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Abstract

Phase Field Approach to Fracture: Massive Parallelization and Crack
Identification

Vahid Ziaei-Rad

The phase field method has proven to be an important tool in computational

fracture mechanics in that it does not require complicated crack tracking and is able

to predict crack nucleation and branching. However, the computational cost of such a

method is high due to a small regularization length parameter, which in turns restricts

the maximum element size that can be used in a finite element mesh. In this work,

we developed a massively parallel algorithm on the graphical processing unit (GPU)

to alleviate this difficulty in the case of dynamic brittle fracture. In particular, we

adopted the standard finite element method on an unstructured mesh combined with

second order explicit integrators.

As the explicit methods fit nicely with the GPU paradigm especially in terms of

thread and memory hierarchy, we solve an elastodynamic problem when the phase

field update is based on a gradient flow, so that a fully explicit implementation is

feasible. To ensure stability, we designed a time adaptivity strategy to account for

the decreasing critical time step during the evolution of the fields.

We demonstrated the performance of the GPU-implemented phase field models by

means of representative numerical examples, with which we studied the effect of the

artificial viscosity, an artificial parameter to be input, and compared the crack path

branching predictions from three popular phase field models. Moreover, we verified

the method with convergence studies and performed a scalability study to demonstrate

the desired linear scaling of the program in terms of the wall time per physical time

as a function of the number of degrees of freedom.

One of the main ideas of the phase field method is to employ a smeared represen-

tation of discrete cracks. However, in some applications it is still convenient to have

the explicit crack path available, or even to develop a mechanism to introduce crack

ii



paths to partially replace a smeared crack propagation model.

Hydraulic fracturing is one example for which a crack identification scheme may

be useful. This is a technique used in the oil and gas industry, where fractures are

propagated by high-pressure liquid inside them. With a phase field (or damage)

approach, it becomes challenging how to impose the pressure loading on the rock

mass exerted by the fracturing fluid, since most phase field approaches to date were

developed for traction-free crack faces.

In this work, we present a variational method to identify the crack path from

phase field approaches to fracture. The method is proven to be successful not only

for a simple curved crack but also for multiple and branched cracks. The algorithm

employs the non-maximum suppression technique, a procedure borrowed from the

image processing field, to detect a bounding area which covers the ridge of the phase

field profile. After that, it is continued with the step to determine a cubic spline to

represent the crack path and to improve it via a constrained optimization process. To

demonstrate the performance of our method, we provide the results with three sets

of representative examples. The developed algorithm can be combined with one on

crack opening, for more elaborate interpretation of phase field simulations. This is

the topic of the next part of the work.

In this dissertation, we also provide a variational way to calculate the crack opening

from phase field approaches to fracture. We also demonstrate the performance of our

method with three sets of representative examples, and verify the results with a proper

benchmark.

Having the crack geometry available from a phase field approach can provide more

elaborate interpretation of the phase field simulations. It may also offer a possibility

of developing less expensive numerical schemes for a fluid-driven crack propagation of

impermeable solids. This will be the topic of our future work.
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Outline

• In Chapter 1, we present and analyze an explicit algorithm to solve for a rate-

dependent formulation of the phase field modeling of brittle fracture. The for-

mulation is based on dynamic force balance coupled with a gradient-type phase

field evolution law due to [Miehe et al., 2010b]. We adopt the standard finite ele-

ment method on unstructured meshes and second-order explicit time integrators

for the implementation.

• In Chapter 2, we develop a massively parallel program to implement our explicit

algorithm to solve for a rate-dependent formulation of the phase field model-

ing of brittle fracture on NVIDIA GPUs using the Compute Unified Device

Architecture (CUDA).

• In Chapter 3, we present three representative sets of numerical examples to demon-

strate the performance of the proposed algorithm for the phase field fracture

models. An NVIDIA Kepler K20M GPU and two Intel Xeon E5-2670 (8 Cores,

2.6GHz, 20MB Cache, 8.0GT) CPUs were used in the calculations. The three

sets of examples include a tension test, a shear test, and a symmetric bending

test.

• In Chapter 4, we build a crack identification scheme by taking advantage of the

variational structure of the phase field approach, although the scheme can also

be applied to a solution from a damage model. The methodology is built on

the so called equivalent phase field of a given curve, which is the generalization

from the analytic phase field solution from the potential energy functional in a

special case.
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• In Chapter 5, we offer a variational approach to calculate the crack opening from a

smeared crack representation.

• In Chapter 6 we made some conclusions and future work.

• Each of these chapters is partially or fully based on the following publications:

· Vahid Ziaei-Rad and Yongxing Shen, Massive parallelization of the phase field

formulation for crack propagation with time adaptivity, Submitted.
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· Vahid Ziaei-Rad, Li Shen, Jiahao Jiang, and Yongxing Shen, Identifying the

crack path for the phase field approach to fracture with non-maximum

suppression, Submitted.

Chapter 4

· Vahid Ziaei-Rad, Cheng Cheng, and Yongxing Shen, A variationally consistent

method for identifying the crack opening from a phase field solution, In

preparation.
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Chapter 1

Phase field formulation for crack
propagation with time adaptivity

1.1 Introduction

Understanding and predicting fracture and failure in materials is important in en-

gineering designs. Computational modeling is a way to study the fracture phenom-

ena, especially in cases in which experiments are impractical or too expensive. As

a consequence, a wide variety of fracture models have been developed. In the case

of brittle fracture, many of such models were developed based on Griffith’s theory

in which crack nucleation and propagation are determined by a critical value of the

energy release rate. Many numerical approaches have been constructed with the stan-

dard finite element methods (FEMs) [Rangarajan et al., 2015] or the extended finite

element method (XFEM) [Moës et al., 1999, Shen and Lew, 2010a,b, 2014] in con-

junction with Griffith-type fracture models, such as the approach presented in [Xu

et al., 2014]. These approaches explicitly represent cracks as discontinuities. They

require: (1) either always adjusting the mesh in traditional FEMs [Rangarajan et al.,

2015] or introducing enrichments like the XFEM; and (2) extra input to predict crack

nucleation and branching.

Based on energy minimization, the variational theory of fracture was proposed by

Francfort and Marigo [Francfort and Marigo, 1998] to formulate brittle fracture, which

takes into account both bulk elastic energy and the surface energy due to creation of

3



4 Phase field formulation for crack propagation with time adaptivity

cracks. Capable of predicting crack initiation, this class of approaches has attracted

attention in the mathematicians’ community [Del Piero et al., 2007, Chambolle et al.,

2009, Marigo, 2010].

The regularized version of the variational theory of fracture was introduced by

Bourdin et al. [Bourdin et al., 2008], which was later adopted by the engineers’ com-

munity as a formulation more suitable for numerical simulations. Later the phase field

formulation of fracture has become a synonym and a more popular name for this class

of methods, see, e.g., [Miehe et al., 2010b, Hofacker and Miehe, 2012b, Borden et al.,

2012].

In essence, phase field models for fracture employ a continuous field variable, called

the phase field, to represent cracks. Feng and Prohl [Feng and Prohl, 2004], Hakim

and Karma [Hakim and Karma, 2009], da Silva et al. [da Silva et al., 2013], and

Babadjian and Millot [Babadjian and Millot, 2014] studied the relation between the

phase field formulation and its sharp crack limit.

The main advantage of using a phase field is that the evolution of fracture surfaces

follows from the solution of a coupled system of partial differential equations. In con-

trast to explicit descriptions of cracks, phase field descriptions do not require explicitly

tracking the discontinuities in the displacement field. This significantly reduces im-

plementation complexity, and is anticipated to be particularly advantageous when

multiple branching and merging cracks are considered in three dimensions [Miehe

et al., 2010b,a]. While the phase field method has mainly been employed to study

quasi-static brittle fracture [Hakim and Karma, 2009, Miehe et al., 2010a, Dal Maso

and Lazzaroni, 2010, Kuhn and Müller, 2010], it has also been extended successfully

to dynamic problems [da Silva et al., 2013, Hofacker and Miehe, 2012a, Karma et al.,

2001, Larsen, 2010, Bourdin et al., 2011, Schlüter et al., 2014] and ductile fracture

[Verhoosel and de Borst, 2013, Charlotte et al., 2006, Ulmer et al., 2013]. Moreover,

more sophisticated models for the phase field approximation have been developed

which lead to a higher regularity of the phase field solution than H1, e.g., H2 for

[Borden et al., 2014] and [Gomez et al., 2014]. See also [Amiri et al., 2014, Ulmer

et al., 2012] for fracture in plates and shells simulated with the phase field model.
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In this chapter, we present and analyze an explicit algorithm to solve for a rate-

dependent formulation of the phase field modeling of brittle fracture. The formulation

is based on dynamic force balance coupled with a gradient-type phase field evolution

law due to [Miehe et al., 2010b]. We adopt the standard finite element method on un-

structured meshes and second-order explicit time integrators for the implementation.

A strong motivation for adopting a fully explicit method is that it fits nicely with

the GPU architecture. Hence, we aim for developing a massively parallel program to

implement the present algorithm on GPU in the forthcoming chapter.

As is common to explicit methods, a critical time step is essential to ensure stabil-

ity. The coupled problem at hand can be divided into an elastodynamic half problem

and a phase field half problem, and the critical time step is the smaller of those of

the half problems. As time evolves, the critical time step for the elastodynamic half

problem increases but that for the phase field half problem decreases. Beginning

from some instant, the critical time step for the entire problem decreases with time.

Hence, an efficient implementation requires an efficient lower bound computation for

the critical time step. This time adaptivity scheme will be elaborated in Section 1.3.3.

With regard to the choice between explicit and implicit schemes, we refer the reader

to Keyes et al. [Keyes et al., 2006] for a thorough discussion. In our case, as we will

demonstrate, we observe linear scaling of the wall time per physical time as a function

of the number of degrees of freedom. Hence, our method will be no worse than most

classical implicit schemes in terms of scaling.

In addition to the phase field model proposed in [Miehe et al., 2010b] which only

allows the phase field evolution to occur at the expense of strain energy due to ten-

sion and expansion but not compression, we made a systematic comparison with two

other models: one that allows phase field evolution to occur due to any strain en-

ergy, and one due to [Amor et al., 2009] that allows only volumetric expansion and

deviatoric deformation to contribute to the phase field dissipation but not volumetric

compression.

The developed methodology allows us to perform interesting studies on, e.g., the

different crack paths due to the different loading rates, the predictions from the afore-
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mentioned various phase field models, and the effect of the artificial viscosity, which is

necessary for an explicit scheme for phase field simulations for fracture, but is optional

for an implicit scheme.

This chapter will proceed as follows. In Section 1.2, we first recall the govern-

ing equations of the fracture models, including the phase field formulations for the

variational description of brittle fracture. In Section 1.3, we adopt standard explicit

methods to solve the initial boundary value problem presented in Section 1.2 and then

elaborate on the adaptive strategy to determine the critical time step on the fly.

1.2 Problem statement

This section devotes to setting up the problem of brittle fracture modeled by the

phase field formulation. To this end, in Section 1.2.1 we first recall the variational

formulation in the sharp-crack case, where the crack path is part of the unknown.

Then in Section 1.2.2 we recapitulate a regularized formulation, which, in the sense

of Γ-convergence, converges to the variational formulation. In this regularized for-

mulation we keep the expression of strain energy density general to accommodate

different phase field models in the literature. To facilitate the implementation in the

GPU with explicit integration, in Section 1.2.3 we adopt the idea in [Miehe et al.,

2010b] to modify the formulation by introducing an artificial viscosity term. Then in

Section 1.2.4 we introduce the weak form corresponding to the strong form in Section

1.2.3. Finally, we list three phase field models in the literature in Section 1.2.5 to be

compared in subsequent sections.

1.2.1 Variational formulation of brittle fracture

We consider a two-dimensional (plane stress or plane strain) isotropic linear elastic

solid initially occupying the open polygon Ω and want to determine its evolution in the

time interval [0, tf ]. Let ΓD,ΓN ⊆ ∂Ω be such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅,
and uD : ΓD× [0, tf ]→ R2 and tN : ΓN × [0, tf ]→ R2 be prescribed displacement and
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traction boundary conditions. We also let ρ ∈ R+ and b : Ω × [0, tf ] → R2 denote

the (constant) density of the solid and body force per unit mass exerted to the solid.

According to Borden et al. [Borden et al., 2012], the variational formulation for the

brittle fracture of the solid consists in finding the stationary point of the following

Lagrangian:

L[u, u̇] :=

∫
Ω\Γ

{
1

2
ρu̇ · u̇− ψ0[ε(u)]

}
dΩ +

∫
ΓN

tN · u dΓ +

∫
Ω\Γ

ρb · u dΩ− gc|Γ|

among all u : R2× [0, tf ]→ R2 that are bounded deformation functions of Ω and that

satisfy

u = uD, on ΓD × [0, tf ]. (1.1)

Here the dot symbol over a variable, �̇, denotes differentiation in time t, and Γ =

Γ(u) ⊂ Ω is the set of discontinuities of u(·, t) such that the irreversibility of the crack

is satisfied [Francfort and Marigo, 1998], i.e., for any t1, t2 ∈ [0, tf ], t1 < t2, we have

Γ[u(·, t1)] ⊆ Γ[u(·, t2)]. We let |Γ| denote the length of Γ, ψ[ε(u)] the strain energy

density which depends on the strain

ε(u) :=
1

2

(
∇u+∇uT

)
(1.2)

as

ψ0(ε) :=
λ

2
(tr ε)2 + µ‖ε‖2,

with λ and µ Lamé constants such that µ > 0 and λ+ 2µ > 0, and gc ∈ R+ the strain

energy release rate, the strain energy released per unit length of crack extension.

Here superscript T denotes the transpose operation on a tensor, and ‖ · ‖ : ε 7→
√
ε : ε

denotes the Frobenius norm of a tensor.
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1.2.2 Regularized variational formulation of brittle fracture

To develop a numerical method to approximate (1.2), we replace the sharp-crack

description with a phase field description, where the phase field is denoted as d :

Ω → [0, 1]. In particular, regions with d = 0 and d = 1 correspond to perfect and

fully broken states of the material, respectively. We remark that we have adopted

a convention of the value of d following that of Miehe et al. [Miehe et al., 2010b]

and that of the damage mechanics community [Voyiadjis and Mozaffari, 2013, Pham

et al., 2011]. Other authors such as Bourdin et al. [Bourdin et al., 2008] and Borden

et al. [Borden et al., 2012, 2014] have used a convention with the meanings of d = 0

and d = 1 reversed.

