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“Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, 

so that we may fear less." 

 

~Marie Curie~ 
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ABSTRACT 

 

In the last decades there has been growing interest in developing ceramic materials with 

high fracture toughness (KIc) and strength for structural applications. In the specific case 

of 3 mol % yttria-doped tetragonal zirconia (3Y-TZP),     can be increased by 

promoting phase transformation from tetragonal (t) to monoclinic (m) phase in front of 

a propagating crack tip referred to as transformation toughening. However, the stronger 

the tendency for stress induced transformation, the higher the risk for premature 

spontaneous t-m transformation in humid atmosphere. This phenomenon, which is 

referred to as ageing, hydrothermal degradation or low temperature degradation (LTD) 

induces microcracking and loss of strength and limits the use of 3Y-TZP. The 

resistance to LTD can be increased by reducing the grain size into the nanoscale by 

using Spark Plasma Sintering (SPS). However, the reduction of grain size may reduce  

t-m phase transformation in front of the crack tip and therefore fracture toughness may 

decrease. One way to enhance     is the incorporation of a second phase as a 

toughening mechanism into zirconia matrix. In the present study, Multi-Walled 

Carbon Nanotubes (MWCNTs) were used to reinforce zirconia matrix. 

A novel method was developed in this project in order to measure the "true" fracture 

toughness of small cracks of 3Y-TZP/CNT composites. The method is based on 

producing a very sharp notch using Ultra-short Laser Ablation (UPLA). The same 

method was also applied to a high toughness zirconia ceramic 12Ce-ZrO2 with 300 nm 

grain size, which has much higher plateau fracture toughness than SPSed 3Y-TZP with 

177 nm grain size. Moreover, the wear behaviour of zirconia/CNT composite was 

investigated by studying the effect of CNTs on the friction coefficient and the wear rate 

of the composites. The wear behaviour was investigated with scratch tests and 

reciprocating sliding. The machinability of zirconia/CNTs using Electrical Discharge 

Machining (EDM) was evaluated by studying the electrical conductivity, the thermal 

conductivity and the damage produced after machining. Besides that, the influence of 

grinding, thermal etching after grinding, and annealing of SPS zirconia with different 

grain sizes were studied.  

It has been found that by inducing a very sharp shallow notch using UPLA, the "true" 

    of SPSed 3Y-TZP and 3Y-TZP/CNT composites for small cracks is low and 

independent of the added CNT amount. On the contrary, Vickers indentation     is 

higher and increases with CNT content, which is attributed to the larger crack sizes 

studied in indentation and to an increase in the resistance to cracking under sharp 
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contact loading induced by the presence of CNT. Therefore, indentation     is not an 

appropriate method for analysing the influence of MWCNT on "true" fracture 

toughness. Moreover, only 10 % of difference in strength was found in 12Ce-ZrO2 and 

3Y-TZP using UPLA method indicating that the "true"     of both materials is almost 

similar. Thus, the beneficial effect of higher indentation     in 12Ce-ZrO2 reported in 

literature has a very small effect on the "true"     that determines the strength of 

unshielded small cracks. 

The incorporation of CNTs into zirconia matrix increases the friction coefficient and 

drastically decreases the wear rate when the amount of CNT reaches the percolation 

value (2 wt % CNT) under relatively low loads. However, during scratch test and 

under high loads, the composites develop chipping and brittle fracture.  

The addition of CNTs strongly enhances the electrical conductivity of the composite 

and induces slight changes in the thermal conductivity which results in successful EDM 

machining of the composites with 1 wt % and 2 wt % CNT. The material removal 

mechanisms in the composites are melting/evaporation and spalling. 

The thermal etching of ground SPS zirconia at 1100 °C for 1 hour in air induces a 

surface nanograin layer with crystallized grains of about 60 nm sizes and a thickness of 

less than few hundred nanometers, which is independent of the original grain size of 

the bulk material. If thermal etching is carried out at much higher temperature, 1575 

°C for 1 hour, ground and polished zirconia reaches similar grain size.   
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CHAPTER 1 

 

Introduction 

1.1 Zirconia ceramics 

1.1.1 Zirconia structure 

Zirconia is polymorphic of nature. It displays three different crystallographic structures 

depending on temperature. It exhibits a monolithic structure (m) from room 

temperature up to 1170 °C, a tetragonal structure (t) at intermediate temperatures 

(1170-2370 °C) and a cubic structure (c) when the temperature is above 2370 °C, see 

Fig. 1.1.  

The phase transformation from t to m is associated with a volume expansion of 

approximately 0.05 which induces microcracking. The t-m transformation starts at ≈950 

°C (  ) on cooling in pure zirconia and is reversible on heating around 1150 °C [1]. 

The incorporation of some oxide dopants such as magnesium oxide (MgO), calcium 

oxide (CaO), cerium oxide (CeO2) and yttrium oxide (Y2O3) can suppress the phase 

transformation and stabilize zirconia in tetragonal form or even in cubic form. The 

major types of stabilized zirconia are formed depending on the final microstructure 

achieved: Fully Stabilized Zirconia (FSZ) is formed with full cubic structure. Partially 

Stabilized Zirconia (PSZ) contains cubic zirconia as the major phase while monolithic 

and tetragonal zirconia precipitate as minor phases. Tetragonal Zirconia Polycrystals 

(TZP) consists of tetragonal phase retained in a metastable state when cooled to room 

temperature. 

Y2O3 and CeO2 are the most promising stabilizers. They retain the tetragonal phase at 

room temperature in the form of TZP where the microstructure consists of equiaxed 

fine-grains [2]. The oxygen overcrowding around the small zirconium Zr4+ cations was 

shown to be responsible for the poor stability of tetragonal zirconia. Therefore, the use 

of oversized trivalent cation (Y3+) to stabilize tetragonal zirconia is more efficient than 

undersized trivalent cations [3,4]. 



Introduction to Zirconia Ceramics 
 

4 

 

 

Fig.1.1 Schematics of the three polymorphs of ZrO2 and the corresponding space groups: (a) cubic 

(b) tetragonal and (c) monoclinic [4]. 

1.1.2 Transformation from tetragonal (t) to monoclinic (m) 

The transformation from t to m in zirconia is martensitic of nature. Although 

martensitic transformation is originally associated with transformation in quenched 

steels, it occurs as well in minerals and ceramics. A crystallographic correspondence of 

martensitic transformation exists between the parent (tetragonal) and the product 

(monoclinic) phase, described by habit planes and directions (shape strain) as shown in 

Fig. 1.2. The martensitic transformation is a change in crystal structure in the solid state 

through a diffusionless process. It is athermal and involves the simultaneous, 

cooperative movement of atoms over distances less than an interatomic distance which 

results in microscopic changes of shape of the transformed regions. This change in 

shape  is associated with transformation toughening [5]. 

The thermodynamics of the t-m transformation (martensitic) in zirconia was first 

described by Lange [6] considering  the ideal configuration of a spherical tetragonal 

particle in a matrix. The change of the total free energy (     ) associated to the 

transformation is given by equation (1.1): 

 

                                                                (   ) 

 

where     (<0 at temperatures below the equilibrium   ) is the difference in chemical 

free energy between tetragonal and monoclinic phases and it depends on temperature 

and composition.      (>0) is the change in elastic strain energy associated to the 

transformation of particles and it depends on the modulus of the surrounding matrix, 

the size and shape of the particle and the presence of external stresses. Finally, the term 

    (>0) refers to the change in the energy associated to the formation of new 

interfaces between the transformed particle and the matrix. In the case of      <0 the 

tetragonal phase is unstable and a transformation to monoclinic may occur. If       

>0, the tetragonal phase retains in the particle. A decrease in |   | and an increase in 
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     followed by the addition of some oxides such as Y2O3 in Y-TZP, induce a 

decrease in the driving force of the t-m transformation and its temperature [3]. The 

transformation from (t) to (m) in zirconia is the source of enhanced toughness. 

 

Fig.1.2 Schematic illustration of the crystallographic correspondences between the tetragonal 

(parent) and the monoclinic (product) phases during the martensitic t-m transformation.  

1.1.3 The mechanism of toughening in zirconia 

Transformation toughening 

The two material classes better known to exhibit transformation toughening are 

transformation-induced plasticity (TRIP) steels and zirconia based ceramics [5]. 

Series of  theoretical models have been developed to explain transformation toughening 

phenomena and they all agree on the development of a transformed “pro ess” zone 

associated with an advancing crack where a transformation of the metastable (t) phase 

takes place at the crack tip [4], see Fig.1.3. 

The tensile stresses generated induce a phase transformation from t to m around the 

crack tip and induce an increase in volume. The large volume generates compressive 

stresses around the crack and stops further crack propagation [3,4,7]. 
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Fig.1.3 Illustration of transformation toughening in front of a propagation crack [8]. 

In 1980, McMeeking and Evans [7] developed a model of phase transformation 

toughening using linear elastic fracture mechanics. The model is based on the fact that 

the stress induced transformation toughening leads to a shielding,      of the applied 

stress intensity factor    which means that real stress intensity factor at the crack tip 

      is lower than that applied by external forces according to the following relation: 

 

                                                                                                                                 (   ) 

 

where       is the stress intensity factor at the crack tip,    is the applied stress intensity 

factor and       is the shielding factor.  

Previous studies show that the higher the applied stress intensity factor, the larger the 

transformation zone and the larger shielding effect as shown in the following equations 

(1.3) and (1.4): 

 

                                                                                                                                     (   ) 

 

                                               
         

 (   )

(   )  
 

(
√ 

   
)                                          (   ) 

 

where E is the elastic modulus,    is the volume fraction of the transformable particles, 

   is the dilatational strain associated with the transformation,   is the Poisson ratio and 

  
  is the critical stress leading to phase transformation. 
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The toughness of zirconia depends directly on the critical local stress leading to 

transformation   
 . A material with low    and/or    and a high   

  will have low 

values of     so that the contribution of transformation to shielding will be small  

(      ). On the contrary, with high    and/or    and low   
  , a large     (>>1) 

results in strong transformation, as far as the transformation is localised in front of the 

crack. The local stress transformation depends on the magnitude of the temperature of 

undercooling below the    (t/m) temperature. The larger the undercooling below 

   (t/m) the lower critical stress for stress assisted phase transformation, then the larger 

the transformation toughening  [3,4].  

