# Open-chain building blocks from chiral lactams. Enantioselective synthesis of macrocyclic nitrogen-containing natural products 

Guillaume Michel Pablo Guignard


#### Abstract

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel•lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.


ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

FACULTAD DE FARMACIA<br>DEPARTAMENTO DE FARMACOLOGÍA, TOXICOLOGÍA<br>Y QUÍMICA TERAPÉUTICA<br>LABORATORIO DE QUÍMICA ORGÁNICA

# OPEN-CHAIN BUILDING BLOCKS FROM CHIRAL LACTAMS. ENANTIOSELECTIVE SYNTHESIS OF MACROCYCLIC NITROGEN- <br> CONTAINING NATURAL PRODUCTS 

FACULTAD DE FARMACIA<br>DEPARTAMENTO DE FARMACOLOGÍA, TOXICOLOGÍA<br>Y QUÍMICA TERAPÉUTICA LABORATORIO DE QUÍMICA ORGÁNICA

PROGRAMA DE DOCTORADO QUÍMICA ORGÁNICA EXPERIMENTAL E INDUSTRIAL

# OPEN-CHAIN BUILDING BLOCKS FROM CHIRAL LACTAMS. ENANTIOSELECTIVE SYNTHESIS OF MACROCYCLIC NITROGENCONTAINING NATURAL PRODUCTS 

Memoria presentada por Guillaume Michel Pablo Guignard para optar al título de Doctor por la Universitat de Barcelona

Dirigida por:

Dr. Joan Bosch Cartes
Dra. Núria Llor Brunés

Guillaume Michel Pablo Guignard

The experimental work of this present Thesis was realized from October 2011 to September 2015 in the Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona.
Financial support from the Ministry of Economy and Competitiveness, Spain (Projects CTQ2012-35250 and CTQ2015-65384-R), and the AGAUR, Generalitat de Catalunya (Grants 2009SGR-1111 and 2014SGR-0155) is gratefully acknowledged. We also acknowledge networking contribution by the COST Action CM1407.

En primer lugar quiero agradecer al Dr. Joan Bosch Cartes, director de esta Tesis y Catedrático de Química Orgánica de la Facultad de Farmacia de la Universitat de Barcelona por darme la oportunidad de formar parte de su grupo de investigación y por su valiosa dirección, dedicación, confianza, y apoyo constante.

En segundo lugar, quiero agradecer de forma muy especial a la Dra. Núria Llor Brunés, directora de esta Tesis y Profesora Agregada de la Facultad de Farmacia de la Universitat de Barcelona por la gran confianza que ha depositado en mí durante estos años de trabajo contando siempre con su inestimable consejo y experiencia.

También querría agradecer a la Dra. Mercedes Amat Tusón, Catedrática de Química Orgánica de la Facultad de Farmacia de la Universitat de Barcelona por su confianza, ayuda y conocimientos que me ha transmitido durante todo este tiempo.

## TABLE OF CONTENTS

Abbreviations ..... i
Publications and contributions to scientific meeting ..... iii
Chapter 1. Introduction ..... 1
1.1. Synthetic background: oxazolopiperidone lactams ..... 5
1.2. Objectives ..... 13
Chapter 2. Synthesis of chiral open-chain building blocks from phenylglycinol-derived lactams ..... 17
2.1. Introduction ..... 19
2.1.1. Precedents in the ring-opening of oxazolopiperidone lactams ..... 20
2.2. Synthesis of enantiopure 4 -substituted 5 -aminopentanoic acid derivatives ..... 23
2.2.1. Introduction ..... 23
2.2.2. Preparation of $\mathrm{C}-8$ substituted lactams ..... 25
2.2.3. Preparation of (S)-1-(tert-butoxycarbonyl)-5-substituted-2-piperidones ..... 26
2.2.4. Preparation of 4-substituted 5-aminopentanoic acid derivatives ..... 27
2.3. Ring opening of oxazolopiperidone lactams ..... 27
2.3.1. Introduction ..... 27
2.3.2. Lithium aminoborohydride ( LAB ) reagents ..... 29
2.3.3. $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ for the reductive opening of oxazolopiperidone lactams ..... 32
2.3.4. Preparation of chiral bicyclic lactams ..... 35
2.3.4.1. Preparation of 8 -substituted oxazolopiperidone lactams ..... 35
2.3.4.2. Preparation of 6-and 6,8-substituted oxazolopiperidone lactams ..... 36
2.3.4.3. Preparation of 6,6-disubstituted oxazolopiperidone lactams ..... 39
2.3.4.4. Preparation of 7 - and 7,8-substituted oxazolopiperidone lactams ..... 40
2.3.4.5. Preparation of 6,7-disubstituted oxazolopiperidone lactams ..... 41
2.3.4.6. Preparation of 8 a-substituted oxazolopiperidone lactams ..... 42
2.3.5. Synthesis of enantiopure substituted 1,5 -aminoalcohols ..... 42
2.3.5.1. Reductive opening of 8 -substituted oxazolopiperidone lactams ..... 43
2.3.5.2. Reductive opening of 6 -substituted oxazolopiperidone lactams ..... 44
2.3.5.3. Reductive opening of 6,6-disubstituted oxazolopiperidone lactams ..... 45
2.3.5.4. Reductive opening of 6,8-disubstituted oxazolopiperidone lactams ..... 46
2.3.5.5. Reductive opening of 7 -substituted oxazolopiperidone lactams ..... 46
2.3.5.6. Reductive opening of 6,7-disubstituted oxazolopiperidone lactams ..... 48
2.3.5.7. Reductive opening of 8a-substituted oxazolopiperidone lactams ..... 49
2.4. Removal of the chiral inductor ..... 50
2.4.1. Reductive removal of the phenylethanol moeity ..... 51
2.4.1.1. Preliminary studies ..... 51
2.4.1.2. Synthesis of enantiopure 1,5-aminoalcohols ..... 52
2.4.2. Oxidative removal of the chiral inductor ..... 54
2.4.2.1. Oxidation of secondary amines into nitriles ..... 54
2.4.2.1.1. Synthesis of 5 -hydroxypentanenitriles ..... 57
2.4.2.1.2. Synthesis of 5 -hydroxypentanenitriles from enantiopure amino diols ..... 59
2.4.2.2. Oxidation of amines with $m$-CPBA ..... 61
2.4.2.2.1. $\quad m$-CPBA oxidation of phenylglycinol-derived secondary amine 115 ..... 61
2.4.2.2.2. Proposed mechanism ..... 62
2.4.2.2.3. Synthesis of enantiopure 5-hydroxypentanoic acid derivatives ..... 64
Chapter 3. Synthesis of macrocyclic natural products from open-chain building blocks ..... 69
3.1. Marine alkaloids from Haliclona sponges ..... 71
3.1.1. Introduction ..... 71
3.1.2. Synthetic approaches ..... 73
3.1.2.1. Banwell's approach to isohaliclorensin and halitulin ..... 73
3.1.2.2. Usuki's approach to isohaliclorensin ..... 75
3.1.2.3. Steglich's approach to isohaliclorensin, halitulin and haliclorensin ..... 76
3.1.2.4. Huang's approach to isohaliclorensin and haliclorensin ..... 78
3.1.3. Our studies in synthesis of Haliclona alkaloids ..... 80
3.1.4. Enantioselective total synthesis of (S)-haliclorensin ..... 81
3.1.4.1.RCM-ring expansion approach ..... 81
3.1.4.2.N-Alkylation-RCM approach ..... 83
3.1.4.3. N -Alkylation (bond formed $\mathrm{N}_{5}-\mathrm{C}_{4}$ ) ..... 83
3.1.4.4.Construction of the 14-membered macrocycle by a RCM reaction ..... 84
3.1.5. Haliclorensin C. First total synthesis ..... 86
3.1.5.1. Synthetic strategy ..... 86
3.1.5.1.1. Formation of the $N_{1}-\mathrm{C}_{16}$ bond by N -alkylation ..... 86
3.1.5.1.2. Formation of the $N_{1}-\mathrm{C}_{16}$ bond by reductive amination ..... 88
3.1.5.1.3. Formation of the $\mathrm{N}_{1}-\mathrm{C}_{16}$ bond by alkylation: Synthesis of dialkene 165 . ..... 89
3.1.5.1.4. Construction of the 16 -membered macrocycle by RCM: Synthesis of the ethyl analog of haliclorensin C ..... 89
3.1.6. First enantioselective total synthesis of (S)-haliclorensin C ..... 90
3.1.7. Formal syntheses of halitulin and isohaliclorensin ..... 92
3.2. Fluvirucins and their aglycons, the fluvirucinins ..... 94
3.2.1. Introduction ..... 94
3.2.2. Isolation, biological activity, and biosynthesis ..... 94
3.2.3. Synthetic approaches ..... 96
3.2.4. Closure of the 14 -membered ring by RCM ..... 97
3.2.4.1. Hoveyda's approach to fluvirucinin $B_{1}$ and fluvirucin $B_{1}$ ..... 97
3.2.4.2. Bracher's approach to fluvirucinin $B_{0}$ ..... 100
3.2.4.3. Radha Krishna's approach to fluvirucinin $A_{1}$ ..... 101
3.2.4.4. Negishi's approach to fluvirucinin $\mathrm{A}_{1}$ ..... 103
3.2.4.5. The Vilarrasa-Urpí approach to fluvirucinin $B_{2-5}$ ..... 104
3.2.5. Closure of the 14 -membered ring by macrolactamization ..... 106
3.2.5.1. Trost's approach to fluvirucinin $B_{1}$ ..... 106
3.2.5.2. The Vilarrasa-Urpí approach to fluvirucinin $\mathrm{B}_{1}$ ..... 108
3.2.5.3. Suh's approach to fluvirucinin $A_{1}$ ..... 110
3.2.5.4. Fu's approach to fluvirucinin $\mathrm{A}_{1}$ ..... 111
3.2.6. Construction of the 14-membered ring by Aza-Claisen ring expansion ..... 112
3.2.6.1. Suh's approach to fluvirucinin $A_{2}$ ..... 112
3.2.6.2. The Suh-Jung stereocontrolled approach to fluvirucinin A1 and its C-3 epimer ..... 114
3.2.7. Our synthetic strategy for the synthesis of fluvirucinin $B_{1}$ ..... 116
3.2.7.1. Enantioselective synthesis of fragment $A\left(C_{1}-C_{6}\right.$ of fluvirucinins $\left.B_{1}\right)$ ..... 117
3.2.7.2. Enantioselective synthesis of fragment $B\left(C_{7}-C_{13}\right.$ of fluvirucinins $\left.B\right)$ ..... 121
3.2.8. First enantioselective total synthesis of fluvirucinin $B_{1}$ ..... 125
Chapter 4. Conclusions ..... 129
Chapter 5. Experimental data ..... 135

CD

- Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of all new compounds
- Crystallographic data for compounds 42 and 189


## Abbreviations

| $n-\mathrm{BuOH}$ | : $n$-Butanol |
| :---: | :---: |
| MeOH | : Methanol |
| NaOH | : Sodium hydroxide |
| $\mathrm{Boc}_{2} \mathrm{O}$ | : Di-tert-butyl dicarbonate |
| LiOH | : Lithium hydroxide |
| THF | : Tetrahydrofuran |
| EtOAc | : Ethyl acetate |
| Ts | : Tosyl |
| rt | : Room temperature |
| $n-\mathrm{BuLi}$ | : $n$-Butyl lithium |
| $\mathrm{Et}_{2} \mathrm{O}$ | : Diethyl ether |
| Red-AI | : Sodium bis(2-methoxyethoxy)aluminumhydride |
| EtOH | : Ethanol |
| LABs | : Lithium aminoborohydrides |
| CbzCl | : Benzyl chloroformate |
| $\mathrm{CHCl}_{3}$ | : Chloroform |
| LDA | : Lithium diisopropylamide |
| AcOH | : Acetic acid |
| Im | : Imidazole |
| Aq | : Aqueous |
| o/n | : Overnight |
| HTIB | : [Hydroxyl(tosyloxy)iodo]benzene |
| TBDPSCI | : tert-Butyldiphenylsilyl chloride |
| TBDMSCI | : tert-Butyldimethylsilyl chloride |
| TBHP | : tert-Butyl hydroperoxide |
| eq | : Equivalent(s) |
| $m$-CPBA | : 3-Chloroperbenzoic acid |
| PG | : Protecting group |
| Pyr | : Pyridine |
| DMAP | : 4-Dimethylaminopyridine |
| DMTMM | : 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride |
| TIPS | : Triisopropylsilyl |
| LiHMDS | : Lithium bis(trimethylsilyl)amide |
| KHMDS | : Potassium bis(trimethylsilyl)amide |
| $p$-TsOH | : 4-Toluenesulfonic acid |
| DEAD | : Diethyl azodicarboxylate |
| DMF | : Dimethyl formamide |
| MeCN | : Acetonitrile |
| TBAF | : Tetrabutylammonium fluoride |
| DMPU | : 1,3-Dimethyltetrahydropyrimidin-2(1H)-one |
| TFA | : Trifluoroacetic acid |
| DMSO | : Dimethylsulfoxide |

DBU : 1,8-Diazabicyclo[5.4.0]undec-7-ene
EDCI :3-(Ethyliminomethyleneamino)- $\mathrm{N}, \mathrm{N}$-dimethylpropan-1-amine
HOBT : Hydroxybenzotriazole

## PUBLICATIONS

Access to enantiopure 4-substituted 1,5-aminoalcohols from phenylglycinol-derived $\delta$ lactams: synthesis of Haliclona alkaloids.
Mercedes Amat,* Guillaume Guignard, Núria Llor, and Joan Bosch,* J. Org. Chem. 2014, 79, 2792-2802.

A general methodology for the synthesis of enantiopure 1,5-aminoalcohols.
Guillaume Guignard, Núria Llor, Aina Urbina, Joan Bosch,* and Mercedes Amat,* Eur. J. Org. Chem. 2016, 693-703.

Enantioselective total synthesis of fluvirucinin $B_{1}$.
Guillaume Guignard, Núria Llor, Elies Molins, Joan Bosch,* and Mercedes Amat,* Org. Lett. 2016, 18, 1788-1791.

Synthesis of fluvirucins and their aglycons, the fluvirucinins.
Mercedes Amat,* Núria Llor, Guillaume Guignard, and Joan Bosch,* Synthesis 2016, accepted.

## CONTRIBUTIONS TO SCIENTIFIC MEETINGS

Oxazolopiperidone lactams as chiral building blocks for the enantioselective synthesis of aminoacid derivatives.
Mercedes Amat, Guillaume Guignard, Núria Llor, and Joan Bosch, Oral Communication, "Organic and medicinal chemistry workshop, synthesis of bioactive compounds", Lisboa, Portugal, June 2012.

Enantioselective synthesis of chiral 1,5-aminoalcohols from substituted oxazolopiperidones.
Mercedes Amat, Guillaume Guignard, Núria Llor, and Joan Bosch, Oral Communication, "XXXIV Reunión Bienal de la Real Sociedad Española de Química", Santander, Spain, September 2013.

Access to enantiopure 1,5-aminoalcohols from phenylglycinol-derived $\square$-lactams.
Mercedes Amat, Guillaume Guignard, Núria Llor, and Joan Bosch, Oral Communication, "XXV Reunión Bienal de Química Orgánica de la Real Sociedad Española de Química", Alicante, Spain, June 2014.

Enantioselective synthesis of substituted 1,5-aminoalcohols from phenylglycinol-derived lactams.
Guillaume Guignard, Núria Llor, Joan Bosch, and Mercedes Amat, Poster, "BOSS XIV 14th Belgian Organic Synthesis Symposium", Louvain-la-Neuve, Belgium, July 2014.

Access to enantiopure $\square$-hydroxy acid derivatives from phenylglycinol-derived lactams. Guillaume Guignard, Núria Llor, Aina Urbina, Joan Bosch, and Mercedes Amat, Oral Communication, "XXXV Reunión Bienal de la Real Sociedad Española de Química", La Coruña, Spain, July 2015.

Access to enantiopure 1,5-aminoalcohols: synthesis of Haliclona alkaloids.
Guillaume Guignard, Núria Llor, Aina Urbina, Joan Bosch, and Mercedes Amat, Poster, "XXXV Reunión Bienal de la Real Sociedad Española de Química", La Coruña, Spain, July 2015.

Synthesis of chiral linear-chain building blocks from phenylglycinol-derived lactams.
Núria Llor, Guillaume Guignard, Aina Urbina, Joan Bosch, and Mercedes Amat, Poster, "XXVI Reunión Bienal de Química Orgánica de la Real Sociedad Española de Química", Huelva, Spain, June 2016.

## Chapter 1

INTRODUCTION

Natural product synthesis has played a central role in the evolution of organic chemistry and has been crucial for the development of modern drug discovery programs in the pharmaceutical industry. However, the justification for natural product synthesis has been constantly evolving over the last two centuries. ${ }^{1}$ At the beginning, the chemical synthesis of natural products was the method of choice to confirm the structure of natural products assigned by degradation studies. In the last century, the advances in spectroscopic methods, highresolution mass spectrometry, and X-ray crystallography have facilitated the expeditious structural assignment of highly complex molecules isolated from nature in milligram or even sub-milligram quantities. As a consequence, the synthesis of natural products was considered one of the main driving forces behind the development of chemical transformations, innovative concepts, strategies, and methodologies for complex molecule synthesis. In the 21st century, however, this justification for natural product synthesis is less accepted, so a reevaluation of the role of this activity is required.

Biologically active natural products can be considered as 'privileged' scaffolds that they have been evolutionarily selected for binding to particular domains of biological macromolecules. ${ }^{2}$ As a result of the natural selection process, natural products possess a unique and vast chemical diversity with optimal interactions with biological macromolecules. Due to this diversity and specificity, natural products have proven to be by far the richest sources for new drug development. Of the 1,355 New Chemical Entities (NCEs) reported in the period

[^0]1981-2010, $540(40 \%)$ were either natural products or natural product derived. ${ }^{3}$ In particular, 63 of the 99 (64\%) small molecule anticancer drugs and 78 of the 104 (75\%) antibiotics developed from 1981 to 2010 come from natural products. ${ }^{3}$

However, the interest of pharmaceutical industry in natural product chemistry has suffered a gradual decline in the last decades due to a number of factors: the development of combinatorial chemistry and introduction of high-throughput screening (HTS) against defined molecular targets; the challenges associated with isolation and purification of active principles from complex natural product extracts; the lack of novel entities in natural products; and last, the challenges involved in compound supply and the lack of adequate structural diversification strategies for preclinical and clinical studies. However, the limited success of combinatorial chemistry and HTS, the considerable advances in automation of chromatographic and spectroscopic techniques, and the advent of genome mining (that is, searching a genome for DNA sequences that encode enzymes involved in the biosynthesis of particular products) and metabolic engineering (the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance) have reactivated the interest in natural products as valuable resources for drug discovery. ${ }^{4}$

On the other hand, although the vast majority of natural products are derived from plants, in the last 50 years, research involving marine organisms has shown the great potential of these products as a source of new bioactive compounds. ${ }^{5}$ Although most of these compounds show analogies with terrestrial metabolites, there are a few categories of products that seem to be structurally specific to marine species. Nevertheless, as a consequence of the limited amounts in which some natural products can be isolated, there is a huge material supply problem that limits the progression of natural products into clinical development, particularly those isolated from marine sources. Therefore, more selective, efficient and sophisticated synthetic methodologies are still needed to achieve the total synthesis of complex, challenging natural product targets, allowing the delivery of sufficient material for clinical studies. ${ }^{6}$ Moreover, structural modifications that have the potential to enhance biological properties may not be accessible directly from the natural product. Semi-synthetic structural modifications of the natural products provide important structure-

[^1]activity relationship data. These data enable subsequent computer-aided ligand optimization and the synthesis of analogs with improved pharmacological properties. ${ }^{7}$ In addition to its crucial role in drug discovery, natural product synthesis has been used to respond to fascinating challenges posed by biology. Making biologically interesting natural products accessible in sufficient amounts and modifying the structure of natural products for chemical probe development have become additional objectives of synthetic chemists. Thus, natural product synthesis acquires a special role in chemical biology.

Finally, despite the fact that modern strategies and methods in structural elucidation have experienced great improvements, errors can never be completely ruled out due to the deductive or indirect nature of these techniques. Typically, an X-ray structure of an organic compound is considered to be an ultimate proof of its structure. However, X-ray crystal diffraction usually does not reveal the positions of hydrogen atoms or reliably distinguish between oxygen atoms and NH groups. Since the comprehensive review "Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation" published by Nicolaou and Snyder in 2005, ${ }^{8}$ many natural products have been described whose initial structural assignment turned out to be wrong. In many of these cases the ambiguity still awaits to be resolved. ${ }^{9}$ Therefore, a definitive structural proof of a natural product still necessitates its total synthesis.

### 1.1. Synthetic background: oxazolopiperidone lactams

The main goal of the work we have been developing within our research group during the last years is the search for new and general methodologies for the preparation of aza-heterocyclic derivatives in enantiopure form, with the final aim of applying them to the total synthesis of natural products. In early stages, our group focused its interest on the development of procedures for the stereocontrolled preparation of polysubstituted piperidines, since more than $50 \%$ of the known alkaloids embody this heterocycle in their structure. To pursue this goal they explored the use of chiral aminoalcohol-derived bicyclic lactams as precursors of a variety of piperidine derivatives, an approach that fits in with the concept "enantiomeric scaffolding strategy". ${ }^{10}$ This term, coined by

[^2]L. S. Liebeskind, ${ }^{11}$ defines a procedure in which a conceptually simple core molecule of high enantiopurity, bearing tactically versatile functionality, is constructed, this resident functionality enabling the general elaboration of the core molecule in ways that allow access to diverse families of important molecules. Bicyclic lactams were originally developed by A. I. Meyers as chiral templates for the enantioselective synthesis of cycloalkenones and carboxylic acids containing quaternary stereocenters. In subsequent work, Meyers also reported some applications in the synthesis of simple $\alpha$-substituted piperidine and tetrahydroquinoline alkaloids, as well as imino-sugars. This seminal work was summarized in three reviews. ${ }^{12}$

Chiral aminoalcohol-derived bicyclic lactams are easily available in a single synthetic step by cyclocondensation of $\delta$-keto ester with an enantiopure amino alcohol, usually phenylglycinol.


Scheme 1.1

These enantiomeric scaffolds allow the regio- and stereocontrolled introduction of substituents at the different positions of the piperidine ring, thanks to their tactical functionalization ( $\alpha$-amidoalkylation ${ }^{13}$, nucleophilic and enolate alkylation ${ }^{14}$, conjugate addition to an unsaturated lactam ${ }^{15}$ or Diels-Alder ${ }^{16}$

[^3]reactions) and conformational rigidity. A subsequent reductive removal of the chiral auxiliary, taking advantage of the benzylic character of the C-N bond, provides access to enantiopure piperidines bearing a broad substitution pattern (Scheme 1.1). In fact, in this process phenylglycinol acts as chiral latent form of ammonia. Interestingly, as both enantiomers of phenylglycinol are commercially available, both enantiomers of a target compound are accessible through the above methodology.

Some enantiopure piperidine, indolizidine and quinolizidine alkaloids, as well as bioactive piperidine derivatives of relative complexity, synthesized in our laboratory following the general synthetic strategy outlined in Scheme 1.1, are depicted below.

(-)-Coniine

(-)-Dihydropinidine

(-)-Lupetidine

(+)-Decarbomethoxytetrahydrosecodine

(-)-Quebrachamine


Synthetic precursor of rhazinilam

(+)-Paroxetine

(+)-Monomorine

(+)-Femoxetine

(-)-Indolizidine 167B


Synthetic precursor of erburnamonine


4-Methylquinolizidine

## Scheme 1.2

A more straightforward procedure for the synthesis of enantiopure polysubstituted piperidines has been developed, involving the direct generation of chiral nonracemic oxazolopiperidone lactams that already incorporate carbon substituents at the $\alpha, \beta$ or $\gamma$ position of the heterocyclic ring.

[^4]

## Scheme 1.3

The cyclocondensation between $(R)$-phenylglycinol and racemic $\gamma$-alkyl (or aryl)-$\delta$-oxoacid derivatives or $\delta$-keto diesters (racemic or prochiral) affords in good chemical yield one of the several possible enantiopure stereoisomers, in processes involving a dynamic kinetic resolution of the racemic substrate, and/or the differentiation of enantiotopic or diastereotopic esters groups. This represented an improvement in the efficiency of the methodology, since chiral bicylic lactams with substituents at the 3 and/or 4 -position could now be generated in a single step. As a consequence of this substantial progress, an assorted enantiopure piperidine library could be successfully constructed. ${ }^{17}$


Scheme 1.4
It is worth emphasizing that this general methodology has been successfully employed to prepare some nitrogen-containing compounds of different levels or

[^5]complexity and substitution in enantiopure fashion and in relatively fewer steps. ${ }^{18}$

(-)-(20S)-Dihydrocleavamine


2-Azabicyclo[3.3.1]nonane 7-Azabicyclo[4.3.1]decane


Synthetic precursor of (-)-Cermicin C

(+)-Madangamine D


Synthetic precursor of Uleine and Dasicarpidone


Nor-20-epiuleine

(-)-16-Episilicine


Synthetic precursor of Strychnos alkaloids

Scheme 1.5
More recently, our group has studied cyclocondensation reactions between ( $R$ )phenylglycinol and mixtures of stereoisomers (racemates and mixtures of racemic diastereomers) derived from cyclohexanones or cyclohexenones bearing propionate or acetate chains at the 2-position, leading to tricyclic lactams (see Scheme 1.6). In most cases, we observed an excellent stereoselectivity in the generation of one of the possible diastereomers (up to 16, in some cases) of the corresponding tricyclic lactam with substituents at several positions of the carbocyclic ring. These tricyclic lactams can be easily transformed to enantiopure decahydroquinoline and octahydroindole derivatives, aza-bicycles present in many natural products of biological interest. ${ }^{18 \text { h, } 18 n, 19}$

[^6]
$\mathrm{R}_{1}=$ alkyl; $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=$ alkyl, aryl; $\mathrm{R}_{3}=\mathrm{H}$
$\mathrm{R}_{1}=$ alkyl, aryl, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=$ alkyl, aryl; $\mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{Me}$




$\alpha$-Lycorane


Myrionine

Scheme 1.6

On the other hand, (S)-tryptophanol and (S)-3,4-(dimethoxyphenyl)alaninol have also been used in the context of the synthesis of some indolo[2,3a]quinolizidine, benzo[a]quinolizidine and oxindole alkaloids. ${ }^{20}$ Lactams derived from these alcohols are easily accessible in enantiopure form in a single synthetic step by a stereoselective cyclocondensation reaction between the aminoalcohol and an appropriate $\delta$-oxo acid derivative.

(S)-Tryptophanol

(S)-(3,4-Dimethoxyphenyl)alaninol


Stereoselective
cyclocondensation
Stereoselective
cyclocondensation
$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$\mathrm{R}_{1}=$ alkyl; $\mathrm{R}_{2}=\mathrm{H}$
$\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{R}_{1}=$ alkyl; $\mathrm{R}_{2}=\mathrm{H}$
$\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{R}_{1}=\mathrm{Et} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$

Scheme 1.7

[^7]Taking advantage of the functionalization present in tryptophanol-derived oxazolopiperidone lactams $\mathbf{A}$ (Scheme 1.8), an electrophilic cyclization on the indole 2-position can involve either the hemiaminal ether carbon via an N acyliminium cation (via a) or the lactam carbonyl via a Bischler-Napieralski-type reaction (via b), leading to regioisomeric indolo[2,3-a]quinolizidines (when $R_{1} \neq$ H). Additionally, by choosing the appropriate reaction conditions, an intramolecular $\alpha$-amidoalkylation allows the stereocontrolled generation of C 12 b epimeric derivatives. On the other hand, a Lewis acid/ $\mathrm{Et}_{3} \mathrm{SiH}$-promoted cyclization on the indole 3 -position from $N_{a}$-tosyl derivatives provides straightforward access to the spiro[indole-3,1'-indolizidine] framework present in a large number of alkaloids (via c). Our group has also studied spirocyclization reactions from 2-bromoindole-derived bicyclic lactams to obtain directly spirooxindoles with high stereoselectivity. These complementary types of cyclization are shown in Scheme 1.8.


Scheme 1.8

The usefulness of this methodology was demonstrated with the synthesis of tetracyclic ester B, ${ }^{20 \mathrm{~d}}$ (a known synthetic precursor of the alkaloids (+)dihydrocorynantheine and (-)-dihydrocorynantheol), oxindole $\mathbf{C},{ }^{20 e}$ (synthetic precursor of ent-rynchophylline and ent-isorynchophylline) and $\alpha, \beta$-unsaturated lactam D (synthetic precursor of ent-isomitraphylline and ent-isoformosanine).




(+)-Dihydrocorynantheine

(-)-Dihydrocorynantheol


Rynchophylline

ent-Isomitraphylline

Scheme 1.9

Finally, our group has studied the facial selectivity of base-catalyzed double Michael addition reactions of $\gamma, \delta$-unsaturared $\beta$-oxoesters (Nazarov-type reagents) with unsaturated indolo[2,3-a]quinolizidine lactams. When the appropriate base is chosen, $N_{\text {ind }}-\mathrm{H}$ and $N_{\text {ind }}$ Ts lactams react with a silylated Nazarov reagent to stereoselectively give yohimbine-type pentacyclic with a H -3/H-15 trans relationship (as in nitraraine), whereas $\mathrm{N}_{\text {ind }}$-Boc lactams lead to H -3/H-15 cis derivatives. ${ }^{21}$

Taking into account the accessibility of enantiopure tryptophanol-derived indoloquinolizidine lactams and that the hydroxymethyl substituent of these lactams can be easily removed, the above methodology can provide access to pentacyclic derivatives both in the racemic series and in enantiopure form. The synthetic usefulness of pentacyclic Nazarov-derived adducts has been demonstrated by their conversion into allo and epiallo yohimbine-type targets. ${ }^{22}$

[^8]

Scheme 1.10

### 1.2. Objectives

Based on the previous experience of our group, we focused our attention on the use of phenylglycinol-derived bicyclic lactams as chiral building blocks for the preparation of versatile enantiopure open-chain intermediates with applicability in the synthesis of complex natural products or biologically active compounds.

After the stereoselective introduction of substituents at different positions of the piperidine ring of the chiral lactams and the subsequent removal of the phenylethanol moiety of the chiral inductor, we initially planned to effect the hydrolytic cleavage of the lactam function to provide a variety of enantiopure substituted 5-aminopentanoic acids.

Additionally, we envisioned that the reductive cleavage of the oxazolidine and lactam rings would open a general synthetic entry to diversely substituted enantiopure 1,5-aminoalcohols.

In this way, we would access a variety of related enantiopure substituted and functionalized acyclic derivatives, taking advantage of the fact that the
stereocontrolled generation of chiral centers is generally more efficient and easier to accomplish in conformationally rigid cyclic compounds than in acyclic compounds.

Chapter 2. Starting from diversely substituted phenylglycinol-derived bicyclic lactams, we report the preparation of a variety of substituted chiral amino acids and amino-alcohols with different substitution and stereochemical patterns and discuss the scope and limitations of the procedure.


Scheme 1.11
To increase the synthetic value of the linear-chain enantiopure amino diols resulting from the above reductive ring opening reactions, we also planned to evaluate the feasibility of functional group transformations from the amino group, in order to access substituted enantiopure 1,5-nitroalcohols, 5hydroxypentanoic acids, and 5-hydroxypentanenitriles.


Scheme 1.12

Chapter 3. With the aim of demonstrating the usefulness of the above openchain chiral building blocks, we planned to study their application to the synthesis of macrocyclic natural products. The synthesis of Haliclona alkaloids, such as haliclorensin, halitulin, and haliclorensin C, from 1,5-aminoalcohols would require the latter to be converted into appropriate long-chain secondary amino derivatives bearing two terminal alkene functionalities, which would allow the target azacyclic structures to be assembled using a ring-closing metathesis (RCM) reaction as the key step. (4S)-Methyl-5-aminopentanol was envisaged as the $N_{1}-\mathrm{C}_{6}$ fragment of haliclorensin C and halitulin, and the fragment $\mathrm{N}_{5}-\mathrm{C}_{10}$ of haliclorensin.


Scheme 1.13

We also planned to study the total synthesis of fluvirucinins $B_{0}, B_{1}$, and $B_{2-5}$. We envisioned a convergent synthesis from a common starting ( $S$ )-phenylglycinolderived amino diol to access fragments $\mathrm{C}_{1}-\mathrm{C}_{6}$ and $\mathrm{C}_{7}-\mathrm{N}$ of fluvirucinins B . The key steps would be an organocopper coupling, a stereoselective allylation, an RCM reaction (to form the required 14-membered ring), and a stereoselective hydrogenation. The starting enantiopure open-chain building blocks would be prepared in a straightforward manner from an appropriate phenylglycinolderived lactam.


Scheme 1.14

## Chapter 2

SYNTHESIS OF CHIRAL OPEN-CHAIN BUILDING BLOCKS FROM PHENYLGLYCINOL-DERIVED LACTAMS

### 2.1. Introduction

The stereocontrolled introduction of chiral centers into conformationally rigid cyclic systems is generally more efficient and easier to accomplish than into acyclic intermediates. This concept has often been used in the design of stereoand enantioselective procedures for the synthesis of acyclic synthetic intermediates containing multiple chiral centers. The substituents are stereoselectively introduced into a cyclic enantiopure building block and then the ring is opened to yield a substituted linear-chain intermediate that maintains the stereochemical information. ${ }^{23}$ However, traditionally, this approach to stereodefined acyclic intermediates has only been used for the synthesis of specific target compounds, but general methodologies providing access to a wide variety of synthetic targets have been scarcely developed.

As mentioned in Chapter 1, in previous work our group has explored the potential of chiral phenylglycinol-derived lactams, easily available from

[^9]enantiopure aminoalcohols and oxo-acid derivatives, as enantiomeric scaffolds for the stereocontrolled construction of complex piperidine derivatives. As a result, we now have in hand flexible and versatile procedures for the generation of new stereocenters with a high degree of stereoselectivity and a predictable absolute and relative configuration at virtually all the carbon positions of the piperidine ring of these bicyclic lactams. Taking advantage of this experience, in this Thesis we will focus our attention on the preparation of versatile enantiopure linear intermediates with applicability in the synthesis of complex natural products or biologically active compounds. The general strategy involves the stereoselective introduction of substituents at the desired position of the piperidine ring of chiral bicyclic lactams using procedures previously developed in our group, the subsequent removal of the phenylethanol moiety of the chiral inductor, and the cleavage of the lactam function to lead to a variety of enantiopure 5-amino-alcohols, 5-nitro-alcohols, 1,5-diols, 5 -hydroxy-esters or 5-hydroxy-nitriles, which constitute valuable chiral building blocks for the synthesis of natural products or biologically interesting compounds.

General strategy for the synthesis of substituted linear-chain intermediates from chiral bicyclic lactams


Scheme 2.1

### 2.1.1. Precedents in the ring-opening of oxazolopiperidone lactams

A. I. Meyers, one of the pioneers in the field of chiral bicyclic lactams, has demonstrated that these structures are versatile building blocks for the asymmetric synthesis of a variety of natural and unnatural products. ${ }^{12}$





Scheme 2.2

He described the preparation of these lactams by condensation of an enantiomerically pure amino alcohol with a dicarbonyl compound, and demonstrated their utility in the synthesis of compounds containing quaternary stereocenters such as cyclopentenones a, cyclohexenones b, and carboxylic acids c. ${ }^{24}$


Scheme 2.3

Enantiomerically pure 4,4-dialkylcyclopentenones are obtained from the corresponding dialkylated lactams by a three step sequence involving partial reduction of the lactam carbonyl, hydrolysis of the bicyclic system, and aldol cyclization. In this process, the initially formed enantiopure acyclic keto aldehyde undergoes intramolecular aldol cyclization to give cyclopentenone compounds with a quaternary stereocenter.


Scheme 2.4

The homologous [4.3.0] bicyclic lactams exhibited different chemical properties in comparison to their [3.3.0] bicyclic lactam counterpart. Addition of hydride did not reduce the lactam carbonyl to the carbinolamine as in the [3.3.0] series but resulted, instead, in the reduction of the acetal center, leading to a piperidone as the major product.

[^10]

Scheme 2.5

In these oxazolopiperidone lactams the opening of the six-membered ring with concomitant removal of the auxiliary was possible only with lactams containing a $\beta$-amino or $\beta$-hydroxymethyl group on the side chain. This behavior was rationalized by assuming that the first equivalent of hydride removes the amine or alcohol proton resulting in an aluminium complex $\mathbf{c}$, which serves as a "tether" to deliver hydride intramolecularly in a controlled fashion. It was further believed that if such a "tether" could be permanently incorporated into the chiral auxiliary of a bicyclic lactam d, this would also facilitate the delivery of hydride and the subsequent hydrolytic removal of the auxiliary. A subsequent in situ intramolecular aldol cyclization of the resulting acyclic keto aldehyde proceeds under the acidic conditions employed. ${ }^{12}$


Scheme 2.6

In conclusion, Meyers, only for the specific case of angularly substituted lactams, described some precedents of cleavage, either by direct hydrolysis under acidic conditions to give $\delta$-keto ester derivatives (only from [3.3.0] bicyclic lactams; Schemes 2.7) or by hydride attack to the lactam carbonyl, followed by hydrolysis of the resulting carbinolamine (from [3.3.0] and [4.3.0] bicyclic lactams, Schemes 2.4 and 2.6). In the latter cases, the initially formed 1,5dicarbonyl derivatives undergo in situ aldolization to give corresponding cyclopentenones or cyclohexenones. In no cases are nitrogen-containing linearchain products formed.


Scheme 2.7

In the example outlined Scheme 2.8, the reduction of the lactam carbonyl with lithium monoethoxy aluminium hydride followed by hydrolysis gave a ketoaldehyde precursor of (+)-mesembrine. ${ }^{12 \mathrm{a}}$


Scheme 2.8

### 2.2 Synthesis of enantiopure 4-substituted 5-aminopentanoic acid derivatives

### 2.2.1 Introduction

Several procedures have been employed for the ring opening of $\delta$-lactams bearing an electron withdrawing group on the nitrogen atom. Although the direct acidic or alkaline hydrolysis requires somewhat drastic reaction conditions, N Boc protected lactams undergo alkaline hydrolysis or methanolysis under mild conditions, ${ }^{25}$ leading to the corresponding $\omega$-amino acids or esters, respectively.

[^11]




Scheme 2.9

There are also a few examples of the reductive cleavage of $N$-Boc and $N$-Ts piperidones using borohydride salts to give 1,5-aminoalcohols. ${ }^{26}$


Scheme 2.10
We can also found some examples of the ring-opening of N -acyl and N alkoxycarbonyl $\delta$-lactams with Grignard reagents, leading to $\delta$-amino ketones. ${ }^{27}$


Scheme 2.11
Other carbon nucleophiles such as the phosphonate anion ${ }^{28}$ and lithium tertbutyl propiolate ${ }^{29}$ have also been used in $\delta$-lactam hydrolysis, producing a Horner-Emmons reagent in the first example of Scheme 2.12.

[^12]




Scheme 2.12
In this context, and with these precedents, we devised the preparation of enantiopure linear-chain amino acid derivatives by hydrolytic ring-opening of the N -Boc substituted 2-piperidones derived from chiral non-racemic $\mathrm{C}-8$ substituted oxazolopiperidone lactams.


Scheme 2.13

### 2.2.2. Preparation of $\mathrm{C}-8$ substituted lactams

Lactams $\mathbf{3 a}$ and $4 \mathbf{a}$ were prepared in good chemical yields and high stereoselectivity by cyclocondensation of racemic $\delta$-oxoesters 1 and 2, respectively, which bear an alkyl substituent at the epimerizable carbon $\alpha$ to the aldehyde carbonyl group, with an equimolecular amount of ( $R$ )-phenylglycinol, in a process that involves a dynamic kinetic resolution of the racemic substrate. The first step is the formation of a mixture of diastereoisomeric oxazolidines, which are in equilibrium with the corresponding imines-enamine, by reaction between the amino alcohol with the aldehyde. A final irreversible lactamization leads to the bicyclic lactams.

[^13]

Scheme 2.14

Alternatively, lactam 4a was also obtained in 74\% yield and lower stereoselectivity (4a/4b: 3.1/1) by cyclocondensation of $(R)$-phenylglycinol with the aldehyde ester 2 in refluxing toluene with azeotropic removal of water. We obtained similar results working in microwave-assisted conditions (80\%, 4a/4b: 2.6/1).

### 2.2.3. Preparation of (S)-1-(tert-butoxycarbonyl)-5-substituted-2piperidones

Enantiomerically pure (S)-1-(tert-butoxycarbonyl)-5-substituted-2-piperidones 9 and 10 were obtained from the corresponding bicyclic lactams $\mathbf{3 a}$ and $\mathbf{4 a}$, respectively, by the three-step sequence outlined in Scheme 2.15. The removal of chiral auxiliary was accomplished by successive treatment with triethylsilane in the presence of $\mathrm{TiCl}_{4}$, which brought about the reductive cleavage of the oxazolidine $\mathrm{C}-\mathrm{O}$ bond, and sodium in liquid $\mathrm{NH}_{3}$, which caused the cleavage of the benzylic $\mathrm{C}-\mathrm{N}$ bond. The resulting N -unsubstituted 2 -piperidones 7 and 8 were converted into the corresponding enantiopure $N$-Boc derivatives 9 and 10 in $70 \%$ and $80 \%$ yield, respectively.


Scheme 2.15

### 2.2.4. Preparation of 4-substituted 5-aminopentanoic acid derivatives

The synthesis of enantiopure linear-chain amino acid derivatives 11 and 12 was accomplished in excellent yields by alkaline hydrolytic opening of 2-piperidones 9 and 10, using lithium hydroxide in aqueous THF at room temperature, followed by esterification of the resulting crude $\delta$-amino acids with trimethylsilyldiazomethane. In this way, starting from lactams 3a and 4a, enantiopure esters 11 and 12 were synthesized in 5 steps with overall yields of $26 \%$ and $30 \%$, respectively.


Scheme 2.16

Starting from racemic $\delta$-oxoesters 1 and 2 and ( $R$ )-phenylglycinol, we synthesized enantiopure 4 -substituted 5 -aminopentanoic acid derivatives 11 and 12, bearing a chiral center of defined configuration, in six steps. This overall process can be envisaged as a reductive amination of racemic aldehyde-esters 1 and 2 using a chiral latent form of ammonia, with concomitant dynamic kinetic resolution. Although the above sequence allows the
preparation of enantiopure substituted open-chain scaffolds from phenylglycinol-derived lactams. we decided to explore alternative procedures for the ring opening of these lactams.

### 2.3. Ring opening of oxazolopiperidone lactams

### 2.3.1. Introduction

In previous work we have described ${ }^{10}$ the use of boron- and aluminium-derived hydrides $\left(\mathrm{BH}_{3}, \mathrm{LiAlH}_{4}, \mathrm{AlH}_{3}, 9-\mathrm{BBN}\right.$, or Red-Al) to reduce the lactam carbonyl with simultaneous reductive opening of the oxazolidine ring of diversely chiral non-racemic bicyclic lactams to give the respective piperidines.


Polysubstituted
enantiopure piperidines

Scheme 2.17

This methodology allowed us to synthesize a variety of enantiopure polysubstituted piperidines and some nitrogen-containing compounds of different levels of complexity and substitution (see Synthetic Background in Chapter 1). In no case did the reduction of oxazolopiperidone lactams under hydride reductive conditions afford ring-opening lactams.

However, we found in the literature that treatment of 2-(tetrahydrofuranyl)- or 2-(tetrahydrothienyl)-3,4-dihydro-2(1H)-quinolinones ${ }^{30}$ with $\mathrm{NaBH}_{4}$ (or other hydride agents, such as $\mathrm{LiBH}_{4}, \mathrm{LiAlH}_{4}$ or L-selectride) gave fragmentation products in moderate yields (44-79\%). The carbonyl group of the quinolinone is reduced by the hydride agent to form the intermediate shown in Scheme 2.18, which undergoes a 3-aza-Grob fragmentation. This transformation involved the successive ring opening of a six- and a five-membered ring, to give an imino aldehyde. An excess of hydride converts this intermediate to the saturated amino alcohol.


Scheme 2.18

The above reaction takes place on a substrate having a carbonyl-nitrogen-carbon-heteroatom ( O or S ) sequence that we can also be observed in our oxazolopiperidone lactams. We decided to apply the reductive conditions described Scheme 2.18 for the reduction of chiral bicyclic lactam 3a, using a large excess of $\mathrm{NaBH}_{4}(15 \mathrm{eq})$ in the presence of ethanol. After stirring for 3 days under these conditions, we only obtained piperidine 13 in $21 \%$ yield, with $77 \%$ of recovered starting material.

[^14]

Scheme 2.19
As a consequence of this result we decided to focus our attention on another class of reducing agents, namely lithium aminoborohydrides (LABs), because we found in the literature some examples of the ring-opening of lactams using this kind of hydrides.

### 2.3.2. Lithium aminoborohydride (LAB) reagents

Lithium $N, N$-dialkylaminoborohydrides (LABs) were first reported by Singaram. ${ }^{31}$ They are a new class of powerful, selective, and air-stable reducing agents. They can be used as solids or 1-2 M THF solutions, or can be easily generated by in situ deprotonation of the corresponding amine-borane complex using a lithiated base. LABs are capable of reducing a variety of functional groups, and their use as reducing agents has been the subject of several reviews. ${ }^{31}$


[^15]LAB reagents can perform a reagent-controlled reduction of amides to give either the corresponding alkanols or aminoalkanes. The selectivity of this reduction appears to involve a common intermediate resulting from the initial partial reduction product of the carbonyl lactam (Scheme 2.21). Then, two possible pathways can take place from this tetrahedral intermediate leading to the corresponding amine or alcohol. In the former, in sterically less demanding LABs, the boron moiety complexes the $N$-atom of the amide, thereby converting the amine to a good leaving group. Cleavage of the B-O bond and subsequent expulsion of the diaminodihydridoborohydride moiety leads to an aldehyde, which is furher reduced to the primary alcohol. In the case of sterically more demanding LABs, the nitrogen lone pair expels the lithium dihydridoaminoborinate to yield an iminium species, which is then rapidly reduced to the aminoalkane. ${ }^{32}$


Scheme 2.21

Lithium $\mathrm{N}, \mathrm{N}$-dialkylaminoborohydrides $\left(\mathrm{LiNR}_{2} \mathrm{BH}_{3}\right)$ can reduce tertiary amides to either the corresponding alcohol or to an amine, depending on the steric environment of both the amide and the amine moiety of the reductant. For example, 1-pyrrolidinooctanamide can be reduced to 1-octanol in $77 \%$ yield by the lithium pyrrolidine-borane complex $\left[\mathrm{LiBH}_{3}(1-\mathrm{pyrrolidino})\right]$. When the reduction was carried out with the significantly more sterically demanding lithium diisopropyl-borane complex $\left(\mathrm{LiBH}_{3} \mathrm{~N}(i-\mathrm{Pr})_{2}\right)$, 1-octylpyrrolidine was obtained in $95 \%$ yield. ${ }^{33}$

[^16]

Scheme 2.22

On the other hand, the use of lithium $\mathrm{N}, \mathrm{N}$-dialkylaminoborohydrides $\left(\mathrm{LiNR}_{2} \mathrm{BH}_{3}\right)$ results in the conversion of five- and six-membered N -alkyl lactams to the corresponding cyclic amines. ${ }^{34}$

For the reductive opening of oxazolopiperidone lactams, we selected lithium amidotrihydroborate $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right)$, which is an unhindered nucleophilic reducing agent that can be easily generated by in situ deprotonation of the commercially available $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ complex. ${ }^{35} \mathrm{LiNH}_{2} \mathrm{BH}_{3}$ was introduced by Myers ${ }^{36}$ as the reagent of choice for the direct conversion of linear tertiary amides to the corresponding primary alcohols without epimerization of stereocenters $\alpha$ to the amide carbonyl.

Myers and co-workers described the reductive cleavage of acyclic amides, and he mentioned that the use of at least 4 molar equivalents of lithium amidotrihydroborate favoured the formation of the alcohol, while fewer equivalents increased the formation of the amine by-product. His work was illustrated with the use of $\mathrm{LiNH}_{2} \mathrm{BH}_{3}(4.0-4.5 \mathrm{eq})$ in the reduction of alkylated pseudoephedrine amides to primary alcohols (Scheme 2.23). ${ }^{36}$


Scheme 2.23

[^17]In summary, $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ has been extensively used for the direct reduction of linear-chain tertiary amides to primary alcohols, ${ }^{37}$ and a variety of enantiopure linear primary alcohols have been prepared through the lithium amidotrihydroborate reduction protocol.


81\%
Jamison (2006)



90\%
White (2003)



Vilarrasa (2003)


93\%
Steliou (2002)


Scheme 2.24
Nevertheless, there are only two isolated examples reported by Kibayashi ${ }^{38}$ of the $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reductive ring-opening of $\delta$-lactams to 1,5 -amino alcohols (Scheme 2.25).

$\xrightarrow[\text { 2. } \mathrm{CbzCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}-\mathrm{H}_{2} \mathrm{O}]{97 \%}$ 1. $\mathrm{LiNH}_{2} \mathrm{BH}_{3}(10 \mathrm{eq}), \mathrm{THF}$


$\xrightarrow{\mathrm{LiNH}_{2} \mathrm{BH}_{3}(4 \mathrm{eq}), \mathrm{THF}, 40^{\circ} \mathrm{C}}$


Scheme 2.25

### 2.3.3. $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ for the reductive opening of oxazolopiperidone lactams

Considering the above results, we decided to reduce chiral oxazolopiperidone lactam 3a using $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ as the reducing reagent. In this manner, chiral bicyclic lactam 3a was directly converted into N -substituted 1,5 -aminoalcohol 14

[^18]in $80 \%$ yield, in an unprecedented process involving the simultaneous reductive opening of the oxazolidine and lactam rings. We obtained only traces of the corresponding piperidine 13. The best results were obtained when using an excess of 4.3 equiv of the $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reagent (equimolecular solution of $n$-BuLi and borane-ammonia complex) with respect to lactam 3a.


Scheme 2.26

This excellent result (Scheme 2.26) was obtained after optimization of the reaction conditions in order to apply them to the selective preparation of a series of enantiopure substituted 1,5-aminodiols and to minimize the undesired reduction of the carbonyl lactam leading to the piperidine compound.

In our initial studies we used LDA as the base to generate $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reagent and we evaluate how many equivalents of $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ were necessary. The addition of enantiopure lactam 3 a to a solution of 2 equivalents of $\mathrm{LiNH}_{2} \mathrm{BH}_{3}{ }^{36}$ afforded amino diol 14 in only $20 \%$ yield and piperidine 13 in $20 \%$ yield. The use of 4 molar equivalents of $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ gave the target aminoalcohol 14 in $44 \%$ yield and piperidine 13 in 10\% yield.

Then, we studied the possible effect of the order of addition of the reagents. Thus, when a solution of lithium amidotrihydroborate (4 equivalents) was added to a solution of lactam 3a, aminoalcohol 14 was obtained in $68 \%$ and piperidine 13 was formed in 13-15\% yield.

Finally, in order to study the influence of the base, we prepared two equimolecular solutions of lithium amidotrihydroborate (4.3 equiv) using LDA or $n$-BuLi (4.3 equiv) as bases. In both cases, bicyclic lactam 3a was directly converted into $N$-substituted 1,5-aminoalcohols 14 in $80 \%$ yield and with only traces of the piperidine 13 (Scheme 2.26). With these results we decided to continue our studies of reduction using BuLi as the base.

Wang and $\mathrm{Hu}^{26 \mathrm{~d}}$ reported in 1999 the $\mathrm{NaBH}_{4}$-promoted amide bond cleavage of ether-protected aromatic five- and six-membered lactams to give saturated amino alcohols. After the initial reduction to a carbinolamine, a subsequent 3-aza-Grob fragmentation generates an imino aldehyde, which is in situ converted into the isolated amino alcohols (see also Scheme 2.18).


Scheme 2.27

Accordingly, the formation of aminodiol 14 can be rationalized by considering that the intermediate $\mathbf{A}$, formed after the initial hydride attack to the lactam carbonyl, undergoes a Grob-type fragmentation ${ }^{39}$ (Scheme 2.28) with cleavage of the $\mathrm{B}-\mathrm{O}, \mathrm{C}-\mathrm{N}$, and $\mathrm{C}-\mathrm{O}$ bonds, which is facilitated by the complexation of borane species to the oxazolidine heteroatoms. A subsequent reduction of the resulting imino aldehyde would lead to 14.


Scheme 2.28

Alternatively, expulsion of lithium dihydridoamino-borinate from A, promoted by the nitrogen lone pair, would give a tetrahydropyridinium species $\mathbf{B}$ that would undergo further reduction to piperidine 13.


Scheme 2.29

In agreement with the above concerted mechanism leading to aminodiol 14, a similar $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reduction of lactam 5 , which cannot undergo Grob fragmentation, gave ( $76 \%$ yield) a nearly equimolecular mixture of aminodiol 14 and the corresponding piperidine 13 (Scheme 2.30).

[^19]

Scheme 2.30

These results encouraged us to prepare a variety of enantiopure oxazolopiperidone lactams bearing different substituents (H, alkyl, benzyl, phenyl, and protected hydroxy $)^{40}$ at the different positions of the piperidine ring, as potential building blocks for the synthesis of enantiopure substituted 1,5aminoalcohols. All the lactams were prepared using procedures previously described within our research group for the regio- and stereocontrolled introduction of substituents at the different positions of the piperidine ring. In order to study the influence of the configuration of the C-8a stereogenic center of the bicyclic lactams during the double reductive ring-opening, in some of cases we prepared enantiopure substituted lactams with both $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ cis and $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ trans relative configuration.

### 2.3.4. Preparation of chiral bicyclic lactams

### 2.3.4.1. Preparation of 8 -substituted oxazolopiperidone lactams

Enantiopure oxazolopiperidone lactams bearing different substituents (isopropyl, benzyl, and phenyl) at the C-8 position of the piperidine ring were prepared following the procedure described for lactams 3a and 4a (see Scheme 2.14). The new racemic $\gamma$-substituted $\delta$-oxoester derivatives 16 and 18 were prepared in $73 \%$ and $57 \%$ yield, respectively, by the three-step sequence outlined in Scheme 2.31.


Scheme 2.31

[^20]Chiral non-racemic oxazolopiperidones 20a-22a, substituted at the C-8 position of the piperidine ring, were stereoselectively prepared by cyclocondensation of the corresponding racemic $\delta$-oxo esters, which bear a substituent at the epimerizable carbon $\alpha$ to the aldehyde carbonyl group, with ( $R$ )-phenylglycinol, in a process that involves a dynamic kinetic resolution of the racemic substrate. ${ }^{41}$ Minor amounts (9-11\%) of the corresponding 8,8adiastereoisomeric oxazolopiperidones 20b-22b were also isolated.

$16 \mathrm{R}=i-\mathrm{Pr}$
$18 R=B n$
$19 R=P h$




20a
21a
22a



22b

Scheme 2.32

The yields of enantiopure lactams $\mathbf{2 0}, \mathbf{2 1}$ and $\mathbf{2 2}^{42}$ are given in Scheme 2.33.


### 2.3.4.2. Preparation of 6 - and 6,8 -substituted oxazolopiperidone lactams

The enolate alkylation of the phenylglycinol-derived oxazolopiperidone lactams $\mathbf{3 a}, \mathbf{2 3 a}$ and $\mathbf{2 3} \mathbf{b}^{15 a}$ allowed the stereoselective introduction of alkyl and benzyl substituents at the $\beta$-position of the piperidine ring. ${ }^{14 b}$ For the $\mathrm{C}-8 \mathrm{a}$ unsubstituted lactams 23, the stereochemical outcome of the alkylation

[^21]depends on the relative configuration of the C-8a methine carbon. ${ }^{43}$ The stereoselectivity is not affected by the presence or absence of an alkyl group at C-8.


Scheme 2.34

Alkylation of lactam 23a (3-H/8a-H cis relative configuration) with methyl or ethyl iodide afforded the corresponding C-6-substituted lactams 24 and 25, respectively, with preferential formation of the endo products (endo/exo ratio, 76:24 and 68:32, respectively). ${ }^{14 b}$ However, when treated with benzyl bromide the enolate of lactam 23a afforded the corresponding exo isomer 26 in good stereoselectivity (endo/exo ratio, 8:92). ${ }^{14 \mathrm{~b}}$ The reversal of the $\pi$-facial diastereoselectivity observed in the benzyl bromide alkylation of the enolate of lactam 23a was examined by means of theoretical calculations and attributed to the formation of a $\mathrm{C}-\mathrm{H} . . . \pi$ bond between the enolate and the benzene ring of the incoming reagent. ${ }^{44}$






Scheme 2.35

[^22]Similarly, starting from chiral non-racemic lactam 23 b ( $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ trans relative configuration), enantiopure bicyclic lactams 27 and 28 were selectively obtained in high yields with preferential formation of the exo products (endo/exo ratio, $15: 85$ and $0: 100$, respectively). ${ }^{14 \mathrm{~b}}$




27 76\%


Scheme 2.36

Following this general procedure, we have prepared for the first time lactam 29a in moderate yield and stereoselectivity (29a/29b ratio, 3.7:1). In this case, minor amounts of the dialkylated lactam 29 c were also formed.


Scheme 2.37

On the other hand, the known enantiopure 6,8-disubstituted lactams 30 and 31 were prepared in high yields ${ }^{14 \mathrm{~b}}$ by alkylation of the C-8 ethyl-substituted oxazolopiperidone 3a either with methyl iodide (endo/exo ratio, 71:29) or benzyl bromide (endo/exo ratio, 10:90). As observed in the preparation of the above 8substituted series, the methyl substituent was introduced from the endo face whereas benzylation gave the exo isomer. ${ }^{14 b, 44}$



30 67\%






Scheme 2.38

Finally, the new disubstituted lactam 32a, bearing an isobutyl substituent at the C-3 position of the piperidine ring, was synthesized in moderate yield and stereoselectivity (32a/32b ratio, 3.2:1).


Scheme 2.39

### 2.3.4.3. Preparation of 6,6-disubstituted oxazolopiperidone lactams

6,6-Disubstituted lactams 33 and 34 were synthesized using a described protocol for the stereoselective generation of a quaternary stereocenter at the $\alpha$-position of the carbonyl function, by dialkylation of the ozazolopiperidone lactam 23a. ${ }^{14 a}$ The introduction of the benzyl substituent from a diastereoisomeric mixture of monoalkylated lactams 25 afforded enantiopure 33 with very high stereoselectivity (95:5), resulting from an exo diastereofacial alkylation of the enolate, in 43\% yield over two steps. Similarly, dialkylated compound 34 was obtained in $37 \%$ yield from 23a with a moderate stereoselectivity, leading to a 71:29 mixture of isomers, in which the exoallylated product predominated.


[^23]
### 2.3.4.4. Preparation of 7 - and 7,8 -substituted oxazolopiperidone lactams

The introduction of an alkyl or aryl substituent at the C-4 position of the piperidine ring required the previous functionalization of this position, taking advantage of the lactam group. ${ }^{15}$ Benzyloxycarbonylation of lactams 3a, 4a, and 23a, followed by in situ selenation led to lactams 35-37. Elimination of phenylsulfenic acid by way of the corresponding selenoxide afforded $\alpha, \beta$ unsaturated lactams 38-40.

used in conjugate addition reactions without further purification)
Scheme 2.41

The benzyloxycarbonyl group provides an additional and necessary activation towards the nucleophilic addition at the C-4 position of the piperidine ring. Thus, treatment of $\alpha, \beta$-unsaturated lactams 38-40 with lithium cyanocuprates, followed by catalytic debenzylation and subsequent decarboxylation led to the corresponding enantiopure C-7 substituted oxazolopiperidone lactams 41-45.


Scheme 2.42

Using this methodology we have stereoselectively prepared 7-substituted lactams $41{ }^{15 a}$ and 42, and 7,8 -disubstituted lactams $43,{ }^{18 a} 44,{ }^{18 a}$ and 45 with the overall yields from lactams 35-37 indicated in Scheme 2.43.








Scheme 2.43

The absolute configuration of 42 was unambiguously confirmed by X-ray crystallographic analysis (Scheme 2.44).


Scheme 2.44
2.3.4.5. Preparation of 6,7 -disubstituted oxazolopiperidone lactams

Lactam 48, which incorporates two protected hydroxy groups at positions 6 and 7, was prepared from lactam 23a by the four-step sequence outlined in Scheme 2.45. Phenylsulfonylation of 23a by treatment with a suspension of potassium hydride and methyl phenylsulfinate in anhydrous THF, followed by reflux in toluene in the presence of sodium carbonate gave $\alpha, \beta$-unsaturated lactam 46. ${ }^{15 d}$ Stereoselective dihydroxylation of 46 by treatment with a catalytic amount of osmium tetroxide and $N$-methylmorpholine- $N$-oxide in a mixture of acetonitrile-water, followed by protection of resulting diol 47 with 2,2dimethoxypropane, afforded acetonide 48 in $48 \%$ overall yield from 46. Similarly, acetonide $49,{ }^{45}$ previously described by our research group, was synthesized in 66\% yield starting from enantiopure lactam 23b.

[^24]

Scheme 2.45

### 2.3.4.6. Preparation of 8a-substituted oxazolopiperidone lactams

Lactams $51^{46}$ were directly obtained in $75 \%$ yield and with moderate stereoselectivity by cyclondensation of $\delta$-keto acid 50 with ( $R$ )-phenylglycinol, thus installing a methyl group at the angular C-8a position.


### 2.3.5. Synthesis of enantiopure substituted 1,5-aminoalcohols

In this section we present the results obtained in the $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reduction of all previously prepared chiral non-racemic oxazolopiperidone lactams, either with $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ cis or trans relative configuration. They include $6-, 7-$, 8 , and $8 \mathrm{a}-$ substituted as well as $6,6-6,7-6,8$-, and 7,8 -disubstituted derivatives, which differ not only in the position but also in the nature of the substituents and the configuration of stereocenters on the piperidine ring.

[^25]


Scheme 2.47

In the optimized procedure, $n$ - $\mathrm{BuLi}(4.3 \mathrm{eq})$ is added to a solution of solid borane-ammonia complex ( 4.3 eq ) in THF at $0^{\circ}{ }^{\circ} \mathrm{C}$. Then, this mixture is transferred to a solution of enantiopure lactam in anhydrous THF and stirred at $40{ }^{\circ} \mathrm{C}$. As mentioned before, the corresponding substituted enantiopure 1,5aminoalcohols were formed in good yields in an unprecedented process featuring the reductive opening of both the oxazolidine and lactam rings in a single synthetic step, through a stepwise sequence involving a 3-aza-Grob fragmentation ${ }^{39}$ (see Scheme 2.28).

In all cases, the reduction afforded the corresponding linear-chain amino diol in good yields. Minor amounts of the corresponding $N$-(2-hydroxy-1phenylethyl)piperidines were isolated in some cases as by-products.

### 2.3.5.1. Reductive opening of 8 -substituted oxazolopiperidone lactams

The reductive opening of $\mathrm{C}-8$ substituted bicyclic lactams 4a, 20a, 21a and 22a under the above $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ conditions afforded the corresponding amino diols 52, 54, 56 and 57, respectively, in the yields indicated in Scheme 2.48. Minor amounts of piperidines 53 and 55 were also obtained.


Scheme 2.48

With the aim to study the influence of the configuration of the C-8a stereogenic center in the double reductive ring opening, we treated lactams $\mathbf{3 b}$ and $\mathbf{4 b}$, with $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ trans relative configuration, under the same reductive conditions. We obtained the enantiopure linear-chain products 58 and 60 in $50 \%$ and $55 \%$ yield respectively, and we also observed a slight increase in the amount of the corresponding piperidines 59 and 61.