Let
Su :=

{
u ∈ H1

(
Ω;R2

)
× [0, tf ]

∣∣u(·, t) = uD(·, t) on ΓD
}
,

Sd := H1(Ω)× [0, tf ],

then the regularized variational formulation reads: Find (u, d) ∈ Su×Sd that is the

stationary point of the following functional:

Ll[u, u̇, d] :=

∫
Ω

{
1

2
ρu̇ · u̇− ψ[ε(u), d]

}
dΩ +

∫
ΓN

tN · u dΓ +

∫
Ω

ρb · u dΩ

−gc
2

∫
Ω

(
d2

l
+ l∇d · ∇d

)
dΩ,

(1.3)

where l is a length scale such that when l→ 0, the regularized formulation Γ-converges

to that with explicit crack representation (see Bourdin et al. [Bourdin et al., 2008]

for the proof of the static anti-plane case). Here ψ(ε, d) is the strain energy density

degraded by the phase field such that ψ(ε, 0) = ψ0(ε) and that ψ(ε, d1) ≥ ψ(ε, d2) if

d1 < d2.
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The Euler-Lagrange equations of (1.3) are

−ρü+ divσ + ρb = 0, in Ω× [0, tf ], (1.4a)

−∂ψ
∂d
− gc

l

(
d− l2∆d

)
= 0, in Ω× [0, tf ], (1.4b)

σ · n− tN = 0, on ∂NΩ× [0, tf ], (1.4c)

∂d

∂n
= 0, on ∂Ω× [0, tf ], (1.4d)

where

σ = σ(ε, d) :=
∂ψ

∂ε

is the Cauchy stress, the double-dot symbol, �̈, means the second derivative with

respect to t, and n is the unit outer normal to ∂Ω. Here (1.4a) expresses the momen-

tum conservation of the solid, (1.4b) defines the phase field evolution, and (1.4c) and

(1.4d) are Neumann boundary conditions for u and d, respectively.

1.2.3 Rate-dependent form of the formulation

As the explicit methods fits nicely with the GPU paradigm especially in terms of

thread and memory hierarchy, we convert the formulation (1.4) into a time-dependent

form [Miehe et al., 2010b] with (1.4b) replaced by

ḋ =


1

η

〈
−∂ψ
∂d
− gc

l
(d− l2∆d)

〉
+

, d < 1,

0, otherwise,

(1.4b’)

where η > 0 is the artificial viscosity, a material parameter to be input, and 〈a〉± :=

(|a| ± a)/2 for all a ∈ R.

The initial conditions for the problem can be posed as

u(·, 0) = u0, u̇(·, 0) = v0, d(·, 0) = d0, (1.5)
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where u0,v0 : Ω→ R2 and d0 : Ω→ [0, 1].

The time-dependent problem to be solved can now be stated as:

Find (u, d) subjected to the partial differential equations (1.4a) and (1.4b’),

initial conditions (1.5), and boundary conditions (1.1), (1.4c), and (1.4d).

1.2.4 The weak form

To facilitate the numerical computation with the FEM, we next state the weak form of

the problem. In particular, to handle the second-order derivative inside the operator

〈·〉+ in (1.4b’), we introduce a new variable d# such that ḋ = 〈d#〉+ at all t.

To proceed, we let the test function spaces be

Vu :=
{
w(·, t) ∈ H1

(
Ω;R2

)∣∣w(·, t) = 0 on ΓD
}
,

Vd := H1(Ω).

The weak form can be stated as: Find (u, d#, d) ∈ Su ×Sd ×Sd such that for

all t ∈ (0, tf ], w ∈ Vu and q ∈ Vd,



(w, ρü) + ad(u,w) = f(w),(
q, ηd#

)
= −

(
q,
∂ψ

∂d

)
− gc

l
(q, d)− gcl2(∇q,∇d),(

q, ḋ
)

=
(
q,
〈
d#
〉

+

)
,

(w,u(·, 0)) = (w,u0),

(w, u̇(·, 0)) = (w,v0),

(q, d(·, 0)) = (q, d0),
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where for any scalar fields q1 and q2 and any vector fields w1 and w2,

(q1, q2) =

∫
Ω

q1q2 dΩ,

(w1,w2) =

∫
Ω

w1 ·w2 dΩ,

ad(w1,w2) =

∫
Ω

σ[ε(w1), d] : ∇w2 dΩ,

f(w1) =

∫
Ω

ρb ·w1 dΩ +

∫
ΓN

tN ·w1 dΓ.

1.2.5 Phase field models

In this section we recapitulate three phase field models for brittle fracture in solids.

These models mainly differ in the choice of the strain energy density ψ(ε, d), for which

we adopt the following general form:

ψ(ε, d) = (1− d)2ψ+(ε) + ψ−(ε), (1.6)

where ψ+(ε) and ψ−(ε) are such that ψ+(ε) + ψ−(ε) = ψ0(ε). The choices of ψ+(ε)

and ψ−(ε) to be studied are tabulated in Table 1.1.

Table 1.1: Three phase field models for crack propagation in terms of the expression
of the strain energy density. Note that the trace operator and the principal strains
are understood in the three-dimensions setting, which accommodates both the plane
stress and plane strain cases.

Model Reference ψ+(ε) ψ−(ε)
A [Bourdin et al., 2008] ψ0(ε) 0
B [Amor et al., 2009] (λ/2 + µ/3)〈tr ε〉2+ + µ‖ dev ε‖2 (λ/2 + µ/3)〈tr ε〉2−
C [Miehe et al., 2010b] (λ/2)〈tr ε〉2+ + µ

∑3
i=1〈εi〉2+ (λ/2)〈tr ε〉2− + µ

∑3
i=1〈εi〉2−

We remark here that references [Bourdin et al., 2008, Amor et al., 2009, Miehe

et al., 2010b] all have an additional small number k with 0 < k � 1 and k = o(l)

added to the coefficient of ψ+(ε), i.e., they have [(1 − d)2 + k] instead of (1 − d)2
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in (1.6), to prevent the lack of stiffness for completely cracked portions of the solid.

Here, however, we can set k = 0 thus use (1.6) because we will solve the problem in

a fully explicit scheme and thus do not need to invert any stiffness matrix.

With the form of ψ(ε, d) chosen, the corresponding stress tensor takes the form

σ(ε, d) =
∂ψ

∂ε
= (1− d)2∂ψ+

∂ε
+
∂ψ−
∂ε

,

see Table 1.2.

Table 1.2: Three phase field models for crack propagation in terms of the stress-strain
relation

Model ∂ψ+/∂ε ∂ψ−/∂ε
A λ(tr ε)1 + 2µε 0
B (λ+ 2µ/3)〈tr ε〉+1 + 2µ dev ε (λ+ 2µ/3)〈tr ε〉−1

C λ〈tr ε〉+1 + 2µ
∑3

i=1〈εi〉+ni ⊗ ni λ〈tr ε〉−1 + 2µ
∑3

i=1〈εi〉−ni ⊗ ni

Below we discuss these models and define the involved symbols.

Model A This is the original model proposed for similar formulations. It is convenient in

that ψ is analytic in both d and ε.

Model B This model assumes that both volumetric expansion and deviatoric deformation

contribute to crack propagation but not volumetric compression. As a result,

the formulation involves a decomposition of ε into volumetric and deviatoric

contributions:

vol ε :=
1

3
(tr ε)1, dev ε := ε− vol ε.

Note here that the trace operator is understood in the three-dimensions setting,

which accommodates both the plane stress and plane strain cases.

Model C This model postulates that the stress degradation is due to a combination of

tensile loading and volumetric expansion. Hence the definition of ψ+(ε) involves
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the spectral decomposition of ε, i.e., the principal strains εi, i = 1, 2, 3, and the

corresponding principal directions ni, such that

εni = εini, ni · nj = δij,

where no summation is assumed for the index i, and δij is the Kronecker delta.

1.3 Numerical solution

In this section we adopt standard procedures to obtain explicit methods to solve

the initial boundary value problem presented in Section 1.2. In the sequel we will

introduce the semi-discrete and discrete formulations in Sections 1.3.1 and 1.3.2, re-

spectively. After that, in Section 1.3.3 we will discuss an issue unique to the explicit

phase field formulation of crack evolution, namely, the decreasing critical time step as

time evolves, and then present our solution to this problem by adopting an adaptive

time step based on the current solution. As a consequence of the need of time step

adaptivity, only one-step time integrators will be adopted.

1.3.1 Semi-discrete Galerkin formulation

We discretize the domain Ω with a mesh family {Th}, each member characterized by

the mesh size h. Let H denote the set of all nodes, then we approximate (u, d) with

the standard first-order (P1 or Q1) finite element basis functions associated with all

nodes A ∈ H:

u(x, t)
.
=
∑
A∈H

2∑
i=1

uP (t)NA(x)ei, d(x, t)
.
=
∑
A∈H

dA(t)NA(x),

where ei is the unit vector along the ith Cartesian direction, and P := 2(A− 1) + i is

a lumped index for the combination (A, i). Then standard Galerkin approximations
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yield the following matrix form of the problem

Mü = F−K(u,d)u, (1.7a)

ḋ =
〈
M
−1

Y (u,d)
〉

+
, (1.7b)

with initial conditions determined from u0, u̇0, and d0. Here u = {uP} and d = {dA}
are vectors that contain the time-dependent nodal degrees of freedom (DOFs) of u

and d, respectively, and the explicit expressions of the matrices involved in (1.7) read

KPQ(u,d) := ad(NAei, NBej), (1.8a)

MPQ := (NA, 1)δABδij, (1.8b)

FP := f(NAei), (1.8c)

MAB := η(NA, 1)δAB, (1.8d)

YA (u,d) :=

Y
−
A (u,d) , dA < 1,

0, otherwise,
(1.8e)

where

Y −A (u,d) := −
(
NA,

∂ψ

∂d

)
− gc

l
(NA, d)− gcl2(∇NA,∇d),

Q := 2(B − 1) + j is the DOF index for u associated with node B and Cartesian di-

rection j = 1, 2, and we have lumped mass matrices M and M into diagonal matrices.

Note that since M is diagonal and positive definite, (1.7b) is equivalent to

Mḋ = 〈Y (u,d)〉+ .

1.3.2 Fully discrete formulations

We discretize the time interval [0, tf ] into small increments 0 = t0 < t1 < . . . < tN = tf

and define ∆tk := tk − tk−1. Note that the time step sizes {∆tk} may be different
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from each other, due to stability considerations.

Here we adopt standard second-order methods for time integration: central differ-

ence for the displacement field and Heun’s method for the phase field. The approxi-

mate solutions of u(tk), u̇(tk), ü(tk), d(tk), and ḋ(tk) are denoted as uk, vk, ak, dk,

and rk, respectively. To simplify the calculation of (1.8e), we will always perform the

integration for d with Y (u,d) replaced by Y− (u,d) in (1.7b), and then replace all

those entries exceeding unity by unity.

The overall algorithm is given in Algorithm 1, taking into account the inter-

dependence of the quantities in the computation and the consideration of stability,

both of which we will discuss in the sequel.

Algorithm 1: Algorithm to update the solution from time step k to k + 1

input : uk, vk, dk, ∆tLBcu , and ∆tLBcd
output: ∆tk+1, uk+1, vk+1, and dk+1

Set ∆tk+1 ≤ ∆tLBc where ∆tLBc is given by (1.14)
Update uk+1, vk+1, and dk+1 in the following order:

(1.9a)→ (1.10a)→ (1.10b)→ (1.9b)→ (1.9c)→ (1.10c)→ (1.10d)→ (1.9d)→ (1.9e)

Central difference method for displacement integration The central differ-

ence method consists in computing uk+1, vk+1, and ak+1 from uk, vk, and ak according

to 
Mak+1 + K(uk+1,dk+1)uk+1 = Fk+1,

uk+1 = uk + ∆tvk +
∆t2

2
ak,

vk+1 = vk +
∆t

2
(ak + ak+1).

An efficient implementation of this algorithm is given by Hughes [Hughes, 1987,
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Section 9.1.1]

Mak = Fk −K(uk,dk)uk, (1.9a)

uk+1 = uk + ∆tvk +
∆t2

2
ak, (1.9b)

v∗k+1 = vk +
∆t

2
ak, (1.9c)

Mak+1 = Fk+1 −K(uk+1,dk+1)uk+1, (1.9d)

vk+1 = v∗k+1 +
∆t

2
ak+1. (1.9e)

To start the process, we determine u0, v0, and d0 from the initial conditions (1.5),

and a0 from

Ma0 = F0 −K(u0,d0)u0.

Heun’s method for the phase field The Heun’s method, a special case of second-

order Runge-Kutta methods, updates the solution from (dk, rk) to (dk+1, rk+1) accord-

ing to:

Mrk =
〈
Y−(uk,dk)

〉
+
, (1.10a)

d∗k+1 = min{1,dk + ∆trk}, (1.10b)

Mr∗k+1 =
〈
Y−(uk+1,d

∗
k+1)

〉
+
, (1.10c)

dk+1 = min

{
1,dk +

1

2
∆t
(
rk + r∗k+1

)}
, (1.10d)

where the minimum operation is taken componentwise.

1.3.3 Time step adaptivity due to stability considerations

As is typical of explicit methods, the proposed combination of methods is conditionally

stable. As will be shown later, the critical time step decreases as the crack propagation

progresses, and hence an adaptive scheme to determine a stable time step is necessary,
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which we will elaborate in this section as well.

To study the stability properties, we only consider the case with dA < 1, ∀A ∈ H,

and rewrite (1.8e) as

Y(u,d) = F−K(u)d,

where
KAB(u) := gcl

2(∇NA,∇NB) +
(
NA, NB

[gc
l

+ 2ψ+[ε(u)]
])
,

FA := (NA, 2ψ+[ε(u)]).

Let λmax(u,d) and λmax(u) be the maximum eigenvalues of the following general-

ized eigenvalue problems, respectively:

K(u,d)Ψ = λMΨ, K(u)Ψ = λ M Ψ.

Then standard stability analysis of the central difference method and Heun’s method

yields the following stability limit of the time step:

∆tc = min{∆tcu,∆tcd}, ∆tcu :=
2√

λmax(u,d)
, ∆tcd :=

2

λmax(u)
. (1.11)

Since the phase field d is non-decreasing, it can be shown that λmax(u,d) ≤
λmax(u,d0), where d0 is the initial condition for d, and hence a safe estimate for

∆tcu is given by

∆tcu ≤
2√

λmax(u,d0)
.

On the other hand, λmax(u) is approximately an affine function of ψ+[ε(u)], and thus if

the loading to the system increases, ∆tcd decreases. As a result, an adaptive procedure

to always make sure that the calculation is within the stability range is indispensable.

For this purpose, we take advantage of the GPU architecture and compute a lower

bound for the critical time step by determining an upper bound for the maximum

eigenvalue of M
−1

K at every time step.

Let e be a typical element and k
e
(u) and me the element contribution to K(u)
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and M, respectively. Then from a property of the Rayleigh quotient and Gershgorin’s

circle theorem Gerschgorin [1931], an upper bound for λmax(u) is given by

λmax(u) ≤ max
e
λ
e

max(u) ≤ max
e

max
i

∑
j

∣∣Aeij(u)
∣∣ , (1.12)

where λ
e

max(u) is the maximum eigenvalue of the generalized eigenvalue problem as-

sociated with k
e
(u) and me, and A

e

ij is the i, j component of A
e
(u) := (me)−1k

e
(u).