Ferro-elastic toughening 

Besides phase transformation toughening, there is another mechanism of toughening 

referred to as induced ferro-elastic domain switching which also enhance the toughness 

of zirconia based ceramics. It is referred to as ferro-elastic toughening. In 1998, Virkar 

and Matsuimoto [9] reported for the first time, high values of toughness related to the 

ferro-elastic domain switching. The mechanism of the ferro-elastic toughening involves 

switching or alignment of the c-axis of the t-phase along the maximum stress axis, 

which induces a shape change of a pure shear type. Ferro-elastic toughening is possible 

in tetragonal zirconia produced by cooling from the cubic phase by a composition 

invariant displacive reaction. It can also occur when a direct deposition of tetragonal-

prime zirconia takes place by sputtering or electron-beam deposition for example [3].  

1.1.4 R-curve behaviour 

R-curve, or crack resistance, is an increasing resistance of the material to crack growth 

under stress intensity factors higher than the crack lattice intrinsic fracture toughness. In 

general, R-curve behaviour is displayed by any material that exhibits nonlinearity in its 

stress-strain behaviour and experiences a crack-stabilizing effect [10]. The R-curve 

behaviour is more dominant for larger cracks because the effect of toughening 

mechanisms at the crack tip increases with the increase in crack size [11]. R-curve 

behaviour in ceramics is a result of extrinsic toughening mechanisms that are operating 

in the wake of a propagating crack, hence, an R-curve is referred as toughness-curve 

(t-curve) [12]. The increasing in toughness or R-curve for some ceramics is shown in 

Fig.1.4. Mg-PSZ exhibits a high crack resistance compared to Y-TZP which hardly has 

R-curve. The typical R-curve of Mg-PSZ is a result of transformation toughening in 

addition to crack deflection which both are crack shielding  extrinsic toughening effects 

as reported by Hoffman [10]. 

A study by Eichler et al. [13] showed that the R-curve depends on the grain size and 

the testing environment. In the case of 2Y-TZP with grain size of 300 nm, the R-

curve reaches values up to 5.4 MPa√m in ambient air and 6.7 MPa√m in vacuum. 
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Moreover, the authors reported no rising crack resistance with increasing crack length 

in air because of the smaller transformation zone. Gupta et al.[14] reported a fracture 

toughness of 5.7 for a grain size of 250 nm which is in line with the results reported 

before [13]. However, Fargas et al. [15] observed a small increase in plateau toughness 

in air from 3.9 to 4.3 MPa√m in 2.5Y-TZP with grain size of 300 nm.  

R-curves have been studied for many materials since the first detection of a rising crack 

growth resistance curve by Hübner and Jillek [16] in 1977. Then, most of the work on 

R-curves has been conducted on specimens with macrocracks and indentation cracks. 

Munz [17], in his review about "what we can learn from R-curve measurements" 

reported that the principal R-curve behaviour of a material can be measured with 

macrocracks. However, a quantitative prediction of the R-curve for natural flaws is not 

possible from measurements of specimens with macrocracks or with indentation cracks. 

Moreover, the investigation of materials with a rising R-curve results in increase in 

strength compared to a material with the same lattice intrinsic fracture toughness and a 

flat R-curve. 

 

 

Fig.1.4 R-curves for some ceramic materials obtained from measurements of long cracks in compact 

tension samples [4]. 

1.1.5 Low thermal degradation of zirconia 

Low thermal degradation (LTD), referred to as hydrothermal degradation or aging,  was 

first reported by Kobayashi et al. [18] in 1981 who discovered that zirconia samples 

could suffer from slow t-m transformation at the surface in humid atmosphere at 250 °C 

resulting in microcracking and loss of strength. Many investigations have been 



Introduction to Zirconia Ceramics 
 

9 

 

conducted to understand the LTD phenomena since its discovery, but it is still under 

debate. LTD was always considered important only at temperatures above human body 

or room temperature (37 °C) until 2001 when several of hundreds of hip prosthesis 

failed in a short time due to aging of zirconia femoral heads implanted in patients. This 

catastrophe limited the use of zirconia in medical applications and more deep 

investigations were needed to understand LTD of zirconia [1].  

During LTD the degradation of properties is associated with the transformation from 

tetragonal to monoclinic phase. The reversible transformation (m-t) can occur, and then 

a total strength recovery is achieved, but only when aged specimens are annealed at 

high temperatures [19]. Yoshimura summarized experimental observations of LTD on 

zirconia as follows: 

 LTD is accelerated at temperatures of 200-300 °C and it is time dependent. 

 LTD is due to t-m transformation accompanied by micro- and macro-cracks.  

 The transformation progresses from the surface to the interior of the sample. 

 The transformation is enhanced by water or water vapour. 

 A decrease of the grain size and increase of stabilizer retards the 

transformation. 

The mechanism of LTD as reported in the work of Sato et al. [20] is a reaction 

between water and Zr-O-Zr bonds at the crack tip during the transformation in Y-and 

Ce-ZrO2. The results showed similar values for the reactions. Therefore, it was 

assumed that water react primary with Zr-O-Zr bonds on the surface and not the 

stabilizing oxide. 

Yoshimura et al. [21] reported the role of penetration of OH molecule on the 

degradation in Y-TZP in several steps as follows: 

Step 1: Chemical-adsorption of H2O at the surface.  

Step 2: The formation of Zr-OH and/or Y-OH bonds at the surface. 

Step 3: The migration of OH- ions at the surface and in the lattice so nucleating   

defects are prepared.  

Step 4: The nucleation of monoclinic phases in the tetragonal grains.  

Chevalier et al. [22] showed that  LTD undergoes a nucleation and growth mechanism.  

The nucleation of transformation on one grain leads to a volume increase stressing up 

the neighbouring grains resulting in microcracking which offers a way for water to 

penetrate the specimens, see Fig. 1.5. The extension of transformation occurs 

preferentially in the neighbouring grains. Nucleation takes place on the most unstable 

grains that are subjected to the highest internal/applied tensile stresses. The unstable 

grains can be those with less Y2O3 or and with large size and/or subjected to higher 

internal stresses. 
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Fig.1.5 Illustration showing the transformation neighbour to neighbour (a), nucleation on a 

particular grain at the surface (b) and (c) growth of the transformed zone [23]. 

The number of nuclei increases with the stresses because of the penetration of water.  

Simultaneously, a growth mechanism takes places because the transformation of one 

grain puts its neighbours under tensile stresses, favouring their transformation under the 

effect of water. The kinetics of aging was described using Mehl-Avrami-Johnson (MAJ) 

laws in which time and the amount of monoclinic phase is described as the following: 

 

                                                                   [ (   ) ]                                            (   )   

 

where,   is the transformation fraction,   is the time, and   and   are constants. The 

exponent   is related to the nucleation and growth conditions. The parameter   is 

related to the activation energy   and it depends on temperature and follows an 

Arrhenius law in temperatures between 37-140 °C: 

 

                                                                         [  
 

  
]                                              (   )  

 

where     is a constant,   the gas constant and   the absolute temperature.  

An increase of monoclinic phase with increasing aging time has been reported by 

Chevalier at al. [22] at different temperatures (70-130 °C), see Fig.1.6. The results show 

an incubation-nucleation-growth mechanism of transformation because of the 

sigmoidal variation of the monoclinic phase with time for all temperatures.  
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A linear relationship for each temperature with a constant value of   equal to 3.6 was 

observed which fits very well with the experimental data. This value between 3 and 4 

corresponds to a nucleation and three dimensional growth process according to the 

MAJ model. Therefore, the MAJ model gives a good prediction of monoclinic phase at 

the surface of aged 3Y-TZP for a given time and especially low temperature.  

 

Fig.1.6 Monoclinic phase versus time from a temperature range 70-130 °C [22]. 

There are many factors influencing the LTD such as the density, grain size, the 

homogeneity of the phase distribution and the residual stresses on the surface. For 

instance, the low density together with the presence of open porosity allow water 

molecules to penetrate into the bulk resulting in microcracking and pores and then 

leading to a drop in the mechanical properties. 

Grain size has also a strong influence on LTD of zirconia. It was widely reported in the 

literature [24–26] that a decrease in the grain size (200 nm) limits aging. But, a 

reduction of grain size induces a decrease of toughness because of the transformation 

toughening. Indeed, a decrease of grain size influences the surface term in equation 

(1.1) where this latter leads to a dependence of the activation barrier for t-m 

transformation on the particle size. Hence, the activation barrier for the formation of 

critical nucleus is increased by a decrease in particle size.   

A bimodal microstructure of 3Y-TZP appears when it is sintered at high temperature 

and consists of cubic and tetragonal phases. The cubic grains are larger than the 

tetragonal ones which pump the Y2O3 out. The tetragonal grains are depleted and less 

stable. Thus, they act as nucleation sites [27–29]. 

The stress distribution plays a critical role in transformation. The microscopic tensile 

stresses in a grain trigger the t-m transformation. Schmauder and Shubert [30] reported 
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that unconstrained grains were stable under humid conditions, whereas constrained 

grains transformed. The principal stresses from the thermal expansion anisotropy 

enhance the transformability of tetragonal grains to the monoclinic grains by increasing 

the t driving force and lowering the nucleation barrier. 

Increasing the amount of Y2O3 stabilizer increases the resistance to LTD. It was 

reported that 4 mol % yttria stabilized zirconia shows better resistance to LTD 

compared to the 3 mol % yttria stabilized zirconia [31]. 

1.1.6 Applications of zirconia ceramics 

Zirconia ceramics are used in wide range of applications: a dental bridge, oxygen 

sensors, grinding media, fuel cells, cutting blades, knifes and bearings for example. 

