty/sandy fractions and medium porosity).  

Bear et al. (1968) proposed to define     from the profile of soil water content in the soil 

column once completed bottom free drainage, Fig. 2.8. It corresponds to the value of water 

content attained at the depth where suction profile starts to be influenced by the free 

drainage condition. At higher depths, an increase in water content is registered. At lower 

depths, water content remains essentially constant.     is interpreted as the water content 

for which all the drainable porosity is empty.  This concept is similar to the concept of 

microscopic water content developed by Romero et al. (1999), Romero & Vaunat (2000) 

and Alonso et al. (2010).   
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Figure 2.8: Field Capacity and effective porosity (after Bear 1972). 

 

Finally the last threshold (  ) corresponds to the anaerobiosis point and represents the 

water content at which plants metabolism starts to lose efficiency because of too much 

water and loss of oxygen in the soil.  

The function   (    
) accounts for stomata closure when a deficit of vapor pressure exists 

in the air (dry environment). It is evaluated through the equation 

       (     
   ) (2.16) 

where  [    ⁄ ] is an empirical parameter. The surface resistance dependence on    

becomes a relatively important environmental constraint for the transpiration of moist 

broadleaf forest and seem to be less important for short canopies.  

The last function   (   ) introduces the dependence of rs on air temperature. The function 

used is a modified version of Dickinson proposal (Dickinson, 1984) and is modified to 

avoid eventual, physically meaningless, negative values (Noilhan & Mahfouf, 1996):  

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Tropical_and_subtropical_moist_broadleaf_forests
http://en.wikipedia.org/wiki/Tropical_and_subtropical_moist_broadleaf_forests
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      (        (      ) ) (2.17) 

It is important to emphasize the empirical basis of the definition of functions F1 to F4, 

whose expression is no more than a phenomenological description of the 

evapotranspiration flux for a whole canopy. Typical values of the different parameters are 

provided in Table 2.1 for distinct types of vegetation.  

Table 2.1: Vegetation Parameters for Land Surface Scheme, after (Noilhan & Planton, 1988). 

Case vegetation 

   

( ) 

LAI 

( 
 

  ⁄ ) 

     
 

(  ⁄ ) 

    

1 Maize 0.1 2 40 0.8 

2 Soja 0.02 1 40 0.7 

3 Maize 0.02 0.3 40 0.4 

4 Forest 1 2.3 100 0.99 

5 Maize 0.1 2 40 0.7 

6 Oats 0.15 3 450 0.9 

 

Alternative formulations express the stress factor (  ) as a function of “leaf water 

potential” which depends on plant physiology and soil moisture. Jarvis (1976) suggests a 

negative exponential relationship between stomatal conductance and leaf water potential 

while Choudhury and Idso (Choudhury & Idso, 1985) derived an empirical function from 

data obtained at a field-grown wheat: 

     (
   

   
)
   

 
(2.18) 

    is the water potential of the bulk leaf and     is the critical limit for     beyond which 

the transpiration rate is strongly limited by water stress (       for a cereal crop). 

More recently, de Ridder & Schayes (1997) proposed a hyperbolic dependence of the 

form: 

   (  
   

   
)
  

 
(2.19) 

where    (        ) represents the value of leaf water potential at which a complete 

stomatal closure occurs.  

Along this lines, Lynn & Carlson (1990) had proposed years before a model composed by 

two resistances – the soil/root (   ) and plant/canopy (   ) resistances – and three water 
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potentials – soil water potential in the root layer (   ), plant pressure potential (  ) and 

leaf water potential (   ), see Fig. 2.9. The model is based on Jarvis assumption (Jarvis, 

1976) that the flow of water from the soil to the leaf (   ) is equal to the potential 

transpiration flux   , which leads to the expression: 

    [
 

   
]    

       

       
 

   

  (     )
 (      ) 

(2.20) 

 

 

Figure 2.9: Water Transfer in plants as proposed by Landsberg (1976). 

In Eq. 2.20,     is the atmosphere pressure surrounding the leaf ,    the leaf vapor 

pressure,  [
  

  ⁄ ] the air density,   [
 
   

⁄ ] is the specific heat at constant pressure, 

 [   
 ⁄ ]  

     
       

⁄ ,    
 

 ⁄   is the leaf resistance and    
 

 ⁄   is the atmosphere 

aerodynamic resistance.  

Eq. 2.20 can also be expressed in terms of the absolute humidity of the atmosphere 

surrounding the leaf     and the absolute humidity at the leaf   , recognizing the 

relationship    
     

 ⁄ , with    = 
    

   
⁄  in which Mw and Md are the molecular 

mass of vapor and dry air, respectively:     

  [
  

   
]  (

 

     
)  

   

  (     )
 (      ) 

(2.21) 

 



CHAPTER 2 - Modeling Soil-Vegetation-Atmosphere Interactions 
_______________________________________________________________________________________________________________________________ 

 

64 
 

In this model, the leaf resistance    is computed by considering a parallel action of 

cuticular and stomatal resistances rcut and   : 

 

  
 

 

  
 

 

    
 

(2.22) 

Table 2.2 summarizes the revisited formulations to compute evapotranspiration fluxes 

from macroscopic viewpoints. In this work, the Noilhan (1988) formulation will be 

followed without entering in the complexity of the chemo-thermo-hydro-mechanical 

processes controlling the water potential in the plant system. 

This formulation provides a value for the actual transpiration in contrast to the potential 

one provided by Montheith (1965),  Lynn (1990). 

Table 2.2: Summary of the referred expressions for computation of Evaporation and Transpiration fluxes. 

Penman 

(1948) 

Potential

- 

Evaporat

ion 

 

[
  

   
]  (

  
  ⁄ ) slope T-pv

sat 

   net radiation 

 (
 
  ⁄ ) latent heat of vaporization 

( ) psychrometric constant 

Penman-

Monteith 

(1965) 

Potential

- Evapo-

transpirat

ion  

[
  

   
] 

   (
  

 ⁄ ) vapor flux due to pressure 

deficit 

   conductive energy flux 

   aerodynamic resistance 

   plant surface resistance 

Thornth

waite 

(1954) 

 

Real - 

Evaporat

ion 

 

[
  

  
] 

  ( ) mean monthly temperature 

  mean daily temperature 

  polynomial value      

Sellers -  

Noilhan 

(1980) 

 

Real - 

Evaporat

ion 

 

[
  

   
] 

veg vegetalized surface per unit 

area of ground 

 stability factor

    atmosphere's absolute 

humidity 

Noilhan 

- Planton  

(1988) 

Real - 

Transpira

tion  

[
  

   
] 

   ground's absolute humidity 

   aerodynamic resistance 

   leaf surface resistance 

Jarvis. 

Lynn & 

Potential 

- 
 

[
  

   
] 

   leaf vapor pressure 

    atmosphere pressure 

  air density 
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More recent developments coming from bioengineering present more fundamental 

formulations based on the modeling of cell tissue response in function of both solute and 

suction changes to better cope with the transpiration flux. A brief review of these 

developments is presented below, section 2.4.1.2.  

2.4.1.2)     Effect of plant growth 

 

The intake of water by the roots provides the plant with water and nutrients that favor its 

growth. As consequence, roots depth and density change over time and therefore the 

characteristics of the vadose zone are affected.  

Plant growth is a complex process that can be tackled from two sides: 1) at the plant level, 

by measuring macroscopic parameters such as stem diameters and canopy height, volume 

and weight and 2) at the cell level, by studying their growth and differentiation.  

The “macroscopic” approach is based on the expression of the change in plant volume    

or plant weight   . It is expressed by:  

   
 

  

   

  
 

 

  

   

  
 

(2.23) 

where Cr  is the relative growth magnitude.  

Several expressions exist for Cr . This first approach relates Cr to the morphological factor 

   
  

  
⁄ , ratio of leaf surface    over plant weight. By defining the rate of net 

assimilation as    (   
⁄ )  

   
  

⁄ , Cr can be rewritten as: 

         (2.24) 

    can be expressed by the product         where LAI is the leaf area index and    the 

projected area of plant canopy on ground surface.  In this approach, the rate of net 

assimilation         between times t1 and t2 is estimated by the Eq. 2.25a  while the 

morphological factor   [
 

   ⁄ ]  is given by Eq. 2.25b, 

Carlson  

(1990) 

Transpira

tion 

   specific heat 

   
 

 ⁄   leaf resistance 

   
 

 ⁄   atmosphere aerodynamic 

resistance 
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(2.25) 

  

The relative plant growth between times t1 and t2 is thus given by: 

   
((  

 )   
  (  

 )   
 )

(  
   

    
   

 )  (  
   

 )   
 

  (
  
 

  
 ⁄ )

(  
    

 )
 

 

(2.26) 

Equation 2.26 provides a constant evolution for the relative growth. This is a limitation of 

the model as growth tends generally to decrease as plant size increases. To overcome this 

limitation, the second approach states the following dependency for Cr: 

   
 (     )

  
 

(2.27) 

where k is a proportionality constant and    the maximum weight that the canopy can 

reach. From Eq. 2.23 and Eq. 2.27, the expression of plant growth becomes: 

   
  

     (    )
 

(2.28) 

 
 ⁄  is the time at which the half of maximum weight is reached. Equation 2.28 predicts an 

evolutive growth with an initial phase of fast growth followed by an aging phase.  

Other expressions exist for plant growth like the Richard’s function, polynomials models 

and log-polynomials models. This type of models are completed by the statement of an 

alometric relation (Uso, Mateu, Karjalainen, & Salvador, 1997) between roots volume and 

the total canopy volume (
  

  
⁄ ) that finally allows to define the change in root depth and 

density. 

The "microscopic" approach is based on the statement of an equation for cellular growth. 

In the simplest models, cells increase their volume when their wall yields under the effect 

of water entry. The rate of water absorption by the cell depends on the gradient of the 

water potential  , cell surface   and specific hydraulic conductivity of the cell membrane 

  [       ⁄ ]. Then, the increment of the cell volume Vc can be expressed as a function of 

the net rate of water uptake: 
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   (     ) 

 

 

(2.29) 

 

where,    
    

  
⁄ [      ⁄ ] is the relative hydraulic conductivity of the cell and    the 

turgor pressure. The turgor is the force exerted by the cell membrane on the inner fluid to 

maintain equilibrium.    is thus equal to the difference between the external and internal 

fluid pressure   
   applied on the membrane. The cell proliferates in volume when an 

irreversible dilation occurs at cell membrane, accompanied by tissue softening and 

corresponding lose of  turgor pressure. Because of the reduction of   , water is allowed to 

enter into the cell increasing the cellular volume until the turgor pressure is recovered.  

The cellular expansion is then expressed as a function of the distance between the turgor 

pressure and the critical threshold Yc:, 

  
  

    

     
    (     ) 

 

 

(2.30) 

 

where     is the volume of the cell wall chamber,    is the irreversible extensibility 

coefficient and Yc is the “critical turgor pressure”, threshold at which the cell starts to 

grow. Equations 2.29 and 2.30 allow to express the steady-state turgor pressure 

(membrane pressure at which cell stops to grow): 

   
         

    
 

(2.31) 

The rate of cellular growth can then be re-written as, 

   

    
 

     (     )

     
 

(2.32) 

and the cell volume at any time is given by: 

     
     (

     (     )

     
  ) 

(2.33) 

 

Equations 2.29 to 2.31 are the “Lockhart Equations” (Lockhart, 1965).  

Rate of increase of 
water volume 

Net rate of water 
uptake 

Rate of increase 
of wall chamber 
volume 

Irreversible 
expansion rate 
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They represent the first model developed to tackle the cellular growth of plants. It is 

expressed as a function of the osmotic potential , the relative hydraulic conductivity of 

the cell Lc, the irreversible extensibility coefficient mc and the threshold turgor pressure Yc. 

Further works have introduced the effect of external stimuli, such as the light or hormones 

as variables controlling these factors.  

More recently, advanced models have been proposed based on the mechanics of hollow 

cylinders (or hollow spheres) to model the decrease in turgor pressure. All these models 

present the advantages of relating plant growth to osmotic pressure through a mechanical 

model and may be implemented as constitutive laws in chemo-thermo-hydro-mechanical 

processes.  

Further improvements regarding the interaction between the vegetation cover and the 

ground should indeed compute transpiration flux by a suitable treatment of osmotic 

suction through the correct formulation of chemical equations controlling solutes 

transport. This approach leads to a better representation of most of the observed 

vegetation effects. 

Exchange fluxes of vapor between the ground and the atmosphere includes finally the 

vapor advected by the air phase crossing ground surface. The advective flux of vapor at the 

air phase is evaluated by invoking both the mass fraction of vapor and the flux of gas and 

is computed through the equation,  

  
     {

  
             

   
   

⁄             
 

(2.34) 

where     is the atmospheric gas density and   [
  

   
⁄ ] the flux of gas driven by the 

existent gradient between the gas pressure at the soil surface and the atmospheric 

pressure. 

2.4.1.3)     Modeling runoff flux 

 

The surface runoff     flux, is the flow rate of water that do not enter into the ground but 

drain over the soil surface. Its effect is simulated by considering that the infiltration can 

only enter in the soils if the atmospheric pressure is higher than the ground pore pressure, 

according to the condition: 
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    {
   (      )          

          
 

(2.35) 

 

where      ⁄   is the ground surface liquid leakage coefficient. It is remarked that ponding 

is not explicitly simulated in the present work.  

Total atmospheric water flux crossing the ground surface finally results in:  

             
         (2.36) 

 

2.4.2)    Description of atmospheric air flux        

 

Atmospheric flux of air is defined by the existent gradient between the gas pressure at the 

soil surface and the atmospheric pressure. It is given in terms of the gas flux and the mass 

fraction of atmospheric dry air. 

Accordingly, the flux of the gas phase    is expressed in terms of the atmospheric pressure 

    as:  

  [
  

   
]     (      ) 

(2.37) 

where    
 

 ⁄   is a leakage coefficient. This flux carries two species the dry air and the 

vapour, then the flux of atmospheric dry air reads: 

        
     (    

 )     (2.38) 

where   
  is the mass fraction of atmospheric humidity.  

2.4.3)    Description of atmospheric energy flux       
 

 

The atmospheric energy flux      
reaching the ground surface is given by the sum of three 

components: (a) the sensible heat flux   , (b) the heat flux    convected by the mass 

fluxes (an important term here is the latent heat of vaporization carried by water mass 

flux) and the net radiation   .  

Sensible heat flux is computed through the aerodynamic diffusion relation: 
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  [
 

   
]        

     

(  (
  
  

))

  (     ) 
(2.39) 

where   [
 
   

⁄ ] is the specific gas heat,     the atmosphere density,    the atmospheric 

temperature and    is the ground temperature. For its part, the convected heat flux is 

evaluated taking into account the internal energy of liquid water, vapor and air:  

  [
 

   
]    (     

    )    (    
    )     

     
(2.40) 

where   [
 
  

⁄ ],   [
 
  

⁄ ] and   [
 

  
⁄ ] are the free energies of vapor, liquid water and air, 

respectively.  

The last flux summing up to the total flux of atmospheric energy is from my point of view 

the most relevant concerning the “soil-water-energy balance”, it is the net radiation   .  

It can be measured directly or evaluated from considerations about solar and atmosphere 

radiations. In the last case the flux is evaluated by the expression: 

  [
 

   
]  (    (  ))        (  )              

(2.41) 

where   [
 
   

⁄ ] is the direct solar short wavelength radiation and   [
 
   

⁄ ] the long 

wavelength atmospheric radiation,   (  ) is the ground albedo (reflection coefficient) 

which depends on degree of saturation,    (  ) is the ground emissivity which depends on 

the saturation degree and     the Stefan-Boltzmann constant (     

     [
 
       ⁄ ]).  

The dependences   (  )  and  (  ) are materialized through the expressions: 

      (     )  (  
     ) 

                

(2.42) 

where    and    are the dry and wet albedos respectively.  

Long wave atmospheric radiation    can eventually be computed as a function of the 

atmospheric temperature, in absence of measurements. 
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Eq. 2.43 presents one of the existent empirical proposals to compute   : 

          
  (           √       ) (2.43) 

 

where     is the atmospheric temperature and     the absolute humidity. 

Finally, it is recalled that in absence of measures of atmospheric radiation it is possible to 

built harmonic approximations according to sinusoidal and co-sinusoidal functions, (Gran, 

2015).  

The total flux of atmospheric energy      
that crosses the ground surface is finally given by 

the sum: 

     
          (2.44) 

 

Figure 2.10 summarizes the fluxes acting at the “soil-water-energy balance” boundary 

    . 

 

Figure 2.10: Summary of the fluxes acting at the “soil-water-energy-balance”. 
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2.5)      Formulation of the THM response of three-phase porous 

medium by thermomechanical approach 

 

The behavior of the porous media from a mathematical viewpoint can be addressed in two 

ways: (a) following proposals in classical literature, in which governing equations of the 

problem are presented and detailed, (b) properly setting the energy balance and 

dissipation of the porous medium, and then proceeding with the analysis following 

standard methods in thermodynamics. 

The first procedure is detailed in appendix 1 of this dissertation following the formulation 

presented by Olivella (1995) and further extended by Sanchez (2004). The second 

procedure is discussed below. 

In theory of porous media balance equations are established considering all the present 

phases in the medium and their interactions. In this chapter the required coupled THM 

formulation for non-isothermal processes is presented based on the approaches proposed 

by Olivella et.al. (1994) and Houlsby et.al. (2006). 

The formulation assumes thermal equilibrium between the phases. This assumption 

seems reasonable at the light of the characteristic times of most geotechnical problems. 

The energy balance equation is formulated for a three-phase porous medium: (a) solid, (b) 

liquid and (c) gas. This equation postulates that the change of internal energy for the three 

soil phases is equal to the sum of: (a) mechanical power , (b) net inflow-outflow of heat 

energy and (c) sink-source contribution, see Fig. 2.11. 

The storage energy in the porous skeleton is composed by the energy in the mineral 

    (1   ) and the energy in the air-water interface  ∑  
  . The storage energy in the 

pore liquid and in the pore gas are given by the terms El  lSl  and Eg  g(1  Sl) , 

respectively. Where   is the dry density and  l  
 

l
 ⁄ ,    

 
g

 ⁄   are the partial fractions 

of liquid and gas unit masses per unit mass of skeleton.  

The net flows are: (a) the net flow of energy in the mineral and in the air-water interface 

  ̃ 
, (b) the net flow of energy in the liquid j

El
, (c) the net flow of energy in the gas j

Eg
 and 

(d) the net flow of energy by conduction ic, Fig. 2.11.  
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If a boundary  atm of a volume of porous medium is in the border with the atmosphere 

(such that   atm    ) the expression for the flow of energy in this border takes a particular 

form which depends on the atmospheric variables. 

 

Figure 2.11: Energy storage and energy fluxes involved in a three-phase porous medium, for a volume totally 
embedded in the porous medium (after Gens, 2009). 

 

Before proceeding further, some definitions are presented to be used along the 

development. Eq. 2.45 presents   fractions in terms of unit mass densities, degree of 

saturation and porosity: 

  
  

  
 

 
      

  
  

 

 
(    )    

  
  

 

 
      

  
  

 

 
(    )  

(2.45) 

Eq. 2.46 shows different expressions for the mass of fluids present in the porous skeleton: 

   
        

    
   

   
  (    )     

    
   

   
  (    )     

    
   

   
        

    
   

 

(2.46) 

Eq. 2.47 presents different expressions for the macro porosity of a three-phase porous 

medium in terms of both: (a) partial porosities and (b) degree of saturation: 

   
l
  

g
  Sl   (1  Sl) (2.47) 
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Eq. 2.48 presents expressions of advective and diffusive fluxes for the flows in a three-

phase porous medium: 

   
    

   (  
    )    

    

   
  

   
   (   

    
 )    

    
 

   
    

   (  
    )    

    

   
  

   
   (   

    
 )    

    
 

 

(2.48) 

 

Before addressing the laws of thermodynamics it is convenient to review the balance laws 

of each phase: solid, liquid and gas.  

Mass balance of solid skeleton is stated in terms of dry density    
s
(1   ) leading to: 

∫
  

  
 

   ∫       

 

   
(2.49) 

using the divergence theorem of Gauss and due to the arbitrary character of d , Eq. 2.49 

can be rewritten in local form: 

  

  
 (   )     

(2.50) 

the development of each term of Eq. 2.50 leads to the conservation law: 

  

  
              

  

  
        

 

(2.51) 

Eq. 2.51b establishes a relation between the rate of change of dry density and the solid 

dilation rate. Furthermore, noting that: 

  

  
 

  
s

  
(1   )   

s

  

  
    

l
  

g
 

(2.52) 

mass continuity of solid skeleton Eq. 2.51b can be re-expressed in terms of solid matrix 

density  
s
 and porosity  : 

   

  

(  (     ))

  
 

 

  
(     )  (  (     ))        

(2.53) 

Eq. 2.53 can also be expressed in terms of unit volume     
  

⁄  : 
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(2.54) 

  

Mass balance of water stated in terms of density ratio   
  , porosity and degree of 

saturation is:  

∫
 

  
(   

        
  (    ))

 

   ∫(  
    

 )⏟      
   

     ∫    

 

   
(2.55) 

where  w is a sink/source term and jw is the total flux of water, advective and diffusive, 

given by: 

jw     
          

    (  
    )⏟                    

  
 

    
 (1  Sl)      g

w (1  Sl)(   
    

 )⏟                            
  
 

 

or in terms of   fractions:  

      
       

 (  
    )⏟        

   

 
⏟              

  
 

    
       

 (   
    

 )⏟          

   
  

⏟                
  
 

 

(2.56) 

divergence theorem of Gauss allows to rewrite Eq. 2.55 as: 

∫
 

  
(   

        
  (    ))  (  

    
 )

  
 

   ∫    

 

   
(2.57) 

because    in Eq. 2.57 is arbitrary it can be written in local form: 

 

  
(   

        
  (    ))  (  

  j
g
w)

  
  w  0 

or in terms of   fractions: 

 

  
(   

     
 )  (  

    
 )

  
      

(2.58) 

 

developing each term of Eq. 2.58b leads to the conservation law: 
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or similarly, 

  

  
(  

    
 )   (

   
 

  
 

   
 

  
)     

         
           

       
  

   

(2.59) 
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which on account of the skeleton mass conservation leads to the relations for water specie 

at each phase ( )l
  and ( )g

 : 

 
   

 

  
      

     
   

 

  
      

  
   

(2.60) 

 

Moreover, water mass continuity equation Eq. 2.59 can be rewritten in terms of fluid 

densities { 
k
w k  l g} and partial porosities { 

k
 k  l g}, leading to: 
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(2.61) 

the equality at Eq. 2.61 should be fulfilled for each species (water in liquid state) and 

(vapor), then: 

   
 

  

  

  
  

   

  
        

    
 

  
            

   
 

  

  

  
  

   

  
        

    
 

  
    

       
   

 

(2.62) 

where each equation is identically zero. They can also be expressed in terms of unit 

volumes  l
   

  
 ⁄ ,   

   
 

 
 ⁄  : 

      
  l

 

  
  

    
   

  
           

     
 

     
  

   
 

  
  

    
   

  
           

      
 

 

(2.63) 

 

In a similar approach a mass balance of air stated in terms of density ratio, porosity and 

degree of saturation is: 

∫
 

  
(   

 (    )     
    )

 

   ∫(  
    

 )⏟    
   

     ∫    

 

   
(2.64) 

 

where  a is a sink/source term and ja is the total flux of air given by:  
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or in terms of    fractions:   
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(2.65) 

by using the divergence theorem and the fact that d  is arbitrary Eq. 2.64 can be rewritten 

in local form: 
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or in terms of    fractions: 
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(2.66) 

the development of each term of Eq. 2.66b leads to the conservation law: 
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or similarly, 
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(2.67) 

 

which on account of the skeleton mass conservation leads to the relations for air specie at 

each phase ( )g
a and ( )l

a: 

 
   

 

  
      

     
   

 

  
      

  
   

(2.68) 

Gas mass continuity Eq. 2.67 can be rewritten in terms of fluid densities { 
k
a k  l g} and 

partial porosities { 
k
 k  l g}, leading to: 
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(2.69) 

Eq. 2.69 should be fulfilled for each species (air in gas) and (air in liquid), then: 
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(2.70) 

where each equation is identically zero. They can also be expressed in terms of unit 

volumes   
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(2.71) 

The combined continuity equation for the solid skeleton and the pore fluids can be 

obtained by adding equations 2.53, 2.62 and 2.70, leading to: 
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(2.72) 

where results from skeleton mass conservation has been used to drop off material 

derivative of  . 

If pore water compressibility is considered much more higher than gas compressibility 

and solid grains, the combined continuity equation Eq. 2.72 is reduced to: 
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(2.73) 

If pore fluids and solid grains are assumed to be incompressible Eq. 2.72 is reduced to: 

     q
li i

 igi i

w  q
gi i

 ili i
a  0 (2.74) 

 

First law of thermodynamics states that the rate of increase of internal energy in the 

porous volume   is equal to the power input to the volume given by: (a) energy input at 

the boundaries and (b) the rate of work of body forces.  
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Assuming thermal equilibrium between the phases (equal temperature in all the phases) 

and ascribing  ̃ ,    and    as the specific energy of the skeleton, the specific energy of the 

liquid phase and the specific energy of the gas phase, respectively,   as the power input to 

the porous volume and    as the heat flux , the first law of thermodynamics is stated as: 

∫
 

  
( ̃                 (    ) )

 

   ∫(  ̃ 
    

    
)     

 

 ∫  

 

d  ∫ d  ∫ ici

  

nid  

(2.75) 

The specific internal energy of the porous skeleton accounts for the energy of the solid 

skeleton in addition to the energy of the air-liquid interface (due to the partial saturation 

condition): 

E  (    ∑  
  

  

)    

  

 
   

  

 

  ̃           

 

(2.76) 

where      (   ) is the dry density of the medium,    and    are the mass fractions 

of water and air per unit volume of skeleton respectively and   ̃  is the specific energy of 

the solid matrix and the interfaces exerted by the interactions between solid, air and liquid 

  
  .  

The energy flux of porous skeleton due to the porous skeleton motion is given by the 

expression: 

  ̃ 
 [(    ∑  

  

  

)    ∑  
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)      ∑  
  

  

 (  
    )

⏟            
   
 

 

(2.77) 

where   
  is the absolute velocity of the air-liquid interface. 

 

According to mixture theory, the specific internal energy of the liquid phase is: 

     (  
   

    
   

 )    (2.78) 

where   
  and   

  are the specific internal energies of air and water in the liquid phase and 

  
  and   

  are the unit mass fractions of dissolved air and water in liquid phase per unit 

mass of skeleton, respectively. 
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Furthermore, the energy flux of pore liquid due to water motion is given by the 

expression:  

   
 (  
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or in term of   fractions: 
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(2.79) 

 

where   
  and   

  are the apparent mass densities of liquid water and dissolved air as used 

in Code_Bright notation, JEi

  is the energy flux with respect to the solid phase,   
 and   

  are 

the diffusive fluxes of water and air in liquid phase and q
l
 is the Darcy flux of liquid. 

In the same way, the specific internal energy of the gas phase is:  

     (  
   

    
   

 )    (2.80) 

where   
  and   

  are the specific internal energies of water and air in the gas phase and 

  
  and   

  are the unit mass fractions of water vapor and air in gas phase per unit mass of 

skeleton, respectively. 

Then the energy flux of pore gas due to air motion is given by the expression:  
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or in term of   fractions: 
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(2.81) 

 

where   
  and   

  are the apparent mass densities of water vapor and gas air as used in 

Code_Bright notation, JEgi

  is the energy fluxes with respect to the solid phase,   
  and   

  are 

the diffusive fluxes of water and air in gas phase and q
g
 is the Darcy flux of gas. 
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Both the energy flux of liquid and the energy flux of gas can be rewritten with respect to 

the motion of the solid phase instead of absolute motion, leading to: 
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(2.82) 

or in terms of   fractions: 
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where the diffusive fluxes are: (a) water vapor  ig
w    

 (   
     

) and (b) dissolved air  

il
a    

 (   
     ), respectively.  

Then the first law of thermodynamics Eq. 2.75 can be rewritten as: 

∫
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(2.84) 

 

The rate of work input   to a three phase porous material is defined by: (a) the tractions ti 

(forces per unit area) acting on the boundary of the solid skeleton  (1   ), (b) the pore 

pressures p
l
 and p

g
 of the fluids in the soil pores acting on the complementary fraction of 

the boundary   , (c) the forces in the contractile skin Ti generated by the summed effect 

of surface tensions due to different pore air and water pressures (d) the body forces per 

unit volume of solid skeleton  g
i
 and (e) the body forces per unit volume of pore fluids 

  Sl   and   (1  Sl) g.  
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Then, the work done per unit area by the tractions on  (1   ) is (1   )ti  , the work 

done by the pore pressures on    is expressed as  ni (Slpl
  

  (1  Sl)p
g
  

 ), the work 

done by the tractions in the contractile skin is Ti  
  and the work done per unit volume by 

the body forces of the skeleton and of the pore fluids are  g
i
   and   (Sl    

  

(1  Sl) g  
 ), respectively, Fig. 2.12. 

 

 

Figure 2.12: Boundary and body forces on a representative elementary volume (REV) of porous medium.  

 

where   
  is the velocity of the contractile skin defined by the air-water interface. 

The work done by the pore pressures can be developed in order to highlight the partial 

pressures in each specie   
 , p

l
a,   

  and p
g
a linked by the Dalton's partial pressures law 

leading to  ni (Sl(  
    

    
    

 )  (1  Sl)(  
    

    
    

 )). 

Then, the power input to the porous volume   is implicitly given by: 

∫ d 
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 Ti  
 ] d  ∫[      (Sl    

  (1  Sl)    
 )]g
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(2.85) 
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the forces per unit area ti, pore pressures p
l
 and p

g
 and the forces per unit of porous 

volume in the contractile skin summed to Ti are related to the total stress  ij by: 

(1   )ti    ijni   ni Slpl
  

  ni (1  Sl)p
g
  

  nipl
q

li
 nipg

q
gi

 Ti   (2.86) 

where ni is the outward unit vector to the surface   of the representative element volume 

  and Ti is the traction vector due to the air-water interface. 

Replacing Eq. 2.86 in Eq. 2.85 leads to the expression of the power input to the porous 

volume   in terms of the stress tensor and the artificial seepage velocities: 

∫ d 
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g
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l
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(2.87) 

Then the energy balance of the three phase porous medium Eq. 2.84 becomes: 
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(2.88) 

 

applying the divergence theorem of Gauss to Eq. 2.88 and the fact that   is arbitrary, the 

local form of the energy balance (Gens A. , 2010) in terms of   fractions is:  
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(2.89) 

 

By expanding the derivatives in the left hand side of Eq. 2.89 and using the results 

obtained in Eq. 2.51b, Eq. 2.60 and Eq. 2.68 one arrives to: 
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(2.90) 

 

the right hand side of Eq. 2.89 may be rearranged as follows: 
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[ ij     
 q

li
 p

g
aq

gi
 p

l
aili

a    
    

  Tij(  
    )  ici

]
 i
     

   (Sl    
  (1  Sl)    

 )]g
i

 ( ij i
  (1   (Sl   (1  Sl) g)g

i
))     ij         

 q
li
   

 q
li i

 p
g i

a q
gi

 p
g
aq

gi i
 p

l i
a ili

a  p
l
aili i

a      
    

    
      

 

 Tij i
(  

    )  Tij(  
    )      qli

g
i
   gq

gi
g

i
 ici i

 ( ij i
  (1   (Sl l  (1  Sl) g)g

i
))    Tij i

(  
    )   ij    

 (   gi
 p

l i
) q

li
 (  gg

i
 p

g i
) q

gi
 p

l i
a ili

a      
    

 

 p
l
 q

li i
 p

g
aq

gi i
 p

l
aili i

a  p
g
 igi i

  Tij(  
    )   ici i

 

(2.91) 

 

The solid skeleton velocity      can be splitted in its symmetrical and non-symmetrical 

parts giving rise to the strain rate tensor and the rotational tensor: 

dij  
 

 
(         ) 

 ij  
 

 
(         ) 

(2.92) 

using Eq. 2.92 and replacing Eq. 2.90-Eq. 2.91 in Eq. 2.89 leads to: 
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(2.93) 

because rigid movements do not produce any change in the internal energy, then: 

( ij i
  (1   (Sl l  (1  Sl) g)g

i
))     

 ij ij  0

Tij i
(  

    )  0

 

(2.94) 

for any value of   ,  ij and (  
    ).  

From Eq. 2.94b it is concluded that the antisymmetric part of  ij is zero. As consequence 

the stress tensor is symmetric. From Eq. 2.94a the balance of momentum for the three-

phase porous medium is obtained: 



CHAPTER 2 - Modeling Soil-Vegetation-Atmosphere Interactions 
_______________________________________________________________________________________________________________________________ 

 

86 
 

       (   (     (    )  )  )    (2.95) 

 

Eq. 2.94c states the momentum balance for the air-liquid interface as         . This result 

is physically accepted due to the thinness of the interface skin. Then Eq. 2.93 is reduced to: 
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(2.96) 

 

Restrictions to the intensive variables defining the energy balance of Eq. 2.96 are 

introduced invoking the positive character of dissipation energy of the porous medium 

(second law of thermodynamics).  

The existence of a state function, the specific entropy  , is assumed  such that the rate of 

entropy production is non-negative (Houlsby & Puzrin, 2005). Ascribing  ̃ ,    and    as 

the specific entropy of the skeleton, the specific entropy of pore liquid phase and  the 

specific entropy of pore gas phase, the specific entropy of the porous medium is 

   ̃            where  ̃ not only accounts for the entropy of the solid matrix but 

also for the air-liquid interface entropy given by the interactions between solid, gas and 

liquid phases. 

The storage entropy in a porous skeleton is composed of: (a) the entropy in the mineral 

 s s
(1   ), (b) the entropy in the air-liquid interface  ∑ i

kl, (c) the entropy in the pore 

liquid   l  lSl  and (d) the entropy in the pore gas      g(1  Sl) .  

Net flows of entropy are defined by: (a) the net flow of entropy in the mineral and in the 

air-liquid interface j
 ̃s

, (b) the net flow of entropy in the liquid j
 l

, (c) the net flow of 

entropy in the gas j
 g

and the net flow of entropy by conduction (
ic

T⁄ ), see Fig. 2.13.  
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Figure 2.13: Storage and fluxes of entropy in a three-phase porous medium. 

 

Fundamental inequality for the entropy states that the rate of increase of entropy of the 

porous medium plus the entropy fluxes at each phase across the boundary is greater than 

or equal to the entropy flux into  , thus: 

∫
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(2.97) 

where the subscript    makes reference to the reversible part of entropy given by the rate 

of entropy supplied to the porous material element from its surroundings. 

The rate of entropy production within the porous element corresponds to the irreversible 

part of the entropy which satisfies the positivity condition    . 

The specific entropy of the porous skeleton accounts not only for the specific entropy  of 

the solid but also for the specific entropy of the air-liquid interface, thus: 

  (    ∑  
  

  

)    
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(2.98) 

 

The entropy flux of porous skeleton due to its motion is defined by: 
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In addition, the entropy fluxes of liquid and gas phases due to their motions are given by:  
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(2.100) 

where    

  and    

  are the entropy fluxes of liquid and gas with respect to the motion of the 

solid phase. 

Applying the divergence theorem to Eq. 2.97 and due to the arbitrariness of   the local 

form of the fundamental inequality of entropy is: 
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(2.101) 

 

expanding the derivatives at Eq. 201 it can be re-written as: 
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(2.102) 

where the total dissipation   considers: (a) the dissipations at the fluid phases, (b) the 

mechanical dissipation    and (c) the thermal dissipation ( 
   

   
T

⁄ ). Combination of 

Eq. 2.96 and Eq. 2.102 leads to: 
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(2.103) 

 

which on account of Eq. 2.54, Eq. 2.63 and Eq. 2.71 can be rewritten as: 
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(2.104) 

 

Eq. 2.104 expressed in terms of the internal energy of the porous medium per mass of 

skeleton E is: 
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(2.105) 

 

Equation 2.105 establishes the relationship between physical variables of porous medium 

(right hand side) and rate of energy and dissipation of the porous medium (left hand side). 
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2.5.1)    Constitutive Equations 

 

The rate of internal energy of the porous skeleton   
  ⁄  can be expressed by 

differentiating it with respect to its internal variables: strain rate    , degree of saturation 

  , solid unit volume   , unit volume of specie k in fluid phase i   
 , solid entropy   , air-

liquid skin entropy   , liquid phase entropy   , gas phase entropy   , porosity  , liquid 

fraction   , gas fraction   , plastic strain     and plastic saturation   , so that: 
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(2.106) 

so that the material derivative can be developed as: 
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(2.107) 

 

where relations 2.78 and 2.80 have been used. 

In the same way, the dissipation energy of the porous skeleton   is also expressed in terms 

of its internal variables, given by: 
   

 
⁄ ,    ,    

,    
 ,    

  in addition the internal variables of 

the internal energy, thus: 
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(2.108) 
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introducing the notation    
   

 
⁄  and assuming   as an homogeneous and first order 

function, the material derivative is developed as: 
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(2.109) 

substituting Eq. 2.107 and Eq. 2.109 in Eq. 2.105 and after collecting terms, leads to: 
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(2.110) 
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Eq. 2.110 must be satisfied for any value of  ̇  , 
   

  
⁄ , 

   
  

⁄ , 
   

 

  
⁄ , 
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⁄ , 

   
 

  
⁄ , 

   
  

⁄ , 
   

  
⁄ , 

   
  

⁄ , 
   

  
⁄ , 

    

  
⁄ , 

   
  

⁄ ,   ,    ,    
,    ,    

 ,    
 , since all those 

variables are independent of each other. Then it follows that: 

Mechanical Constitutive law 

Description 
State equation for the solid skeleton of a three-phase 

porous medium. 
No. of Eqs. 

Equations  

 
(    (     (     ))    )⏟                  

   
 

 
   

    
 

6 

    Internal energy of solid skeleton 

     Strain tensor 

     Total stress tensor 

    Gas pressure 

    Liquid pressure 

 

Skeleton compressibility law  

Description 
State equation for the pore pressure of a three-phase 

porous medium. 
No. of Eqs. 

Equations 
 (       (    ))⏟            

 

 
   

   
 

1 

    Internal energy of solid skeleton 

    Unit volume of solid skeleton 

   Pore pressure 

    Gas pressure 

    Liquid pressure 
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Mechanical hardening law  

Description 

Complementary State equation for the Generalized stress 

tensor of a three-phase porous medium (Ziegler's 

orthogonality) 

No. of Eqs. 

Equations    

    
  

  

 
    

  
⁄

     
6 

    Internal energy of solid skeleton 

   Dissipation of porous medium 

     Plastic strain tensor 

     

  
⁄  

Material derivative of plastic strain tensor 

     Generalized stress tensor 

 

Retention curve law 

Description State equation for water retention law.  No. of Eqs. 

Equations  

 
 (     )⏟      

 

 
   

   
 

1 

    Internal energy of air-liquid interface 

    Degree of saturation  

   Suction 

    Gas pressure 

    Liquid pressure 

   porosity 

 

 

 

 

 

 

 



CHAPTER 2 - Modeling Soil-Vegetation-Atmosphere Interactions 
_______________________________________________________________________________________________________________________________ 

 

95 
 

Hardening law for air-liquid interface  

Description 
Complementary state equation for the generalized suction 

(Ziegler's orthogonality).  
No. of Eqs. 

Equations 
 

   

   
  

  

 
   

  
⁄

    
1 

    Internal energy of air-liquid interface 

   Dissipation  

    Irreversible degree of saturation 

   Porosity 

    Generalized suction 

 

Partial liquid pressure 

Description 
State equation for partial pressure in liquid water of a 

three-phase porous medium. 
No. of Eqs. 

Equations 
   

  
   

 

   
  

1 

   
  Internal energy of liquid water 

   
  Unit volume of liquid water 

   
  Partial pressure at liquid water 

 

Partial pressure in dissolved air  

Description 
State equation for partial pressure in dissolved air of a 

three-phase porous medium. 
No. of Eqs. 

Equations 
   

  
   

 

   
  

1 

   
  Internal energy of dissolved air 

   
  Unit volume of dissolved air 

   
  Partial pressure at dissolved air 
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Partial pressure in dry air 

Description 
State equation for partial pressure in dry air of a three-

phase porous medium. 
No. of Eqs. 

Equations 
   

  
   

 

   
  

1 

   
  Internal energy of dry air 

   
  Unit volume of dry air 

   
  Partial pressure at dry air 

 

Partial pressure of vapor  

Description 
State equation for partial pressure in water vapor of a 

three-phase porous medium. 
No. of Eqs. 

Equations 
   

  
   

 

   
  

1 

   
  Internal energy of water vapor 

   
  Unit volume of water vapor 

   
  Partial pressure of water vapor 

 

Constitutive law for Temperature  

Description 
State equation for Temperature at any phase of a three-

phase porous medium. 
No. of Eqs. 

Equations 
  

   

   
 

   

   
 

   

   
 

   

   
 

1 

    Internal energy of solid skeleton 

    Internal energy of air-liquid interface 

    Internal energy of liquid phase 

    Internal energy of gas phase 

    Specific entropy of solid skeleton 

    Specific entropy of air-liquid interface 

    Specific entropy of liquid phase 

    Specific entropy of gas phase 
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Constitutive law for heat conduction  

Description State equation for heat conduction law. No. of Eqs. 

Equations 
 

 

 
    

  

   
 

3 

   Dissipation  

    Ratio 
   

 
⁄  

   Temperature 

 

Constitutive law for liquid conduction  

Description State equation for liquid water conduction law. No. of Eqs. 

Equations  

 
(          )  

  

    

 
3 

   Dissipation  

     Liquid water flux of Darcy's type 

    Liquid pressure 

 

Constitutive law for gas conduction 

Description State equation for dry air conduction law. No. of Eqs. 

Equations  

 
(          

)  
  

    

 
3 

   Dissipation  

    
 Dry air flux of Darcy's type 

    Gas pressure 
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Diffusion of dissolved air  

Description State equation for dissolved air diffusion law. No. of Eqs. 

Equations  

 
    

   
  

    
  

3 

   Dissipation  

    
  Diffusive flux of dissolved air in liquid 

phase 

   
  Partial pressure of dissolved air  

 

Diffusion of water vapor  

Description State equation for water vapor diffusion law. No. of Eqs. 

Equations  

 
    

   
  

    
  

3 

   Dissipation  

    
  Diffusive flux of water vapor in gas phase 

   
  Partial pressure of vapor  

 

The rest of terms in Eq. 2.110 are identically zero, since in virtue of the laws derived 

above: 

    
  

   
 

   
     

  
   

 

   
     

     
     

       
  

(2.111) 

where (     ) and   (   ). 

For simplicity, terms concerning air-liquid skin velocity   
  have been dropped in Eq. 2110 

under the assumption that air-liquid skin moves with the solid skeleton leading to 

  
      . 

2.6)      Ground response to the interaction with the atmosphere 

 

In this section some consequences of the soil-atmosphere interactions are illustrated 

based on real situations in order to better understand these interactions. 

Balance between infiltration and evapotranspiration causes hydric changes in the upper 

zone of the ground, called “active zone” or “zone of seasonal moisture changes”. The 
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thickness of this zone is typically lower than 3 m (Nelson & Miller, 1992), although Blight 

(1997) reported water content variations until depth of 6 m. Fig. 2.14 shows the example 

of two extreme profiles of water contents (winter and summer) as measured by TDRs in a 

road embankment (Carmaux, France). Measurements clearly indicate that climate actions 

do not causes changes in water content below a depth equal to 4 m for the material under 

consideration. 

 

Figure 2.14: Seasonal changes in water content measures at a section of Carmaux embankment in France. 

Pore pressure fluctuations at the bottom of the active zone act as a forcing condition for 

the underlying ground and, in absence of other effects (artesian recharge, recharge due to 

river level variation, etc.), further govern the groundwater response. The estimation of 

hydric changes in the active layer has thus a geotechnical relevance that goes well beyond 

the estimation of the characteristics of the superficial vadose zone. 

Permeability plays obviously a central role in groundwater response as it controls the 

amount of percolated water and thus the balance between infiltration and evapo-

transpiration. For example, Fig. 2.15 shows the effects of soil permeability on predicted 

hydric changes within a layer of silt at Le Fauga site (see chapter 6 for the description of 

the material and field conditions). 
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Figure 2.15: Influence of permeability on hydric time evolution at the surface of a silt layer (Le Fauga-
France).Filtered data from the obtained results. 

 

Lower water contents are predicted if a higher permeability is considered. Fig. 2.15 states 

that: a) a greater resistance of the soil to percolation enhances evaporation and b) the rate 

of infiltration decreases as percolation resistance increases. Moreover it is concluded that 

the soil sensitivity to atmospheric actions increases as the resistance to percolation 

increases. Figure 2.16 confirms the mentioned conclusions and also shows that the impact 

of statements a and b decreases as the depth increases. 
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Figure 2.16: Influence of permeability on hydric time evolution at several depths within a layer of silt (10, 20, 30, 
40, 50 60 and 70 cm). 

 

Additionally, high permeability may affect the energy balance as it favors a deeper 

percolation of surface water (at atmosphere temperature). This effect is illustrated in 

Fig. 2.17 for the case of the silt layer at Le Fauga site. At 50 cm depth, differences in 

temperature may be appreciated between the simulations with kii = 10-12 m2 and  kii = 10-

15 m2. 
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Figure 2.17: Permeability influence of the upper soil layer for a vegetation fraction (        ) at Le Fauga 
site. Response of the Temperature evolution. Filtered data from the obtained results. 

 

Leroueil (2001) indicated however that permeability cannot explain alone the overall 

response of groundwater and particularly the delay and attenuation of pore pressure 

changes with depth.  This response is essentially governed by the processes of 

saturation/desaturation and consolidation/swelling that take place in the ground below 

the active zone. Retention curve and stiffness are the main material parameters that 

govern these processes, otherwise largely controlled by soil stratigraphy and bedrock 

depth and inclination. Water pressures distribution influences in turn soil stiffness and 

strength, which lastly determines the stability of the slope. Reverse hydro-mechanical 

coupling such as pore-pressure build-up by loading inside the moving mass (Picarelli, 

(1986); Sassa, (1985)) or the dependence of permeability on deformation and, 
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particularly, on fissures and other localized discontinuities may also play a non-negligible 

role in rainfall induced failures.   

Figure 2.18 shows the effect of the vegetation fraction over suction profiles predicted by 

the presented model. The effect is shown by obtaining the suction profiles in a maize field 

at two different stages of ageing: a) a growing field with 55% of the ground covered by 

maize plants with 30% of leafs and b) a mature field with 85% of the ground totally 

covered by the leafs of the plants.  

The unsaturated zone is 1 m deeper in the last case because of the higher amount of water 

extracted by roots in the mature fallow field.  

 

Figure 2.18: Water content profiles beneath two different vegetated surfaces: (a) Maize field during plant growth 

(parameter used:      
    

 ⁄  ,          
 

  ⁄ ,        ,         ); (b) Mature maize field 

(parameters used:      
    

 ⁄  ,        

  ⁄ ,        ,         ).  

It addition to the amount of water extracted by a plant, the depth and density of roots has 

a significant influence on the thickness of active zone. Fig. 2.19 shows a comparison 

between two simulations with changing root depth (0.65 and 0.95 cm, respectively) in a 

silt layer of an experimental field (extensively developed in chapter 6).  
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It is observed that water content reaches systematically lower values as root depth 

increases.   

 

Figure 2.19: Water content evolutions “at 1 cm depth”; “at 5 cm depth”  and “at 7 cm depth”  at Le Fauga site 
for two different rooting depths. (a) Root depth at          ; (b) Root depth at          . Filtered data 

from the obtained results. 
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The water content evolution at a depth of 10cm in Fig. 2.16a shows few differences 

between the two compared cases. However, as depth increases differences between the 

registered water contents in both cases become more and more evident.  

It reveals that the response of the higher soil layers are mainly controlled by evaporation 

fluxes while as depth increases the transpiration fluxes become more relevant and 

therefore control the soil response. 

As far as root density is concerned Fig. 2.20 shows the soil response in terms of water 

content when two different densities: a) zDr=1 and b) zDr=0.5 of the rooting system are 

considered. It evidences a delay in water extraction by the roots as well as a decrease in 

the magnitude of such extraction (transpiration). 

 

Figure 2.20: Density of Rooting Influence on the Water Content evolution at the upper soil layer (    ) for a 
vegetation fraction(        ). 

 

Extend of root zone depends on both plant and soil characteristics. As pointed out by 

Penman (1963): “If root development is such that the roots can continue to grow 

downwards in pursuit of a retreating water table, it will be possible to lower the water 

table permanently, provided that the mean annual transpiration is a little greater from the 

deep-rooted vegetation than that of any shallow-rooted vegetation it has replaced”, the 

common assumption that root develops vertically leads to unphysical conclusions. 
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Dobson and Moffat (1995) showed indeed that the tree/root architecture is often 

horizontal with root depths limited to 2m and lateral spread that may exceed 20m. The 

tree/root architecture pattern is also affected by the type of soil: root depth is higher in 

sandy soils than in clayed soils. In the last case it is much common to find root systems 

developed at width than at depth. 

 

2.7)      Conclusions 

In this chapter the soil-atmosphere interaction has been presented in a coupled THM 

formulation of mass and heat flow in deformable porous media. This approach provides an 

overview of the cause of problems studied in this dissertation. 

The modeling account for the net radiation reaching the soil surface. Net radiation flux has 

proved to be of great relevance for evaporation, producing thermal strains. It will be seen 

in chapter 8 that it could also be the cause of ground deformation. 

Magnitude of this flux depends on the magnitudes of current atmospheric variables (wind 

velocity, relative humidity, atmospheric temperature). 

Transpiration flux which acts on the root zone of vegetated areas depends on the soil 

water content available at the root zone. Stress factor affecting leaf surface resistance is 

the controlling  factor for this flux. 

The fluxes on the soil-atmosphere interface have been implemented in a 

thermomechanical formulation for THM behavior of porous media. It is based on first and 

second laws of thermodynamics and allows to derive the momentum balance equation for 

the skeleton and for the air-liquid interface, involving the average stress-like tensor    . 

Moreover, following standard procedures in thermomechanics, the state equations 

(constitutive laws) of the three-phase porous medium have been obtained. 

All those elements set up bases for the study in this dissertation of different geotechnical 

problems of soil-atmosphere interactions. 

A sensitive study of the effect of some factors has been presented at the end of this 

chapter. It includes the effects of permeability and vegetation characteristics which affect 

the water content profiles in the active zone. 
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As future work, it is foreseen to introduce the effect of life cycle of plants which affects 

suction profile at the root zone. To do that, a model for plant growth at cellular level can be 

envisaged. 
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CHAPTER 3 

 

 

A THERMODYNAMIC FRAMEWORK TO MODEL PARTIALLY SATURATED POROUS 

MEDIA 

 

 

3.1)      Introduction 

 

Modelling the mechanical response of the ground (including failure) under climatic actions 

requires having at hand thermo-hydro-mechanical models suitable to provide objective 

numerical solutions, particularly in presence of materials displaying softening. One way to 

insure necessary conditions for well-posed models relies on the derivation of constitutive 

laws from thermodynamics potentials. The objective of this chapter is to propose a 

framework for such derivation in presence of the effect of temperature and internal 

pressures in three-phase media. The framework essentially merges concepts developed in 

poromechanics (Coussy, (2004) and hyperplasticity (Collins & Houlsby, 1997) extended to 

three-phase media. 

3.2)      Notation and Terminology 

Symbols used in the remaining part of the chapter are summarized hereinafter. 

Table 3.3: Notation and Terminology 

Latin symbols 

      Stiffness matrix 

   Dissipation energy of the medium 

    Dissipation energy of solid skeleton (including interfaces between 

phases)  
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  Void ratio 

   Helmholtz energy function of interfaces between phases only 

   Helmholtz energy function of solid skeleton (including interfaces 

between phases) 

  ̅ Helmholtz energy function of solid skeleton only 

   
 Elastic Helmholtz energy function of solid skeleton (including interfaces 

between phases) 

   
 Trapped Helmholtz energy function of solid skeleton (including 

interfaces between phases) 

   Yield function 

  Shear modulus 

   Gibbs free energy function of solid skeleton (including interfaces 

between phases) 

   
 Elastic Gibbs free energy function of solid skeleton (including interfaces 

between phases) 

   
 Trapped Gibbs free energy function of solid skeleton (including 

interfaces between phases) 

  Characteristics length of the porous network  

   Characteristics length of the part of the porous network filled with fluid 

i 

  Rate of total work  

   Rate of dissipative work  

   Rate of work of the porous skeleton (including interfaces between 

phases) 

  
  Reversible part of the rate of work of the porous skeleton (including 

interfaces between phases) 

  
 

 Irreversible part of the rate of work of the porous skeleton (including 

interfaces between phases) 

    Mass concentration of fluid i with respect to total porous medium 

volume 

   Apparent molar density of species i  

  Mean stress  

   Mean effective stress (Bishop effective stress with      in three-phase 

porous media) 

   Preconsolidation pressure in Cam Clay Model 

     Effective stress tensor (Bishop effective stress tensor with      in 
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three-phase porous media) 

   Fluid pressure 

   Gas pressure 

   Liquid pressure 

  Deviatoric stress  

   Heat flux through the medium (solid and, eventually, fluid phases) 

    Heat flux through the soil skeleton (including eventual interfaces) 

  Suction 

   Degree of liquid saturation 

  
  Effective degree of liquid saturation 

  
  Residual degree of liquid saturation 

  Temperature 

   Internal energy of interface between phases only 

   Internal energy of solid skeleton (including interfaces between phases) 

   Seepage velocity 

    Generalized dissipative stress tensor in one-phase porous media 

     Generalized dissipative stress tensor in multi-phase porous media 

   Generalized dissipative fluid pressure  

   Generalized dissipative suction 

 

Greek symbols 

    Internal variables of solid skeleton (including interfaces between 

phases) 

   Internal variable of the liquid-gas interface 

   Internal variable of fluid 

    Kronecker symbol 

    Strain tensor 

   
  Elastic strain tensor 

   
 

 Plastic strain tensor 

   Volumetric strain 

   Hydraulic strain  

  Porosity 
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   Initial porosity 

    Surface tension gas-liquid 

   Slope of the elastic branch in the plane  {     (  )}   

   Slope of the inelastic branch in the plane  {     (  )}   

   Molar chemical potential of species i  

   Gas density 

     Back stress tensor (shift stress) 

   Back suction (shift suction) 

    Total stress tensor 

     Effective stress tensor (Bishop effective stress tensor with      in 

three-phase porous media) 

     Net stress tensor  

 

Others symbols 

  Entropy of the porous medium  

   Entropy of the solid skeleton (including interfaces between phases) 

   
 Reversible part of the entropy of the solid skeleton and interfaces 

between phases 

   
 Irreversible part of the entropy of the solid skeleton and interfaces 

between phases 

    
 Entropy of interface between phase k and l  

      
 Reversible part of interface between phase k and l  

      
 Irreversible part of the entropy of interface between phase k and l  

   Entropy of all interfaces  

    Reversible part of the entropy of all interfaces  

    Irreversible part of the entropy of all interfaces  

 

3.3)     Theoretical restrictions on plasticity theory  

 

Elastoplastic models for geomaterials may be either purely empirical, based on curve 

fitting of laboratory tests, or based on some more fundamental postulates. The two 

approaches are often combined leading to the rational formulation of constitutive laws of 

materials. A common framework is the theory of elasto-plasticity which is able to 
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accommodate an almost limitless variety of models. Unlike elastic models, elastoplastic 

models construct stress-strain relationships in a finite space (either in stress or in strain), 

which limit has been attempted to be related to restrictions provided by the second law of 

thermodynamics.  

Perhaps the older and best known restriction is the Drucker’s stability postulate (Drucker 

D. , 1951). Initially considered as a thermodynamics restriction, this postulate appears 

later to be a “constitutive” assumption allowing “quasi-thermodynamic” classification of 

materials. The postulate states that the second order plastic work should be positive or 

null,   

        
 

   (3.1) 

where      and     
 

 are increments of applied stress and the resulting plastic strain. 

Equation 3.1 states the orthogonality between the yield surface and the plastic strain 

increment (or the flow rule). This condition is also called associativity of the flow rule. 

Most of the materials of geological origin do not respect this condition as the flow is 

usually non associated. 

An alternative restriction is the Postulate of Plasticity of Il’iushin (1961). It states that the 

work done during a cycle of strain must be positive or zero.  

∮          
(3.2) 

This condition is less restrictive than Drucker’s postulate, as it allows strain softening 

behavior. However, like Drucker postulate, Il’iushin postulate provides a condition stricter 

to that compared with the second law of thermodynamics. 

The hyper-plasticity approach uses an extremum principle introduced by Ziegler (1977) 

called “the orthogonality condition”. It states that the dissipation function acts as a 

potential. The dissipated work (       ̇    ) defines a new tensor, the “dissipative 

generalized stress    ”. The direction of this tensor is determined assuming that, in the 

vicinity of the rate of plastic strain ( ̇  ), the dissipation function admits a power series 

expansion. The dissipative generalized stress corresponds to the second coefficient of 

Taylor’s series, leading to the expression: 

    
  

  ̇  
 

(3.3) 

According to Eq. 3.3,      is orthogonal to iso-value surfaces of the dissipation, Fig. 3.21. 
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Figure 3.21: Orthogonality of dissipative forces and rates 

 

The orthogonality condition is equivalent to the principle of maximal dissipation rate 

enunciated by Ziegler (1977): “Provided the dissipative force     is prescribed, the actual 

rate  ̇   maximizes the dissipation rate (       ̇  ) subjected to the side condition”. This 

condition is more restrictive than the second law of thermodynamics which states that 

dissipation is positive but not necessarily maximal, and less strict that Drucker’s and 

Il’iushin postulates. It allows particularly to model materials that present stress or strain 

softening along specific paths.  

The development of the orthogonality principle will be revisited later in section 3.4.1 

when the dissipation function is considered. 

3.4)      Thermodynamics of Two-phase Media (Mechanic Part) 

 

A soil element treated as a porous medium can be understood as the superimposition of 

two continuous media: the skeleton and the fluid filling the porous space. The former 

corresponds to the solid skeleton and is composed by the solid matrix and the 

disconnected porous space emptied of fluid. The latter is the fluid saturating the connected 

porous space (Biot, 1941). Assuming small strains, the natural arguments of the internal 

energy for the porous continuum are (                  ) (Coussy O. , 2004)  

   (                  
 

) (3.4) 

where    is the mass concentration of fluid,   is the entropy of the porous continuum and 

both   -  
 

 are the volume of solid matrix and the internal kinematic variable of this 

matrix, which account for the solid compressibility. The fluid is a mixture composed of 
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several species ( ) with molar apparent density    and chemical potential   . From the 

isothermal Gibbs-Duhem equality, fluid pressure    is related to     and    by:  

  ̇  ∑   ̇ 

 

   (3.5) 

where  is the porosity. Because the system exchanges moles of species (j) with adjacent 

systems in the continuum, it is considered as an open thermodynamic system. The first 

law of thermodynamics (energy balance) can be then written in local rate form as: 

 ̇      ̇     ̇  ∑   ̇ 

 

      (3.6) 

Where    is the heat flux vector through the medium (solid and flux phases), representing 

the heat exchange between the soil element and its surroundings, p is the mean total 

stress conjugate to the volume rate of solid ( 
 ̇ 

  
⁄ ) and    ̇  is the supplied energy 

associated with the change in molar content    of j species.  

The internal energy of the skeleton Es is defined as the difference between the internal 

energy of the medium E and the internal energy of the fluid phases:      (∑       

   ). From Eq. 3.6, the rate of    can be written in terms of pore pressure and porosity:   

 ̇      ̇     ̇    ( ̇       )        (3.7) 

where     is the flux of heat through the solid phase only. When the stiffness of the solid 

grains is much higher than that of the porous medium (a common figure in Soil 

Mechanics), the skeleton matrix can be assumed incompressible . Moreover from the mass 

conservation of skeleton it is known that  ̇    ̇  (   ) which after replacement in 

Eq. 3.7 leads to: 

 ̇  (         ⏟      )

   
 

 ̇         

 

(3.8) 

where    
  is the Terzaghi’s effective stress.  

The second law of thermodynamics (dissipation must be positive) is formulated assuming 

the existence of a state function   "the entropy of the porous medium per unit of skeleton 

mass", such that the rate of entropy production is non-negative. The entropy for the bi-

phase medium per unit of skeleton mass is composed of two terms: (a) the entropy of the 
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solid skeleton    and (b) the entropy of the fluid phase    such that           . The 

term    
  

 ⁄  is the mass fraction of the fluid phase per unit of skeleton mass.  

