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Chapter 1

Introduction

1.1 Spin state in transition metal complexes

In systems with unpaired electrons the spin angular moment plays a crucial

role not only in the magnetic propierties but also in the structure, the reactivity

and the spectroscopy. In contrast with organic molecules which usually have

closed-shell ground states, in transition metal (TM) compounds with d4-d7

electronic configurations several states are often accessible due to the close

energy of d-orbitals. High-spin (HS) and low-spin (LS) are the usual terms for

the highest and lowest spin multiplicities, respectively [1].

The first attempts to explain the magnetic state of TMs were based on the

Valence Bond Theory. In 1931 Pauling introduced the ’magnetic criterion of

bond type’ to explain why [Fe(H2O)6]2+ is HS and [Fe(CN)6]4− is LS. The

Fe-OH2 bond is considered an ion-dipole interaction in which the metal centre

is described as a free FeII (d6) ion in the (S=2) HS state (see Fig. 1.1 top). In

contrast, the dative covalent Fe-CN bond implies d2sp3 hybridization to form

the six-fold complex and hence only three d-orbitals of the metal are available

to accommodate the six FeII d-electrons, giving the LS (S=0) state (see Fig.

1.1 below) [2]. This first approach reflected the influence of the metal-ligand

interaction in the spin states of the TMs complexes. The Valence Bond Theory

1
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is a useful tool among others to quantify the charge transfer extent between

metal and ligands and to assign an oxidation state to the metal centre [3–6].

Figure 1.1. Valence Bond Theory LS and HS states description for octahedral
FeII complexes.

Parallel to the Valence Bond Theory, the Ligand-Field Theory [7–9] was derived

from the Crystal Field-Theory [10–12]. In this approach the TM d-orbitals are

considered as atomic orbitals in an external potential and do not participate

a priori in the metal-ligand bond. In an octahedral ligand-field the degeneracy

of the d-orbitals is broken as shown in Fig. 1.2. The electrons in the eg orbitals

suffer a larger repulsion than those in the t2g orbitals, since the former orbitals

point directly to the ligands while the latter are oriented in between the ligands.

The resulting energy gap between the lower t2g and the higher eg d-orbitals is

known as the crystal-field splitting,4oct or 10Dq in the Racah parameterization

scheme. Hence, occupying an eg orbital pushes up the energy of the electronic

state by 6Dq, while occupying a t2g orbital lowers it by 4Dq. Simultaneously,

the loss of exchange interactions and to a lesser extent the increase of electron

repulsion increases the energy of the electronic state by Epair when two electron

are placed in the same orbital.

2
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Spin state in transition metal complexes

Figure 1.2. Breakdown of the metal d-orbitals degeneracy due to the ligand
repulsion suffered in an octahedral ligand-field.

Coming back to the FeII example, the electronic configuration of the state with

maximum spin multiplicity is t2g
4 eg

2, which results in a net decrease of the

energy of 4Dq with respect to the free ion. On the other hand, the state with

all six electrons in the t2g orbitals gains 24Dq compared to the free ion, but

has two more pairs of electrons in the same orbital, and hence, looses 2Epair.

The energy difference between the high-spin and the low-spin state is 20Dq

- 2Epair and, obviously depending on the importance of the ligand field, the

ground state is either low-spin or high-spin. In weak-field ligands such as H2O

in [Fe(H2O)6]2+ (see left part of Fig. 1.3), 4oct is smaller than Epair favour-

ing HS states, while strong-field ligands as CN- in [Fe(CN6]4− favour electron

pairing in the low-lying t2g orbitals giving rise to LS states as illustrated in the

right part of Fig. 1.3. In contrast with Valence Bond Theory which is only qual-

itative, Ligand-Field Theory treats 4oct as a free variable and quantifies it by

fitting experimental data. In this line, the well-known Tanabe-Sugano diagram

pictures the relative energies of all the magnetic states from a d configuration

in function of the Racah parameters B, C and 10Dq [13, 14].

3
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Figure 1.3. Ligand Field Theory LS and HS states for two octahedral FeII

complexes with weak (left) and strong (right) ligand-field.

1.2 The spin-crossover effect

In favourable conditions with ligands of an intermediate field strength, the LS

and HS states in TM complexes are close in energy. In this situation, the re-

versible crossing from LS to HS can be induced by an external stimulus as

temperature, pressure or light. In the solid state, intermolecular cooperative

interactions can cause hysteresis, meaning that the crossover from LS to HS

occurs at a different temperature than the reverse process. This switchable

magnetic hysteresis is interesting due to its potential applications in electronic

devices such as computer displays or memory [15]. The change of magnetic

ground state is known as Spin-Crossover (SCO) [16–18] and was reported for

first time in 1931 by Cambi and Szegö when they observed that magnetic mo-

ment measurements on tris(N,N -disubstituted dithiocarbamate) FeIII deriva-

tives, [Fe(R2NCS2)3], were consistent with a d5 electronic configuration with

one unpaired electron at low temperatures and five at higher temperatures

[19, 20]. A detailed description of the history of the research and development

of SCO complexes can be found in first chapter of Ref. [21].

The vast majority of SCO complexes consists of a FeII ion in a N6 coordination

sphere [22]. In this octahedral environment (see Fig. 1.3) the transition from

the LS (S=0) to the HS (S=2) state implies the transfer of two electrons from

4
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Beyond the octahedral ligand-field

the (mostly) non-bonding t2g to the anti-bonding eg orbitals which are empty

in the LS (S=0) state. This leads to a weakening of the metal-ligand bond and

results in an expansion of the coordination sphere as the most characteristic

geometrical changes upon spin crossover. As previously seen, stable HS and

LS states are available in TM complexes with d4-d7 electronic configurations

and they are therefore good candidates to exhibit SCO. However, in most of

the TM complexes one of the two states is high up in energy and the change

from one to the other cannot be induced by external factors. For that reason,

apart from the previous reported FeII and some FeIII [23] and CoII [24, 25]

compounds, few SCO complexes with other metal centres have been reported.

Although it gives a qualitative picture, Ligand Field Theory is not suitable for

quantitatively studying SCO. Since the Tanabe-Sugano diagrams only provide

vertical excitation energies from the ground state geometry, the description of

the potential energy surface of different spin states is out of the scope of this

theory. The mentioned structural changes during the SCO make the estimation

of absolute energies of the spin states in their equilibrium geometry fundamen-

tal to describe SCO. To properly perform a deep study of SCO processes, ab

initio quantum mechanical models are required. The range of methods for this

purpose is wide and will be discussed later.

1.3 Beyond the octahedral ligand-field

The design of novel ligands has been one of the major working lines to control

SCO, that is, to widen the hysteresis and push the transition to room tem-

perature [26–29]. Ligand substituents induce electronic and steric changes in

the metal coordination sphere which affect the d-orbital splitting and reduce

the energy difference between the spin states. This enables the control of SCO

by temperature, pressure, light or magnetic fields in a wide range of new and

promising SCO complexes with TMs different than Fe and Co and with novel

coordination numbers [30].

SCO in square-pyramidal FeII porphyrinate complexes was firstly reported in

2008 [31]. This spin state switching is unexpected because the absence of a sixth

5
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ligand in the coordination sphere stabilizes the dz2 with respect to the dx2−y2

orbital favouring an intermediate (S=1) spin state (see Fig. 1.4). However, the

metal-ligand bond distance elongation is more pronounced in the axial cyanide

ligand than in the rigid porphyrin macrocycle, which reduces the energy gap

between the two d-orbitals and results in a HS state at low energy [32, 33]. SCO

in a square-pyramidal ligand field has also been reported for NiII complexes

[34].

Figure 1.4. Low-spin (S=0), intermediate spin (S=1) and high-spin (S=2)
configurations of FeII in the square-pyramidal coordination sphere of the
[Fe(porphyrin)] complex (left, centre and right, respectively).

In the same line, the first square-planar FeII SCO complex was prepared few

years ago [35] and tetrahedral FeII complexes with SCO have also been reported

[36]. In a four-fold coordination sphere, the thermally or photo-induced switch

from LS to HS implies the occupation of the dxz and dyz orbitals with two

electrons with the consequent elongation of the metal-ligand bond distances

[37]. Some FeIII SCO complexes with non-octahedral coordination spheres have

also been synthesized [38, 39]. Square-planar NiII and CoII can as well be made

suitable for SCO [40].

6

UNIVERSITAT ROVIRA I VIRGILI 
SPIN-CROSSOVER BEYOND THE TRADITIONAL FE(II) COMPLEXES: AB INITIO STUDY OF SPIN STATE 
STABILITY IN COMPLEXES WITH MN, NI AND RU 
Gerard Alcover Fortuny 



Light-induced excited state spin trapping

1.4 Light-induced excited state spin trapping

In the 1980s, McGarvey et al. [41–43] described how the spin-switch in com-

plexes with thermal SCO is also triggered by light. Irradiation of FeII and

FeIII complexes in solution induces transitions from the LS to the HS state or

viceversa. The photo-induced HS lifetimes are extremely short at high tem-

peratures but these states become trapped at cryogenic temperatures and can

survive for several days [44, 45], fact that coined the concept of Light-Induced

Excited State Spin Trapping (LIESST) [46]. Despite the large amount of poten-

tial applications based on LIESST, the temperature at which the effect takes

place severely limits its use as basis for actual devices. For this reason the re-

laxation mechanism from the HS to the LS state has been studied in a wide

variety of FeII complexes to increase the LIESST temperature range [47–50].

Upon green-light irradiation, LS FeII complexes undergo either d-d metal cen-

tred or ligand-metal charge transfer (MLCT) spin-allowed transitions. After a

double intersystem crossing (ISC) via an intermediate-spin state, the system

reaches the HS state where it remains trapped at low enough temperature.

Irradiation of the system in the HS state with red light induces 5T2 → 5E

absorption which results in the reconversion to the LS state, and hence, the

LIESST is reversible.

The mechanism of light-induced spin crossover in NiII (d8) is also well-established.

In solvents such as toluene, square-planar Ni-porphyrin in LS (S=0) state un-

dergoes a S0→ S1,2 excitation when irradiated with the light of the appropriate

wave length. In this case only one ISC is required to reach the HS (S=1) state,

which decays via ISC to the ground state in approximately 200 ps [51]. How-

ever, it is well known that square-planar Ni-porphyrin allows coordination of

axial ligands. Concretely, in excited states of this complex the metal centre

tends to bind to Lewis basic ligands with lone pair electrons [52, 53]. The

photo-induced HS state of Ni-porphyrin in pyridine solution has considerably

larger lifetimes without cryogenic temperatures [54]. This variant of LIESST

will be extensively studied in Chapter 4.

Most of the theoretical studies about LIESST processes are focused on FeII

[55–59] but, as mentioned before, this effect has also been detected in other
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transition metals. Chapter 3 presents a theoretical study of LIESST in the

luminescent [RuII(bipyridine)3]2+, a complex with potential applications in the

field of solar energy conversion and information storage [60], among others.

1.5 Coordination-induced spin-crossover

In most of the known SCO complexes, the spin change is induced by external

factors that alter structural parameters as metal-ligand bond distances or an-

gles. There are, however, other ways to influence the relative stability of the

different spin states. Thermal SCO was reported in 1986 for a FeII complex with

a for that time surprisingly high transition temperature of more 130 K, sign of

unusual high stability of the HS state. The LS structure characterization indi-

cated that the metal was six-coordinated but no structural data were available

for the HS state [61, 62] until fifteen years later when it was discovered that

FeII becomes seven-coordinated in the HS state [63, 64]. This is an example of

how a change of the coordination number provides robust spin states whose

stability is hardly affected by temperature or environmental changes. The spin

state switch induced by coordination of ligands to the TM complexes is known

as Coordination-Induced Spin-Crossover (CISCO).

An interesting example of CISCO can be observed by comparing the NiII com-

plexes in square-planar, square-pyramidal or octahedral ligand-field. While

square-planar coordinations always lead to LS states, the square-pyramidal

coordination sphere can result in LS or HS states depending on the ligand-field

strength. In an octahedral ligand field NiII is HS. When a solution of square-

planar [NiII(porphyrin)] (S=0) in water or organic solvents is titrated with a

basic ligand such as pyridine or piperidine, these ligands axially coordinate

to the NiII resulting in square-pyramidal or octahedral (S=1) complexes. The

LS to HS transition is easily detectable since it is accompanied by a change

of colour from red to yellow-ochre [65–67]. CISCO has recently been reported

also for MnV (d2) complexes [68].

The photo-induced version of CISCO, the so-called Light-Driven Coordination-

Induced Spin-State Switching (LD-CISSS) was designed by Herges et al. adding
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the photochromic azopyridine ligand to a solution of [NiII(porphyrin)] [69]. This

ligand is stable at both cis and trans conformations but while at the latter it

coordinates to the metal centre, at the former the binding is impeded due to

steric hindrance as schematically depicted in Fig. 1.5.

Figure 1.5. Scheme of LD-CISSS in solution with photochromic phenylazopy-
ridine ligand. The axial binding of the ligand in the cis conformation to the
LS (S=0) NiII is impeded by steric hindrance (left). The photo-switched trans
isomer coordinates to the metal inducing the HS (S=1) state (right).

Irradiation of the sample with the appropriate wave-length induces the photo-

isomerization of the ligand and in this way the spin state of the complex is

controlled. Chapter 5 describes the theoretical study of LD-CISSS in a [NiII-

(porphyrin)] complex functionalized with a phenylazopyridine arm. The pho-

toisomerization of this arm induces the change of the metal centre coordination

number with the consequent LD-CISSS in solution at room temperature which

is fully switchable and induces an exceptionally stable HS state [70–72].

1.6 The role of the ligand: valence tautomerism

A change in the coordination number is not the only way to force a spin-

crossover. Photo-active ligands may undergo conformational changes when ir-

radiated, which in turn affects the field exerted by the ligand on the metal
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centre and causes a change of the spin moment of the ground state of the

complex. This Ligand-Driven Light-Induced Spin-Change (LD-LISC) has been

observed in some FeII complexes [73–76] but has never become very impor-

tant because of the difficulty to induce large changes in the ligand-field by

conformational changes in the ligand.

When the ligand is redox-active with more than one possible oxidation state,

it can also behave in a non-innocent fashion transferring electrons to the metal

centre and changing its effective charge [77]. In complexes containing a redox-

active metal ion coordinated to a redox-active ligand several electronic isomers

are possible. These so-called valence tautomers differ in the charge distribution

and hence are characterized by different optical, electric and magnetic proper-

ties. If the degree of covalence between the metal and the ligand is small and

their frontier orbitals are similar in energy, a spin transition implying an elec-

tron transfer from the ligand to the metal or viceversa can be stimulated by

external factors. This switch from one valence tautomer to another is known as

valence tautomeric transition. Since the valence tautomeric transition implies

a change in the total spin of the system this effect is considered a SCO process

[78–80].

Although the most famous transition metal complexes exhibiting VT transi-

tions contain Co [81–84], this effect has also been reported in V, Fe, Ni, Cu,

Ru, and Yb complexes [85]. With several accessible oxidation states, Mn is

also a good candidate to show VT transitions [86, 87]. As an example, the ac-

cessibility to two different valence tautomers for a [Mn(porphyrin)]+ has been

reported [88]. The LS (S=2) tautomer is characterized by a MnIII (d4) coor-

dinated to a closed-shell dianionic porphyrin (see Fig. 1.6 left). Induced by

temperature or pressure, one electron is transferred from the porphyrin to the

metal. The resulting HS (S=3) state is described as a (S=5/2) reduced MnII

ferromagnetically coupled to an (S=1/2) oxidized anionic porphyrin (see Fig.

1.6 right). Chapter 6 explores the oxidation and spin states of high-valent Mn

coordinated to porphyrin derivatives.
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Figure 1.6. Low-spin (S=2) MnIII and high-spin (S=5/2) MnII configurations
of the Mn ion in the square-planar coordination sphere of the [Mn(porphyrin)]
complex (left and right respectively).

1.7 Objectives

As already mentioned, the vast majority of the SCO studies focus on octahe-

dral FeII complexes with FeN6 core. However, the design of novel ligands has

given room to the development of new SCO complexes beyond these standard

complexes. Nowadays, the range of TMs and coordination numbers that have

been reported to exhibit SCO is wide and the techniques used to induce the

effect go further than changes in temperature or pressure, providing better

control over the spin of the system and more robust and stable LS and HS

states.

Geometrical parameters, relative stabilities and lifetimes of the spin states,

spectroscopic data or metal and ligand charges, among others, give fundamental

information on the understanding of SCO mechanisms. However, in many cases

these data are not accessible from experiment. An obvious example is the

oxidation state of the metal centre, which cannot be experimentally determined

and has to be assigned indirectly. In other cases intermediate electronic states

are unstable and cannot be characterized. In LIESST processes the system
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reaches the HS state after a radiation-less relaxation and the energy used to

induce the process does not correspond with the HS-LS relative stability. In

this sense, theoretical chemistry is a powerful tool which can provide reliable

predictions of all this parameters.

The aim of the present work is to get insight in the SCO phenomenon in

complexes with less conventional TMs and coordination numbers by means

of a computational study. In Chapter 2 the ab initio methods used for this

purpose are reviewed. Chapters 3 and 4 present a deep study of LIESST in

Ru and Ni complexes and report differences in the photochemistry of these

metals compared with the well-known FeII case. The example of a Ni porphyrin

functionalized with an azopyridine arm provides insights into the LD-CISSS

mechanism in Chapter 5. The spin and oxidation states of imido Mn corrole

and corrolazine derivatives are predicted in Chapter 6. The general conclusions

of the thesis are exposed in Chapter 7.
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Chapter 2

Theoretical background

In non-relativistic quantum mechanics a many-particle system in a stationary

state is described by the Ψn wave function, solution of the time-independent

Schrödinger equation

ĤΨn = EnΨn (2.1)

Ĥ is the Hamiltonian operator and Ψn and En are respectively the eigenfunction

and eigenvalue of state n. In atomic units, Ĥ has the following form:

Ĥ = −1

2

∑
i

O2
i +

∑
i<j

1

rij
−
∑
i,A

ZA

riA
− 1

2

∑
A

O2
A

MA
+

∑
A<B

zAzB

RAB
, (2.2)

where A and B subscripts refer to nuclei while i and j to electrons. The

five terms correspond respectively to the kinetic energy of the electrons (T̂e),

Coulomb repulsion between electrons (V̂ee) and attraction between electrons

and nuclei (V̂Ne), kinetic energy of nuclei (T̂N) and Coulomb repulsion between

nuclei (V̂NN).

The Hamiltonian can be expressed as

Ĥ = Ĥelec + Ĥnucl (2.3)

accounting for electronic (Ĥelec = T̂e + V̂ee + V̂Ne) and nuclear (Ĥnucl = T̂N

+ V̂NN) terms. Since nuclei are heavier than electrons, electronic movement is
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faster than the nuclear one and can be neglected in a system in a stationary

state. The nuclear repulsion V̂NN is in this case a parameter and its contribution

to the total energy added afterwards. This separation of nuclear and electronic

motion is known as Born-Oppenheimer approximation, and in this picture the

time-independent Schrödinger equation is reduced to the electronic problem

ĤelecΦelec(r,R) = Eelec(R)Φelec(r,R), (2.4)

and the total energy is

Etot = Eelec(R) + VNN(R). (2.5)

As a consequence of this separation the wave function can be expressed as

Ψ(r,R) = Φelec(r,R)χnucl(R). (2.6)

In the Born-Oppenheimer approximation the electronic Schrödinger equation

considers the motion of electrons within the field of nuclei with fixed position

and both electronic wave function and energy depend parametrically on the

nuclear coordinates. Hereinafter we will assume this approximation and we will

focus on the electronic problem.

The exact solution of the electronic time-independent Schrödinger equation is

only known for single-electron systems. The two-electron repulsion term makes

this equation unsolvable for many-electron systems and only approximate so-

lutions can be obtained. To this purpose, a common approach is based on

representing the N-electron wave function as an expansion of Slater determi-

nants

Ψ =
∑

k

ckΦk. (2.7)

Slater determinants (Φk) consist in antisymmetrized products of N one-electron

wave functions (χ) ensuring the antisymmetry of the wave function:

Φk = det(χa(1)χb(2)...). (2.8)

χ are spin-orbitals and are obtained as products of spatial and spin functions.
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In this approach the exact wave function is given as a complete expansion of all

the Slater determinants which can be generated distributing the N electrons in

all possible ways over the orbitals in a given basis set. In this case, equation 2.7

refers to a full Configuration Interaction calculation (FCI). This is in general

not possible and the set of determinants included in the expansion must be

truncated according to different approximations.

Among the methods to truncate the linear expansion (equation 2.7), the Hartree-

Fock (HF) approximation is the crudest one since it represents the many-

electron wave function with a single Slater determinant. The variational princi-

ple leads to a system of eigenvalues and eigenfunction equations which is solved

iteratively until convergence. These equations have monoelectronic character

and the operator is known as the Fock operator. The motion of one electron is

described in the field of the nuclei and the average field of the rest of electrons

and therefore, the electron-electron interaction is taken into account only in an

average way. The method is also known as Self-Consistent-Field (SCF) [1].