As a result, we define the following computable lower bound:

∆tLBcd := min
e

∆tecd, ∆tecd :=
2

maxi
∑

j

∣∣Aeij(u)
∣∣ . (1.13a)

A lower bound for ∆tcu(u,d0), ∆tLBcu , can also be obtained in a similar way:

∆tLBcu := min
e

∆tecu, ∆tecu :=
2√

maxi
∑

j

∣∣Aeij(u,d0)
∣∣ , (1.13b)

where Ae(u,d0) := (me)−1ke(u,d0). Nevertheless, ∆tLBcu only needs to be computed

once at the beginning. Then a lower bound of ∆tc can be obtained by

∆tLBc = min
{

∆tLBcu ,∆t
LB
cd

}
. (1.14)



Chapter 2

GPU implementation

2.1 Essence of massively parallel programming

Despite the growing literature in the application of phase field modeling of fracture,

the computational cost of such models is sensitive to the choice of the regularization

parameter in conjunction with the mesh size, as the mesh has to be fine enough to

resolve high gradients of the phase field appearing in the transition zones between

cracked and un-cracked materials, whose width is on the order of the regularization

parameter [Miehe et al., 2010b]. This parameter can be interpreted as either a math-

ematical construction or an intrinsic material parameter. In this work we will adopt

the first meaning in subsequent sections. Strictly speaking, even in the quasi-static

setting, the limit of gradient flows for similar Ambrosio-Tortorelli functionals as this

regularization parameter tends to 0 is still a difficult unresolved problem [Feng and

Prohl, 2004, Babadjian and Millot, 2014]. The general understanding is that it has to

be small enough compared to the characteristic length of the computational domain

to make the simulation meaningful. Numerically resolving this regularization length

scale is one of the main computational challenges of implementing such models.

Recently, graphics processing units (GPUs) which are capable of massive paral-

lelization have had success in accelerating many numerical computations. Therefore,

massively parallel programming with the GPU is a promising solution for the problem

of high computational costs of the phase field methods. Here we mention Cecka et

19
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al. [Cecka et al., 2011] as one of the early applications of the GPU to finite element

methods.

In this work, we develop a massively parallel program to implement our explicit

algorithm to solve for a rate-dependent formulation of the phase field modeling of

brittle fracture on NVIDIA GPUs using the Compute Unified Device Architecture

(CUDA).

Essentially the GPU favors the same or similar operations on a massive collection

of data. In this context, the updating of nodal finite element data (displacement,

velocity, and phase field) naturally fits this requirement. In this work we will provide

a detailed algorithm to demonstrate how such a simulation can be done with GPU.

This chapter devotes to the presentation of our GPU algorithm for the discrete

problem described in Section 1.3. We first give an overview of the GPU architecture

in Section 2.2, focusing on the necessary trade-offs, such as storing versus repeatedly

computing data, in implementing the problem at hand. Then in Section 2.3 we

describe the algorithm used to implement the discrete form of the phase field problem

suited to the GPU architecture.

2.2 Introduction to GPU programming

We first briefly introduce the GPU architecture and programming. As we will see,

the most suitable type of procedure for the GPU is one that executes the same in-

structions over a large set of data. For the problem at hand, the updating of nodal

data (displacement, velocity, and phase field) between time steps is a suitable proce-

dure to be GPU-parallelized, since for each node, the needed data is associated with

only its neighboring nodes and elements. Another procedure to be parallelized is the

determination of a lower bound for the critical time step by evaluating the right hand

side of (1.14), a procedure that allows parallelizing the calculation between elements.

We have adopted the Compute Unified Device Architecture (CUDA) designed by

the company NVIDIA to organize the program. The main idea of this architecture

is to run the backbone of the program as a serial code on the central processing unit
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(CPU) while calling the GPU device as a kernel (or subroutine) to run the parallel

procedures.

For readers’ convenience, we have summarized the most frequently used terms

regarding the GPU architecture in Table 2.1.

Table 2.1: Glossary in the GPU architecture

Term Definition
Host The CPU
Device The GPU
Kernel A function executed in parallel on the device
Streaming The part of the GPU that runs the CUDA kernels
multiprocessors (SMs)

A process on the device executing the kernel. Only
Thread a certain number (typically 1,536) of threads can

fit in a SM.
A group of threads that cooperates through their

Block shared memory and that can be synchronized.
Only a certain number (typically 8) of blocks can
fit in a SM.

Grid The entire set of blocks executing a single kernel
Registers On-chip memory assigned to a single thread
Shared memory On-chip memory shared among threads of a single

block
Global memory Off-chip memory accessible to all threads

We next briefly recapitulate key concepts relevant to the algorithm design of the

problem at hand.

Execution model Whenever a kernel is invoked, the device is executed by gener-

ating a large number of threads. Each thread is able to complete simple tasks such as

elementary operations and data transfer. When all threads have completed their task,

the execution of the code is transferred back to the host, until either another kernel is

called or the program terminates. Note that there is no predictable order among the

threads in execution; hence, attention must be paid to avoid the race condition, an
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undesired situation in which different execution orders of the threads lead to different

outputs.

All threads of the GPU device are grouped into blocks. A block defines the extent

to which data can be exchanged and to which synchronization among threads is

possible during the course of the kernel execution, which becomes clearer with the

memory hierarchy illustrated.

Memory hierarchy There are a few types of memory in the GPU architecture

whose characteristics the programmer must take into account when organizing a ker-

nel. We compare the major types of memory in Table 2.2.

Table 2.2: Memory hierarchy

Global memory Shared memory Registers
Amount Abundant Limited Very limited

Range of accessibility All threads Blockwise Thread
Speed of data transfer Slow Fast Fast
Data remains between Yes No No
invocations of kernels

Figure 2.1 offers an overview of the CUDA device memory model. There are also

other types of memory in the GPU device, namely constant memory and texture

memory, which we will not elaborate in this work.

Optimizing data transfer and repetition of calculation To optimize the paral-

lel device code, kernels should minimize transactions to and from the global memory,

as well as the amount of registers and shared memory usage so that the kernel is

executed by the maximum allowed number, or a smaller number but as close as pos-

sible, of blocks per SM (typically 8) and the maximum allowed number of threads per

SM (typically 1,536) in the device. This includes: (a) transferring only the minimum

amount of data from the global memory to shared memory and registers, and (b)

calculating intermediate results as often as needed. In the next section, we describe

how we deal with such an optimization problem when implementing our numerical

algorithm.
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GPU
Block

Global Memory (non-volatile)

Shared Memory

Registers Registers

Block

Shared Memory

Registers Registers

Slow
Fast

Fast

Thread Thread Thread Thread

(volatile) (volatile)

(volatile) (volatile) (volatile) (volatile)

Figure 2.1: Thread and memory hierarchy of the GPU (reproduced and revised from
Kirk and Hwu [Kirk and Hwu, 2010, Figure 3.7], with permission from the authors).
When the GPU kernel is called, data is transferred from the CPU to the global memory
of the GPU, then to the shared memory and registers. The global memory is non-
volatile, i.e., its contents remain between invocations of the GPU; the shared memory
and the registers are volatile. When the GPU is being executed, thousands of threads
are generated to simultaneously complete simple tasks on different data. These are
grouped into blocks. Each thread owns some memory called registers, and shares
some memory with other threads in the same block called shared memory. Threads
in different blocks cannot share memory during the course of kernel execution nor can
they be synchronized.
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2.3 GPU algorithm for the phase field problem

Now, we describe how we implement the numerical algorithm detailed in Section 1.3

in a massively parallel way.

Thread assignment Judging from the nature of the data structure of the problem

at hand, it is natural to associate threads with either elements or nodes, for different

parts of the calculation. In particular, we associate the threads with the nodes for

most of the calculations during the time step except when calculating a lower bound

for the critical time step we associate threads with elements. The reason for the latter

is apparent as long as (1.14) is concerned, and that for the former is because the FEM

DOFs are associated with the nodes: associating the threads with the nodes easily

avoids race conditions. We do need to pay the price in that data for different nodes

of the same element is repeatedly computed, by different threads.

Block division As explained in Section 2.2, all threads are grouped into blocks.

Here we explain how we do so and its implications when the threads are associated

with the nodes. The case of assigning threads to elements is analogous and simpler,

and hence will not be elaborated.

We first divide the computational domain into mutually disjoint subdomains, then

group all nodes within the same subdomain into a block. In general, each block

should have almost the same number of nodes in order to balance work loads. This

balance can be achieved with the package Metis [Karypis and Kumar, 1998]. Here

for simplicity we perform the subdivision with a rectangular grid, as shown in Figure

2.2. Note that during the calculation, in order to update quantities associated with

all nodes of a certain block, it is also necessary to read (but not write) data associated

with nodes in other blocks sharing an element with any node of the block of interest.

Code body Algorithm 2 details the body of the program, including codes executed

in the host (CPU) and in the device (GPU). During each time step, multiple kernels

are invoked to complete the tasks in Algorithm 1. In Table 2.3 we list the input and
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Figure 2.2: Illustrative example of a block division by subdividing a domain into nine
subdomains. Threads associated with nodes in the same subdomain are grouped into
the same block. Each block is responsible of updating data associated with all nodes
inside the corresponding subdomain in each time step, and hence needs data of the
current time step of all associated nodes plus that of the neighboring nodes of these
nodes. For example, the block associated with the square subdomain in the center
needs data from all nodes marked with “o” as well as those from its own nodes, nodes
located in the dark blue region.
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output for each of these kernels. All these kernels are categorized into four types:

(I) to compute the allowed ∆t based on (1.11);

(II) to calculate the intermediate nodal field values (a, r, or r∗);

(III) to update u, v, d, or d∗;

(IV) to update boundary conditions for u and v.

The reason to have multiple kernels is because even within a time step, computing

some intermediate results still requires data from neighboring blocks. Here, we briefly

explain each type of the kernels.

Type I kernels. Kernels Ii and Iii compute ∆tLB,bkcu and ∆tLB,bkcd for each block,

respectively, which is elaborated in Algorithm 3. To find ∆tLBcu and ∆tLBcd , we employ

a serial code in the host rather than in the device, since there are a manageable

number of blocks (up to 1,024) in the numerical examples to come. It is worthwhile

to mention that regarding Algorithm 3, in order to find the minimum value inside

each block, a well-known reduction algorithm of logarithmic complexity is utilized.

Here, for brevity we refer the readers to Kirk and Hwu [Kirk and Hwu, 2010, Chapter

6].

Type II kernels. Type II kernels calculate either a or r, the time rate of change

of d. Algorithm 4 illustrates how these kernels work.

Type III kernels. Type III kernels update nodal values of u, v, or d. Here

Algorithm 5 details this process.

Note that type III kernels are executed by as many threads as the number of

input values so that each thread is responsible for updating one value.

Type IV kernels. After updating u or v, type IV kernels are invoked to impose

the Dirichlet boundary conditions by as many threads as the number of boundary

nodes. To speed up the process, we collected the addresses of the nodal values of u or
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Algorithm 2: GPU implementation of Algorithm 1. Subscript f refers to the
values at the final time.

input : u0, v0, d0, and tf
output: uf , vf , and df
/* Kernels of types I, II, and III are discussed in Algorithms 3,

4, and 5, respectively. */

Call kernel Ii to compute ∆tLB,bkcu for each block according to (1.11)
In the host, compute ∆tLBcu as the minimum among all ∆tLB,bkcu

/* ∆tLBcu only has to be computed once */

Set t = 0 and k = 0
Call kernel IIi to compute r0

Call kernel IIii to compute a0

while t < tf do

Call kernel Iii to update ∆tLB,bkcd for each block according to (1.11)

In the host, compute ∆tLBcd as the minimum among all ∆tLB,bkcd

Set ∆tLBc = min{∆tLBcu ,∆tLBcd } per (1.14) and ∆t = min{∆tLBc , tf − t}
Call kernel IIIi to update uk+1, v∗k+1, and d∗k+1 with (1.10b), (1.9b), and
(1.9c)
Call kernel IVi to set boundary conditions for u
Call kernel IIii to compute r∗k+1 with (1.10c)
Call kernel IIIii to update dk+1 with (1.10d)
Call kernel IIii to compute rk+1 with (1.10a)
Call kernel IIi to compute ak+1 with (1.9d)
Call kernel IIIiii to update vk+1 with (1.9e)
Call kernel IVii to set boundary conditions for v
t← t+ ∆t
k ← k + 1

/* Vectors in the same of the following groups can, and should,

occupy the same memory space: (uk, uk+1), (vk, v∗k+1, vk+1),

(ak, ak+1), (dk, dk+1), and (rk, rk+1). */
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Table 2.3: Summary of input and output of the kernels. Here bk means blockwise
quantities.

Kernel Input Output Remarks
Ii – ∆tLB,bkcu (1.13b)

Iii u ∆tLB,bkcd (1.13a)
IIi u, d a (1.9a), (1.9d)
IIii u, d r (1.10a), (1.10c)
IIIi uk, vk, dk uk+1, v∗k+1, d∗k+1 (1.9b), (1.9c), (1.10b)
IIIii d∗k+1 dk+1 (1.10d)
IIIiii v∗k+1 vk+1 (1.9e)
IVi u u (with boundary conditions imposed)
IVii v v (with boundary conditions imposed)

Algorithm 3: GPU implementation of type I kernels based on (1.14)

input : u (only for kernel Iii)
output: ∆tLB,bkcu or ∆tLB,bkcd (where bk stands for block)

Transfer the following data to the shared memory: local connectivity, nodal
coordinates, and for kernel Iii, also nodal values of u
Compute ∆tecu (or ∆tecd) for each element (associated with one thread) per
(1.13b) (or (1.13a)) and store it in the registers (1.11)
Synchronize all blocks (barrier synchronization)

Find the minimum ∆tLB,bkcu = mine ∆tecu (or similarly for ∆tLB,bkcd ) among all the
threads of a block (1.12)

Transfer ∆tLB,bkcu (or ∆tLB,bkcd ) to the global memory

Algorithm 4: Algorithm for the GPU implementation of type II kernels based
on Algorithm 2

input : u and d
output: a or r

Transfer the following data to the shared memory: local connectivity, nodal
coordinates, and nodal values of u and d
Compute a (or r) for each node (associated with one thread) with (1.9a) and
(1.9d) [or (1.10a) and (1.10c)] by looping over its neighboring elements and
summing up their contribution in the registers
Transfer the registers to the global memory
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Algorithm 5: Algorithm for the GPU implementation of kernel III based on
Algorithm 2

input : uk, vk, v∗k+1, dk, d∗k+1

output: uk+1, v∗k+1, vk+1, d∗k+1, dk+1

Call the required intermediate nodal field values from global memory
Do arithmetic operations based on formulas (1.9b), (1.9c), (1.9e), (1.10b),
(1.10d)
Assign the result at the same location of input at global memory

v and stored them consecutively in the global memory in the pre-processing stage. A

type IV kernel is then constructed such that each thread is responsible of updating

the boundary value of one node. When such a kernel is invoked, each thread first reads

from the global memory the pre-collected address corresponding to this thread and

then updates the values with the relevant pre-defined boundary values. This way of

pre-processing and arrangement of intermediate data leads to speeding up the global

memory transactions.

Following Algorithm 2, with details just explained, a massively parallel program

has been constructed on the GPU architecture to solve the phase field formulation for

crack propagation presented in this work.