However, its main use is in the medical sector because of its outstanding mechanical 

properties, especially its unique balance of toughness and strength compared to other 

ceramic oxides, as well as biocompatibility. More than 60000 zirconia femoral heads 

have been implanted in the United States and Europe. Later on, 400 femoral heads 

have failed due to aging which resulted in a catastrophic impact on the use of zirconia 

in the medical sector. In the same time, results showed excellent behaviour of some 

heads after several years in vivo [23]. Therefore, the correlation between aging and 

clinical failures is still a matter of debate. The orthopaedic market sale decreased more 

than 90 % between 2001 and 2002 [3].  

On the other hand, the aesthetic appearance in combination with excellent mechanical 

properties makes zirconia an excellent choice to be used in restorative dentistry. 

Zirconia has been used as implants and implant abutments, orthodontic brackets, cores 

for crowns, included endodontic posts and fixed partial denture prosthesis (FPDP) 

framework. As the grain size strongly affects the mechanical properties and aging, the 

grain size of 3Y-TZP used in dental applications consists of small equiaxed grains in the 

range of 0.2–0.5 μm depending on the sintering temperature [32]. The flexural strength 

of zirconia used in restorative dentistry is ≈ 1000 MPa and the indentation fracture 

toughness of ≈ 7 MPa√m [33]. 
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1.2 Carbon Nanotubes 

Nowadays, carbon nanotubes (CNTs) are considered as one of the most important 

nanomaterials making the next industrial revolution. They are used in many 

applications such as: electronics, semi-conductors, aerospace, etc. Their extraordinary 

properties are the key behind the high demand. 

1.2.1 Structure of Carbon Nanotubes 

In 1985, a new form of carbon C60 called the fullerenes [34] was discovered by Harold 

Kroto, Richard Smaley and Robert Curl (Nobel prize in chemistry in 1996). The main 

objective of their work was to determine the nature of carbon "clusters" present in 

interstellar space. Later on, intensive investigations were conducted from all over the 

world on the new carbon allotropes. 

 In 1991, Iijima [35] observed for the first time multi wall CNTs (MWCNTs) and later 

in 1993, he discovered single wall CNTs (SWCNTs) [36]. Fig.1.7 shows different types 

of CNTs.  CNT has a cylindrical form; it can be seen as a rolled plane of graphene. Its 

diameter is in the nanometric scale and its length can be in several centimetres which 

lead to a high aspect ratio (length/diameter) of more than 107. CNTs have unique 

properties. They have a high Young’s modulus (≈1500 GPa), high tensile strength 

(≈100 GPa), significantly higher than steel and carbon fibres, high thermal conductivity 

which is higher than diamond and an electrical conductivity similar to silver and 

platinum. The density of CNTs is much lower than aluminium [6][37].   

Depending on the number of graphene cylinders (x), CNTs are referred to as 

SWCNTs (x=1), DWNT (x=2) and multi wall CNTs (MWCNT) with x> 2. 

For MWCNTs, the interspace between two successive CNTs is in the range from 

0.344-0.36 nm and the carbon nanotube bond length is 0.144 nm [37]. SWCNTs can 

be visualized as a single sheet of graphene wrapped up to form a tube and for most 

observed SWCNTs, the diameter of the cylindrical graphene sheet is <2 nm.  
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Fig.1.7 Different types of CNTs based on their number of graphene cylinders: (a)capped single 

wall CNT (SWNT); and (b) open multi wall CNT (MWCNT) [37]. 

 Looking into the structure of a carbon nanotube, an orientation of the six-membered 

carbon ring (hereafter called hexagon) in the honeycomb lattice relative to the axis of 

the nanotube is observed. Three examples of SWNTs are shown in Fig.1.7. The 

direction of the six-membered ring in the honeycomb lattice is almost random and any 

distortion can be seen except the distortion in the ends of the cylinder due to the 

curvature of the carbon nanotube. Therefore, many structures for carbon nanotubes are 

made possible based on the symmetry of the carbon nanotube bonds [38]. 

The classification of carbon nanotube is either achiral (symmorphic) or chiral (non-

symmorphic). In an achiral carbon nanotube the cylindrical structure follows mirror 

symmetry in both axes, longitudinal and transverse. Depending on the cross-sectional 

ring the achiral nanotubes can be armchair or zigzag nanotubes as shown in Fig.1.8. In 

chiral nanotubes, the mirror symmetry is not obeyed. The axial chirality is commonly 

discussed in relation to optical activity [38]. There is another structure that comprises 

several truncated conical graphene layers called cup-stacked [38]. The numerous ways 

to roll graphene into tubes are mathematically defined by the vector of helicity  ̅ and 

the angle of helicity θ as shown in Fig.1.9 and can be described in equations (1.7) and 

(1.8): 

 

 

                                                        ̅     ⃗⃗  ⃗     ⃗⃗⃗⃗                                                                 (   )  



Introduction to Carbon Nanotubes 
 

15 

 

                                                          (
 √ 

    
)                                                         (   ) 

 

where   and   are integers and they can be grouped together to make lattice 

translational indices (   ). The verctors    ⃗⃗ ⃗⃗   and   ⃗⃗  ⃗ are the vectors of the hexagonal 

lattice that corresponds to a section of the nanotube perpendicular to the nanotube axis 

(see fig.1.9). The angle of helicity   is the tilt angle of the hexagons with respect to the 

rolling axis and determines the spiral symmetry. Due to the six fold symmetry of the 

honeycomb lattice, the value of angle of the helicity   falls in the range 0˚-30˚. 

When      , the nanotube is armchair type ((    ), when    , then it is of the 

zigzag type and when       it is chiral, see Figs. 1.8 and 1.9. 

The chirality of CNTs affects the optical, mechanical and the electronic properties. 

CNTs are metallic when |   |     and they are semiconductors when |   |  

     where   is an integer [38]. 

 

Fig.1.8 The terminations of each of the three types of nanotubes. The terminations are often called 

caps or end caps and consist of a “hemisphere” of a fullerene. The figure shows as well the 

different types of CNT based on the chirality [38]. 
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Fig.1.9 Schematic showing how a hexagonal sheet of graphite is “rolled” to form a carbon 

nanotube [39]. 

1.2.2 Synthesis of CNTs 

There are several methods to produce CNTs in which the quality depends on the 

method of synthesis.  

CNTs were first synthesized using high temperatures, such as in arc discharge or laser 

ablation. However, nowadays, other methods are used for a better control of the 

synthesis of CNTs, for example, Chemical Vapour Deposition (CVD). The orientation, 

the purity and the density of CNTs can be controlled using CVD. Moreover, there are 

other methods based on the use of gas-phase that are found to be more convenient for 

composite materials where the production of large quantities is required. 

On the other hand, all methods used for the synthesis of CNTs induce impurities such 

as nano-crystalline graphite, amorphous carbon, fullerenes and different catalysts: Fe, 

Co, Mo and Ni. The impurities decrease the mechanical properties of CNTs. 

Therefore, acid treatment has been used as an efficient and simple purification method 

for CNTs.  

Arc discharge 

The arc discharge method is a simple method for the synthesis of CNTs at high 

temperatures (>1700 °C). For MWCNTs, arc discharge is based on using DC arc 

discharge between two graphite electrodes, usually water-cooled in a chamber filled 

with helium (He) at sub-atmospheric pressure. He atmosphere was used by Iijima et al. 

[35] for the synthesis of fullerenes in order to obtain first scale synthesis of CNTs. Zhao 

et al. [40,41] used He and methane gases and they resulted in different CNTs 
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morphology. A study by Wang et al. [42] has confirmed that the use of different 

atmospheres strongly influences the morphology of CNTs. On the other hand, 

synthesis of CNTs in liquid solutions has also been studied. Thus, Jung et al showed 

that the use of arc discharge in liquid nitrogen results in high yield MWCNTs. 

In the case of SWCNTs, the synthesis by arc discharge implies the use of a composite 

anode in hydrogen or argon atmosphere. The anode is made of graphite and a metal 

such Ni, Fe or Co. The anode can also be a mixture of a metal and another element 

like: Co-Ni, Fe-Ni, Fe-No. Iijima and Ichihashi [36]  reported the first synthesis of 

SWCNTs with a diameter of 1 nm. Then, Berthune et al. [43] reported the synthesis of 

SWCNTs by Co catalysis with a diameter of 1.2 nm. Saito et al. [44] reported growing 

of SWNTs radially from Ni fine particles. In 1996, they  investigated the use of 

platinum group metals (Rh, Pd, Os, Ir, Pt) in the synthesis of SWCNTs by arc 

discharge [45]. Later on, a new approach was reported based on using a hydrogen DC 

arc discharge called ferrum-hydrogen which results in a high crystallinity of SWCNTs 

[46,47]. Moreover, a cheap method was reported for the synthesis of high purity 

SWCNTs with a diameter of 1.2 nm. The method was based on the synthesis of 

SWCNTs in argon DC arc discharge from charcoal as carbon source and FeS as catalyst 

[48]. 

Laser ablation 

Pulsed laser deposition (PLD) used for the synthesis of CNTs is similar to the arc 

discharge, where this time the energy is provided by a laser hitting a graphite pellet 

containing nickel or cobalt as catalyst material. Laser ablation is considered as a superior 

method for the production of SWCNTs with high quality and purity [49]. The lasers 

used for ablation have been Nd:YAG and CO2. Some studies reported that the use of a 

continuous wave of CO2 laser ablation without any additional heating to the target and 

with increasing the laser power will increase the average diameter of SWCNTs. A 

study by Kusaba and Tsunawaski [50] showed that using a laser ablation at 1623 K with 

oscillation wavelength of 308 nm irradiating a graphite containing Co and Ni at various 

temperatures resulted in the highest yield of SWCNTs with the diameter between 1.2 

and 1.7 nm.  