2.1 Electron correlation

Since HF method describes the interaction of the electrons in an average way,

the motion of one specific electron does not affect the motion of the rest of

electrons, in other words the motion of the electrons is uncorrelated. However,

due to the coulombic repulsion, each electron presents a spatial region known

as Coulomb hole in which the probability of finding another electron rapidly

goes to zero. The absence of the Coulomb hole in the HF approximation to the

N-electron wave function makes that the electron-electron repulsion is overes-

timated. The difference between the exact energy and the Hartree-Fock energy

is traditionally defined as the correlation energy

Ecorr = Eexact − EHF. (2.9)

Electron correlation has usually been classified in dynamic and non-dynamic

although there is not an exact differentiation between them. The dynamic elec-

tron correlation is related to the fact that beyond the mean-field, the electrons
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avoid each other more effectively and partially restitute the Coulomb hole,

while the non-dynamic correlation is due to the existence of several low-lying

nearly degenerate determinants.

The so-called post-Hartree-Fock methods aim to restore the Coulomb hole by

including part of the electron correlation. The expansion with more Slater de-

terminants makes the wave function multideterminantal and gives it flexibility.

If these determinants are classified in terms of single (S), double (D), triple (T)

excitations, equation 2.7 can be re-expressed as follows:

Ψ = c0Φ0 +
∑

S

cSΦS +
∑
D

cDΦD +
∑

T

cTΦT + .... (2.10)

The HF determinant Φ0 is called the reference determinant. Systems with near

degeneracies are not well described even qualitatively within the HF approxi-

mation and a multiconfigurational function has to be used as the reference, as

discussed in Sections 2.2 and 2.3.

In variational methods the expansion coefficients are obtained by diagonalizing

the corresponding Hamiltonian matrix. Either in single reference or in multi-

configurational schemes, Equation 2.10 is often truncated to the third term,

including only single and double excitations in the CI space (CISD), since

these excitations are the most relevant contributions to the correlation energy.

Other truncations can be defined according to the specific aim of the calcu-

lation. This is the case of the Difference-Dedicated Configuration Interaction

method (DDCI) [2, 3], which is used in Chapter 6, and is designed to accurately

estimate energy differences. In this method a multiconfigurational function is

taken as reference and the CI space is expanded up to double excitations but

many of them are excluded on the basis of perturbation theory criteria. In any

case, the truncation must be used with caution since it can lead to an incorrect

dependence of the energy on the number of electrons known as size-consistency

error. Alternatively, the linear expansion of configurations can be avoided gen-

erating the wave function with an exponential Ansatz, which is called Coupled

Cluster approach [4–7] and is exempt of size-consistency error.

An alternative to the variational determination of the expansion coefficients

and the correlation energy is Perturbation Theory.
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2.2 Multiconfigurational self-consistent field

Some systems present (nearly) degenerate electronic configurations in their

electronic structure. This is the case for certain transition metals where the

dns2, dn+1s1 and dn+2 configuration lead to multiplets with similar energies.

Other examples of marked multiconfigurational character of the wave function

can be found in electronically excited states or systems far away from their

equilibrium geometry. Such cases are obviously not well described with ap-

proaches based on a monoconfigurational reference wave function and a more

flexible wave function is mandatory.

The multiconfigurational self-consistent field (MCSCF) method [8, 9] is de-

signed to construct wave functions to recover the largest part of the non-

dynamic electron correlation, that is, to take into account the presence of

(nearly) degenerate electronic configurations from the very beginning in a rig-

orous manner. Typically, the wave function is written as a relatively short

CI expansion that contains the most important electronic configurations. The

method optimizes both the CI coefficients and the orbital expansion coefficients

to avoid any bias towards one of the electronic configurations. In contrast to

the monoconfigurational methods, the occupation numbers of the orbitals are

no longer restricted to 0, 1 or 2, but become non-integer and can take any

value between 0 and 2, depending on the weight in the final wave function of

the configurations in which these orbitals are occupied.

Among the different MCSCF methods, the most widely used is the complete

active space self-consistent field (CASSCF) approach [10, 11]. The molecular

orbital space is divided in three subspaces (see Fig. 2.1): the inactive space

contains the orbitals that are doubly occupied in all the configurations of the

wave function; the virtual space contains the orbitals that are empty in all

configurations; and finally, the active space, which contains the orbitals with

variable occupations. The multiconfigurational wave function is constructed as

a linear combination of Slater determinants in which the active electrons1 are

distributed over the active orbitals in all possible ways compatible with the

1The electrons that are not in the inactive space. The number of active electrons is defined
as the total number of electrons minus twice the number of inactive orbitals.
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spin multiplicity and the spatial symmetry of the electronic state under study.

For this reason, CASSCF can be seen as a full CI in the active space.

The main difficulty of CASSCF lies in the choice of the active space, an in-

adequate choice can easily lead to unphysical results. Unfortunately, there is

no generally applicable rule for selecting the active orbitals. Different systems

need different active spaces and the limitation of the size of the active space

to approximately 15 orbitals makes it impossible to use CASSCF as a black-

box method, chemical knowledge is essential to ensure a correct treatment of

the electronic structure. It must be stated that the experience gained over the

years with the application of CASSCF to a wide variety of systems established

some general guidelines for the proper choice of the active space [12–14].

Figure 2.1. Schematic representation of the classification in three subspaces
of the molecular orbitals in a CASSCF calculation.
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2.3 Multiconfigurational reference perturbation the-

ory

While CASSCF can give a rather precise description of the non-dynamic elec-

tron correlation, it is practically impossible to include the effect of the dynamic

correlation. To further improve the theoretical description of the electronic

structure, multiconfigurational reference perturbation theory (MRPT) can be

applied to account for the latter effect [15]. Such methods offer an excellent bal-

ance between computational effort and accuracy. In perturbative approaches,

in a first step approximate zeroth order solutions of the energy and the wave

function are determined and fist order, second order, etc. corrections are added

from series developments in a further step.

The complete active space second order perturbation theory (CASPT2) imple-

mentation of MRPT [16] is one of the most widely applied schemes to improve

upon the CASSCF wave function. The zeroth order Hamiltonian (H(0)) is de-

fined as a sum of Fock-type operators (effective one-electron operators) that

reduces exactly to the Møller-Plesset [17] choice for H(0) in the limit of zero

active orbitals. The first order wave function is constructed by applying single

and double excitation operators on the CASSCF wave function (the reference

or zeroth order wave function) as a whole. This so-called contracted manner

to produce the first order wave function greatly reduces the number of param-

eters to be determined but makes it very difficult to estimate the influence of

dynamic correlation on the relative importance of the different configurations

in the CAS.

The denominator of the second order correction to the energy is given by the

difference of the expectation values of H(0) of the CAS wave function and a

configuration outside the CAS. The approximate nature of H(0) makes that this

denominator can become very small, causing a breakdown of the perturbative

estimate for the energy. Including this configuration in the CAS is the most

rigorous solution to this problem but not always possible due to the limitation

on the size of the CAS. A pragmatic solution to this intruder state problem is

to add an artificial shift to the denominator and later correct the so-obtained

estimate for the application of the shift [18, 19].
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Among the other implementations of MRPT it is worth to mention the n-

electron valence state second order perturbation theory (NEVPT2) [20]. This

method completely eliminates the intruder state problem by using a zeroth

order Hamiltonian with two-electron terms among the active orbitals. The

first order wave function can be constructed in a similar way as for CASPT2

although it also offers an even more compact expansion for further speed-up.

2.4 Density functional methods

2.4.1 Density functional theory

The original idea of density functional theory (DFT) was to circumvent the

necessity of the construction of an N-electron wave function to obtain informa-

tion about the energy (and other properties) of the system and use the much

simpler electronic density instead. The advantage of this approach is obvious;

while the N-electron wave function depends on 4N coordinates (N times three

spatial plus one spin coordinates), the electron density is the square of the

wave function integrated over N-1 spatial coordinates and only depends on one

electron coordinates. Therefore, the complexity of a density based approach

is in principle independent on the system size. Although it has been formally

proven that one can calculate the energy from the density, the problem of

this approach is of course that the exact functional that connects the electron

density with the energy is unknown.

Considering that the nuclear repulsion is constant in the Born-Oppenheimer

approximation, the density functional to calculate the energy E[ρ] can be split

in a kinetic energy T[ρ], a electron-nucleus attraction VNe[ρ] and a electron-

electron repulsion Vee[ρ] term. The latter term can be separated in a Coulomb

J[ρ] and a exchange K[ρ] part. While VNe[ρ] is defined as

VNe[ρ] = −
Nnuclei∑

a

∫
Za(Ra)ρ(r)

|Ra − r|
dr, (2.11)
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and the Coulomb part of the electron-electron repulsion functional as

J[ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′, (2.12)

there are no exact expressions available for the kinetic energy and the exchange

part. The first attempts to define expressions for these unknown parts of the

functional were based on the exact solution of the uniform electron gas. Thomas

and Fermi derived the T[ρ] for this model system, establishing what is known

as Thomas-Fermi DFT. Despite being associated with the name of Dirac [21],

it was Bloch [22] who derived an expression for K[ρ] constituting the Thomas-

Fermi-Dirac model. However, this approach is far too approximate and can

in fact not even describe any bond formation. In other words, molecules are

unstable in this model. The addition of higher order terms depending on the

gradient of ρ does not lead to significant improvements.

Hohenberg and Kohn laid the rigorous foundations for DFT [23] with two the-

orems. In the first one –known as existence theorem– they showed via reductio

ad absurdum that in a non-degenerate ground state the density entirely deter-

mines the external potential. Let us suppose that this is not true and we have

the exact density (ρ(r)) of a non-degenerate ground state and that this ρ(r)

can be obtained from two different external potentials (V1(r) and V2(r)). These

two external potentials generate two different Hamiltonians Ĥ1 and Ĥ2 which

at the same time generate two different wave functions Ψ1 and Ψ2. Calculating

the expected value of the energy of Ψ2 with Ĥ1 and of Ψ1 with Ĥ2, from the

variational principle we have that

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 = E2 −
∫

(ρ(r)[V1(r)−V2(r)]dv1(r)

(2.13)

E2 < 〈Ψ1|Ĥ2|Ψ1〉 = 〈Ψ1|Ĥ1|Ψ1〉+ 〈Ψ1|Ĥ2 − Ĥ1|Ψ1〉 = E1 −
∫

(ρ(r)[V2(r)−V1(r)]dv2(r).

(2.14)

Summing up equations (2.13) and (2.14) we arrive to

E1 + E2 < E2 + E1, (2.15)

which is inconsistent and proves that ρ(r) of a non-degenerate ground state

associated to V(r) cannot be reproduced with a different potential. Therefore,

27

UNIVERSITAT ROVIRA I VIRGILI 
SPIN-CROSSOVER BEYOND THE TRADITIONAL FE(II) COMPLEXES: AB INITIO STUDY OF SPIN STATE 
STABILITY IN COMPLEXES WITH MN, NI AND RU 
Gerard Alcover Fortuny 



Theoretical background

providing the number of electrons and the external potential, electron density

determines the Hamiltonian operator and the wave function of the ground

state.

In their second theorem, Hohenberg and Kohn established how to predict the

electron density of a system. In a similar way as the molecular orbitals, ρ(r)

is governed by a variational principle. Given a trial electron density ρtrial(r)

which defines Ĥtrial and Ψtrial,

〈Ψtrial|Ĥtrial|Ψtrial〉 = Etrial ≥ E0 (2.16)

where E0 is the exact energy of the system. Following this principle, the exact

density will be the one which minimizes the energy.

A major step forward was made by Kohn and Sham by writing T[ρ] as the

sum of the kinetic energy of non-interacting particles TS[ρ] and the remainder

Txc[ρ] [24]. The first contribution is by far the largest and can be calculated

exactly by introducing a set of orbitals to decompose the electron density

TS[ρ] =

Nelec∑
i=1

〈φi| −
1

2
Ô2|φi〉. (2.17)

The difference between the exact kinetic energy with the electrons interact-

ing and TS is very small and is absorbed in the exchange-correlation Vxc[ρ]

correction term, which also includes the difference between Vee[ρ] and J[ρ],

Vxc[ρ] = (T[ρ]− TS[ρ]) + (Vee[ρ]− J[ρ]). (2.18)

In this way, the only part of the energy functional that has to be approximated

is the exchange-correlation term

EDFT[ρ] = TS[ρ] + VNe[ρ] + J[ρ] + Vxc[ρ]. (2.19)

Orbital-free models can be considered as ’true’ DFT approaches that only

depend on four variables, but the extreme difficulties on finding an accurate

functional for the kinetic energy makes this approach unviable nowadays. On
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the other hand, the use of orbitals in Kohn-Sham DFT increases the number

of variables to 4N but the improvement in the description of the kinetic energy

provides computational chemists with a reliable and relatively cheap procedure

to study the electronic structure of a wide variety of systems.

In the KS context the different DFT methods are characterized by the choice

of how the functional for Vxc[ρ] is represented. The simplest model, known

as Local Density Approximation (LDA) [25, 26] considers the density to be

constant in small intervals around r. It uses the expression of the uniform

electron gas for the exchange part of Vxc, while a more elaborate expression is

used for the correlation part. LDA can be extended to open-shell considering

the α and β densities separately in the Local Spin Density Approximation

(LSDA).

Next step to improve this representation is to take into account that the local

density locally changes by making Vxc[ρ] also dependent on the derivative of

ρ, which is known as the Generalized-Gradient Approximation (GGA) [27].

Over the years a large number of GGA functionals have been published. Often

the acronym used to identify the functional reflects the fact that Vxc can be

written as an exchange part Vx and a correlation part Vc. For example, the

BLYP functional accounts for exchange interaction with the Becke functional

for exchange and uses the Lee, Yang and Parr correlation functional. Inclusion

of not only the gradient but also the second derivative of the density results in

the so-called meta-GGA functionals.

Finally, hybrid functionals include exact exchange energy as calculated in a

standard HF calculation, with the difference that here Kohn-Sham orbitals are

used. PBE0 and B3LYP [28, 29] are of this class and have become the most

used functionals during the last decades, since they perform very well analyzing

problems in general chemistry.

2.4.2 Time-dependent density functional theory

Although DFT has been proven to be accurate and rather cost-effective for

the description of electronic ground states, the treatment of excited states is
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not covered by the formulation of DFT discussed so far. In this sense, Time-

Dependent DFT (TD-DFT) extends the Hohenberg-Kohn-Sham DFT to cases

in which the stationary ground state is exposed to a time-dependent perturba-

tion and the external potential is modified.

TD-DFT is based on Runge and Gross theorem [30] which, similarly to Hohen-

berg -Kohn, shows the existence of a unique correspondence between the time-

dependent density and the time-dependent potential. In other words, ρ(r,t)

and the initial wave function Ψ0 at some time t0 determine Vext(r,t) which

in consequence is a functional of the time-dependent density. Moreover, ρ(r,t)

fixes the number of electrons of the system, which together with the external

potential define the time-dependent Hamiltonian operator. Since this is true

both for the real system and a system of non-interacting electrons, the equation

i
∂

∂t
ψi(r, t) = [− Ô2

2
+ Ĵ(r, t) + V̂ext(r, t) + V̂xc(r, t)]ψi(r, t) (2.20)

is the T-D Kohn-Sham equation, where Ĵ(r,t) is the classical electrostatic po-

tential and V̂ext(r,t) includes the nucleus-electron interaction and any other po-

tential which depends on time. Since approximations for V̂xc(r,t) are still under

development, the same exchange-correlation potential as in time-independent

DFT is used, which is known as adiabatic approximation.

The dynamic polarizability α is the tendency of a charge distribution to be

distorted due to an external electric field (ε(t) = εcos(ωt)). TD-DFT allows us

to calculate the difference between the permanent dipole moment and a time-

dependent dipole moment when the system is under the influence of a small

dynamic perturbation. This induced dipole moment is a linear term defined as

4µ(t) =

∫
α(t− t′)ε(t′)dt′ (2.21)

if the time-dependent potential is weak and the Linear-Response (LR) theory

can be applied neglecting higher-order terms. After a Fourier transformation

Eq. 2.21 becomes

4µ(ω) = α(ω)ε(ω) (2.22)
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and the dynamic polarizability is

α(ω) =
∑
I6=0

fI

ω2
I − ω2

(2.23)

where ωI is defined as the vertical excitation energy (ωI = EI - E0) and f I is

the corresponding oscillator strength.

Therefore, vertical excitation energies and oscillator strengths can be obtained

from the poles of the dynamic polarizability with LR TD-DFT. Since the re-

sponse function has poles in all the excitation energies of a system it contains

the required information to calculate all the excited states. For further infor-

mation about TD-DFT the reader is referred to reviews [31–34] which provide

deeper information about this methodology.

2.5 Estimation of intersystem crossing rates

As seen in Chapter 1 some transition metal complexes exhibit spin-crossover

induced by light. In these systems the absorption of light induces an excitation

to a state with the same spin multiplicity as the ground state. In such cases

spin-crossover implies the relaxation from the excited state to a state with

different spin multiplicity. This process is known as intersystem crossing (ISC)

and its rate will determine the magnetic properties of the complex. In this

work, Fermi’s golden rule is used to compute ISC rates [35–37]. The expression

to calculate ISC rate constants (kISC) from Fermi’s golden rule is

kISC = 2π
∑

k

| 〈ΨI, {νIa}|ĤSO|ΨF, {νFk}〉 |2δ(EIa − EFk) (2.24)

where ΨI and ΨF are electronic wave functions of the initial and final states, and

{ν(I,F)i} represents the collection of vibrational wave functions of the initial and

final states. ĤSO is the spin-orbit coupling operator. Assuming that SO coupling

is independent of the vibrational level (Condon approximation), equation 2.24

can be written as a product of the electronic and the vibrational part

kISC = 2π| 〈ΨI|ĤSO|ΨF〉 |2 ×
∑

k

| 〈{νIa}|{νFk}〉 |2δ(EIa − EFk). (2.25)
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Equation 2.25 corresponds to the time-independent approach and becomes

computationally very demanding for large systems since it requires the cal-

culation of a huge amount of Franck-Condon integrals. Instead, when Fermi’s

golden rule is transformed to the time domain, that is, adopting the Heisenberg

picture, kISC can be calculated from a time integration

kISC = | 〈ΨI|ĤSO|ΨF〉 |2
∫ ∞
−∞

dtG(t)eit(4EIF+( 1
2

)TrΩ1 , (2.26)

where the time-dependent correlation function G(t) contains information re-

lated to the vibrational frequencies and the normal coordinates of the initial

and final states and Ω1 is a matrix with the vibrational frequencies of the initial

state.

From Equation 2.26 the ingredients to calculate ISC rate constants can be

deduced. To obtain the vibrational information contained in G(t) and Ω1 the

frequencies of the initial and final states are required. Furthermore, an accurate

estimation of the energy difference between these states 4EIF and their spin-

orbit coupling (| 〈ΨI|ĤSO|ΨF〉 |2) have to be computed.

2.6 Computational strategy

The main goal of this thesis is to study spin-crossover in complexes with dif-

ferent transition metals using the computational methods described above. To

this purpose, geometries, relative energies, spin-orbit coupling, vibrational fre-

quencies among other properties have to be calculated for all the relevant spin

states of the complexes considered. Ideally, one would use CASPT2 using large

active spaces to calculate all these properties but the high computational cost

of such procedure makes it unavoidable to opt for alternative methods in some

cases. Throughout this thesis we have employed the following strategy to obtain

an accurate description of the spin crossover process.

The first and most important question concerns the geometry. In many cases,

experimental structures are only available for one of the spin states. Therefore,

geometries are optimized with DFT using either a GGA or a hybrid functional.
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Experience shows that the Ahlrichs basis sets of split-valence + polarization

quality [38] are large enough to give accurate geometries in most cases. Fur-

thermore, we use the resolution of the identity approximation to speed up the

calculations. This is especially useful for the calculation of the frequencies of

the vibrational modes, which is also always done with DFT. The calculation

of the vibrational frequencies for excited states requires some extra attention.

In the first place, one needs to resort to the TD variant of DFT. In the second

place, TD-DFT analytical gradients are not available for all the functionals in

the program packages we have used. In these cases, the gradients are obtained

from numerical differentiation. When available, the calculated data bond dis-

tances and angles, dihedrals, and frequencies are compared to experimental

data.

Once the geometries of all spin states are calculated, we turn our attention to

the accurate determination of the relative energies. For this purpose, we first

construct a CASSCF wave function with the by now standard active space for

transition metal complexes. When all metal ligand bonds are simple coordina-

tion bonds, the active space has to contain the five TM-3d orbitals, five more

TM-d orbitals to account for the double shell effect (TM-3d’ or 4d orbitals) and

one or two ligand orbitals to account for the sigma interaction between the TM

and the N-atoms in the first coordination sphere [39]. When metal-to-ligand

or ligand-to-metal charge transfer states are studied, this basic active space is

extended with the appropriate ligand orbitals. In case of covalent TM-ligand

bonds, the active space should contain the molecular orbitals corresponding

to the bonding and antibonding combinations of the orbitals centred on the

covalently bonded atoms. Furthermore, one has to add the remaining, basically

non-bonding TM-3d orbitals, the second d-shell and the Nσ orbitals, provided

this does not lead to too large an active space. In this step, we typically use

the ANO-RCC basis sets of Roos and co-workers [40–42]. These generally con-

tracted basis sets are specially designed to recover the maximal amount of

correlation energy and give an accurate account of the scalar relativistic ef-

fects through the Douglas-Kroll-Hess Hamiltonian. In the CASPT2 step, we

typically exclude the deep core electrons (TM-1s2..2p6; C,N,O-1s2) from the

correlation treatment and apply a level shift of 0.10 au to eliminate the effect

of intruder states. In all the calculations, we have used the standard CASPT2
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zeroth-order Hamiltonian with an IPEA-shift of 0.25 au.