The local form of the second law of thermodynamics takes then the following form:  

 ( ̇      ̇ )   ( ̇  
     ̇  )    (

   
 

)
  

       
 

      

 
 

(3.9) 

where the subscript r makes reference to the reversible part of entropy given by the rate 

of entropy supplied to the material element from its surroundings. The rate of entropy 

production within the element is the irreversible part expressed by the difference 

between ( ̇  
  ̇   ̇  

) and ( ̇    ̇   ̇  ), and by virtue of Eq. 3.9 satisfies the 

inequality: 

   ( ̇   ̇  
)      ( ̇   ̇  )   

   ̇       ̇       
  

 
   

 
          

 

(3.10) 

where d is the dissipation function of the porous medium. If the thermal dissipation is 

neglected Eq. 3.11 reveals that the divergence of the thermal flux corresponds to the 

reversible part of entropy in both the solid matrix and the fluid phase: 

      (  ̇  
      ̇  ) (3.11) 

while the divergence of the heat flux in the solid skeleton only (     ) corresponds to the 

difference between the total heat flux in the medium       and the heat flux of the fluid 

phases       ̇  .  

As for the internal energy, the dissipation of the solid skeleton is defined by the difference 

between the dissipation of the whole medium and the dissipation of bulk fluid: 

          ̇     ̇          ̇  
   (3.12) 

 

Expressed in this form, the thermodynamics inequality is called Planck’s inequality 

(Truesdell, 1969). In the case in which isothermal deformations are considered,  

(          ), it is convenient to replace the entropy (  ) by the temperature ( ) in the 

expression for the energy function. This can be achieved using the “Legendre 

transformation” to define the Helmholtz free energy of the porous skeleton, dual to 

internal energy (  ) with respect to the entropy (  ):  

  (     )         (3.13) 
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As discussed by Houlsby & Puzrin (2000), if the thermal dissipation 
     

 
⁄  is neglected in 

Eq. 3.10 (isothermal conditions), the rate form of    under isothermal conditions and 

maximal dissipation yields to: 

  ̇     
  ̇             

  ̇    ( ̇   ̇ 
 )     

  ̇      (3.14) 

or 

   
  ̇     ̇     (3.15) 

The left hand term of Eq. 3.15 expands to (    ̇     ̇) for the case of compressible solid 

phase. In a poroplastic material, the energy dissipation arises from changes in the internal 

variables, and the skeleton dissipation (  ) is stated to be a function of those variables. It 

is then possible to express the rate of Helmholtz energy of the skeleton (  ) by 

differentiating with respect to its internal variables: 

  ̇     
   
    

 ̇   
   
    

 ̇   
   

  ̇  
 ̇   

(3.16) 

By introducing Eq. 3.16 in Eq. 3.15 and collecting terms, the following equation arises: 

  (   
  

   
    

)  ̇   (
   
    

 
   

  ̇  
)  ̇   

(3.17) 

As the last equation must be satisfied for any combination of  ̇   and  ̇   and because the 

quantities in the brackets are independent of each others, each term at Eq. 3.17 must be 

equal to zero, yielding the state equation: 

   
  

   
    

 
(3.18) 

and the sufficient condition: 

   
    

 
   

  ̇  
   

(3.19) 

As discussed by Houlsby & Puzrin (2000). It is moreover assumed that Eq. 3.19 is a 

necessary condition. This new restriction is not governed by any of the thermodynamic 

requirements but is simply a constitutive assumption. Comparison between equations 

3.12 and 3.19 leads to the definition of the classical generalized stress-like variable in 

hyperplasticity (Collins & Houlsby, 1997): 

 ̃  ( 
   

  ̇  
)   

   
    

 
(3.20) 
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This variable provides a stress state of the porous skeleton in a shifted space in relation to 

the traditional true stress space. The advantages of this representation are addressed 

below and will be used further on the formulation of particular constitutive models 

developed in chapter 4.  

Depending on the physical problem, it can be necessary to express the energy in terms of 

different intensive variables and thus to consider the Gibbs free energy of the porous 

medium instead of the Helmholtz energy (         
    ).  

For an incompressible matrix and a decoupled poro-material Collins (1997) proposed the 

following form for   : 

  (       )     
(   

 )     
        

(   ) (3.21) 

Equation 3.21 together with the state equation make the strain tensor reads, 

     
   

    
   

    

    
 

⏟  
   
 

     
(3.22) 

while the complementary state equation allows to derive the expression of the dissipative 

generalized stress tensor: 

 ̃  
   

   

    
    

  
    

    ⏟
    

 
(3.23) 

where      is a function of the internal variables and plays the role of a shift or back stress 

during kinematical hardening. It is important to note that the back stress does not 

influence the elastic response. The last equation defines the “fundamental relationship” 

that relates the generalized stresses    
  to the true stresses    

 . 

3.4.1)     Dissipation (Orthogonality Principle) and Yield Function 

 

The generalized stress variable  ̃   defined above at Eq. 3.20 has the character of stress-

like due to the fact that  ̇   is a kinematic strain-like variable.  Then the dissipation of the 

solid skeleton can be rewritten as  

     ̇   ̃   ̇   (3.24) 

Equation 3.24 reveals a dependency of  the dissipation function on the rate of plastic 

strains. Furthermore, for the class of rate-independent materials the last function is 
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homogeneous of first order in the rate of internal variables. For this class of functions 

Euler's second order expansion gives 

   
   

  ̇  
 ̇       ̇   

(3.25) 

Subtracting equations 3.24 and 3.25 leads to   

  ( ̃      )   ̇   (3.26) 

Equation 3.26 is geometrically interpreted as an orthogonality between the vectors 

( ̃      ) and  ̇  . Ziegler argue that the difference between  ̃   and     can be assumed as 

zero leading to  

 ̃       
   

  ̇  
 

(3.27) 

which is read as the generalized stress is perpendicular to the level surface of dissipation 

ds and established the Ziegler's postulate known as "Orthogonality principle".  

This principle has been mentioned above as a restriction to plasticity theory. It has also 

been remarked that it represents a stricter condition than the second law of 

thermodynamics because it requires the dissipation to be maximal as well as positive. The 

property of maximum is more clearly seen if Eq. 3.27 is understood as the result of the 

extremum problem    ̇  
⁄ {    ̇     ( ̇  )}   . 

From the orthogonality postulate (Eq. 3.27) the generalized stress     is defined as the 

derivative of the skeleton dissipation with regard to the rate of plastic strain  ̇  . 

Exchanging the role between those variables by the Legendre transformation gives rise to 

another function such that 

 ̇   
   

    
             ̇   

(3.28) 

As mentioned above for the case of rate-independent porous materials the homogeneous 

degree one character of the dissipation makes the last transformation to be singular. This 

singularity is mathematically expressed as       : 

   (   )   ( ̇  )      ̇     (3.29) 

where   is an arbitrary non-negative multiplicative constant (plastic multiplier in classical 

plasticity). The differentiation of the transformed function leads to the plastic flow rule:  
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 ̇    
   

    
  

(3.30) 

The plastic multiplier scales the magnitude of the plastic strain increment  ̇   and also 

satisfy the Kuhn-Tucker conditions:  

                       (3.31) 

Then by taking into account the positive character of the skeleton dissipation and 

replacing the expression for the rate of plastic strain (flow rule) in the Eq. 3.29 the 

convexity condition for the yield function    is obtained, 

    
   

    
    

(3.32) 

where the plastic multiplier has been ignored since (   ). Equation 3.32 is read in 

geometric terms as the inner product between     and 
   

    
⁄  and says that the angle 

between both vectors should remain between -90o and 90o, which is the convexity 

requirement.  

3.4.2)     Trapped Energy – Hardening Plasticity 

 

As pointed by Collins (2005), the hardening behavior in geo-materials can be explained by 

thermomechanical developments. In case of isothermal deformation, the energy balance of 

a porous skeleton is expressed by: 

     ̇     (3.33) 

Then the possible layouts assumed for fs will be determinant in the study of plastic 

hardening.  

In this regard time differentiation of Eq. 3.23 leads to the expression for the generalized 

stress evolution given by two terms: (a) the first coefficient accompanying   ̇ 
  results in a 

stiffness moduli which is necessarily independent of  ̇   for decoupled materials, (b) the 

second coefficient accompanying  ̇   is also independent of   ̇ 
  for decoupled materials. If 

those terms are integrated separately, then the integration results in the expressions for 

the true stress    
  and the back-stress    

 , respectively. Furthermore, considering both the 

validity of the energy separation principle (Ulm & Coussy, 2003) and the assumption for 

decoupled materials, the integration of Eq. 3.23 leads to an expression for the Helmholtz 

function of the form, Collins (1997): 
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(             

 
)     

(      
 

) 

or alternatively 

      
(             

 
) 

(3.34) 

It is noted that    
 does not influence the elastic response. With this form of Helmholtz 

energy the generalized stress is    
     

     ( 
    

    
⁄ ) or     

     
  for (   

  ). Both 

forms of the energy functions are valid and will define the amount of plastic work 

dissipated by the solid skeleton once a plastic process has started. From the last two 

equations,  Eq. 3.33 and Eq. 3.34, the rate of total work of a porous skeleton medium can 

be written as: 

     
    

 
   ̇ 

(             
 

)    ̇ 
(      

 
)    ( ̇    ̇ 

 
) 

or alternatively  for    
    

     
    

 
   ̇ 

(             
 

)    ( ̇    ̇ 
 

) 

 

(3.35) 

By cancelling out the elastic contribution at Eq. 3.35 and simplifying it to an 

incompressible solid phase, it reads: 

  
 

   ̇ 
(   )⏟    
   

 

   ( ̇  ) 

or alternatively for    
  : 

  
 

   ( ̇  ) 

(3.36) 

Equation 3.36a expresses that the rate of plastic work in the porous medium is given by 

the sum of the energy dissipated and the plastic stored energy depending on internal 

variables. The last energy can be positive or negative (unlike the dissipation energy   ). 

Equation 3.36b says that the rate of plastic work in the porous medium coincides with the 

energy dissipated, so all the plastic work is dissipated (   
  ). 

Physically the last terms of the energy functions account for the trapped (or stored) 

energy that can be positive or negative and depicted the current state of kinematic 

hardening of the soil when (   
  ). During a loading cycle the trapped energy is first 

stored and then recovered giving rise to the “kinematic hardening” of a material. 

Table 3.4 summarizes the layout of both the energy functions and the dissipation functions 

when: (a) it is assumed that part of the plastic work is stored and another part is 

dissipated and (b) all plastic work is assumed to be dissipated. 
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Table 3.4: Layout of energy and dissipation functions according to the model's hardening 

Hardening Energy Function Shift-stress Dissipation Function 

Kinematic 

Gibbs:  

 

      
(   

   )  (   
         

 )

    
(      

 
) 

    
    

    
 

   
    

   
  

Critical state model 

(deformable solid phase): 

 

 

      
( ̇    ̇ 

 
   ) 

Helmholtz: 

 

      
(             

 
)

    
(      

 
) 

    
    

    
 

   
    

   
  

Isotropic 

Gibbs: 

      
(   

   )  (   
        

 
) 

with               
   

      

     

Critical state model 

(deformable solid phase): 

 

      
( ̇    ̇ 

 
  

 
)  

   
( ̇    )

 

 

 

Helmholtz: 

      
(             

 
) 

with              
   

      

     

 

3.5)     Thermodynamics of Three-phase Media (Mechanical Part) 

 

Three-phase porous media are composed by a solid matrix and two fluids that fill the 

porous space (water and air). The modeling of their behaviour requires to account for 

both the effects of the two fluid pressures and the thermo-hydro-mechanical couplings 

associated with the surface tension developed at the contact surfaces “fluid-fluid” and 

“fluid-solid” (Coussy O. , 2004).  

Ascribing Es as the specific energy of the porous skeleton (energy per unit mass of 

skeleton), El as the specific energy of the liquid phase (energy per unit mass of skeleton) 

and Eg as the specific energy of the gas phase (energy per unit mass of skeleton), the 

internal energy of the porous medium is: 

 ̃                      (3.37) 
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where    
  

 ⁄ . Eq. 3.37 expressed per unit mass of skeleton (known as dry density in 

soil mechanics) is: 

 ̃

 ⏟
 

                  
(3.38) 

It is noted that the internal energy of the porous skeleton not only accounts for the solid 

matrix but also for the interfaces exerted by the interactions between solid, air and liquid, 

 ̃        ∑  
  

  

          
(3.39) 

where    is the specific energy of the solid per unit mass of skeleton and    is the interface 

energy per unit mass of skeleton. Eq. 3.39 expressed per unit of skeleton mass leads to: 

 ̃ 

 ⏟
  

     ∑  
  

  

        
(3.40) 

Under the assumption of small strain, the internal energy of partially saturated porous 

continuum   admits as natural arguments: (a) the strain tensor    , (b) the mass 

concentration of each fluid    , (c) the entropy of the skeleton    and (d) the interval 

kinematic variables (      ). Through the Gibbs-Duhem equality, mass concentration of 

the different species within one fluid may be interchanged with the partial pressure of the 

fluid, through the equation: 

 
j
 ̇  ∑    ̇  

 

   (3.41) 

where     is the partial pressure of the fluid ( ),     the molar density and     the molar 

chemical potential for the specie ( ) in fluid ( ). Furthermore,    is the fluid porous volume 

of fluid j which evolves as variations of molar density of the fluid j are produced. 

Because the system exchanges moles of species j with adjacent systems in the continuum, 

it is considered as an open thermodynamic system. The first law of thermodynamics 

(energy balance) can be then written in local rate form as: 

Ė   ij ̇ij  ∑∑  ijṅij

ij

 q
k k

 (3.42) 

where    is the heat flux vector through the medium (solid and flux phases), representing 

the heat exchange between the soil element and its surroundings, and  ijṅij is the supplied 

energy associated with the change in molar content nij of i species in the fluid j. 



CHAPTER 3 - A Thermodynamic Framework to Model Partially Saturated Porous Media 
_______________________________________________________________________________________________________________________________ 

 

123 
 

The internal energy of the skeleton    is defined as the difference between the internal 

energies of both the medium E and the fluid phases, in addition to the fluid pressures 

acting on the internal walls of the skeleton  

     (                       )

   [∑(∑      

 

     )

 

]                   
 

(3.43) 

Then from Eqs. 3.42-3.43, the rate of    becomes expressed in terms of partial pore 

pressures and porosity: 

 ̇      ̇      ̇ 
    ̇

 
   

   
                                        

     ̇     ( ̇
 
  

 
    )    ( ̇

 
  

 
    )    

   

 
(3.44) 

 

where     is the flux of heat through the solid phase only and the partial pressures p
l
 and 

p
g
 are the pressures exerted by  the liquid and the gas phases respectively and  

j
 is the j's 

fluid porous volume which evolves as variations of molar density and solid velocity. The 

term  
k
 i i accounts for the rate of porous volume exerted by the fluid k under solid 

velocity. 

If the result from the compatibility relation for the mass balance of solid  i i    ̇ii is 

considered the rates of fluid porous volume  ̇
j
 are given by the expressions: 

 ̇
l
  Ṡl  Sl ̇ii   Sl ̇ii 

 ̇
g
   Ṡl  (1  Sl) ̇ii   (1  Sl) ̇ii 

(3.45) 

replacing the last relations for the rate of porous volume in Eq. 3.44 leads to the 

expression for the rate of internal energy of the solid skeleton in terms of strain rate, 

saturation rate and the heat flux exerted at the solid phase, 

 ̇      ̇     (  ̇     ̇  )    (   ̇  (    ) ̇  )    
   

 (3.46) 

From all the possible linear combinations of the terms at the last expression there are two 

which are commonly used in soil mechanics. The first combination leads to the set of 

constitutive variables used by the constitutive models BBM (Alonso, Gens, & Josa, 1990) 

and BBMW (Vaunat, Romero, & Jomi, 2000): 

 ̇  (          ⏟        
     

)    ̇   (     ⏟    
 

)(  ̇       ̇ ⏟        
  ̇ 

)        (3.47) 
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where    
  is the net stress and      ̇  is the hydraulic strain. The first term at the right 

hand side of Eq. 3.47 is the power input to deform the porous skeleton while the second 

term on this side represents the power input to change the saturation degree of such 

skeleton. The expression also shows that the work conjugated to suction is  ̇w. 

Alternatively, the energy balance of the porous skeleton can be linearly re-combined 

leading to the set of constitutive variables used at the constitutive model proposed by 

Gallipoli (2003): 

 ̇  (    (     (     ))     ⏟                  
   

 

)    ̇    (     ⏟    
 

)  ̇        

(3.48) 

where    
  is a particularization of Bishop effective stress where parameter   is equal to 

the degree of liquid saturation.  

In a three-phase medium, dissipation d occurs in the solid skeleton in the fluid phases and 

at the interface between phases. Furthermore, the existence of a state specific entropy 

function is assumed in such a way that the rate of entropy production is non-negative. 

Denoting   ,    and   
   as the entropy of the solid skeleton, the entropy of fluid j and the 

entropy of interface between phases k and l per unit volume of porous medium 

respectively, the specific entropy of the porous medium per unit mass of skeleton is 

      ∑  
   ∑     .  

Then the local form of second law of thermodynamics can be expressed,  

  ( ̇   ∑ ̇ 
  

  

 ∑    ̇ 

 

)    ( ̇  
  ∑ ̇  

  

  

 ∑    ̇  

 

)

   (
  

 
)
  

       
     

 
 

(3.49) 

where    
  

 ⁄  is the mass fraction of the fluid phase j per unit of skeleton mass and the 

subscript r at the right hand side refers to the reversible part of the rate of entropy. It is 

the rate of entropy supplied to the material element from its surrounding. The rate of 

entropy production within the porous element corresponds to the irreversible part of the 

entropy. This irreversible part of the entropy defines the dissipation d of the porous 

medium which should satisfy the inequality,  
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   ( ̇   ̇  
)    ( ̇   ̇  )  ∑    ( ̇   ̇  )

 

  

   ̇     ̇  ∑     ̇ 

 

      
     

 
                           

 

(3.50) 

If the thermal dissipation is neglected Eq. 3.50 reveals that the divergence of the thermal 

flux corresponds to the reversible part of entropy in both the bulk phases and the 

interfaces: 

      (  ̇  
    ̇   ∑     ̇  

 

) (3.51) 

while the divergence of the heat flux in the solid skeleton only (     ) corresponds to the 

difference between the total heat flux in the medium       and the heat flux of the fluid 

phases  ∑      ̇   .  

As for the energy, the entropy of solid skeleton is defined by the difference between the 

entropy of the whole medium and the entropies of bulk fluid phases, then the skeleton 

dissipation reads: 

     ∑     ̇  

 

   ̇     ̇          ̇  
    ̇      (3.52) 

where  ̇  
 is the rate of the irreversible part of soil skeleton entropy and  ̇   is the rate of 

the irreversible part of interface skin entropy. From Eq. 3.52 it appears that the skeleton 

dissipation    represents the rate of entropy production within a skeleton element of the 

three-phase porous medium and should satisfy the inequality of being always positive.   

Having defined the expressions of both the internal energy and the dissipation for the 

porous medium and under the consideration of a thermodynamic open system, both the 

expression of the internal energy and the dissipation for the porous skeleton are obtained 

by: (a) replacing the contributions of the fluid mass concentration to those  energies and 

applying the corresponding partial pressures and (b) extracting the heat flux through the 

fluids phases. Those findings together with the assumption of validity of the 

"orthogonality condition" introduced by Ziegler (1977) promote the introduction of the 

term "Hyper-poro-plasticity" as formal basis for the formulation of constitutive models of 

porous media which exhibit different phases. 

Going forward with the study, when isothermal conditions prevail, it is convenient to 

replace the entropy    by the temperature   in the expression of the energy function by 

using the corresponding Legendre transformation. It results in the expression for the 
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Helmholtz free energy of the porous skeleton, dual to the internal energy    with respect 

to entropies    and   :  

  (     )      (      ) (3.53) 

 

Taking into account Eq. 3.48 and Eq. 3.52 and again assuming isothermal conditions, the 

rate of fs can be expressed as: 

  ̇     
  ̇      ̇   ( ̇    ̇ )        

    
  ̇      ̇   ( ̇  

   ̇  ) 

 

(3.54) 

The last equation can be rearranged to give, 

   
  ̇      ̇    ̇     (3.55) 

In a poroplastic material, energy is dissipated during changes in the internal variables and 

the dissipation    is stated to be a function of them. Differentiating fs and ds with respect to 

the different variables leads to: 

  ̇     
   
    

 ̇   
   
   

 ̇  
   
    

 ̇   
   
   

 ̇  
   

  ̇  
 ̇   

   

   
 ̇  

(3.56) 

Combining Eq. 3.55 and Eq. 3.56 and collecting terms leads to the expression:  

  (   
  

   
    

)  ̇   (   
   
   

)  ̇  (
   
    

 
   

  ̇  
)  ̇   (

   
   

 
   

  ̇ 
)  ̇  

(3.57) 

This equation must be satisfied for any combination of the variables  ̇  ,  ̇ ,  ̇   and  ̇  since 

the quantities within the brackets are independent of each other. Each term of Eq. 3.57 

should thus be equal to zero, leading to the state equations: 

   
  

   
    

     
   
   

 
(3.58) 

and the sufficient conditions: 

   
    

 
   

  ̇  
   

   
   

 
   

  ̇ 
   

(3.59) 

As for the two-phase media, conditions given by Eq. 3.59 are assumed to be also necessary 

conditions since they are not governed by any thermodynamics requirement but are 

simply constitutive equations. The generalized dissipative stress-like variables are defined 

by: 



CHAPTER 3 - A Thermodynamic Framework to Model Partially Saturated Porous Media 
_______________________________________________________________________________________________________________________________ 

 

127 
 

     
   

  ̇  
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(3.60) 

 

Alternatively                    can be derived from the Gibbs free energy   (   
           ). 

In fact applying the proper Legendre transformation       
                          

the Gibbs energy for the uncompressible and decouple poro-material is obtained. If, 

additionally the decomposition proposed by Collins (1997) is assumed for   : 

      
(   

    )     
             

(      ) (3.61) 

 

the strain tensor and the degree of saturation are obtained from the state equations: 

     
   

     
  

    

    ⏟  
   
 

     

   
   

   
 

    

   ⏟
  
 

    

(3.62) 

while the complementary state equations allow to derive the expressions for the 

dissipative generalized stress and the dissipative suction: 

      
   
    

  
   

    
      

    

    ⏟
    

 

   
   
   

 
   

   
    

    

   ⏟
   

 

(3.63) 

where      is a function of the internal variable     and plays the role of a shift (or back) 

stress,     is function of the internal variable    and acts as shift suction, providing the 

material with hydro-mechanical kinematical hardening. It is important to note that the 

back suction does not influence the elastic response. Equation 3.56 defines the 

“fundamental relationship” that links the generalized “effective” suction    and the true 

“effective” suction    by the shift (or back) suction   .  
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3.5.1)     Interface Energy (Suction curve Model) 

 

The Helmholtz free energy of the porous skeleton includes the energy of the skeleton and 

the energy of the interfaces between the different components, “fluid-fluid” and “solid-

fluid” Coussy (2004). The additive character of energy functions allows writing the 

Helmholtz energy as: 

     ̅      (3.64) 

 

where   ̅ represents the free energy of the solid skeleton while    is the overall interfacial 

energy developed per unit of porous volume. In the simple case where    ̅ is independent 

of the degree of saturation, the current suction is computed as: 

    
   
   

 
    
   

 (3.65) 

Under the assumptions of isothermal condition and non-deformable porous skeleton,    

depends only on    and the suction s is directly the derivative of the interface energy with 

respect to the degree of saturation. In the case of deformable porous media, because 

interface menisci force depends on pore size,    depends both on    and  :  

  (      )    ̅(   )     (    ) (3.66) 

 

In order to identify a possible function for   (    ) a dimensional analysis was proposed 

by Coussy & Fleureau (2002) in which a certain length ( ) was introduced to scale the 

porous volume according to (      ) , so that:   

 ̇

 
  

 ̇

 
 

(3.67) 

Additionally, the dimensional analysis results in the relationship: 

   
    

 
 (

  

 
) 

(3.68) 

where      is the surface tension liquid-gaz. Equation 3.68 relates the free energy of the 

interface    to the quotient between characteristic length    that describes  the geometry of 

the porous network filled by phase j and  . The former length can be removed by 

differentiating Eq. 3.68: 
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 ̇ 

  
  

 ̇

 
 

(3.69) 

Replacing the length   by the porosity   from Eq. 3.67 in Eq. 3.69 and by integrating the 

differential equation lead to an expression for the internal energy    (    ) : 

     (  
 ⁄ )  

 (  ) (3.70) 

where   
 (  ) is the interface energy in the case in which the solid skeleton is 

undeformable. According to Eq. 3.70, the internal energy of the air-liquid interface in a 

deformable porous medium is equal to that stored in a non-deformable medium 

multiplied by a function of porosity. For non-isothermal conditions the interface free 

energy depends additionally on interface entropy   , according to the expression: 

     (  
 ⁄ )  

 (     ) (3.71) 

The interface energy can alternatively be expressed as function of temperature   instead 

of the entropy    through the Legendre transformation(         ). It results in the 

following expression for the Helmholtz free energy of the deformable porous skeleton:  

  (      )    ̅(   )   ( (  
 ⁄ )  

 (    )⏟          
  

 (      )

)

   ̅(   )   (  ⁄ )  
 (    )          

 

 

(3.72) 

Finally, suction is derived from Eq. 3.72 through the state equation:  

    
   
   

        (  
 ⁄ )    

 

   ⏟        
   (  )

 
(3.73) 

Eq. 3.73 states the relationship existing between suction and degree of saturation at 

constant volume, called the water retention curve WRC(Sl). From Eq. 3.71 it comes out 

that: 

 

 

   

   
   (  

 ⁄ )    
 

   
    (  ) 

(3.74) 

The interface energy in a deformable medium can thus be determined as the integral of 

the Water Retention Curve. 

 

 



CHAPTER 3 - A Thermodynamic Framework to Model Partially Saturated Porous Media 
_______________________________________________________________________________________________________________________________ 

 

130 
 

3.5.2)     Different thermodynamic potentials in three-phase porous media 

 

For the case of decoupled poro-materials and under isothermal conditions, several 

alternatives of energy potential functions can be formulated, all of them linked by the 

interchange of extensive and intensive variables through total or partial Legendre 

transformation. The potentials based on the natural variables (   
            ), 

(              ), (               ), (   
             ), and (   

             )                   

interest for the formulation of thermo-hydro-mechanical constitutive models. 

The potential based on the set of variables (   
            ) is the Gibbs free energy. As for 

any energy potential, it sums up the terms of bulk solid matrix and gas-liquid interfaces:    

   [  ̅ 
(   

 )      
(  )⏟            ]

   

    
          [  ̅ 

(   )      
(  )⏟            ]

   

 (3.75) 

The first term within brackets on the right-hand side of Eq. 3.75 corresponds to the elastic 

free energy while the second term is due to dissipation in presence of kinematic 

hardening. 

The potential based on the set of variables (              ) is obtained by applying the 

partial Legendre transform on the Helmholtz free energy in order to exchange the 

hydraulic variable (   or   ) by suction. This potential is denoted   
 

 and is expressed 

through the transformation   
 

       
    . Within the theory of hyperporoplasticity, this 

potential is the sum of an elastic part, dependent only on elastic strain and reversible 

change in volumetric water content (or degree of saturation) and a dissipative term in 

presence of mechanical and hydraulic kinematical hardenings: 

  
 

 [  ̅ 
(       )      

(  )⏟                ]

   

 

      [  ̅ 
(   )      (  )⏟            ]

   

 

 (3.76) 

 

The potential based on the first set of variables (               ) is the Helmholtz free 

energy that sums up the terms of bulk solid skeleton and gas-liquid interfaces: 

     ̅ 
(       )      (     )⏟                  

   

 [  ̅ 
(   )      (  )⏟            ]

   

 (3.77) 
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The first term within brackets on the right-hand side of Eq. 3.77 corresponds to the elastic 

free energy while the second term is due to dissipation in presence of kinematic 

hardening. 

The potential based on the set of variables (   
             ) is obtained by applying a 

partial Legendre transform on the Helmholtz free energy in order to exchange strain by 

stress only. This potential is denoted as   
 

and is expressed by   
 

       
    . It can be 

decomposed within the theory of hyperporoplasticity into: 

  
 

 [  ̅ 
(   

 )      (     )⏟              ]

   

 

    
     [  ̅ 

(   )      (  )⏟            ]

   

 

 
(3.78) 

 

Finally, the potential based on the set of variables (   
     

        ) is the Legendre 

transformation of the Gibbs free energy obtained by exchanging the internal variable     

and    with their intensive counterpart     and   : 

 ̃        
          (3.79) 

therefore it is decomposed into: 

 ̃    ̅ 
(   

 )      
(  )⏟            

 ̃  

 [ ̃ ̅ 
(    )    ̃  

(  )⏟            ]

 ̃  

 (3.80) 

 

In spite of the decoupled assumption, experimental evidences show that it is not always 

valid. In particular Alonso et.al. (1990) presented a dependency of the hardening 

parameter on suction for modeling a partial saturated medium using the BBM model. 

Thus, in this respect the Gibbs energy for hyperporoplastic medium presents the layout: 

      
(   

    )     
             

(          
    ) (3.81) 

where the hysteretic response of the capillary curve is considered. However not all the 

poro-materials present such a response, in this case the function layout is simplified to, 

      
(   

 )     
        

(       
    ) (3.82) 

 

These energy functions provide the bases for the derivation of elasto-plastic models for 

partially saturated soils presented in Chapter 4. The state equations derived from these 

different expressions of the energy are summarized in Table 3.5. 
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Table 3.5: Summary of state equation for hyperplasticity in three-phase porous media using Bishop effective stress 
(with    ). 

Effective stress tensor 

   
  

   
    

 
   

 

    
 

Strain tensor 

     
   

    
   

   
 

    
  

Effective suction 

    
   
   

  
   

 

   
 

Degree of saturation 

   
   

 

   
 

   

   
 

Generalized stress tensor 

   
   

   
    

  
   

 

    
  

   
 

    
  

   

    
 

   
  

   

  ̇  
 

 

Plastic strain tensor 

    
  ̃ 

    
  

 ̇    ̇
   

    
  

Generalized suction 

   
   
   

 
   

 

   
 

   
 

   
 

   

   
 

   
   

  ̇ 
 

Plastic degree of saturation 

   
  ̃ 

   
 

 ̇   ̇
   

   
 

 

3.5.3)     Alternative formulation using net stress and suction 

 

An alternative formulation can be derived if Eq. 3.47 is used instead of Eq. 3.48. In this 

case, the work conjugated variables are the net stresses – conjugated to strains – and the 

suction – conjugated to the hydraulic strain. Following the same developments as for the 

pair (effective stress    
 , effective suction   ), different rates of energy functions can be 

derived, each one associated to a state equation. They are summarized in Table 3.6. 

Table 3.6: Summary of energy functions and state equations for hyperplasticity in three-phase porous media using 
net stresses. 

Rate of internal energy 

 ̇     
   ̇     ̇        

Rate of Helmholtz free energy (non-isothermal) 

  ̇     
  ̇     ̇  (      ) ̇     

Rate of Gibbs free energy (non-isothermal) 
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 ̇    ̇  
      ̇   (      ) ̇     

Net stress tensor 

   
  

   
    

 
   

 

    
 

Strain tensor 

     
   

    
 

  
   

 

    
 

 

Suction 

  
   
   

 
   

 

   
 

Hydraulic strain 

    
   

  
  

   
 

  
 

Generalized net stress tensor 

   
   

   
    

  
   

 

    
  

   
 

    
  

   

    
 

   
  

   

  ̇  
 

Plastic strain tensor 

    
  ̃ 

    
 

 

 ̇    ̇
   

    
 

 

Generalized suction 

    
   
   

  
   

 

   
  

   
 

   
  

   

   
 

   
   

  ̇ 
 

Plastic hydraulic strain 

   
  ̃ 

   
 

 ̇   ̇
   

   
 

 

3.6)     Illustration case: derivation of the Modified Cam-Clay Model 

 

Because it is the first model developed in the framework of critical state mechanics 

(Schofield & Wroth, 1968), Cam-clay model represents a reference model in Soil 

Mechanics. In this section, this model is used to illustrate the way in which thermo-

mechanical potentials can be used to derive constitutive models for porous media.  

As presented in the last section, the use of Legendre transformation is omnipresent in the 

manipulation of the thermomechanical potentials, which implies that only smooth yield 

functions can be derived (the framework can however be extended to non-smooth yield 

surfaces by use of Legendre-Fenchel transformation). As a consequence, this section will 

deal with the Modified Cam Clay Model – MCCM – (Burland, 1965) instead of the Original 

Cam Clay model – OCCM (Roscoe & Schofield, 1963).  

The model has been derived from a thermomechanical viewpoint by several researchers : 

(Houlsby G. , 1981), (Modaressi, Laloui, & Aubry, 1994), (Collins & Houlsby, 1997), 

(Coussy O. , 2004), (Houlsby & Puzrin, 2006), and (Zouain, Pontes, & Vaunat, 2009). It is 

important to note that, for such a simple model, model derivation from hyper-poro-
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elastoplastic potentials apparently does not present advantages and even appears to be 

rather less direct than other procedures. However, the method offers certain advantages 

when deriving more sophisticated MCC models, because this can be easily done by 

introducing new dependencies in the governing functions.  

Derivation of Modified Cam-clay model requires the definition of a free energy (in this 

case, Gibbs free energy   ) and dissipation (  ) functions. Notation used in the following 

text is summarized above in Table 3.3. Houlsby (1981) introduced the following Gibbs 

energy potential: 

        [  (
  

  
)   ]  

  

  
 (        )  

  

 
(     )   (

  

     
) 

(3.83) 

Direct differentiation of Equation 3.77 leads to the expressions for the strains:  
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(3.84) 

Where    is the total volumetric strain and    is the total deviatoric strain. Double 

differentiation of Gibbs potential function leads to the elastic compliance coefficient: 

 

    

      
 

  

  
 

 

 
 

    

    
 

 

  
 

 

(3.85) 

while the out of diagonal terms are null (
    

     
⁄  

    
     ⁄   ). Houlsby (1981) 

presented the alternatively Helmholtz free energy, 
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(3.86) 

whose direct differentiation provides the expression for stresses: 
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(3.87) 
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Double differentiation of Helmholtz energy function leads then to the elastic stiffness 

coefficients: 

    
      

 
  

  
   

    
      

    

(3.88) 

while the out of diagonal terms are null (
    

      
⁄  

    
      

⁄   ). The 

generalized stresses are computed by the complementary state equation  
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(3.89) 

The difference between equations 3.87 and 3.89 provides the expressions for the 

volumetric    back stress and the deviatoric    back stress:  
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(3.90) 

Eq. 3.90 indicates that the kinematic hardening of modified Cam-clay model is only 

volumetric.  

As for the dissipation function, Houlsby (1981) and, later, Modaressi et al. (1994) 

proposed the following expression: 

   
  

 
   (

  

     
) [ ̇ 

     ̇ 
 ]

 
 ⁄  (3.91) 

 

where  ̇  and  ̇  are the rates of the internal history variables. The generalized stress 

variables   
  and   

  are obtained by differentiation of Eq. 3.91: 
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(3.92) 
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The expression of the yield function   ( ) in the dissipative stress space is obtained by 

eliminating the plastic strain rates in Eq. 3.92: 
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(3.93) 

The evolution of the internal history variables (“the flow rules”) is then computed from 

Eq. 3.93:  
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(3.94) 

where   is the plastic multiplier.  

Finally, the use of the fundamental relation (      ) leads to the expression of the 

yield function in the true stress space: 
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(3.95) 

Figure 3.22 shows the translation and the role of the back stress   into the formulation. 

 

Figure 3.22: Modified Cam-clay Yield surface at Dissipation and True stress Spaces  

 

From a formal point of view, the state equations and the orthogonality rule (   ̅) are 

necessary to specify the constitutive equations of an elasto-plastic porous material. 

Dissipation function or yield function can be alternatively the starting point of the 

derivation. 
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3.6.1)      Pressure Dependent Elastic Moduli 

 

In the Critical State theory, elastic properties are usually assumed to be isotropic and 

pressure dependent. In the MCCM, the bulk modulus K is proportional to the mean 

pressure and the shear modulus is constant. Under this condition, Poisson's ratio   

evolves quickly towards incompressible value ( = 0.5) when the mean pressure increases. 

An alternative to avoid this problematic response is to compute G from K by considering a 

constant value for . This solution leads however to the formulation of a non-conservative 

elastic law as G depends of p’ (a fact early recognized by experiments, see for example 

Zytinski et al., (1978)) but K is independent of q.  

The hyper-elastic approach provides the basis to derive pressure dependent moduli 

within a conservative elastic law. Houlsby & Wroth (1991) proposed to express the shear 

modulus as a function of the volumetric strain    through the expression                            

        (
  

  ⁄ ), where   is a material parameter,    the slope of the isotropic 

unloading-reloading line and p0 a reference pressure. The incremental relationship 

derived from the associated potential evidences an anisotropic response of the soil, 

characterized non-zero diagonal terms in the tangent stiffness (   ). This model has been 

further extended by Borja et al. (1997) but still appeared to present some undesirable 

features. Einav and Puzrin (2004) proposed later a new form of coupling, but the 

associated potential shows to be valid only in a limited range of stress ratios   
 

 ⁄ . 

Houlsby et al. (2005) proposed finally an expression for the Helmholtz energy function 

that overcomes the previous drawbacks. For the particular asymptotic case where the 

exponent of the function is equal to 1, the expression reads: 

          (
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(3.96) 

where   is a material parameter that should be calibrated. By differentiation, p’ and q have 

the following expressions: 
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(3.97) 

And the stiffness matrix modulus results in the form:  
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(3.98) 

By noting that 
 

  ⁄         , the stiffness matrix may be rearranged into: 

    

[
 
 
 
 
  

  

   

  

   

  
(
  

  
 

 

  
)  

]
 
 
 
 

 

[
 
 
 
  

  

 

  

 

  

  

    
     

]
 
 
 

 

(3.99) 

 

For isotropic stress states the shear modulus is reduced to a pressure dependent modulus 

and the off-diagonal terms at the stiffness matrix are zero. For other stress states, the off-

diagonal terms are different from 0, which  implies a “stress-induced” anisotropic elastic 

behaviour that naturally arises from the hyper-elastic formulation.  

Now, if Gibbs free energy is taken equal to:  
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)   ]  

  

    
 

(3.100) 

then the volumetric strain and the deviatoric strain are related to mean and deviatoric 

stresses by:  
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(3.101) 

and the compliance matrix     obtained by double differentiation of the Gibbs energy 

(Eq. 3.100), results in: 
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(3.102) 

The pressure-dependent elastic behaviour can finally be introduced into the MCCM by 

modifying the Gibbs and Helmholtz free energies expressed by Eq. 3.83 and Eq. 3.86 

according to Eq. 3.100 and Eq. 3.96: 
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(3.103) 

 

The generalized mean and deviatoric stresses are computed from the complementary 

state equations: 
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(3.104) 

From equations 3.97 and 3.104, the mean back stress    and deviatoric back stress    are 

given by: 

   
  

 
   (

  

     
) 

     

(3.105) 

Expressions 3.105 are the same as those shown in Eq. 3.90 because only the elastic 

behavior has been revisited in this section. The derivation of conservative pressure-

dependent MCCM is finally achieved by considering the dissipation function Eq. 3.91.  

The performance of this model is illustrated hereinafter. Material parameters are taken 

from laboratory tests performed on clay samples taken from the subsoil of Barcelona 

Harbour. They are summarized in Table 3.7. 

Table 3.7: Material properties for Barcelona Harbour Clay 

 po[MPa]  M 

0.018 0.01 0.09 1 0.09 

 

Figure 3.23 shows a loading–unloading path under isotropic conditions. As expected, in 

presence of a null deviatoric stress, the response is similar to that of the MCCM. Fig. 3.24 

shows drained triaxial tests on normally consolidated and over-consolidated soil samples 

respectively. Despite of the stress induced anisotropy, the response of the sample is very 

similar to that of the simple MCCM. 
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Figure 3.23: Relation between mean effective stress “p” and the void ratio “e”. Loading-Unloading for Cam-Clay 
Mode with non-linear elastic modulus. 

 

Figure 3.24: Conventional drained triaxial tests on normally and overconsolidated samples considering Cam-clay 
Model enhanced with a conservative non-linear elasticity. 
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3.6.2)      Alternative formulation to the hyperplastic approach 

 

As discussed in Collins & Houlsby (1997), it is possible to derive thermomechanical 

potentials for the Modified Cam Clay Model without introducing any back stress in the 

formulation. In this case, an extra term is introduced in the dissipation function: 

   
  

 
   (

  

     
) [( ̇ 

     ̇ 
 )

 
 ⁄   ̇ ] (3.106) 

 

while function    
 (and thus    

) is stated identically null. Helmholtz and Gibbs free 

energies are thus expressed by:  
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(3.107) 

It outcomes then from the state equations: 

  
   

   

   
         

  
   

   

   
        

 

 

(3.108) 

On the other side   
  and   

  are computed from the dissipation function as: 
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(3.109) 

 

eliminating the plastic strain rates between the expressions at Eq. 3.109 leads to the 

expression for the yield surface: 
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(3.110) 
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where    
  

 
⁄    (

  

     ⁄ ). Or in terms of the true stresses at the true stress space, 

  (       )  
  

  
 (     )
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(3.111) 

 

The formulations described along the chapter will be used further in chapter 4 to 

formulate extensions of MCCM model to unsaturated conditions. 

This alternative formulation presents the advantages of a simple derivation of the state 

equations at the expense of introducing a hardening law which is not normal to the 

dissipation and therefore may affect  algorithmic properties. 

3.7)     Conclusions 

 

This chapter presents a review of the theory of plasticity from thermo-mechanical 

principles. Two consolidated frameworks: (a) poro-elastoplasticity and (b) hyperplasticity 

have been examined. 

The poro-elastoplastic framework offers a more physical viewpoint of the processes 

occurring in porous medium. It also gives a formal procedure for the disconnection of the 

fluid phase from the porous medium leaving the two following components separated: (a) 

the solid skeleton and (b) the pore fluid. This separation leads to the independent study of 

each phase. 

 The hyperplastic framework gives an adequate perspective to address: (a) material 

hardening and (b) plastic flow direction without losing associativity of the flow rule in the 

so called dissipative stress space. 

Both frameworks have been examined and merged into a thermomechanical consistent 

framework (hyperporoplasticity) able to model soil response in partially saturated 

conditions. The hyperporoplasticity maintains the characteristics of the two original 

theories. 

In the first place, a review of biphasic porous materials behavior from a thermomechanical 

viewpoint, merging concepts of poro-elastoplasticity and hyperplasticity, has been 

addressed. 
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This first study allowed to understand the basis of each approach as well as the existing 

connection between the elements of classical plasticity modeling and the different types of 

energies (elastic energy, trapped energy and dissipation energy). 

Study of three-phase porous media from the hyperporoplastic approach has allowed to 

derived the set of constitutive variables commonly used in modeling of partially saturated 

soils. It has also given rise to obtain the state equations linking the conjugate variables. 

An interesting result derived with the hyperporoplastic approach is the kinematical 

hardening related to the formulation of the retention curve. The obtained result extends 

the fundamental relationship linking variables at true space and variables at dissipative 

space, to consider the shift (or back) suction. This extension leads to model hysteresis of 

the capillary curve. 

A general structure has been proposed for the energy functions    and    in partially 

saturated conditions. 

Several thermo-hydro-mechanical models are addressed in the next chapter specifying 

expressions for the energy and dissipation potentials. 
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CHAPTER 4 

 

FORMULATION OF PARTICULAR THERMO-HYDRO-MECHANICAL MODELS WITHIN 

THE FRAMEWORK OF HYPER-PORO-PLASTICITY 

 

4.1)     Introduction 

 

This chapter deals with the formulation of a specific constitutive models, relevant for 

geotechnical problems where environmental actions play a central role. Those models are 

consistently derived from the thermo-mechanical framework developed in the last chapter 

for partially saturated porous media.  

The first two sections of the chapter focus on the formulation of the retention curve. First, 

the hyperelastic formulation is recalled and particularized in order to derive a non-

hysteretic, van Genuchten like, retention curve. Then, a hyperplastic hydraulic law that 

enables the model hysteresis in the retention curve is presented. 

The second part of the chapter is devoted to the formulation of several variants of 

hyperplastic models adapted from Barcelona Basic Model obtained by combining in 

different way effective stress or net stress, hysteretic and non hysteretic water retention 

curves and mixed volumetric/kinematical or purely kinematical hardening. 

The third part is devoted to the definition of hyperplastic law for frictional materials, of 

special interest to model shear failure of soils under environmental actions. The first 

constitutive law considers a Drucker-Prager yield criterion with a cohesive component. 

Special attention has been devoted to the smoothing of the apex along the hydrostatic axis 

as well as to model yield degradation with temperature. The second model is based on 

Matsuoka-Nakai yield criterion following the works of (Houlsby & Puzrin, 2006) and 

(Collins & Houlsby, 1997). New points have been addressed such as the formulation of 
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different dilatancy rules and the possibility to extend the model in order to include non 

linear yield shape in the meridian plane. 

4.2)     Notation and Terminology 

 

   degree of saturation 

  Suction 

  ( ) Air entry value for the capillary curve 

  Material parameter for the capillary curve 

  Material parameter for the capillary curve 

  
  Gibbs energy function of the gas-liquid interface 

   Mean effective stress 

  Deviator stress 

  Bulk modulus 

  Shear modulus 

  Porosity 

  Void ratio 

   Gibbs energy function of the skeleton 

   Helmholtz energy function of the skeleton 

  
 

 Energy function for the skeleton 

   Total volumetric strain 

   Total deviator strain 

  
  Elastic volumetric strain 

  
  Elastic deviator strain 

   
  Bishop effective stress tensor 

    strain tensor 

   Dilatancy coefficient 

  Temperature 

   Reference Temperature 

    Kronecker delta 

  
  Reference suction 

   Reference degree of saturation 

    Reference suction for the drying branch 

   Helmholtz energy for the gas-liquid interface 
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    Trapped Helmholtz energy for the gas-liquid interface 

    Trapped Gibbs energy for the gas-liquid interface 

   Plastic degree of saturation 

   Slope of the scanning curve 

   Slope of the main drying and wetting curves 

   Back suction  

   Hardening parameter for the main suction decrease curve 

   Hardening parameter for the main suction increase curve 

   Flow potential for the capillary curve 

  Bonding variable 

  Slope of the loading – reloading line 

  Slope of the virgin compression line 

   Reference pressure 

   volumetric plastic strain 

   deviator strain 

    Stiffness matrix 

    Compliance matrix 

  Material parameter 

  Unsaturated specific volume 

   Saturated specific volume 

  Material parameter for BBM1 model 

  Material parameter for BBM1 model  

   Saturated void ratio 

   Partially saturated pre-consolidation pressure 

  
  Saturated pre-consolidation pressure 

  Origin of the virgin loading branch in saturated conditions 

   yield function 

  
  generalized mean stress 

   generalized deviator stress 

   dissipation function 

   
  Net stress tensor 

   Hydraulic strain 

   mean net stress 

  
  generalized mean net stress 
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  generalized deviatoric net stress 

   Resistance to pure traction 

    Atmospheric pressure 

  Square root of the second stress invariant 

   friction angle 

  Cohesion 

  dilation angle 

   
  Plastic strain tensor 

 ̇  
  Rate plastic strain tensor 

   
  Generalized effective stress tensor 

   Generalized mean pressure 

  Dissipation function 

  Lagrange multiplier 

   Temperature dependent resistance parameter 

   Reference temperature 

  Dilatancy  constraint 

  Target distance of the rounded hyperbolic 

    trace of stress tensor 

    trace of the generalized stress tensor 

   first invariant of stress tensor 

   second invariant of stress tensor 

   third invariant of stress tensor 

 

4.3)     Hyper-elasticity: energy functions for environmental actions 

 

Within hyperporoplasticity, hyperelasticity is the simplest framework that allows 

introducing thermal and hydraulic effects preserving thermodynamics principles. It is 

described in this section as an introduction to the more complex models described in the 

remaining part of the chapter. 

One of the most extended constitutive relationship between suction and degree of 

saturation is the van Genuchten law (van Genuchten, 1980). This law presents the 

drawback that there is no closed form to integrate it along a specific path, which prevents 
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the explicit definition of a potential from which it can be derived. An alternative 

expression will thus be considered here. Van Genuchten (1980) equation reads: 

   [  (
 

  
)
 

]
  

 
(4.1) 

where  ,   and   ( ) are fitting parameters. Regardless mechanical coupling and 

hysteretic behavior, and according to Eq. 3.70, the energy function related to the gas-liquid 

interface can only be obtained by integration of Eq. 4.1 from the dry state to the saturated 

state: 

  
 ( )   ∫ (
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  )
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 (4.2) 

Or, by substituting    ⁄    (  ⁄ ) in the Eq. 4.2: 

  
 ( )   

  

 
∫ (   )    (  ⁄   )

 (   ⁄ )
 

 

   

(4.3) 

 

Equation 4.3 corresponds to a particular form of the Incomplete Beta-function. In the most 

general case, no closed-form expression exists for this integral. However for the particular 

case(  ⁄     ), integration of Eq. 4.3 gives, 

  
 ( )   

  

   
[(  

 

  
)
(   )

] 
(4.4) 

Leading to the following expression for the degree of saturation: 

    
   

 

  
 (  

 

  
)

  

 
(4.5) 

Equation 4.5 provides a simplified van Genuchten-like model for the water retention 

curve. Figures 4.25 and 4.26 show the shape of this curve for different values of m and s0 

parameters.   
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Figure 4.25: Shape of a simplified van Genuchten curve for different values of m parameter (at constant s0). 

 

 

Figure 4.26: Shape of a simplified van Genuchten curve for different values of s0 parameter (at constant m). 

 

This simplified version is suitable to be merged in a hydro-mechanical hyperelastic model, 

given by the following Gibbs free energy (  ( 
      )): 



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

150 
 

     ̅     
   

   

  
 

  

  
 

   

(   )
 [  

  

   
]
(   )

 
(4.6) 

  

where   is the Bulk modulus,   is the shear modulus and   a shape parameter. In this 

hyper-elastic formulation, the term related to the trapped energy    
( ) is taken equal to 

0 and both the generalized stresses and the generalized suction are equal to the true ones 

(                   ). Under this condition, the hydraulic behaviour is reversible 

leading to a non-hysteretic retention curve.  

From the state equations, the volumetric strain (  
 ), deviatoric strain (  

 ) and degree of 

saturation (  ) take the form: 

    
   

   
 

  

 
      

   

  
 

 

  
    

   

   
 [  

  

   
]
  

 
(4.7) 

 

The last term of Eq. 4.7 provides the relationship for the retention curve. It is depicted in 

Fig. 4.27 for two values of porosity. 

 

Figure 4.27: Shape of the simplified van Genuchten like Retention Curve  

 

The potential    
 
(      )     

       (   
    ) is more suitable for models formulated 

within the framework of Finite Element coupled computations, because it allows deriving 

stresses from strains and suction. In the present model, it can be seen to be expressed by:  
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]
(   )

 (4.8) 

Leading to the following expression for stresses and degree of saturation: 
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 (4.9) 

 

Thermal effect is introduced through the term of thermal expansion in the Gibbs energy 

Eq. 4.6. Because the tensile strength of water, which controls menisci formation in 

partially saturated pores, is sensitive to temperature a thermal dependence is considered 

for the retention curve through the dependency of the air entry pressure coefficient s0 on 

temperature. For the sake of simplicity, elastic stiffness is considered independent of 

temperature. Then Gibbs free energy reads: 

    
   

  
 

  

  
 

   ( )

(   )
 [  

  

   ( )
]
(   )

    (    ) 
  

(4.10) 

where T is the temperature,     a reference temperature and    the volumetric expansion 

coefficient of the porous medium (     following the Soils Mechanics convention). From 

the corresponding state equations (Table 3.5) the following relationship prevails for the 

volumetric and deviatoric elastic strains and the degree of saturation:  

    
   

 
     (    )      

 

  
    [  

  

   ( )
]
  

 
(4.11) 

Equation 4.11a reveals that non-isothermal processes in porous media directly influence 

the volumetric deformation of the media. In fact the skeleton structure shrinks or dilates 

depending on (T-Ti). For the energy function Eq. 4.10 no thermal effects are produced on 

deviatoric strain. As well, Helmholtz potential   
 

 is expressed by: 

  
 

 
 

 
   

  
 

 
    

  
   ( )

(   )
 [  

  

   ( )
]
(   )

     (    )   (4.12) 

and the mean and deviatoric effective stresses and degree of saturation read: 

    (     (    ) )            [  
  

   ( )
]
  

 
(4.13) 

As before, thermal processes influence the volumetric response of the soil. The mean 

effective pressure is increased or decreased according to cooling or heating processes. 

Furthermore, the interface energy of the porous skeleton is also affected by the thermal 

processes and, as a result, the water capillary curve is also influenced, Eq. 4.13. 
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Table 4.8 summarizes the simplest elastic energy function seen above in order to model 

the soil response to environmental action.  

Table 4.8: Simplest Thermo-hydro-mechanical elastic energy function for environmental actions on partially 
saturated soils 

Energy Function State variables 

Helmholtz: 

(linear 

mechanical 

elasticity) 

  
 

 
 

 
   

  
 

 
    

  
   ( )

(   )

 [  
  

   ( )
]
(   )

    

 (    )   

  ( 
   

 

   
⁄ )

 ( 
   

 

   
⁄ )

  ( 
   

 

   
⁄ )

 

Gibbs: 

(linear 

mechanical 

elasticity) 

    
   

  
 

  

  
 

   ( )

(   )

 [  
  

   ( )
]
(   )

   

 (    ) 
  

 

  (  
   

   ⁄ )

  (  
   

  ⁄ )

  ( 
   

   ⁄ )

 

 

4.3.1)      Generalization to general stress states 

 

For general stress states other than triaxial states, the Gibbs energy Eq. 4.10 depends on 

the effective stress tensor: 
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(   )
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   ( )
]
(   )

 (   (    ))      
(4.14) 

in this energy function Eq. 4.14 indicial notation has been used. Then standard procedures 

in thermomechanics lead to the expression for the strain tensor which takes the following 

form:  

     
   

    
  

   
 

  
     

   

  
   (    )              [  

  

   
]
  

 
(4.15) 
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As can be seen, the thermal effects on the soil's strain are only volumetric as the 

temperature in Eq. 4.15 is only affected by the Kronecker delta. Strain increment  ̇   is 

related to stress  ̇  
  and temperature  ̇ increments by the Maxwell’s rule: 

 ̇   
    

    
     

   ̇  
  

    

    
   

  ̇ 
(4.16) 

Leading in view of Eq. 4.15 to the incremental relationship: 
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      )]   ̇  

         ̇ 
(4.17) 

Alternatively, stress increment is related to strain and temperature increments through 

the partial second derivatives of   
 

 potential: 
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 (     (    ))      

(4.18) 

From Eq. 4.18, the stress tensor is expressed by: 

   
  

   
    

               
  (    (    ))      

(4.19) 

and the increment of stress tensor and degree of saturation are obtained by applying 

Maxwell’s rule: 

 ̇  
  

    
        

  ̇    
    

      
  ̇      ̇  
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]
 (   )

  ̇  
    

     
  ̇ 

(4.20) 

The last equation in view of Eq. 4.18 leads to the following explicit expression for the 

incremental relationship between  ̇  
 ,  ̇   and  ̇. 

 ̇  
  [           (       

 

 
      )]   ̇           ̇ 

(4.21) 

This formulation gives the tangent elastic thermo-hydro-mechanical behaviour of partially 

saturated porous media, particularized for a simplified non hysteretic van Genuchten-like 

retention curve. 

The present formulation represents one of the simplest thermo-hydro-mechanical 

coupling. More complex energy formulations will be presented particularly accounting for 

the dependency of the elastic moduli on pressure and the hysteretic behavior of the 

capillary curve. 
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4.4)     Hyper-Plastic Models for Suction Hysteresis (WRC) 

 

When a sample of porous material is subjected to a wetting-drying cycle, a hysteresis loop 

is usually observed and the relationship between suction and degree of saturation 

becomes non-unique. For example, when suction is progressively increased from a fully 

saturated state, the saturation degree    progressively decreases such that the point (    ) 

follows the main drying curve “MCI” shown in Fig. 4.28. If drying is stopped at a given 

point and imbibition starts, an increase in    is observed along a path different to MCI. 

Instead, if wetting is performed from a fully dried state, the saturation degree    

progressively increases and the corresponding point (    ) follows the main wetting curve 

“MCD”, see Fig. 4.28. Any drainage at this stage produces a decrease of    along a path 

different to the MCD, call scanning curves, down to the reach of MCI. 

 

Figure 4.28: Hysteresis Behavior of Water Retention Curve (after Vaunat et al., 2000; Coussy, 2004). 

In the last decade, different models have been developed to tackle the hysteresis behavior 

of soil water retention curve on the basis of the theory of the elasto-plasticity (Vaunat et 

al., (2000); Wheeler et al., (2003)).  
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4.4.1)      Wheeler et al. Model 

Wheeler et al. (2003) proposed to define the retention curve in the plane      (  ) and 

to approximate the smooth curves “MCI” and “MCD” with two straight lines having the 

same slope w , see Fig. 4.29 but shifted by a given value.  

The relationship between degree of saturation and suction along a scanning path is given 

by the equation: 

        (
 

  
)      (4.22) 

 

   is the slope of the scanning curve. The pair (      ) provides the origin of the scanning 

path and can be any point along this path. In the present model, it has been chosen to work 

with point C, located at mid-distance between points A and B, see Fig. 4.29.     is given by 

the relation between suction and degree of saturation prevailing on the main drying path: 

         (
  

  
) (4.23) 

 

where    is the slope of the main drying and wetting curves and    is the half of the 

intercepts of the main drying and wetting curves with the suction axis. 

 

Figure4. 29: Water Retention Curve Hysteresis Wheeler (2003). 
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Equations 4.22 and 4.23 can be reworked as:  

         (
  

  
)      (

 

  
)       (

 

  
) (     )  (

  

  
)

⏟            
  

 (4.24) 

 

or equivalently: 

        (
 

  
)            (     )  (

  

  
) (4.25) 

where    is an internal variable representing the irreversible part of the degree of 

saturation. Equations 4.25 provide the equations to model hysteresis in the retention 

curve within the elasto-plastic framework. They can alternatively be written as: 

       ( 
(     )

  
)             (

   

     
) 

(4.26) 

Such a model can be derived within the hyperporoplastic framework by defining adequate 

Helmholtz    and Gibbs    free energy for the gas-liquid interface. According to the Eq. 3.70 

they can be composed by two terms: (a) the elastic energies     and    , given by the 

expressions: 

   (     ) ( ∫    )          ( 
(     )

  
)

   ( ) (  ∫    )     [  (
 

  
 )   ]     

 

(4.27) 

and (b) the trapped or stored energies: 

   (  ) ( ∫     )   (     )     (
   

     
)

 ̃  (  ) (  ∫     )   (     )  [  (
  

  
)   ]

 

(4.28) 

 

Then the Gibbs energy function of the gas-liquid interface is given by:  

  (     )       [  (
  

  
 )   ]       (     )     (

   

     
)

⏟                  
   

 
(4.29) 

 

 

In this purely hydraulic model, the porosity   is constant. The state equations lead to the 

expressions for the degree of saturation and the back suction:  
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      (

  

  
 )    

    
    

   
      (

   

     
)

 

(4.30) 

 

Further derivation of Eq. 4.30 leads to the incremental relationship between, on the one 

hand, degree of saturation    and suction and, on the other hand, back suction    and 

internal variable l: 

 ̇   
  

 
 ̇

 ̇   
  

     
   (

   

     
)  ̇ 

 

(4.31) 

The inverse relation between suction and degree of saturation is alternatively derived 

from the Helmholtz energy (  (     )    (    )      ), valid in the range of admissible 

values (    ) :  

  (     )      
    ( 

(     )

  
)  (     )     (

   

     
)

⏟                  
   

 
(4.32) 

From Eq. 4.32 the expressions for the suction and the back suction are derived as: 

    
   
   

   
    ( 

(     )

  
) 

    
    
   

      (
   

     
) 

(4.33) 

Other alternative consists in applying the Legendre transformation ( ̃ (    )    (    )  

    ) defined by considering s and generalized suction xs (        ) as independent 

variables: 

 ̃ (     )       [  (
  

  
 )   ]  (     )  [  (

  

  
)   ] 

(4.34) 

Derivation of the last equation leads to the expression of the plastic degree of saturation:   

    
  ̃ 

   
  (     )  (

  

  
) 

(4.35) 

 

The state equation    
  ̃ 

   ⁄  is valid at any time for any state (     ) lying inside the 

domain limited by the main loop of hysteresis. This domain of reversible saturations at the 

suction space is defined at each time by two side constraint condition, 
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           (4.36) 

 

where the suction decrease    and the suction increase    represent the lower and upper 

limits of the current field of reversibility (hydraulic elastic branch) of the water retention 

curve. It is then possible to define the hydraulic elastic domain through the scalar function,  

   (      )(      ) (4.37) 

valid in the domain(       
     

 ). At any time, variables (        ) lie inside the 

closed set (  {(        )  
   }). Purely elastic behavior takes place for any pair 

(     ) at the interior of   while plastic loading will take place only when (     ) lies on 

the boundary of  .  