Chapter 3

Numerical examples

In this chapter, we present three representative sets of numerical examples to demon-

strate the performance of the proposed algorithm for the phase field fracture models.

An NVIDIA Kepler K20M GPU and two Intel Xeon E5-2670 (8 Cores, 2.6GHz, 20MB

Cache, 8.0GT) CPUs were used in the calculations.

The three sets of examples include a tension test, a shear test, and a symmetric

bending test. Throughout this section we will use the standard P1 elements and

lumped mass matrices M and M. We will adopt the values of the parameters given

in Table 3.1.

Table 3.1: Default parameter values for the examples

Name Symbol Value
Lamé constant λ 120GPa
Shear modulus µ 80GPa
Critical energy release rate gc 2.7× 10−3kN/mm
Density ρ 7000 kg/m3

Artificial viscosity η 1.0× 10−6kNs/mm2

Displacement loading rate (lower) u̇D = u̇DL 10mm/s
Displacement loading rate (higher) u̇D = u̇DH 100mm/s

30
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3.1 Cracked square plate under a tension test

We first investigate a square plate with a horizontal initial crack at the middle height

starting from the left end and ending at the plate center. This square plate has edge

lengths of L = 100mm. The geometric setup is depicted in Figure 3.1. The specimen

is under a direct tension test, in which a monotonically increasing displacement with

magnitude u̇Dt is imposed on both the top and the bottom edges. As in Table 3.1, we

will test for two loading rates u̇DL and u̇DH , in Sections 3.1.1 and 3.1.2, respectively.

The regularization parameter is set to be l = 1mm. We simulate the evolution from

t = 0 to some final time tf (tf = 7.0 × 10−3s for u̇D = u̇DL and tf = 2 × 10−3s for

u̇D = u̇DH). In the simulations, the sample is discretized uniformly with 45,616 three-

noded triangular elements. In the GPU kernel the nodes or elements are grouped into

16× 16 blocks.
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Figure 3.1: Schematic of a cracked square plate (unit: mm) under a single-edge-
notched tension test. A monotonically increasing displacement loading u = u̇Dtey is
applied on the top edge and u = −u̇Dtey on the bottom edge.
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3.1.1 A lower loading rate

Figure 3.2 shows snapshots of the phase field contours obtained with models A, B, and

C (see Table 1.2) at selected instants {0.5, 0.75, 1.0}tf , using the default parameters

in Table 3.1 with u̇D = u̇DL. It is observed that all models produce a similar crack

path up to the fully broken stage. The crack topologies of models A and C agree well

with the results in [Miehe et al., 2010b].

Figure 3.3 plots the evolution of the total vertical reaction applied at the sam-

ple’s top (or bottom) edge for the three models. All models show similar trends,

though model B gives rise to slightly higher values. After the crack starts to evolve,

approximately at t = 0.58tf , the total reaction begins to decrease.

Figure 3.4 shows the evolution of the effective total crack length, denoted |Γ|, for

models A, B, and C. According to (1.3), |Γ| is defined as

|Γ| = initial crack length +
1

2

∫
Ω

(
d2

l
+ l∇d · ∇d

)
dΩ, (3.1)

which takes into account both the initial and propagated cracks. It can be observed

that the effective crack length increases until a certain time/value, after which it shows

a plateau, indicating that the crack has completely propagated through the sample.

Here, the final values for the total crack lengths are larger than L. This may be

due to the irreversibility of the phase field model (1.4b’). Unlike the method used in

[Miehe et al., 2010b] and [Borden et al., 2012] where the computed phase field is always

the solution to an elliptic problem similar to (1.4b), i.e., without taking into account

its history, our solution to the phase field strictly enforces that ḋ ≥ 0 everywhere and

hence tends to smear the phase field profile near where d = 1, leading to a higher

effective crack length. On the other hand, numerical experiments show that refining

the finite element mesh helps reducing this broadening effect. According to [Bourdin

et al., 2008], the effect of the mesh size h and the regularization parameter l on the

effective critical energy release rate gc,eff is summarized by gc,eff = gc[1 + h/(4l)],

which implies that the computed crack length should be smaller than the exact one

at the same load, to the contrary of the observation here. Hence, the apparent higher
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(a) 0.5tf (b) 0.5tf (c) 0.5tf

(d) 0.75tf (e) 0.75tf (f) 0.75tf

(g) tf (h) tf (i) tf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(j)

Figure 3.2: Cracked square plate under a tension test with u̇D = u̇DL. Here tf =
7.0 × 10−3s. Phase field contours of models A (left column), B (middle column),
and C (right column) (see Table 1.2) at different instants are shown in deformed
configurations with the displacement scaled. The same parameters are used for all
three phase field models. Due to symmetry we modeled only the upper half of each
sample, which is discretized into 45,616 three-noded triangular elements. The initial
crack was explicitly introduced, and hence in the deformed configuration it appears
as a white line. We observe a straight crack in each case.
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Figure 3.3: Cracked square plate under a tension test with u̇D = u̇DL. Total vertical
reaction on the top edge versus time for models A, B, and C. The total reaction is
normalized by 2Eu̇Dtf/L · L = 29.12kN/mm, i.e., by the total reaction applied to
the top edge at t = tf in the case without any crack or phase field evolution. Here
tf = 7.0 × 10−3s. All models give rise to similar trends for the total reaction at the
top. The total reaction begins to decrease at approximately t = 0.58tf .

crack length may be due to the inadequacy of the irreversibility scheme adopted for

the Ambrosio-Tortorelli-type functional here.

Figure 3.5 plots the calculated lower bound for the critical time step ∆tLBc com-

puted with (1.14) as a function of t. Here, we observe, as expected, that as the phase

field evolves, beginning from a certain time, ∆tLBc completely depends on ∆tLBcd , a

lower bound for the critical time step for the phase field half-problem. Hence at the

fully broken stage the time step in use is significantly smaller (up to 200 times) than

its initial value. We reiterate here that in the early stage of the crack propagation, the

critical time step ∆tLBc is dictated by that of the elastodynamic half problem, ∆tLBcu ,

which increases as the crack propagates. Hence, instead of tracking this increasing

critical time step with adaptivity, we simply use the one determined from the first

time step. In contrast, in the late stage, i.e., when ∆tLBcd ≤ ∆tLBcu (beyond 0.9tf in

this case), then ∆tLBc = ∆tLBcd decreases as the crack propagates, which is when we

start to adaptively refine the time step on the fly.

We next perform a study on the artificial viscosity η on the solution. Figure 3.6
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Figure 3.4: Cracked square plate under a tension test with u̇D = u̇DL. Evolution of
the total crack length as defined in (3.1) normalized by the edge length L for models
A, B, and C. Note that the initial crack length is 0.5L. Here tf = 7.0 × 10−3s. It is
observed that the final crack lengths are larger than L, which might come from the
irreversibility of the phase field evolution.
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Figure 3.5: Cracked square plate under a tension test with u̇D = u̇DL. A lower bound
for the critical time step is calculated with (1.14) and normalized with ∆tLBcu at t = 0,
which is the same for all models. Here, the data are collected from the solution of
models A, B, and C. Beginning from a certain point, as the phase field evolves, the
lower bound decreases and ∆tLBc solely depends on ∆tLBcd . Here tf = 7.0× 10−3s. The
reader is referred to the body text for an explanation of this trend.
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shows three phase field contours computed with three different η values at the same

time instant, with all other parameters the same. The results are anticipated: all

samples show the same crack path, while as η increases, the evolution of the crack

becomes slower.

(a) (b) (c)

Figure 3.6: Cracked square plate under a tension test with u̇D = u̇DL. Phase field
contours for three samples of model C at t = tf are shown. Here tf = 7.0×10−3s. The
values of η for these samples are: (a) 1.0 × 10−6kNs/mm2, (b) 2.0 × 10−6kNs/mm2,
and (c) 5.0 × 10−6kNs/mm2. Other parameters are the same and are given in Table
3.1. As seen, for higher value of η, the evolution of crack at t = tf becomes slower.

Figure 3.7 depicts their corresponding evolution of the total vertical reaction at

the top. As shown, as η increases, higher values for the total reaction is obtained,

and the softening becomes less pronounced. It is also seen that for all samples the

softening starts at approximately the same time, from which we may conclude that

the artificial viscosity η does not affect the onset of crack propagation.

3.1.2 A higher loading rate

In this section, we push the loading rates high enough to see crack branching, i.e.,

u̇D = u̇DH . For other parameters we use the same values as in Table 3.1. We

simulate the evolution from t = 0 to some final time tf = 2 × 10−3s. Figure 3.8 is

the counterpart of Figure 3.2 for this loading rate, where snapshots of the phase field

contours obtained with all models are shown at different instants. We observe crack
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Figure 3.7: Cracked square plate under a tension test with u̇D = u̇DL. The evolution
of the total vertical reaction on the top for edge three samples of model C with
different values of η: (a) 1.0× 10−6kNs/mm2, (b) 2.0× 10−6kNs/mm2, and (c) 5.0×
10−6kNs/mm2. Here tf = 7.0× 10−3s. It is seen that the higher η is, the higher total
reaction is. It can also be observed that η does not affect the onset of the onset of
crack propagation.
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branching only for model B. On the other hand, cracking emanating from the top

and bottom edges is observed for all models, which may be considered artifacts of the

method.

Finally, Figure 3.9 plots the total reaction on the top edge versus time for models

A, B, and C. Compared to Figure 3.3, here we see some more softening, and a delayed

peak of the reaction (note the different values of tf in the two figures).
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(a) 0.5tf (b) 0.5tf (c) 0.5tf

(d) 0.75tf (e) 0.75tf (f) 0.75tf
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Figure 3.8: Cracked square plate under a tension test with u̇D = u̇DH . Phase field
contours of models A (left column), B (middle column), and C (right column) (see Ta-
ble 1.2) at different instants ({0.5, 0.75, 1.0}tf ) are shown in deformed configurations
with the displacement scaled. Here tf = 2.0 × 10−3s. We observe a straight crack
for models A and C, while a branched crack for model B. Also observed are cracking
from the top and bottom edges in all models, which may be considered artifacts of
the method.
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Figure 3.9: Cracked square plate under a tension test with u̇D = u̇DH . Total vertical
reaction on the top edge versus time for models A, B, and C. The total reaction is
normalized by 2Eu̇Dtf/L · L = 29.12kN/mm, i.e., by the total reaction applied to
the top edge at t = tf in the case without any crack or phase field evolution. Here
tf = 2.0× 10−3s. All models give rise to similar results. The total reaction begins to
decrease at approximately t = 0.4tf . Compared to Figure 3.3, here we see later and
more softening for all models (note the different values of tf in the two figures).
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3.2 Pure shear test of a cracked specimen

As the second example, we simulate a shear test of a squared plate with an initial

crack at the middle height. The geometric setup and loading are shown in Figure

3.10. The regularization parameter is set to be l = 1mm.

We ran the simulation from t = 0 to t = tf where tf = 9.0× 10−3s. The mesh has

143,456 triangular elements and in the GPU kernel the nodes or elements are grouped

into 32× 32 blocks.
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Figure 3.10: Schematic of a cracked square plate (unit: mm) under a displacement
shear load. A monotonically increasing antisymmetric displacement loading u =
u̇Dtex is applied on the top and u = −u̇Dtex on the bottom edge.

Figure 3.11 shows snapshots of the phase field contours obtained with models A,

B, and C, at different instants {0.5, 0.75, 1.0}tf , where tf = 9.0×10−3s. For model A,

in which the phase field evolution can be due to both tension and compression, the

crack is branched, while for models B and C, the crack just kinks, with different kink

angles. The crack topologies of models A and C agree well with a similar shear test

in [Miehe et al., 2010b].
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(a) 0.5tf (b) 0.5tf (c) 0.5tf

(d) 0.75tf (e) 0.75tf (f) 0.75tf
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Figure 3.11: Cracked square plate under a shear test. Phase field contours of models
A (left column), B (middle column), and C (right column) (see Table 1.2) at different
instants are shown in deformed configurations with the displacement scaled. Here
tf = 9.0 × 10−3s. The same parameters are used for all three phase field models.
The sample is discretized into 143,456 three-noded triangular elements. The initial
crack was explicitly introduced. For model A, a clear bifurcation into two branches is
observed, while for models B and C the crack just kinks.
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We show more results to compare with the tension test. Figure 3.12 depicts the

evolution of the total reaction on the top (or bottom) edge for models A, B, and C.

Figure 3.13 shows the evolution of the effective total crack length |Γ|. Figure 3.14

plots the calculated lower bound for the critical time step ∆tLBc computed with (1.14)

as a function of t. The trend is similar to the tension test, see Figure 3.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t/tf

N
or

m
al

iz
ed

 to
ta

l r
ea

ct
io

n

 

 

A
B
C

Figure 3.12: Pure shear test of a cracked specimen. The evolution of the total hori-
zontal reaction on the top for models A, B, and C are shown. The data are normalized
by 2µu̇Dtf/L · L = 16kN/mm, i.e., the total horizontal reaction on the top edge at
t = tf if the specimen were unbroken. Here tf = 9.0× 10−3s. We observe overlapping
curves for the three models before the onset of crack propagation.

Figure 3.15 shows the phase field contours obtained from three different values

of the artificial viscosity η at time t = tf . All other parameters are the same. Like

Figure 3.6, although their propagation speeds are different, all samples evolve in a

similar fashion. Finally, Figure 3.16 shows their corresponding total vertical reaction.

The higher η, the lower the rate of crack evolution, and the higher the total vertical

reaction on the top.
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Figure 3.13: Pure shear test of a cracked specimen. Evolution of the total crack length
as defined in (3.1) normalized by the edge length L for models A, B, and C. Note that
the initial crack length is 0.5L, and tf = 9.0× 10−3s.
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Figure 3.14: Pure shear test of a cracked specimen. A lower bound for the critical
time step is calculated with (1.14) and normalized with ∆tLBcu at t = 0, which is the
same for all models. Here, the data are collected from the solution of models A, B,
and C. Beginning from a certain point, as the phase field evolves, the lower bound
decreases and ∆tLBc solely depends on ∆tLBcd . The reader is referred to Section 3.1 for
an explanation of this trend. Here tf = 9.0× 10−3s.
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(a) (b) (c)

Figure 3.15: Cracked square plate under a shear test. Phase field contours for three
samples of model B at t = tf are shown. Here tf = 9.0 × 10−3s. The values of
η for the samples are: (a) 1.0 × 10−6kNs/mm2, (b) 2.0 × 10−6kNs/mm2, and (c)
5.0 × 10−6kNs/mm2. Other parameters are the same. As seen, for a higher value of
η, the evolution of the crack becomes slower. Nevertheless, all samples show a similar
crack path.
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Figure 3.16: Pure shear test of a cracked specimen. Total vertical reaction on the
top for three samples of model B with different values of η: (a) 1.0× 10−6kNs/mm2,
(b) 2.0× 10−6kNs/mm2, and (c) 5.0× 10−6kNs/mm2. The higher η the more is total
reaction. Here tf = 9.0× 10−3s.
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3.3 Symmetric bending test

We now investigate a bending test of a simply supported cracked beam. The geometry

and the loading setup are shown in Figure 3.17. In contrast to the previous examples,

here a uniformly distributed incremental force w = 0.3kN/mm2 t/tf rather than

displacement is applied on a certain area on the top. Here tf = 0.03s.