Scheme 2.49

### 2.3.5.2. Reductive opening of 6 -substituted oxazolopiperidone lactams

The reductive opening of enantiopure lactams $24 a$ and $25 a$ led to the corresponding aminodiols 62 and 63 , respectively, in good yield, with less than $10 \%$ of the corresponding piperidines 53 and 13 . Similar results were obtained starting from lactam 26b, which possesses a C-6 configuration opposite to that of lactams 24a and 25a, affording enantiopure linear-chain derivative 64 in 65\% yield. Trace amounts (5\%) of 3-benzylpiperidine 65 were also isolated.


Scheme 2.50

Similarly, the reductive ring opening of lactams 27a and 28a, with a $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ trans relative configuration, led to quite similar results, and amino diols 62 and 63 were obtained in $58 \%$ and $61 \%$ yields, respectively. Treatment of (3,5difluoro)benzyl derivative 29a under the usual $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ conditions afforded the corresponding amino diol 66 in $65 \%$ yield, accompanied by minor amounts of piperidine 67 (12\%). It is worth mentioning that only one diastereomer, with no epimerization of the stereocenter at the $\alpha$-position of the carbonyl group of the starting lactam, was obtained.


Scheme 2.51

### 2.3.5.3. Reductive opening of 6,6 -disubstituted oxazolopiperidone lactams

The stereocontrolled construction of chiral quaternary centers is a challenging issue in organic chemistry. Taking advantage of the procedure for the preparation of chiral lactams 33 and 34 , which bear a quaternary stereocenter at the C-3 position of the piperidine ring, we synthesized enantiopure 1,5aminoalcohols 68 and 69 in good yields. Only minor amounts of piperidine 70 $(8 \%)$ were observed in the case of the reduction of the allyl derivative 34.


Scheme 2.52

### 2.3.5.4. Reductive opening of 6,8-disubstituted oxazolopiperidone lactams

Lactams 30a, 32a and 31b were directly converted into the respective enantiopure 2,4-disubstituted amino diols 71-73 in good chemical yield. In these series, the corresponding piperidine derivatives were not detected.


Scheme 2.53

### 2.3.5.5. Reductive opening of 7-substituted oxazolopiperidone lactams

The $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reduction of lactams 41 and 42 , which bear a methyl or phenyl substituent in a pseudoaxial bond, afforded the corresponding amino diols 74 and 76 in moderate yields. In this 7 -substituted series, we observed an increased formation of the corresponding piperidines 75 (20\%) and 77 (15\%).



Scheme 2.54

In order to study the influence of the $3-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$ cis or trans relative configuration on the amount of piperidine generated in the reductive ring-opening of the above 7 -substituted lactams, we prepared lactam 78 (phenyl substituent in a pseudoequatorial bond) by equilibration under acidic conditions of the initially formed lactam 42.


Scheme 2.55

Treatment of lactam 78 under the usual $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reduction conditions gave 1,5 -aminoalcohol 76 in $65 \%$ yield, accompanied by only minor amounts ( $8 \%$ ) of piperidine 77.


Scheme 2.56

As has been seen in the reduction of tertiary amides with related $\operatorname{LiNR}_{2} \mathrm{BH}_{3}$ reagents ${ }^{31-33}$ (see Scheme 2.22), the amount of the tertiary amine by-product formed in the above $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reductions may also be related to the steric requirements of the lactam. Thus, the formation of piperidines 75 and 77 was more favored for the more sterically demanding lactams, for instance, in lactams 41 and 42, which bear a C-7 axial subtituent.

Following the same methodology, amino diols 79, 81 and 83 were synthesized from 7,8-disubstituted lactams 43, 44 and 45.




45


Scheme 2.57

### 2.3.5.6. Reductive opening of 6,7-disubstituted oxazolopiperidone lactams

A similar reductive opening from the diastereoisomeric lactams 48 and 49 led to the corresponding enantiopure functionalized derivatives 85 and 86 in $40 \%$ yield. The formation of piperidine 87 was only observed starting from lactam 49 (3-H/8a-H trans relative configuration).



$\xrightarrow[\text { THF }, 40^{\circ} \mathrm{C}, 1 \mathrm{~h} 40]{\mathrm{LiNH}_{2} \mathrm{BH}_{3}(4.3 \mathrm{eq})}$



85 40\%


86 40\%

Scheme 2.58

### 2.3.5.7. Reductive opening of 8a-substituted oxazolopiperidone lactams

The reduction of the 8a-substituted lactam 51a under $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ conditions led to nearly equimolecular epimeric mixtures of amino diol 88 and piperidine 89. The epimerization of 88 can be explained by considering that the imino aldehyde formed after the Grob-type fragmentation (Scheme 2.28) is reduced without stereoselectivity affording a mixture of diastereoisomers at the $\alpha$ position of the nitrogen. ${ }^{47}$



88 50\%
1:1 mixture of two diastereoisomers


89 16\%
1:1 mixture of two diastereoisomers

Scheme 2.59

To circumvent this inconvenience, we studied the $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ reduction of the C 6 substituted piperidone 90, which cannot undergo Grob fragmentation. This lactam was stereoselectively prepared by treatment of chiral oxazolopiperidone 23b with a solution of isopropylmagnesium bromide in THF. The introduction of the substituent at the piperidine $\alpha$-position by asymmetric $\alpha$-amidoalkylation has been reported to occur with high stereoselectivity from 23b. ${ }^{13 e, 48} \mathrm{~A}$ subsequent reduction of 90 under $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ conditions afforded the enantiopure substituted open-chain amino diol 91 in 53\% yield and piperidine 92 (17\%).


Scheme 2.60

[^26]However, a limitation of this alternative synthesis for 5 -substituted 1,5aminoalcohol 91 is the low yield of the $\alpha$-amidoalkylation reaction leading to the starting piperidone 90.

In summary, we have developed a straightforward and efficient procedure for the preparation of structurally diverse enantiopure $N$-substituted 1,5 -aminodiols, bearing a variety of substitution patterns (alkyl, benzyl, aryl, protected hydroxyl), and stereochemistries. Starting from chiral non-racemic lactams, lithium amidotrihydroborate $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right)$ induces the reductive opening of both the oxazolidine and lactam rings in a single synthetic step. The only limitation encountered of the procedure is the reduction of 8a-substituted lactams, which led to the corresponding 1,5-aminoalcohol as an equimolecular epimeric mixture.

### 2.4. Removal of the chiral inductor

We planned to study the removal of the phenylethanol moiety of the amino diols prepared in this work using either reductive or oxidative conditions.

Reductive cleavage of the benzylic C-N bond of the amino diols by catalytic hydrogenation would afford enantiopure substituted 1,5-aminoalcohols.

Alternatively, we studied two sets of oxidative conditions (m-CPBA and $\mathrm{I}_{2} / \mathrm{aq}$. $\mathrm{NH}_{3}$ ) to explore the feasibility of the conversion of the secondary amino group of our amino diols into other functionalities and, in this way, open access to a variety of enantiopure functionalized linear-chain building blocks such as 1,5nitroalcohols, 5-hydroxypentanoic acids and 5-hydroxypentanenitriles.


Scheme 2.61

### 2.4.1. Reductive removal of the phenylethanol moiety

### 2.4.1.1. Preliminary studies

The chiral auxiliary could be easily removed under reductive conditions, taking advantage of the benzylic properties of the phenylethanol moiety. Catalytic hydrogenolysis is the most widely used procedure for the deprotection of N -benzyl-protected amines, and several experimental conditions were investigated, modifying both the hydrogen source and the transition metal. ${ }^{49}$

Initially, we performed the catalytic hydrogenation of aminopentanol 14 under mild conditions ( 1 pressure of hydrogen, MeOH , room temperature) using $\mathrm{Pd} / \mathrm{C}$ as the catalyst. A subsequent protection of the resulting primary amine with $\mathrm{Boc}_{2} \mathrm{O}$ provided N -Boc amino alcohol 93 in $50 \%$ yield in the best of cases.

In order to avoid the partial or total deactivation of the catalyst caused by the amine function of the 1,5 -aminoalcohol, we also performed the catalytic hydrogenation using the hydrochloride of 14. Unfortunately, we obtained similar results.

The use of polymethylhydrosiloxane (PMHS ${ }^{50}$ or ammonium formate ${ }^{51}$ as the hydrogen donor in presence of $\mathrm{Pd}(\mathrm{OH})_{2}$ did not improve the formation of the carbamate 93 (yield 30\%). The best conditions were found using Pearlman's catalyst $\left[\mathrm{Pd}(\mathrm{OH})_{2}\right]$ in anhydrous methanol at $75{ }^{\circ} \mathrm{C}$ for 18 hours under 5 bar pressure of hydrogen, followed by treatment of the crude with $\mathrm{Boc}_{2} \mathrm{O}$, Under these conditions 1,5-aminoalcohol 93 was obtained in $65 \%$ yield.


93 then (Boc) ${ }_{2} \mathrm{O}$, rt ( $65 \%$ )

Scheme 2.62
When the catalytic debenzylation of 14 was performed under the above conditions in the presence of $\mathrm{Boc}_{2} \mathrm{O}$, an equimolecular mixture of N -Boc amino alcohol 93 and N -Boc amino diol 94 was obtained.

[^27]

An alternative procedure for the removal of the phenylethanol moiety, using oxidative conditions, did not improve the results either. Treatment of 14 with lead tetraacetate ${ }^{52}$ in presence of hydroxylamine hydrochloride in a mixture 1:1 of $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by protection of the resulting crude amine with $\mathrm{Boc}_{2} \mathrm{O}$, afforded the target $N$-Boc amino alcohol 93 in only $38 \%$ yield in the best of cases.


### 2.4.1.2. Synthesis of enantiopure 1,5-aminoalcohols

The removal of the phenylethanol moiety present in the substituted 1,5-amino diols prepared in this work, using $\left[\mathrm{Pd}(\mathrm{OH})_{2}\right]$ in anhydrous methanol at $75{ }^{\circ} \mathrm{C}$ for 18 hours under 5 bar pressure of hydrogen, followed by protection of the resulting crude primary amine with $\mathrm{Boc}_{2} \mathrm{O}$, led to a wide range of enantiopure N Boc 5-aminopentanols 93, 95-113, bearing substituents at the 2-, $3-, 4-$, $5-, 2,2-$, 2,3-, 2,4-, and 3,4-positions with a well-defined configuration in their stereocenters (Table 2.1).

[^28]

Scheme 2.65

| Aminodiol / N-Boc aminoalcohol, |  | Aminodiol / N-Boc aminoalcohol, |  |
| :---: | :---: | :---: | :---: |
|   <br> 14 <br> 93 | 65\% |  | 50\% |
|   <br> 52 <br> 95 | 70\% |  | 63\% |
|   <br> 96 | 50\% |  | 51\% |
|   | 51\% |  | 55\% |
|  | 53\% |   | 60\% |
|  | 55\% |   | 50\% |
|   <br> 60 <br> ent-95 | 57\% |   | 51\% |
|  | 48\% |   | 50\% |
|  | 55\% |  | 52\% |
|   | 60\% |  | 60\% |
|  | 50\% |   <br> 91 <br> 113 | 49\% |

Table 2.1

Our approach opens a general synthetic entry to diversely substituted enantiopure 5 -amino-1-pentanols, functionalized nitrogen-containing building blocks that have been scarcely reported in the literature. As both enantiomers of phenylglycinol are commercially available, the methodology allows the preparation of these 5 -aminopentanols in both enantiomeric series.

### 2.4.2. Oxidative removal of the chiral inductor

### 2.4.2.1. Oxidation of secondary amines into nitriles

Lots of synthetic conversions of amines using oxidative reagents have been described. In particular, procedures for the one-pot conversion of primary amines to the corresponding nitriles have been well-studied. Nitriles have considerable interest as an integral part of natural products and pharmaceuticals. ${ }^{53}$ Moreover, the cyano group plays a crucial role in organic synthesis as it can be easily converted into a variety of functional groups, such as acids, amides, ketones, oximes and amines. ${ }^{54}$ A common reaction for the preparation of nitrile derivatives is the nucleophilic substitution of alkyl halides by a cyano group, but in this case a carbon atom is added. ${ }^{55}$ Due to the high toxicity of cyanide, other procedures using mild conditions, such as the dehydration of amides ${ }^{56}$ and aldoximes, ${ }^{57}$ have been developed.

Thus, in 1997, Yamazaki ${ }^{58}$ described the oxidation of aliphatic primary amines having an $\alpha$-methylene group using NaOCl in presence of ethanol.


Scheme 2.66

[^29]One-pot preparative methods based in the use of ammonia combined with an appropriate oxidant allow the direct oxidative conversion of alcohols, aldehydes and amines into nitriles. The following systems ${ }^{59}$ have been used for this purpose with good yields: $\quad \mathrm{NH}_{3} / \mathrm{O}_{2} / \mathrm{CuCl}_{2} \mathrm{H}_{2} \mathrm{O} / \mathrm{MeONa}, \quad \mathrm{NH}_{3} / \mathrm{Pb}(\mathrm{OAc})_{4}$, $\mathrm{NH}_{3} / \mathrm{S}_{8} / \mathrm{NaNO}_{2}, \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{CuCl}, \mathrm{NH}_{3} / \mathrm{CAN}, \mathrm{NH}_{3} / \mathrm{NBS}$.

In this context, Togo et al. ${ }^{60}$ described a direct, efficient, practical and less toxic oxidative conversion of primary alcohols and primary, secondary, and tertiary amines to the corresponding nitriles using molecular iodine in aq. $\mathrm{NH}_{3}$ as the nitrogen source.


Scheme 2.67

A plausible reaction pathway for the conversion of primary alcohols and primary amines to the corresponding nitriles with molecular iodine is shown in Scheme 2.68. The initial $O$ - or $N$-iodination of the alcohol or amine, followed by $\beta$ elimination of hydrogen iodide (HI) formed an aldehyde or aldimine, respectively. The aldehyde reacts with $\mathrm{NH}_{3}$ to form an aldimine with loss of $\mathrm{H}_{2} \mathrm{O}$. A subsequent $N$-iodination of the aldimine followed by $\beta$-elimination of HI generates the corresponding nitrile.

[^30]

Scheme 2.68
Similarly, Zhu and co-workers ${ }^{61}$ described in 2010 a procedure for the direct oxidation of primary, secondary, and tertiary amines into the corresponding nitriles using the hypervalent iodine(III) reagent hydroxyl(tosyloxy)iodobenzene (HTIB; Koser's reagent) in combination with ammonium acetate as the nitrogen source.


Scheme 2.69
Reddy and co-workers ${ }^{62}$ related an effective procedure for the oxidative amidation of alcohols and aldehydes with primary amines using a catalytic amount of potassium iodide (or molecular iodine) in combination with tert-butyl hydroperoxide as an external oxidant. More recently, ${ }^{62 b}$ the same authors presented a catalytic oxidative conversion of alcohols, aldehydes and primary amines to the corresponding nitriles using the same reagents.

[^31]

Scheme 2.70
Also, treatment of primary amines with trichloroisocyanuric acid (TCCA) in aqueous ammonia gave the corresponding nitriles in good yields. ${ }^{63}$


Scheme 2.71
These results encouraged us to study the oxidation of the secondary amine function present in the enantiopure 1,5-amino diols previously synthesized. Taking into account that alcohols are also converted to nitriles under ammonia/oxidant conditions, it was necessary to protect both alcohol functions of the 1,5 -aminodiol before treatment with the oxidative reagent. For our initial optimization studies, unsubstituted 1,5-aminodiol 114 was chosen as the model substrate.

### 2.4.2.1.1. Synthesis of 5-hydroxypentanitriles

The protected 1,5-aminoalcohol 115 was prepared following the two-step sequence outlined Scheme 2.72. Reductive ring opening of chiral lactam 23a under $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ conditions afforded the corresponding enantiopure 1,5aminoalcohol 114 in good yield (67\%). A subsequent protection of both hydroxy

[^32]groups using tert-butyldiphenylsilyl chloride and imidazole in anhydrous dichloromethane led to 115 in $72 \%$ yield.


Scheme 2.72

Treatment of the secondary amine 115 with [hydroxyl(tosyloxy)iodo]benzene (HTIB) ( 2.5 eq ) and ammonium acetate in a $4: 1$ mixture of acetonitrile-water at $80{ }^{\circ} \mathrm{C}$ afforded the 5-hydroxypentanitrile derivative 116 in $42 \%$ yield. A similar result was obtained (43\%) when the reaction was performed with molecular iodine ( 2.5 eq ) in aqueous ammonia. In both cases, we recovered minor amounts of the starting material.


Scheme 2.73

The above moderate conversions can be explained by considering the low solubility of 115 in protic solvents. This problem was circumvented by dissolving 115 in THF, which is miscible in water. Moreover, according to the mechanism shown in Scheme 2.68 at least three equivalents of the oxidative reagent are necessary for the total conversion of secondary amine into the corresponding nitrile. We decided to pursue our optimization studies using $I_{2}$ in aqueous ammonia. The principal advantages of the use of molecular iodine are that it is a mild, cheap, and easily available oxidizing reagent, and it is useful because it is a solid and less toxic than other halogens. The best results were obtained when we used an excess of 8 equiv of molecular iodine in aqueous ammonia and THF at $60{ }^{\circ} \mathrm{C}$ for 15 h . Under these conditions 5 -hydroxypentanitrile 116 was isolated in good yield (70\%).

The presumed reaction mechanism of the conversion of secondary amine 115 into nitrile 116 is outlined Scheme 2.74. Firstly, $N$-iodination of amine 115 would give iodoamine C. A $\beta$-elimination of hydrogen iodide (HI) from C can take place
by two different ways, $a$ or $b$. In the way $a$, the less substituted and nonconjugated imine D would react with ammonia to form aminal E, which would decompose to an imine $\mathbf{F}$ and primary amine $\mathbf{G}$. Following the same mechanism, $N$-iodination of imine $\mathbf{F}$ followed by $\beta$-elimination of HI would provide nitrile 116. On the other hand, primary amine $G$ would be converted to ketone 117 by a three-step sequence involving iodination, $\beta$-elimination of HI , and subsequent hydrolysis. Elimination of hydrogen iodide by the way $b$ would give the conjugated imine $\mathbf{H}$, which would react with ammonia to form I. A subsequent removal of the inductor would give amine $\mathbf{J}$, the precursor of the target nitrile 116, and imine K, which would be hydrolysed to would ketone 117. In both cases, $a$ and $b$, target nitrile 116 and ketone 117 would be obtained.


Scheme 2.74

### 2.4.2.1.2. Synthesis of 5-hydroxypentanenitriles from enantiopure amino diols

Nitrile 119 was obtained in good yield (72\%) by protection of the two hydroxy groups of amino diol 83, followed by oxidative cleavage of the phenylglycinol moiety with molecular iodine in aqueous ammonia. Interestingly, under these conditions, only one diastereoisomer was observed by NMR in the crude
reaction mixture. As no epimerization of the configurationally labile stereocenter $\alpha$ to the intermediate imine $\mathbf{D}$ occurs, it seems reasonable to postulate that imine $\mathbf{H}$ (most stable) was formed regioselectively.


Scheme 2.75

Similarly, protection of both alcohol functions of amino diol 52 was performed in $74 \%$ yield. Oxidative cleavage of the phenylglycinol moiety of the O-protected amino diol 120 afforded the corresponding nitrile 121 in moderate yield (51\%).


Scheme 2.76

As an additional example, aminodiol 63 was protected as the silyl derivative 122 in excellent yield and then oxidized with molecular iodine in aqueous ammonia to give the corresponding nitrile 123 in 70\% yield.


Scheme 2.77

### 2.4.2.2. Oxidation of amines with m-CPBA

$m$-Chloroperbenzoic acid has extensively been used for the conversion of aromatic and aliphatic primary amines into the corresponding nitro compounds ${ }^{64}$ which constitute valuable synthetic intermediates. ${ }^{65}$ These peroxy acid oxidations probably go by way of intermediate hydroxylamines and nitroso compounds (see Scheme 2.78). Hydroxylamines are postulated as intermediates in these oxidations, but they are rarely isolated or detected. Various side reactions can take place, the nature of which depends upon the reaction conditions. Aliphatic amines can give nitroso dimers, oximes (formed by acid-catalyzed rearrangement of the intermediate nitrosoalkane), or nitro derivatives. The peroxy acid must be used in excess to minimize the formation of the dimer of the intermediate nitroso compound. The proportion of both nitroso dimer and nitroalkane are temperature dependent. Indeed, formation of the nitroalkane is favoured when the reaction is carried out at elevated temperature. ${ }^{66}$


Scheme 2.78

### 2.4.2.2.1. m-CPBA oxidation of phenylglycinol-derived secondary amine 115

Taking into account that primary amines are oxidized to nitro derivatives by treatment with m-chloroperbenzoic acid, we decided to study this oxidation

[^33]using several of the phenylglycinol-derived secondary amines previously prepared in this work. Given that alcohols are converted to carbonyl derivatives under these oxidative conditions, it was necessary to use the corresponding protected silyl derivatives.

Our first studies were performed with secondary amine 115, which was treated with m-CPBA ( 3.2 eq ) in refluxing 1,2-dichloroethane. After the reaction was quenched with aqueous sodium hydroxide to remove the excess of 3 chlorobenzoic acid generated in the process, flash chromatography provided carboxylic acid 124 (25\%) and nitro compound 125.


Scheme 2.79

This result made evident that, as expected, the amino group has undergone oxidation to a nitro group, but also that the oxidative cleavage of the $\mathrm{CH}_{2}-\mathrm{N}$ (instead of the benzylic $\mathrm{CH}-\mathrm{N}$ ) bond has occurred.
In order to improve the formation of carboxylic acid 124 we decided to increase the amount of peroxy acid (4.2 equivalents) and to carry out the reaction at a lower temperature (reflux of dichloromethane). Operating under these conditions, carboxylic acid 124 was obtained in good yield (71\%). As a consequence of operating at a lower temperature (see Scheme 2.81), we isolated the nitroso dimer 126 instead of nitrocompound 125.


### 2.4.2.2.2. Proposed mechanism

The formation of carboxylic acid 124 from secondary amine 115 can be accounted for by considering the initial generation of an hydroxylamine, which gives regioselectively the non-conjugated nitrone $127^{67}$ and their subsequent $m$ -

[^34]CPBA-promoted oxidative cleavage. ${ }^{67 e}$ Nucleophilic addition of the peracid to the nitrone $\mathbf{1 2 7}$, followed by rearrangement of the generated intermediate led to aldehyde $\mathbf{L}$ and the nitroso derivative M. A subsequent oxidation afforded carboxylic acid 124 and the nitro compound 125 (at high temperature; $8{ }^{\circ} \mathrm{C}$ ) or the dimer $\mathbf{1 2 6}$ (at low temperature; $42{ }^{\circ} \mathrm{C}$ ).


Scheme 2.81

Interestingly, an alternative pathway involving the generation of the regioisomeric conjugated nitrone $\mathbf{N}$, as outlined in Scheme 2.82, would afford the nitro derivative $\mathbf{O}$, whose formation was never observed.

[^35]

Scheme 2.82

In support of the mechanism outlined in Scheme 2.81, nitrone 127, prepared by $\mathrm{Na}_{2} \mathrm{WO}_{4} /$ hydrogen peroxide-urea oxidation ${ }^{67 \mathrm{~b}}$ of the simple secondary amine 115, was converted to hydroxypentanoic acid derivative 124 ( $45 \%$ from 115) and dimer 126 by treatment with m-CPBA (2.5 equiv).


### 2.4.2.2.3. Synthesis of enantiopure 5-hydroxypentanoic acid derivatives

We then applied the above procedure to prepare a variety of enantiopure 5hydroxypentanoic acid derivatives from the substituted amino diols previously prepared in this work.

Thus, treatment of the O-protected secondary amine 122 with an excess of $m$ CPBA in refluxing dichloromethane directly afforded carboxylic acid 128 in excellent yield (82\%).


Scheme 2.84

Similarly, O-protected amino diol 129 was obtained in 77\% yield from enantiopure 1,5-aminodiol 64. Subsequent treatment of 129 under the above $m$ CPBA conditions afforded (S)-4-benzyl pentanoic acid derivative 130 in 66\% yield.


Scheme 2.85

The procedure allows the preparation of enantiopure $S$-hydroxypentanoic acid derivatives bearing a quaternary center. Thus, protection of enantiopure 1,5aminoalcohol 68, which bears a quaternary stereocenter at the C-2 position, was accomplished in $72 \%$ yield by using tert-butyldiphenylsilyl chloride and imidazole in anhydrous dichloromethane at reflux. Oxidation of the secondary amine 131 led to carboxylic acid 132 in good yield (75\%).


Scheme 2.86

To illustrate the usefulness of the procedure in the preparation of highly functionalized enantiopure derivatives, after protection of the two terminal hydroxy groups, secondary amine 85 was converted to the O-protected hydroxy acid 134 in moderate yield.


Scheme 2.87

A limitation of the procedure was encountered in the oxidation of the silyl derivative 135, which was prepared in $76 \%$ yield from enantiopure aminodiol 14. In this case, the oxidative cleavage of $\beta$-substituted secondary amine 135 under $m$-CPBA conditions gave a mixture of carboxylic acid 136 and formate ester 137 in $30 \%$ and $27 \%$ isolated yields, respectively.


Scheme 2.88

The formation of the formate ester 137 can be rationalized by a Baeyer-Villiger rearrangement involving a peroxy acid in the intermediate $\mathbf{Q} .{ }^{68}$ Indeed, as depicted in Scheme 2.90, nucleophilic addition of the peracid $\mathbf{P}$ on the carbonyl group of the in situ formed intermediate aldehyde 138 leads to a peroxy acidaldehyde adduct $\mathbf{Q}$. This adduct undergoes an acid-catalyzed rearrangement by migration of the aldehydic hydrogen, providing two molecules of carboxylic acid 136 (way a), or, alternatively, a rearrangement of the alkyl substituent giving acid 136 and formate ester 137 (way b). The presence of a substituent in $\alpha$ position of the reacting aldehyde correlates with formate formation, and the favoured pathway depends on the ability of the R group bound to the aldehydic carbon to migrate.

[^36]

Scheme 2.89

At this point, we decided to prepare nitrone 139 from secondary amine 135 following the methodology previously used for the preparation of the nitrone 127 (Scheme 2.84). In support of the above mechanism, nitrone 139 was converted to a nearly equimolecular mixture of hydroxypentanoic acid 136 and formate 137 by treatment with $m$-CPBA ( 2.5 equiv).


Scheme 2.90

In summary, we have described the straightforward conversion of a variety of $(R)$-phenylglycinol-derived oxazolopiperidone lactams $\mathbf{R}$ to open-chain enantiopure amino diols $\mathbf{S}$, bearing a variety of substitution patterns (alkyl, benzyl, aryl, protected hydroxyl), and stereochemistries, by reduction with $\mathrm{LiNH}_{2} \mathrm{BH}_{3}$ in an unprecedented process involving the simultaneous reductive opening of the oxazolidine and lactam rings. The potential of these chiral building blocks was illustrated (see Scheme 2.91) with the preparation of enantiopure 5-amino-1-pentanols (T), 5-hydroxypentanenitriles (U), and 5hydroxypentanoic acids (V). Chiral substituted-5-amino-1-pentanols T (see Table 2.1) were obtained by reductive removal of the phenylglycinol moiety present in amino diols $\mathbf{S}$. Alternatively, amino diols $\mathbf{S}$ were converted to nitriles U by a $\mathrm{I}_{2} / \mathrm{NH}_{3}$ mediated oxidative cleavage of the secondary amino group. Finally, removal of the penylglycinol moiety present in $\mathbf{S}$ under oxidative
conditions, by an unprecedented m-CPBA-promoted transformation allowed us to obtain carboxylic acids V.


Scheme 2.91

## Chapter 3

## SYNTHESIS OF MACROCYCLIC NATURAL PRODUCTS FROM OPEN-CHAIN BUILDING BLOCKS

To demonstrate the synthetic value of the open-chain enantiopure building blocks described in Chapter 2 we used same of them as key scaffolds for the synthesis of several macrocyclic nitrogen compounds, such as Haliclona alkaloids and fluvirucinins B.

### 3.1. Marine alkaloids from Haliclona sponges

This introduction is focused on Haliclona alkaloids, and covers their isolation, characterization, biological activity, and synthesis. For a sake of clarity, the numbering of compounds in this section is independent of the rest of the Thesis.

### 3.1.1. Introduction

Halitulin (1) and haliclorensin (2) are two unique alkaloids isolated by Kashman et al. in 1998 and 1999, respectively, from the marine sponge Haliclona tulearensis (class Demospongiae, order Haplosclerida, family Chalinidae, genus Haliclona) collected in Sodwana Bay, Durban, South Africa. ${ }^{69}$ The significant cytotoxicity of haliclorensin against P-388 mouse leukemia cells and that of halitulin against several tumor cell lines has stimulated studies toward the total syntheses of both molecules. Steglich's ${ }^{70}$ and Banwell's ${ }^{71}$ syntheses of haliclorensin (2) allowed the revision of its structure, from 3 to 2, and the initially assigned structure for haliclorensin was subsequently renamed isohaliclorensin (3). Furthermore, it was suggested that both compounds 2 and 3 (a precursor of halitulin, 1) are originate from a common 1,11-diazabicyclo[8.4]tetradecane. ${ }^{2}$

On the other hand, two reports on the total synthesis of halitulin confirmed the previously assigned structure 1 and allowed the determination of its absolute (17S) configuration. ${ }^{72}$ Together with halitulin and haliclorensin, an additional related compound was isolated from the same sponge. ${ }^{69}$ Because this compound was isolated in minor amounts and was highly sensitive to light and air, its elucidation was not accomplished.

[^37]More recently, in 2010, ${ }^{73}$ the constituents of two Madagascan Haliclona tulearensis sponge specimens, collected in Salary Bay, ca. 100 km north of Tulear in Madagascar, were examined for the purpose of finding additional interesting metabolites and hopefully to once again isolate the above-mentioned sensitive compound and complete its elucidation. Three new alkaloids, designated isohalitulin (4) (the related unstable compound), haliclorensin B (5) and haliclorensin $\mathrm{C}(6)$ were identified. The $\mathrm{CHCl}_{3}-\mathrm{MeOH}(2: 1)$ extract of each frozen sample was subjected to solvent partitioning, i.e., aqueous MeOH against hexanes and $\mathrm{CHCl}_{3}$. The $\mathrm{CHCl}_{3}$ fraction of each extract was repeatedly chromatographed over a Sephadex LH-20 column. One sample of Haliclona tulearensis yielded isohalitulin (4) and the second sample yielded haliclorensins $B(5)$ and $C(6)$ as well as the known haliclorensin (2).


Halitulin $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$ (1)
Isohalitulin $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}(4)$



Haliclorensin B(5)


Isohaliclorensin (3)


Haliclorensin C (6)

Scheme 3.1

On the grounds of common biogenetic precursors it was tentatively suggested that isohalitulin (4) and haliclorensins B (5) and C (6) have the same absolute configuration of the single stereogenic center ( $S$ ) as determined for halitulin (1) and haliclorensin (2). Natural haliclorensin was shown to consist of a mixture of $(R)$ - and $(S)$-enantiomers, with the $(S)$-enantiomer being predominant (1:3 ratio). ${ }^{70 \mathrm{~b}}$

Obtaining different secondary metabolites from the two Salary Bay collections of Haliclona tulearensis and from a sample collected on the other side of the Mozambique Canal raises the question of the real source of the compounds, namely, the sponge or guest microorganisms.

[^38]Isohalitulin (4) and haliclorensins $B(5)$ and $C(6)$ were tested for toxicity to brine shrimp (Artemia salina) ${ }^{74}$ and were found to be moderately active. Isohalitulin (4) showed a greater potency, with a $L_{50}$ value of 0.9 mM , while haliclorensins $B(5)$ and $C(6)$ had $L D_{50}$ values of 2.2 and 2.1 mM , respectively.

### 3.1.2. Synthetic approaches

The synthesis of Haliclona alkaloids has been little explored. In fact, only total syntheses of halitulin (1) and haliclorensin (2) have been reported.

### 3.1.2.1. Banwell's approach to isohaliclorensin and halitulin

The first approach to halitulin was reported by Banwell in $2002{ }^{75}$ and represented the synthesis of its tetra-O-methyl ether derivative. Two relevant aspects of the synthesis are the use of a ring-closing metathesis (RCM) reaction to assemble the azacyclodecane structure, and the preparation of 3,4-bis(7',8'-dimethoxyquinolin-5'-yl)pyrrole, before the coupling between both fragments. Banwell described in $2001^{71}$ an unambiguous racemic synthesis of isohaliclorensin, concluding that the structure for haliclorensin had been incorrectly assigned. The closure of the 10 -membered ring was efficiently accomplish (bond formed $\mathrm{C}_{5}-\mathrm{C}_{6}$ ) using the Grubbs' first generation catalyst from amino diene 10, which was prepared by coupling between the $N$-benzylamine derivative 9 with 5 -hexenoic acid. Catalytic hydrogenation of the resulting cyclic olefin 11, followed by $\mathrm{LiAlH}_{4}$ reduction of amide 12 and subsequent hydrogenolysis of the N -benzyl derivative 13 afforded 3-methylazacyclodecane 14. The total synthesis of racemic isohaliclorensin (rac-3) was completed by treatment of secondary amine 14 with acrylonitrile, followed by reduction of the cyano group. ${ }^{71}$

For the synthesis of halitulin, amine 14 was treated with methyl acrylate, and the resulting Michael addition product 15 was reduced with $\mathrm{LiAlH}_{4}$ to give alcohol 16, which was converted to triflate 17.

[^39]

On the other hand, 3,4-diiodopyrrole 18 was subjected to reaction with pinacolborane in the presence of $\mathrm{PdCl}_{2}$ (dppf) to give di-borolated derivative 19. A Suzuki-Miyaura cross-coupling reaction of 19 with bromoquinoline 20 afforded compound 21.


Scheme 3.3

Being rather unstable, triflate 17 was immediately treated with the potassium salt of pyrrole 21 (generated by reacting compound 21 with KHMDS) affording tetra-O-methyl halitulin 23 in an excellent yield (87\%). All attempts to effect the demethylation of compound 23 and thereby generate racemic halitulin rac-1 were unsuccessful.


Scheme 3.4

### 3.1.2.2. Usuki's approach to ( $R$ )-isohaliclorensin

In 2001, Usuki reported ${ }^{76}$ the asymmetric synthesis of $(R)$-isohaliclorensin (ent3). The key steps were the photochemical ring-expansion of spirooxaziridine 26 to lactam 27 for the construction of the azacyclodecane moiety, and the 1,4stereoiselective methylation of lactam 27.


Scheme 3.5

[^40]The required spirooxaziridine 26 was prepared as a single diastereomer by $m$ CPBA oxidation of the imine 25 , which was obtained by reaction of cyclononanone 24 and ( $R$ )-(-)-1-amino-1-phenyl-2-methoxyethane. Photolysis of 26 afforded the 10-membered lactam 27 in $57 \%$ yield. The subsequent methylation of 27 was accomplished by treatment with sec-BuLi, followed by addition of iodomethane to afford the product 28 as a 9:1 mixture of diastereomers. Secondary amine 30 was obtained by $\mathrm{LiAlH}_{4}$ reduction of the amide 28 and subsequent hydrogenolysis using $\mathrm{Pd}(\mathrm{OH})_{2}$ in presence of TFA to remove the chiral auxiliary. The total synthesis of isohaliclorensin (ent-3) was completed by addition of 30 to acrylonitrile, followed by subsequent reduction with Raney-Ni in methanol saturated with $\mathrm{NH}_{3}$.

### 3.1.2.3. Steglich's approach to isohaliclorensin, halitulin and haliclorensin

Steglich reported in $2001^{70}$ the synthesis of $(-)-(3 S)-1-(3-$ aminopropyl)-3methylazacyclodecane, the structure initially proposed for the marine alkaloid haliclorensin. However, the NMR and MS data of this compound differed considerably from the values given for haliclorensin. ${ }^{69}$ The author proposed that the structure of the marine alkaloid haliclorensin was (S)-7-methyl-1,5diazacyclotetradecane, and the initially assigned structure for haliclorensin was renamed isohaliclorensin (3). ${ }^{70,71}$

The strategy used for the synthesis of isohaliclorensin was quite similar to that of Banwell's synthesis, with the use of a ring-closing metathesis (RCM) reaction to generate the azacyclodecane ring system. A relevant aspect of the synthesis is the preparation of the enantiopure alcohol 36 in 5 steps from the ( $R$ )-Roche ester (31). Reduction of 32 with $\mathrm{LiAlH}_{4}$ followed by $O$-tosylation, and treatment of the resulting tosylate with allylmagnesium bromide in the presence of Cul and subsequent hydrolysis afforded (2S)-2-methyl-5-hexenol (36).



35
$30 \%$ from 34
36
Scheme 3.6

Diene 38 was obtained by reaction of sulfonamide 37 with the enantiopure alcohol 36 under Mitsunobu conditions. Ring-closing metathesis of 38 followed by the removal of the nosyl group with $\mathrm{PhSH}^{77}$ afforded the secondary cyclic amine 40. The synthesis of isohaliclorensin (3) was completed by treatment of 40 with acrylonitrile in MeOH , subsequent hydrogenation over Raney-Ni in MeOH saturated with $\mathrm{NH}_{3}$ and a final catalytic hydrogenation over Pd/C to remove the double bond.


Scheme 3.7

On the other hand, for the synthesis of halitulin (1), the tosylate moiety 42 was prepared in 3 steps from secondary amine 40, by treatment with 3-bromo-1propanol, followed by catalytic hydrogenation of 41 and subsequent tosylation of the saturated alcohol 16.


Scheme 3.8

The synthesis of the pyrrole subunit 44 was performed by Pd-catalyzed SuzukiMiyaura coupling reaction of the pyrrole-3,4-diboronate 19 with the $O, O$ protected 5 -bromoquinoline-7,8-diol 43, following by treatment with TBAF. The synthesis of halitulin (1) was completed by alkylation of the potassium salt

[^41]derived from 44 with tosylate 42, followed by the removal of the benzyl groups by catalytic hydrogenation.


Scheme 3.9

Steglich and co-workers also reported ${ }^{70}$ the synthesis of haliclorensin using the same intermediate (2S)-2-methyl-5-hexenol (36) used in the synthesis of isohaliclorensin, installing the C-7 stereogenic center. Successive couplings of bis-sulfonamide 45 under Mitsunobu conditions with 4-penten-1-ol and then with (2S)-2-methyl-5-hexenol 36 led to the protected diamine 47. The formation of the 14-membered ring 48 was performed by ring closing metathesis of diene 47 using the Grubbs' catalyst. Finally, the total synthesis of haliclorensin (2) was accomplished by deprotection of the nosyl groups, followed by subsequent catalytic hydrogenation of the double bond.


Scheme 3.10

### 3.1.2.4. Huang's approach to isohaliclorensin and haliclorensin

Huang reported ${ }^{72 b}$ in 2004 an enantioselective synthesis of both isohaliclorensin and haliclorensin. Two relevant aspects of the synthesis are the use of ringexpansion reactions for the formation of the aza-macrocycle 10-membered ring system 54 of isohaliclorensin and the sequential ring-expansion reactions (aza-

Claisen rearrangement and Zip reaction) for the formation of the azamacrocycle ring system 58 of haliclorensin.

Husson's chiral scaffold 49 was reduced to oxazolopiperidine 50 and then converted to the vinylated product 51 (dr 4:1). After removal of the phenylethanol moiety and acylation with propionyl chloride, the resulting ( $R$ )- N -propionyl-2-vinyl-piperidine 53 underwent a base-promoted aza-Claisen rearrangement, leading to the aza-10-membered ring system 54 in excellent yield. A subsequent catalytic hydrogenation gave azacyclodecanone 55 , which was converted to nitrile 56. A final reduction of both the amide carbonyl and the cyano group with an excess of borane-dimethyl sulphide complex provided ( $R$ )isohaliclorensin (ent-3).

On the other hand, chemoselective reduction of the cyano group of 56 gave amino lactam 57, which underwent a base-promoted ring-expansion to the 14membered ring 58. A final borane reduction completed the synthesis of $(R)$ haliclorensin (ent-2).


Scheme 3.11

Huang and co-workers also pursued the synthesis of the $(S)$-enantiomers of isohaliclorensin and haliclorensin. In this case, for the preparation of the enantiomer of 51 they started from Katritzky's chiral building block 59. Thus, treatment of 59 with vinylmagnesium bromide followed by reduction of crude 60
with $\mathrm{NaBH}_{4}$ in EtOH provided alcohol ent-51 as the major diastereoisomer, which was then converted to haliclorensin (2) and isohaliclorensin (3).


Scheme 3.12

No total syntheses of isohalitulin, haliclorensin B and haliclorensin $C$ had been described at the beginning of our studies.

### 3.1.3. Our studies in synthesis of Haliclona alkaloids

Taking into account that all Haliclona alkaloids possess the same substitution and stereochemical patterns ( $S-\mathrm{Me}$ ) at the $\beta$ position to the nitrogen atom, we focused our attention on the total synthesis of haliclorensin and haliclorensin C , and the formal synthesis of halitulin and isohaliclorensin. The synthesis of these alkaloids was planned from the enantiopure amino alcohol 52, previously described in Chapter 2, and would require the latter to be converted into appropriate long-chain secondary amino derivatives bearing two terminal alkene functionalities, which would allow the target azacyclic structures to be assembled using a ring-closing metathesis reaction as the key step.

Thus, the (S)-methyl-substituted amino diol 52 was envisaged as the precursor of the above four nitrogen-containing compounds.

For the sake of clarity, the carbon numbering used in this part of synthesis for the synthetic intermediates corresponds to that of the Haliclona alkaloid system.


Scheme 3.13

### 3.1.4. Enantioselective total synthesis of (S)-haliclorensin

### 3.1.4.1. RCM-ring expansion approach

For the construction of the aza-macrocyle ring system of haliclorensin we envisioned the initial assembly of a 10 -membered ring by a ring-closing metathesis reaction, and its subsequent expansion from an appropriate aminolactam, as outlined in Scheme 3.14. It is described ${ }^{72 b}$ that the eight-membered lactam is the smallest which can be used for ring enlargement by three or four atoms.


Scheme 3.14

Hydrogenolysis of the phenylethanol moiety of amino diol 52, followed by acylation of the resulting primary amine with 1 equivalent of 4 -pentenoyl chloride in anhydrous dichloromethane gave a mixture of amide 141 and the diacylated product 140 . To prepare amide 141 we decided to use 3 equivalents of the acid chloride reagent to initially form the diacylated product 140. A
subsequent selective hydrolysis of the ester function using DBU in methanol led to the target amide 141 in 60\% yield over three steps.


Scheme 3.15

Oxidation of alcohol 141 was carried out following different procedures (DessMartin reagent, IBX, Swern, PDC, $\mathrm{Py}^{\left(\mathrm{SO}_{3}\right) \text { but we never obtained the }}$ corresponding aldehyde. The cyclized derivative 142 was observed by NMR analysis instead.


Scheme 3.16

To avoid this undesirable cyclization we carried out the alkylation of the acylated amide 140 before performing the two-step oxidation/methylenation sequence. However, treatment of 140 with a solution of $n$-butyllithium in anhydrous THF at $-78{ }^{\circ} \mathrm{C}$ followed by alkylation of the resulting enolate with acrylonitrile led to the product 143 in only $20 \%$ yield in the best of cases.


Scheme 3.17
These unsatisfying results led us to plan a new synthetic strategy.

### 3.1.4.2. N-Alkylation-RCM approach

In this approach, N -alkylation of the starting aminoalcohol (bond formed $\mathrm{N}_{5}-\mathrm{C}_{4}$ ) and synthetic transformations followed by a final ring-closing metathesis reaction of the formed acyclic diene (bond formed $\mathrm{C}_{10}-\mathrm{C}_{11}$ ) would lead to the corresponding 14-membered diazacycle, as outlined in Scheme 3.18.


Scheme 3.18

### 3.1.4.3. $\quad \mathrm{N}$-alkylation (bond formed $\mathrm{N}_{5}-\mathrm{C}_{4}$ )

Amide 146 was prepared by treatment of 3-bromopropylamine hydrobromide 145 with 4-pentenoyl chloride, in a process previously described in the literature. ${ }^{78}$ The conversion of enantiopure amino diol 52 into $N$-tosylamide 144 was performed in $59 \%$ yield by the two-step sequence outlined in Scheme 3.19. The formation of the $\mathrm{N}_{5}-\mathrm{C}_{4}$ bond of haliclorensin by alkylation of the tosylamide derivative 144 with $N$-(3-bromopropyl)amide 146 in anhydrous DMF, in presence of cesium carbonate or potassium carbonate was unsuccessful, and in all cases we recovered both starting materials.


Scheme 3.19

[^42]Satisfactorily, the formation of the $\mathrm{N}_{5}-\mathrm{C}_{4}$ bond was accomplished in $75 \%$ yield by alkylation of $N$-tosyl silyl derivative 147, which was prepared by silylation of alcohol 144 , with iodide $148 .{ }^{79}$ The subsequent removal of the silyl protecting group gave alcohol 150 in 66\% yield from secondary amine 144. Then, alcohol 150 was converted to alkene 151 by a Dess-Martin oxidation/Wittig methylenation sequence in an excellent 70\% yield. Hydrazinolysis of the phtalimido moiety of 151, followed by acylation of the resulting primary amine with 4-pentenoyl chloride installed the two required terminal alkene functionalities, gaving 152 in 50\% yield over two steps.


Scheme 3.20

### 3.1.4.4. Construction of the 14 -membered macrocycle by a RCM reaction

The formation of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ bond of the 14-membered diazacycle was performed by a ring-closing metathesis reaction. Enantiopure diene 152 was added into a solution of Grubb's II catalyst in refluxing anhydrous dichloromethane ( 0.2 mM ), affording the target diazacyclotetradecane derivative 153 in excellent yield. The synthesis of haliclorensin (2) was completed by the two-step sequence outlined in Scheme 3.21. Catalytic hydrogenation of the carbon-carbon double bond of the diazacyclic structure 153 was performed in methanol using $\mathrm{Pd} / \mathrm{C}$ (10\%), affording 154 in high yield (94\%). Subsequent treatment with $\mathrm{LiAlH}_{4}$ in anhydrous THF brought about both the reductive removal of the tosyl group and the reduction of the lactam carbonyl, leading to the enantiopure haliclorensin.

[^43]

Scheme 3.21
The ${ }^{1} \mathrm{H}$-NMR spectroscopic data of our synthetic haliclorensin were coincident with those reported for natural product ${ }^{69}$ and for previously synthesized haliclorensins. ${ }^{70 b, 72 b}$ In Table 3.1 the chemical shifts of ${ }^{1} \mathrm{H}$ NMR are compared with those described in the literature for the alkaloid haliclorensin.


Haliclorensin (2)

| Reported in this work $\begin{gathered} \mathrm{CD}_{3} \mathrm{OD} \\ 400 \mathrm{MHz} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Literature }^{69} \\ \text { DMSO } \\ 500 \mathrm{MHz} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Literature }^{700} \\ \mathrm{CD}_{3} \mathrm{OD} \\ 600 \mathrm{MHz} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Literature }^{72 \mathrm{Db}} \\ \mathrm{CD}_{3} \mathrm{OD} \\ 500 \mathrm{MHz} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 0.89(\mathrm{~d}, 3 \mathrm{H}) \\ J=6.9 \mathrm{~Hz} \end{gathered}$ | $\begin{aligned} & 0.92(\mathrm{~d}, 3 \mathrm{H}) \\ & J=6.5 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 0.94(\mathrm{~d}, 3 \mathrm{H}) \\ & J=7.0 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 0.91(\mathrm{~d}, 3 \mathrm{H}) \\ & J=6.92 \mathrm{~Hz} \end{aligned}$ |
| 1.24-1.31 (m, 1H) | $\begin{aligned} & 1.11(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.24(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$ | 1.25-1.31 (m, 1H) | 1.28-1.31 (m, 1H) |
| 1.36-1.51 (m, 9H) | $\begin{aligned} & 1.42(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.30-1.42(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$ | 1.32-1.55 (m, 9H) | 1.32-1.51 (m, 9H) |
| 1.55-1.61 (m, 2H) | $\begin{aligned} & 1.50(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.52(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ | 1.56-1.63 (m, 2H) | 1.56-1.62 (m, 2H) |
| 1.70-1.77 (m, 3H) | $\begin{aligned} & 1.70(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.91(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.94(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ | 1.71-1.80 (m, 3H) | 1.69-1.81 (m, 3H) |
| $\begin{gathered} 2.40(\mathrm{dd}, 1 \mathrm{H}) \\ J=11.8,9.7 \mathrm{~Hz} \end{gathered}$ | $\begin{aligned} & 2.12(\text { quin, } 1 \mathrm{H}) \\ & J=7.0 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 2.42(\mathrm{dd}, 1 \mathrm{H}) \\ & J=11.8,9.7 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 2.45(\mathrm{dd}, 1 \mathrm{H}) \\ & J=11.84,9.69 \mathrm{~Hz} \end{aligned}$ |
| $\begin{gathered} 2.55(\mathrm{dd}, 1 \mathrm{H}) \\ J=11.8,3.8 \mathrm{~Hz} \end{gathered}$ |  | $\begin{aligned} & 2.57(\mathrm{dd}, 1 \mathrm{H}) \\ & J=11.8,3.8 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 2.57(\mathrm{dd}, 1 \mathrm{H}) \\ & J=11.84,3.69 \mathrm{~Hz} \end{aligned}$ |
| 2.58-2.63 (m, 1H) |  | $\begin{aligned} & 2.64 \text { (ddd, 1H) } \\ & J=11.1,7.6,3.5 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 2.70(\mathrm{ddd}, 1 \mathrm{H}) \\ & J=11.45,7.69,4.00 \mathrm{~Hz} \end{aligned}$ |
| 2.64-2.68 (m, 2H) | $\begin{aligned} & 2.67(\mathrm{dd}, 1 \mathrm{H}) \\ & J=12.8,6.9 \mathrm{~Hz} \end{aligned}$ | 2.66-2.70 (m, 2H) | 2.72-2.76 (m, 2H) |
| 2.71-2.73 (m, 2H) | 2.84 (m, 1H) | 2.72-2.75 (m, 2H) | 2.77-2.86 (m, 2H) |
| $\begin{gathered} 2.82(\mathrm{ddd}, 1 \mathrm{H}) \\ J=11.2,6.8,4.0 \mathrm{~Hz} \end{gathered}$ | $\begin{aligned} & 2.88(\mathrm{~m}, 1 \mathrm{H}) \\ & 2.96(\mathrm{~m}, 1 \mathrm{H}) \\ & 2.94(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 2.84 \text { (ddd, 1H) } \\ & J=11.1,7.0,3.5 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 2.90(\mathrm{ddd}, 1 \mathrm{H}) \\ & J=11.45,7.08,4.15 \mathrm{~Hz} \end{aligned}$ |
|  | $\begin{aligned} & 3.03(\mathrm{~m}, 2 \mathrm{H}) \\ & 3.09(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |  |  |

Table 3.1

The $[\alpha]^{22}{ }_{D}$ value of our sample $[-17.2(c 0.5, \mathrm{MeOH})]$ was consistent with that of both the natural product ${ }^{73}$ [-19 (c $\left.\left.0.57, \mathrm{MeOH}\right)\right]$ and synthetic haliclorensins. ${ }^{70 b, 72 b}$

It should point, that the NMR spectra and specific rotation of haliclorensin are strongly pH dependent. ${ }^{69,70 b, 73}$ In fact, a specific rotation of $[\alpha]^{22}{ }_{\mathrm{D}}-2.2$ (c 1.3, MeOH ) was reported ${ }^{69}$ in the first isolation of the alkaloid, from a sample whose NMR data indicate that it was at least partially protonated given that as the chemical shifts of the methylene groups adjacent to the nitrogen atoms are shifted (protons, downfield; carbons, upfield) with respect to the spectra of synthetic haliclorensin. An $[\alpha]_{D}$ value of -8.5 has also been reported for the natural product, which, according to chiroptical measurements and GC-MS investigations, consisted of a 3:1 mixture of the $(S)$ - and ( $R$ )-enantiomers. ${ }^{70 b}$

### 3.1.5. Haliclorensin C. First total synthesis

### 3.1.5.1. Synthetic strategy

(R)-Phenylglycinol-derived amino diol 52 was also envisaged as a key intermediate for the synthesis of haliclorensin C .

We initially planned the introduction of the $\mathrm{C}_{7}-\mathrm{C}_{16}$ linear-chain on the nitrogen of the aminoalcohol derived of 52. Subsequent synthetic transformations and a ring-closing metathesis reaction from an appropriate long-chain secondary amino derivative bearing two terminal alkene functionalities would lead to the aza-macrocycle 16-membered ring system.


Scheme 3.22

### 3.1.5.1.1.Formation of the $\mathrm{N}_{1}-\mathrm{C}_{16}$ bond by N -alkylation

(S)-3-Methyl-aminopentanol 95 was envisaged as the $\mathrm{N}_{1}-\mathrm{C}_{6}$ fragment of haliclorensin C. Treatment of alcohol 95 with tert-butyldimethylsilyl chloride in
presence of imidazole in chloroform gave corresponding silyl derivative 155 in $94 \%$ yield. A subsequent alkylation ${ }^{80}$ of the Boc-protected amine 155 with 10undecenyl bromide and sodium hydride in anhydrous DMF afforded N undecenyl amino derivative 156 in only $25 \%$ yield in the best of cases.


156 25\%

Scheme 3.23

Some examples ${ }^{80 c, d}$ are described in the literature about the monoalkylation of primary amines. For this reason, we decided to try the alkylation from the primary amine resulting from debenzylation of enantiopure amino diol 52.

Treatment of 52 under hydrogenolysis conditions, followed by alkylation of the resulting primary amine with 1 equivalent of 10 -undecenyl bromide in the presence of carbonate potassium in anhydrous acetonitrile led to the $\mathrm{N}, \mathrm{N}$ diundecenyl amino derivative 157 in $57 \%$ yield.


1. $\mathrm{H}_{2}(5 \mathrm{bar}), \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}$


57\%


Scheme 3.24

Taking into account these unsatisfactory results and considering that we had an important batch of amino diol 14 (bearing an ethyl substituent at the $\beta$ position of the amino group instead of methyl substituent our building block 52), we

[^44]decided to perform model studies for the total synthesis of haliclorensin C using this chiral building block.

### 3.1.5.1.2.Formation of the $N_{1}-C_{16}$ bond by reductive amination

Hydrogenolysis of the phenylethanol moiety of amino diol 14, followed by subsequent treatment of the resulting primary amine 158 with 10-undecenal, sodium cyanoborohydride, and acetic acid in anhydrous dichloromethane gave secondary amine 160 in only $25 \%$ yield. The alkylated product 160 was converted to the corresponding N -Boc derivative 162 in $85 \%$ yield.

The yield of the reductive amination was not improved (29\% yield) starting form the silyl derivative 159, which was prepared by silylation of 158 with tertbutyldiphenylsilyl chloride.


Scheme 3.25

As a consequence of low yields of the above sequence, we decided to explore another strategy.

### 3.1.5.1.3.Formation of the $\mathrm{N}_{1}-\mathrm{C}_{16}$ bond by alkylation: Synthesis of dialkene 165

Alternatively, we decided to introduce the $\mathrm{C}_{7}-\mathrm{C}_{16}$ fragment of haliclorensin C by alkylation of the amine 163 with 10-undecenyl bromide. Thus, reductive removal of the phenylethanol moiety of 14 and subsequent treatment with 0 nitrobenzenesulfonyl chloride afforded the protected amine 163 in $76 \%$ yield. Alkylation of secondary amine 163 with 10 -undecenyl bromide led to the N protected secondary amine 164 in excellent yield (84\%), which was converted to the $N$-hexenyl $N$-undecenyl amino derivative 165 by an oxidation/Wittig methylenation sequence. Oxidation of the alcohol function present in 164 using Dess-Martin reagent, followed by subsequent Wittig methylenation afforded the target diene 165 in $47 \%$ yield.


Scheme 3.26

### 3.1.5.1.4. Construction of the 16 -membered macrocycle by a RCM: Synthesis of the ethyl analog of haliclorensin C

The formation of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond of the 16 -membered macrocycle 166 was performed by a ring closing metathesis reaction, by addition of diene 165 into a solution of Grubb's II catalyst in refluxing dichloromethane. The target azacyclic structure 166 was obtained in $70 \%$ yield as a 88:12 (calculated by GC-MS) mixture of $E / Z$ diastereoisomers. When the cyclization was carried out under slow addition ( $0.08 \mathrm{ml} / \mathrm{min}$ ) of diene 165, the formation of dimers and oligomers was observed. Subsequent removal of the nosyl group of 166 with thiophenol and potassium carbonate in anhydrous dimethylformamide ${ }^{77}$ afforded (S)-3-ethylazacyclo-6-hexadecene as a 75:25 (calculated by GC-MS) mixture of $E / Z$ diastereoisomers 167 in $45 \%$ yield. Finally, catalytic hydrogenation using Pd/C (25\%) led to (S)-3-ethylazacyclohexadecane 168 in 50\% yield.


Scheme 3.27

The enantioselective synthesis of the ethyl analogue 168 of haliclorensin $C$ was performed in 8 steps with an overall yield of $3 \%$ starting from enantiopure amino diol 14.

### 3.1.6. First enantioselective total synthesis of (S)-haliclorensin C

The optimized synthetic procedure used for the synthesis of the ethyl analog of haliclorensin C 168 was applied to the synthesis of the alkaloid, starting from the enantiopure amino diol 52 , which bears the required $(S)$-methyl substituent.

Alcohol 52 was converted to N -o-nitrobenzenesulfonyl protected amine 169 in $72 \%$ yield. A subsequent alkylation of 169 with 10 -undecenyl bromide afforded 170 in $79 \%$ yield. The conversion of alcohol 170 into $N$-hexenyl $N$-undecenyl amino derivative 171 was performed in $61 \%$ yield by a Dess-Martin oxidation/Wittig methylenation sequence. The 16-membered azacyclic structure 172 was synthesized in $80 \%$ yield by treatment of diene 171 with Grubb's II catalyst in refluxing dichloromethane ( 0.2 mM ), affording a 86:14 mixture of $E / Z$ diastereoisomers (calculated by GC-MS). Removal of o-nitrobenzenesulfonyl protecting group afforded in 58\% yield secondary amine 173 as a 84:16 mixture (calculated by GC-MS) of $E / Z$ diastereoisomers, which was hydrogenated to the target haliclorensin C (6).


Scheme 3.28

The total synthesis of haliclorensin $C$ (6) was performed in 8 steps with an overall yield of $11 \%$ starting from the enantiopure aminodiol 52.

Although the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of our synthetic haliclorensin C did not coincide with those reported for the natural product, ${ }^{73}$ the NMR spectra of the hydrochloride of our synthetic material matched the spectra reported for haliclorensin C. Unfortunaltely, haliclorensin C had been isolated ${ }^{73}$ only in minute amounts ( 2 mg ) and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra included in the paper show considerable contamination. For this reason, the absolute configuration of haliclorensin C , tentatively proposed as $S,{ }^{73}$ as determined for halitulin and haliclorensin, cannot be confirmed since the specific rotation of our synthetic material $\left\{[\alpha]^{22}{ }_{D}-6.04(c 0.85, \mathrm{MeOH})\right\}$ was different from that reported ${ }^{73}$ for the impure sample of the natural product $\left\{[\alpha]^{22}{ }_{D}+53(\mathrm{c} 0.15, \mathrm{MeOH})\right\}$.

In the following Tables the chemical shift values observed in our ${ }^{1} \mathrm{H}$ NMR (Table 3.2) and ${ }^{13} \mathrm{C}$ NMR (Table 3.3) are compared with those described in the literature for natural haliclorensin C .


|  | $\begin{gathered} \text { Reported in this Thesis } \\ \text { for haliclorensin } \mathrm{C} \\ \left(4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \\ 500 \mathrm{MHz} \end{gathered}$ | Reported in this Thesis for the hydrochloride $\begin{gathered} \left(4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \\ 400 \mathrm{MHz} \end{gathered}$ | $\begin{gathered} \text { Literature }^{73} \\ \left(4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \\ 500 \mathrm{MHz} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3}$ | 0.73 (d, J=6.8 Hz, 3H) | 1.06 (d, J=6.8 Hz, 3H) |  |
| H-4 | 1.08-1.22 (m, 1H) |  |  |
| $\mathrm{CH}_{2}$ |  | 1.26-1.40 (m, 22H) |  |
| H-15 | 1.30-1.41 (m, 20H) | 1.75 (m, 2H) | 1.72 (m, 2H) |
| $\mathrm{H}-4, \mathrm{CH}_{2}$ | 1.42-1.56 (m, 3H) |  |  |
| H-3 | 1.60-1.63 (m, 1H) | 1.89 (m, 1H) | 1.85 (m, 1H) |
| H-2 | $\begin{aligned} & 2.30(\mathrm{dd}, J=11.8,7.0 \mathrm{~Hz}, \\ & 1 \mathrm{H}) \\ & 2.36(\mathrm{dd}, J=11.8,5.2 \mathrm{~Hz}, \\ & 1 \mathrm{H}) \end{aligned}$ | 2.78-2.84 (m, 2H) | $\begin{aligned} & 2.75(\mathrm{~m}, 1 \mathrm{H}) \\ & 2.85(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
| H-16 | $\begin{array}{\|l\|} \hline 2.48-2.54(\mathrm{~m}, 1 \mathrm{H}) \\ 2.64-2.70(\mathrm{~m}, 1 \mathrm{H}) \\ \hline \end{array}$ | 2.89-2.99 (m, 2H) | 2.94 (m, 2H) |

Table 3.2

|  | $\begin{array}{c}\text { Reported in this Thesis } \\ \left(4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \\ 500 \mathrm{MHz}\end{array}$ | $\begin{array}{c}\text { Reported in this Thesis } \\ \text { for the hydrochloride } \\ \left(4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \\ 400 \mathrm{MHz}\end{array}$ | $\begin{array}{c}\text { Literature }{ }^{73} \\ \left(4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \\ 5\end{array}$ |
| :--- | :---: | :---: | :---: |
| $\mathbf{C H}_{3}$ | 18.2 | 17.9 |  |$]$| 17.6 |
| :---: |
| $\mathbf{C - 1 5}$ |

Table 3.3

### 3.1.7. Formal syntheses of halitulin and isohaliclorensin

Both the Haliclona alkaloid halitulin (1) and 1-(3-aminopropyl)-3methylazacyclodecane (3) (also named isohaliclorensin; the structure initially
proposed for the marine alkaloid haliclorensin) have been synthesized from the enantiopur $N$-hexenyl $N$-pentenyl amino derivative 175. ${ }^{70 a, 72 a}$ A ring-closing metathesis reaction was used for the construction of the azacyclodecane ring.


Scheme 3.29

We planned the synthesis of diene 175 starting from the enantiopure protected aminopentanol 169, previously employed in the synthesis of haliclorensin $C$ (6).

Alkylation of the protected amine 169 with 4-pentenyl bromide and cesium carbonate afforded amino alcohol 174 in excellent yield (75\%). A subsequent oxidation of 174 under Dess-Martin conditions, followed by Wittig methylenation of the resulting aldehyde led to the target N -hexenyl N -pentenyl amino derivative 175 in $50 \%$ overall yield for the two steps.


In summary, enantiopure 4-methyl-5-aminopentanol 52 has been demonstrated to be a useful starting building block in the enantioselective synthesis of the Haliclona alkaloids halicloresin C (first enantioselective total synthesis), haliclorensin and halitulin (formal), and also of the non-natural product isohaliclorensin (formal).

### 3.2. Fluvirucins and their aglycons, the fluvirucinins

This introduction gives an overview of fluvirucins, covering isolation, biological activities, biosynthesis, and total synthesis. The synthesis of fluvirucins and their aglycons, the fluvirucinins, is presented, paying special attention to the synthetic strategy and the stereochemical aspects. In order to facilitate the reading of this part, the numbering of compounds is independent to the rest of the memory.