The more general case to model the behavior of a material is achieved by considering a 

non homogeneous dissipation function, first-order function of the internal variable rate. In 

this case, (  ) is a pseudo-potential and it is not possible to take Legendre transformations 

on it. Houlsby et.al. (2006) proposed the introduction of a new function ( ) “the force 

potential” to overtake this drawback. In the present study of the retention curve, ( ( ̇ )) is 

a function of material interface skin,  

 ( ̇ )  
(  

        )

 
  ̇ 

  

or in the anecdotal particular case        

 ( ̇ )  
      

 
  ̇ 

  

(4.38) 

where the back suction    has been introduced as the mean value of    and   .  

The force potential of the interface skin results to be a homogeneous function as the one 

seen before for the cam-clay model. However it is a quadratic function of the rates of 

plastic saturation. Similar functions were used by Ziegler (1977) to model the response of 

linear viscous materials. 

Because  ( ̇ ) acts as a true potential, it is possible to obtain an expression for    (the flow 

potential) analog to the yield function, by applying the following Legendre transformation 

(      ̇        ). After the transformation, the flow potential can be written in 

non-dimensional form as: 

  (  )  
  

 

  
        

 
(4.39) 
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or for the particular case        

  (  )  
  

 

      
 

  

The quadratic character of the flow potential for the interface skin, recalled the order of 

this function used to model linear viscous materials (Maugin, 1999). For the particular 

case     , the yield surface given by Eq. 4.37 is recovered. It is expressed in the 

generalized interface space by:  

  (  )    
    

           

or for the particular case        

  (  )    
           

(4.40) 

 

When shifted to the true interface space by invoking the fundamental relation 

        , Eq. 4.40 becomes: 

  (    )  (     )
    

           

or for the particular case        

  (    )  (     )
           

 

(4.41) 

Eq. 4.29 (Gibbs potential) and Eq. 4.41 (Force potential) are the two ingredients that 

define, in a thermo-mechanical consistent way, a hysteretic model for the schematic 

retention curve proposed by Wheeler et al. (2003). This model has been implemented in 

an implicit algorithm (see Chapter 5). The response is depicted in Fig. 4.30 in the space 

degree of saturation – suction (porosity is constant in such a pure hydraulic hyperplastic 

model). Model parameters are                  ,        kPa,         kPa and 

       . 
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Figure 4.30: Hysteresis Model for WRC following (Wheeler, Sharma, & Buison, 2003)) 

 

Figure 4.30 shows an initial state in an elastic branch close to the full saturation of the 

sample (A). From that state, a drying path is followed firstly over the scanning curve until 

the  main drying curve is reached (B). From that state, irreversible saturation degrees start 

to develop following the line with slope    until point (C). From this last point a saturation 

of the sample produces an elastic response following again an scanning curve with slope 

   until the main wetting curve is reached at point (D). Plastic response is developed from 

this state, generating irreversible saturation degrees. The drying-wetting cycles continue 

until point (J) in which the test is finished. 

 

4.4.2)      Simplified van Genuchten like retention curve 

 

A similar hysteretic model can be derived for the simplified van Genuchten-like curve, 

provided the equations of the main branches of the retention curve are slightly modified in 

order to introduce the air entry pressure (suction at which the soil starts to desaturate) 

and accommodate the elastic shift: 
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        (
 

  
 )  [  

     

  
 ]

  

     (
  

  
 )

⏟                  
  

 
(4.42) 

Following the same procedure as for Wheeler et al. (2003) model, Gibbs free energy of the 

solid skeleton is expressed by:  

  (     )       [  (
  

  
 )   ]         

 [
 

   
  

 (   
 ⁄ )

   
 ]       

 

⏟                        
   

 
(4.43) 

where, as for the previous model,   
  is defined as the average value of the intercepts of the 

scanning curve with the main drying (  
 ) and wetting curves (  

 ) in the reference 

configuration and   
         (

  

  
 ⁄ ). The expressions for the degree of saturation 

and back suction are:  

   
   

   
      (

  

  
 )     

    
    

   
   

 

(

 
 

(       (
  

  
 ))

⏟            
  

 

(  
 ⁄ )

  

)

 
 

    

(4.44) 

while the incremental relationships between Sl, s, s and l are obtained from double 

differentiation of Eq. 4.43: 

 ̇   
  

 
 ̇ 

 ̇   
  

 

 
(       (

  

  
 ))

 (   
 ⁄ )

 ̇  

(4.45) 

The shape of a hysteretic loop from saturated to dry state and vice-versa is depicted in 

Fig. 4.31, together with a scanning path.  
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Figure 4.31: Simplified van Genuchten model derived from energy potentials 

 

The simplified van Genuchten's model differs from Wheeler's model in the fact that once 

the main curves of drying and wetting are reached the developed irreversible saturations 

follow the path drawn by the simplified van Genuchten law. Starting from a saturation 

state A, the desaturation starts once the value so is reached. Over this point B and under a 

drying path the response of the model is elastic with the saturation degree following the 

scanning curve with slope   . This response continues until the main drying curve is 

reached, in that moment irreversible saturations start to develop. Those irreversible 

saturations follow a path defined by the simplified van Genuchten law    (point D in 

Fig. 4.31). If from that last point a wetting path is followed the response of the model is 

elastic following a scanning curve until the main wetting curve is reached. From point E 

(Fig. 4.31) irreversible saturations develop following the contour defined by the simplified 

van Genuchten law. The model response follows the same pattern under repeated cycles of 

wetting and drying. 

The relationship between the back suction and the plastic component of the degree of 

saturation    is obtained from the dual energy   ̃ (     )    (    )       

 ̃ (     )       [  (
  

  
 )   ]  

  
 

   
(  

     

  
 )

   

       (
   

  
 ) 

(4.46) 
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where the fundamental relation (       ) has been used. It comes from Eq. 4.46 that l 

is related to s by the following kinematical hardening law: 

    
  ̃ 

   
 (  

     

  
 )

  

     (
   

  
 ) 

(4.47) 

Finally, the equation for the scanning path (elastic hydraulic behaviour) can be explicitly 

derived from the following expression of Helmholtz energy function for the interface skin 

  (     )    (     )       : 

  (     )      
    ( 

(     )

  
)    

 [
 

   
  

 (   
 ⁄ )

   ]       
  (4.48) 

    
   
   

   
    ( 

(     )

  
) (4.49) 

This model has been implemented in an implicit scheme, following techniques presented 

in Chapter 5 to integrate implicitly hyper-poroplastic laws. Figure 4.32 shows a typical 

response (in the plane Sl-s) during a drying path followed by a wetting path and several 

cycles of wetting and drying. The range of suction considered is below 10 MPa, which 

corresponds to the upper limit of suction values prevailing in soil macro-porosity (where 

free water exists). Main drying and wetting curves draw typical paths in granular soils, 

with a sudden decrease in saturation when the air entry value is overcame, a relatively flat 

shape for degree of saturation above 40% or 50% and a progressive increase to high 

values of suction for low degree of saturation. Material parameters are: w = 0.021, m= 0.8 

(for both the main drying and wetting curves),   
  = 600 kPa (sD0 = 109.1kPa and sI0 = 

1091kPa). 

Effect of m and s0 parameters on the shape of drying/wetting cyclic path is depicted in 

Figs. 4.33 and 4.34. A limitation of the model relies on the constant ratio predicted 

between    and    leading to a strong hysteresis loop even at a low degree of saturation. 

This aspect can be easily tackled by considering different values of m for the main drying 

and wetting curves. 
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Figure 4.32: Hysteresis Model for WRC of van Genuchten type.  

 

Figure 4.33: Hysteresis Model for Simplified van Genuchten WRC. Sensibility to m parameter.   
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Figure 4.34: Hysteresis Model for Simplified van Genuchten WRC. Sensibility to s0 parameter. 

 

Finally, Table 4.9 summarizes the energy functions describing the behavior of hydraulic 

skin (WRC) developed along the subsection. 

Table 4.9: summary of energy and dissipation functions for the hydraulic interface skin. 

 
Energy 

Dissipation-Yield 

Function 

Wheeler 

WRC 

Gibbs energy: 

  (     )       [  (
  

  
 )   ]      

 (     )  
    (

   

     
)

⏟                  
   

 

Partial Gibbs energy: 

 ̃ (     )       [  (
  

  
 )   ]

 (     )  [  (
  

  
 )   ] 

Helmholtz energy: 

 

 

 

 

 

 

 

Force potential: 

 

 ( ̇ )  
(  

        )

 
  ̇ 
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Flow potential: 

 

  (  )  
  

 

  
        

 

 
Simplified 

van 

Genuchten 

WRC 

Gibbs energy: 
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      [  (
  

  
 )   ]
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(   
 ⁄ )    ]       ⏟                      

   

 

Partial Gibbs energy: 

 ̃ (     )       [  (
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(  
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Helmholtz energy: 

  (     )          ( 
(     )

  
)

   
 [

 

   
  

(   
 ⁄ )    ]

       

 

4.5)     Unsaturated Soil Models from Hyper-Poroplastic Potentials 

 

Because a saturated medium is a limit case of a three-phase porous medium when the gas 

phase vanishes, modeling of unsaturated soils has been historically based of an extension 

of saturated soils model to account, from the mechanical point of view, of the effect of gas-

liquid internal pressures and interfaces forces. Within these models, the critical state 

models have had taken a particular relevance because of their capacity to model collapse 

phenomena as a result of yielding along the mean stress axis. In this section, several 

variants of the so-called Barcelona Basic Model, which extends the Modified Cam Clay 

Model to unsaturated conditions, are reviewed and merged within the hyperplasticity 

framework.  
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4.5.1)      Formulation of Gallipoli et al.’s model with pure volumetric hardening 

 

The first studied model corresponds to the model developed by Gallipoli et al. (2003). This 

model is based on an extension of Cam clay conditions through the use of Bishop’s 

effective stresses    
  and the introduction of a bonding variable   whose value is related to 

the effect produced by the interface forces on the skeleton particles. The use of the Bishop 

effective stress makes this model particularly suitable to be studied within the framework 

developed in Chapter 3. In this section, two different hyperplastic formulations of the 

model will be developed, leading to different types of hardening: purely volumetric or 

purely kinematical. It will be seen that both of them provide reliable predictions of stress-

strain curves in presence of suction. 

In the original paper, the model recovers the simple elastic law considered in Modified 

Cam clay model, whose limitations have been discussed at the end of Chapter 3. Despite of 

these limitations and with the aim to present in a first instance a hyperplastic formulation 

for the original model, this is a simple law that will be considered in the development of 

the thermodynamic potentials. The model will be further enhanced according to the 

coupled shear-volumetric elastic law presented at the end of Chapter 3.  

According to Chapter 3, a hyperplastic model in three-phase porous media must include 

terms related to the hydraulic behaviour in the definition of the potentials. In the present 

section, the simplified van-Genuchten like expression will be considered for modeling the 

water retention curve.  

If the hysteretic response of the retention curve is disregarded then the curves of elastic 

response "scanning curves" are no longer valid. It result is       and as consequence 

  
    and the degree of saturation is given by the internal saturation variable       or 

equivalently    
    

   
⁄ .  

Moreover, the simplest hydro-mechanical coupling, corresponding to expression 3.75 is 

adopted. According to this assumption, the free energy of the solid skeleton in presence of 

gas-liquid interface sums up the free energy of the interface (weighted by the porosity) to 

the free energy of the solid skeleton in absence of gas-liquid interfaces. In Gallipoli et al.’s 

model, the latter is directly given by the Helmholtz (alternatively Gibbs) free energy of 

Modified Cam Clay model. Considering for the moment that there is no kinematical 

hardening, then the energies of the solid skeleton read: 
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from which: 
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(4.52) 

 

Differentiation of equations 4.52 gives rise to the stiffness matrix    
(      ): 
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 (   )
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(4.53) 

and the compliance matrix    (      ),  
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 (  
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 (   )
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(4.54) 

 

A more real representation of the behaviour consists in introducing the dependence of the 

shear modulus on the mean effective stress, as done in section 3.6.1. Following the hydro-
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mechanical coupling provided by expression 3.76, the Helmholtz (alternatively the Gibbs) 

free energy sums up Houlsby et al. (2005)’s proposal for the solid skeleton Eq. 3.96 

(alternatively Eq. 3.100) to the Helmholtz (alternatively Gibbs) potential associated to the 

retention curve: 
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(4.55) 
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] 
(4.56) 

The expressions for the mean stress, the deviatoric stress and constitutive suction are then 

(alternatively: volumetric strain, deviatoric strain and degree of saturation): 
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(4.57) 
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From double differentiation of Eq. 4.55 and Eq. 4.56, the stiffness    (      ) and 

compliance    (   
    ) matrices read:  
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(4.58) 
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(4.59) 

 

Within the framework of Finite Element formulation of u-p type, it is interesting to be able 

to compute the secondary variables – stresses and degree of saturation – from the primary 

variables – strain and suction. The corresponding relationship is provided by derivatives 

of the cross potential   
 
(      ): 
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]
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(4.60) 

Leading to the mixed Hessian matrix: 
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 (4.61) 

   
 

 can be easily obtained from matrix    , as it is diagonally dominant due to the absence 

of hydro-mechanical coupling. The interest of using   
 

 to derive the constitutive law to be 

implemented in a Finite Element program becomes more evident in case of higher 

coupling. 

The modeling of the plastic behavior requires to consider the formulation of the constraint 

that limits the elastic (admissible) domain. The surface proposed by Gallipoli and co-

workers has the same elliptic shape as in the Modified Cam Clay Model, but its size is 

magnified due to the presence of gas-liquid interface forces which structure the material. 

To model this effect, the authors introduce a new “bonding” variable ( ) that quantifies the 

magnitude of inter-particle bonding due to water menisci. It is defined as the product of 

the degree of saturation of the gas phase (    ) multiplied by a function of suction   ( ): 

    ( )(    ) (4.62) 

The factor (    ) accounts for the number of water menisci per unit volume of solid 

fraction and is equal to zero when the soil is saturated (    ). When the soil becomes 
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drier and the number of water menisci increase, this factor assumes positive and 

increasing values. The function   ( ) accounts for the stabilizing inter-particle force 

exerted by a single meniscus whose efficiency decreases as the radius of the meniscus 

becomes smaller.  It varies monotonically between 1 and 1.5 for values of suction ranging 

between zero and infinite respectively. 

At the present model the bounding variable is modeled in terms of the effective suction 

instead of total suction to fulfill with hyperporoplastic framework, thus the bounding 

variable is redefined as, 

    (  )(    (  ))                                               

{
 
 

 
 
  (  )    

  
   

⁄

     
  

   
⁄

                            

  (  )  (  
  

   
)
  

(    
   )    

   

 

(4.63) 

 

where the factors   (  ) and      (  )  have the same connotations to those of the 

original model, described above. 

Based on the results of isotropic virgin compression tests at constant suction, Gallipoli et 

al. (2003) studied the changes of the slope of the normal compression line for a range of 

average skeleton pressure. The study revealed that the normal compression lines at non-

zero values of suction are not straight lines in the semi-logarithmic plane (    (  )) but 

they are curves with decreasing slope as they approach the saturated line, see Fig. 4.35. 

Motivated by the test evidence, the authors propose a unique relationship for the 

proportion (   ⁄ ) and the bonding variable ( ) at constant suction,  

 

  
          (  )  (4.64) 

where   and   are material parameters. For the model we use the specific volume 

(     ) instead of the void ratio( ), its use is consistent with the bi-logarithmic 

compressibility law proposed by (Butterfield, 1979) which leads to an analytical 

formulation tractable to implicit integration. Equation 4.64 is then re-written as,  

 

  
   

 

(
 
  

  )
      (  )  (4.65) 

The last equation was also used by (Borja R. I., 2004). 
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According to 4.64, the isotropic yield locus at suction s (denoted p0) is related to the yield 

locus in saturated conditions p0* by the relationship (see Gallipoli et al., 2003, for further 

details): 

(
 

  
     )       

 

  
 (     )     

    (4.66) 

where N is the origin of the virgin loading branch in saturated conditions,   and    the 

slope of the unloading-reloading and virgin branch, respectively, also in saturated 

conditions. 

 

Figure 4.35: (a) Normal compression lines at constant suction in the plane (    (  ))(data by Sivakumar, 

1993), after Gallipoli et. al (2003). (b) Relationship between ratio(   ⁄ ) and the bonding factor ( ) during 

isotropic virgin loading at constant suction (data by (Sivakumar, 1993), after (Gallipoli, Gens, Sharma, & Vaunat, 
2003)). 

 

From Eq. 4.66 and Eq. 3.110 (note that p0* is twice the center of the ellipse), the 

dependency of p0 on the internal variable p and suction s reads: 
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(4.67) 
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where 
 

  
 depends on suction. The equation of the yield surface   (          ) in the true 

stress space is: 
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(4.68) 

From the expression of the Gibbs energy, the back stress     is identically null and the 

generalized stress    
  is equal to the true stress    

 . The equation for the yield surface reads 

then: 

   
  

  

  
   

 (  
    )    

(4.69) 

Leading to the flow rule: 
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(4.70) 

The dissipation is finally obtained by eliminating  ̇ in Eq. 4.70: 
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(4.71) 

 

and the hardening law takes the following form: 
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(4.72) 

This model, referred as     , has been implemented in the framework of the Interior 

Point Method presented in Chapter 5. Its performance is investigated through a series of 

tests performed on the Barcelona Harbour Clay, whose parameters are given in Table 4.10. 
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Table 4.10: Material properties for Barcelona Harbour Clay 

 0.018 pc 0.01   0.09 N 1.1759 M 1 

 0.09 A 0.185 B 0.1419   
  0.4 m 0.6 

 

Figure 4.36 shows the response of the model at constant suction. The curves evidence the 

classical duality of Modified Cam Clay Model: dilatancy at low confining stress and 

contractancy at high confining stress. The reach of the yield point at lower deviatoric 

stress as the pre-consolidation ratio decreases can also be verified.  

Figure 4.37 shows the evolution of the deviatoric stress and the volumetric strain with the 

axial strain for three different values of suction, maintained constant during the tests. In 

the three tests, the yield surface is reached on the wet-side of the critical state line. Model 

predicts consistently higher deviatoric stresses and lower contractancy when the suction 

is higher.  

Figure 4.38 depicts the void ratio – mean effective stress curves predicted for three 

isotropic loading paths performed at distinct prescribed suctions. In the three 

computations, the yield point is exceeded and loading pursued in the plastic regime.  It can 

be observed in the figure that 1) the yield point increases with the value of the prescribed 

suction and 2) the virgin loading branches converge towards the saturated line because of 

the plastic reduction of the void ratio e and, thus, of the ratio v/ vs.  



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

175 
 

 

Figure 4.36: (Gallipoli's model) Conventional Drained Triaxial Test on normally and over-consolidated 
compressed soil Samples.      Model at a constant suction of 0.01MPa 

 

Figure 4.37: (Gallipoli's model) Conventional Drained Triaxial Test on normally and over-consolidated 
compressed soil Samples.      Model at three different suction values (0.01MPa, 0.05MPa, 0.1MPa).    
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Figure 4.38: (Gallipoli's model) Relation between mean effective stress “p’ ” and the void ratio “e”. Loading-
Unloading for BBM1 model with non-linear elastic modulus. For three different suctions (                  

       )  

 

4.5.2)      Formulation of Gallipoli et al.’s model with pure kinematic hardening 

 

Gallipoli et al.’s model can be alternatively modeled within a hyperporoplastic framework 

by introducing kinematical hardening for the mechanical part. As before the hysteretic 

response of the retention curve is disregarded and as consequence       and the equality 

      holds or equivalently    
    

   
⁄ . Dependency of WRC on density is moreover 

considered in this version of the model. In the next subsection 4.5.2.1 this dependency is 

addressed in concise manner revisiting two well documented proposals Coussy et.al. 

(2002) and Gallipoli et.al. (2003) and framing them in a hyperplastic scenario. Finally a 

simpler dependency is proposed for the WRC which will lead to a well posed formulation. 

4.5.2.1)   Dependency of WRC on soil density 

Several dependencies exist to introduce the soil's density dependency on the WRC, Coussy 

(2002) proposed to set a dependency of the interface energy on soil porosity     

   
 ⁄   

 (  ). More recently, Gallipoli et.al. (2003) proposed to set the air entry on specific 
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volume   
 ( )     

   (   )  . As shown hereinafter energy potentials for both 

proposals are identical for specific values of    and     According to Coussy's proposal 

interface energy reads: 
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(4.73) 

 

which states the dependency of the WRC on volumetric strain. On the other side, following 

the Gallipoli's proposal, the interface energy takes the form: 
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(4.74) 

Both expressions coincide for    (
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Such a dependency can alternatively be expressed in term of the mean stress as: 
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(4.75) 

These last two expressions provide expressions for the interface energy with dependency 

on the soil density. Those proposals lead to layouts of potential function     with complex 

Legendre transformation, as consequence a simpler expression is proposed to account for 

such dependency which will lead to a well posed formulation. Let consider the Gibbs 

energy for the interface skin given by, 



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

178 
 

     

  
 (

  
  

    )

   
 (  

  

   
 )

   

 

(4.76) 

 

where (   
  

  
 ⁄   ),    is the initial mean stress and   

  is a reference mean stress. The 

magnitude of the reference stress   
  defines the sensibility of the capillary curve to 

mechanical actions. Thus the expression of degree of saturation obtained by 

differentiation of Eq. 4.6 is: 
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    )(  

  

  
 )

  

 
(4.77) 

Equation 4.77 differs from the simplified van Genuchten law by the term (
  

  
⁄    ) 

which acts as a shifting parameter of the hydraulic skin due to mechanical actions. 

 

This subsection established the basis to proceed further with the model development 

accounting for the kinematic hardening formulation. It is clearly noted that in this case the 

decouple consideration between the solid and the interface phases is not possible and the 

layout of the Gibbs and Helmholtz energy functions is of the form: (a)          

(      ) and (b)    (      )    . 

Considering the energy 4.76, the Gibbs and Helmholtz energy functions for the porous 

skeleton result, explicitly: 

         [  (
  

  
)   ]  

  

    
 (        )

  

  
 (

  
  

    )

   
[(  

  

   
 )

(   )

]    
⏟                        

   

 

(4.78) 

 

with the trapped energy of the solid skeleton    given by: 
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 (4.79) 

Note that    is not only function of    but also of    (or alternatively    as the relationship 

between both variables is univoque in this model) through parameters   and b. As a 

consequence, since    and     depend on mechanical and hydraulic variables, the 

uncoupled assumption is not valid. 

The complementary Helmholtz energy function obtained as a Legendre transformation of 

the Gibbs energy, is: 

  
 

        (
  
    ( )

  
 

    
  

   
)                                                          

        (
  
 

  
  

  
 

    
 (   )

[(  
  

   
 )

(   )

]  
    

  

   
)    

 

(4.80) 

where the coupled strain   ( ) appears within the exponential function in addition to the 

volumetric and deviatoric strains. Mechanical state equations provide the expressions for 

the strains, stresses and generalized stresses:  
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Equations 4.81a and 4.80c state relations for the volumetric strain and mean stress that 

are different from those derived by Eqs. 4.57a-4.57d. This is due to the assumed 

dependency of the capillary curve on mechanical variables given by multiplicative ratio 

(
  

  
   ).  As far as the hydraulic part is concerned the degree of saturation is defined as: 
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(4.82) 

where 
 (

  

 
)

   

⁄  
 (

  

 
)

  
⁄   

   
⁄ . Equation 4.82 obviously states a relationship 

between suction and degree of saturation that is different from the water retention curve 

of the material as a result of the additional term 
(     )

 
⁄

 (
  

 
)

  
⁄ . This additional 

terms appear as a consequence of the shift of the whole hydro-mechanical elastic domain 

driven by both the mechanical kinematical hardening and the hydraulic kinematical 

hardening.  

Due to the new dependencies and couplings coming out of kinematic hardening assumed 

the following decomposition of strains and degree of saturation for modeling partially 

saturated soils is possible: 

Total strain     

               (           )⏟                    
           

            
     

      

Recoverable  

Effective degree of saturation    

without hysteresis: 

coupled (mech. induced) + plastic 
  

        

with hysteresis: 

               ⏟          
           

         

  
    

     

Recoverable  
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The model is completed by the definition of the following expression for the dissipation: 
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     ̇ 
  

(4.83) 

where p0 is given Eq. 4.67. The hardening law is then expressed as: 
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(4.84) 

The elimination of  ̇  and  ̇  in Eq. 4.84 provides the expression for the yield surface in 

the generalized stress space, 
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(4.85) 

The flow rule is given by: 
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(4.86) 

and the expression of the yield surface in the true stress space is finally: 
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(4.87) 

 

This model, referred as     , has been implemented in the framework of the Closest 

Point Projection Method discussed in Chapter 5.  Its performance is illustrated on the same 

set of data as for model BBM1. The response on isotropic tests at three different suctions is 

depicted in Fig. 4.39 while Fig. 4.40 shows the response for the triaxial tests at constant 

suction and different confining pressures. The response is totally similar to the one 

obtained with model BBM1. 
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Figure 4.39: (Gallipoli's model) Relation between mean effective stress “  ” and void ratio “e” during an isotropic 
loading – unloading path modeled using      model with non-linear elastic modulus. 

 

Figure 4.40: (Gallipoli's model) Predicted response of triaxial tests on normally and over-consolidated soils at a 
constant suction of 0.02MPa using      Model.  
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Figures 4.41 and 4.42 show: (a) the variation of mean stress and preconsolidation due to a 

continuous drying of the sample and (b) the variation of sample saturation due to the 

exerted triaxial stress path, respectively. 

Fig. 4.41c shows a decrease of the preconsolidation pressure as the degree of saturation 

increases. Moreover, Fig. 4.41a shows an increase of the mean pressure as the degree of 

saturation increases approaching the stress state to the yield surface. 

Furthermore, Fig. 4.42a presents the variations of saturation degree as: (a) the effective 

mean pressure evolves. In this regard, an increment of saturation is observed until the 

onset of irreversible strains and (b) the preconsolidation pressure decreases as saturation 

increases. In this case, the experienced plasticization has a high relevance. It generates a 

continuous decrease of saturation as hardening increases.  

 

Figure 4.41: (Gallipoli's model) Desaturation test at high pressures. Responses of mean pressure and 
preconsolidation due to saturation evolution. 
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Figure 4.42: (Gallipoli's model) Predicted response of triaxial tests on normally consolidated sample. Variation of 
saturation degree due to the exerted stress path. 

 

4.5.2.2)   A Generalized BBM2 Model  

 

The model BBM2 can be generalized to capture different shapes of the yield surface in the 

p’-q plane. This generalization can be obtained by introducing a pressure dependent term 

as proposed by Collins (2002). Such a generalization give rise to a non-associated flow rule 

and allows to control the amount of plastic dilatancy 
 ̇ 

 ̇ 
⁄ .  

If the dissipation function Eq. 4.83 is extended by introducing a pressure dependent term 

 (  ) within the root in the way: 
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where the parameter   quantifies the amount of non-associativity (or shape of the yield 

surface in the p’-q plane) then, the hardening rules result different to those in Eq. 4.84 by 

the presence of the new pressure dependent parameter:  
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(4.89) 

 

and by elimination of the rates of plastic strains between the equations 4.89a and 4.89b 

the yield function of the generalized BBM2 model results slightly different to that of 

Eq. 4.85:  
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(4.90) 

 

Figure 4.43 shows the graph of the yield surface for different values of  . 

 

Figure 4.43: Graph of the Generalized BBM2 model for partially saturated soils. Three different values of the 
material parameter   (Collins (2002)). 

  

Figure 4.44 shows the model response subject to triaxial stress path in a sample under 

overconsolidated conditions. The response for the two values of   shows a drop of the 

strength while the parameter   decreases. Furthermore, Figure 4.45 shows a lower 
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volumetric strain as the parameter   decreases. This happens as a consequence of the 

change in the plastic flow direction. 

 

Figure 4.44: Conventional Drained Triaxial Test on an over-consolidated soil Samples. Response of the Generalized  
     Model for two values of the material parameter  . 

 

 

Figure 4.45: Conventional Drained Triaxial Test on an over-consolidated soil Samples.  Response of the 
Generalized       Model for two values of the material parameter  . 

 

Another way to adapt the Cam-clay surface to fit with experimental observations is to 

consider a cap surface version of this model. A dissipation function which takes into 

account this phenomenon is presented in Appendix 1 of this dissertation. The model 
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accounts for two different dissipation characteristics according to the side with respect to 

the csl. "wet" or "dry".  

 

4.5.3)      Formulation of Barcelona Basic Model 

 

Other alternative to model the behavior of partially saturated soils is to use the net 

stresses instead of the effective stress as constitutive stress variable of the mechanical 

phase. Essentially used for experimental convenience, this variable has been  the source of 

the pioneer model developed by Alonso et al. (1990), today called Barcelona Basic Model 

(BBM). In this section, a hyperporoplastic formulation is proposed for this historical 

model, as it is still now widely used in many computations.  

According to section 3.5.3, the net stress tensor    
  is conjugated to the strain tensor     

provided that suction s is conjugated to the hydraulic strain   . A complete coupled hydro-

mechanical model requires thus to consider free energy and dissipation functions that 

depend in the most general case on (   
                 ) and include terms related to soil 

skeleton and gas-liquid interface. In accordance with Alonso et al.’s model, Modified Cam 

Clay Model is used for the soil skeleton in absence of interfaces. The effect of suction is 

introduced by:  

1) setting a dependency of the yield point p0 on suction, 

2) considering a resistance to pure traction ps that depends linearly on suction value 

(ps = ks s). 

The equation of the yield surface is then: 

   
  

  
 (     )(     )    (4.91) 

As for the previous model, two formulations are presented. The first one sticks to the 

original Barcelona Basic Model and considers a constant shear modulus. The second one 

contemplates the enhancement proposed by Houlsby et al. (2005), which allows having a 

constant Poisson’s ratio within a conservative elastic formulation. It is completed by a 

non-hysteretic van-Genuchten-like retention curve to model the hydraulic skin of the 

porous skeleton.  
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In this regard the curves of elastic response "scanning curves" are no longer valid 

resulting in        and as consequence   
   . Then the hydraulic strain is given by the 

internal variable         or equivalently     
    

  
⁄  , as      . 

In a first step both: (a) a consideration of a constant shear modulus G for the elastic 

mechanical part of the Barcelona Basic Model and (b) a non-dependency of the interface 

energy on the soil density, lead to the expressions for the Helmholtz     

 
  and the Gibbs    

 

free energies given by: 
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where   
 

 is presented here for its compatibility with the u-p Finite Element formulation.    

The definition of the following hydro-mechanical strain components and stress 

components come for the state equations: 
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(4.94) 

Term     (
  

  ) represents the volumetric strain due to load changes only while 

    (
     

   
) is the volumetric strain due to changes in suction. Note that this last cross 



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

189 
 

term imposes a counterpart in the hydraulic response:     must be the sum of two 

components, one due to the mechanical response of the material (  
  

     
) and one due to 

the hydraulic response ( (  
 

  
)
  

).  Moreover the expression for the net stress within 

the exponential is composed of two terms: the first term is due to mechanical volumetric 

strains 
  

   and the second term considers the change in the net stress due to suction 

changes 
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).  

Moreover, if both (a) the influence of the soil density on the interface energy is considered 

and (b) in case in which   is constant, the energy functions    

 
  and     

take a slightly 

different form: 
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then the strain and stress components read: 
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From expression 4.97 the strains and the stresses result in more complex fashion than 

those at Eq. 4.94. Double differentiation of Eq. 4.96 provides the hydro-mechanical 

compliance matrix:  
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(4.98) 

 

with    (   ).  

To the opposite of the matrix derived using the effective stress concept Eq. 4.59, the full 

hydro-mechanical compliance matrix associated with Barcelona Basic Model must have 

hydro-mechanical coupled terms (
  

 

     
)  This fact is in accordance with the proper 

definition of the effective stress concept that aims at decoupling the hydraulic and the 

mechanical behaviors. 

The formulation of the plastic behavior requires the introduction of a suction-dependent 

coupled kinematical and volumetric hardening term. Because of the asymmetric increase 

of preconsolidation pressure    and traction strength   , both the size and the center of 

yield function move with suction. 

In the framework of hyperplasticity, this feature is introduced by the consideration of a 

trapped energy term (   
) in the Gibbs energy function. As for Gallipoli et al.’s model, this 

term is computed as the plastic work done by center the ellipse    ∫
(     )

 
   : 
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where  ( ) and  ( ) are given by the expressions: 
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(4.100) 

and  ( ) is the slope of normal compression line at suction ( ) (Alonso, 1990). The 

complementary state equations provide the expressions for the generalized stresses: 
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(4.101) 

where    
     

 
 is the shift stress linking the spaces of net stresses: the true net stresses 

space and the generalized net stresses space. In terms of generalized stresses, the yield 

function reads: 
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(4.102) 

  

The dissipation function is obtained by applying the singular Legendre transform 

     
  ̇    

  ̇      to Eq. 4.102. Differentiation of    with respect to   
  and   

  lead 

to the following expressions for the flow rules:  

   ̇      
  

     ̇      
  

(4.103) 
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Using the restriction provided by the yield surface Eq. 4.102,   
  and   

 can be eliminated 

from Eqs. 4.103, leading to: 
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(4.104) 

and the dissipation finally reads: 
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(4.105) 

  

This formulation presents the advantage of allowing the implementation of this model 

using modern optimization techniques. Figure 4.46 shows the model response to triaxial 

tests at three different levels of suction. 

 

Figure 4.46: Predicted response of triaxial tests on normally and over-consolidated soils due to different levels of 
suction,      Model. 

 The corresponding algorithm of integration is described in Chapter 5. 

 

4.5.3.1)   BBM formulation in terms of mixed hardening  

 

Alternatively to the pure kinematic hardening formulation of the BBM presented above, a 

mixed hardening formulation can be adopted in order to develop the model. This 

formulation will then lead to the same results.  
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To achieve the mixed hardening formulation it is necessary to observe that ps can be 

accommodate within the yield function so it remains working as an isotropic hardening 

term. Then its presence in the stored energy    disappears. The original expression for the 

BBM yield locus is given as: 
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(4.106) 

 

which can be accommodated to give 
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(4.107) 

where the back stress has been defined as 
  

 ⁄ .  If the yield function Eq. 4.107 is 

transferred to the generalized stress space using the fundamental relation          is 

becomes expressed by: 
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Equation 4.108 represents a family of ellipses centered at the origin with mayor semi-axis 

a= and minor semi-axis b=M with   ((
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 ⁄

. Following the same 

procedure as before and eliminating the generalized stresses between the equations for 

the flow rules leads to the expression for the dissipation function: 
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(4.109) 

This expression for the yield function of the BBM model differs from the one presented at 

Eq. 4.105 in the multiplicative term of the root and it is only due to the assumption of the 

mixed hardening adopted in the formulation. 

It is noted that no additional term is seen at the dissipation for the mixed hardening 

because in this case the isotropic hardening evolution depends only on hydraulic variable 

(s). This variable is not conjugated to the rate of plastic strain. 
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4.5.3.2)   Generalized Elasticity for BBM model (Net Stress Space) 

 

In this section a generalization of Gibbs energy and Helmholtz energy is made. These 

generalizations are based on the energy functions proposed by Houlsby (2005) for the 

mechanical problem and are extended here to consider partially saturated conditions of 

soil when the constitutive variables chosen for modeling are       and     .  

The advantage of deriving the elastic behavior from the following functions is the ability to 

calibrate the amount of non-linear response. The clearest evidence of the non-linearity of 

the soils elastic strains is the stress-strain relation of the Cam-Clay model. This stress-

strain relation defines the isotropic compression line which is generally represented as a 

straight line at a semi-logarithmic plane: p’(effective mean stress)-e(void ratio). It´s 

important to highlight that the non-linearity decreases while the soil hardness increases, a 

commonly observed phenomenon in a brittle material. 

The material parameter controlling the amount of non-linearity "n" span between 0-1. A 

value of n close to zero gives a minimal non-linearity while a value close to unity provides 

a non-linearity of cam-clay type. 

At first instance a volumetric behavior is addressed by simplicity. Then the extension to 

consider the deviatoric behavior will be introduced. Consider the Gibbs energy function 

for the partially saturated medium formulated in terms of net stress, 
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(4.110) 

Unlike function Eq. 4.99 where a natural logarithm of suction was considered, in this case 

the suction is incorporated into the energy function as a polynomial function of degree 

(   ). From Eq. 4.110 the expression for the volumetric strain is given by: 
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(4.111) 

This suggest that both the net mean stress and the suction contribute to the expression of 

the volumetric strain with different polynomial degree. The partial Legendre 
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transformation leads to the expression of the Helmholtz potential (  (  
   )    (    )  

    
 ) which is more appropriate for finite element u-p formulations:  
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(4.112) 

In the energy function (Eq. 4.112) the additional suction term of degree ( ) accompanies 

the volumetric deformation. This fact evidences the degree of coupling between the 

mechanical and the hydraulic parts when the net stress configuration is chosen for 

modeling. From the previous expression the mean net stress is expressed as, 
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(4.113) 

As in the expression 4.111 a suction dependent term of polynomial character accompanies 

the volumetric deformation in the computation for the net mean stress. 

Finally, the extensions of the Gibbs   (      ) and the Helmholtz   (  
    

   ) energy 

functions for the BBM model to consider both the deviatoric behavior and the kinematic 

hardening are shown below:   
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(4.114) 
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(4.115) 

The last two terms in energy functions 4.114 and 4.115 correspond to the trapped energy 

giving rise to the back stress   . From Eqs. 4.114 and 4.115 the expressions for the 

mechanical and hydraulic strains and the mechanical stresses result: 
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(4.116) 

 

At the energy functions 4.114 and 4.115 the hysteretic response of the retention curve has 

been disregarded, as consequence of this assumption       then the equality       is 

valid (                
    

   
).  
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The cross derivatives 
    

   
 and 

   

  
 due to the store energies appear as a consequence of the 

shift of the whole hydro-mechanical elastic domain driven by both the mechanical 

kinematical hardening and the hydraulic kinematical hardening.  

 

4.6)     Thermoplastic Soil Model from Hyperplastic Potentials  

 

In this section the non-isothermal response of the soil in addition to the hydro-mechanical 

one under partially saturated conditions is considered. Before addressing the 

development of the hyper-Thermoplastic model a review of the thermodynamic equations 

governing the problem for a three-phase material at non-isothermal conditions is 

performed. Then the model will be addressed starting by defining the elastic energy and 

the dissipation energy functions. The last function will lead to introduce a generalization 

of the Legendre transformation in order to obtain a yield locus for the model. Finally 

several numerical tests will be performed in order to validate the model performance. 

4.6.1)      Non-isothermal conditions and Elastic Potentials (Mechanical Part) 

 

The change in internal energy of the soil skeleton    is provided by the local form of the 

first law of thermodynamics Eq. 3.48. In that case Eq. 3.48 was particularized to consider 

the Bishop effective stress with parameter   equal to the degree of liquid saturation as 

constitutive variable. 

Furthermore, the existence of a state specific entropy function of the porous medium 

defined as       ∑  
   ∑                                     local form of second 

law of thermodynamics expressed as in Eq. 3.49. In that expression, the thermal 

dissipation term  
     

 
⁄  plays a central role in non-isothermal conditions and it cannot 

be neglected in the formulation. 

The rate of entropy production within the porous element (the irreversible entropy) 

defining the dissipation d of the porous medium should again satisfy the inequality, 
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(4.117) 

Then the divergence of the thermal flux in addition to the thermal dissipation      
     

 
 

corresponds to the reversible part of entropy in both the bulk phases and the interfaces. 

This differs from Eq. 3.50 in the presence of thermal dissipation term only.  

Now the divergence of the heat flux in the solid skeleton only (  
   

) corresponds to the 

difference between: (a) the total heat flux in the medium      in addition to the thermal 

dissipation and (b) the heat flux of the fluid phases  ∑      ̇   .   

Within this scenario, the dissipation of solid skeleton defined as the difference between 

the dissipation of the whole medium and the dissipation of bulk fluid phases reads: 
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(4.118) 

where unlike in Eq. 3.52 the thermal dissipation term in Eq. 4.118 is present.  

Concerning finite element u-p formulation it is more convenient to work with the specific 

Helmholtz free energy of the porous skeleton dual to the internal energy    with respect to 

entropies    and    :   (     )      (      )  Taking into account Eq. 3.48 the rate 

of fs can be expressed as: 

  ̇     
  ̇      ̇   ( ̇    ̇ )  (      ) ̇        (4.119) 

 

and finally combining the expression for the divergence of the skeleton heat flux       and 

Eq. 4.119 leads to the central result: 
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(4.120) 

In the framework of hyperplasticity and under non-isothermal conditions again both the  

free energy function    and the dissipation function    are required to completely define 

the constitutive model. Moreover the state equations result to be the same as those 

summarized in Table 3.5. 
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Under non-isothermal conditions besides the mechanical strains induced by stress 

increment, the thermal strains due to temperature changes should be taken into account.   

            (4.121) 

where,    is the volumetric thermal expansion coefficient of the solid skeleton. This 

coefficient increases with the temperature.  

As the thermal expansion of the porous medium should consider the influence of the mean 

pressure magnitude at the soil element with reference to the initial stress, the following 

law is proposed for the thermal expansion coefficient of the skeleton,  

      [(
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  ]  
 

   

(    )    (4.122) 

where   is the dilation’s coefficient of the solid matrix,    is a limit temperature below 

which the pore water does not boil,    is a reference initial pressure and   is a material 

parameter span between 0-1.  The proposed incremental law (Eq. 4.122) says that the 

thermal coefficient decreases as    increases.  

Based on Houlsby (2005) the general Gibbs energy function for the thermal elastic 

response is given after integration of Eq. 4.122 by the expression: 
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where     (   )
 

 
 (    ) (  

    

   
),    is a reference pressure,   is a 

dimensionless material parameter and    is a material parameter taking values between 0 

and 1 for linear elasticity to Cam-Clay elasticity, respectively. The term    considers the 

non-isothermal response of the porous skeleton. The expressions for the volumetric strain 

and the deviatoric strain are derived from Eq. 4.123 following regular procedures in 

thermomechanics (state equations):  

   
  (    )

  
(   )  (   )

(    
  (   )

  
  )

(  
 ⁄ )

 
(    )

  (   )
    

   
 (    )

  
(   )  

(    
  (   )

  
  )

(  
 ⁄ )

    

(4.124) 

 



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

200 
 

From Eq. 4.124, the expressions for the volumetric and the deviatoric strains result in 

much more complex expressions than those expressions for Cam-Clay elasticity. The 

complementary energy function       (        ) results after the Legendre 

transformation in: 
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(4.125) 

 

leading to the following expressions for the mean and the deviatoric stresses:  
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(4.126) 

 

Elastic compliance matrix is derived by second differential of Gibbs energy function    

(Eq. 4.123) while the Stiffness matrix is obtained by second differential of Helmholtz 

energy    (Eq. 4.125). 

The model has now to be completed by defining the dissipation energy (eventually yield 

function) for the thermo-plastic soil skeleton. 

 

4.6.2)      Formulation of Yu's model with pure volumetric thermal-hardening 

 

The layout of the dissipation function to complete the model is based on that proposed by 

Thurairajah (1948). The proposal established that the dissipation of the porous medium is 

governed by amount of rate of plastic deviatoric strain developed. Then the rate of work 

dissipated is given by the expression: 
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where         is the slope of the critical state line,    is the friction angle at the 

critical state and "r" and "b" are two material parameters.  Equation 4.127 says that the 

dissipated work is proportional to the magnitude of the rate of plastic shear strain. This 

function results non-smoothed at the origin  ̇    then the way forward to obtain the 

yield function is to perform a Legendre-Fenchel transformation. It is given by: 
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  ( )
     (

  

  (   )
) | ̇ |) 

(4.128) 

 

where       . Then standard procedure leads to the expression for the deviatoric 

stress invariant: 
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Finally the expression for the yield function is obtained from Eq. 4.129 as: 
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(4.130) 

The yield function Eq. 4.130 corresponds to the original Cam-Clay yield surface with a 

hardening's pressure sensitive to environmental variables: suction and temperature. Yu 

(2006) proposed a generalization of this surface based on the properties of the 

exponentials functions. This generalization allows to change the shape of the yield surface 

at the p-q plane. Such a change can vary from an original cam-clay shape to a cap-model 

shape, through a modified cam-clay shape.  
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(4.131) 

where the material parameter b has the effect of diminishing the elastic domain at 

constant pre-consolidation and   is a material parameter controlling the yield shape.  

Fig. 4.47 shows the contours of the yield function Eq. 4.131 for different values of the 

shape parameter. 
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Figure 4.47: Shape of the yield surface for different values of the material parameter “n”. 

 

A dependency on the third invariant of the stress tensor has been included in Eq. 4.131. 

For the model HP-CASM the dependency on the lode angle is introduced through the van 

Eekelen proposal. This proposal is explicitly written as, 

 ( )  
 

  
 (   ̃

 
  (   ̃

 
 )       (  ) )

 

 
(4.132) 

 

expression 4.132 is valid within the range        (triaxial compression) to       

(triaxial extension). Requirements for aspect ratio are given by the two side constraint  

of  :  (   )   ̃ (triaxial extension state) and  (    )    (triaxial compression state). 

Here  ̃ is given by the term  ̃  
(      )

(      )
.  

Figure 4.48 shows the shape of the yield surface HP-CASM model at the deviatoric plane 

and for two values of m. It is important to highlight that for m=1, the surface does not 

preserve the convexity. This fact motivates the study of convexity of the van Eekelen 

formula with regard to the shape parameter  . 
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Figure 4.48: BBM5 with Lode Dependency. Plot for two values of m. 

 

In the first instance a view of the contour of the van Eekelen's formula evidence a 

discontinuity at    . This fact motivates to chose values for the shape parameter laying 

within the interval      ). In a further step, the derivative function 
  

  
⁄  shows a 

change in the growth for values of shape parameter close to zero, Fig. 4.49. Those 

minimum values match with changes of curvature 
   

   
⁄  of the van Eekelen's formula 

and must be avoided since they produce non-convexity of the yield surface. 

Minimum values of van Eekelen's shape parameter can be obtained by solving the 

minimization problem {
    (     )

       )
 for constants values of both lode angle and 

friction angle. Fig. 4.50 shows the minimum values of van Eekelen parameter obtained as 

solution of the former problem for different values of the Lode's angle (It is recommended 

to add a safeguard value "-0.1" to those presented at Fig. 4.50).  
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Figure 4.49:Contour of the gradient of van Eekelen's radio for different values of friction and Lode angles. 

 

Figure 4.50:Minimum values of van Eekelen's shape parameter to guarantee convexity of the yield function at the 
deviatoric plane. 
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Below a frame with contours of the van Eekelen's radio is shown for different values of 

both: (a) friction angle and (b) shape parameters.  

 

Figure 4.51: Contours of van Eekelen's radio for different friction angles and shape parameter m. 

 

It is noted from Fig. 4.51 that convexity is also lost for very low values of the shape 

parameter   at high friction angles.  

In view of the above, it is concluded that the choice of the shape parameter is highly 

important to obtain satisfactory results at the time of integration. A typical value assumed 

by Bardet (1990) is         . The van Eekelen's shape parameter must range between: 

(a) maximum values shown at Fig. 4.51 plus a safeguard value of -0.1, and (b) a minimum 

value of -0.4 (from shape observation). 

Model dependency on environmental variables is reflected in the pre-consolidation 

pressure,    is stated as dependent on hydraulic and thermal loading through the 

expression, 
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where  ( ) and  ( ) have been defined previously by Eq. 4.67,    and      are the 

reference and the minimum allowed temperatures, respectively, and    is a parameter 

giving the rate of degradation. 

Model performance has been studied shown through modeling a series of conventional 

tests. Parameters used in the numerical tests correspond to clay material and are 

summarized in Table 4.11. 

Table 4.11: Material properties for Synthetic Clay to evaluate the model performance  

 0.018   0.09   0.9    1.1759    26 

 0.09    0.2 b 1   0.4 m -0.229 

nCASM 1 N 1.1759 A 0.185 B 0.1419   

Conventional drained triaxial tests on lightly overconsolidated (
  (   )

  
⁄   ) and 

heavily overconsolidated (
  (   )

  
⁄   ) samples are initially performed.  

In the first test, the model response is initially elastic; when plastic strains start to develop, 

the curve      shows a sharp drop in stiffness, Fig. 4.52a. Magnitude of the plastic strains 

can be seen at Fig. 4.52b. Similarly the change of the elastic volume is small and a break 

point is also observable at the end of the elastic response, Fig. 4.52c. In the second test the 

response remains elastic until the stress state reaches the yield locus at a point lying to the 

left of the critical pressure. At that point the plastic strain increment vector produces 

plastic volumetric expansion, Fig. 4.52c. After the initial elastic rise in   and decrease in 

volume, further plastic shearing is associated with a drop in   and an increase in volume 

Fig. 4.52. 



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

207 
 

 

Figure 4.52: Conventional drained triaxial tests on BBM5 model. (a)Deviatoric Stress vs. axial strain for lightly 
overconsolidated sample and heavily overconsolidated sample. Stress path: A shearing (1:3) load was applied. 

 

Figure 4.53 shows a comparison of the HP-CASM model response under drained triaxial 

conditions on samples lightly overconsolidated subjected to triaxial compression and 

triaxial extension stress paths. It is seen in both cases that after the plastic strains start to 

develop, the curves      show a sharp drop in the stiffness Fig. 4.53. The soil sample 

resistance to triaxial extension results lower than that observed under compression 

conditions. At the same time the soil sample under compression conditions needs more 

time to enter in plastic yielding, Fig. 4.53. Conversely, the developed plastic volumetric 

strains during yielding are greater in extension due to the lower resistance of the soil to 

support strains in extension, Fig. 4.53. These behaviors evidence the influence of the third 

invariant of the stress tensor   on the HP-CASM model response. 
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Figure 4.53: Conventional triaxial test on lightly overconsolidated sample: Deviatoric stress vs axial strain.. (a) 
triaxial compression       . (b) triaxial extension      .Stress path: A shearing (1:3) load was applied. 

 

Figure 4.54 shows a comparison of the HP-CASM model response under drained triaxial 

conditions on samples heavily overconsolidated subjected to triaxial compression and 

triaxial extension stress paths. It is seen in both cases that after the plastic strains start to 

develop, the curves      show a sharp drop in the stiffness, Fig. 4.54. The soil sample 

resistance to triaxial extension results lower than that observed under compression 

conditions. At the same time the soil sample under compression conditions needs more 

time to enter in plastic yielding, Fig. 4.54. These behaviors evidence the influence of the 

third invariant of the stress tensor   on the implicit HP-CASM model response. 
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Figure 4.54: Conventional triaxial test on heavily overconsolidated sample: Deviatoric stress vs. axial strain. (a) 
triaxial compression       . (b) triaxial extension      .Stress path: A shearing (1:3) load was applied. 

 

The following are model tests at different suction and temperature values. Those trials 

evidence the model performance under environmental variables. 

Three different tests involving temperature cycles are considered. The test commenced 

with the application of an isotropic load from the initial state             and up to the 

final state of             (at constant temperature of 25°C). The application of the 

isotropic load fixed the stress state close to the pre-consolidation pressure of the material. 

After that, three temperature cycles were carried out within three trails: (a) 25-22-25; (b) 

25-70-25; (c) 25-90-25; Fig. 4.55.  

Those cycles shift the yield surface according to the mobilized plasticity. This mobilized 

plasticity is generated by the temperature increase (   
  in Fig. 4.55). After those cycles of 

temperature, the samples were subjected to triaxial compression under drain conditions.  

Figure 4.56 indicates that the branch of elastic response during triaxial compression of the 

sample subjected to the cycle 25-90-25 is higher than the branches of the samples 

subjected to the temperature cycles of 25-70-25 and 25-22-25 grades. This observation 
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demonstrates that the sample subjected to the broader scope of temperatures (25-90-25) 

mobilizes more plasticity than the samples subjected to the narrower scopes of 

temperature.  

 

Figure 4.55: Stress-Thermal Path follows in the test on Bangkok Clay. 

 

Figure 4.56 evidences the good ability of the model to capture the behavior observed in 

the laboratory test. These results show the thermal strengthening of the material once the 

plasticity is developed by thermal processes.  

 

Figure 4.56: Numerical simulations of drained triaxial compression tests on normally consolidated Bangkok Clay. 
Comparison with experimental results. 
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To test model response under partially saturated conditions, three conventional drained 

triaxial tests realized in lightly overconsolidated samples, at three different values of soil 

moisture are simulated. In all tests, model response is initially elastic, being this response 

maintained longer at driest states Fig. 4.57. At the onset of plastic yielding, the curve      

shows a sharp drop in the stiffness Fig. 4.57. The magnitude of the developed plastic 

strains can be seen also at Fig. 4.57. In the driest state samples, the change in volume 

results to be lower than the change in volume at the wettest samples. This fact evidences 

the increase of resistance of the soil observed at partially saturated samples see Fig. 4.57. 

 

 

Figure 4.57: Conventional drained triaxial tests on BBM5 model. Samples at three different states of humidity: (a) 
Deviatoric Stress vs. axial strain, (b) Volumetric strain vs axial strain; (c) Plastic volumetric strain vs axial strain. 

Stress path: shearing (1:3). 

 

According to the results presented, a good performance of the model HP-CASM is 

evidenced to capture both: (a) typical response under traditional mechanical stress paths 

and (b) mechanical response under thermal loadings. 
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4.7)     Frictional Soil Models for environmental actions 

 

In this last section, two cohesive-frictional models will be reviewed in some detail within 

the hyper-plastic framework. First, the Drucker-Prager model, already derived from a 

dissipation potential by Collins & Houlsby (1997) in case of purely frictional materials, will 

be extended to consider a cohesive component and degradation under temperature 

changes. Then, the hyperplastic formulation of Matsuoka-Nakai model (Matsuoka & Nakai, 

1974) will be described, with special attention devoted to the representation of dilatancy.  

This model has been chosen because it provided a more realistic shape of the yield locus in 

the deviatoric plane, close to that of Mohr-Coulomb yield criterion.  

 

4.7.1)      Introduction to friction and dilatancy angles and Historic case 

 

The simplest frictional model considered to capture soil failure is the one based on 

Coulomb´s pioneering work in 1773. It is depicted in Fig. 4.58 in a Mohr diagram. In this 

framework, when the soil do not present cohesion, the strength of the soil is defined by the 

line of angle    (friction angle). The soil element is considered to experiment failure when 

the stress state (represented by the Mohr circle in Fig. 4.58) is tangent to the line. 

 

Figure 4.58: The Mohr-Coulomb Failure Criterion 

This approach often represents only an oversimplification of the real behaviour of the 

sample, particularly in dense materials, where a peak is observed in the shear stress-shear 

strain relationship, followed by a reduction in shear stress at large strain, Fig. 4.59a. If the 

vertical displacements are furtherly monitored, they will indicate an upward movement of 
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the upper face of the sample, related to material dilation. It is usually preceded by a small 

initial compression, Fig. 4.59b.  

 

Figure 4.59: (a) Typical shear stress – shear strain curve in simple shear test; (b) Dilation of dense sand in a 
simple shear test 

 

If shear tests are carried under different normal stress levels, the peak angles reduce with 

increasing stress. As a result, the peak strength surface is curved in the Mohr-Coulomb 

diagram, Fig. 4.60.  
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Figure 4.60: Curve peak strength envelope on Mohr’s circle plot 

All these features: (a) peak and large strain strength, (b) dilation and (c) reduction of peak 

strength with stress level, are indeed closely connected. Dilation play a key role in the 

understanding of their interactions.  

The angle of friction expresses the ratio of a shear stress to a normal stress, and can be 

defined in terms of principal stresses, see Fig. 4.61a: 

   (  )  
     

     
  

 

(4.134) 

In a similar manner, dilation can be expressed by an angle that expresses the ratio 

between the volumetric and shear strain rate. In the case of plane strain tests, it can be 

defined in terms of principal strain rates Fig. 4.61b: 

   ( )  
 (  ̇    ̇)

  ̇    ̇
  

 

(4.135) 

The sign “minus” arises from the convention used in soil mechanics where compressive 

stress and strain are taken positive. According to this convention, dilation angle is positive 

when soil expands. 
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Figure 4.61: Definitions of friction and dilation angles. (a) Friction angle in Mohr diagram; (b) Dilation angle in 
the Mohr representation of strain rates. 

 

Dilation angle has an important meaning in constitutive modeling as it is associated to the 

flow rule. Equation 4.135 is however the source of experimental difficulties as it requires 

to remove the elastic component from the measured strains. In many situations, the elastic 

stiffness of the material is considered sufficiently high in order to  neglect the elastic 

strains and to assess the ratio between plastic volumetric and shear strains as:  

   ( )  
 ( ̇   ̇ )

 ̇   ̇ 
  

 

(4.136) 

A variety of theories have been proposed to explain the relationship between the friction 

angle and dilation angle. One of the first was the “energy correction” concept introduced 

by Taylor (1948); nowadays understood as based on the assumption about the “work 

dissipated” in a frictional soil. According to this framework, the rate of work input to a 

block during its sliding on a smooth plane is: 

 ̇    ̇  
 

(4.137) 

and will be dissipated internally by friction. This dissipation is then equal to the shear 

stress computed in a Coulomb fashion (  
      

 ) times the rate of shear strain  ̇: 

 ̇     (  
 )   

  ̇  
 

(4.138) 

 

If the sample experiments additionally a change in volume in addition to distortion then 

the equation for the dissipated work has to include the work exerted by the normal stress: 
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 ̇    
  ̇    ̇     (  

 )   
  ̇  

 

(4.139) 

which can be rearranged into: 

   (  )     (  
 )     ( )  

 

(4.140) 

 

According to Eq. 4.138 the observed (or apparent) angle of friction is the sum of the angle 

of friction at constant volume and the angle of dilation. This relation will be further used to 

express non-associated behaviors in the Drucker-Prager and Matsuoka-Nakai models. 

As a starting point to derive hyperplastic formulations for cohesive Drucker Prager and 

generalized Matsuoka-Nakai model, the derivation made by Collins & Houlsby (1997) for 

Tresca´s model is now recalled.  For a stress state such that         , Tresca’s yield 

criterion is expressed by:  

 

 
(     )    

(4.141) 

where     and    are the maximum and minimum principal stresses and   is the yield 

stress of material determined from pure shear tests. This model, extensively used to 

represent failure in metals, has been further generalized for soils by introducing a 

pressure dependent term. In that case, the yield criterion reads:   

       

     
   

(4.142) 

where   and   are material parameters dependent on friction angle  and cohesion c (a() 

and b(c, and xi the generalized stress components that depend on dissipation function. 

Collins & Houlsby (1997) propose the following expression for this function:   

  (     )     ̇ 
     ̇ 

     ̇ 
    (4.143) 

 

where  ̇ 
  are the principal components of the plastic distortion-rate tensor. From the 

standard hyperplastic procedure, the principal generalized stresses take the form: 

   
  

  ̇ 
  (     )    ( ̇ 

 ) 

   
  

  ̇ 
  (     )    ( ̇ 

 ) 

(4.144) 

which provide the following expression for the yield surface:  
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      (     )     ( ̇ 
 )    ( ̇ 

 )  (4.145) 

where   ( ̇ 
 ) is the signum function of the rate of principal distortion plastic strains. 

Figure 4.62 depicts the Extended Tresca’s model and the direction of the plastic distortion 

strain rate vector. If  ̇ 
  is positive and  ̇ 

  is negative, the yield stress is equal to  

  (     ) whereas it is equal to    (     ) when  ̇ 
  is negative and  ̇ 

  is positive. 