300

1200
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400

w

Figure 3.17: Symmetric bending test. A uniform monotonically increasing force load-
ing is applied on the indicated area in the middle of the top edge. The specimen is
initially cracked from the middle of bottom edge upwards.

We set the regularization parameter to be l = 4mm. Due to symmetry, only the

left half of the beam is simulated with appropriate symmetric boundary conditions.

This left half of the computational domain is discretized into 103,340 three-noded

triangular elements. In the GPU kernel the nodes or elements are grouped into 24×24

blocks.

Figure 3.18 shows the snapshots of the phase field contours computed with models

A, B, and C at selected instants t = {0.6, 0.8, 1.0}tf . Here tf = 0.03s. Other parame-

ters are given in Table 3.1. From the figure, it is observed that the crack propagates

upward for all models while the phase field under the loading area reaches high values

with models A and B as well. From this aspect, model C may be the model of choice

for many applications.
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Figure 3.18: Symmetric bending test. Phase field contours at selected instants t =
{0.6, 0.8, 1.0}tf obtained with models A (left column), B (middle column), and C
(right column) are shown in the deformed configuration with the displacement scaled.
Here tf = 0.03s. Due to symmetry, only the left half of each sample is modeled,
which is discretized into 103,340 three-noded triangular elements. The initial crack
was explicitly introduced, and hence in the deformed configuration it appears as a
white line. As seen, the initial crack propagates upward in all models. Moreover,
there is another region with high phase field values right under the loading area for
models A and B.
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3.4 Conclusion

We have designed a GPU algorithm for the phase field approach to fracture, where the

displacement field is a solution of an elastodynamic problem, while the phase field is

updated according to a rate-dependent formulation, so that we obtain a fully explicit

scheme. The explicit method fits nicely with the GPU architecture, especially in

terms of the thread and memory hierarchies. This is a strong motivation for adopting

a fully explicit method.

To ensure stability, we designed a time adaptivity strategy to account for the

decreasing critical time step during the evolution of the field. The time step does not

decrease until the latest stages of fracture when it becomes significantly smaller. As

will be seen in the scalability study in A.2, this time adaptivity scheme maintains the

overall scaling of the method, which will be as good as that of an implicit scheme, if

not better.

The effect of the artificial viscosity on the solution is systematically studied. We

observe that this parameter does not affect the crack path or the onset of crack

propagation, although once started to propagate, it gives rise to different crack speeds,

and also to different stress distributions.

A comparison among the studied phase field models is summarized as follows:

1. For the tension test, a low loading rate gives rise to straight crack paths for

all models; however, when the loading rate is higher, only model B predicts a

branching crack in the setup we tested, and the other two models still predict a

straight crack.

2. For the shear test, model A predicts crack branching due its lack of discrimi-

nation of tension and compression. Models B and C predict a kink, but with

different kink angles.

3. For the bending test, models A and B predict unphysical damage ahead of the

crack, while model C does not.

In conclusion, generally model B and model C provide more physical predictions than



3.4 Conclusion 49

model A for most materials. But there is no clear winner between models B and C in

terms of the phenomena they are able to capture.

When the loading rate is high, we observe some non-physical damage from the

edges where we impose the displacement loading, which we believe is an artifact of

the method, and may worth further investigation.



Chapter 4

Where is the crack?

4.1 Introduction

The phase field method [Bourdin et al., 2008, Miehe et al., 2010b, Borden et al., 2012] is

a powerful way of simulating crack propagation in that it can predict crack emergence

and branching, under certain circumstances, without explicitly tracking the crack

path. One of the main ideas of this method is to employ a smeared representation of

discrete cracks. However, in some applications it is still convenient to have the explicit

crack path available, or even to develop a mechanism to introduce crack paths to

partially replace a smeared crack propagation model, such as the approaches described

in [Jirásek and Zimmermann, 2001, Tamayo-Mas and Rodŕıguez-Ferran, 2014, Wang

and Waisman, 2016]. One application area is leakage problems [Pozrikidis, 2013].

Hydraulic fracturing is another example for which a crack identification scheme

may be useful. This is a technique used in the oil and gas industry, where fractures

are propagated by high-pressure liquid inside them, see [Hunsweck et al., 2013] and

references therein. With a phase field (or damage) approach, it becomes challenging

how to impose the pressure loading on the rock mass exerted by the fracturing fluid,

since most phase field approaches to date were developed for traction-free crack faces.

Existing approaches that employ a phase field (or damage) approach to simulate

hydraulic fracturing can be classified into two families.

The first family assumes either a known pressure field or a known displacement

50



4.1 Introduction 51

field [Bourdin et al., 2012, Chukwudozie et al., 2013, Mikelić et al., 2013a,b, Wheeler

et al., 2014]. Clearly an accurate simulation of the process requires considering a fully

coupled system in order to obtain the spatial variation of the pressure field along the

fracture, especially when the fluid viscosity is not negligible, as in most applications.

Hence, this family of models can be considered as intermediate results towards more

sophisticated models.

The second family defines an anisotropic permeability tensor [Miehe et al., 2015,

Zhao et al., 2015] or an indicator function [Mikelić et al., 2015b,a] related to the phase

field, in order to obtain the fluid flow rate inside the fracture. When the solid of in-

terest is at least moderately porous, these approaches are of technical importance;

nevertheless, when the solid is barely permeable, having a pressure field defined ev-

erywhere seems costly as the phase field itself is already an additional scalar field

to solve for, if one compares an explicit crack approach with the pressure field only

defined on the crack path. In this case, having the crack path available from a phase

field approach may offer a possibility of developing less expensive numerical schemes

for impermeable solids.

Identifying the crack path from a phase field approach or damage model has been

the interest of a couple of contributions. For example, Tamayo-Mas and Rodŕıguez-

Ferran [Tamayo-Mas and Rodŕıguez-Ferran, 2015] proposed a medial-axis-based ap-

proach in the context of a continuous failure model characterized by a damage field.

Therein, the authors proposed to model the crack path using the θ-simplified medial

axis of a certain isoline of the damage variable. Bottoni et al. [Bottoni et al., 2015]

developed another approach for searching the crack path from a damage field in up

to three-dimensions. In the case of two-dimensions, they obtained location points one

after another by finding the local maximum of the damage variable within a specific

line at a distance from the last determined point.

In this work, we build a crack identification scheme by taking advantage of the

variational structure of the phase field approach, although the scheme can also be

applied to a solution from a damage model. The methodology is built on the so

called equivalent phase field of a given curve, which is the generalization from the
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analytic phase field solution from the potential energy functional in a special case.

The proposed algorithm is able to identify not only a simple crack but also a branched

crack. The method is also capable of distinguishing multiple cracks close to each other

up to a certain clearance.

This algorithm consists of three main steps. First of all, the non-maximum sup-

pression method is employed to identify a bounding area within which the crack is

believed to be. This is one of the main novelties of this work, in that the gradient

information of the phase field is exploited as well as the value. The bounding area pro-

vides the topological information of the crack path, and thus especially advantageous

in the case of a branched crack. Then, a number of interpolation points are deter-

mined from this bounding area, from which a cubic spline is built as the initial guess

for the crack. This step is comparable to the approach introduced in [Bottoni et al.,

2015] but ours ensures: (1) a more uniform distance between the identified points and

also (2) a stable weighted average expression to determine these points rather than

local maximum. Afterwards, an optimization step is undertaken to improve the crack

path. This is another novelty of our work, in that the crack tip and junction locations

will be significantly improved with this optimization step, even though the overall

accuracy of the algorithm is limited by a resolution at best twice the mesh size. All

of these steps are developed from the construction of the equivalent phase field.

The remaining of this chapter will proceed as follows. In Section 4.2, we recall

the phase field formulations for the variational description of brittle fracture, and

introduce the concept of equivalent phase field of a given curve. Then in Section

4.3, we formulate the crack identification problem as an optimization problem by

virtue of this equivalent phase field. Afterwards, in Section 4.4 we detail the proposed

algorithm for this optimization problem, followed by Section 4.5, where we provide

three representative sets of examples to demonstrate the performance of the proposed

algorithm. Finally we draw some conclusions in Section 4.6.



4.2 The phase field approach to fracture and the equivalent phase field 53

4.2 The phase field approach to fracture and the

equivalent phase field

Here we recapitulate the phase field formulation for brittle fracture, followed by the

introduction of the so-called equivalent phase field.

Consider a two-dimensional (plane stress or plane strain) solid occupying an open

Lipschitz domain Ω in the undeformed configuration. Let u : Ω→ R2 be the unknown

displacement field corresponding to a certain load. Let ∂DΩ, ∂NΩ ⊆ ∂Ω be such that

∂DΩ ∪ ∂NΩ = ∂Ω and ∂DΩ ∩ ∂NΩ = ∅, and uD : ∂DΩ → R2 and tN : ∂NΩ → R2 be

prescribed displacement and traction boundary conditions, respectively. Finally, let

b : Ω→ R2 be the prescribed body force field.

The static case The phase field approach to fracture is built on energy minimiza-

tion with respect to u and its jump set, which we denote as Γ = Γ(u) ⊂ Ω. Let |Γ|
denote the length of Γ. Then the total potential energy of the fractured brittle solid

can be written as:

Π[u] :=

∫
Ω\Γ

ψ0[ε(u)] dΩ−
∫

Ω

b · u dΩ−
∫
∂NΩ

tN · u dΓ + gc|Γ|, (4.1)

where ψ0[ε(u)] is the strain energy density that depends on the strain ε(u) = [∇u+

(∇u)T ]/2, and gc > 0 is the strain energy release rate, the strain energy released per

unit length of crack extension.

To develop a numerical method to approximate the sharp crack description (4.1),

the phase field approach replaces the sharp crack path Γ with a phase field d, where

d is a scalar field, d : Ω → [0, 1]. There exist different conventions for the meaning

of the extreme values of d. Here we adopt one where regions with d = 0 and d = 1

correspond to pristine and fully broken states of the material, respectively.

One of the ingredients of the phase field approach is the crack length functional,
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which takes the following form:

Γ`[d] :=
1

2

∫
Ω

(
d2

`
+ `∇d · ∇d

)
dΩ,

where ` > 0 is the regularization length scale, which may also be interpreted as a

material property, e.g., the size of the process zone.

To take into account any pre-existing crack, we define ∂dΩ ⊂ Ω to be a set with

Hausdorff dimension 1, and d0 : ∂dΩ→ [0, 1] as the Dirichlet boundary condition for

d. With this, we define the affine space of the admissible u and d fields to be

Su :=
{
u ∈ H1

(
Ω;R2

)∣∣u = uD on ∂DΩ
}
,

Sd :=
{
d ∈ H1(Ω)

∣∣0 ≤ d ≤ 1 a.e., d = d0 on ∂dΩ
}
,

The regularized variational formulation for brittle fracture of the solid reads: Find

(u, d) ∈ Su ×Sd that minimizes the following potential energy:

Π`[u, d] :=

∫
Ω

ψ[ε(u), d] dΩ−
∫

Ω

b · u dΩ−
∫
∂NΩ

tN · u dΓ + gcΓ`[d]. (4.2)

Here, ψ[ε(u), d] is the strain energy density dependent on the phase field, which

satisfies ψ[ε(u), d = 0] = ψ0[ε(u)] and ψ[ε(u), d1] ≥ ψ[ε(u), d2] whenever d1 < d2.

Note that the fracture energy contribution is given by the last term, i.e., Γ`[d] plays

the role of |Γ| in the sharp crack description (4.1).

It can be shown that when `→ 0, the solution to the minimization problem (4.2)

Γ-converges to that of (4.1), and also Γ`[d] converges to |Γ|.

The dynamic case The formulation (4.2) can be generalized to dynamic fracture,

for which the following Lagrangian can be written:

L[u, u̇, d] :=

∫
Ω

1

2
ρu̇ · u̇ dΩ− Π`[u, d],
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where the dot symbol over a variable, �̇, denotes differentiation with respect to time

t.

Then for some final time tf > 0, Hamilton’s principle gives rise to the following

formulation: Find the stationary point of the following action functional:

S[u, d] :=

∫ tf

0

L[u, u̇, d] dt

among all (u, d) : Ω×[0, tf ]→ R2×[0, 1], (u(·, t), d(·, t)) ∈ Su×Sd with the boundary

conditions uD, tN , and d0 possibly dependent on t, for t ∈ [0, tf ].

Note that the irreversibility of the crack can be explicitly enforced by requiring

d(·, t1) ≤ d(·, t2), a.e., whenever t1 < t2.

Analytic solution for a special case Let Ω = R2, ∂dΩ = {(x, y)|y = 0}, and

d0 = 1. Minimizing (4.2) with the constraint u ≡ 0 and the additional boundary

condition ∂d/∂y → 0 as y → ±∞ leads to following phase field solution x Miehe

et al. [2010b]:

d(x) = exp

(
−|y|
`

)
. (4.3)

The equivalent phase field The analytic solution above motivates the definition of

the so called equivalent phase field, for expressing the phase field equivalent (to some

degree) to the crack set Γ. This notion is instrumental in the crack identification

algorithm to be introduced later. For Γ ⊂ Ω, we define the equivalent phase field as

dΓ ∈ C0(Ω),

dΓ : x 7→ exp

(
−dist(x,Γ)

`

)
, (4.4)

where dist(x,Γ) := infy∈Γ |x − y| is the distance from x to Γ. The equivalent phase

field of a branched crack is depicted in Figure 4.1.
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Figure 4.1: Contour plot of the equivalent phase field (right) of a branched crack (left).
The equivalent phase field is the basis of the proposed crack detection algorithm. In
this work we have adopted a convention for the (equivalent) phase field in which
d = 0 and d = 1 correspond to the pristine and fully damaged states of the material,
respectively.

4.3 Problem statement

This section sets up the problem of identifying the crack from a phase field description

as a constrained optimization problem.

Let (u, d) be the minimizer of (4.2), or a numerical approximation to it. We aim

to develop a practical method to obtain Γ ⊂ Ω with Hausdorff dimension 1 whose

equivalent phase field dΓ, as defined in (4.4), is the closest to d in a certain norm.

With these, the crack identification problem can be (loosely) stated as: Among all

possible curves contained in Ω, find Γ that minimizes:

Nd[Γ] := ‖d− dΓ‖2. (4.5)

Here we would like to remark on two aspects.

1. In practice it is difficult to search among all possible curves, hence we limit

ourselves to a class of cubic splines contained in Ω in order to render the problem

with finite dimensions.

2. The choice for ‖ · ‖ is not unique. The natural one is ‖ · ‖ = (Γ`[·])1/2; however,
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our experience shows that ‖ · ‖ = ‖ · ‖L2(Ω) is a more cost effective choice, since

this choice avoids calculating ∇dΓ at Gauss integration points. Moreover, we

experienced very slow convergence for the former choice under certain condi-

tions.

4.4 Algorithm

In this section, we present an algorithm for the problem described in Section 4.3.