### 3.2.1. Introduction

Fluvirucins are a family of naturally occurring glycosides structurally characterized by the presence of an amino sugar attached at the C-3 or C-9 position of a 14-membered macrocycle lactam aglycon. They also incorporate a methyl or ethyl substituent at C-2 (1S-hydroxyethyl in fluvirucin $\mathrm{A}_{2}$ ), C-6 (absent in some members), and C -10 of the core lactam nucleus. The amino sugar moiety can be 3-amino-3,6-dideoxy- $\alpha$-L-talopyranose, e.g. in fluvirucins $A_{1}$ and $\mathrm{B}_{1}$, or its 4 -epimer (L-mycosamine), e.g. in fluvirucin $\mathrm{B}_{2}$, or an $N$-substituted derivative of either. The amino sugar moiety can be 3-amino-3,6-dideoxy- $\alpha$-Ltalopyranose, e.g. in fluvirucins $\mathrm{A}_{1}$ and $\mathrm{B}_{1}$, or its 4-epimer (L-mycosamine), e.g. in fluvirucin $\mathrm{B}_{2}$, or an N -substituted derivative of either.


Sch 38511
Sch 38512
 Fluvirucin $\mathrm{B}_{4}$


Fluvirucin $\mathrm{B}_{2}$ (Sch 38518)

| $R^{1}$ | $R^{2}$ | $R^{3}$ | $R^{4}$ |
| :--- | :--- | :--- | :--- |
| Me | Me | Me | H |
| Me | Et | Me | H |
| H | Et | Et | H |
| Me | Et | Et | H |
| Et | Et | Et | H |
| Et | Et | Et | $\mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$ |
| Tentatively assigned |  |  |  |

4'-epi-Sch $38511^{\text {a }}$
4'-epi-Sch 38512 ${ }^{\text {a }}$
Fluvirucin $\mathrm{B}_{0}$
Fluvirucin $\mathrm{B}_{1}$ (Sch 38516)
Fluvirucin $\mathrm{B}_{3}$ (Sch 39185)


Fluvirucin $\mathrm{B}_{5}$
Scheme 3.31

### 3.2.2. Isolation, biological activity, and biosynthesis

The first member of this family (Sch 38516) was reported in 1990 by scientists at Schering-Plough, who obtained it by extraction from the fermentation broth of
the actinomycete Actinomadura vulgaris. ${ }^{81}$ Its structure was established by Xray crystallographic analysis. In the following years, the same group reported the isolation of seven other glycosides (Sch 38511-38513, Sch 38518, and their C-4' epimers) produced by various species of Actinomadura. ${ }^{82,83}$ (Scheme 3.31). All these compounds were found to exhibit antifungal activity against various strains of Candida sp. and dermatophytes.

Almost simultaneously, scientists at Bristol-Myers Squibb described seven macrolactam glycosides, named fluvirucins $A_{1}, A_{2}$, and $B_{1}-B_{5}$, from several actinomycete strains. These fluvirucins possess inhibitory activity against the influenza A virus, ${ }^{84}$ which is partially retained in the corresponding fluvirucinins. ${ }^{85 b}$ Fluvirucin $\mathrm{B}_{2}$ also acts as an inhibitor of phosphatidylinositolspecific phospholipase C. ${ }^{85}$ The structures of some of these fluvirucins coincided with those previously reported by the Schering-Plough researchers. More recently, researchers at Merck reported the isolation of fluvirucin $\mathrm{B}_{0}{ }^{86}$ and two new $N$-methyl derivatives of fluvirucin $\mathrm{A}_{1}{ }^{87}$ from the actinomycete Nonomuraea turkmerniaca, all of which show anthelmintic activity.

By ${ }^{13} \mathrm{C}$ feeding experiments it was demonstrated that the aglycon moiety of fluvirucins is biosynthesized from acetate and propionate via a combination of polyketide and tricarboxylic acid mechanisms. ${ }^{17 \mathrm{~b}, 88}$ In this context, the identification and characterization of the putative polyketide synthase genes associated with fluvirucin $\mathrm{B}_{1}$ aglycon biosynthesis in Actinomadura vulgaris has recently been reported. ${ }^{89}$

[^45]
### 3.2.3 Synthetic approaches

The synthesis of fluvirucins has been little explored. In fact, only one total enantioselective synthesis of a member of this group, fluvirucin $B_{1}$, has been reported to date. In contrast, fluvirucinins have received considerable attention from the synthetic standpoint, which has resulted in enantioselective syntheses of fluvirucinins $A_{1}, A_{2}, B_{0}, B_{1}$, and $B_{2-5}$, the latter being the aglycon common to fluvirucins $B_{2}, B_{3}, B_{4}$, and $B_{5}$. Two key points in the synthesis of fluvirucins and fluvirucinins are the closure of a 14-membered lactam ring and the control of the configuration of its stereocenters.

As outlined in Figure 3.2, three main strategies have been used for the construction of the macrocyclic ring: a) an olefin ring-closing metathesis reaction (bond formed $\mathrm{C}_{4}-\mathrm{C}_{5}, \mathrm{C}_{5}-\mathrm{C}_{6}, \mathrm{C}_{6}-\mathrm{C}_{7}$ or $\mathrm{C}_{8}-\mathrm{C}_{9}$ ); b) a macrolactamization (bond formed $\mathrm{N}-\mathrm{C}_{1}$ ); and c ) an amide-enolate-induced ring expansion via azaClaisen rearrangement of a ten-membered 1-acyl-2-alkoxyvinyl-azacycle (bond formed $\mathrm{C}_{2}-\mathrm{C}_{3}$ ). For the sake of clarity, the carbon numbering used in this part for the synthetic intermediates corresponds to that of the fluvirucinin system. In addition, to facilitate its visualization, the fluvirucinin ring skeleton has been drawn with the same orientation throughout the introduction of fluvirucins and fluvirucinins, both in the $A$ and $B$ series.

$R^{1}=H, M e$ or $E t$
$\mathrm{R}^{2}=\mathrm{Me}$, Et or $(\mathrm{S})-\mathrm{CHOHCH}_{3}$
$\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{OProt}$ (fluvirucinins A)
$\mathrm{X}=\mathrm{OProt}, \mathrm{Y}=\mathrm{H}$ (fluvirucinins B )

Scheme 3.32

For the sake of clarity, the carbon numbering for the synthetic intermediates corresponds to that of the fluvirucinin system. In addition, to facilitate the visualization, the fluvirucinin ring skeleton has been drawn with the same orientation throughout the chapter, both in the $A$ and $B$ series.

### 3.2.4. Closure of the 14-membered ring by RCM

### 3.2.4.1. Hoveyda's approach to fluvirucinin $B_{1}$ and fluvirucin $B_{1}$

The first synthesis of a fluvirucinin was reported by Hoveyda in 1995. ${ }^{90}$ Two relevant aspects of the synthesis are the use of a ring-closing metathesis (RCM) reaction to promote a stereoselective macrocyclization from a conformationally mobile acyclic diene and the use of macrocyclic stereocontrol to establish the remote stereochemistry at C-6 by catalytic hydrogenation. Thus, closure of the 14-membered ring was efficiently accomplished (bond formed $\mathrm{C}_{5}$ $\mathrm{C}_{6}$ ) under smooth conditions, using the Schrock Mo catalyst, from amido diene 3, which was convergently prepared by coupling of acid 1 with amine 2 (Scheme 3.33). Catalytic hydrogenation of the resulting trisubstituted $Z$ olefin 4 stereoselectively installed the C-6 stereogenic center to afford, after deprotection, fluvirucinin $\mathrm{B}_{1}$, which was converted to the corresponding acetate. ${ }^{90,91}$


Scheme 3.33

The required starting materials 1 and $2\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right.$ and $\mathrm{C}_{6}-\mathrm{N}$ fragments, respectively, of fluvirucinin $\mathrm{B}_{1}$ ), which incorporate the $\mathrm{C}-2, \mathrm{C}-9$, and $\mathrm{C}-10$ stereogenic centers of fluvirucinin $\mathrm{B}_{1}$, were prepared as outlined in Schemes 3.34 and $3.35 .{ }^{90,91}$ Acid 1, with the required $R$ configuration, was prepared from dihydrofuran 5 via a sequence of three metal-catalyzed steps. An enantioselective $\mathbf{Z r}$-catalyzed ethylmagnesation of 5 gave homoallylic alcohol 6, which was subjected to a tandem Ti and Ni-catalyzed hydrovinylation by hydromagnesation of the olefin, followed by an in situ cross-coupling reaction of the resulting Grignard reagent 7 with vinyl bromide. A Ru-catalyzed oxidation of the resulting alcohol 8 completed the synthesis of acid 1.

[^46]

Scheme 3.34

In turn, homoallylic alcohol 9 was converted to enantiopure allylic alcohol 10 ( $>99 \%$ ee) via kinetic Sharpless resolution of the corresponding racemate. A subsequent one-pot double alkylation of the monosubstituted olefin moiety of 10, involving a diastereoselective Zr-catalyzed ethylmagnesation, and in situ trapping of the resulting alkylmagnesium halide intermediate 11 with tosyl aziridine, afforded 12 ( $97: 3 \mathrm{dr}$ ). Final protection-deprotection steps led to amine 2 in 12\% overall yield for the six-step procedure.


Scheme 3.35

The same strategy was employed for the synthesis of fluvirucin $B_{1}$ (Sch 38516), which incorporates a novel carbohydrate moiety identified for the first time as part of a natural product. However, all attempts to glycosylate the deprotected alcohol derived from 4 with a variety of carbohydrate derivatives failed, probably due to the low solubility of the macrocyclic alcohol in organic solvents. This problem was circumvented using the more readily soluble alcohol resulting from deprotection of acyclic diene 3, which underwent a stereoselective glycosylation with fluoroglycoside 13 to give 14 in excellent yield (Scheme 3.36). A subsequent RCM, followed by stereoselective hydrogenation of the resulting $Z$ unsaturated macrolactam 15 and deprotection of the sugar moiety, afforded fluvirucin $B_{1}$ (Sch 38516). ${ }^{91,92}$ This synthesis was the first and, to date the only, synthesis of a member of the fluvirucin family.

[^47]

Scheme 3.36

The carbohydrate fragment (20) of fluvirucin $\mathrm{B}_{1}$ was prepared from ethyl sorbate (16) as illustrated in Scheme 3.37. Key steps of the synthesis are a catalytic Sharpless asymmetric ( $80 \%$ ee) dihydroxylation of 16, which ensured the optical purity, a diastereoselective dipolar [3+2] cycloaddition between ( $R$ )- $\alpha$ -methylbenzylamine-derived nitrone 18 and vinylene carbonate, and the removal of the protecting groups from the resulting cycloaddition product 19 by controlled acid hydrolysis and hydrogenolysis. The stereochemical identity of 20 was established through conversion to the corresponding $O, O, N$-triacetyl methyl glycoside, which proved identical to the material obtained from degradation of natural fluvirucin $\mathrm{B}_{1}$. To perform the crucial glycosylation reaction, 20 was protected as an $O, O$-diacetyl- $N$-trifluoroacetyl derivative and then activated as a fluoroglycoside (13) via acetoxyglycoside 21 and a thioglycoside. ${ }^{91-93}$


Scheme 3.37

[^48]
### 3.2.4.2. Bracher's approach to fluvirucinin $B_{0}$

In 2001, Bracher reported ${ }^{94}$ the enantioselective synthesis of 6-nor-fluvirucinin $B_{1}$ before it was known that this nor derivative was the aglycon of fluvirucin $B_{0}$. The closure of the macrolactam ring was also effected by an RCM reaction, although, in this case, involving the formation of the $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond.
The required amido diene 24, which incorporates the three stereocenters of fluvirucinin $B_{0}$, was synthesized by coupling of acid 22 with amine $23\left(C_{1}-C_{4}\right.$ and $\mathrm{C}_{5}-\mathrm{N}$ fragments of fluvirucinin $\mathrm{B}_{0}$ ). The RCM of 24 was satisfactorily performed with Grubbs catalyst, in the presence of $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ to avoid the formation of an unproductive Ru-chelate with the $\gamma, \delta$-unsaturated amide. A subsequent catalytic hydrogenation of the resulting diene $\mathbf{2 5}$ led to fluvirucinin $\mathrm{B}_{0}$ (Scheme 3.38).


Scheme 3.38

Enantiopure acid 22 was prepared in two steps from Oppolzer's $N$-crotyl-(+)camphorsultam $26,{ }^{95}$ by conjugate hydride addition followed by trapping of the resulting enolate with allyl bromide and subsequent hydrolysis of $N$-acylsultam 27 (Scheme 3.39).


Scheme 3.39

In turn, amine 23 was obtained from epoxy alcohol 28, which was accessible by Sharpless oxidation of the corresponding ( $E$ )-pentenol. ${ }^{96}$ After protection of the hydroxy group, a regio- and stereoselective ring opening reaction with an

[^49]alkynyl alanate derived from 29 gave alcohol 30, which was converted to saturated epoxide 31. Regioselective opening of 31 with 3 -butenylmagnesium bromide, followed by protection-deprotection steps and conversion of the primary alcohol function of 32 to a primary amino group, completed the synthesis of the amine half 23 (Scheme 3.40). ${ }^{94}$

1. $\mathrm{NaH}, \mathrm{BnBr}$

2. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{MgBr}$, Cul
3. $\mathrm{NaH}, \mathrm{BnBr}$
$\xrightarrow[29 \% \text { from } 30]{\text { 3. }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}}$


23

Scheme 3.40

### 3.2.4.3. Radha Krishnas's approach to fluvirucinin $\mathrm{A}_{1}$

In 2011, Radha Krishna reported ${ }^{97}$ an enantioselective synthesis of fluvirucinin $\mathrm{A}_{1}$ involving the same $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond disconnection. Closure of the macrocyclic ring was also achieved by an RCM reaction, in this case from diene 35 , which was prepared in nearly quantitative yield by amidation between carboxylic acid 33 and amine $34\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ and $\mathrm{C}_{5}-\mathrm{N}$ fragments of fluvirucinin $\left.\mathrm{A}_{1}\right)$. Hydrogenation of the resulting unsaturated macrolactam 36 ( $Z / E$ mixture) brought about both the reduction of the olefinic bond and the deprotection of the alcohol function to furnish fluvirucinin $\mathrm{A}_{1}$ (Scheme 3.41).


[^50]Both fragments, 33 and 34, were accessed from a common intermediate 38 derived from (S)-Roche ester 37, which provided the C-2 and C-6 stereogenic centers of fluvirucinin $A_{1}$. Conversion of ester 37 into allylic alcohol $38^{98}$ followed by Sharpless asymmetric epoxidation afforded epoxy alcohol $39,{ }^{98 b}$ which was converted to allylic alcohol 40 by Zn reduction of the corresponding iodide. Subsequent protecting-group interconversions and oxidation of the primary alcohol function afforded O-protected hydroxy acid 33 (Scheme 3.42).

The preparation of amino alkene 34 started with a highly diastereoselective ( $>95: 5$ ) Evans asymmetric alkylation of $N$-butyryl oxazolidinone 41 with the allylic iodide derived from 38, which installed the C-10 stereogenic center of fluvirucinin $\mathrm{A}_{1}$ (bond formed $\mathrm{C}_{9}-\mathrm{C}_{10}$ ). Reductive cleavage of the chiral auxiliary, followed by a two-carbon homologation of the resulting alcohol 43 gave alcohol 44, which was converted to $N$-Boc amino alcohol 45. A final Swern oxidation and one-carbon Wittig olefination completed the $\mathrm{C}_{5}-\mathrm{N}$ fragment 34.


Scheme 3.42

[^51]
### 3.2.4.4. Negishi's approach to fluvirucinin $A_{1}$

An alternative enantioselective synthesis of fluvirucinin $A_{1}$, also using an RCM reaction to promote the macrocyclization, was reported in 2008 by Negishi, ${ }^{99}$ although, unlike other syntheses, in this approach the bond formed was $\mathrm{C}_{8}-\mathrm{C}_{9}$. The required diene 48 was prepared in excellent yield by amidation of acid 46 with amine $47\left(\mathrm{C}_{1}-\mathrm{C}_{8}\right.$ and $\mathrm{C}_{9}-\mathrm{N}$ fragments of fluvirucinin $\left.\mathrm{A}_{1}\right)$, and the RCM was effected, also in excellent yield, using Grubbs I catalyst. Subsequent hydrogenation of the olefinic double bond and deprotection afforded fluvirucinin $\mathrm{A}_{1}$ (Scheme 3.43).


Scheme 3.43

O-Protected hydroxy acid 46 was synthesized from (-)-(S)- $\beta$-citronellol (50), which provided the C-6 stereogenic center of the target macrocycle. The two other stereocenters of 46 were stereoselectively ( $\mathrm{dr} \geq 98 \%$ ) generated by Brown crotylboration ${ }^{100}$ of aldehyde 51, which led to homoallylic alcohol 52 (Scheme 3.44). The synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{8}$ fragment was completed by oxidative cleavage of the alkene moiety of 52, protection-deprotection steps, and a onecarbon Wittig olefination of the aldehyde resulting from oxidation of alcohol 53.

[^52]


Scheme 3.44

Amino alkene 47 was obtained by two alternative routes, both of them involving a Zr -catalyzed asymmetric carboalumination reaction followed by protection by lipase-catalyzed acetylation, starting from either 3-buten-1-ol (54a) or 4-penten1 -ol (54b). The resulting enantiomerically pure ( $\geq 98 \%$ ee) ( $R$ )-2-ethyl-1alkanols 56 a and 56 b , containing the $\mathrm{C}-10$ asymmetric center of fluvirucinin A , were converted to the $\mathrm{C}_{9}-\mathrm{N}$ fragment 47 in six conventional steps, via alkenols 57a and 57b, as shown in Scheme 3.45.


Scheme 3.45

### 3.2.4.5. The Vilarrasa-Urpí approach to fluvirucinin $B_{2-5}$

In 2009, Vilarrasa and Urpí reported the first and only, to date, enantioselective synthesis of fluvirucinin $B_{2-5}$, the aglycon common to fluvirucins $B_{2}-B_{5}$, via an RCM reaction involving the formation of the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond. ${ }^{101}$ The macrocyclization was performed in the presence of Hoveyda-Grubbs II catalyst using diene 60 as the substrate, which was prepared by direct coupling of carboxylic acid 58 with azide 59 using the Staudinger-Vilarrasa reaction (Scheme 3.46).

[^53]Hydrogenation of the trisubstituted double bond of the resulting unsaturated lactam 61 (1:1.2 mixture of $Z / E$ isomers) stereoselectively installed the $\mathrm{C}-6$ stereogenic center (9:1 dr). A subsequent hydrolysis afforded fluvirucinin $\mathrm{B}_{2-5}$. The corresponding acetate was found to be identical to the reported acetylated aglycon derived from fluvirucin $B_{2}$ (Sch 38518).


Scheme 3.46

Both the ethyl-branched acid 58 and azide 59 (the $\mathrm{C}_{1}-\mathrm{C}_{6}$ and $\mathrm{C}_{7}-\mathrm{N}$ fragments of fluvirucinin $\mathrm{B}_{2-5}$ ) were stereoselectively prepared from the same starting material, the known ${ }^{102}$ allylated $N$-acyloxazolidinone 62 (Scheme 3.47 ), which provided the $\mathrm{C}-2$ and $\mathrm{C}-10$ ethyl-substituted stereogenic centers of fluvirucinin $\mathrm{B}_{2-5}$. Cross-methatesis of 62 with ethyl vinyl ketone, followed by hydrogenation of the resulting carbon-carbon double bond of enone 63 and selective Petasis ketone methylenation using DMF as a scavenger, afforded 64. A final hydrolytic removal of the chiral auxiliary provided acid 58 in excellent overall yield. The conversion of 62 to azide 59 commenced with a one-pot hydroborationiodination process, followed by replacement of the iodine atom by azide anion. After reductive removal of the auxiliary in 65 and oxidation of the resulting alcohol, a stereoselective ( $\mathrm{dr} \geq 98: 2$ ) allylation of aldehyde 66 using the ( $S, S$ )Leighton reagent installed the C-9 stereogenic center to give syn alcohol 67, which was protected as a TBS ether.

[^54]

Scheme 3.47

### 3.2.5. Closure of the 14-membered ring by macrolactamization

### 3.2.5.1. Trost's approach to fluvirucinin $B_{1}$

In 1997, Trost reported ${ }^{103}$ a synthesis of fluvirucinin $B_{1}$ using a conceptually different approach, in which the macrocyclic ring was assembled by lactamization.
Starting from $N$-acyl imidazolidone 74, two key intermediates, Meldrum's acid derivative 68 and epoxide $69\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right.$ and $\mathrm{C}_{6}-\mathrm{N}$ fragments of fluvirucinin $\left.\mathrm{B}_{1}\right)$ were synthesized in enantiopure form. Coupling of these two building blocks (bond formed $\mathrm{C}_{5}-\mathrm{C}_{6}$ ) by Pd-catalyzed addition of the pronucleophile 68 to alkenyl epoxide 69 occurred with complete transfer of chirality, via a $\pi$-allylpalladium species, thus creating the proper configuration at $\mathrm{C}-6$. The resulting allylic alcohol 70, which incorporates all stereogenic centers of fluvirucinin $\mathrm{B}_{1}$, was obtained as a single diastereomer (Scheme 3.48). Then, simultaneous hydrogenolysis of the benzyl ester and azide functionalities and subsequent macrolactamization of the resulting amino acid took place under the reaction conditions depicted in Scheme 3.46 to give macrolactam 71.

Once the macrocyclic ring system of fluvirucinin $B_{1}$ was assembled, the 1,3dicarbonyl ester moiety was removed stepwise, by base-catalyzed hydrolysisdecarboxylation of 71 and, after hydrogenation of the olefinic bond, by radical decarbonylation of the acyl phenylselenide derived from ester 72. The resulting O-silyl derivative 73 had previously been desilylated to fluvirucinin $B_{1}$.

[^55]

Scheme 3.48

The synthesis of the key fragments 68 and 69 is outlined in Schemes 3.49 and 3.50. Stereoselective alkylation (de $>95 \%$ ) of $N$-butyryl imidazolidinone 74, followed by removal of the chiral auxiliary from imidazolidinone 75, afforded ester 76. After ozonolysis of the olefinic bond of 76, the Meldrum's acid moiety was introduced on the resulting aldehyde 77 by reductive alkylation under Knoevenagel conditions to afford 68.


Scheme 3.49

On the other hand, the synthesis of azide 69 started with a stereoselective alkylation of 74 ( $\mathrm{de} \geq 95 \%$ ) leading to imidazolidinone 78. Reductive removal of the chiral auxiliary followed by oxidation of the resulting alcohol 79 and a twocarbon homologation-reduction sequence gave allylic alcohol 80. An asymmetric epoxidation afforded a single diastereomeric epoxide, thus defining
the C-9 absolute configuration. A subsequent oxidation and a stereoselective Wittig olefination (7:1 Z/E ratio) of the resulting aldehyde 81 gave the $\mathrm{C}_{6}-\mathrm{N}$ fragment 69.


Scheme 3.50

### 3.2.5.2. The Vilarrasa-Urpí approach to fluvirucinin $B_{1}$

In 1999, Vilarrasa and Urpí published ${ }^{104}$ an alternative synthesis of fluvirucinin $B_{1}$, also involving a lactamization reaction to construct the 14-membered ring. The crucial open-chain precursor 85 was prepared by a stereoselective aldollike reaction (bond formed $\mathrm{C}_{8}-\mathrm{C}_{9}$ ) between aldehyde 83 and the boron enolate generated from ketone 82 and the menthone-derived boryl bromide 84 (Scheme 3.51). Alcohol 85 incorporates all carbon atoms of the target aglycon with the natural configuration in all stereocenters. After the subsequent conversion of syn alcohol 85 (20:1 syn/anti ratio) to $\omega$-azido acid 86 , the macrolactamization to 87 was effected via a S-2-pyridyl ester by reduction of the azido group. A three-step reduction of the ketone carbonyl and deprotection of the alcohol function afforded fluvirucinin $B_{1}$. The spectroscopic data of the corresponding acetate matched those reported in the literature.

[^56]


Scheme 3.51

Both ketone 82 and aldehyde $83\left(\mathrm{C}_{1}-\mathrm{C}_{8}\right.$ and $\mathrm{C}_{9}-\mathrm{N}$ fragments of fluvirucinin $\left.\mathrm{B}_{1}\right)$ were synthesized from a common intermediate 90 , which provided the C-2 and C-10 ethyl-substituted stereocenters of the target aglycon. Compound 90 was accessible in five steps from the known Evans acyl oxazolidinone 88, via alcohol 89, ${ }^{102}$ as outlined in Scheme 3.52.

The preparation of ketone 82 featured a diastereoselective alkylation of the N propanoyl derivative of (-)-pseudoephedrine with the iodide derived from 90, a process that installed the C-6 methyl-substituted stereocenter of fluvirucinin $\mathrm{B}_{1}$. Removal of the chiral auxiliary with MeLi gave methyl ketone $\mathbf{8 2}$.

In turn, azido aldehyde 83 was obtained from 90 in three conventional steps: introduction of the azido group, deprotection, and Swern oxidation.


Scheme 3.52

### 3.2.5.3. Suh's approach to fluvirucinin $\mathrm{A}_{1}$

The synthesis of fluvirucinin $A_{1}$ by Suh in 1999 was the first synthesis of a member of the fluvirucinin A series. ${ }^{105}$ Before the final lactamization of amino acid 101 (Scheme 3.54), the key steps were a diastereoselective vinyl addition to a 2-piperidone derivative, an amide-enolate aza-Claisen rearrangement to generate the 10 -membered lactam 96, and the stereoselective condensation of an aldehyde with the boron enolate of $N$-propionyl oxazolidinone 99.

The synthesis begins with the Evans asymmetric alkylation of N -acyl oxazolidinone 91, to install the initial stereogenic center corresponding to C -10 of fluvirucinin $\mathrm{A}_{1}$, and the conversion of the alkylated product 92 to 2-piperidone 93 (Scheme 3.53). The corresponding $N$-benzyl derivative was converted to trans-2,3-disubstituted piperidine 94 via a diastereoselective (95:5 trans/cis ratio) vinylation at the lactam carbonyl with the assistance of $\mathrm{LiAl}(\mathrm{OEt})_{3} \mathrm{H}$. Exchange of the benzyl group for propionyl gave amide 95, which underwent a stereoselective amide-enolate-induced aza-Claisen rearrangement (bond formed $\mathrm{C}_{6}-\mathrm{C}_{7}$ ), leading to the ring-expanded lactam 96 , which possesses a new stereogenic center, corresponding to $\mathrm{C}-6$ of fluvirucinin $\mathrm{A}_{1}$. The reaction occurs via a $Z$-enolate in a chair-chair-like transition state bearing an equatorial ethyl substituent.


After unsaturated lactam 96 was hydrogenated and N -protected, reductive ringopening of lactam 97, followed by a two-carbon Wittig olefination and two reduction steps, afforded saturated aldehyde 98 (Scheme 3.54). The two remaining stereocenters (C-2 and C-3) were stereoselectively introduced following the Evans protocol by an aldol-type reaction between aldehyde 98 and N -propionyl oxazolidinone 99 . Hydrolytic removal of the auxiliary and protecting-

[^57]deprotecting steps converted the resulting alcohol 100 to amino acid 101. A subsequent lactamization and deprotection provided synthetic fluvirucinin $A_{1}$, which was identical in all respects to the natural aglycon.


Scheme 3.54

### 3.2.5.4. Fu's approach to fluvirucinin $A_{1}$

In 2008, Fu reported ${ }^{106}$ a formal total synthesis of fluvirucinin $A_{1}$, using two sequential Ni-catalyzed asymmetric $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ Negishi cross-coupling reactions of allylic chlorides as the key steps.

The synthesis started from ethyl (E)-4-oxo-2-butenoate, which was converted in two steps to racemic secondary allylic chloride 103a (Scheme 3.55). Nickel(II)catalyzed cross-coupling of 103a with alkylzinc reagent 102 in the presence of Pybox ligand 104 provided compound 105 in excellent yield and almost complete regio- (>20:1) and enantioselectivity (96\% ee). After 105 was converted to bromide 106 and then to the corresponding alkylzinc derivative, a second nickel(II)-catalyzed asymmetric cross-coupling reaction with racemic allylic chloride 103b generated unsaturated ester 107 in excellent diastero(15:1 ratio) and enantioselectivity ( $>98 \%$ ee). A subsequent reductionamination sequence provided $N$-protected amino aldehyde 98, an advanced intermediate in Suh's synthesis of fluvirucinin $A_{1}$.

[^58]


Scheme 3.55

### 3.2.6. Construction of the 14 -membered ring by Aza-Claisen ring expansion

### 3.2.6.1. Suh's approach to Fluvirucinin $A_{2}$

In 2010, Suh contributed ${ }^{107}$ the first total synthesis of fluvirucinin $A_{2}$ by an iterative lactam ring expansion via an amide-enolate-induced aza-Claisen rearrangement that provided the 14-membered lactam skeleton with the required absolute configuration at all ring stereogenic centers.

Ten-membered lactam 96, an early intermediate in Suh's synthesis of fluvirucinin $A_{1}$, prepared by a first amide-enolate-induced aza-Claisen rearrangement (Scheme 3.53), ${ }^{105}$ was converted to N -Boc saturated lactam 108 (Scheme 3.56). After partial reduction of the lactam carbonyl and trapping of the resulting $N, O$-hemiacetal as a silyl ether, a stereoselective amidoalkylation led to allyl azacycle 109, which was protected as the Fmoc-derivative 110. Oxidative cleavage of the allyl group to an aldehyde, followed by silylation stereoselectively afforded the required ( $E$ )-silyl enol ether 111 ( $E: Z>10: 1$ ). The corresponding ( $E$ )-2-pentenamide 112a underwent a regio- and stereoselective ( $\mathrm{dr}>10: 1$ ) vinylogous amide-enolate-induced aza-Claisen rearrangement, via a highly favorable transition state, leading to lactam 113 (bond formed $\mathrm{C}_{2}-\mathrm{C}_{3}$ ), with generation of the C-2 and C-3 stereogenic centers. Selective oxidation of the propenyl appendage of 113, followed by stereoselective Grignard addition to the resulting aldehyde, left the $(S)$-1-hydroxyethyl chain at $\mathrm{C}-2$. Deprotection of

[^59]the C-3 hydroxy group and hydrogenation of the olefinic double bond completed the synthesis of fluvirucinin $A_{2}$, whose diacetate exhibited spectral data identical to those of the diacetate derived from the natural aglycon.


Scheme 3.56

The stereoselectivity of the aza-Claisen rearrangement was dependent on the substitution at the unsaturated $N$-acyl moiety. Thus, starting from $N$-(3,3dimethylacryloyl) derivative 112b, the rearrangement was not stereoselective, leading to a $1: 1$ mixture of macrolactam 114 and its C-2 epimer, probably due to a non-selective formation of the $Z$-enolate (Scheme 3.57). Compound 114 was converted to epi-fluvirucinin $\mathrm{A}_{2}$ by manipulation of the isopropenyl chain at $\mathrm{C}-2$ and subsequent deprotection and hydrogenation steps. The $R$ configuration of the 1-hydroxyethyl moiety was attained by stereoselective $\mathrm{NaBH}_{4}$ reduction of a ketone generated by selective oxidative cleavage of the isopropenyl double bond.


Scheme 3.57

The structures of the synthetic fluvirucinin $A_{2}$ and its epi-derivative were confirmed by an alternative synthesis of epi-fluvirucinin $\mathrm{A}_{2}$ employing a BaeyerVilliger oxidation to ensure the $R$ configuration of the 1-hydroxyethyl chain.

After acylation of the ten-membered amine intermediate 109 with the $R$ configurated mixed anhydride 115 and conversion of the allyl chain to an ( $E$ )silyl enol ether, treatment of 116 under aza-Claisen rearrangement conditions afforded the 14-membered lactam 117 (Scheme 3.58). The (R)benzyloxymethyl substituent in the C-2 chain of 117 was converted to ( $R$ )-acetyl in 118 and then to $(R)$-acetoxy in 119, via a Baeyer-Villiger oxidation with retention of configuration.

The spectral data of epi-fluvirucinin $A_{2}$ prepared by this approach were identical to those of epi-fluvirucinin $A_{2}$ synthesized by the route depicted in Scheme 3.57.


Scheme 3.58

### 3.2.6.2. The Suh-Jung stereocontrolled approach to fluvirucinin $\mathrm{A}_{1}$ and its C-3 epimer

In the context of a systematic investigation of the aza-Claisen rearrangementinduced ring expansion of azacycles and its stereochemical outcome, in 2012 Suh and Jung reported ${ }^{108}$ an alternative synthesis of fluvirucinin $A_{1}$. Based on a stereoselective ( $E$ )- and ( $Z$ )-silyl enol ether formation and the subsequent ring

[^60]expansion of the resulting ten-membered 1-acyl-2-alkoxyvinyl azacycles, it provides stereocontrolled access to both fluvirucinin $\mathrm{A}_{1}$ and its $\mathrm{C}-3$ epimer.

The starting allyl azacycle 120 was stereoselectively prepared by the procedure outlined in Scheme 3.56, by amidoalkylation of the corresponding lactam. ${ }^{107}$ Ozonolysis of 120 gave aldehyde 121, which was then converted with almost complete stereoselectivity to either the ( $E$ )-silyl enol ether $E$ - 122 or the $Z$-isomer $Z-122$, depending on the reaction conditions (Scheme 3.59).

These silyl enol ethers underwent stereospecific amide-enolate-induced azaClaisen rearrangement (bond formed $\mathrm{C}_{2}-\mathrm{C}_{3}$ ), via the chair-like transition states depicted in Scheme 3.59, providing the respective C-3 isomeric 14-membered lactams 123 and 3-epi-123, which were then converted to fluvirucinin $A_{1}$ and its C-3 epimer.


Scheme 3.59

Considerable work remains to be done on the synthesis of fluvirucins. To date, the only member of this family of natural products to have been synthesized is fluvirucin $\mathrm{B}_{1}$, which incorporates 3-amino-3,6-dideoxy- $\alpha$-L-talopyranose as the aminosugar moiety. No syntheses of fluvirucins bearing L-mycosamine as the carbohydrate fragment have been reported. In contrast, the synthesis of fluvirucinins has attracted considerable attention and a variety of strategies and procedures have been employed to assemble the macrocyclic ring system. Table 3.4 summarizes the synthetic strategies used for the construction of the 14-membered ring of fluvirucinins, showing the bond formed in the macrocyclization step in each synthesis. Except when the 14-membered ring is assembled by expansion of a 10-membered ring, the table also indicates the bond formed to complete the open-chain skeleton before the macrocyclization step, as well as the length of the two fragments used and the ring atoms they incorporate.

All the reported syntheses are enantioselective and most of them highly convergent, in many cases accessing both key intermediates from a single enantiopure building block. By an appropriate selection of the starting materials many of the strategies developed could be applied to the synthesis of other members of the fluvirucinin family.

Finally, it should be noted that the synthetic activity in this area has stimulated the development and extensive application of new synthetic methodologies such as RCM macrocyclizations, as well as the use of metal-catalyzed transformations in crucial synthetic steps.

|  |  | $\begin{aligned} & \mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} \text { or } \mathrm{Et} \\ & \mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et} \text { or }(\mathrm{S}) \mathrm{CHOHCH}_{3} \\ & \mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{OH} \text { (fluvirucinins } \mathrm{A}) \\ & \mathrm{X}=\mathrm{OH} ; \mathrm{Y}=\mathrm{H} \text { (fluvirucinins B) } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| Authors (Year) | Bond formed in the construction of the 14-membered ring | Bond formed and fragments used to complete the open-chain skeleton | Final target |
| Hoveyda ${ }^{77-79}$ (1995,1996, 1997) | $\mathrm{C}_{5}-\mathrm{C}_{6}$ | $\mathrm{C}_{1}-\mathrm{N}: 5 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)+8 \mathrm{C}\left(\mathrm{C}_{6}-\mathrm{N}\right)$ | Fluvirucinin $\mathrm{B}_{1}$; Fluvirucin $\mathrm{B}_{1}$ |
| Bracher ${ }^{81}$ (2002) | $\mathrm{C}_{4}-\mathrm{C}_{5}$ | $\mathrm{C}_{1}-\mathrm{N}: 4 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)+9 \mathrm{C}\left(\mathrm{C}_{5}-\mathrm{N}\right)$ | Fluvirucinin $\mathrm{B}_{0}$ |
| Radha Krishna ${ }^{84}$ (2011) | $\mathrm{C}_{4}-\mathrm{C}_{5}$ | $\mathrm{C}_{1}-\mathrm{N}: 4 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)+9 \mathrm{C}\left(\mathrm{C}_{6}-\mathrm{N}\right)$ | Fluvirucinin $\mathrm{A}_{1}$ |
| Negishi ${ }^{\text {86 }}$ (2008) | $\mathrm{C}_{8}-\mathrm{C}_{9}$ | $\mathrm{C}_{1}-\mathrm{N}: 8 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{8}\right)+5 \mathrm{C}\left(\mathrm{C}_{9}-\mathrm{N}\right)$ | Fluvirucinin $\mathrm{A}_{1}$ |
| Vilarrasa-Urifi ${ }^{88}$ (2009) | $\mathrm{C}_{6}-\mathrm{C}_{7}$ | $\mathrm{C}_{1}-\mathrm{N}: 6 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)+7 \mathrm{C}\left(\mathrm{C}_{7}-\mathrm{N}\right)$ | Fluvirucinin $\mathrm{B}_{2.5}$ |
| Trost ${ }^{92}$ (1997) | $\mathrm{C}_{1}-\mathrm{N}$ | $\mathrm{C}_{5}-\mathrm{C}_{6}: 5 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)+8 \mathrm{C}\left(\mathrm{C}_{6}-\mathrm{N}\right)$ | Fluvirucinin $B_{1}$ |
| Vilarrasa-Urpi ${ }^{93}$ (1999) | $\mathrm{C}_{1}-\mathrm{N}$ | $\mathrm{C}_{8}-\mathrm{C}_{9}: 8 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{8}\right)+5 \mathrm{C}\left(\mathrm{C}_{9}-\mathrm{N}\right)$ | Fluvirucinin $B_{1}$ |
| Suh ${ }^{94}$ (1999); Fu ${ }^{95}$ (2008, formal) | $\mathrm{C}_{1}-\mathrm{N}$ | $\mathrm{C}_{2}-\mathrm{C}_{3}: 2 \mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)+11 \mathrm{C}\left(\mathrm{C}_{3}-\mathrm{N}\right)$ | Fluvirucinin $A_{1}$ |
| Suh ${ }^{96}$ (2010) | $\mathrm{C}_{2}-\mathrm{C}_{3}$ | ten-membered ring expansion | Fluvirucinin $\mathrm{A}_{2}$ |
| Suh-Jung ${ }^{97}$ (2012) | $\mathrm{C}_{2}-\mathrm{C}_{3}$ | ten-membered ring expansion | Fluvirucinin $\mathrm{A}_{1}$ |

Table 3.4

### 3.2.7. Our synthetic strategy for the synthesis of fluvirucinin $B_{1}$

Taking into account that all fluvirucinins B possess the same substitution and stereochemical patterns at $\mathrm{C}-2(R-\mathrm{Et}), \mathrm{C}-9(S-\mathrm{OH})$, and $\mathrm{C}-10$ ( $R$-Et), differing only in the $\mathrm{C}-6$ substituent (none in fluvirucinin $\mathrm{B}_{0}, 6 S$-Me in $\mathrm{B}_{1}, 6 S$-Et in $\mathrm{B}_{2-5}$ ), we envisaged a unified synthetic strategy to these macrolactams in which the $\mathrm{C}-2$ and C-10 ethyl substituents would come from a common enantiopure amino diol, ent-63, which is the enantiomer of the amino diol 63, whose preparation has been reported in Chapter 2.

The required amino diol ent-63 would be easily accessible by reductive opening of oxazolopiperidone ent-28a ( $S$-phenylglycinol-derived, see Scheme 2.51, Chapter 2).

Oxidative removal of the chiral auxiliary of ent-63 followed by synthetic transformations would lead to fragments $\mathbf{A}$ and $\mathbf{B}$ (Scheme 3.60). The enantioselective total synthesis of fluvirucinin $B_{1}$ would be accomplished by coupling of both enantiopure fragments followed by a ring-closing metathesis reaction to form the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond and subsequent stereoselective hydrogenation to install the $(S)$-methyl configuration at the C-6 position. Removal of the protecting group would lead to the aglycon fluvirucinin $B_{1}$.


Scheme 3.60
3.2.7.1. Enantioselective synthesis of fragment $A \quad\left(C_{1}-C_{6}\right.$ of fluvirucinin $B_{1}$ )

( $\mathrm{C}_{1}-\mathrm{C}_{6}$ of fluvirucinins B )
Scheme 3.61

The preparation of the fragment $\mathbf{A}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ was envisioned starting from carboxylic acid ent-128 (see compound 128 in chapter 2), prepared from enantiopure oxazolopiperidone lactam ent-28a. Later synthetic transformations would convert ent-128 into the corresponding iodide derivative, which would undergo a copper-catalyzed cross-coupling with appropriate alkenyl Grignard reagents. Subsequent oxidation would lead to the formation of the fragment $\mathbf{A}$.

$\mathrm{R}=\mathrm{H} \quad$ (synthesis of Fluvirucinin $\mathrm{B}_{0}$ )
$\mathrm{R}=\mathrm{Me}$ (synthesis of Fluvirucinin $\mathrm{B}_{1}$ )
$\mathrm{R}=\mathrm{Et} \quad$ (synthesis of Fluvirucinin $\mathrm{B}_{2}$ )

Scheme 3.62

We started the preparation of the fragment $\mathbf{A}$ by the conversion of carboxylic acid ent-128 to the iodide derivative 177 . We proposed a two-step sequence which involves the reduction of the acid to alcohol and the subsequent substitution of the hydroxy group by iodide. Treatment of acid ent-128 with $\mathrm{LiAlH}_{4}$ in anhydrous THF afforded primary alcohol 176 in $70 \%$ yield. Similar results were obtained using the borane-tetrahydrofuran complex as the reducing agent ( $72 \%$ ). When the crude reaction mixture was treated with an alkaline mixture of potassium carbonate and diethyl ether, we recovered pure alcohol 176 in $90 \%$ yield. NMR spectroscopic and specific rotation of alcohol 176 matched those reported in the literature. ${ }^{109}$ The conversion of primary alcohol 176 to iodide 177 used a direct procedure employing triphenylphosphine, molecular iodine and imidazole as the base. The best results were obtained when the reaction mixture was stirred for at least 15 h , leading to the alkyl iodide derivative 177 in 90\% yield.


Scheme 3.63

[^61]The key step for the preparation of fragment A was the conversion of iodide 177 to the corresponding alkene by an organometallic coupling. The mechanism for the substitution of halides using organocopper complexes is not very known and several postulations were made. ${ }^{110}$

In our objective to prepare fluvirucinin $\mathrm{B}_{1}$ ( $\mathrm{R}=\mathrm{Me}$, see Scheme 3.60), a crosscoupling reaction with isopropenylmagnesium bromide in the presence of a catalytic amount of $\mathrm{Cul}^{111}$ (bond formed $\mathrm{C}_{5}-\mathrm{C}_{6}$ ) provided the protected alcohol 178 in an excellent $89 \%$ yield.


Scheme 3.64

In order to prepare also fluvirucinin $\mathrm{B}_{0}(\mathrm{R}=\mathrm{H})$ we applyed these optimized conditions using vinylmagnesium bromide ${ }^{111 a}$ instead isopropenylmagnesium bromide. We obtained the target alkene 179 in $37 \%$ yield the best of cases. A change of the reaction conditions (temperature or equivalents of cuprate) did not improve the reaction and usually we only recovered the starting material. We pursued our studies using vinylmagnesium bromide and iron trichloride in anhydrous THF in presence of tetramethylethylene diamine. ${ }^{112}$ Unfortunately, under these conditions we never observed the formation of the target alkene 179. With these results, we decided to continue our studies towards the synthesis of fluvirucinin $B_{1}$.


Scheme 3.65

[^62]The preparation of the fragment $\mathbf{A}$ was completed by the three-step sequence outlined in Scheme 3.66. Deprotection of silyl derivative 178 with a solution of TBAF in anhydrous THF at room temperature afforded alcohol 180 in $80 \%$ yield. Treatment of this alcohol using Swern's conditions, followed by subsequent oxidation of the formed aldehyde afforded enantiopure carboxylic acid 181 in 74\% yield.


The synthetic sequence to obtain carboxylic acid 181 (fragment $\mathbf{A}$ for the synthesis of fluvirucinin $B_{1}$ ) is illustrated in the following Scheme. Enantiopure carboxylic acid 181 was synthesized in 9 steps starting from chiral oxazolopiperidone lactam ent-28a in $23 \%$ overall yield.


Scheme 3.67
3.2.7.2. Enantioselective synthesis of fragment $B \quad\left(C_{7}-C_{13}\right.$ of fluvirucinins B)


Scheme 3.68

The preparation of the fragment $\mathbf{B}$ from nitrile derivative ent-123 would require the generation of aldehyde 183 and the formation of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ bond by stereoselective allylation of this aldehyde to install the ( $R$ )-hydroxy configuration at the C-9 position. The formation of the enantiopure nitrogen-containing fragment would be completed by subsequent protection of the secondary alcohol and reduction of the nitrile group to form the corresponding primary amine.


Scheme 3.25

Deprotection of silyl alcohol ent-123 was performed with a solution of TBAF in anhydrous THF at room temperature, affording corresponding alcohol 182 in $80 \%$ yield. ${ }^{113}$ The preparation of aldehyde 183 was accomplished by treatment of primary alcohol 182 with Swern's oxidation conditions in $75 \%$ yield. Purification by flash chromatography of the aldehyde was essential to have good yields in the next reaction.

[^63]

The enantioselective allylation of aldehydes is an important asymmetric C-C bond forming reaction in organic chemistry, leading to products with a new stereocenter. Several chiral auxiliaries and metals have been described for this reaction to form pure homoallylic alcohols in high stereoselectivity. The principal chiral complexes used for enantioselective allylation are allylboranes ${ }^{114}$, allylsilanes, ${ }^{115}$ allyltitanium, ${ }^{116}$ allylpalladium, ${ }^{117}$ iridium, ${ }^{118}$ and indium reagents. ${ }^{119}$

We focused our attention on the allylsilane derivatives, whose efficiency has been proven during the last decade by Leighton. ${ }^{115} \mathrm{He}$ has developed several chiral silicon-based reagents for the enantioselective allylation of aldehydes, ketones, and imines. Leighton demonstrated that chiral catalysts such as strained pseudoephedrine- and cyclohexanediamine-derived silacycles improved selectivities in the allylation and crotylation of aldehydes. ${ }^{120}$ Both reagents can be prepared in high yield and purity and on a large scale. The strain associated with silacycle makes the silicon atom more Lewis acidic. Moreover, these reagents are moderately air-stable and reactions can occur at more usual temperatures (between $-10{ }^{\circ} \mathrm{C}$ and $0{ }^{\circ} \mathrm{C}$ ) contrary to boron reagents (between $-100{ }^{\circ} \mathrm{C}$ and $-78{ }^{\circ} \mathrm{C}$ and no air-stable). ${ }^{121}$

[^64]

Pseudoephedrinederived silacycle


Cyclohexanediamine-derived silacycles
Scheme 3.71

Leigthon et al. described ${ }^{122}$ in 2006 a plausible mechanistic and stereochemical model of asymmetric ketone allylation of hydroxyacetophenone. Firstly, the phenol displaces the chloride from the silane, and HCl thus generated protonates one of the amino groups. Then, the ketone oxygen atom and the protonated amino group occupy apical positions on the trigonal bipyramidal intermediate. Only two such intermediates are possible (A and B; Scheme 3.72). In A, the indicated steric and electrostatic interactions may plausibly be posited, whereas in B, which correctly predicts the observed major enantiomer, no such interactions are present. A similar model could be envisioned for the stereoselective allylation or crotylation of aldehydes with the same $N, N$ dialkylcyclohexanediamine silane reagent.




Scheme 3.72

When we applied the conditions described by Leighton and treated $\alpha$ ethylsubstituted aldehyde 183 with the ( $S, S$ )-Leighton reagent in anhydrous dichloromethane at -20 ${ }^{\circ} \mathrm{C}$, we only recovered starting material. Similar results were obtained working between $-10{ }^{\circ} \mathrm{C}$ and $0{ }^{\circ} \mathrm{C}$. When the reaction mixture was stirred at room temperature, we observed complex signals by ${ }^{1} \mathrm{H}-\mathrm{NMR}$,

[^65]indicating a possible degradation of the reagent and/or lower diastereoselectivity of the allylation reaction.

More recently, Leighton and co-workers described an enantioselective aldehyde crotylation using $N, N$-dialkylcyclohexanediamine silane reagents in the presence of scandium triflate as a Lewis acid. ${ }^{123}$ Using these conditions, a stereoselective allylation installed the C-9 stereogenic center to give homoallylic syn alcohol 184 (bond formed $\mathrm{C}_{8}-\mathrm{C}_{9}$ ) in excellent yield (85\%). Minor amounts ( $\mathrm{dr}=9: 1$ ) of the anti-adduct were detected by ${ }^{1} \mathrm{H}$ NMR.


Scheme 3.73

Secondary alcohol 184 was treated with tert-butyldimethylsilyl chloride and imidazole in refluxing anhydrous dichloromethane, giving silyl derivative 185 in $77 \%$ yield as a $9: 1$ mixture of diastereoisomers (calculated by ${ }^{1} \mathrm{H}$ NMR). Subsequent reduction of the cyano group with $\mathrm{LiAlH}_{4}$ afforded enantiopure primary amine 186 (the $\mathrm{C}_{7}-\mathrm{N}$ fragment of fluvirucinins B ) in $87 \%$ yield. Purification of amine 186 afforded a single diastereomer.


Scheme 3.74

The synthetic sequence to obtain amine 184 (fragment B for the synthesis of fluvirucininins B) is illustrated in Scheme 3.75. Enantiopure amine 184 was synthesized in 8 steps starting from chiral oxazolopiperidone lactam ent-28a in $17 \%$ overall yield.

[^66]

Scheme 3.75

### 3.2.8. First enantioselective total synthesis of fluvirucinin $B_{1}$

The accomplishment of the total synthesis of fluvirucinin $B_{1}$ was envisaged by the amide coupling of both enantiopure fragment $\mathbf{A}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ and fragment $\mathbf{B}(\mathrm{N}-$ $\mathrm{C}_{7}$ ), followed by a ring-closing metathesis reaction to form the strategic $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond in the key macrocyclization step. Stereoselective hydrogenation of the generated double bond would install the (S)-methyl configuration at the C-6 position, and subsequent removal of the protector group would lead to the target aglycon.

A similar macrocyclic stereocontrol in the synthesis of fluvirucinins was first observed by Hoveyda ${ }^{91,92}$ in the hydrogenation of related macrocyclic olefins bearing a trisubstituted $\mathrm{C}_{5}-\mathrm{C}_{6}$ (instead of $\mathrm{C}_{6}-\mathrm{C}_{7}$ ) double bond.


Scheme 3.76

The coupling of both enantiopure fragments 181 and 186 was carried out using EDCI and HOBT in anhydrous DMF, affording the corresponding amide 187 in 79\% yield.


Scheme 3.77

The azacyclotetradecanones $Z-188$ and $E-188$ were obtained as a 1.2:1 mixture of Z/E trisubstituted olefins in $78 \%$ yield by treatment of diene 187 with Hoveyda-Grubb's II catalyst in anhydrous toluene. Characterizations of both isomers $E$ and $Z$ were possible after efficient separation over silica gel.


The stereoselective catalytic hydrogenation of both the 1.2:1 mixture of olefins Z-188 and E-188 or the pure Z-isomer Z-188 in anhydrous methanol using Pd/C installed the C-6 stereocenter of the macrocycle leading to the O-protected fluvirucinin derivative 189. The NMR data of our silyl derivative 189 matched those reported in the literature ${ }^{91,103}$ and its mp and absolute rotation were in good agreement with those previously reported. ${ }^{103}$


Scheme 3.79

Additionally, the absolute configuration of 189 was unambiguously established by X-ray crystallographic analysis (Scheme 3.80). A final removal of the silyl protecting group completed the synthesis of fluvirucinin $B_{1}$, whose NMR data and $[\alpha]$ value are reported for the first time.


189


Scheme 3.80

The convergent synthetic sequence, reported in this present Thesis, to obtain fluvirucinin $\mathrm{B}_{1}$ is summarized in Schemes 3.81-3.83 A distinctive feature of our synthesis is that the starting building blocks ent-128 and ent-123 have been prepared in a straightforward manner from a common phenylglycinol-derived lactam ent-23a.


Scheme 3.81

From acid ent-128 and nitrile ent-123, we synthesized carboxylic acid 181 and amine 186, respectively, involving a Cu-catalyzed cross-coupling reaction and a stereoselective Leigthon allylation as the key steps.


Scheme 3.82

Finally, ring-closing metathesis from amino diene 187 followed by stereoselective hydrogenation of alkene 188 allowed us to describe enantioselective synthesis of fluvirucinin $B_{1}$.




Scheme 3.83

The synthetic potential of the developed methodology in the present thesis (Chapter 2) is highlighted by the enantioselective syntheses of haliclorensin, halitulin (formal), haliclorensin C (the first enantioselective total synthesis) and fluvirucinin $\mathrm{B}_{1}$ (Chapter 3).

## Chapter 4

CONCLUSIONS

1. (R)-Phenylglycinol-derived oxazolopiperidone lactams can be converted to enantiopure open-chain amino ester scaffolds by alkaline hydrolysis of the $N$-Boc 2-piperidones resulting from the reductive cleavage of the oxazolidine ring.

2. Lithium amidotrihydroborate $\left(\mathrm{LiNH}_{2} \mathrm{BH}_{3}\right)$ reduction of diversely substituted $(R)$-phenylglycinol-derived oxazolopiperidone lactams brought about the reductive opening of both the oxazolidine and lactam rings, providing general access to structurally diverse enantiopure amino diols A bearing a variety of substitution patterns, substituents (alkyl, benzyl, aryl, protected hydroxy), and stereochemistries.


3, 4, 20-34, 41-45, 48, 49
14, 52, 54, 56-58, 60, 62-64, 66, 68,
69, 71-74, 76, 79, 81, 83, 85, 86
3. Reductive removal of the phenylethanol moiety present in the amino diols prepared by the above procedure, followed by treatment of the resulting primary amines with $(\mathrm{Boc})_{2} \mathrm{O}$ provides a general synthetic entry to enantiopure N -Boc 5 -aminopentanols bearing substitutents at the 2-, 3-, 4-, 2,2-, 2,3-, 2,4-, and 3,4- positions.

4. The oxidative removal of the phenylglycinol moiety of amino diols $\mathbf{A}$ (previously O -silylated) using the $\mathrm{I}_{2} / \mathrm{aq} \mathrm{NH}_{3}$ system constitutes an excellent procedure for the straightforward preparation of enantiopure substituted 5hydroxypentanenitrile derivatives.

5. The m-CPBA-promoted oxidative removal of the phenylglycinol moiety of amino diols $\mathbf{A}$ (previously $O$-silylated) constitutes an excellent procedure for the straightforward preparation of enantiopure substituted 5hydroxypentanoic acid derivatives.

6. As both enantiomers of phenylglycinol are commercially available, both enantiomers of a target 5-aminopentanol, 5-hydroxypentanoic acid, and 5hydroxypentanenitrile are accessible through the above methodology.
7. The synthetic value of the open-chain amino diols $\mathbf{A}$ has been demonstrated with their use as key scaffolds for the enantioselective synthesis of the Haliclona alkaloids haliclorensin C (first total synthesis), haliclorensin (total), halitulin (formal), and isohaliclorensin (formal).

8. The synthetic value of the open-chain amino diols 5-hydroxypentanoic acids, and 5-hydroxypentanenitriles prepared from (S)-phenylglycinolderived lactams has been demonstrated with their use as key scaffolds for the synthesis of the natural macrolactam fluvirucinin $B_{1}$.

9. The approach we have developed significantly expands the potential of phenylglycinol-derived $\delta$-lactams, which have been converted for the first time to enantiopure open-chain building blocks.

## Chapter 5

EXPERIMENTAL DATA

## General Procedures:

All air sensitive reactions were performed under a dry argon or nitrogen atmosphere with dry, freshly distilled solvents using standard procedures. Drying of organic extracts during the work-up of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or $\mathrm{MgSO}_{4}$. Evaporation of solvent was accomphished with a rotatory evaporator. Thinlayer chromatography was done on $\mathrm{SiO}_{2}$ (silica gel $60 \mathrm{~F}_{254}$ ), and the spots were located by UV and either a $1 \% \mathrm{KMnO}_{4}$ solution or hexachloroplatinate reagent. Chromatography refers to flash column chromatography and was C-Arried out on $\mathrm{SiO}_{2}$ (silica gel 60, 230-400 mesh). Melting points were determined in a capillary tube and are uncorrected. NMR spectra were recorded at $400 \mathrm{MHz}(1 \mathrm{H})$ and 100.6 MHz (13C), and chemical shifts are reported in $\delta$ values, in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}(0 \mathrm{ppm})$ or relative to residual chloroform ( $7.26 \mathrm{ppm}, 77.0 \mathrm{ppm}$ ) or benzene ( $7.15 \mathrm{ppm}, 128.0 \mathrm{ppm}$ ) as an internal standard. Data are reported in the following manner: chemical shift, multiplicity, coupling constant $(\mathcal{J})$ in hertz $(\mathrm{Hz})$, integrated intensity, and assignment (when possible). Assignments and stereochemical determinations are given only when they are derived from definitive two-dimensional NMR experiments (HSQC-COSY). IR spectra were performed in a spectrophotometer Nicolet Avatar 320 FT-IR and only noteworthy IR absorptions ( $\mathrm{cm}^{-}$ ${ }^{1}$ ) are listed. Optical rotation were measured on Perlin-Elmer 241 polarimeter. [a] ${ }_{D}$ values are given in $10^{-1}$ deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. High resolution mass spectra (HMRS) were performed by Centres Científics i Tecnològics de la Universitat de Barcelona.

## (3R,8S,8aR)-8-Methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2$\alpha$ ]pyridine (4a)



Method A: A mixture of racemic oxoester $2^{124}$ ( $565 \mathrm{mg}, 3.92 \mathrm{mmol}$ ), ( $R$ )phenylglycinol ( $537 \mathrm{mg}, 3.92 \mathrm{mmol}$ ) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(2.17 \mathrm{~g}, 15.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The resulting suspension was filtered, and the filtrate was concentrated under reduced pressure. The residue was heated at 90 ${ }^{\circ} \mathrm{C}$ for 5 h under vacuum ( $10-15 \mathrm{~mm} \mathrm{Hg}$ ). Column chromatography ( $\mathrm{SiO}_{2}$ previously washed with 7:3 hexane- $\mathrm{Et}_{3} \mathrm{~N}$; gradient from 7:3 hexane-EtOAc to EtOAc) of the residue afforded lactam $\mathbf{4 a}(670 \mathrm{mg}, 74 \%)$ and its ( $\mathbf{3 R}, \mathbf{8 R}, \mathbf{8 a S}$ ) diastereoisomer $\mathbf{4 b}$ ( $85 \mathrm{mg}, 9 \%$ ).

Method B: (R)-Phenylglycinol ( $1.97 \mathrm{~g}, 14.4 \mathrm{mmol}$ ) was added to a solution of racemic oxoester $\mathbf{2}^{124}(1.9 \mathrm{~g}, 14.4 \mathrm{mmol})$ in anhydrous toluene ( 45 mL ), and the mixture was heated at reflux for 25 h with azeotropic elimination of water produced by a DeanStark apparatus. The resulting mixture was cooled and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$ previously washed with 7:3 hexane- $\mathrm{Et}_{3} \mathrm{~N}$; gradient from 7:3 hexane-EtOAc to EtOAc) afforded lactam $\mathbf{4 a}(1.70 \mathrm{~g}$, $56 \%)$ as a brown solid and its ( $3 R, 8 R, 8 a S$ ) diastereoisomer $4 b(0.55 \mathrm{~g}, 18 \%)$.

Method C: $(R)$-Phenylglycinol ( $190 \mathrm{mg}, 1.39 \mathrm{mmol}$ ) and oxoester $\mathbf{2}^{124}(200 \mathrm{mg}, 1.39$ mmol ) in toluene ( 4.5 mL ) were mixed in a capped 10 mL microwave vessel. The mixture was heated at $110{ }^{\circ} \mathrm{C}$ (average effective ramp time $=5 \mathrm{~min}$ ). The power was set at 100 W and the pressure at 218 psi for 10 min . The reaction mixture was then concentrated under reduced pressure and the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The organic phase was dried, filtered, and concentrated. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$ previously washed with 7:3 hexane- $\mathrm{Et}_{3} \mathrm{~N}$; gradient from 7:3 hexane-EtOAc to EtOAc) afforded lactam 4a (185 $\mathrm{mg}, 58 \%)$ and its ( $3 R, 8 R, 8 \mathrm{aS}$ ) diastereoisomer 4 b ( $70 \mathrm{mg}, 22 \%$ ).

[^67]
## Spectroscopic data for $\mathbf{4 a}$

$[\alpha]^{22}{ }_{\mathrm{D}}-43.7$ (c 1.0, MeOH).
IR (film) $1658 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\left.\boldsymbol{g}-\mathrm{HSQC}\right) \delta 1.20\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.46$1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.88-1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.28-2.44(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-6), 4.00$ (dd, $J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.13(\mathrm{dd}, J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.43(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.21-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 16.6\left(\mathrm{CH}_{3}\right), 26.9(\mathrm{C}-7), 31.4(\mathrm{C}-6), 34.5(\mathrm{C}-8), 59.1$ (C-3), 73.7 (C-2), 93.5 (C-8a), 126.3 (C-o), 127.4 (C-p), 128.4 (C-m), 141.5 (C-ı), 167.3 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ 232.1332; found 232.1325.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}, 72.70 ; \mathrm{H}, 7.41$; $\mathrm{N}, 6.06$; found $\mathrm{C}, 72.66 ; \mathrm{H}, 7.20$; N , 5.98.

Spectroscopic data for (3R,8R,8aS)-8-methyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo [3,2- $\alpha$ ]pyridine (4b)

$[\alpha]^{22}{ }_{\mathrm{D}}-115.3$ (c 1.0, MeOH).
IR (film) $1658 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.18\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.42$1.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.65-1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.80-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.34-2.44(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6$ ), 2.53 (dd, $J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.75 (dd, $J=9.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.47 (dd, $J=9.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-3), 7.20-7.45 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.1\left(\mathrm{CH}_{3}\right), 25.9(\mathrm{C}-7), 31.5(\mathrm{C}-6), 34.9(\mathrm{C}-8), 58.4$ (C-3), 72.4 (C-2), 93.7 (C-8a), 126.1 (C-o), 127.5 (C-p), 128.7 (C-m), 139.5 (C-i), 168.7(CO).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{C}, 72.70 ; \mathrm{H}, 7.41$; N, 6.06; found C, 72.56; H, 7.35; N, 5.81.

## (S)-5-Ethyl-[(1 R)-2-hydroxy-1-phenylethyl]-2-piperidone (5)



Triethylsilane ( $0.51 \mathrm{~mL}, 4.77 \mathrm{mmol}$ ) and $\mathrm{TiCl}_{4}(0.60 \mathrm{~mL}, 5.51 \mathrm{mmol})$ were added to a solution of lactam 3a ( 500 mg , 2.12 mmol ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$, and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . Then, additional $\mathrm{TiCl}_{4}(0.60 \mathrm{~mL}, 5.51 \mathrm{mmol})$ and triethylsilane ( $0.51 \mathrm{~mL}, 4.77 \mathrm{mmol}$ ) were added and the stirring was continued at 50 ${ }^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The aqueous phase was filtered over Celite ${ }^{\circledR}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give a residue, which was chromatographed (from 8:2 hexane-EtOAc to EtOAc) to afford $5^{125}$ ( $316 \mathrm{mg}, 60 \%$ ) as a yellow oil.