Chemical vapour deposition  

The catalytic chemical vapour deposition (CCVD) is considered as an economic and 

practical method for the production of CNTs with high purity and more controlled 

production compared to laser ablation. Thus, CVD is now a standard method for the 

production of CNTs. The models presented by Fotopoulos and Xanthakis [51] 

suggested that SWNTs are produced by based growth where the cap is formed first, and 

then the CNTs are fabricated by addition of carbon atoms at the base. 
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The most used catalysts in CVD are Fe, Co, or Ni [52]. The catalysis contributes to the 

decomposition of carbon source by plasma irradiation or heat and to the nucleation of 

CNTs. The carbon source used in CVD is hydrocarbons while the substrates 

commonly used are Ni, Si, SiO2, Cu, Cu/Ti/Si, stainless steel or glass [53,54]. 

A study by Flahaut et al. [55] reported the influence of catalyst conditions on the 

synthesis of CNTs by CCVD. They observed that the combustion conditions in the 

case of using citric acid as a catalyst can induce either an increase in the CNTs walls or 

limit the formation of carbon nanofiber. Lyu et al. [56] used benzene as an ideal carbon 

source and Fe-Mo/Al2O3 as a catalyst at 900 °C and they succeeded to produce high-

quality and pure DWCNTs. 

Cui et al. [57]used acetonitrile as the carbon source and the ferrocene as the catalyst and 

they could produce thin walled, open-ended, and well-aligned N-doped CNTs on the 

quartz slides that can be used in many applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Processing of zirconia-CNT composites 

19 

 

1.3 Processing of zirconia–CNT composites 

1.3.1 Dispersion of CNTs 

The synthesis methods reported in section 1.2.2 result in production of CNTs with 

different physical entanglement of the nanotubes where individual CNTs are entwined, 

interwoven and agglomerated. Therefore, the dispersion of CNTs is considered as a 

crucial step and a challenge in the processing of ceramic-CNT composites. A chemical 

entanglement can occur when a surface-surface attraction takes place. Moreover, the 

high aspect ratio, the high flexibility of CNTs increases rapidly the chance of 

entanglements. Besides that, attra tive Van der Waal’s for es between  arbon surfa es 

increase the difficulty of CNTs to be dispersed. The molecular forces between carbon 

nanotubes are influenced by both chirality and surface curvature [58]. 

The objective of dispersion is to produce independent separated tubes that can be 

oriented either in one dimension (fiber), two dimensional (flat sheet) or three 

dimensions (bulk solid). The dispersion can be physical (mechanical) or chemical. 

Mechanical dispersion consists of separating the tubes by using ultrasonication for 

example. Chemical dispersion is based on functionalization using solvents or surfactants 

to change the surface energy of the nanotubes. The functionalization of the tubes may 

improve their adhesion characteristics to the matrix and helps to reduce agglomerations. 

On the other hand, the use of aggressive chemical or mechanical dispersion will result 

in changes in CNTs properties [58].  

The ultrasonication 

Ultrasonication method is usually used to improve the dispersion of CNTs by 

shortening the tubes. However, there is a risk that the tube-wall will be damaged or 

broken. Therefore, an advance ultrasonication method based on the use of diamond 

crystals is developed where the SWCNTs bundles are destroyed but not the tubes. For 

MWCNTs, it was reported that the ultrasonication seems to destroy the external layers, 

so MWCNTs will not only get shorter but also thinner with time [59]. Moreover, 

ultrasonication can be used to remove impurities. A study showed that CNTs has been 

purified from ≈70% to ≈90% by ultrasonication-assisted filtration [60].  

1.3.2 Sintering 

Sintering is a thermal treatment of powder compacts at temperature below the melting 

point resulting in dense polycrystalline solid. Thermodynamically, sintering is an 

irreversible process in which free energy decreases is brought by a decrease in surface 

energy. The main methods of sintering are described below. 
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Hot Isostatic Pressing (HIP) 

Hot Isostatic Pressing is a technique invented in United States in order to diffuse 

bonding nuclear fuel element assemblies [61]. HIP was first used to bond materials 

using high temperature and isostatic pressure. Therefore, it was called Gas Pressure 

Bonding [62]. High performance and high temperature ceramics such as silicon nitride 

and silicon carbide were the first to be produced commercially. Moreover, HIP was 

used to produce alumina cutting tools with excellent cutting properties at a reasonable 

cost. Later on, HIP was spread to oxide ceramics such as Mn-Zn ferrite, PZT and PSZ 

being one of the most promising technologies produce parts with good mechanical 

strength and reliability [63] .  

The advantages using HIP lies in the high densification, elimination of porosity, 

improvement of fatigue properties, improvement of creep properties, improvement of 

ductility and strength and recovery of defective parts. Besides that, it has been found 

that HIP can achieve a desired shape with a high degree of control and accuracy 

[61,64,65]. 

HIP equipment consists of an electric furnace contained in a pressure vessel. The high 

pressure transmitting gas which fills the pressure vessel is argon gas because the viscosity 

of the gas is very low and its density is very high. As a consequence, the heat generated 

by the heating is transferred by the natural convection of the gas. The furnace, the 

heating device and the heat insulation are made of heat resistant alloys or refractory 

metals [61]. 

Spark Plasma Sintering (SPS) 

Sintering under an electric current was first patented in 1906. In 1960, an invention of 

Spark sintering based on pulsed current was reported. However, the high equipment 

cost and the low sintering efficiency limited its wider use. The concept was further 

developed and in 1990s, Japanese companies, in particular Sumitomo Coal Mining Co. 

Ltd started the industrial production of Spark Plasma Sintering machines based on the 

use of pulsed direct current to heat the specimen. Later on, FCT System GmbH in 

Germany and Thermal Technology LLC, Inc. in the USA started producing similar 

equipment based on pulsed DC current. Today, the number of SPS machines installed 

in the world reaches 1750 with 2/3 in the industry. Besides that, more than 3000 

publications have been reported using this technique and its applications according to 

the ISI Web of Science [66]. 

The configuration of SPS consists of a uniaxial pressure system, together with a high 

power electrical circuit placed in a controlled chamber.  There is also a pulsed direct 

current (DC) generator, water cooled reaction chamber, a pressure-, a position- and 

temperature-regulating systems. The powder is located into the die, and a mechanical 

pressure is applied during the sintering process, see Fig.1.10. 



Processing of zirconia-CNT composites 
 

21 

 

A low voltage typically below 10 V is applied leading to an efficient Joule heating that 

goes through the sample. Even in the case of non-conductive ceramic powder the heat 

is efficiently transferred to the sample. Rapid heating rates could reach 1000 °C/min 

reducing the duration of the process and the energy costs [66]. Moreover, cooling rates 

of 150 °C/ min are also possible. The mechanical pressure applied to enhance the 

densification could be as high as 50 to 250 kN. The densification takes place under 

vacuum or protective gas. Finally the maximum temperature using standard graphite 

tools could attain 2400 °C where either thermocouples or axial/radial pyrometers are 

used to control the temperature. 

It was reported that when using non-conductive powder together with the use of an 

electrically conductive die, the current will be forced to pass through the powder 

generating the highest possible current density, see Fig.1.11. 

The stress applied in SPS induces changes in the morphology of contact between the 

particles and enhances the densification mechanisms. The grain growth during sintering 

is usually delayed and reduced. However, the grain size can be several times larger than 

the initial particle size as was reported for several oxides densified by SPS and HP [67]. 

It was reported that a finer starting particle size, in the opposite of coarser one, may 

induce a larger grain size at full density [68]. 

By increasing the pressure during SPS, the agglomeration breaks. At low temperature, 

the particle rearrangement increases reducing the pore size which enhances 

densification and limits the grain growth. At high temperature, other mechanisms take 

place such as plastic deformation or power law creep. Thus, low temperatures are 

needed for full densification [66]. 
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Fig.1.10 Schematic of SPS showing the different parameters involved during sintering [66]. 

 

 

Fig.1.11 Schematic of current flow in case of non-conductive powder and a conductive die [66]. 

 



 

23 

 

 

 

CHAPTER 2 

 

Properties 

2.1  Mechanical properties 

2.1.1 Reliability of indentation fracture toughness 

Measuring fracture toughness using indentation method has always been a matter of 

dispute. The origin of indentation fracture toughness was first initiated in 1970 by 

Evans and Charles [69] in a short communication. Then, the indentation technique 

achieved a high popularity because of its expediency. Moreover, it needs a short time 

for preparation and it is not costly. Therefore, the use of indentation method is 

practically ideal even if it is reported that it is not an accurate method for the 

determination of fracture toughness. 

The indentation technique described by Evans and Charles [69]  suggests using the 

cracks which emanates from the corners under a high testing load. They presented a 

generalized equation and a normalized calibration curve that appeared to apply to many 

different materials with Palmqvist cracks or with median cracks. Later on, several 

authors have used similar curve fitting methods. However, many researchers have been 

confused with their results using the indentation method which have led to the issue of 

more than 30 equations presented in literature [70]. 

Indentation fracture toughness consists of the preparation of a high quality smoothly 

polished surface. Then, the polished surface is indented by a Vickers pyramidal hardness 

indenter. The sample is indented at high testing load until a deformed region is created 

beneath and in the vicinity of the indent. As a consequence cracks are generated from 

the four corners of the impression, see Fig.2.1. The indentation is not always perfect, 

for example it can lead to spalling chipping at high test loads. The parameters involved 

in calculating the indentation fracture toughness are: the lengths of the cracks, 

indentation load, impression size, the hardness and elastic modulus and a calibration 

constant. One should take care while measuring the lengths of the cracks 

Depending on the load and the multiple cracking, the material surrounding the  
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impression could be left with a complex residual stress state. Therefore, there are many 

questions raised concerning the sequence of crack growth from the Vickers indentation 

corners. It could for example be that the cracks first form Palmqvist cracks that can 

extend to median cracks or it could be that median cracks form directly from the 

deformation beneath the indenter. Furthermore, the cracks could be formed either 

during indenter loading or unloading. Besides that, the environment such as the water 

vapour may affect the results [70]. 