The algorithm is able to identify not only simple cracks but also branched cracks,

and multiple cracks with a certain clearance. Note that our algorithm is primarily

developed for the case in which d is expressed with finite element shape functions

associated with some mesh Th; in case an exact solution of d is available as input,

we will adopt any admissible finite element mesh Th for Ω and then replace d by its

interpolant with Th, which is still denoted by d when there is no risk of confusion.

Here an admissible finite element mesh Th is such that the intersection of any two

elements (considered as closed sets) of Th can only be empty, a common vertex, or a

common edge.

The entire algorithm is summarized in Table 4.1 with an illustration with a simple

crack, whereas each main step therein is explained in details by the following sub-

sections. Within this Section 4.4, we present an example of a simple crack with an

unstructured triangular mesh (and some steps also with a structured square mesh) to

better explain the steps; readers are referred to Section 4.5 for more involved examples.

4.4.1 Identifying a bounding area using non-maximum sup-

pression

The first step of the algorithm is to find an area that contains the crack set Γ, with

the assumption that (4.4) is a good model for the relation between d and Γ. For

convenience, we let this area be made of complete elements. More precisely, we seek

E ⊂ Th be the set of elements whose area ΩE :=
⋃
{e ∈ E} is presumed to contain
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Identify the minimum element set E0 that
covers the region d−1([dcrit, 1]) (all elements
shown on the right) and a subset E (el-
ements in green) that covers the ridge of
the phase field d with Algorithm 6. Also
see Figure 4.3.

Identify a set of initial knots K with Algo-
rithm 7, starting from the black dot in the
middle. Also see Figure 4.7. k0

Continue to identify a set of initial knots
K with Algorithm 7. Also see Figure 4.8.

Construct a cubic spline that interpolates
K as the first iteration of Γ, which is de-
noted Γ(0) (See Section 4.4.3).

Minimize (4.5) to get an optimized cubic
spline as Γ (See Section 4.4.3). Also see
Figure 4.10b and its caption.

Table 4.1: A bird’s-eye-view of the crack detection algorithm
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the crack path Γ. The crack path Γ will then be searched within this region ΩE. A

possible approach is to let E be the set of all elements e such that maxe d ≥ dcrit with

some dcrit smaller than but close to 1, i.e., the minimum set of complete elements

that covers d−1([dcrit, 1]). To reduce the arbitrariness in the choice of this parameter

dcrit, here we introduce another approach named non-maximum suppression, inspired

by edge detection algorithms for image processing. The main idea of non-maximum

suppression used in this work is to retain only elements possibly containing the ridge

of the d profile, which corresponds to the crack path.

The general case The main idea of non-maximum suppression adapted to the

problem at hand is to exploit the directions of ∇d between neighboring elements.

Here we will explain the idea in the context of P1 elements with the general algorithm

given in Algorithm 6. Consider any element e, since ∇d is constant in this element, we

denote it as ∇ed. Let d assume values da, db, and dc at its three nodes a, b, and c, such

that da > {db, dc}. The essence of non-maximum suppression is, if d(xa+ε(∇d)e) > da

when ε → 0+, then element e is on only one side of Γ, and thus need not be

considered for crack path identification, i.e., element e should not be in E. This

idea is illustrated in Figure 4.2. Figure 4.3 shows the bounding area E for a simple

crack following Algorithm 6.

Simplification in the case of a Cartesian mesh We next illustrate the algorithm

specialized to a setting very similar to the context of image processing: When Th is

a Cartesian grid of mesh with Q1 square elements. A typical element and a few of its

neighbors are shown in Figure 4.4, along with the row and column numbers shown

next to the nodes. Let us consider element e shown therein and the general case

in which the maximum of d over this element is attained at one of the nodes, say

(i, j), without loss of generality. Then clearly ∇ed evaluated at node (i, j) points into

element en. In this case, the condition to remove element e can be cast on the nodal
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Algorithm 6: Algorithm for the non-maximum suppression method to identify
the region E that contains Γ

input : d ∈ Sd interpolated with mesh Th

output: An element set E (that is supposed to contain Γ) as a union of
elements

Initialize E = E0 := {e ∈ Th|maxe d ≥ dcrit}
for e ∈ E do

Let p ∈ e be the centroid of arg maxe d, where e is understood as a closed
set
/* In most cases p is the node of e with the maximum d value;

in the special case in which the maximum of d over e is

attained at multiple discrete points, an edge, or the entire

element */

if p ∈ ∂e then
Compute ∇d at point p from element e, denoted ∇ed(p)
Find element en which contains pε := p+ ε∇d for some ε ∈ (0, ρen),
where ρen is the inradius of en
/* If there are multiple en’s containing pε, choose any one

*/

if ∇ed(p) · ∇end(p) > 0 then
E ← E \ {e}
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Figure 4.2: Illustration of the idea of the non-maximum suppression algorithm. The
surface plot is the equivalent phase field dΓ for a crack located at Γ = {(x, y)|y = 0}.
The discrete phase field d over P1 elements A, B, and C are also shown in the figure
as red triangles, where the values of d at the nodes of these elements are assumed to
coincide with dΓ, for clarity of explanation. It is clear that the direction of ∇d are
along the y-direction in both elements A and B, but negative y-direction in element
C. However, from the gradient criterion described in the text and also from direct
observation, elements A and C are located on either side of Γ and will not contain any
part of Γ while element B intersects Γ. The outcome of the non-maximum suppression
algorithm (Algorithm 6), E, will contain element B but not element A or C.

Figure 4.3: Schematic showing the set of elements E0 (with dcrit = 0.6) (green and
blue) and E (green) as identified from Algorithm 6. The crack path will be sought in
the green region. As seen, for the chosen value of dcrit, the non-maximum suppression
algorithm results in a much smaller set of elements for later identification of the crack
set Γ.
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values of d:

(
d(i+1,j) − d(i,j)

) (
d(i,j) − d(i−1,j)

)
+
(
d(i,j+1) − d(i,j)

) (
d(i,j) − d(i,j−1)

)
> 0,

if d(i,j) >
{
d(i−1,j), d(i−1,j−1), d(i,j−1)

}
.

(4.6a)

Figure 4.4: A typical element e in a Cartesian mesh and three of its neighbors are
shown. One of these neighbors is marked en. See the text for its significance. Also
shown are the row and column numbers of the nodes.

In the very special case of exactly two nodes sharing the same edge attaining the

maximum value of d over element e, for example, d(i−1,j) = d(i,j) > {d(i−1,j−1), d(i,j−1)},
then we retain element e if the said edge is on the ridge of the d profile. In other

words, we remove element e if

(
d(i−1,j+1) + d(i,j+1) − 2d(i,j)

) (
2d(i,j) − d(i−1,j−1) − d(i,j−1)

)
> 0,

if d(i−1,j) = d(i,j) >
{
d(i−1,j−1), d(i,j−1)

}
.

(4.6b)

It is reminded that both equations of (4.6) should be generalized with symmetry. A

detailed example with nodal values of d is given in Figure 4.5 for the reader interested

in following exactly the criterion (4.6). Another example with a curved crack is shown

in Figure 4.6.
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Figure 4.5: (a) A subarea of a Cartesian mesh with the phase field d values marked
at the nodes. These values are the equivalent phase field values of the crack shown in
yellow in (b) with ` = 2

√
2a where a is the side length of the elements. (b) Schematic

showing the effect of Algorithm 6: The set of elements E0 (with dcrit = 0.6) is shown
in either green or blue, and the set E is shown in green. The crack path will be sought
in the green region. It can be seen that some elements, even though with a nodal
point having a d value of 0.82, are not retained per (4.6).

Figure 4.6: Schematic showing the set of elements E0 (with dcrit = 0.6) (green and
blue) and E (green) as identified from Algorithm 6. The crack path will be sought in
the green region. See the text for more explanations.
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4.4.2 Identifying an initial set of knots and their connectivity

Having obtained the bounding area ΩE, we next identify a set of knots in ΩE, denoted

as K, and the connectivity (or incidences) of these knots, denoted as I, with which

we will define cubic splines as the initial guess for the crack set Γ. Ideally, K consists

of local maxima for d, see, for example, points on the line {y = 0} in Figure 4.2. The

steps to identify K and I are described in Algorithm 7.

We start with a provisional knot k0 ∈ ΩE, which is one of the points that attains

the maximum value of d in this region, typically a nodal point. Then we draw an

annulus A centered at k0 with outer and inner radii as (α + 1/2)h and (α − 1/2)h,

respectively, where h denotes the maximum element diameter in E and α ≥ 2 is a

constant. The choice of α sets the resolution of the crack detection algorithm, which

is given by (α + 1/2)h.

We then search the next knot in the vicinity of the intersection of the annulus A

and the region ΩE. More precisely, we determine the next knot location by taking a

weighted average of the nodal points belonging to each cluster of elements (denoted

as EA
i in Algorithm 7) that intersect A, see (4.8). These weights depend on the nodal

solutions of d at these nodes according to (4.7). The expression (4.7) is, again, mo-

tivated by (4.3), with the consideration of making the weights finite. The expression

(4.8) involves the coordinates and d-values of a group of nodes, and hence is relatively

stable. A brief derivation of this formula is as follows.

Let Γ be straight for the sake of simplicity. Then let p1 and p2 be two nodes on

different sides of Γ with dΓ values d1 and d2, respectively. Let the distances of these

two points to Γ be ρ1 and ρ2, respectively. Then from (4.4),

di = exp(−ρi/`), i = 1, 2.

If d1, d2 < 1, then ρ1/ρ2 = loge d1/ loge d2. As a result, Γ goes through the point p (the

desired knot) on the line segment p1p2 with ‖p−p1‖/‖p−p2‖ = ρ1/ρ2 = loge d1/ loge d2.

The coordinates of p can be obtained by the formula (4.8) with the points p1 and p2

and corresponding weights (loge d1)−1 and (loge d2)−1.
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Algorithm 7: Algorithm to identify a set of knots K and their connectivity I

input : Element set E from Algorithm 6, α ≥ 2, ε such that 0 < ε� 1
output: A set of knots K and their connectivity I as a set of unordered pairs

of members of K

Choose any k0 ∈ arg maxΩE
d, where ΩE =

⋃
{e ∈ E}.

Let K = {k0}, K∗ = ∅, and Er = E
/* k0 is a provisional knot, which will be removed after its first

usage. */

while Er 6= ∅ do
Choose any k∗ ∈ K \K∗
K∗ ← K∗ ∪ {k∗}
Let A be the annulus centered at k∗ with outer and inner radii as
(α + 1/2)h and (α− 1/2)h, respectively, where h denotes the largest
diameter of the elements in E
Find EA =

⋃
{e ∈ Er|e ∩ A 6= ∅}

Partition EA into n clusters {EA
i }ni=1 with Algorithm 8

for i = 1 to n do

Let PA
i = {pij}Ni

j=1 be the set of all nodes in EA
i

Let wij for each node pij be determined from:

wij =

{
1/ |loge d (pij)| , if d (pij) < 1− ε,
1/ |loge(1− ε)| , otherwise.

(4.7)

Determine knot kAi from

kAi =

∑Ni

j=1wijpij∑Ni

j=1wij
(4.8)

/* Here kAi and pij are understood as position vectors in

R2. */

K ← K ∪ {kAi }, I ← I ∪ {(k∗, kAi )}
if k∗ = k0 then

K = K \ {k0}, and remove all entries of I involving k0

else
Let B be the closed disc enclosed by the outer circle of A
Er ← Er \

⋃
{e ∈ Er|any node of e is in B}
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Finally, to reduce the arbitrariness of the choice of k0, we will remove this knot

from the list after first using it. Here we remark that the removal of k0 is similar to

the back correction step in Bottoni et al. [2015].

k0

Figure 4.7: Identifying a set of initial knots K and their connectivity I: According to
Algorithm 7, we start from k0 (black dot in the middle) and draw an annulus A with
outer and inner radii as (α+1/2)h and (α−1/2)h, respectively. Elements intersected
by A (EA) are shown in brown, which will be partitioned into two clusters EA

1 and
EA

2 by Algorithm 8 according to the connectivities of the elements. Algorithm 7 then
identifies one knot from each cluster, shown as white dots.

Figure 4.8: A chain of knots identified to represent a simple crack. Only the elements
in E are shown. Each knot is obtained from each cluster of elements EA

i (shown in
brown) with Algorithm 7.

4.4.3 Constructing and optimizing the cubic spline represen-

tation of Γ

With the set of knots K and their connectivity I identified from Algorithm 7, we will

represent the crack set Γ by spline interpolation.
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Algorithm 8: Algorithm for partitioning EA into disjoint subsets (clusters)

input : An element set EA ⊂ E
output: {EA

i }ni=1 as disjoint subsets of EA

Er ← E
/* Here Er represents the remaining elements of E to be

processed. */

i = 1
while Er 6= ∅ do

Take any e ∈ Er
Let Ne :=

{
e′ ∈ EA

∣∣e′ 6= e, e′ shares a node with e
}

Let EA
i = {e} ∪Ne and EA

i,r = EA
i \ {e}

while EA
i,r 6= ∅ do

Take any e′ ∈ EA
i,r

EA
i ← EA

i ∪Ne′

EA
i,r ← EA

i,r \ {e′}
Er ← Er \ EA

i

i← i+ 1

Spline construction For clarity here we will first present the case of a simple crack.

We sequentially number the knots of K following their connectivity given in I from

1 to N , and let xi be the Cartesian coordinates of the ith knot. We then connect

the knots using straight segments (chords), and define the cumulative chord length

coordinate s ∈ [s1, sN ] with s1 = 0, si − si−1 = |xi − xi−1|, i = 2, . . . , N . Finally, we

build γ : [s1, sN ] → R2 as cubic spline functions such that γ(si) = xi, i = 1, . . . , N ,

and set, as the initial guess, Γ(0) = γ([s1, sN ]). Here we specify the end conditions

following Rangarajan et al. [2015]:

dγ

ds
(s1) =

x2 − x1

s2 − s1

,
dγ

ds
(sN) =

xN − xN−1

sN − sN−1

. (4.9)

In the case of a branched crack, spline functions are constructed separately for

each branch to obtain Γ(0).
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Spline optimization The last step is to minimize (4.5) to obtain an optimized

cubic spline. The objective function is taken as (4.5), with the knot locations {xi}
as arguments. To improve the solvability, we allow most knots to move only in the

direction normal to Γ(m). More precisely, for the mth iteration, m = 0, 1, . . ., we

impose the following constraints to the optimization problem (see also Figure 4.9):

[
x

(m+1)
i − x(m)

i

]
·
(
dγ

ds
(si)

)(m)

= 0, ∀ki ∈ K \Ktjc. (4.10)

Here, Ktjc ⊂ K denotes the set of crack tip knots and junction knots, along with the

knots at which the curvature of the crack path is high enough, i.e., knots ki such that

κiαh ≥ β, (4.11)

where κi is the curvature of Γ(m) at knot ki, αh is an indication of the knot spacing,

and β > 0 is a parameter to be specified, which takes a value of 0.4 in subsequent

numerical examples. In practice we obtain the list of knots in Ktjc according to Γ(0)

and do not update it for later iterations for the sake of simplicity.