If either one of these two principal distortion rates is equal to zero then  (     ) is 

undetermined. Finally,         if  ̇ 
  and  ̇ 

  have the same sign. The latter situation is 

only possible if  ̇ 
    and is of the opposite sign to  ̇ 

  and  ̇ 
 .  

 

Figure 4.62: Extended Tresca Yield Surface for frictional materials  

 

4.7.2)      Drucker-Prager thermo-plastic Model 

 

The Drucker-Prager model (Drucker & Prager, 1952) can be considered as the first 

attempt to approximate the Coulomb criterion by a simple smooth function. The model 

neglects the influence of the third invariant    on the cross sectional shape of the failure 

surface thus providing a circular appearance to surface contour at the deviatoric plane.  

The criterion is expressed as a function of the first invariant of the stress tensor (     ) 

and the second invariant of the deviatoric stress tensor (  (   √  )) as given by 

Eq. A3.1 (           ). Material parameters M and a are related to the friction 

angle and the cohesion of the soil, Eq. A3.2. 

In this section, a hyperplastic version of Drucker Prager model is developed following 

Houlsby (2000). It introduces two additional features: (a) traction resistance by 
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considering a cohesive component of the porous medium and (b) thermal degradation by 

explicit dependency of the yield surface on temperature.  

Cohesion is introduced in the model by considering a modified expression of the 

dissipation function proposed by Collins & Houlsby (1997) for the pure frictional Drucker-

Prager model. This modification appears as an additional term dependent on the soil 

cohesion. Furthermore the challenge to make the yield criterion dependent on thermal 

degradation is accomplished by introducing a multiplicative temperature dependent term.  

Then the dissipation function reads:  

    [ 
   

 
  ]√

 

 
 ̇  

  ̇  
  

(4.146) 

where   √   is a friction dependent parameter,   √   is cohesion dependent 

parameter and rc is a weighting factor that degrades as temperature increases. From the 

literature a possible variation for the weighting factor    is given by a linear law:   

         (    )  where     is the value of the thermal degradation parameter    at 

     and    gives the rate of degradation. 

Standard procedures in hyperplasticity lead to the expression for the generalized 

deviatoric stress    
  as: 

   
  

  

  ̇  
            √ ( 

    

 
  )  

 ̇  
 

√ ̇  
  ̇  

 
 

(4.147) 

It can be verified from Eq. 4.147 that the internal plastic strains    
  satisfy Drucker-

Prager’s flow rule. The dilatant behavior of the material (consequently the non-

associativity of the plastic flow) is introduced by considering an additional constraint 

through the technique of Lagrange multipliers (Collins & Houlsby, (1997). The constraint 

reads: 

   ̇       √
 

 
 ̇  

  ̇  
    

(4.148) 

where    is a material parameter function of the dilatancy angle Eq. A3.6. The constraint 

equation 4.148 gives a dilatancy relation for the plastic flow. 

The same procedure followed in appendix A3 leads to the expression for the extended 

dissipation function d' as: 



CHAPTER 4 - Formulation of Particular Thermo-Hydro-Mechanical Model within the framework of 
 Hyper-poro-plasticity 

_______________________________________________________________________________________________________________________________ 

 

219 
 

          (
      (    )

 
)  √

 

 
 ̇  

  ̇  
     ̇   

(4.149) 

Then the expressions for the generalized deviatoric and volumetric stresses are derived 

from Eq. 4.149 as: 

       

   
    [

         

 
  ]√

 

 

 ̇  
 

√ ̇  
  ̇  

 
 

(4.150) 

Then computation of the yield function is obtained by elimination of the plastic strain 

rates at Eq. 4.150 leading to: 

 

  
 √

 

 
    

    
  (

         

 
)      

Or 

(4.151) 

    
 

  
            

(4.152) 

 

where     ( )  
 ⁄  and the term Mp plays a role of an apparent cohesion. Eq. 4.152 

provides a yield surface identical to that considered in conventional plasticity when 

       and the plastic flow becomes associated.  

The yield surface and plastic potential for the extended Drucker-Prager thermo-plastic 

model is plotted in Fig. 4.63.  
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Figure 4.63: Drucker-Prager Yield Surface and Plastic Potential for frictional Plasticity (meridian plane).    ; 
   . 

Figure 4.64 shows in the meridian plane the admissible elastic domain enclosed by a 

Drucker-Prager yield surface for three different reference temperatures. Domain expands 

when temperature decreases and shrinks when it increases. In absence of kinematical 

hardening, a hyperplastic model can be easily completed by adding to the dissipation 

function a thermo-mechanical free energy potential with thermal dependency. 

 

Figure 4.64: Modified Drucker-Prager Model considering loss of resistance with Temperature 
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4.7.2.1)   Smoothing the surface at the apex 

 

A numerical issue in the implementation of Drucker-Prager model relies on the existence 

of a singularity in the flow rule at the apex    . A solution to that problem is to smooth 

the yield criterion close to the singularity point. Several procedures exist already in the 

literature to perform this smoothing. Following the rounded hyperbolic technique 

proposed by Abbo et al. (2011) the equation 4.151 can be re-written as: 

((
 

  
)
 

   )

 
 ⁄

            (4.153) 

 where   is the target distance between the apex of the non-smooth and smooth functions. 

Figure 4.65 compares the shape of the hyperbolic surface with that of the non-smooth DP 

criterion. Parameters used for the smoothing are given in Table 4.12. 

Table 4.12: Parameters for the Hyperbolic Rounded of Drucker-Prager Model 

a(c) [MPa] M B  [MPa]

0.06 0.5 0.3 0.1 

 

 

Figure 4.65: Drucker-Prager Yield Surface with Rounded Hyperbolic at the apex (at the Dissipative stress space)  
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Below an alternative and general method is proposed for the smoothing. It is based on a 

mathematical procedure proposed by Bendito et al. (2007) and later applied by Gesto et al. 

(2011) to approximate non smooth yield surfaces. It allows computing the equation of the 

smoothed surface as the sum of the equations of each single surface, provided they are 

appropriately normalized. For example, in the case of the Drucker-Prager model it is 

possible to obtain a smoothed surface at the apex by summing up the equations of the 

yield criteria in compression and in extension with previous normalization. The method 

consists in applying an exponential to each of the expression for compression and 

extension surfaces leading to: 

 ̃      [   (
 

  
 (   )   )]      [   (

  

  
 (   )   )]    

(4.154) 

Coefficient    defines the amount of smoothing and is calibrated to reach a required 

tolerance between the non-smooth and smooth functions. Figure 4.66 shows the 

performance of the method for two different values of the coefficient   :  6 and 160 

respectively. The smooth surface gets closer and closer to the non-smooth one as a1 takes 

lower and lower values. 

 

Figure 4.66: Smoothed Drucker-Prager yield surface at the dissipative stress space: (a-red)      and (b-blue) 
       

The integration of the frictional/cohesive and temperature dependent model has been 

performed through two algorithms based respectively on the Closest Point Projection and 

Interior Point methods. They are described in detail in Chapter 5. Here, some results at the 

level of Gauss point are presented, not with the objective of testing the integration 

algorithm, but to verify model equations. Parameters used in the tests at Gauss point level 
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are given in Table 4.13. The hyperbolic smoothing is used in this particular case. 

Convergence is considered when the norm of the residue is less than     . 

Table 4.13: Parameters for Modified Extended Drucker-Prager Model 

E (MPa)  MPa)  T0 (oC) o     o    (o-1) 

31000 0.01 0.2 20 24 1 14 1.561 10-3 

 

Fig. 4.67 and 4.68 show the stress paths obtained during triaxial compressions, as 

provided by both the CPPM and IPM algorithm. Both paths end on the yield criterion of the 

material defined by the friction angle and a null cohesion. 

Fig. 4.69 depicts the stress path obtained during a triaxial compression at constant 

volume. Because of the dilatancy, the path follows the yield criterion as the mean stress 

increases, which provides a good check of the shape of the yield criterion. The difference 

between the initial and smoothed DP criteria can be observed in the figure.  

The tests are repeated in the case of a cohesive materials Fig. 4.70 and temperature 

dependent yield criterion Fig. 4.71. Stress paths end again correctly on the yield surface. 

Stress-strain curves with and without elasticity are shown in Figure 4.72. 
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Figure 4.67: Drucker-Prager yield surface verification of criterion (at Gauss Point level) “c= ”. Integrated with a 
Closest-Point-Projection Algorithm (No temperature effects) 

 

 

Figure 4.68: Drucker-Prager Yield Surface, verification of criterion (at Gauss Point level) “c= ”. Integrated with an 
Interior-Point Algorithm 
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Figure 4.69: Smooth Drucker-Prager Yield Surface, verification of criterion (at Gauss Point level) “c =  ”, 
integrated with an Interior-Point Algorithm. (a-red) Non-smooth DP-yield function, (b-green) Smooth DP-yield 

function. 

 

 

Figure 4:70: Drucker-Prager Yield Surface, verification of criterion (at Gauss Point level) “c= . 1 MPa”, integrated 
with an Interior-Point Algorithm  
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Figure 4.71: Drucker-Prager Yield Surface, verification of criterion. For two initial values of temperatures Ti=20oC 
and Ti=50oC; Reference Temperature T0=20oC;   

   ;                   Integrated with an Interior-Point 
Algorithm 

 

Figure 4.72: Deviatoric Stress – Axial Strain for elastic-plastic and perfectly plastic Drucker-Prager Model. 
Response provided by the Interior-Point Algorithm. 
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4.7.3)      Generalized Matsuoka-Nakai Model 

 

In this subsection a new insight into pressure-dependent dissipation functions is made 

within the framework of frictional plasticity. It is recalled that such a pressure- 

dependency results in a non-associated flow of plastic strains.  

In this regard the Matsuoka-Nakai yield criterion (Matsuoka & Nakai, (1974)) provides a 

smooth approximation of Mohr-Coulomb model by the expression A3.12 and its contour at 

the deviatoric plane is depicted at Fig. 4.73. 

 

Figure 4.73: Shape of Mohr-Coulomb and Matsuoka-Nakai yield criterion in the deviatoric plane. 

 

Figure 4.73 clearly shows the smoothed shape of the yield surface at the deviatoric plane 

giving rise to an adequate scenario for the numerical integration.  

A detailed procedure of Legendre transformation which in this case is not direct was 

presented by Houlsby (1986) and reproduced at appendix A3.2 in order to obtain a 

dissipation function for the model. Furthermore Houlsby (1986) proposed a 

generalization of this criterion, such that it encloses both Tresca (for cohesive materials) 

and Matsuoka & Nakai (for pure frictional materials) criteria such that the expression for 

the yield function results in a more complex form shown at Eq. A3.20. 
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As with surface A3.17 following the same procedure of transformation except that in this 

case  ̅  is restated to ( ̅       ) a dissipation function for the extended version of the 

model was proposed Eq. A3.21. 

An enhanced expression is now proposed for Matsuoka-Nakai-Houlsby yield criterion in 

order to accommodate yield functions that are curved in the meridian plane Fig. 4.74. 

 

Figure 4.74: Original and Modified Matsuoka-Nakai Models in the Meridian plane. 

 

The curvature is introduced through a pressure-dependent term in the dissipation 

function and is controlled by material parameter m. To this end the enhanced yield 

function reads: 

  √
 

 
(

     

    (        )
)
 

[

(     )(     )( ̇   ̇ )
  

(     )(     )( ̇   ̇ )
  

(     )(     )( ̇   ̇ )
 

] 

(4.155) 

 

where pa is a reference pressure. Using the same Legendre transformation procedure 

described at the appendix A3 in addition to the zero plastic dilation condition 

   ̇   ̇   ̇    and noting that ( ̅       ) the yield surface at the true stress 

space is expressed as: 
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(4.156) 

If the last term in Eq. 4.156 vanishes then the yield surface can be rewritten as: 
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(4.157) 

In terms of the generalized principal stresses. Figure 4.74 above depicts the shape of the 

yield surface and the direction of plastic flow vector as result of the imposed constraint 

condition    ̇   ̇   ̇     

For    , the generalized Matsuoka-Nakai criterion proposed by Houlsby (1986) is 

recovered. 

4.7.3.1)   Non zero plastic dilation condition  

 

The last enhancement consists in introducing a variable dilatancy in the model. Until now 

the zero plastic dilation condition has been imposed through the constraint    . The 

strict requirement for the yield surface at the dissipative stress space     is that  the 

current stress point should lay on    .  

This is accomplished by modifying the expression of the yield surface in the generalized 

stress space, according to the equation: 

(     )
 

((    )     )((    )     )
 

(     )
 

((    )     )((    )     )

 
(     )

 

((    )     )((    )     )
   

 

(4.158) 

where  is the dilatancy coefficient and      . k is computed to respect the yield 

condition (the current stress point must lay on the yield surface) and can be seen as a 

solution of an algebraic equation of order 3: 
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(4.159) 

 

  depends thus on the current stresses, the effective cohesion and the dilatancy coefficient. 

Finally the term (  ) plays the role of an apparent cohesion which adds to c in order to 

fulfill the     condition.  

Figure 4.75 shows the shape of the yield surface in the meridian plane in the true and 

generalized stress space. 

 

Figure 4.75: Yield surface in the true and generalized stress Meridan planes for the Modified Matsuoka-Nakai 
Model with variable dilatancy. 

 

The model has been verified through a series of triaxial tests. The integration of the model 

is performed through an algorithm of interior-point built within the framework of the 

mathematical optimization. 
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The tests were performed considering a linear elastic response of the material controlled 

by the Young’s modulus and the Poisson’s ratio. Convergence is reached when the norm of 

the residue is less than 10-8. Table 4.14 summarized the parameters used in the numerical 

simulation. 

Table 4.14: Parameters used in Matsuoka-Nakai model simulations 

E (MPa)    c (MPa) 

100 0.2 21 0.108 

 

Results are shown for several confining pressures, a straight yield criterion (m = 0) and 

two limit values of dilatancy: null and full dilatancy. As expected, stress paths end on the 

yield surface. When no dilatancy is considered, the response is perfectly plastic. For full 

dilatancy, the stress-strain relationship experiments a further increase as the result of 

increase in  ̇ . 

Figures 4.76-4.77 show standard plots of conventional triaxial test for the Extended 

Matsuoka-Nakai Model (zero dilatancy) while Figures 4.78-4.79 show the responses of the 

triaxial tests for the Original Matsuoka-Nakai Model (full dilatancy - associate plasticity).  

 

 

Figure 4.76: Extended (Zero dilatancy) Matsuoka-Nakai Model Response for Three Different Confining Pressures 
(Meridian Plane), with    . 
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Figure 4.77: Standard Plots: Results of Conventional Triaxial Test for the Extended Matsuoka-Nakai Model. (a) 
Axial Strain vs. Deviatoric Stress; (b) Axial Plastic Strain vs. Deviatoric Stress. 

 

 

Figure 4.78: Original (full dilatancy) Matsuoka-Nakai Model Response for Three Different Confining Pressures 
(Meridian Plane) with    . Integrated with an Interior-Point algorithm. 
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Figure 4.79: Standard Plots of Results of Conventional Triaxial Test for the Original Matsuoka-Nakai Model. (a) 
Axial Strain vs. Deviatoric Stress; (b) Axial Plastic Strain vs. Deviatoric Stress. 

 

 

4.8)     Summary Tables 

 

This section summarizes the main energy and dissipation functions developed throughout 

the chapter for modeling the studied constitutive laws. Table 4.15 summarizes the 

energies and dissipation for modeling BBM1, BBM2 and generalized BBM2 models. 

Table 4.16 summarizes the energies and dissipation functions for modeling the Barcelona 

Basic Model - BBM, while Table 4.17 summarizes the generalized energies that could be 

used for modeling BBM. Table 4.18 summarizes the energies and dissipation functions for  

modeling the HP-CASM model. Finally, Table 4.19 summarizes the energies and 

dissipation functions for modeling both the Drucker-Prager and Matsuoka-Nakai models. 
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Table 4.15: Summary of Energy and Dissipation functions for modeling of BBM1 and BBM2 models 

Model Energy 
Dissipation - Yield 

Function 

Gallipoli et. 

al. 

Isotropic 

Hardening 

BBM1 

Helmholtz Energy: 
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Table 4.16: Summary of Energy and Dissipation functions for modeling of BBM model 

Model Energy Dissipation - Yield Function 

Alonso et. al. 

Kinematic 

Hardening 

(Mixed 

Hardening) 

BBM 

Partial Helmholtz  energy: 

  
 

        (
  

  

 
   

 

    
 (   )

[( 
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(   )

] 
    

 

   

 
  

 

  
  (

     

   
))     

Gibbs energy: 
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 ( )

 
  

 
   

 

 

 

Kinematic Hardening: 
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Table 4.17: Summary of Generalized Energy functions for modeling of BBM model  

Model Energy 

Alonso et. al. 

Kinematic Hardening 

(Mixed Hardening) 

BBM 

Generalized Potentials 

Helmholtz energy: 

   
  

 (   )
( ( 
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    ( )  
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Table 4.18: Summary of Energy and Dissipation functions for modeling of HP-CASM model 

Model Energy 
Dissipation - Yield 

Function 

Yu et.al. 

Isotropic 

Hardening 

HP-CASM 

Helmholtz energy: 
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Table 4.19: Summary of Energy and Dissipation functions for modeling of Drucker-Prager and Matsuoka-Nakai 
models 

Model Energy 
Dissipation -  

Yield Function 

Drucker-Prager 

Partial Helmholtz energy: 
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4.9)     Conclusions 

 

Along this chapter, the hyperporoplasticity framework for hydro-mechanical and thermo-

mechanical modeling of multiphase media has been applied to several constitutive models 

that appear to be of importance in practical problems of soil-atmosphere interactions.  

They are: 

- Water retention with and without hysteresis, 

- Thermo-hydro-mechanical elastic law, 

- BBM-like models, 

- HP-CASM model, 

- Drucker-Prager and Matsuoka-Nakai yield criterion with linear elasticity (or also 

perfectly plastic). 

A simplified van Genuchten law has been proposed. This simplified law admits a closed-

form integration and therefore the construction of an energy potential for the air-liquid 

interface. Hysteresis of the retention model has been addressed proposing a proper 

energy function    (     ) and a force potential. 

Dissipation functions for BBM-like models, formulated in both net stress and effective 

stress, have been presented and their performances shown at Gauss point level. 

Dissipation function for a hyperplastic-CASM model has been proposed. In this case the 

hardening parameter has been provided with a thermal dependency in addition to suction.  

Generalized elastic potentials proposed by Houlsby (2005) have been extended to 

consider: (a) suction due to partially saturation of porous media, (b) thermal strains due 

to temperature changes and (c) water retention dependence on mean stress by an 

adequate interface energy. The obtained dependencies and couplings at the proposed 

potentials has led to an extended partition of both strains and degree of saturation, 

beyond the classical elastic and plastic partition. 

Drucker-Prager model, derived within the framework of hyperplasticity, has been adapted 

to consider thermal strength degradation. The presented model has also been smoothed at 

the apex to avoid the lack of definition of the plastic flow vector at that point. 
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All the models appear to fit well in this framework. The obtained formulations present the 

advantage of being susceptible to implementation in optimization algorithms with good 

performance. The development and implementation work is described in the next chapter.   
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CHAPTER 5 

 

 

 

NUMERICAL IMPLEMENTATION: IMPLICIT ALGORITHMS FOR TWO-PHASE AND 

THREE-PHASE MEDIA 

 

 

 

5.1)   Introduction  

 

As shown in the previous chapter, the numerical analysis of soil behavior requires the 

consideration of elasto-plastic models that are non-standard in computational mechanics. 

Particularly, the presence of friction as the fundamental dissipative energy mechanism 

makes most of the models used in this field to be non-associated in character. These facts 

have promoted deep studies on numerical techniques to integrate the former relations in a 

reliable and robust way. In this perspective, the hyper-poroplasticity framework 

developed in the previous chapter proves to provide sound basis for reliable integration 

methods as the constitutive relationship is completely derived from potentials (Gibbs and 

Helmholtz free energies, dissipation function) which allow using algorithms based on 

convex mathematical programming techniques.  

Such techniques are based on theoretical concepts developed within two branches of 

mathematics: (a) convex analysis and (b) numerical methods for unconstrained and 

constrained optimization. Their goal is to minimize or maximize a real value function by 

choosing systematically the values of real variables from an allowed set (feasible set). In 
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the present work, the dependent variables correspond to stress increments while the 

independent ones are deformation increments.  

Two different approaches will be explored. The first one follows similar procedures to 

those exposed in Simo & Hughes (1998), and is based on the classical return mapping 

algorithm. The second approach corresponds to primal-dual interior-point methods 

(Wright, (1992); Wright, (1997); Forsgren et al., (2002); Krabbenhoft et al., (2007)). The 

latter has been selected for its performance to resolve saddle-point problems (Benzi et al., 

(2005)), which is the case in constrained optimization plasticity problems. Both 

procedures enable the development of generic computer routines, which allow to process 

the integration of hyper-poroplastic constitutive laws in a quite automatic way. More 

specifically, the present study focuses, on the one hand, on the formulation of the solution 

of local discrete equations at a quadrature point by the closest-point projection method 

and the interior-point method and, on the other hand, on the development of the 

corresponding  algorithms to solve the resulting nonlinear system of algebraic equations. 

This approach contemplates an implicit scheme in the discretization of the equations and 

differs in that sense from the explicit methods proposed by Einav et al. (2003) to integrate 

hyperplastic models.  

The chapter is organized as follows. In the first section, notation and terminology used 

along the chapter is presented. Then, a review of the bases of mathematical programming 

in convex analysis is presented with special attention devoted to both Newton’s method 

and modified Newton's method in order to get a global convergence algorithm. Thirdly, 

the governing equations and the variational structure of a hyper-poroplastic biphasic 

medium is addressed and the consistent tangent operator is obtained for this medium. 

Fourthly, implicit algorithms based on the “closest-point-projection” and “interior-point” 

methods are described and confronted in terms of the convergence results to check the 

performance of the algorithms. Fifthly, the governing equations and the variational 

structure for: (a) hydraulic (retention curve), (b) mechanical (stress-strain relationship) 

models in unsaturated media and (c) mechanical cohesive-frictional models are tackled 

and the consistent tangent operator derived. Finally, the observed advantages of the 

proposed interior-point algorithm are commented and the general conclusions presented. 
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5.2)   Notation and Terminology 

   Unconstraint optimization problem 

  Vector of driven variables (optimal point (  )) 

  Gradient operator 

 ( ) Vector of residuals 

 ( ) Jacobian matrix of residual vector 

 ( ) Vector of feasible advance direction 

 ( ) Merit function for Global Newton convergence 

  Line search Goldstein parameter 

 ̅ Line search parameter (step size) 

   Yield function (Constraint function) 

  Poro-elastic Domain (Compact Set) 

  Lagrangian function 

   Discrete Plastic multiplier 

( )      Algorithmic vector (variables) at trial state 

( )  Algorithmic vector (variables) at beginning of current step 

( )    Algorithmic vector (variables) at the end of current step 

  Duality gap variable 

  Slack variables 

   Elastic strain tensor 

  Plastic strain tensor 

   Effective stress tensor 

   Effective shift stress tensor 

   Generalized stress tensor 

   Net stress tensor 

   Net back stress tensor 

   Net generalized stress tensor 

   Degree of saturation 

   Plastic degree of saturation 

  Matrix suction 

   Back suction 

   Specific Helmholtz energy function of the skeleton (objective function) 

   Specific Gibbs energy function of the skeleton (objective function) 

   Gibbs energy function of the interface gas-liquid (objective function) 
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5.3)   Mathematical Optimization Theory Basis 

 

In this section, a brief summary of the main principles supporting the variational study 

and the development of algorithms are presented. Firstly, some fundamental theorems on 

optimization theory are exposed without deep insight into their demonstrations, which 

are referring to the cited bibliography. Secondly some properties of the Newton's methods 

are commented, like its local convergence characteristic and an extension to get global 

convergence property.  

5.3.1)   Unconstraint optimization theory: "Hyperelasticity" 

From a general point of view, the problem of finding a solution to an unconstrained 

problem is usually expressed in the form: 

  {
     ( )      

    
 

(5.1) 

where x is the vector of driven variables and    is the Helmholtz energy function of the 

skeleton (objective function in mathematical optimization theory). 

The first question that arises in the study of the problem 5.1 is whether a solution exists. 

The main result that can be used to address this issue is the Weierstrass theorem, which 

together with the feasible direction of advance, allow deriving the First Order Necessary 

Condition to achieve a minimum (Luenberger, (1984)).  

Box 5.1: Optimality Conditions 1. 

First Order Necessary Condition:  

            Let ( ) be a subset of (  ) and let (     ) be a function on( ). If (  ) is a relative 

minimum point of (  ) over ( ) then for any (   ) that is a feasible direction at(  ) , we 

have(   ( 
 )     ). 

 

According to this condition, if the objective point of    has been reached at    then the 

directional derivative    ( 
 )    of the gradient of the objective function in the direction   

would result positive     ( 
 )    or zero     ( 

 )    which means horizontal tangent, 

then    is the solution sought. 

Additional conditions to achieve a minimum are derived considering higher order 

approximations defined in terms of the Hessian matrix      of the function  , which leads 

to the Second Order Condition (Luenberger, (1984)). 



CHAPTER 5 -Numerical Implementation: Implicit algorithms for two phase and three phase Media 
_______________________________________________________________________________________________________________________________ 

 

245 
 

Box 5.2: Optimality Conditions 2. 

Second Order Sufficient Condition: 

             Let ( ) be a subset of (  ) and let (     ) be a function on( ). If (  ) is a relative 

minimum point of (  ) over ( ), then for any (   ) that is a feasible direction at(  ) , we 

have: 

a)    ( 
 )      

b)        ( 
 )                 ( 

 )       

 

In view of the convexity assumption of the energy function   , the second order condition 

states that once the directional derivative of    ( 
 ) in the direction   vanishes, the 

positive definition of the Hessian matrix is verified (       ( 
 )     ) and the function 

   reaches a minimum value at the pair (     ( 
 )). 

Accordingly, convex strain energy functions (alternatively stress energy functions) allow 

to built algorithms with global convergence properties. The definition of a convex function 

is provided in the next box and illustrated in Fig. 5.80.  

Box 5.3: Convexity Definition. 

Convexity of a Function: 

              A function (  ) defined on a convex set ( ) is said to be convex if, for every 

((     )     ) and every (     ) there holds 

  (    (   )  )     (  )  (   )  (  ) 

              If for every (     ) and (     ), there holds   

  (    (   )  )     (  )  (   )  (  ) 

  then (  ) is said to be strictly convex.           

 

Definition at Box 5.3 is illustrated at Fig. 5.80. 
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Figure 5.80: Convex and Non-Convex functions, after (Luenberger, 1984). 

 

Verification of convexity by both methods, the first derivative or the second derivative, is 

usually carried out within optimization algorithms. 

The last one is a mapping   between an initial state    in a space   (input of the algorithm) 

to a new state   in the same space (output of the algorithm) (Luenberger, 1984). The new 

point is obtained iteratively within the algorithm   after repeated application of the 

sequence: 

      (  ) (5.2) 

If, for the arbitrary starting state    , the algorithm   guarantees to generate a sequence of 

states converging to a solution then this algorithm is said to be “globally convergent”. 

Many of the most important algorithms for solving non-linear programming problems are 

not globally convergent in their purest form. An example is the well-known Newton's 

method that may occasionally generate sequences that either do not converge at all or 

converge to states that are not solutions of the problem. In fact, the Newton's method can 

be guaranteed to converge to a solution of  ( )    if the initial state is located close 

enough to the final solution state. 
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The solution of a system of nonlinear equations can be formulated as: 

{
                       ( )         

                      ( )    
 

(5.3) 

If  ( ) is assumed to be continuously differentiable, the Newton's method is derived by 

taking a Taylor series approximation to  ( ) around the current iteration   .  (    ) is 

approximated as: 

 (    )   (  )  ∫  ( )
    

  

   
(5.4) 

where the integral is approximated by a linear term ( (  )   ) to get the affine 

approximation to  ( ): 

  (    )   (  )   (  )    (5.5) 

Next, for the current Newton iteration,   is computed such that   (    )   : 

 (  )      (  ) 

        

(5.6) 

Since    is not expected to be equal to the solution    but only the best estimate for the 

current Newton iteration, the sequence (in the sense of Eq. 5.2) 5.4 to 5.6 is iteratively 

repeated from the starting guess   .  

Box 5.4: Newton's Method. 

Newton’s Method for system of nonlinear equations: 

                Given (       ) continuously differentiable and (     ) : at each iteration 

( ) solve: 

 (  )       (  ) 

           

The basic idea while building a successfully nonlinear algorithm consists in combining a 

globally convergent strategy with a fast local convergent strategy in a way that the final 

result has the benefits of both. Such an improvement is performed by appealing special 

devices to guarantee global convergence. 

The global convergent properties of the algorithm will be obtained by: (a) limiting the 

magnitude of the step (   ) in the descent direction (Line-Search method), (b) changing 

the descent direction  to a different one from Newton direction ((      ̃ ) Trust-Region 

method).   

This magnitude is obtained imposing upper and lower limits “LC” to the ratio: magnitude 

of the decrease in the objective function  (  )   (  ) to the given step size      . The 
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global convergence theorem establishes the formal technical conditions for which 

convergence is guaranteed. 

Box 5.5: Base of Global Convergence. 

Global Convergent Theorem: 

Let ( ) be an algorithm on ( ), and suppose that given (  ) the sequence ({  } 
 ) is  

generated satisfying:                                     (  ) 

Let a solution set (   ) be given and suppose:  

a)  All points are contained in a compact set (   )  (( ) is bounded and closed) 

b) There is a continuous function ( ) on ( ) such that: 

I. If (   )    ( ( )   ( ))   (   ( )) 

II. If (   )   ( ( )   ( ))    (   ( )) 

III. The mapping ( ) is closed at points outside ( )              

According to this theorem, when a point of the sequence   does not belong to the compact 

set   the descent function   results unbounded below and the minimum is impossible to 

be reached.  

Conversely, if   does belong to the compact set   the former function is bounded and the 

minimum “solution-point” exists. 

5.3.1.1)   Line-Search global convergence 

 

The line-search method is based on the idea that, given any direction    such that 

(        ) and satisfying limit conditions “LC”, an      exist. The algorithm   is 

globally convergent with sequence (      (     )) obeying at each iteration “LC” and 

the rule (    (       )   ).  

Close to the minimum   ( 
 ), Newton’s steps satisfy the same conditions “LC” and(   

 ). Box 5.6 summarizes the basic idea of “Line-search” method. 

Box 5.6: Line Search concept. 

Line-Search scheme: 

          Given a descent direction ( ) a step is taken which yields an acceptable (    ); 

                         At iteration ( ): 

1. Compute (  ) 

2. Set              for some (  ) making (    ) acceptable 
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The procedure is to try the full step length first      and if it fails to satisfy the “LC” 

conditions to backtrack in a systematic way along the direction(  ). The global method is 

usually achieved by considering the unconstrained minimization problem over the norm 

function (   
 ⁄  ( )   ( )) 

    ( )      

     (5.7) 

also called merit function. We must be sure that each step decreases the value of  , that is 

 (    )   (       )   (  ). One of the most useful inexact line-search conditions 

“Goldstein Conditions (GC)” stipulates that   should give sufficient decrease in the 

objective function (upper limit) while preserving   from being too small (lower limit). 

Eq. 5.8 summarizes “Goldstein Conditions” for the determination of the line-search 

parameter: 

 (  )  (   )     
     (       )   (  )        

    (5.8) 

where   (    ⁄ ) is an algorithmic parameter. The above restrictions have a geometrical 

interpretation shown in Fig. 5.81. 

 

Figure 5.81: Permissible values of ( )under Goldstein Conditions, eq. (5.8). 

The backtrack procedure used in the search of the   parameter which provides an 

acceptable value of      is usually performed through “quadratic” or  “cubic” models. The 

latter is strongly recommended for highly nonlinear problems. In any case, the first 

backtrack iteration will be of quadratic type. The resulting framework is given in Box 5.7. 
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Box 5.7: Backtracking search. 

Backtracking Line-Search framework: 

               Given (  (    ⁄ ))  and  

                    

                 While [ (       )   (  )        
   ] 

                                    with (  ) given by the backtrack model procedure 

                              

 

5.3.1.2)   Trust-Region global convergence 

 

The second option to provide global convergence properties to a Newton's base algorithm 

is the Trust-region method. Unlike the previous method, the Trust-region method swings 

the search direction between steepest descent and Newton descent directions looking for 

the adequate next state until    is reached. 

The swing of the search direction is given by changing the diagonal terms of the Jacobian 

matrix  ( ), such that: 

  ( )   ( )   ̃  

with 

  (   ̃)      ( )    ‖ ( ̃)‖    

(5.9) 

The solution states that    from 5.9 which solves   (    )    is an acceptable next 

stage only if   is a good step bound. Therefore a complete step of trust-region algorithm 

will have the form: 

Box 5.8: Trust Region concept. 

Trust-Region: 

Given the energy function                  
   ,    ,      ,  ( )       symmetric 

and positive definite: 

While   (    ( ̃))    

 ̃    ̃    
‖  ‖

 

‖ ( ̃)‖   

 (‖ ( ̃)‖   )
 

 ( ̃)   (  
   ̃  )

  
    

decide if   
    is acceptable and compute   

    with a backtrack model (Box 5.7) 

end 
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The advance direction  ( ̃) is the Newton's direction while  ̃    and approaches the 

steepest descent direction as  ̃     

5.3.2)   Constraint optimization theory: "Hyperporoplasticity" 

 

If the admissible state solutions of the minimization problem Eq. 5.1 are restricted to lay in 

a closed space (namely    must satisfy a number of constraints), the general formulation 

for a nonlinear constrained optimization problem is expressed as: 

 {

     ( )

    

         
 ( )   

 

(5.10) 

where, for the problems considered in this dissertation,    is a smooth energy real-value 

function on subset   and    is the limiting yield function. 

In this context,    is called the objective function while    is the inequality constraint. 

Accordingly, the feasible set   is defined to be the set of points   that satisfy the constraint 

condition (  { (   )     
 (   )   }) and corresponds to the elastic domain in a 

plasticity environment. 

If the limiting functions   
 

 are assumed to be continuous of   , then the envelope surface 

defined by those functions results to be smooth. This envelope surface has associated two 

remarkable geometric elements: (a) a point designated as “Regular Point” (Fig. 5.82) and 

(b) a plane referred as “Tangent Plane” (Fig. 5.83). 

 

Figure 5.82: Active constraints and Regular point  
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Box 5.9: Regular Point definition. 

Regular Point:  

             A point (  ) satisfying the constraints (  
 

  ) is said to be regular point of the 

constraints if the gradient vectors (   
 (  )) are linearly independent. 

 

At the regular point on the smooth surface, it is possible to characterize a plane tangent to 

the surface in terms of the gradients of the yield surfaces, Fig. 5.83.  

Box 5.10: Tangent Plane definition 

Tangent Plane: 

              At a regular point (  ) of the surface defined by (  
 

  ), the tangent plane is 

given by the set : 

  {       
 (  )     } 

 

Figure 5.83: Tangent plane at the feasible point(  ).  

The definition of those geometrical elements establishes the bases to verify the first order 

(necessary) and the second order (sufficient) conditions in the search of the solution state 

(optimal point).  

Box 5.11: Lemma Orthogonality energy gradient - yield gradient 

 Lemma Orthogonality:  

               Let (  ) be a regular point of the constraints (  
 

  ) and a local minimum or 

maximum point of (  ) subject to these constraints. Then all (   ) satisfying, 

   
 (  )      

               must also satisfy,  

   ( 
 )      
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The above lemma establishes the orthogonality between     and the tangent plane 

Fig. 5.84. 

 

Figure 5.84: Orthogonality between the energy function's gradient     and the  Tangent plane. 

It also concludes that     is a linear combination of the gradients of the constraints    
 

 at 

the regular feasible point   . This fact allows to introduce the theory of Lagrange 

multipliers, such that,  

    ∑     
 

 

   

   (5.11) 

Equation 5.11 represents the Euler equations for the constraint problem. 

In the next paragraphs both the necessary and the sufficient conditions for the solution of 

the constrained optimization problem Eq. 5.10 are introduced in a similar way as for the 

unconstrained case (First Necessary and Second Sufficient Conditions). 

The Lagrange functional associated with the constraint problem 5.10 and in view of 5.11 is 

expressed as: 

 (   )    ( )  ∑    
 ( )

 

   

 (5.12) 

where    is the Lagrange multiplier associated to the constraint   
 

. This multiplier plays 

the role of plastic multiplier within the elasto-plastic framework. 

The linear independence of the constraints   
 

 allows to state the first optimality condition 

which concerns the gradient's properties of both the objective and the constraint 

functions.  
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Box 5.12: Optimality Conditions 3. 

First Order Necessary Conditions " Karush-Kuhn-Tucker (   )":  

               Suppose that (  ) is a local solution of (5.10) and the linear independence of the 

constraints hold at(  ). Then there is a Lagrange multiplier vector (  ), with components 

(  
 ), such that the following conditions are satisfied at (     ): 

   ( 
 )  ∑  

    
 (  )

 

   

  

  
 (  )         

  
         

  
    

 
        

 

(5.13) 

 

 

where the first line of last system coincides with    (   ). Equations 5.13 are often known 

as the Karush-Kuhn-Tucker (   ) conditions for the solution of the nonlinear program. 

Those conditions have a more intuitive and geometric interpretation as a saddle point 

form: 

Box 5.13: Optimality Conditions 4. 

Saddle Point form of KKT conditions: 

For the consistent convex program (5.10), (  ) is the solution if and only if   a (  ) such 

that:                                            

 (    )   (     )   (    ) 

For (    ) and (  
   

 (  )   )      

Then, the solution of the program (P) (Eq. 5.10) is: 

  
   {  ( )  ∑    

 ( )

 

   

}

   

 

(5.14) 

 

The second order conditions involve the second derivative term in the Taylor expansion of 

both    and   
 

 and refer to the curvature of the Lagrange functional for the candidate 

direction   (   ). The subset    is the set of descent directions of those active limiting 

yield functions    {       
 
                   

   }. 

This  second condition is established in two instances: (a) The evaluation of the Hessian 

matrix of the Lagrange functional  (     ) at the local minimum    results in: 
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         , Box 5.14 and (b) Given a regular point and the positive definition of the 

matrix    
  (     )  it is shown that    is a local minimum. 

Box 5.14: Optimality Conditions 5. 

Second Order Necessary Conditions (a): 

               Suppose that (  ) is a local solution of Eq. 5.8 and that the linear independence of 

the constraint is satisfied. Let (  
 ) be a Lagrange multiplier vector such that the KKT 

conditions are satisfied and by virtue of    definition, then: 

      
  (     )             (5.15) 

 

 

On the contrary, the second instance assumes that    is a local optimum and deduces 

properties of    and   .  

Box 5.15: Optimality Conditions 6. 

Second Order Sufficient Conditions (b):  

                Suppose that for a feasible point (     )  there is a Lagrange multiplier vector 

(  ) such that the KKT conditions are satisfied. Suppose also that 

     
  (     )              

                Then (  ) is a strict local minimum of (  ) subjected to(  
 
). 

The last conditions established the positive semi-definite property of the Hessian matrix 

   
  (   ) of the Lagrangian on the set   . 

   
  (   )     

   ( )  ∑  

   

   
   

 ( ) (5.16) 

Both Eq. 5.13 (alternatively 5.14) and Eq. 5.16 define the algorithmic residual vector and 

the algorithmic Jacobian matrix:  

 ( )  {
   (   )

  
 ( )

} 

 ( )  (
   

  (   )    
  (   )

   
  (   )  

) 

(5.17) 

They will be used further at the pseudo-code instance of the implicit algorithms and 

particularized for each addressed constitutive model. 

5.3.2.1)   Particularization to an Interior-Point environment 

If program given by Eq. 5.10 is re-written in the standard form by introducing additional 

positive variables, it reads: 
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  {

     ( )

    

         
 ( )      

 (5.18) 

where    is the slack positive variable corresponding to constraint   
 

. The Lagrange 

functional associated to this variational problem Eq. 5.18 is: 

 (   )    ( )  ∑   (  
 ( )    )

 

   

   ∑   (  )

 

   

 (5.19) 

where   is the positive duality parameter which measures the distance to the optimum of 

program    and is given by the mean value: 

  
 

 
 ∑    

 

   

 
(5.20) 

where   is the number of active constraints. 

The Karush-Kuhn-Tucker conditions (   ) associated with the program Eq. 5.18 are 

obtained by minimization of the Lagrange functional Eq. 5.19 and read:  

   ( 
 )  ∑  

    
 (  )

 

   

  

  
 (  )    

        

∑  
   

 

 

   

    

(  
    

 )        

  
   

        

 (5.21) 

It should be noticed that, in this case, the unilateral constraint of positivity of both    and    

is required. Then, the solution of the program    (Eq. 5.18) is found as the infimum of the 

Lagrange functional: 

   
   {  ( )  ∑  [  

 ( )    ]    ∑   (  )

 

   

 

   

}

   

 

 

From Eq. 5.21, the residual vector of the Euler equations considering a unique yield 

function is expressed in general as: 

 ( )  {
   (   )

  ( )   
    

} 

(5.22) 
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Comparing the last expression with Eq. 5.17a, the presence of a new linear term in the last 

component of the residual vector can be observed. Then the Jacobian matrix of the last 

vector  ( ) is expressed in a general form as: 

 ( )  (

   
  (   )    

  (   )  

   
  (   )   

   

) 

(5.23) 

The system formed by the Eqs. 5.22 and 5.23 represents the unreduced system form of the 

interior point method. By eliminating    (the last component of the unreduced system) a 

system of the same dimension to CPPM, called the augmented system, is obtained. It looks 

like: 

(

   
  (   )    

  (   )

   
  (   )

 

 

) {

  

  

}   {

  

   
  

 

} 

(5.24) 

where the updated rule for the slack variable is directly given by the ratio 
 

 ⁄ .  

The bases for the mathematical analysis of constraint optimization leading to the 

resolution of nonlinear problems have been reviewed in this section and they will be used 

recurrently throughout the rest of the chapter.   

5.4)   Integration and Algorithms for Modified Cam-Clay Model  

 

The propositions, lemmas and theorems reviewed above form the bases that underpin the 

construction of the variational forms and implicit algorithms developed hereinafter for the 

integration of hyper-poroplastic models: (a) closest point projection “CPPM” and (b) 

interior point method “IPM”.  

The section is organized as follows: First, a variational form of the governing equations for 

the Cam-Clay model is presented. The Lagrange functional giving rise to the variational 

form of the model is proposed. Then the vector of residuals of unbalanced strains 

(alternatively stresses) and the Jacobian matrix of such residuals are obtained. Secondly, 

the Lagrange functional of the equivalent equality constraint problem leading to the 

residual vector of the interior-point algorithm for the Cam-clay model is presented. 

Thirdly, the implicit algorithms for both the closest-point and interior-point to integrate 

the former variational equations are developed and presented in modular form. The 

performance of both CPPM and IPM algorithms is shown through different tests at Gauss 
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point level. Finally, the consistent tangent operator for the hyperplastic Cam-Clay model is 

developed. 

 

5.4.1)   Stress Point algorithms  

In this subsection, the local continuum equations governing the problem of hyper-

poroplasticity in a biphasic medium and its numerical approximation using both the 

closest-point projection scheme and the interior-point scheme are described. An 

introduction of the continuum equations is first presented, followed by the discrete 

closest-point projection approximation and the extension to the interior-point. Then a 

variational structure is derived for hyperplastic mechanical models by minimizing the 

energy functions    and    under the constraint     .  

Due to the assumption of infinitesimal deformations, the strains   (    ) of the porous 

skeleton are assumed to be decomposed additively into an elastic and a plastic 

components       . Noting   as the stress tensor and   as the shift stress tensor 

(characterizing the kinematical hardening of the material), the non-incremental 

hyperplastic constitutive relationships take the form: 

  
   (   )

  
   

    
( )

  
 

(5.25) 

where   (   ) is the Helmholtz energy function of the porous skeleton defined in chapter 4 

and    (   ) the trapped part of this energy. As well, the evolution equations for the plastic 

internal variables   and   read: 

 ̇   
   ( )

  
  ̇   

     
( )

    

   ( )

  
 

(5.26) 

where    is the yield surface,   the scalar plastic multiplier and    ( )   ⁄  the general 

flow vector. In this context, the plastic multiplier is determined by the classical Kuhn-

Tucker complementary conditions: 

          ( )           ( )    (5.27) 

in addition to the consistency condition: 

  ̇ ( )    (5.28) 

Equation 5.27 characterizes the loading-unloading conditions with Eq. 5.28 defining the 

persistency of the plastic state during plastic flow. The flow rule given by Eq. 5.26a can be 

alternatively written using the additive decomposition of strains: 
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 ̇   ̇   
   ( )

  
 

(5.29) 

Equations 5.27, 5.28 and 5.29 define the strain-driven structure of the problem. It consists 

in determining, for a given increment of the total strain, the corresponding increments of 

stress  , plastic internal variable   and the shift stress  . The enforcement of the 

consistency condition Eq. 5.28 combined with the governing equations 5.25 to 5.27 allows 

stating the expression for the plastic multiplier:  

  
 

 

   

  

  

  

    
    

 ̇ 
(5.30) 

where               is the hardening modulus. The constitutive relations described 

above require to be integrated in time, usually in a strain-driven structure.  

In this discrete scheme, stresses and internal variables are known at time    and updated 

at time      according to the strain increment       applied during time interval 

          . Thus, at time     , total strains are equal to: 

              (5.31) 

while stresses     , plastic internal variable      and shift stresses      have to be 

computed. To this purpose, a common strategy is to use a backward-Euler approximation 

of the governing equations: 

           
   (    )

  
  

           
     

    

   (    )

  
  

 (5.32) 

where    must satisfy the loading-unloading conditions: 

             
 

              
 

   (5.33) 

The updated stress tensor is given by the relation, Eq. 5.25a: 

     
   (         )

  
 

(5.34) 

The numerical solution of the algebraic system of equations defined by Eqs. 5.32 to 5.34 is 

accomplished following a predictor-corrector strategy. A common consideration for the 

predictor is the introduction of the elastic trial state computed by freezing the internal 

variables at time   : 

    
         (5.35) 

and updating the stress values: 
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   (         
     )

  
     

      
    

(    
     )

  
 

(5.36) 

 

Note that the freezing of internal variables implies that     
        . However, to respect the 

strain driven structure of the algorithm, it is preferred to perform the elastic trial over all 

stress variables.  Check of loading-unloading conditions is then performed on the basis of 

the elastic trial: 

            If    (    
      

(    
          

     )   )     then  ( )    ( )   
      (5.37) 

the elastic trial state is taken as the final solution. If not, a new solution is looked for 

(leading to the so-called plastic corrector step) where  ∆γ>0:  

    
            

    
      

         

(5.38) 

The system of equations 5.32 can be re-written equivalently in terms of the elastic strains 

    
  and the elastic trial strains     

      
 as: 

    
      

      
   

   (    )

  
  

          
        

     

    

   (    )

  
  

 

(5.39) 

The set of nonlinear equations 5.39 is solved using a Newton-like iterative strategy (like 

the one used in unconstraint theory). 

Despite the discrete form of the constitutive equations, both (    ) and (   ) algorithms 

can be properly understood by finding the existence of a variational structure behind the 

specific forms of the general evolution equations.  

The algorithms proposed hereinafter take advantage of this variational structure and the 

characteristics of the energy functions presented in the previous chapter. Firstly, they can 

be recognized as being convex of their arguments, according to the definition at Box 5.3. 

Furthermore, they are twice differentiable with positive definite Hessian matrix     . Also, 

as one of the main characteristic of hyper-poroplasticity, the evolution laws are associated 

in the dissipative stress space:  
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   (   )

  
  

  ̅ (   )

  

  
   (   )

  
 

   ̅(   )

  

  
   (   )

  

  
  ̅ (   )

  

 

(5.40) 

 

where functions   ̅ and  ̅  are Legendre transform of  Helmholtz and Gibbs free energies 

with respect to internal variables: 

  ̅(   ̅)     {   (   )  (    ̅ )}

(   )   
 

(5.41) 

 ̅ (   ̅)     {  (   )  (    ̅ )}

(   )   
 

and the orthogonality condition  ̅    is implicitly considered in equations 5.40. From 

results in convex analysis, it comes out that: 

   ̅ (   )  (    (   ))
  

 (5.42) 

Provided the convexity properties of the energy functions, the formulation of the 

minimization problem is then: 

Find   (         )     such that 

  ̅(         )     {   (   )  (          
      )}

(   )   
 

(5.43) 

which can be alternatively expressed as the inequality mathematical program:  

    {

      (   )  (          
      )

(   )

        ( )   

 (5.44) 

Now, from standard arguments in constraint optimization, the Lagrange functional 

associated to the variational problem 5.44 is given by the expression: 

  ̅(      )     (   )  (          
      )       ( ) (5.45) 

The application of the necessary first order optimality conditions on Eq. 5.45 leads to the 

Kuhn-Tucker restrictions.  

By using Eq. 5.41, the state equations 5.40 and the fundamental relationship     
      

    
          

     , these restrictions are expressed as: 
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 ( )

  

  

  
  

          
        

     
 ( )

  

  

  

     

    
  

    
 ( )   

    

 

(5.46) 

Then the residual vector used in the algorithm (                ) reads: 

 ( )  

{
 
 

 
     

      
      

   
     

 ( )

  

  

  

          
        

     
 ( )

  

  

  

     

    

    
 ( ) }

 
 

 
 

 

(5.47) 

and the Jacobian matrix of the residual vector giving rise to the computation of advance 

direction to search the optimal point (solution state) is given by: 

 ( )  

[
 
 
 
 
 
     

    

    
(
  

  
)
     
    

  
    

    

  

  

  

  

   

  

  

  

  
    

    

  

  

  

  

     

    

    
    

     
    

    
(
  

  
)
      

    

   

  

  

  

     

    

   

  

  

  

    
    

   

  

  

  
 

]
 
 
 
 
 
 

 

(5.48) 

Eq. 5.48 provides the Jacobian to be used in the primal-dual CPPM algorithm.  

Before proceeding further it is noted that the last matrix is also obtained by double 

differentiation of the Lagrange functional 5.45 called the Hessian matrix    
  ( ): 

      

(

 
 

    

    
(

    

    
  )

(
    

    
  )  

    

    )

 
 

   

(

 
 

    

    
(
  

  
)
     

    

  

  

  

  

    

    

    

    

  

  

  

  

    

    

    

    
(
  

  
)
     

    

    

    )

 
 

 

(5.49) 

Multiplying       by the Hessian matrix of Helmholtz free energy: 

   
   

(

 

    
    

 

 
    
    )

  

(5.50) 

leads to the matrix form:  
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         (

  
   

)    

(

 
 

    

    
(
  

  
)
     
    

    

    

  

  

  

  

    

    

  

  

  

  

    

    

    
    

    

    
(
  

  
)
     

    )

 
 

 

(5.51) 

The last matrix is also an Hessian matrix that coincides with the upper sub-matrix of the 

Jacobian at Eq. 5.51. 

On the other hand the constraint program Eq. 5.44 can be re-written in the standard form 

of equality constraint by introducing the slack variable  : 

   {

      (   )  (          
      )       ( )

(   )

        ( )     

 

(5.52) 

On this occasion the Lagrange functional of the equality constraint program 5.52 is given 

by: 

  ̅(      )     (   )  (     
          

      )                ( ) (5.53) 

 

Using Eq. 5.41, the state equations 5.40 and the fundamental relation     
          

          
     , 

the imposition of the necessary first order optimality conditions to the Lagrangian 5.53 

leads to the following extension of Kuhn-Tucker restrictions: 

    
      

      
   

     
 ( )

  

  

  
  

          
        

     
 ( )

  

  

  

     

    
  

    
 ( )     

   
 

 
  

(    )   

 

(5.54) 

 

where in this case the positive character of both the discrete plastic multiplier    and the 

slack variable   should be preserved. 

Primal-dual interior-point methods generate iterates  ( ) that strictly satisfy the bounds 

given by Eq. 5.54e, that is   ( )    and  ( )   . This method modifies the basic Newton 

procedure in two important ways: (a) it deviates the search direction toward the interior 

of the nonnegative octant (    ) allowing moving further along the feasible direction 

before one of the components (    ) becomes negative (this property is indeed the origin 

of the term interior-point); (b) it prevents the variables (    ) from moving too close to 
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the boundary of the nonnegative octant. This last condition is controlled by the duality 

measure variable    
  ⁄ ∑     . 

From the first optimality KKT conditions 5.54 the residual vector used in the algorithm 

(               ) is derived as: 

 ( )  

{
  
 

  
     

      
      

   
     

 ( )

  

  

  

          
        

     
 ( )

  

  

  

     

    

    
 ( )   

      }
  
 

  
 

 

(5.55) 

where the Jacobian matrix of r(x) is: 

 ( )

 

[
 
 
 
 
 
 
     

    

    
(
  

  
)
     
    

  
    

    

  

  

  

  

   

  

  

  
 

  
    

    

  

  

  

  

     

    

    
    

     
    

    
(
  

  
)
      

    

   

  

  

  

     

    
 

   

  

  

  

    
    

   

  

  

  
  

     ]
 
 
 
 
 
 
 

 

(5.56) 

 

Both  ( ) and J(x) is used to compute the advance direction to search for the solution state 

in the primal-dual IPM algorithm described below.  

Before concluding this sub-section, other alternative formulations of Lagrange functionals 

are shown. They are built based on the energy functions (       ̅    ̅) used to derive the 

model. They are summarized in Table 5.20. 

Table 5.20: Possible Lagrangian Formulations from Energy functions 

Energy function            (       ̅ )           

  ( )      

  (   )   ̅(      ) 
 ̅ (   )  (     )    (  ( )   )

      ( ) 

  ̅(   )   (      ) 
  (   )  (     )    (  ( )   )

      ( ) 

Energy function  (        ̅)           
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  ( )      

  (   )   ̅(      ) 
  ̅(   )  (     )    (  ( )   )

      ( ) 

 ̅ (   )   (      ) 
  ̅(   )  (     )    (  ( )   )

      ( ) 

Imposition of the first order optimality conditions on those Lagrange functionals lead to 

different forms for the Karush-Kuhn-Tucker (KKT) conditions. They are summarized in 

Table 5.21.  

Table5.21: Karush-Kuhn-Tucker conditions for alternative Lagrangian formulations 

           (       ̅ )                 

  ̅(      ) 

    
      

      
   

     
 ( )

  

  

  
  

         
        

     
 ( )

  
  

    
 ( )     

   
 

 
  

(    )   

 

  (      ) 

    
      

      
   

     
 ( )

  

  

  
  

          
        

     
 ( )

  

  

  

     

    
  

    
 ( )     

   
 

 
  

(    )   

 

           (        ̅)                 

  ̅(      ) 

         
        

     
 ( )

  

  

  

    
    

  

          
        

     
 ( )

  

  

  

     

    
  

    
 ( )     

   
 

 
  

(    )   
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  (      ) 

         
        

     
 ( )

  

  

  

    
    

  

         
        

     
 ( )

  
  

    
 ( )     

   
 

 
  

(    )   

 

 

5.4.2)   Implicit Algorithms for Hyperplastic Cam-Clay Model  

 

This sub-section concerns the implicit algorithms used in order to integrate the above 

presented Cam-Clay model. In this regard, the propositions, lemmas and theorems revised 

above in addition to the variational forms developed in the last sub-section form the bases 

that underpin the construction of such implicit algorithms: (a) closest point projection 

“CPPM” and (b) interior point method “IPM”. 

Those algorithms will be therefore used for the integration of hyper-poroplastic models 

developed at the former chapter and whose variational structures will be addressed 

below. 

5.4.2.1)    Globally Convergent - Closest point projection algorithm "CPPM" 

 

This type of integration is widely used in mechanics and geo-mechanics environments. 

Simo & Hughes (1987, 1988) showed that the algorithmic problem defined by 5.44 (or in a 

more general form Eq. 5.10) in addition to a unilateral constraint condition, reduces to the 

standard problem of finding the closest distance (in the energy norm) of a state-point 

(elastic trial) to a convex set (elastic domain). 

The algorithm is geometrically interpreted as projection of the trial state onto the 

boundary of the admissible space   . In the stress space, the solution stress tensor      

results to be the closest projection (point) onto the yield surface    of the trial stress     
     . 

Box 5.16 summarizes the mathematical expressions leading to the geometrical 

interpretation of the closest-point algorithm for the perfect plastic case starting with the 

Lagrange functional Eq. 5.12. 
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Box 5.16: Geometrical Interpretation of closest-point projection algorithm. 

CCPM algorithm Geometrical's Interpretation: 

Lagrange functional for perfect plastic case: 

      (         )      
            (

   (    )

  
) 

then the corresponding Kuhn-Tucker optimality conditions read: 

    

     
           

        
   

  

  

  

    
    

   

    

   
     (

   (    )

  
)    

     

Finally, it comes out that: 

         
        

   

  

  

  

    
    

    [
   
   

{‖    
       ‖

  
}
] 

where   is the closure of the elastic domain and ‖ ‖  
 the energy norm. Fig. 5.85 

 

 

Figure 5.85: Geometric Illustration of the concept of closest point projection. 

 

The return mapping algorithm solving the system of nonlinear equations 5.47 (or 

generically 5.13) takes pure Newton steps or damped steps (through the line-search 

parameter  ) towards the optimum  (  )   .  

A general "primal-dual CPPM" algorithm to solve the nonlinear problem satisfying strictly 

the condition      at each iteration is summarized in the following boxes.  
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Box 5.17: A General pseudo-code for primal-dual CPPM 

1) Input data (according to the addressed problem): 

      i.e. BMM1-  (         
      

          
     ) with (    

          
           

) and (    
      

)  

2) Initialize (set    ): ( ( )   ) 

( ( )) and ( ( )( ))  (according to the addressed problem, Eq.5.14)  

3) Check overall convergence:        ‖ ( )( )‖       

4) Compute the Jacobian matrix ( ( )) (according to the addressed problem,  

Eq.5.18) with the quantities evaluated at ( ( )) 

5) Attempt a modified Newton step:  

( (   )  (   ))  Newton-step  ( ( )  ( )  ( )  ( )) 

6) Set (     ) and go  to 3 

7)  (       
   )   

8) Return (      (    ))                        

Then the Newton-step is taken as coded in Box 5.18.  

Box 5.18: Newton-step ( ( )  ( )  ( )  ( )) algorithm   

1) Compute the feasible advance direction ( ( )): 

If (                   0 ) then 

                1.a)       ( )   ( ( ))
  

 ( )    and    faux = true   else, 

                1.b)      ( )    ( )( ( ))
 
 ( ) and     faux = false  

                                      with( ( )) as propose by (Perez-Foguet & Armero, 2002) (the        

descent direction is penalized due to(    )). 

2) Line search scheme:   

( ( )( )  ( )( ))   Line-search ( ( )  ( )  ( )  ( )  ( )) 

3) Return with ( ( )( )  ( )( )) 

 

and the step size along the Newton's direction is given by the Line-search algorithm is 

coded in Box 5.19. 
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Box 5.19: Line-search ( ( )  ( )  ( )  ( )  ( ))  algorithm 

1) Input data:  ( )  ( )  ( )  ( )  ( )  

2) Initialize: set (   ); ( ( )
( )

  ); and for ( ( )   
 ⁄ ( ( ))

 
  ( )) give 

  ( )
 {

   ( )          
 ( ) ( ) ( )           

 

3) Update residuals ( ( )
(   )

), merit function ( ( )
(   )

): 

 ( )
(   )

 〈 ( )   ( )
( )

 ( )〉(  ) 

 ( )
(   )

  ( ( )
(   )

) 

 ( )
(   )

 
 

 
(( ( )

(   )
)
 

  ( )
(   )

) 

4) Compute upper limit of Goldstein condition: 

               If (faux .and.  ( ( )   ( )
( )

 ( ))
(  )

  ) then 

                             4.a)        (     ( )
( )

) ( )    else 

                             4.b)         ( )    ( ) ( )  ( ( )
(   )

  ( ))  see (Bertsekas, 1986). 

5) Check Goldstein conditions: 

                    If   ( ( )
(   )

)        : ( (   )  (   ))  ( ( )
(   )

  ( )
(   )

)      exit. 

                    If    (      ) notify, set: ( (   )  (   ))  ( ( )
(   )

  ( )
(   )

)  exit. 

6) Compute the new value of line-search parameter: 

                 Cubic backtrack interpolation with first quadratic attempt, 

 (   )
( )

    {   ( )
( )

 
 ( ( )

( )
)
 
   

 ( ( )
(   )

  ( )
( )

  ( )
( )

   )
} 

7) Set  (     ) and go to 3.                      