As mentioned before, there are numerous equations reported to calculate the 

indentation fracture toughness. Most of the equations are only a manipulation of 

previous equations with new calibration constants. Moreover, most of the equations 

proposed are highly questionable because of their lack of an accurate stress intensity 

factor solution. Furthermore, the complex network and the residual stress damage zone 

around indentations are not helpful to give a direct analysis as in traditional fracture 

mechanics tests.  

However, the most frequently used equations after Evans and Charles [69] are the ones 

of Marshall and Evans [71] who simplified the formula of indentation. Afterwards, there 

are Anstis et al. [72] who proposed additional modifications to the proposed equations. 

Then, two more papers were published by Niihara [73] describing the Palmqvist cracks. 

Finally, an adaptation of the equation of Anstis et al. [72] was reported by Miyoshi et al. 

[74] for median cracks.  

 

Fig.2.1 Vickers indentation with cracks formed under 10 Kg load in SPSed zirconia. 
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2.1.2 Comparison between indentation method and 

standardized fracture toughness tests 

The geometry in a standard fracture toughness test is simple and the crack has well-

defined shape for which loading conditions in addition to the state of stress are known. 

For the indentation method, any geometry can be convenient as long as it can be 

mounted and polished. Moreover, there is no pre-crack in the specimen subjected to an 

indentation test. There are cracks that are generated when the indenter is forced into 

the polished specimen surface. However, in standard tests, there is a single well-defined 

pre-existing crack for which there is a formal stress intensity solution. The loading in 

standard test is done using a universal mechanical testing machine and a prismatic 

specimen where a sharp notch is machined through the specimen. For indentation 

method, under loading, plastic deformation occurs below and around the indentation 

which results in multiple cracks that propagate beneath the indenter in addition to high 

complex residual stresses. In fact, the method is based on a model of the residual elasto-

plastic stress field which depends on the material and on the assumption that this field 

can be represented by an opening force on the centre of the indentation. For 

quantitative estimations the equation of the stress intensity factor is calibrated by a 

constant from the fracture toughness determined using standard methods.   

Li et al. [75], Ponton and Rawlings [76] and Ghosh et al. [77] discussed the credibility 

of the different equations used for the indentation method and they revealed its 

weakness by summarizing indentation results using different equations for the same 

materials. The most critical conclusions of the four publications are summarized as 

follows:  

1) The different proposed equations for the calculation of fracture toughness for the 

same or closely the same crack length in ceramic materials result in wide range 

of different KIC results.  

2) The equations proposed are not able to generate accurate results for different     

materials.  

3) The different equations result in increase or decrease of fracture toughness 

depending on the crack length for the same material. Moreover, the "R-curve" 

behaves differently for the same material when the different equations for the 

calculation of indentation fracture toughness are applied. 

The above conclusions illustrate clearly the inadequacy of using indentation method. 

The first conclusion shows that indentation method does not result in unique value of 

KIC. The wide range of KIC results obtained by using indentation method indicates its 

unreliability in measuring the true KIC of brittle materials. In addition, brittle materials 

deform and fracture differently underneath an indentation. Ceramics with covalent 

bonding such as silicon carbide deform differently than the ceramics with ionic bonding 

such as magnesium oxide or glasses. Furthermore, fine grain and coarse grain ceramics 

have different fracture mode as well. Moreover, the indentation cracks are three 
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dimensional networks. Therefore, the cracks cannot be idealized as Palmqvist, semi-

circular or median as it is assumed in the equations proposed. 

The variation of indentation fracture toughness with the crack length seems to be in a 

contradiction with the R-curve of brittle ceramics. The R-curve is either flat as for 

fine-grain ceramics or increases with crack length as for coarse grained polycrystalline 

ceramics. R-curve should not be decreasing with increasing the crack length, as was 

reported in conclusion 3 which makes the indentation method results confusing.  

As summary, it is concluded that the different equations proposed for the calculation of 

indentation fracture toughness in the literature are not reliable. 

Therefore, indentation fracture is not a suitable method for the calculation of fracture 

toughness. For this reason, we have in the current work developed, a new testing 

method from the measurement of the "true" fracture toughness of small cracks [78]. 

The new method is based on inducing a very sharp shallow surface notch using Pulsed 

Laser Pulsed Ablation (UPLA) on the surface of prismatic bars which was parallel to the 

original discs and determining the "true" KIC from the strength in four point bending 

[78]. More details on the experimental procedure will be discussed in Chapter 3. See 

Fig.2.2 shows an example of a notch induced by UPLA. 

 

Fig.2.2 Side view of the notch induced by UPLA on SPSed zirconia. 
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2.1.3 Effect of CNTs on the mechanical properties 

It was reported that a single CNT failed after 280 % stretching at high temperature [79]. 

A study by Treacy et al. [80] reported individual CNTs with Young’s modulus of more 

than 3 TPa. Lourie et al. [81] estimated that the stress required for producing buckling 

or collapse of CNTs is around 100-150 GPa. Therefore, it is evident that CNTs are the 

strongest and the stiffest fibres ever found. However, the efficiency of the addition of 

CNTs in improving the mechanical properties of ceramic matrix composites is still a 

matter of debate. 

Mukhopadhyay et al. [85] reported that the crack bridging provides a 150 % 

improvement of the fracture toughness compared to a monolithic material and that no 

fibre pull could be detected. A study carried out by Estili et al. [84] showed that the 

different toughening mechanisms such as crack deflection, fibre pull-out or crack 

bridging of CNTs induce an increase of 67 % of the fracture toughness with the 

addition of 3.5 vol % MWCNTs to alumina matrix. However, the hardness and elastic 

modulus were decreased with the addition of CNTs in the matrix. Moreover, An et al. 

[86] showed that the strong bonding between the matrix and MWNTs result in the 

improvement of elastic modulus from 74 GPa to 118 GPa by adding 6.4 vol % MWNT 

to silicon carbonitride (SiCN) matrix. 

On the other hand, as it was described in the previous section, the use of the 

indentation method results in a big dispersion of different KIC values in literature. 

A study by Zhan et al. [82] of the addition of SWCNTs in alumina nanocomposites 

showed a high increase of indentation fracture toughness (9.7 MPam1/2) and a decrease 

in hardness of about 20 %. However, Wang et al. [83] had ambiguous results by the  

use of indentation method in the determination of fracture toughness. Therefore, they 

used single edge V-notch beam (SEVNB) on the same composites and they showed an 

improvement of only 3 % in fracture toughness. Nevertheless, they used a razor notch 

radius which is not sharp enough, see Fig.2.3. The study by Wang et al. [83] also 

reported that alumina-graphite composites prepared by SPS do not have a high fracture 

toughness, but they have a good contact-damage resistance. SWCNTs are highly shear-

deformable which induce an intensive confined-shear field and causes a redistribution 

of the stress under the indenter which prevents the formation of cracks. Melk et. al [78] 

studied the addition of MWCNTs to zirconia matrix and they showed that the "true" 

fracture toughness of the composites is hardly increasing while the indentation fracture 

toughness is increasing which indicate that the incorporation of CNTs to zirconia 

matrix increases the resistance to cracking under contact loading.  

In 2007, Quinn and Bradt [84] suggested strictly to not use the indentation method for 

the determination of fracture toughness.  

Sun et al. [97] and Ukai et al. [98] showed that the addition of 1 wt % CNTs to 3Y-

TZP/CNT nanocomposites induces no improvements of the indentation fracture 

toughness, fracture strength or hardness compared to 3Y-TZP matrix. They reported 
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that the low mechanical properties are due to the weak interfacial bonding between the 

matrix and the CNTs. 

 

Fig.2.3 Fracture toughness of the SWCNT-alumina composites measured by (a) Indentation 

method measured by Zhan et al. [82] and (b) SEVNB method measured by Wang et al. [83]. 

Garmendia et al. [100] reported small improvements in indentation fracture toughness 

using slip casting for a better dispersion of carbon nanotubes in zirconia matrix. 

However, they found low Vickers hardness. Duszova et al. [6], [99] showed poor 

mechanical properties in hot pressed zirconia carbon-nanofiber composites. They 

reported that the composites have low density compared to monolithic zirconia. 

Dusza et al. [101] used hot pressing and SPS for the sintering route of 3Y-TZP/CNF. 

The use of SPS showed higher indentation fracture toughness and hardness than the 

samples sintered by hot pressing. They concluded that using SPS for a short sintering 

time of only 5 min can prevent the nanotubes from oxidation and damage. 

On the other hand, the addition of CNTs to alumina matrix has shown good results. It 

was reported by Fan et al. [88] that the addition of 1 % SWCNTs into alumina 

increases the indentation fracture toughness by 103 %. Moreover, Fan et al. [89] 

showed an improvement of 80 % of the indentation fracture toughness by studying hot 

pressed alumina-MWCNTs nanocomposites. However, Mo et al. used SPS for the 

processing of alumina-CNT and reported 7 % improvement of the Vi kers’s hardness 

and 10 % increase of indentation fracture toughness [87]. 

Chang et al. [92] and Siegel et al. [92] reported an improvement of 24 % of the 

indentation fracture toughness compared with a value of 4.2 MPa·m1/2 of the 

monolithic alumina. However, Wei et al. [94] showed that by adding as little as 3 vol % 

CNTs to alumina matrix the indentation fracture toughness increases by 79 % and the 

bending strength increases by 13 %.  
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2.2  Tribological properties 

The effect of CNTs on the tribological behaviour of ceramic-CNTs composites has 

mainly been studied in alumina-CNT composites. The first study was carried out by 

An et al. [85] on the wear mechanism of alumina-CNT composites. They reported a 

decrease in the wear loss of 56 % and an improvement of 30 % in microhardness. A 

study by Axia et al. [86] showed how well-aligned CNTs can determine the friction 

coefficient (COF) of the composites using pin-on-disc geometry. The highly ordered 

nanotube ceramic composites exhibited low COF and high wear resistance by tuning 

the CNT thickness and buckling properties. The authors reported 80 % reduction of 

the COF.  