Spectroscopic data for 5
$[\alpha]^{22}{ }_{D}-127.2(c 0.9, \mathrm{EtOH}) ;[\alpha]^{22}{ }_{\mathrm{D}}-73.5$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); lit. ${ }^{125}[\alpha]_{\mathrm{D}}-74.2$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
IR (film) 3360, $1617 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \boldsymbol{g}$-HSQC) $\delta 0.84\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.17-1.35 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.37-1.49 (m, 1H, H-4), 1.50-1.60 (m, 1H, H-5), 1.88-1.93 (m, 1H, $\mathrm{H}-4), 2.44$ (ddd, $J=18.0,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.57 (ddd, $J=18.0,6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$ ), 2.90 (dd, $J=12.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.03 (ddd, $J=12.0,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), $4.05\left(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.16\left(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.86(\mathrm{dd}, J=$ $9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.20-7.35 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.5(\mathrm{C}-4), 31.8(\mathrm{C}-$ 3), $35.6(\mathrm{C}-5), 48.3(\mathrm{C}-6), 58.2(\mathrm{CHN}), 61.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.5(\mathrm{C}-o), 127.6(\mathrm{C}-p), 128.6$ (C-m), 137.1 (C-ı), 171.8 (CO).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ C, 70.28 ; $\mathrm{H}, 8.65$; $\mathrm{N}, 5.46$; found $\mathrm{C}, 70.36$; H , 8.37; N, 5.27.

[^68]
## (S)-[(1R)-2-Hydroxy-1-phenylethyl]-5-methyl-2-piperidone (6)



Triethylsilane ( $0.52 \mathrm{~mL}, 3.24 \mathrm{mmol}$ ) and $\mathrm{TiCl}_{4}(0.52 \mathrm{~mL}, 4.76 \mathrm{mmol})$ were added to a solution of lactam $4 \mathbf{4 a}(500 \mathrm{mg}, 2.16 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . Then, additional $\mathrm{TiCl}_{4}(0.52 \mathrm{~mL}, 4.76 \mathrm{mmol})$ and triethylsilane ( $0.52 \mathrm{~mL}, 3.24 \mathrm{mmol}$ ) were added and the stirring was continued at 50 ${ }^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The aqueous phase was filtered over Celite ${ }^{\circledR}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give a residue, which was chromatographed (from 8:2 hexane-EtOAc to EtOAc) to afford $6^{125}$ ( $315 \mathrm{mg}, 63 \%$ ) as a colorless oil.

Spectroscopic data for 6
$[\alpha]^{22}{ }_{\mathrm{D}}-150.4\left(c\right.$ 0.1, MeOH); $[\alpha]^{22} \mathrm{D}-88.3\left(c\right.$ 1.1, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; lit. ${ }^{125}[\alpha]_{\mathrm{D}}-86.8$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
IR (film) 3372, $1616 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.93\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.44$1.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.77-1.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 2.48$ (ddd, $J=17.9,11.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$ ), 2.59 (ddd, $J=17.9,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.85 (dd, $J=11.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.98 (ddd, $J=11.8,4.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.09 (dd, $J=11.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 4.17 (dd, $J=11.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 5.81 (dd, $J=9.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.17-7.38 (m, 5H, ArH).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.6\left(\mathrm{CH}_{3}\right), 28.9(\mathrm{C}-5), 29.1(\mathrm{C}-4), 32.0(\mathrm{C}-3), 50.3$ (C-6), $58.5(\mathrm{CHN}), 61.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.6(\mathrm{C}-o), 127.7(\mathrm{C}-p), 128.7(\mathrm{C}-m), 137.0(\mathrm{C}-1)$, 171.5 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2} 234.1489$; found 234.1484.

## (S)-5-Ethyl-2-piperidone (7)



Into a three-necked, 100 mL , round-bottomed flask equipped with a coldfinger condenser charged with dry-ice acetone were condensed 30 mL of $\mathrm{NH}_{3}$ at $-78{ }^{\circ} \mathrm{C}$. A solution of $5(300 \mathrm{mg}, 1.21 \mathrm{mmol})$ in anhydrous THF ( 5 mL ) was added, and the temperature was raised to $-33^{\circ} \mathrm{C}$. Sodium metal was added in small portions until the blue color persisted, and the mixture was stirred at $-33^{\circ} \mathrm{C}$ for 3 minutes. The reaction was quenched by addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue color disappeared, and then the mixture was stirred at room temperature for $5 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the solid was filtered, and the solvent was removed under reduced pressure. The resulting oil was chromatographed (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH) to afford $7^{126}$ (119 mg, $77 \%$ ).

Spectroscopic data for 7
$[\alpha]^{22}{ }_{\mathrm{D}}-58.3(c 0.75, \mathrm{MeOH})$.
IR (film) $1665 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.95\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.34-1.50 (m, 3H, CH $\left.\mathrm{CH}_{2}, \mathrm{H}-4\right)$, 1.62-1.78 (m, $1 \mathrm{H}, \mathrm{H}-5$ ), 1.87-1.98 (m, 1H, H-4), 2.25-2.50 (m, 2H, H-3), 2.94 (t, J = $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.35 (m, 1H, H-6), 5.93 (br.s, $1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.6(\mathrm{C}-4), 30.7(\mathrm{C}-3)$, 34.7 (C-5), 47.3 (C-6), 172.7 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}$ 128.1070; found 128.1067.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O} \mathrm{C}, 64.95$; $\mathrm{H}, 10.54$; $\mathrm{N}, 10.10$; found $\mathrm{C}, 64.58$; H , 10.18; N, 10.05.

[^69]
## (S)-5-Methyl-2-piperidone (8)



Into a three-necked, 100 mL , round-bottomed flask equipped with a coldfinger condenser charged with dry-ice acetone were condensed 30 mL of $\mathrm{NH}_{3}$ at $-78{ }^{\circ} \mathrm{C}$. A solution of $6(290 \mathrm{mg}, 1.24 \mathrm{mmol})$ in anhydrous THF ( 5 mL ) was added, and the temperature was raised to $-33^{\circ}$ C. Sodium metal was added in small portions until the blue color persisted, and the mixture was stirred at $-33^{\circ} \mathrm{C}$ for 3 minutes. The reaction was quenched by addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue color disappeared, and then the mixture was stirred at room temperature for $5 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the solid was filtered, and the solvent was removed under reduced pressure. The resulting oil was chromatographed (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH) to afford $8^{127}$ ( $93 \mathrm{mg}, 66 \%$ ).

Spectroscopic data for 8
$[\alpha]^{22}{ }_{\mathrm{D}}-29.0(c 0.55, \mathrm{MeOH}) ;[\alpha]^{22} \mathrm{D}-80.0\left(c \operatorname{1.0}, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{127}$
$[\alpha]^{23}{ }_{\mathrm{D}}-82.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3232, $1659 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.01$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.451.51 (m, 1H, H-4), 1.83-1.99 (m, 2H, H-4, H-5), 2.34 (ddd, $J=17.8,10.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$ ), 2.43 (ddd, $J=17.8,6.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), $2.92(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.263.33 (m, 1H, H-6), 6.10 (br.s, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 18.2\left(\mathrm{CH}_{3}\right), 28.0(\mathrm{C}-5), 28.8(\mathrm{C}-4), 30.6(\mathrm{C}-3), 48.8$ (C6), 172.6 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}$ 114.0914; found 114.0913.

[^70]
## (S)-1-(tert-ButoxyC-Arbonyl)-5-ethyl-2-piperidone (9)


$n$-BuLi ( 1.6 M in hexanes, 0.88 mL , 1.4 mmol ) was added at $-78{ }^{\circ} \mathrm{C}$ to a solution of lactam $7(180 \mathrm{mg}, 1.4 \mathrm{mmol})$ in anhydrous THF ( 3.8 mL ), and the mixture was stirred at this temperature for 30 minutes. Then, a cooled ( $-78{ }^{\circ} \mathrm{C}$ ) solution of di-tert-butyl diC-Arbonate ( $309 \mathrm{mg}, 1.4 \mathrm{mmol}$ ) in anhydrous THF ( 1.2 mL ) was added, and the resulting mixture was stirred for 90 minutes at this temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried and concentrated. The residue was chromatographed (from 9:1 hexane-EtOAc to 1:1 hexane-EtOAc) affording lactam 9 ( $221 \mathrm{mg}, 70 \%$ ) as a colorless oil.

Spectroscopic data for 9
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.96\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.30-1.46 (m, 3H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-4\right), 1.53$ [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 1.89-$ 1.98 (m, 1H, H-4), 2.45 (ddd, $J=17.3,10.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.55 (ddd, $J=17.3$, $6.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 3.17 (dd, $J=12.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.82 (ddd, $J=12.7,4.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.2(\mathrm{C}-4), 26.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 28.0$ $\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 34.1(\mathrm{C}-3), 35.2(\mathrm{C}-5), 50.9(\mathrm{C}-6), 82.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 152.8(\mathrm{NCO}), 171.5(\mathrm{CO}) .}\right.$ HRMS (ESI-TOF) m/z: [M - tBu] ${ }^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3} 170.0812$; found 170.0808.
(S)-1-(tert-ButoxyC-Arbonyl)-5-methyl-2-piperidone (10)

$n$-BuLi (1.6 M in hexanes, $0.55 \mathrm{~mL}, 0.88 \mathrm{mmol}$ ) was added at $-78^{\circ} \mathrm{C}$ to a solution of lactam $8(100 \mathrm{mg}, 0.88 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the mixture was
stirred at this temperature for 30 minutes. Then, a cooled ( $-78{ }^{\circ} \mathrm{C}$ ) solution of di-tertbutyl diC-Arbonate ( $289 \mathrm{mg}, 1.32 \mathrm{mmol}$ ) in anhydrous THF ( 1.2 mL ) was added, and the resulting mixture was stirred for 90 minutes at this temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried and concentrated. The residue was chromatographed (95:5 hexane-EtOAc) affording lactam 10 (150 mg, $80 \%$ ) as a colorless oil.

Spectroscopic data for 10
$[\alpha]^{22}{ }_{\mathrm{D}}-19.5\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$.
IR (film) 1770, $1715 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.04\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.41$1.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.52\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.84-1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 5), 2.47 (ddd, $J=17.4,10.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.57 (ddd, $J=17.4,6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$ ), 3.11 (dd, $J=12.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.79 (ddd, $J=12.6,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.7\left(\mathrm{CH}_{3}\right), 28.0\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.7(\mathrm{C}-4), 28.7(\mathrm{C}-5), 34.2$ (C-3), $52.8(\mathrm{C}-6), 82.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 152.7(\mathrm{NCO}), 172.6(\mathrm{CO}) .}\right.$
HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na} 236.1257$; found 236.1258.

## Methyl (S)-5-[(tert-butoxyC-Arbonyl)amino]-4-ethylpentanoate (11)



A solution of $\mathrm{LiOH}(44.3 \mathrm{mg}, 1.06 \mathrm{mmol})$ in water $(1.1 \mathrm{~mL})$ was added to a solution of lactam $9(80 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF ( 1.7 mL ), and the mixture was stirred at room temperature for 4 h . THF was removed under reduced pressure, and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$. The organic extract was washed with aqueous 1 N HCl , dried, filtered, and concentrated to afford a C-Arboxylic acid ( 80 mg ) as a colorless oil, which was used without purification in the next step:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.90\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.25-1.36 (m, 2H, CH $\mathrm{CH}_{2}$ ), 1.44 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.43-1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.55-1.67$
(m, 2H, H-3), 2.30-2.42 (t, J = 7.6 Hz, 2H, H-2), 2.90-3.17 (m, 2H, H-5), 6.07 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $24.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $25.9(\mathrm{C}-3)$, 28.4 $\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 31.3(\mathrm{C}-2), 39.3(\mathrm{C}-4), 42.9(\mathrm{C}-5), 79.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.2(\mathrm{NCO}), 179.0$ $\left(\mathrm{CO}_{2}\right)$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na} 268.1519$; found 268.1519.
$\mathrm{TMSCHN}_{2}(0.24 \mathrm{~mL}, 0.47 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ to a solution of the above C Arboxylic acid ( 80 mg ) in toluene-methanol ( $2.5: 1,11 \mathrm{~mL}$ ), and the mixture was stirred at this temperature for 1 h , quenched with some drops of AcOH , and concentrated under reduced pressure to afford pure ester 11 ( $73 \mathrm{mg}, 80 \%$ ).

Spectroscopic data for 11
$[\alpha]^{22}{ }_{\mathrm{D}}-8.4(c 0.58, \mathrm{MeOH})$.
IR (film) 3371, 1740, $1715 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.90\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), $1.32(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 2.34(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ), $3.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.67$ (br.s, 1H, NH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $26.0(\mathrm{C}-3), 28.3$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.2(\mathrm{C}-2), 39.3(\mathrm{C}-4), 42.9(\mathrm{C}-5), 51.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 79.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.0$ ( NCO ), $174.2\left(\mathrm{CO}_{2}\right)$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{4}$ 260.1856; found 260.1852.

## Methyl (S)-5-[(tert-butoxyC-Arbonyl)amino]-4-methylpentanoate (12)



A solution of $\mathrm{LiOH}(50.2 \mathrm{mg}, 1.20 \mathrm{mmol})$ in water ( 1.25 mL ) was added to a solution of lactam 10 ( $85 \mathrm{mg}, 0.40 \mathrm{mmol}$ ) in THF ( 1.9 mL ), and the mixture was stirred at room temperature for 4 h . THF was removed under reduced pressure, and the
residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$. The organic extract was washed with aqueous 1 N HCl , dried, filtered, and concentrated to afford a C-Arboxylic acid ( 85 mg ) as a colorless oil, which was used without purification in the next step:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44\left[\mathrm{~s}, 10 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\mathrm{CH}_{2}$ ) 1.58-1.76 (m, 2H), 2.32-2.45 (m, 2H), 2.95-3.05 (m, 2H), 4.65 (br.s, 1H, NH).
HRMS (ESI-TOF) m/z: [M - H] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{4}$ 230.1398; found 230.1397.
$\mathrm{TMSCHN}_{2}(0.28 \mathrm{~mL}, 0.55 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ to a solution of the above C Arboxylic acid ( 85 mg ) in toluene-methanol ( $2.5: 1,12.3 \mathrm{~mL}$ ), and the mixture was stirred at this temperature for 1 h , quenched with some drops of AcOH , and concentrated under reduced pressure to afford pure ester 12 ( $88 \mathrm{mg}, 90 \%$ ).

Spectroscopic data for 12
$[\alpha]^{22}{ }_{\mathrm{D}}-5.45(c 0.8, \mathrm{MeOH})$.
IR (film) $3375,1735,1715 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.85\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.38[\mathrm{~s}$, $\left.10 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{H}-3\right], 1.52-1.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.62-1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.20-2.37(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-5$ ), 2.92-3.02 (m, 2H, H-2), 3.61 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$ ), 4.71 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 17.1\left(\mathrm{CH}_{3}\right), 28.3\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9(\mathrm{C}-3), 31.4(\mathrm{C}-5), 33.2$ (C-4), $45.9(\mathrm{C}-2), 51.4\left(\mathrm{CH}_{3} \mathrm{O}\right), 78.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.0(\mathrm{NCO}), 174.1\left(\mathrm{CO}_{2}\right)$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na} 268.1519$; found 268.1527.

## (S)-4-Ethyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (14)


$n$-BuLi ( 1.40 mL of a 2.5 M solution in hexanes, 3.51 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(108 \mathrm{mg}, 3.51 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 3 ( $200 \mathrm{mg}, 0.82 \mathrm{mmol}$ ) in
anhydrous THF ( 1 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 14 ( $165 \mathrm{mg}, 80 \%$ ) as a colorless oil.

Spectroscopic data for 14
$[\alpha]^{22}$ D $-44.9(c 0.16, \mathrm{MeOH})$.
IR (film) $3330 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.82\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.23$1.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.42-1.50(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 2.40(\mathrm{dd}, \mathrm{J}=11.6,6.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.46$ (dd, $J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.41 (br.s, $3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), 3.57-3.64 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}$ ), 3.71 (dd, $J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.77 (dd, $J=8.8,4.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHN}$ ), 7.24-7.38 (m,5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.3\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 27.4(\mathrm{C}-3), 29.2(\mathrm{C}-2)$, 38.8 (C-4), $50.2(\mathrm{C}-5), 60.3(\mathrm{C}-1), 64.8(\mathrm{CHN}), 66.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3(\mathrm{C}-o), 127.6(\mathrm{C}-p)$, 128.6 (C-m), 139.9 (C-ı).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2}$ 252.1958; found 252.1947.

## Methyl 4-Isopropyl-5-oxopentanoate (16)



Isovaleraldehyde 15 ( $7.54 \mathrm{~mL}, 69.7 \mathrm{mmol}$ ) was added dropwise to a cooled ( $0{ }^{\circ} \mathrm{C}$ ) mixture of piperidine ( $10.3 \mathrm{~mL}, 104.5 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.47 \mathrm{~g}, 25.1 \mathrm{mmol})$ and the mixture was stirred for 18 h at room temperature. Insoluble material was filtered through Celite $®$, and the filtrate was washed with $\mathrm{Et}_{2} \mathrm{O}$, dried, filtered, and concentrated in vacuum to remove the excess of piperidine. Methyl acrylate (7.64 $\mathrm{mL}, 84.8 \mathrm{mmol}$ ) was slowly added to a stirred solution of the resulting residue in anhydrous acetonitrile ( 21 mL ) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at reflux overnight. Glacial acetic acid ( 4.8 mL ) and water ( 21 mL ) were added, and the resulting solution was heated at reflux for 2 h . The mixture was allowed to cool to room temperature, the aqueous phase was saturated with NaCl , and the solution was extracted with
$\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (8:2 hexane- $\mathrm{Et}_{2} \mathrm{O}$ ) afforded compound 16 ( $8.7 \mathrm{~g}, 73 \%$ ) as a colorless oil.

Spectroscopic data for 16

IR (film) $1738 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.97\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.00$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$ ), 1.74-1.83 (m, 1H, H-3), 1.90-1.99 (m, 1H, H-3), 2.02$2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.12-2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.25$ (ddd, $J=16.1,8.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), 2.38 (ddd, $J=16.1,8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 9.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.3\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 20.8(\mathrm{C}-3), 28.3\left(\mathrm{CHMe}_{2}\right)$, $31.8(\mathrm{C}-2), 51.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 57.3(\mathrm{C}-4), 173.3\left(\mathrm{CO}_{2}\right), 204.4(\mathrm{CHO})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3} 173.1172$; found 173.1168.

## Methyl 4-Benzyl-5-oxopentanoate (18)



3-Phenylpropanal 17 ( $5.89 \mathrm{~mL}, 44.7 \mathrm{mmol}$ ) was added dropwise to a cooled ( $0{ }^{\circ} \mathrm{C}$ ) mixture of piperidine ( $6.61 \mathrm{~mL}, 67.1 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.23 \mathrm{~g}, 15.6 \mathrm{mmol})$ and the mixture was stirred for 18 h at room temperature. Insoluble material was filtered through Celite ${ }^{\mathrm{B}}$, and the filtrate was washed with $\mathrm{Et}_{2} \mathrm{O}$, dried, filtered, and concentrated in vacuum to remove the excess of piperidine. Methyl acrylate ( 7.0 mL , 77.5 mmol ) was slowly added to a stirred solution of the resulting residue in anhydrous acetonitrile ( 20 mL ) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at reflux overnight. Glacial acetic acid ( 5 mL ) and water $(20 \mathrm{~mL})$ were added, and the resulting solution was heated at reflux for 2 h . The mixture was allowed to cool to room temperature, the aqueous phase was saturated with NaCl , and the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (from 95:5 hexane- $\mathrm{Et}_{2} \mathrm{O}$ to $9: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$ ) afforded compound 18 ( $5.8 \mathrm{~g}, 57 \%$ ) as a yellow oil.

## Spectroscopic data for 18

IR (film) $1732 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.76-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 1.93-2.01 (m, $1 \mathrm{H}, \mathrm{H}-3$ ), $2.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.66-2.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.71-2.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.02$ (dd, $\left.J=13.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.15-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 9.68$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 23.5(\mathrm{C}-3), 31.3(\mathrm{C}-2), 35.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 51.6\left(\mathrm{CH}_{3}\right)$, 52.4 (C-4), 126.5 (C-p), 128.6, 128.8 (C-o, C-m), 138.1 (C-ı), $173.2\left(\mathrm{CO}_{2}\right), 203.5$ (CHO).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}$ 221.1099; found 221.1089.
( $3 R, 8 R, 8 \mathrm{a} R$ )-8-Isopropyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2a]pyridine (20a)


Method A: A mixture of racemic oxoester 16 ( $1.07 \mathrm{~g}, 6.18 \mathrm{mmol}$ ), ( $R$ )-phenylglycinol ( $848 \mathrm{mg}, 6.18 \mathrm{mmol}$ ) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(3.43 \mathrm{~g}, 24.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The resulting suspension was filtered, and the filtrate was concentrated under reduced pressure. The residue was heated at $90{ }^{\circ} \mathrm{C}$ for 5 h under vacuum (10-15 mm Hg). Column chromatography $\left(\mathrm{SiO}_{2}\right.$ previously washed with 7:3 hexane- $\mathrm{Et}_{3} \mathrm{~N}$; gradient from 7:3 hexane-EtOAc to EtOAc ) of the residue afforded lactam 20a ( $1.16 \mathrm{~g}, 73 \%$ ) and its ( $3 R, 8 S, 8 \mathrm{aS}$ ) diastereoisomer 20b ( $180 \mathrm{mg}, 11$ \%).

Method B: (R)-Phenylglycinol ( $867 \mathrm{mg}, 6.32 \mathrm{mmol}$ ) was added to a solution of racemic oxoester $16(1.09 \mathrm{~g}, 6.32 \mathrm{mmol})$ in anhydrous toluene ( 20 mL ), and the mixture was heated at reflux for 25 h with azeotropic elimination of water produced by a Dean-Stark apparatus. The resulting mixture was cooled and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$ previously washed with 7:3
hexane- $\mathrm{Et}_{3} \mathrm{~N}$; gradient from 7:3 hexane-EtOAc to EtOAc) afforded lactam 20a (1.06 $\mathrm{g}, 64 \%$ ) as a white solid and its ( $3 R, 8 S, 8 \mathrm{aS}$ ) diastereoisomer 20b ( $230 \mathrm{mg}, 14 \%$ ).

Spectroscopic data for 20a
$[\alpha]^{22}{ }_{\mathrm{D}}-18.6$ (c 1.2, MeOH).
IR (film) $1658 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.07 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.50-1.61 (m, 1H, H-7), 1.76-1.83 (m, 1H, H-8), 1.86-1.93 (m, $1 \mathrm{H}, \mathrm{H}-7$ ), 2.08-2.16 [m, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], 2.30 (ddd, $J=17.9,11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.43 (ddd, $J=17.9,6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.01 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.14 (dd, $J=$ $9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 7.22-7.32 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.7\left(\mathrm{CH}_{3}\right)$, $19.6(\mathrm{C}-7), 20.5\left(\mathrm{CH}_{3}\right), 27.7\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 31.6 (C-6), 44.6 (C-8), 58.9 (C-3), 73.8 (C-2), 90.6 (C-8a), 126.3 (C-o), 127.4 (C-p), 128.5 (C-m), 141.6 (C-ı), 167.3 (CO).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}$ 260.1645; found 260.1640.

Spectroscopic data for (3R,8S,8aS)-8-Isopropyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (20b)

$[\alpha]^{22}{ }_{\mathrm{D}}-87.7$ (c 1.2, MeOH).
IR (film) $1666 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.96$ (dd, $J=6.9,2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.05 (dd, $J=6.9,2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.47-1.63 (m, 2H, H-7, H-8), 1.83-1.88 (m, 1H, H7), 2.01-2.05 [m, 1H, CH(CH3 $)_{2}$ ], 2.30-2.39 (m, 1H, H-6), $2.59(\mathrm{dm}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 3.74$ (dt, $J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.48 (dt, $J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.80 (dd, $J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ( $\left.\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta 18.0\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{C}-7), 20.6\left(\mathrm{CH}_{3}\right), 28.1\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$ ) $]$, 31.7 (C-6), 45.3 (C-8), 58.1 (C-3), 72.4 (C-2), 90.7 (C-8a), 126.1 (C-o), 127.5 (C-p), 128.8 (C-m), 139.7 (C-I), 169.1 (CO).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} 260.1645$; found 260.1639.
(3R,8R,8aR)-8-Benzyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a] pyridine (21a)


Method A: A mixture of racemic oxoester 18 ( $626 \mathrm{mg}, 2.84 \mathrm{mmol}$ ), ( $R$ )-phenylglycinol ( $390 \mathrm{mg}, 2.84 \mathrm{mmol}$ ) and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(1.57 \mathrm{~g}, 11.1 \mathrm{mmol}\right.$ ) in $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h . The resulting suspension was filtered, and the filtrate was concentrated under reduced pressure. The residue was heated at $90{ }^{\circ} \mathrm{C}$ for 5 h under vacuum ( $10-15 \mathrm{~mm} \mathrm{Hg}$ ). Column chromatography ( $\mathrm{SiO}_{2}$ previously washed with 7:3 hexane-Et N ; gradient from 7:3 hexane-EtOAc to EtOAc ) of the residue afforded lactam 21a ( $478 \mathrm{mg}, 55 \%$ ) and its ( $\mathbf{3 R , 8 S}, 8 \mathrm{aS}$ ) diastereoisomer 21b (white solid, $80 \mathrm{mg}, 9 \%$ ).

Method B: (R)-Phenylglycinol ( $391 \mathrm{mg}, 2.85 \mathrm{mmol}$ ) was added to a solution of racemic oxoester 18 ( $627 \mathrm{mg}, 2.85 \mathrm{mmol}$ ) in anhydrous toluene ( 9 mL ), and the mixture was heated at reflux for 25 h with azeotropic elimination of water produced by a Dean-Stark apparatus. The resulting mixture was cooled and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}$ solution. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$ previously washed with 7:3 hexane-Et N ; gradient from 7:3 hexane-EtOAc to EtOAc) afforded lactam 21a (483 $\mathrm{mg}, 55 \%$ ) as a white solid and its ( $3 R, 8 \mathrm{~B}, 8 \mathrm{aS}$ ) diastereoisomer 21b (white solid, $122 \mathrm{mg}, 14$ \%).

Spectroscopic data for 21a
$[\alpha]^{22}{ }_{\mathrm{D}}-144.8(c 0.1, \mathrm{MeOH})$.
IR (film) $1658 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.39-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.83-1.88(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-7$ ), 2.08-2.13 (m, $1 \mathrm{H}, \mathrm{H}-8$ ), 2.21 (ddd, $J=18.2,11.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.36 (ddd, $J=18.2,6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.54 (dd, $J=13.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.27 (dd, $\left.J=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.06$ (dd, $J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.18 (dd, $J=9.0$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.23-$ 7.35 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl ${ }_{3}$ ) $\delta 23.4$ (C-7), 31.3 (C-6), $37.2\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.0(\mathrm{C}-8), 59.1$ (C-3), 73.9 (C-2), 91.9 (C-8a), 126.3 (C-o), 126.5 (C-p), 127.5 (C-p), 128.5 and 129.2 (2C-m, C-o), 138.2 and 141.4 (2C-i), 167.2 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}$ 308.1645; found 308.1645.

Spectroscopic data for (3R,8S,8aS)-8-benzyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (21b)

$[\alpha]^{22}$ d $-45.0(c 0.15, \mathrm{MeOH})$.
IR (film) $1659 \mathrm{~cm}-1$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.43-1.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7$ ), 1.79-1.90 (m, $2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-8$ ), 2.26 (dd, $J=12.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.47-2.54 (m, 2H, H-6, CH $\mathrm{CH}_{2}$ Ar), 3.23 (dd, $J=13.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.81 (dd, $J=8.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.53 (dd, J $=8.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 7.19-7.36 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 22.4(\mathrm{C}-7)$, $31.4(\mathrm{C}-6), 37.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.6(\mathrm{C}-8), 58-5$ ( $\mathrm{C}-3$ ), 72.5 ( $\mathrm{C}-2$ ), 92.1 ( $\mathrm{C}-8 \mathrm{a}$ ), 126.1 ( $\mathrm{C}-o$ ), 126.5 ( $\mathrm{C}-p$ ), 127.6 ( $\mathrm{C}-p$ ), 128.5 ( $\mathrm{C}-o$ ), 128.8, 129.4 (C-m), 138.4 and 139.5 (2C-ı), 168.7 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}$ 308.1645; found 308.1644.
(3R,6R,8aS)-6-(3,5-Difluorobenzyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a] pyridine (29a)


LHMDS ( $4.5 \mathrm{~mL}, 4.49 \mathrm{mmol}$ ) was added to a solution of lactam $\mathbf{2 3 b}(650 \mathrm{mg}, 3.00$ mmol ) in anhydrous THF ( 34 mL ), and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, 3,5 -difluorobenzyl bromide ( $0.46 \mathrm{~mL}, 3.59 \mathrm{mmol}$ ) was added, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 8 h and at room temperature for 15 h . The reaction was quenched by the addition of $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from 9:1 hexane-EtOAc to EtOAc) to afford 29a ( $450 \mathrm{mg}, 44 \%$ ) as a colorless oil, its $6 S$ epimer 29b ( $120 \mathrm{mg}, 12 \%$ ), and 29c (40 $\mathrm{mg}, 3 \%)$.

Spectroscopic data for 29a
$[\alpha]^{22}{ }_{\mathrm{D}}+12.4\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$.
IR (film) $1649 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta$ 1.46-1.55 (m, 2H, H-7, H-8), 1.81-1.86 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7), 2.30-2.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.60-2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.02-3.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.68$ (dd, $J=9.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.49 (dd, $J=9.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.88 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$ ), $5.24(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.65-6.69$ (m, 3H, F-ArH), 7.17-7.20 (m, 2H, ArH), 7.26-7.37 (m, 3H, ArH).
${ }^{13} \mathrm{C}$ NMR ( $75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 22.1$ (C-7), $27.9(\mathrm{C}-8), 37.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 43.0(\mathrm{C}-6), 58.5$ (C-3), 72.9 (C-2), 88.7 (C-8a), 101.8 (F-Ar C-4, t, $J_{C-F}=24.7 \mathrm{~Hz}$ ), 112.2 ( $\mathrm{F}-\mathrm{Ar} \mathrm{C}-2$ and C-6, dd, $J_{C-F}=16.7,7.5 \mathrm{~Hz}$ ), 125.7 (C-o), 127.5 (C-p), 128.8 (C-m), 139.2 (C-ı), 142.7 (F-Ar C-1, t, $J_{C-F}=9.2 \mathrm{~Hz}$ ), 162.8 (F-Ar C-3 and C-5, dd, $J_{C-F}=247.9,13.2 \mathrm{~Hz}$ ), 169.9 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2} 344.1457$; found 344.1454.

Spectroscopic data for (3R,6S,8aS)-6-(3,5-difluorobenzyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (29b)

$[\alpha]^{22}{ }_{\mathrm{D}}-105.1\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}\right)$.
IR (film) $1724 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta$ 1.59-1.69 (m, 2H, H-7, H-8), 1.70-1.78 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7$ ), 2.13-2.20 (m, 1H, H-8), 2.64 (m, 2H, H-6, CH2Ar), 3.01 (m, 1H, CH $\mathrm{CH}_{2} \mathrm{Ar}$ ), 3.78 (dd, $J=9.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.77 (dd, $J=9.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 5.00 (m, 1H, $\mathrm{H}-8 \mathrm{a}$ ), 5.28 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 6.63 (m, 1H, F-ArH), 6.68-6.76 (m, 2H, F-ArH), 7.25-7.29 (m, 3H, ArH), 7.32-7.36 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 20.4$ (C-7), 25.2 (C-8), $36.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.4$ (C-6), 58.4 (C-3), 72.3 (C-2), 88.2 (C-8a), 101.8 ( $\mathrm{F}-\mathrm{Ar} \mathrm{C}-4, \mathrm{t}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=25.2 \mathrm{~Hz}$ ), 111.8 (F-Ar C-2 and C-6, dd, $J_{\mathrm{C}-\mathrm{F}}=17.9,6.2 \mathrm{~Hz}$ ), 126.2 (C-o), 127.6 (C-p), 128.7 (C-m), 139.4 (C-ı), 143.7 (F-Ar C-1, t, $J_{C-F}=9.3 \mathrm{~Hz}$ ), 163.0 (F-Ar C-3 and C-5, dd, $J_{\mathrm{C}-\mathrm{F}}=249.2,13.3 \mathrm{~Hz}$ ), 170.4 (CO).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2} 344.1457$; found 344.1454.

Spectroscopic data for (3R,8aS)-6,6-bis(3,5-difluorobenzyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (29c)

$[\alpha]^{22}{ }^{\mathrm{D}}$-29.6 (c 1.25, $\mathrm{CHCl}_{3}$ ).
IR (film) $1636 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.06-1.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7$ ), 1.72-1.77 (m, $2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-8$ ), 2.00-2.09 (m, 1H, H-8), $2.35\left(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.78(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.28 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.33 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar}$ ), 3.63 (dd, $J=9.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), $4.37(\mathrm{dd}, J=9.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.65$ (dd, $J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 5.15(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.47-6.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{F}-$ ArH), 6.67-6.77 (m, 1H, F-ArH), 7.05-7.09 (m, 2H, ArH), 7.31-7.44 (m, 3H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 23.8(\mathrm{C}-7), 25.3(\mathrm{C}-8), 44.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 44.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, 47.6 (C-6), 59.4 (C-3), 73.1 (C-2), 88.4 (C-8a), 102.3 (F-Ar C-4, t, $J_{C-F}=24.9 \mathrm{~Hz}$ ), 102.6 (F-Ar C-4, t, $J_{\mathrm{C}-\mathrm{F}}=25.6 \mathrm{~Hz}$ ), 113.2 ( $\mathrm{F}-\mathrm{Ar} \mathrm{C-2} \mathrm{and} \mathrm{C-6}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=17.9,6.9 \mathrm{~Hz}$ ), 113.6 (F-Ar C-2 and C-6, dd, $J_{C-F}=17.9,7.0 \mathrm{~Hz}$ ), 126.1 (C-o), 127.7 (C-p), 128.9 (Cm), 138.8 (C-i), 140.6 ( $\mathrm{F}-\mathrm{Ar} \mathrm{C-1}, \mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=8.5 \mathrm{~Hz}$ ), 141.0 ( $\mathrm{F}-\mathrm{Ar} \mathrm{C-1} \mathrm{t},, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=9.3 \mathrm{~Hz}$ ), 162.5 (F-Ar C-3 and C-5, dd, $J_{C-F}=248.5,12.8 \mathrm{~Hz}$ ), 162.9 (F-Ar C-3 and C-5, dd, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}$ $=249.2,13.3 \mathrm{~Hz}$ ), 171.1 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{4} \mathrm{NO}_{2} 470.1738$; found 470.1736.
(3R,6S,8S,8aR)-8-Ethyl-6-(isobutyl)-5-0xo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a] pyridine (32a)


A solution of lactam $3 a^{128}(739 \mathrm{mg}, 3.0 \mathrm{~mol})$ in anhydrous THF ( 5 mL ) was added to a cooled ( $-78{ }^{\circ}$ C) solution of LHMDS ( 1 M in THF, $4.52 \mathrm{~mL}, 4.52 \mathrm{mmol}$ ) in anhydrous THF ( 33 mL ). After the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 1$-iodo-2-methylpropane ( $0.87 \mathrm{~mL}, 7.53 \mathrm{mmol}$ ) was added, and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 6 h and at room temperature for an additional 12 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (from $8: 2$ to $1: 1$ hexane-EtOAc) afforded 32a ( $320 \mathrm{mg}, 35 \%$ ) and its 6 Repimer 32b ( $95 \mathrm{mg}, 11 \%$ ).

[^71]Spectroscopic data for 32a
$[\alpha]^{22} \mathrm{D}-29.4\left(c 0.57, \mathrm{CHCl}_{3}\right)$.
IR (film) 2955, $1657 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89(\mathrm{~d}$, $\left.J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.09-1.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.21-$ $1.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 1.34-1.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.64-1.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe} 2), 1.76-1.91$ [m, 3H, CH $\mathrm{CH}_{2}, \mathrm{CH}_{2}\left(\mathrm{CHMe}_{2}\right)$ ], 2.08-2.14 (ddd, $J=14.0,7.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 2.22$2.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.00\left(\mathrm{dd}, J=9.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.12$ (dd, $J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$ ), $4.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN})$, 7.19-7.31 (m, $5 \mathrm{H}, \mathrm{ArH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.0\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right), 24.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.0\left(\mathrm{CHMe}_{2}\right), 30.4(\mathrm{C}-7), 39.4(\mathrm{C}-6), 40.7(\mathrm{C}-8), 41.0\left[\mathrm{CH}_{2}\left(\mathrm{CHMe}_{2}\right)\right], 59.3$ (C-3), 73.7 (C-2), 92.3 (C-8a), 126.4 (C-o), 127.3 (C-p), 128.4 (C-m), 141.8 (C-ı), 170.0 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2}$ 302.2115; found 302.2116.

Spectroscopic data for (3R,6R,8S,8aR)-8-ethyl-6-(isobutyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (32b)

$[\alpha]^{22}{ }_{\mathrm{D}}+8.36\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$.
IR (film) 2956, $1659 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $g$-HSQC) $\delta 0.83\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), $0.89(\mathrm{~d}$, $\left.J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.19-1.26[\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2}\left(\mathrm{CHMe}_{2}\right)$ ], 1.32-1.43 (m, 1H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.52-1.60\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{CH}_{2}\left(\mathrm{CHMe}_{2}\right)\right]$, 1.61-1.68 (m, 1H, CHMe 2 ), 1.76-1.84 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-7$ ), 1.87-1.96 (m, 1H, H-8), 2.30-2.36 (m, 1H, H-6), 4.01 (dd, $J=9.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 4.15 (dd, $J=9.0,6.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $4.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.89(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN})$, 7.217.32 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$, $23.1\left(\mathrm{CH}_{3}\right)$, 24.7 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.5\left(\mathrm{CHMe}_{2}\right), 29.0(\mathrm{C}-7), 37.6(\mathrm{C}-8), 38.0(\mathrm{C}-6), 40.8\left[\mathrm{CH}_{2}\left(\mathrm{CHMe}_{2}\right)\right], 58.5$ (C-3), 73.9 (C-2), 92.3 (C-8a), 126.2 (C-o), 127.3 (C-p), 128.4 (C-m), 141.7 (C-ı), 170.8 (CO).

HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NNaO}_{2}$ 324.1934; found 324.1935.

## (3R,8S,8aR)-6-(BenzyloxyC-Arbonyl)-8-methyl-5-oxo-3-phenyl-6-

 (phenylselanyl)-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (37)

LHMDS (1M in THF, $28.6 \mathrm{~mL}, 28.6 \mathrm{mmol}$ ) was slowly added at $-78{ }^{\circ} \mathrm{C}$ to a solution of lactam $4 \mathbf{a}(3 \mathrm{~g}, 12,8 \mathrm{mmol})$ in anhydrous THF ( 147 mL ), and the resulting mixture was stirred for 45 min . Then, benzyl chloroformate ( $1,84 \mathrm{ml}, 12,98 \mathrm{mmol}$ ) and, after 20 min of continuous stirring at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{PhSeCl}(3,22 \mathrm{~g}, 16,9 \mathrm{mmol})$ in anhydrous THF ( 30 mL ) were sequentially added to the solution. The resulting mixture was stirred for 50 min , poured into $5 \%$ aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (from 8:2 to $1: 1$ hexaneEtOAc) afforded lactam 37 ( $5.71 \mathrm{~g}, 84 \%$ ), as a $7: 3$ mixture of $\mathrm{C}-6$ epimers.

Spectroscopic data for major epimer of compound 37 (higher Rf)

IR (film) 1726, $1668 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.01$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.88 (dd, $J=14.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 1.95-2.05 (m, $1 \mathrm{H}, \mathrm{H}-8$ ), 2.24 (dd, $J=14.0,3.1 \mathrm{HzH}-$ 7), 3.93 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$ ), 3.94 (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{HH}-2$ ), 3.99 (dd, $J=$ $8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.85(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.02(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}$ ), $5.07\left(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14-7.60(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 15.9\left(\mathrm{CH}_{3}\right), 33.3(\mathrm{C}-8), 39.5(\mathrm{C}-7), 54.6(\mathrm{C}-6), 59.6$ (C-3), $67.7\left(\mathrm{CH}_{2}\right), 73.9(\mathrm{C}-2), 93.1(\mathrm{C}-8 \mathrm{a}), 126.4$ (C-Ar), 126.5 (C-Ar), 127.5 (C-Ar), 127.8 (C-Ar), 128 (C-Ar), 128.2 (C-Ar), 128.4 (C-Ar), 128.7 (C-Ar), 129.6 (C-Ar), 135.2 (C-ı), 138.2 (C-Ar), $140.5(\mathrm{C}-ı), 163.2(\mathrm{CO}), 170.3\left(\mathrm{CO}_{2}\right)$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{Se} 522.1178$; found 522.1186.

Spectroscopic data for minor epimer of compound 37 (lower Rf)

IR (film) 1726, $1668 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, g-\mathrm{HSQC}\right) \delta 1.06\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92$ (dd, $J=15.4,1 \mathrm{H}, \mathrm{H}-7$ ) 2.00 (dd, $J=15.4,10.8,1 \mathrm{H}, \mathrm{H}-7$ ), 2.30-2.43 (m, 1H, H-8), 4.06 (dd, $J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}-2), 4.09(\mathrm{dd}, J=9.0,6.6,1 \mathrm{H}, \mathrm{H}-2), 4.47(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.92$ (dd, $J=6.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), $5.15\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.20\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.26-744(\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 16.0\left(\mathrm{CH}_{3}\right), 32.1(\mathrm{C}-8), 36.6(\mathrm{C}-7), 55.5(\mathrm{C}-6), 59.6$ (C-3), $67.8\left(\mathrm{CH}_{2}\right), 76.7(\mathrm{C}-2), 92.9(\mathrm{C}-8 \mathrm{a}), 126.8(\mathrm{C}-\mathrm{Ar}), 126.9$ (C-Ar), 127.6 (C-Ar), 128.3 (C-Ar), 128.4 (C-Ar), 128.5 (C-Ar), 128.5 (C-Ar), 128.7 (C-Ar), 129.6 (C-Ar), 135.4 (C-i), 138.3 (C-Ar), 140.6 (C-Ar), 162.8 (CO), $170.3\left(\mathrm{CO}_{2}\right)$.

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{Se} 522.1178$; found 522.1174.
(3R,8S,8aR)-6-(BenzyloxyC-Arbonyl)-8-methyl-5-oxo-3-phenyl-2,3,8,8atetrahydro
-5H-oxazolo[3,2-a]pyridine (40)


Aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$, $2.72 \mathrm{~mL}, 26.9 \mathrm{mmol}$ ) and pyridine ( $0.35 \mathrm{~mL}, 4.41 \mathrm{mmol}$ ) were added to a solution of the selenides $37(2 \mathrm{~g}, 3.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(328 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 3 h . The reaction mixture was poured into distilled water, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give 40 as a colorless oil which was used in the next step without further purification.
Spectroscopic data for 40

[^72](d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$ ), 5.07 (dd, $J=6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), $5.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 7.09 (d, J=1.2 Hz, 1H, H-7), 7.26-7.40 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.1\left(\mathrm{CH}_{3}\right), 36.8(\mathrm{C}-8), 58.3(\mathrm{C}-3), 67.1\left(\mathrm{CH}_{2}\right), 74.4$ (C-2), 91.6 (C-8a), 126.8 (C-Ar), 127.7 (C-Ar), 128.2 (C-Ar), 128.3 (C-Ar), 128.5 (CAr), 129.4 (C-Ar), 135.5 (C-Ar), 140.4 (C-Ar), 157.4 (CO), $163.6\left(\mathrm{CO}_{2}\right)$.
(3R,7R,8aR)-3,7-Diphenyl-5-oxo-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a] pyridine (42)


A solution of (3R,7R,8aR)-6-(benzyloxyC-Arbonyl)-5-oxo-3,7-diphenyl-2,3,6,7,8,8a-hexahydro- 5 H -oxazolo[3,2-a]pyridine ${ }^{129}(1.15 \mathrm{~g}, 2.69 \mathrm{mmol})$ in anhydrous MeOH $(100 \mathrm{~mL})$ containing $10 \% \mathrm{Pd}-\mathrm{C}(115 \mathrm{mg})$ was stirred under hydrogen at $25^{\circ} \mathrm{C}$ for 17 $h$. The catalyst was removed by filtration and washed with hot MeOH. The combined organic solutions were concentrated to give an oil, which was dissolved in toluene $(80 \mathrm{~mL})$. The solution was heated to reflux for 3 h , cooled, and concentrated. The residue was chromatographed (1:1 hexane-EtOAc) to give pure compound 42 (630 $\mathrm{mg}, 80 \%)$.

Spectroscopic data for 42
$[\alpha]^{22}{ }_{\mathrm{D}}-121.2\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)$.
IR (film) 1655, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 2.27$ (ddd, $J=12.9,9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-8$ ), 2.52 (dt, $J=12.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ ), 2.66 (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$ ), 3.52 (ddd, $J=$ $9.6,5.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 4.02 (dd, $J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.11 (dd, $J=9.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.71$ (dd, $J=9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.96$ (t, $J=5.7,1 \mathrm{H}, \mathrm{CHN}$ ), 7.227.37 (m, 10H, ArH).

[^73]${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 35.2$ (C-7, C-8), 36.8 (C-6), 58.7 (C-3), 73.9 (C-2), 86.0 (C-8a), 126.4 (C-o), 126.8 (C-o), 126.9 (C-p), 127.6 (C-p), 128.6 (C-m), 128.8 (C-m), 141.3 (C-ı), 143.0 (C-ı), 167.1 (NCO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}$ 294.1489; found 294.1489.
(3R,7S,8S,8aR)-6,7-Dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (45)

$\mathrm{LiCl}(651 \mathrm{mg}, 15.3 \mathrm{mmol})$ was dried at $80^{\circ} \mathrm{C}$ for 2 h under vacuum $(10-15 \mathrm{mmHg})$ in a three-necked, 250 mL round-bottomed flask. Then, Cul ( $2.92 \mathrm{~g}, 15.3 \mathrm{mmol}$ ) and anhydrous THF ( 45 mL ) were added under inert atmosphere at room temperature. The suspension was cooled at $0{ }^{\circ} \mathrm{C}$, methylmagnesiun bromide $(5.12 \mathrm{~mL}$ of a 3 M solution in $\mathrm{Et}_{2} \mathrm{O}, 15.3 \mathrm{mmol}$ ) and $\mathrm{TMSCl}(1.95 \mathrm{~mL}, 15.3 \mathrm{mmol})$ were added, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$. Then, a solution of lactam $40(1.39 \mathrm{~g}, 3.84$ mmol ) in anhydrous THF ( 20 mL ) was added at $-78{ }^{\circ} \mathrm{C}$ and the resulting mixture reaction was stirred at this temperature for 24 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated to give a brown oil. Flash chromatography (from $7: 3$ to $1: 1$ hexane-EtOAc) afforded (3R,7R,8S,8aR)-6-(benzyloxyC-Arbonyl)-7,8-dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro- 5 H -oxazolo[3,2-a]pyridine ( $919 \mathrm{mg}, 63 \%$ ) as a $8: 2$ mixture of $\mathrm{C}-6$ epimers.

Spectroscopic data for major epimer (from the mixture)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.08\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.17 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.31-2.35 (m, 1H, H-7), 2.48-2.52 (m, 1H, H-8), $3.23(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 3.98 (dd, $J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.13 (dd, $J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.56 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$ ), 4.91 (dd, $J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 5.04 (d, $J=1.20$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 5.08 (d, $J=1.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 7.20-7.33 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 13.5\left(\mathrm{CH}_{3}\right), 16.8(\mathrm{C}-8), 35.7(\mathrm{C}-7), 39.9(\mathrm{C}-8), 57.7$ (C-6), $59.5(\mathrm{C}-3), 67.1\left(\mathrm{CH}_{2}\right), 73.7(\mathrm{C}-2), 92.4(\mathrm{C}-8 \mathrm{a}), 126.4$ (C-Ar), 127.4 (C-Ar), 127.9 (C-Ar), 128.1 (C-Ar), 128.3 (C-Ar), 128.4 (C-Ar), 135.4 (C-i), 140.6 (C-ı), 162.4 (CO), $170.0\left(\mathrm{CO}_{2}\right)$.

A solution of a mixture of $\mathrm{C}-6$ epimers of ( $3 R, 7 R, 8 S, 8 \mathrm{a} R$ )-6-(benzyloxyC-Arbonyl)-7,8-dimethyl-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (2.87 $\mathrm{g}, 7.57 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(276 \mathrm{~mL})$ containing $10 \% \mathrm{Pd}-\mathrm{C}(1.4 \mathrm{~g})$ was hydrogenated at $25{ }^{\circ} \mathrm{C}$ for 17 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil, which was dissolved in toluene ( 100 mL ). The solution was heated to reflux for 6 h , cooled, and concentrated. The residue was chromatographed (from 7:3 to 1:1 hexane-EtOAc) to give pure compound 45 ( $1.39 \mathrm{~g}, 75 \%$ ).

Spectroscopic data for 45
$[\alpha]^{22}{ }_{\mathrm{D}}-43.7(c 1.0, \mathrm{MeOH})$.
IR (film) $1656 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $g$-HSQC) $\delta 1.01$ ( $\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.20 (d, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.06-2.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-8), 2.20(\mathrm{dd}, J=17.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6), 2.50(\mathrm{dd}, J=17.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.98$ (dd, $J=9.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.11$ (dd, $J=9.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.59(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-3), 7.18-7.36 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.9\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 30.7(\mathrm{C}-7), 36.8(\mathrm{C}-8), 40.1$ (C-6), 59.1 (C-3), 73.6 (C-2), 90.1 (C-8a), 126.1 (C-m), 127.2 (C-p), 128.53 (C-o), 141.5 (C-ו), 167.0 (CO).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} 246.1489$; found 246.1493.
(3R,6R,7R,8aR)-6,7-dihydroxy-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (47)


To a solution of (3R,8aR)-5-oxo-3-phenyl-2,3,8,8a-tetrahydro-5H-oxazolo[3,2a]pyridine $46^{129}(600 \mathrm{mg}, 2.79 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(28 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were added N -oxide- N -methylmorpholine ( $323 \mathrm{mg}, 2.79 \mathrm{mmol}$ ) and $\mathrm{OsO}_{4}(1.0 \mathrm{~mL}$ of a $2.5 \%$ in $t-\mathrm{BuOH}$ ), and the mixture was stirred at room temperature for 17 h . The resulting solution was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ and stirred for an additional 1 h . The aqueous layer was extracted with EtOAc , and the combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (8:2 EtOAc-EtOH), to give 47 ( $390 \mathrm{mg}, 62 \%$ ).

Spectroscopic data for 47
$[\alpha]^{22}{ }_{\mathrm{D}}+9.31(c 0.13, \mathrm{EtOH})$.
IR (film) 3416, 1654, $1469 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 1.97-2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 2.78(\mathrm{dt}, J=$ $13.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 2.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.93(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6 ), 4.11 (dd, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.27 (dd, $J=9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.46 (m, $1 \mathrm{H}, \mathrm{H}-7$ ), 4.89 (dd, $J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 5.21 (dd, $J=9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$ ), 7.26-7.32 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 32.1$ (C-8), 58.3 (C-3), 66.1 (C-7), 70.9 (C-6), 74.7 (C-2), 86.5 (C-8a), 126.6 (C-o), 127.9 (C-p), 128.6 (C-m), 140.5 (C-ı), 167.8 (NCO).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4} 250.1074$; found 250.1075.
(3R,6R,7R,8aR)-6,7-(Isopropylidenedioxy)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (48)

p-Toluenesulfonic acid ( $39 \mathrm{mg}, 0.22 \mathrm{mmol}$ ) and dimethoxypropane ( $1.07 \mathrm{~mL}, 8.74$ mmol ) were added to a solution of the above diol 47 ( $390 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7.8 \mathrm{~mL})$, and the mixture was stirred at room temperature overnight. Solid sodium acetate ( 2.9 g ) was added, and the mixture was stirred for 20 minutes, poured into saturated aqueous $\mathrm{NaHCO}_{3}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic
extracts were washed with saturated aqueous NaCl , dried, filtered, and concentrated. Flash chromatography ( $1: 1$ hexane-EtOAc) of the residue gave 48 ( $350 \mathrm{mg}, 77 \%$ ).

Spectroscopic data for 48
$[\alpha]^{22}{ }_{\mathrm{D}}-48.2\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
IR (film) 1664, $1448 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.94 (ddd, $J=13.7,10.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ ), 2.71 (dt, $J=13.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 4.11$ (dd, $J=9.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.23(\mathrm{dd}, J=9.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 4.67-4.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 4.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.11$ (dd, $J=10.1$, 2.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 23.5\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 33.6(\mathrm{C}-8), 58.6(\mathrm{C}-3), 71.4$ (C-7), 73.8 (C-2), $74.5(\mathrm{C}-6), 84.4(\mathrm{C}-8 \mathrm{a}), 109.2\left(\mathrm{CMe}_{2}\right), 126.5(\mathrm{C}-o), 127.5(\mathrm{C}-p)$, 128.3 (C-m), 140.3 (C-ו), 163.3 (NCO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}$ 290.1387; found 290.1391.

## (S)-5-\{[(1 R)-2-Hydroxy-1-phenylethyl]amino\}-4-methyl-1-pentanol (52)


$n$-BuLi ( 4.13 mL of a 2.5 M solution in hexanes, 10.3 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(319 \mathrm{mg}, 10.3 \mathrm{mmol})$ in anhydrous THF ( 9 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $4 \mathrm{a}(555 \mathrm{mg}, 2.40 \mathrm{mmol})$ in anhydrous THF ( 4.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave $53^{125}(40 \mathrm{mg}, 7 \%)$ as a colorless oil, and aminoalcohol 52 ( $425 \mathrm{mg}, 75 \%$ ).

Spectroscopic data for 52
$[\alpha]^{22} \mathrm{D}-50.9(c 0.68, \mathrm{MeOH})$.
IR (film) $3314 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.90\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.131.21 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ ), 1.44-1.56 (m, 2H, H-2, H-3), 1.57-1.67 (m, 2H, H-3, H-4), 2.31 (br.s, $3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), 2.33 (dd, $J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.43 (dd, $J=11.7,7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$ ), 3.55 (dd, $J=10.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.61 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 3.70 (dd, $J=10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.75 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.25-7.37 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.6\left(\mathrm{CH}_{3}\right), 29.7(\mathrm{C}-3), 30.3(\mathrm{C}-2), 32.8(\mathrm{C}-4), 53.4$ $(\mathrm{C}-5), 62.6(\mathrm{C}-1), 64.7(\mathrm{CHN}), 66.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.2(\mathrm{C}-o), 127.6(\mathrm{C}-p), 128.6(\mathrm{C}-m)$, 140.4 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2} 238.1802$; found 238.1799.
(R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-4-isopropyl-1-pentanol (54)

$n$-BuLi ( 4.14 mL of a 1.6 M solution in hexanes, 6.6 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(205 \mathrm{mg}, 6.6 \mathrm{mmol})$ in anhydrous THF ( 6 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $\mathbf{2 0 a}(400 \mathrm{mg}, 1.54 \mathrm{mmol})$ in anhydrous THF ( 3 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from $1: 1$ hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine 55 ( $30 \mathrm{mg}, 5 \%$ ), and aminoalcohol 54 ( $292 \mathrm{mg}, 71 \%$ ) as a colorless oil.
Spectroscopic data for 54
$[\alpha]^{22} \mathrm{D}-44.9(c 0.65, \mathrm{MeOH})$.
IR (film) $3320 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.78\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82(\mathrm{~d}$, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31-1.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 1.45-1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.54-1.61$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ ), 1.64-1.72 (m, 1H, $\mathrm{CHCH}_{3}$ ), 2.31 (dd, $J=11.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.48 (dd, $J=11.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.54-3.65 (m, 3H, H-1, CH2O), 3.68 (dd, $J=10.8,4.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.76 (dd, $J=9.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.24-7.35 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.3\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right), 25.3(\mathrm{C}-3), 29.3\left(\mathrm{CHCH}_{3}\right)$, 30.2 (C-2), $43.2(\mathrm{C}-4), 48.8(\mathrm{C}-5), 61.8(\mathrm{C}-1), 64.9(\mathrm{CHN}), 66.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3(\mathrm{C}-0)$, 127.5 (C-p), 128.5 (C-m), 140.1 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2} 266.2115$; found 266.2109.

Spectroscopic data for 55
$[\alpha]^{22} \mathrm{D}-47.5(c \quad 0.25, \mathrm{MeOH})$.
IR (film) $3406 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.78-0.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 0.84(\mathrm{~d}, \mathrm{~J}=$ $\left.6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35-1.47[\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], 1.60-1.70 (m, 3H, H-4, H-5, H-6), $2.03(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.82$ (br.m, 2H, H-2, H-6), 3.61 (dd, $J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.70 (dd, $J=10.2,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), $3.98\left(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ ), 7.17-7.19 (m, 2H, ArH), 7.30-7.37 (m, 3H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.9\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 25.8(\mathrm{C}-5), 27.9(\mathrm{C}-4), 30.9$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 43.3(\mathrm{C}-3), 46.6(\mathrm{C}-6), 57.1(\mathrm{C}-2), 59.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.3(\mathrm{CHN}), 127.7(\mathrm{C}-p)$, 128.0, 128.9 (C-o, C-m), 135.5 (C-i).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}$ 248.2009; found 248.2005.

## (R)-4-Benzyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (56)


$n$-BuLi ( 2.83 mL of a 1.6 M solution in hexanes, 4.53 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(140 \mathrm{mg}, 4.53 \mathrm{mmol})$ in anhydrous THF $(2.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 21a ( $324 \mathrm{mg}, 1.05 \mathrm{mmol}$ ) in anhydrous THF ( 1.4 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The
reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 56 ( $233 \mathrm{mg}, 70 \%$ ) as a colorless oil.

Spectroscopic data for 56
$[\alpha]^{22} \mathrm{D}-35.8(c 1.15, \mathrm{MeOH})$.
IR (film) $3331 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.23-1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 1.44-1.59 ( m , $3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-2$ ), 1.84 (br.s, $1 \mathrm{H}, \mathrm{H}-4$ ), 2.35-2.47 (m, 2H, H-5), 2.48-2.63 (m, 2H, CH $\mathrm{CH}_{2}$ Ar), 2.92 (br.s, $3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), $3.50-3.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right.$ ), 3.64-3.73 (m, 2H, $\mathrm{CH}_{2} \mathrm{O}$, CHN), 7.05-7.33 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl ${ }_{3}$ ) $\delta 27.8(\mathrm{C}-3), 29.3(\mathrm{C}-2), 39.2\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 39.6(\mathrm{C}-4), 50.1$ $(\mathrm{C}-5), 62.4(\mathrm{C}-1), 64.8(\mathrm{CHN}), 66.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.8(\mathrm{C}-p), 127.3(\mathrm{C}-m), 127.6(\mathrm{C}-p)$, 128.2 (C-m), 128.5, 128.9 (C-o), 140.1, 140.5 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} 314.2115$; found 314.2111.

## (R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-4-phenyl-1-pentanol (57)


$n$-BuLi ( 1.17 mL of a 2.5 M solution in hexanes, 2.93 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(91 \mathrm{mg}, 2.93 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(3.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 22a ( $200 \mathrm{mg}, 0.68 \mathrm{mmol}$ ) in anhydrous THF ( 1.7 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 57 ( $116 \mathrm{mg}, 57 \%$ ) as a colorless oil.

Spectroscopic data for 57
$[\alpha]^{22}{ }_{\mathrm{D}}-48.1(c 0.4, \mathrm{MeOH})$.
IR (film) $3323 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.39-1.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3)$, 1.54-1.61 ( m , $1 \mathrm{H}, \mathrm{H}-2$ ), 1.66 (br.s, $3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), 1.76-1.80 (m, 1H, H-2), 2.65-2.72 (m, 2H, H-4, H5), 2.78-2.82 (m, 1H, H-5), 3.44 (dd, $J=10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $3.56(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-1$ ), 3.60-3.68 (m, 2H, CH2O, CHN), 7.13-7.34 (m, 10H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 30.1$ (C-2), 30.5 (C-3), 46.0 (C-4), 53.3 (C-5), 62.7 (C-1), $64.8(\mathrm{CHN}), 66.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.5,126.9(\mathrm{C}-p), 127.2,127.7,128.6,128.6(\mathrm{C}-0$, C-m), 140.4, 143.4 (C-i).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}$ 300.1958; found 300.1952.

## (R)-4-Ethyl-5-\{[(1 R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (58)


$n$-BuLi ( 2.77 mL of a 2.5 M solution in hexanes, 6.92 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(214 \mathrm{mg}, 6.92 \mathrm{mmol})$ in anhydrous THF ( 6 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $\mathbf{3 b}(395 \mathrm{mg}, 1.61 \mathrm{mmol})$ in anhydrous THF ( 3 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from $8: 2$ hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine $59^{60}$ (colorless oil, $35 \mathrm{mg}, 9 \%$ ) and aminoalcohol 58 (202 mg, $50 \%$ ) as a colorless oil.

Spectroscopic data for 58
$[\alpha]^{22}{ }_{\mathrm{D}}-48.8\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$.
IR (film) 3329, 1453, $1058 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.80\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.28$1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.36-1.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.43-1.54(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 2.36$ (dd, $J=11.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.48$ (dd, $J=11.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.29 (brs, $3 \mathrm{H}, 2 \mathrm{OH}$, NH ), 3.59 (masked, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $3.60(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 3.72-3.77 (m, 2H, $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CHN}$ ), 7.24-7.36 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.4(\mathrm{C}-3), 29.2(\mathrm{C}-2)$, $39.4(\mathrm{C}-4), 50.4(\mathrm{C}-5), 62.5(\mathrm{C}-1), 65.2(\mathrm{CHN}), 66.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.2(\mathrm{C}-o), 127.5(\mathrm{C}-p)$, 128.5 (C-m), 140.5 (C-i).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2}$ 252.1958; found 252.1954.

## (R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-4-methyl-1-pentanol (60)


$n$-BuLi ( 2.98 mL of a 2.5 M solution in hexanes, 7.44 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(230 \mathrm{mg}, 7.44 \mathrm{mmol})$ in anhydrous THF ( 8 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $\mathbf{4 b}(400 \mathrm{mg}, 1.73 \mathrm{mmol})$ in anhydrous THF ( 4 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine $61^{57}$ (colorless oil, $35 \mathrm{mg}, 11 \%$ ), and aminoalcohol 60 ( $225 \mathrm{mg}, 55 \%$ ) as a colorless oil.

Spectroscopic data for 60
$[\alpha]^{22}{ }_{\mathrm{D}}-57.4(c 0.9, \mathrm{MeOH})$.
IR (film) 3328, 1492, 1453, $1056 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.88\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.15$1.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.40-1.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 1.55-1.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 2.36(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-5$ ), 3.27 (brs, $3 \mathrm{H}, 2 \mathrm{OH}, \mathrm{NH}$ ), $3.55-3.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right), 3.64(\mathrm{~m}, 1 \mathrm{H}$, CHN ), $3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 7.23-7.35 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.0\left(\mathrm{CH}_{3}\right), 29.5(\mathrm{C}-3), 30.5(\mathrm{C}-2), 32.7(\mathrm{C}-4), 53.5$ (C-5), 62.3 (C-1), $64.8(\mathrm{CHN}), 66.5\left(\mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}\right), 127.3(\mathrm{C}-\mathrm{o}), 127.7(\mathrm{C}-\mathrm{p}), 128.4$ (Cm), 140.3 (C-ipso).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2} 238.1802$; found 238.1796.