 

The performance of the algorithm “primal-dual CPPM” is shown below through a series of 

tests for models studied in chapter 4. 

5.4.2.2)    Globally Convergent Interior-Point algorithm "IPM" 

 

The interior point method dates back to the eighties when Karmarkar (1984) presented a 

new algorithm with efficiency of polynomial complexity which unseated the Simplex 

method for solving linear programming problems. The method presented a high 

correlation with penalty algorithms which uses barrier functions. Although it has 
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developed and spread widely in the study of linear programming and semi-definite 

programming, the evolution regarding nonlinear convex programming has been more 

measured. 

Before addressing the insights of the interior point algorithm, an update rule for the 

duality Gap variable of the interior-point method is proposed. It results in a key point of 

the algorithm's parameterization. 

5.4.2.2.1)   Update rule  for Duality Gap variable ( ) 

In this subsection a strategy for finding an update solution for the duality gap variable is 

discussed. Considering the scalar equation, 

 ( )     
 

 
 (5.57) 

with two free parameters   and  . It is reasonable to choose those parameters to satisfy 

the two conditions  ( )      ( )     
 

 ⁄   and 

  ( )  
 

 
   

 

  
 ( )

 
(5.58) 

Equation 5.58 gives an expression for parameter  . Combining Eq. 5.57 and Eq. 5.58 leads 

to an expression for the free parameter  : 

      
 ( )    ( ) (5.59) 

now replacing the expressions for the free parameters into the definition of the duality 

variable (       ) leads to, 

        
  ( )

  
 ( )

 
(5.60) 

the expression for updating the duality gap variable will give a continuous reduction as we 

approach the solution and a continuous increment if we are far from it. Therefore, the 

update of the slack variable will be given directly by the ratio 
 

 ⁄ .  

Again the interior-point return mapping solving the system of nonlinear discrete 

equations 5.55 takes pure Newton steps or damped steps (through the line-search 

parameter  ) towards the optimum. A general "primal-dual IPM" algorithm to solve the 

nonlinear problem satisfying strictly the condition (    )    at each iteration is 

summarized at the boxes 5.20-5.22. 
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Box 5.20: General pseudo-code for primal-dual IPM 

1) Input data (according to the addressed problem): 

      i.e. BMM1-  (         
      

          
     ) with (    

          
           

) and (    
      

)  

2) Initialize (set m=0): ( ( )   ), ( ( )   ), 

3) Check barrier convergence        

4) Initialize (set    ): ( ( )   ( )), (   ( )), ( ( )   ( )), 

5) Check overall convergence:        ‖  
( )( )‖       

6) Compute the Jacobian matrix ( ( )) (according to the addressed problem)                          

with the quantities evaluated at ( ( )) 

7) Attempt a modified Newton step:  

( (   )   
(   )

)  Newton-step  ( ( )  ( )   
( )

  ( )) 

8) Set (     ) and go  to 5 

9)  (       
   ) 

10)           
  ( )

  
 ( )⁄   and go to 3 

11)  (       
   )  

12) Return (      (    ))                        

Then the Newton-step is taken as coded in Box5.21. 

Box 5.21: Newton-step ( ( )  ( )  ( )  ( )) algorithm 

1)   Compute the feasible advance direction ( ( )): 

If ((                  ) .and. (                )) then 

                1.a)       ( )   ( ( ))
  

 ( )    and    faux = true   else, 

                1.b)      ( )    ( )( ( ))
 
 ( ) and     faux = false  

                                      with( ( )) as propose by (Perez-Foguet & Armero, 2002)(the        

descent direction is penalized due to ((    )   )). 

2)  Line search scheme:   

( ( )( )   
( )( ))   Line-search ( ( )  ( )   

( )
  ( )  ( )) 

3)  Return with ( ( )( )   
( )( )) 
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and the step size along the Newton's direction is given by the Line-search algorithm is 

coded in Box 5.22. 

Box 5.22: Line-search ( ( )  ( )   
( )( )  ( )  ( ))  algorithm 

1)  Input data:  ( )  ( )   
( )( )  ( )  ( )  

2) Initialize: set (   ); ( ( )
( )

  ); and for ( ( )   
 ⁄ ( ( ))

 
  ( )) give 

  ( )
 {

   ( )          
 ( ) ( ) ( )           

 

3) Update residuals ( ( )
(   )

) and merit function ( ( )
(   )

): 

 ( )
(   )

 〈 ( )   ( )
( )

 ( )〉(    ) 

  
    

 ( )
( )

   
   

 

 ( )
(   )

  ( ( )
(   )

) 

 ( )
(   )

 
 

 
(( ( )

(   )
)
 

  ( )
(   )

) 

4) Compute upper limit of Goldstein condition: 

               If (faux .and.  ( ( )   ( )
( )

 ( ))
(    )

  ) then 

                             4.a)        (     ( )
( )

) ( )    else 

                             4.b)         ( )    ( ) ( )  ( ( )
(   )

  ( ))  see (Bertsekas, 1986) 

                    Check Goldstein conditions: 

                    If   ( ( )
(   )

)        : ( (   )  (   ))  ( ( )
(   )

  ( )
(   )

)      exit. 

                    If    (      ) notify, set: ( (   )  (   ))  ( ( )
(   )

  ( )
(   )

)  exit. 

5) Compute the new value of line-search parameter: 

                 Cubic backtrack interpolation with first quadratic attempt, 

 (   )
( )

    {   ( )
( )

 
 ( ( )

( )
)
 
   

 ( ( )
(   )

  ( )
( )

  ( )
( )

   )
} 

6) Set  (     ) and go to 3.                      

 

The performance of the algorithm “primal-dual IPM” is illustrated below through a series 

of tests for models studied in chapter 4. 
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Modified Cam Clay Model has been implemented in both primal-dual CPPM and primal-

dual IPM algorithm.  Typical responses of the model have been presented in chapter 4 and 

only algorithm performance is illustrated in this chapter. Figures 5.86 and 5.87 show 

convergence results obtained from both algorithms, when the slack variable is equal to 

zero. As expected, they exhibit exactly the same convergence pattern, which provides a 

validation of the numerical implementation of the algorithms. 

 

Figure 5.86: Convergence results with the primal-dual CPPM and primal-dual IPM with slack variable equal to 0. 
Model is tested on the contractant part of the yield surface. 
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Figure 5.87: Convergence results with the primal-dual CPPM and primal-dual IPM with slack variable equal to 0. 
Model is tested on the dilatant part of the yield surface.   

 

5.4.3)   Consistent Tangent Operator for Hyperplastic Models  

 

The advantage of the proposed algorithms lies in the fact that they can be linearized in a 

closed form (Simo & Hughes, 1998). This fact leads to the notion of “Consistent Tangent 

modulus” instead of the “Continuum Elasto-Plastic Tangent modulus”. The former is 

obtained by enforcing the consistency condition on the discrete algorithmic problem, 

whereas the last notion results from the classical consistency condition of the continuum 

problem. Next, the procedure followed by Simo & Hughes (1998) is used to derive the 

algorithmic tangent modulus. 

Differentiating the stress-strain relation  (   ) and the algorithmic translation  ( ), in 

addition to the flow rule  ̇ leads to the discrete forms: 

        [            

     
 

  
] 

            

       

    

     
 

  
      

       

    

      
 

    

  

  
      

            

     
 

  
      

      
 

    

  

  
      

(5.61) 

 

where the algorithmic modulus is defined as: 
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     [
      

    
      

      
 

    

  

  
]

  

 
(5.62) 

Additionally, differentiation of the discrete consistency condition   ( )    gives: 

     
 

  
(           )    (5.63) 

Equations 5.61 and 5.63 provides the following expression for the incremental plastic 

multiplier:  

       

     
 

  
 ̅     

     (      
 

 ̅        
 

)
 

(5.64) 

where algorithmic moduli ( ̅) and ( ) are given by: 

 ̅              

       

    

      
 

    

  

  
     

        
     

 

  

       

    

      
 

    

  

  
    

     
 

  
 

(5.65) 

and   ̅    and      
 

 are a compact notation  of the following matrix: 

 ̅    (

     

 
       

    

)                
 

 

(

 
 

     
 

  
     

 

  )

 
 

      

(5.66) 

Finally, the substitution of Eq. 5.64 in Eq. 5.61a leads to the expression for the algorithmic 

elasto-plastic tangent modulus: 

(
  

  
)
   

 [     
    

     
 

  
   

     
 

  
 ̅   

     (      
 

 ̅        
 

)
] 

(5.67) 

for the hyper-poroplastic MCC model. 

The tangent modulus obtained in this way, consistent with CPPM and IPM algorithms, is 

valid for the models developed in terms of Bishop effective stress. As well, the model 

formulated in terms of net stress BBM will require modifying this tangent operator to 

introduce suction as a new variable.  
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5.5)   Variational Forms for Unsaturated and Frictional Soils Models 

 

This section describes the numerical implementation of the local continuum equations 

governing the problem of hyper-poroplasticity in a three-phase medium by CPPM and IPM 

schemes. 

In the first sub-section, a variational structure is proposed to integrate an hysteretic 

hydraulic response of the model on the basis of the minimization of energy functions    

and    under the constraint provided by the yield surface   . The development of the 

algorithms to perform this integration follows intentionally the same format as for the 

Modified Cam Clay Model in order to highlight the strong parallelism between mechanical 

and hydraulic formulations.  

The rest of sub-sections address the variational structure for the hydro-mechanical  

models developed in chapter 4. In all the cases, the local continuum equations are first 

briefly described followed by their discrete forms and its variational structures. Then the 

performance analysis of both the CPPM and the IPM algorithms through different tests at 

Gauss point level is presented. Finally, the observed advantages of the proposed interior-

point algorithm are commented. 

5.5.1)   Integration of hyperplastic retention curve  for suction hysteresis 

 

As for the strains, the degree of saturation    may be decomposed additively into an elastic 

and plastic component :      
    . From the hyperplastic state equations, they are 

related to the gradient of Gibbs function   (    )     (    )     (  ) (see sections 4.3 

and 4.4) with respect to suction and back suction:  

    
   (    )

  
    

   
    

(  )

   
 

(5.68) 

The definition of the model is completed by introducing the evolution equations for the 

internal variables    and   : 

 ̇    
   

   
 

 ̇   
     

      

   

   
 

(5.69) 
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where   is the plastic multiplier and    
 

   ⁄  the flow vector. The plastic multiplier is 

determined by applying the classical Kuhn-Tucker complementary conditions: 

                       (5.70) 

and the consistency condition: 

  ̇    (5.71) 

Using the additive decomposition of the degree of saturation and the flow rule, the elastic 

increment of Sl reads: 

 ̇ 
   ̇   

   

   
 (5.72) 

Equations 5.69 to 5.71 define the structure of the problem driven by the degree of 

saturation. The enforcement of the consistency condition Eq. 5.70 allows to express the 

plastic multiplier    as: 

  
 

 

   

   

   

  

    
      

 ̇  
(5.73) 

where   is the hardening modulus given by      
  

       
 

.  

To integrate the model over a discrete suction increment in time interval           , 

the hardening laws are linearized according to:  

     
       

   (     
)

   
  

     
    

   
    

      

   (     
)

  
  

 

(5.74) 

where     is the discrete increment of plastic multiplier.    must satisfy the loading-

unloading conditions:  

              

 
              

 
   (5.75) 

In a first step, an elastic trial       

      
 is computed for the degree of saturation at time     : 

              

  
     

   
    

       
 

(5.76) 

The numerical solution of the system of equations 5.74 together with Eqs. 5.75-5.76 is 

accomplished following a predictor-corrector strategy. To this end the elastic trial state is 

defined by taking the value at    of the internal variable   : 

     

          (5.77) 
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and computing accordingly the back suction and elastic part of degree of saturation: 

     
      

    

   
|
     

     

 

     

      
    

  
    

    
|
      

       

 

(5.78) 

The admissibility of the elastic trial is checked from the condition: 

            If    (     

      

(          
     )   )     then  ( )    ( )   

      (5.79) 

If the trial guess is not admissible, a solution with      is looked for, leading to the 

plastic corrector step, with:  

     

       
      

 

     

      
      

     

(5.80) 

and:    

      

       

      
   

   (     
)

   
  

     
      

        
     

      

   (     
)

   
  

 

(5.81) 

 

The set of nonlinear equations 5.81 is solved using a Newton-like iterative strategy (like 

the one exposed in unconstrained optimization theory). The existence of a variational 

structure underlying the CPPM and IPM methods relies on the specific forms of the general 

evolution equations, governed themselves by the expressions of the energy functions. 

Such functions studied at chapter 4 can be classified as belonging to the set of “generalized 

convexity” functions. In particular, Gibbs energy function    defined in section 4.4 falls 

within the definition of a pseudo-convex function: (     )   (  )    implies(  (  )  

  (  )) (Avriel, (1976)) while the yield function    belongs to the family of the strictly 

convex functions.  

Then the optimization problem considered, consists in minimizing the Helmholtz free 

energy expressed in terms of degree of saturation and generalized suction   ̅(    ̅ ). It is 

computed as a Legendre transformation of Gibbs energy   (    ): 
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  ̅(    ̅ )       {  (    )  (     ̅   )}

(    )   
 

(5.82) 

where  ̅  is derived from the state equation    (    )     ⁄  Using the orthogonality rule 

( ̅    ) the minimization program reads: 

                                            Find (     
      

)    such that 

  ̅(     
      

)     {  (    )  (      

      
      

       )}

(    )   
 

(5.83) 

It can be expressed alternatively as the inequality mathematical program: 

    {

     (    )  (      

      
      

       )

(    )

        (  )   

 (5.84) 

Now, from standard arguments in constraint optimization the Lagrange functional 

associated to the variational problem 5.84 is: 

  (       )    (    )  (      

      
      

       )      (  ) (5.85) 

The application of the first order optimality conditions at Eq. 5.84 leads to the Kuhn-

Tucker restrictions. By using: (a) Eq. 5.80, (b) the state equations       (    )   ⁄  and                   

      (    )    ⁄  and (c) the fundamental relation      
                

      , the last 

restrictions are expressed by the discrete system: 

      

       

      
   

   (     
)

   

   

  
  

     
      

        
   (     

)

   

   

   

     

      
  

  (     
)   

    

 

(5.86) 

The residual vector coming out from Eq. 5.86 reads: 

 ( )  

{
 
 

 
       

       

      
   

     
 (  )

  

  

  

     
      

        
     

 (  )

  

  

  

     

    

    
 

 (  ) }
 
 

 
 

 

(5.87) 

and the Jacobian matrix takes the form: 
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 ( )  

[
 
 
 
 
 
      

    

      

    
      

  
    

      

   

  

   

   

   

   

   

  

  
    

      

   

   

   

  

     

      

    
      

    
    

      

     

      

   

   

   

   

     

      

   

   

   

  

    
      

   

   

   

   
 

]
 
 
 
 
 
 

 

(5.88) 

 

Both the residual vector 5.87 and the Jacobian matrix 5.88 are used in the CPPM algorithm 

to compute the advance direction to search for the solution state (the optimal point). 

Another possibility is to rewrite the constraint program 5.84 into the standard form of 

equality constraint by introducing the slack variable  : 

   {

     (    )  (      

      
      

       )       ( )

(    )

        (  )     

 

(5.89) 

In this formulation, the Lagrange functional associated with the equality constraint 

program 5.89 is given by: 

  (       )    (    )  (      

      
      

       )       (  )          ( ) (5.90) 

which by virtue of the first order optimality conditions leads to the Kuhn-Tucker 

restrictions: 

      

       

      
   

   (     
)

   

   

  
  

     
      

        
   (     

)

   

   

   

     

      
  

  (     
)     

   
 

 
  

(    )   

 (5.91) 

Then the residual vector used in the IPM algorithm reads: 

 ( )  

{
  
 

  
       

       

      
   

     
 (  )

  

  

  

     
      

        
     

 (  )

  

  

  

     

    

    
 (  )   

      }
  
 

  
 

 

(5.92) 
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and the Jacobian matrix takes the form:  

 

 ( )

 

[
 
 
 
 
 
 
      

    

      

    
      

  
    

      

   

  

   

   

   

   

   

  
 

  
    

      

   

   

   

  

     

      

    
      

    
    

 

      

     

      

   
 

   

   

   

     

      
 

   

   

   

  

    
      

   

   

   

   
  

     ]
 
 
 
 
 
 
 

 

 

(5.93) 

 

 

Figure 5.88 shows geometric and numerical convergence properties of the implemented 

integration scheme.  

Fig. 5.88a shows the return processes for a suction-increase step and a suction-decrease 

step. Both the back suction and the generalized suction are depicted in this figure. 

Fig. 5.88b shows the convergence rate of Wheeler's wrc hyperplastic model for two 

different loading steps. The speed of convergence is slightly higher than 2. 
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Figure 5.88: WRC integration: (a)Return processes for suction increase and suction decrease. (b)Convergence 
results with the primal-dual IPM with slack variable     , convergence model is tested against a suction 

increase path.  
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5.5.2)   Integration of Gallipoli’s et al. model - pure isotropic hardening BBM1 

 

In this sub-section the local continuum equations governing the problem of hyper-

poroplasticity in a three-phase medium (“the solid matrix + the interface skin”= the 

porous skeleton) and its numerical approximation using both the closest-point projection 

and the interior-point scheme are described. As before, for the biphasic medium, 

infinitesimal deformations are considered in the three-phase medium. Then the strains   

identified as (   ) are assumed to be decomposed additively as (      ), sum of the 

elastic and plastic strain components. 

Let (  ) be the effective Bishop Stress tensor and (    ) the effective shift stress tensor 

that characterizes the hardening of the material. Assuming a reversible behavior of the 

capillary curve, the non-incremental constitutive relationships for the      model (pure 

isotropic hardening) take the form, 

   
   

 (      )

  
 

   
   

 (      )

   
 

(5.94) 

where   (      ) is the Helmholtz energy function of the porous skeleton defined at 

chapter 4 of the present dissertation. Because the component of stored energy    
   is 

null then    vanishes and all the generated plastic work is dissipated. In addition, the 

evolution equation for the plastic internal variable ( ) reads,  

 ̇   
   (       )

   
 

(5.95) 

where, ( ) is the scalar plastic multiplier and (
   (       )

   
⁄ ) is the general flow 

vector. In this context the plastic multiplier is determined by the classical Kuhn-Tucker 

complementary conditions, 

          (       )            (       )    (5.96) 

which leads to the consistency condition, 

   ̇ (       )    (5.97) 

Equation 5.96 characterizes the loading-unloading conditions with Eq. 5.97 defining the 

persistency of the plastic state during plastic flow. 
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It is important to notice that the flow rule 5.95 can be written, using the additive 

decomposition of strains, in the equivalent form, 

 ̇   ̇   
   (       )

   
 

(5.98) 

Equations 5.96 to 5.98 define the strain-driven structure of the problem. It is, for a given 

increment of the total strain the last set of equations determine the increments of stress 

( ) and plastic internal variable( ).  

The constitutive relation described above is integrated over time in a strain-driven 

structure. In this framework the stresses and internal variables are updated from their 

known values at certain time for a given strain increment in time (          ). In such 

a scheme all the variables are known at (  ) and updated at time (    ) according to the 

strain increment (     ) and to the suction increment (     ), leading to, 

              

              

(5.99) 

while the stresses (    ) and the updated plastic internal variable (    ) have to be 

computed. To this purpose the backward-Euler approximation of the governing equations 

is used, 

           
   (    

            )

   
   

(5.100) 

where the plastic multiplier (  ) must satisfy the loading-unloading conditions: 

             
 

              
 

   (5.101) 

The updated stress tensor and degree of saturation are given by the state equations 5.94 

leading to the discrete form: 

    
  

   
 
(               )

  
 

     
 

   
 
(               )

   
 

(5.102) 

The numerical solution of the algebraic system of equations defined by Eqs. 5.100 to 5.102 

is accomplished following a predictor-corrector strategy. The predictor step is conducted 

introducing the trial state defined by the known values at (  ), 

    
         (5.103) 

and the corresponding stress values,  
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   (         

           )

  
 

(5.104) 

  

and in this environment the loading-unloading conditions are checked: 

If    (    
      

(    
      

     
           )   )     then  ( )    ( )   

      (5.105) 

then the trial state is taken as the final solution. 

If not, a new solution with (    ) is being looked for, leading to the so-called plastic 

corrector step. Noting that,  

    
            

    
      

         

(5.106) 

The equation 5.100 can be re-written equivalently in terms of the elastic strains (    
 ) 

and the elastic trial strains (    
      

)as, 

    
      

      
   

   (    
            )

   
   

(5.107) 

The nonlinear equation 5.107 is solved using a Newton-like iterative strategy. Despite the 

discrete version of the constitutive equations describing a triphasic model, the algorithms 

(    ) and (   ) are properly understood by finding the existence of a variational 

structure of the general evolution equations. 

The energy functions developed in the former chapter for the Gallipoli’s model BBM1 

present convex characteristics with respect to its arguments according to definition at 

Box 5.3 and are twice differentiable with positive definite Hessian matrix      , as well. 

Under these properties the complementary Gibbs free energy function   ( 
      ) is 

introduced as a Legendre transformation of the Helmholtz free energy   
 (      ) it is,  

  ( 
      )     {  

 (      )     }

(  )   
 

(5.108) 

here the strain tensor ( ) is derived from the state equation, 

   
   ( 

      )

   
 

(5.109) 

 and      (    )
  . Under the convexity properties of the energy functions and the yield 

surface describing the BBM1 model, the formulation of the minimization problem is then: 

Find   (    )     such that (5.110) 
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 (               )     {   ( 

      )  (      )}

(  )   
 

Which can be alternatively expressed as the inequality mathematical program: 

    {

      ( 
      )  (      )

(  )

        (       )   

 

(5.111) 

Now from standard arguments in constraint optimization the Lagrange functional 

associated to the variational problem 5.111 is, 

  (          )     ( 
      )              (       ) (5.112) 

 

The application of the necessary first order optimality conditions to 5.112 leads to the 

Kuhn-Tucker restrictions. By using 5.106 and the state equation 5.109, these restrictions 

can be expressed as: 

    
      

      
   

   (    
            )

   
  

    
 (       )   

    

 

(5.113) 

From the first optimality KKT conditions 5.113 the residual vector of unbalance strains is:  

 ( )  {
    
      

      
   

     
 

   
    

 
} 

(5.114) 

and the Jacobian matrix of the residual vector used to compute the advance direction to 

search for the solution state (optimal point) is given by: 

 ( )  

[
 
 
 
     (

    

      

    
    

 
    

     

  

   
)

   

   

   

   

    
    

 
   

  

  

   
 ]

 
 
 
 

 

(5.115) 

 

Both the residual vector 5.114 and the Jacobian matrix 5.115 are used in the algorithm 

primal-dual CPPM developed above. 

If the constraint program 5.111 is re-written in the standard form of equality constraint  

by introducing the slack variables ( ) then:  
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   {

      ( 
      )              ( )

(  )

        (       )     

 

(5.116) 

In this case the Lagrange functional is expressed as: 

  (          )     ( 
      )        

                    ( ) (5.117) 

 

which again presents an additional term with respect to 5.112. In this scenario an 

extended form of the Kuhn-Tucker restrictions is obtained: 

    
      

      
   

   (    
            )

   
  

    
 (  )     

   
 

 
  

(    )   

 

(5.118) 

and as before the residual vector of unbalance strains and the Jacobian matrix of this 

residual are: 

 ( )  

{
 

     
      

      
   

   (    
            )

   
    

 (  )   

      }
 

 

 

(5.119) 

 

 ( )  
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    ]
 
 
 
 
 

 

(5.120) 

Both algorithmic elements are essential to compute the advance direction searching for 

the solution state (the optimal point). So they are used at the algorithm primal-dual IPM 

described above. 

Figures 5.89 to 5.90 show the convergence results obtained from both the (       

         ) and the (               ) algorithms when the model BBM1 is integrated. 

Figure 5.89 shows the convergence properties of the model BBM1 under saturated and 

isothermal conditions. 
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Figure 5.89: Convergence Results with the primal-dual CPPM and primal-dual IPM (   ). Both show the same 
results for the same starting trial state(         ). 

 

The slope of the straight line results lightly higher than 2 (2.298). Table 5.22 summarizes 

the convergence properties of the BBM1 model for two different loading steps.  

 

Table 5.22: Table of convergence for the model BBM1 for two loading steps 

N-iter 
‖ ‖

‖  ‖
 (n1)  

‖ ‖

‖  ‖
 (n2)  

1 1 1 

2 0.09926911 0.09915203 

3 0.00996116 0.00993808 

4 0.00100146 0.000998 

5 0.0001007 0.00010024 

6 1.0126E-05 1.0068E-05 

7 1.0182E-06 1.0113E-06 

8 1.0239E-07 1.0157E-07 

9 1.0296E-08 1.0202E-08 
 

Figure 5.90 shows the convergence properties of the algorithm integrating BBM1 model 

under two different states of partial saturation. 
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Figure 5.90: Convergence Results of the primal-dual CPPM for two different suction states; a) (  
      ) and 

b) (  
      ). 

 

The slope of the straight line which is higher than 2 (  ) shows the convergence 

properties of the BBM1 model for two different suctions. Fig. 5.91 shows the convergence 

properties of the algorithm integrating BBM1 model at a state of partial saturation for two 

different loading conditions. 
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Figure 5.91: Convergence Results of the primal-dual CPPM for two different loading steps at a suction of 2MPa. 

The slope of the straight line results lightly higher than 2 (  ). Fig. 5.92 shows the 

convergence properties of the algorithm integrating BBM1 model at a state of partial 

saturation for two different thermal conditions. 

 

Figure 5.92: Convergence Results of the primal-dual CPPM for two different Temperatures and under non-

isothermal conditions s=4MPa. 
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The slope of the straight line which is higher than 2 (  ) shows the convergence 

properties of the BBM1 model for the two different temperatures and under non-

saturated conditions. 

5.5.3)   Integration of Gallipoli’s et al. model - pure kinematic hardening BBM2 

 

The derivation of Gallipoli’s model within a hyper-poroplastic approach, assuming that the 

hardening developed during plastic flow is purely kinematic BBM2, is defined by the non-

incremental constitutive relations:  

   
   

 (      )

  
 

   
    

 ( )

  
 

   
   

 (      )

   
 

(5.121) 

where   
 (      ) is the energy function of the porous skeleton defined at chapter 4 and 

   

 (    ) is the trapped part of this energy.  Unlike the last model, in this case    

 
   and 

as consequence not all the plastic work is dissipated but a part is stored,   
 

   ̇ 

 
   .  

As well, the evolution equation for the plastic internal variables ( ) and (  ) read,  

 ̇   
   (  )

   
 

  ̇   
     

( )

    

   (  )

   
 

(5.122) 

where, ( ) is the scalar plastic multiplier and (
   (  )

   
⁄ ) is the general flow vector. In 

this context the plastic multiplier is determined by the classical Kuhn-Tucker 

complementary conditions and the consistency condition (5.96-5.97). Alternatively the 

flow rule Eq. 5.122 can be written, using the additive decomposition of strains, in the 

equivalent form, 

 ̇   ̇   
   (  )

   
 

(5.123) 

Equations  5.96-5. 97 and  5.122-5.123 define the strain-suction-driven structure of the 

problem. In the same manner as for the BBM1 model but now the shift stress (  ) should 

be determined as well.  
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The time integration of the constitutive relations described above is made in a strain-

driven structure, as before with the BBM1 model. Thus at time tn+1 the total strain and 

suction are                 and               ,  respectively. 

The objective is to compute the stress     
 , the degree of saturation      

, the update 

plastic internal variable      and the shift stress     
  at the current time. To this purpose 

the backward-Euler approximation of the governing equations is used: 

           
   (    

 )

   
  

     
    

    
     

    

   (    
 )

   
  

 

(5.124) 

For the discrete plastic multiplier    satisfying the loading-unloading conditions 5.101. As 

before, the updated stress tensor and the degree of saturation are given by the relations 

      
   

 

   
  

⁄  and      
 

   
 

   
   

⁄ . 

The numerical solution of the algebraic system of equations 5.124 together with the KKT 

conditions 5.101 is accomplished following a predictor-corrector strategy as before with 

the BBM1 model, but now for BBM2 the trial state is defined by one additional equation 

corresponding to the shift stress:  

    
         

    
      

 
   

 
(         

           )

  
 

    
      

 
    

 
(    

     )

  
 

(5.125) 

 

Note that (    
      

   
 ) due to the second term of the energy function(   

 
). Afterwards the 

loading-unloading conditions are verified, taking the trial state as the final solution if 

    
      

  , otherwise a plastic corrector step is performed (    ) in the same manner as 

done for the Cam Clay model (equations 5.38 and 5.39). 

The set of nonlinear equations 5.124 re-expressed in terms of the elastic strains  

    
            is solved using a Newton-like iterative strategy (like that in 

unconstraint theory).  

The variational forms of the discrete equations developed above allow to properly 

understand both (CPPM) and (IPM) algorithms for the integration of BBM2 model. 
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Provided the convexity properties of the energy functions describing the (    ) model  

the formulation of minimization problem is then: 

Find   (         
 )     such that 

  ̅
 (         

       )     {   (      )  (           
      

 )}

(    )   
 

(5.126) 

which can be expressed alternatively as the inequality mathematical program,  

    {

      ( 
      )  (           

      
 )

(    )

        (  )   

 

(5.127) 

 

Both problems 5.126 and 5.127 are similar to that formulated for the Cam Clay model for a 

constant value of suction. The Lagrange functional associated to the variational problem 

5.127 is: 

  ̅(           )     (       )  (           
      

 )       (  ) (5.128) 

 

The application of the necessary first order optimality conditions on 5.128 leads to the 

Kuhn-Tucker restrictions which results in the similar system to that of Eq. 5.46. This 

restrictions system results to be identical to the discrete equations 5.124 which 

emphasizes the variational structure of the discrete equations for the model BBM2.  

The residual vector as well as the Jacobian matrix used to compute the advance direction 

towards the solution state (optimal point) are identical to the expressions 5.47 and 5.48 

for a given suction value. Then they are used in the algorithm (                ).   

The constraint program 5.127 can be re-written in the standard form of equality 

constraint by introducing the slack variables( ),  

   {

      ( 
      )  (           

      
 )       ( )

(   )

        (  )     

 

(5.129) 

 

Then the Lagrange functional associated to the equality constraint program 5.129 is: 
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  ̅(           )     ( 
      )  (      

          
      

 )          

      ( )                                             
 

(5.130) 

In virtue of: (a) the complementarity of the energy functions, (b) the state functions 

derived at chapter 4 and (c) the fundamental relation (    
      

     
      

     
      

), the 

imposition of the first order optimality conditions to 5.130 leads to the extended Kuhn-

Tucker restrictions which result to be identical to those of Eq.5.54 for a given value of 

suction. 

The residual vector as well as the Jacobian matrix used to compute the advance direction 

towards the optimal point are identical to those given by the expressions 5.55 and 5.56 for 

a given value of suction. They are further used in the algorithm (               ). The 

following Boxes summarize the model: (a) General equations, (b) Discrete approximation 

and (c) Variational Forms. 

Box 5.23: Continuum Governing Equations for BBM2 model 

CONTINUUM FORM 

Continuum constitutive equations for BBM2 model: 

   
   

 (      )

  
    

    

 ( )

  
    

   
 (      )

   
 

 ̇   
   (  )

   
  ̇   

     
( )

    

   (  )

   
 

Strain driven problem: 

          (  )            (  )    

   ̇ (  )    

 ̇   ̇   
   (  )

   
 

Enforcement of consistency leads to: 

  
 

 

   

  

  

  

    
    

 ̇ 
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Box 5.24: Discrete Equations Backward-Euler approximation for BBM2 model   

DISCRETE FORM 

Increment       and       during time interval           , leads to: 

              

              

Backward-Euler discrete system of the equations for MCC model: 

           
   (    

 )

   
  

     
    

    
     

    

   (    
 )

   
  

 

             
 

              
 

   

     
   

 (               )

  
      

 
   

 
(               )

   
 

predictor-corrector strategy: 

    
             

      
 

    

 
(    

     )

  
 

    
      

 
   

 
(         

           )

  
 

Check of loading-unloading conditions: 

(    
      

(    
      

     
           )   )     then  ( )    ( )   

      

Plastic corrector:  

    
      

      
   

   (     )

   
  

     
    

    
     

    

   (    
 )

   
  

 

with:  
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Box 5.25: Variational Form for the Inequality constraint BBM2 model 

VARIATIONAL FORM (inequality const.) 

Variational Form BBM2 model: 

    {

      ( 
      )  (           

      
 )

(    )

        (  )   

 

Lagrange functional associated: 

  ̅(           )     (       )  (           
      

 )       (  ) 

KKT conditions: 

    
      

      
   

   (  )

   
  

           
      

   
     

 (  )

   

   

   

     

    
  

    
 (  )   

    

 

where: 

    
      

     
      

     
      

 

Residual vector: 

 ( )  

{
 
 

 
     

      
      

   
     

 (  )

   

   

   

           
      

   
     

 (  )

   

   

   

     

    

    
 (  ) }

 
 

 
 

 

Jacobian Matrix:             ( ) 

 

 

Box 5.26: Variational Form for the Equality constraint BBM2 model  

VARIATIONAL FORM (equality const.) 

Variational Form BBM2 model: 

   {

      ( 
      )  (           

      
 )       ( )

(   )

        (  )     

 

Lagrange functional associated: 

  ̅(           )     ( 
      )  (      

          
      

 )                ( ) 

KKT conditions: 
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   (     )

   
  

           
      

   
     

 (  )

   

   

   

     

    
  

    
 (  )     

   
 

 
  

(    )   

 

where: 

    
      

     
      

     
      

 

Residual vector: 

 ( )  

{
  
 

  
     

      
      

   
     

 (  )

   

   

   

           
      

   
     

 (  )

   

   

   

     

    

    
 (  )   

      }
  
 

  
 

 

 

Jacobian Matrix:             ( ) 

 

 

Figures 5.93-5.94 show the convergence results obtained with the algorithm        

         .  

Specifically, Fig. 5.93 shows the convergence speed of the algorithm while it integrates the 

BBM2 model and it is shown for two different loading steps under saturated and 

isothermal conditions.  
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Figure 5.93: Convergence Results of the primal-dual CPPM for two different loading steps under isothermal and 
saturated conditions. 

 

The slope of the straight line results lightly higher than 2 (   ). Table 5.23 summarizes the 

convergence properties of the BBM2 model for two different loading steps.  

Table 5.23: Table of convergence for the model BBM2 for two loading steps 

N-iter 

‖ ‖

‖  ‖
(  )  

‖ ‖

‖  ‖
(  ) 

1 1 1 

2 0.08269406 0.08574449 

3 0.0070833 0.00761982 

4 0.000603 0.0006723 

5 5.1382E-05 5.9397E-05 

6 4.3777E-06 5.2465E-06 

7 3.7298E-07 4.6344E-07 

8 3.1778E-08 4.0937E-08 

 

Figure 5.94 shows the convergence speed of the algorithm while it integrates the BBM2 

model and it is shown for two different suctions states under isothermal conditions.  
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Figure 5.94: Convergence Results of the primal-dual CPPM for two different suction states; a) (  
        ) 

and b) (  
        ). 

 

The slopes of the straight lines range between 2.6-3. In any case they result higher than 

two. Table 5.24 summarizes the convergence properties of the BBM2 model for two 

different suctions.  

Table 5.24: Table of convergence for the model BBM2 for two suctions. 

N-iter 
‖ ‖

‖  ‖
(        ) 

‖ ‖

‖  ‖
(        ) 

1 1 1 

2 0.04562536 0.07122715 

3 0.00118364 0.00494266 

4 3.8678E-05 0.0003433 

5 1.1396E-06 2.3841E-05 

6 3.5119E-08 1.6557E-06 

7   1.1498E-07 
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5.5.3.1)   Convergence performance of Generalized BBM2 model 

 

The following is a convergence analysis of the generalized BBM2 model. Different values of 

the scalar parameter   have been tested to analyses its sensibility to the speed of 

convergence. Partially saturated conditions and non-isothermal conditions have also been 

considered. 

Figure 5.95 shows the speed of convergence of the generalized BBM2 model for different 

values of  . 

 

Figure 5.95: Convergence speed of the Generalized BBM2 model. Convergence for three different values of e. 

 

The slope of the straight lines range between 2.46 to 3.00. All the registered slopes results 

greater than two. A similar convergence response is observed under partially saturated 

conditions.  

Figure 5.96 shows the convergence speed of the BBM2 model under partially saturated 

conditions for two values of .  
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Figure 5.96: Convergence speed of the Generalized BBM2 model. Convergence for two different values of e and 
under partially saturated condition. 

 

The slope of the straight lines results lightly higher than two and range between 2.8-3.0. 

The Table 5.25 shows the convergence speed of the generalized BBM2 model under 

partially saturated conditions. 

Table 5.25: Convergence speed of the Generalized BBM2 model under partially saturated conditions 

N-iter 

‖ ‖

‖  ‖
(

     
         

) 
‖ ‖

‖  ‖
(

     
         

) 

1 1 1 

2 0.08358383 0.06707397 

3 0.00294887 0.00372466 

4 0.00010539 0.00020207 

5 3.7564E-06 1.0936E-05 

6 1.3389E-07 5.917E-07 

7 4.7734E-09 3.2014E-08 

8  1.7313E-09 

 

Figure 5.97 shows the speed of convergence of the model BBM2 under non-isothermal 

conditions and different values of the parameter  .  
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Figure 5.97: Convergence speed of the Generalized BBM2 model. Convergence for two different values of e and 
under non-isothermal condition. 

 

The slope of the straight lines results higher than two as happens in the previous cases. 

The registered slopes range between 2.6-3.0. Table 5.26 summarize the convergence 

speed for non-isothermal conditions. 

 

Table 5.26: Convergence speed of the Generalized BBM2 model under non-isothermal conditions 

N-iter 

‖ ‖

‖  ‖
(

     
      

) 
‖ ‖

‖  ‖
(

     
     

) 
‖ ‖

‖  ‖
(

     
     

) 

1 1 1 1 

2 0.01395902 0.01392713 0.09209213 

3 0.00019499 1.8149E-05 0.00670839 

4 2.7238E-06 2.6168E-08 0.00049153 

5 
  

3.598E-05 

6 
  

2.6339E-06 

7 
  

1.9282E-07 

8 
  

1.4114E-08 
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5.5.4)   Integration of Barcelona Basic Model BBM 

 

A stress-point algorithm for the integration of models of BBM type was addressed by 

Vaunat et. al (2000), however the proposed integration scheme was performed in 

incremental form which represents a main difference with the procedure adopted in this 

thesis. 

The derivation of the Barcelona Basic Model BBM, formulated in terms of the net stress as 

conjugate variable of the strain tensor (    ) and the hydraulic strain as conjugate 

variable of suction(    ), within a hyper-poroplastic approach is defined by the non-

incremental constitutive relations 

   
   

 (     )

  
 

   
    

 ( )

  
 

   
   

 (     )

  
 

(5.131) 

where   
 (     ) is the energy function of the porous skeleton defined at chapter 4 and 

   

 ( ) is the trapped part of this energy. The evolution equations for the plastic internal 

variables    and     read, 

 ̇   
   (  )

   
 

 ̇   
     

( )

    

   (  )

   
 

(5.132) 

where, ( ) is the scalar plastic multiplier and (
   (  )

   
⁄ ) is the general flow vector. In 

this context the plastic multiplier is determined by the classical Kuhn-Tucker 

complementary conditions         (  )        (  )     and the consistency condition 

  ̇ (  )    which in addition to the flow rule 5.132a expressed in terms of the elastic 

strain define the strain-suction-driven structure of the problem.  

The time integration is performed following a strain-suction-driven structure in the same 

manner as with the previous models. The process ends with the backward-Euler 

approximation of the governing equations: 
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 (  )

   

   

   

     

    
  

 

(5.133) 

with the discrete plastic multiplier (  ) satisfying the loading-unloading conditions 

          
 

          
 

  . The updated stress tensor and the hydraulic strain are 

given by the relations: 

    
  

   
 
(              )

  
 

     
 

   
 
(              )

  
 

(5.134) 

 

The variational forms of the discrete equations developed above allow to properly 

understand both (CPPM) and (IPM) algorithms for the integration of BBM model. 

Provided the convexity properties of the energy functions describing the Barcelona Basic 

Model, the formulation of minimization problem is the following:  

Find   (         
 )     such that 

  ̅
 
(         

      )     {   (      )  (           
      

 )}

(    )   
 

(5.135) 

which can be expressed alternatively as the inequality mathematical program,  

    {

      (      )  (           
      

 )

(    )

        (  )   

 

(5.136) 

 

Both problems 5.135 and 5.136 are similar to that formulated for the Cam Clay model for a 

given value of suction. The Lagrange functional associated to the variational problem 

5.136 is, 

  ̅(          )     (      )  (           
      

 )       (  ) (5.137) 

The application of the necessary first order optimality conditions to 5.137 leads to the 

Kuhn-Tucker restrictions which results in an identical system to the one given by Eq. 5.46 

for a given value of suction.  
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The residual vector as well as the Jacobian matrix used to compute the advance direction 

towards the solution state (optimal point) are identical to the expressions 5.47 and 5.48 

for a given value of suction. 

If the Gibbs energy function  ̅ (       ) is used at Eq. 5.137 a slightly different form of the 

first optimality KKT conditions is obtained, where the second equation of the system is 

given in terms of the plastic internal variables ( ) instead of the back net stress (  ). Thus 

the residual vector used in the algorithm (                ) results, 

 ( )  

{
 
 

 
     

      
      

   
     

 

   

   

   

          
        

     
 

   
    

 (  ) }
 
 

 
 

 

(5.138) 

 

and the Jacobian matrix of the residual vector used to compute the advance direction to 

search the optimal point is: 

 ( )  

[
 
 
 
 
 
     

    

      

    
    

  
    

      

   

   

    

    

   

   

  
    

      

    
    

     
    

      

   

   

     

    

   

   

   

   

    
    

   

   

   

   

     

    
 

]
 
 
 
 
 
 

 

(5.139) 

 

If the constraint program 5.136 is re-written in the standard form of equality constraint 

leads to the minimization problem: 

   {

     ̅ (       )  (           
      

 )

(     )

        (  )     

 

(5.140) 

On this occasion the Lagrange functional of the equality constraint program 5.140 is given 

by: 

  ̅(         )    ̅ (       )  (           
      

 )        (  )    

      ( )                                                                     
 

(5.141) 
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In virtue of: (a) the complementarity of the energy functions, (b) the state functions 

derived at chapter 4 and (c) the fundamental relation (     
           

           
     ), the 

imposition of the first order optimality conditions leads to the following extension of 

Kuhn-Tucker restrictions: 

    
      

      
   

     
 

   

   

   
  

          
        

     
 

   
  

    
 (  )     

   
 

 
  

(    )   

 

(5.142) 

again the positive character of both the discrete plastic multiplier    and the slack variable 

  should be preserved. From the KKT restrictions the residual vector used in the algorithm 

(               ) is derived as: 

 ( )  

{
  
 

  
     

      
      

   
     

 

   

   

   

          
        

     
 

   
    

 (  )   

      }
  
 

  
 

 

(5.143) 

finally the Jacobian matrix of r(x) is: 

 ( )  

[
 
 
 
 
 
 
     

    

      

    
    

  
    

      

   

   

    

    

   

   
 

  
    

      

    
    

     
    

      

   

   

     

    

   

   
 

   

   

    
    

   

   

   

   

     

    
  

     ]
 
 
 
 
 
 
 

 

(5.144) 

 

The last two algorithmic elements  ( ) and  ( ) are used in the globally convergent 

algorithm of interior-point to compute the advance direction towards the solution state. 

The following Boxes summarize the model: (a) General equations, (b) Discrete 

approximation and (c) Variational Forms. 
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Box 5.27: Continuum Governing Equations for BBM model 

CONTINUUM FORM 

Continuum constitutive equations for BBM model: 

   
   

 (     )

  
    

    

 ( )

  
    

   
 (     )

  
 

 ̇   
   (  )

   
  ̇   

     
( )

    

   (  )

   
 

Strain driven problem: 

          (  )            (  )    

   ̇ (  )    

 ̇   ̇   
   (  )

   
 

Enforcement of consistency leads to: 

  
 

 

   

   

   

  

    
    

 ̇ 

 

Box 5.28: Discrete Equations Backward-Euler approximation for BBM model 

DISCRETE FORM 

Increment       and       during time interval           , leads to: 

              

              

Backward-Euler discrete system of the equations for MCC model: 

           
   (    

 )

   
  

     
    

    
     

    

   (    
 )

   
  

 

             
 

              
 

   

    
  

   
 (              )

  
      

 
   

 
(              )

   
 

predictor-corrector strategy: 

    
             

      
 

    

 
(    

     )

  
 

    
      

 
   

 
(         

          )

  
 

Check of loading-unloading conditions: 

(    
      

(    
      

     
      

     )   )     then  ( )    ( )   
      

plastic corrector:  
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with:  

    
                

      
         

 

 

Box 5.29: Variational Form for Inequality constraint BBM model 

VARIATIONAL FORM (inequality const.) 

Variational Form BBM model: 

    {

     ̅ (       )  (           
      

 )

(     )

        (  )   

 

Lagrange functional associated: 

  ̅(         )     (       )  (           
      

 )       (  ) 

KKT conditions: 

    
      

      
   

   (  )

   
  

          
        

     
 

   
  

    
 (  )   

    

 

where: 

    
      

     
      

     
      

 

Residual vector: 

 ( )  

{
 
 

 
     

      
      

   
     

 ( )

  

  

  

          
        

     
 

   
    

 (  ) }
 
 

 
 

 

Jacobian Matrix:             ( ) 
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Box 5.30: Variational Form for the Equality constraint BBM model 

VARIATIONAL FORM (equality const.) 

Variational Form BBM model: 

   {

     ̅ (       )  (           
      

 )

(     )

        (  )     

 

Lagrange functional associated: 

  ̅(         )    ̅ (       )  (           
      

 )        (  )    

      ( )                                                                     
 

KKT conditions: 

    
      

      
   

     
 

   

   

   
  

          
        

     
 

   
  

    
 (  )     

   
 

 
  

(    )   

 

where: 

    
      

     
      

     
      

 

Residual vector: 

 ( )  

{
  
 

  
     

      
      

   
     

 

   

   

   

          
        

     
 

   
    

 (  )   

      }
  
 

  
 

 

Jacobian Matrix:             ( ) 

 

 

Figure 5.98 shows the convergence results obtained with the algorithm        

         . The convergence speed of the algorithm for the BBM integration is shown for 

three different suctions. It slope of convergence rate results lightly higher than 2 (     ).  
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Figure 5.98: Convergence Results of the primal-dual CPPM algorithm for three different suction states; a) 
(         ), b) (          ) and (          ). 

 

Table 5.27 summarizes the convergence properties of the BBM model for the three 

different suctions.  

Table 5.27: Table of Convergence of the model BBM4 for three different suctions. 

N-iter 

‖ ‖

‖  ‖
(         ) 

‖ ‖

‖  ‖
(          ) 

‖ ‖

‖  ‖
(          ) 

1 1 1 1 

2 0.30855229 0.60048421 0.29196928 

3 0.02598482 0.02945251 0.02132521 

4 0.00440247 0.0071395 0.0043271 

5 0.00048775 0.00052972 0.000411 

6 6.8973E-05 9.0549E-05 6.7562E-05 

7 8.4334E-06 8.3353E-06 7.3868E-06 

8 1.1226E-06 1.1994E-06 1.0879E-06 

9 1.421E-07 1.2405E-07 1.2847E-07 

10 1.8526E-08 1.6319E-08 1.7842E-08 

11 2.3737E-09   2.1974E-09 
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5.5.4.1)   Consistent Tangent Operator for the hyperporoplastic model BBM 

 

One of the advantages of the proposed algorithms lies in the fact that they can be 

linearized in closed form (Simo & Hughes, 1998). This fact leads to the notion of 

“Consistent Tangent modulus” as opposite to the “Continuum Elasto-Plastic Tangent 

modulus”. The former is obtained by enforcing the consistency condition on the discrete 

algorithmic problem, whereas the last notion results from the classical consistency 

condition of the continuum problem. Next, the procedure followed by Simo (1998) is used 

to derive the algorithmic tangent modulus. Differentiating the stress-strain 

relation(  (     )), the algorithmic translation (  (   )) and the flow rule ( ̇) leads to: 

        {(            

     
 

  
)  

      

    

      

    
     } 

            

       

    

     
 

  
      

       

    

      
 

    

  

  
     

 
       

    
      

            

     
 

  
      

      
 

    

  

  
      

(5.145) 

 

where the algorithmic modulus is defined as, 

     [
      

    
      

      
 

    

  

  
]

  

 
(5.146) 

On the other hand differentiating the discrete consistency condition   ( )    leads to, 

     
 

  
(           )  

     
 

  
        

(5.147) 

From Eqs.5.145 and 5.147 the incremental plastic multiplier is obtained, resulting  

       

     
 

  
 ̅     

     (      
 

 ̅        
 

)
 

     
 

  
 ̅   

      
    

      
    

  

     (      
 

 ̅        
 

)
 

(5.148) 

 

where the algorithmic moduli ( ̅) and ( ) are given by 

 ̅              

       

    

      
 

    
     

(5.149) 
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and the compact notation has been used at 5.148, 

 ̅    (
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(5.150) 

Finally, the substitution of the Eq. 5.148 in the Eq. 5.145a and after manipulation leads to 

the expression for the algorithmic elasto-plastic tangent modulus for the BBM model 

(formulated in terms of the net stress), 

      [     
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     (      
 

 ̅        
 

)
]      

 [     
    

     
 

  
   

     
 

  
 ̅       

     (      
 

 ̅        
 

)
]       

(5.151) 

 

where (     
      

    
⁄       

    
⁄ ) has been introduce for simplicity. 

 

5.5.5)   Integration of Yu's hyperporoplastic model for non-isothermal conditions 

HP-CASM  

 

In this sub-section the scheme of integration adopted for the model HP-CASM is 

summarized. Due to the identical structure of integration with the one proposed for the 

BBM1 model, the process of integration is not detailed. 

In this case, two differential elements should be considered: (a) the new layout of the yield 

function and its dependence on the third invariant of the stress tensor     and (b) the 

temperature dependency of the hardening law.  

The following Boxes summarize the model: (a) General equations, (b) Discrete 

approximation and (c) Variational Forms. 
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Box 5.31:Continuum Governing equations for HP-CASM model 

CONTINUUM FORM 

Continuum constitutive equations for BBM3 model: 

   
   

 (        )

  
    

   
 (      )

   
 

 ̇   
   (         )

   
    ̇    

Strain driven problem: 

          (         )            (         )    

   ̇ (         )    

 ̇   ̇   
   (         )

   
 

Enforcement of consistency leads to: 

  
 

 

   

  

    
    

 ̇ 

 

 

Box 5.32:Discrete Equations Backward - Euler approximation for HP-CASM model 

DISCRETE FORM 

Increment      ,       and      during time interval           , leads to: 

              

              

              

Backward-Euler discrete system of the equations for MCC model: 

           
   (    

              )

   
   

             
 

              
 

   

     
   

 
(                    )

  
      

 
   

 
(                    )

   
 

predictor-corrector strategy: 

    
             

        

    
      

 
   

 
(         

                )

  
 

Check of loading-unloading conditions: 

(    
      

(    
      

     
                )   )     then  ( )    ( )   
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plastic corrector:  

    
      

      
   

   (    
                 )

   
   

with:  

    
                

      
         

 

 

Box 5.33:Variational Form for Inequality constraint HP-CASM model 

VARIATIONAL FORM (inequality const.) 

Variational Form BBM3 model: 

    {

      ( 
        )  (      )

(  )

        (         )   

 

Lagrange functional associated: 

  (            )     ( 
        )              (         ) 

KKT conditions: 

    
      

      
   

   (    
                 )

   
  

    
 (         )   

    

 

Residual vector: 
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} 

Jacobian Matrix:             ( ) 
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Box 5.34: Variational Form for Equality constraint HP-CASM model 

VARIATIONAL FORM (equality const.) 

Variational Form BBM3 model: 

   {

      ( 
        )              ( )

(  )

        (         )     

 

Lagrange functional associated: 

  (            )     ( 
        )        

                    ( ) 

KKT conditions: 

    
      

      
   

   (    
                 )

   
  

    
 

    

   
 

 
  

(    )   

 

Residual vector: 

 ( )  

{
 

     
      

      
   

   (    
                 )

   
    

 
  

      }
 

 

 

Jacobian Matrix:             ( ) 

 ( )  

[
 
 
 
 
     (
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    ]
 
 
 
 
 

 

 

 

Figure 5.99 shows the convergence speed of the model integration for two different 

loading steps. 
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Figure 5.99: Convergence results of the primal-dual CPPM algorithm for two different loading steps. The slope 
results lightly higher than 2. For the selected value of the duality gap         the rate of convergence of both 

IPM and CPPM coincide. 

 

The slope of the straight line results lightly higher than 2, precisely 2.321. Table 5.28 

presents the values of the residual norm for two different load steps. 

Table 5.28: Convergence properties of the HP-CASM model. Convergence speed for two different loading steps. 

N-iter 

‖ ‖

‖  ‖
 (n1) 

‖ ‖

‖  ‖
    (n2) 

1 1 1 

2 0.098196763 0.098537465 

3 0.009637009 0.009704331 

4 0.00094589 0.000955835 

5 9.28399E-05 9.41448E-05 

6 9.11233E-06 9.27279E-06 

7 8.94385E-07 9.13322E-07 

 

Figures 5.100 and 5.101 show the rate of convergence of the HP-CASM model under three 

different dry states and three different thermal states. 
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Figure 5.100: Convergence results of the primal-dual CPPM algorithm for three different suctions. The slope 
results lightly higher than 2. For the selected value of the duality gap         the rate of convergence of both 

IPM and CPPM coincide. 

 

 

Figure 5.101: Convergence results of the primal-dual CPPM algorithm for three different temperatures. The slope 
results lightly higher than 2. For the selected value of the duality gap         the rate of convergence of both 

IPM and CPPM coincide. 
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For the partially saturated case the slope of the straight lines results lightly higher than 

two, around    . For the non-isothermal tests the slope of the straight lines results 

higher than two in all the cases. 

 

5.5.6)   Integration of Smoothed cohesive-frictional Drucker-Prager Model  DP  

 

In a hyper-poroplastic approach, and under the assumption of infinitesimal deformations, 

the non-incremental constitutive relations are derive from the energy functions of the 

porous skeleton presented at the former chapter as: 

   
   

 (        )

  
 

   
   

 (        )

   
 

(5.152) 

where   
 (        ) has been defined in chapter 4. Also the evolution equation for the 

plastic internal variables ( ) reads: 

 ̇   
   (  )

   
 

(5.153) 

where, ( ) is the scalar plastic multiplier and (
   (  )

   
⁄ ) is the general flow vector. 

In this context the plastic multiplier is determined by the classical Kuhn-Tucker 

complementary conditions        (  )        (  )     and the consistency condition 

  ̇ (  )   . These last two equations characterize the loading-unloading conditions and 

the persistency of the plastic state during plastic flow, respectively. 

Those last condition together with the flow rule 5.153 expressed in terms of the elastic 

strains define the strain-suction-Temperature-driven structure of the problem. It is, for a 

given increment of total strain, suction and temperature the last set of equations 

determines the increments of stress   , degree of saturation   , temperature T and plastic 

internal variable  . 

The enforcement of the consistency condition allows arriving at the expression for the 

plastic multiplier  . 

The time integration of the above constitutive relations is performed in a strain-suction-

temperature driven structure. In this scheme the stresses, suction, temperature and 
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internal variables known at    are updated to      according to the strain (     ), suction 

(     ) and temperature (     ) increments applied during time interval (        

  ). Thus at time      total strains, suction and temperature are: 

              

              

              

(5.154) 

while the stresses     
  and plastic internal variables       have to be computed.  

To this purpose a backward-Euler approximation of the governing equation is used, 

           
   (    

 )

   
   

(5.155) 

with the discrete plastic multiplier (  ) satisfying the loading-unloading conditions. The 

updated stress tensor is given by the relation: 

     
   

 (                    )

  
 

(5.156) 

The numerical solution of the algebraic system of equations 5.155 expressed in terms of 

the elastic strain together with the discrete KKT conditions and Eq. 5.156  is accomplished 

following a predictor-corrector strategy. The predictor is given by the trial state defined 

by the known values at   : 

    
         

    
      

   
 
(         

                )

  
 

(5.157) 

Afterwards the loading-unloading conditions are verified, taking the trial state as the final 

solution when     
      

  , otherwise a plastic corrector step is performed (    ) in the 

same manner as done for the BBM1 model. The set of discrete nonlinear equations 

identical to the set at Eq. 5.107 is solved using a Newton-like iterative strategy. 

The algorithms CPPM and IPM are properly understood by finding the existence of a 

variational structure of the general evolution equations. 

Due to: (a) the convexity of the energy functions proposed to derive the DP model with 

respect to its arguments, (b) the twice differentiability with positive definite Hessian 

matrix      and (c) the associativity of the plastic flow in the dissipative space (hyper-

poroplasticity), the solution state is obtained as the argument of the minimization 

problem: 
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Find   (    )     such that 

  
 (                    )     {   (         )  (      )}

(  )   
 

(5.158) 

which, can be expressed alternatively as the inequality mathematical program,  

    {

      (         )  (      )

(  )

        (  )   

 

(5.159) 

For this program the Lagrange functional associated is:  

  (            )     (         )  (      )       (  ) (5.160) 

 

The application of the necessary first order optimality conditions to 5.160 leads to the 

Kuhn-Tucker restrictions which results in an identical system of Eq. 5.113 for given values 

of suction and temperature.  

Both the residual vector and the Jacobian matrix used to compute the advance direction 

towards the optimal point at CPPM algorithm are given by the expressions 5.114 and 

5.115, respectively. 

The constraint program Eq. 5.159 can be re-written in the standard form of equality 

constraint by introducing the slack variables ( ):  

   {

      (         )  (      )       ( )

(  )

        (  )     

 

(5.161) 

with an associated Lagrange functional given by:  

  (            )     (         )  (      )        (  )    

      ( )                                      
 

(5.162) 

In virtue of: (a) the complementarity of the energy functions and (b) the state functions 

derived in chapter 4, the imposition of the first order optimality conditions leads to the 

extended Kuhn-Tucker restrictions identical to those in Eq. 5.118. Moreover, both the 

residual vector and the Jacobian matrix are identical to those given by the expressions 

5.119 and 5.120, respectively. 

The following Boxes summarize the model: (a) General equations, (b) Discrete 

approximation and (c) Variational Forms. 
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Box 5.35: Continuum Governing equations for DP model 

CONTINUUM FORM 

Continuum constitutive equations for DP model: 

   
   

 (        )

  
    

   
 (      )

   
 

 ̇   
   (         )

   
    ̇    

Strain driven problem: 

          (         )            (         )    

with    (  ). 

   ̇ (         )    

 ̇   ̇   
   (         )

   
 

Enforcement of consistency leads to: 

  
 

 

   

  

    
    

 ̇ 

 

 

Box 5.36:Discrete Equations Backward - Euler approximation for DP model 

DISCRETE FORM 

Increment      ,       and      during time interval           , leads to: 

              

              

              

Backward-Euler discrete system of the equations for MCC model: 

           
   (    

              )

   
   

             
 

              
 

   

     
   

 
(                    )

  
      

 
   

 
(                    )

   
 

predictor-corrector strategy: 

    
             

        

    
      

 
   

 
(         

                )

  
 

Check of loading-unloading conditions: 
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(    
      

(    
      

     
                )   )     then  ( )    ( )   

      

with    (  ). 

plastic corrector:  

    
      

      
   

   (    
                 )

   
   

with:  

    
                

      
         

 

 

Box 5.37:Variational Form for Inequality constraint DP model 

VARIATIONAL FORM (inequality const.) 

Variational Form BBM3 model: 

    {

      ( 
        )  (      )

(  )

        (         )   

 

with    (  ). 

Lagrange functional associated: 

  (            )     ( 
        )              (         ) 

KKT conditions: 
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Residual vector: 

 ( )  {
    
      

      
   

     
 

   
    

 
} 

Jacobian Matrix:             ( ) 
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Box 5.38: Variational Form for Equality constraint DP model 

VARIATIONAL FORM (equality const.) 

Variational Form BBM3 model: 

   {

      ( 
        )              ( )

(  )

        (         )     

 

with    (  ). 