Studies of the tribological behaviour of CNT composites with zirconia as matrix 

material are fewer. In 2010, Hvizdos et al. [87] studied the wear behaviour of zirconia-

carbon nanofiber (CNF) composites. They reported that the addition a little as 1.07   

wt % CNF results in excellent frictional properties of the composites. The low friction 

coefficient achieved was related to the formation of a carbon-based transferred film on 

the surface which induces easy sliding and shear due to the lubricating effect of CNTs. 

Two years later, Hvizdos et al. [88] studied the effect of CNF/CNT on different matrix 

composites: ZrO2, Si3N4, Al2O3. They showed the benefits of the presence of CNFs on 

the friction coefficient of the composites. They concluded that a small amount of CNFs 

can decrease the friction coefficient while the CNTs are less effective. Then, it is 

necessary to incorporate high amount of CNTs for better frictional results. The authors 

reported that the percolation of CNF occurred at ≈1 wt % CNF in ZrO2 whereas, a 

percolation of 3 wt % and 5 wt % of CNT occurred for Si3N4 and Al2O3 respectively. 

Later, Kasperski et al. [89] used a pin on disc reciprocating flat geometry and an 

alumina ball as a counterpart  for studying the tribological behaviour of 3Y-TZP/CNT 

composites in the range composition (0.55-5.16 wt % CNT). They reported that the 

composite with 5.16 wt % CNT had a coefficient of friction 3.8 lower than of 

monolithic zirconia and explained the obtained results by the exfoliation of MWCNTs 

due to the high shear stresses generated during sliding. 

In the current thesis we have performed detailed studies of the frictional behaviour of 

SPSed 3Y-TZP/ CNT composites where a range of CNT content from 0 to 2 wt % 

were added to a zirconia matrix. It was found that the incorporation of 2 wt % CNT 

results in high wear resistance which to the best of our knowledge has never been 

reported before [90]. More details are reported in Chapter 4. 

2.3  Electrical properties 

The electrical conductivity of CNTs was found to be as high as 2 107 S/m [80]. The 

electrical properties of CNTs depends on the type, chirality and defects in the structure. 
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Therefore, adding a small amount of CNT to a ceramic matrix which is an insulator 

can make it a good conductor. 

SWCNTs have better electrical conductivity properties than MWCNTs due to their 

perfect structure. The electron tunnelling between adjacent tubes in a percolated 

network of SWCNTs is believed to be the primary charge transport mechanism in 

CNT [91]  . This mechanism has been associated with fluctuation-assisted tunnelling 

proposed by Sheng [92]. Sheng reported the observation of a new tunnelling 

conduction mechanism in carbon-PVC composite in which the modulation of 

tunnelling barriers by thermal fluctuations determines the dependency of conductivity 

on temperature and electric field [91]. 

Fonseca et al. [93] studied the electrical conductivity of 3YTZP/SWCNT composites 

in wide range of temperature. The authors attributed the high electrical conductivity of 

the CNT composites to the electron tunnelling between adjacent tubes in a percolated 

network. 

The electrical percolation threshold in ceramic-CNT composites was reported to be 

very low due to the excellent electrical properties of CNTs. The addition of only 0.3 

vol % CNTs to SiC matrix results in 75 % reduction of electrical resistivity  [94]. 

Ahmed et al. [95] reported a high electrical conductivity with a percolation threshold 

close to 0.79 vol % attributed to the high aspect ratio of MWCNTs. A study by Inam 

et al. [96] reported higher electrical conductivity of alumina-CNT composites as 

compared to alumina black carbon. The high electrical conductivity was attributed to 

the large aspect ratio which results in entangled network of conductive paths. 

Furthermore, the use of SPS technique allowed lower sintering temperature and shorter 

sintering time which preserves CNTs from damage [66].  

Hvizdos et al. [88] studied the effect of the addition of CNF to zirconia matrix. The 

authors reported an increase of electrical conductivity with the addition of 3 wt % CNF 

due to the formation of a continuous intergranular network  of CNFs. Ukai et al. [97] 

showed that the addition of only 1 wt % CNTs results in improvement of electrical 

conductivity due to the formation of a 3D network structure of MWCNTs in the 3Y-

TZP matrix. 

In the current thesis, the electrical properties of zirconia-CNT composites produced 

using SPS have been studied. The incorporation of CNTs increases drastically the 

electrical conductivity of the composites when the percolation threshold is reached, 

which is only about s 1 wt % CNT [98]. More details are described in Chapter 4. 
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2.4  Electrical discharge machining (EDM) 

As been described before in the introduction, 3Y-TZP has a wide range of applications 

due to their extraordinary properties: high strength, high toughness, good chemical 

resistance and biocompatibility compared to other oxide ceramics [99]. However, the 

main drawback of machining zirconia ceramics remain being the brittleness which 

limits their ability to be machined with conventional techniques such as cubic boron 

nitride (cBN) or diamond tools [100]. Nowadays, a successful and attractive machining 

technology based on the use of electrical discharge machining (EDM) allows machining 

complex shapes of electrical conductive materials with high precision up to the 

microscale level, being independent of the material hardness. In  EDM, series of 

controlled electrical discharges are generated between a tool electrode and a workpiece 

immersed in dielectric fluid resulting in removing material from the workpiece mainly 

through melting, evaporation and spalling [101–103]. Nevertheless,  EDM requires an 

electrically conductive workpiece, which limits its applications to nonconductive 

ceramics such as ZrO2, Al2O3, Si3N4 and SiC [104–107].  

It was reported that adding relatively large amounts of a conductive phase to 3Y-TZP 

such as WC, TiC, TiN, TiCN or TiB2 [108–111] makes the composite electrically 

conductive and therefore, susceptible to machining by EDM. During EDM, the 

temperature raises and the melting temperature can be eventually reached which 

contributes to material removal. Some of the molten material disappears and some 

fraction of the melt solidifies on the EDM surface forming the recast layer. Melting has 

been observed mainly in metals as the main material removal mechanism [112]. 

However, Bonny et al. [113] reported full melting as material removal mechanism in 

the EDM of ZrO2-WC composites. Melting was also observed  in ZrO2–TiN and 

Al2O3–SiC–TiC using wire EDM [108].  Lauwers et al. [114] reported the effect of 

microstructure on  wire EDM in zirconia where 40 vol % WC was used as conductive 

phase.  It was found that a finer microstructure results in a lower thermal conductivity 

and then a higher cutting speed for materials where the predominant material removing 

mechanism (MRM) is melting. Another approach consists of using a conductive layer 

referred as assisting electrode (AE) and was used on the surface of the workpiece to 

make it conductive. 

In the current study, we investigated the machinability of zirconia-MWCNT using 1 

wt % and 2 wt % CNT content. The composites showed high electrical conductivity 

and then a successful EDM machining. Moreover, the study of the surface integrity of 

the machined samples showed that melting/evaporation and spalling are the main 

MRM [98]. More details are found in Chapter 5.  
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2.5  Thermal conductivity  

Carbon nanotubes have a high thermal conductivity due to the large phonon mean free 

path in the strong carbon sp2 bond network of CNT walls. However, there is a 

relatively large data scatter in the literature for thermal conductivity values of CNTs at 

room temperature. The commonly reported values for the thermal conductivity of 

individual CNTs are 3,000 W mK−1 for MWCNTs and 3,500 W mK−1 for single-

walled carbon nanotubes (SWCNTs) at room temperature [115].  

Bakshi et al. [116] showed that the increase of CNTs dispersion quality induces an 

increase in the thermal conductivity of Al2O3 coatings with 4 wt% MWCNTs. Kumari 

et al. [117], reported that the thermal properties of Al2O3-CNT composites are highly 

dependent on the CNT content, bulk density, and SPS conditions. However, in both 

studies [116,117] , the maximum increase in thermal conductivity was not as high as 

expected regarding the thermal conductivity of CNT. Zhang et al. [118] studied the 

thermal conductivity of SPSed bulk CNT samples. They showed that CNT results in 

low thermal conductivity (4.2 W mK−1) when they are sintered to bulk samples. The 

tube-tube interaction was the main reason behind the low thermal conductivity. Huang 

et al. [119] reported a decrease in thermal conductivity of BaTiO3-CNT composites 

due to the interfacial thermal barrier between CNTs and BaTiO3. It was reported that 

the addition of MWCNTs increases the thermal conductivity of silica-MWCNT 

composites [120]. Jiang and Gao [121] found that the thermal conductivity increases 

with increasing the amount of MWCNTs in TiN-MWCNT composites. 

In the present work, the thermal conductivity of zirconia-MWCNTs sintered at two 

different temperatures 1350 °C and 1500 °C have been studied. To the best of our 

knowledge, there has not been any work on the thermal conductivity of 3Y-

TZP/CNT before. It was shown that the thermal conductivity of the studied 

composites (1 wt % CNT) sintered at 1350 °C is decreasing with increasing MWCNTs 

content, whereas only a small decrease in the composite with 1 wt % CNT content is 

observed at higher SPS temperature 1500 °C. The decrease of thermal conductivity 

with CNT content may be explained by the increase in porosity and the drop of elastic 

modulus [98]. 
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CHAPTER 3 

 

Materials and Methods 

3.1 Materials 

Commercially available yttria stabilized zirconia powder with 3 mol % yttria (TZ-

3YSB-E, Tosoh Co, Japan) was used in the current study. The zirconia powder has a 

crystalline size of 30 nm and a particle size of 600 nm. The chemical composition of 

3Y-TZP is illustrated in Table 3.1.  

Table 3.1 Chemical composition of 3Y-TZP powder as given by the producer [122]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The as received 3Y-TZP powder, see Table 1, was heat treated at 750 °C in order 

to burn of the organic additives. The carbon nanotubes used to reinforced zirconia 

were MWCNT (Graphistrength C100) supplied from Arkema, France, with an 

outer diameter 10-15 nm, inner diameter 2-6 nm and length 0.1-10 m (see 

Fig.3.1). The different amount of MWCNT contents chosen to reinforce zirconia 

were 0.5, 1 and 2 wt %. 