## (S)-5-\{[(1 R)-2-Hydroxy-1-phenylethyl]amino\}-2-methyl-1-pentanol (62)



From lactam 23a
$n$-BuLi ( 3.53 mL of a 2.5 M solution in hexanes, 8.84 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(273 \mathrm{mg}, 8.84 \mathrm{mmol})$ in anhydrous THF $(11 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $24(475 \mathrm{mg}, 2.05 \mathrm{mmol})$ in anhydrous THF ( 5.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH) of the residue gave piperidine 53 (colorless oil, $28 \mathrm{mg}, 6 \%$ ) and aminoalcohol 62 ( $314 \mathrm{mg}, 64 \%$ ) as a colorless oil.

## From lactam 23b

Operating as above, from 27 ( $430 \mathrm{mg}, 1.86 \mathrm{mmol}$ ), $n-\mathrm{BuLi}(3.2 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 8.0 mmol ), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(247 \mathrm{mg}, 8.0 \mathrm{mmol})$ in anhydrous THF ( 15 mL ), aminoalcohol 62 ( $257 \mathrm{mg}, 58 \%$ ) was obtained after flash chromatography (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH).

## Spectroscopic data for 62

$[\alpha]^{22} \mathrm{D}-50.7\left(c 0.76, \mathrm{CHCl}_{3}\right)$.
IR (film) 3330, 2927, 1454, $1040 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.88\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-$ $1.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.39-1.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 2.46-2.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.27$ (brs, $3 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ), 3.43 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 3.61 (dd, $J=10.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.72 (dd, $J=10.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.80 (dd, $J=8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.25-7.37 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 16.6\left(\mathrm{CH}_{3}\right), 26.6(\mathrm{C}-4), 30.4(\mathrm{C}-3), 35.3(\mathrm{C}-2), 47.2$ (C-5), $64.7(\mathrm{CHN}), 66.2\left(\mathrm{C}-\mathrm{CH}_{2} \mathrm{O}\right), 67.5(\mathrm{C}-1), 127.3(\mathrm{C}-o), 127.7(\mathrm{C}-p), 128.6(\mathrm{C}-m)$, 139.7 (C-I).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}$ 238.1802; found 238.1794.

## (S)-2-Ethyl-5-\{[(1 R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (63)



## From lactam 23a

$n$-BuLi ( 1.68 mL of a 2.5 M solution in hexanes, 4.21 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(130 \mathrm{mg}, 4.21 \mathrm{mmol})$ in anhydrous THF ( 5 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $25(240 \mathrm{mg}, 0.98 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH) of the residue gave piperidine $13^{57}$ (colorless oil, $22 \mathrm{mg}, 10 \%$ ) and aminoalcohol 63 ( $159 \mathrm{mg}, 65 \%$ ) as a colorless oil.
From lactam 23b
Operating as above, from 28 ( $470 \mathrm{mg}, 1.92 \mathrm{mmol}$ ), $n-\mathrm{BuLi}(3.3 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 8.24 mmol ), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(254 \mathrm{mg}, 8.24 \mathrm{mmol})$ in anhydrous THF (13.5
mL ), piperidine 13 ( $37 \mathrm{mg}, 8 \%$ ) and aminoalcohol 63 ( $294 \mathrm{mg}, 61 \%$ ) were obtained after flash chromatography (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH).

Spectroscopic data for 63
$[\alpha]^{22}{ }_{\mathrm{D}}-63.9(c 0.8, \mathrm{MeOH})$.
IR (film) 3300, 1454, $1037 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.22$1.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-2, \mathrm{H}-4\right), 1.48$ (brs, $2 \mathrm{H}, \mathrm{H}-3$ ), $2.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.56-3.70(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-1$ ), 3.45 (dd, $J=10.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.49 (dd, $J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.77 (dd, $J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.23-7.30 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.4(\mathrm{C}-3), 27.7$ (C4), $41.5(\mathrm{C}-2), 47.3(\mathrm{C}-5), 64.3(\mathrm{C}-1), 64.7(\mathrm{CHN}), 66.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3(\mathrm{C}-0), 127.5$ (C-p), 128.5 (C-m), 139.9 (C-i).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2}$ 252.1958; found 252.1955.
(S)-2-Benzyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (64)

$n$-BuLi ( 2.54 mL of a 2.5 M solution in hexanes, 6.34 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(196 \mathrm{mg}, 6.34 \mathrm{mmol})$ in anhydrous THF ( 6 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $26(453 \mathrm{mg}, 1.47 \mathrm{mmol})$ in anhydrous THF ( 3 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine 65 (colorless oil, $23 \mathrm{mg}, 5 \%$ ) and aminoalcohol 64 ( $300 \mathrm{mg}, 65 \%$ ) as a colorless oil.

## Spectroscopic data for 64

$[\alpha]^{22}{ }_{\mathrm{D}}-45.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3331, 1494, $1453 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.30-1.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 1.37-1.48 (m, $1 \mathrm{H}, \mathrm{H}-3$ ), 1.48-1.57 (m, 2H, H-4), $1.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 2.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar}$ ), 2.63 (dd, $J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.83 (brs, $3 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ), 3.47 (dd, $J=$ $10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.56$ (dd, $J=10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), $3.59-3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 3.69-3.73 (m, 1H, CH2O), 3.76-3.78 (m, 1H, CHN), 7.13-7.19 (m, 3H, ArH), 7.24-7.37 (m, 7H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 26.7(\mathrm{C}-4), 27.9(\mathrm{C}-3), 37.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 42.2(\mathrm{C}-2), 47.2$ ( $\mathrm{C}-5$ ), $64.1(\mathrm{C}-1), 64.6(\mathrm{CHN}), 66.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.8(\mathrm{C}-p), 127.3(\mathrm{C}-p), 127.7(\mathrm{C}-1)$, 128.3 (C-Ar), 128.7 (C-Ar), 129.1 (C-Ar), 140.6 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} 314.2115$; found 314.2106.

Spectroscopic data for 65
$[\alpha]^{22}{ }_{\mathrm{D}}+2.1\left(\mathrm{c} 0.45, \mathrm{CHCl}_{3}\right)$.
IR (film) 3386, $1453 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.19-1.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.53-1.68(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-5), 1.74-1.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.29-2.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.36(\mathrm{dd}, \mathrm{J}=$ $13.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.56 (dd, $J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), $2.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, $2.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.61$ (dd, $J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.74 (dd, $J=10.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHN}$ ), 3.97 (t, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 7.09-7.38 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0 . 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) $\delta 25.4(\mathrm{C}-5), 30.3(\mathrm{C}-4), 38.2(\mathrm{C}-3), 40.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.8$ ( $\mathrm{C}-6$ ), $52.8(\mathrm{C}-2), 59.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.1(\mathrm{CHN}), 125.9(\mathrm{C}-p), 127.9(\mathrm{C}-p), 128.2(\mathrm{C}-o)$, 128.3 (C-o), 129.0 (C-m), 129.1 (C-m), 135.0 (C-ı), 140.2 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}$ 296.2009; found 296.2010.
(R)-2-(3,5-Difluorobenzyl)-5-\{[(1 R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (66)

$n$-BuLi ( 2.26 mL of a 2.5 M solution in hexanes, 5.64 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(174 \mathrm{mg}, 5.64 \mathrm{mmol})$ in anhydrous THF ( 5 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 29 a ( $450 \mathrm{mg}, 1.31 \mathrm{mmol}$ ) in anhydrous THF ( 4.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH) of the residue gave piperidine 67 (colorless oil, $52 \mathrm{mg}, 12 \%$ ) and aminoalcohol 66 ( $299 \mathrm{mg}, 65 \%$ ) as a colorless oil.

Spectroscopic data for 66
$[\alpha]^{22}{ }_{\mathrm{D}}-33.9\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$.
IR (film) 3353, $1625 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.26-1.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.35-1.43$ ( m , $1 \mathrm{H}, \mathrm{H}-3$ ), 1.45-1.53 (m, 2H, H-4), 1.72 (brs, 1H, H-2), 2.51 (m, 3H, H-5, CH2Ar), 2.65$2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.44$ (dd, $J=10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 3.50 (dd, $J=10.5,6.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2$ ), $3.63-3.74\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 3.80(\mathrm{dd}, \mathrm{J}=8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 6.59-6.67$ (m, 3H, F-ArH), 7.26-7.31 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 26.3(\mathrm{C}-3), 27.7(\mathrm{C}-4), 37.4\left(\mathrm{CH}_{2} \mathrm{Ar}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=9.2 \mathrm{~Hz}\right)$, 41.7 (C-2, d, $J_{\mathrm{C}-\mathrm{F}}=6.2 \mathrm{~Hz}$ ), $47.0(\mathrm{C}-5), 63.2(\mathrm{C}-2), 64.7(\mathrm{CHN}), 66.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 101.3$ (F-Ar C-4, t, $J_{C-F}=24.9 \mathrm{~Hz}$ ), 111.7 (F-Ar C-2 and C-6, dd, $J_{C-F}=18.7,6.2 \mathrm{~Hz}$ ), 127.3 (CH-Ar), 127.8 (C-p), 128.7 (CH-Ar), 139.2 (C-i), 144.7 (F-Ar C-1, t, $J_{C-F}=9.3 \mathrm{~Hz}$ ), 162.8 (F-Ar C-3 and C-5, dd, $J_{C-F}=247.7,13.3 \mathrm{~Hz}$ ).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{NO}_{2} 350.1926$; found 350.1926.

Spectroscopic data for 67:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta$ 1.43-1.72 (m, 4H, H-4, H-5), 1.95-2.00 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.37-2.52 (m, 2H, H-2), 2.70-2.85 (m, 2H, H-6), 2.78-2.85 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, 3.58-3.75 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, 3.93-4.00 (m, 1H, NCH), 6.60-6.67 (m, 3H, F-ArH), 7.14-7.17 (dd, J=7.9, 1.9 Hz, 2H, ArH), 7.36-7.37 (m, 3H, ArH).
${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) $\delta 25.3\left(\mathrm{C}-5, \mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11.7 \mathrm{~Hz}\right), 30.4\left(\mathrm{C}-4, \mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=29.7\right.$ $\mathrm{Hz})$, $38.0\left(\mathrm{C}-3, \mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=35.8 \mathrm{~Hz}\right), 40.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 46.9(\mathrm{C}-6), 52.7\left(\mathrm{C}-2, \mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11.7\right.$ $\mathrm{Hz}), 59.9\left(\mathrm{CHAr}, \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 70.1\left(\mathrm{CH}_{2} \mathrm{O}, \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=17.1 \mathrm{~Hz}\right), 101.4(\mathrm{~F}-\mathrm{Ar} \mathrm{C}-4$, dd, $J_{C-F}=24.8,3.1 \mathrm{~Hz}$ ), 111.7 (F-Ar C-2 and C-6, dd, $J_{C-F}=17.9,6.9 \mathrm{~Hz}$ ), 127.9 (Cp), 128.2 (CH-Ar), 128.9 (CH-Ar), 135.1 (C-i, d, $J_{C-F}=3.9 \mathrm{~Hz}$ ), 144.3 (F-Ar C-1, d, JC-F $=8.5 \mathrm{~Hz}$ ), 162.9 ( $\mathrm{F}-\mathrm{Ar} \mathrm{C-3} \mathrm{and} \mathrm{C-5}, \mathrm{ddd}, J_{\mathrm{C}-\mathrm{F}}=247.6,13.3,3.9 \mathrm{~Hz}$ ).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO} 332.1820$; found 332.1820.
(S)-2-Benzyl-5-[(tert-butoxyC-Arbonyl)amino]-2-ethyl-1-pentanol (68)

$n$-BuLi ( 1.83 mL of a 2.5 M solution in hexanes, 4.56 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(141 \mathrm{mg}, 4.56 \mathrm{mmol})$ in anhydrous THF ( 5 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $33(356 \mathrm{mg}, 1.06 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the stirring was continued at $40^{\circ} \mathrm{C}$ for 1 h 30 . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 68 ( $250 \mathrm{mg}, 69 \%$ ) as a colorless oil.

Spectroscopic data for 68
$[\alpha]^{22} \mathrm{D}-28.4\left(c 0.96, \mathrm{CHCl}_{3}\right)$.
IR (film) 3384, 1601, 1494, $1452 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.15-1.20 (m, 2H, H-3), 1.22-1.30 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ ), 1.41-1.53 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 2.452.49 (m, 2H, H-5), 2.52 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$ ), $2.60(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$ ), 3.28 (brs, 2H, H-1), 3.58 (dd, $J=11.0,8.6, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.72 (dd, $J=$ $11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.78 (dd, $J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.16-7.37 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR ( $\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.8(\mathrm{C}-3), 30.4(\mathrm{C}-4)$, $39.9\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.5(\mathrm{C}-2), 47.9(\mathrm{C}-5), 64.7(\mathrm{CHN}), 65.4(\mathrm{C}-1), 66.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.9(\mathrm{C}-$ p), 127.3 (C-o), 127.7 ( $\mathrm{C}-p$ ), 127.9 ( $\mathrm{C}-o$ ), 128.7 ( $\mathrm{C}-m$ ), 130.4 ( $\mathrm{C}-m$ ), 138.6 (C-i), 140.4 (C-1).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2} 342.2428$; found 342.2425 .
(S)-2-Allyl-2-ethyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-2-ethyl-1-pentanol (69)

$n$-BuLi ( 2.4 mL of a 2.5 M solution in hexanes, 6.03 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(186 \mathrm{mg}, 6.03 \mathrm{mmol})$ in anhydrous THF $(5.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $34(400 \mathrm{mg}, 1.40 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine $70(37 \mathrm{mg}, 9 \%)$ and aminoalcohol $69(227 \mathrm{mg}, 56 \%)$ as a colorless oil.

Spectroscopic data for 69
$[\alpha]^{22} \mathrm{D}-34.3\left(c 0.8, \mathrm{CHCl}_{3}\right)$.
IR (film) $3331,1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.76\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12-1.14$ ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-3$ ), 1.40-1.45 (m, $2 \mathrm{H}, \mathrm{H}-4$ ), 1.89 (dd, $J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), $1.98\left(\mathrm{dd}, \mathrm{J}=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 2.44-2.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5)$, $3.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.63-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right), 3.82(\mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN})$, 4.16 (brs, $2 \mathrm{H}, \mathrm{OH}$ ), $4.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$ ), $5.68-5.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.30(\mathrm{~m}, 5 \mathrm{H}$, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $22.4(\mathrm{C}-4), 25.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 30.6(\mathrm{C}-3)$, $37.9\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 40.0(\mathrm{C}-2), 47.6(\mathrm{C}-5), 64.7(\mathrm{CHN}), 65.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.9(\mathrm{C}-1)$, $116.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 127.4(\mathrm{C}-o), 127.7(\mathrm{C}-p), 128.5(\mathrm{C}-m), 134.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 138.9(\mathrm{C}-$ i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2} 292.2271$; found 292.2266.

Spectroscopic data for 70
$[\alpha]^{22}{ }_{\mathrm{D}}-19.5\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$.
IR (film) 3440, 1637, $1452 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.80\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.15$1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04-2.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.20$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ ), 2.54 (brs, $2 \mathrm{H}, \mathrm{H}-6$ ), 3.59-3.66 (m, 2H, CHN, CH ${ }_{2} \mathrm{O}$ ), 3.99 (t, $J=9.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.70-5.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.15-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl ${ }_{3}$ ) $\delta 7.15\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{2}\right), 28.3(\mathrm{C}-5), 33.4\left(\mathrm{CH}_{2}\right), 36.2$ (C-3), $39.3(\mathrm{C}-4), 49.9(\mathrm{C}-6), 58.6(\mathrm{C}-2), 60.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.2(\mathrm{CHN}), 117.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $127.8(\mathrm{C}-p), 128.0(\mathrm{C}-o), 128.9(\mathrm{C}-m), 134.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 135.3(\mathrm{C}-i)$.
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}$ 274.2165; found 274.2161.
(2S,4S)-4-Ethyl-5-\{[(1 R)-2-hydroxy-1-phenylethyl]amino\}-2-methyl-1-pentanol (71)

$n$-BuLi ( 3.48 mL of a 2.5 M solution in hexanes, 8.71 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(269 \mathrm{mg}, 8.71 \mathrm{mmol})$ in anhydrous THF ( 6 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $30(525 \mathrm{mg}, 2.03 \mathrm{mmol})$ in anhydrous THF ( 3 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 71 ( $349 \mathrm{mg}, 65 \%$ ) as a colorless oil.

Spectroscopic data for 71
$[\alpha]^{22}{ }_{\mathrm{D}}-64.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3319, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.81\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 0.86 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.19-1.37 (m, 4H, H-3, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.47-1.55 (m, 1H, H-4), 1.70-1.77 (m, 1H, H-2), 2.29-2.34 (m, 1H, H-5), $2.47(\mathrm{dd}, J=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.42 (m, 2H, H-1), 3.50-3.75 (brm, 3H, NH, OH), 3.58 (m, 1H, CH2O), 3.68 (m, 1H, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.75 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.24-7.35 (m,5H ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $17.0\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $32.7(\mathrm{C}-$ 2), 35.5 (C-3), $36.0(\mathrm{C}-4), 51.1(\mathrm{C}-5), 65.0(\mathrm{CHN}), 66.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.6(\mathrm{C}-1), 127.3$ (Co), 127.5 ( $\mathrm{C}-p$ ), $128.5(\mathrm{C}-m), 140.1$ (C-ı).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2}$ 266.2115; found 266.2113.
(2S,4S)-4-Ethyl-5-\{[(1 R)-2-hydroxy-1-phenylethyl]amino\}-2-isobutyl-1-pentanol (72)

$n$-BuLi ( 2.5 mL of a 2.5 M solution in hexanes, 6.28 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(194 \mathrm{mg}, 6.28 \mathrm{mmol})$ in anhydrous THF ( 8.5 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting
mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $\mathbf{3 2 a}(440 \mathrm{mg}, 1.46 \mathrm{mmol})$ in anhydrous THF ( 4.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h 15 . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to 8:2 EtOAc-EtOH) of the residue gave aminoalcohol 72 ( $254 \mathrm{mg}, 57 \%$ ) as a colorless oil.

Spectroscopic data for 72
$[\alpha]^{22}{ }_{\mathrm{D}}-40.4\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)$.
IR (film) 3330, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 0.86 (d, $J=3.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), $0.88\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.03-1.14 [m, 2H, H-3, $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], 1.19-1.30 [m, 3H, $\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], 1.39-1.45 (m, 2H, H-3, H4), 1.54 (brm, $1 \mathrm{H}, \mathrm{H}-2$ ), 1.63 [sept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], 2.23 (dd, $J=11.6,7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.53$ (dd, $J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.00 (brm, $3 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ), 3.44 (dd, $J=11.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.58-3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.69-3.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right)$, 3.76 (dd, J=8.9, 3.8 Hz, 1H, CHN), 7.26-7.37 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 25.2(\mathrm{CH})$, $26.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $34.8(\mathrm{C}-3), 36.6(\mathrm{C}-2), 37.6(\mathrm{C}-4), 42.2\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 51.6(\mathrm{C}-5)$, $64.5(\mathrm{C}-1), 65.0(\mathrm{CHN}), 66.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.4(\mathrm{C}-o), 127.5(\mathrm{C}-p), 128.5(\mathrm{C}-m), 140.2$ (C-I).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{2} 308.2584$; found 308.2583.
(2S,4S)-2-Benzyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-4-ethyl-1-pentanol (73)

$n$-BuLi ( 2.69 mL of a 2.5 M solution in hexanes, 6.72 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(207 \mathrm{mg}, 6.72 \mathrm{mmol})$ in anhydrous THF ( 9 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting
mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $31(524 \mathrm{mg}, 1.56 \mathrm{mmol})$ in anhydrous THF ( 4.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 7:3 hexane-EtOAc to 8:2 EtOAc-EtOH) of the residue gave aminoalcohol 73 ( $295 \mathrm{mg}, 55 \%$ ) as a colorless oil.

Spectroscopic data for 73
$[\alpha]^{22} \mathrm{D}-54.0\left(c 0.38, \mathrm{CHCl}_{3}\right)$.
IR (film) 3338, 1494, $1453 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.74\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.14$1.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.35-1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.44-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.73-$ 1.80 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ ), 2.23 (dd, $J=11.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.50 (dd, $J=11.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5$ ), 2.53 (dd, $J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.67 (dd, $J=13.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.99 (brs, $3 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ), 3.45 (dd, $J=11.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.58 (dd, $J=10.4,9.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.67 (dd, $J=11.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.68-3.69 (m, 1H, CH2O), 3.713.76 (m, 1H, CHN), 7.15-7.19 (m, 3H, ArH), 7.24-7.37 (m, 7H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.1\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 34.0(\mathrm{C}-3), 37.3(\mathrm{C}-4)$, $39.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.1(\mathrm{C}-2), 51.6(\mathrm{C}-5), 63.3(\mathrm{C}-1), 65.1(\mathrm{CHN}), 66.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7(\mathrm{C}-$ Ar), 127.5 (C-p), 128.2 (C-Ar), 128.7 (C-p), 129.1 (C-Ar), 140.9 (C-ı).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2}$ 342.2428; found 342.2424.
(R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-3-methyl-1-pentanol (74)

$n$-BuLi ( 1.95 mL of a 2.5 M solution in hexanes, 4.87 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(150 \mathrm{mg}, 4.87 \mathrm{mmol})$ in anhydrous THF ( 4 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 41 ( $262 \mathrm{mg}, 1.14 \mathrm{mmol}$ ) in anhydrous THF ( 2 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h 30 . The
reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine 75 (colorless oil, $49 \mathrm{mg}, 20 \%$ ) and aminoalcohol 74 ( $135 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for 74
$[\alpha]^{22} \mathrm{D}-51.9\left(c 0.84, \mathrm{CHCl}_{3}\right)$.
IR (film) 3320, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.86\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-$ 1.42 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$ ), 1.46-1.59 (m, 2H, H-2, H-4), 1.64-1.72 (m, 1H, H-3), 2.442.51 (m, 1H, H-5), 2.56-2.63 (m, 1H, H-5), 3.48 (brs, 3H, NH, OH), 3.57-3.63 (m, 2H, $\left.\mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right), 3.65-3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right), 3.78(\mathrm{dd}, J=8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 7.24-$ 7.35 ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 19.8\left(\mathrm{CH}_{3}\right), 27.2(\mathrm{C}-3), 36.5(\mathrm{C}-4), 39.4(\mathrm{C}-2), 44.8$ (C-5), 60.1 ( $\mathrm{C}-1$ ), $64.9(\mathrm{CHN}), 66.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.2(\mathrm{C}-o), 127.6(\mathrm{C}-p), 128.5(\mathrm{C}-m)$, 139.9 (C-ו).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}$ 238.1802; found 238.1802.

Spectroscopic data for 75
$[\alpha]^{22}{ }_{\mathrm{D}}-18.5\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right)$.
IR (film) $3414 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.87\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.101.23 (m, 1H, H-4), 1.25-1.34 (m, 2H, H-3, H-5), 1.55-1.72 (m, 3H, H-3, H-5, H-2 or H6 ), 2.29 (ddd, $J=11.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-6$ ), 2.83 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6$ ), 3.20 (brs, 1 H , OH ), 3.62 (dd, $J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.70 (dd, $J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 3.97 (t, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 7.17 (m, 2H, ArH), 7.28-7.36 (m, 3H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.8\left(\mathrm{CH}_{3}\right), 30.8(\mathrm{C}-4), 34.6$ and $34.9(\mathrm{C}-3$ and $\mathrm{C}-5)$, 46.2 (C-2 or C-6), 52.8 (C-2 or C-6), $60.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 69.9(\mathrm{CHN}), 127.7(\mathrm{C}-p), 128.0(\mathrm{C}-$ o), 128.9 (C-m), 135.6 (C-i).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}$ 220.1696; found 220.1700.

## (R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-3-phenyl-1-pentanol (76)



## From lactam 42

$n$-BuLi ( 1.41 mL of a 2.5 M solution in hexanes, 3.52 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ ( $109 \mathrm{mg}, 3.52 \mathrm{mmol}$ ) in anhydrous THF ( 5 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $42(240 \mathrm{mg}, 0.82 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine 77 (colorless oil, $35 \mathrm{mg}, 15 \%$ ) and aminoalcohol 76 ( $105 \mathrm{mg}, 43 \%$ ) as a colorless oil.

From lactam 78
Operating as above, from 78 ( $510 \mathrm{mg}, 1.74 \mathrm{mmol}$ ), $n-\mathrm{BuLi}(3.0 \mathrm{~mL}$ of a 2.5 M solution in hexanes, 7.48 mmol ), and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(231 \mathrm{mg}, 7.48 \mathrm{mmol})$ in anhydrous THF ( 27 mL ), piperidine 77 ( $40 \mathrm{mg}, 8 \%$ ) and aminoalcohol 76 ( $338 \mathrm{mg}, 65 \%$ ) were obtained after flash chromatography (from 1:1 hexane-EtOAc to 8:2 EtOAc-EtOH).

Spectroscopic data for 76
$[\alpha]^{22}{ }_{\mathrm{D}}-40.9\left(\mathrm{c} 3.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3321, $1452 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta$ 1.70-1.88 (m, 4H, H-2, H-4), 1.64-1.72 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.44-2.32-2.38 (m, 1H, H-5), 2.45-2.51 (m, 1H, H-5), 2.61 (brs, $3 \mathrm{H}, \mathrm{NH}$, OH ), 2.80-2.87 (m, 1H, H-3), 3.39-3.46 (m, 1H, H-1), 3.48-3.54 (m, 2H, H-1, CH2O), 3.62-3.66 (m, 2H, CH2O, CHN), 7.13-7.31 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 36.1$ (C-4), 39.3 (C-2), 39.8 (C-3), 44.9 (C-5), 60.5 (C-1), $64.6(\mathrm{CHN}), 65.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.4(\mathrm{C}-p), 127.2(\mathrm{C}-o), 127.5(\mathrm{C}-o), 127.8(\mathrm{C}-p)$, 128.4 (C-m), 128.5 (C-m), 139.4 (C-ı), 144.4 (C-ı).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}$ 300.1958; found 300.1957.

Spectroscopic data for 77
$[\alpha]^{22}{ }_{\mathrm{D}}-6.4\left(\mathrm{c} 0.26, \mathrm{CHCl}_{3}\right)$.
IR (film) 3417, 1601, 1493, $1451 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.71$ (dt, $J=12.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ or $\mathrm{H}-5)$, 1.79-1.82 (m, 1H, H-4), 1.82-1.88 (m, 3H, H-3, H-5), 2.32-2.40 (m, 1H, H-2 or $\mathrm{H}-6)$, 2.42-2.48 (m, 1H, H-2 or H-6), 2.98-3.05 (m, 2H, H-2, H-6), 3.66 (dd, $J=10.4$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $3.76(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 4.02(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$ ), 7.16-7.39 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 33.7$ and 34.1 (C-3 and C-5), 42.6 (C-4), 46.4 and 53.5 ( $\mathrm{C}-2$ and $\mathrm{C}-6$ ), $60.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.1(\mathrm{CHN}), 126.1(\mathrm{C}-p), 126.7(\mathrm{C}-o), 127.9(\mathrm{C}-p)$, 128.1 (C-o), 128.4 (C-m), 128.9 (C- m), 135.5 (C-ı), 146.1 (C-ı).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}$ 282.1852; found 282.1851.

## (3R,7R,8aS)-3,7-Diphenyl-5-oxo-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-

 a]pyridine (78)

TFA ( $1.6 \mathrm{~mL}, 20.4 \mathrm{mmol}$ ) was added to a solution of pure lactam 42 ( $630 \mathrm{mg}, 2.15$ mol ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 66 mL ), and the mixture was stirred at room temperature for 47 h . The resulting acidic solution was neutralized with a 2 N aqueous $\mathrm{NaHCO}_{3}$ $(25 \mathrm{~mL})$. The organic phase was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solutions were dried and concentrated, and the residue was chromatographed ( $1: 1$ hexane-EtOAc) to give pure 78 ( $610 \mathrm{mg}, 97 \%$ ).

## Spectroscopic data for 78

$[\alpha]^{22}{ }_{\mathrm{D}}-58.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 1647, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.87$ (ddd, $J=13.3,12.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-8$ ), 2.47 (dd, $J=18.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.56 (dm, $1 \mathrm{H}, \mathrm{H}-8$ ), 2.84 (ddd, $J=18.0$, $5.6,1.72 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 3.84$ (dd, $J=9.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.56 (dd, $J=9.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 5.20 (dd, $J=9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$ ), 5.32 (t, $J=7.9$, 1H, CHN), 7.21-7.37 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 35.3$ (C-7, C-8), 39.7 (C-6), 58.0 (C-3), 72.7 (C-2), 88.4 (C-8a), 126.1 ( $\mathrm{C}-o$ ), 126.4 ( $\mathrm{C}-o$ ), 127.0 ( $\mathrm{C}-p$ ), 127.6 ( $\mathrm{C}-p$ ), 128.7 ( $\mathrm{C}-m$ ), 128.8 (C-m), 139.3 (C-i), 142.4 (C-i), 168.1 (NCO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}$ 294.1489; found 294.1496.
(3S,4S)-4-Ethyl-5-\{[(1 R)-2-hydroxy-1-phenylethyl]amino\}-3-methyl-1-pentanol (79)

$n$-BuLi ( 1.67 mL of a 2.5 M solution in hexanes, 4.18 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(129 \mathrm{mg}, 4.18 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 43 ( $252 \mathrm{mg}, 0.97 \mathrm{mmol}$ ) in anhydrous THF ( 3 mL ), and the stirring was continued at $40^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine 80 ( $32 \mathrm{mg}, 13 \%$ ) and aminoalcohol 79 ( $142 \mathrm{mg}, 55 \%$ ) as a colorless oil.

Spectroscopic data for 79
$[\alpha]^{22}{ }_{\mathrm{D}}-74.4\left(c 0.7, \mathrm{CHCl}_{3}\right)$.

IR (film) 3331, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.83-0.87\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.16-1.22$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.24-1.30 (m, 1H, H-2), 1.32-1.40 (m, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.48-1.57 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ ), 1.82-1.88 (m, 1H, H-3), 2.35 (dd, $J=12.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.48 (dd, J $=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.54 (brs, $3 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ), $3.53-3.61$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}$ ), 3.66-3.72 (m, 2H, H-1, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.73-3.75 (m, 1H, CHN), 7.27-7.37 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 12.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 16.8\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 30.1(\mathrm{C}-$ 3), $35.8(\mathrm{C}-2), 44.9(\mathrm{C}-4), 47.7(\mathrm{C}-5), 61.4(\mathrm{C}-1), 65.0(\mathrm{CHN}), 66.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.2(\mathrm{C}-$ o), 127.6 ( $\mathrm{C}-p$ ), 128.6 ( $\mathrm{C}-m$ ), 140.5 (C-ı).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2} 266.2115$; found 266.2117 .

Spectroscopic data for $\mathbf{8 0}$
$[\alpha]^{22}{ }_{\mathrm{D}}-22.3\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right)$.
IR (film) 3330, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.73\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.29 (m. 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), $1.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.51$ (br.m, 1 H , $\mathrm{H}-5$ ), 1.58 (br.m, $1 \mathrm{H}, \mathrm{H}-3$ ), 1.70 (br.m, $1 \mathrm{H}, \mathrm{H}-\mathrm{H}-5$ ), 2.17-2.48 (br.m, $4 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-$ 6), $3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.72(\mathrm{~m}, \mathrm{NCH}), 3.99\left(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 7.18-7.37 ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $28.4(\mathrm{C}-$ 4), $31.5(\mathrm{C}-5), 41.2(\mathrm{C}-3)$, and $51.0(\mathrm{C}-2$ and $\mathrm{C}-6), 60.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.2(\mathrm{CHN}), 127.9$ (C-p), 128.0 (C-o), 129.0 (C-m), 135.4 (C-ı).
HRMS (ESI-TOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}$ 248.2009; found 248.2007.
(3S,4S)-4-Ethyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-3-phenyl-1-pentanol (81)

$n$-BuLi ( 1.0 mL of a 2.5 M solution in hexanes, 2.50 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(77 \mathrm{mg}, 2.50 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $44(187 \mathrm{mg}, 0.58 \mathrm{mmol})$ in
anhydrous THF ( 2 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 7:3 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine $82^{130}(36 \mathrm{mg}, 20 \%)$ and aminoalcohol $81(71 \mathrm{mg}, 37 \%)$ as a colorless oil.

Spectroscopic data for 81
$[\alpha]^{22} \mathrm{D}-87.9\left(c 0.75, \mathrm{CHCl}_{3}\right)$.
IR (film) 3332, 3061, $1453 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.81\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.29-1.36 (m, 1H, CH ${ }_{3} \mathrm{CH}_{2}$ ), 1.51-1.57 (m, $1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.58-1.63 (m, $1 \mathrm{H}, \mathrm{H}-4$ ), 1.75-1.83 (m, 1H, H-2), 1.90-2.02 (brm, 4H, H-2, NH, OH), 2.20 (dd, $J=12.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$ ), 2.46 (dd, $J=12.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.85 (brm, 1H, H-3), 3.32-3.39 (m, 1H, $\mathrm{H}-1$ ), 3.41-3.44 (m, 1H, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.46-3.53 (m, 2H, H-1, CHN), 3.60 (dd, $J=10.3,3.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 7.13-7.31 (m, 10H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $22.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 34.9(\mathrm{C}-2), 43.6(\mathrm{C}-$ 3), 45.7 ( $\mathrm{C}-4$ ), 47.6 (C-5), $61.4(\mathrm{C}-1), 64.8(\mathrm{CHN}), 66.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.3(\mathrm{C}-p), 127.2$ (C-o), 127.4 (C-p), 128.3 (C-o), 128.4 (C-m), 128.5 (C-m), 140.7 (C-ı), 143.6 (C-ı).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{2} 328.2271$; found 328.2269.
(3S,4S)-3,4-Dimethyl-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-1-pentanol (83)

$n$-BuLi ( 5.2 mL of a 2.5 M solution in hexanes, 13.0 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ ( $403 \mathrm{mg}, 13.0 \mathrm{mmol}$ ) in anhydrous THF ( 5 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $45(744 \mathrm{mg}, 3.03 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated.

Flash chromatography (from 7:3 EtOAc-hexane to 9:1 EtOAc-EtOH) of the residue gave piperidine $84(30 \mathrm{mg}, 4 \%)$ and aminoalcohol $83(346 \mathrm{mg}, 45 \%)$ as a colorless oil.

Spectroscopic data for 83
$[\alpha]^{22}{ }_{\mathrm{D}}-87.9$ (c 1.0, MeOH).
IR (film) 3340, 1454, $1055 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $g$-HSQC) $\delta 0.81$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-4$ ), $0.89\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-3\right)$, 2.06-2.11 (m, 1H, H-2), 1.47-1.58 (m, 1H, H-2), 1.63-1.73 (m, 1H, H-4), 1.75-1.87 (m, 1H, H-3), 2.31 (dd, J = 11.9, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.51 (dd, $J=11.9,7.7,1 \mathrm{H}-5$ ), 3.28 (br.s, $J=9.0,3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), $3.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$, $\mathrm{CH}_{2}-\mathrm{OH}$ ), $3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2}-\mathrm{OH}\right.$ ), 3.78 (dd, $\left.J=8.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}\right), 7.25-$ 7.35 ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.9\left(\mathrm{CH}_{3}-\mathrm{C}-3\right), 17.7\left(\mathrm{CH}_{3}-\mathrm{C}-4\right), 30.7(\mathrm{C}-3), 34.0(\mathrm{C}-$ 2), 37.5 (C-4), $50.5(\mathrm{C}-5), 61.1(\mathrm{C}-1), 64.8(\mathrm{CH}-\mathrm{Ar}), 66.4\left(\mathrm{CH}_{2}-\mathrm{OH}\right), 127.3(\mathrm{C}-\mathrm{m})$, 127.6 (C-p), 128.6 (C-o), 139.9 (C-i).

HRMS (ESI-TOF) m/z: [ $\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2}$ 252.1958; found 252.1953.

Spectroscopic data for 84
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.78\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93(\mathrm{~d}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 1.48-1.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}-5), 1.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 2.01$ (m, 1H, H-2), 2.35 (brs, $1 \mathrm{H}, \mathrm{OH}$ ) 2.53-2.55 (m, 1H, H-2), 3.61 (dd, $J=10.4,5.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right) 3.67(\mathrm{dd}, J=10.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.69\left(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.15-7.18$ (m, 2H, ArH), 7.28-7.36 (m, 3H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 29.7$ and $30.9(\mathrm{C}-3$ and $\mathrm{C}-4)$, 32.7 (C-5), 40.3 (C-6), $53.5(\mathrm{C}-2), 60\left(\mathrm{CH}_{2}\right), 69.8(\mathrm{CH}), 127.7(\mathrm{C}-\mathrm{p}), 128.1$ (C-m), 128.9 (C-о), 135.6 (C-ו).
(2S,3R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-2,3-(isopropylidendioxi)-1pentanol (85)

$n$-BuLi ( 1.46 mL of a 2.5 M solution in hexanes, 3.64 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(112 \mathrm{mg}, 3.64 \mathrm{mmol})$ in anhydrous THF ( 6 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $48(245 \mathrm{mg}, 0.85 \mathrm{mmol})$ in anhydrous THF ( 2.5 mL ), and the stirring was continued at $40^{\circ} \mathrm{C}$ for 1 h 40 . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 85 ( $100 \mathrm{mg}, 40 \%$ ) as a colorless oil.

Spectroscopic data for 85
$[\alpha]^{22} \mathrm{D}-38.3\left(c 1.72, \mathrm{CHCl}_{3}\right)$.
IR (film) 3359, 1454, $1044 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.67-1.76 (m, 1H, H-4), 1.78-1.85 (m, 1H, H-4), 2.61-2.68 (m, 1H, H-5), 2.72-2.78 (m, $1 \mathrm{H}, \mathrm{H}-5$ ), 3.22 (brs, $3 \mathrm{H}, \mathrm{NH}, \mathrm{OH}$ ), $3.55-3.63$ (m, $3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}$ ), 3.71 (dd, $J=10.9$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.78 (dd, $J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 4.11-4.15 (m, 1H, H-2), 4.17$4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 25.4\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 29.0(\mathrm{C}-4), 44.8(\mathrm{C}-5), 61.3$ $(\mathrm{C}-1), 64.7(\mathrm{CHN}), 66.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 76.1(\mathrm{C}-3), 77.9(\mathrm{C}-2), 108.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 127.2(\mathrm{C}-0)$, 127.7 (C-p), 128.6 (C-m), 139.8 (C-i).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{4}$ 296.1856; found 296.1848.

## (2R,3S)-5-\{[(1R)-2-hydroxy-1-phenylethyl]amino\}-2,3-(isopropylidendioxi)-1pentanol (86)


$n$-BuLi ( 2.50 mL of a 2.5 M solution in hexanes, 6.25 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(193 \mathrm{mg}, 6.25 \mathrm{mmol})$ in anhydrous THF ( 15 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $49(420 \mathrm{mg}, 1.45 \mathrm{mmol})$ in anhydrous THF ( 7.5 mL ), and the stirring was continued at $40^{\circ} \mathrm{C}$ for 1 h 30 . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave $87^{43}(50 \mathrm{mg}, 12 \%)$ and aminoalcohol $86(172 \mathrm{mg}, 40 \%)$ as a colorless oil.

Spectroscopic data for 86
$[\alpha]^{22}{ }_{\mathrm{D}}-45.9\left(\mathrm{c} 2.35, \mathrm{CHCl}_{3}\right)$.
IR (film) 3404, $1493 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.70-1.76 (m, 1H, H-4), 1.80-1.88 (m, 1H, H-4), 2.59-2.66 (m, 1H, H-5), 2.68-2.74 (m, $1 \mathrm{H}, \mathrm{H}-5$ ), 3.57-3.67 (m, 3H, H-1, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.71 (dd, $J=11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.823.90 (brm, 4H, CHN, OH, NH), 4.11-4.19 (m, 2H, H-2, H-3), 7.27-7.37 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 25.3\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.9(\mathrm{C}-4), 44.5(\mathrm{C}-5), 61.1$ $(\mathrm{C}-1), 64.8(\mathrm{CHN}), 66.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.7(\mathrm{C}-3), 77.7(\mathrm{C}-2), 108.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 127.4(\mathrm{C}-0)$, 127.9 (C-p), 128.7 (C-m), 138.8 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{4}$ 296.1856; found 296.1857.
(S)-5-\{[(1 R)-2-Hydroxy-1-phenylethyl]amino\}-5-methyl-1-pentanol (88)

$n$-BuLi ( 2.43 mL of a 1.6 M solution in hexanes, 3.89 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(120 \mathrm{mg}, 3.89 \mathrm{mmol})$ in anhydrous THF ( 3 mL ) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $51 \mathrm{a}(209 \mathrm{mg}, 0.90 \mathrm{mmol})$ in anhydrous THF ( 1.5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine $89^{130}$ (colorless oil, $32 \mathrm{mg}, 16 \%$ ) as a $1: 1$ mixture of $\mathrm{C}-2$ epimers, and aminoalcohol 88 (colorless oil, $105 \mathrm{mg}, 50 \%$ ) as a $1: 1$ mixture of $\mathrm{C}-5$ epimers.

## Spectroscopic data for 88

IR (film) 3350, $1453 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.98\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, \mathrm{CH}_{3}$ ), 1.26-1.55 (m, H-2, H-3, H-4), 2.50-2.55 (m, H-5), 2.59-2.67 (m, H-5) 3.40 (brs, $\mathrm{OH}, \mathrm{NH}$ ), $3.51-3.74\left(\mathrm{~m}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right), 3.87$ (dd, $J=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 3.92 (dd, $J=8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.24-7.35 (m, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.3$, $21.2\left(\mathrm{CH}_{3}\right)$, 21.3, $21.8(\mathrm{C}-3), 32.3,32.5(\mathrm{C}-2)$, 35.2, 37.1 ( $\mathrm{C}-4$ ), 49.6, 50.4 (C-5), 61.3, $62.1(\mathrm{CHN}), 61.8,62.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.2,66.4$ (C-1), 126.6, 127.3 (C-o), 127.4, 127.6 (C-p), 128.6, 128.6 (C-m), 140.1, 140.7 (C-ı).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2}$ 238.1802; found 238.1795.

## (R)-1-[(1R)-2-Hydroxy-1-phenylethyl]-6-isopropyl-2-piperidone (90)



Isopropylmagnesium bromide ( 1.75 mL of a 2.9 M solution in 2methyltetrahydrofuran, 5.07 mmol$)$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 3 b}(500$ $\mathrm{mg}, 2.30 \mathrm{mmol}$ ) in anhydrous $\operatorname{THF}(3.5 \mathrm{~mL})$, and the reaction mixture was stirred at

[^74]this temperature for 8 h , and at room temperature for an additional 12 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (from 8:2 hexane-EtOAc to EtOAc) afforded corresponding piperidone 90 ( $213 \mathrm{mg}, 35 \%$ ).

Spectroscopic data for 90

IR (film) 3363, 1633, $1455 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.72\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.53-1.70 (m, 3H, H-4, H-5), 1.79-1.87 (m, 1H, H-4), 1.94-2.04 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2.30-2.38 (m, 1H, H-3), 2.48-2.55 (m, 1H, H-3), 3.16-3.20 (m, 1H, $\mathrm{H}-6), 3.73$ (m, 1H, OH), 4.09 (dd, $\left.J=10.8,4.5, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.29(\mathrm{t}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 5.02 (dd, $J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.23-7.33 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.5\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}-4), 19.2\left(\mathrm{CH}_{3}\right), 22.6(\mathrm{C}-5), 30.1$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.1(\mathrm{C}-3), 62.8(\mathrm{C}-6), 64.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.2(\mathrm{CHN}), 127.3(\mathrm{C}-p), 128.2(\mathrm{C}-$ o), 128.2 (C-m), 137.3 (C-i), 174.3 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}$ 262.1802; found 262.1792.

## (R)-5-\{[(1R)-2-Hydroxy-1-phenylethyl]amino\}-5-isopropyl-1-pentanol (91)


$n$-BuLi ( 1.45 mL of a 2.5 M solution in hexanes, 3.62 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(112 \mathrm{mg}, 3.62 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(4.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of $90(220 \mathrm{mg}, 0.84 \mathrm{mmol})$ in anhydrous THF ( 2.8 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h 30 . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave piperidine 92 ( $35 \mathrm{mg}, 17 \%$ ) and aminoalcohol 91 ( $120 \mathrm{mg}, 53 \%$ ) as a colorless oil.

Spectroscopic data for 91
$[\alpha]^{22} \mathrm{D}-79.9\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
IR (film) 3344, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.74\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82(\mathrm{~d}$, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37-1.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 1.52-1.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.62-1-66$ [m, 1H, CH(CH3 $)_{2}$ ], 2.22 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.74 (brs, $3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), 3.50 (dd, $J=12.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $3.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{CH}_{2} \mathrm{O}\right.$ ), 3.81 (dd, $J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.277.38 (m, 5H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.3\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 21.6(\mathrm{C}-3), 29.7(\mathrm{C}-2), 30.2$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.8(\mathrm{C}-4), 59.8(\mathrm{C}-5), 62.2(\mathrm{CHN}), 62.3(\mathrm{C}-1), 66.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3(\mathrm{C}-0)$, 127.3 (C-p), 128.3 (C-m), 141.4 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2} 266.2115$; found 266.2111 .

## (S)-5-[(tert-Butoxycarbonyl)amino]-4-ethyl-1-pentanol (93)



A solution of aminodiol 14 ( $325 \mathrm{mg}, 1.29 \mathrm{mmol}$ ) in anhydrous MeOH ( 10 mL ) containing $45 \% \mathrm{Pd}(\mathrm{OH})_{2}(146 \mathrm{mg})$ or $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(65 \mathrm{mg})$ was hydrogenated at 75 ${ }^{\circ} \mathrm{C}$ for 22 h under 5 bar of pressure. Then, di-tert-butyldicarbonate ( $339 \mathrm{mg}, 1.55$ mmol ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from hexaneEtOAc 7:3 to hexane-EtOAc 1:1) afforded pure alcohol 93 (195 mg, $65 \%$ ) as a colorless oil.

Spectroscopic data for 93
$[\alpha]^{22}{ }_{\mathrm{D}}-3.3(c 0.84, \mathrm{MeOH})$.
IR (film) 3348, $1692 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.241.37 (m,5H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-2, \mathrm{H}-4\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.56-1.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 2.21$
(br.s, $1 \mathrm{H}, \mathrm{OH}$ ), $3.03-3.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.64(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 4.54 (br.s, 1 H , NH ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.9\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $26.9(\mathrm{C}-2), 28.4$ [ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.5(\mathrm{C}-3), 39.6(\mathrm{C}-4), 43.0(\mathrm{C}-5), 62.9(\mathrm{C}-1), 79.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.3(\mathrm{NCO})$. HRMS (ESI-TOF) m/z: [M - tBu + 2H] ${ }^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{3}$ 176.1281; found 176.1279.

## (R)-5-[(tert-Butoxycarbonyl)amino]-4-ethyl-1-pentanol (ent-93)



A solution of aminodiol 58 ( $105 \mathrm{mg}, 0.42 \mathrm{mmol}$ ) in anhydrous MeOH ( 13 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(21 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $109 \mathrm{mg}, 0.50 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from hexane-EtOAc 9:1 to hexane-EtOAc 8:2) afforded pure alcohol ent-93 (53 mg, 55\%) as a colorless oil.

Spectroscopic data for ent-93
$[\alpha]^{22}{ }_{\mathrm{D}}+2.8(c 0.82, \mathrm{MeOH})$.
(S)-5-[(tert-Butoxycarbonyl)amino]-4-methyl-1-pentanol (95)


A solution of aminodiol 52 ( $1.4 \mathrm{~g}, 5.9 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(35 \mathrm{~mL})$ containing $45 \% \mathrm{Pd}(\mathrm{OH})_{2}(630 \mathrm{mg})$ or $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(280 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bar of pressure. Then, di-tert-butyldicarbonate ( $1.55 \mathrm{~g}, 7.08 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions
were concentrated to give an oil. Flash chromatography (8:2 hexane-EtOAc) afforded pure alcohol 95 ( $893 \mathrm{mg}, 70 \%$ ) as a colorless oil.

## Spectroscopic data for 95

$[\alpha]^{22} \mathrm{D}-2.9$ (c 1.0, MeOH).
IR (film) 3355, $1692 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.90\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.05$1.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.30-1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.38\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.45-1.57(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ 2, H-4), 2.60 (br.s, 1H, OH), 2.88 (ddd, $J=13.2,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.99 (ddd, $J=$ $13.2,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.55(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.77$ (br.s, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.4\left(\mathrm{CH}_{3}\right), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $29.8(\mathrm{C}-3), 30.1(\mathrm{C}-2)$, 33.4 (C-4), 46.3 (C-5), 62.6 (C-1), 79.1 [ $C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 156.3(\mathrm{CO}) .}$

HRMS (ESI-TOF) m/z: $[\mathrm{M}-\mathrm{Boc}+2 \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}$ 118.1226; found 118.1227.

## (R)-5-[(tert-Butoxycarbonyl)amino]-4-methyl-1-pentanol (ent-95)



A solution of aminodiol 60 (190 mg, 0.80 mmol ) in anhydrous MeOH ( 13 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(38 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $210 \mathrm{mg}, 0.96 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from hexane-EtOAc 9:1 to hexane-EtOAc 1:1) afforded pure alcohol ent-95 ( $100 \mathrm{mg}, 57 \%$ ) as a colorless oil.

Spectroscopic data for ent-95
$[\alpha]^{22}{ }_{\mathrm{D}}+2.25(c$ 1.0, MeOH).

## (R)-5-[(tert-Butoxycarbonyl)amino]-4-isopropyl-1-pentanol (96)



A solution of aminodiol 54 ( $500 \mathrm{mg}, 1.88 \mathrm{mmol}$ ) in anhydrous MeOH ( 12 mL ) containing $45 \% \mathrm{Pd}(\mathrm{OH})_{2}(225 \mathrm{mg})$ or $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(100 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bar of pressure. Then, di-tert-butyldicarbonate ( $493 \mathrm{mg}, 2.26$ mmol ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from hexaneEtOAc 8:2 to EtOAc) afforded pure alcohol 96 (208 mg, $45 \%$ ) as a colorless oil.

Spectroscopic data for 96
$[\alpha]^{22}{ }_{\mathrm{D}}+2.5(c 1.25, \mathrm{MeOH})$.
IR (film) 3347, $1693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ ), 1.24$1.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.59-1.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.67-1.74$ [m, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], $3.06-3.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.64(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.52$ (br.s, 1 H , NH ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.2\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 24.6(\mathrm{C}-3), 28.4\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.5(\mathrm{C}-2), 41.4(\mathrm{C}-5), 44.3(\mathrm{C}-4), 62.9(\mathrm{C}-1), 79.1\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 156.2(\mathrm{NCO}) .}\right.$
HRMS (ESI-TOF) m/z: [M - tBu + 2H $]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NO}_{3}$ 190.1438; found 190.1438.
(R)-4-Benzyl-5-[(tert-butoxycarbonyl)amino]-1-pentanol (97)


A solution of aminodiol 56 ( $260 \mathrm{mg}, 0.83 \mathrm{mmol}$ ) in anhydrous MeOH ( 10 mL ) containing $45 \% \mathrm{Pd}(\mathrm{OH})_{2}(117 \mathrm{mg})$ or $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(52 \mathrm{mg})$ was hydrogenated at 75
${ }^{\circ} \mathrm{C}$ for 22 h under 5 bar of pressure. Then, di-tert-butyldicarbonate ( $217 \mathrm{mg}, 1.0$ mmol ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from hexaneEtOAc 8:2 to EtOAc) afforded pure alcohol 97 ( $123 \mathrm{mg}, 51 \%$ ) as a colorless oil.

Spectroscopic data for 97
$[\alpha]^{22} \mathrm{D}-1.9(c 0.8, \mathrm{MeOH})$.
IR (film) 3348, $1689 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}$ (400 MHz, $\mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.33-1.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.43[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.54-1.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 1.82-1.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.04$ (br.s., $1 \mathrm{H}, \mathrm{OH}$ ), $2.57(\mathrm{~d}$, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.09(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.58(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, 4.62 (br.s, 1H, NH), 7.14-7.20 (m, 3H, ArH), 7.25-7.29 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 27.2(\mathrm{C}-3), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $29.5(\mathrm{C}-2), 38.6\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $40.4(\mathrm{C}-4), 43.2(\mathrm{C}-5), 62.7(\mathrm{C}-1), 79.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 126.0(\mathrm{C}-p), 128.3,129.0(\mathrm{C}-o, \mathrm{C}-}\right.$ m), 140.3 (C-i), 156.3 (NCO).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{3} 294.2064$; found 294.2063.

## (R)-5-[(tert-Butoxycarbonyl)amino]-4-phenyl-1-pentanol (98)



A solution of aminodiol 57 ( $193 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) in anhydrous MeOH ( 16 mL ) containing $45 \% \mathrm{Pd}(\mathrm{OH})_{2}(86 \mathrm{mg})$ or $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(38 \mathrm{mg})$ was hydrogenated at 75 ${ }^{\circ} \mathrm{C}$ for 22 h under 5 bar of pressure. Then, di-tert-butyldicarbonate ( $169 \mathrm{mg}, 0.77$ mmol ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from hexaneEtOAc 8:2 to hexane-EtOAc 1:1) afforded pure alcohol 98 (97 mg, $53 \%$ ) as a colorless oil.

Spectroscopic data for 98
$[\alpha]^{22} \mathrm{D}+10.9(c 0.65, \mathrm{MeOH})$.
IR (film) 3363, $1693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.40\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.43-1.49 (m, 2H, $\mathrm{H}-2)$, 1.57-1.67 (m, 1H, H-3), 1.73-1.80 (m, 1H, H-3), 2.76 (br.s, $1 \mathrm{H}, \mathrm{H}-4$ ), 3.18 (ddd, $J=13.6,8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.57(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, 4.43 (br.s, 1H, NH), 7.15-7.17 (m, 2H, ArH), 7.21-7.27 (m, 1H, H-p), 7.30-7.34 (m, 2H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.6(\mathrm{C}-3), 30.4(\mathrm{C}-2), 45.9(\mathrm{C}-4)$, 46.2 (C-5), $62.6(\mathrm{C}-1), 79.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 126.7(\mathrm{C}-p), 127.8,128.6(\mathrm{C}-o, \mathrm{C}-m), 142.6$ (C-I), 156.0 (NCO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{3} 280.1907$; found 280.1905.

## (S)-5-[(tert-Butoxycarbonyl)amino]-2-methyl-1-pentanol (99)



A solution of aminodiol 62 ( $250 \mathrm{mg}, 1.05 \mathrm{mmol}$ ) in anhydrous MeOH ( 15 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(50 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $276 \mathrm{mg}, 1.26 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 24 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography ( $8: 2$ hexane-EtOAc) afforded pure alcohol 99 ( $110 \mathrm{mg}, 48 \%$ ) as a colorless oil.

Spectroscopic data for 99
$[\alpha]^{22}{ }_{\mathrm{D}}-3.9\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right)$.
IR (film) 3356, 1689, $1454 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.92\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.08$1.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.44$ [s, masked signal, $10 \mathrm{H}, \mathrm{H}-3,\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.49-1.51 (m, 1H, H-4),
1.55-1.58 (m, 1H, H-4), 1.60-1.65 (m, 1H, H-2), 3.11 (m, 2H, H-5), $3.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1)$, 4.54 (brs, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz) $\delta 16.5\left(\mathrm{CH}_{3}\right), 27.4(\mathrm{C}-4), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.0(\mathrm{C}-3), 35.3(\mathrm{C}-$ 2), 40.6 (C-5), $67.8(\mathrm{C}-1), 79.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.1(\mathrm{CO})$.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{3} 218.1751$; found 218.1754.

## (S)-5-[(tert-Butoxycarbonyl)amino]-2-ethyl-1-pentanol (100)



A solution of aminodiol 63 ( $250 \mathrm{mg}, 1.00 \mathrm{mmol}$ ) in anhydrous MeOH ( 17 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(50 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 22 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $261 \mathrm{mg}, 1.19 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (8:2 hexane-EtOAc) afforded pure alcohol 100 ( $127 \mathrm{mg}, 55 \%$ ) as a colorless oil.

Spectroscopic data for 100
$[\alpha]^{22} \mathrm{D}+0.87\left(c 1.75, \mathrm{CHCl}_{3}\right)$.
IR (film) 3449, $1670 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.84\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.201.37 ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-2, \mathrm{H}-3$ ), 1.39 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.45-1.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.95$ (brs. 1H, OH), 2.95-2.99 (m, 2H, H-5), 3.45 (dd, $J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.49 (dd, $J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.20 (brs, $1 \mathrm{H}, \mathrm{NH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz) $\delta 11.0\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.1(\mathrm{C}-4), 27.3(\mathrm{C}-3), 28.3$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.7(\mathrm{C}-5), 41.4(\mathrm{C}-2), 64.5(\mathrm{C}-1), 78.9\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 155.5(\mathrm{CO}) .}\right.$
HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NNaO}_{3} 254.1727$; found 254.1724.

## (S)-2-Benzyl-5-[(tert-Butoxycarbonyl)amino]-1-pentanol (101)



A solution of aminodiol 64 ( $290 \mathrm{mg}, 0.93 \mathrm{mmol}$ ) in anhydrous MeOH ( 15 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(58 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $242 \mathrm{mg}, 1.11 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 101 ( $160 \mathrm{mg}, 60 \%$ ) as a colorless oil.

Spectroscopic data for 101
$[\alpha]^{22} \mathrm{D}-7.3\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
IR (film) 3349, $1693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.26-1.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.36-1.42(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3$ ), 1.43 [s, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49-1.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.76-1.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.91$ (brs, 1H, OH), 2.59 (dd, $J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.64 (dd, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar}$ ), 3.02-3.14 (m, 2H, H-5), 3.49 (dd, $J=10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.54 (dd, $J=$ $10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.59 (brs, $1 \mathrm{H}, \mathrm{NH}$ ), 7.16-7.20 (m, 3H, ArH), 7.25-7.29 (m, 3H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 27.4(\mathrm{C}-4), 27.6(\mathrm{C}-3), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.6\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, 40.6 (C-5), 42.1 (C-2), 64.4 (C-1), $79.1\left[C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 125.9(\mathrm{C}-p), 128.3(\mathrm{C}-o), 129.1(\mathrm{C}-\mathrm{C}}\right.$ m), 140.5 (C-ı), 156.1 (CO).

HRMS (ESI-TOF) m/z: [M $-\mathrm{Boc}+\mathrm{H}]{ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}$ 194.1539; found 194.1536.
(R)-5-[(tert-Butoxycarbonyl)amino]-2-(3,5-difluorobenzyl)-1-pentanol (102)


A solution of aminodiol 66 ( $299 \mathrm{mg}, 0.86 \mathrm{mmol}$ ) in anhydrous MeOH ( 15 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(60 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $225 \mathrm{mg}, 1.03 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 102 ( $140 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for $\mathbf{1 0 2}$
$[\alpha]^{22}{ }_{\mathrm{D}}+1.65\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3362, $1685 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 1.22-1.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.39[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.40-1.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.73-1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.50(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.66 (dd, $J=13.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.03 (brm, $2 \mathrm{H}, \mathrm{H}-5$ ), 3.47 (m, 1 H , $\mathrm{H}-2), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.58(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.75$ (brs, 1H, NH), $6.59(\mathrm{~m}, 1 \mathrm{H}$, F-ArH), 6.65 ( $\mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{F}-\mathrm{ArH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 27.3(\mathrm{C}-4), 27.4(\mathrm{C}-3), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.3\left(\mathrm{CH}_{2} \mathrm{Ar}\right.$, $\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=8.5 \mathrm{~Hz}$ ), $40.5(\mathrm{C}-5), 41.7(\mathrm{C}-2), 65.2(\mathrm{C}-1), 79.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 101.2(\mathrm{~F}-\mathrm{Ar} \mathrm{C-4}, \mathrm{t}$, $J_{\mathrm{C}-\mathrm{F}}=25.7 \mathrm{~Hz}$ ), 111.7 (F-Ar C-2 and C-6, dd, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=17.9,6.2 \mathrm{~Hz}$ ), 144.7 (F-Ar C-1, t, $J_{C-F}=8.5 \mathrm{~Hz}$ ), $156.2(\mathrm{CO}), 162.8\left(\mathrm{~F}-\mathrm{Ar} \mathrm{C-3} \mathrm{and} \mathrm{C-5}, \mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=248.4,13.2 \mathrm{~Hz}\right)$.
HRMS (ESI-TOF) m/z: [M - tBu $+2 \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{3}$ 274.1249; found 274.1249.
(S)-2-Benzyl-5-[(tert-butoxycarbonyl)amino]-2-ethyl-1-pentanol (103)


A solution of aminodiol 68 ( $200 \mathrm{mg}, 0.59 \mathrm{mmol}$ ) in anhydrous MeOH ( 16 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(40 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $141 \mathrm{mg}, 0.64 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 103 ( $96 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for 103
$[\alpha]^{22} \mathrm{D}+8.1\left(c 2.2, \mathrm{CHCl}_{3}\right)$.
IR (film) 3365, 2935, $1689 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.81\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.09-1.21 (m, 4H, H-3, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.37 [ $\left.\mathrm{s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.41-1.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.85$ (brs, 1H, OH), 2.50 (brs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$ ), 2.97-3.05 (m, 2H, H-5), 3.21 (s, 2H, H-1), 4.63 (brs, 1H, NH), 7.10-7.13 (m, 3H, ArH), 7.17-7.21 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.7(\mathrm{C}-4), 25.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 28.4$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.7(\mathrm{C}-3), 40.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 41.1(\mathrm{C}-5), 41.2(\mathrm{C}-2), 65.6(\mathrm{C}-1), 79.1$ [ $C\left(\mathrm{CH}_{3}\right)_{3}$ ], 125.9 (C-p), 127.9 (C-o), 130.3 (C-m), 138.5 (C-ı), 156.1 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3} 322.2377$; found 322.2374.
(2S,4S)-5-[(tert-Butoxycarbonyl)amino]-4-ethyl-2-methyl-1-pentanol (104)


A solution of aminodiol 71 ( $365 \mathrm{mg}, 1.38 \mathrm{mmol}$ ) in anhydrous MeOH ( 13 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(75 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $330 \mathrm{mg}, 1.51 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 104 ( $213 \mathrm{mg}, 63 \%$ ) as a colorless oil.

Spectroscopic data for 104
$[\alpha]^{22} \mathrm{D}-13.7\left(\mathrm{c} 1.41, \mathrm{CHCl}_{3}\right)$.
IR (film) 3346, $1689 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 0.91 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.04 (ddd, $J=13.9,8.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 1.24-1.37 (m, 3H, $\left.\mathrm{H}-3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.53-1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.69-1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.05-3.09 (m, 2H, H-5), 3.41-3.52 (m, 2H, H-1), 4.57 (brs, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $16.9\left(\mathrm{CH}_{3}\right)$, $24.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 28.4$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.0(\mathrm{C}-2), 35.2(\mathrm{C}-3), 36.9(\mathrm{C}-4), 43.8(\mathrm{C}-5), 68.4(\mathrm{C}-1), 79.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 156.2 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}-\mathrm{Boc}+2 \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}$ 146.1539; found 146.1541.
(2S,4S)-5-[(tert-Butoxycarbonyl)amino]-4-ethyl-2-isobutyl-1-pentanol (105)


A solution of aminodiol 72 ( $156 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in anhydrous MeOH ( 17 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(31 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $122 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 105 ( $75 \mathrm{mg}, 51 \%$ ) as a colorless oil.