Lagrange functional associated: 

  (            )     ( 
        )        

                    ( ) 

KKT conditions: 

    
      

      
   

   (    
                 )

   
  

    
 

    

   
 

 
  

(    )   

 

Residual vector: 
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   (    
                 )

   
    

 
  

      }
 

 

 

Jacobian Matrix:             ( ) 
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Figures 5.102 and 5.103 show convergence results obtained with the algorithms CPPM 

and IPM, respectively. Particularly, Fig. 5.102 presents the convergence of the model 

integration for two different loading steps and under both saturated and isothermal 

conditions. The slope of the straight line results lightly higher than 2 (     ).   
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Figure 5.102: Convergence Results with the primal-dual CPPM and primal-dual IPM. Both show similar 
convergence properties for the same starting trial state and        .  

 

Figure 5.103 shows the model convergence under non-isothermal conditions. The model 

response in terms of convergence was tested for two different values of temperature. 

 

Figure 5.103: Convergence Results of the primal-dual CPPM for two different states of Temperature; a) 

(  
     ) and b)(  

     ). Both the CPPM and the IPM for a duality gap = 1e-10 have already the same 

properties of convergence. 
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The slopes of the straight lines results lightly higher than two. They are 2.688 for the test 

carried out at        and 2.556 for the test carried out at      . Table 5.29 

summarizes the convergence properties of the model for the two tests. 

Table 5.29: Convergence speed of the DP model for two different temperatures. 

N-iter 

‖ ‖

‖  ‖
 (T20) 

‖ ‖

‖  ‖
  (T40) 

1 1 1 

2 0.068079492 0.077695863 

3 0.004629023 0.006028747 

4 0.000314721 0.000467748 

5 2.13973E-05 3.62906E-05 

 

5.5.7)   Integration of Matsuoka-Nakai Model - Principal Stress Space 

 

The dependency of the Matsuoka-Nakai model on the three stress invariants I1, I2 and I3 

makes convenient to address the model integration in the plane of the principal stresses. 

This fact will allow to interpret the stress trajectories in an easier way.  

Under the assumption of infinitesimal strains, the non-incremental constitutive 

relationships take the form: 

   
   

 (      )

  
 

   
   

 (      )

   
 

(5.163) 

for the Helmholtz energy function of the porous skeleton   
 (      ) defined in chapter 4. 

As well, the evolution equation for the plastic internal variable   reads,  

 ̇   
   (  ( 

 )   ( 
 )   ( 

 ))

   
 

(5.164) 

where, ( ) is the scalar plastic multiplier and (
   (  )

   
⁄ ) is the general flow vector and 

(  ( 
 )   ( 

 )   ( 
 )) are the first, second and third invariants of the generalized stress 

tensor(  ).  In this context the plastic multiplier is determined by the classical Kuhn-

Tucker complementary conditions                 and the consistency condition 

  ̇   . 
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Those conditions together with Eq. 5.164 characterize the loading-unloading conditions 

and the persistency of the plastic state during plastic flow. 

Moreover the expression of the flow rule in terms of the elastic strains  ̇   ̇   ̇ in 

addition to the KKT conditions define the strain-driven structure of the problem, while 

enforcement of the consistency condition eq. 5.31 allows stating the expression for the 

plastic multiplier  :  

  
 

 

   (  ( 
 )   ( 

 )   ( 
 ))

   

   

   

    
 

    
 ̇ 

(5.165) 

Here ( ) is the hardening modulus given by (             ). 

The time integration of the above constitutive relations is performed in a strain-suction 

driven structure as done for the Drucker-Pager model. The objective is to obtain the 

updated stresses (    
 ). To this purpose the backward-Euler approximation of the 

governing equations is used, 

           
   (    

 )

   
   

(5.166) 

However due to the three invariant dependency of the model, it is highly convenient to 

represent it in the principal stress space. 

So now the goal is to present the discrete equations in terms of its principal components 

(  ) and (  )  using the spectral decomposition and later find a variational structure of 

these equations to give a proper interpretation to the integration algorithm CPPM.  

The stress-point algorithm appropriate for three-invariant MN plastic model must 

explicitly take into account the rotation of principal stress axes. To this end the 

linearization of the stresses for the non-rotating principal stresses results in an unique 

form of the tangent operator while the linearization of the spin part (rotation of the 

principal axis) can be carried out through two options; (a) “eigenvector linearization 

approach” (Simo & Hughes, 1998) or (b) “eigenbases linearization approach” (Borja, Sama, 

& Sanz, 2003). The first option has been used at the present dissertation to compute the 

principal axis rotation as result of the return mapping. 

The numerical solution of 5.166 obeying the KKT conditions is accomplished following a 

predictor corrector strategy. The predictor step is given by the trial state defined by the 

known values at    , 

 



CHAPTER 5 -Numerical Implementation: Implicit algorithms for two phase and three phase Media 
_______________________________________________________________________________________________________________________________ 

 

327 
 

    
         

    
      

   
 
(         

           )

  
 

(5.167) 

Check of loading-unloading conditions is then performed on the basis of the trial state: 

If    (    
      

(  (    
      

)    (    
      

)    (    
      

))   )     then  ( )    ( )   
      (5.168) 

the trial state is taken as the final solution. If not, a new solution is being looked for 

(leading to the so-called plastic corrector step) where     : 

    
            

    
      

         

(5.169) 

Equation 5.166 can be re-written equivalently in terms of the elastic strains (    
 ) and the 

elastic trial strains (    
      

)as, 

    
      

      
   

   (    
 )

   
   

(5.170) 

and in terms of principal strains results in the system:  

     

       

      
    

     
 

      

   

   
  

     

       

      
    

     
 

      

   

   
  

     

       

      
    

     
 

      

   

   
  

 

(5.171) 

The set of nonlinear equations 5.171 is solved using a Newton-like iterative strategy.  

On the other hand due to the convexity properties of the energy functions and the yield 

surface (MN), described in chapter 4 the solution state can be find by minimization of the 

problem: 

Find   (    )     such that 

  
 (               )     {   (       )  (      )}

(  )   
 

(5.172) 

 

this can be expressed alternatively as the inequality mathematical program,  

    {

      (       )  (      )

(  )

        (  )   

 

(5.173) 
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Now, from standard arguments in constraint optimization the Lagrange functional 

associated to the variational problem 5.172 is: 

  (          )     (       )  (      )       (  ) (5.174) 

The application of the necessary first order optimality conditions to 5.174 leads to the 

Kuhn-Tucker restrictions which in terms of the principal strains read: 
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(5.175) 

where (  
  ∑    

   
     ). From the first optimality KKT conditions 5.175 the residual 

vector used in the algorithm CPPM is obtained as: 

 ( )  
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(5.176) 

and the Jacobian matrix of the residual vector used to compute the advance direction to 

search for the solution state (the optimal point), results: 

 ( )
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(5.177) 

with    
   being the elastic moduli given by: 
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]
 
 
 
 
 
 

 

(5.178) 

Then a Pseudo-code of the CPPM algorithm is presented. On this occasion it incorporates 

the determination of the variables values at the principal directions before its entrance in 

return loop.  

Box 5.39: CPPM Pseudo-code for the MN model's integration  

1)             ; (    
      

) ;      
       (    

      
) ;          

      

2) Compute the principal stress components (  
     ) 

3) Evaluate the yield surface (  (  
        

        
     )) 

4) If (  (  
        

        
     )   ) then  (         

     ) 

5) Else “Return Mapping” Initialize (set    ): ( ( )   ) 

( ( )) and ( ( )( ))  (according to the addressed problem, eq. (164))  

5.1) Check overall convergence:        ‖ ( )( )‖       

5.2) Compute the Jacobian matrix ( ( ))  Eq.5.141 

                                         with quantities evaluated at ( ( )) 

5.3) Attempt a modified Newton step:  

( (   )  (   ))  Newton-step  ( ( )  ( )  ( )  ( )) 

5.4) Set (     ) and go  to 3 

6)     (       
   )   

7)      Return (      (    ))                        

 

Figure 5.104 shows the convergence results obtained with the algorithm (       

         ) when MN model is integrated. 
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Figure 5.104: Convergence Results with the primal-dual CPPM for the Matsuoka-Nakai model at principal stress 
space. 

 

5.5.7.1)   Tangent Operator for Hyper-Poroplastic MN - Model 

 

The tangent operator defined by the instantaneous variation of stresses with respect to 

the strains (    
  ⁄ ) can be obtained by considering first the expression for the 

principal stress tensor(  ),  

     
        ∑    

  

 

   

   

   

   

   
 

(5.179) 

Differentiation of equation 5.179 allows to obtain the expression for the plastic 

multiplier(  ),  

   
 

 
∑ ∑

   

   

   

   

 

   

 

   

   
   ̇  

(5.180) 

from equations 5.179 and 5.180  the elasto-plastic tangent moduli (ignoring the rotation of 

the principal stress) is obtained as: 

       
   

 

 
∑∑   

  

 

   

 

   

   

   
 

   

   
   

   
(5.181) 
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Alternatively (   ) can be computed from the Jacobian matrix 5.177 penalizing the rows 

and column in excess as:  

    (    )   ( )   (
   

 
) (5.182) 

Finally, the tangent fourth-order tensor reflecting the change in the orientation of the 

spectral directions, is given by Borja (2003), 

  ∑ ∑    

 

   

 

   

      
 

 
∑ ∑ (

     

  
    

 )  (               )

 

   
   

 

   

 
(5.183) 

The first term of ( ) is a function of the constitutive response and the algorithm is used to 

track this response, whereas the second term is a function of the rotation of the principal 

directions alone and not of the specific plasticity model used. 

  

5.6)   Interior-Point algorithm advantages and benefits 

 

This subsection addresses the benefits of the interior-point algorithm over the classical 

closest-point algorithm. Until now, similarities of both algorithms have been referred. 

In cases where the stress points are very far from the allowable space, the last algorithm 

fails to converge. The distance between the stress points and the yield surface is large 

enough to make the global CPP algorithm impossible to reach a satisfactory optimal point, 

Fig. 5.105.  

However, the interior-point algorithm has the necessary flexibility to achieve the optimum 

even in cases of difficult convergence as the one set at Fig. 5.105. In fact the algorithm 

provides progressive and partial KKTsolutions characterized by positive values of the 

duality variable    . Those values form a decreasing series until the final solution is 

reached characterized by    . This property confers to the algorithm with a significative 

robustness.  
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Then the algorithm is able to reach solution states (optimal points) even when the stress 

trials are far from the allowable space and therefore far from the Newton's convergence 

zone. 

 

Figure 5.105: Distance between the points( 1- 2) and the yield surface is large enough that the CPPM fail to reach 
the optimal point. However the interior-point algorithm IPM, allows a progressive approach to the optimal point 

(solution) by solving the KKT conditions. 

Box 5.40 recovers the Pseudo-code of the interior-point algorithm shown above to an 

easier comprehension of the main loop.    

Box 5.40: Pseudo-code for primal-dual interior point method for integration of hyper-poroplasticity. 

1)   Input data      
      ,     

      

  

2)   Initialize (set m=0): ( ( )   ), ( ( )   ), 

3)   barrier loop: check barrier convergence        

4)   Initialize (set    ): ( ( )   ( )), (   ( )), ( ( )   ( )), 

5)   Newton loop: Check overall convergence:  ‖  
( )( )‖       

6)  Attempt Newton step:   ( (   )   
(   )

)  Newton-step  ( ( )  ( )   
( )

  ( )) 

7)  Set (     ) and go to 5 

8)  (       
   ) 

9)         
  ( )

  
 ( )⁄   and go to 3  

10) (       
   ) 
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Figure 5.106 shows the graph of the central-path obtained by the progressive solution of 

the partial KKT conditions when a shear stress path in extension is followed. This stress 

path is similar to the one observed at the analyzed case La Roque Gageac in chapter 7. 

Fig. 5.106 shows a progressive decrease (from a peak) of the slack variable z. Furthermore 

a progressive increase of the plastic multiplier ∆γ is evidenced. 

 

Figure 5.106: Central-path of the progressive solution of KKT conditions, for a shear stress path in extension. A 
progressive decrease  of the slack variable z is observed as well as the continuous increment of the plastic 

multiplier   (amount of plasticity). 

Finally, Fig. 5.107 shows the rate of decrease of the duality gap variable while the number 

of barrier loops progresses. 

 

Figure 5.107: Rate of decrease of the duality gap variable with the number of barrier loops.   
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5.7)   Conclusions 

 

The study of the integration of the constitutive models developed in the previous chapters 

has been addressed along the chapter 5. The proper integration of the constitutive laws is 

a key point of the constitutive modeling. 

One of the advantages of the elasto-plastic models being derived from the thermo-

mechanical principles is that both, internal and dissipation energy functions, are known. 

Those functions include all the information on the models. Having those functions allows 

to integrate the constitutive laws through mathematical programming tools. The 

minimization of the functionals defined by the sum of the internal energy function and the 

dissipation function provides with proper variational structures. These structures allow to 

determine the optimal points (solution states) which are the solution to the return plastic 

mapping where the stress state lies on the yield surface. The study and development of 

two types of integration algorithm has been carried out: 

a) Return mapping by the closest-point projection 

b) Return mapping by the interior-point method 

An additional method to control the step-size of the correction is included in both 

algorithms:  

c) Line-search method  

Both algorithms have shown to have a lot in common. They have also presented very mild 

difference in convergence properties. In favor of the interior-point algorithm, its 

versatility should be noted in terms of parameterization options, leading to catch the 

optimal point even when the starting trial point is considerably far from the admissible 

region. It is a vast and open subject for further exploration. 
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THERMO-HYDRAULIC MODELLING OF AN EXPERIMENTAL FALLOW FIELD 

 

 

 

6.1)   Introduction 

 

Chapters 6, 7 and 8 deal with numerical modeling of geotechnical cases, concerning the 

interaction between the soil and the atmosphere.  

Particularly, chapter 6 addresses the TH modeling of the soil-vegetation-atmosphere 

interaction in an experimental crop field instrumented to record the evolutions of water 

content and temperature in the upper soil layer. The study aims to predict temperature 

and humidity conditions in soils with similar characteristics under comparable climatic 

conditions to those prevailing in the region of Midi-Pyrénées, France.  

Chapter 7, addresses the THM numerical modeling of a shallow foundation under 

atmospheric actions. The study aims to quantify differential settlements as a result of 

different wetting and temperature states changing at the topsoil.  

Chapter 8, addresses the TM modeling of a cliff located in the south of France under the 

action of atmospheric radiation and atmospheric temperature. The study aims to predict 

displacements in the massif as well as an evaluation of the massif stability. 
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The modeling of the experimental field considered in this chapter has been carried out to 

validate the boundary condition soil-vegetation-atmosphere presented in chapter 2. It will 

emphasize the decisive influence of transpiration flux on water variations in the soil.  

The experimental field studied is located at "Le Fauga" Midi-Pyrénées- France, see 

Fig. 6.108. 

 

Figure 6.108: Satellite map of Le Fauga site (43° 24' 0" -North, 1° 17' 0" –East). 

 

It is an experimental fallow field of the National Institute of French Meteorology (METEO 

FRANCE). This well instrumented field provides with high frequency measurements of 

atmosphere and soil variables. 

The chapter is organized as follows, firstly notation and terminology used is presented. 

Secondly, the case and field characterization are addressed. Thirdly, equations governing 

the problem are stated. Fourthly, material properties of the upper soil layer at Le Fauga 

are presented. Fifthly, geometry-mesh and initial and boundary conditions assumed in the 

numerical model are shown. Finally, the results of the numerical model are exposed. 
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6.2)   Notation and Terminology 

 

  
  apparent mass of liquid water 

  
  apparent mass of vapor 

   Liquid degree of saturation 

   Gas degree of saturation 

  Porosity 

   Unit mass of solid skeleton 

   Liquid density 

   Gas density 

   Specific energy of porous skeleton 

   Specific energy of liquid phase 

   Specific energy of gas phase 

  
  Net flow of liquid water 

  
  Net flow of vapor 

   
 Net flow of energy in the porous skeleton 

   
 Net flow of energy in the liquid phase 

   
 Net flow of energy in the gas phase 

   Conductive heat flux 

 

 

6.3)   Case statement and Field characterization 

 

The atmospheric variables used for modeling the experimental field Le Fauga were 

registered at a weather station installed on the site for this purpose. Among others, 

precipitation, air temperature and air humidity (               ), wind speed and 

direction (at 10 m elevation), atmospheric pressure and incoming solar radiation are 

registered. Figure 6.109 shows the variations of temperature, relative humidity and 

precipitation, registered at the site during the period between the years 2005 to 2007. The 

highest temperatures are registered in accordance with summer seasons. Those peaks 

coincide with the minimum values of relative humidity. Besides they appear outdated in 

relation to the highest precipitation. 
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In addition to the typical meteorological devices, two radiancemeters were installed in 

July 2003 to measure the incoming atmosphere radiation (  ) and the upward luminance 

at a 40° incidence angle over the fallow field. These two radiancemeters allow the daily 

determination of the “surface reflectances” at five frequencies from the visible to the near 

infrared and the thermal infrared. 

 

Figure 6.109: Temperature(    ), Relative Humidity(  ) and Precipitation

(

  

[
 
 
 
  

   
⁄

]
 
 
 

)

  measures with a 

(      ) frequency at the site “Le Fauga”. 

 

 The surface reflectances permit the computation of vegetation indexes such as the NDVI 

(Normalized Vegetation Difference Index), which is shown to be related to the LAI. The 

roughness of the soil underneath the natural grass is found to be stable for the experiment 

duration. The roughness height was estimated to be a constant value of       . Fig. 6.110 

shows the cycles of Leaf Area Index during years 2005 to 2007. 
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Figure 6.110: Cycles of Leaf Area Index (LAI) measured at “Le Fauga” site during years 2  5, 2  6 and 2  7. 

 

At ground level, land surface fluxes (sensible and latent heat fluxes) and vegetation 

characteristics (height, biomass, dry matter, water content and LAI) were measured. 

Samples of area (        ) were randomly chosen in the fallow zone next to the LEWIS 

radiometer field, in order to measure vegetation mass and water content using a fresh and 

dry weighing method. Those quantities as well as the LAI measurements were frequently 

taken during spring, summer and fall, while sparser measurements were taken in winter 

when vegetation activity  is slower. 

 

6.4)   Material Properties 

 

Regarding the material characterization, only the upper soil layer was of interest in the 

present study. It is the layer where the main fluctuations take place. The grading curve of 

the upper soil layer shown in Fig. 6.111 shows a well-graded material. 
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Figure 6.111: Grading curve of the upper soil layer at “Le Fauga” site. 

 

It contains fractions of clay between 15.6% and 16.6% , silt between 47.2% and 47.4% and 

sand between 36.0% and 37.2%.  

Table 6.30 gives a detailed profile of clay, silt and sand percentages present at the 

analyzed layer. Between 0.5m and 2m the soil becomes more sandy. Below 2m, a layer of 

gravel extends to the depth of 4.6m, roof of the underlying marl formation. Water table is 

found at 3.4 m depth. 

Table 6.30: Upper Soil Layer characterization at “Le Fauga” 

 Clay (Fallow area) [%] Silt [%] Sand [%] 

5 cm 15.6 47.2 37.2 

20 cm 15.4 45.9 38.7 

40 cm 26 45.6 28.4 

60 cm 28.4 44.4 27.2 

80 cm 28.7 43.6 27.7 
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The capillary curve of the material was determined at the Laboratory of Soil Mechanics of 

the Geotechnical Engineering Department at Barcelona-TECH in samples of reconstituted 

material at two different dry densities (16 and 17 kN/m3). Experimental data has been 

fitted with: 

a) the classical expression of van Genuchten (labelled vG in Fig. 6.112): 

   (  (
     

  
)

 
   ⁄

)

  

 
(6.1) 

 with        and      . 

b) a modified expression of van Genuchten (labelled svG in Fig. 6.112) : 

   (  (
     

  
))

  

 

(6.2) 

with        and      .  

Figure 6.112 shows a comparison between experimental the data and the analytical 

expressions.  

 

Figure 6.112: Capillary Curve for the porous material at the zone of study at “Le Fauga”. 
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Regarding the in situ measurements at the experimental field, soil moisture profiles were 

automatically performed using impedance sensors (ML2 Theta-probes1) with a period of 

30 min. Duplicated sensors were installed at the following depths: 0–6 cm (×4), 10 cm 

(×3), 20 cm (×3), 30 cm (×2), 40 cm (×2), 50 cm (×2), 60 cm (×2), 70 cm, 80 cm, 90 cm, in 

order to improve sampling close to soil layer surface where higher levels of spatial and 

temporal variability of soil moisture are observed.  

Soil temperatures were measured at 1, 5, 20, 50 and 90 cm by thermistor probes.  

 

6.5)   Modeling of Experimental Field Le Fauga 

 

6.5.1)    Equations solved 

 

The numerical problem is addressed by solving the equations of water mass balance and 

energy balance. It is noted that the gas phase is neglected in this case assuming that the 

variations of gas pressure are negligible in comparison to water pressure variations 

(infinite mobile gas).  

The mass balance of water is mathematically given by the equation: 

 

  
(  

       
    )    (  

    
 )  (  )    

(6.3) 

  

where   
  and   

  are the apparent mass of liquid water and vapor in the liquid and gas 

phases respectively and,    
  and   

  are the advective and diffusive fluxes of water defined 

in appendix 1.  

Energy balance is mathematically expressed by the equation: 

 

  
(     (   )                 )    (      

    
    

)  (  )    
(6.4) 
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where   ,    and    are the specific energies of porous skeleton, liquid and gas phases 

respectively,    is the heat flux vector of the porous medium and    
,    

 and     
 are the 

energy fluxes of the porous skeleton, the liquid phase and the gas phase, respectively. 

Both equations are discretized by a finite element scheme and solved simultaneously by 

using the finite element code Code_Bright, Olivella et.al. (1996). 

6.5.2)    Geometry, Mesh, Initial and Boundary conditions 

 

Geometry and mesh used in the finite element model are sketched in Fig. 6.113.  These 

consist of a homogeneous soil column formed by two layers of 1m depth each one. Water 

pressure, gas pressure and temperature are prescribed at the bottom of the column and 

the Soil-Vegetation-Atmosphere boundary condition imposed on the top (soil surface). 

Specifically, the vegetation boundary condition is applied in the area of roots depth (1m).  

 

 

Figure 6.113: Soil Column Used to Model Atmospheric and Vegetation Boundary Conditions at Le Fauga site. 
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The mesh used in the modeling is composed of     quadrilateral elements and     nodes. 

It is densified in the root zone where water uptake is significant.  

Table 6.31 summarizes the initial and boundary conditions assumed in the simulation as 

well as the time interval duration. 

Table 6.31: Summary of initial and boundary conditions for modeling the experimental field Le Fauga 

Interval Time [days] Initial and Boundary Conditions 

1 0-1095 

       

   
              ,     

             

  
          

        

Lower boundary: 

           

              

       

Upper boundary: 

Atmospheric load (root_atm.dat )  

 

6.5.3)    Soil and Vegetation Cover Parameters 

 

Table 6.32 presents the parameters of the soil, the atmosphere and the vegetation on top 

of the soil column, used in the numerical simulation.  

The quantities of  vegetation fraction, wet and dry albedo, roughness length, screen high, 

limit global radiation, minimum and maximum stomatal surface resistances, root density, 

degree of saturation at wilting point, field capacity and anaerobiosis point are specified.  

Table 6.32: Parameter of Soil-Vegetation-Atmosphere boundary condition. 

                     
[ 

  ⁄ ]      
   ⁄        

   ⁄   
     

[
  

  ⁄ ] 

0.85 0.02 10 80 40 5000 1.2 

  
    

     
    

    
 [  ⁄ ]    

       
    

0.22 0.78 0.98 1 0.0016 0.2 0.2 
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Material parameters used for: (a)Darcy’s law, (b)Retention curve, (c) Relative 

permeability, (d) Fick’s law and (e) Fourier’s law to model the soil layers L1 and L2 are 

summarize in the Tables 6.33 and 6.34 respectively. 

Table 6.33: Parameters of constitutive equations for the root zone (L1). 

Retention Curve Intrinsic Permeability Liq. Phase Rel. Permeability 

(van Genuchten) (Darcy's law) (van Genuchten type) 


   

  

  

 

  

    

  

  

 

  

 

  

  

  

 

  

         0.10        1.00E-15   

 0.30 



5cm 0.42   

 

  

Srl 0.00 10cm 0.38   

 

  

Sls 1.00 80cm 0.32   

 

  

Diffusive Flux of vapor Conductive flux of Heat Liquid Phase Property 

(Fick's law) (Fourier's law) (Density) 




  

 

    

 

  

 

            

 [
    

   ⁄ ] 
sat 0.5    [

  

  ⁄ ] 1002.6 

 1 dry 1  [    ⁄ ] 4.50E-04 

N 2.3   

 

   [  ⁄ ] -3.40E-04 

 

       0.6923 

 

Table 6.34: Parameters of constitutive equations for the lower soil layer (L2). 

Retention Curve Intrinsic Permeability Liq. Phase Rel. Permeability 

(van Genuchten) (Darcy's law) (van Genuchten type) 

         0.10        1.00E-16   

 0.30 



 

  

 

  

Srl 0.00 

 

  

 

  

Sls 1.00 

 

  

 

  

Diffusive Flux of vapor Conductive flux of Heat Liquid Phase Property 

(Fick's law) (Fourier's law) (Density) 
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N 2.3   

 

   [  ⁄ ] -3.40E-04 

 

       0.6923 

 

6.5.4)    Modeling results 

 

Figures 6.114, 6.115, 6.116 and 6.117 show the comparison between numerical results 

and measurements performed at different depths in the silt layer during the period 2005-

2007. They include: 

a) water contents (Figs. 6.114-6.115) as measured by the thetaprobes, 

b) temperatures (Fig. 6.116) as measured by the termistors  

c) evaporation fluxes (Fig. 6.117) as deduced in the field from water budget. 

 

Figure 6.114: Comparison between numerical results and water content measured during years 2005 to 2007 at 
the first 30cm  depths within the silt layers 
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Figure 6.115: Comparison between numerical results and water content measured during years 2005 to 2007 
between the depths 30cm and 70cm within the silt layers 

 

The comparison between the results obtained with the numerical model and the in situ 

measurements regarding water contents, show a good agreement between them. 

Figures 6.114 and 6.115 show the high relevance of daily variations of water content at the 

upper soil layers. This relevance decreases as the depth increases. At the  same time the 

temporal scale gradually increases with depth from daily scale to seasonal temporal scale. 

This response explains the high influence of the evaporation flux    on the soil layer close 

to the surface. Moreover, as depth increases the transpiration flux    gains relevance over 

the evaporation one. 
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Figure 6.116: Comparison between numerical results and temperatures measured during years 2005 to 2007 at 
five depths within the silt layer. 

 

Similarly, temperature evolutions registered in situ compared with those obtained from 

the numerical model show a good correlation. Again the higher influence of the 

evaporation flux is observed at the soil layers located closer to the surface. 

In view of these positive results, it can be said that the atmospheric-vegetation boundary 

condition presented in chapter 2 has been validated and can give the desired response if a 

special attention is being paid to the parameterization of both vegetation type and upper 

soil layer. 

Finally, Fig. 6.117 confirms the proper performance of the atmospheric-vegetation model 

through comparison of both the evapo-transpiration fluxes obtained in the field by water 

budget and those given by the numerical model.  
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Figure 6.117: Comparison between numerical results and evapo-transpiration fluxes estimated in the field from 
water budget. 

 

It is observed that the higher magnitudes of both evaporation and transpiration fluxes are 

observed at times corresponding to summer season (            ,           

  ,             ). 

Then a series of isochrones corresponding to the main variables describing the model 

responses are presented. Isochrones of maximum and minimum values are confronted. 

The firsts two frames, Fig. 6.118 and Fig. 6.119, show the degree of saturation and 

temperatures distributions along the model profile. While the last frame Fig. 6.120 gives a 

global view of the model response. Liquid pressures and vapor concentrations are also 

presented. 

Consecutively, the corresponding profiles of degree of saturation and temperatures along 

the model profile (Figs. 6.121-6.122) as well as a frame of profiles offering the global view 

of the model response (Fig. 6.123) are presented. 
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Figure 6.118: Contours of liquid saturation at different times for the experimental field Le Fauga 

 

Figure 6.119: Contours of temperature at different times for the experimental field Le Fauga 
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Figure 6.120: Contours of temperature ,liquid pressure,  saturation degree and vapor concentration at different 
times for the experimental field Le Fauga 

 

Isochrones of liquid saturation at Fig. 6.118, reveal the strong effect that evaporation and 

transpiration fluxes have on topsoil in summer seasons. In winter seasons upper layers 

appear to be more saturated than down layers, evidencing that during winter the 

precipitation has a higher effect in comparison to the effect of temperature.   

Conclusions about isochrones of temperature Fig. 6.119 indicate that the layer in direct 

contact with the atmosphere exhibits maximum and minimum values of temperature in 

coincidence with summer and winter seasons. Isochrones of Fig. 6.120 confirm the 

observed responses. 
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Below, Fig. 6.121 presents profiles of saturation degree obtained in the soil column at 

different times under the atmospheric actions. Fig. 6.122 shows profiles of temperature 

obtained at the soil column under the atmospheric actions.  

 

Figure 6.121: Profiles of saturation degree at different times of the model response. 

 

Figure 6.122: Profiles of temperature at different times of the model response.  
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Profiles of saturation (Fig. 6121) obtained in summer seasons show a continuous decrease 

up to the soil surface, reaching values around 30% of saturation. Profiles of saturation, out 

of summer seasons, show a bell-shaped with deeper peaks of minimum saturation as 

closer to colder stages they are pictured. 

Profiles of temperature (Fig. 6.122) have an easier interpretation as continuous 

decreasing profiles of temperature are obtained in winter seasons while continuous 

increasing profiles of temperature are obtained in summer seasons. 

Fig. 6.123 offers a set of profiles of temperature, degree of saturation, liquid pressure and 

vapor concentration obtained at the soil column at different times of response under 

atmospheric actions. 

 

Figure 6.123: Set of profiles of temperature, degree of saturation, liquid pressure and vapor concentration at two 
different times of the run.  

 

The observed response in the profiles confirms the commented behaviors.  
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Fig. 6.124 shows the water fluxes directions at two periods of full saturation of the soil 

column. The water is not allowed to enter in the medium but drains along the soil surface. 

 

Figure 6.124:Vectors of water flows at two times of the model saturation. 

 

Finally, it is interesting to present from the obtained numerical results two profiles of 

water content at extreme conditions of: (a) dry season and (b) wet season, Fig. 6.125.  

 

 

Figure 6.125: Seasonal changes of water content at Le Fauga site. 
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From Fig. 6.125, it can be observed that for the studied case the active zone (sensible to 

atmospheric actions) reaches 90cm depths. The volumetric water content at ground 

surface ranges from 10 % in the dry season to 40 % in the wet season and this difference 

decreases with depth. 

 

6.6)   Conclusions 

 

Climate actions on the ground surface shown to have a great influence on the topsoil layer. 

The obtained results highlight the action of the transpiration flow over the evaporation 

flow in the summertime. In winter time the direct evaporation from the soil surface plays 

the main role.  

The modelling of the experimental field Le Fauga has allowed to validate the soil-

vegetation-atmosphere boundary condition presented in chapter 2.  

This boundary condition allows to determine extreme conditions in the topsoil layer due 

to its interaction with the atmosphere. For example the formation of surface cracks due to 

desiccation observed in fine soils. 
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CHAPTER 7 

 

 

RESPONSE OF A FOUNDATION ON A COLLAPSIBLE LAYER UNDER ATMOSPHERIC 

ACTIONS 

 

7.1)    Introduction 

 

In the present chapter a geotechnical problem is studied using constitutive models 

developed in chapter 4 and implemented following the algorithms described in chapter 5. 

It corresponds to the case of a circular foundation loaded by a vertical centered force and 

relying on an unsaturated collapsible layer.  

The case computes and quantifies the deformations and settlements induced by saturation 

of an unsaturated soil layer and compute the bearing capacity of the foundation located at 

the top left side of the model. The soil column is assumed to be homogeneous. 

Prediction of settlements induced by wetting in collapsible soils has been of interest in a 

series of studies, one of the most relevant being Pereira Barreto town, Brazil, see 

Gens (2010). Thus, when exceptional water condition's exists which rise the water level to 

elevations never reached before a collapse of the soil may occur leading to unacceptable 

settlements. 

In fact, in partially saturated conditions, a soil mass can swell or shrink when it 

experiences a “wetting path”. The volume change will be a function of: the initial void 

ratio(  ), the water content (  ) and the initial stresses (  )  (Gens (1995), Alonso et al. 

(1990)).  
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This collapse depends on the following factors: (a) suction and dry densities after 

compaction, (b) vertical stress applied during the inundation, (c) intrinsic properties of 

the soil such as plasticity index, (d) stress anisotropy during the inundation and (e) water 

content increase (the settlement increases non-linearly with suction decrease). 

The case studied corresponds to a strictly academic case which has been however 

simulated in a centrifuge. Thus, model can be validated by comparing with measurements 

obtained. After being validated, model has been used to simulate the same foundation 

subjected to an atmospheric load, typical of the central part of Catalonia in order to gain 

further insight into the response of the soil below the foundation. 

The centrifuge model has been constructed at a length scale of  (   ⁄ ) and tested under a 

centripetal acceleration equivalent to 50 gravities. Acceleration is provided by rotating the 

model at an angular rotation   in a box attached to an arm of radio r such that 

         ,  see Fig. 7.126. 

 

Figure 7.126: Diagram of centrifuge model test 

 

According to dimensional analysis the following scaling relations are used between model 

and prototype, 
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Variable Relation Scale 

Acceleration 
  

  
   

Length 
  
  

 
 

 
 

Time (diffusion processes) 
  
  

 
 

  
 

Stress 
  

  
   

 

They provide the scaling relations to simulate the prototype of a foundation of 3m 

diameter relaying in a collapsible layer of 15m depth. 

The test consists in two main stages: (a) First, a water pressure is applied at the model 

base and (b) Second, a loading is applied at the model top under a displacement rate of  

      
   ⁄ . 

The chapter is organized as follows: first notation and terminology used along the chapter 

is presented; then the characterization of the material used in the experiment and the tests 

themselves are described in detail. Afterwards the modeling stages previously presented 

(watering and loading) are studied and validated respectively by comparison of both the 

numerical model results and the experimental data. The laboratory tests has been realized 

within the program of research "Mechanics of unsaturated soil for engineering" MUSE. 

 

7.2)    Notation and Terminology 

 

   Acceleration of the model 

   Acceleration at prototype scale 

   Length at model's scale 

   Length at prototype 's scale 

   Time at model’s scale 

   Time at prototype’s scale 

   Saturated unit weight 
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   Plastic limit 

   Liquid limit 

   Plastic index 

   Dry unit weight 

  Water content 

  Void ratio 

   Degree of saturation 

   Vertical stress 

   Pore water pressure 

  
  pre-consolidation pressure 

  Porosity 

    Intrinsic permeability 

  Slope of unloading-reloading line 

  Slope of normal compression line 

  
  Effective generalized mean stress 

  
  Effective generalized deviatoric stress 

   Volumetric plastic strain 

 ̇  Volumetric plastic strain rate 

 ̇  Deviatoric plastic strain rate 

   Shape factor for bearing capacity 

   Bearing capacity coefficient 

   Shape factor for bearing capacity 

   Bearing capacity coefficient 

   Foundation dimension 

     Bearing capacity 

7.3)    Material Characterization 

 

The tested material named "Jossigny silt" has been extracted from a layer of alluvial silt 

located at Jossigny (east of Paris, France) and further studied by Vicol (1990), Cui (1993) 

and Casini (2008). In those studies both saturated and partially saturated conditions were 

conducted: physical, hydraulic and mechanical properties has been determined with 

particular focus on the unsaturated response of the soil.  
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Physical properties of the Jossigny silt has been obtained by conventional laboratory tests, 

summarized at Table 7.35. 

Table 7.35: Physical Properties of Jossigny Silt,  (Casini, 2008) 

   
  

  ⁄     ( )   ( )   ( ) Clay Fraction (%) 

26.4 17 32.3 15.3 25 

 

In order to analyze the occurrence of possible large foundation settlements during wetting 

of the soil layer, it was of interest to prepare the sample at a low density. In this 

perspective the optimal compaction density of the material was studied by performing a 

series of oedometer tests statically compacted at different dry densities and initial water 

contents (Casini, 2008), see Table 7.36.  

Table 7.36: Initial Properties of the Samples (after Casini et. al. 2013) 

Test 

Nro. 

   
(  

  ⁄ )   ( )       
( ) 

1 12.4 12.8 1.1 30.1 

2 13.3 12.8 1.0 34.5 

3 14.2 12.8 0.9 39.4 

4 14.5 12.4 0.8 40.1 

5 15.0 13.5 0.8 47.0 

6 15.9 13.4 0.7 53.4 

7 16.0 15.6 0.7 55.0 

8 16.6 11.4 0.6 68.6 

9 16.5 15.6 0.6 70.0 

10 17.0 13.5 0.6 64.5 

11 14.5 12.4 0.8 40.2 

 

The applied stress-suction paths were selected in order to reproduce the conditions of 

prevalence in the centrifuge: An increase of vertical stress up            was first applied 

followed by decrease of suction down to      , Casini (2008). The compressibility curves 

of those oedometer tests are shown in Fig. 7.127. The tests T1-T5 show that the reduction 

in volume induced by saturation is lower in samples with lower compaction void ratio. 

The test T11 loaded up to        evidences that the collapse was much lower in this case 

that in the rest of the tests (                 ).   
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Figure 7.127: Oedometer wetting tests at various initial void ratios and vertical stresses (after Casini et. al., 2013). 

 

Axial strains acquired by saturation of the sample allow to obtain optimum dry density 

value for the soil sample, favoring collapse. Those strains plotted versus the compaction 

dry unit weight Fig. 7.128 led to the conclusion of preparing the material sample at a dry 

unit weight of          
  ⁄  and a water content of      ,. These properties are 

associated with a collapse strain equal to     .  

 

Figure 7.128: Collapse axial strain upon saturation versus compaction dry unit weight (after Casini et. al., 2008) 
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Soil water retention curve has been also obtained in a suction controlled oedometer test 

with a sample prepared at a void ratio          and a degree of saturation           and 

loaded at constant vertical stress             . The suction was controlled by 

changing pore water pressure    in the range between         and        . The 

experimental data shown in Fig. 7.129 reveals the existence of hysteresis in the soil water 

retention curve. The drying branch is plotted in dash line. The value of suction at a degree 

of saturation of 95% is slightly lower than      . 

 

Figure 7.129: Soil water retention curve obtained with oedometer and Mercury intrusion porosimetry tests (after 
Casini et. al. 2008)   

Additionally, the material presents an intrinsic permeability of                  . 

Finally, a diagram of isotropic compression built from several oedometer tests performed 

at different suctions (Casini, 2008) allowed to quantify both the slope of the isotropic 

compression line and the slope of the normal compression line. 

7.4)    Experimental Program  

 

Two specimens were tested for the feasibility of the centrifuge trial (Casini, 2008). The 

test performed on the "sample F1" aimed at setting up the procedure of saturation at 1g. 

The objective of the test performed on "sample F2" was to investigate the response of the 

suction measurement during the centrifugation. Several measurement devices were 
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installed at different heights to register the degree of saturation at each point. Samples 

were prepared at a compaction state of dry density of          
  ⁄  and a water 

content of      . Properties of the centrifuged specimen F2 are summarized in 

Table 7.37.  

Table 7.37: Post-compaction properties of the Samples (after Casini et. al. 2013) 

 

 

 

The sample was placed in a cylindrical container of 300 mm in diameter and 300 mm 

height, Fig. 7.130. It includes 5 high-capacity tensiometers, 4 LVDTs and a system to 

impose water pressure at the bottom of the sample. Five tensiometers were installed on 

the lateral side of the container. Three of them, provided by ENPC-CERMES (labeled ENPC) 

(Chiu, Cui, Delage, De Laure, & Haza, 2005), (Muñoz, De Gennaro, & Delaure, 2008) were 

installed along one vertical profile. The two remaining tensiometers were provided by 

Durham University (labeled DU) (Lourenço, Gallipoli, Toll, Evans, & Medero, 2006) and 

installed along the diametrically opposed vertical profile. The tensiometers were first 

saturated in a pressurized cell at 2.0 MPa. Afterwards, the porous stone was covered by a 

thin layer of saturated paste of Jossigny silt in order to ensure contact with the soil. Four 

LVDTs allowed the measurement of the vertical displacements      at the top of the 

sample. These LVDTs were positioned at a distance of about 10 cm from the center of the 

sample. 

Sample  ( )    
(  

  ⁄ )    
(   ) 

F-2 16.8 14.1 65 
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Figure 7.130: Scheme of the samples. Top: Top view of the samples with a circular foundation and displacements 
transducers (LVDT). Bottom: Vertical section of the samples with the HCTs diametrically opposed (after Casini 

2008) 

 

The "test F2", consists of six stages: (1) a period of equilibration of the tensiometers at 1g, 

(2) the beginning of the centrifugation with the corresponding increase in gravity, (3) the 

connection of the base of the sample with the water reservoir (in order to maintain a 

water level at the bottom of the silt layer and afterwards to let the suction profile to 

balance), (4) the saturation of the sample at 50g (by raising the water level up to the 

ground surface), (5) the realization of a penetration test at 50g (under this saturated 

conditions) and (6) the stop of centrifugation with the corresponding decrease in gravity. 
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7.4.1)     Measures from experimental tests 

Figure 7.131 shows the evolution of the water pressures versus the imposed acceleration, 

in the following stages: acceleration and deceleration. Fig. 7.132 shows the evolutions of 

both the displacements and pore water pressures registered throughout the entire 

Test F2. 

Response of the tensiometers during acceleration and deceleration is shown in Fig. 7.131. 

The upper plot shows the evolution of the pore pressures measured in one of the 

tensiometer sets (CERMES) during the acceleration stage. Initial pore pressures are 

negative, corresponding to the suctions set up during compaction. There is a slight 

response of tensiometers during the acceleration stage from 1g to 50g (7 minutes 

duration) probably due to the reaction of the measurement devices.  

It is noteworthy that, at the end of the acceleration suction values are very similar to the 

initial values indicating that suction forces are not affected by gravitational forces 

Gens (2010). At longer term, there are changes in pore pressures corresponding to the 

consolidation process associated with the new stress state in the specimen. 

 The observations are confirmed by measurements during the deceleration stage from 50g 

to 1g, As Fig. 7.131b shows, pore pressure readings do not react to the change of 

centrifuge acceleration, indicating again the insensitivity of matrix suction to gravitational 

forces. 
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Figure 7.131: Evolution of pore pressures in the centrifuge test on Jossigny silt: (a) acceleration stage, (b) 
deceleration stage. (After Gens 2010) 

 

Evolution of the pore water pressure         , vertical displacement        and 

acceleration are shown in Fig. 7.132 for the entire test.  
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Figure 7.132: Evolution of pore pressures and vertical displacements in the centrifuge test on Jossigny silt. (After 
Casini 2008). 

 

At the beginning of the test before the centrifugation, the DU tensiometers equilibrate 

quickly with the initial value of suction in the compacted material. At the same time ENPC 

tensiometers experiment a slightly slower suction increase. At the end of this equilibration 

period at 1g, all the tensiometers indicate almost the same value of suction, corresponding 

to the value of suction prevailing in the sample just after compaction. At beginning of the 

centrifugation, all the tensiometers exhibit a sudden increase in water pressure, followed 

by a progressive return to the values registered before the centrifugation. This effect can 

also be understood as an undrained process followed by a consolidation. This undrained 

process is governed by the rapid increase in total stress caused by the gravity increases. 

After connection with water reservoir, the water pressure measurements evolve 

progressively towards new values of suction governed by the hydrostatic profile that 

developed above the water level at 50g. Further increase is observed in the measurements 

once the water level is raised up in the sample and the material become nearly saturated. 

Regarding the registered displacements, it is noted that once centrifugation was started a 

sudden problem caused the total deceleration of the rotation's arm. In that moment 

LVDT's registered a sudden deformation of the sample which at the time of restart of the 

test was not completely recovered, leaving a remaining and permanent deformation. From 
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this moment and during the centrifuge period the devices registered a remarkable 

displacement at the stage of watering from the sample's base 0.15MPa. This watering 

produces the collapse of the sample as the water front rise up to the sample's top, 

Fig. 7.132. 

 

7.5)    Modelling of F2 Test 

 

The test has been modeled by FEM hydro-mechanical formulation including the 

generalized BBM2 model and the simplified van Genuchten retention curve described at 

chapter 4.   

7.5.1)     Equations solved  

The numerical problem is addressed by solving the equations of water mass balance and 

stress equilibrium. It is noted that the gas phase is neglected in this case assuming that the 

variations of gas pressure are negligible in comparison to water pressure variations. The 

mass balance of water is mathematically given by the equation: 

 

  
(  

       
    )    (  

    
 )  (  )    

(7.1) 

  

where   
  and   

  are the apparent mass of liquid water and vapor in the liquid and gas 

phases respectively and,    
  and   

  are the advective and diffusive fluxes of water defined 

in chapter 2. The stress equilibrium is mathematically express by the equation: 

    

   
   (     )     

(7.2) 

where     (   ) is the dry density and    
  

 ⁄ .  

Both equations are discretized in a finite element fashion and solved simultaneously by 

using the finite element code Code_Bright, Olivella et.al. (1996). 
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7.5.2)     Geometry, Mesh,  Initial and Boundary conditions 

The model used to simulate centrifuge test of the shallow foundation is an axisymmetric 

piece of sizes 0.15m width and 0.30m high, Fig. 7.133. The mesh of the model consists of 

450 rectangular elements (with linear interpolation).  

 

Figure 7.133: Model Geometry, mesh and both mechanical and hydraulic boundary conditions. 

 

The tests is composed of three time intervals: (a) Equilibrium stage at 50g with 

impervious condition at the bottom boundary of the sample, (b) Saturation stage by water 

pressure applied at the base and (c) Load stage coming from the foundation.  

As for the hydraulic intervals, a null water flux is applied in the bottom and lateral 

boundaries as conditions. Then at the saturation stage (during centrifugation) the null 

water flux is maintained for the lateral boundary while a liquid pressure              is 

applied in the bottom boundary of the sample.  
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As for the mechanical condition, both null vertical displacements and horizontal 

displacements are imposed in the bottom and in the lateral boundaries respectively. Then 

at the loading stage a rate of vertical displacement is applied in the foundation site.  

Table 7.38 summarizes the time intervals considered in the simulation together with the 

corresponding conditions initial and boundary. 

Table 7.38: Intervals, Initial and Boundary conditions considered at the centrifuge simulation. 

Interval Time [hs.] Initial and Boundary Conditions 

1 0-7.6 

Initial conditions: 

  
    

           

          

  
              (suction corresponding to 

compaction condition) 

Lower boundary(1): 

     

     

Lateral boundary(2): 

     

     

2 7.6-9 

Lower boundary(1): 

     

            

3 9-11.82 

Lower boundary(1): 

     

            

Upper left boundary(5): 

 ̇         
   ⁄  

 

The initial conditions adopted in the simulation correspond to that assumed at the 

laboratory test. A constant initial water pressure corresponding to a water content of 13% 

is applied to the sample, an initial volumetric stress state of magnitude 0.01MPa is 

considered, a pre-consolidation pressure at saturated conditions of about   
       is 

provided and an initial porosity of        is assumed to the medium. 
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7.5.3)     Material Parameters 

In this section, material parameters used in the numerical model are presented. The 

simplified van Genuchten retention curve presented in chapter 4 has been calibrated 

based on the laboratory data at hand.  

Figure 7.134 presents the contour of the simplified van Genuchten retention curve used in 

the model and its comparison with the experimental retention curves. The material 

parameters describing the water retention shape are              and       .  

 

Figure 7.134: Water retention used at the numerical simulation. 

 

As for the mechanical model, the generalized-BBM2 model described in chapter 4 has been 

used. This model has been chosen because of its ability to deform the yield surface's shape, 

which allows for a progressive transition from BBM to mixed shear-cap model depending 

on the value of  :  

    (  
 ) [ ̇ 

     (  (   )
  

 (  
 ) 

)

 

 ̇ 
 ]

 
 ⁄

 

(7.3) 

 

where a shape parameter     reproduce the dissipation function (mechanism) of the 

critical state model BBM2 for partially saturated porous media.  
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During the watering stage, wetting induced collapse has been modeled with    . Then at 

the loading stage, foundation displacements and stresses have been modeled with a shape 

parameter       in order to consider a shear failure criterion closer to the Drucker-

Prager one.  Fig. 7.135 sketches the yield surfaces in addition to stress points at stages of 

wetting collapse and foundation load for two different sections. 

  

 

Figure 7.135: Yield surfaces and stress points at stages of: (a) wetting collapse and (b) foundation's loading and 
for two sections at different depth. 

 

Insights into the stress paths, yielding processes and yield surface states are presented 

below in subsection of loading phase results. 

Mechanical law has been calibrated to reproduce the collapse shown by the test. Values 

        for the slope of isotropic compression line and        for the slope of normal 

compression line has been obtained.  

The numerical integration of the mechanical model has been performed with algorithm of 

Interior-Point class, which gives a return mapping technique at Gauss point level.  An 

initial duality gap parameter         has been assumed.  The maximum number of 

Newton iteration allowed is 30 together with a maximum of 5 reductions of the line-search 

parameter. A viscosity parameter of about        is used at the stage 2 to facilitate the 
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convergence. A tolerance in the error norm of the residual vector (   ( )  ) of (      ) 

is selected.   

Figure 7.136 shows the shape of the dependency of isotropic yield function in the plane 

(    
 ).  

 

Figure 7.136: Yield Locus Calibration (BBM2) 

 

Table 7.39 summarizes the parameters used for the hyperporoplastic model together with 

the parameters used in the interior-point algorithm to integrate the mechanical 

constitutive law.  
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Table 7.39: Mechanical Material parameters used in the numerical model 

MECHANICAL DATA 

hyperporoplastic model 
 

Elastic Parameters 
 Gibbs energy: 

  
  
  
 

Plastic Parameters 
  

        
      

N 
  
  
  

      
    

 
Shape Parameters 

     : (wetting stage) 
     : (loading stage) 

 
Integration Parameters 

Algorithm index 
Newton tol. 

Line_search param. 1 
Line_search param. 2 

Max. iter. barrier 
Max. iter. Newton 

Max. Line_search iter. 
 

0.005 
0.3 
0.9 

 
 

0.07 
31 

1.65 
0.07 

0.0048 
3.4 

10, 3 
1E-10 

 
 

1.0 
0.5 

 
 

3 (interior point algorithm) 
1E-6 
1E-2 
0.1 
1 

30 
5 

   
 

  
     (   )(   )

 (   

 
 (   )

  
  )

   
 

 
  

 (   )

 (        ) 

Yield function: 

     
  

 
  

  

   ( ) 

  ( )  (
  

 

 
)
  ( )

 

 

 

Finally, Table 7.40 summarizes the hydraulic and phase parameters used in the numerical 

model of the shallow foundation. 

 

Table 7.40: Hydraulic and Phase parameters used in the numerical model 

HYDRAULIC DATA  

Retention Curve (simpl. 
van Genuchten)   

        0.013 
   (  

 

  
)

  

 

  0.52  

Intrinsic Permeability   
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   2.85E-14 

    

  

(   ) 

(    )
 

  
  

   0.4583  

Liquid Phase Rel. 
Permeability  (Power 
law)   

  3        
  

 

PHASE DATA  

Solid Phase (Density)   

   [   
  ] 2700  

 

7.5.4)     Modeling Results 

In this section the results obtained from the numerical model are presented and validated 

in comparison with the measurements from centrifuge test. The section is organized as 

follows: firstly, the wetting stage is addressed analyzing the liquid pressure profiles and 

evolutions exerted by the sample. Then the displacement produced as a result of the 

wetting is displayed and analyzed. Secondly, the loading stage is addressed by analyzing 

the results of the foundation's load application. Finally, isochors and vectors of primary- 

governing and dependent variables are presented (displacement, hardening, plastic 

multiplier, liquid saturation, porosity, shear strain, plastic shear strain, water flux). 

 

7.5.4.1)      Modelling results of the wetting stage 

 

Numerical model is validated contrasting both the liquid pressures registered at the 

measuring devices installed in the sample and the liquid pressures obtained from the 

simulation. 

Firstly, Fig. 7.137 contrasts the evolution of both: (a) liquid pressures registered at the 

measuring devices installed in the sample and (b) the results from the simulation. They 

show a good agreement between the measurements and the model computations.   
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Figure 7.137: Comparison between the Liquid pressures measures at the laboratory and the response of the 
numerical model. Collection of water pressures' jump at the three depths: (a) Bottom (0.085m) , (b) Middle 

(0.155m) and (c) Top (0.245m). 

 

At time of connection with water, the water pressures along the sample start to increase. 

Liquid pressure increases at each horizontal section in accordance with the arrival of the 

wetting front. At all depth, a jump of liquid pressure of about 0.15 MPa (equivalent to the 

imposition at the sample base) is observed. 

Secondly, in line with the model validation, Fig. 7.138 shows isochrones of saturation 

degree and porosity obtained through the numerical simulation at three different times: 

(a) initial time       , (b) onset of centrifugation           and (c) end of wetting 

         .  Moreover, Fig. 7.139 shows profiles of liquid pressures in the sample at the 

same times: (a) initial time, (b) onset of centrifugation and (c) end of wetting, again 

obtained through the numerical simulation and its comparison with the corresponding 

measures from the tensiometers at the centrifuge laboratory test. 

Fig. 7.138 shows that as the saturation front progresses from below, a continuous collapse 

of the sample is produced and in consequence a densification of the material is observed. 

Regarding the liquid pressure profiles, Fig. 7.139 clearly shows its evolution at the end of 

each phase. The graph shows a good agreement between the profiles measures at the 

tensiometers and the liquid pressure profiles obtained with the numerical model, except 

for the upper layer which remains partially saturated. They indicate that water pressures 

have reached a state close to equilibrium at time of foundation loading. 
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Figure 7.138: Isochrones of: (a) Liq. Saturation and (b) Porosity at three different times of the simulation, the 
initial state (1g), the onset of wetting process (50g) and the end of wetting collapse (50g). 
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Figure.7.139: Liquid pressure profiles at different times of the simulation: the initial state (1g), the onset of 
wetting process (50g) and the end of wetting collapse (50g) and its comparison with the experiment measures. 

 

Continuing with the model validation, regarding the displacements induced by wetting 

"collapse", Fig. 7.140 presents a comparison between the registered vertical 

displacements and those obtained from the numerical model. Both graphs present a good 

agreement between them. It is noted that a first settlement takes place during the 

equilibrium stage. The magnitude of those displacements reaches 3mm. From that 

moment the water pressure is applied at the model base producing the wetting collapse. 

This phenomenon leads the observed vertical displacements up to 5mm. A small 

difference between both settlements is observed. This fact might be due to the remaining 

unsaturated upper layer in the model. 
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Figure 7.140: Comparison between the vertical displacements measures at the laboratory and that obtained from 
the numerical model. 

 

Figure 7.141 shows isochrones of vertical displacements exerted at the sample during 

centrifugation (50g) at two different times: (a) onset of wetting phase and (b) end of 

wetting collapse. From the onset of wetting phase at          a continuous collapse of 

the sample until its full saturation is produced. The observed settlements are uniform and 

reach a magnitude of 5mm. 

The evolution of displacements continues in the next stage once the foundation load is 

applied. This displacements are studied in the next subsection where the results of the 

loading stage are addressed. 
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Figure 7.141: Isochrones of vertical displacement at two times of: (a) onset of wetting phase (50g) and (b) end of 
wetting collapse (50g).  

Further insights into the collapse process are provided by isochrones of hardening of the 

yielding points (  
 )  and plastic multiplier  (  ), Figs. 7.142 and 7.143. 

 

Figure 7.142: Isochrones  of hardening parameter at the times of: (a) onset of wetting stage t=7.6hs. (50g) and (b) 
end of wetting collapse t=8.82hs. (50g). 
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Figure 7.143: Isochrones  of Plastic multiplier at the times of: (a) onset of wetting stage t=7.6hs. (50g) and (b) end 
of wetting collapse t=8.82hs. (50g). 

 

The corresponding stress-suction paths are drawn in Figures 7.144 and 7.145 in three 

points at different heights of the sample. The upper point, at low stress level does not 

experiment collapse and remains in elastic regime. The lower point, at the highest stress 

level, reaches the LC yield limit at early time and starts to collapse at a suction equal to 

0.007 MPa. 

As consequence, the stress path starts to follow the plastic line. After saturation, water 

pressure keeps increasing at point A and the effective stress path goes back in the elastic 

zone while point B starts collapsing.    

 

 

 

 

 



CHAPTER 7 -Response of a foundation on a collapsible layer under atmospheric actions 

________________________________________________________________________________________________________ 

382 
 

 

Figure 7.144: Stress paths for three points at different heights of the sample with the corresponding yield surfaces 
BBM2 at the end of the collapse stage. 

 

 

Figure 7.145: Mean stress-Suction paths for three points at different heights of the sample with the corresponding 
LC yield limits.   
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7.5.4.2)      Modeling results of the loading stage 

 

Following with the numerical model validation, in this sub-section the displacements 

obtained as consequence of the foundation's load application are addressed. Figure 7.146 

shows the load-displacement curve obtained as consequence of the foundation's action. An 

increase of  f (load/foundation area) can be noticed while displacements increase. This 

increment stops later to give rise to a slow and smooth decrease. The graphs 

f(load/foundation area)- displacement show a good agreement between the measures and 

the model results. 

 

 

Figure 7.146: Load-Displacement curve due to foundation action. Comparison between the measures and the 
model results. 

 

Below, Fig. 7.147 shows isochrones of both: (a) vertical displacements and (b) porosity, 

obtained during the loading stage at three different times of the applied total load.  
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Unlike the observations on porosity variations during the wetting stage, in the loading 

stage variations concentrate in the zone under the foundation. A densification of the 

material is produced just under the foundation while the soil at the footing edge expands 

continuously until a land lift is produced.  

 

 

Figure 7.147: Isochrones of vertical displacements and porosity in the loading stage at three different times of the 
total applied load. 

 

Once the foundation action starts through the displacement rate application, a 

concentration of stresses and strains can be observed at the upper left side of the model. 

The zone of influence extends to about       (d is the diameter of the foundation).  

Figure 7.148 shows isochrones of plastic multiplier and deviatoric stress invariant 

developed at the zone of influence, under the load. Isochrones of porosity and shear 

strains are also presented. The figure shows an image of the failure mechanics at time of 
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14% of the total applied load (t=9.23), which corresponds to a load value equivalent to 

     

   
⁄  in the load-displacement curve. 

 

 

Figure 7.148: Contours of plastic multiplier and Second (Deviatoric) invariant of stresses at a time step after the 
foundation load application. Contours of porosity in the sample after the foundation load application. 
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Isochrones of porosity evidence a decrease of porosity matching with concentrations of 

shear strains and plastic flow, in the same zone. 

The development of a localized plastic zone is evident. It is localized below the foundation 

and indicates that the failure mode in this case is of punching type.  

This mode is accompanied by development of plastic shear strain on the outer side 

foundation as load increases.  As load evolves the magnitude of plastic shear strain 

increases at the foundation boundary but the plastic shear strain at the central zone 

remains essentially constant, see Fig. 7.149. 

 

 

Figure 7.149: Contours of plastic shear strains at two different times after the application of the load's foundation.  

 

Fig. 7.150 shows vectors of displacements, water flux and plastic strains. It evidences a 

concentration of vertical displacement below the foundation, accompanied by upward 

movement of the ground water towards the soil surface. Vectors of plastic strains at 

principal directions are produced in planes at 45o with respect to the plane of principal 

shear plastic strains. This supports once again the type of failure mode. 
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Figure 7.150: Vectors of displacements, Plastic strains and liquid flux on deformed section of the soil. The vectors 
are shown at the time step 9.23. 

 

Figure 7.151 shows vectors of displacement exerted at the model at different times of the 

applied load. The overall mechanical response at loading stage is better understand with 

isochores of porosity and plastic shear strain attached to the vectors of displacements.  
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Figure 7.151:Vectors of displacement, isochores of porosity and plastic shear strain at different times of the 
applied load: (a) 14% of total load, (b) 40%of total load and (c) 100% of total load. 
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Figure 7.152 illustrates the vertical and horizontal components of displacement vectors 

exerted in the sample during the loading stage.  

 

Figure 7.152: Vectors of vertical and horizontal displacements at different times of the centrifuge test. 

The components of vertical and horizontal displacements at 100% of the applied load 

evidence clearly the land lift around the foundation's boundary.  
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Figure 7.153 shows vectors of liquid flux at different times of the centrifuge test. 