Elements Composition in wt % 

Y
2
O

3
 4.95-5.35 

Al
2
O

3
 0.15-0.35 

SiO2 Max 0.02 

Fe
2
O

3
 Max 0.01 

NaO
2
 Max 0.04 
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Fig.3.1 Shape of as received MWCNTs bundles and zirconia powder. 

3.2 Powder processing and sintering 

Multi-walled carbon nanotubes were initially dispersed in N, N dimethylformamid 

(DMF) using ultrasonication from 2 to 4 hours depending on the amount of MWCNT 

used. The heat treated zirconia powder was then added to the dispersed MWCNT-

DMF solution. After that, the mixture was milled using a planetary ball milling for 4 

hours running at a velocity of 300 rpm using a mixture of different sized zirconia balls 

of diameter 10, 5 and 3 mm. The milled slurry was then dried at 70 °C for 24 hours. 

Finally, the powder-fibre mixture was passed through sieve of 250 µm.  

Another method of the composite powder processing was used in order to improve the 

dispersion of CNT within zirconia matrix. The processing method consists of dry 

mixing MWCNTs together with zirconia powder using "Turbula" mixer for 24 hours. 

However, the dry powder processing method was not as successful as the first method 

which consists of using DMF as a dispersant. 

Sintering is the next step after powder processing. The composite powder was sintered 

using Spark Plasma Sintering HPD 25/1 (FCT System, Germany) furnace at Queen 

Mary college, London, UK. SPS allows sintering to fully dense composites at lower 

temperatures and at shorter holding times compared with normal sintering, which 

preserves CNTs against damage as reported in section 1.3.2. 

The powder-fibre was filled into a graphite die and then heated with a heating rate of 

100 °C/min to the holding temperature of 1350 °C.  An axial pressure of 50 MPa was 

applied at 1350 °C for a dwell time of 5 min and then cooled down at a rate of 100 °C 

/min. After the sintering procedure, the final samples had a shape of flat discs with 3 

mm thickness and a diameter of 40 mm and 50 mm.  The samples were then polished 

using series of steps of diamond suspensions from 30 µm down to 3 m before a final 

polishing step with colloidal silica was made. The samples were then thermally etched 
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in air at 1100 °C with a dwell time of 1 hour in order to reveal grain sizes and 

microstructure. The average grain size of each composite was determined using the line 

intercept method on scanning electron microscopy (SEM) images. 

 

3.3 Microstructural analysis 

3.3.1 Density  

The bulk density of 3Y-TZP/CNT composites was determined using Archimedes 

method. Since there was no reaction between CNTs and 3Y-TZP matrix, the 

theoretical density of the composites was calculated according to the rule of mixtures. 

The theoretical density of zirconia is 6.1 g·cm-3. However, the exact density of 

MWNTs is not known because it depends on their purity, number of walls and 

external diameter. Therefore, the value 1.8 g·cm-3 was considered for the density of 

CNTs based on literature data [123]. 

3.3.2 Confocal microscope  

A laser confocal microscope (Olympus, LEXT OLS 3100) was used to characterize the 

Vickers indentations by measuring the crack lengths and the diagonal lengths of the 

imprints. 

3.3.3 Scanning Electron Microscope (SEM) 

A Scanning Electron Microscope (JEOL JSM 6400) and a high resolution scanning 

electron microscope (Magellan 400, FEI Company) were used for initial 

microstructural characterization such as grain size measurements, the analysis of CNTs 

dispersion and fractography examinations. The sample surfaces were coated with a thin 

layer of carbon before introducing the samples in the SEM chamber to improve the 

electric conductivity of the sample surface for a better imaging of surface structures in 

the SEM. 

3.3.4 Focused Ion Beam (FIB) 

Focus ion beam (FIB) operates in a similar way as the SEM. Both systems used focused 

beam to create a specimen image, ion beam for the FIB, an electron beam for the SEM. 

A reservoir of gallium (Ga) is positioned in contact with a sharp Tungsten (W) needle. 

A high extraction field is used to pull the liquid Ga into a sharp cone whose radius may 

be 5–10 nm. Ions are emitted and then accelerated down the FIB column. The reasons 

behind the use of Ga are that Ga has a melting temperature of only 30 °C, thus, it exists 
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in the liquid state near room temperature. Moreover, Ga ions can be focused to a very 

small probe area of only 10 nm in diameter.  

The Ga+ ion beam is focused onto the area of interest on the surface. Once the beam 

hits the surface it enters the sample and creates cascade of events which results in the 

ejection of sputtered particles in the form of ions that leave the surface as secondary ions 

(i+ or i-) or neutral atoms (n0), as well as secondary electrons (e–), see Fig 3.2.The 

electron beam is used to raster the surface while the signals from the emitting ions are 

used to form the image. The primary ion penetration depth is approximately 20 nm for 

25 keV Ga+. The high beam currents are used for milling large areas quite rapidly, and 

low beam currents are used for polishing the milled surface before imaging. FIBs 

typically operate with an accelerating voltage between 5 and 50 keV [124]. 

 

 

Fig.3.2 Principle of FIB imaging. 

In this thesis a dual beam focused ion beam (FIB) /SEM Microscope (Zeiss Neon 40) 

was used mainly to investigating the subsurface damage below nanoindentation and in 

front of the notch tip induced by laser ablation. A thin platinum layer was deposited on 

the sample prior to FIB machining in order to minimize ion-beam damage. A Ga+ ion 

source was used to mill the surface at a voltage of 30 kV. The final polishing of the 

cross-sections was performed at 10 pA. 
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3.4 Phase characterization 

3.4.1 X-Ray Diffraction (XRD) 

The X-ray diffraction (XRD) was used to identify the crystallographic phases with 

Bragg-Brentano symmetric-geometry, using PANalytical Empyrean equipment with 

PIXcel-3D detector and Cu-Kα 45 kV and 30 mA radiation. The XRD spectra were 

obtained in a scan range of 20 ° ≤  θ ≤ 100 °, using a step size of 0.013 ° and an anti-

scatter slit of 1 °. The monoclinic volume fraction,   , content was calculated by the 

equation proposed by Toraya et al. [125], 
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where   
(   )

and   
(   )

represent the intensities of the (hkl) peak of the monoclinic and 

tetragonal phases, respectively.  

3.4.2 Raman spectroscopy 

In the current study, Raman spectroscopy (alpha300RA+ from WITec GmbH) was used at 

Universitat de Barcelona (UB) to analyse the effect of MWCNTs on the tribological properties 

of the composites where signals from both inside and outside the wear tracks were compared. 

Raman spectra were recorded using the 532 nm laser wavelength excitation and an acquisition 

range from 100 to 3000 cm-1. 

3.5 Mechanical testing 

3.5.1 Hardness and indentation fracture toughness 

Vickers indenter was used to indent the specimen´s surface inducing cracks at the 

corners of the residual indentation impressions. The crack lengths and the imprint area 

were then measured to determine the Vickers hardness (HV) and the indentation 

fracture toughness.  

Taking into account the Palmqvist morphology of the indentation cracks, the 

expression proposed by Niihara [73] for Palmqvist cracks is the most appropriate for 

determining the indentation fracture toughness, see Fig.3.3. Anstis et al. [72] equation 

for median cracks was also used to compare the present results with other published 

results as well as to compare the resistance to cracking by a Vickers indenter of 

composites with different amounts of CNTs. Moreover, in the literature, the equation 
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for fracture toughness of median radial cracks is often employed independently of the 

shape of the cracks.  

 

Fig.3.3 Vickers indentation with Palmqvist cracks. 

Vickers Hardness of the material is given by the following equation:  
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Fracture toughness     using the equation of Niihara et al [73] 
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Fracture toughness using Anstis et al equation [72] 
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where   refers to the crack length and   is the elastic modulus and   is the hardness 

calculated from the indentation load   and the projected area of the imprint as follows: 
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Indentation fracture toughness does not measure the true fracture toughness but rather 

the resistance to cracking by sharp contact loading as it was well explained in section 

2.1.1. Therefore, in the current study, a new method is developed for the 

determination of the "true" fracture toughness of the nanocomposites. 

3.5.2 True fracture toughness 

The method is based on inducing a sharp shallow notch on the surface of a prismatic 

bar by means of a femtolaser. The femtolaser system used to produce the notch was a 

commercial Ti: Sapphire oscillator (Tsunami, Spectra Physics) and a regenerative 

amplifier system (Spitfire, Spectra Physics) based on chirped pulsed amplification. The 

femtolaser delivered 120 fs linearly polarized pulses at 795 nm wave length with a 

repetition rate of 1 kHz. The pulse energy used was 5 mJ and the focusing system was 

an achromatic doublet lens with 50 mm focal length. The samples were placed on a 

XYZ motorized stage and moved along one of the horizontal axis with a scanning 

speed of 50 µm/s. Four passes were needed to achieve the desired notch depth ( 24 

µm). 

The stress intensity factor,   , was obtained by using the following expressions 

proposed by Munz and Fett [126]: 
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where   and    are the outer and inner spans respectively,   is the thickness,   the 

width,   the applied load,   is the crack length, which is taken as the depth of the 

notch plus the small damage region in front of the notch,     ⁄  and      . 

The tests were performed for the composites with 0, 0.5 and 2 wt % CNT content. 

Additional tests were carried out in standard 3Y-TZP with larger grain size (330 nm). 

Finally, the notched bar specimens (4 mm x 2.5 mm x 40 mm) were tested in a four 

point bending test device (DEBEN, Microtest, UK) in air with spans of 30/12 mm. 