Spectroscopic data for 105
$[\alpha]^{22} \mathrm{D}-2.5\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
IR (film) 3354, $1691 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.88-0.93\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$, 1.03-1.10 [m, 2H, H-3, CH2CH(CH3 $)_{2}$ ], 1.14-1.21 [m, 1H, CH2CH(CH3 $)_{2}$ ], 1.27-1.35 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.37-1.50 (m, 2H, H-3, H-4), 1.44 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.70[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], 2.18 (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.99 (dt, $J=13.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.20-3.28 (m, 1H, $\mathrm{H}-5), 3.36-3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.60$ (dd, $J=10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.74 (brs, 1H, NH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{3}\right), 25.0$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.4(\mathrm{CH}), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.6(\mathrm{C}-3), 35.8(\mathrm{C}-2), 37.5(\mathrm{C}-4), 41.7$ $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 43.0(\mathrm{C}-5), 65.7(\mathrm{C}-1), 79.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 156.6(\mathrm{CO})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NO}_{3}$ 288.2533; found 288.2543.
(2S,4S)-2-Benzyl-5-[(tert-butoxycarbonyl)amino]-4-ethyl-1-pentanol (106)


A solution of aminodiol 73 ( $297 \mathrm{mg}, 0.87 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(20 \mathrm{~mL}$ ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(60 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 17 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $209 \mathrm{mg}, 0.96 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 16 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography ( $8: 2$ hexane-EtOAc) afforded pure alcohol 106 ( $157 \mathrm{mg}, 55 \%$ ) as a colorless oil.

Spectroscopic data for 106
$[\alpha]^{22}{ }_{\mathrm{D}}-14.1\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$.
IR (film) 3360, $1685 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}, 5 \mathbf{5 0}^{\circ} \mathrm{C}$ ) $\delta 0.83(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.14-1.20 (m, 1H, H-3), 1.23-1.30 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.38-1.50 (m, 2H, H-3, $\mathrm{H}-4), 1.43$ [s, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.88-1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.55-2.69\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 2.99(\mathrm{dt}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.15(\mathrm{brm}, 1 \mathrm{H}, \mathrm{H}-5), 3.44(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.55$ (dd, $J=$ $10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.53 (brs, 1H, NH), 7.15-7.19 (m, 3H, ArH), 7.24-7.28 (m, 2H, ArH ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}, 5{ }^{\circ} \mathrm{C}\right) \delta 10.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 33.0 (C-3), 37.7 (C-4), $38.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 40.4$ (C-2), 43.5 (C-5), 65.0 (C-1), 79.1 [ $C\left(\mathrm{CH}_{3}\right)_{3}$ ], 125.8 (C-p), 128.3 (C-o), 129.1 (C-m), 140.6 (C-ı), 156.4 (CO).
HRMS (ESI-TOF) m/z: [ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NNaO}_{3} 344.2196$; found 344.2184.
(R)-5-[(tert-Butoxycarbonyl)amino]-3-methyl-1-pentanol (107)


A solution of aminodiol 74 ( $140 \mathrm{mg}, 0.59 \mathrm{mmol}$ ) in anhydrous MeOH ( 16 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(28 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 17 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $142 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (8:2 hexane-EtOAc) afforded pure alcohol 107 ( $77 \mathrm{mg}, 60 \%$ ) as a colorless oil.

Spectroscopic data for 107
$[\alpha]^{22}{ }_{\mathrm{D}}+4.3\left(\mathrm{c} 0.44, \mathrm{CHCl}_{3}\right)$.
IR (film) 3349, $1686 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.88\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27-$ $1.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 1.39\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.43-1.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.54-1.66(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3$ ), 2.41 (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 3.01-3.10 (m, 1H, H-5), 3.12-3.20 (m, 1H, H-5), 3.57-3.68 (m, 2H, H-1), 4.70 (brs, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.6\left(\mathrm{CH}_{3}\right), 26.8(\mathrm{C}-3), 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.1(\mathrm{C}-4)$, 38.3 (C-5), 39.3 (C-2), 60.4 (C-1), $79.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 156.2(\mathrm{CO}) .}\right.$

HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NNaO}_{3} 240.1570$; found: 240.1575.

## (R)-5-[(tert-Butoxycarbonyl)amino]-3-phenyl-1-pentanol (108)



A solution of aminodiol 76 ( $48 \mathrm{mg}, 0.16 \mathrm{mmol}$ ) in anhydrous MeOH ( 15 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(9.6 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 17 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $38 \mathrm{mg}, 0.18 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography ( $8: 2$ hexane-EtOAc) afforded pure alcohol 108 ( $23 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for 108
$[\alpha]^{22}{ }_{\mathrm{D}}+14.3\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$.
IR (film) 3350, $1689 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.42\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.49-1.57 (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 1.71-1.89 (m, 3H, H-2, H-4), 1.91-1.98 (m, 1H, H-2), $2.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 2.93-3.06 (m, 2H, H-5), 3.40-3.47 (m, 1H, H-1), 3.51-3.57 (m, 1H, H-1), 4.47 (brs, 1H, NH ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.9(\mathrm{C}-4), 38.8(\mathrm{C}-5), 39.3(\mathrm{C}-2)$, 39.7 (C-3), $60.7(\mathrm{C}-1), 79.1\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 126.5(\mathrm{C}-p), 127.5(\mathrm{C}-o), 128.6(\mathrm{C}-m), 144.1$ (C-ı), 156.0 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{3} 302.1727$; found 302.1721.
(3S,4S)-5-[(tert-Butoxycarbonyl)amino]-4-ethyl-3-methyl-1-pentanol (109)


A solution of aminodiol 79 (101 mg, 0.38 mmol ) in anhydrous MeOH ( 13 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(20 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $91 \mathrm{mg}, 0.42 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 109 ( $47 \mathrm{mg}, 51 \%$ ) as a colorless oil.

Spectroscopic data for 109
$[\alpha]^{22} \mathrm{D}-1.5\left(c 2.6, \mathrm{CHCl}_{3}\right)$.
IR (film) 3346, $1692 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.88-0.94\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.15-1.22$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.26-1.40 (m, 3H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-2, \mathrm{H}-4\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.66$1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.05$ (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.96-3.02 (m, $1 \mathrm{H}, \mathrm{H}-5$ ),
3.14-3.19 (m, 1H, H-5), 3.58-3.64 (m, 1H, H-1), 3.71-3.76 (m, 1H, H-1), 4.66 (brs, 1H, NH ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 12.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $16.4\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 28.4$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.8(\mathrm{C}-3), 35.6(\mathrm{C}-2), 41.0(\mathrm{C}-5), 45.9(\mathrm{C}-4), 61.1(\mathrm{C}-1), 79.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 156.5 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{3} 246.2064$; found 246.2067.

## (3S,4S)-5-[(tert-Butoxycarbonyl)amino]-4-ethyl-3-phenyl-1-pentanol (110)



A solution of aminodiol $\mathbf{8 1}(110 \mathrm{mg}, 0.34 \mathrm{mmol})$ in anhydrous MeOH ( 15 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(22 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $81 \mathrm{mg}, 0.37 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 110 ( $52 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for 110
$[\alpha]^{22} \mathrm{D}+5.1\left(c \quad 0.6, \mathrm{CHCl}_{3}\right)$.
IR (film) 3350, $1694 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.93\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.31-1.37 (m, 1H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.41\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.43-1.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.62$1.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{OH}), 1.81-1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.02-2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.78$ (brm, $1 \mathrm{H}, \mathrm{H}-3), 2.82-2.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.09-3.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.32-3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$, 3.49-3.55 (brm, 1H, H-1), 4.40 (brs, $1 \mathrm{H}, \mathrm{NH}$ ), 7.14-7.21 (m, 3H, ArH), 7.27-7.31 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 34.5 (C-2), 41.2 ( $\mathrm{C}-5$ ), 42.7 (C-3), 45.8 (C-4), $61.0(\mathrm{C}-1), 79.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 126.4(\mathrm{C}-p) \text {, }}\right.$ 128.2 (C-o), 128.4 (C-m), 142.9 (C-i), 156.2 (CO).

HRMS (ESI-TOF) m/z: [M - Boc $+2 \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}$ 208.1696; found 208.1696.
(2S,3R)-5-[(tert-Butoxycarbonyl)amino]-2,3-(isopropylidendioxy)-1-pentanol (111)


A solution of aminodiol 85 ( $82 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) in anhydrous MeOH ( 14 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(16 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $67 \mathrm{mg}, 0.31 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 111 ( $40 \mathrm{mg}, 52 \%$ ) as a colorless oil.

Spectroscopic data for 111
$[\alpha]^{22}{ }_{\mathrm{D}}-4.18\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right)$.
IR (film) 3368, $1695 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.23$ (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 3.18-3.34 (m, 2H, H-5), 3.62 (brm, 2H, H-1), 4.15-4.24 (m, 2H, H-2, H-3), 4.90 (brs, 1H, NH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 25.3\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9(\mathrm{C}-4)$, 44.5 (C-5), $61.1(\mathrm{C}-1), 64.8(\mathrm{CHN}), 66.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.7(\mathrm{C}-3), 77.7(\mathrm{C}-2), 79.5$ [ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 108.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 127.4(\mathrm{C}-o), 127.9(\mathrm{C}-p), 128.7(\mathrm{C}-m), 138.8(\mathrm{C}-ı) .}\right.$
HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NNaO}_{5} 298.1625$; found 298.1626.
(2R,3S)-5-[(tert-Butoxycarbonyl)amino]-2,3-(isopropylidendioxy)-1-pentanol (112)


A solution of aminodiol 86 ( $150 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in anhydrous MeOH ( 13 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(30 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $122 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 112 ( $84 \mathrm{mg}, 60 \%$ ) as a colorless oil.

Spectroscopic data for 112
$[\alpha]^{22}{ }_{\mathrm{D}}+4.00\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right)$.
IR (film) 3368, $1695 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.23$ (brs, 1H, OH), 3.18-3.34 (m, 2H, H-5), 3.62 (brm, 2H, H-1), 4.15-4.24 (m, 2H, H-2, H-3), 4.90 (brs, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 25.3\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9(\mathrm{C}-4)$, 44.5 (C-5), 61.1 (C-1), $64.8(\mathrm{CHN}), 66.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.7(\mathrm{C}-3), 77.7(\mathrm{C}-2), 79.5$ [ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 108.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 127.4(\mathrm{C}-o), 127.9(\mathrm{C}-p), 128.7(\mathrm{C}-m), 138.8(\mathrm{C}-ı) .}\right.$
HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NNaO}_{5}$ 298.1625; found 298.1626.
(R)-5-[(tert-Butoxycarbonyl)amino]-5-isopropyl-1-pentanol (113)


A solution of aminodiol 91 ( $100 \mathrm{mg}, 0.38 \mathrm{mmol}$ ) in anhydrous MeOH ( 15 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(20 \mathrm{mg})$ was hydrogenated at $75^{\circ} \mathrm{C}$ for 24 h under 5 bars of pressure. Then, di-tert-butyldicarbonate ( $99 \mathrm{mg}, 0.45 \mathrm{mmol}$ ) was added, and the mixture was stirred at room temperature for 18 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give an oil. Flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $8: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) afforded pure alcohol 113 ( $45 \mathrm{mg}, 49 \%$ ) as a colorless oil.

Spectroscopic data for 113
$[\alpha]^{22}{ }_{\mathrm{D}}+2.95\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$.
IR (film) 3334, $1682 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.85\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.25-1.30 (m, 1H, H-4), 1.30-1.35 (m, 2H, H-3), $1.44[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.48-1.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 1.62-1.71(\mathrm{~m}, \mathrm{CH}), 3.40-3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.63$ (dd, J=1.6, 6.4 Hz, 2H, H-1), 4.36 (d, J= $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.5\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 22.3(\mathrm{C}-3), 28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 32.1 (C-4), 32.2 (CH), 32.5 (C-2), $55.3(\mathrm{C}-5), 62.5(\mathrm{C}-1), 78.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 156.2(\mathrm{CO})$.

HRMS (ESI-TOF) m/z: [M $-\mathrm{Boc}+2 \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}$ 146.1539; found 146.1536.

## 5-\{[(1 R)-2-Hidroxy-1-phenylethyl]amino\}-1-pentanol (114)


$n$-BuLi ( 3.56 mL of a 2.5 M solution in hexanes, 8.9 mmol ) was added to a solution of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(275 \mathrm{mg}, 8.9 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at this temperature for 10 min and at room temperature for 15 minutes. Then, this solution was added to a solution of 23 a ( $450 \mathrm{mg}, 2.07 \mathrm{mmol}$ ) in anhydrous THF ( 5 mL ), and the stirring was continued at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. Flash
chromatography (from 1:1 hexane-EtOAc to $8: 2 \mathrm{EtOAc}-\mathrm{EtOH}$ ) of the residue gave aminoalcohol 114 ( $310 \mathrm{mg}, 67 \%$ ) as a colorless oil.

Spectroscopic data for 114
$[\alpha]^{22} \mathrm{D}-54.2\left(c 1.25, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.37-1.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3)$, 1.47-1.58 (m, $4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$ ), 2.46-2.60 (m, 2H, H-5), 3.45 (brs, $3 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$ ), 3.55 (dd, $J=10.5,8.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $3.62\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right.$ ), 3.71 (dd, $J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.76 (dd, J= 8.5, 4.4 Hz, 1H, CH), 7.26-7.30 (m, 3H, ArH), 7.33-7.37 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 23.2$ (C-3), 29.2 (C-4), 32.1 (C-2), 47.0 (C-5), 61.9 (C-1), $64.6(\mathrm{CH}), 66.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3(\mathrm{C}-o), 127.5(\mathrm{C}-p), 128.5(\mathrm{C}-m), 140.1(\mathrm{C}-1)$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2} 224.1645$; found 224.1638.

## (R)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-1-pentanamine (115)


tert-Butyldiphenylsilyl chloride ( $1.1 \mathrm{~mL}, 4.24 \mathrm{mmol}$ ) and imidazole ( $289 \mathrm{mg}, 4.24$ mmol ) were added to a solution of aminodiol 114 ( $430 \mathrm{mg}, 1.93 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 16 mL ), and the mixture was heated at reflux for 17 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to 8:2 hexane-Et 2 O ) to afford pure compound 115 ( $890 \mathrm{mg}, 72 \%$ ) as a colorless oil.
Spectroscopic data for 115
$[\alpha]^{22}{ }_{\mathrm{D}}-13.3\left(\mathrm{c} 1.3, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.10\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.11\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.46(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), $1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.71(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$,
$2 \mathrm{H}, \mathrm{H}-5), 3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.83(\mathrm{dd}, \mathrm{J}=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.30-7.32(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.39-7.46 (m, 13H, ArH), 7.66-7.74 (m, 8H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $23.5(\mathrm{C}-3), 26.8,26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.0$ (C-2), $32.5(\mathrm{C}-4), 47.6(\mathrm{C}-1), 63.9$ and $65.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.9(\mathrm{CH}), 127.2(\mathrm{C}-\mathrm{Ar}), 127.5$ (C-Ar), 127.6 (C-Ar), 128.2 (C-Ar), 129.5 (C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 133.3 (Ci), 133.5 (C-i), 134.1 (C-ı), 134.9 (C-i), 135.5 (C-Ar), 140.9 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{NO}_{2} \mathrm{Si}_{2} 700.4001$; found 700.3996 .

## 6-[(tert-Butyldiphenylsilyl)oxy]pentanenitrile (116)



Method A: HTIB ( $451 \mathrm{mg}, 1.10 \mathrm{mmol}$ ) was added to a solution of $115(309 \mathrm{mg}, 0.44$ mmol ) and $\mathrm{NH}_{4} \mathrm{OAc}(341 \mathrm{mg}, 4.42 \mathrm{mmol})$ in acetonitrile-water ( $4: 1,2.5 \mathrm{~mL}$ ), and the reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 19 h . Saturated aqueous $\mathrm{NaHCO}_{3}$ was added, and the mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to $1: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford pure nitrile 116 (70 mg, 42\%) as a colorless oil.

Method B: 20\% Aqueous solution of $\mathrm{NH}_{3}(6 \mathrm{~mL})$ and iodine ( $228 \mathrm{mg}, 0.90 \mathrm{mmol}$ ) were added to a solution of amine $115(70 \mathrm{mg}, 0.10 \mathrm{mmol})$ in anhydrous THF ( 2 mL ) at room temperature, and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 21 h . The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated to give an oil. Flash chromatography (from hexane to $6: 4$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded pure nitrile 116 (24 $\mathrm{mg}, 70 \%$ ) as a yellow oil.

Spectroscopic data for 116

IR (film) 2247, $1428 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.05$ [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.66-1.71 (m, 2H), 1.75-1.82 (m, 2 H ), $2.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 3.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 7.38-7.41(\mathrm{~m}, 6 \mathrm{H}$, ArH), 7.64-7.66 (m, 4H, ArH).

[^75]HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NOSi} 338.1935$; found 338.1921.

## 2-[(tert-Butyldiphenylsilyl)oxy]-1-phenylethanone (117)



IR (film) 2929, 1707, $1113 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 1.10\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.36-7.45(\mathrm{~m}$, 9H, ArH), 7.69-7.73 (m, 4H, ArH), 7.80-7.83 (m, 2H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 67.6\left(\mathrm{CH}_{2}\right), 127.8(\mathrm{C}-$ Ar), 128.5 (C-Ar), 129.9 (C-Ar), 132.9 (C-ı), 133.2 (C-i), 135.6 (C-Ar), 196.7 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si} 397.1594$; found 397.1592.
(2S,3S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-2,3-dimethyl-1-pentanamine (118)

tert-Butyldiphenylsilyl chloride ( $0.75 \mathrm{~mL}, 2.89 \mathrm{mmol}$ ) and imidazole ( $197 \mathrm{mg}, 2.89$ mmol ) were added to a solution of aminodiol 83 ( $346 \mathrm{mg}, 1.38 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mL ), and the mixture was heated at reflux for 17 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to $8: 2$ hexane- $\mathrm{Et}_{2} \mathrm{O}$ ) to afford pure compound 118 ( $872 \mathrm{mg}, 87 \%$ ) as a colorless oil.

Spectroscopic data for 118
$[\alpha]^{22}$ D $-13.3(c 1.33, \mathrm{MeOH})$.
IR (film) 3071, $1111 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.82\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.07$ [s, $18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.21-1.30 (m, 1H, H-4), 1.61-1.73 (m, 3H, H-2, H-3, H-4), 2.25-2.31 (m, 1H, H-1), 2.48 (dd, $J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.64-3.79 (m, 5H, H-5, $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CHN}$ ), 7.28-7.42 (m, 21H, ArH), 7.68 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 14.8\left(\mathrm{CH}_{3}\right)$, $17.1\left(\mathrm{CH}_{3}\right), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.3$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 32.3(\mathrm{C}-3), 35.3(\mathrm{C}-4), 38.6(\mathrm{C}-2), 51.6(\mathrm{C}-$ 1), 62.7 and $65.7\left(\mathrm{C}-5\right.$ and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 69.0(\mathrm{CHN}), 127.2$ (C-Ar), 127.6 (C-Ar), 127.7 (CAr), 128.2(C-Ar), (C-Ar), 129.5 (C-Ar), 129.7 (C-Ar), 129.8 (C-Ar), 133.1(C-ı), 133.5 (C-ו), 134.2, (C-Ar), 134.9 (C-ı), 135.6 (C-Ar).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{NO}_{2} \mathrm{Si}_{2} 728.4314$; found 728.4306.
(2S,3S)-5-[(tert-Butyldiphenylsilyl)oxy]-2,3-dimethylpentanenitrile (119)

$20 \%$ Aqueous solution of $\mathrm{NH}_{3}(27 \mathrm{~mL})$ and iodine ( $1.55 \mathrm{~g}, 6.13 \mathrm{mmol}$ ) were added to a solution of amine 118 ( $557 \mathrm{mg}, 0.77 \mathrm{mmol}$ ) in anhydrous THF ( 3 mL ) at room temperature, and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 21 h . The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated to give an oil. Flash chromatography (from hexane to 6:4 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded pure nitrile 119 (201 $\mathrm{mg}, 72 \%$ ) as a yellow oil.

Spectroscopic data for 119
$[\alpha]^{22} \mathrm{D}+4.94\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
IR (film) $2237 \mathrm{~cm}^{-1}$.

[^76](S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-2-methyl-1-pentanamine (120)

tert-Butyldiphenylsilyl chloride ( $0.94 \mathrm{~mL}, 3.62 \mathrm{mmol}$ ) and imidazole ( $246 \mathrm{mg}, 3.62$ mmol ) were added to a solution of aminodiol 52 ( $390 \mathrm{mg}, 1.64 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 14 mL ), and the mixture was heated at reflux for 14 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to $9: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$ ) to afford pure compound 120 ( $860 \mathrm{mg}, 74 \%$ ) as a colorless oil.

Spectroscopic data for 120
$[\alpha]^{22}{ }_{\mathrm{D}}-17.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3070, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.97\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12[\mathrm{~s}$, $18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.22-1.29 (m, 1H, H-3), 1.49-1.68 (m, 4H, H-2, H-3, H-4), $2.33(\mathrm{dd}, \mathrm{J}=$ $11.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 2.44 (dd, $J=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.68-3.77 (m, 4H, H-5, $\mathrm{CH}_{2} \mathrm{O}$ ), 3.81 (dd, $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.23-7.25 (m, 5H, ArH), 7.31-7.42 (m, 12H, ArH), 7.60-7.66 (m, 8H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.2\left(\mathrm{CH}_{3}\right), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.0(\mathrm{C}-$ 4), 30.9 (C-3), 33.3 (C-2), $54.3(\mathrm{C}-1), 64.3(\mathrm{C}-5), 65.4(\mathrm{CHN}), 69.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.2(\mathrm{C}-$ Ar), 127.5 (C-Ar), 127.7 (C-Ar), 128.1 (C-Ar), 129.5 (C-Ar), 129.6 (C-Ar), 129.7 (CAr), 133.3 (C-ı), 133.5 (C-ı), 134.1 (C-ו), 135.6 (C-Ar), 141.1 (C-ו).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{NO}_{2} \mathrm{Si}_{2} 714.4157$; found 714.4154 .

## (S)-5-[(tert-Butyldiphenylsilyl)oxy]-2-methylpentanenitrile (121)


$20 \%$ Aqueous solution of $\mathrm{NH}_{3}(17 \mathrm{~mL})$ and iodine ( $1.05 \mathrm{~g}, 4.12 \mathrm{mmol}$ ) were added to a solution of amine 120 ( $360 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in anhydrous THF ( 5 mL ) at room temperature, and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 13 h . The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated to give an oil. Flash chromatography (from hexane to $6: 4$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded pure nitrile 121 (92 $\mathrm{mg}, 51 \%$ ) as a yellow oil.

Spectroscopic data for 121
$[\alpha]^{22}{ }_{\mathrm{D}}+12.3\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right)$.
IR (film) 2239, $1428 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.05\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.29(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, \mathrm{CH}_{3}$ ), 1.62-1.76 (m, 4H, H-3, H-4), 2.58-2.64 (m, 1H, H-2), $3.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 7.37-7.46 (m, 6H, ArH), 7.63-7.67 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 18.0\left(\mathrm{CH}_{3}\right)$, $19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.2(\mathrm{C}-2), 26.8$ [ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 29.7 and 30.7 (C-3, C-4), $62.9(\mathrm{C}-5), 122.9(\mathrm{CN}), 127.7(\mathrm{C}-o)$, 129.7 (C-p), 133.6 (C-ı), 135.5 (C-m).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NOSi} 352.2091$; found 352.2107 .

## (S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-4-ethyl-1-pentanamine (122)


tert-Butyldiphenylsilyl chloride ( $9.1 \mathrm{~mL}, 34.8 \mathrm{mmol}$ ) and imidazole ( $3.39 \mathrm{~g}, 34.8 \mathrm{mmol}$ ) were added to a solution of aminodiol $63(4.18 \mathrm{~g}, 16.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 140 mL ), and the mixture was heated at reflux for 17 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to $9: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$ ) to afford pure compound 122 ( $9.7 \mathrm{~g}, 81 \%$ ) as a colorless oil.

Spectroscopic data for 122
$[\alpha]^{22}{ }_{\mathrm{D}}-3.55\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3070, $1112 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.82\left(\mathrm{t}, \boldsymbol{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.05$ [s, 18H, $\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.30-1.38 (m, 3H, H-2, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.38-1.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$, ), 1.90 (brs, $1 \mathrm{H}, \mathrm{NH}$ ), 2.39-2.49 (m, $2 \mathrm{H}, \mathrm{H}-1$ ), 3.53 (dd, $J=4.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-5)$, 3.63-3.70 (m, 2H, CH2O), 3.77 (dd, $J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.19-7.26 (m, $5 \mathrm{H}, \mathrm{ArH}$ ), 7.32-7.44 (m, 12H, ArH), 7.60-7.67 (m, 8H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 19.2, $19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $23.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 26.8, $26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7(\mathrm{C}-3), 28.8(\mathrm{C}-2), 42.0(\mathrm{C}-4), 48.2(\mathrm{C}-1), 65.1(\mathrm{CHN}), 65.8$ (C-5), $69.0\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 127.2 (C-Ar), 127.5 (C-Ar), 127.6 (C-Ar), 127.7 (C-Ar), 128.2 (CAr), 129.5 (C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 133.3 (C-ı), 133.5 (C-ı), 134.1 (C-ı), 134.1 (C-ı), 135.6 (C-Ar), 135.6 (C-Ar), 141.1 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{NO}_{2} \mathrm{Si}_{2} 728.4314$; found 728.4314.
(S)-5-[(tert-Butyldiphenylsilyl)oxy]-4-ethylpentanenitrile (123)

$20 \%$ Aqueous solution of $\mathrm{NH}_{3}(6 \mathrm{~mL})$ and iodine ( $228 \mathrm{mg}, 0.90 \mathrm{mmol}$ ) were added to a solution of amine 122 ( $70 \mathrm{mg}, 0.01 \mathrm{mmol}$ ) in anhydrous THF ( 2 mL ) at room temperature, and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 21 h . The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated to give an oil. Flash chromatography (from hexane to 6:4 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afforded pure nitrile 123 (25 $\mathrm{mg}, 70 \%$ ) as a yellow oil.

Spectroscopic data for 123
$[\alpha]^{22}{ }_{\mathrm{D}}+3.75\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$.
IR (film) 2960, 1471, 1427, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06[\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.27-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50-1.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.65-1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3), 1.74-1.89 (m, 1H, H-3), 2.27-2.32 (m, 2H, H-2), $3.53(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), 3.59 (dd, $J=10.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), $7.37-7.46$ (m, 6H, ArH), $7.63-7.65(\mathrm{~m}, 4 \mathrm{H}$, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3}\right), 14.9(\mathrm{C}-2), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.3\left(\mathrm{CH}_{2}\right)$, $26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.1(\mathrm{C}-3), 41.1(\mathrm{C}-4), 64.9(\mathrm{C}-5), 120.0(\mathrm{CN}), 127.7(\mathrm{C}-0), 129.7(\mathrm{C}-$ p), 133.4 (C-i), 135.5 (C-m).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} N O S i 366.2248$; found 366.2240.

## 5-[(tert-Butyldiphenylsilyl)oxy]pentanoic acid (124)



A solution of amine 115 ( $285 \mathrm{mg}, 0.41 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added to a solution of $m$-chloroperbenzoic acid ( $70 \%$ of purity, $422 \mathrm{mg}, 1.71 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 4 mL ) at reflux temperature, and the resulting mixture was stirred at this temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed (from 1:1 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ) to afford the nitroso dimer 126 ( 70 mg ) and CArboxylic acid 124 (yellow oil; $103 \mathrm{mg}, 71 \%$ ).

## Spectroscopic data for 124

IR (film) 3071, 2931, 2858, $1709 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.05\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.57-1.64(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4)$, 1.70-1.78 (m, 2H, H-3), $2.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 3.67(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 5), 7.35-7.43 (m, 6H, ArH), 7.65-7.67 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 21.1(\mathrm{C}-3), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.8(\mathrm{C}-1 .) ~}^{\text {( }}\right.$ 4), 33.7 (C-2), 63.3 (C-5), 127.6 (C-o), 129.6 (C-p), 133.8 (C-ı), 135.5 (C-m).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si} 357.1880$; found 357.1886.

Spectroscopic data for nitro derivative 125


IR (film) 1557, $1113 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.05\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 3.88(\mathrm{dd}, \mathrm{J}=$ $11.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 4.62 (dd, $J=11.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ ), 5.61 (dd, $J=10.0,3.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$ ), $7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.38-7.42(\mathrm{~m} .8 \mathrm{H}, \mathrm{ArH}), 7.64-7.66$ (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.6$ and 26.8 (1 solo, no 2) $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 64.9\left(\mathrm{CH}_{2}\right), 92.6(\mathrm{CH}), 127.6(\mathrm{C}-\mathrm{Ar}), 127.8(\mathrm{C}-\mathrm{Ar}), 127.9(\mathrm{C}-\mathrm{Ar}), 128.9(\mathrm{C}-$ Ar), 130.0 (C-ı), 130.1 (C-ı), 135.5 (C-Ar), 135.6 (C-Ar).
HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ 423.2106; found 423.2098.

Spectroscopic data for dimer of nitroso compound 126


IR (film) 3070, 2857, 1589, 1495, 1471, 1427, 1211, $1104 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \operatorname{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.00\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 3.82$ (dd, $J=$ $10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 4.50 (dd, $J=10.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 6.29 (dd, $J=8.6,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHN}), 7.00-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.11-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.18-7.23(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.30-7.41 (m, 6H, ArH), 7.54-7.57 (m, 2H, ArH), 7.67-7.69 (m, 2H, ArH).
${ }^{13} \mathrm{C}$ NMR ( $\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], \quad 26.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 63.8\left(\mathrm{CH}_{2}\right), 72.4$ (CHN), 127.7 (C-Ar, $127.7(\mathrm{C}-\mathrm{Ar}), 127.8$ (C-Ar), 128.3 (C-Ar), 128.5 (C-Ar), 129.7 (CAr), 129.7 (C-Ar), 132.2 (C-i), 132.9 (C-i), 133.0 (C-i), 135.5 (C-Ar), 135.6 (C-Ar).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{48} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2} 779.3695$; found 779.3683.

From nitrone 127

UHP ( $202 \mathrm{mg}, 2.09 \mathrm{mmol}$ ) and $\mathrm{Na}_{2} \mathrm{WO}_{4} .2 \mathrm{H}_{2} \mathrm{O}(8.7 \mathrm{mg}, 0.026 \mathrm{mmol})$ were added at room temperature to a solution of amine 115 ( $365 \mathrm{mg}, 0.52 \mathrm{mmol}$ ) in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol ( 3.4 mL ), and the mixture was stirred at this temperature for 21 h . Solvents were removed under reduced pressure, and the crude residue was taken up with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting white solid was filtered, and the solvent was removed under reduced pressure to afford nitrone 127 ( 720 mg ), which was used without purification in the next step.

Spectroscopic data for nitrone 127

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, g -HSQC) $\delta 0.79$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$ ), 0.93 [s, 9 H , $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 0.96\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50$ (brs, $\left.2 \mathrm{H}, \mathrm{H}-4\right), 2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2), 3.58 (brs, 2H, H-5), 3.77 (dd, $J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHAr}), 4.57(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$ ), 4.65 (dd, $J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), 6.75 (m. 1H, H-1), 7.20-7.40 (m, 17H, ArH), $7.55-7.65$ ( $\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}$ ).
${ }^{13} \mathrm{C}$ NMR ( $\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1$ and $19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.1(\mathrm{C}-3), 26.5(\mathrm{C}-2), 26.7$ and $26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 32.4(\mathrm{C}-4)$, $63.4(\mathrm{C}-5)$, $63.7(\mathrm{CH}), 79.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.6(\mathrm{C}-\mathrm{Ar})$, 127.7 (C-Ar), 127.8 (C-Ar), 127.9 (C-Ar), 128.4 (C-Ar), 128.7 (C-Ar), 129.5 (C-Ar), 129.7 (C-Ar), 129.8 (C-Ar), 132.8 (C-i), 133.4 (C-i), 133.8 (C-i), 133.9 (C-i), 134.6 (Ci), 135.4 (C-Ar), 135.5 (C-Ar), 135.6 (C-Ar), 139.2 (C-1).

Operating as described in the preparation of 124, from crude nitrone $127(320 \mathrm{mg}$, 0.45 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and $m$-chloroperbenzoic acid ( $70 \%$ of purity, 276 mg , 1.12 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, the nitroso dimer $126(41 \mathrm{mg})$ and C-Arboxylic acid 124 (yellow oil; $84 \mathrm{mg}, 45 \%$ from 115) were obtained after flash chromatography (from 1:1 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ).

## (S)-5-[(tert-Butyldiphenylsilyl)oxy]-4-ethylpentanoic acid (128)



A solution of amine $122(2.15 \mathrm{~g}, 2.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a solution of $m$-chloroperbenzoic acid ( $70 \%$ of purity, $3.06 \mathrm{~g}, 12.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 28 mL ) at reflux temperature, and the resulting mixture was stirred at this temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue ( 350 mg ) was chromatographed (from 1:1 hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc) to afford the nitroso dimer 126 ( 420 mg ) and C-Arboxylic acid 128 (yellow oil; $930 \mathrm{mg}, 82 \%$ ).

Spectroscopic data for 128
$[\alpha]^{22} \mathrm{D}-1.96\left(c 1.36, \mathrm{CHCl}_{3}\right)$.
IR (film) 2960, 2931, $1709 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.86\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.08 [s, 9H, $\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.32-1.45 (m, 2H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.45-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.67-1.83(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3$ ), 2.29-2.42 (m, 2H, H-2), 3.58 (dd, $J=10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.59 (dd, $J=10.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.38-7.46$ (m, 6H, ArH), 7.67-7.70 (m, 4H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.9$ $(\mathrm{C}-3), 26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.7(\mathrm{C}-2), 41.5(\mathrm{C}-4), 65.3(\mathrm{C}-5), 127.6(\mathrm{C}-o), 129.6(\mathrm{C}-p)$, 133.8 (C-ı), 133.8 (C-ı), 135.6 (C-m), 180.4 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si} 385.2193$; found 385.2188.

## (S)-4-Benzyl-5-[(tert-butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-1-pentanamine (129)


tert-Butyldiphenylsilyl chloride ( $0.97 \mathrm{~mL}, 3.75 \mathrm{mmol}$ ) and imidazole ( $333 \mathrm{mg}, 4.88$ mmol ) were added to a solution of aminodiol 64 ( $510 \mathrm{mg}, 1.63 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 15 mL ), and the mixture was heated at reflux for 17 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (96:4 hexane-EtOAc) to afford pure compound 129 ( $990 \mathrm{mg}, 77 \%$ ) as a colorless oil.

Spectroscopic data for 129
$[\alpha]^{22}{ }_{\mathrm{D}}-13.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 2930, 2857, 1428, $1112 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.96\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 0.99[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.25-1.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 1.58$ (brs, $1 \mathrm{H}, \mathrm{NH}$ ), 1.65-1.72 (m, $1 \mathrm{H}, \mathrm{H}-4$ ), 2.29-2.33 (m, 2H, H-1), 2.48 (dd, $J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 2.73 (dd, $J=13.5,7.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.41 (dd, $J=10.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.48 (dd, $J=10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5)$, $3.53-3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.63-3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN})$, 7.02-7.18 (m, 12H, ArH), 7.24-7.33 (m, 12H, ArH), 7.51-7.57 (m, 6H, ArH).
 27.7 (C-3), 28.4 (C-2), 37.6 ( $\mathrm{CH}_{2} \mathrm{Ar}$ ), 42.6 (C-4), 48.0 (C-1), 64.9 (C-5), 65.0 (CHN), $68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.6$ (C-Ar), 127.2 (C-Ar), 127.5 (C-Ar), 127.6 (C-Ar), 127.6 (C-Ar), 127.6 (C-Ar), 128.1 (C-Ar), 128.2 (C-Ar), 129.2 (C-Ar), 129.5 (C-Ar), 129.5 (C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 133.3 (C-ו), 133.4 (C-ı), 133.8 (C-ı), 133.9 (C-ı), 134.8 (CAr), 135.5 (C-Ar), 135.5 (C-Ar), 135.6 (C-Ar), 140.9 (C-i), 141.0 (C-i).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{NO}_{2} \mathrm{Si}_{2} 790.4470$; found 790.4465.
(S)-4-Benzyl-5-[(tert-butyldiphenylsilyl)oxy]pentanoic acid (130)


A solution of amine $129(320 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was added to a solution of $m$-chloroperbenzoic acid ( $70 \%$ of purity, $420 \mathrm{mg}, 1.70 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 4 mL ) at reflux temperature, and the resulting mixture was stirred at this temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed (from 1:1 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ) to afford the nitroso dimer 126 ( 55 mg ) and CArboxylic acid 130 ( $119 \mathrm{mg}, 66 \%$ ) as a yellow oil.

Spectroscopic data for 130
$[\alpha]^{22}{ }_{\mathrm{D}}-6.91\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
IR (film) 3069, 2930, $1708 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.01\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.59-1.70 (m, 2H, $\mathrm{H}-3), 1.72-1.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.12-2.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.51(\mathrm{dd}, J=13.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar}$ ), 2.71 (dd, $J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$ ), 3.46 (dd, $J=4.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$ ), 7.04-7.18 (m, 5H, ArH), 7.26-7.37 (m, 6H, ArH), 7.54-7.57 (m, 4H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.9(\mathrm{C}-3), 26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 31.7 (C2), $37.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.9(\mathrm{C}-4), 64.6$ (C-5), 125.8 (C-Ar), 127.6 (C-Ar), 127.7 (C-Ar), 128.2 (C-Ar), 129.1 (C-Ar), 129.6 (C-Ar), 129.6 (C-Ar), 133.5 (C-ı), 133.6 (C-Ar), 135.6 (C-Ar), 140.3 (C-i), 180.0 (CO).

HRMS (ESI-TOF) m/z: [M - H] ${ }^{-}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si} 445.2204$; found 445.2194.
(S)-4-Benzyl-5-[(tert-butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-4-ethyl-1-pentanamine (131)

tert-Butyldiphenylsilyl chloride ( $0.37 \mathrm{~mL}, 1.41 \mathrm{mmol}$ ) and imidazole ( $144 \mathrm{mg}, 2.11$ mmol ) were added to a solution of aminodiol 68 ( $240 \mathrm{mg}, 0.70 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, and the mixture was heated at reflux for 17 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to 95:5 hexane-EtOAc) to afford pure compound 131 ( $414 \mathrm{mg}, 72 \%$ ) as a colorless oil.

Spectroscopic data for 131
$[\alpha]^{22} \mathrm{D}-5.67\left(c 1.15, \mathrm{CHCl}_{3}\right)$.
IR (film) 3070, 2930, 2857, 1471, 1428, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.86\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.18 [s, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.19-1.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.27\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.31-1.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, 1.39-1.48 (m, 2H, H-2, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 1.53-1.64 (m, 1H, CH2CH3 ), 2.50-2.54 (m, 2H, H-1), 2.75 (d, $\left.J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.81\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.38(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.42(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.80-3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.89(\mathrm{dd}, J=$ $8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$ ), 7.34-7.40 (m, 10H, ArH), 7.44-7.56 (m, 12H, ArH), 7.72-7.76 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}$ ), 7.78-7.81 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2,19.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $23.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 25.4 (C-2), 26.9, $27.1\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 30.0(\mathrm{C}-3), 39.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.8(\mathrm{C}-1), 48.5(\mathrm{C}-4) \text {, }}\right.$ 65.0 (CHN), 66.1 (C-5), $68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 125.7$ (C-Ar), 127.2 (C-Ar), 127.5 (C-Ar), 127.6 (C-Ar), 127.7 (C-Ar), 128.2 (C-Ar), 129.6 (C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 130.5 (CAr), 133.3 (C-i), 133.4 (C-ı), 133.8 (C-i), 135.5 (C-Ar), 135.5 (C-Ar), 135.8 (C-Ar), 135.9 (C-Ar), 138.8 (C-i).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{NO}_{2} \mathrm{Si}_{2} 818.4783$; found 818.4773.
(S)-4-Benzyl-5-[(tert-butyldiphenylsilyl)oxy]-4-ethylpentanoic acid (132)


A solution of amine $131(300 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added to a solution of $m$-chloroperbenzoic acid ( $70 \%$ of purity, $380 \mathrm{mg}, 1.54 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
( 3.5 mL ) at reflux temperature, and the resulting mixture was stirred at this temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed (from $1: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ) to afford the nitroso dimer $126(57 \mathrm{mg})$ and C-Arboxylic acid $132(130 \mathrm{mg}, 75 \%)$ as a yellow oil.

Spectroscopic data for 132
$[\alpha]^{22} \mathrm{D}+2.52\left(c 0.65, \mathrm{CHCl}_{3}\right)$.
IR (film) 3074, 2933, 2861, $1707 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{N} M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}\right.$-HSQC) $\delta 0.83\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.19$ [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.22\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.54$ (ddd, $J=14.0,14.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$ ), 1.63 (ddd, $J=14.0,14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 2.06-2.14 (m, 1H, H-2), 2.182.27 (m, 1H, H-2), 2.66 (d, $\left.J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.72\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.29(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.34(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.18-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 7.40-7.49 (m, 6H, ArH), 7.69-7.72 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $24.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 27.2 $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.8(\mathrm{C}-3), 28.4(\mathrm{C}-2), 39.6\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 41.5(\mathrm{C}-4), 65.9(\mathrm{C}-5), 126.0(\mathrm{C}-p)$, 127.6 (C-Ar), 127.7 (C-Ar), 127.8 (C-Ar), 129.7 (C-p), 129.7 (C-p), 130.5 (C-Ar), 133.4 (C-ı), 133.5 (C-ı), 135.8 (C-Ar), 135.9 (C-Ar), 138.1 (C-ı), 180.5 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si} 475.2663$; found 475.2667.

## (3R,4S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-3,4-(isopropylidenedioxy)-1-pentanamine (133)


tert-Butyldiphenylsilyl chloride ( $0.17 \mathrm{~mL}, 0.64 \mathrm{mmol}$ ) and imidazole ( $22 \mathrm{mg}, 0.97$ mmol ) were added to a solution of aminodiol 85 ( $95 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3.5 mL ), and the mixture was heated at reflux for 17 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was
chromatographed (from hexane to 95:5 hexane-EtOAc) to afford pure compound 133 ( $174 \mathrm{mg}, 70 \%$ ) as a colorless oil.

Spectroscopic data for 133
$[\alpha]^{22} \mathrm{D}-4.32\left(c 1.35, \mathrm{CHCl}_{3}\right)$.
IR (film) 2930, 2857, 1428, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 1.03\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.04[\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 1.82$ (brs, $2 \mathrm{H}, \mathrm{H}-2$ ), 2.67 (brs, $2 \mathrm{H}, \mathrm{H}-1$ ), 3.60 (dd, $J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.65-3.73 (m, 3H, H-5, CH2O), 3.79 (brs, $1 \mathrm{H}, \mathrm{CHN}$ ), 4.11-4.16 (m, 1H, H-4), 4.264.30 (m, 1H, H-3), 7.22-7.28 (m, 5H, ArH), 7.32-7.44 (m, 12H, ArH), 7.56-7.67 (m, 8H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 19.1$, $19.2\left[\left(\mathrm{CH}_{3}\right)_{3}\right], 25.5\left(\mathrm{CH}_{3}\right), 26.8,26.8$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left(\mathrm{CH}_{3}\right), 29.6(\mathrm{C}-2), 45.2(\mathrm{C}-1), 62.5(\mathrm{C}-5), 64.5(\mathrm{CHN}), 67.8\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 76.5 (C-3), 77.7 (C-4), 108.3 ( $\mathrm{CMe}_{2}$ ), 127.6 (C-Ar), 127.7 (C-Ar), 127.7 (C-Ar), 127.8 (C-Ar), 128.4 (C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 132.8 (C-ı), 133.0 (C-ı), 133.1 (C-ı), 133.2 (C-i), 135.5 (C-Ar).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{NO}_{4} \mathrm{Si}_{2} 772.4212$; found 772.4223.
(3R,4S)-5-[(tert-Butyldiphenylsilyl)oxy]3,4-(isopropylidenedioxy)pentanoic acid (134)


A solution of amine $133(70 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added to a solution of $m$-chloroperbenzoic acid ( $70 \%$ of purity, $94 \mathrm{mg}, 0.38 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 1 mL ) at reflux temperature, and the resulting mixture was stirred at this temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed (from 1:1 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ) to afford the nitroso dimer 126 ( 8 mg ) and CArboxylic acid 134 ( $21 \mathrm{mg}, 54 \%$ ) as a yellow oil.

Spectroscopic data for 134
$[\alpha]^{22}{ }_{\mathrm{D}}+2.93\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$.
IR (film) 3071, 2931, 2858, 1714, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.98\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.27(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), 1.31 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.61 (dd, $J=16.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 2.79 (dd, $J=16.1,4.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.58-3.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 7.29-7.39$ (m, 6H, ArH), 7.57-7.60 (m, 4H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 19.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.4\left(\mathrm{CH}_{3}\right), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9$ $\left(\mathrm{CH}_{3}\right), 34.9(\mathrm{C}-2), 62.2(\mathrm{C}-5), 73.5(\mathrm{C}-3), 76.8(\mathrm{C}-4), 108.6\left(\mathrm{CMe}_{2}\right), 127.8(\mathrm{C}-0)$, 129.9 (C-p), 133.0 (C-ı), 135.5 (C-m), 176.1 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}-\mathrm{H}]^{-}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si} 427.1946$; found 427.1941.

## (S)-5-[(tert-Butyldiphenylsilyl)oxy]-N-\{(R)-2-[(tert-butyldiphenylsilyl)oxy]-1-phenylethyl\}-2-ethyl-1-pentanamine (135)


tert-Butyldiphenylsilyl chloride ( $1.48 \mathrm{~mL}, 5.71 \mathrm{mmol}$ ) and imidazole ( $583 \mathrm{mg}, 8.56$ $\mathrm{mmol})$ were added to a solution of $14(720 \mathrm{mg}, 2.85 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ mL ), and the mixture was heated at reflux for 18 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from hexane to 7:3 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford pure compound 135 ( $1.59 \mathrm{~g}, 76 \%$ ) as a colorless oil.

Spectroscopic data for 135
$[\alpha]^{22} \mathrm{D}-14.9\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
IR (film) 3070, 2858, 1589, 1472, 1428, $1104 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.75\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.96[\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 0.97\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.19-1.35 (m,5H, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-2, \mathrm{H}-3\right)$, 1.42-1.49 (m, $2 \mathrm{H}, \mathrm{H}-4), 2.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.52-3.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}_{2} \mathrm{O}\right), 3.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 7.10-$ 7.17 (m, 5H, ArH), 7.24-7.35 (m, 12H, ArH), 7.54-7.60 (m, 8H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $24.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 26.8, $26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7(\mathrm{C}-3), 29.8(\mathrm{C}-4), 39.5(\mathrm{C}-2), 50.7(\mathrm{C}-1), 64.3(\mathrm{C}-5), 65.5(\mathrm{CHN})$, $69.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.1$ (C-Ar), 127.6 (C-Ar), 127.7 (C-Ar), 128.1 (C-Ar), 129.5 (C-Ar), 129.6 (C-Ar), 129.7 (C-Ar), 133.3 (C-i), 133.5 (C-i), 134.1 (C-i), 135.6 (C-Ar), 141.1 (C-1).
HRMS (ESI-TOF) m/z: $\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{NO}_{2} \mathrm{Si}_{2} 728.4314$; found 728.4304.

## (S)-5-[(tert-Butyldiphenylsilyl)oxy]-2-ethylpentanoic acid (136)



A solution of amine $135(420 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ was added to a solution of $m$-cloroperbenzoic acid ( $70 \%$ of purity, $598 \mathrm{mg}, 2.42 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 ml ) at reflux temperature, and the resulting mixture was stirred at this temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated, and the resulting residue was chromatographed (from 1:1 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ) to afford the nitroso dimer 126 ( 40 mg ), formiate 137 (60 mg, 27\%) as a yellow oil, and C-Arboxylic acid 136 ( $66 \mathrm{mg}, 30 \%$ ) as a yellow oil.

Spectroscopic data for 137

$[\alpha]^{22}{ }_{\mathrm{D}}-8.6\left(c 0.70, \mathrm{CHCl}_{3}\right)$.
IR (film) 3070, 2857, 1717, 1184, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1), 1.06[\mathrm{~s}$, $9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.51-1.76 (m, 6H, H-2, H-4, H-5), 3.63-3.72 (m, 2H, H-6), 4.95 (quint, $J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ ), 7.37-7.46 (m, 6H, ArH), 7.66-7.68 (m, 4H, ArH), 8.08 (s, 1H, OCHO ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.5(\mathrm{C}-1), 19.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9(\mathrm{C}-2) \text {, }}\right.$ 28.2 (C-5), 29.8 (C-4), 63.4 (C-6), 75.4 (C-3), 127.6 (C-o), 129.6 (C-p), 133.9 (C-ı), 135.5 (C-m), 161.0 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si} 385.2193$; found 385.2203.

Spectroscopic data for 136
$[\alpha]^{22}{ }_{\mathrm{D}}+4.00\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$.
IR (film) 3071, 2931, 1699, $1110 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.95$ (dt, $\mathrm{J}=7.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.08\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.54-1.74\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{H}-3, \mathrm{H}-4\right), 2.30-2.37(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2), 3.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 7.37-7.46$ (m, 6H, ArH), 7.68-7.71 (m, 4H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.9$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9(\mathrm{C}-3), 30.2(\mathrm{C}-4), 46.7(\mathrm{C}-2), 63.6(\mathrm{C}-5), 127.6(\mathrm{C}-o), 129.6(\mathrm{C}-p)$, 133.9 (C-ı), 135.6 (C-m), 182.7 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si} 385.2193$; found 385.2182 .

From nitrone 139

UHP (178 mg, 1.84 mmol$)$ and $\mathrm{Na}_{2} \mathrm{WO}_{4} .2 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.046 \mathrm{mmol})$ were added at room temperature to a solution of amine 135 ( $365 \mathrm{mg}, 0.52 \mathrm{mmol}$ ) in $1: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol ( 3.2 mL ), and the mixture was stirred at this temperature for 66 h . Solvents were removed under reduced pressure and the crude residue was taken up with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The white solid was filtered and the solvent was removed under reduced pressure affording nitrone $139(330 \mathrm{mg})$, which was used without purification in the next step.

Spectroscopic data for nitrone 139

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.95\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.02\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.04 [s, $9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.36-1.59 (m, 6H), 3.05 (m, 1H), 3.54-3.67 (m, 2H), $3.81(\mathrm{dd}, \mathrm{J}=$ 9.6, 2.4 Hz, 1H, CHAr), 4.57-4.75 (m, 2H, CH2O), 6.75 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 7.257.27 (m, 2H, ArH), 7.31-7.43 (m, 18H, ArH), 7.60-7.70 (m, 5H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 19.1, $19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $24.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 26.7, $26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7(\mathrm{C}-3), 30.1(\mathrm{C}-4), 37.3(\mathrm{C}-2), 63.7(\mathrm{C}-5), 63.8(\mathrm{CH}), 80.0$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.6$ (C-Ar), 127.7 (C-Ar), 127.8 (C-Ar), 127.9 (C-Ar), 128.6 (C-Ar), 128.7 (C-Ar), 129.6 (C-Ar), 129.8 (C-Ar), 129.9 (C-Ar), 133.0 (C-ו), 133.4 (C-ı), 134.0 (C-i), 134.1 (C-i), 135.2 (C-i), 135.5 (C-Ar), 135.6 (C-Ar), 135.7 (C-Ar), 135.7 (C- Ar), 143.1 (C-1).

Operating as described in the preparation of 127, from crude nitrone $139(224 \mathrm{mg}$, 0.30 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and $m$-cloroperbenzoic acid ( $70 \%$ of purity, 186 mg , $0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, the nitroso dimer $126(25 \mathrm{mg})$, formiate 137 (yellow oil, $42 \mathrm{mg}, 24 \%$ ) and C-Arboxylic acid 136 ( $46 \mathrm{mg}, 26 \%$ ) were obtained as yellow oils after flash chromatography (from $1: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to EtOAc ).

## $N$-[(S)-5-Hydroxy-2-methylpentyl]-4-pentenamide (141)



A solution of aminodiol 52 ( $738 \mathrm{mg}, 3.16 \mathrm{mmol}$ ) in anhydrous MeOH ( 30 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(150 \mathrm{mg})$ was hydrogenated at $68{ }^{\circ} \mathrm{C}$ for 18 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated, and the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 19 mL ). 4-pentenoyl chloride ( $1.15 \mathrm{~mL}, 10.4 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}$ ( $1.46 \mathrm{~mL}, 10.4 \mathrm{mmol}$ ) were added at $0{ }^{\circ} \mathrm{C}$, and the mixture was allowed to react at room temperature for 17 h . The mixture was extracted with a 1.0 N aqueous HCl , and
the organic layer was dried, filtered and concentrated to give diene 140 which was used without purification in the next step:

IR (film) 3304, 1736, $1645 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.90\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-$ $1.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.34-1.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.55-1.75(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 2.25-2.29(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$ ), 2.33-2.42 (m, 6H, CH2CO, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 3.07 (ddd, $J=13.3,7.0,6.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.19(\mathrm{dt}, J=13.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.05$ (ddd, $J=6.7,6.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-2)$, 4.98-5.10 (m, 4H, CH $\mathrm{H}_{2}=\mathrm{CH}$ ), 5.57 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ), 5.76-5.87 (m, 2H, $\mathrm{CH}_{2}=\mathrm{CH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.5\left(\mathrm{CH}_{3}\right), 26.1(\mathrm{C}-2), 28.9\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 29.7$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 30.5(\mathrm{C}-3), 33.0(\mathrm{C}-4), 33.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 35.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 42.5(\mathrm{C}-5), 64.4$ $(\mathrm{C}-1), 115.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 115.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $136.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 137.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 172.3$ (CO), 173.1 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{3} 282.2064$; found 282.2063.

DBU ( $9.47 \mathrm{~mL}, 63.3 \mathrm{mmol}$ ) was added to a solution of the above diene 140 in anhydrous methanol ( 50 mL ), and the reaction mixture was stirred at room temperature for 15 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with EtOAc. The extracts were dried, filtered, and concentrated. The residue was chromatographed (from 1:1 hexane-EtOAc to EtOAc) to give alcohol 141 ( $380 \mathrm{mg}, 60 \%$ ) as a yellow oil.

Spectroscopic data for 141
$[\alpha]^{22}{ }_{\mathrm{D}}-5.17$ (c 1.0, MeOH).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.91$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.15$1.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.38-1.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.50-1.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.56-1.70(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-2+\mathrm{H}-4), 2.26-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.36-2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 3.07-3.13$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.17-3.24 (m, 1H, H-5), 3.64 (t, J = 6.4 Hz, 2H, H-1), 4.99-5.10 (m, 2H, $\mathrm{CH}_{2}=\mathrm{CH}$ ), 5.58 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ), 5.83 (dddd, $J=16.8,10.2,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.6\left(\mathrm{CH}_{3}\right), 29.6(\mathrm{C}-2), 29.6(\mathrm{C}-3), 30.1$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 32.9(\mathrm{C}-4), 35.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 45.1(\mathrm{C}-5), 62.4(\mathrm{C}-1), 115.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $137.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 172.7(\mathrm{CO})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}$ 200.1645; found 200.1645.

## ( $R$ )-5-( $N$-(2-cyanoethyl)pent-4-enamido)-4-methylpentyl 4-pentenoate (143)



To a solution of $140(70 \mathrm{mg}, 0.25 \mathrm{mmol})$ in anhydrous THF ( 2 mL ) was added sodium hydride $95 \%(10 \mathrm{mg}, 0.38 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 1 h 15 . Then, acrylonitrile ( $0.06 \mathrm{~mL}, 0.86 \mathrm{mmol}$ ) was added and the mixture was allowed to react at room temperature for 3 h . Additional acrylonitrile ( $0.06 \mathrm{~mL}, 0.86 \mathrm{mmol}$ ) was added and the reaction mixture was stirred at room temperature for an additional 18 h . The reaction was quenched by water, and the resulting mixture was extracted with dichloromethane. The combined organic extracts were dried, filtered and concentrated, and the resulting residue ( 120 mg ) was chromatographed (from 9:1 hexane-EtOAc to 8:2 hexane-EtOAc) to give amide 143 ( $17 \mathrm{mg}, 20 \%$ ) as a yellow oil.

Spectroscopic data for 143
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.93\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.12$1.80\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}, 3 \mathrm{CH}_{2}\right)$, 2.37-2.45 (m, 6H, CH $\left.\mathrm{CO}_{2}, 2 \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.69(\mathrm{dt}, J=6.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$ ), 3.21 (dd, $J=14.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 3.33 (dd, $J=14.9,6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), $3.56\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right.$ ), $4.08\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 5.00-5.09 (m, 4H, CH ${ }_{2}=\mathrm{CH}$ ), 5.78-5.90 (m, 2H, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right)$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 16.0\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right), 26.2(\mathrm{C}-2), 28.8$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 30.5(\mathrm{C}-3), 32.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 32.9(\mathrm{C}-4), 33.5$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.5(\mathrm{C}-5), 55.4\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $64.1(\mathrm{C}-1)$, $115.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $115.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $118.4(\mathrm{CN}), 136.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 137.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 173.0(\mathrm{CO}), 173.0(\mathrm{CO})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} 335.2329$; found 335.2329.
(S)-4-Methyl-5-[(p-methylbenzenesulfonyl)amino]-1-pentanol (144)


A solution of aminodiol 52 ( $1.5 \mathrm{~g}, 6.32 \mathrm{mmol}$ ) in anhydrous MeOH ( 110 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(300 \mathrm{mg})$ was hydrogenated at $68{ }^{\circ} \mathrm{C}$ for 19 h under 11 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH , and the combined organic solutions were concentrated. The resulting residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$, and $p$-toluenesulfonyl chloride ( $1.33 \mathrm{~g}, 6.96 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(1.06 \mathrm{~mL}, 7.56 \mathrm{mmol})$ were added. The mixture was allowed to react at room temperature for 15 h . The solvent was evaporated under reduced pressure, and the residue was chromatographed (from 9:1 hexane-EtOAc to EtOAc) to give alcohol 144 ( $1.01 \mathrm{~g}, 59 \%$ ) as a yellow oil.

Spectroscopic data for 144
$[\alpha]^{22}{ }_{\mathrm{D}}+0.61(c 0.8, \mathrm{MeOH})$.
IR (film) 3507, $3286 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.86\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.091.16 (m, 1H, H-3), 1.38-1.48 (m, 1H, H-3), 1.50-1.64 (m, 3H, H-2, H-4), $2.42(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ Ts $), 2.74$ (dd, $J=12.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 2.79 (dd, $J=12.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.57 (t, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 5.32 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.24 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts}, \mathrm{H}-$ 5 Ts ), 7.74 ( $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{Ts}, \mathrm{H}-6 \mathrm{Ts}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.4\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 29.4(\mathrm{C}-3)$, $29.7(\mathrm{C}-2)$, 32.8 (C-4), 48.7 (C-5), 62.6 (C-1), 126.9 and 129.6 (CHTs), 136.9 (C-4Ts), 143.2 (C1Ts).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S} 272.1315$; found 272.1317.
(S)-5-[(tert-Butyldimethylsilyl)oxy]-2-methyl-N-tosylpentanamine (147)

tert-Butyldimethylsilyl chloride ( $773 \mathrm{mg}, 5.13 \mathrm{mmol}$ ) was added to a solution of alcohol 144 ( $870 \mathrm{mg}, 3.20 \mathrm{mmol}$ ) and imidazole ( $349 \mathrm{mg}, 5.13 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the mixture was heated at reflux for 15 h . The reaction was quenched by a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to
give an oil ( 1.2 g ). Purification by flash chromatography (from 9:1 hexane-EtOAc to 1 : 1 hexane-EtOAc) afforded pure compound 147 ( $1.09 \mathrm{~g}, 88 \%$ ) as a colorless oil.

Spectroscopic data for 147
$[\alpha]^{22}{ }_{\mathrm{D}}-0.19(c 1.02, \mathrm{MeOH})$.
IR (film) 3564, $3282 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta-0.01$ (s, 6H, $\mathrm{CH}_{3} \mathrm{Si}$ ), 0.84 [s, 9 H , $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 0.86\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07-1.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.28-1.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$, $\mathrm{H}-3$ ), 1.52-1.59 (m, 1H, H-2), 2.39 (s, 3H, CH3Ts), 2.69 (ddd, $J=12.5,6.8,6.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1$ ), 2.79 (ddd, $J=12.5,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.50 (dt, $J=6.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 5), 5.18 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.26 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts}, \mathrm{H}-5 \mathrm{Ts}$ ), 7.73 (d, $J=8.4 \mathrm{~Hz}$, 2H, H-2Ts, H-6Ts).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.4\left(2 \mathrm{CH}_{3} \mathrm{Si}\right)$, $17.4\left(\mathrm{CH}_{3}\right)$, $18.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 21.3 $\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 25.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.8(\mathrm{C}-3), 30.0(\mathrm{C}-4), 32.8(\mathrm{C}-2), 48.8(\mathrm{C}-1), 63.1(\mathrm{C}-5)$, 126.9 (C-HTs), 129.5 (C-HTs), 137.0 (C-4Ts), 143.0 (C-1Ts).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{SSi} 386.2180$; found 386.217

## (S)-5-[(tert-Butyldimethylsilyl)oxy]-2-methyl- N -[3-(phthalimido)propyl]-Ntosylpentanamine (149)


$\mathrm{NaH}(95 \%, 136 \mathrm{mg}, 5.39 \mathrm{mmol})$ was added to a solution of compound $147(562 \mathrm{mg}$, 1.46 mmol ) and 3 -(phthalimido)propyl iodide $148^{132}$ ( $964 \mathrm{mg}, 3.06 \mathrm{mmol}$ ) in anhydrous DMF ( 9 mL ), and the mixture was stirred at room temperature for 17 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer was extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated. The resulting oil ( 1.03 g ) was chromatographed (from 9:1 hexane-EtOAc to 8: 2 hexane-EtOAc) to give compound 149 ( $630 \mathrm{~g}, 75 \%$ ) as a colorless oil.

## Spectroscopic data for 149

$[\alpha]^{22} \mathrm{D}-4.61(c 1.65, \mathrm{MeOH})$.
IR (film) $1773 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.04$ (s, 6H, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.88$ [s, 9 H , $\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 0.91\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ 1.61 (m, 1H), 1.74 (m, 1H, H-4), 1.84-1.95 (m, 2H, CH2CH2N), 2.41 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ts}$ ), 2.91 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), $3.12-3.17$ (m, 2H, CH2NTs), 3.56 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 5), 3.66 ( $\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPhth}$ ), 7.27 ( $\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts}, \mathrm{H}-5 \mathrm{Ts}$ ), 7.64 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{Ts}, \mathrm{H}-6 \mathrm{Ts}$ ), 7.73 (dd, $J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph} t \mathrm{~h}), 7.84$ (dd, J $=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, H-Phth).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.3\left(2 \mathrm{CH}_{3} \mathrm{Si}\right)$, $17.3\left(\mathrm{CH}_{3}\right)$, $18.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 21.5 $\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 25.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 30.1(\mathrm{C}-3), 30.3(\mathrm{C}-4), 31.9(\mathrm{C}-2), 35.6$ ( $\mathrm{CH}_{2}$ NPhth), $46.7\left(\mathrm{CH}_{2} \mathrm{NTs}\right), 55.2$ (C-1), 63.2 (C-5), 123.2 (CH-Phth), 127.1 (C-HTs), 129.6 (C-HTs), 131.9 (C-Phth), 133.9 (CH-Phth), 136.4 (C-4Ts), 143.1 (C-1Ts), 168.1 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi} 573.2813$; found 573.2813 .
(S)-4-Methyl-5-\{ $N$-[3-(phthalimido)propyl]-N-tosylamino\}-1-pentanol (150)


A solution of compound 149 ( $450 \mathrm{mg}, 0.79 \mathrm{~mol}$ ) in 1.0 N aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ was stirred at room temperature for 20 minutes. Then, the solution was concentrated to give alcohol 150 ( 360 mg , quantitative), which was used in the next step without purification.