 

Figure 7.153: Vectors of liquid flux and isochores of saturation at different  times of the applied load. 

 

Vertical displacements, along a horizontal profile at a top layer of the soil column, are 

presented in Fig. 7.154. An analysis of the stress-paths followed is also presented. Stress 

paths exerted at different points under the foundation are shown due to the relevance 

they have in the model results.  
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Figure 7.154 presents profiles of vertical displacement at different time steps. The 

moments at which the pore water pressure is applied at the sample base, collapse 

initiation and application of foundation load are marked in the figure. At the time step 11 a 

land lift is clearly observed next to the footing edge. 

 

Figure 7.154: Profile of vertical displacements at a horizontal line just under the soil surface. A soil lift is observed 
next to the footing edge at time step 11. 

 

Settlements below the foundation reach a value of 3.7cm at 100% of the applied load 

(4.5kPa) while soil surface experiences a lift close to the foundation. This pattern is typical 

of the punch-type failure generally associated to the response of loose material such as the 

one considered here        
  ⁄ . 

Figure 7.155 shows the stress paths completed by the model at different points in the 

vicinity of the foundation. Point P3, which is outside the influence zone, experiences small 

changes in shear and remains close to the original stress point. 

Points P1,P2 and P4 which are located in the area of the load influence, experience a 

significant increase of the deviator as the stress evolves toward the critical state line. 

The punching failure is thus the result of an initial contracting behavior followed by a 

small dilatancy in the last stage of loading  which brings material to the critical state. 
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Figure 7.155: Computed stress path for four points in the vicinity of the foundation. 

 

The corresponding shear strain - deviatoric stress curve is plotted in Fig. 7.156. A slight 

peak in the stress-strain is observed as a result of the late contracting behavior. The slight 

softening observed explains that no clear shear band develops in the failure mode. 
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Figure 7.156: Deviatoric stress vs. Deviatoric strain, responses at four different points around the foundation.  

 

7.5.5)     Bearing Capacity  

The bearing capacity of the shallow foundation can be evaluated following Terzaghi’s 

proposal, 

         ( )    ⏟        
  

                 
(7.6) 

 

where the shape factors for circular foundations take the values         and       , q’ 

is the surcharge load, B is the radio of the foundation and   is the specific weight of the 

porous medium. The cohesion c(s) is assumed to depend on the suction. This introduces a 

direct influence of the partially saturated condition on the bearing capacity of the 

foundation. The relation assumed is that presented by Alonso et. al. (2010),  

 ( )     (  )
    (7.7) 

 

where, (  ) is the saturated cohesion, (  ) is the degree of saturation, ( ) is the suction 

and  ( ) is a material parameter. Thus, according to Potts (2001), it is possible to obtain 

the bearing capacity factors from numerical simulations where cohesion and soil weight 

are cancelled separately. 
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From equation 7.6 three cases are necessary for the determination of the bearing capacity 

factors by finite element method. These cases are the following: 

a) weightless soil without surcharge  for the determination of “Nc” 

b) weightless and cohesionless soil for the determination of “Nq” 

c) cohesionless soil without surcharge for the determination of “N" 

For the problem at hand only the cases (a) and (c) would be necessary to address due to 

the absence of surcharge load. Considering a weightless soil without surcharge the 

determination of the bearing capacity factor is obtained as (   
    

    ⁄ ). Moreover, a 

closed-form exists to determine this capacity factor which in the case of a centered and 

vertical load on a circular foundation is given by: 

 

      ( )  [   (     ( ))      (
 

 
 

 

 
)   ] 

  

(7.8) 

   is found to be equal to 34.98 using a friction angle of         .  

   has been assessed by performing a new finite element simulation where the weight of 

the soil is cancelled at the beginning of the loading phase. Weight decrease has been done 

gradually to avoid numerical problems. Figure 7.157 shows the contour of the mobilized 

bearing capacity factor   . Assuming, for the new case as presented by Potts (2001)      is 

the load of first yield, the computed bearing capacity factor for the weightless case is very 

close to the analytical value         4.   
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Figure 7.157: Mobilised bearing capacity factor vs Normalised settlement. Result from the numerical FEM model. 

   

For the sake of illustration Fig. 7.158 shows a comparison of the plots      for both the 

simulation considering the self-weight and the simulations ignoring the self-weight.  

 

Figure 7.158: Deviatoric stress vs. Deviatoric strain, responses at four different points. Considering and ignoring 
the self-weight. 
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Determination of the bearing capacity factor   can be then achieved by subtracting the 

results obtained in the weightless case from the full case. From Eq. 7.6 and under the 

previous considerations, Ncan be determined as (   
(       )

    
⁄ ). Figure 7.159 

shows the computed mobilized bearing capacity factor    obtained with the numerical 

computation. 

 

 

Figure 7.159: Mobilised bearing capacity factor vs. Normalised settlement. Result from the numerical FEM model. 

 

with the same assumption as for   ,     is estimated as the point of first yield. The bearing 

capacity factor results to be      .  

Finally, Fig. 7.160 presents the computed mobilized   as the average value of those 

obtained at points below the foundation, as a launch of settlement. Assuming again that 

     is the value of the mobilized bearing capacity at first yield, a value of 0.06MPa is 

found. 
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Figure 7.160: Mobilised deviatoric stress vs. Normalised settlement. 

 

The previous study provided a value for the bearing capacity of the foundation equal to 

     √           . The same result can be obtained using Eq. 7.6, superposing the 

cohesion contribution and the self-weight contribution, and using the computed bearing 

capacity factors, Table 7.41.  

Table 7.41: Bearing Capacity factors obtained from the finite element model. 

 

 

 

 

 

It can be concluded that the centrifuge test for the collapse of a shallow foundation has 

been conveniently simulated using the hyperporoplastic model BBM2 and the interior-

point algorithm presented in chapters 4 and 5, respectively.  

The model has the ability to reproduce the collapse by wetting of the sample as well as the 

soil response after the load application and provides value of bearing capacity comparable 

with the classical formula. It evidences moreover that failure pattern is closer to a 

punching failure rather than a shear band failure. 

      

34.98 20 
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Further the effect of lode angle on the critical state has been addressed. The influence of 

the third invariant affects the shape of the yield surface BBM2 in the deviatoric plane, 

changing from (1) Drucker Prager shape (no Lode) to (2) smoothed Mohr Coulomb by van 

Eekelen proposal. 

The influence is shown by comparing both: (a) the vertical strain / vertical stress curve 

and (b) the deviatoric stress / deviatoric strain curve, Fig. 7.161. The followed stress path 

shows a compressive response and keeps following this trend. As consequence negligible 

differences are given by the Lode consideration. 

 

 

Figure 7.161: Comparison at  the centrifuge model's response for both load angle influence and without its 
influence at the hyper-plastic model. 

 

Figures 7.162 and 7.163 show isochrones of plastic multiplier and deviatoric strain at the 

time of a    of the applied load. The similarity of both isochrones values confirms the 

negligible influence of the Lode angle in this case, due to the stress path exerted by the 

sample under the applied loads at (a) wetting stage and (b) loading stage. 
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Figure 7.162: Influence of the Lode Angle in the Model Response. Contours of plastic multiplier at time step 8.89. 

 

Figure 7.163: Influence of the Lode Angle in the Model. Contours of deviatoric invariant at time step 8.89. 
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7.6)     Field Bearing Capacity 

 

In this subsection, the field bearing capacity is evaluated by bringing the foundation up to 

the failure under real atmospheric conditions. To this end, a typical meteorological record 

from the central part of Catalonia has been used. 

The study has been performed at prototype scale to avoid scaling of the atmospheric 

quantities. The initial configuration is a scaled configuration of the centrifuge model at the 

end of the wetting collapse stage and before the loading stage. The numerical bearing 

capacity test has been carried out on the soil after two years of atmospheric "climatic" load 

to represent real conditions. 

7.6.1)     Equations solved 

The numerical problem is addressed by solving the equations of water mass balance and 

stress equilibrium stated in subsection 7.5.1, in addition to the equation of energy balance, 

given by: 

 

  
(     (   )                 )    (      

    
    

)  (  )    
(7.9) 

 

where   ,    and    are the specific energies of porous skeleton, liquid and gas phases 

respectively,    is the heat flux vector of the porous medium and    
,    

 and     
 are the 

energy fluxes of the porous skeleton, the liquid phase and the gas phase, respectively. 

It is noted that gas pressure is considered constant in the problem (infinite mobile gas). 

The three equations are discretized by a finite element scheme and solved simultaneously 

by using the finite element code Code_Bright, Olivella et.al. (1996). 

 

7.6.2)     Geometry, Mesh, Initial and Boundary conditions 

The model is an axisymmetric slice of 0.15m width and 0.30m high, see Table 7.42. The 

mesh of the model consists of 450 quadrilateral elements (with linear interpolation) and 

496 nodes. 

Model is composed by two intervals: one for equilibrating temperature and water 

pressure under the application of atmospheric load and other for application of the 
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foundation up to failure. During this period the atmospheric load is also acting at the soil 

surface. 

The following boundary conditions have been applied during the test: (a) null water flux 

and thermal flux at the lateral boundaries and (b) liquid pressure and temperature at the 

bottom boundary. As for the mechanical condition, both null vertical displacements and 

horizontal displacements have been imposed at bottom and lateral boundaries, 

respectively. A rate of vertical displacement has been applied at a part of the top boundary 

corresponding with the foundation.  

 

Table 7.42: Boundary conditions, Load configuration, Geometry and Mesh used in the modeling. 

 

Interval and 

Boundary 

Conditions 

Interval Boundary Conditions 

1 

Foundation 

load 

0-20 [days] 

Lower boundary: 

     

            

         

On top of foundation: 

 ̇           
   ⁄  

atmospheric load 

On free soil surface: 

atmospheric load  

(root_atm.dat) 

Load 

Configuration 
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Model 

Configuration 

at prototype 

(field) scale 

 

 

 

Before application of foundation load, the system has been left equilibrated under the 

application of the atmospheric condition in order to reach stationary conditions. Initial 

conditions are those obtained from the centrifuge Test F2-(scaled model) at the time step 

8.82hs., which corresponds to the time just before the foundation load application. 

Fig. 7.164 shows a profile of the initial values considered for the thermo-hydro-mechanical 

variables. 

 

Figure 7.164: Profile of initial values of geotechnical variables for the prototype model. 
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Foundation is considered permeable and flexible which may corresponds to the limit case 

of a "deficient" construction practice (poor water-cement ratio, no compaction and bad 

curing).  

7.6.3)     Material Parameters 

The material parameters used in the modeling are those summarized in Tables 7.43 and 

7.44.  

Table 7.43: Mechanical material parameters used in the numerical model  

MECHANICAL DATA 

hyper-thermoplastic model 
 

Elastic Parameters 
  

  
  
  
 

Thermal Parameters 

  [ 
 

 
] 

       
 

Plastic Parameters 
  

        
      

N 
  
  
  

      
    

  [ 
 

 
] 

      
 
Shape Parameters 

     
 

Integration Parameters 
Algorithm index 

Newton tolerance 
Line_search param. 1 
Line_search param. 2 

Max. iter. barrier 
Max. iter. Newton 

Max. Line_search iter. 
 

0.005 
0.3 
0.9 

 
 

3e-6 
 

          at the 
corresponding point 

 
0.07 
31 

1.65 
0.07 

0.0048 
3.4 

10, 3 
1E-10 

 
2.46e-3 

1e-3 
 
 

0.5 
 
 

3 (interior point algorithm) 
1E-6 
1E-2 
0.1 
1 

30 
5 

 

   
(    (  ))

  
     (   )(   )

 (   

 
 (   )

  
  )

   
 

 
  (    (  ))

 (   )

 (        ) 

 

     
  

 
  

  

   ( ) 

  ( )  (
  

 

 
)
  ( )
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Table 7.44: Hydraulic and Thermal parameters used in the numerical model 

HYDRAULIC AND THERMAL DATA  

Retention Curve (simpl. 
van Genuchten)   

        0.013 

   (  
 

  
)

  

 
  0.52 

    0.38  

Intrinsic Permeability 
(Kozeny's model)   

     
   2.85E-14 

    

  

(   ) 

(    )
 

  
  

   0.4583 

Liquid Phase Rel. 
Permeability  (van 
Genuchten law)  

    √  (  
 

  
)

  

 
  0.52 

Diffusive flux of Vapor 
(Fick's law)   

 [
    

   ⁄ ] 5.9E-10 

  
   (       ( ) )   

  N 2.3 

   1.0 

Conductive Flux of Heat 
(Fourier's law)   

             1.48 
        

             2.0 

 

PHASE DATA  

Solid Phase (Density)   

   [   
     ] 1000  

  [ 
 

 
] 3e-6  

   [   
  ] 2700  
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7.6.4)     Modeling Results 

 

Figures 7.165a, 7.165b and 7.165c show the evolution of temperature, liquid pressure and 

horizontal stress under the action of the atmospheric load at the pre-load stage.  

Figures 7.161d, 7.161e and 7.161f show the profile of liquid pressure and horizontal stress 

before the start of the foundation load and Fig. 7.161g show profiles of temperature 

computed under the atmospheric load at the pre-load stage. The evolution of horizontal 

stress evidences an increase of deviatoric stress due to deformations related to the soil 

atmosphere condition which leads to a different stress state at the beginning of the load 

with respect to the centrifuge stress state at this time. 

 

Figure 7.165: Evolutions of Temperature, liquid pressure and horizontal stress at the pre-load stage. Profiles of 
liquid pressure, horizontal stress and temperature in different times at the pre-load stage. 

 

Displacements are presented along two profiles located at horizontal coordinate x=0.6m 

and horizontal coordinate x=1.5m, Fig. 7.166. 
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Figure 7.166: (A) Evolution of displacements at three points centered  under the foundation, after the foundation 
load application. (B) Evolution of displacements at three corner points under the foundation, after the foundation 

load application. 

 

Figure 7.166 evidences that the responses obtained for the prototype and the model at 

points z=0.35m and z=0.7m present discrepancies. It will be shown that the different  

responses are due to the different initial states of stress existing between the model and 

the prototype at time of foundation loading. 

They particularly show that displacements at the prototype and the model tend to 

stabilize at a certain time coinciding with the fact of having reached the maximum (failure) 

load. 

Figure 7.167a shows the load-displacement curve obtained at the prototype (field scale) 

and its comparison with the corresponding curve obtained at the model "Test-F2". The 

same discrepancy can be observed between the prototype and the model.  

Figure 7.167b shows profiles of vertical displacements taken at different times during 

foundation load and computed at a horizontal section near the column surface. Those 

profiles are compared with the corresponding profiles obtained at the model "Test-F2".  

An important soil surface lift can be observed close to the foundation in the prototype 

modeling which is inexistent in the model. This fact will also be further explained by 
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material dilatancy due to a different initial stress state and saturation condition at time of 

loading. 

 

Figure 7.167: Load displacement curve due to foundation action in addition to the atmospheric load at the 
column surface. Comparison between both the centrifuge model (without atmospheric load) and the prototype 

responses. 

 

The load-displacement curve for the prototype and the Test F2 evidence a good 

concordance although the prototype exhibit a lower stiffness in the early stage of loading. 

This is due to different initial stress state and saturation conditions between the prototype 

and the model at the time of foundation load initiation. 

Fig. 7.168 presents a comparison between deviatoric strain / deviatoric stress curves in 

three different points under the foundation obtained for the prototype and the Test F2.  
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Figure 7.168: Deviatoric stress vs. Deviatoric strain responses at three different points of the upper soil layer of 
the Silty column, for both: (a) the prototype (field scale) and (b) the Test F2 (laboratory scale). 

 

A good concordance is observed in the curves for low values of deviatoric strains. 

However softening is observed for strain values below      in the prototype while it 

occurs later in the model, see Fig. 7.156. Such a response is emphasized at point c in the 

foundation boundary. 

Fig. 7.169 shows curves deviatoric strain / deviatoric stress at different points of the soil 

under the foundation. 
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Figure 7.169: (A) Deviatoric stress vs. Deviatoric strain responses at three different points of the upper soil layer 
of the Silty column. (B) Deviatoric stress vs. Deviatoric strain responses at four different points under the shallow 

foundation. 

 

In all cases an initial elastic branch is observed followed by a plastic branch evidenced by 

the sudden increase of strain rate with respect to the stress variations. Points B and D 

soften earlier than points A and E due to the higher shear stresses observed in those 

points.  

Fig. 7.170 shows stress paths obtained at different points located close to the surface and 

surrounding the foundation, the corresponding yield surfaces at the end of the loading 

process are also shown. 
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Figure 7.170: Stress path followed at different points located under and next to the foundation's load action. 

 

The points located below the foundation: A, B and C, experience higher level of stress and 

reach the yield surface near the critical state but always at the dilatant side. At those 

points a perturbation of the stress-path is observable as consequence of a marked 

decrease of temperature as foundation load progresses. 

The higher softening responses occur in the zone of soil next to the footing edge, points D 

and E. This zone experiences high shear stresses. As we move away from the area of 

foundation influence the stress level decreases and stress states reach the yield surface at 

values of           . 
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Figures 7.171 to 7.179 show isochrones of several thermo-hydro-mechanical variables.  

Fig. 7.171 presents isochrones of liquid pressure, temperature, vertical displacements and 

hardening parameter     
 experimented by the soil column at 9, 14 and 20 days after the 

foundation load onset. 

 

Figure 7.171: Contours of environmental variables, vertical displacements and hardening parameter   
  after the 

foundation's load application. (a) after 9 days of load's application, (b) after 14 days of load's application and (c) 
after 20 days of load's application. 

 

It can be observed that changes of liquid pressure and temperature are relatively low 

during the loading process. Thus the process can be analyzed from a mechanical point of 

view. Leading to consider the bearing capacity obtained by the model as representative of 

the silty soil in its initial thermo-hydro-mechanical state. 

Fig. 7.172 shows the distribution of volumetric strain and mean stress. It evidences a 

concentration of stress in the zone located below the foundation. This is confirmed by 

pattern of deviatoric strain and deviatoric stress shown in Fig. 7.173, which shows the 

development of a near vertical narrow shear band below the corner of the foundation. As 
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shown in Fig. 7.174 and 7.175 which depict isochrones of plastic strain, plastic multiplier 

and hardening parameter p0s, the shear bands delimit a plastic zone essentially located 

below the foundation, indicating a punch-like failure type mechanism. 

Fig. 7.172 shows isochrones of volumetric strain, mean stress and liquid pressure exerted 

in the soil column at 9, 14 and 20 days after the foundation load onset. 

 

Figure 7.172: Contours of mean strain invariant, mean stress invariants and liquid pressure at three different 
times after the foundation's load application. (a) after 9 days of load's application, (b) after 14 days of load's 

application and (c) after 20 days of load's application. 

 

They appear to be only slightly affected by the atmospheric fluxes acting at the soil 

surface. This fact evidences the quick dissipation on pore-pressure perturbations due to 
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atmospheric input in presence of a bottom boundary condition that maintains ground 

water level on surface. 

Fig. 7.173 shows isochrones of deviatoric strains, deviatoric stress and porosity 

experimented by the soil column at 9, 14 and 20 days after the foundation load onset. 

 

Figure 7.173: Contours of deviatoric strain invariant, deviatoric stress invariants and porosity at three different 
times after the foundation's load application. (a) after 9 days of load's application, (b) after 14 days of load's 

application and (c) after 20 days of load's application. 
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Fig. 7.174 shows isochrones of horizontal, vertical and shear plastic strains obtained in the 

soil column at 9, 14 and 20 days after foundation load onset. 

 

 

Figure 7.174: Contours of plastic strains    
 

,    
 

 and    
 

 at three different times after the foundation's load 

application. (a) after 9 days of load's application, (b) after 14 days of load's application and (c) after 20 days of 
load's application. 

 

Fig. 7.175 shows isochrones of plastic multiplier and hardening parameter exerted in the 

soil column at three different times after the onset of foundation load application. 
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Figure 7.175: Contours of plastic multiplier and hardening parameter   
  after the foundation's load application. 

(a) after 9 days of load's application, (b) after 14 days of load's application and (c) after 20 days of load's 
application. 

 

 

Figs. 7.176 to 7.178, show the pattern of strain and stress corresponding with the 

mechanism discussed above. Isochrones are taken after: (a) 9 days, (b) 14 days and (c) 20 

days after load initiation. 
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Figure 7.176: Contours of strains and stresses after 9 days of foundation's load application. 

 

 

Figure 7.177: Contours of strains and stresses after 14 days of foundation's load application. 
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Figure 7.178: Contours of strains and stresses after 20 days of foundation's load application. 

 

Fig. 7.179 shows isochrones of displacements: (a) norm, (b) horizontal and (c) vertical 

computed in the soil column. 
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Figure 7.179: Overall picture of:(a) displacements' norm, (b) horizontal displ. and (c) vertical displ. through 
contours at three different times after the load application. 

 

The isochrones evidence a settlement of about 6cm below the foundation and a soil 

surface uplift almost vertical in the zone close to the foundation. This zone also exhibits a 

concentration of shearing.    

Fig. 7.180 presents vectors of principal plastic strains, liquid and thermal fluxes and 

displacements obtained in the soil column at the end of the foundation load application. 

Magnitude and direction of vectors confirm a collapse mechanism located under the 

foundation that results in a punching type of failure mechanism.  
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Figure 7.180: (a) Vectors of the principal plastic strains, (b) Vectors of liquid and heat fluxes and (c) Vectors of 
norm and vertical displacements, exerted at the soil column 20 days after the foundation's load application. 
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Fig. 7.181 shows evolutions of porosities at different points located at a zone surrounding 

the shallow foundation. 

 

Figure 7.181: Evolutions of porosities at different points located at a zone surrounding the shallow foundation. 

It is interesting to note the sudden increase in porosity during shear loading below the 

corner of the foundation.  

 

7.7)    Study of the foundation's response under atmospheric actions 

 

This case addresses the study of the slice foundation subjected to the atmospheric load. 

The foundation is considered impervious and the atmospheric load is consequently 

applied only at the site not occupied by the foundation. 

The foundation is carried to a service load equal to one third of maximum bearing capacity 

       
 ⁄     . 
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7.7.1)     Equations Solved 

 

The equations solved in this case are the same solved for the  problem at section 7.6: (a) 

mass balance of water (Eq. 7.1), (c) stress equilibrium (Eq. 7.2) and (c) energy balance 

(Eq. 7.9). 

7.7.2)     Geometry, Mesh, Initial and Boundary conditions 

 

Geometry corresponds to a slice of 7.5m width and 13.35m high. Spatial discretization 

consists of 450 quadrilateral elements (with linear interpolation) and 496 nodes. 

The tests is composed by four time intervals defined by: (a) from -750d-0d: application of 

atmospheric condition in the unloaded soil, (b) from 0d-4d: application of the foundation 

load until       , during this period the atmospheric load is acting at the soil surface, (c) 

from 4d-54d: application of the atmospheric load only and (d) from 54d-250d: change of 

prescribed liquid pressure at column under the atmospheric load. 

During the entire test: (a) a null water flux and thermal flux have been applied in lateral 

boundary as conditions, (b) both a liquid pressure and a temperature have been 

prescribed at the bottom boundary and (c) atmospheric condition in the soil surface at the 

site not occupied by the foundation, a bare ground free of vegetation has been considered 

in this surface. As for the mechanical conditions, both null vertical and horizontal 

displacements have been imposed at bottom and lateral boundaries, respectively. A 

vertical displacement rate of         
   ⁄  has been applied until the limit service load 

in the foundation has been reached. 

Table 7.45 summarizes the parameters of the atmosphere condition. 
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Table 7.45: Table of atmospheric constants used in the simulation. 

Latitude 0.7571 

        (s) 0 

      (s) 0 

     
     

 (m) 4.00E-04 

       
     

 (m) 3.00E-02 

        (kg/m3) 1.00E+00 

 
 
   (kg/m3) 1.2 

          0.2 

          0.2 

γ  1.00E+06 

γ  
-

1.00E+06 

           1 

          1 

           1 

            0 

 

Time evolution of temperature, relative humidity, precipitation and wind velocity are 

plotted in Fig. 7.182.  

The atmospheric file used for the computation has been filtered with respect to the 

original file in order to reduce the number of data lines and consequently in order to 

relieve the computational cost (smaller number of data-lines to read) and the storage 

requirements. Moreover, the record of temperatures has been corrected in order to avoid 

values lower than zero which could carry to problems of soil freezing, issue out of the 

dissertation scope. 
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Figure 7.182: Atmospheric load applied at the soil surface of the silty column (root_atm.dat). 

Table 7.46 summarizes the conditions, geometry, mesh and boundary conditions adopted 

for the modeled case. 
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Table 7.46: Conditions, Load configuration, Geometry and Mesh used in the modeling. 

 

 

 

 

 

Interval and 

Boundary 

Conditions 

Interval Boundary Conditions 

1 

Foundation 

load 

0-4 [days] 

Lower boundary(1): 

     

            

         

 

On top of foundation: 

 ̇           
   ⁄  up 

to      . 

On free soil surface: 

Atmospheric load  

(root_atm.dat) 

2 

Atmospheric 

load only 

4-50 [days] 

Lower boundary(1): 

     

            

         

On free soil surface: 

Atmospheric load  

(root_atm.dat) 

3 

Atmospheric 

load only 

50-350 [days] 

Lower boundary(1): 

     

            

         

On free soil surface: 

Atmospheric load  

(root_atm.dat) 

Load 

Configuration 
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Model 

Configuration 

at prototype 

(field) scale 

 

 

 

The load configuration considers an impervious foundation (which may correspond to a 

good construction practice: (a) rich water-cement ratio, (b) highly compacted and (c) well 

curing). 

 

7.7.3)     Material Parameters 

The material parameters used in the simulation are those summarized in Table 7.43.  

7.7.4)     Modeling Results 

 

Fig. 7.183 shows the displacements of the foundation during the early stage of the model: 

(a) soil vertical displacements due to atmospheric condition in absence of foundation, (b) 

applied displacement up to service load. 
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Figure 7.183: Evolution of vertical displacements at the upper soil layer of the silty column: (a) under climatic 
condition at pre-load stage and (b) under foundation load. 

 

 

Fig. 7.184 shows a general view of results: (a-b) Time evolution of input wind velocity and 

atmospheric temperature, (c-d) Soil temperature and soil saturation at 5cm depth, (e-f) 

Soil surface vertical displacement and differential vertical settlement between foundation 

and soil surface. 
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Figure 7.184: Overall view of modeled case. (a-b) wind velocity and atmospheric temperature applied at the soil 
surface, (c-d) Evolution of soil temperature and Saturation degree at the footing edge, (e) Evolution of Vertical 
Displacements at the upper soil layer of the silty column and (f) Evolution of Vertical differential displacements 

observed between the footing center and footing edge.  
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Soil surface temperature exhibits a variation in agreement with the atmospheric 

temperature. Variation of the degree of saturation shows a monthly character of dry 

periods followed by wet periods. 

As a result of temperature and degree of saturation, the maximum amplitude of soil 

displacement is 6mm. This amplitude presents a typical variation in periods of several 

days. 

The relative settlement between the centre and the edge of the foundation is 5.8mm which 

gives an angular variation of 3E-4. 

Figures 7.185 and 7.186 present the stress paths and yield surfaces obtained: (a) at the 

end of foundation load (b) after 313 days, (c) after 326 days and after 335 days of 

atmospheric action.  

 

Figure 7.185: Stress paths and yield surfaces at times: (a) of foundation's load at service value and (b) after 313 
days under atmospheric load. 
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During foundation load yield surface is reached at the dilatant side of the critical state 

producing a softening response of the material. 

During the 54 days of atmospheric condition after end of foundation load stress point has 

moved to an almost isotropic stress state point-C. Henceforward, stress path moves 

toward the failure locus according to the soil temperature and suction. After 313 days of 

climatic action the yield surface is reached at the dilatant site point-D for low values of 

mean stress. At that time a dilatant plastification process occurs below the foundation as a 

result of atmospheric load only.  

As evidenced by the mean Bishop stress / deviatoric stress path depicted in Fig. 7.186, soil 

is in plastic state at day 326 point-A. Due to increases in suction, caused by the drying of 

the soil, the stress path moves to point-B enlarging the yield surface by compression and 

producing a further hardening of the material.  

During the next wetting-drying and heating-cooling events, stress path moves 

alternatively inside the yield locus (elastically) or dragging it (plastically), path B-C-D-C-E-

F. 

At day 335 yield surface decreases in size due to an increase in temperature reaching the 

stress state in the dilatant zone point-G with the consequent softening of the material, see 

Fig. 7.186. 

Fig. 7.186 evidences a process of plastification that encompass a zone larger than the 

foundation influence at t=326 days. At that time, as shown in Fig. 7.184c, soil temperature 

increases above previous values for a significant period of time as result of latter 

atmospheric condition. 
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Figure 7.186: Stress path and yield surfaces at times: (a) after 326 days after the atmospheric load onset and (b) 
after 335 days after the atmospheric load onset. 
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Fig. 7.187 compares results of: (a) temperature, (b) vapor flux, (c) liquid pressure, (d) 

saturation degree, and (e) vertical displacement obtained at five different points on the 

soil surface. Points a-b-c are located below the foundation and thus are not subjected to 

the atmospheric load. It can be observed that the fluctuations in temperature, pore 

pressure, degree of saturation and thus displacements are lower in that zone, creating a 

differential settlement with respect to the edge of the foundation. 

Fig. 7.188 shows differential values obtained as the difference between the variables 

computed at points b, c, d, e and point a (foundation center). Results evidence differential 

temperatures between -5oC and 9oC, differential pore pressure span between 4kPa and 

     , maximum differential degree of saturation reads 6% and corresponding 

differential settlement between 0.9mm and -1.3mm. Since those differential values may 

evolve from minimum to maximum in relatively short periods (some days) damage to the 

structure supported by the foundation is to be evaluated. 

 

Figure 7.187: Absolute evolutions of: (a) Soil Temperatures, (b) Vapor fluxes exerted surface, (c) Liquid pressures, 
(d) Liquid saturations and (e) Vertical displacements at five points of the column . 
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Figure 7.188: Differential evolutions of: (a) Soil Temperatures, (b) Vapor fluxes exerted surface, (c) Liquid 
pressures, (d) Liquid saturations and (e) Vertical displacements obtained at five points of the column surface. 

 

In order to study the effect of hydraulic conductivity on the response of foundation, two 

computations have been realized for two values of permeability: (a)               

and (b)              . Fig. 7.189 shows a comparison of the obtained results for time 

evolution of: (a) soil temperature, (b) degree of saturation, (c) evaporation flux and (d) 

vertical displacement. 
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Figure 7.189: Evolutions of: (a) Soil Temperature, (b) Degree of saturation, (c) Vapor flux and (d) Vertical 
displacement obtained at the column surface for two different values of permeability. 

 

Fig. 7.189 evidences the stronger effect of atmospheric load in lower permeability 

medium. This is due to the fact that the hydraulic conductivity has a lower control of the 

vadose zone, which respond more strongly to the soil-atmosphere interaction fluxes. 

It is also interesting to note the delay of soil response to the atmospheric load evidenced 

between the results obtained for each permeability. It is produced due to the higher soil 

impedance for lower values of hydraulic conductivity. 

It can be concluded that the lower the soil permeability the more sensible the soil is to 

atmospheric fluxes acting at the soil surface. It is stated in view of the magnitude of 

variations of: (a) displacements,  (a) saturation degrees and (c) vapor fluxes obtained at a 

point in the column surface. 
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Fig. 7.190 and 7.191 show the differential values between points a-d and a-c, respectively. 

In case of higher permeability soil, there is almost no differential desaturation between 

soil surface and soil beneath the foundation. As consequence differential settlements do 

not exceed 0.5mm. 

Fig.7.190e-f show the pattern of soil deformation at the end of the computation. For the 

case of the lower permeability, the effect of drying leads to a final lifting of the soil close to 

the foundation. In the other case, the final deformation pattern is similar to the one 

obtained after foundation load because of the low effect of atmospheric condition. 

 

 

Figure 7.190: Differential evolutions of: (a) Soil Temperatures, (b) Liquid pressures, (c) Liquid saturations, (d) 
Vertical displacements at the center of the column surface. 
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Figure 7.191: Differential evolutions of: (a) Soil Temperatures, (b) Liquid pressures, (c) Liquid saturations, (d) 
Vertical displacements at the footing edge. 

 

Further insights into deformation patterns can be obtained from profiles of temperature, 

evaporation flux, pore pressure, degree of saturation and vertical displacement obtained 

at different times, Fig. 7.192, Fig. 7.193 and Fig. 7.194. 

Thus after foundation loading since the same condition has been considered during the 

loading phase paths are identical.  

Afterwards, profiles start to diverge, at 180 days evaporation is much more active in the 

lower permeability soil leading to lower pore pressures and slightly higher desaturation. 

As result of the low difference in saturation at that time settlements are still comparable. 

At time 336 days, the lower permeability case evidence a higher desaturation of about 

65% than in the higher permeability case of 95%. Consequently, the pattern of 

  

 

 



CHAPTER 7 -Response of a foundation on a collapsible layer under atmospheric actions 

________________________________________________________________________________________________________ 

436 
 

displacements is completely different, while the lower permeability soil exhibits a soil 

uplift at the footing edge the higher permeability soil maintains the depressed profile of 

settlements mainly generated by foundation load. 

 

 

Figure 7.192: Profiles of: (a) vertical displacement, (b) temperature, (c) liquid pressure, (e) saturation degree and 
(e)vapor flux after 50 days of atmospheric load action. 
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Figure 7.193: Profiles of: (a) vertical displacement, (b) temperature, (c) liquid pressure, (e) saturation degree and 
(e)vapor flux after 180 days of atmospheric load action. 
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Figure 7.194: Profiles of: (a) vertical displacement, (b) temperature, (c) liquid pressure, (e) saturation degree and 
(e)vapor flux after 336 days of atmospheric load action. 

 

The particular pattern of deformation in the case of the lower permeability soil can be 

further investigated by looking at the isochrones of: liquid pressure, vapor flux, shear 

strain and stress, plastic strains, hardening parameter and displacement, Fig. 7.195 to 

Fig. 7.199. 
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Fig. 7.195 shows isochrones of porosity, saturation degree and vapor flux obtained at 

three different times after the foundation and atmospheric loads action. 

Isochrones of degree of saturation and evaporation flux (Fig. 7.195) evidence an active 

zone of 1m depth while porosity pattern show that the initial compression zone below the 

foundation turns out into extension zone after the drying event. 

 

Figure 7.195: Isochrones of: (a) porosity, (b) saturation degree and (c) vapor flux obtained at three different times 
after the actions of both the foundation's load and the atmospheric load. 
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Fig. 7.196 shows isochrones of shear strains, shear stress and deviatoric stress obtained at 

three different times after the foundation and atmospheric loads action.   

 

 

Figure 7.196: Isochrones of: (a) Shear strains, (b) Shear stress, and (c) deviatoric stress invariant obtained at 
three different times after the actions of both the foundation's load and the atmospheric load. 
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Fig. 7.197 shows isochrones of  plastic strain: (a) normal, (b) shear and (c) vertical  

obtained at three different times after the actions of both the foundation load and the 

atmospheric load. 

During foundation loading a limited plastic zone develops essentially below the edge of the 

foundation. It remains basically constant during the application of the atmospheric load 

before the shown drying cracks. After this event the plastic zone extends significantly 

around the foundation and vertical plastic extension occurs indicating an uplift of a thin 

superficial layer from underneath ground. 

 

Figure 7.197: Isochrones of: (a) horizontal, (c) shear  and (c) vertical plastic strains obtained at three different 
times after the actions of both the foundation's load and the atmospheric load. 
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Fig. 7.198 shows isochrones of hardening parameter obtained at three different times 

after the foundation and atmospheric loads action. 

Isochrones of hardening parameter   
  evidences the strong hardening due to suction 

effect which causes an enlargement of the elastic space of about three times the elastic 

space after the foundation load.  

 

Figure 7.198: Isochrones of hardening parameter obtained at three different times after the actions of both the 
foundation's load and the atmospheric load. 

 

Fig. 7.199 shows isochrones of vertical displacements at different times after the onset of 

foundation load and atmospheric load.  

The previously observed soil uplift is confirmed here in accordance with the formation of 

drying cracks. 

 

 

Figure 7.199: Isochrones of vertical displacements at three different times after the actions of both the 
foundation's load and the atmospheric load. 
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7.8)    Conclusions 

 

In this chapter the response of a shallow foundation under atmospheric condition has 

been studied. 

The model (boundary value) has been calibrated in a physical centrifuge test at laboratory 

scale. The thermo-hydro-mechanical formulation presented in chapter 2 has been used in 

order to physically modelize the governing and constitutive equations. 

In this regard, the mechanical model BBM2- generalized and the air-liquid interface model 

simplified van Genuchten retention curve presented in chapter 4 have been used to give a 

constitutive response at each phase.  

Results show that the model is able to reproduce both the hydraulic and the collapse 

responses of the silty layer. Moreover, the model has also shown to be capable to 

reproduce the force-displacement curve of the foundation.  

A procedure to evaluate the bearing capacity factors in non-saturated conditions has been 

developed based in Potts proposal, Potts (2001). Then, this procedure has been used to 

compute the bearing capacity of shallow foundation at the centrifuge test in conditions 

close to saturation. 

The calibrated model (boundary value) has then been applied to the silty layer at field 

scale in order to study the bearing capacity of the foundation under field scenarios. An 

atmospheric condition has been applied for a period of two years for the purpose of 

reproducing real conditions in the soil layer mainly in the upper zone. 

To study foundation response particularly concerning displacements under climatic 

actions, foundation has been loaded until a service load equal to 1/3 of the ultimate load, 

then two years of atmospheric input have been applied at soil surface under the 

consideration of an impermeable foundation.  

This study shows the development of differential settlements of about 6mm between the 

footing center and its edge due to the climatic action. During a strong drying process, at 

the last stage of the atmospheric condition, soil has shown to experiment a vertical 

displacement in extension of about 3cm.  

A sensitivity study shows the implications of soil permeability in this process, where the 

water table is maintained at a constant depth. In the higher permeability soil the more 
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open structure prevails over the atmospheric effects leading to low soil suction condition. 

For the lower permeability soil (       
 ⁄ ), the evaporation has a relevant role by 

generating an active zone of about 1m depth, which affects the superficial settlements.  

During this process, tractions stresses have emerged close to the foundation boundary 

that the model has shown to represent without major problems of convergence. 
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CHAPTER 8 

 

 

 

ANALYSIS OF A ROCK-CLIFF STABILITY UNDER CLIMATIC ACTIONS 

 

 

 

8.1)    Introduction 

 

In this chapter, a geotechnical problem in stiff material is studied using the constitutive 

model based on shear failure criterion presented in chapter 4 and implemented using the 

algorithms presented in chapter 5. A particular attention will be devoted to the modeling 

of traction failure which occurs in this type of material. It will be shown that such 

mechanism can be overcame using the interior-point algorithm described in chapter 5.  

Since traction failure is a common process occurring in problems of soil response under 

climatic actions such as soil desiccation, the relevance of the results presented in this 

chapter is more universal than the modeled case considered. 

The case addressed in this chapter arises in 2010 as a public security issue related to the 

fall of some solids in a cliff above the village La Roque Gageac. The partial collapse of the 

roof of a troglodyte cavern located in the cliff generate a large concern to the population 

and the public authorities about the stability of a huge block on top of the village (R.E.G.G., 

2011) and the possibility of its fall.  

Historical data gathered in Table 8.47 indicates recurrent movements since at least 1920, 

Fig. 8.200. 
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Table 8.47: History of observed landslides at La Roque Gageac 

1920 Landslide of a neighborhood to the east of the troglodyte cavern 

1957 Landslide located to the west of the village 

1994 Landslide of the cliff center 

2010 Partial collapse of  the troglodyte cavern 

 

 

 

Figure 8.200: Location of the resent landslides 

 

 

UPC was in charge of analyzing the possible effect of cyclic thermal load on the stability of 

the rock massif. In order to consider both temperature and radiation effects the 

atmospheric condition presented in this thesis has been used. 

Due to the dry character of the rock (   ) and its porosity with no water storage 

(    (    )   ), no water mass balance has been considered. A general review of 

the thermal inputs arising from the land-surface energy balance in absence of water are 

described in Fig. 8.201. 
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Figure 8.201: Land-surface energy balance over the rock-cliff La Roque Gageac. 

 

It includes: 

 Net radiation which is a function of the surface albedo, the atmospheric radiation 

and the ground emission. 

 Sensible heat flux (the heat flowing from one body at higher temperature to 

another body at lower temperature while they are in direct contact). 

 Latent heat flux (the heat energy released by the rock mass during a constant-

temperature process). 

It is noted once again that because of the dry condition of the rock massif and the 

negligible variations of gas pressure in relation to the total stress, the latent heat flux in 

the present case results to be null. 

The chapter is organized as follows: firstly the notation and terminology used along the 

chapter is presented. Secondly, a detailed situation framework of the addressed case and a 

characterization of the rock-cliff through laboratory tests is presented. Thirdly, the in situ 

measurements of displacements and temperatures are shown in order to allow a first 

interpretation of the rock mass behavior. Fourthly, the numerical model of the rock mass 

"La Roque Gageac" is presented. Fifthly, the modeling results and its comparison with 
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registered data are shown. Sixthly, a stability analysis of the Cavern roof if addressed and 

finally, conclusions derived from the study are presented. 

8.2)    Notation and Terminology 

 

  Unit mass of skeleton 

   Unit mass of solid phase 

  Porosity 

 ̇  Solid skeleton's velocity 

   Specific energy of the skeleton 

   Specific energy  of the liquid phase 

   Specific energy of the gas phase 

   
 Energy flux of the skeleton 

   
 Energy flux of the liquid phase 

   
 Energy flux of the gas phase 

  Power input to a porous volume 

   
 Heat flux vector of the porous medium 

   Entropy  of the skeleton  

   Entropy  of the liquid phase 

   Entropy  of the gas phase  

   Specific dissipation of skeleton 

    Stress tensor 

    Strain tensor 

    Internal plastic variables 

  Thermal conductivity 

 

8.3)    Geological settings and rock characterization 

 

The village of La Roque Gageac Fig. 8.202 is located on the right bank of the river 

Dordogne Fig. 8.203, in the heart of Dordogne region at the northwest of Aquitania basin.  

It has a population of about 416 inhabitants but is seeds of a large tourist attraction 

(approx. two million visitors per year) which represents an important aspect of the local 

economy.  
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Figure 8.202: (a) View of the Village  La Roque Gageac, (b) les Périgords de Dordogne 

 

 

Figure 8.203: Map and ortho-photography of the study area. 

 

Dordogne region is characterized by a temperate climate with dominant oceanic influence. 

In winter, it undergoes mountain weather influences due to its proximity to the Central 

Massif while, in summer, the weather can be subjected to streams of hot air from the 

Mediterranean. The annual maximum temperatures in the village range between 27ºC and 

32ºC and the minimum between -10ºC and -15ºC.  
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Dordogne river crosses old crystalline rocks in its upper profile formed by deep valleys 

resulting from erosion of grooves (up to 500m). Then as a result of the tectonic structure 

of the area, it takes a way towards west where it follows large meanders  over jurassic 

formations of marls and clays. Afterwards in LARG region, it crosses limestone formations 

belonging to the middle and upper jurassic and its meanders becomes smaller and 

narrower, Fig. 8.204. 

Those formations belong to the coastal depositional features at the toe of Central Massif 

and as such present generally intercollectors of horizontal permeable and impermeable 

layers which continuity is laterally interrupted.  

 

 

Figure 8.204: The Dordogne path. 

 

The rock at LARG consists in its middle and upper part of sandy-limestone rock, divided 

into three regional zones: (a) a bank of 25m hard sandy limestone at the base of the 

formation, (b) a soft bed of the same lithology in the middle and (c) 45m of the same hard 

sandy-limestone with oblique stratification in the upper part. Figure 8.205 shows a 

geological map of Sarlat-la-Canéda region. 

As a result of the tectonic structure and the lateral decompression due to the undergone 

erosion, the rock massif of LARG is characterized by essentially orthogonal discontinuities 

parallel and perpendicular to the cliff wall. Such erosion have generated a karstic network 

which weakens the structure of the massif.  
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Figure 8.205: Schematic section geologic map (Sarlat-la-Canéda - BRGM) 

 

The cliff at La Roque Gageac has suffered several landslides in recent times with a period 

of recurrence of about 30 years. In 1957, a part of the cliff of         fell over the village, 

Fig. 8.206, and caused the loss of three human lives. 

 

 

Figure 8.206: Roque Gageac landslide.  January -  1957.  5.000 m3 were moved causing the loss of 3 human lives 
and 12 homes. 
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The landslide occurred in 2010 reported the partial collapse of a troglodyte cavern located 

on top of the village which removed part of the support of a large block above the cavern, 

Fig. 8.207. Both, the unstable state of the rock block at the cavern top and the masonry 

wall which was dragged by the sliding are clearly observed.  

Residual risk after the last collapse is controlled by the elements:  

 Small blocks fall due to spalling, Fig. 8.207. 

 Collapse of the remaining part of the roof. 

 Risk of collapse of large blocks over the cavern which may drag the existing debris 

on top of the village. 

 

 

Figure 8.207: (a) Blocks capable of slide and require support, (b) Cavern and masonry wall with loose rock blocks 
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Figure 8.208: Eroded surface of the rock cliff 

 

The cliff rock can be classified as calcareous sandstone of high porosity. Table 8.48 

provides a brief description of the rock mass characteristics according to geomechanical 

classification. Table 8.49 gives experimental values of rock porosities: (a) total 

(          ) and (b) connected. Furthermore, Table 8.50 provides values for elastic 

parameters, uniaxial shear strength on traction (      ) and wave propagation velocities, 

obtained in the laboratory. 

 

Table 8.48: Classification of the Rock and the Discontinuities  

Property Value 

RQD (rock quality designation) 75% - 90% 

Discont. distribution 200mm - 600mm 

Nature of Discontinuities Surface roughness 

Water Dry 

RMR (rock mass rating) 71 
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Table 8.49: Connected and Total porosities 

Sample 

   

Connected 

porosity 

  

Total 

porosity 

     

( ) 

Mean value 0.112 0.179 4.75 

 

Table 8.50: Results of the blocks tested 

 

Sample 
 [

  

  ⁄ ] 
 

     ⁄   

 

   
   ⁄   

 

   
   ⁄   

 

        

 

        

 

       

 

  

Mean 

value 
2382 4651 2659 2683 47.37 5.27 42.63 0.14 

 

8.4)     In Situ Experimental Program and atmospheric data 

 

Two field campaigns were performed after the rock fell in February 2010. Above the 

cavern, four crack gages and two horizontal extensometers were installed to follow 

surface and massif displacements. Each extensometer has a length of 10 m. Measurements 

of longitudinal (horizontal) displacements were performed at a distance of 6m, 4m and 2m 

from the cliff wall.  

Inside the cavern, a gauge-meter and four crack gages were installed across the main 

discontinuities delimiting the roof bean. Crack gages were fixed in an horizontal direction 

measuring the aperture of vertical discontinuity close to the right support of the beam.  

Crack gages 2 and 3 were fixed across the horizontal and the vertical discontinuities 

existing at the vault of the roof. Crack gage 4 measures aperture experienced by the 

vertical discontinuity in a 45o angle.  

Fig. 8.209 shows arrangement of extensometers and crack gages at the cliff. In all the 

devices measurements were recorded during the period span from July-2010 to March-

2011. 
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Figure 8.209: Location of Distometers and crack gages at the cliff. 

 

Meteorological data has been available from the meteorological station Sarlat-la-Caneda, 

located at about 3 km away from the area of interest. To evaluate existence of possible 

local climate effects, the temperatures recorded at the meteorological station have been 

compared with those registered on the site by the thermocouples of the extensometers, 

crack gages and measurements inside the cavern.  

Fig. 8.210 presents records of temperature and  precipitation registered during the years 

2010-2011 at the meteorological station. Temperature and rainfall time series evidence 

annual fluctuations typical of template climate with low temperatures in winter (typically 

5oC) and temperatures around 23oC in summer. 
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Figure 8.210: Meteorological data recorded at Sarlat-La-Canéda 

 

In winter 2010, after the rock fall, negative temperatures were recorded. Those 

temperatures were significantly lower in comparison to the temperatures registered in 

winter 2011.  

Fig. 8.211 shows a comparison between local and regional temperatures. They evidence 

very similar variations validating the use of meteorological data at Sarlat-la-Caneda 

station to study the cliff response under climatic actions. Lectures of temperature 

registered at 2m depth from the cliff face and on the cliff face are also compared in 

Fig. 8.211. 

Evolutions and magnitudes recorded shown a delay and a damping in temperature 

variations. This observations are consistent with the diffusive character of the heat 

equation, which is defined by its physical constants given by the thermal conductivity and 

the heat capacity of the rock, Fig. 8.212. 

Displacement measurements evidence a similar trend suggesting that they are essentially 

controlled by the thermal response of the rock, Fig. 8.212.  

Crack gages will not be considered in this work since fractures are not represented in the 

model. 
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Figure 8.211: Registered temperature at different points of the rock cliff and the temperature recorded at the 
meteorological station Sarlat la Caneda.  
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Figure 8.212: Records of Temperature and Displacements obtained at the Distometers. 

 

 

8.5)     Numerical Model for the rock cliff La Roque Gageac 

 

In this section, the numerical modeling of the rock-cliff at La Roque Gageac is discussed 

including the governing equations, geometry, mesh, initial and boundary conditions and 

material parameters. 
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8.5.1)      Derivation of governing equations 

8.5.1.1)    Thermomechanical approach 

 

In theory of porous media, balance equations are established considering all the phases 

present in the  medium and their interaction. 

Ascribing   ,    and    as the specific energy of the skeleton, the specific energy of the 

liquid phase and the specific energy of the gas phase, respectively, the specific internal 

energy of the porous medium is    ̃           , where  ̃ not only accounts for the 

solid matrix but also for the interfaces exerted by the interactions between solid, air and 

liquid. 

Thus the local form of the energy balance after application of Gauss divergence theorem is 

given by the expression (Gens A. , 2010), 

 

  
((      ∑  

  

  

)                (    ) )  (  ̃ 
    

    
)
  

           
 

(8.1) 

where      (   ) is the dry density of the medium,   and    are the mass fractions 

of water and air per unit volume of skeleton respectively and   
   accounts for the specific 

interface energy between the phases k and l. Furthermore,   is the power input to a 

porous volume fixed in the space. This power results in the sum of the power input at the 

boundary and the power exerted by the gravitational forces. The balance Eq. 8.1 states 

that the sum of the material derivatives of the internal energy equals the power input and 

the divergence of the heat flux. 

Restrictions to the intensive variables defining the energy balance of Eq. 8.1 are 

introduced invoking the positive character of the dissipation energy of the rock mass 

(Second law of Thermodynamics). The existence of a state function, the specific entropy  , 

is assumed  such that the rate of entropy production is non-negative (Houlsby & Puzrin, 

2005). Ascribing   ,    and    as the specific entropy of the skeleton, the specific entropy 

of pore liquid phase and  the specific entropy of pore gas phase, respectively, the specific 

entropy of the porous medium is    ̃            where  ̃ not only accounts for 
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the entropy of the solid matrix but also for the interface entropies exerted by the 

interactions between solid, air and liquid. 

The convective term of the entropy function of the solid phase    is given by    
     ̇ 

where  ̇ is the velocity of the solid phase. Similarly convective terms of the liquid and gas 

phases are equal to the product of the entropies of each phase by the velocity of the phase.  

Fundamental inequality for the entropy is thus: 
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(8.2) 

where the subscript r makes reference to the reversible part of entropy given by the rate 

of entropy supplied to the porous material element from its surroundings and   
   

accounts for the interface entropy between the phases k and l.  

The rate of entropy production within the porous element corresponds to the irreversible 

part of the entropy. This irreversible part of the entropy defines the dissipation d of the 

porous medium which should satisfy the inequality:  
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(8.3) 

 

where the subscript i makes reference to the irreversible part of entropy. From Eq. 8.3 the 

divergence of the thermal flux corresponds to the reversible part of entropy in both the 

bulk phases and the interfaces in addition to the thermal dissipation: 



CHAPTER 8 -Analysis of a Rock-Cliff's Stability under Climatic Actions 

________________________________________________________________________________________________________ 

461 
 

     
  ( 

 

  
((   

    ∑   
  

  

)               
   (    ) )

  (  ̃  
     

     
)
  
)  

   
   

 
 

(8.4) 

while the divergence of the heat flux in the solid skeleton   ̃   
  corresponds to the 

difference between the total heat flux in the medium      
  and the heat flux of the fluid 

phases in addition to thermal dissipation exerted in those phases:  
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(8.5) 

 

Therefore the dissipation of the porous skeleton defined by the difference between the 

dissipation of the whole medium and the rate of change of entropy production within the 

bulk fluid phases, reads: 
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(8.6) 

 

In the addressed problem, the hydraulic terms disappear from the specific energy since 

the rock is considered dry. Moreover under the assumption that the gas pressure remains 

constant (infinite mobile gas) the specific energy of the porous medium is reduced to     .  

First law of thermodynamics states that the change in energy balance is equal to the 

mechanical power   plus the divergence of the heat flux. Mechanical power corresponds to 

the rate of work of tractions in the solid phase (   )   ̇ . Using Green theorem,   can 

also be stated as       ̇  in terms of the stress tensor and Eq. 8.1 can be re-stated in terms 

of stresses as: 
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(   )  (   
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    (    ̇     

)
  
   ̇    

(8.7) 

by use of the material derivative the local statement of the mass conservation law is 

 ̇  (  ̇ )    ̇      ̇    ̇    
  

  
⁄    ̇     , which established a relation between the 

rate of change of the dry density and the dilation rate of the rock mass. In addition, 

recognizing that the energy flux of the solid phase is given by    
     ̇ , the last equation 

can be equivalently written as, 

 
   

  
    (            )⏟        

           

 ̇      ̇         

  
(8.8) 

As translation movement does not produce change in specific energy:               . 

Last equation state the momentum balance of the medium. In addition, assuming that 

small strain develops at the rock mass it can be readily seen that     ̇        ̇  . 

Under the same assumption of dry condition of the rock and constant gas pressure, the 

skeleton dissipation is reduced to: 

    
 

  
( (      

))   (   
     

)
  
  

  
 

  
(   )   (   

)
  
      

  
   
    

 

 

(8.9) 

Combining the equations 8.8 and 8.9 leads, after mathematical manipulation, to: 
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(8.10) 

where    
   
 

 
⁄ . The left hand side of Eq. 8.9 contains the stored terms (

   
  

⁄ ) and the 

dissipated term (  ).  

Under the hypothesis that the specific energy is a function of the strains, the entropy    

and certain internal variables    , it is      (          ), the material derivative can be 

developed as, 
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(8.11) 
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On the other hand, the dissipation function is also postulated as a function of the same 

state variables, the rate of change of the internal variables     and a function of the fluxes:  

     (               ̇  ).  

Due to the characteristics of the dissipation function for modeling rate independent 

materials: (a) homogeneousness and (b) degree one type, it is possible to write: 

   
   

  ̇  
 ̇   

   

   
   

(8.12) 

Substitution of equations 8.11 and 8.12 in the Eq. 8.10 gives: 
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(8.13) 

or by collecting terms: 
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(8.14) 

Equation 8.13 should be satisfied for any combination of  ̇  ,  ̇  ,
   

  
⁄  ,  

 
, and since all 

these quantities are independent of each other then each term has to be equal to zero 

independently. Finally, the constitutive equations for the porous medium obtained from 

Eq. 8.14 are: 
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(8.15) 

 

where Eq. 8.15a is the hyperelastic constitutive law, Eq. 8.15b is the constitutive law 

defining the temperature of the medium, Eq. 8.15c is the hardening law (and defines the 

Ziegler's orthogonality rule) and Eq. 8.15d is the Fourier heat conduction law.  

If the dependency   ( 
 
) is assumed of the form:  
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(8.16) 

 

Eq. 8.16b is the Fourier's law for an isotropic medium. 
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8.5.1.2)    Constitutive equations 

 

From the previous constitutive equations the most relevant is the one corresponding to 

the solid phase. 

Modelling the solid skeleton (rocky mass) response under climatic actions requires having 

at hand a thermo-hydro-mechanical model suitable to provide objective numerical 

solutions. In this regard, the formulation of a constitutive model complying with 

hyperporoplastic principles must be derived from energy potentials, the internal energy of 

the solid skeleton    and the dissipation function    of this phase, as has been seen in 

chapters 3 and 4. 

The internal energy   (          ) being a function of the specific entropy is rarely used 

and it is often replaced by its complementary function: the Helmholtz energy 

  (         )        .  

Thus the elastic response of the rock mass is given by the expression: 

  (       )  (
   

 
        (    ))     

 

 
    

  
(8.17) 

where   is the bulk modulus of the rocky mass,   is the shear modulus,    is the dilation 

coefficient and    is the initial mean stress. 

From energy viewpoint, and as a consequence of the non-dependency of the energy 

function Eq. 8.17 on the plastic internal variable    , the entire generated plastic work will 

be dissipated    
 

   ( ̇  ).  

From Maxwell's equation Eq. 8.15a the expressions for mean stress and deviatoric stress 

are: 
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(8.18) 
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The model is completed by defining the dissipation function for modeling the inelastic 

response of the cliff. The Drucker-Prager model sensitivity to thermal effects described in 

chapter 4 is used to this end.  

For the sake of simplicity, the expression for the smoothed yield surface as well as a 

picture of the yield function are presented here. 

   ((
 

  
)
 

   )

 
 ⁄

     (    (  )) 

(8.19) 

 

 

Figure 8.213: Geometrical interpretation of the model's terms. Hyperbolic smoothing at the p-q plane. Yield 
surface sensibility for two reference temperatures. 

 

 

8.5.2)      Geometry, Mesh, Initial and Boundary Conditions 

 

Figure 8.214a and 8.214b present  a picture of the cavern and a profile of the cliff as 

defined in the remediation project. Fig. 8.214c shows the geometry and dimensions 

considered in the simulation. 
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Spatial discretization was performed using linear triangles and quadrilateral elements, 

resulting in a mesh with 654 nodes, Fig. 8.214d. 

 

 

Figure 8.214: a)Profile of the rock cliff, (b) Image of the cavern and the rock mass over the cavern roof, (c) Initial 
and Boundary conditions of the numerical model, (d) finite element mesh used in the discretization of the rock. 

 

As far as boundary conditions is concerned, normal displacements have been fixed at the 

bottom and the left side of the rock profile, while cliff's top and right face have been left 

free of restrictions.  
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A temperature condition has been applied at the bent wall of the cliff just above the 

cavern. Inside the cavern only temperature variation was applied. It is considered that 

there is no radiation nearly this zone. 

A temperature equal to       was set initially in all the mesh. The initial stress 

distribution derives from an equilibrium stage performed before the onset of the analysis.   

Table 8.51 summarizes the time intervals and initial and boundary conditions assumed in 

the modeling of the rock-cliff La Roque Gageac. 

 

Table 8.51: Intervals, Initial and Boundary conditions considered at the rock-cliff simulation. 

Interval Time [Days] Initial and Boundary Conditions 

1 -1-0 

            

        

 

 

  
       

 

          

In all the mesh 

In all the mesh, except for 

those elements at the 

decompression zone. 

In all the elements at the 

decompression zone 

In all the mesh 

Lower bound: 

     

       

Left bound: 

     

2 0-2168 

 

Lower bound: 

     

       

 

Left bound: 

     

Cliff -face: 

atmospheric load: 

root_atm.dat 

 

Cavern: 

Atmospheric 

Temperature 

 

Table 8.52 summarizes the atmospheric constants used for the parameterization of energy 

fluxes. A bare ground has been assumed (free of vegetation). Radiation is computed as 

function of atmospheric temperature, sun position and cloud index provided by Sarlat-la-

Caneda station. 
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Table 8.52: Table of atmospheric constants used in the simulation 

Latitude 0.7821 

        (s) 0.2255e8 

      (s) 0.4320e5 

     
     

 (m) 0.02 

       
     

 (m) 1.5 

        (kg/m3) 1.00E+00 

 
 
   (kg/m3) 1.2 

          0.2 

          0.2 

          1 

            0 

 

 

8.5.3)      Material Parameters 

 

Table 8.53 summarizes thermomechanical constitutive law and material properties used 

in the simulation. The parameters for the interior-point integration are also presented in 

the table. Table 8.54 presents thermal and phase data parameters used in the modeling. 