Figure 4.9: Constraints for the optimization process. Knots not in Ktjc are constrained
to move only along the local normal direction as shown with solid or dashed arrows.
Note that whether an interior knot (a knot other than the crack tip knots and the
junction knots) belongs to Ktjc depends on the value of β. For example, the middle
knot above may or may not need to be constrained, and hence is marked with dashed
arrows.

This optimization process can be implemented using a black-box optimization

toolbox, as shown in Algorithm 9. Each time upon obtaining a converged solution

from this toolbox, the constraints are adjusted according to (4.10) again to initialize
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the next iteration, until the following tolerance condition is satisfied:

√∑
∀ki∈K

∥∥∥x(m+1)
i − x(m)

i

∥∥∥2

2
≤ TolX

or
∣∣∣Nd [dΓ(m+1) ]−Nd [dΓ(m) ]

∣∣∣ ≤ TolFun,

(4.12)

where ‖ · ‖2 denotes the `2-norm (i.e., Euclidean norm) of a vector, TolX is the termi-

nation tolerance on the argument in MATLAB optimization toolbox fmincon1, and

TolFun is the termination tolerance on the function value. In other words, we will

enforce the same termination tolerances for fmincon and for this constraint update.

The outcome of the optimization process is depicted in Figure 4.10a.

Optionally, we can re-sample to update the knot locations to render a spline rep-

resentation with almost equal spacings of the knots (strictly speaking, equal spacings

of chord length coordinate s among the knots), see Figure 4.10b.

Algorithm 9: Algorithm to optimize the splines with updating constraints

input : Γ(0)

output: Γ

Set m = 0
while (4.12) is not satisfied do

Update the constraints in (4.10) for all ki ∈ K \Ktjc

Minimize (4.5) with the knot locations {xi} as arguments subjected to the
constraints (4.10). The resulting crack path is denoted Γ(m+1).
m← m+ 1

Γ← Γ(m)

4.5 Representative examples

In this section, we present three representative sets of examples to demonstrate the

performance of the proposed algorithm for crack identification. These examples con-

sist of a curved crack, a branched crack, and two non-intersecting cracks. Moreover,

1The optimization process throughout this work is conducted in MATLAB R2015a.
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(a) (b)

Figure 4.10: Schematics showing the optimization step to obtain Γ. (a) The initial
guess of the crack path Γ(0) is shown in red with the knots in white and the optimized
crack path Γ is in yellow with the knots in black. In this example, the initial and
optimized sets of knots almost completely overlap except for those representing the
crack tips. Here the termination tolerances TolX and TolFun are set to 1 · 10−6 and
1 · 10−7, respectively. (b) As an optional step, we re-sampled the spline to obtain a
new set of knots with almost equal spacings and repeated the optimization step. The
end results are shown as the yellow curve with the knots in black, to compare with
Γ(0) as a red curve with the knots in white. In both cases, the crack tip locations are
significantly improved by the optimization step.

for each example we provide a parameter study for readers interested in implement-

ing the algorithm in MATLAB. Note that we did not provide the derivative of the

objective function with respect to the arguments, for the sake of simplicity.

To better evaluate our results, we will follow this procedure to obtain the phase

field d as input for all examples: We first assume a crack path, denoted Γ∗ (to be

specified in each subsection). Afterwards, we obtain the equivalent phase field dΓ∗

from (4.4). With that, we identify the bounding element set E by applying Algorithm

6 to dΓ∗ . Next, with the mesh Th, we minimize (4.2) with the nodal values of dΓ∗ in

ΩE and zero displacement field u = 0 as constraints. The phase field solution d of

this minimization problem will be taken as the input phase field for the examples. In

other words, d and dΓ∗ necessarily coincide only at the nodes within ΩE.

An advantage of setting the phase field input d as above is that we can regard Γ∗

as the “exact solution” against which we can assess the output of the algorithm Γ. On

the other hand, we did not directly use dΓ∗ as inputs to avoid too ideal a situation.

To quantify the error of the proposed crack identification algorithm, we define the

following parameter that relates Γ and Γ∗ as the normalized error :

e

h
:=

1

h

√∑
ki∈K ‖xi − π(xi)‖2

N
, (4.13)



4.5 Representative examples 71

where {xi} are the knots of Γ and π(xi) is the closest point on Γ∗ from xi, except

when xi is a crack tip (or junction) knot of Γ, in which case π(xi) is the corresponding

crack tip (junction) knot of Γ∗.

Throughout this section, we will adopt the default values of the parameters and

options given in Table 5.1, unless otherwise noted.

Table 4.2: Default parameter values for the examples

Name Symbol Value
Mesh size (largest diameter of elements of Th) h 0.02
Regularization length scale ` 0.1
Critical phase field value dcrit 0.6
Resolution parameter α 4.0
Parameter in (4.11) β 0.4
Norm for defining the objective function in (4.5) ‖ · ‖ ‖ · ‖L2(Ω)

4.5.1 Simple curved crack

This example is chosen to prove that the algorithm is capable of identifying cracks

with a considerable curvature respect to the resolution (α + 1/2)h, see Figure 4.11.

Here in separate snapshots the element sets E0 and E, the initial guess for the crack

path, Γ(0), the output of the algorithm Γ, and the assumed crack path Γ∗ are shown.

In this example, Γ∗ is taken as the cubic spline passing through the points (0.3, 0.5),

(0.5, 0.2), and (0.7, 0.5) with the end conditions given by (4.9). As seen from the

figure, the optimization process clearly leads to a better crack path (Γ versus Γ(0))

with regard to Γ∗.

Figure 4.12 shows the same example except that α is set to be 2. Therefore, the

initial guess Γ(0) is expected to be closer to Γ∗.

This example, as well as the upcoming ones, has been solved using the MATLAB

optimization toolbox fmincon. We have tested three algorithm options active-set,

interior-point, and SQP (sequentially quadratic programming), and summarized
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(a) (b) (c)

Figure 4.11: A simple curved crack. (a) The element set E0 corresponding to dcrit (see
Algorithm 6) is shown in either blue or green. The element set E as obtained from
the non-maximum suppression algorithm (Algorithm 6) defining the bounding area is
shown in green. The crack path Γ is sought in the green region. (b) The initial set
of knots as identified by Algorithm 7 are shown in white. The cubic spline, in red, is
then constructed as Γ(0), the initial guess of Γ. Afterwards, an optimization process is
followed with the constraints given in (4.10) to optimize the knot locations (in black)
and therefore Γ (in yellow). (c) Comparison of Γ∗, the “exact solution” in black, and
Γ, the identified crack path from the proposed method in yellow. Good agreement is
observed.

(a) (b)

Figure 4.12: Simple curved crack. Results with the same example as that in Figure
4.11, except for the resolution parameter α which is set to 2.0 instead of the default
value. As a result, more knots are created, but Γ(0) obtained is closer to Γ to start
with. The color codes are the same as Figure 4.11. (a) The cubic spline, in red, is Γ(0),
and the yellow curve is Γ. The knots are also shown for both curves. (b) Comparison
of Γ (in yellow) and Γ∗ (in black). Good agreement is observed.
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the performance in Table 4.3. It can be observed that with a smaller α value, much

more iterations are needed, which may be due to the larger number of optimization

variables, as there are more knots. Judging from the gain in the accuracy, this higher

resolution may not be needed for the example at hand.

Table 4.3: Performance study of the example of a simple curved crack. Here the
termination tolerances TolX and TolFun are set to 1 · 10−6 and 1 · 10−5, respectively.

α Minimization al-
gorithm option

Number of evalu-
ations of the ob-
jective function

Number of con-
straint updates

Normalized error
given by (4.13)

Interior-point 4926 2 0.33
2.0 Active-set 617 1 0.33

SQP 2934 2 0.33
Interior-point 1832 2 0.43

4.0 Active-set 357 1 0.43
SQP 1058 2 0.43

We also tested the setting ‖ · ‖ = (`Γ`[·])1/2 for this example, with the factor `

introduced to make this option comparable with the default choice. The algorithm

options interior-point and SQP require 1786 and 596 function evaluations and 3 and

2 constraint updates, respectively. However, the option active-set did not converge

with more than 2552 function evaluations.

4.5.2 Branched crack

In this example, we set Γ∗ to be a branched crack shown in Figure 4.1. This crack

consists of three straight segments with the junction at (0.5, 0.5), and the three crack

tips at (0.3, 0.5), (0.7, 0.7), and (0.7, 0.3). Due to the constraints given by (4.10),

in the optimization stage, most knots can only move in a direction perpendicular to

the curve’s path. Figure 4.13 shows the element sets E0, E, the initial guess of the

crack path Γ(0), the converged crack path Γ, and the assumed crack path Γ∗. It is

evident that the proposed method is able to detect a crack path with junctions. A
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performance study is given in Table 4.4.

(a) (b) (c)

Figure 4.13: Branched crack example. (a) The element set E0 corresponding to dcrit

(see Algorithm 6) is shown in either blue or green. The element set E as obtained
from the non-maximum suppression algorithm (Algorithm 6) defining the bounding
area is shown in green. The crack path Γ is sought in the green region, which is a thin
branched layer of elements. (b) The initial set of knots as identified by Algorithm 7
are shown in white. The cubic spline, in red, is then constructed as Γ(0), the initial
guess of Γ. Afterwards, an optimization process is followed with the constraints given
in (4.10) to optimize the knot locations (in black) and therefore Γ (in yellow). It is
reminded that for a branched crack (as identified as Γ(0)), constraints in (4.10) are not
applied on the junction knot nor on the crack tip knots. (c) Comparison of Γ∗, the
“exact solution” in black, and Γ, the identified crack path from the proposed method
in yellow.

4.5.3 Multiple cracks

We next showcase an example where Γ∗ is made of two cracks with a certain clearance

to demonstrate that the proposed algorithm can distinguish multiple cracks. In other

words, if the bounding element set E is made of groups of mutually not connected

(not sharing any node) elements and these groups are well separated, characterized

by the resolution (α + 1/2)h, then they can be detected as multiple cracks.

For this example, let Γ∗ consist of a horizontal straight crack and a vertical straight

crack. The coordinates of the crack tips are: (0.3, 0.5), (0.5, 0.5) for the horizontal

crack, and (0.6, 0.3), (0.6, 0.7) for the vertical one. Therefore, the distance between
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Table 4.4: Performance study of the example of a branched crack. Here the termina-
tion tolerances TolX and TolFun are set to 1 · 10−6 and 1 · 10−7, respectively.

Minimization al-
gorithm option

Number of evalu-
ations of the ob-
jective function

Number of con-
straint updates

Normalized error
given by (4.13)

Interior-point 435 1 0.45
Active-set 87 1 0.43
SQP 435 1 0.45

the two crack tips is 0.1, which is bigger than (α + 1/2)h = 0.09. The results of this

example are depicted in Figure 4.14. A performance study is given in Table 4.5.

Table 4.5: Performance study of the example of multiple cracks. Here the termination
tolerances TolX and TolFun are set to 1 · 10−6 and 1 · 10−5, respectively.

Minimization al-
gorithm option

Number of evalu-
ations of the ob-
jective function

Number of con-
straint updates

Normalized error
given by (4.13)

Interior-point 350 1 0.47
Active-set 100 1 0.38
SQP 350 1 0.47

4.6 Conclusion

We have designed a crack detection algorithm to identify the crack path from the

phase field approach to fracture. The algorithm is capable of identifying not only a

simple crack but also multiple cracks and a branched crack, as demonstrated in the

numerical examples. We have also provided a performance study for each example in

terms of a comparison of optimization algorithms available in MATLAB.

The proposed algorithm is facilitated by the non-maximum suppression method,

which limits the search of the crack path to a small subset of the computational
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(a) (b) (c)

Figure 4.14: Multiple crack example. (a) The element set E0 corresponding to dcrit

(see Algorithm 6) is shown in either blue or green. The element set E as obtained
from the non-maximum suppression algorithm (Algorithm 6) defining the bounding
area is shown in green. As seen, the area made of elements in E0 is connected while
that made of elements in E contains two separate zones of elements. As the distance
between the two green zones is larger than the resolution, the algorithm is capable
of detecting them as two cracks (instead of a branched one). (b) The initial set of
knots as identified by Algorithm 7 are shown in white. The cubic spline, in red, is
then constructed as Γ(0), the initial guess of Γ. Afterwards, an optimization process is
followed with the constraints given in (4.10) to optimize the knot locations (in black)
and therefore Γ (in yellow). Note that no constraint is applied on the crack tip knots.
(c) Comparison of Γ∗, the “exact solution” in black, and Γ, the identified crack path
from the proposed method in yellow.
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domain, and which, more importantly, provides an approximation of the underlined

topology of the crack path being sought.

Another key ingredient is the so called equivalent phase field, for expressing the

phase field equivalent (to some degree) to some crack set Γ. This definition enables

us to determine a way to evaluate how much the identified crack path is away from

being equivalent to the given phase field, and thus renders the crack identification

problem variational.

The best possible resolution for this crack detection algorithm is related to the

mesh size. As a consequence, the method can distinguish cracks close to each other

up to a certain distance. We did not show negative examples but if two cracks are

too close to each other, they may be identified as one crack, possibly with branches.

The developed algorithm can be combined with one on crack opening, for more

elaborate interpretation of phase field simulations. This will be the topic of Chapter

5.



Chapter 5

Variational approach to calculate
the crack opening

5.1 Introduction

In this chapter, we aim to calculate the crack opening from a phase field approach to

fracture. This can be considered as a second step for identifying the crack geometry,

see Chapter 4 for the crack path identification.

The calculation of crack openings can be useful in some applications. One example

is to estimate the durability of concrete structures. The cracks are more likely exposed

to fluid or corrosive chemicals inside, hence, it is beneficial to investigate the openings

[Pijaudier-Cabot et al., 2009].

Another example is hydraulic fracturing where the high pressure liquid inside the

fracture causes further propagation. In most studies, the fluid pressure is obtained

from a lower dimensional lubrication equation [Irzal et al., 2013, Schrefler et al., 2006].

In order to solve the fracture flow from the lubrication equation, the crack openings

need to be known.

One method was proposed by Dufour et al. [Dufour et al., 2012] where the idea

is to compare two effective non local strain: The one that controls damage and the

other derived from a strong discontinuity analysis. The estimation was illustrated in

a one-dimensional example close to failure.

In this chapter, we offer a variational approach to calculate the openings. The

78
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idea is to stabilize the effect of both the smeared crack and its equivalent explicit one

by means of a virtual work equilibrium. Therein, phase field gradient is used as a

weighted function to calculate the openings from displacement profiles u. In Section

5.3, we provide three representative examples to test the performance of our method.

Throughout this chapter, we frequently use the terminologies used in Chapter 4

5.2 Approach to calculate the crack opening

In this section, we set up the problem of calculating the openings from phase field

descriptions of crack. First, we introduce a variational formulation to replace the

discrete definition of a jump set with a sufficient condition. Next, we present our

variational approach which is based on the principle of virtual work. Finally, we

discuss the special case of branched cracks where the method needs to be slightly

modified to tackle the case.

5.2.1 The special case

Consider Ω = R2. Let Γ ⊂ R2 be an identified crack path for d(x) = exp
(
− |y|

`

)
.