As said before, a full geometry optimization with CASPT2 is unaffordable in

any but the smallest model TM complexes. However, it has been observed

that certain key parameters of spin crossover are rather strongly influenced by

the TM-L distance. The most prominent changes are observed for the vertical

excitation energies of the metal-centred (ligand-field or d-d) excitations, but

the HS-LS adiabatic energy difference is also sensitive to small changes in the

geometry of the first coordination sphere. For this reason, we re-optimize the

distance between the TM and the N-atoms in the first coordination sphere

by performing a series of single point calculations with different TM-N dis-

tances [39]. These geometries are obtained from restricted geometry optimiza-

tion with DFT. In some cases, we have also re-optimized the TM-N-R angle

with CASPT2.

After the calculation of the energies of the different spin states, a step is made

to analyze the multiconfigurational wave functions. For this purpose, we use the

orthogonal Valence Bond procedure [43–46]. First the canonical (delocalized)

active orbitals undergo a unitary transformation to localize them either on

the TM or the ligand. The multiconfigurational wave function expansion is re-

expressed in Slater determinants constructed with localized orbitals. Since the

orbital transformation is unitary this procedure does not affect the energy of the

system, and the CAS matrix is simply diagonalized to obtain the coeficients

of the expansion in this basis. Due to the localized nature of the orbitals,

the Slater determinants can be univocally labelled as TMn+iLm−i electronic

configurations and by summing up the weights of all the Slater determinants

that belong to one electronic configuration one can easily determine the relative

importance of each configuration in the total wave function, count the number

of electrons on the TM, and the number of electrons transferred from the TM

to the ligand (or vice-versa) with respect to a purely ionic description.

The final step of the computational strategy concerns the calculation of the

intersystem crossing rates when studying the deactivation of excited states in

light induced spin crossover. As explained in the previous section, this is done

through the time-dependent formulation of Fermi’s golden rule and requires
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apart from the vibrational frequencies, normal modes and relative energies, also

the spin-orbit coupling between initial and final states. The matrix elements are

calculated by adding the spin-orbit operator to the Hamiltonian and writing

down the matrix representation of the resulting operator in the basis of the

explicit MS components of the CASSCF wave function of the different spin

states. The required spin-orbital integrals are obtained within the atomic mean-

field approximation, which implies discarding all two-centre two-electron spin

orbit couplings and assuming a fixed average atomic electronic configuration

[47]. Furthermore, it is assumed that the spin-orbit coupling is only weakly

dependent on the geometry of the complex. This has been extensively tested

in earlier studies on similar complexes [48].
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Chapter 3

Photochemistry of Ru

polypyridyl complexes

3.1 Introduction

RuII polypyridyl complexes have attracted interest due to their applications

in the conversion of light in chemical energy. These complexes are easily re-

duced in the excited state and the released electron can be captured by acceptor

molecules and used in secondary reactions. The excited state is accessible upon

light irradiation including solar energy, coining the basis of the solar energy

cells [1–8]. As a consequence, these Ru complexes have been extensively studied

using as prototype their simplest tris(2,2’-bipyridine) derivative [Ru(bpy)3]2+

(see Fig. 3.1). The ground state of RuII in this octahedral ligand-field is char-

acterized by a closed shell singlet (S0) with the 6 electrons paired in the 4d

t2g orbitals. Three different kinds of excited states are possible depending on

the orbitals involved. The metal centred (MC) d-d states are generated by ex-

citation of the t2g electrons to the 4d eg orbitals. Ligand centred (LC) π-π*

excitations can also occur in the aromatic bipyridine ligand. Finally, the metal-

to-ligand charge transfer (MLCT) states arise from the promotion of one 4d

electron to a π* orbital on the pyridyl ligands.
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Figure 3.1. Schematic representation of [Ru(bpy)3]2+, studied in this chapter.

During the 1970s and 1980s, the photochemistry of [Ru(bpy)3]2+ was exten-

sively studied [9]. The absorption spectrum of the complex presents two intense

bands around 4.3 eV (285 nm) and 2.7 eV (455 nm), respectively [10]. The 455

nm absorption band corresponds to a spin allowed transition to the 1MLCT ex-

cited state which rapidly converts by intersystem crossing (ISC) to the 3MLCT

triplet, the lowest excited state (see Fig. 3.2) [11, 12]. The ISC efficiency is ex-

pected to be close to 1. The easy electron transfer to acceptor molecules from

the efficiently populated 3MLCT state makes these complexes very suitable for

charge transfer processes [13]. This state decays to the ground state emitting

light of 2.0 eV (610 nm), and hence, the complex is luminescent [14].

Although several DFT and TD-DFT studies have been published on [Ru-

(bpy)3]2+ photochemistry in the last two decades [15–21], some important

aspects need to be reviewed. The nature of the MLCT lowest excited state

is still unclear. Whether the unpaired electron in this state is localized on a

single bipyridine or delocalized over the three ligands may determine the elec-

tron transfer rate if the acceptor molecule interacts with one of the ligands

[22]. On one hand, experimental evidences point to an initial photoinduced de-

localized MLCT state followed by localization to a single ligand [23]. This pro-

cess is known as inter-ligand electron transfer (ILET) and from a mixed time-
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dependent quantum-classical dynamics computational method is predicted to

take place in the range of hundreds of fs depending on the solvent [24]. On

the other hand, several TD-DFT results stress that the electron is delocalized

over the three bipyridine ligands and therefore no ILET is expected [25–27].

Finally, a quantum mechanics/molecular mechanics study indicates delocalized

MLCT states in gas phase and localization on two ligands when the effects of

the solvent are included [28].

Figure 3.2. Schematic representation of the absorption and emission processes
in [Ru(bpy)3]2+.

Moreover, the processes after the excitation and before the ISC to the 3MLCT

are also unclear because they occur on an ultrafast timescale [29]. The Franck-

Condon 1MLCT, for instance, has never been directly observed since this state

is very short-lived and rapidly evolves to the triplet state. This behaviour is

attributed to the large spin-orbit coupling (SOC) between the two excited

states with different total spin moment. The ISC is experimentally supposed

to occur in 100-300 fs [30, 31], 40 ± 15 fs [32] or 15 ± 10 fs [33] depending on

the spectroscopic technique and hence is also a controversial issue.
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The lowest d-d excited state 3MC is proposed to be 0.45 eV above the emit-

ting 3MLCT from the study of temperature dependence of the photochemical

properties of the complex [34]. This 3MC is a short-lived state that can be

thermally accessible via the 3MLCT depending on the energy spacing of these

states and its equilibrium geometry is expected to be strongly distorted with

respect to both the 3MLCT and the ground state [35]. DFT calculations also

indicate that the 3MC state energy is stabilized by substitutions at the 6 and

6’ positions of bipyridine [36] and eventually become lower in energy than the
3MLCT state.

This chapter presents a discussion on these points based on ab initio computa-

tional calculations. The geometry of the most relevant states in the photochem-

istry of [Ru(bpy)3]2+ is optimized at the DFT level, their vertical absorption

and emission spectra are estimated with TD-DFT and multireferential calcula-

tions. Furthermore, the character of the excited states, the effect of the solvent

and the processes involved in the excited states relaxation are analyzed.

3.2 The vertical absorption

3.2.1 Optimization of the S0 state

The S0 geometry has been optimized with DFT using the BP86 [37, 38], B3LYP

[39, 40], and PBE0 [41–43] functionals as implemented in the Turbomole pack-

age [44], and with CAM-B3LYP [45] using the Gaussian package [46]. The

def2-SVP [47] basis set for all the atoms has been used in the calculations.

A comparison of the resulting Ru-N distance and the four N-Ru-N different

angles with the experimental X-ray data [48] is shown in Table 3.1. While the

optimized angles with all the functionals are in good agreement with experi-

mental data, only BP86 and PBE0 give accurate distances since both B3LYP

and CAM-B3LYP tend to overestimate them.

For all the optimized geometries listed, the first 30 singlet excited states have

been computed with TD-DFT. In all cases, the states with highest oscillator
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strength have been compared with the experimental absorption spectrum of

the complex [10, 11]. Surprisingly, B3LYP is in better agreement with the ex-

perimental data than CAM-B3LYP, which has been reported to perform well

for charge transfer excitations [45]. BP86 excited state energies are lower than

the expected ones. Since the best DFT geometrical and TD-DFT energetic de-

scription is obtained using PBE0, this functional will be used in the remainder

of this chapter.

Table 3.1. DFT S0 optimized Ru-N distances (in Å) and angles (in degrees)
and TD-DFT absorption bands (eV). X-ray parameters [48] and experimental
absorption bands [10, 11] are reported for comparison.

Ru-N distance N-Ru-N angles Absorption bands

exp. 2.056 78.7 89.2 96.2 173.0 ' 2.7 ' 4.3
BP86 2.071 78.8 88.4 96.6 173.6 2.2 3.3

B3LYP 2.097 78.2 88.4 96.9 173.2 2.8 4.0
CAM-B3LYP 2.091 78.3 88.2 96.9 173.4 3.3 4.7

PBE0 2.067 78.7 88.1 96.8 173.7 3.1 4.2

The PBE0 geometry optimization and TD-DFT absorption spectrum estima-

tion have been repeated using def2-TZVP [49] in the Ru metal centre and

def2-SVP in the rest of the atoms in order to check the effect of the basis

set. No significant differences with respect to the previous results have been

detected and therefore the def2-SVP basis set in all the atoms has been used

along all the study.

3.2.2 TD-DFT Absorption Spectrum

The first 30 singlet excited states have been computed on the ground state

PBE0 optimized geometry at TD-DFT level of calculation. All the states with

considerable oscillator strength are of MLCT character. The excited electron

is promoted from a d-orbital of the metal centre to ligand orbitals delocalized

over the three bipyridine ligands (see Fig. 3.3).
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Figure 3.3. Anti-bonding orbital delocalized over the three bipyridine ligands.

The absorption spectrum of the complex has been simulated by adding gaussian

functions with height proportional to the oscillator strength in each transition

(see Fig. 3.4).

Figure 3.4. TD-DFT first 30 singlet excited states of the PBE0 ground state
optimized geometry (thin lines) and sum of the individual contribution to sim-
ulate the [Ru(bpy)3]2+ absorption spectrum (green line).
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The first band in the computed spectrum (green line in Fig. 3.4) has a maxi-

mum at 280 nm and a weak shoulder at 340 nm. This band results from the

overlap of several transitions, the most intense two at 294 nm and at 325 nm

respectively (thin lines in Fig. 3.4). Both states are of MLCT character with

the excited electron delocalized on the three bipyridine ligands. In contrast

with the first band of the spectrum, the second one between 370 nm and 460

nm arises from the overlap of various transitions, two at 397 nm and another at

418 nm. Finally, the weak transition at 451 nm also gives a small contribution.

As a result, this band is wider with respect to the first one but less intense.

In Fig. 3.5 the calculated absorption spectrum (green line) is compared with

experimental data (black line) [22].

Figure 3.5. Comparison of the TD-DFT [Ru(bpy)3]2+ spectrum in gas phase
(green line), in acetonitrile accounted with the COSMO model (red dashed
line) and the experimental one in acetonitrile (black line) [22].

The bands appearing at the very-left side of the experimental spectrum are

considerably high in energy and are not detected with our TD-DFT calcula-

tions which consider only the first 30 excited states. The calculated brightest

band (between 280 nm and 340 nm) is predicted to appear practically in the
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same energy region as the experimental one (around 260 nm and 310 nm). In

contrast, the Q band, which is experimentally expected between 400 nm and

496 nm is 30 nm blue-shifted in our calculations (between 370 nm and 460 nm).

Although the TD-DFT predicted oscillator strengths are smaller, in a qualita-

tive manner the shape of the predicted spectrum is similar to the experimental

one. In general terms one can consider that our results are in good agreement

with the experiment. The lower intensity of the band between 280 nm and 340

nm is most probably caused by limiting the number of excited states to 30 in

the TD-DFT calculation. More roots would lead to more intensity at higher

energy.

Since the TD-DFT are performed in gas phase and the experimental mea-

surements are carried out in acetontrile, the solvent effects on the computed

spectrum need to be reviewed. In this sense, using the COSMO model in Tur-

bomole [50, 51], the ground state geometry has been optimized with DFT and

the TD-DFT spectrum on the obtained structure has been recalculated adding

the effect of the solvent. To be consistent with the experiment, acetonitrile (ε =

35.69) has been considered. As shown in Fig. 3.5, the absorption bands taking

into account the effect of the solvent (red dashed line) appear at practically the

same wave length as in gas phase (green line). This non influence of the solvent

on the TD-DFT spectrum is attributed to the fact that in the 1MLCT states

the excited electron is delocalized over the three ligands, and hence, the dipole

moment is small. In 1MLCT states localized in a single ligand one could expect

higher dipole moments which would be more stabilized by the solvent effects,

with the consequent change in the excitation wavelengths. In contrast with the

excitation wavelengths, the oscillator strengths with the COSMO calculations

slightly differ from the gas phase, making the shape of the absorption spectrum

even closer to the experimental one.

3.2.3 CASPT2/DFT Ru-N distances reoptimization

In order to validate the ground state PBE0 optimized geometry, the Ru-N dis-

tances in the singlet ground state have been re-optimized in terms of CASPT2/
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DFT calculations following the procedure outlined in Sec. 2.6. In each calcula-

tion, the Ru-N distances have been frozen and the rest of the geometrical pa-

rameters have been relaxed with PBE0. The energy of the obtained structures

has been estimated by CASPT2 single point calculations. The [10,7]-CASSCF

reference wave function used in this calculations consists of 10 electrons in

the 4d-orbitals of Ru and two σ orbitals resulting from bonding mixing of the

4d metal orbitals and 2p orbitals of the bypiridine ligands. As pointed out in

Chapter 2, it is common practice to add a second d-shell to the active space in

the calculations for TM-3d ions with five or more d-electrons. This extension

of the active space is necessary to account for the large radial electron corre-

lation in the crowded 3d shell; many electrons share a relatively small volume

[52]. However, it is also well-known that the importance of the second d-shell

drastically diminishes for 4d and 5d TM ions. In fact, we have converged the

wave function including a 4d’ shell in the active space, but the results obtained

showed no difference with those obtained with the [10,7]-CASSCF calculations.

In the present chapter all the multireferential calculations are performed with

the Molcas package [53, 54]. The basis set used is of natural orbitals type

[55–57] contracted to [8s7p5d] for Ru, [5s4p] for N, [2s1p] for C and [2s] for H.

The above-mentioned distance has been scanned between 2.05 Å and 2.08 Å.

The minimal energy of this re-optimization has been found at 2.07 Å, con-

firming the prediction of the previous PBE0 optimization. This is somewhat

unexpected given the fact that a shortening of ∼ 0.1 Å in the metal-ligand

distance occurs for the [Fe(bpy)3]2+ complex [58, 59]. A systematic study in-

cluding more cases should be performed to check how general this observation

is.

3.2.4 CASSCF vertical absorption energies

The vertical excited singlet energies have been estimated on the ground state

PBE0 optimized geometry with CASSCF calculations. To obtain the MLCT

excited states, the [10,7]-CASSCF wave function used in Sec. 3.2.3 needs to

be expanded with three bipyridine empty orbitals resulting in a [10,10]-CAS.

Two of these three ligand anti-bonding orbitals included into the active space
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are placed on two bipyridines and the third one is delocalized over the three

ligands (see Fig. 3.6).

π∗
bpy π∗

bpy π∗
bpy

4d (t2g) 4d (t2g) 4d (t2g)

4d (eg) 4d (eg) σ

σ

Figure 3.6. Metal-ligand orbitals included in the [10,10]-CASSCF estimation
of the vertical singlet excited state energies.
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The basis set used in these calculations is of atomic natural orbitals type [55–

57], and contracted to [8s7p5d3f2g] for Ru, to [4s3p2d1f] for C and N and to

[3s1p] for H. The effect of the solvent has been evaluated in the CASSCF energy

estimations with the PCM model using the dielectric constant of acetonitrile

(ε = 35.69).

In a similar way as in the TD-DFT reproduction of the vertical absorption

spectrum, the solvent effects with CASSCF are negligible since the 1MLCT

states in acetonitrile are in all cases only 0.03 eV lower with respect to the

gas phase calculation (see Table 3.2). The dipole moment of the ground and

excited states are small, explaining why the solvent does not affect the ab-

sorption spectrum of the system and confirming the observations in section

3.2.2. CASSCF calculations predict two degenerate 1MLCT states at 3.12 eV

(397 nm) with high oscillator strength corresponding to the Q band of the

experimental absorption spectrum expected between 400 nm and 496 nm. In

contrast, the two states with highest oscillator strength at 3.29 eV (377 nm) are

red-shifted with respect to the experimental Soret band between 280 nm and

340 nm. Interestingly, CASSCF calculations behave in an opposite way as TD-

DFT, which agreed with the experimental data in the Soret band estimation

and failed with the Q band. The states involved in the Q band present higher

multiconfigurational character and hence are better estimated with CASSCF.

Probably, an expansion of the active space with bonding and antibonding or-

bitals of the ligands is required to improve the description of the states involved

in the Soret band.

The first three near-degenerate 1MLCT states in Table 3.2 are characterized by

the mono-occupation of these three ligand orbitals and one can consider that

the excited electron in the lowest singlet excited state is delocalized over the

three bipyridine ligands. The rest of MLCT states are also linear combinations

of Slater determinants with singly occupied ligand π* orbitals, and hence are

labelled as delocalized.
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Table 3.2. [10,10]-CASSCF vertical absorption energies (in eV) and oscillator
strengths for the ground state PBE0 optimized geometry in gas phase and in
acetonitrile, accounted by PCM. Dipole moments (in debye) for the gas phase
calculation.

gas phase acetonitrile
energy osc. strength µ energy osc. strength

S0 0.00 0.28 0.00
1MLCT 2.87 3.9·10−3 0.11 2.84 3.9·10−3

1MLCT 2.95 5.3·10−4 5.69 2.92 4.5·10−4

1MLCT 2.95 5.2·10−4 6.33 2.92 4.4·10−4

1MLCT 3.12 1.4·10−1 2.04 3.09 1.4·10−1

1MLCT 3.12 1.5·10−1 2.32 3.09 1.6·10−1

1MLCT 3.25 9.2·10−4 0.30 3.22 4.6·10−3

1MLCT 3.29 3.4·10−1 1.32 3.26 3.4·10−1

1MLCT 3.29 3.4·10−1 2.01 3.26 3.5·10−1

3.2.5 The metal centred states

Excitations from the ground state to metal centred excited states are forbid-

den by symmetry and therefore they are optically silent and not detected in

the absorption spectrum. However, if these states are energetically close to

the MLCT they can play an important role on the relaxation mechanisms of

the complex, influencing its photochemistry. Furthermore, if the 3MC state is

available through any relaxation path, the compound may be a good candidate

to experiment SCO.

The six RuII d-electrons in an octahedral ligand-field are paired in the 4d t2g

orbitals in a closed shell singlet ground state. These orbitals are lower in energy

than the eg ones, which are anti-bonding with respect to the Ru-N coordination

bond (see Fig. 3.7). The three lowest-lying 3MC states (3T1g in Oh symmetry)

arise from the promotion of an electron from the occupied t2g to the eg empty

orbitals.
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Figure 3.7. 4d orbitals and electronic configuration of the singlet ground state
of RuII in an octahedral ligand-field.

Table 3.3 lists the lowest triplet states estimated with TD-DFT and CASSCF.

Both methods place the lowest 3MC states at higher energy than the lowest
3MLCT states, almost 1 eV for TD-DFT and 0.5 eV for CASSCF. Due to the

large basis set applied, the CASPT2 calculation is rather costly and we have

only determined the correction to the relative energy of the lowest 3MC state.

CASPT2 lowers the excitation by 0.1 eV, similarly to what was found for the

same excitation in [Fe(bpy)3]2+ [59]. The discrepancy between CASSCF and

TD-DFT concerning the 3MLCT excitation energy can largely be attributed to

the lack of electron correlation in the CASSCF description of the 3MLCT state.

Previous studies indicate that the relative energy will be lowered by 0.5-1.0 eV

when these effects are accounted for. Some of the low-lying triplet states in the

TD-DFT calculation arise from excitations between π and π* orbitals on the

ligand (3LC). Given the fact that the active space does not contain ligand π

orbitals, we cannot reproduce these excitations with CASSCF.
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Table 3.3. TD-DFT, [10,10]-CASSCF and CASPT2 energy estimation (in eV)
of the triplet vertical excited states in the gas phase optimized ground state
geometry.

TD-DFT [10,10]-CASSCF CASPT2
3MLCT 2.57 (2x), 2.63, 2.64, 2.86, 2.90 (2x), 3.06, 2.47

2.74 (2x), 2.86 (2x), 2.89 3.09 (2x), 3.17 (2x), 3.25
3LC 3.40 (2x), 3.41
3MC 3.48 (2x) 3.29, 3.30 3.21

3MLCT 3.53, 3.62 (2x)
3MC 3.73 3.60

3MLCT 3.73, 3.80 (2x)
3MC 3.85 3.91

3.3 Geometry relaxation in the excited states

3.3.1 Optimization of the 1MLCT and 3MLCT states

The geometries of the lowest 1MLCT and 3MLCT states have been optimized

at TD-DFT and DFT level respectively, using PBE0 (see Tables 3.4 and 3.5).