Output points are indicated in Table 8.55. Points P0-P3 at Disto1 and Disto2 are control 

points located at different depths along the extensometers 1 and 2, respectively. Points P0-

P2 at  DZone are control points located in the decompression zone above the cavern. 
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Table 8.53: Mechanical parameters of the rocky material used to model La Roque Gageac 

MECHANICAL DATA 

hyper-thermoplastic model  

Elastic Parameters   

  

  

          

 

Thermal Parameters 

  [ 
 

 
] 

       

 

Plastic Parameters 

          

      

         

      

  [ 
 

 
] 

      

 

Smoothing Parameters 

       

 

Integration Parameters 

Algorithm index 

Newton tol. 

Line_search param. 1 

Line_search param. 2 

Max. iter. barrier 

Max. iter. Newton 

Max. Line_search iter. 

 

6.1714e-7 

0.14 

0.01 

 

 

1e-5 

 

          at the 

corresponding point 

 

 

40.2 

30 

0.065 

14 

2.46e-3 

 

1e-3 

 

 

0.01 

 

 

3 (interior point algorithm) 

1e-6 

1e-2 

0.1 

40 

50 

2 

  
 
(       )  (

   

 
       

 (    ))     
 

 
 

   
  

 

 

   ((
 

  
)
 

   )

 
 ⁄

    

 (    (  )) 

 

         (    ) 
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Table 8.54: Thermal and Phase parameters used to model La Roque Gageac 

THERMAL AND PHASE DATA 

Conductive Flux of Heat 

(Fourier's law)   

             3.0         

Solid Phase (Density)   

   [   
     ] 800  

  [ 
 

 
] 1e-5  

   [     ] 2382  

 

 

Table 8.55: Control points to evaluate the rock mass response 

 
CONTROL POINTS 

 

  
coord. X coord. Y 

D
is

to
. 1

 P0 50 46 

P1 48 46 

P2 46 46 

P3 44 46 

D
is

to
. 2

 P0 50 42.5 

P1 48 42.5 

P2 46 42.5 

P3 44 42.5 

D
. Z

o
n

e
 

P0 48 38 

P1 46 38 

P2 44 38 

 

8.6 )    Modelling Results 

 

At first instance a thermal analysis has been performed aiming to calibrate rock massif 

temperature. Then a thermo-mechanical analysis is addressed considering the rock as 

elastic. This assumption aims to get a preliminary assessment of rock displacement. 
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Finally, a thermo-mechanical model considering an elastoplastic model for the rock has 

been approached. It aims to provide further insights into irreversible response of rock 

massif and its consequences in terms of stability. 

For the sake of reducing computing time only monthly time of atmospheric series have 

been applied. It is believe that the overall rock stability is essentially influenced by 

relatively long term variation. 

 

8.6.1)      Thermal analysis 

 

Two models with different thermal coefficients, thermal conductivity and specific heat has 

been tested. Table 8.56 summarizes the parameters used for each model. 

Table 8.56: Parameters used in the preliminary models of La Roque Gageac 



Thermal 

 coefficient 

      

Thermal 

Conductivity of the 

dry Rock media 

dry [Wm/K] 

Solid phase specific 

Heat 

Cs [J/kg/K] 

MODEL A 1e-5 2.3 800 

MODEL B 3e-5 2.5 1000 

 

Results have been compared with in situ measurements. It is noted that in all cases, results 

belong to the fifth cycle of the total of six cycles which corresponds to outputs in 

stationary conditions. 

Fig. 8.215 shows a comparison of temperature at different points of the rock mass: (a) 

temperature measured at Sarlat la Caneda meteorological station, which corresponds to 

the temperature prescribed at the rock-atmosphere interface, (b) temperature measured 

in situ on the rock face, exposed to radiation, in extensometer D2, (c) temperature 

measured at the rock surface inside the cavern (crack gage F1), (d) temperatures 

measured at 2m and 6m from the rock face at extensometers D1 and D2 and (e) computed 

temperatures at the same points for both model A and model B. 

It is observe that results from model A evidence an acceptable agreement in terms of 

monthly variation. Model A has been selected as the reference thermal model. 
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Figure 8.215: Temperature Evolution: (a) measure at the rock mass face, (b) measure at the crack gage, (c) 
registered at the meteorological station Sarlat la Caneda and (d) resulting from the numerical model at point p1 

for the Distometers D1-D2. 

 

Once the model was calibrated regarding the thermal response, the thermo-mechanical 

calibration was started. Several parameters were tested during the calibration. Evolution 

of temperature and displacement at different points obtained from the model A are shown 

below. 

8.6.2)      Results of the Elastic Model 

 

Calibration of elastic parameters has been carried out through a sensitivity analysis based 

on the registered displacements at extensometers D1 and D2 in the field campaign.  

At first instance it had been assumed that rock does not plastify at these depths of 

registration. Then, this assumption has been further confirmed by the elastoplastic 

analysis.  

Figures 8.216 and 8.217 show evolutions of temperature and displacement obtained from 

the numerical model and compared with in situ measurements. 

Results evidence a good agreement between computation and measurements for both 

temperature and displacement. This fact points out that daily variations of temperature 
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does not control significantly the variables at depth higher than 2m which validates the 

atmospheric input considered for the problem.  

A clear seasonal variation pattern is observed with negative relative displacements 

(extension) during summer and with positive relative displacements (compression) 

during winter. 

Curves also evidence the clear diffusive character of heat (and the heat-induced 

displacement) in the massif. Points located far from the rock-atmosphere boundary 

experiment an attenuation in magnitude and a shift in time. 

Fig. 8.218 complete the overall view of displacements suffered by the rock massif in the 

near zone of the cliff surface: (a) at 1m depth and (b) at 2m depth from the rock-

atmosphere boundary. 

 

 

 

Figure 8.216: Evolution of Displacement and Temperature obtained in the distometer D1. Responses at 2m-4m 
and 6m depth. Comparison with registered data. 

 

5

10

15

20

25

30

35

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T [ºC]
uy [mm]

Time

Distometer 1

y - 2m y - 4m y - 6m D1 - 2m D1 - 4m

D1 - 6m T - 2m T - 6m D1 - T2m D1 - T6m



CHAPTER 8 -Analysis of a Rock-Cliff's Stability under Climatic Actions 

________________________________________________________________________________________________________ 

474 
 

 

Figure 8.217: Evolution of Displacement and Temperature obtained in the distometer D2. Responses at 2m-4m 
and 6m depth. Comparison with registered data. 

 

 

 

Figure 8.218: Temperature (Temp-M) and displacements (u-M) measures. Obtained results from the numerical 
simulations at points p0, p1, p2. 
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Finally, Fig. 8.219 shows evolutions of horizontal heat flux and temperature at 2m depth 

from the cliff face in extensometers D1 and D2.  

Positive horizontal heat fluxes (outflow) take place in winter when rock temperature is 

higher than air temperature. Conversely, negative horizontal heat fluxes (inflow) can be 

observed in summer when solar radiation is higher at the massif face.  

 

Figure 8.219: Evolution of horizontal heat flux and Temperature at extensometers D1-D2. 

 

Fig. 8.220 shows evolutions of horizontal heat flux and temperature in the cavern of the 

massif where radiation does not have sensible effects.  
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Figure 8.220: Evolution of horizontal heat flux and Temperature at point of the decompression zone. 

 

Variations follow quite well the temperature of the air in the cavern, at the same time that 

heat fluxes point outwards and inwards in correspondence with seasons of summer and 

winter, respectively. 

A series of isochrones of the most relevant variables governing the porous media response 

are now presented. Those contours are shown at two different times of maximum 

(11/07/2010) and minimum (11/02/2011) external temperature.  

Figures 8.221 and 8.222 show vectors of heat flux, isochrones of porosity and stress 

invariants deviatoric and mean stress, obtained during two different seasons: (a) summer 

and (b) winter. 

Fig. 8.221 shows that heat flux vectors point to the interior of the rock mass evidencing a 

thermal gradient toward the interior of the rock. Isochrones of stress invariants show that 

the highest values are obtained at the upper right corner of the section.  

Fig. 8.222 shows that heat flux vectors point to the exterior of the rock mass determining a 

thermal gradient toward the exterior of the rock. The highest stresses are observed at the 

upper right corner of the section.  

The mentioned stress concentration could overcome the yield surface of an elastoplastic 

computation. This fact will be studied in the next section. 
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Figure 8.223 shows contours of temperature and vertical displacement in the rock cliff 

profile. It can be seen that contractions are developed at the rock face in accordance with 

maximum external temperatures while extensions are observed at the rock face in 

accordance with minimum external temperatures. 

 

 

Figure 8.221: Contours of stress invariants, porosity and heat flux vectors at the most exposed section of the rock 
mass. Contours at a time of maximum temperature registered at the distometers. 
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Figure 8.222: Contours of stress invariants, porosity and heat flux vectors at the most exposed section of the rock 
mass. Contours at a time of minimum temperature registered at the distometers. 
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Figure 8.223: Contours of Temperature and Vertical displacement at section of the rock mass. Contours at two 
different times of maximum and minimum temperatures. 

 

Before proceeding further with the plastic response of the rock cliff, it seems interesting to 

have an image of the predominant direction of displacements at those points that are most 

exposed to the atmospheric load. Fig. 8.224 shows the predominant direction of 

displacements at points D1 and D2 obtained from the elastic model. The vertical 

displacements at the extensometer D2 (closer to the cavern roof) result in a steepest  

slope than those at extensometer D1.  
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Figure 8.224: Preponderant directions of displacements of the Rock-cliff under the atmospheric load. The vertical 
Displacements closer to the cavern roof are greater than those closer to the apex. 

 

8.6.3)      Results of the Hyperplastic Model 

 

In the section results of La Roque model considering the rock material response as plastic 

are presented. In order to analyze the possibility of irreversible strains due either to local 

shear stress or traction, the plastic response is modeled based on Drucker criterion with 

thermal degradation. 

Numerical model is based on the geometry considered for the elastic model depicted in 

Fig. 8.214. For the hyperplastic model, an additional division into several material has 

been considered.  
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In the far field, an elastic material with the same properties as for the elastic numerical 

model has been considered. In the near field an elastoplastic material with thermal 

degradation is considered, labeled Drucker-1 and Drucker-2 in Fig. 8.224. Drucker-1 

material is provided with a lower strength and a higher sensibility on temperature as the 

result of the weakening effect acting in the decompression zone.  

Moreover, a higher initial porosity is considered at the decompression zone (more open 

structure) in order to take into account the fissured state of this zone.  

 

 

Figure 8.225: Distribution of materials used to model the rock mass response. 

 

A comparison between models results and measurements in extensometers D1 and D2 is 

presented below, Fig. 8.226 to Fig. 8.233. Fig. 8.234 depicts stress paths computed at 

critical points of the rock face and cavern. 

Figures 8.226 and 8.227 show the evolution of temperature and displacement computed 

under stationary conditions (5th cycle) in extensometers D1 and D2, respectively. Those 

results are compared with in situ measurements at 2m, 4m and 6m depths. A good 

agreement can be observe providing a validation of the model.   
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Figure 8.226: Evolution of Displacement and Temperature obtained in the distometer D1 at 2m-4m-6m depth. 
Results obtained from the Plastic model and comparison with the registered data. 

 

Figure 8.227: Evolution of Displacement and Temperature obtained in the distometer D2 at 2m-4m-6m depth. 
Results obtained from the Plastic model and comparison with the registered data. 
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Figures 8.228 to 8.231 present a comparison between temperature and displacements 

measured at extensometers D1 and D2 and computed by the elastic and the hyperplastic 

models. 

 

Figure 8.228: Evolution of Displacement and Temperature obtained in the distometer D1 at 2m depth. Results 
obtained from the Plastic and Elastic models and comparison of the plastic responses and the registered data. 

 

Figure 8.229: Evolution of Displacement and Temperature obtained in the distometer D2 at 2m depth. Results 
obtained from the Plastic and Elastic models and comparison of the plastic responses and the registered data. 
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Figure 8.230: Evolution of Displacement and Temperature obtained at the rock-face in the distometer D1. Results 
obtained from the Plastic model and comparison with results from the elastic model. 

 

 

Figure 8.231: Evolution of Displacement and Temperature obtained at the rock-face in the distometer D2. Results 
obtained from the Plastic model and comparison with results from the elastic model. 
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Temperatures are very similar to that obtained by the elastic model, which is consistent 

with the fact that the thermal model is not affected by deformations. Displacements 

predicted by elastic and hyperplastic models are similar indicating that the rock remains 

in the elastic range at that depth. 

Discrepancies are only due to the fact that the plastic model gives a more detailed 

response as result of the greater number of time steps requires to integrate the 

mechanical constitutive law. 

8.6.3.1)    Decompression Zone (Hyperplastic Model) 

 

Figures 8.232 and 8.233 show evolutions of displacement and temperature computed by 

both the elastic and the hyperplastic models at point p1 and p2 located at the face of the 

inclined wall above the cavern and at the cavern roof, respectively.  

Fig. 8.232 evidences a superficial plastic zone at point p1. Time evolution of displacements 

given by the hyperplastic model shows slight discrepancies with respect to the evolution 

of displacements computed by the elastic model indicating that the effect of plastification 

is small.  

This kind of thermo-mechanical shallow plastification is due to rock degradation in 

presence of climatic actions and could be associated to the process of spalling observed in 

the material of the massif face.  
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Figure 8.232: Evolution of Displacement and Temperature at point p1 in the inclined plane. Comparison between 
responses of the plastic model and the elastic model. 

Fig.8.233 shows a plastification process with a growing tendency to form a shear band 

which compromises the support of the rock mass over the troglodyte cavern. 

 

Figure 8.233: Evolution of Displacement and Temperature at point p2 at the bent wall. Comparison between 
responses of the plastic model and the elastic model. 
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Figure 8.234 shows stress paths computed in the rock cliff, at the three points: (a) top of 

cliff, (b) face of cliff and (c) cavern roof, as consequence of the atmospheric actions in cliff's 

boundary. 

 

 

Figure 8.234: Stress paths and Drucker's yield surfaces in the cliff under the atmospheric load. 

 

The stress paths at top and face of the cliff reach yield surfaces in extension states and 

keep far from plastic developments in compression. On the other side, stress path at the 

roof of the cavern, in the decompression zone, reaches the yield locus in states of 

extension and compression due to the degradation law of the rock. Figure 8.236 also 

validates the yielding criterion and the robustness of the interior-point algorithm to 

handle numerical problems of convergence observed in this type of stress paths. 

Figures 8.235 to 8.243 show isochrones of environmental and mechanical variables at 

time of higher (11/07/2010) and lower (11/02/2011) external temperatures, 

respectively. 
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Fig. 8.235 and Fig. 8.236 show the heat fluxes in the massif in form of vectors and 

isochrones, respectively. During winter there is an outward flow of heat because the 

massif is hotter that the atmospheric air. In summer, the isochrones magnitude of heat flux 

at rock face are typically of   
  

  
⁄  (inward flux) while in winter are typically of   

  
  

⁄  

(outward flux). 

Temperature isochrones, Fig. 8.237, evidence the delay existing between atmospheric air 

and rock inner temperature. This process, due to heat diffusion inside the massif, is a 

cause of differential rock expansion in the massif. 
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Figure 8.235: Heat flux vectors at two times of maximum and minimum temperatures. Comparison of results 
obtained by the elastic model and plastic model. 
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Figure 8.236: Contours of horizontal heat flux at two times of maximum and minimum temperatures. Comparison 
of results obtained by the elastic model and plastic model. 
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Figure 8.237: Contours of Temperature at two times of maximum and minimum temperatures. Comparison of 
results obtained by the elastic model and plastic model. 

 

Fig. 8.238 show vertical strains resulting from the differential expansion of the rock. It is 

observed from the isochrones that in summer a cold bulb is formed inside the massif 

which acts as a column limiting the vertical displacements. In winter this internal support 

disappears and vertical deformations reach magnitudes up to two times the magnitudes 

developed in summer. 
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Figure 8.238: Contours of vertical strains at two times of maximum and minimum temperatures. Comparison of 
results obtained by the elastic model and plastic model. 

 

Figures 8.239 to 8.241 evidence the redistribution of stress that occurs as consequence of 

plastic zones inside the massif.  
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Both elastic and hyperplastic model evidence the development of a horizontal 

compression zone above the cavern, which acts as an arch to support the block. This 

patterns indicate a cantilever beam type of response that will be studied in the next 

section.  

Deviatoric and shear stresses appear to be very high on rock surface as result of high 

thermal strains induced by the acting steepest variations of atmospheric temperature. 

They explain the development of shallow plastic zone on the cliff face. This is confirmed by 

the isochrones of plastic multiplier, Fig. 8.242. 

Isochrones of plastic multiplier also show the development of a failure initiated at both the 

cavern roof and the upper massif surface. This zones can also be associated to the 

development of a plastic bending mechanism that encompass the upper block of the 

cavern. 
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Figure 8.239: Contours of shear strains at two times of maximum and minimum temperatures. Comparison of 
results obtained by the elastic model and plastic model. 
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Figure 8.240: Contours of deviatoric stress invariant at two times of maximum and minimum temperatures. 
Comparison of results obtained by the elastic model and plastic model. 
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Figure 8.241: Contours of mean stress invariant at two times of maximum and minimum temperatures. 
Comparison of results obtained by the elastic model and plastic model. 
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Figure 8.242: Contours of plastic multiplier and principal horizontal plastic strains at two times of maximum and 
minimum temperatures. 

 

Fig. 8.243 shows the deformed mesh at times of higher and lower external temperatures. 

Patterns evidence a cyclic divergence and convergence of the cavern roof. Divergence 

mechanism appears to involve vertical displacements of magnitude 0.0018m at the cavern 

roof while closure mechanism produces vertical displacements 45% lower at cavern roof. 

The cyclic bending response of the upper block can also be identified in the figures.  
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Figure 8.243: Contours of vertical displacements at two times of maximum and minimum temperatures. 
Comparison of results obtained by the elastic model and plastic model. 

 

 

8.7)     Stability Analysis of Cavern Roof  

 

In this section, a simple analysis of the block located on top of the cavern is realized. It is 

based on the Bernoulli beam theory and compare the threshold envelope to the values of 

axial force, shear force and bending moment computed in the fixed section of the rock-

beam due to the developed thermal strains. 
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Geometry considered in the analysis is shown in Fig. 8.244. It encompasses the block 

located on top of the cavern. This section is considered as the most critical since it 

corresponds to the locus of shear stress concentration above the rear part of the cavern. 

 

 

Figure 8.244: Idealized cantilever rock-beam, ceiling of troglodyte cavern.  

 

Potential failure is assumed to take place as result of the development of thermal stresses 

due to differential strains associated to the gradient of temperature in the cliff. The normal 

and shear stresses at the plane 1-1 are given by        and       . By adding up the 

stresses along the entire area it is possible to compute the time evolution of axial force N, 

shear force Q and bending moment M at 1-1. Fig. 8.245 shows the cyclic evolution of axial 

and shear forces, momentum and curvature due to thermal stresses and self-weight in 

section 1-1. 

Profiles of normal stress and shear stress distribution obtained with the numerical model 

on 11/02/2011 are depicted in Fig. 8.246. 

Once remove the bottom part of the diagram which corresponds to the decompression 

close to the roof of the cavern, they can be favorably compared with the distribution 

obtained by the elastic beam. Equation 8.20 provides expressions for the axial stress and 

the shear stress distributions given by this theory, depicted in Fig. 8.248. 
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Figure 8.245: Evolution of normal force, shear force, momentum and curvature at fixed section     of the rock-
beam.  

 

 

Figure 8.246: Typical profile of normal and shear stress computed in La Roque at section 1-1.  
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(8.20) 

where     m, I and A are the moment of inertia and area of cross section 1-1, ST is the 

static moment with respect to the centroidal axis.  

Fig. 8.247 shows the plastic zones which develop in the rock as the result of the thermal 

actions. They evidence the development of two weakening zones on top and bottom of 

section1-1. These weakening zones can be seen as the initiation of a plastic hinge 

mechanism. 

 

Figure 8.247: Plastification zones in the critical section 1-1 of the rock-beam at two different times. 

 

According to the evidence, the condition of stability of the rock above the cavern will be 

studied using the theory of plastic bending in a cantilever beam provided with an elastic 

stress distribution and a yield criterion based on Drucker proposal (Bezukhov referenced 

by Jirásek (2002)). 

In this theory the cross section of a rectangular beam is divided into: (a) a core, where the 

section remains elastic and (b) plastic regions, in which shear stresses vanish. Fig. 8.248 

shows the cross section 1-1 and the idealized stress distribution proposed by Bezukhov. 
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Figure 8.248: Cross section 1-1 and stress distribution according to Bezukhov, after (Jirásek & Bazant, 2002). 

 

The interior approximation (lower limit) of the plastic limit envelope for the cross section 

1-1 is obtained by establishing in first instance the bending moment due to the action of 

axial force, shear force and momentum  . 

It is performed in two separate stages that combine: (a) the N-M mechanism and (b) the Q-

M mechanism. 

If the moment capacity at section 1-1 is computed under the action of N and M only, the 

influence of the axial force N on the bending moment is obtained, leading to: 

  
     

 ⏟  
  

(  
   

  
)    (  

  

    
   

) 
(8.21) 

Eq. 8.21 gives an interaction equation between axial force and bending moment  expressed 

by: 

 

  
 (

 

    
)

 

   
(8.22) 

Interaction Eq. 8.22 allows to determine the strength of section 1-1 under combined 

loading N-M. Fig. 8.249 presents the N-M interaction curve for the rectangular section 1-1 

of the rock-beam. 
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Figure 8.249: N-M interaction curve for the rectangular section 1-1. 

 

Considering the stress distribution in Fig. 8.248, the bending moment regarding Q-M 

mechanism results: 

  
     

 ⏟  
  

(  
   

   
) 

(8.23) 

where    is the fully plastic moment due to pure bending. Eq. 8.23 gives a direct relation 

between the high of the elastic core    and the bending moment  : 
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(8.24) 

The moment of inertia and the static moment of the elastic area (Fig. 8.248) are defined by  

      

  
⁄  and ST  

b (de2

 4z2)

8
⁄  , respectively. Thus the shear stress at the elastic 

core Eq. 8.20b is rewritten as: 
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(8.25) 

On the other hand,    and   must satisfy the plastic admissibility condition defined by the 

Drucker yield surface Eq. 8.19, leading to: 

3

2

 

b   
  

(de2

 4z2)  
2(B  M)z

de  y  a(c )  0 
(8.26) 

If this expression holds for the maximum shear stress at     then it holds for the entire 

elastic core. Then   must satisfy: 
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Eq. 8.27b can be rewritten in the form: 
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(8.28) 

that is the desired plastic limit envelope which defines the maximum allowable shear force 

Q such that (    ) remains plastically admissible within the elastic core (outside this core 

it is fulfilled by imposition of the yield locus). 

It is noted that Eq. 8.24 is valid in the range        , where    is the elastic limit 

moment. For values of      the depth of the elastic core would exceed the depth of 

the cross section. 

The obtained failure criterion in the M-Q space provides a safe estimation of the limit 

shear force given by: 

         (  )√
 

 
(  

 

  
) 

(8.29) 

Fig. 8.250 depicts the interior approximation of the plastic limit (interaction  ,  ). 

 

Figure 8.250: Interior approximation of the plastic limit M-Q for stress states within the elastic core at a constant 
normal force.  
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Fig. 8.251 presents the shear-moment pairs computed with the numerical model. They lay 

within the elastic domain delimited by the Q-M plastic limit, as consequence stability of 

the rock-beam is guaranteed. 

 

Figure 8.251: (a) Interior interaction envelope of the plastic limit M-Q for stress states within the elastic core at a 
constant normal force, (b) shear-moment pairs at the elastic core obtained by the model La Roque. 

 

8.8)     Conclusions 

 

This chapter deals with the thermomechanical study of a rock massif located in the south 

of France, submitted mainly to the action of the solar radiation.  

Climatic actions were registered by the meteorological station Sarlat la Caneda, located 

about 3km from the location of the massif. Extensometers on the cliff face and within the 

massif allow to follow temperature and displacement in the rock mass. 

A numerical model has been built to follow the response of the cliff. The elastic response of 

the material has been modeled with a hyperelastic linear law, while the plastic response 

has been modeled with the Drucker-Prager model presented in chapter 4. The interior-

point algorithm presented in chapter 5 has been used to integrate the model. 
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Heat exchange between the massif and the atmosphere generates incoming and outgoing 

flows of heat coinciding with summer and winter, respectively. 

Differential expansions of the rock has been shown to be the result of the diffusion of heat 

inside the massif. During summer season a cold bulb reseambling  a beam developed over 

the cavern limits the vertical displacements. 

Differential deformation has generated stress paths within the massif, which have 

produced contractions and expansions in the most exposed part of the rock mass. The 

algorithm has been decisive in providing a proper response to problems of  numerical 

convergence of difficult solution, like the one produced by traction stresses of 

considerable magnitude. The responses provided by both the elastic and the plastic 

models show great similarity, being the response of the plastic model more precise due to 

the greater number of time steps required in order to solve the model.  

Irreversible deformations are located in zones of the massif at the rock face, at the top and 

at the roof of the cavern. Redistribution of stresses due to plastic zones and the 

concentration of irreversible strains at the top of the massif and at the cavern roof have 

indicated a cantilever beam type of response of the rock mass over the cavern. 

Irreversible strains at the rock face have been associated with the spalling observed in the 

rock face. The plastification process observed in the cavern roof tends to form a shear 

band which makes more precarious the stability of the rock mass above the cavern. 

Stability study of the rock-beam in the more critical section subjected to: axial force, shear 

force and momentum generated by the thermal stresses acting in that section, has lead to 

the conclusion that the beam is stable. 
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CHAPTER 9 

 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

 

Some general conclusions are drawn from the evidence presented in the preceding 

Chapters. The most important points are reemphasized and some suggestions for future 

developments are made. 

9.1)   Modeling of soil-vegetation-atmosphere interactions 

 

Chapter 2 has addressed the soil-atmosphere interaction in a comprehensive formulation 

allowing to derive all the equations governing the THM behavior of porous media in a 

consistent way with the balance equations considered for the continuum. 

Heat exchange through      boundary includes: sensible heat of exchange, heat convected 

by flows of water and air and net radiation reaching the soil surface. The latter has proved 

to be of great relevance since it controls the evaporation flux and may cause thermal 

strains, particularly in rocks. A study case of the later effect is presented in chapter 8. 

Water mass flux through      boundary includes: precipitation, evaporation, vapor flux 

advected by gas and flux of water drained on soil surface in case of full saturation. Model is 

able to account for the actual evaporation flux which depends on the magnitudes of 

current atmospheric variables (wind velocity, relative humidity, atmospheric 

temperature). 
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Transpiration flux acts in depth in the root zone of vegetalized areas. Stress factor 

affecting leaf surface resistance is the main factor controlling the transpiration flux. This 

factor depends on the soil water content available at the root zone. 

Behavior of three-phase porous medium has been approached from a thermomechanical 

viewpoint. The approach starts establishing the first and the second laws of 

thermodynamics for the THM coupled problem. Momentum balance equation and balance 

of air-liquid interface, involving the average stress-like tensor    , have been derived from 

the analysis. Moreover, following standard procedures in thermomechanics, the state 

equations (constitutive laws) of the three-phase porous medium have been obtained. 

The respective effects of these different fluxes has been then studied by sensitive analysis 

of synthetic problems. A first analysis leads to highlight strong effect of the balance 

between infiltration and evapotranspiration for the hydric changes in the upper soil layer 

(active zone). 

The effect of the permeability of the topsoil layers has been also illustrated. Low 

permeability soil are less sensitive to the atmospheric actions than high permeability soils, 

since they provide a greater resistance to water percolation and favor stronger 

evaporation flows. 

The effect of vegetation has also been illustrated. High density of vegetation cover 

increases: (a) the relevance of transpiration over evaporation and (b) the depth of the 

active zone susceptible to pore pressure fluctuations due to the atmospheric action. 

As future work, the study of the plant growth at cellular level and its consequent changes 

in the density of the system is recommended. In this perspective, a cellular growth 

scenario has been briefly developed at the end of the chapter, highlighting the interest of 

soil biology model for this research field. 

9.2)   A Thermomechanical framework for modeling unsaturated soils 

 

Chapter 3 has addressed a review of the theory of plasticity from thermo-mechanical 

principles. Two consolidated frameworks: (a) poro-elastoplasticity and (b) hyperplasticity 

have been examined. 

The poro-elastoplastic framework offers a formal procedure to separate the skeleton from 

the pore fluid and formulate independent and coupling equations between each phase. 
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The hyperplastic framework gives an adequate perspective to address: (a) material 

hardening and (b) plastic flow direction without losing associativity of the flow rule in the 

so called dissipative stress space. 

Both frameworks have been examined and merged into a thermomechanical consistent 

framework (hyperporoplasticity) able to model soil response in partially saturated 

conditions. The hyperporoplasticity maintains the characteristics of the two original 

theories. 

Chapter starts with the hyperporoplastic formulation of two-phase porous materials. The 

study posses the basis of each approach and introduces the thermomechanical concepts of 

plasticity as: elastic energy, trapped energy and dissipation energy. 

Afterwards the hyperporoplastic formulation for three-phase porous media has been 

presented. It allowed to derived the constitutive variables commonly used in the modeling 

of partially saturated soils and to obtain the state equations linking the conjugate 

variables. 

A novel concept introduced by this approach is the kinematical hardening of the retention 

curve. It extends, to hydraulic variables, the fundamental relationship linking variables in 

the true and in the dissipative spaces by introducing the concept of shift (or back) suction. 

This extension leads to a dissipative mechanism which allows to model hysteresis of the 

capillary curve. 

Finally, a general structure has been proposed for the energy functions    and    in 

partially saturated conditions. 

Although it has not been of mayor interest in this work, the theory supports the 

development of models with deformable solid phase. This scenario opens a research line 

to be explored in detail. 

9.3)   Formulation of THM models within hyperporoplasticity frame 

 

Along chapter 4 the hyperporoplasticity framework for hydro-mechanical and thermo-

mechanical modeling of multiphase media has been applied to several constitutive models 

that appear to be of importance in practical problems of soil-atmosphere interactions.  
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 They are: 

- Water retention with and without hysteresis, 

- Thermo-hydro-mechanical elastic law, 

- BBM-like models, 

- HP-CASM model, 

- Drucker-Prager and Matsuoka-Nakai yield criterion with linear elasticity (or also 

perfectly plastic). 

A simplified van Genuchten law has been proposed. This simplified law admits a closed-

form integration and therefore the construction of an energy potential for the air-liquid 

interface. Hysteresis of the retention model has been addressed proposing a proper 

energy function    (     ) and a force potential. 

Dissipation functions for BBM-like models, formulated in both net stress and effective 

stress, have been presented and their performances shown at Gauss point level. 

Dissipation function for a hyperplastic-CASM model has also been proposed. In this case 

the hardening parameter has been provided with a thermal dependency in addition to 

suction.  

Generalized elastic potentials proposed by Houlsby (2005) have been extended to 

consider: (a) suction due to partially saturation of porous media, (b) thermal strains due 

to temperature changes and (c) water retention dependence on mean stress by an 

adequate interface energy. The obtained dependencies and couplings for the proposed 

potentials has led to an extended partition of strains and degree of saturation, beyond the 

classical elastic and plastic partition. 

Drucker-Prager model, derived within the framework of hyperplasticity, has been adapted 

to consider thermal strength degradation. The presented model has also been smoothed at 

the apex to avoid the lack of definition of the plastic flow vector at that point. 

All the models appear to fit well in hyperporoplasticity framework. The obtained 

formulations presented the advantage of being susceptible to be implemented in 

optimization algorithms with good performance (algorithms developed in chapter 5). 

The hyperporoplastic formulation of hydro-mechanical constitutive laws considering the 

hysteretic behavior of the air-liquid interface attached to the solid particles is an 

interesting research line for future works.  
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9.4)   Numerical Implementation: Implicit Algorithms  

 

The study of the integration of the constitutive models developed in chapters 3 and 4 has 

been addressed along the chapter 5. The proper integration of the constitutive laws is a 

key point of the constitutive modeling. 

One of the advantages of the elasto-plastic models being derived from the thermo-

mechanical principles is that both, internal and dissipation energy functions are known. 

Those functions include all the information on the models and allow to integrate the 

constitutive laws trough mathematical programming tools. The minimization of the 

functionals defined by the sum of the internal energy function and the dissipation function 

provides with proper variational structures. They allow to determine the optimal points 

(minimum points) which are the solution to the return plastic mapping where the stress 

state lies on the yield surface. The study and development of two types of integration 

algorithm has been carried out: 

a) Return mapping by the closest-point projection 

b) Return mapping by the interior-point method 

An additional method to control the step-size during the plastic corrections "the line 

search method" has been included in both algorithms. 

Both algorithms have shown similarities in their performance. They have presented mild 

difference in convergence properties. In favor of the interior-point algorithm is its 

versatility in terms of parameterization options, leading to catch the optimal point even 

when the starting trial point is considerably far from the admissible region. It is a vast and 

open subject for further exploration. 

9.5)   Thermo-hydraulic modeling of an experimental fallow field 

 

Chapter 6 has addressed the analysis of an experimental fallow field, intensely 

instrumented, under climate actions. 

The analysis has evidenced that the interaction between the soil and the atmosphere has a 

great influence on the topsoil layer. The obtained results highlight the predominant action 
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of transpiration over evaporation in the summer. In winter time the direct evaporation 

from the soil surface plays the main role.  

The modelling of the experimental field Le Fauga has allowed to validate the soil-

vegetation-atmosphere boundary condition presented in chapter 2.  

9.6)   Response of a foundation under atmospheric actions 

 

In chapter 7, the response of a shallow foundation under atmospheric actions has been 

studied. 

The model (boundary value) has been calibrated in a physical centrifuge test at laboratory 

scale. The thermo-hydro-mechanical formulation presented in chapter 2 has been used in 

order to physically modelize the governing and constitutive equations. 

In this regard, a generalized mechanical model of Barcelona Basic Model, including pure 

kinematical hardening, coupled with a simplified van Genuchten retention curve, have 

been used. 

Results show that the model is able to reproduce both the hydraulic and the wetting 

induced collapse responses of the silty layer. Moreover, the model has also shown to be 

capable to reproduce the force-displacement curve of the foundation.  

A procedure to evaluate the bearing capacity factors in non-saturated conditions has been 

developed on the basis of the proposal from Potts (2001). This procedure has been used to 

compute the bearing capacity of shallow foundation at the centrifuge test in conditions 

close to saturation. 

The calibrated model (boundary value) has then been applied to the silty layer at field 

scale in order to study the bearing capacity of the foundation under field scenarios. The 

atmospheric condition has been applied for a period of two years with the purpose of 

reproducing real conditions in the soil layer, mainly in the upper zone. 

The study of the foundation focuses on the displacements that may occur as the result of 

climatic actions after its construction. For that, an impervious foundation load until a 

service load equal to 1/3 of the ultimate load has been modeled during two years of 

atmospheric actions. 

This study shows the development of differential settlements of about 6mm between the 

footing center and its edge due to the climatic action. At the end of a strong drying period, 
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the soil has additionally shown to experiment a vertical displacement in extension of 

about 3cm.  

A sensitivity study shows the strong effect caused by the permeability in case in which 

water table is maintained at low constant depth. In the high permeability soils bottom 

condition prevails over the atmospheric effect, leading to low suction close to the surface. 

In the lower permeability soils (       
 ⁄ ), the evaporation plays a more relevant 

role, leading to the generation of an active zone of about 1m depth, which may affect the 

superficial settlements.  

Tractions stresses close to the foundation have been easily predicted by the model. 

Further investigation about the effects of the hysteretic behavior of the capillary curve on 

the soil collapse appear to be of high interest. Insights about the wetting collapse for 

different directions of non associativity of the plastic flow are also an important issue. 

9.7)   Analysis of a rock cliff stability under climatic actions 

 

Chapter 8 deals with the thermomechanical study of a rock massif located in the south of 

France, mainly submitted to the action of the solar radiation.  

Climatic actions were registered by the meteorological station Sarlat la Caneda, located 

about 3km from the location of the massif. Extensometers on the cliff face and within the 

massif allow to follow temperature and displacement in the rock mass. 

A numerical model has been built to follow the response of the cliff. The elastic response of 

the material has been modeled with a hyperelastic linear law, while the plastic response 

has been modeled with the Drucker-Prager model presented in chapter 4. The interior-

point algorithm presented in chapter 5 has been used to integrate the model. 

Heat exchange between the massif and the atmosphere generates incoming and outgoing 

flows of heat coinciding with summer and winter, respectively. 

Differential expansions of the rock has been shown to be the result of the diffusion of heat 

inside the massif. During summer season a cold bulb reseambling  a beam developed over 

the cavern limits the vertical displacements. 

Differential deformation has generated stress paths within the massif, which have 

produced contractions and expansions in the most exposed part of the rock mass. The 

algorithm has been decisive in providing a proper response to problems of  numerical 
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convergence of difficult solution, like the one produced by traction stresses of 

considerable magnitude. The responses provided by both the elastic and the plastic 

models show great similarity, being the response of the plastic model more precise due to 

the greater number of time steps required in order to solve the model. 

Irreversible deformations are located in zones of the massif at the rock face, at the top and 

at the roof of the cavern. Redistribution of stresses due to plastic zones and the 

concentration of irreversible strains at the top of the massif and at the cavern roof have 

indicated a cantilever beam type of response of the rock mass over the cavern. 

Irreversible strains at the rock face have been associated with the spalling observed in the 

rock face. The plastification process observed in the cavern roof tends to form a shear 

band which makes more precarious the stability of the rock mass above the cavern. 

Stability study of the rock-beam in the more critical section subjected to: axial force, shear 

force and momentum generated by the thermal stresses acting in that section, has lead to 

the conclusion that the beam is stable. 

A further investigation regarding the damage of the rock skeleton is a topic of interest. In 

future research a dependency of the damage parameter on the current temperature 

should be introduced. This implementation requires a regularization of the global FEM 

solution to avoid mesh dependency. 

In summary the most important subjects raised in this dissertation are:  

a) Study and development of soil-atmosphere interaction within a coupled 

thermomechanical analysis for three-phase porous medium. 

b) Development and application of thermo-mechanical principles in order to build 

elastoplastic constitutive models for soils at partially saturated conditions. 

c) Use of mathematical optimization techniques for the integration of variational 

structures of constitutive modeling. 

d) Study and development of implicit algorithms of global convergence for the 

numerical integration of constitutive laws. 

e) Application of the model to the study and analysis of geotechnical problems 

controlled by soil-atmosphere interaction. 
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APPENDIX 

 

 

 

 

A1)      Mathematical and Physical Formulation of the Coupled Problem  

 

The study of the ground response under atmospheric and vegetation actions requires the 

consideration of a fully coupled thermo-hydro-mechanical formulation of the porous 

medium. In this formulation all the studied fluxes have their influence in the medium and 

act as boundary constraints in an initial boundary value problem. This section presents 

the coupled formulation for a porous medium on which the finite element code 

Code_Bright is based. It is in this code where the boundary soil-atmosphere-vegetation 

condition has been implemented. 

Following Olivella (1995), three main species are considered, mineral (h), water( ) and 

air( ). The mineral is the specie that forms the solid phase. Water is present in the liquid 

phase and as vapor in the gaseous phase. Air is present in the gas phase (dry air) and in 

the liquid phase in the dissolved state.  

The full description of the Thermo-Hydro-Mechanical state of the partially saturated 

medium is defined by the set of variables: solid velocity(   
    

    
), liquid pressure(  ), 

gas pressure(  ) and temperature( ). Their evolution is constrained by the balance 

equations (mass, heat and momentum), the constitutive equations and the equilibrium 

restrictions, see Olivella (1994). The full set of equations has been discretized in the 

framework of Finite Element formulation and implemented in the code Code-Bright 

Olivella (1994), Olivella (1996). 

Before proceeding further, notation and terminology used in appendix A1 is summarized. 
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A1.1)      Notation and Terminology 

 

Notation for mathematical formulation of THM couple problem 

   Volumetric liquid flux 

   Liquid pressure 

    Liquid relative permeability 

   Liquid dynamic viscosity 

   Effective degree of saturation 

   Air entry value 

   Gas pressure 

    Gas relative permeability 

   Gas dynamic viscosity 

  
  Diffusive flux of dissolved air 

  
  Mass fraction of dissolved air 

  
  Molecular diffusion of air 

  Coefficient of tortuosity 

  
  Diffusive flux of vapor 

  
  Molecular diffusion of water 

   Conductive heat flux 

  Temperature 

  Thermal conductivity 

   Mass of solid per unit volume of porous medium 

   Solid density 

   Advective flux of solid 

   Mass of water per unit volume of porous medium 

   Water density 

   Gas density 

  
  Mass fraction of water in liquid phase 

  
  Apparent mass of liquid 

  
  Apparent mass of vapor (liquid per unit volume of gas phase) 
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  Advective flux of water 

  
  Diffusive flux of water 

   Mass of air per unit volume 

  
  Mass fraction of air in liquid 

  
  Mass fraction of air in gas 

  
  Apparent  mass of dissolved air (per unit volume of liquid phase) 

  
  Apparent  mass of dry air 

  
  Diffusive flux of dissolved air 

  
  Advective flux of dry air 

  
 

 Total internal energy per unit of porous medium 

   Specific internal energy per unit mass of solid phase 

   Specific internal energy per unit mass of liquid phase 

   Specific internal energy per unit mass of gas phase 

   Specific heat of solid phase 

  
  Specific internal energy of water in the gas phase 

  
  Specific internal energy of air in the gas phase 

  
  Specific internal energy of water in the liquid phase 

  
  Specific internal energy of air in the liquid phase 

   
 Energy flux of the solid phase 

   
 Energy flux of the liquid phase 

   
 Energy flux of the gas phase 

  Stress tensor 

  Body forces 

 

A1.2)      Momentum balance (stress equilibrium) 

 

The balance of momentum of the porous medium is reduced to the equilibrium equation 

for macroscopic total stresses: 

    

   
   (   (     (    )  ))   ⏟                      

  

   
(A1.1) 
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where     (   ) is the dry density,    
  

 ⁄ ,    
  

 ⁄  and    is the vector of body 

forces. This equation is completed by the mechanical constitutive relationship of the 

porous medium that relates “constitutive” stresses to total strain rate, computed from 

solid velocities    through the compatibility equation  ̇    
 ⁄  (

   
    

⁄  
   

    
⁄ ).  

A1.3)      Balance equation of each specie and Energy balance 

 

A1.3.1)     Mass balance of solid 

 

Balance equations include the balances of mass for each constituent (solid, water and air), 

the balance of momentum and the balance of energy. They include interactions effects 

between phases and species, as derived by Olivella (1995).  

The solid mass per unit volume of porous media is      (   ), where    is the solid 

density and   is the porosity of the medium. Thus, the mass balance of solid is then 

expressed as: 

 

  
(  (   ))  (  )        

(A1.2) 

where    is the advective flux of solid:  

     (   )   (A1.3) 

where    is the velocity of the solid phase. 

A1.3.2)     Mass balance of the water 

 

The water mass per unit volume of porous media is defined by     (      
  

      
 )    

       
    , where   

  and   
  are the mass fractions of water in the 

liquid and gas phase, respectively.    is the liquid degree of saturation and    is the gas 

degree of saturation.   
  and   

  are the apparent mass of liquid water and vapor in the 

liquid and gas phases, respectively. The mass balance of water is then expressed as: 
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(  

       
    )  (  

    
 )

  
 (  )    

 

 

 

 

(A1.4) 

where    
  and   

  are the advective and diffusive fluxes of water, given by:  

  
           

                  
                  

        

 

 

 

 

and 

  
    

    
      

       

(A1.5) 

Advective fluxes of liquid and gas in liquid phase are modelized by the generalized Darcy’s 

law (Bear J. , 1972), 

    
    

  
 (       ) 

    
    

  
 (       ) 

(A1.6) 

where    and    are the volumetric fluxes of liquid gas,    and    are the liquid pressure 

and the gas pressure,    and     are the liquid and gas relative permeabilities and        

and         are the liquid and gas dynamic viscosities. 

Last term of Darcy’s law is due to gravity and includes the effect of liquid and gas densities 

under changes in pressure and temperature. 

Liquid relative permeability is a scalar function of the liquid pressure    and can be 

evaluated though, van Genuchten's law proposal: 

    √  [  (    
 

 ⁄ )
 

]
 

 
(A1.7) 

where   is a parameter related to the shape of the retention curve. Eq. A1.7 gives a 

considerable decrease of the relative permeability (several orders of magnitudes) at low 

values of saturation’s degree. 

Storage term Advective and 
non-advective 
flux terms 

Source/sink 
term 

Diffusive flux 

(given by Fick’s  

law) 

Advective flux (qg 

is given by 

Darcy’s law) 

Solid deformation 
influence 
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Relative permeability to gas is obtained as a complement to the permeability of liquid: 

          (A1.8) 

although this law tends to overestimate the value of     at high values of degree of 

saturation. 

Degree of saturation    is commonly computed by van Genuchten's proposal: 

   [  (
     

  
)

 
   ⁄

]

  

 
(A1.9) 

where    is the effective degree of saturation and    is the air entry value. Retention curve 

expresses the constitutive relationship between degree of saturation (or water content) 

and suction. This relation has been extensively addressed in chapter 4 to include 

hysteresis within the framework of thermo-mechanics.  

Species move in the medium through two mechanisms: convection by the phases and 

diffusion within each phase. Diffusive flux of vapor is computed by Fick’s law as: 

  
   (        

  )   
  (A1.10) 

where   
  is the mass fraction of water vapor,   

  is the molecular diffusion of water 

vapor in the air given by: (   
  

(
(           ) 

  
⁄ )). 

A1.3.3)     Mass balance of air 

 

The mass balance of air follows a scheme similar to that of water mass balance, where the 

air mass per unit volume of porous medium is given by, 

    (      
        

 )    
       

     (A1.11) 

where   
  and   

  are the mass fractions of air in the liquid and gas phase respectively,   
  

and   
  the apparent density of dry air and dissolved air in the liquid phase and gas phase 

respectively, The mass balance of air is then expressed as, 

 

  
(  

       
    )    (  

    
 )  (  )    

 

 

 

(A1.12) 

Storage term Advective – and 

non-advective 

flux terms 

Source-sink 
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  and   

  include the advective and diffusive fluxes of dry air in the gas phase, on the one 

hand, and dissolved air in the liquid phase on the other hand.  They are given by:  

  
    

    
      

       

  
    

      
       

(A1.13) 

As discussed before, in the liquid phase diffusive flux of dissolved air is computed by Fick’s 

law as:  

  
   (        

  )   
  (A1.14) 

where   
  is the mass fractions of dissolved air,   

  is the molecular diffusion of 

air(            
  

   (
  

  (           )⁄ )) and   is the coefficient of tortuosity. 

A1.3.4)     Energy balance  

 

If thermal equilibrium between phases is assumed, the temperature is the same in all the 

phases. The total internal energy per unit volume of porous medium is then given by, 

  (    )(   )    (    )    (    ) 

      (   )   (             )

 

 

(A1.15) 

where    ,    and    are the specific internal energies (internal energy per unit of mass of 

phase) of each phase and   [
 
   

⁄ ] is the specific heat of the solid phase. According to the 

mixture theory, the specific internal energy of the gas phase is equal to:  

     (  
   

    
   

 )   (A1.16) 

where   
  and   

  are the specific internal energies of water and air in the gas phase 

respectively. In the same way,  the specific internal energy of the liquid phase is given by: 

     (  
   

    
   

 )   (A1.17) 

where   
  and   

  are the specific internal energies of air and water in the liquid phase. 

Energy balance equation expresses the fact that internal energies variations are equal to 

the divergence of fluxes plus eventual source/sink terms, which in virtue of Eq. A1.15 is: 
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(     (   )                 )    (      

    
    

)  (  )    

 

 

 

 

 

 

 

(A1.18) 

 

where the total energy flux is equal to the sum of the energy flux in each phase:   

   
     (   )   

   
 (  

    
   )  

  (  
   )  

            

   
 (  

    
   )  

  (  
    

   )  
            

(A1.19) 

 

The heat conduction in the porous medium is modeled by Fourier’s law: 

        (A1.20) 

 where    is the conductive heat flux,   is the temperature of the porous medium and   the 

thermal conductivity, function of porosity and degree of saturation. In simplified form,   

can be assumed to vary between two limits, the thermal conductivity of the dry medium 

     and of the saturated medium     ,, following the law       √       (  √  ). 

Fourier’s law 

Conductive, 

dispersive and 

advective terms 

Source/sink 

term 

Storage term 
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A2)      A cap hyperplastic Model for unsaturated Soils “BBM-cap” 

The complex response presented by different type of soils requires a wide range of elasto-

plastic models to properly reproduce such a response. One family of proposed models 

satisfying the necessary requirements to model such a complex behavior are the well 

known Cap Models (Di Maggio & Sandler , Chen & Mizuno). The first proposed model of 

this type was presented by Drucker (Drucker et al. 1957). This model suggests a spherical 

end cap to the Drucker-Prager model, see Chen & Mizuno pag. 270. Another type of Cap 

model is the generalization of the modified Cam-clay model to consider a cap of the yield 

ellipse on the contracted side of critical state. This model provides a plastic response for 

values of the deviator   higher than that defined by the critical state line (        ) 

and other for values of the deviator   lower than that defined by the critical state line. That 

means that a single function allows to reproduce a BBM type response on the dilatant side 

(    ) and other response given by Cap on the contracted side (    ). Then the BBM-

Cap model is derived with thermo-mechanic bases. Consider the following dissipation 

function: 

  
 

  
(
   

 
   (

  

     
))

 

 √  
  ̇ 

     ̇ 
 {

         

         
 

(A2.1) 

where    is a positive parameter lower than one and defines the amount of curvature of 

the cap at the compression side and  (    ) is a parameter obtained as function of the 

cap curvature and the slope of the critical state line. The rest of the quantities are defined 

in chapter 4. Now, following standard procedures in thermo-mechanics the expressions 

for the generalized mean stress and generalized deviatoric stress are derived, 

     
  

  ̇ 
 

  

 
(
   

 
   (

  

     
))

  

 ̇  

   
  

  ̇ 
 

  

  
   

(
   

 
   (

  

     
))

  

   ̇  

(A2.2) 

 

For       the expression for the generalized mean stress and deviatoric stress without 

cap are restored (    ). Extracting  ̇  and  ̇  from the previous equations and invoking 
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the transformation    (    ) ̇     ̇      the expression for the yield function is 

obtained: 

   
(    ) 

  
 

 
   

  
 

  

  
 
(
   

 
   (

  

     
))

  

{
 

   
   

  (  
   )

     

         

 

(A2.3) 

 

Figure A2.252 shows the contour of the BBM-Cap model at the p-q plane 

 

 

Figure A2.252: BBM-Cap model. The critical state line define the two regions for      and for     . 

The expressions for the flow rules results in the equations, 

 ̇   
   

   
  

 (    )

  
 

 

 ̇   
   

   
  

   

  
 

(A2.4) 

It can be seen from the last equation that the volumetric plastic strain rate increases as    

decreases. A cap model has been presented and derived under hyper-plastic principles. 

The BBM-Cap model shows again the ability of the hyper-plastic principles to derive 

elasto-plastic models for soils. Figure A2.253 shows the graph of the yield function BBM-

Cap for two different values of cap curvature   , 
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Figure A2.253: Contour of the BBM-cap model for two different values of the cap-curvature parameter    and the 
critical state line.   

 

The model has a unique hardening law. It is activated once a plastic process has been 

initiated either on the dilatant side or on the contracted side. Experimental evidence 

reveals that as temperature increases the plastic behavior is mainly volumetric. It means 

that the magnitude of the mean plastic strain becomes significantly higher than the shear 

plastic strain component. This fact can be modeled with the BBM-Cap model proposed by 

introducing a dependence of the cap curvature parameter    on the current temperature 

(                (   
⁄ )). The hyperplastic BBM-Cap model is completed defining the 

Gibbs energy function for the porous medium. If the general nonlinear thermo-elasticity is 

considered, then the energy function Eq. 4.123 is invoked, but in this case the third 

component of the function should be added. This term will consider the back stress 

(kinematic hardening) relating the generalized stress space and the true stress space.  

   
(    )

  
     (   )(   )

 (    
 (   )

  
  )

   
 

 
  (    )

 (   )
 (        )

  
(     )

 
(
   

 
   (

  

     
))

 

 

(A2.5) 

The same procedure described above allows to express the back stress as, 
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  (

   

 
   (

  

     
))

 

{
 

   
   

  (  
   )

     

        

 

(A2.6) 

And then the generalized mean stress becomes, 

  
      (

   

 
   (

  

     
))

 

 

 

 

(A2.7) 

where the value of   will depend on the deviator’s magnitude with respect to the csl. 

(critical state line). Figure A2.254 shows the contour of the yield surface when transferred 

to the generalized stress space. 

 

Figure A2.254: Contours of the yield surface at both the generalized stress space and the true stress space. The 
back or shift stress relating the spaces. 

 

The integration strategy of this model will be the same as the one followed for the 

previous models. However, an additional question is necessary to define the stress states 

location with respect to the csl, Fig. A2.255.  
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Figure A2.255: Contour of BBM-Cap model with an amount of capping =0.8. Imposed stress paths. 

 

Figure A2.256 shows the model response under triaxial conditions for both samples at 

lightly overconsolidated condition and heavily overconsolidated condition.  

On dry branch, where the contours of BBM-Cap and BBM5 are homothetic, the responses 

tend to join at the critical state. On the other hand at the wet branch of the critical state, 

where the contours of BBM-Cap and BBM5 are non-homothetic, the branches evidence a 

marked difference, being the elastic response larger at the BBM-Cap model. 
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Figure A2.256: Conventional drained triaxial tests on BBM-Cap model. (a)Deviatoric Stress vs. axial strain for 
lightly overconsolidated sample and heavily overconsolidated sample. 

 

Figure A2.257 shows a comparison between the graph of plastic deviatoric strain vs. 

plastic volumetric strain for both the BBM-Cap model and BBM5 model. The increase of 

the plastic volumetric component at the cap of the BBM-Cap model over the same 

component related to the BBM5 model can be clearly seen. 
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Figure A2.257: Deviatoric plastic strain vs volumetric plastic strain for both BBM-Cap model and BBM5 model. 
Response to the trial stress path on a lightly consolidated sample. 

 

Finally, I would like to note that this model describes a predominant volumetric plastic 

response as    decreases. This feature would be useful to reproduce the plastic behavior of 

porous medium under thermal load.  
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A3)      Review of frictional soil models 

 

In this section, two cohesive-frictional models will be reviewed in some detail within the 

hyper-plastic framework. First, the Drucker-Prager model derived from a dissipation 

potential by Collins & Houlsby (1997) in case of purely frictional materials will be recalled. 

This recollection has been extended to consider a cohesive component. Then, the 

hyperplastic formulation of Matsuoka-Nakai model (Matsuoka & Nakai, 1974) will be 

described as formulated within hyperplastic framework with special attention devoted to 

the representation of dilatancy (Houlsby & Puzrin, 2006).   

A3.1)      Drucker-Prager Model 

 

The criterion is expressed as a function of the first invariant of the stress tensor (     ) 

and the second invariant of the deviatoric stress tensor (  (   √  )) as: 

            (A3.1) 

where M and a are related to the cohesion and the friction angle of the soil through the 

expressions (Chen & Mizuno, 1990): 

  
       

√ (       )
 

  
         

√ (       )
 

(A3.2) 

 

Cohesion is introduced in the model by considering a modified expression of the 

dissipation function proposed by Collins & Houlsby (1997) for the pure frictional Drucker-

Prager model. It takes the form: 

  [ 
   

 
  ]  √

 

 
 ̇  

  ̇  
  

(A3.3) 

where   √   is a function of cohesion c’. Standard procedure leads to the following 

expression for the generalized deviatoric stresses: 

   
             √ ( 

    

 
  )  

 ̇  
 

√ ̇  
  ̇  

 
 

(A3.4) 
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It can be verified from equation A.2.4 that the internal plastic strains    
  satisfy Drucker-

Prager’s flow rule.  

The dilatant behavior of the material is introduced as an additional constraint by using 

Lagrange multipliers (Collins & Houlsby, (1997); Houlsby & Puzrin, (2006)): 

   ̇    √
 

 
 ̇  

  ̇  
    

(A3.5) 

where    is a material parameter function of the dilatancy angle and is given by the 

expression: 

  
     

(      )
 

(A3.6) 

The extended dissipation function reads: 

        [
      (    )

 
]√

 

 
 ̇  

  ̇  
    ̇   

(A3.7) 

where   is the Lagrange multiplier. The standard procedure leads again to the expression 

of the generalized stress tensor: 

    
   

  ̇  
 [

      (    )

 
]√

 

 

 ̇  
 

√ ̇  
  ̇  

 
      (A3.8) 

And the following expression for the volumetric and deviatoric components of      

       

   
  [

         

 
  ]√

 

 

 ̇  
 

√ ̇  
  ̇  

 
 

(A3.9) 

Computation of product    
    

  from the last equation provides the expression for the yield 

surface in the generalized stress space: 

√
 

 
    

    
  (

         

 
)      

(A3.10) 

 

Or, in terms of invariants p and   √  :  

             (A3.11) 
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where    
√ 

⁄ . In this equation, the term    works as an apparent cohesion. 

Finally, in absence of kinematical hardening,     . Eq. A3.11 provides thus a yield 

surface identical to that considered in conventional plasticity Eq. A3.1 with      . 

The yield surface and plastic potential for the extended Drucker-Prager model is plotted in 

Fig. A3.258.  

 

 

Figure A3.258: Drucker-Prager Yield Surface and Plastic Potential for frictional Plasticity (meridian plane). 
   ;    . 

 

 

A3.2)      Matsuoka-Nakai Model 

 

The Matsuoka-Nakai yield criterion (Matsuoka & Nakai, (1974)) provides a smooth 

approximation of Mohr-Coulomb model by the expression: 

(     )
 

      
 

(     )
 

      
 

(     )
 

      
   

(A3.12) 
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where       (  ) is the friction coefficient. Alternative expressions of the yield criterion 

are: 

(        )  (              )                    (A3.13) 

                 (A3.14) 

    
  

       
(A3.15) 

  
  ̅    

  ̅    
  ̅    ̅  ̅  ̅     

 

(A3.16) 

 

where I1, I2 and I3 are the 1st, 2nd and 3rd stress invariants,  ̅      and         , with 

     . 

The shape of Matsuoka-Nakai criterion is given in Fig. A3.259. It can be observed how it 

smoothes the apex of Mohr Coulomb criterion, which makes it suitable for numerical 

implementation.  

 

Figure A3.259: Shape of Mohr-Coulomb and Matsuoka-Nakai yield criterion in the deviatoric plane. 

According to Coulomb friction law, material does not experiment dilatancy at failure and 

the flow rule is non-associated in the true stress space. To formulate this model in the 

framework of hyperplasticity, Houlsby & Puzrin (2006) proposed the following dissipation 

function:  

  √
 

 
  ̅  ̅ ( ̇   ̇ )

   ̅  ̅ ( ̇   ̇ )
   ̅  ̅ ( ̇   ̇ )

   

(A3.17) 
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The generalized stresses are computed from the extended dissipation function 

        with the constraint of null dilatancy     ̇   ̇   ̇   : 

   
 (    )

  ̇ 
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 (    )
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 (    )
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( ̅  ̅ ( ̇   ̇ )   ̅  ̅ ( ̇   ̇ ))    

(A3.18) 

by summing up the three equations, the following result is obtained:   
        

 
. Now, 

the condition  ̇   ̇   ̇    ( ̇   ̇ )  ( ̇   ̇ )  ( ̇   ̇ ) provides the 

equation for the yield criterion in the generalized stress space: 

 

  
      

      
            

(              )
 

        
   

(A3.19) 

This yield criterion differs from the yield criterion in the true stress space by the last left-

hand term, that can be seen as a stress-dependent cohesion. This term makes the yield 

criterion perpendicular to the flow rule in the generalized stress space, Fig. A3.260. 

 

Figure A3.260: Zero Dilatant Matsuoka-Nakai Model at Meridian Plane. The term (  ) works as an apparent 
cohesion. 
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Houlsby (1986) proposed a generalization of this criterion, such that it encloses both 

Tresca (for cohesive materials) and Matsuoka & Nakai (for pure frictional materials) 

criteria. The equation reads: 

(     )
 

(     )(     )
 

(     )
 

(     )(     )
 

(     )
 

(     )(     )
   

(A3.20) 

 

and can be reformulated into Eq. A3.17 by stating  ̅       . Following the same 

procedure, the dissipation function takes the form (Houlsby & Puzrin, (2006)): 

  √
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] (A3.21) 
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