Spectroscopic data for 150
$[\alpha]^{22} \mathrm{D}-1.32(c 1.12, \mathrm{MeOH})$.
IR (film) 3542, 1770, $1716 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.90\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.10-$ $1.17(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{OH}), 1.89$ (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ ), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.85(\mathrm{dd}, J=13.6,7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$ ), 2.95 (dd, $J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.14 (m, 2H, CH ${ }_{2} \mathrm{NTs}$ ), 3.62 (t, $J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 3.67 (t, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPhth}\right), 7.27(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts})$, 7.64 (d, J= $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{Ts}$ ), 7.72 (m, 2H, H-Phth), 7.84 (m, 2H, H-Phth).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.4\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3} \mathrm{Ts}\right)$, $27.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 29.8$ $\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 31.9(\mathrm{CH}), 35.8\left(\mathrm{CH}_{2} \mathrm{NPhth}\right), 46.9\left(\mathrm{CH}_{2} \mathrm{NTs}\right), 55.4(\mathrm{C}-5), 62.9(\mathrm{C}-$ 1), 123.3 (CH-Phth), 127.2 (CHTs), 129.6 (CHTs), 131.9 (C-Phth), 134.0 (CH-Phth), 136.2 (C-4Ts), 143.2 (C-1Ts), 168.2 (CO).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 459.1948$; found 459.1941.

## (S)-2-Methyl-N-[3-(phthalimido)propyl]-N-tosyl-5-hexenamine (151)



Dess-Martin reagent ( $220 \mathrm{mg}, 0.52 \mathrm{mmol}$ ) was added to a solution of alcohol 150 (95 $\mathrm{mg}, 0.21 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and the mixture was stirred at room temperature for 1.5 h . Then, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(1 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ were added, and the resulting mixture was stirred for 1 h . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were washed with brine, dried, filtered, and concentrated to give an aldehyde, which was used without purification in the next step:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.78-1.93 (m, 4H), 2.392.51 (m, 5H), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ts}\right)$, 2.87 (dd, $1 \mathrm{H}, J=13.6,7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$ ), 2.98 (dd, J $\left.=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.13-3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.67\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 7.27 (d, 2H, $J=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}$ ), 7.64 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}$ ), 7.75 (dd, $J=5.6,3.2$ Hz, 2H, H-Phth), 7.80 (dd, J = 5.6, 3.2 Hz, 2H, H-Phth), 9.75 (s, 1H, COH).

Then, from the above aldehyde ( 95 mg ), $t$-BuOK ( 0.62 mL of a 1 M solution in THF, 0.62 mmol ), and methyltriphenylphosphonium bromide ( $296 \mathrm{mg}, 0.83 \mathrm{mmol}$ ) in anhydrous THF ( 5 mL ), alkene 151 ( $66 \mathrm{mg}, 70 \%$ ) was obtained as a colorless oil after flash chromatography (from 9:1 hexane-EtOAc to 85:15 hexane-EtOAc).

Spectroscopic data for 151
$[\alpha]^{22}{ }_{\mathrm{D}}+2.71(c 0.65, \mathrm{EtOH})$.
IR (film) 1772, $1712 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \operatorname{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.90\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3$ ), $1.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.95(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4), 2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.14(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NTs}$ ), 3.64 (m, 2H, CH ${ }_{2}$ NPhth), 4.86-4.99 (m, 2H, H-6), 5.73 (m, 1H, H-5), 7.26 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts}, \mathrm{H}-5 \mathrm{Ts}$ ), 7.65 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{Ts}, \mathrm{H}-6 \mathrm{Ts}$ ), 7.72 (dd, J $=5.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Phth}), 7.84$ (dd, $J=5.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Phth})$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.3\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $31.0(\mathrm{C}-$ 3), 31.5 (C-2), 33.4 (C-4), 35.8 ( $\left.\mathrm{CH}_{2} \mathrm{NPhth}\right), 46.7\left(\mathrm{CH}_{2} \mathrm{NTs}\right), 55.1$ (C-1), 114.5 (C-6), 123.2 (CH-Phth), 127.2 (CHTs), 129.6 (CHTs), 132.2 (C-Phth), 133.9 (CH-Phth), 137.5 (C-4Ts), 138.5 (C-5), 143.1 (C-1Ts), 168.1 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 455.1999$; found 455.2024.
(S)-N-[3-(2-Methyl-N-tosyl-5-hexenylamino)propyl]-4-pentenamide (152)


A solution of hydrazine monohydrate ( $56 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) in ethanol ( 1.3 mL ) was added to a solution of alkene 151 ( $506 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) in ethanol ( 4.5 mL ), and the mixture was heated at reflux for 2.5 h . Insoluble material was removed by filtration, and the filtrate was concentrated to give the primary amine as a yellow oil ( 420 mg ), which was used without purification in the next step:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.87\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.42-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{Ts}$ ), 2.66 (br.s., $2 \mathrm{H}, \mathrm{NH}_{2}$ ), $2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$ ), 2.87-2.90 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$ ), 3.12$3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.91-5.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.70-5.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.20-$ 7.30 (m, 2H, H-Ts), 7.60-7.70 (m, 2H, H-Ts).

4-Pentenoyl chloride ( $0.15 \mathrm{~mL}, 1.34 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}, 1.45 \mathrm{mmol})$ were slowly added to a solution of the above amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and the mixture was
stirred at room temperature for 2.5 h . The reaction was quenched with water, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated under vacuum to give an oil. Flash chromatography (from 9:1 hexane-EtOAc to 1:1 hexane-EtOAc) afforded dialkene 152 ( $224 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for 152
$[\alpha]^{22} \mathrm{D}+1.9(c 1.6, \mathrm{MeOH})$.
IR (film) 3305, $1644 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.86\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), $1.08-$ $1.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.40-1.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.70-1.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}\right)$, 1.92-2.00 (m, 1H, H-2), 2.07-2.16 (m, 1H, H-2), 2.28-2.31 (m, 2H, CH $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 2.38-2.41 (m, 2H, H-3), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.84-2.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 3.10(\mathrm{t}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{TsNCH} \mathrm{CH}_{2}$ ), $3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.93-5.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.73$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), $5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$ ), 6.36 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ), $7.31(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}$ ), 7.66 (d, J=8.1 Hz, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.2\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 28.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.5$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 30.8(\mathrm{C}-3), 31.4(\mathrm{CH})$, $33.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right)$, $35.8(\mathrm{C}-2), 36.0\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $46.8\left(\mathrm{TsNCH}_{2} \mathrm{CH}_{2}\right), 55.9\left(\mathrm{CHCH}_{2} \mathrm{~N}\right)$, $114.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $115.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $127.0(\mathrm{CH}-$ Ts ), 129.6 (CH-Ts), 135.9 (C-4Ts), $137.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 138.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 143.3$ (C-1Ts), 172.4 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 407.2363$; found 407.2361.
(S)-13-Methyl-6-oxo-1-tosyl-1,5-diaza-9-cyclotetradecene (153)


A solution of 152 ( $101 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a solution of second-generation Grubbs catalyst ( $32 \mathrm{mg}, 0.037 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.24$ $\mathrm{L})$ at reflux. The resulting mixture was stirred at reflux temperature for 14 h . The solvent was evaporated, and the resulting residue was chromatographed (from 8:2
hexane-EtOAc to 3:7 hexane-EtOAc) to yield a $91: 9$ (calculated by GC/MS) mixture of $E / Z$ diastereoisomers 153 ( $72 \mathrm{mg}, 77 \%$ ).
Spectroscopìc data for major diastereoisomer 153

IR (film) 3300, $1647 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.86\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.101.27 (m, 2H, H-4), 1.49-1.65 (m, 2H, H-3, H-13), 1.65-1.73 (m, 1H, H-13), 1.92-2.04 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$ ), 2.05-2.13 (m, 1H, H-9), 2.19-2.30 (m, 2H, CH2CH=, H-9), 2.33$2.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.75(\mathrm{dd}, J=12.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 2.86-2.90 (m, 1H, H-12), 2.95 (dd, $J=12.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.98-3.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 14), 3.16-3.24 (m, 1H, H-12), 3.29-3.37 (m, 1H, H-14), 5.22-5.36 (m, 2H, CH=CH), 5.96 (br.s, $1 \mathrm{H}, \mathrm{NH}$ ), 7.26 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts}, \mathrm{H}-5 \mathrm{Ts}$ ), 7.62 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, H-2Ts, H-6Ts).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 17.4\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 26.9(\mathrm{C}-3), 28.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 28.3(\mathrm{C}-13), 28.9\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 32.0(\mathrm{C}-4), 36.2(\mathrm{C}-9), 36.4(\mathrm{C}-14), 44.8(\mathrm{C}-$ 12), 53.5 (C-2), $127.0(\mathrm{CH}-\mathrm{Ts}), 129.5(\mathrm{CH}=), 129.6(\mathrm{CH}-\mathrm{Ts}), 131.7(\mathrm{CH}=), 136.5(\mathrm{C}-$ 4Ts), 143.1 (C-1Ts), 172.4 (CO).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 379.2053$; found 379.2051.
(S)-13-Methyl-6-oxo-1-tosyl-1,5-diazacyclotetradecane (154)


A solution of alkene 153 ( $79 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(7 \mathrm{~mL})$ containing $10 \% \mathrm{Pd}-\mathrm{C}(8 \mathrm{mg})$ was stirred under hydrogen at room temperature for 48 h . The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated to give pure compound 154 ( $74 \mathrm{mg}, 94 \%$ ) as a brown oil.

Spectroscopic data for 154
$[\alpha]^{22}{ }_{\mathrm{D}}-12.7\left(c\right.$ 1.18, $\left.\mathrm{CHCl}_{3}\right)$.

IR (film) 3410, $1643 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \operatorname{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.10$1.20\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}-\mathrm{CH}_{2}\right), 1.22-1.35\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.36-1.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, 1 \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.65-1.92 (m, 3H, H-3, CH2), 2.10-2.27 (m, 2H, H-9), 2.42 (s, 3H, CH3Ts), 2.76 (dd, J $=12.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.99(\mathrm{dd}, J=12.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.95-2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 14), 3.07-3.14 (m, 2H, H-12), 3.42-3.54 (m, 1H, H-14), 6.10 (br.s, 1H, NH), 7.29 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{Ts}, \mathrm{H}-5 \mathrm{Ts}$ ), 7.65 (d, J=8.2 Hz, 2H, H-2Ts, H-6Ts).
${ }^{13} \mathrm{C}$ NMR ( $\left.\mathbf{1 0 0 . 6} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.1\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 23.3\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right)$, $25.1\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 27.7(\mathrm{C}-3), 28.7\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 35.1(\mathrm{C}-9), 36.6(\mathrm{C}-14)$, 45.9 (C-12), 54.8 (C-2), 127.1 (CH-Ts), 129.6 (CH-Ts), 136.1 (C-4Ts), 143.2 (C-1Ts), 173.1 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 381.2206$; found 381.2207.

## (S)-Haliclorensin



A solution of diazacycle 154 ( $74 \mathrm{mg}, 0.19 \mathrm{mmol}$ ) in anhydrous THF ( 3.5 mL ) was added to a suspension of $\mathrm{LiAlH}_{4}(74 \mathrm{mg}, 1.95 \mathrm{mmol})$ in anhydrous THF $(4.5 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was heated at reflux for 21 h . After cooling to room temperature, the reaction was quenched by water ( 7 mL ), and the pH value was adjusted to 4 by adding 2 M aqueous HCl solution ( 2 mL ). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the aqueous phase was basified with a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to reach pH 12. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were dried, filtered, and concentrated under vacuum to give a yellow oil. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$ previously washed with 18:1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$; gradient from 19:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to 17:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ) afforded ( S )-haliclorensin ( $26 \mathrm{mg}, 65 \%$ ) as a colorless oil.

Spectroscopic data for ( $\mathbf{S}$ )-haliclorensin
$[\alpha]^{22}{ }_{\mathrm{D}}-17.2$ (c 0.5, MeOH); lit ${ }^{69 \mathrm{a}}[\alpha]_{\mathrm{D}}-2.2$ (c 1.3, MeOH); $\mathrm{lit}^{73}[\alpha]^{20}{ }_{\mathrm{D}}-19$ (c 0.57, MeOH ); $\mathrm{lit}^{70}[\alpha]_{\mathrm{D}}-18.5$ (c $\left.0.6, \mathrm{MeOH}\right) ; \mathrm{lit}^{70}[\alpha]_{\mathrm{D}}-8.5 ; \mathrm{lit}^{70}[\alpha]^{20} \mathrm{D}+7.0(1 \mathrm{M} \mathrm{HCl}) ; \mathrm{lit}^{72 \mathrm{Lb}}$ $[\alpha]^{20} \mathrm{D}-18.2$ ( $c 0.4, \mathrm{MeOH}$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.24-1.31$ ( m , 1 H ), 1.36-1.51 (m, 9H), 1.55-1.61 (m, 2H), 1.70-1.77 (m, 3H), $2.40(\mathrm{dd}, \mathrm{J}=11.8,9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=11.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.68(\mathrm{~m}, 2 \mathrm{H})$, 2.712.73 (m, 2H), 2.82 (ddd, $J=11.2,6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 18.8\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 30.5(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 50.5$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.6\left(\mathrm{CH}_{2} \mathrm{~N}\right)$.

## (S)-2-Methyl-1-[(tert-butoxycarbonyl)amino]-5-[(tertbutyldimethylsilyl)oxy]pentanol (155)


tert-Butyldimethylsilyl chloride ( $263 \mathrm{mg}, 1.74 \mathrm{mmol}$ ) was added to a solution of alcohol 95 ( $252 \mathrm{mg}, 1.16 \mathrm{mmol}$ ) and imidazole ( $118 \mathrm{mg}, 1.74 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mL ), and the mixture was heated at reflux for 15 h . The reaction was quenched by a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give protected alcohol 155 ( $300 \mathrm{mg}, 94 \%$ ).

Spectroscopic data for 155
$[\alpha]^{22}{ }_{D}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.05$ (s, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$ ), 0.89 ( $\mathrm{d}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.09-1.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.32-1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 1.44 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.48-1.61(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 2.89(\mathrm{ddd}, J=13.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1$ ), 2.99 (ddd, $J=13.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), $3.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 4.57$ (br.s, 1H, NH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta-5.3\left(2 \mathrm{CH}_{3} \mathrm{Si}\right)$, $17.5\left(\mathrm{CH}_{3}\right)$, $18.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.9$
 $79.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 156.1(\mathrm{CO}) \text {. }}\right.$
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for

## (S)-5-[(tert-Butyldimethylsilyl)oxy]-2-methyl-N-[undec-10-en-1yl]-N-[(tertbutoxycarbonyl)] (156)


$\mathrm{NaH}(28 \mathrm{mg}, 1.09 \mathrm{mmol})$ was added to a suspension of carbamate $155(562 \mathrm{mg}$, 1.46 mmol ) in anhydrous DMF ( 4 mL ) at room temperature, and the resulting mixture was stirred at this temperature for 2 h . Then, 11 -bromoundec-1-ene ( $0.18 \mathrm{~mL}, 1.09$ mmol ) was added and the stirring was continued at $75{ }^{\circ} \mathrm{C}$ for 3 h 30 . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}$ and extracted with EtOAc. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (95:5 hexane-EtOAc) to give alkene 156 ( $87 \mathrm{~g}, 25 \%$ ) as a yellow oil.

Spectroscopic data for 156
$[\alpha]^{22}$ d $-2.2(c 0.5, \mathrm{MeOH})$.
IR (film) 3354, 3077, 1708, 1641, $1463 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.89(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.09-1.19 (m, 2H, CH2 $), 1.23-1.39\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.44\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.46-1.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.00(\mathrm{dd}, \mathrm{J}=14.4,6.8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ ), 2.85-3.07 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), $3.54\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 4.86-4.97 (m, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 5.71-5.81 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta-5.3\left(2 \mathrm{CH}_{3} \mathrm{Si}\right)$, $17.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $18.3\left(\mathrm{CH}_{3}\right), 25.9$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $28.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $28.9\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right)$, $30.1\left(\mathrm{CH}_{2}\right)$, $30.2\left(\mathrm{CH}_{2}\right)$, $30.3\left(\mathrm{CH}_{2}\right)$, $33.4(\mathrm{CH}), 33.8\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 46.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.8$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 63.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 78.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 114.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 139.2\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 156.1, 156.9 (CO).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for

## (S)-5-(Di(undec-10-en-1-yl)amino)-4-methylpentan-1-ol (157)



A solution of aminodiol 52 ( $50 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) in anhydrous MeOH ( 10 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(10 \mathrm{mg})$ was hydrogenated at $68^{\circ} \mathrm{C}$ for 18 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated, and the resulting residue was dissolved in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. Then, 11-bromoundec-1-ene ( $0.05 \mathrm{~mL}, 0.23$ mmol ), $\mathrm{K}_{2} \mathrm{CO}_{3}(58 \mathrm{mg} 0.42 \mathrm{mmol})$ and $\mathrm{KI}(77 \mathrm{mg}, 0.46 \mathrm{mmol})$ were added and the stirring was continued at $60{ }^{\circ} \mathrm{C}$ for $36 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added at room temperature and the organic phase was washed with $10 \%$ aqueous NaOH , dried, filtered, and concentrated to give an oil. Purification by flash chromatography (from 8:2 hexane-EtOAc to 1:1 hexane-EtOAc) afforded amine 157 ( $50 \mathrm{mg}, 57 \%$ ) as a colorless oil.

Spectroscopic data for 157
$[\alpha]^{22} \mathrm{D}+4.16(c 0.95, \mathrm{MeOH})$.
IR (film) $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.06\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.24$1.39\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.65-1.75 (m, 6H, CH2$), 1.78-1.86(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$ ), 2.01-2.05 (m, 4H, CH2CH=CH2), $2.69\left(\mathrm{dd}, \mathrm{J}=13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.83$ (dd, $J=13.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 2.88-2.98 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$ ), 4.91-5.01 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), $5.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.5\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.8$ $\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 30.9(\mathrm{CH}), 33.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $53.7\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $59.5\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $61.5\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $114.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 139.2 ( $\mathrm{CH}_{2}=\mathrm{CH}$ ).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{NO} 422.4356$; found 422.4358 .

## (S)-5-[(tert-Butyldimethylsilyl)oxy]-2-ethyl-1-pentanamine (159)



A solution of aminodiol 14 ( $241 \mathrm{mg}, 0.96 \mathrm{mmol}$ ) in anhydrous MeOH ( 10 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(48 \mathrm{mg})$ was hydrogenated at $68{ }^{\circ} \mathrm{C}$ for 18 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated, and the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Imidazole ( $271 \mathrm{mg}, 3.98 \mathrm{mmol}$ ) and TBDPSCI ( 1.093 g , 3.98 mmol ) were added, and the mixture was allowed to react at room temperature for 12 h , and at $40{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated to give an oil. Purification by flash chromatography (from 95:5 hexane-EtOAc to EtOAc) afforded pure amine 159 ( $115 \mathrm{mg}, 32 \%$ ) as a yellow oil.

Spectroscopic data for 159
$[\alpha]^{22} \mathrm{D}-5.78\left(c 0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.88\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.04 [s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.32-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.45-1.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.68-1.77 (m, 1H, H-2), $2.79(\mathrm{dd}, J=7.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 2.89(\mathrm{dd}, J=$ $12.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 3.64 (t, J = 7.4 Hz, 2H, H-5), 7.34-7.43 (m, 6H, ArH), 7.637.66 (m, 2H, ArH), 7.70-7.73 (m, 2H, ArH).

[^77]HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for
(S)-4-Ethyl-5-(10-undecenylamino)-1-pentanol (160)


A solution of aminodiol 14 ( $370 \mathrm{mg}, 1.47 \mathrm{mmol}$ ) in anhydrous MeOH ( 10 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(74 \mathrm{mg})$ was hydrogenated at $68^{\circ} \mathrm{C}$ for 18 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH. The combined organic solutions were concentrated, and the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 1.3 mL ). 10-Undecenal ( $0.58 \mathrm{~mL}, 2.94 \mathrm{mmol}$ ), $\mathrm{NaBH}(\mathrm{AcO})_{3}(936$ $\mathrm{mg}, 4.42 \mathrm{mmol})$ and $\mathrm{AcOH}(0.13 \mathrm{~mL})$ were added, and the mixture was allowed to react at room temperature for 12 h . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}$, and the organic layer was dried, filtered, and concentrated. The resulting residue was chromatographed (from 8:2 hexane-EtOAc to 8:2 EtOAc-MeOH) to give alkene 160 ( $104 \mathrm{mg}, 25 \%$ ) as a colorless oil.

Spectroscopic data for 160
$[\alpha]^{22}{ }_{\mathrm{D}}-2.15(c 0.3, \mathrm{MeOH})$.
IR (film) 2926, 2855, 1461, $1061 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.89\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.21-1.69 (m, 21H, H-4, 10CH $)_{2}$, 1.99-2.05 (m, 2H, CH ${ }_{2}=\mathrm{CHCH}_{2}$ ), 2.56-2.61 (m, 1H, $\mathrm{H}-5)$, 2.66-2.75 (m, 3H, H-5, CH2N), 3.62 (m, 2H, H-1), 4.43 (br.s, 1H, NH), 4.89-5.00 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 5.79 (dddd, $J=16.9,10.2,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{CH}_{2}\right)$, $28.3\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right)$, $33.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 37.7(\mathrm{C}-4), 49.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.2(\mathrm{C}-5), 62.1(\mathrm{C}-1), 114.1$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 139.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$.
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{NO}$ 284.2948; found 284.2939.

## (S)-5-((tert-butyldimethylsilyl)oxy)-2-ethyl-propyl-N-(10-undec-10-en-1yl) (161)



10-Undecenal ( $0.48 \mathrm{~mL}, 0.24 \mathrm{mmol}$ ) was added to a suspension of aminodiol 159 (74 $\mathrm{mg}, 0.20 \mathrm{mmol}$ ) and $\mathrm{NaBH}_{3} \mathrm{CN}(25 \mathrm{mg}, 0.40 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$, and the reaction mixture was allowed to react at room temperature for 12 h . The
reaction was quenched by water, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was chromatographed (from 98:2 hexane-EtOAc to EtOAc) to give alkene 161 ( $30 \mathrm{mg}, 29 \%$ ) as a colorless oil.

Spectroscopic data for 161
$[\alpha]^{22}{ }_{\mathrm{D}}-12.3(c 0.225, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.90\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.05 [s, 9H, $\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.24-1.58 (m, 18H, $\left.9 \mathrm{CH}_{2}\right)$, 1.65-1.77 (m, 3H, H-2, H-4), 2.01-2.06 (m, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 2.81-2.84 (m, 2H, H-5), 2.88-2.96 (m, 2H, CH2N), 3.66-3.70 (m, $2 \mathrm{H}, \mathrm{H}-1), 4.91-5.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.32-7.55(\mathrm{~m}, 6 \mathrm{H}$, ArH), 7.63-7.67 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 10.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], \quad 23.1\left(\mathrm{CH}_{2}\right)$, 23.7 $\left(\mathrm{CH}_{2}\right)$, 25.8( $\left.\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 27.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.0\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right)$, $33.9\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, $36.3(\mathrm{C}-4)$, $49.0\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, 51.6 (C-5), $63.8(\mathrm{C}-1)$, $114.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right.$ ), 127.8 (C-o*), 129.8 (C-p), 133.9 (C-ipso), $135.6\left(\mathrm{C}-\mathrm{m}^{*}\right)$, $139.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for
(S)-4-Ethyl-5-[N-(tert-butoxyC-Arbonyl)- N -(10-undecenyl)amino]-1-pentanol (162)

$\mathrm{Et}_{3} \mathrm{~N}(0.04 \mathrm{~mL}, 0.030 \mathrm{mmol})$ was added to a solution of $160(82 \mathrm{mg}, 0.29 \mathrm{mmol})$ and di-tert-butyl diC-Arbonate ( $69 \mathrm{mg}, 0.31 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(1.5 \mathrm{~mL}$ ), and the reaction mixture was allowed to react at room temperature for 12 h . The reaction was quenched by water, and the organic layer was dried, filtered, and concentrated, to give pure amine 162 ( $95 \mathrm{mg}, 85 \%$ ), as a colorless oil.

Spectroscopic data for 162
$[\alpha]^{22}{ }_{\mathrm{D}}-0.82(c 0.6, \mathrm{MeOH})$.
IR (film) 3453, $1694 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}$ ) $\delta 0.87\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.22-1.64 (m, 30H, C $\left.\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{H}-4,10 \mathrm{CH}_{2}\right), 2.00-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 3.00-3.07$ (m, 1H, H-5), 3.08-3.18 (m, 3H, H-5, CH2N), 3.54-3.64 (m, 2H, H-1), 4.89-5.00 (m, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 5.79 (dddd, J=16.9, 10.2, 10.2, $6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $26.9\left(\mathrm{CH}_{2}\right), 28.5\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.9$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.3\left(2 \mathrm{CH}_{2}\right), 29.4\left(2 \mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 33.7$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 38.1(\mathrm{C}-4), 47.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 50.3(\mathrm{C}-5), 63.1(\mathrm{C}-1), 79.1\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 114.0$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 139.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 156.0(\mathrm{NCO})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{NO}_{3} 384.3472$; found 384.3466.

## (S)-4-Ethyl-5-[(2-nitrobenzenesulfonyl)amino]-1-pentanol (163)



A solution of aminodiol 14 ( $1.15 \mathrm{~g}, 4.56 \mathrm{mmol}$ ) in anhydrous MeOH ( 25 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(230 \mathrm{mg})$ was hydrogenated at $68{ }^{\circ} \mathrm{C}$ for 18 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated, and the resulting residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 16 mL ). 2-Nitrobenzenesulfonyl chloride ( $1.12 \mathrm{~g}, 5.0$ mmol ) and $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5.0 \mathrm{mmol})$ were added, and the mixture was allowed to react at room temperature for 18 h . The solvent was removed under reduced pressure, and the residue was chromatographed (from 7:3 hexane-EtOAc to EtOAc) to give alcohol 163 ( $1.09 \mathrm{~g}, 76 \%$ ) as a colorless oil.

Spectroscopic data for 163
$[\alpha]^{22} \mathrm{D}+0.95(c 0.84, \mathrm{MeOH})$.
IR (film) $3348 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.84\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-$ 1.40 (m, 4H, H-3, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.47-1.54 (m, 3H, H-2, H-4), 1.65 (br.s, $1 \mathrm{H}, \mathrm{OH}$ ), 3.02 (dt, $J=6.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 5.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$, NH ), 7.76 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{Ns}, \mathrm{H}-6 \mathrm{Ns}$ ), 7.85 (m, 1H, H-4Ns), 8.13 (m, 1H, H-3Ns).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.7\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.9(\mathrm{C}-3), 29.3(\mathrm{C}-2)$, 33.1 (C-4), 46.2 (C-5), 62.8 (C-1), 125.3, 131.1 (C-3Ns, C-6Ns), 132.7 (C-4Ns), 133.5 (C-1Ns), 133.6 (C-5Ns), 148.0 (C-2Ns).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 317.1166$; found 317.1161.
(S)-4-Ethyl-5-[(2-nitrobenzenesulfonyl)amino]-5-(10-undecenyl)pentanol (164)


11-Bromo-1-undecene ( $0.80 \mathrm{~mL}, 3.65 \mathrm{mmol}$ ) was added to a suspension of alcohol $163(1.05 \mathrm{~g}, 3.3 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 3.98 \mathrm{mmol})$ in anhydrous DMF ( 25 mL ), and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature, poured into brine, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (7:3 hexane-EtOAc) afforded alkene 164 ( $1.30 \mathrm{~g}, 84 \%$ ) as a colorless oil.

Spectroscopic data for 164
$[\alpha]^{22} \mathrm{D}+1.82\left(c \quad 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.85\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.191.37 ( $\mathrm{m}, 16 \mathrm{H}, 8 \mathrm{CH}_{2}$ ), 1.40-1.65 (m, 5H, H-4, CH2, CH2CH $\mathrm{CH}_{3}$ ), $2.02(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 3.19-3.25 (m, 4H, H-5, CH2N), $3.57(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.95(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), $5.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{Ns}), 7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-5 \mathrm{Ns}, \mathrm{C}-$ 6 Ns ), 7.98 (m, 1H, H-3Ns).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.4\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 27.6$ $\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 33.6$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 36.5(\mathrm{C}-4), 47.1\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $50.7(\mathrm{C}-5), 62.8(\mathrm{C}-1), 114.0\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$,
123.3 (C-3Ns), 130.6 (C-6Ns), 131.4 (C-4Ns), 133.3 (C-5Ns), 133.4 (C-1Ns), 139.0 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 148.0(\mathrm{C}-2 \mathrm{Ns})$.
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 469.2731$; found 469.2731.

## $N$-[2-Ethyl-5-hexenyl)- $N$-(2-nitrobenzenesulfonyl)-10-undecenamine (165)



Dess-Martin reagent ( $2.35 \mathrm{~g}, 5.55 \mathrm{mmol}$ ) was added to a solution of alcohol 164 (1.3 $\mathrm{g}, 2.77 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$, and the mixture was stirred at room temperature for 1.5 h . Then, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.75 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(0.75 \mathrm{~mL})$ were added, and the resulting mixture was stirred for 1 $h$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were washed with brine, dried, filtered, and concentrated to give an aldehyde, which was used without purification in the next step.
$t$-BuOK ( 13.8 mL of a 1 M solution in THF, 13.8 mmol ) was added to a solution of methyltriphenylphosphonium bromide ( $6.92 \mathrm{~g}, 19.4 \mathrm{mmol}$ ) in anhydrous THF ( 70 mL ) at room temperature, and the mixture was stirred for 1 h . Then, a solution of the above aldehyde in anhydrous THF ( 10 mL ) was added via cannula, and the resulting mixture was stirred at room temperature for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with EtOAc. The extracts were dried, filtered, and concentrated. The residue was chromatographed (9:1 hexane-EtOAc) to give dialkene 165 ( $592 \mathrm{mg}, 47 \%$ ) as a colorless oil.

Spectroscopic data for 165
$[\alpha]^{22}{ }_{\mathrm{D}}+4.09$ (c2.1, MeOH).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.84\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.14$1.39\left(\mathrm{~m}, 16 \mathrm{H}, 8 \mathrm{CH}_{2}\right), 1.41-1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.95-2.10(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 3.14-3.26 ( $\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}$ ), 4.91-5.02 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 5.74 (qt, $J=16.9,10.0,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 5.80 (qt, $J=16.9,10.1,6.7,6.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 7.59-7.62 (m, 1H, H-3Ns), 7.63-7.70 (m, 2H, H-5Ns, H-6Ns), 7.99-8.03 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{Ns}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 10.3\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 33.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 36.0(\mathrm{CH}), 47.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 114.1$ $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 114.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 124.1(\mathrm{C}-3 \mathrm{Ns}), 130.9(\mathrm{C}-6 \mathrm{Ns}), 131.4(\mathrm{C}-4 \mathrm{Ns}), 133.2$ (C5 Ns ), $133.9(\mathrm{C}-1 \mathrm{Ns}), 138.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 139.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 148.0(\mathrm{C}-2 \mathrm{Ns})$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 465.2782$; found 465.2776 .

## (S)-3-Ethyl-1-(2-nitrobenzenesulfonyl)azacyclohexadec-6-ene (166)



A solution of 165 ( $70 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to a solution of second-generation Grubbs catalyst ( $19 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 750 mL ) at reflux. The resulting mixture was stirred at reflux temperature for 14 h . The solvent was evaporated, and the resulting residue was chromatographed (95:5 hexane-EtOAc) to yield a 88:12 (calculated by GC/MS) mixture of $E / Z$ diastereoisomers 166 ( $46 \mathrm{mg}, 70 \%$ ).

Spectroscopic data for major diastereoisomer 166
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.00$1.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.18-1.44\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{H}-4,8 \mathrm{CH}_{2}\right), 1.46-1.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-1.80$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ ), 1.97-2.19 (m, 4H, H-5, H-8), 3.07 (dd, $J=13.8,7.5 \mathrm{~Hz}, \mathrm{H}-2$ ), 3.11-3.15 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-16$ ), 3.21-3.26 (m, 1H, H-16), 3.28 (dd, $J=13.8,7.5 \mathrm{~Hz}, \mathrm{H}-2$ ), 5.25-5.41 (m, 2H, H-6, H-7), 7.57-7.62 (m, 1H, H-3Ns), 7.63-7.73 (m, 2H, H-5Ns, H-6Ns), 7.938.04 (m, 1H, H-4Ns).

[^78]
## (S)-3-Ethylazacyclohexadec-6-ene (167)


$\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $82 \mathrm{mg}, 0.59 \mathrm{mmol}$ ) and thiophenol ( $0.024 \mathrm{~mL}, 0.24 \mathrm{mmol}$ ) were added to a solution of 166 ( $86 \mathrm{mg}, 0.20 \mathrm{mmol}$ ) in anhydrous DMF ( 4 mL ), and the mixture was stirred at room temperature for 14 h . The reaction was quenched by the addition of aqueous 2 M NaOH , and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and evaporated. The resulting residue was chromatographed (from 95:5 hexane-EtOAc to 8:2 EtOAc-Et ${ }_{3} \mathrm{~N}$ ) to afford compound 167 ( $22 \mathrm{mg}, 45 \%$ ) as a 75:25 (calculated by GC/MS) mixture of $E / Z$ diastereoisomers as a brown oil.

Spectroscopic data for major diastereoisomer 167
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.87\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.25$1.44\left(\mathrm{~m}, 16 \mathrm{H}, 8 \mathrm{CH}_{2}\right), 1.47-1.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94-2.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-8), 2.41$ (dd, $J=12.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 2.51-2.57 (dd, $J=12.0,6.41 \mathrm{H}, \mathrm{H}-16), 2.52-2.58$ (dd, $J=$ $12.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 2.62-2.68 (dd, $J=12.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16$ ), $5.36-5.39$ (m, 2H, H-6, H-7).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3}\right)$, $24.4\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right)$, $27.3\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 30.8$ $\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 36.9(\mathrm{C}-3), 47.6(\mathrm{C}-16), 52.3(\mathrm{C}-2), 130.8(\mathrm{CH}=), 130.9$ ( $\mathrm{CH}=$ ).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}$ 252.2686; found 252.2689.
(S)-3-Ethylazacyclohexadecane (168)


A solution of alkene 167 ( $19 \mathrm{mg}, 0.076 \mathrm{mmol}$ ) in anhydrous MeOH ( 10 mL ) containing $25 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ was hydrogenated at room temperature for 14 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH , and the combined organic solutions were concentrated. Flash chromatography (from 95:5 hexane-EtOAc to $8: 2 \mathrm{EtOAc}_{\mathrm{Et}}^{3} \mathrm{~N}$ ) of the residue gave 168 ( $8 \mathrm{mg}, 50 \%$ ) as a brown oil.

Spectroscopic data for 168
$[\alpha]^{22}{ }_{\mathrm{D}}-6.75$ (c 0.15, MeOH).
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.90\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.25-1.41 (m, 24H, $12 \mathrm{CH}_{2}$ ), 1.50-1.70 (m, 3H, H-3, $\mathrm{CH}_{2}$ ), $2.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.60-2.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16)$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3}\right), ~ .24 .8\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 26.0$ $\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 35.6(\mathrm{C}-3), 46.1(\mathrm{C}-16), 49.1(\mathrm{C}-2)$.

HRMS (ESI-TOF) m/z: [ $\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{~N} 254.2842$; found 254.2842 .
(S)-4-Methyl-5-[(2-nitrobenzenesulfonyl)amino]-1-pentanol (169)


A solution of aminodiol 52 ( $1.36 \mathrm{~g}, 5.73 \mathrm{mmol}$ ) in anhydrous MeOH ( 35 mL ) containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2}(272 \mathrm{mg})$ was hydrogenated at $68{ }^{\circ} \mathrm{C}$ for 18 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH . The combined organic solutions were concentrated, and the resulting residue was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$. 2-Nitrobenzenesulfonyl chloride ( $1.4 \mathrm{~g}, 6.3$ mmol ) and $\mathrm{Et}_{3} \mathrm{~N}(0.88 \mathrm{~mL}, 6.3 \mathrm{mmol})$ were added, and the mixture was allowed to react at room temperature for 18 h . The solvent was removed under reduced pressure, and the residue was chromatographed (from 7:3 hexane-EtOAc to EtOAc) to give alcohol 169 ( $1.25 \mathrm{~g}, 72 \%$ ) as a colorless oil.

## Spectroscopic data for 169

$[\alpha]^{22} \mathrm{D}+2.66(c 1.05, \mathrm{MeOH})$.
IR (film) $3349 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.93\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22-$ $1.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.42-1.54(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-2, \mathrm{OH}), 1.55-1.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.64-$
1.74 (m, 1H, H-4), 2.92 (ddd, $J=13.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ ), 3.01 (ddd, $J=13.2,6.8$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 5.35(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.73-7.75$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{Ns}, \mathrm{H}-6 \mathrm{Ns}$ ), 7.85 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{Ns}$ ), 8.12 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{Ns}$ ).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 17.4\left(\mathrm{CH}_{3}\right), 29.6(\mathrm{C}-2), 29.9(\mathrm{C}-3), 33.1(\mathrm{C}-4), 49.5$ (C-5), 62.8 (C-1), 125.3, 131.1 (C-3Ns, C-6Ns), 132.7 (C-4Ns), 133.5 (C-1Ns), 133.7 (C-5Ns), 148.1 (C-2Ns).
HRMS (ESI-TOF) m/z: $[M+H]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 303.1009$; found 303.1008.

## (S)-4-Methyl-5-[N-(2-nitrobenzenesulfonyl)-10-undecenylamino]-1-pentanol (170)



11-Bromo-1-undecene ( $0.10 \mathrm{~mL}, 0.44 \mathrm{mmol}$ ) was added to a suspension of alcohol 169 ( $110 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(154 \mathrm{mg}, 0.47 \mathrm{mmol})$ in anhydrous DMF ( 2.5 mL ), and the resulting mixture was stirred at $55{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature, poured into brine, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated to give an oil. Flash chromatography (7:3 hexane-EtOAc) afforded alkene 170 ( $130 \mathrm{mg}, 79 \%$ ) as a colorless oil.

Spectroscopic data for 170
$[\alpha]^{22} \mathrm{D}-10.2(c 1.25, \mathrm{MeOH})$.
IR (film) $3334 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.87\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.05$1.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.15-1.29\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-3,4 \mathrm{CH}_{2}\right), 1.32-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.52$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58-1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71-1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.99-2.05(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), $3.12(\mathrm{dd}, J=14.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.20(\mathrm{dd}, J=14.2,7.1 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-$ 5), 3.18-3.32 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$ ), $3.61(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, 4.91-5.02 (m, 2H, $\mathrm{CH}_{2}=\mathrm{CH}$ ), 5.81 (qt, $J=17.0,10.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), $7.60-7.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ 3Ns, H-5Ns, H-6Ns), 7.99-8.02 (m, 1H, H-4Ns).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.0\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 31.0(\mathrm{C}-4), 33.7$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 47.2\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $53.2(\mathrm{C}-5)$, $62.9(\mathrm{C}-1), 114.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 124.1 and 130.9 (C-3Ns, C-6Ns), 131.4 (C-4Ns), 133.2 (C-1Ns), 133.8 (C-5Ns), 139.1 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right.$ ), 148.0 ( $\mathrm{C}-2 \mathrm{Ns}$ ).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 455.2574$; found 455.2570.

## N -[2-Methyl-5-hexenyl)-N-(2-nitrobenzenesulfonyl)-10-undecenamine (171)



Dess-Martin reagent ( $168 \mathrm{mg}, 0.40 \mathrm{mmol}$ ) was added to a solution of alcohol 170 (90 $\mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 1.5 h . Then, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.75 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(0.75 \mathrm{~mL})$ were added, and the resulting mixture was stirred for 1 $h$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were washed with brine, dried, filtered, and concentrated to give an aldehyde, which was used without purification in the next step:
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.88\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ), 1.12-1.29 (m, 9H), 1.31$1.51(\mathrm{~m}, 6 \mathrm{H}), 1.73-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 2.37-2.58(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{COH}$ ), 3.10-3.28 (m, 4H, $2 \mathrm{CH}_{2} \mathrm{~N}$ ), 4.91-5.02 (m, 2H, CH ${ }_{2}=\mathrm{CH}$ ), 5.80 (qt, $J=16.9$, $10.1,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), $7.60-7.70$ (m, 3H, H-3Ns, H-5Ns, H-6Ns), 7.99-8.02 (m, 1H, H-4Ns), 9.76 (s, 1H, COH).
$t$-BuOK ( 0.99 mL of a 1 M solution in THF, 0.99 mmol ) was added to a solution of methyltriphenylphosphonium bromide ( $497 \mathrm{mg}, 1.38 \mathrm{mmol}$ ) in anhydrous THF (10 mL ) at room temperature, and the mixture was stirred for 1 h . Then, a solution of the above aldehyde in anhydrous THF ( 10 mL ) was added via cannula, and the resulting
mixture was stirred at room temperature for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with EtOAc. The extracts were dried, filtered, and concentrated. The residue was chromatographed (9:1 hexane-EtOAc) to give dialkene 171 ( $55 \mathrm{mg}, 61 \%$ ) as a colorless oil.

Spectroscopic data for 171
$[\alpha]^{22}{ }_{\mathrm{D}}-3.58(c 0.9, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.85\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.09$1.30\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.41-1.50 (m, 3H, CH 2 ), 1.70-1.75 (m, $1 \mathrm{H}, \mathrm{CH}), 1.95-2.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 2.08-2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.12(\mathrm{dd}, J=14.2,8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 3.18 (dd, $J=14.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 3.13-3.21 (m, 2H, CH2N), 4.91$5.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 5.74$ (qt, $J=17.0,10.1,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 5.80 (qt, $J=17.3,10.3,10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), $7.59-7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{Ns}), 7.63-7.70$ (m, 2H, H-5Ns, H-6Ns), 7.99-8.03 (m, 1H, H-4Ns).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.0\left(\mathrm{CH}_{3}\right)$, $26.6\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 30.4(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, $33.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, $47.1(\mathrm{C}-1)$, $53.1\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $114.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $114.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 124.1 (C-3Ns), 130.9 (C-6Ns), 131.4 (C-4Ns), 133.2 (C-5Ns), 133.9 (C-1Ns), 138.4 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 139.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 148.0(\mathrm{C}-2 \mathrm{Ns})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 451.2625$; found 451.2622.
(S)-3-Methyl-1-(2-nitrobenzenesulfonyl)azacyclohexadec-6-ene (172)


A solution of 171 ( $58 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a solution of second-generation Grubbs catalyst ( $16.4 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(650$ mL ) at reflux. The resulting mixture was stirred at reflux temperature for 14 h . The solvent was evaporated, and the resulting residue was chromatographed (95:5 hexane-EtOAc) to yield a $86: 14$ (calculated by GC/MS) mixture of $E / Z$ diastereoisomers 172 ( $44 \mathrm{mg}, 80 \%$ ).

Spectroscopic data for major diastereoisomer 172
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.84\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.06$1.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.19-1.59\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-4,7 \mathrm{CH}_{2}\right)$, 1.78-1.87 (m, 1H, H-3), 1.97-2.10 (m, 3H, H-5, H-8), 2.12-2.18 (m, 1H, H-8), 3.08 (dd, $J=13.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 3.143.24 (m, 3H, H-2, H-16), 5.26-5.45 (m, 2H, H-6, H-7), 7.59-7.62 (m, 1H, H-3Ns), 7.647.69 (m, 2H, H-5Ns, H-6Ns), 7.97-8.02 (m, 1H, H-4Ns).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.9\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 28.1(\mathrm{C}-3), 28.9\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 30.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 33.3(\mathrm{C}-4), 46.5(\mathrm{C}-16), 54.1(\mathrm{C}-2), 124.0(\mathrm{C}-3 \mathrm{Ns}), 130.0(\mathrm{CH}=), 130.8$ (C-6Ns), 131.3 ( $\mathrm{CH}=$ ), 131.4 (C-4Ns), 133.1 (C-5Ns), 133.6 (C-1Ns), 148.1 (C-2Ns).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 423.2312$; found 423.2301.
(S)-3-Methylazacyclohexadec-6-ene (173)

$\mathrm{K}_{2} \mathrm{CO}_{3}(194 \mathrm{mg}, 1.41 \mathrm{mmol})$ and thiophenol ( $0.058 \mathrm{~mL}, 0.56 \mathrm{mmol}$ ) were added to a solution of 172 ( $198 \mathrm{mg}, 0.47 \mathrm{mmol}$ ) in anhydrous DMF ( 9 mL ), and the mixture was stirred at room temperature for 14 h . The reaction was quenched by the addition of aqueous 2 M NaOH , and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and evaporated. The resulting residue was chromatographed (from 95:5 hexane-EtOAc to 8:2 EtOAc-Et ${ }_{3} \mathrm{~N}$ ) to afford compound 173 ( $64 \mathrm{mg}, 58 \%$ ) as a 84:16 (calculated by GC/MS) mixture of $E / Z$ diastereoisomers as a brown oil.

Spectroscopic data for major diastereoisomer 173
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.87\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.14$1.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.24-1.54\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-4,7 \mathrm{CH}_{2}\right), 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.95-2.16$ (m, 4H, H-5, H-8), $2.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.48-2.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16), 2.62-2.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 16), 5.35-5.40 (m, 2H, H-6, H-7).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.8\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right)$, $27.3\left(\mathrm{CH}_{2}\right)$, $27.6\left(\mathrm{CH}_{2}\right)$, $28.3\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right), 30.1(\mathrm{C}-3), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}=\right)$, $34.0\left(\mathrm{CH}_{2} \mathrm{CH}=\right), 47.0(\mathrm{C}-16), 55.4(\mathrm{C}-2), 130.7(\mathrm{CH}=), 130.9(\mathrm{CH}=)$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N} 238.2529$; found 238.2523.

## (S)-Haliclorensin C



A solution of alkene 173 ( $46 \mathrm{mg}, 0.19 \mathrm{mmol}$ ) in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ containing $25 \% \mathrm{Pd} / \mathrm{C}(12 \mathrm{mg})$ was hydrogenated at room temperature for 14 h under 10 bar of pressure. The catalyst was removed by filtration and washed with hot MeOH , and the combined organic solutions were concentrated. Flash chromatography (from 95:5 hexane-EtOAc to 8:2 EtOAc-Et ${ }_{3} \mathrm{~N}$ ) of the residue gave (S)-haliclorensin $\mathbf{C}(33 \mathrm{mg}$, $71 \%$ ) as a brown oil.

## Spectroscopic data for (S)-haliclorensin C

$[\alpha]^{22}{ }_{\mathrm{D}}-6.04(c 0.85, \mathrm{MeOH}) ; \mathrm{lit}^{73}[\alpha]^{20} \mathrm{D}+53(c 0.15, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, 4: 1 \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), 1.08-1.22 (m, 1H, H-4), 1.30-1.41 (m, 20H, $10 \mathrm{CH}_{2}$ ), 1.42-1.56 (m, 3H, H-4, $\mathrm{CH}_{2}$ ), 1.60-1.63 (m, 1H, H-3), $2.30(\mathrm{dd}, J=11.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.36(\mathrm{dd}, J=11.8$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.48-2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16), 2.64-2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16)$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, 4:1 $\left.\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta 18.2\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 26.0$ $\left(\mathrm{CH}_{2}\right), 26.1\left(2 \mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 27.0\left(2 \mathrm{CH}_{2}\right), 30.7$ (C-3), 32.4 (C-4), 47.0 (C-16), 53.8 (C-2).
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N} 240.2686$; found 240.2681.

## Spectroscopic data for (S)-haliclorensin C hydrochloride

${ }^{1} \mathrm{H}$ NMR (400 MHz, 4:1 $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), 1.26-1.40 (m, 22H, 11CH2), $1.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-15), 1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.78-2.84$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ ), 2.89-2.99 (m, 2H, H-16).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, 4:1 CDCl $\left.\mathbf{C D}_{3} \mathrm{OD}\right) \delta 17.9\left(\mathrm{CH}_{3}\right)$, $23.7(\mathrm{C}-15)$, $24.7\left(\mathrm{CH}_{2}\right), 24.9$ $\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.8$ $\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 28.7(\mathrm{C}-3), 32.6(\mathrm{C}-4), 45.6(\mathrm{C}-16), 50.9(\mathrm{C}-2)$.
(S)-4-Methyl-5-[N-(2-nitrobenzenesulfonyl)-4-pentenylamino]-1-pentanol (174)


5-Bromo-1-puntene ( $0.54 \mathrm{~mL}, 4.56 \mathrm{mmol}$ ) was added to a suspension of amine 169 $(1.15 \mathrm{~g}, 3.80 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.61 \mathrm{~g}, 4.95 \mathrm{mmol})$ in anhydrous DMF ( 2.5 mL ), and the resulting mixture was stirred at $55{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature, poured into brine, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated to give a yellow oil. Flash chromatography (from 7:3 hexane-EtOAc to 1:1 hexane-EtOAc) afforded alkene 174 ( $1.06 \mathrm{~g}, 75 \%$ ) as a colorless oil.

Spectroscopic data for 174
$[\alpha]^{22}{ }_{\mathrm{D}}-13.4$ (c 1.85, MeOH).
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.86\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05-$ $1.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.40-1.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 1.55-1.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{CH}_{2}, \mathrm{OH}\right)$, 1.71-1.80 (m, 1H, H-4), 1.95-2.00 (m, 2H, CH $=\mathrm{CHCH}_{2}$ ), 3.11 (dd, $J=14.2,8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$ ), 3.20 (dd, $J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.19-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.59(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 4.93-4.99 (m, 2H, CH2$=\mathrm{CH}$ ), 5.69 (qt, $J=16.9,10.2,10.2,6.6, \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}$ ), 7.59-7.63 (H-3Ns), 7.64-7.71 (m, 2H, H-5Ns, H-6Ns), 7.97-8.02 (m, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{Ns}$ ).

[^79]124.1 (C-3Ns), 130.9 (C-6Ns), 131.5 (C-4Ns), 133.3 (C-5Ns), 133.6 (C-1Ns), 137.1 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 147.9(\mathrm{C}-2 \mathrm{Ns})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 371.1635$; found 371.1635.
(S)-2-Methyl-N-(2-nitrobenzenesulfonyl)-N-(4-pentenyl)-5-hexenamine (175)


Dess-Martin reagent ( $1.49 \mathrm{~g}, 3.52 \mathrm{mmol}$ ) was added to a solution of alcohol 174 (355 $\mathrm{mg}, 1.0 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, and the mixture was stirred at room temperature for 1.5 h . Then, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.75 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(0.75 \mathrm{~mL})$ were added, and the resulting mixture was stirred for 1 h. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were washed with brine, dried, filtered, and concentrated to give an aldehyde, which was used without purification in the next step:
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) $\delta 0.88\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H})$, 1.95-2.02 (m, 2H), 2.40-2.52 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{COH}\right)$, 3.11-3.30 (m, 4H, 2CH2N), 4.94-5.00 (m, 2H, CH2=CH), 5.64-5.75 (m, 1H, CH $\left.{ }_{2}=\mathrm{CH}\right)$, 7.50-7.60 (m, 3H, H-3Ns, H-5Ns, H-6Ns), 7.99-8.00 (m, 1H, H-4Ns), 9.75 (s, 1H, COH ).
$t$-BuOK ( 5.9 mL of a 1 M solution in THF, 5.9 mmol ) was added to a solution of methyltriphenylphosphonium bromide ( $2.94 \mathrm{~g}, 8.22 \mathrm{mmol}$ ) in anhydrous THF ( 10 mL ) at room temperature, and the mixture was stirred for 1 h . Then, a solution of the above aldehyde in anhydrous THF ( 60 mL ) was added via cannula, and the resulting mixture was stirred at room temperature for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the resulting mixture was extracted with EtOAc. The extracts were dried, filtered, and concentrated. The residue was chromatographed (9:1 hexane-EtOAc) to give dialkene 175 ( $175 \mathrm{mg}, 50 \%$ ) as a colorless oil.

Spectroscopic data for 175
$[\alpha]^{22}{ }_{\mathrm{D}}-12.0\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right)$; lit ${ }^{72 \mathrm{a}}[\alpha]^{22}{ }_{\mathrm{D}}-15.0\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.85\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.09$1.18(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.02(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}, \mathrm{CH}_{2}$ ), 2.07-2.17 (m, 1H, CH ${ }_{2}=\mathrm{CHCH}_{2}$ ), 3.13 (dd, $J=14.2,8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}-1$ ), 3.19 (dd, $\mathrm{J}=14.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}-1$ ), 3.26 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 4.92-4.97 (m, 3H, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), 4.99-5.01 (m, 1H, CH $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$ ), $5.65-5.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)$, $5.72-$ $5.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.59-7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{Ns}), 7.65-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{Ns}, \mathrm{H}-6 \mathrm{Ns})$, 7.99-8.02 (m, 1H, H-4Ns).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 16.9\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 30.4(\mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right), 30.9$ $\left(\mathrm{CH}_{2}\right)$, $33.0\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right)$, $53.4\left(\mathrm{CH}_{2}\right)$, $114.7\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $115.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, 124.1 (C-3Ns), 130.9 (C-6Ns), 131.4 (C-4Ns), 133.3 (C-5Ns), 133.7 (C-1Ns), 137.1 $\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 138.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 147.9(\mathrm{C}-2 \mathrm{Ns})$.

## (R)-5-[(tert-Butyldiphenylsilyl)oxy]-4-ethyl-1-pentanol (176)


$\mathrm{BH}_{3}$ - THF ( 3.83 mL of a 1.0 M solution in THF, 3.83 mmol ) was added to a cooled ( 0 ${ }^{\circ}$ C) solution of ent-128 ( $490 \mathrm{mg}, 1.28 \mathrm{mmol}$ ) in anhydrous THF ( 15 mL ), and the mixture was stirred at room temperature for 4 h . The reaction was quenched with 8 mL of a $1: 1 \mathrm{H}_{2} \mathrm{O}-\mathrm{Et}_{2} \mathrm{O}$ mixture, poured into saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried, filtered, and concentrated. The resulting residue was purified by flash chromatography ( $85: 15$ hexane-EtOAc) to give the title alcohol 176 ( $423 \mathrm{mg}, 90 \%$ ) as a colorless oil.

Spectroscopic data for 176
$[\alpha]^{22} \mathrm{D}+2.12$ (c 3.9, $\mathrm{CHCl}_{3}$ ); $\mathrm{Lit}^{110 \mathrm{~b}}[\alpha]^{23} \mathrm{D}+2.7$ (c 0.05, $\mathrm{CHCl}_{3}$ ); $\mathrm{Lit}^{110 \mathrm{a}}$ (for the enantiomer) $[\alpha]^{22}{ }_{\mathrm{D}}-2.00\left(c 3.9, \mathrm{CHCl}_{3}\right)$.
IR (film) 3400, 2930, 1427, $1112 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05[\mathrm{~s}$, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.30-1.37 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 1.40-1.45 (m,3H, H-3, H-4, CH2CH $\mathrm{CH}_{3}$ ),
1.46-1.51 (m, 2H, H-2), 1.55 (br.s, $1 \mathrm{H}, \mathrm{OH}$ ), $3.56(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.59(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ ), 7.35-7.44 (m, 6H, ArH), 7.65-7.68 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3}\right)$, $19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $23.6\left(\mathrm{CH}_{2}\right), 26.6$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9(\mathrm{C}-3), 30.1(\mathrm{C}-2), 41.8(\mathrm{C}-4), 63.3(\mathrm{C}-1), 64.3(\mathrm{C}-5), 127.5(\mathrm{C}-0)$, 129.5 (C-p), 133.9 (C-ı), 135.6 (C-m).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si} 371.2401$; found 371.2416 .

## (R)-1-[(tert-Butyldiphenylsilyl)oxy]-2-ethyl-5-iodopentane (177)



Triphenylphosphine ( $300 \mathrm{mg}, 1.13 \mathrm{mmol}$ ) and imidazole ( $80 \mathrm{mg}, 1.13 \mathrm{mmol}$ ) were added to a solution of alcohol $176(200 \mathrm{mg}, 0.54 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at room temperature. Then, iodine ( $290 \mathrm{mg}, 1.13 \mathrm{mmol}$ ) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 15 h . The solvent was evaporated under reduced pressure to afford a brown residue. Flash chromatography (from hexane to 95:5 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) of the residue gave iodide 177 ( $232 \mathrm{mg}, 90 \%$ ) as a colorless oil.

Spectroscopic data for 177
$[\alpha]^{22} \mathrm{D}+1.47\left(c \quad 0.75, \mathrm{CHCl}_{3}\right)$.
IR (film) 2929, $1111 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06[\mathrm{~s}$, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.30-1.51 (m, 5H, H-2, H-3, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 1.73-1.80 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-4), 3.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.51(\mathrm{dd}, J=10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.55(\mathrm{dd}, \mathrm{J}=$ $10.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 7.36-7.45$ (m, 6H, ArH), 7.64-7.67 (m, 4H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.5(\mathrm{C}-5), 11.3\left(\mathrm{CH}_{3}\right), 19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.6\left(\mathrm{CH}_{2}\right)$, $26.6\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.1(\mathrm{C}-4), 31.8(\mathrm{C}-3), 41.3(\mathrm{C}-2), 65.6(\mathrm{C}-1), 127.6(\mathrm{C}-0), 129.5(\mathrm{C}-$ p), 133.9 (C-ı), 135.6 ( $\mathrm{C}-m$ ).

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{IOSi} 481.1418$; found 481.1425.

## (R)-7-[(tert-Butyldiphenylsilyl)oxy]-6-ethyl-2-methyl-1-heptene (178)



Isopropenylmagnesium bromide ( 3.62 mL of a 0.5 M solution in THF, 1.81 mmol ) was added at $0{ }^{\circ} \mathrm{C}$ to a suspension of iodide $177(290 \mathrm{mg}, 0.60 \mathrm{mmol})$ and $\mathrm{Cul}(12.6 \mathrm{mg}$, $0.066 \mathrm{mmol})$ in anhydrous THF ( 3.5 mL ), and the resulting mixture was stirred at room temperature for 2 h . Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and evaporated. The resulting residue was chromatographed (hexane) to afford alkene 178 ( $211 \mathrm{mg}, 89 \%$ ) as a colorless oil.

Spectroscopic data for 178
$[\alpha]^{22} \mathrm{D}+0.66\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
IR (film) 2927, 1425, $1113 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{C O S Y}, \boldsymbol{g}$-HSQC) $\delta 0.82\left(\mathrm{t}, \boldsymbol{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.05 [s, 9H, $\left(\mathrm{CH}_{3}\right)_{3}$ ], 1.25-1.33 (m, 1H, H-5), 1.35-1.47 (m, 6H, H-4, H-5, H-6, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), $1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95-1.98(\mathrm{brt}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 3.54(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7)$, 4.64-4.68 (m, 2H, H-1), 7.35-7.44 (m, 6H, ArH), 7.65-7.68 (m, 4H, ArH).
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $22.4\left(\mathrm{CH}_{3}\right)$, 23.6 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.9(\mathrm{C}-4), 26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.3(\mathrm{C}-5), 38.2(\mathrm{C}-3), 42.0(\mathrm{C}-6), 65.8(\mathrm{C}-7)$, 109.6 (C-1), 127.5 (C-o), 129.5 (C-p), 134.1 (C-ı), 135.6 (C-m), 146.2 (C-2);

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{OSi} 395.2765$; found 395.2762.

## (R)-7-[(tert-ButyldiphenyIsilyl)oxy]-6-ethyl-1-heptene (179)



Vinylmagnesium bromide ( 0.8 ml of a 1.0 M in THF, 0.8 mmol ) was added at $0{ }^{\circ} \mathrm{C}$ to a suspension of iodide $177(128 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathrm{Cul}(5 \mathrm{mg}, 0.027 \mathrm{mmol})$ in anhydrous THF ( 1.5 mL ), and the resulting mixture was stirred at $0-15^{\circ} \mathrm{C}$ for 2 h . Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with EtOAc. The combined organic extracts were dried, filtered, and evaporated. The resulting residue was chromatographed (Petroleum ether) to afford alkene 179 (37 $\mathrm{mg}, 37 \%$ ) as a colorless oil.

Spectroscopic data for 179
$[\alpha]^{22}{ }_{\mathrm{D}}+0.8\left(c 0.95, \mathrm{CHCl}_{3}\right)$.
IR (film) 2960, 2930, 2858, $1428 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.83\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05[\mathrm{~s}$, 9H, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.29-1.37 (m, 4H, H-4, H-5, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.38-1.45 (m, 3H, H-5, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 2.00 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$ ), $3.54(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 4.91-5.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 5.74-5.84$ (H-2), 7.35-7.44 (m, 6H, ArH), 7.65-7.67 (m, 4H, ArH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2\left(\mathrm{CH}_{3}\right)$, $19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 26.2 (C4), $26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.1(\mathrm{C}-5), 34.2(\mathrm{C}-3), 42.0(\mathrm{C}-6), 65.8(\mathrm{C}-7), 114.2(\mathrm{C}-1), 127.5$ (C-o), 129.5 (C-p), 134.1 (C-i), 135.6 (C-m), 139.1 (C-2).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{OSi} 381.2608$; found 381.2624.
(R)-2-Ethyl-6-methyl-6-hepten-1-ol (180)


Tetrabutylammonium fluoride ( 3.83 mL of a 1.0 M solution in THF, 3.83 mmol ) was added to a solution of 178 ( $378 \mathrm{mg}, 0.96 \mathrm{mmol}$ ) in anhydrous THF ( 6 mL ) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 17 h . The solvent was eliminated under reduced pressure and the crude residue was purified by flash chromatography (from hexane to 8:2 hexane-EtOAc) to give the title alcohol 180 ( $187 \mathrm{mg}, 80 \%$ ) as a colorless liquid.

Spectroscopic data for 180
$[\alpha]^{22}{ }_{\mathrm{D}}-1.41\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$.
IR (film) 3336, 1649, $1460 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}-\mathrm{HSQC}\right) \delta 0.90\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ), 1.26-1.32 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.32-1.49 (m, 5H, H-2, H-3, H-4), $1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.01$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 3.55(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 4.67-4.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7)$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $22.3\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.8(\mathrm{C}-$ 4), 30.0 (C-3), 38.1 (C-5), 41.9 (C-2), 65.2 (C-1), 109.8 (C-7), 146.0 (C-6).

## (R) 2-Ethyl-6-methyl-6-heptenoic acid (181)



DMSO ( $0.46 \mathrm{~mL}, 6.47 \mathrm{mmol}$ ) was added to a cooled ( $-7 \mathrm{C}^{\circ} \mathrm{C}$ ) solution of oxalyl chloride ( $0.27 \mathrm{~mL}, 3.23 \mathrm{mmol}$ ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$, and the mixture was stirred at this temperature for 10 min . Then, a solution of the alcohol $180(459 \mathrm{mg}$, 2.94 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Triethylamine ( $2.05 \mathrm{~mL}, 14.7 \mathrm{mmol}$ ) was added and, after 40 min , the mixture was allowed to warm to room temperature and was washed with saturated $\mathrm{NaHCO}_{3}$. The organic extract was dried, filtered, and concentrated, to give the corresponding aldehyde ( 460 mg ) as a yellow oil, which was used without further purification:
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ) $\delta 0.92\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.42-1.49 (m, 3H), 1.51-1.58 (m, 1H), 1.60-1.69 (m, 2H), $1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5)$, 2.15-2.23 (m, 1H), 4.66-4.67 (m, 1H, H-7), 4.70-4.71 (m, 1H, H-7), $9.58(\mathrm{~d}, \mathrm{~J}=3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHO}$ ).