While in the S0 geometry all six Ru-N distances are identical, 2.067 Å, the

RuN6 core of the complex suffers small distortions in the singlet and triplet

MLCT states. The average Ru-N distance is very close to the one calculated for

the ground state but in both states we observe two longer and four shorter dis-

tances. This has two possible explanations. In the first place, the Ru-4d(t2g)5

configuration is Jahn-Teller active and induces in principle a spontaneous dis-

tortion of the geometry to lower the energy. In the second place, there is a

tendency of the excited electron to localize on one of the bipyridine ligands.

This localization is accompanied by a distortion of the geometry that traps

the electron. To quantify the importance of the Jahn-Teller distortion we have

optimized the geometry of the ionized system [Ru(bpy)3]3+, corresponding to

a Ru3+ ion with a 4d(t2g)5 electronic configuration. The resulting geometry

shows a nearly octahedral RuN6 core with a difference between the long and

the short Ru-N distance of less than 0.01 Å, too small to explain the dis-

tortion observed in the optimized MLCT geometries of the di-cation. Hence
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inter-ligand electron transfer (ILET) appears to be the dominant factor in the

geometry distortion. Both singlet and triplet MLCT states have the electron

localized on one of the bipyridines and show an important dipole moment of

6.96 D and 6.60 D respectively. The ligand with the extra electron (bpy1) has

the shortest Ru-N distances listed in Table 3.4, while the opposite Ru-N bonds

are enlarged as schematically shown in Fig. 3.8.

Table 3.4. Coordination distances (in Å) for the S0, 1MLCT and 3MLCT
PBE0 relaxed states.

Ru-N distances
bpy1 bpy2 bpy3

S0 2.067 2.067 2.067 2.067 2.067 2.067
1MLCT 2.055 2.055 2.081 2.062 2.081 2.062
3MLCT 2.026 2.026 2.099 2.070 2.099 2.070

Figure 3.8. Schematic representation of the changes in the Ru-N coordination
distances suffered by the relaxed singlet and triplet MLCT states with respect
to the S0 ground state optimized geometry.

Consistently with experimental observations, DFT/TD-DFT results predict

the relaxed 3MLCT to be more stable than 1MLCT (see Table 3.5). Both

states have the same electronic configuration and the main difference in the
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energy is the lack of intersite exchange interaction in the singlet. CASSCF

and CASPT2 also predict a slightly more stable 3MLCT state. The geometry

relaxation causes a stabilization of the lowest MLCT states by approximately

0.2 eV. The relative energies are similar for all three computational schemes

and in good agreement with the photochemical behaviour.

Table 3.5. Relative energies (in eV) for the S0, 1MLCT and 3MLCT PBE0
relaxed states. [10,10]-CASSCF and CASPT2 single point relative energies (in
eV).

Relative energy
PBE0 [10,10]-CASSCF CASPT2

S0 0.00 0.00 0.00
1MLCT 2.52 2.61 2.34
3MLCT 2.24 2.60 2.33

3.3.2 Character of the MLCT relaxed states

The excited electron in the 1MLCT vertical excited states has been predicted

to be delocalized over the three ligands at both PBE0 and CASSCF levels.

In contrast, the coordination distances in the 1MLCT and 3MLCT optimized

geometries indicate that the character of these states changes during the re-

laxation process. Fig. 3.9 maps the spin density of the 3MLCT relaxed state.

An important part of this density is located on the metal centre confirming

that the excited electron comes from a 4d Ru orbital. The excited electron

is localized on the bipyridine moiety whose Ru-N distances decrease (see Fig.

3.8).

In order to check the solvent effects, the 3MLCT geometry has been re-optimized

with the COSMO model [50, 51] and acetonitrile as solvent (ε = 35.69). In a

similar way as in gas phase, in solution the unpaired electron is localized on

a single ligand. The optimized geometry in solution slightly differs from the

one in gas phase, resulting in an increase of the dipole moment from 6.60 D in

gase phase (see Sec. 3.3.1) to 9.90 D in solution. The COSMO results confirm

the experimental observations by McCusker et al. which state that in nitrile

54

UNIVERSITAT ROVIRA I VIRGILI 
SPIN-CROSSOVER BEYOND THE TRADITIONAL FE(II) COMPLEXES: AB INITIO STUDY OF SPIN STATE 
STABILITY IN COMPLEXES WITH MN, NI AND RU 
Gerard Alcover Fortuny 



Geometry relaxation in the excited states

solution the unpaired electron is delocalized in the vertical excitation and lo-

calized in the triplet state after ILET process [23]. In accordance with the DFT

results, [10,10]-CASSCF single point calculations on the 3MLCT PBE0 opti-

mized geometry confirm confinement of the excited electron in a single ligand

in both gas phase and acetonitrile accounted by the PCM model.

Figure 3.9. Spin density for the 3MLCT optimized geometry.

The probability of ILET between bipyridines can be estimated with ab initio

calculations by the hopping integral, t. To this purpose, two 1MLCT states

Φa and Φb, with the excited electron localized in different bipyridines, and

two 1MLCT states Φc and Φd, with the electron delocalized over the two and

three bipyridines respectively, have been separately optimized with CASSCF

calculations using the ground state geometry with three equivalent ligands

(see Fig. 3.10). The [6,6]-CAS included the five 4d orbitals of Ru and the

anti-bonding orbital of the bipyridine containing the excited electron in each

case.

The t term corresponds to the coupling between two states, t =< Φ1|Ĥ|Φ2 >. In

the present case Φa, Φb, Φc and Φd are described with CASSCF wave functions

using orbitals optimized independently which, in consequence are nonorthog-

onal. Given two nonorthogonal states Φi and Φj, the hopping integral is es-

timated with t = 1
2

√
4E2 − (Hii−Hjj)2

1−S2
ij

, where Hii and Hjj denote Hamiltonian
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and Sij overlap matrix elements [60–63] which are determined in a CAS State

Interaction calculation [64].

Φa Φb

Φc Φd

Figure 3.10. Ligand mono-occupied orbitals in the 1MLCT states Φa, Φb,
Φc and Φd states accounted to estimate ILET probability with [6,6]-CASSCF
calculations.

Results of these calculations are summarized in Table 3.6. Starting from the

delocalized states described with Φc and Φd, there is a large probability for

localization as shown by the large hopping integrals between these two states

and Φa, which describes the situation with the excited electron localized on

one ligand. In an opposite way, the interaction between Φa and Φb is consider-

ably smaller, giving a hopping integral of 0.04 eV and denoting small coupling

between 1MLCT states with the excited electron localized on two different lig-

ands. In this case, low ILET probabilities indicate that after being localized

during the relaxation path the electron is held in a single ligand. This favours

electron capture by acceptor molecules.
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Table 3.6. Energy difference (in hartree), Hamiltonian matrix (shifted upward
by 6004 hartree) and overlap matrix elements from the State Interaction cal-
culation between the different states used to estimated the hopping integral, t
(in eV) for the inter-ligand electron transfer between bipyridines.

ΦI ΦF 4E2 Hii Hjj Sij t

Φa Φb 7.7·10−6 -0.864503 -0.863864 0.088904 0.04
Φa Φc 0.30 -0.864503 -0.838482 0.598667 7.44
Φa Φd 0.04 -0.864503 -0.828890 0.479617 2.72
Φb Φc 6.7·10−4 -0.863864 -0.838482 -0.144260 0.04
Φb Φd 2.2·10−3 -0.863864 -0.828890 -0.480540 0.33

3.3.3 Intersystem crossing and emission

To estimate the 1MLCT→ 3MLCT ISC rate in [Ru(bpy)3]2+ with the Fermi’s

golden rule approach discussed in Chapter 2, the 3MLCT DFT and 1MLCT

TD-DFT frequencies at the optimized geometries have been used. The spin-

orbit coupling (SOC) and the energy difference between the states also required

to this purpose have been obtained, respectively, from the [10,10]-CASSCF and

CASPT2 single point calculations in Sec. 3.3.1. Table 3.7 reports the vibra-

tional and SOC terms and the estimated rate, kISC=1.01·1014 s−1. The large

rate obtained indicates an ultrafast ISC favoured by the considerably high

SOC estimated between the singlet and triplet MLCT states. Our calculations

predict a lifetime of 10 fs for the 1MLCT state, supporting the Chergui et al.

experimental observations [33].

Table 3.7. Estimation of the 1MLCT → 3MLCT ISC rate. Vibrational term
in cm2·s−1, spin-orbit coupling in cm−1, kISC rate constant in s−1 and lifetime
in fs.

vibrational term SOC term kISC lifetime
1MLCT → 3MLCT 348774970 539 1.01·1014 10

The emission spectrum of [Ru(bpy)3]2+ has been predicted with DFT, [10,10]-

CASSCF and CASPT2 single point energy calculations and compared with

the experimental one which presents a band around 2.03 eV (610 nm) [14].

57

UNIVERSITAT ROVIRA I VIRGILI 
SPIN-CROSSOVER BEYOND THE TRADITIONAL FE(II) COMPLEXES: AB INITIO STUDY OF SPIN STATE 
STABILITY IN COMPLEXES WITH MN, NI AND RU 
Gerard Alcover Fortuny 



Photochemistry of Ru polypyridyl complexes

The emission energy is estimated as the vertical transition from the 3MLCT

emitting state at the optimized geometry to S0 and, as shown in Table 3.8 is in

good agreement with the experiment at all levels. Taking into account the spin-

orbit coupling between these states with a CAS State Interaction calculation

the lifetime of the emitting 3MLCT has been determinetd to be 9 µs, close

to the experimental value 5.21 µs [11]. 3MLCT is longer-lived compared to
1MLCT indicating that the one-electron transfer to an acceptor molecule will

be held after the intersystem crossing and at the triplet excited state.

Table 3.8. DFT, [10,10]-CASSCF and CASPT2 energies at the relaxed
3MLCT PBE0 optimized geometry, relative to S0 at the optimized geometry.
State Interaction calculation of the 3MLCT lifetime in µs.

DFT [10,10]-CASSCF CASPT2 lifetime
3MLCT 2.24 2.60 2.33

vertical S0 0.13 0.46 0.17
emission 2.11 (588 nm) 2.14 (579 nm) 2.16 (574 nm) 9

3.3.4 Reduction potentials for the ground and 3MLCT states

The electron transfer to acceptor molecules implies the oxidation of the com-

plex, which transfers one electron to the acceptor molecule. This transfer

is favoured in the 3MLCT excited state. Equations (3.1) and (3.2) summa-

rize this process where A labels the acceptor molecule and [Ru(bpy)3]2+ and

*[Ru(bpy)3]2+ the ground and 3MLCT states respectively.

[Ru(bpy)3]2+(S = 0) + A −→ [Ru(bpy)3]3+(S = 1/2) + A− (3.1)

∗[Ru(bpy)3]2+(S = 1) + A −→ [Ru(bpy)3]3+(S = 1/2) + A− (3.2)

Although in the present case an oxidation reaction is being studied, the elec-

trodic potentials in electrochemistry are typically referred to reduction, which

is the inverse process

[Ru(bpy)3]3+ + 1e− −→ [Ru(bpy)3]2+. (3.3)
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The reduction potentials (E in V) are proportional to the Gibss free energy

variation (∆G)

∆G = −nFE, (3.4)

where F is the Faraday constant and n the number of electrons implied in the

reduction reaction. A favoured reduction (∆G << 0) gives a high E. Usually,

the redox potentials are referred to the Normal Hydrogen Electrode (NHE).

From thermodynamical experiments and theoretical considerations, the abso-

lute reduction potential of NHE has been estimated to be 4.43 V [65]. As

available experimental data in this complex are referred to Saturated Calomel

Electrode (SCE) whose reduction potential is 0.2412 V with respect to NHE

[66], our results will be presented vs SCE for comparison.

The redox potentials for [Ru(bpy)3]2+ and [Ru(bpy)3]2+∗ in acetonitrile and

298 K have been computed at the PBE0 level. The free energy contribu-

tions have been estimated from the analytic frequencies of the ground state

[Ru(bpy)3]2+, 3MLCT *[Ru(bpy)3]2+ and the three-charged doublet state [Ru-

(bpy)3]3+ optimized geometries. Table 3.9 summarizes the results of these cal-

culations. Reduction potentials for both ground and excited species are in good

agreement with experimental data [67]. As expected, the oxidation process and

the capture of an electron by an acceptor are clearly favoured in the 3MLCT

state with a negative reduction potential in contrast with the ground state.

Table 3.9. PBE0 computed Gibss free energy variation (in eV) and reduction
potentials (in V) for the ground and 3MLCT states of [Ru(bpy)3]2+ vs SCE
in acetonitrile at 298 K. Experimental reduction potentials [67] are given for
comparison.

∆G E E (exp.)

[Ru(bpy)3]3+ + 1e− −→ [Ru(bpy)3]2+ -1.07 1.07 1.29
[Ru(bpy)3]3+ + 1e− −→ ∗[Ru(bpy)3]2+ 0.84 -0.84 -0.81
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3.4 Conclusions

The present chapter provides DFT, CASSCF and CASPT2 insights on the

photochemistry and ability of [Ru(bpy)3]2+ to transfer electrons to capturing

molecules. First of all, the ground state geometry has been optimized at PBE0

level and its vertical absorption spectrum has been computed with TD-DFT

and [10,10]-CASSCF and determined to be in good agreement with the experi-

ment. Due to its multiconfigurational character the Q band is better described

with CASSCF and slightly blue-shifted with TD-DFT. In an opposite way, the

Soret band match better with the experimental spectrum and is red-shifted

with CASSCF which would require and expansion of the CAS with bipyri-

dine anti-bonding orbitals in order to improve its description. At both levels

of calculation, the 1MLCT states are characterized by the excited electron de-

localized over the three bipyridine ligands. This observation is supported by

CASSCF small dipole moments which are responsible for no changes when the

solvent is taken into account with COSMO for TD-DFT and with PCM for

CASSCF.

In the second part of the chapter all the processes involved in the relaxation

from the vertical 1MLCT to the recovery of the ground state are analyzed.

While in the ground state all the coordination distances are similar, in the

PBE0 1MLCT and 3MLCT optimized geometries some distances are shortened

indicating changes in the electronic structure of these states in their relaxed

geometries. The unpaired electron in the MLCT optimized geometries is local-

ized on a single bipyridine in gas phase and in acetonitrile. Taking into account

that the vertical 1MLCT is delocalized, during the relaxation and ISC to the
3MLCT state the excited electron is localized by ILET, process which has been

estimated to be highly probable by state interaction calculations. The small

hopping integral for ILET between two states localized in one bipyridine shows

that once localized the electron will be confined in a single ligand. The ISC

rate has been predicted to be 11 fs with the Fermi’s golden rule approach. The

calculated emission spectrum of the complex is in good agreement with the

experiment. Our PBE0 estimations of the reduction potentials for the ground

and 3MLCT states confirm that the electron transfer to capturing molecules is

favoured in the triplet excited state.
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3.5 Future work

One of the most interesting features of [Ru(bpy)3]2+ and derivatives is their

ability to transfer electrons to acceptor molecules. This opens the door to a

wide range of applications for these compounds. In the present chapter we have

taken advantage of the CAS State Interaction calculations in order to obtain the

probability of ILET between different ligands. In this sense one could use the

same approach to calculate the hopping integral between [Ru(bpy)3]2+-A and

[Ru(bpy)3]3+-A− states and estimate the electron-transfer probability. The ac-

ceptor molecule is usually an organic cation as 1,1’-dimethyl-4,4’-bipyridine2+

[1]. To this purpose, proper geometries with the complex interacting with the

acceptor molecule are required. Molecular Dynamics which are out of the scope

of this thesis are known to be a good method.
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Chapter 4

Light-induced excited state

spin trapping in Ni porphyrin

complexes

4.1 Introduction

Metalloporphyrins play a crucial role in many important biological processes.

When they contain closed-shell metal centres their photochemistry is governed

by the π electrons of the porphyrin ligand and the excited states can easily be

detected by absorption spectroscopy. However, open-shell transition metal ions

are much more frequent and in addition to the porphyrin π−π* excited states,

low-lying d-d excitations may also play an important role in the photochemi-

cal reaction. These states are optically silent and complicate the study of the

photo-processes of these complexes [1]. A typical metalloporphyrin of biological

interest is the heme group in the active centre of myoglobin, hemoglobin and

other synthetic functional analogues. The photochemistry of the Fe-porphyrin

system has been subject of numerous studies and turns out to be rather com-

plicated due to the presence of a large number of excited states in a narrow

energy window. The smaller number of unpaired electrons in NiII ions should
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in principle simplify the study of the photochemistry of Ni porphyrins. More-

over, the ionic radii of Ni and Fe are similar making the study of Ni porphyrins

relevant to gain insight on the effect of the solvent or the intramolecular in-

teractions on the proteins structure [2]. Therefore, Ni porphyrins have been

extensively investigated during the 1980-90s decades as models to understand

the structure and the photochemistry of the species involved in biological re-

actions [3–7]. After this initial boom the interest declined but the discovery of

spin crossover in 2011 [8] put the Ni porphyrins back in the spotlights, now as

a system of interest on its own [9–12].

Figure 4.1. Schematic representation of the photochemical processes of NiII

porphyrins. In non-coordinative solvents as toluene the system recovers the
S0 state by ISC from T1 while in solvents as pyridine two molecules axially
coordinate stabilizing the T1 state.

When the 3d8 NiII ion is coordinated to a porphyrin ligand the 3dxy, 3dxz and

3dyz orbitals are always doubly occupied regardless of the spin coupling of the

ground state. In contrast, the occupation of the 3dz2 and 3dx2−y2 orbitals is not

fixed. In non-coordinating solvents such as toluene the much larger stability

of the 3dz2 orbital induces a singlet ground state (S0) characterized by dou-

bly occupation of this orbital. Upon irradiation with light of around 500 nm

wavelength a porphyrin π-π* singlet excited state is triggered, which decays
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in a few picoseconds by internal conversion (IC) to a metal centred excited

singlet state (S1) with (3dz2)1-(3dx2−y2)1 electronic configuration. After less

than 15 ps this state is converted through an intersystem crossing (ISC) to a

triplet state (T1) with the same electronic configuration. The ground state is

recovered after approximately 250 ps and implies an ISC from T1 to S0 (see

right part of Fig. 4.1) [13].

The situation is more complicated in solvents as pyridine because of the possi-

bility to bind one or two axial ligands to the metal centre. This coordination is

based on the σ interaction between the lone pair of the pyridine nitrogen (Npy)

and electrons in the 3dz2 Ni orbital. The interaction is large in the T1 state

due to the single-occupation of 3dz2 orbital and rather weak in the closed shell

singlet configuration with no electrons in this orbital. The Ni porphyrin re-

mains in a four-fold coordination sphere in the ground state but two pyridines

from the solvent coordinate to the Ni when the system reaches the T1 state

after irradiating it [14]. The coordination of the axial ligands closes the gap

between the 3dz2 and the 3dx2−y2 orbitals and stabilizes the square-pyramid

T1 state with respect to the square planar coordination. In consequence, the

lifetime of the triplet state is considerably longer (10-20 ns [15, 16]) and can

be considered to be trapped as in the LIESST process described in Chapter 1.

The existence of an intermediate five-coordinated Ni porphyrin in the relax-

ation path from the exited states of the square-planar complex to the octahedral

T1 structure is a controversial subject. Although the coexistence of five- and

six-fold species is accepted in strong coordinating solvents like piperidine, the

square-pyramidal complex has not been directly observed [17–19]. Only few

theoretical studies have been reported, most of them based on DFT calcula-

tions, and only focusing on the square-planar Ni porphyrin, leaving unsolved

the existence of the five-coordinated species [20–25].

This chapter describes the photochemistry of Ni porphyrins with four- and five-

fold coordinated NiII ions. The geometrical changes upon pyridine coordination

are studied with DFT and the relative energies of the singlet and triplet states

are calculated by means of TD-DFT and CASPT2. The lifetimes of S1 and T1

in the four-coordinated complex are estimated with Fermi’s golden rule and the

thermal axial coordination mechanism is analyzed by potential energy scans.
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4.2 The four-coordinated complex

4.2.1 S0 ground state geometry optimization

DFT geometry optimizations have been carried out to elucidate the structural

parameters of the Ni porphyrin S0 ground state. Since one of the objectives

of the chapter is to study the interactions of the complex with pyridine, one

molecule of this ligand has been added to the calculations. Both porphyrin

and pyridine are aromatic systems and π-π stacking is expected to play an

important role. To evaluate it, the BP86 functional [26, 27] which does not take

into account this effect and B3LYP [27–29] including the Grimme empirical

dispersion correction (B3LYP+D3) [30–32] have been used, by means of the

Turbomole package [33]. The def2-SVP [34] basis set has been used in the

BP86 calculations and two basis sets have been compared in the B3LYP ones,

the first one with def2-SVP for all atoms and the second one increasing to

def2-TZVP [35, 36] the basis set of the Ni and N atoms.

Figure 4.2. Comparison of the BP86 and B3LYP+D3 optimized S0 geome-
tries.