Also, let uy = uey be such that uy(y) → u± when y → ±∞, see Section 4.2. Now,

we define H`, as the openings, by a variational formulation:

H`[u, d] := lim
`→0

∞∫
−∞

−uy
∂d

∂y
dy = u+ − u−, (5.1)

One sufficient condition for (5.1) is as below:

lim
`→0

∞∫
0

((
u+ − u−

)
− (uy(y)− uy(−y))

) ∂d
∂y

dy = 0. (5.2)
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5.2.2 Variational formulation

With respect to (5.1), we present a general approach to calculate the openings from

any phase field topology. Let (u, d) be a solution of (4.2), or an approximation to it.

We equivalently identify (u,Γ) as an approximation of (4.1). Readers are referred to

Chapter 4 for more explanations.

The main body of the approach is as follows: Let be δP a virtual pressure. We

take virtual work by δP on the identified crack (Γ) be equal to the one on the smeared

crack (d). Therefore, the following variational equality takes place:

∫
Γ

δP (s) ·H(s) ds =

∫
Ω

−
(
δP ◦ γ−1 ◦ π(x)

)
((u− uref ) · ∇d) dΩ. (5.3)

where uref is the rigid body motion of the sample. This term can be computed as

below.

uref =
1

‖∂Ω‖

∫
∂Ω

u ds. (5.4)

Note that in (5.3), π(x) is the closest point projection of x on Γ, and γ : [s1, sN ]→ R2

is defined as a map, see Chapter 4.

5.2.3 Numerical discretization

In this section, we adopt standard procedures to obtain Galerkin approximation for

the problem in hand. We discretize the domain Ω with a mesh family {Th}, each

member characterized by the mesh size h. We approximate δP and H merely on Γ

with the standard first-order finite element basis functions associated with the knots

(k ∈ K). Note that since the virtual pressure is free to choose, we merely use the

basis functions to approximate it. See below:

H(s) =
∑
i∈K

HiNi(s), (5.5a)

δP (s) =
∑
i∈K

δPiNi(s). (5.5b)
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Standard Galerkin approximations yield the following matrix form for (5.3):

MH = F, (5.6)

where H = {HP} is a vector that contains the nodal degrees of freedom for H. The

explicit expressions of the matrices involved in (5.6) read:

∑
i∈K

(∑
j∈K

∫
Γ

(Ni(s)Nj(s))Hj ds

)
= −

∑
j∈K

∫
Ω

(
Nj ◦ γ−1 ◦ π(x)

)
(u · ∇d) dΩ. (5.7)

5.2.4 The case of branching

In general, the method work for any smeared representative of a crack. However, from

our experience, this way sometimes may not be accurate for the case of a branched

crack, as the phase field topology is too smooth near the junctions. Hence, for the

sake of accuracy, we modified the phase field topology and the region of integration

in (5.3).

We proceed as follows: Let j be a junction and aj be a simple identified branch

for a given phase field, see Figure 5.5. For aj, first we identify the region Ωaj ⊂ Ω,

which is the set of all points in Ω closer to aj than other branches, and in order to

calculate the openings at aj, we take Ωaj for (5.3) as the region integration in place of

Ω. Second, we replace the current topology of the phase field by that of the equivalent

phase field of aj.

Moreover, we slightly modify the phase field profile as follows: For point j we

virtually extend aj along the same direction to j′, one knot spacing apart from j.

Hence, the new branch is ajj′. And, we consider the equivalent phase field for ajj′
as the one to be incorporated in (5.3). This way will also prevent the high gradient

phase field at j, now will be like a crack tip, to unstabilize the results. The results,

shown in Section 5.3.2, prove that the current way leads to an opening profile aligned

with that of the chosen benchmark.
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5.3 Numerical examples

In this section, we present three representative sets of numerical examples to demon-

strate the performance of our variational approach. The examples consist of a curved

crack, a branched crack, and multiple cracks.

In this section, we investigate a square plate with some initial cracks. Two geo-

metric setups are depicted in Figure 5.1. For the simple curved case and the branched

case, the specimen is under a direct tension test in which a displacement with mag-

nitude uD is imposed on the top and bottom edges (Figure ??) while for the case of

multiple cracks, the loading is imposed on all edges (Figure ??).

u

u

(a)

u

u

(b)

Figure 5.1: Schematic of a cracked square plate under a single-edge-notched tension
test. A uniform displacement loading ‖uD‖ normal to the edges is applied on (a) top
and bottom edges for the cases in 5.3.1 and 5.3.2, (b) on the whole edges for the case
of Section 5.3.3. Also, some initial crack is assumed for each set of examples.

Throughout this section, in order to solve for (4.2), we will adopt the values of the

parameters given in Table 5.1, unless otherwise noted.

To better evaluate our results, we will follow this procedure to obtain the dis-

placement u field and the phase field d as input for all examples: We first assume

a crack path, either Γ or Γ∗, see Chapter 4. Afterwards, we obtain the equivalent

phase field dΓ∗ from (4.3). With that, we identify the bounding element set E to
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Table 5.1: Default parameter values for the examples

Name Symbol Value
Lamé constant λ 120GPa
Shear modulus µ 80GPa
Critical energy release rate gc 2.7× 10−3kN/mm
length scale ratio h/` 0.2
Boundary displacement uD 10−3mm

dΓ∗ . Next, with the mesh Th, we minimize (4.2) with the nodal values of dΓ∗ in ΩE.

We impose boundary displacement u = uD so that a tension test be modeled. The

approximation is then taken as input for the subsequent examples.

Let u∗ be the minimizer of Π(·,Γ∗) with the constraint u∗ = uD on ∂ΩD, where

Π is defined in (4.1). We take u∗ as a benchmark to evaluate our calculation of the

crack opening from the approximation of (4.2) for the subsequent examples. Let u

be obtained from an approximation of (4.2). In order to justify our benchmark, we

define ε as (5.8):

ε :=
‖u− u∗‖L2(Ω)

‖u∗‖L2(Ω)

, (5.8)

An advantage of setting the phase field input d as above is that Γ∗ is used in a

consistent way for the calculation of both u and u∗.

5.3.1 Simple curved crack

This example is chosen to prove that the algorithm is capable of calculating the

openings with a considerable curvature, see Figure 5.2. Here in separate snapshots

the element set E, and the output from the crack detection algorithm Γ, and the

assumed crack path Γ∗ are shown. In this example, Γ∗ is taken as the cubic spline

passing through the points (0.3, 0.5), (0.5, 0.2), and (0.7, 0.5) with appropriate end

conditions following [Rangarajan et al., 2015].

Figure 5.3 plots the crack opening by u, labeled as variational approach and u∗

as benchmark.
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Figure 5.2: A simple curved crack. Phase field topology, and Γ∗, the “exact solution”
in yellow, are shown. There is a conforming mesh to Γ∗.
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Figure 5.3: A simple curved crack. A comparison of opening by u and u∗ is made.
Good agreement is observed. uref is calculated by (5.4).
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5.3.2 Branched crack

In this example, we consider a phase field d associated to a branched crack, see Figure

5.4. This crack consists of three straight segments with the junction at j = (0.5, 0.5),

and the three crack tips at a = (0.3, 0.5), b = (0.7, 0.7), and c = (0.7, 0.3).

a
j

c

b

Figure 5.4: A branched crack. Phase field diagram and Γ∗, the “exact solution” in
yellow, are shown. There is a conforming mesh to Γ∗. We labeled the junction and
the three crack tips.

Figure 5.5 depicts the openings of the three segments for a set of knots spacing

2h. Also shown is the openings for the benchmark. Readers are referred to 5.2.4 for

further explanations about the special issues for the case of branching.

5.3.3 Multiple cracks

In this example, we calculate the opening for two non-intersecting cracks with a certain

distance. Phase field topology is shown with Γ and Γ∗, see Figure 5.6.

Figure 5.7 illustrates the openings for the horizontal (left) and vertical crack

(right), compared to ω∗. Three sets of knots are shown for each segment. It can

be seen that the ones with smaller knot spacings tends more to the benchmark.
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(f)

Figure 5.5: A branched crack. The openings for the segments aj, bj, and cj are
subsequently shown in (left) for model B, and (right) for model C. Curves in blue are
for the benchmark.



5.3 Numerical examples 87

Figure 5.6: Multiple cracks. Phase field diagram and Γ∗, the “exact solution” in
yellow, are shown. There is a conforming mesh to Γ∗.
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Figure 5.7: Multiple cracks. The openings along the horizontal and vertical cracks are
shown in (a) and (b), accordingly. Also shown is ω∗ in blue dashed lines. The results
are presented for three sets of knots with different knot spacings for each segment.
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5.4 Conclusion

We are motivated to calculate the crack opening in some applications like the study of

durability in concrete structures, or computationally to solve for lubrication equation

in hydraulic fracturing.

We have designed a variational way to calculate the opening from a smeared crack

representation. The idea is to stabilize the effect of both the smeared crack and

its equivalent explicit one by means of a virtual work equilibrium. This would be

attractive since there is no need to consider the explicit description of a discontinuous

displacement field in the computational model.

The method works fine even for the case of a crack with high curvature. For a

branched case, for sake of more accuracy, we slightly modify the basic equilibrium.

We also output the results for different knot spacings and two phase field models.



Chapter 6

Conclusion

• We designed a GPU algorithm for the phase field approach to fracture, where the

displacement field is a solution of an elastodynamic problem, while the phase

field is updated according to a rate-dependent formulation, so that we obtain a

fully explicit scheme. The explicit method fits nicely with the GPU architecture,

especially in terms of the thread and memory hierarchies. This is a strong

motivation for adopting a fully explicit method.

• To ensure stability, we designed a time adaptivity strategy to account for the de-

creasing critical time step during the evolution of the field. The time step does

not decrease until the latest stages of fracture when it becomes significantly

smaller. As will be seen in the scalability study in A.2, this time adaptivity

scheme maintains the overall scaling of the method, which will be as good as

that of an implicit scheme, if not better.

• We did a comprehensive study to compare the three popular phase field models

undergoing tension and shear loadings with high and low rates to see interest-

ing phenomena such as branching and crack nucleation in the simulations. In

conclusion, generally model B and model C provide more physical predictions

than model A for most materials. But there is no clear winner between models

B and C in terms of the phenomena they are able to capture.

• We designed a crack detection algorithm to identify the crack path in a variational
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way from the phase field approach to fracture. The algorithm is capable of

identifying not only a simple crack but also multiple cracks and a branched

crack, as demonstrated in the numerical examples. We have also provided a

performance study for each example in terms of a comparison of optimization

algorithms available in MATLAB.

• We proposed a variational way to calculate the crack openings from a smeared crack

representation. We verified our calculations with a proper benchmark.

Future work

Currently, we are working on a new phase field formulation of hydraulic fracture.

For the solid phase, we use the phase field approaches. For the liquid phase, we first

identify the crack geometry, the path and the openings, using our variational approach.

Next, we solve the lubrication equation for the liquid phase. As an advantage, since

the crack surface is identified, there would not be a challenge to impose the pressure

loading on the solid phase while we benefit from the phase field approaches for brittle

fracture.
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Appendix A

Convergence and performance
study of the GPU-implemented
algorithm

A.1 Convergence study

This appendix devotes to a verification of the GPU implementation of the phase field

models. To this end, we present two examples with exact solutions to study the

convergence rates in space and in time, respectively.

A.1.1 Spatial convergence

To study the spatial convergence, we consider an exact solution for (x, t) ∈ (0, 1)2 ×
(0, tf ) where tf = 1.0× 10−5s:

ux(x, t) =
[
x− (y − 0.5)2

]
t, uy(x, t) = x (y − 0.5) t,

d(x, t) = 0.5
[
x+ (y − 0.5)2] t. (A.1)

We construct an initial boundary value problem whose exact solution is (A.1). To this

end, we (a) let ∂DΩ = ∂Ω and impose appropriate initial conditions (1.5), boundary

conditions (1.1) and (1.4d), and body force b in (1.4a) according to (A.1), and (b)
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modify (1.4b’) in the case of model A to be

ḋ =
1

η

〈
2(1− d)ψ(ε)− gc

l

(
d− l2∆d

)
+Q

〉
+
, (A.2)

with Q = Q(x, t) determined from (A.1).

Here we have chosen the solution in (A.1) such that it only linearly depends on t,

and it can be proved that in this case all discretization errors come from the spatial

discretization.

Figure A.1 depicts the convergence curves for u and d as functions of h computed

at t = tf with ∆t = 10−8s, which is much smaller than the critical time step. The

results from the two finest meshes give rise to a convergence rate of 1.99, and 1.39 for u

and d, respectively. The reason why d has a lower convergence rate can be attributed

to the term ψ in (A.2), which depends on ε, resulting in a one-order reduction in

convergence rate than that of u.

Hence, with these convergence rates, the implementation is verified.
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Figure A.1: Spatial convergence curves for u (red dashed line) and d (blue solid
line). Here, for both fields, the L2-norms of error normalized by the L2-norm of the
respective exact solutions are shown. From the two finest meshes, the convergence
rates are estimated to be 1.99 and 1.39 for u and d, respectively. The reason why d
has a lower convergence rate is explained in the text.
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A.1.2 Time convergence

We follow the same idea to study the time convergence, using the following exact

solution for (x, t) ∈ (0, 1)2 × (0, tf ) where tf = 1.0× 10−4s:

ux(x, t) = uy(x, t) = d(x, t) = t5. (A.3)

This exact solution is chosen to be constant in space, hence the only discretization

error comes from time discretization. It is reminded that Q(x, t) as well as the initial

and boundary conditions has to be determined from (A.3) accordingly.

Figure A.2 depicts the convergence curves for u and d. Here, we set ∆t =

1.0× 10−7s which is much smaller than the critical time step. The convergence rates

obtained from the two smallest time steps are 2.00 for both fields.
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Figure A.2: Time convergence curves for u (red dashed line) and d (blue solid line).
As in Figure A.1, the normalized L2-norm error is shown. The error values for both
fields are close to each other by coincidence. The convergence rates obtained from the
two smallest time steps are 2.00 for both fields.

This example further verifies our implementation.
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A.2 Performance study

In this section, we study the performance of the GPU implementation by measuring

the wall time. Figure A.3 plots the wall time versus the physical time for the tension

test with model C which has 105,545 DOFs (see Section 3.1 for more details about

the example to be run). The simulation was run for 582,262 time steps. As can be

seen, the slope increases near the end of the simulation, which indicates the effect of

the decreasing critical time step (see Figure 3.5).
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Figure A.3: Performance study. The wall time versus the physical time for the tension
test with model C. The example has 105,545 DOFs, and 582,262 steps have been
followed for the explicit solution. The change of slope in the graph is due to the
decreasing critical time step.

Figure A.4 plots the wall time per physical time for the problem at hand against

the number of DOFs. A linear scaling is observed, which may be the best possible

scaling since all DOFs have to be updated. In other words, an implicit scheme is no

better than the presented explicit one.
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Figure A.4: Performance study. The wall time per physical time for the tension test
with model C. The linearity of the curve shows the desired linear scaling.
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