A solution of $\mathrm{NaClO}_{2}(3.19 \mathrm{~g}, 35.28 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(3.24 \mathrm{~g}, 27.0 \mathrm{mmol})$ in water $(14 \mathrm{~mL})$ was added to a solution of the above crude aldehyde ( 460 mg ) and 2-methyl-2-butene ( 14.7 mL of a 2.0 M solution in THF, 29.4 mmol ) in $t$-BuOH ( 28 mL ), and the mixture was stirred at room temperature for 3 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 8:2 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) of the residue gave C-Arboxylic acid 181 ( 370 mg , $74 \%$ ) as a colorless liquid.

Spectroscopic data for 181
$[\alpha]^{22}{ }_{\mathrm{D}}-6.87\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
IR (film) 3074, 2938, $1707 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.94\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$ ), 1.43-1.68 (m, 6H, CH $\left.\mathrm{CH}_{2}, \mathrm{H}-3, \mathrm{H}-4\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02(\mathrm{brt}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ 5), $2.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.67$ (br.s, $1 \mathrm{H}, \mathrm{H}-7$ ), 4.70 (br.s, $1 \mathrm{H}, \mathrm{H}-7$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{C}-4\right), 31.2$ (C-3), 37.6 (C-5), 47.0 (C-2), 110.1 (C-7), 145.4 (C-6), 182.8 (CO).
HRMS (ESI-TOF) m/z: [M - H] Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$ 169.123; found 169.1228.

## (R)-4-(Hydroxymethyl)hexanenitrile (182)


$20 \%$ Aqueous solution of $\mathrm{NH}_{3}(196 \mathrm{~mL})$ and iodine ( $11.59 \mathrm{~g}, 45.7 \mathrm{~mol}$ ) were added to a solution of amine ent- $122(4.11 \mathrm{~g}, 5.65 \mathrm{~mol})$ in anhydrous THF ( 10 mL ) at room temperature, and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 21 h . The mixture was washed with a saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried, filtered, and concentrated to give crude ent-123 as an oil, which was used without purification in the next step. An aliquot was chromatographed (from hexane to 6:4 hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give pure ent-123 $\left\{[\alpha]^{22}{ }_{\mathrm{D}}\right.$ 4.00 (c 0.5, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. Tetrabutylammonium fluoride $(17.6 \mathrm{~mL}$ of a 1.0 M solution in THF, 17.6 mmol ) was added to a solution of the above crude ent-123 ( 2.06 g ) in anhydrous THF ( 36 mL ) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for
3.5 h . The solvent was eliminated under reduced pressure and the crude residue was purified by flash chromatography (from 9:1 hexane-EtOAc to 1:1 hexane-EtOAc) to give nitrile derivative 182 ( $540 \mathrm{mg}, 75 \%$ from ent-122) as a yellow oil.

Spectroscopic data for 182
$[\alpha]^{22}{ }_{\mathrm{D}}-5.26\left(c 1.25, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit}^{114 \mathrm{a}}[\alpha]^{22}{ }_{\mathrm{D}}-7.1\left(c 0.97\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
IR (film) 3440, $2247 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.93(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6), 1.32-$ 1.45 (m, 2H, H-5), 1.52-1.62 (m, 1H, H-4), 1.65-1.83 (m, 2H, H-3), 2.05 (br.s, 1H, OH ), $2.38-2.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 3.54\left(\mathrm{dd}, J=10.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.65(\mathrm{dd}, J=$ $\left.10.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 11.0$ (C-6), 15.0 (C-2), 23.1 (C-5), 26.8 (C-3), 40.8 (C-4), $64.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 120.1(\mathrm{CN})$.
HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$ 145.1335; found 145.1337.

## (R)-4-Formylhexanenitrile (183)



DMSO ( $0.25 \mathrm{~mL}, 3.55 \mathrm{mmol}$ ) was added to a cooled ( $-78^{\circ} \mathrm{C}$ ) solution of oxalyl chloride ( $0.15 \mathrm{~mL}, 1.77 \mathrm{mmol}$ ) in hexane-EtOAc $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, and the mixture was stirred at this temperature for 10 min . Then, a solution of alcohol $182(205 \mathrm{mg}, 1.61$ mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was slowly added, and the yellow mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min . Triethylamine ( $1.12 \mathrm{~mL}, 8.06 \mathrm{mmol}$ ) was added and, after 1 h , the mixture was allowed to warm to room temperature and washed with saturated $\mathrm{NaHCO}_{3}$. The organic layer was dried, filtered, and concentrated, and the resulting residue was chromatographed (9:1 hexane-EtOAc) to afford aldehyde 183 ( 152 mg , 75\%).

Spectroscopic data for 183
$[\alpha]^{22}{ }_{\mathrm{D}}+9.1\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, COSY, $\boldsymbol{g}$-HSQC) $\delta 0.99\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.58$1.68(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2), 9.67$ (s, 1H, CHO).
HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 143.1179; found 143.1181 .

## (4R,5R)-4-Ethyl-5-hydroxy-7-octenenitrile (184)


(S,S)-2-Allyl-1,3-bis-(4-bromobenzyl)-2-chlorooctahydro-2-1 H-1,3,2-benzodiazasilole (Leighton reagent; $1.30 \mathrm{~g}, 2.30 \mathrm{mmol}$ ) and scandium triflate ( $49 \mathrm{mg}, 0.096 \mathrm{mmol}$ ) were added to a solution of aldehyde $183(240 \mathrm{mg}, 1.92 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(19 \mathrm{~mL})$, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h , and at room temperature for 12 h . Then, a solution of tetrabutylammonium fluoride ( $1.9 \mathrm{~mL}, 1.9$ mmol ) was added, and the mixture was stirred at room temperature for 30 min . The solvent was evaporated, and the resulting residue was chromatographed (from 8:2 hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give alcohol $\mathbf{1 8 4}$ together with minor amounts of 5-epi184 (dr 9:1, $284 \mathrm{mg}, 85 \%$ yield).

Spectroscopic data for 184

IR (film) 3468, $2247 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC, from the mixture) $\delta 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.31-1.40 (m, 1H), 1.40-1.49 (m, 1H), 1.54-1.62 (m, 3H, 2H, OH), 1.62$1.71(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.67-3.73$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$ ), 5.14-5.21 (m, 2H, H-8), 5.77-5.87 (m, 1H, H-7);
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$, from the mixture) $\delta$ 184: $11.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 15.4$ $\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, $21.4\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 43.3(\mathrm{CH}), 71.3(\mathrm{CHOH})$, $118.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 120.0(\mathrm{CN}), 134.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$.

5-epi-184: $11.0 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), \quad 15.2 \quad\left(\mathrm{CH}_{2} \mathrm{CN}\right), \quad 22.4\left(\mathrm{CH}_{2}\right), \quad 24.9 \quad\left(\mathrm{CH}_{2}\right), \quad 39.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 43.2(\mathrm{CH}), 71.4(\mathrm{CHOH}), 118.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 120.1(\mathrm{CN}), 134.6$ ( $\mathrm{CH}_{2}=\mathrm{CH}$ ).
HRMS (ESI-TOF) m/z: [M + NH $\left.4_{4}\right]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ 185.1648; found 185.1643.

## (4R,5R)-5-[(tert-Butyldimethylsilyl)oxy]-4-ethyl-7-octenenitrile (185)


tert-Butyldimethylsilyl chloride ( $760 \mathrm{mg}, 5.04 \mathrm{mmol}$ ) and imidazole ( $458 \mathrm{mg}, 6.73$ mmol ) were added to a solution of the above mixture of epimeric alcohols 184 (281 $\mathrm{mg}, 1.68 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was stirred at reflux temperature for 15 h . Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated. Flash chromatography (from 9:1 hexane-EtOAc to $8: 2$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) of the residue afforded the protected alcohol 185 ( $9: 1$ mixture of C-5 epimers; 365 $\mathrm{mg}, 77 \%$ yield) as a colorless oil.

Spectroscopic data for 185

IR (film) 2959, $2246 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC, from the mixture) $\delta 0.05$ (s, 3H, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.89\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 0.94\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 1.29-1.36 (m, 2H, CH ${ }_{2}$ ), 1.48-1.60 (m, 2H, H-4, CH ${ }_{2}$ ), 1.82-1.90 (m, 1H, CH 2 ), 2.092.23 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ ), 2.41 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ ), 3.72-3.77 (m, 1H, H-5), 5.02-5.08 (m, $2 \mathrm{H}, \mathrm{H}-8), 5.73-5.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{CDCl}_{3}$, from the mixture) $\delta \mathbf{1 8 5 R}$ (major epimer): -4.5 $\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.4\left(\mathrm{CH}_{3} \mathrm{Si}\right), 12.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 15.8(\mathrm{C}-2), 18.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.7\left(\mathrm{CH}_{2}\right), 25.6$ $\left(\mathrm{CH}_{2}\right), 25.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.3(\mathrm{C}-6), 44.4(\mathrm{C}-4), 73.4(\mathrm{C}-5), 116.9(\mathrm{C}-8), 119.9(\mathrm{C}-1)$, 135.6 (C-7).

185 S (minor epimer): $-4.8\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $-4.2\left(\mathrm{CH}_{3} \mathrm{Si}\right), 11.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 15.3(\mathrm{C}-2), 18.0$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.6\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 25.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 39.5(\mathrm{C}-6), 42.6(\mathrm{C}-4), 72.8(\mathrm{C}-5) \text {, }}\right.$ 117.2 (C-8), 120.2 (C-1), 134.6 (C-7).

HRMS (ESI-TOF) m/z: [M + H] $]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NOSi} 282.2248$; found 282.2245 .

## (4R,5R)-5-[(tert-Butyldimethylsilyl)oxy]-4-ethyl-7-octenamine (186)



A solution of the above mixture of epimeric nitriles $185(345 \mathrm{mg}, 1.23 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was slowly added to a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{LiAlH}_{4}(2.1$ mL of a 1.0 M solution in THF, 2.09 mmol ) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 2 h . After cooling to $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ ( $132 \mu \mathrm{~L}$ ), $10 \%$ aqueous $\mathrm{NaOH}(250 \mu \mathrm{~L})$, and $\mathrm{H}_{2} \mathrm{O}(573 \mu \mathrm{~L})$ were successively added. The insoluble white precipitate was removed by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was dried, filtered, and concentrated to give pure amine 186 ( $305 \mathrm{mg}, 87 \%$ ) as a colorless oil.

Spectroscopic data for 186
$[\alpha]^{22}{ }_{\mathrm{D}}+7.23$ (c 1.0, MeOH).
IR (film) 2957, 2930, $2858 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \mathrm{g}-\mathrm{HSQC}$ ) $\delta 0.03$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$ ), 0.04 (s, 3 H , $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.86-0.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.88\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.25-1.54(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3$, $\mathrm{H}-4, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 2.11-2.22 (m, 2H, H-6), $2.67(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 3.70-3.74(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-5), 4.98-5.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 5.75-5.85$ (dddd, $J=14.2,10.3,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7).
${ }^{13} \mathrm{C}$ NMR ( $\left.\mathbf{1 0 0 . 6} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.4\left(\mathrm{CH}_{3} \mathrm{Si}\right), 12.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 17.9$ $\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 22.3\left(\mathrm{CH}_{2}\right), 25.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.3\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 37.8(\mathrm{C}-6), 42.5(\mathrm{C}-1)$, 44.7 (C-4), 73.4 (C-5), 116.1 (C-8), 136.1 (C-7).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{NOSi} 286.2561$; found 286.2554 .

## (R)-N-\{(4R,5R)-5-[(tert-Butyldimethylsilyl)oxy]-4-ethyl-7-octen-1-yl\}-2-ethyl-6-methyl-6-heptenamide (187)


$N$-(3-Dimethylaminopropyl)-N'-ethylC-Arbodiimide hydrochloride (189 mg, 0.99 mmol ) was added to a cooled solution ( $0{ }^{\circ} \mathrm{C}$ ) of amine 186 ( $268 \mathrm{mg}, 0.94 \mathrm{mmol}$ ) and 1 hydroxybenzotriazole ( $159 \mathrm{mg}, 1.17 \mathrm{mmol}$ ) in anhydrous DMF ( 5.5 mL ), and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . Then, a solution of C -Arboxylic acid 181 ( $176 \mathrm{mg}, 10.3 \mathrm{mmol}$ ) in anhydrous DMF ( 1.5 mL ) was added, and the stirring was continued at room temperature for 15 h . The solvent was evaporated, the resulting residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried, filtered, and concentrated to give an oil. Flash chromatography ( $8: 2$ hexane-EtOAc) afforded amide 187 ( $325 \mathrm{mg}, 79 \%$ ) as a colorless oil.

Spectroscopic data for 187
$[\alpha]^{22} \mathrm{D}+3.69\left(c 2.05, \mathrm{CHCl}_{3}\right)$.
IR (film) 3297, $1641 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.01(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right)$, 0.84-0.88 (m, 15H, $\left.2 \mathrm{CH}_{3} \mathrm{CH}_{2},\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.12-1.18 (m, 1H), 1.25-1.32 (m, 3H), 1.35-1.49 (m, 7H), 1.49-1.54 (m, 2H), $1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CH}$ ), 2.06-2.19 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CH}$ ), 3.15-3.27 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ), 3.66-3.70 (m, 1H, CHO), 4.63 (br.d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CMe}$ ), 4.95-5.03 (m, 2H, $\mathrm{CH}_{2}=\mathrm{CH}$ ), 5.57 (br.t, $\left.J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 5.71-5.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)$.
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-4.5\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.3\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $12.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 12.1$
 $\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{2}\right)$, $32.3\left(\mathrm{CH}_{2}\right)$, $37.7\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $37.8\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $39.7\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $44.7(\mathrm{CH}), 49.7(\mathrm{CH})$, $73.5(\mathrm{CHO})$, $109.9\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $116.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $136.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 145.5\left(\mathrm{CH}_{2}=\mathrm{CMe}\right)$, $175.5(\mathrm{CO})$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{NO}_{2} \mathrm{Si} 438.3762$; found 438.3772 .

## O-[(tert-Butyldimethylsilyl)oxy]-6,7-didehydrofluvirucinin $\mathrm{B}_{1}$ (188)



A solution of second-generation Hoveyda-Grubbs catalyst ( $40 \mathrm{mg}, 0.063 \mathrm{mmol}$ ) in anhydrous toluene ( 32 mL ) was added to a solution of $187(138 \mathrm{mg}, 0.32 \mathrm{mmol})$ and 1,4 -benzoquinone ( $3.5 \mathrm{mg}, 0.032 \mathrm{mmol}$ ) in anhydrous toluene ( 160 mL ) at room temperature, and the resulting mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 17 h . The solvent was evaporated, and the resulting residue was chromatographed (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $99: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) to yield lactam Z -188 ( $56 \mathrm{mg}, 43 \%$ ) as a brown foam and its diastereoisomer E-188 (45 mg, 35\%) as a brown oil.

Spectroscopic data for Z-188

IR (film) 3292, 2959, 1641, 1549, $1462 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{SiCH}_{3}\right), 0.82(\mathrm{t}, J=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.88-0.92$ [m, 12H, CH $\left.\mathrm{CH}_{2},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.15-1.65(\mathrm{~m}, 12 \mathrm{H}), 1.68(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.69-1.90 (m, 2H), 1.95-2.08 (m, 2H), $2.20(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dm}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-13$ ), $3.58-3.68$ (m, 2H, H-9, H-13), 5.19 (brt, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 5.62 (dd, $J=$ 8.1, 3.7 Hz, 1H, NH).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-4.6\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.2\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $10.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 12.3$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $18.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 21.9\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 26.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.7}\right.$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 32.4(\mathrm{C}-5), 32.8(\mathrm{C}-8), 33.6\left(\mathrm{CH}_{2}\right), 39.1(\mathrm{C}-13), 43.9$ (C-10), 49.7 (C-2), 74.0 (C-9), 120.6 (C-7), 136.3 (C-6), 175.5 (C-1).
HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{Si} 410.3449$; found 410.3461.

Spectroscopic data for E-188

IR (film) 3292, 2959, 1641, 1549, $1462 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.87-0.93\left[\mathrm{~m}, 15 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CH}_{2},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.20-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.50(\mathrm{~m}, 8 \mathrm{H})$, 1.52-1.58 (m, 3H), $1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5)$,
2.17-2.24 (m, 1H, H-8), 2.26-2.33 (m, 1H, H-8), $3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13), 3.57-3.65(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-13$ ), 3.70 (ddd, $J=7.4,4.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ ), 5.27 (br.t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 5.32 (br.s, 1H, NH).
${ }^{13} \mathbf{C N M R}$ (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-4.8\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.4\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $11.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 12.4 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 16.9\left(\mathrm{CH}_{3}\right), 18.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.1\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 25.9$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.3\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{C}-8), 37.4(\mathrm{C}-5), 39.7(\mathrm{C}-13)$, 43.6 (C-10), 48.3 (C-2), 73.3 (C-9), 121.1 (C-7), 135.7 (C-6), 175.6 (C-1).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{Si} 410.3449$; found 410.3464 .

## O-[(tert-Butyldimethylsilyl)oxy]fluvirucinin $B_{1}$ (189):

From Z-188:


A solution of $\boldsymbol{Z}$-188 ( $30 \mathrm{mg}, 0.073 \mathrm{mmol}$ ) in anhydrous toluene ( 3 mL ) containing $\mathrm{Pd} / \mathrm{C}(26 \mathrm{mg})$ was hydrogenated at room temperature and atmospheric pressure for 17 h . The catalyst was removed by filtration over Celite ${ }^{\circledR}$. The organic solution was concentrated, and the resulting oil was chromatographed (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $98: 2$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) and then crystallized (9:1 hexane-EtOAc) to give pure $189(27 \mathrm{mg}$, $90 \%$ ) as a white solid.

## From a mixture of diastereoisomers $E-Z$ :

Operating as above, from a 1.2:1 mixture of macrocycles Z-188-E-188 ( $47 \mathrm{mg}, 0.11$ mmol ) and $\mathrm{Pd} / \mathrm{C}(41 \mathrm{mg})$ in anhydrous toluene ( 4.7 mL ), compound 189 ( 43 mg , $91 \%$ ) was obtained after flash chromatography (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ) and crystallization (9:1 hexane-EtOAc).

Spectroscopic data for 189
mp 185-187 ${ }^{\circ} \mathrm{C}$ [ $\left.\mathrm{Lit}^{104} \mathrm{mp} 187-188^{\circ} \mathrm{C}\right]$.
$[\alpha]^{22}{ }_{\mathrm{D}}+17.0\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{Lit}^{104}[\alpha]^{22} \mathrm{D}+12.0\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
IR (film) 3297, 2928, 1642, $1552 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, COSY, $g$-HSQC) $\delta 0.11$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}$ ), 0.12 ( $\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 0.82\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.89\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.97(\mathrm{~d}, J$ $\left.=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.04\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.19-1.41(\mathrm{~m}, 9 \mathrm{H}), 1.43-1.56(\mathrm{~m}, 6 \mathrm{H})$, $1.58-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dm}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 3.52(\mathrm{dt}, J=$ $9.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 3.77$ (m, 1H, H-13), 4.53 (dd, $J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ).
${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathrm{C}_{6} \mathrm{D}_{6}{ }^{92,104} \delta-4.7\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.7\left(\mathrm{CH}_{3} \mathrm{Si}\right), 9.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 12.5$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], \quad 20.9\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right), 26.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.3\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 31.5(\mathrm{C}-6), 34.1\left(\mathrm{CH}_{2}\right)$, $34.8\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{C}-10), 50.9(\mathrm{C}-2), 73.1$ (C-9), $174.8(\mathrm{C}-1)$.
HRMS (ESI-TOF) m/z: [M + H] $]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{NO}_{2} \mathrm{Si} 412.3605$; found 412.3611.

## Fluvirucinin $\mathrm{B}_{1}$



A solution of 189 ( $9 \mathrm{mg}, 0.022 \mathrm{mmol}$ ) in $1 \% \mathrm{HCl}-\mathrm{EtOH}(2 \mathrm{~mL})$ was stirred at room temperature for 2 h . Then, the solution was concentrated to give fluvirucinin $\mathbf{B}_{1}$ (6 $\mathrm{mg}, 92 \%$ ) as a white solid.

Spectroscopic data for fluvirucinin $\mathbf{B}_{1}$
mp 236-238 ${ }^{\circ} \mathrm{C}\left[\mathrm{Lit}^{85 \mathrm{mb}} \mathrm{mp} 235-245{ }^{\circ} \mathrm{C}\right]$.
$[\alpha]^{22}{ }_{\mathrm{D}}+14.3\left(\mathrm{c} 0.175,1: 1 \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}\right)$.
IR (film) 3308, 2953, 2926, 2872, 2855, $1635 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}, \operatorname{cosY}, \boldsymbol{g}$-HSQC) $\delta 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), $0.89\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.91\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02-1.18$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{OH}$ ), 1.27-1.44 (m, 11H, $5 \mathrm{CH}_{2}, \mathrm{H}-10$ ), 1.52-1.73 (m, 7H, 3CH $2, \mathrm{H}-6$ ),
2.09-2.16 (m, 1H, H-2), $2.69(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.34$ (masked, 1H, H-9), 3.75 (m, 1H), 7.88 (dd, $J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}\right) \delta 11.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $13.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $22.2\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right)$, $32.9(\mathrm{C}-6), 34.5\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 40.4\left(\mathrm{CH}_{2}\right), 45.5(\mathrm{C}-10), 49.9$ (masked, C-2), 75.0 (C-9), 178.9 (C-1).

HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NO}_{2} 298.2741$; found 298.274.


[^0]:    ${ }^{1}$ Hoffmann, R. W. Angew. Chem. Int. Ed. 2013, 52, 123-130.
    ${ }^{2}$ (a) Firn, R. D.; Jones, C. G. Nat. Prod. Rep. 2003, 20, 382-391. (b) Bon, R. S.; Waldmann, H. Acc. Chem. Res. 2010, 43, 1103-1114. (c) Hong, J. Chem. Eur. J. 2014, 20, 10204-10212; d) Trauner, D. Nat. Prod. Rep. 2014, 31, 411-413.

[^1]:    ${ }^{3}$ Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311-335.
    ${ }^{4}$ (a) Jesse, W.-H.; Vederas, J. C. Science 2009, 325, 161-165. (b) Molinski, T. F. Org. Lett. 2014, 16, 38493855.
    ${ }^{5}$ (a) Bhakuni, D. S.; Rawat, D. S. in Bioactive Marine Natural Prodcts; Springer: New York and Anamaya Publisher: New Delhi, India, 2005. (b) Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug Discovery 2009, 8, 69-85; c) Newman, D. J.; Cragg, G. M. Mar. Drugs 2014, 12, 255-278.
    ${ }^{6}$ (a) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183-188. (b) McLeod, M. C.; Singh, G.; Plampin III J. N.; Rane, D.; Wang, J. L.; Day, V. W.; Aubé, J. Nat. Chem. 2014, 6, 133-140.

[^2]:    ${ }^{7}$ Over, B.; Wetzel, S.; Grütter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2013, 5, 2128.
    ${ }^{8}$ Nicolaou, K. C.; Snyder, S. A. Angew. Chem. Int. Ed. 2005, 44, 1012-1044.
    ${ }^{9}$ Maier, M. E. Nat. Prod. Rep. 2009, 26, 1105-1124.
    ${ }^{10}$ For reviews see: (a) Escolano, C.; Amat, M.; Bosch, J. Chem. Eur. J. 2006, 12, 8198-8207. (b) Amat, M.; Pérez, M.; Bosch, J. Synlett 2011, 143-160. (c) Amat, M.; Llor, N.; Griera, R.; Pérez, M.; Bosch, J. Nat. Prod. Commun. 2011, 6, 515-526. (d) Amat, M.; Pérez, M.; Bosch, J. Chem. Eur. J. 2011, 17, 7724-7732.

[^3]:    ${ }^{11}$ Coombs, T. C.; Lee, M. D.; Wong, H.; Armstrong, M.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2008, 73, 882-888.
    ${ }^{12}$ (a) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503-9569. (b) Meyers, A. I.; Brengel, G. P. Chem. Commun. 1997, 1-8. (c) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843-9873.
    ${ }^{13}$ (a) Amat, M.; Llor, N.; Bosch, J. Tetrahedron Lett. 1994, 35, 2223-2226. (b) Amat, M.; Llor, N.; Hidalgo, J.; Hernández, A.; Bosch, J. Tetrahedron: Asymmetry 1996, 7, 977-980. (c) Amat, M.; Hidalgo, J.; Llor, N.; Bosch, J. Tetrahedron: Asymmetry 1998, 9, 2419-2422. (d) Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003, 68, 1919-1928. (e) Amat, M.; Escolano, C.; Llor, N.; Huguet, M.; Pérez, M.; Bosch, J. Tetrahedron: Asymmetry 2003, 14, 1679-1683.
    ${ }^{14}$ (a) Amat, M.; Escolano, C.; Llor, N.; Lozano, O.; Gómez-Esqué, A.; Griera, R.; Bosch, J. ARKIVOC 2005, IX, 115-123. (b) Amat, M.; Escolano, C.; Lozano, O.; Gómez-Esqué, A.; Griera, R.; Molins, E.; Bosch, J. J. Org. Chem. 2006, 71, 3804-3815. (c) Amat, M.; Lozano, O.; Escolano, C.; Molins, E.; Bosch, J. J. Org. Chem. 2007, 72, 4431-4439.
    ${ }^{15}$ (a) Amat, M.; Bosch, J.; Hidalgo, J.; Cantó, M.; Pérez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074-3084. (b) Amat, M.; Pérez, M.; Llor, N.; Bosch, J. Org. Lett. 2002, 4, 2787-2790. (c) Amat, M.; Pérez, M.; Llor, N.; Martinelli, M.; Molins, E.; Bosch, J. Chem. Commun. 2004, 1602-1603. (d) Amat, M.; Pérez, M.; Llor, N.; Escolano, C.; Luque, F. J.; Molins, E.; Bosch, J. J. Org. Chem. 2004, 69, 8681-8693.

[^4]:    ${ }^{16}$ Casamitjana, N.; Amat, M.; Llor, N.; Carreras, M.; Pujol, X.; Fernández, M. M.; López, V.; Molins, E.; Miravitlles, C.; Bosch, J. Tetrahedron: Asymmetry 2003, 14, 2033-2039.

[^5]:    ${ }^{17}$ Amat, M.; Bassas, O.; Llor, N.; Cantó, M.; Pérez, M.; Molins, E.; Bosch, J. Chem. Eur. J. 2006, 12, 78727881.

[^6]:    ${ }^{18}$ (a) Amat, M.; Pérez, M.; Bosch, J.; Lago, E.; Molins, E. Org. Lett. 2001, 3, 611-614. (b) Amat, M.; Escolano, C.; Lozano, O.; Llor, N.; Bosch, J. Org. Lett. 2003, 5, 3139-3142. (c) Amat, M.; Llor, N.; Checa, B.; Pérez, M.; Bosch, J. Tetrahedron Lett. 2007, 48, 6722-6725. (d) Amat, M.; Pérez, M.; Minaglia, A. T.; Peretto, B.; Bosch, J. Tetrahedron 2007, 63, 5839-5848. (e) Amat, M.; Pérez, M.; Minaglia, A. T.; Bosch, J. J. Org. Chem. 2008, 73, 6920-6923. (f) Amat, M.; Griera, R.; Fabregat, R.; Molins, E.; Bosch, J. Angew. Chem. Int. Ed. 2008, 47, 3348-3351. (g) Amat, M.; Griera, R.; Fabregat, R.; Bosch, J. Tetrahedron: Asymmetry 2008, 19, 1233-1236. (h) Amat, M.; Brunaccini, E.; Pérez, M.; Llor, N.; Bosch, J. Org. Lett. 2009, 11, 4370-4373. (i) Amat, M.; Fabregat, R.; Griera, R.; Bosch, J. J. Org. Chem. 2009, 74, 1794-1797. (j) Amat, M.; Llor, N.; Checa, B.; Molins, E.; Bosch, J. J. Org. Chem. 2010, 75, 178-189. (k) Amat, M.; Pérez, M.; Proto, S.; Gatti, T.; Bosch, J. Chem. Eur. J. 2010, 16, 9438-9441. (I) Amat, M.; Pinto, A.; Griera, R.; Bosch, J. Chem. Commun. 2013, 49, 11032-11034. (m) Ballette, R.; Pérez, M.; Proto, S.; Amat, M.; Bosch, J. Angew. Chem. Int. Ed. 2014, 53, 6202-6205.
    ${ }^{19}$ (a) Amat, M.; Fabregat, R.; Griera, R.; Florindo, P.; Molins, E.; Bosch, J. J. Org. Chem. 2010, 75, 37973805. (b) Amat, M.; Ghirardi, E.; Navio, L.; Griera, R.; Llor, N.; Molins, E.; Bosch, J. Chem. Eur. J. 2013, 19, 16044-16049. (c) Amat, M.; Pinto, A.; Griera, R.; Bosch, J. Chem. Eur. J. 2015, 21, 12804-12808.

[^7]:    ${ }^{20}$ (a) Bassas, O.; Llor, N.; Santos, M. M. M.; Griera, R.; Molins, E.; Amat, M.; Bosch, J. Org. Lett. 2005, 7, 2817-2820. (b) Amat, M.; Santos, M. M. M.; Bassas, O.; Llor, N.; Escolano, C.; Gómez-Esqué, A.; Molins, E.; Allin, S. M.; McKee, V.; Bosch, J. J. Org. Chem. 2007, 72, 5193-5201. (c) Amat, M.; Santos, M. M. M.; Gómez, A. M.; Jokic, D.; Molins, E.; Bosch, J. Org. Lett. 2007, 9, 2907-2910. (d) Amat, M.; Gómez-Esqué, A.; Escolano, C.; Santos, M. M. M.; Molins, E.; Bosch, J. J. Org. Chem. 2009, 74, 1205-1211. (e) Amat, M.; Ramos, C.; Pérez, M.; Molins, E.; Florindo, P.; Santos, M. M. M.; Bosch, J. Chem. Commun. 2013, 49, 1954-1956.

[^8]:    ${ }^{21}$ Amat, M.; Arioli, F.; Pérez, M.; Molins, E.; Bosch, J. Org. Lett. 2013, 15, 2470-2473.
    ${ }^{22}$ Arioli, F.; Pérez, M.; Are, C.; M.; Estarellas, C.; Luque, J. L.; Bosch, J.; Amat, M. Chem. Eur. J. 2015, 21, 13382-13389.

[^9]:    ${ }^{23}$ For a procedure for the piperidine ring-opening, see: (a) McCall, W. S.; Grillo, T. A.; Comins, D. L. J. Org. Chem. 2008, 73, 9744-9751. (b) McCall, W. S.; Comins, D. L. Org. Lett. 2009, 11, 2940-2942.

[^10]:    ${ }^{24}$ (a) Hughes, R. C.; Dvorak, C. A.; Meyers, A. I. J. Org. Chem. 2001, 66, 5545-5551. (b) Waterson, A. G.; Meyers, A. I. J. Org. Chem. 2000, 65, 7240-7243. (c) Arrington, M. P.; Meyers, A. I. Chem. Commun. 1999, 1371-1372. (d) Degnan, A. P.; Meyers, A. I. J. Am. Chem. Soc. 1999, 121, 2762-2769. See also ref. 12.

[^11]:    ${ }^{25}$ a) Ezquerra, J.; Pedregal, C.; Escribano, A.; Carreño, M. C.; García Ruano, J. L. Tetrahedron Lett. 1995, 36, 3247-3250. b) Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48, 2424-2426. c) Casimir, J. R.; Didierjean, C.; Aubry, A.; Rodriguez, M.; Briand, J.-P.; Guichard, G. Org. Lett. 2000, 2, 895-897. d) Kende, A. S.; Dong, H.-Q.; Mazur, A. W.; Ebetino, F. H. Tetrahedron Lett. 2001, 42, 6015-6018.

[^12]:    ${ }^{26}$ a) Marin, J.; Violette, A.; Briand, J.-P.; Guichard, G. Eur. J. Org. Chem. 2004, 3027-3039. b) Kong, K.; Moussa, Z.; Romo, D. Org. Lett. 2005, 7, 5127-5130. c) Didierjean, C.; Aubry, A.; Briand, J.-P.; Guichard, G. J. Org. Chem. 2002, 67, 8440-8449. d) See also: Wang, J.-J.; Wan-Ping, H. J. Org. Chem. 1999, 64, 5725-5727.
    ${ }^{27}$ (a) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. J. Org. Chem. 1989, 54, 228-234.

[^13]:    ${ }^{28}$ Tchabanenko, K.; Adlington, R. M.; Cowley, A. R.; Baldwin, J. E. Org. Lett. 2005, 7, 585-588.
    ${ }^{29}$ Grant, T. N.; Benson, C. L.; West, F. G. Org. Lett. 2008, 10, 3985-3988.

[^14]:    ${ }^{30}$ (a) Hu, W.-P.; Wang, J.-J.; Tsai, P.-C. J. Org. Chem. 2000, 65, 4208-4209. (b) Marin, J.; Didierjean, C.; Aubry, A.; Briand, J.-P.; Guichard, G. J. Org. Chem. 2002, 67, 8440-8449. (c) Mitsunaga, S.; Ohbayashi, T.; Sugiyama, S.; Saitou, T.; Tadokoro, M.; Satoh, T. Tetrahedron: Asymmetry 2009, 20, 1697-1708.

[^15]:    ${ }^{31}$ For a review on the use of lithium aminoborohydrides as reducing agents, see: (a) Pasumansky, L.; Singaram, B.; Goralski, C. T. Aldrichimica Acta 2005, 38, 62-66. (b) Pasumansky, L.; Goralski, C. T.; Singaram, B. Org. Process Res. Dev. 2006, 10, 959-970.

[^16]:    ${ }^{32}$ Fisher, G. B.; Fuller, J. C.; Harrison, J.; Alvarez, S. G.; Burkhardt, E. R.; Goralski, C. T.; Singaram, B. J. Org. Chem. 1994, 59, 6378-6385.
    ${ }^{33}$ Fisher, G. B.; Fuller, J. C.; Harrison, J.; Goralski, C. T.; Singaram, B. Tetrahedron Lett. 1993, 34, 10911094.

[^17]:    ${ }^{34}$ Flaniken, J. M.; Collins, C. J.; Lanz, M.; Singaram, B. Org. Lett. 1999, 1, 799-801. See also ref 31.
    ${ }^{35}$ For a one-pot procedure for the preparation of the ammonia-borane complex, see: Ramachandran, P. V.; Raju, B. C.; Gagare, P. D. Org. Lett. 2012, 14, 6119-6121.
    ${ }^{36}$ a) Myers, A. G.; Yang, B. H.; Kopecky, D. J. Tetrahedron Lett. 1996, 37, 3623-3626. b) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^18]:    ${ }^{37}$ (a) For a review, see: Lund, A. In Encyclopedia of Reagents for Organic Synthesis (EROS); Paquette, L. A.; Fuchs, P. L.; Molander, G. A.; Crich, D. Eds.; Wiley, Chichester, 2009; pp. 6082-6083. b) For more recent work, see: Paterson, I.; Mühlthau, F. A.; Cordier, C. J.; Housden, M. P.; Burton, P. M.; Loiseleur, O. Org. Lett. 2009, 11, 353-356. See also ref 36.
    ${ }^{38}$ a) Abe, H.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2000, 122, 4583-4592. b) Itoh, T.; Yamazaki, N.; Kibayashi, C. Org. Lett. 2002, 4, 2469-2472.

[^19]:    ${ }^{39}$ For reviews, see: a) Grob, C. A.; Schiess, P. W. Angew. Chem. Int. Ed. 1967, 6, 1-15. b) Grob, C. A. Angew. Chem. Int. Ed. 1969, 8, 535-622. c) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry Pergamon Press, Oxford, 1983, pp. 257-274. For related 3-aza-Grob fragmentations in the hydride reduction of lactams, see: d) Wang, J.-J.; Hu, W.-P. J. Org. Chem. 1999, 64, 5725-5727. e) Hu, W.P., Wang, J.-J.; Tsai, P.-C. J. Org. Chem. 2000, 65, 4208-4209.

[^20]:    ${ }^{40}$ See Introduction, Synthetic background: oxazolopiperidone lactams. See also ref 10.

[^21]:    ${ }^{41}$ For reviews, see: (a) Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36-56. (b) Ward, R. S. Tetrahedron: Asymmetry 1995, 6, 1475-1490. (c) Caddick, S.; Jenkins, K. Chem. Soc. Rev. 1996, 25, 447-456. (d) Pellissier, H. Tetrahedron 2003, 59, 8291-8327. (e) Wolf, C. Dynamic Stereochemistry of Chiral Compounds; The Royal Society of Chemistry: Cambridge, 2008; Chapter 7.
    ${ }^{42}$ For the synthesis of 22, see: Amat, M.; Cantó, M.; Llor, N.; Escolano, C.; Molins, E.; Espinosa, E.; Bosch, J. J. Org. Chem. 2002, 67, 5343-5351.

[^22]:    ${ }^{43}$ Soteras, I.; Lozano, O.; Gómez-Esqué, A.; Escolano, C.; Orozco, M.; Amat, M.; Bosch, J.; Luque, F. J. J. Am. Chem. Soc. 2006, 128, 6581-6588.
    ${ }^{44}$ Soteras, I.; Lozano, O.; Escolano, C.; Orozco, M.; Amat, M.; Bosch, J.; Luque, F. J. Org. Chem. 2007, 73, 7756-7763.

[^23]:    Scheme 2.40

[^24]:    ${ }^{45}$ Amat, M.; Llor, N.; Huguet, M.; Molins, E.; Espinosa, E.; Bosch, J. Org. Lett. 2001, 3, 3257-3260.

[^25]:    ${ }^{46}$ (a) Fréville, S.; Célérier, J.-P.; Thuy, V. M.; Lhommet, G. Tetrahedron Asymmetry 1995, 6, 2651-2654. (b) Fréville, S.; Bonin, M.; Célérier, J.-P.; Husson, H.-P.; Lhommet, G.; Quirion, J.-C.; Thuy, V. M. Tetrahedron 1997, 53, 8447-8459.

[^26]:    ${ }^{47}$ For the reductive opening of the oxazolidine ring in phenylglycinol-derived 8a-substituted bicyclic $\delta$ lactams, see: (a) Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1995, 60, 7084-7085. (b) Fréville, S.; Célérier, J. P.; Thuy, V. M.; Lhommet, G. Tetrahedron: Asymmetry 1995, 6, 2651-2654. (c) Amat, M.; Cantó, M.; Llor, N.; Bosch, J. Chem. Commun. 2002, 526-527.
    ${ }^{48}$ Amat, M.; Escolano, C.; Gómez-Esqué, A.; Lozano, O.; Llor, N.; Griera, R.; Molins, E.; Bosch, J. Tetrahedron: Asymmetry 2006, 17, 1581-1588.

[^27]:    ${ }^{49}$ Greene's Protective Groups in Organic Synthesis, Wuts, P. G. M.; Greene, T. W.; Ed. Wiley-Interscience, A John Wiley \& Sons, Inc.; New Jersey, 2007.
    ${ }^{50}$ Chandrasekhar, S.; Nagendra Babu, B.; Raji Reddy, Ch. Tetrahedron Lett. 2003, 44, 2057-2059.
    ${ }^{51}$ Ram, S.; Spicer, L. D. Synthetic Commun. 1987, 17, 415-418.

[^28]:    ${ }^{52}$ (a) Roussi, G.; González Zamora, E.; Carbonnelle, A.-C.; Beugelmanws, R. Heterocycles 1999, 51, $2041-$ 2063. (b) Yamauchi, T.; Higashiyama, K.; Kubo, H.; Ohmiya, S. Tetrahedron: Asymmetry 2000, 11, 30033015. (c) Stalker, R. A.; Munsch, T. E.; Tran, J. D.; Nie, X.; Warmuth, R.; Beatty, A.; Aakeröy, C. B. Tetrahedron 2002, 58, 4837-4849. (d) Delaye, P.-O.; Vasse, J.-L.; Szymoniak, J. Org. Lett. 2012, 14, 30043007; (e) Hajri, M.; Blondelle, C.; Martinez, A.; Vasse, J.-L., Szymoniak, J. Tetrahedron Lett. 2013, 54, 1029-1031.

[^29]:    ${ }^{53}$ Friedrich, K.; Wallensfels, K. The Chemistry of the Cyano Group; Rappoport, Z.; Ed.; WileyIntersciences: New York, 1970, 67-122.
    ${ }^{54}$ Larock, R. C. Comprehensive Organic Transformations; VCH: New York, 1989, 819-995.
    ${ }^{55}$ (a) Kornblum, N.; Smiley, R. A.; Blackwood, R. K.; Iffland, D. C. J. Am. Chem. Soc. 1955, 77, 6269. (b) Ellis, G. P.; Rommey-Alexander, T. M. Chem. Rev. 1987, 87, 779.
    ${ }^{56}$ (a) Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M. Chem. Commun. 2009, 45, 4883-4885. (b) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Org. Lett. 2009, 11, 2461-2464 (c) Sueoka, S.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2010, 46, 8243-8245. (d) Zhang, W.; Haskins, C. W.; Yang, Y.; Dai, M. Org. Biomol. Chem. 2014, 12, 9109-9112.
    ${ }^{57}$ (a) Song, Y.; Shen, D.; Zhang, Q.; Chen, B.; Xu, G. Tetrahedron Lett. 2014, 55, 639-641. (b) Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Org. Lett. 2014, 16, 1346-1349. (c) Zhang, X.; Sun, J.; Ding, Y.; Yu, L. Org. Lett. 2015, 17, 5840-5842.
    ${ }^{58}$ Yamazi, S. Synth. Commun. 1997, 27, 3559-3564.

[^30]:    ${ }^{59}$ (a) Brackman, W.; Smit, P. J. J. Recl. Trav. Chim. 1963, 82, 757-762. (b) Erman, M. B.; Snow, J. W.; Williams, M. J. Tetrahedron Lett. 2000, 41, 6749-6752. (c) Bandgar, B. P.; Makone, S. S. Synlett 2003, 262-264. (d) Bandgar, B. P.; Makone, S. S. Synth. Commun. 2006, 36, 1347-1352. (e) Arote, N. D.; Bhalerao, D. S.; Akamanchi, K. G. Tetrahedron Lett. 2007, 48, 3651-3653. (f) Drouet, F.; Fontaine, P.; Masson, G.; Zhu, J. Synthesis 2009, 1370-1374.
    ${ }^{60}$ (a) Mori, N.; Togo, H. Synlett 2005, 1456-1458. (b) lida, S.; Togo, H. Tetrahedron 2007, 63, 8274-8281.

[^31]:    ${ }^{61}$ Zhu, C.; Sun, C.; Wei, Y. Synthesis 2010, 4235-4241.
    ${ }^{62}$ (a) Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.; Kantam, M. L. Eur. J. Org. Chem. 2008, 36193622. (b) Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.; Prashanthi, S.; Kantam, M. L. Tetrahedron Lett. 2009, 50, 2050-2053.

[^32]:    ${ }^{63}$ Veisi, H. Synthesis 2010, 2631-2635.

[^33]:    ${ }^{64}$ Gilbert, K. E.; Borden, W. T. J. Org. Chem. 1979, 44, 659-661.
    ${ }^{65}$ (a) Ono, N.; Kaji, A. Synthesis 1986, 693-703. (b) Rosini, G.; Balini, R. Synthesis 1988, 833-847. (c) Pereyre, M.; Quintard, J. P.; Rahm, A. Tin in Organic Synthesis, Butterworth, London, 1987, p. 106. (d) Nitro Compounds; Recent Advances in Synthesis and Chemistry; Feuer, H.; Nielsen, A. T. Eds.; VCH: New York, 1990. (e) Ono, N. The Nitro Group in Organic Synthesis; Feuer, H., Ed.; Wiley-VCH: New York, 2001. (f) Luzzio, F. A. Tetrahedron 2001, 57, 915-945.
    ${ }^{66}$ Gilchrist, T. L. in Comprehensive Organic Synthesis, vol .7; Ed. Trost, B.M.; Fleming, I.; Pergamon Press, Oxford, 1991, 736-737.

[^34]:    ${ }^{67}$ For the preparation of nitrones by oxidation of secondary amines, see: (a) Murahashi, S.--I.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S. J. Org. Chem. 1990, 55, 1736-1744. (b) Marcantoni, E.; Petrini, M.; Polimanti, O. Tetrahedron Lett. 1995, 36, 3561-3562. (c) Colonna, S.; Pironti, V.; Carrea, G.; Pasta, P.;

[^35]:    Zambianchi, F. Tetrahedron 2004, 60, 569-575. (d) Gella, C.; Ferrer, E.; Alibés, R.; Busqué, F.; de March, P.; Figueredo, M.; Font, J. J. Org. Chem. 2009, 74, 6365-6367. For peracid-promoted oxidative ringopening of cyclic nitrones, see: (e) Bapat, J. B.; Durie, A. Aust. J. Chem. 1984, 37, 211-219.

[^36]:    ${ }^{68}$ (a) Lehtinen, C.; Nevalainen, V.; Brunow, G. Tetrahedron 2000, 56, 9375-9382. (b) Marteau, C.; Ruyffelaere, F.; Aubry, J.-M.; Penverne, C.; Favier, D.; Nardello-Rataj, V. Tetrahedron 2013, 69, 22682275.

[^37]:    ${ }^{69}$ (a) Koren-Goldshlager, G.; Kashman, Y.; Schleyer, M. J. Nat. Prod. 1998, 61, 282-284. (b) Kashman, Y.; Koren-Goldshlager, G.; Garcia Gravalos, M. D.; Schleyer, M. Tetrahedron Lett. 1999, 40, 997-1000.
    ${ }^{70}$ (a) Heinrich, M. R.; Steglich, W. Tetrahedron Lett. 2001, 42, 3287-3289. (b) Heinrich, M. R.; Kashman, Y.; Spiteller, P.; Steglich, W. Tetrahedron 2001, 57, 9973-9978.
    ${ }^{71}$ Banwell, M. G.; Bray, A. M.; Edwards, A. J.; Wong, D. J. New J. Chem. 2001, 25, 1347-1350.
    ${ }^{72}$ (a) Heinrich, M. R.; Steglich, W.; Banwell, M. G.; Kashman, Y. Tetrahedron 2003, 59, 9239-9247. (b) Zheng, J.-F.; Jin, L.-R.; Huang, P.-Q. Org. Lett. 2004, 6, 1139-1142.

[^38]:    ${ }^{73}$ Isolation and tentative absolute configuration: Sorek, H.; Rudi, A.; Aknin, M.; Gaydou, E. M.; Kashman, Y. J. Nat. Prod. 2010, 73, 456-458.

[^39]:    ${ }^{74}$ Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; McLaughlin, J. C. Planta Med. 1982, 45, 31-34.
    ${ }^{75}$ Bandwell, M. G.; Bray, A. M.; Edwards, A. J.; Wong, D. J. J. Chem. Soc., Perkin Trans. 1 2002, 13401343.

[^40]:    ${ }^{76}$ Usuki, Y.; Hirakawa, H.; Goto, K.; lio, H. Tetrahedron: Asymmetry 2001, 12, 3293-3296.

[^41]:    ${ }^{77}$ Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373-6374.

[^42]:    ${ }^{78}$ (a) Reddy, D. N.; Prabhakaran, E. N. J. Org. Chem. 2011, 76, 680-683. (b) Clavé, G.; Bernardin, A.; Massonneau, M.; Renard, P.-Y.; Romieu, A. Tetrahedron Lett. 2006, 47, 6229-6233.

[^43]:    ${ }^{79}$ This iodide was quantitatively prepared by treatment of the corresponding bromide with sodium iodide: Majewski, M.; Ulaczyk-Lesanko, A.; Wang, F. Can. J. Chem. 2006, 84, 257-268.

[^44]:    ${ }^{80}$ (a) Liu, Y.; Maden, A.; Murray, W. V. Tetrahedron 2002, 58, 3159-3170. (b) Kan, T.; Fujiwara, A.; Kobayashi, H.; Fukuyama, T. Tetrahedron 2002, 58, 6267-6276. (c) Teodori, E.; Dei, S.; Garnier-Suillerot, A.; Gualtieri, F.; Manetti, D.; Martelli, C.; Romanelli, M. N.; Scapecchi, S.; Sudwan, P.; Salerno, M. J. Med. Chem. 2005, 48, 7426-7436. (d) Shieh, W.-C.; Chen, G.-P.; Xue, S.; McKenna, J.; Jiang, X.; Prasad, K.; Repic, O. Org. Process Res. Dev. 2007, 11, 711-715. (e) Molander, G. A.; Cadoret, F. Tetrahedron Lett. 2011, 52, 2199-2202. (f) Peng, L.; DeSouza, J.; Su, Z.; Novak, B. M.; Nevzorov, A. A.; Garland, E. R.; Melander, C. Chem. Commun. 2011, 47, 4896-4898.

[^45]:    ${ }^{81}$ Hegde V. R.; Patel, M. G.; Gullo, V. P.; Ganguly, A. K.; Sarre, O.; Puar, M. S.; McPhail, A. T. J. Am. Chem. Soc. 1990, 112, 6403-6405.
    ${ }^{82}$ (a) Hegde, V. R.; Patel, M. G.; Gullo, V. P.; Puar, M. S. J. Chem. Soc., Chem. Commun. 1991, 810-812. (b) Hegde, V.; Patel, M.; Horan, A.; Gullo, V.; Marquez, J.; Gunnarsson, I.; Gentile, F.; Loebenberg, D.; King, A.; Puar, M.; Pramanik, B. J. Antibiot. 1992, 45, 624-632. (c) Cooper, R.; Truumees, I.; Yarborough, R.; Loebenberg, D.; Marquez, J.; Horan, A.; Patel, M.; Gullo, V.; Puar, M.; Pramanik, B. J. Antibiot. 1992, 45, 633-638.
    ${ }^{83}$ A macrolactam disaccharide (Sch 42729; $\alpha$-D-GIcp-( $1 \rightarrow 2$ )- $\alpha$-L-mycosamine) ${ }^{83 a}$ and a macrolactam trisaccharide (Sch 42282; $\beta$-D-Glcp-(1 $\rightarrow 4$ )- $\alpha$-D-GIcp-( $1 \rightarrow 2$ )- $\alpha$-L-mycosamine) ${ }^{83 b}$ bearing the same aglycon as Sch 38518 were also isolated: (a) Hegde, V. R.; Patel, M. G.; Gullo, V. P.; Horan, A. C.; King, A. H.; Gentile, F.; Wagman, G. H.; Puar, M. S.; Loebenberg, D. J. Antibiot. 1993, 46, 1109-1115. (b) Hegde, V. R.; Patel, M. G.; Horan, A. C.; King, A. H.; Gentile, F.; Puar, M. S.; Loebenberg, D. J. Antibiot. 1998, 51, 464-470.
    ${ }^{84}$ (a) Naruse, N.; Tenmyo, O.; Kawano, K.; Tomita, K.; Ohgusa, N.; Miyaki, T.; Konishi M.; Oki, T. J. Antibiot. 1991, 44, 733-740. (b) Naruse, N.; Tsuno, T.; Sawqada, Y.; Konishi, M.; Oki, T. J. Antibiot. 1991, 44, 741-755. (c) Naruse, N.; Konishi, M.; Oki, T.; Inouye, Y.; Kakisawa, H. J. Antibiot. 1991, 44, 756-761.
    ${ }_{86}^{85}$ Ui, H.; Imoto, M.; Umezawa, K. J. Antibiot. 1995, 48, 387-390.
    ${ }^{86}$ Ayers, S.; Zink, D. L.; Powell, J. S.; Brown, C. M.; Grund, A.; Genilloud, O.; Salazar, O.; Thompson, D.; Singh, S. B. J. Antibiot. 2008, 61, 59-62.
    ${ }^{37}$ Ayers, S.; Zink, D. L.; Mohn, K.; Powell, J. S.; Brown, C. M.; Murphy, T.; Grund, A.; Genilloud, O.; Salazar, O.; Thompson, D.; Singh, S. B. J. Nat. Prod. 2007, 70, 1371-1373.
    ${ }^{88}$ Puar, M. S.; Gullo, V.; Gunnarsson, I.; Hegde, V.; Patel, M.; Schwartz, J. Bioorg. Med. Chem. Lett. 1992, 2, 575-578.
    ${ }^{89}$ Lin, T.-Y.; Borketey, L. S.; Prasad, G.; Waters, S. A.; Schnarr, N. A. ACS Synth. Biol. 2013, 21, 635-642.

[^46]:    ${ }^{90}$ Houri, A. F.; Xu, Z.; Cogan, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 2943-2944.
    ${ }^{91}$ Xu, Z.; Johannes, C. W.; Houri, A. F.; La, D. S.; Cogan, D. A.; Hofilena, G. E.; Hoveyda, A. H. J. Am. Chem. Soc. 1997, 119, 10302-10316.

[^47]:    ${ }^{92}$ Xu, Z.; Johannes, C. W.; Salman, S. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1996, 118, 10926-10927.

[^48]:    ${ }^{93}$ Xu, Z.; Johannes, C. W.; La, D. S.; Hofilena, G. E.; Hoveyda, A. H. Tetrahedron 1997, 53, 16377-16390.

[^49]:    ${ }_{95}^{94}$ Baltrusch, A. W.; Bracher, F. Synlett 2002, 1724-1726.
    ${ }^{95}$ (a) Vandewalle, M.; Van der Eycken, J.; Oppolzer, W.; Vullioud, C. Tetrahedron 1986, 42, 4035-4043.
    (b) Thom, C.; Kocieński, P. Synthesis 1992, 582-586.
    ${ }^{96}$ Honda, M.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1984, 25, 3857-3860.

[^50]:    ${ }^{97}$ Radha Krishna, P. R.; Anitha, K. Tetrahedron Lett. 2011, 52, 4546-4549.

[^51]:    ${ }^{98}$ (a) Mendlik, M. T.; Cottard, M.; Rein, T.; Helquist, P. Tetrahedron Lett. 1997, 38, 6375-6378. (b) Fürstner, A.; Bouchez, L. C.; Funel, J.-A.; Liepins, V.; Porée, F.-H.; Gilmour, R.; Beaufils, F.; Laurich, D.; Tamiya, M. Angew. Chem. Int. Ed. 2007, 46, 9265-9270.

[^52]:    ${ }^{99}$ Liang, B.; Negishi, E. Org. Lett. 2008, 10, 193-195.
    ${ }^{100}$ Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923.

[^53]:    ${ }^{101}$ Llàcer, E.; Urpí, F.; Vilarrasa, J. Org. Lett. 2009, 11, 3198-3201.

[^54]:    ${ }^{102}$ Evans, D. A.; Rieger, D. L; Jones, T. K.; Kaldor, S. W. J. Org. Chem. 1990, 55, 6260-6268.

[^55]:    ${ }^{103}$ Trost, B. M.; Ceschi, M. A.; König, B. Angew. Chem. Int. Ed. Engl. 1997, 36, 1486-1489.

[^56]:    ${ }^{104}$ Martín, M.; Mas, G.; Urpí, F.; Vilarrasa, J. Angew. Chem. Int. Ed. Engl. 1999, 38, 3086-3089.

[^57]:    ${ }^{105}$ Suh, Y.-G.; Kim, S.-A.; Jung, J.-K.; Shin, D.-Y.; Min, K.-H.; Koo, B.-A.; Kim, H.-S. Angew. Chem. Int. Ed. Engl. 1999, 38, 3545-3547.

[^58]:    ${ }^{106}$ Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756-2757.

[^59]:    ${ }^{107}$ Lee, Y.-S.; Jung, J.-W.; Kim, S.-H.; Jung, J.-K.; Paek, S.-M.; Kim, N.-J.; Chang, D.-J.; Lee, J.; Suh, Y.-G. Org. Lett. 2010, 12, 2040-2043.

[^60]:    ${ }^{108}$ Suh, Y.-G.; Lee, Y.-S.; Kim, S.-H.; Jung, J.-K.; Yun, H.; Jang, J.; Kim, N.-J.; Jung, J.-W. Org. Biomol. Chem. 2012, 10, 561-568.

[^61]:    ${ }^{109}$ (a) Paquette, L. A.; Duan, M.; Konetzki, I.; Kempmann, C. J. Am. Chem. Soc. 2002, 124, 4257-4270. (b) Panek, J. S.; Jain, N. F. J. Org. Chem. 2001, 66, 2747-2756.

[^62]:    ${ }^{110}$ Lipshutz, B. H.; Sengupta, S. in Organic reactions: Paquette, L. A., Ed.; John Wiley \& Sons, Inc: New York, 1992; Vol. 41, Chapter 2, pp 135-631.
    ${ }^{111}$ For copper-catalyzed couplings of alkenyl Grignard reagents with primary alkyl iodides, see: (a) Derguini-Boumechal, F.; Linstrumelle, G. Tetrahedron Lett. 1976, 3225-3226. For more recent examples, see: (b) Takahashi, M.; Dodo, K.; Hashimoto, Y.; Shirai, R. Tetrahedron Lett. 2000, 41, 2111-2114. (c) Kochi, T.; Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 15652-15653. (d) Terayama, N.; Yasui, E.; Mizukami, M.; Miyashita, M.; Nagumo, S. Org. Lett. 2014, 16, 2794-2797.
    ${ }^{112}$ For the use of iron catalysts, see: (a) Guérinot, A.; Reymond, S.; Cossy, J. Angew. Chem. Int. Ed. 2007, 46, 6521-6524. (b) Cahiez, G.; Duplais, C.; Moyeux, A. Org. Lett. 2007, 9, 3253-3254.

[^63]:    ${ }^{113}$ (a) White, J. D.; Hanselmann, R.; Jackson, R. W.; Porter, W. J.; Ohba, Y.; Tiller, T.; Wang, S. J. Org. Chem. 2001, 66, 5217-5231. (b) White, J. D.; Ohba, Y.; Porter, W. J.; Wang, S. Tetrahedron Lett. 1997, 38, 3167-3170.

[^64]:    ${ }^{114}$ (a) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439. (b) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-1576. (c) Enev, V. S.; Kaehlig, H.; Mulzer, J. J. Am. Chem. Soc. 2001, 123, 10764-10765. (d) Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23-35. (e) Zhang, X.-S.; Da, S.-J.; Jiao, Y.; Li, H.-Z.; Xie, Z.-X.; Li, Y. Chin. J. Chem. 2008, 26, 1315-1322. (f) Nowrouzi, F.; Thadani, A. N.; Batey, R. A. Org. Lett. 2009, 11, 2631-2634.
    ${ }^{15}$ (a) Kinnaird, J. W. A.; Yee, N.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 79207921. (b) Kubota, K.; Leighton, J. L. Angew. Chem. Int. Ed. 2003, 946-948. For synthetic applications, see: (c) Vintonyak, V. V.; Maier, M. E. Org. Lett. 2008, 10, 1239-1242. (d) Harsh, P.; O’Doherty, G. A. Tetrahedron 2009, 65, 5051-5055.
    ${ }^{116}$ (a) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. 1992, 114, 2321-2336. (b) Hoffman, T. J.; Kolleth, A.; Rigby, J. H.; Arseniyadis, S. Org. Lett. 2010, 12, 3348-3351. (c) Commandeur, M.; Commandeur, C.; Cossy, J. Org. Lett. 2011, 13, 6018-6021.
    ${ }^{117}$ Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. Eur. J. Org. Chem. 2007, 3599-3611.
    ${ }^{118}$ (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340-6341. (b) Ngai, M.-Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899.
    ${ }^{119}$ Kargbo, R. B.; Cook, G. R. Current Org. Chem. 2007, 11, 1287-1309.
    ${ }^{120}$ Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6, 4375-4377.
    ${ }^{121}$ Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401-404.

[^65]:    ${ }^{122}$ Burns, N. Z.; Hackman, B. M.; Ng, P. Y.; Powelson, I. A.; Leighton, J. L. Angew. Chem. Int. Ed. 2006, 45, 3811-3813.

[^66]:    ${ }^{123}$ For the use of $\mathrm{Sc}(\mathrm{OTf})_{3}$ as a catalyst in enantioselective Leighton allylations, see: Kim, H.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc. 2011, 133, 6517-6520. See also ref 102.

[^67]:    ${ }^{124}$ (a) Shishido, Y.; Kibayashi, C. J. Org. Chem. 1992, 57, 2876-2883. (b) Oikawa, M.; Oikawa, H.; Ichichara, A. Tetrahedron 1995, 51, 6237-6254.

[^68]:    ${ }^{125}$ Castro, A.; Juárez, J.; Gnecco, D.; Terán, J. L.; Orea, L.; Bernès, S. Synth. Commun. 2006, 36, 935-942.

[^69]:    ${ }^{126}$ Fujii, T.; Yoshifuji, S.; Michishita, K.; Mitsukuchi, M.; Yoshida, K. Chem. Pharm. Bull. 1973, 2695-2704.

[^70]:    ${ }^{127}$ Karanfil, A.; Balta, B.; Eskici, M. Tetrahedron 2012, 68, 10218-10229.

[^71]:    ${ }^{128}$ M. Amat, N. Llor, N. J. Hidalgo, J. Bosch, Tetrahedron: Asymmetry 1997, 8, 2237-2240.

[^72]:    ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}, \boldsymbol{g}$-HSQC) $\delta 1.36\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.93(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-8$ ), 4.19 (dd, $J=9.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.23$ (dd, $J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.77

[^73]:    ${ }^{129}$ M. Amat, M. Pérez, J. Bosch, Chem. Eur. J. 2011, 17, 7724-7732.

[^74]:    ${ }^{130}$ H. Poerwono, K. Higashiyama, T. Yamauchi, H. Takahashi, Heterocycles 1997, 46, 385-400.

[^75]:    ${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 16.8(\mathrm{C}-2), 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.2(\mathrm{C}-3), 26.8$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.2(\mathrm{C}-4), 62.6(\mathrm{C}-5), 119.7(\mathrm{CN}), 127.7(\mathrm{C}-o), 129.6(\mathrm{C}-\mathrm{p}), 133.6$ (Ci), 135.5 (C-m).

[^76]:    ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.00\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05\left[\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.27$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.48-1.57 (m, 1H, H-4), 1.67-1.76 (m, 1H, H-4), 1.82-1.91 (m, 1H, H-3), 2.67 (dq, $J=7.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ ), 3.67-3.76 (m, 2H, H-5), 7.36-7.46 (m, 6H, ArH), 7.63-7.66 (m, 4H, ArH).
    ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.5\left(\mathrm{CH}_{3}\right)$, $16.0\left(\mathrm{CH}_{3}\right)$, $19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.8$ [ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.8(\mathrm{C}-2), 32.9(\mathrm{C}-3), 37.4(\mathrm{C}-4), 61.2(\mathrm{C}-5), 121.7(\mathrm{CN}), 127.7(2 \mathrm{C}-\mathrm{m})$, 129.7 (C-p), 133.6 (2C-ı), 135.5 (C-o), 135.7 (C-o).

    HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OSi} 383.2513$; found 383.2523.

[^77]:    ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $23.6\left(\mathrm{CH}_{2}\right), 26.7$ $\left(\mathrm{CH}_{2}\right), 27.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.2(\mathrm{C}-4), 37.5(\mathrm{C}-2), 42.7$ (C-1), 63.9 (C-5), 127.8 (C-Ar), 127.8 (C-Ar), 129.7 (C-p), 129.7 (C-p), 134.0 (C-ı), 134.9 (C-Ar), 135.4 (C-ı), 135.7 (C-Ar).

[^78]:    ${ }^{13} \mathbf{C}$ NMR (100.6 MHz, CDCl $\left.{ }_{3}\right) \delta 9.6\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 26.1$ $\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 33.3(\mathrm{C}-3), 46.7(\mathrm{C}-16), 51.3(\mathrm{C}-2), 124.0(\mathrm{C}-3 \mathrm{Ns}), 130.2$ ( $\mathrm{CH}=$ ), 130.7 (C-6Ns), 131.3 (C-4Ns), 131.4 (C-5Ns), 133.2 ( $\mathrm{CH}=$ ), 133.4 (C-1Ns), 148.1 (C-2Ns).

    HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 437.2469$; found 437.2459.

[^79]:    ${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.0\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 31.1(\mathrm{C}-4), 46.8\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $53.5(\mathrm{C}-5), 62.9(\mathrm{C}-1)$, $115.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$,