The effect of dispersion is shown in Fig. 4.2. Starting with the pyridine ring

parallel to the Ni porphyrin, the poor description of the π-π interaction in the

BP86 functional rotates the pyridine molecule to a perpendicular orientation to

minimize the steric repulsion. Moreover, the porphyrin adopts a ruffled confor-

mation with a Ni-Nporph distance of 1.95 Å. B3LYP+D3 maintains the parallel
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orientation and a flat porphyrin conformation with d(Ni-Nporph) equal to 1.98

Å. The effect of adding a second pyridine molecule has been only analyzed with

B3LYP+D3. The second ligand behaves in a similar way, remaining parallel on

the other side of the porphyrin plane. Although no important differences have

been detected when increasing the basis set size, the larger basis set in the dis-

persion corrected B3LYP functional does not imply important computational

problems and will be used in this study.

4.2.2 Estimation of the excited states energetics and optimiza-

tion of S1 and T1

Table 4.1 reports the TD-DFT/B3LYP vertical excitation energies of the lowest

triplet (T1) and several excited singlet states. As expected, T1 is characterized

by the promotion of one electron from the 3dz2 to the 3dx2−y2 orbitals and is

0.53 eV above the singlet ground state. TD-DFT is required to evaluate the

energies of the vertical singlet excited states. Since the full version of TD-DFT

presents triplet instabilities, we have used the Tamm-Dancoff approximation

[37] to calculate the energies of the excited states. As shown in Table 4.1, two

degenerate S5 and S6 states are detected at 2.54 eV (488 nm), corresponding

to excitations involving the π and π* orbitals of porphyrin. The excited states

with the highest oscillator strength are also of π-π* nature and correspond to

S17 and S18, with energy around 3.8 eV (326 nm).

The four singlets found below the first π-π* excitations are metal centred op-

tically silent states which are expected to be populated by IC after the initial

π-π* excitation. The relative energies of these four singlets is in accordance

with the ordering of the 3d-orbitals shown in Fig. 4.3 following from the ligand

field reasoning for a square planar coordination.
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Table 4.1. Vertical energies in eV and oscillator strengths from the S0 ground
state geometry (DFT for T1 and TD-DFT for singlet excited states).

configuration relative energy oscillator strength

S0 (3dz2)2 0.00
T1 (3dz2)1-(3dx2−y2)1 0.53
S1 (3dz2)1-(3dx2−y2)1 1.80 0.00
S2 (3dxz)

1-(3dx2−y2)1 1.96 0.00
S3 (3dyz)

1-(3dx2−y2)1 1.97 0.00
S4 (3dxy)1-(3dx2−y2)1 2.47 0.00
S5 (πporph)1-(πporph*)1 2.54 1.6·10−3

S6 (πporph)1-(πporph*)1 2.54 2.0·10−3

S7 (πporph)1-(3dx2−y2)1 2.76 0.00
S8 (πporph)1-(3dx2−y2)1 2.83 0.00
S9 (3dz2)-(πporph*)1 3.11 9.5·10−4

S10 (3dz2)1-(πporph*)1 3.12 9.5·10−4

S11 (3dxz,yz)
1-(πporph*)1 3.14 0.00

S12 (3dxz,yz)
1-(πporph*)1 3.20 5.0·10−5

S13 (3dxz,yz)
1-(πporph*)1 3.27 3.0·10−5

S14 (3dxz,yz)
1-(πporph*)1 3.54 7.7·10−4

S15 (πporph)1-(npy*)1 3.73 5.5·10−2

S16 (πporph)1-(npy*)1 3.73 5.7·10−2

S17 (πporph)1-(πporph*)1 3.83 0.21
S18 (πporph)1-(πporph*)1 3.85 0.39
S19 (πporph)1-(πporph*)1 3.88 7.2·10−3

S20 (πporph)1-(πporph*)1 3.90 0.18
S21 (πporph)1-(πporph*)1 4.02 3.0·10−2

S22 (πporph)1-(πporph*)1 4.03 4.3·10−2

Figure 4.3. Ordering of the 3d-orbitals of a metal centre in a square-planar
ligand field.
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The geometries of T1 and S1 have been optimized with DFT and TD-DFT

respectively. Since both states present the same electronic configuration, their

structures are practically identical although it should be stressed that the T1

structure is a local minimum. In the global minimum the pyridine is axially

coordinated to Ni, but this will be discussed later in this chapter. The most

important difference with respect to the ground state geometry is the increase

of the Ni-Nporph distance from 1.98 Å in S0 to 2.05 Å. The lengthening of the

coordination distance is reasonable taking into account that in S1 and T1 one

electron occupies the 3dx2−y2 orbital, which is anti-bonding with respect to the

Ni-Nporph bond [38] as illustrated in Fig. 4.4 on the right. More intriguing is

the fact that the carbon atoms of the pyridine ring get slightly closer to the

complex and in consequence the ligand is no longer completely parallel to the

porphyrin plane. This behaviour can be explained by looking at the second

orbital with an unpaired electron shown on the left in Fig. 4.4. This orbital is

basically of Ni-3dz2 character but has an out-of-phase contribution from a π

orbital of the pyridine. Among the doubly occupied orbitals one can find the

corresponding in-phase combination, largely localized on pyridine but with a

non-negligible contribution of the Ni-3dz2 orbital. This mixing is completely

absent in the S0 state. The geometry relaxation stabilizes both states by 0.24

eV with respect to the vertical energies previously reported in Table 4.1.

Figure 4.4. Representation of 3dz2 and 3dx2−y2 orbitals in the T1 and S1

optimized geometry.

4.2.3 Multiconfigurational calculations

We now turn our attention to the multiconfigurational description of the elec-

tronic structure. Provided that the basis set and wave function expansion are
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properly chosen, CASPT2 gives very accurate relative energies in most cases.

As will be shown below, the basic Gouterman model [39–41], which only con-

siders the two highest π and the two lowest π* orbitals, is not good enough to

describe the porphyrin centred π-π* excitations and more orbitals have to be

included in the active space of the CASSCF calculations. The ’minimal’ active

space for correctly addressing the vertical spectrum of porphyrins consists of

8 π and 6 π∗ orbitals [42]. On the other hand, to correctly describe the metal

centred excited states (most importantly, S0 and T1) 10 electrons in 11 orbitals

need to be included. Hence, a complete account of the excited states of Ni por-

phyrin requires a [26,25]-CAS. This is clearly beyond the limits of CASSCF

and the excited states have to be calculated by parts.

All the calculations presented here have been performed with the Molcas pack-

age [43, 44]. The basis sets used are of the atomic natural orbitals type [45–47].

For the porphyrin centred excited states, the most relevant atoms in the Ni

porphyrin system (Ni and N) are described with a TZVP basis set, while the

more peripheral atoms (C and H) have a basis set of double-zeta quality. The

metal centred excited states require a more accurate description and in this

case the basis set for carbon atoms is also of TZVP quality.

The π-π* vertical excitation

The characterization of excited states is easier if symmetry is used. For this

purpose, the pyridine moiety has been omitted in the calculations from the

present section and the Ni-porphyrin presents D2h point group symmetry. Two

different active spaces have been compared to describe the π-π* vertical exci-

tation energies. The first one is a [4,4]-CAS and corresponds to the Gouterman

model [39–41] including two π orbitals with b2g and b3g and two π* orbitals

with au and b1u symmetries, respectively. The second one expands the set to

14 active orbitals by adding two pairs of π-π* orbitals (b2g and b3g), a pair of

π-π∗ orbitals (au) and a set of 3 π and 1 π* orbitals (b1u).

Table 4.2 lists the four lowest π → π∗ excitations of the Ni-porphyrin sys-

tem. The first 11B2u and 11B3u states correspond to the S5 and S6 excitations
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calculated with TD-DFT (see Table 4.1) and are assigned to the Q band of

the Ni porphyrin absorption spectrum. Taking into account that the experi-

mental energy of these excitations is around 2.5 eV (500 nm) depending on

the peripheral substituents of the porphyrin ring and the solvent [16], one can

conclude that the Gouterman model is insufficient to describe these energies

and the description needs to be improved. The extension of the active space

to 16 electrons in 14 orbitals lowers the CASPT2 relative energies of these

states by ≈ 0.6 eV and brings them in good agreement with experiment and

TD-DFT. A similar behaviour is found for the higher-lying singlet states 21B2u

and 21B3u. The final CASPT2 energies and the large oscillator strength of these

excitations are compatible with the assignment to the intense Soret band which

experimentally appears around 3.2 eV (390 nm) in the Ni porphyrin spectrum.

Table 4.2. [4,4]- and [16,14]-CASSCF and CASPT2 vertical excitation energies
in eV of Ni porphyrin.

CASSCF CASPT2 Oscillator strength

[4,4] active space
1 1B2u 3.77 3.30 8.26·10−2

1 1B3u 3.80 3.29 2.34·10−2

2 1B2u 5.34 4.66 2.51
2 1B3u 5.30 4.66 2.51

[16,14] active space
1 1B2u 3.72 2.66 1.45·10−2

1 1B3u 3.09 2.73 1.58·10−2

2 1B2u 5.54 3.70 1.18
2 1B3u 4.42 4.08 0.22

The d-d states

The d-d excited states relative energies will be compared for the four- and five-

coordinated Ni porphyrin further in this work. For this reason, in the present

section the DFT and TD-DFT optimized geometries incorporating a pyridine

are used. As a consequence, the system does not present any symmetry. To

select the appropriate size of the active space the energy difference between

the S0 ground state and the vertical T1 state has been calculated using three
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different active spaces. The first one only includes the 3dz2 and 3dx2−y2 orbitals

which are singly occupied in T1. The second extends the first by including the

five 3d orbitals and an extra set of 4d orbitals to account for the double-shell

effect (8 electrons in 10 orbitals). In the third a σ orbital of the Nporph is added

to the 3d and 4d orbitals (10 electrons in 11 orbitals). With all three active

spaces T1 is more stable than S0 at the CASSCF level. However, the increase

of the active space and the inclusion of the external electron correlation up

to second order tends to lower the energy gap between these states. [10,11]-

CASPT2 is the only calculation which gives S0 more stable than T1.

Table 4.3 shows the results of the multiconfigurational calculations performed

using the DFT (for S0 and T1) and TD-DFT (for S1) optimized geometries.

As mentioned, T1 is lower than the ground state at the [10,11]-CASSCF level

but this relative stability is inverted with CASPT2. The optimized S1 and T1

geometries are very close and so are the corresponding relative energies of the

different states at these two points.

Table 4.3. [10,11]-CASSCF and CASPT2 energies in eV of four-coordinated
Ni porphyrin S0, S1 and T1 states.

configuration [10,11]-CASSCF CASPT2

S0 geometry
S0 (3dz2)2 0.00 0.00
S1 (3dz2)1-(3dx2−y2)1 1.80 1.89
T1 (3dz2)1-(3dx2−y2)1 -0.28 0.23

S1 geometry
S0 (3dz2)2 0.48 0.31
S1 (3dz2)1-(3dx2−y2)1 1.85 1.75
T1 (3dz2)1-(3dx2−y2)1 -0.26 0.08

T1 geometry
S0 (3dz2)2 0.47 0.31
S1 (3dz2)1-(3dx2−y2)1 1.84 1.74
T1 (3dz2)1-(3dx2−y2)1 -0.27 0.08

These results provide a precise map of the position of the d-d states on the

B3LYP/CASPT2 potential energy surface. S1 is located 1.89 eV higher than S0

in the Franck-Condon geometry and 1.75 eV after geometry relaxation. T1 lies
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0.23 eV above S0 in the ground state geometry but becomes the most stable

state in its relaxed geometry. The energy of the relaxed T1 is 0.08 eV higher

than the relaxed S0 and it confirms that the closed-shell configuration is the

global minimum, and hence, the ground state.

4.2.4 Intersystem crossing rates

The lifetime of excited states is an important feature to get a complete view

of the photochemistry of square-planar Ni porphyrins. The ISC rates are esti-

mated following the scheme explained in Chapter 2. The frequencies required

for this estimation are taken from the DFT and TD-DFT optimizations of the

different states while the energy differences and spin-orbit coupling (SOC) be-

tween them are calculated using the [10,11]-CASSCF wave function and the

corresponding CASPT2 energies.

After the π-π* bright excitation, the system decays via IC to the S1 state.

This process is experimentally expected to happen in approximately 10 ps.

One has to go beyond the formalism of the Fermi’s golden rule to address IC

computationally. This is beyond the scope of this work. Once at S1, the system

undergoes an ISC to T1 and recovers S0 after a second ISC. The rates of S1

→ T1 and T1 → S0 are the objective of this section. The ISCs are possible

due to the SOC between the states with different spin multiplicity. Table 4.4

summarizes the results of the two ISC processes. The SOC between S1 and T1

with the same configuration is considerably larger than between T1 and S0.

Furthermore, the practically identical geometry of S1 and T1 makes that the

vibrational term in the expression of the ISC rate is an order of magnitude

larger than for the ISC from T1 to S0. In consequence, the calculated S1 → T1

ISC rate is considerably larger than for the T1→ S0 process. The computational

estimates are in good agreement with experimental values.

Table 4.4. Estimation of the ISC rates. Vibrational term in cm2·s−1, spin-orbit
coupling in cm−1, rate constant (kISC) in s−1 and lifetime in ps. Experimental
values in parenthesis [16].

vibrational term SOC term kISC lifetime

S1 → T1 475808893 23 2.5·1011 4 (≈ 10)
T1 → S0 64104829 6 2.3·109 433 (≈ 250)
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4.3 The five-coordinated complex

4.3.1 T1 ground state geometry optimization

Following the same computational scheme, the five-coordinated geometry in its

T1 ground state has been optimized at the B3LYP level of calculation. The Ni-

Nporph distance is 2.08 Å, similar to the four-coordinated T1. The axial coordi-

nation distance (Ni-Npy) is 2.09 Å. The coordination of the axial ligand pushes

the Ni atom out of the porphyrin plane resulting in a small doming distortion

of the porphyrin plane. The axial coordination bond is formed by σ-interaction

from the doubly-occupied Npy lone pair orbital to the singly-occupied 3dz2 or-

bital. Furthermore, π interactions involving the doubly-occupied 3dxz,yz and

pyridine orbitals reinforce the Ni-N bond (see Fig. 4.5) [48].

Figure 4.5. Representation of σ (left) and π orbitals (right) in the five-
coordinated complex.

No five-coordinated minimum has been found on the S0 potential energy sur-

face. When this geometry is optimized in the singlet state the pyridine is re-

leased and placed parallel to the porphyrin ring so that the four-coordinated

geometry is recovered. The instability of the five-coordinated complex in S0 is

due to the double occupancy of 3dz2 [15]. The five-coordinated T1 ground state

is 0.21 eV more stable than the four-coordinated S0 at this level of calculation,

and hence, is the global minimum.

DFT geometry optimizations are not completely reliable since they have been

performed in gas phase. The solvent is expected to stabilize the four-coordinated
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singlet with respect to the five-coordinated triplet. For this reason, the S0 unco-

ordinated and the T1 coordinated geometries have been re-optimized including

the effects of the solvent. The COSMO model [49, 50] implemented in the

Turbomole package has been used with pyridine as solvent. The obtained ge-

ometries are practically identical with respect to those resulting from the gas

phase optimizations. The four-coordinated S0 is stabilized only 0.03 eV by the

solvent effect.

4.3.2 Multiconfigurational calculations

In a similar way as for the four-coordinated complex, [10,11]-CASSCF and

CASPT2 calculations have been carried out using the optimized geometry of

the pentacoordinated T1 state (see Table 4.5). In accordance with the previ-

ous DFT results, at the CASPT2 level the five-coordinated T1 is more stable

than the four-coordinated S0 by 0.33 eV. The axial coordination involves the

interaction of the singly occupied 3dz2 and the doubly occupied pyridine lone

pair orbital. This interaction results in two electrons in the bonding and one in

the anti-bonding combination of these orbitals and the overall energy decreases

with respect to the unbounded situation [51]. Apparently the π-π interactions

do not sufficiently stabilize the S0 state to make this state the global minimum

in the chosen representation of the system.

Table 4.5. [10,11]-CASSCF and CASPT2 energies in eV relative to the four-
coordinated S0 of five-coordinated Ni porphyrin T1, S0 and S1 states.

configuration [10,11]-CASSCF CASPT2

five-coordinated T1

T1 (3dz2)1-(3dx2−y2)1 -0.83 -0.33
S0 (3dz2)2 0.63 0.71
S1 (3dz2)1-(3dx2−y2)1 1.31 1.37

Since the global minimum corresponds to the five-coordinated complex in-

stead of the four-coordinated system, the Ni porphyrin should become five-

coordinated in a pyridine solution without the necessity of exciting the complex.

This observation is in contradiction with the expected LIESST mechanism in
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these systems, and hence, the thermal axial coordination of the pyridine ligand

to the Ni metal centre requires to be explored.

4.3.3 Thermal pyridine axial coordination

To obtain more information about the thermal axial coordination mechanism

of the Ni porphyrin in pyridine the Ni-Npy distance has been scanned in both S0

and T1 states. In each point of the coordinate the structure has been relaxed

in the singlet and triplet states at B3LYP level and the energies have been

calculated with [10,11]-CASPT2. The results are plotted in Fig. 4.6.

Figure 4.6. [10,12]-CASPT2 energies at B3LYP optimized S0 (blue line) and
T1 (red lines) geometries for fixed Ni-Npy distances.

The blue curve shows the energy profile of the S0 state, which is steadily in-

creasing from the minimum with the pyridine molecule parallel to the porphyrin

plane to the situation with a tilted pyridine. The loss of π-π interactions desta-

bilizes the S0 state. The red lines show two different profiles of the T1 state.

The upper one represents the perpendicular approach of the pyridine to the Ni

ion while in the lower one the pyridine is initially oriented in a parallel man-

ner. Due to a tilting movement, the two situations converge. The coordination

of the pyridine at the axial position leads to a rather large energy gain and
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makes the pentacoordinated T1 state 0.33 eV more stable than the S0 state in

concordance with the DFT findings discussed above.

The S0 and T1 potential energy curves cross at a Ni-Npy distance close to

2.6 Å. This point gives an estimate of 0.2 eV for the barrier of the thermal

pyridine coordination. This suggests a low thermal rate for axial coordination

and the need of light irradiation to make effective the coordination of one or

two pyridine ligands. Interestingly enough, the barrier for the release of the

pyridine ligand is even higher, implying that the pentacoordinated T1 state

populated after the light pulse is thermally trapped as occurs in the LIESST

process described in Chapter 1 for the FeII complexes.

4.4 Conclusions

This chapter discusses a computational scheme to study the photochemistry

of Ni porphyrin complexes in pyridine, which is key in the LIESST of these

systems. Comparison of the DFT optimized geometries with and without tak-

ing into account the dispersion forces reveals the importance of π-π stacking

between the porphyrin and the pyridine aromatic rings. For this reason, the

use of a functional with dispersion correction is strongly recommended. In or-

der to obtain accurate estimations of the energy of the states involved in the

LIESST process, CASSCF and CASPT2 calculations have been carried out.

Since the size of the calculation required to study all states simultaneously

makes it unfeasible two different active spaces have been used. On one hand, a

[16,14] active space is required to estimate the porphyrin π-π* excitations. On

the other hand, a [10,11] active space is the best choice to calculate the metal

centre d-d states.

DFT and TD-DFT optimizations of the four-fold T1 and S1 lead to practically

identical geometries since both states present the same electronic configuration.

For this reason the SOC between them is larger than the coupling between T1

and S0. As a consequence, the ISC rate is considerably larger in the S1 → T1

process.
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The five-coordinated Ni porphyrin has been optimized in its T1 ground state

and estimated to be the global minimum. Since no stable geometry has been

found for the five-coordinated S0 it is confirmed that with closed-shell configu-

rations no axial ligand can be bound to the Ni porphyrin complex. The system

remains uncoordinated in pyridine solution since a significant energy barrier

has been detected for the thermal axial coordination mechanism. Even larger

is the barrier for the ligand release in the T1 five-coordinated geometry and

one can conclude that the triplet state is trapped by axial coordination of a

pyridine molecule.
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Chapter 5

Coordination-induced

spin-crossover in a Ni

porphyrin complex

5.1 Introduction

Room-temperature SCO has been reported for Ni-tetrakis(pentafluorophenyl)-

porphyrin (NiTPP) functionalized with a phenylazopyridine (PAPy) arm [1],

see Fig. 5.1. Under standard conditions, the NiTPP-PAPy complex is low-spin

(S=0) and NMR experiments, among other characterization techniques, indi-

cate a four-coordinated NiII in a square planar geometry with a trans configu-

ration of the PAPy arm. Upon irradiation at 500 nm, the compound becomes

paramagnetic and rearranges to a five-coordinated complex where the pyridine

moiety coordinates axially to Ni, which becomes high-spin. The SCO process

in this Ni-porphyrin is reversible upon irradiation at 435 nm, while the thermal

back reaction is very slow.

87

UNIVERSITAT ROVIRA I VIRGILI 
SPIN-CROSSOVER BEYOND THE TRADITIONAL FE(II) COMPLEXES: AB INITIO STUDY OF SPIN STATE 
STABILITY IN COMPLEXES WITH MN, NI AND RU 
Gerard Alcover Fortuny 



Coordination-induced spin-crossover in a Ni porphyrin complex

Figure 5.1. Ni-tetrakis(pentafluorophenyl)porphyrin with a phenylazopyri-
dine functionalized axial arm (NiTPP-PAPy).

In the original study by the group of Herges, the SCO was reported to be

triggered by the trans-cis isomerization of the N=N bond of the PAPy arm.

Irradiation at 500 nm induces a π-π∗ excitation on the azo group and the

PAPy arm evolves to the cis isomer. This orients the non-bonding electron

pair of pyridine nitrogen perpendicularly to the Ni-porphyrin plane, making

possible the coordination of the arm to Ni. The assignment of the paramagnetic

product as a five-coordinated Ni ion with the PAPy arm in the cis form was

based on NMR Overhauser experiments, indicating that the Ni-H distance of

the two hydrogen adjacent to the nitrogen of the pyridine ring is identical for

both H atoms and significantly smaller than in the initial complex. The five-

coordination of the NiII ion induces a spin change to S=1, further stabilized by

the electron withdrawing pentafluorophenyl groups attached to the porphyrin

ring that lower the energy of the 3dx2−y2 orbital and decrease the gap with the

3dz2 orbital [2]. Upon irradiation with visible light (435 nm) or by heating the

sample, the PAPy arm recovers the initial trans conformation and the pyridine

group dissociates from Ni, which turns back to its initial low-spin configuration.

However, this description of the coordination-induced spin-crossover (CISCO)

leaves a few points open to discussion. The most important one is the fact that
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Conformational analysis

the irradiation used to induce the HS state is significantly red-shifted (∼135

nm) with respect to the wavelength normally used for cis-trans isomerizations

of N=N double bonds. In fact, the 500 nm irradiation used in the experiments is

typical for the Q band absorption of porphyrins. A second point is related to the

indirect characterization of the cis conformation of the arm in the paramagnetic

product, which is based on measurements on the diamagnetic Zn-analogue

of the NiTPP-PAPy complex. Furthermore, the PBE functional used in the

density functional theory (DFT) geometry optimizations may not be the most

appropriate choice given the large π-systems of the porphyrin ring and the

PAPy arm. The interaction between π-systems is in general not accurately

described with standard GGA functionals.

Light-induced SCO in simpler NiII porphyrins in basic solvents as pyridine has

been studied in Chapter 4. The mechanism goes through the 500 nm excitation

in the Q band from the closed-shell singlet ground state (S0) to a π-π* excited

singlet state. The singlet excited state relaxes through internal conversion fol-

lowed by an intersystem crossing to T1. A solvent molecule is then axially

coordinated to the NiII and the five-coordinated species stabilizes the T1 state

[3–6]. This seems a priori a more consistent mechanism for the NiTPP-PAPy.

The aim of this chapter is to gain more insight into the details of the CISCO

mechanism of NiTPP-PAPy. We clarify the origin of the 500 nm irradiation

that triggers the SCO and discuss the geometries and relative stabilities of

several cis and trans isomers of the complex in LS and HS configurations. For

this purpose, we apply DFT/M06-2X calculations to optimize the geometries

combined with CASPT2 calculations for accurate energetics.

5.2 Conformational analysis

To rationalize the SCO process, Venkataramani et al. [1] performed DFT cal-

culations on a series of potentially suitable molecular structures. They used

the PBE functional [7, 8] and found several minima for cis and trans four-

coordinated and five-coordinated NiTPP-PAPy. For this last coordination only

a stable structure was found with the cis configuration of the PAPy arm. Since
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the π-π interactions between porphyrin and PAPy arm can be determinant for

the relative stabilities of the different confomers, we compare standard BP86

[9, 10] results, which are expected to be similar to PBE, with those obtained

with the dispersion corrected functional M06-2X [11]. In this way we can access

the importance of the π-π interactions and locate the minimum structure of

the five-coordinated complex with the PAPy arm in trans.

The DFT calculations are performed with the Gaussian package [12]. A triple

zeta valence + polarization (TZVP) [13] basis set was used for the Ni ion

and basis sets of split-valence + polarization (SVP) quality [14] for the rest

of the atoms. Solvent effects were included by means of the COSMO model

[15, 16] using the dielectric constant of dimethyl sulfoxide (ε=46.7) to mimic

the experimental conditions.

Table 5.1. BP86 and M06-2X Ni-Npyridine distances (in Å) and relative en-
ergies (in eV) for several conformations of PAPy-NiTPP. Square planar (sqp)
conformations are singlet and have four-fold Ni coordination. Square pyramid
(spy) conformers are triplet and five-coordinated.

Ni-Npyridine distance Relative energy
BP86 M06-2X BP86 M06-2X

trans-sqp 6.99 4.36 -0.81 0.42
trans-sqp open 12.34 11.52 -0.81 0.72
cis-sqp 4.30 2.62 -0.25 0.91
cis-sqp open 9.44 9.39 -0.23 1.32
trans-spy 2.08 2.17 0.15 0.28
cis-spy 2.08 2.16 0.00 0.00

Table 5.1 reports M06-2X relative energies and the Ni-Npyridine distance of

the different minima found for both cis and trans PAPy arm configurations.

The BP86 optimized metal-nitrogen distance and relative energies are also

reported for comparison. All square planar structures (sqp) have the Ni2+ ion

in a four-fold coordination mode and a singlet ground state and the square

pyramid complexes (spy) have pentacoordinated Ni2+ and are triplet. The

M06-2X optimized structures are represented in Fig. 5.2. The conformer with

the PAPy group in trans (trans-sqp) is the most stable singlet structure, and
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Conformational analysis

the triplet state of the five-coordinated structure with cis PAPy arm (cis-

spy) is the absolute minimum of the whole set. As a general feature, the axial

coordination slightly enlarges the distance between Ni and the Nporph, from

1.99 to 2.06 Å. This lengthening of the bond can be easily related to the single

occupancy of the 3dx2−y2 orbital (of Ni-N antibonding character) in the HS

state, being empty in the LS state.

trans-sqp trans-sqp open cis-sqp

cis-sqp open trans-spy cis-spy

Figure 5.2. M06-2X geometries of the NiTPP-PAPy conformers listed in Table
5.1.

Geometry optimizations of trans-sqp and cis-spy with a larger basis set (TZVP

on all atoms) and with the B97D functional (Grimme dispersion corrected) [17]

give practically the same results; most distances and angles do not differ more

than 0.1 Å and 5 degrees in both cases. The largest change is observed in

the Ni-Npyridine distance in trans-sqp. The 4.36 Å predicted by the M06-2X

functional changes to 4.21 Å with B97D. This 0.15 Å reduction reflects the

relatively flat potential of the PAPy arm when it is not coordinated to the Ni

atom.

The role of dispersion forces is particularly noticeable in the four-coordinated

trans-sqp minimum, where the pyridine ring is found parallel to the porphyrin

unit and the π-π interaction is important. The distance between Ni and the
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Coordination-induced spin-crossover in a Ni porphyrin complex

N of the pyridine is shortened by 2.6 Å when the dispersion is included in

the calculation. The influence of long-range interactions is also evident in the

cis-sqp conformer, where the relatively short Ni-Npyridine distance suggests an

incipient five-coordination, albeit with a singlet ground state. In this case the

nitrogen lone pair is not conveniently oriented to NiII, since the angle between

the pyridine and porphyrin planes is 79◦. Hence, the gap between the 3dz2 and

3dx2−y2 orbitals stays large and the singlet remains the ground state.

However, the most important consequence of including long-range interactions

in the calculations of the present system is the strong stabilization of the trans-

spy triplet. BP86 predicts a very high energy (0.96 eV) for this five-coordinated

structure with respect to the four-coordinated trans conformers, while M06-

2X predicts it to be 0.14 eV more stable than trans-sqp. Besides being close in

energy, the square pyramid cis and trans isomers have also similar Ni-Npyridine

distances, 2.16-2.17 Å, compatible with the experimentally estimated value of

2.1 Å. Recalling that the cis configuration of the product was assigned from

Nuclear Overhauser experiments on a diamagnetic Zn analogue, we conclude

that the trans structure cannot be excluded yet as a possible candidate of

the five-coordinated paramagnetic product and that alternative mechanisms

not involving azopyridine trans-cis isomerization as the key step of the SCO

process should not be completely discarded.

Finally, we mention that the differences between the geometry optimizations in

vacuum and those with solvent effects through the PCM model lead to virtually

the same results. Neither the energies, nor the geometrical parameters show

any significant changes when the complex is treated in a DMSO solvent. All

the results reported below are obtained in a vacuum.
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5.3 Axial coordination in cis and trans NiTPP-PAPy

The standard active space for an accurate determination of the relative stability

of different spin states in (quasi-)octahedral TM-3dn (n ≥ 5) complexes consists

of (n + 4)-electrons and 12 orbitals [18]. In addition to the TM-3d orbitals and

the extra set of d-orbitals to account for the double shell effect, one should also

include the two ligand-σ orbitals of the eg-like symmetry in the active space.

However, in the present case this choice necessarily leads to an unbalanced

description of the four- and five-coordinated species. The in-plane σ-orbital of

the Nporph atoms is easily included in the active space for both species, but the

second σ orbital corresponding to the axial ligand can only be included in the

five-coordinated complexes. The corresponding orbital in the four-coordinated

species is the lone pair orbital of the N atom on the pyridine ring, which in

itself contributes very little to the electron correlation, and hence, does not

stay in the active space.

Therefore we calculate the relative stability of the singlet and triplet state of

the different NiTPP-PAPy species with a [10,11]-CASSCF wave function (see

Fig. 5.3). The stability of the results was checked by comparing the singlet-

triplet splitting of different five-coordinated species to the results obtained with

the [12,12]-CASSCF calculations. The present results are also in good agree-

ment with the [10,11]-CASSCF calculations for unsubstituted Ni porphyrin in

Chapter 4.

CASSCF single point calculations are performed with the Molcas package [19,

20] using the DFT optimized structures of the most stable conformers: trans-

sqp, cis-spy and trans-spy. The basis sets centred on the different atoms are of

the atomic natural orbitals type [21–23]. Ni and N are described with a TZVP

basis set, while C, F and H have a basis set of double-zeta quality.
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σ 3dxz 3dyz

3dxy 3dx2−y2 3dz2

σ 3dxz 3dyz

3dxy 3dx2−y2 3dz2

Figure 5.3. [10,11]-CASSCF active orbitals for the singlet trans-sqp (top) and
the triplet cis-spy (bottom) NiTPP-PAPy species.
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Axial coordination in cis and trans NiTPP-PAPy

The relative energies listed in Table 5.2 indicate that both CASSCF and

CASPT2 correctly predict a triplet ground state for the five-coordinated con-

formers. However, CASSCF fails to establish a singlet ground state for the

four-coordinated sqp complex, which is repaired by including dynamic corre-

lation through CAS-PT2. The results with the [12,12] active space are only

slightly different to those obtained with the smaller active space. Interestingly

enough, CASPT2 places the triplet of the trans-spy isomer energetically close

to the initial singlet state of the square planar conformation, which does not

discard the possibility of a SCO process without trans-cis isomerization.

Table 5.2. CASSCF and CASPT2 relative energies in eV of singlet and triplet
states of trans-sqp, cis-spy and trans-spy.

[10,11] [12,12]
CASSCF CASPT2 CASSCF

trans-sqp S=0 0.94 0.26
S=1 0.70 0.39

cis-spy S=0 1.34 1.07 1.39
S=1 0.00 0.00 0.00

trans-spy S=0 1.67 1.32 1.73
S=1 0.36 0.29 0.36

To further settle the question about the mechanism, we have calculated triplet

energies along the dissociation path of the PAPy from the Ni ion. This provides

information about the thermal stability of the light-induced five-coordinated

product in the cis and trans forms. The points along the scan were generated

with M06-2X geometry optimizations fixing the Ni-Npy distances at different

values. As shown in Fig. 5.4, the release of the pyridine group of the PAPy arm

in the trans-spy form is nearly barrierless, while a steep rise in the energy is

observed when the Ni-N distance is increased in the cis-spy isomer. The energy

along this path reaches a maximum at d(Ni-Nazo) = 3.3 Å, where it is 0.84 eV

higher than the triplet of the five-coordinated cis isomer. This means that a

hypothetical triplet five-coordinated NiTPP-PAPy in trans form will release

the axial ligand very rapidly at room temperature and that this process is slow

for the cis form. Finally, we mention that the relative stability of the singlet

trans-sqp and the triplet cis-spy states is opposite to what may be expected.
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Coordination-induced spin-crossover in a Ni porphyrin complex

This can at least partially be ascribed to the limited basis set that we use

in our calculation. It is well-known that larger basis sets (especially on the

metal) are needed to obtain correct high-spin/low-spin energy differences in

SCO processes [18, 24, 25]. However, such lowering of the singlet state(s) will

not affect any of the arguments discussed above, and hence, the only plausible

mechanism to explain the CISCO in this compound is via trans-cis isomer-

ization. However, note that the 500 nm irradiation does not directly cause a

πazo → π∗azo transition in PAPy and similar systems and the nature of the

excitation causing the isomerization needs further clarification.

Figure 5.4. CASPT2 energies of the singlet (blue) and triplet (red) states
of NiTPP-PAPy. The dashed lines connect the triplet state of the four-
coordinated complex (middle) to the five-coordinated species cis-spy (left) and
trans-spy (right).

5.4 Isomerization mechanism of the PAPy arm

In order to locate the πazo → π∗azo excitation in the absorption spectrum and to

characterize the 500 nm band of the NiTPP-PAPy complex, we first calculated

the vertical excitation spectrum of the PAPy arm. The minimal active space
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Isomerization mechanism of the PAPy arm

to correctly study the vertical excitation spectrum of the PAPy arm should

contain the π and π∗ orbitals of the N=N bond and the lone pair orbitals

(nazo) of the nitrogen atoms, extended with two pairs of π and π∗ orbitals of

the phenyl and pyridine side groups (πside and π∗side), and the lone pair orbital

of the pyridine nitrogen. This active space with 12 electrons and 9 orbitals (see

Fig. 5.5) was used to generate the reference wave function for the subsequent

CASPT2 calculations.

πside πside nazo

nazo npy πazo

π∗
azo π∗

side π∗
side

Figure 5.5. Active space for the [12,9]- CASPT2 calculation of the absorption
spectrum of the PAPy arm.

The results of these calculations are summarized in Table 5.3 and compared

to experimental data [26]. The effect of electron correlation on the excitation

energies is large, especially for the πside → π∗azo transitions. The very high

CASSCF energy of these states (∼ 6 eV) is lowered by approximately 2.5 eV

by the CASPT2 treatment of the electron correlation. The CASPT2 transition

energies are in good agreement with the experimental values for all states. The

most important features of the excitation spectrum are a low-lying nazo → π∗azo

excitation around 2.75 eV (450 nm) and a high intensity πside → π∗azo transition
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appearing at 3.48 eV (356 nm). The lowest CASSCF root that involves πazo

and π∗azo orbitals is located at an energy of 7.41 eV and CASPT2 lowers the

transition energy to 6.99 eV (177 nm), much higher in energy than the reported

500 nm wavelength to induce SCO in NiTPP-PAPy.

Table 5.3. [9,12]-CASPT2 vertical excitation energies in eV of trans 3-
phenylazopyridine (3-PAPy). Experimental values [26] are given for compari-
son.

trans 3-PAPy CASSCF CASPT2 Oscillator strength Exp.

nazo → π∗azo 3.15 2.75 (450 nm) 6.22·10−8 2.76
πside → π∗azo 5.96 3.48 (356 nm) 0.32 3.91
πazo → π∗azo 7.41 6.99 (177 nm) 0.28

Although several experimental and theoretical studies have been published

[27–33], the isomerization mechanism of azobenzene and its derivatives is still a

controversial issue. Two possible paths have been proposed (see Fig. 5.6) based

on the fact that the quantum yield for the isomerization shows a dependence

on the wave length [34].

Figure 5.6. Two possible mechanisms for the trans-cis isomerization of PAPy
and derivatives.

On one hand, the rotation mechanism implies a 180◦ twist of the C-N=N-C

dihedral angle and traditionally has been proposed to happen when the system
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Isomerization mechanism of the PAPy arm

is excited to the πsideπ
∗
azo state. On the other hand, the inversion mechanism

consists in an inversion of the C-N=N angle and is attributed to the nazoπ
∗
azo

state. The products of these two paths are indistinguishable for unsubstituted

azobenzene complicating the understanding of the isomerization mechanism.

The substitution of one phenyl moiety by a pyridine ring gives rise to a new

possible excited state characterized by the excitation of one electron from the

lone pair of Npy (npy) to the π∗azo antibonding orbital. In order to understand

the isomerization of PAPy, the role of this state as well as the differences

between PAPy and azobenzene need to be reviewed. To this purpose, scans

along the rotation dihedral and the inversion angle have been performed. For

each point the scanned coordinate has been frozen and the rest of the molecule

has been relaxed with DFT. The energy of the obtained geometries has been

estimated with [12,9]-CASPT2 single point calculations with the active space

previously described. Since previous theoretical studies on azobenze [35, 36]

reported B3LYP [37] and 6-31G* [38] to perform properly for these systems,

these functional and basis set will be used in this part of the chapter to generate

the geometries.

Figure 5.7 summarizes the inversion mechanism scan. In the [12,9]-CASPT2

single point calculation the energy of the first five singlet states has been es-

timated in each point of the scan. The ground state (black line) corresponds

to the closed-shell singlet and the first three excited states are characterized

by the promotion of one electron to the π∗azo orbital. This electron is excited

from a nazo orbital in S1 (red line), from a npy orbital in S2 (green line) and

from a πside orbital in S3 (purple line). S4 (blue line) corresponds to a double

excitation from nazo to π∗azo orbitals.

From the very-left part of the scan the absorption spectrum of the trans min-

imum can be extracted. According to the results exposed in Table 5.3, the

bright band corresponds to a 3.66 eV (339 nm) πside → π∗azo symmetry allowed

excitation with an oscillator strength of 0.37. The nazo → π∗azo band appears

at 2.79 eV (444 nm) but with a very small oscillator strength, 1.85·10−7. The

energy of all states increases along the inversion of the C-N=N angle except

for the S1 in which it remains practically constant. The unique plausible path
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Coordination-induced spin-crossover in a Ni porphyrin complex

for this mechanism is through S1 but this implies internal conversion from S1

to the ground state at some point. Taking into account that the minimal en-

ergy gap between S1 and the ground state is of 1.21 eV at C-N=N angle of

153◦ this mechanism will be highly inefficient. The role of the npyπ
∗
azo state in

the inversion mechanism is negligible but in the trans minimum this state is

accessible via the bright excitation and hence it must be taken into account to

understand the photochemistry of the system.

Figure 5.7. [12,9]-CASPT2/B3LYP scan over the C-N=N coordinate to re-
produce the inversion mechanism for the isomerization of PAPy.

The situation is different in the rotation mechanism (see Fig. 5.8). The very-

left part of the scan is exactly the same as in the inversion one since the

starting point is the same trans minimum. In a similar way as in the inversion

mechanism the energy of S1 is practically constant along the rotation of the

C-N=N-C dihedral. However, in this case the minimal energy gap between S1

and the ground state is 0.44 eV at 90◦ and with this lower energy difference the

internal conversion is more efficient. Therefore, the 2.79 eV excitation activates

the rotation mechanism through S1. A rotation path from the bright S3 is also
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Vertical excitation energies of NiTPP-PAPy

possible since it presents a conical intersection with S4 at 135◦. After crossing

to S4 the system decays to the S1 and ground states at 90◦. This route, initiated

by a 3.66 eV excitation to S3, presents lower quantum yields since it implies a

conical intersection which irradiating at 444 nm is avoided.

Figure 5.8. [12,9]-CASPT2/B3LYP scan over the C-N=N-C coordinate to
reproduce the rotation mechanism for the isomerization of PAPy.

Although the excitation used to induce the SCO in the NiTPP-PAPy complex

is lower than the required to isomerise azopyridine molecules, calculations in

present section reveal that different paths can lead to this process. In this sense,

excitations to π∗azo weaken the N=N bond favouring its rotation.

5.5 Vertical excitation energies of NiTPP-PAPy

An important question that remains to be answered is the nature of the 500 nm

excitation used to induce the SCO in the NiTPP-PAPy complex. The CASPT2

results of the PAPy subsystem place the π → π∗ excitation at higher energies,
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Coordination-induced spin-crossover in a Ni porphyrin complex

in agreement with the findings in other azobenzene derivatives, but the in-

teraction of the PAPy arm with the porphyrin system may shift the π → π∗

transition to lower energies as suggested by Venkataramani [1]. Hence, to obtain

a complete description of the optical transitions of the NiTPP-PAPy system,

the π system of the porphyrin ring should also be considered. Our results in

Chapter 4 indicate that a [16,14] active space is required to precisely describe

the optical absorption of porphyrin systems. This active space is large and its

expansion with orbitals of the PAPy arm is unfeasible. However, the aim of

this chapter is not to describe the absorption spectrum of the porphyrin but

to estimate the PAPy-porphyrin interaction and for this purpose the original

four-orbital model of Gouterman [39–41] is enough to get a qualitative picture.

Adding these four orbitals (πporph) to the lone pair orbitals (nazo), πazo and

π∗azo of the PAPy arm gives a [10,8]-CASSCF wave function (see Fig. 5.9). This

active space does not describe any excited state involving the electrons in the

Ni-3d orbitals, but the metal-centred excitations have a low oscillator strength

and the charge transfer excitations appear at higher energy. Whereas the in-

clusion of the Ni-3d and 3d’ orbitals is essential to obtain accurate estimates

of the relative stability of the different species, this is rather unimportant for

the vertical spin allowed excitations from the closed shell ground state.

Table 5.4 lists the lowest calculated transition energies and the corresponding

oscillator strengths. The states are labelled according to the most important

electron replacements involved in the excitation. The lowest two transitions

have intermediate oscillator strength and can be associated to the Q bands

observed at around 523 nm in the experimental work. The π orbitals involved in

these transitions are well localized on the porphyrin ring, but as is shown in Fig.

5.10 the π∗ orbitals have a non-negligible contribution from the antibonding

combination of the N-2p orbitals of the azo bond of the PAPy arm. Hence, the

Q band is not simply a porphyrin centred excitation but also causes a certain

degree of occupation of the π∗azo orbital. This weakens the N=N bond and

could very well trigger a trans-cis isomerization. It is interesting to compare

these orbitals with those of the trans-sqp optimized geometry obtained with

the BP86 functional. The PAPy arm is more separated from the porphyrin ring

in this geometry and the orbitals are either pure π∗porph or π∗azo, without any

mixing. This suggest a determinant role of the π − π interactions in this SCO

102

UNIVERSITAT ROVIRA I VIRGILI 
SPIN-CROSSOVER BEYOND THE TRADITIONAL FE(II) COMPLEXES: AB INITIO STUDY OF SPIN STATE 
STABILITY IN COMPLEXES WITH MN, NI AND RU 
Gerard Alcover Fortuny 



Vertical excitation energies of NiTPP-PAPy

mechanism, revealed by the M06-2X functional. The important shortening of

the porphyrin-pyridine distance (Table 5.1) induces the delocalization and the

subsequent possibility of populating the π∗ orbital at lower energy.

πporph πporph nazo

nazo πazo π∗
azo

π∗
azo+porph π∗

porph

Figure 5.9. Active space for the [10,8]- CASPT2 calculation of the vertical
excitation energies of NiTPP-PAPy.

Table 5.4. [10,8]-CASPT2 vertical excitation energies in eV of trans-sqp
NiTPP-PAPy. Experimental values are given for comparison [1].

trans NiTPP-PAPy CASSCF CASPT2 Oscillator strength Exp.

πporph → π∗azo+porph 3.55 2.59 (478 nm) 3.70·10−2 523

πporph → π∗azo+porph 3.57 2.65 (467 nm) 5.60·10−2 523

nazo → π∗azo 3.60 3.23 (383 nm) 9.00·10−6 406
nazo → π∗azo / πporph → π∗azo 5.29 4.57 (271 nm) 5.90·10−4 322
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Figure 5.10. Graphical representation of the orbital that becomes occupied
in the lowest two vertical excitations of NiTPP-PAPy.

Severe intruder state problems hinder the accurate description of the πazo → π∗azo

excitation in the large complex. However, the similarity of the SA-CASSCF ex-

citation energy (7.25 eV) with the one obtained for the PAPy arm (see Sec.

5.4) situates the πazo → π∗azo excitation in NiTPP-PAPy at significant higher

energy than 2.5 eV (500 nm) used in the experiments to induce the SCO.

While the Q band is well reproduced by our calculations, the experimental

absorption spectrum of NiTPP-PAPy shows a Soret band of high intensity at

406 nm. At this region a nazo → π∗azo excitation is found, but the low oscillator

strength cannot explain the experimentally observed intense peak. Probably,

this low intensity band is hidden by the optically allowed πporph → π∗porph exci-

tations of the porphyrin moiety which cannot be reproduced with the present

[10,8]-CAS [42]. In Chapter 4 we have estimated this Ni porphyrin excitations

by means of [16,14]-CASPT2 calculations. In these calculations, the most in-

tense πporph → π∗porph band appears at 335 nm. The deviation with respect

to the experimental Soret band of the NiTPP-PAPy (406 nm) can be at-

tributed to the geometrical differences between the whole system and the Ni

porphyrin model. Furthermore, the calculated oscillator strength for this ex-

citation is 1.18, showing that this band is of high intensity compared to the
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Conclusions

bands obtained in Table 5.4. One can conclude that for the NiTPP-PAPy spec-

trum, the Q band corresponds to πporph → π∗azo+porph and the Soret band to

πporph → π∗porph excitations which are not relevant for the SCO mechanism.

5.6 Conclusions

Although the original proposal of a trans-cis isomerization of the N=N double

bond induced by a π → π∗ excitation offers a plausible explanation for re-

versible room-temperature spin crossover observed in NiTPP-PAPy, the large

red-shift of 150 nm of the excitation energy leaves some room for improve-

ment. SCO in standard Ni-porphyrins is induced by a π − π∗ excitation of 2.5

eV (500 nm) on the porphyrin ring. The same wave length was used in the ex-

periments on NiTPP-PAPy and therefore we first investigated the possibility

of SCO induced by a π−π∗ excitation on the porphyrin ring without the need

for trans-cis isomerization. The inclusion of the effect of dispersion forces in

the geometry optimization using the M06-2X functional leads to cis and trans

isomers with four- and five-coordinated Ni ions in a relatively small energy win-

dow. Single point CASPT2 calculations on the optimized geometries predict a

near degeneracy for the low-spin state of the four-coordinated complex and the

high-spin state of the five-coordinated complex with the PAPy arm in trans

conformation. However, the absence of a barrier along the dissociation path of

the PAPy arm in a hypothetical all-trans mechanism is incompatible with the

experimental stability of the high-spin state. In contrast, a significant barrier

was found for the dissociation of the PAPy-arm in the cis conformation.

Subsequently, we used CASSCF/CASPT2 calculations to clarify the character

of the excitation that induces the trans-cis isomerization at 500 nm. The π−π∗

excitation on the azo group was found at very high energy and the excitation

from the π orbitals of the six-membered rings bonded to the N=N group into

the N=N π∗ orbital occurs at 350 nm, also too high to be assigned to the

experimental excitation. The CASPT2 results identify the 500 nm transition

as an excitation involving a bonding π orbital of the porphyrin ring and an

antibonding π∗ orbital with important contributions from both the porphyrin
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system and the N=N group. The occupation of this anti-bonding orbital of

mixed character weakens the N=N bond and leads to a trans-cis isomerization.

Hence, the combination of DFT and multiconfigurational wave function calcu-

lations is able to firmly establish the trans-cis isomerism in the PAPy arm as

a mechanism for the spin crossover in NiTPP-PAPy. The structures obtained

with DFT/M06-2X show that the arm is closer to the porphyrin ring than in

the structure without taking into account the dispersion. The character of the

excitation that triggers the spin crossover is identified and involves the elec-

tron replacement from a bonding π orbital on the porphyrin to an antibonding

orbital with contributions on the porphyrin and the azo group.
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Chapter 6

Spin and oxidation state of

Mn corrole and corrolazine

complexes

6.1 Introduction

The planar structure of transition metal (TM) porphyrins and their derivatives

favours binding of axial ligands to the metal centre and is a key factor in

many biological processes. Biomimetic TM porphyrins have been developed as

synthetic catalysts [1–8], in which the energetics of the low-lying spin states as

well as the factors stabilizing these states deserve special attention. In many

cases, the axial ligand directly affects the magnetic properties and the reactivity

of these compounds. For instance, in Mn porphyrin complexes reduction of the

low-spin (S=0) MnV complex with a closed-shell d2 electronic configuration

(Fig. 6.1, centre right) to a d3 MnIV complex implies not only the addition

of one electron but also the promotion of an electron from 3dxy to 3dxz or

3dyz and the consequent change to a high-spin (S=3/2) configuration (Fig. 6.1

centre left) [9–11]. Changes in the axial ligand can stabilize the MnV 3dxz,yz

orbitals, favouring the high-spin (S=1) state (Fig. 6.1 right) and facilitating

the reduction to MnIV.
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Spin and oxidation state of Mn corrole and corrolazine complexes

Figure 6.1. Low- (S=1/2) and high-spin (S=3/2) MnIV (left) and low- (S=0)
and high-spin (S=1) MnV (right) spin configurations of the Mn ion in the
quasi-square pyramid coordination sphere of the oxo-Mn(porphyrin) system
with the nitrogens of the pyrrole rings placed on the x - and y-axes.

This example shows how porphyrin stabilizes transition metal ions with unusu-

ally high oxidation states [12], but corrole (Cor), one meso carbon atom shorter,

has been postulated to be even more effective for this purpose. The most im-

portant difference in the corrole structural skeleton with respect to porphyrin

(Fig.6.2) is that while the latter coordinates to the metal as a dianionic ligand,

the former is trianionic [13]. Although corrole was first reported in 1964 [14],

the interest in this macrocycle has increased since 1999, when simpler synthetic

pathways were developed [15–17], emphasizing the large application range of

corrole and its TM complexes [18, 19]. This interest has resulted in several

experimental and theoretical studies on corrole X-ray structure, spectroscopy

and electronic structure [20–25].

The formal oxidation states of TMs in corrole are higher than in porphyrin, but

the metal center in a [TM(Cor)] is not necessarily high-valent, and sometimes

corrole is expected to act as a dianionic radical instead of a closed-shell trian-

ion. It has been suggested that low oxidation states can be stabilized by the

coupling with noninnocent corrole ligands in some copper and iron complexes

[25–27]. However, the electronic structure of the triplet state in MnV corroles

is attributed to a high spin (S=1) MnV (Fig. 6.1 right) with an innocent,

closed-shell trianionic corrole, due to the high energy of the low spin (S=1/2)
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MnIV (Fig. 6.1 left) ferromagnetically coupled to a one-electron radical dian-

ionic corrole acting as a noninnocent ligand [22]. Once again, the nature of the

axial ligand is a crucial factor in this noninnocent behaviour. The capability of

corrole to stabilize unusual oxidation states of TM has often been attributed

both to its 3- charge and to its strong σ-donor ligand-field. The cavity size of

the more recent corrolazine (Cz) derivative, first synthesized in 2001 [28], is

smaller than in corrole, which enhances the σ-donation. In addition, the meso-

substituted nitrogen atoms (Fig.6.2) are more electronegative than carbon and

contribute to the electron deficiency of the coordination sphere, favouring the

3- charge of the ligand over the dianionic radical state [29, 30].

porphyrin corrole corrolazine

Figure 6.2. Porphyrin, the one meso carbon atom shorter derivative corrole,
and its nitrogen meso-substituted derivative, corrolazine.

As seen above, small structural variations in the axial ligand and the macrocy-

cle result in important changes in the spin and oxidation state of the metal cen-

tre, which directly affects the reactivity of the complex [31]. In order to catalyze

oxygen transfer reactions, [Mn(Cor)(O)] [32–35] and [Mn(Cz)(O)] [36–38] have

been synthesized. Similarly to their oxo derivatives, imido- (NR) manganese

corrole and corrolazine have attracted interest due to their potential applica-

tions, but not much is known about their properties. [Mn(tpfc)(NMes)] (tpfc =

tris(pentafluorophenyl)corrole, NMes = N -mesityl), [Mn(tpfc)(NtClPh)] (Nt-

ClPh = 2,4,6-trichlorophenyl) [39, 40], [Mn(tbpcz)(NMes)] (tbpcz = octakis(p-

tert-butylphenyl)corrolazine) [41] and [Mn(tpfc)(NTs)] (NTs = N -tosyl) [42]

are the few examples reported. NMes, NtClPh and NTs (Fig.6.3) axially coor-

dinate to the metal as dianionic ligands with distances typically assigned to a
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M≡N bond, giving rise to neutral complexes with formally high-valent MnV.

Interestingly, while complexes with NMes and NtClPh are characterized as dia-

magnetic (S=0) by 1H and 19F NMR spectroscopy, magnetic measurements on

the NTs derivative give a magnetic moment associated with a paramagnetic

(S=1) state on the MnV [43]. No low-lying MnIV states with a radical on corrole

or corrolazine are expected since they are high-lying in the oxo derivatives [22].

The present chapter describes a comprehensive DFT and CASPT2 computa-

tional study on imido-Mn corrole and corrolazine complexes. It focuses on the

geometrical parameters, the lowest Mn (S=0) and (S=1) spin states, and the

role of the three main actors (metal, macrocycle and imide) on the spin and ox-

idation states of [Mn(Cor)(NMes)], [Mn(Cz)(NMes)], [Mn(Cor)(NtClPh)] and

[Mn(Cor)(NTs)].

NMes NtClPh NTs

Figure 6.3. Axial imide ligands N-mesityl (NMes), N-(2,4,6-trichlorophenyl)
(NtClPh) and N-tosyl (NTs).

6.2 DFT geometry optimizations

DFT geometry optimizations have been carried out for both singlet and triplet

states of the four imido-complexes using def2-TZVP basis set [44, 45]. First

of all, PBE0 [46–48] and BP86 [49, 50] functionals have been compared on

Mn(Cor)(NMes). The triplet state in the PBE0 calculation shows a consider-

able spin contamination (<Ŝ2> = 3.74) resulting in a severe overestimation of

the Mn-Laxial bond distance. On the other hand, DFT calculations with the
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BP86 functional do not show such anomalous spin contamination (<Ŝ2> =

2.14) and the optimized M-Laxial bond distance is 1.70 Å, much shorter than

the 2.03 Å PBE0 bond length. Since the axial coordination distance is expected

to play a crucial role in the relative stability of the spin-states, the BP86 func-

tional has been chosen to perform DFT geometry optimizations. To start, we

have explored all possible orientations of the axial ligand for the NTs complex

(see Fig. 6.4).

Figure 6.4. Top view of the most stable DFT conformations, with the R
moiety between Npyrrole (alternated) for the singlet and with the R moiety
aligned with Npyrrole (eclipsed) for the triplet. The insets give a side view of
the structures.

Rotating the complex around the Mn-Naxial axis in intervals of 45◦, four al-

ternated and eclipsed conformations have been optimized with BP86/TZVP.

Eclipsed conformations have the R moiety of the axial ligand aligned with

Npyrrole. The resulting steric repulsion lengthens the Mn–Naxial bond distance

and closes the Mn–Naxial–S angle preferred by the triplet state. In contrast this

repulsion is avoided in alternated conformations favouring singlet states with

short axial distances and linear coordination angles. The most important struc-
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tural parameters and the relative energies of the BP86/def2-TZVP geometry

optimization are summarized in Table 6.1.

Table 6.1. Relevant BP86/def2-TZVP optimized geometrical parameters for
the four imido-complexes. Distances and out of Npyrrole plane displacement
(4) in Å, angles in degrees and relative energies in eV. Experimental values
are given in parenthesis [39, 41, 42].

Mn-Npyrrole Mn-Naxial Mn-Naxial-R 4 relative energy

Mn(Cor)(NMes)
S=0 1.92 - 1.95 1.61 179.2 0.54 0.00

(1.89 - 1.95) (1.61) (170.4) (0.51)
S=1 1.93 - 1.95 1.70 145.9 0.67

Mn(Cz)(NMes)
S=0 1.89 - 1.91 1.61 178.6 0.59 0.00

(1.87 - 1.91) (1.61) (176.9) (0.55)
S=1 1.90 - 1.93 1.69 145.5 0.64

Mn(Cor)(NtClPh)
S=0 1.91 - 1.95 1.62 179.1 0.55 0.00
S=1 1.92 - 1.95 1.70 144.1 0.52

Mn(Cor)(NTs)
S=0 1.92 - 1.94 1.62 167.0 0.56 0.00
S=1 1.91 - 1.95 1.71 132.0 0.30

(1.92 - 1.97) (1.65) (150.7)

Mn(Cor)-(NMes) and Mn(Cz)(NMes) results are in good agreement with the

experimental X-ray structures [39, 41]. Experimental data are not available

for Mn(Cor)-(NtClPh) but are expected to be similar to Mn(Cor)(NMes). The

structure of Mn(Cor)(NTs) has not been determined but the theoretical esti-

mates can be compared with the X-ray structure of the chromium analogue

[42]. In the low-spin state all four ligands axially bind to the Mn(Cor) and

Mn(Cz) moieties in a linear fashion, forming a short Mn-N bond, typical of

imido-complexes. In all cases the Mulliken spin density in the triplet state

gives almost 2.3 alpha electrons on the metal centre and 0.2 beta electrons on

Naxial, confirming that in this state the unpaired electrons are localized on Mn.

This indicates that states with a radical on corrole or corrolazine are higher in

energy (see Fig. 6.5).
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Figure 6.5. Spin density in the Mn(Cor)(NMes) triplet state BP86/def2-
TZVP optimized geometry (isocontour=0.009).

As expected, corrolazine coordinates to Mn with shorter distances (Mn-Npyrrole)

due to the smaller cavity size, which is also responsible for a larger out of

Npyrrole plane displacement of the metal centre (4). This 4 is noticeable in all

complexes and induces bonding and anti-bonding mixing between the Npyrrole

σ and the 3dxz,yz orbitals (see Fig. 6.6).

(3dxz-2px)* (3dyz-2py)*

Figure 6.6. Anti-bonding mixing of 2px,y Naxial and σ Npyrrole orbitals with
3dxz,yz of Mn (isocontour=0.05).

The corrole and corrolazine macrocycles show a ruffling distortion in the triplet

state making it impossible to quantify 4. The increased mixing widens the gap
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between the 3dxy and the 3dxz,yz orbitals, favouring the double occupation of

the Mn-3dxy orbital and stabilizing the singlet state [51]. In the triplet state,

the distance between Mn and the axial ligand increases due to the occupation

of one of the π anti-bonding (3dxz-2px)* or (3dyz-2py)* orbitals.

6.3 Multiconfigurational wave function calculations

In line with the general findings with local density- and gradient-corrected

functionals that tend to overestimate the stability of the low-spin states [52–

54], we observe that the BP86 calculations predict singlet ground states for

all the imide derivatives. However, these results are not completely consistent

with experimental data in [Mn(Cor)(NTs)], which is assigned as a triplet by

magnetic susceptibility measurements. Therefore, we will now proceed with

the discussion of the multiconfigurational wave function calculations of the

electronic states, which should improve our description.

6.3.1 Single point energy calculations

CASSCF and CASPT2 single point calculations have been carried out on top

of the BP86 optimized geometries for singlet and triplet states (see Sec. 6.2).

Basis I (Mn ANO-rcc [55, 56] contracted to [7s6p5d2f1g]; N, C, O, S, Cl ANO-s

[57] contracted to [4s3p1d]; H ANO-s contracted to [2s]) and basis II (ANO-rcc

on all atoms contracted to [7s6p5d3f2g1h] for Mn, [4s3p2d1f] for N, C, O, S, Cl

and [3s1p] for H) have been compared. The [10,12] active space consists of the

Mn 3d orbitals (3dxz, 3dyz, 3dxy, 3dx2−y2 and 3dz2), three diffuse orbitals that

account for the double shell effect (4dxz, 4dyz and 4dxy), and four ligand orbitals

(2px, 2py and 2pz for Naxial and σ for Npyrrole). This active space is required

to obtain accurate reference wave function [58]. Instead of being localized, the

Mn 3d and ligand orbitals form bonding and anti-bonding combinations. The

orientation of the system with the Npyrrole on the x - and y-axes makes that

Mn 3dxz, 3dyz and 3dz2 interact with Naxial 2px, 2py and 2pz orbitals to form
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a bonding and anti-bonding pair of orbitals with occupations close to 2 and

0 respectively. Mn 3dx2−y2 combines with Npyrrole 2px and 2py to form σ and

σ* orbitals. Mn 3dxy is non-bonding and more stable than the anti-bonding

combinations. As an example, Figure 6.7 illustrates the [Mn(Cor)(NMes)] case.

3dyz-2py (1.83) 3dxz-2px (1.83) 3dz2-2pz (1.94) σ (1.97)

3dxy (1.96) (3dyz-2py)* (0.17) (3dxz-2px)* (0.17) (3dz2-2pz)* (0.06)

σ* (0.03) 4d (0.02) 4d (0.01) 4d (0.01)

Figure 6.7. [10,12]-CASSCF active orbitals for the singlet [Mn(Cor)(NMes)].
Occupation numbers in parenthesis.

The comparison of entries [10,12]-CASSCF and CASPT2 in Table 6.2 shows

that the addition of the electron correlation up to second order that is not

taken into account in the CASSCF approach leads to important changes of the

relative energy of the spin states in the here-studied imido complexes. Results

of CASPT2 calculations predict singlet ground states for all complexes except

for the NTs complex with the weakest π-donating axial ligand, for which both

spin states are predicted to be nearly degenerate. The second triplet state of the
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complex with the NtClPh ligand, which is of intermediate π-donating strength,

has a lower relative energy than the second triplet state in the NMes com-

plex, which has the strongest π-donating ligand. This shows that the stronger

electron donation increases the 3dxz,yz relative orbital energy. A considerable

energy gap separates the first and second triplets of all imido complexes, in

contrast with complexes with the cylindrically symmetric oxo axial ligands, for

which the two high-spin states are degenerate [22].

Table 6.2. [10,12]-CASSCF/CASPT2 main configurations and relative ener-
gies (in eV) of the singlet and triplet states obtained with the BP86/TZVP
optimized geometries.

CASSCF CASPT2
main configuration Basis I Basis II Basis I Basis II

[Mn(Cor)(NMes)]
S=0 (3dxy)2 0.00 0.00 0.00 0.00
S=1 (3dxy)1(3dxz-2px)∗1 0.61 0.60 0.17 0.18

(3dxy)1(3dyz-2py)∗1 1.65 1.63 1.19 1.18
[Mn(Cz)(NMes)]

S=0 (3dxy)2 0.00 0.00 0.00 0.00
S=1 (3dxy)1(3dxz-2px)∗1 0.74 0.74 0.24 0.25

(3dxy)1(3dyz-2py)∗1 1.71 1.70 1.19 1.19
[Mn(Cor)(NtClPh)]

S=0 (3dxy)2 0.00 0.00 0.00 0.00
S=1 (3dxy)1(3dxz-2px)∗1 0.43 0.42 0.16 0.17

(3dxy)1(3dyz-2py)∗1 1.27 1.28 0.85 0.87
[Mn(Cor)(NTs)]

S=0 (3dxy)2 0.00 0.00 0.00 0.00
S=1 (3dxy)1(3dyz-2py)∗1 0.11 0.11 -0.02 0.00

The Mn–Naxial–R angle of the triplet state geometries is not linear, diminish-

ing the overlap of the (3dxz-2px) or the (3dyz-2py) pair of orbitals. Taking as

example the NTs complex in the triplet state (see Fig.6.8), the axial ligand is

bend towards the y-axis and the mixing between 3dyz and 2py is smaller than

between 3dxz and 2px. As a consequence, the antibonding (3dyz-2py)* orbital

is stabilized and its occupation is favoured [42]. When compared to corrole, the

smaller cavity size of corrolazine results in a shortening of the Mn-Npyrrole bond

and an increase of the out of Npyrrole plane displacement, giving rise to an even

more unstable triplet state. The energy of the triplet state of [Mn(Cor)(NTs)]
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is found at a much lower energy with CASPT2 than with BP86, but the de-

scription is still not consistent with the experimental data.

Figure 6.8. Schematic representation of the energetic ordering of the
molecular orbitals for the singlet (left) and first triplet (right) states of
[Mn(Cor)(NTs)] (isocontour=0.05).

6.3.2 Reoptimization of [Mn(Cor)(NTs)]

The near-degeneracy of the singlet and lowest triplet state of the NTs complex

triggers the need to reconsider the geometry optimization performed with the

BP86 functional. As mentioned in Chapter 2, reoptimization of some key geo-

metrical parameters with CASPT2 can lead to important improvements in the

relative energies of interest [59]. In this case the most obvious parameters to

be reoptimized are the Mn–N distance and the Mn–N–S angle. The BP86 op-

timized geometries have been taken as starting point for the singlet and triplet

states, respectively, for a [10,12]-CASPT2 scan along the axial coordination
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distance. The orbitals of the active space used in these calculations are illus-

trated in Figure 6.9. At each point of the scan, the Mn-Naxial distance and the

Mn–N–S angle were kept fixed at a certain value, while the rest of structural

parameters were optimized with BP86/TZVP. CASPT2 single point calcula-

tions with basis I have been performed to evaluate the energy of the so-obtained

geometries. Since the axial coordination angle is linear in the singlet geometry,

the angle was only scanned for the triplet state.

3dyz-2py (1.97) 3dxz-2px (1.65) 3dz2-2pz (1.86) σ (1.93)

3dxy (1.00) (3dyz-2py)* (1.01) (3dxz-2px)* (0.34) (3dz2-2pz)* (0.14)

σ* (0.06) 4d (0.02) 4d (0.01) 4d (0.01)

Figure 6.9. [10,12]-CASSCF active orbitals for the triplet [Mn(Cor)(NTs)].
Occupation numbers in parenthesis.

As can be seen in Table 6.3, when decreasing the Mn-Naxial-S angle, [10,12]-

CASPT2 calculations with basis I and basis II predict the experimentally ex-

pected high-spin ground state and a reasonable gap with the singlet state. Com-

parison of the [10,12]-CASPT2/BP86 geometries with those reported in Table
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6.1 reveals that small variations in the Mn-Naxial distance (on the order of 0.03

Å) and the Mn–Naxial–S angle (∼ 10◦) can remove the degeneracy of the S=0

and S=1 states of these complexes. Different from the other imido-complexes,

NTs contains a tetrahedral sulfur atom between Naxial and the phenyl ring (see

Fig. 6.3), giving flexibility to the structure of the axial ligand and favouring ge-

ometries with a non-linear coordination angle. In conclusion, being the weaker

π-donating ligand and favouring bent axial angles, NTs accomplishes all the

factors to exhibit a triplet ground state.

Table 6.3. Main electronic configurations, reoptimized Mn–Naxial distances
(in Å) and Mn–Naxial–S angles (in degrees), and relative energies (in eV) of
the singlet and triplet states of the NTs imido-complex. BP86 results of Sec.
6.2 in parenthesis for comparison.

CASPT2
Mn-Naxial Mn-Naxial-S Basis I Basis II

(3dxy)2 1.60 168.2 0.00 0.00
(1.62) (167.0)

(3dxy)1(3dyz-2py)∗1 1.75 125.0 -0.08 -0.07
(1.71) (132.0)

6.3.3 Core correlation: a comparison of second order and vari-

ational situations

Being of moderate computational cost, CASPT2 seems to be a very efficient

computational strategy to obtain accurate relative energies of spin states. The

validity of applying a level shift of 0.1 Eh to avoid the appearance of intruder

states and the choice of the zeroth-order Hamiltonian with IPEA equal to 0.25

is well-established, and the only point that deserves further attention is the

accuracy of the pertubative estimate of the core correlation. Typically, the

core electrons of main group elements are excluded from the CASPT2 energy

estimation, since they do not introduce any differential effect on the energies

of spin states. In the case of first-row transition metals, the situation is slightly

different because the semi-core 3s-3p electrons can change the relative energy

of the spin states by ∼0.1–0.2 eV when included in the multireferential second-

order perturbative correction [60] . However, recent results by Pierloot et al. [61]
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indicate that the correlation energy description by CASPT2 of these electrons

is probably not fully consistent, leading to wrong estimations of the high and

low-spin energies in some cases.

In order to validate the multiconfigurational calculations of the present work,

the Mn 3s-3p contribution up to the second order electron correlation in all

the imido-complexes has been compared with a variational estimate obtained

by DDCI [62, 63]. As can be seen in Table 6.4, the CASPT2 3s-3p contribution

is quantitatively similar for all complexes and in all cases stabilizes the triplet

state by around 0.2 eV. The importance of 3s-3p correlation is reflected in the

fact that it inverts the ground state of [Mn(Cor)(NTs)]. To make feasible the

DDCI calculations a significant reduction of the molecular orbital space is re-

quired. The doubly occupied and empty CASSCF orbitals have been localized

following the scheme outlined in Ref. [64–66], and subsequently, classified in

terms of core, σ and π orbitals to select the most relevant orbitals to be taken

into account in the DDCI calculation. Two molecular orbital spaces were con-

sidered, the first contains the π and π∗ orbitals in addition to the twelve active

orbitals, the second space extends the first one with the Mn 3s-3p orbitals. The

reference wave function for the DDCI calculation is constructed from a [2,2]-

CASCI calculation using the orbitals that are singly occupied in the triplet

state; 3dxy and (3dxz-2px)* or (3dyz-2py)* depending on the complex. The

[2,2]-DDCI estimate of the 3s-3p correlation contributions to the triplet-singlet

energy difference are slightly lower than those calculated with [10,12]-CASPT2,

but no relevant differences are detected. The addition of more virtual orbitals

in the DDCI calculation increases the correlation energy, but has no differential

effects.
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Table 6.4. [10,12]-CASPT2 and [2,2]-DDCI estimates of the Mn 3s-3p electron
correlation contribution (in eV) to the triplet-singlet energy difference for the
four imido-complexes.

[10,12]-CASPT2 [2,2]-DDCI

[Mn(Cor)(NMes)] -0.24 -0.13
[Mn(Cz)(NMes)] -0.25 -0.17
[Mn(Cor)(NtClPh)] -0.11 -0.13
[Mn(Cor)(NTs)] -0.21 -0.11

6.3.4 Wave function analysis

The assignment of charges to atoms (or groups of atoms) in a molecule is

a delicate matter. The atomic charge is not observable, and computationally

derived charges show a large dependence on the strategy applied to calculate

them. Without pretending to determine exact charges, we have used an orthog-

onal valence bond reading of the multiconfigurational wave function to extract

more information about the electronic structure and assign populations to the

Mn atom in the different complexes. Atomic-like and fragment orbitals are ide-

ally suited to describe many chemical concepts in terms of the valence bond

theory in an intuitive manner [67], but they are computationally speaking not

the most ideal choice as orbital basis. On the other hand, CASSCF wave func-

tions are normally expressed with molecular orbitals, computationally much

simpler to handle, and also because they give direct information about molec-

ular spectroscopy and ionization potentials, among other properties. A unitary

transformation of the CASSCF active orbitals is performed to maximize the

weight of the metal basis functions, giving atomic-like orbitals and, as a con-

sequence of the rotation process, the weight of the ligands in the others. The

wave function is invariant upon this transformation. The re-expression of the

multiconfigurational CASSCF wave function in this new orbital basis makes

it possible to capture the electronic structure in similar intuitive concepts to

those in traditional valence bond calculations [68]. This orthogonal valence

bond analysis has been used before to study TM-ligand interactions [69–72]

and to decompose the magnetic coupling in organic radicals [73]. The effect of
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orbital localization is illustrated in Fig. 6.10 and transfers the covalency con-

tained in the delocalized orbitals to the configuration expansion [74, 75]. In the

present case all twelve orbitals of the active space have been localized.

Figure 6.10. Example of orbitals before and after the localization procedure
(isocontour=0.05). σ and (3dxz-2px) bonding and anti-bonding couple of or-
bitals are transformed in metal, imide and corrole localized orbitals.

Table 6.5 summarizes the orthogonal valence bond analysis of the electronic

structure of the four imido-complexes. For this purpose, the configurations of

the CASSCF wave function have been classified by the number of electrons

in the metal valence orbitals and the weight of the configurations has been

summed for each subgroup, as shown in Table 6.5. The wave function is dom-

inated by configurations with five electrons on the Mn ion, but configurations

with four or six electrons also contribute significantly. The weighted sum of the

d electrons in each configuration gives what we call the d-count, which is close

to 5 in all complexes except for [Mn(Cor)(NTs)] in the triplet state.
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As an example, for [Mn(Cor)(NMes)] in the singlet state this sum is performed

as follows: [(0.042 x 7e− (Mn0) + 0.227 x 6e− (Mn+) + 0.446 x 5e− (Mn2+)

+ 0.255 x 4e− (Mn3+) + 0.024 x 3e− (Mn4+))/0.994]. In a purely ionic model

with a trianionic corrole and a dianionic imide ligand, one would rather expect

a d-count of 2, corresponding to MnV. In the present analysis the effective

charge differs from the formal charge and indicates that there is an important

charge transfer from the coordination sphere to the Mn ion, which is probably

better considered as an effective Mn2+ ion.

The electron count of the coordination sphere around the metal centre can be

treated in a similar way to the assignment of the Mn charge. In the present

calculations, a standard two-electron dative bond from the trianionic corrole

to Mn is represented with two electrons in the corrole or corrolazine σ active

orbital. As can be seen in Table 6.6, only half of the configurations correspond

to this situation. The other configurations have only one electron in the corrole

or corrolazine σ orbital. This corresponds to a strongly covalent Mn 3dx2−y2-σ

bond. The present imido-Mn complexes are therefore not completely trianionic.

With the same analysis the imido-to-metal charge transfer can be quantified by

looking at the occupation of the three 2px, 2py and 2pz active orbitals localized

on the nitrogen atom. The fact that the electron count of these is close to 3.5

denotes that the N–R group transfers 2.5 electrons to the d orbitals of the metal

center. With more bent coordination angle and a stronger electron-withdrawing

R group (SO2), in the case of [Mn(Cor)(NTs)] in the triplet state only two

electrons are transferred to the metal center. The smaller amount of charge

transferred to Mn explains that although being favoured by the geometrical

parameters, the triplet ground state in this complex is very close in energy to

the singlet state. To sum up, the transfer of nearly three electrons (0.5 from

corrole and 2.5 from imide) from the coordination sphere to the metal centre

is the key to understand how TMs are stabilized in these imido complexes [25].
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6.4 Conclusions

The computational study presented here shows that the axial N-R ligand plays

a fundamental role in the relative stability of the electronic states with different

spin moment. The combination of DFT geometry optimizations and CASPT2

single-point calculations results in a description of the relative energies of the

singlet and triplet coupled states that is consistent with the experimental in-

formation on four different imido-Mn corrole and corrolazine complexes. The

DFT optimized geometries show identical corrole and corrolazine coordination

distances in singlet and triplet, but important variations are observed in the

coordination of the axial ligand. The singlet presents short distances and lin-

ear coordination, while the bond distance is longer for the triplet coupling, and

the axial ligand also has a marked tendency to coordinate in a bent fashion.

Furthermore, it is observed that electron-withdrawing groups in the axial lig-

and reduce the π interaction between metal and ligand and reduce the gap

between the two singly occupied orbitals of the triplet state, hence, stabilizing

it with respect to the singlet state. Hence, it is not unexpected that the system

with the strongest electron-withdrawing group, the NTs complex, has a triplet

ground state.

The orthogonal valence bond reading of the wave functions reveals important

electron charge transfers from both the corrole/corrolazine ligand and the axial

ligands to the Mn. The formal charge of Mn within an ionic model of the

complexes corresponds to Mn5+. However, the wave function shows that this

high charge is reduced to an effective charge of 2+ by a transfer of nearly three

electrons (2.5 from the axial ligand and 0.5 from the corrole/corrolazine) to

the metal center.
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Chapter 7

Conclusions

As exposed in the introduction, advances in the synthesis and characterization

of transition metal complexes have given room to new and promising materials

with spin-crossover and other interesting magnetic properties. In this thesis we

have used the ab initio methods described in the theoretical background chap-

ter to get insights on magnetic and photochemical properties of spin-crossover

complexes with transition metals beyond the widely studied octahedral FeIIN6

systems. The conclusions that are extracted from this work can be divided

into two parts. First, we will expose some technical conclusions related with

the computational part of the work, and thereafter a list is given that sum-

marizes the most important findings concerning the physics of the systems

studied.

Computational issues:

DFT or TD-DFT has been found to deliver reliable geometries for those cases

where experimental data are available. This allows us to determine the optimal

geometry for excited states and metastable spin states, for which experimental

data are absent or only indirect indications of some geometrical parameters can

be found in the literature. This is especially interesting for excited states or

metastable spin states. Although this study and previous works in the literature

indicate that the nature of the functional used in the optimization is not crucial
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Conclusions

–most functionals lead to similar geometries–, we have found some exceptions.

The most salient one is the prediction of a very long Mn-Naxial bond distance

by the PBE0 functional for the corrole and corrolazine complexes discussed

in Chapter 6. This has been ascribed to the large spin contamination of the

triplet state. Hence, the results should be carefully checked to detect possible

anomalous behaviour of (TD-)DFT.

In the study of the spin-crossover complexes with extended π systems the

choice of the functional is a more delicate matter. The use of functionals that

do not accurately treat the dispersion interactions can easily lead to incor-

rect geometries and in consequence incorrect representations of the electronic

structure. This has been observed in this work by comparing the geometries

of the NiTPP-PAPy complex optimized with the BP86 and the M06-2X func-

tionals. The latter functional, optimized to give an accurate description of the

dispersion, places the pyridine ring of the PAPy group close and parallel to

the porphyrin ring, optimizing the π-π interactions, while the BP86 functional

maximizes the separation between the two subsystems. We have observed that

the combination of B3LYP and the D3 correction of Grimme leads to similar

results as the M06-2X functional.

The inclusion of solvent effects with PCM or COSMO models does not have

significant effects on the geometries, the relative energies and the wave function

of the different spin states of the complexes studied here. The small effect of

the solvent has been analysed in some detail for the absorption spectrum of

[Ru(bpy)3]2+. The metal-centred excitations do not induce significant changes

in the dipole of the complex and solvent effects are logically small. The 1MLCT

vertical excited states could induce larger changes in the dipole but the un-

paired electron is delocalized over the three ligands in a symmetric manner

and only a small dipole moment is created. In fact, the DFT estimations of the

reduction potentials of this complex are the only properties where the solvent

has a significant role throughout this thesis.

In some cases, DFT geometries have to be refined through a reoptimization

of certain geometrical parameters with single point CASPT2 calculations on

a series of structures obtained by restricted DFT optimizations. The Ru-N
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distances in the singlet state of [Ru(bpy)3]2+ obtained with this procedure

coincide with the PBE0 ones. This is somewhat unexpected since a shortening

of 0.1 Å was obtained in the analogous [Fe(bpy)3]2+ complex. On the contrary,

the CASPT2/DFT reoptimization of the axial coordination distance and angle

in Mn corrole and corrolazine complexes removes the degeneracy of the singlet

and triplet states. Small variations of these parameters result in stabilization

of the triplet state.

While DFT and TD-DFT perform rather well in the reproduction of the ab-

sorption spectra (see [Ru(bpy)3]2+), they fail predicting high-spin low-spin rel-

ative energies. Multiconfigurational single point energy calculations have been

used to this purpose. The choice of an adequate active space for the CASSCF

calculations is fundamental and in this sense one has to take into account

the system and the problem studied in each case. Sometimes this can lead to

computationally unaffordable calculations. An example is found in Chapter 5,

where the d-d states of Ni, the isomerization of PAPy and the spectrum of the

whole system have potential interest to understand the spin-crossover mecha-

nism of the complex but the active space required to study all this features is

too large and we have tackled the problem by parts. In most of the cases, the

non-dynamical electron correlation accounted at CASSCF level is not enough

for a quantitative description of the relative energies and we have to include

the dynamic correlation in terms of CASPT2 calculations.

To have an overall view of the processes involved in the spin-crossover induced

by light, the study of the energies of the different states has to be complemented

with the estimation of the time-scale on which these processes occur. Fermi’s

golden rule has been used to estimate intersystem crossing rates. The large spin-

orbit coupling between states with the same electronic configuration favours

this crossing and the large overlap of the vibrational wave functions of states

with similar geometries also facilitates the process.

The 3s-3p contribution to the dynamic electron correlation is non-negligible

when two spin states are close in energy. In Chapter 6, its inclusion stabi-

lizes the triplet states by 0.2 eV and in one case changes the ground state of

the complex. In some cases, the inclusion of this part of the correlation with
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Conclusions

CASPT2 had been shown to be not fully consistent and has deserved our spe-

cial attention. In this work, we have estimated the 3s-3p correlation in terms

of DDCI calculations and made a comparison with the CASPT2 results. No

significant differences have been detected for the Mn complex.

Physics of the spin-crossover systems:

In the [Ru(bpy)3]2+ complex DFT, TD-DFT and CASSCF calculations show

that during the relaxation of the MLCT states the unpaired electron becomes

localized on a single pyridine ligand. Once localized, the electron remains con-

fined since the probability of inter-ligand electron transfer between two bipyri-

dine ligands has been estimated to be low with CAS state interaction cal-

culations. Localization and trapping favour the electron transfer to acceptor

molecules in the MLCT states. Furthermore, our DFT estimation of the re-

duction potential of the MLCT states indicates that the electron transfer is

favoured in the 3MLCT state over the singlet ground state state, confirming

the experimental findings. The possibility of spin-crossover in [Ru(bpy)3]2+ has

been analyzed in terms of DFT and multireference wave function calculations

of the relative energies of the metal centred triplet states.

Ni-porphyrins are also susceptible to light induced spin crossover processes.

The TD-DFT and CASPT2 calculations confirm that irradiation with light

of 500 nm induces a π-π∗ excitation in the porphyrin moiety which after re-

laxation and intersystem crossing reaches a metal centred triplet state. Our

calculations indicate that the axial coordination of a pyridine solvent molecule

is barrierless and greatly stabilizes the S=1 state. On the contrary, the coor-

dination represents a large barrier on the ground state surface, indicating that

spin crossover can only be attained by irradiation. The inverse process of de-

coordination is also shown to have a significant barrier. This indicates that the

initial situation can only be restored by a π-π∗ excitation that deactivates into

a closed-shell singlet in a square-pyramid conformation of the complex, which

releases the axial ligand to recover the original square-planar geometry.

In the Ni porphyrin functionalized with a PAPy DFT and multiconfigurational

calculations have shown that the 500 nm excitation induces a π-π∗ excitation

involving a π orbital of the porphyrin and a π∗ orbital with contributions from
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both the porphyrin and the N=N group of the PAPy arm. The orbitals implied

in this excitation are different from the ones in the isomerization of the iso-

lated PAPy systems, explaining the anomaly in the wavelength. Furthermore,

we have studied the isomerization mechanism of the PAPy arm. Isomerization

is most probable through the rotation mechanism and can part from two dif-

ferent excited states, each with a different relaxation path. This can explain

the experimental observation that irradiating with light of two different wave-

lengths, different quantum yields are observed.

The role of the axial ligand in Mn corrole and corrolazine complexes in the

relative energies of the magnetic states of these complexes axially coordinated

to three different imide ligands has been confirmed. The singlet-triplet gap

presents a clear dependence on both the axial coordination distance and angle.

These parameters directly affect the energy of the metal 3d orbitals and while

singlet states are favoured by linear angles and short distances, triplets prefer

bent angles and long distances. This effect is crucial in the complex with the

N-tosyl axial ligand, which has a triplet ground state. Furthermore, our or-

thogonal valence bond analysis of the wave function shows that the manganese

ion is highly stabilized by the transfer of electrons from both the equatorial

macrocycle and the axial imide ligand to the metal centre. This study opens the

door to control the magnetic states of Mn corrole and corrolazines modifying

the nature of the imide axial ligand.
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