The average stress rate was 2.4 MPa/s. Three specimens were used for each 

composition. 
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3.5.3 Nanoindentation 

Instrumented indentation is a technique in which an indenter is applied on the surface 

and both the applied load and the measured displacement are recorded simultaneously 

throughout the experiment. When the applied displacements and loads are very low the 

instrumented indentation technique is often referred to as nanoindentation.  It is used 

for the determination of the near surface mechanical properties such as elastic modulus 

and hardness, among many other applications such as in thin films. The most used 

method to extract the mechanical properties is the one introduced by Olivier and Pharr 

in 1992 [127]. The experiment set up requires a sample with a flat surface and an 

indenter usually made of diamond that penetrates perpendicularly into the surface. The 

depth of penetration at a given load is a response to the material´s resistance to 

deformation. The most commonly used indenter geometry is Berkovich geometry 

which consists of three sided pyramid with an opening angle of 142.3 ° between one 

edge and the opposing face of the indenter. Depth from nanometres to millimetres can 

be covered to determine materials properties over a large or a local volume at the 

nanos ale. “Nanos ale” has been defined by the I O standard I O14577 as 0–200 nm 

in penetration depth, “mi ros ale” from  00 nm to an applied for e of   N, and 

“ma ros ale” for for es larger than   N (I O-14577-1 2002) [128]. 

The measured parameters during nanoindentation test are the applied load ( ), the 

total displacement relative to the initial undeformed surface ( ), the contact depth (  ), 

the final depth (  ), and the contact stiffness       ⁄ . The contact stiffness is 

defined as the slope of the upper portion of the unloading curve during the initial stages 

of unloading, see also Fig.3.4. 

 

Fig.3.4 Schematic of the a) unloading process showing the contact geometry and b) load-

displacement curve [127]. 
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The contact depth is estimated from the load-displacement data using the following 

equation:  

 

                                                             (
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where      is the peak indentation load and   is a constant which equal to 0.75 for a 

Berkovich indenter [128].  

The projected area   is estimated by evaluating the indenter shape function at the 

contact depth   ,    (  ). Then the hardness   and the effective elastic modulus 

     are calculated as follows: 

 

                                               
 

 
      √   

    
 
                                                (   ) 

 

where   is a constant equal to 1.034 in the case of a Berkovich indenter.  

 

 

                                             
 

    
 
    

 
 
    

 

  
                                                    (    ) 

 

The effective elastic modulus,     , takes into account the fact that elastic 

displacements occur in both the specimen with Young´s modulus E and Poisson´s ratio 

ν, and the indenter with    and   . 

 

In this thesis, nanoindentation tests were performed using a Nanoindenter XP from 

Agilent Technologies equipped with continuous stiffness measurements (harmonic 

displacement 2 nm and frequency of 45 Hz), using a pyramidal Berkovich diamond 

indenter. The strain rate was held constant at 0.05 s-1. The nanoindentation curves were 

analysed using the Oliver and Pharr method [127] in order to measure the 

nanoindentation hardness (     ) and the elastic modulus (     ) as a function of the 

penetration depth for each composition where       was defined as the ratio of load 

and contact area at maximum load. The indenter shape was carefully calibrated for true 

penetration depths as small as 50 nm by indenting fused silica samples of well-known 

Young’s modulus (7  GPa). The indents were organized in a regularly spa ed array of 

25 indentations (5 by 5) at a maximum penetration depth of 2000 nm or until reaching 

the maximum applied load, 650 mN. Each indentation was performed with a spacing 

distance of 50 μm in order to avoid any overlapping effect. 
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3.6 Tribological characterization 

3.6.1 Scratch testing 

The scratch test can be carried out under a constant load and an incremental load. 

During scratch testing a stylus is moved over a specimen surface with a linearly 

increasing load until failure occurs at critical load   , and the normal force    and the 

tangential force    are recorded. Acoustic Emission (AE) is also measured. An optical 

microscope is used to evaluate the damage induced after scratch testing, see Fig 3.5. 

 

 

Fig.3.5 Schematic showing the different parameters involved during scratch test [129]. 

In the current study, nano-scratch tests were carried out with a nano-scratch 

attachment of the Nanoindenter XP that allows lateral force measurements. A 

Berkovich indenter was employed to scratch the surface under increasing load at a 

velocity of 10 μm/s for a total scratch length of 500 μm up to a maximum load of 40 

mN. Three different scratches were performed on each sample. Lateral (friction) forces 

were calculated from the deflection of the loading column. The coefficient of friction 

(COF) was determined by taking the ratio of the lateral force measured by the 

equipment and the normal load applied on the material. 

Macro-scratch testing was conducted using a sliding Rockwell indenter with a diamond 

spherical tip radius of 200 m (automatic Scratch Tester, CSM-Instruments, 

Switzerland). Both normal and tangential forces were recorded. Applied load ranged 

from 1 to 150 N over a sliding distance of 7.5 mm at a sliding speed 5 mm/min. 

3.6.2 Wear test 

Tribology tests were performed on an automatic tribometer (Wazau TRM1000, 

Germany) in reciprocating dry sliding conditions, using ball on disc geometry, at 

ambient temperature and pressure. A zirconia ball with 10 mm diameter was used as a 
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counterpart. All the tests were carried out under a constant normal load of 5 N, a 

sliding velocity of 300 rpm and a stroke length of 4 mm. The total sliding distance was 

100 m. At least four tests were performed for each condition and data represent their 

average. The COF was calculated by taking the ratio of the tangential and normal 

forces and it was reported versus the sliding distance. The volume removed was 

measured using a stylus profilometer where a hundred profiles along the width of the 

track were recorded. The wear rate,  , was determined in terms of the volume loss   

per distance   and applied load   according to the following equation: 

 

                                                     
 

   
                                                                    (    ) 

 

3.7 Electrical conductivity and Electrical Discharge 

machining (EDM) characterization 

In the current work, the electrical conductivities of all composites were measured by 

four-point method. A direct current runs through the sample through outer Pt current 

leads and the resistivity of the sample is measured using two "inner" Ni Voltage probes. 

The measurement was done with an accurate digital micro-ohmmeter (Keithley 580) 

using the four-point method on bar-shaped specimens (4 mm x 4 mm x 18 mm) 

prepared using a diamond cutting machine. The conductivity of the material is 

calculated from the current, the measured voltage and the geometry of the 

arrangement.  

Die sinking  DM (“+GF+ AgieCharmilles”) was carried out with 3Y-TZP/ 1 wt% 

CNT and 3Y-TZP/ 2 wt% CNTs composites as workpiece. The tool used was a 

copper tool electrode with a surface of 0.12 cm². The average observed current was 0.5 

A and the overall machining distance was set to a value of           without 

rotation or planetary movement of the tool. The dielectric used lubricating oil named 

"IonoPlus IME-MH".  

To achieve a surface roughness of Ra=0.1, first impulse set 1 and afterwards impulse set 

2 of the machine were used to machine the material under the boundary condition 

“Cu – Carbide Metal”. The  omposites subje ted to  DM were in the shape of one 

quadrant of the sintered discs, clamped by the sides and machined on one diametric 

plane.  

3.8 Thermal conductivity characterization 

In the present thesis, the thermal conductivity ( ) was calculated in the composites 

with 0.5, 1 and 4 wt % CNT by measuring the thermal diffusivity ( ), the density ( ) 
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and the specific heat capacity (  ), for a temperature range of 25-950 °C, according to 

the equation below: 

 

                                                                                                                     (    ) 

 

The thermal diffusivity was determined by  laser-flash method (Laser Flash Apparatus, 

Netzsch LFA 457, Germany) where disk-shaped specimens were thin coated with 

graphite, ASTM E2585-09 (2009) [130]. The specific heat capacity was measured 

under argon atmosphere using a differential scanning calorimeter (Netzsch DSC 404C, 

Germany). The measurements were carried out in Technical University of Denmark 

(DTU).  
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CHAPTER 4 

 

Conclusions and Future work 

4.1 Conclusions 

The processing and the properties of zirconia-MWCNT have been studied and the 

following conclusions can be made: 

 

1. The use of SPS for sintering zirconia and zirconia-MWCNT composites results in 

high density ceramics with smaller grain size than those produced under conventional 

conditions by compacting and sintering. The addition of MWCNT decreases further 

the grain size.  As the concentration of MWCNT increases above 0.5 % MWCNT, no 

full density is achieved and hardness and elastic modulus decrease.  

 

2. The friction coefficient extracted from nano-scratch and wear tests decreases with 

the addition of MWCNTs. In macro-scratch tests using higher loads, there is a critical 

load over which the friction coefficient increases with CNT addition and brittle 

fracture starts. The low friction coefficient is attributed to the formation of a carbon 

tribo-film during reciprocation sliding. 

 

3. A novel method for the calculation of the "true" fracture toughness of small cracks is 

successfully established. A very sharp notch in the scale of a few tens of microns and 

sub-micrometer tip radius less than 0.5 μm was induced in zirconia-MWCNT 

composite using Ultra-short Pulsed Laser Ablation (UPLA). 

 

4. The "true" fracture toughness of zirconia and zirconia-MWCNT for small cracks is 

found to be low and practically independent of the CNT amount. Vickers indentation 

fracture toughness is higher and increases with increasing CNT. In this way it is shown 

that indentation fracture toughness is not an appropriate method for analysing the 

influence of MWCNT on true fracture toughness. Even in the absence of MWCNT,  
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the fracture toughness of SPS zirconia measured from small surface cracks induced by 

UPLA is found to be lower than measured by conventional fracture toughness methods 

with long cracks. The increase observed in indentation fracture toughness with the 

addition of MWCNT is attributed to an increase in the resistance to cracking under 

sharp contact loading because of change in the elasto-plastic behaviour induced by the 

addition of MWCNT. 

 

5. The addition of MWCNTs strongly increases the electrical conductivity of the 

studied composites. While, the thermal conductivity increases slightly with increasing 

CNT content and SPS temperature.  

 

6. The composites with 1 wt % and 2 wt % MWCNT content can successfully be 

machined using EDM due to their high electrical conductivity. The material removal 

mechanism is found to be melting/evaporation and spalling. 

 

7. A study of the effect of grinding on the SPS zirconia samples with a wide range of 

grain sizes shows that a thermal etching of ground zirconia at 1100 °C for 1 hour in air 

induces a nano-grain layer with grains of about 60 nm and a thickness of less than a few 

hundred nanometers, which is independent of the original grain size. At much higher 

temperature, 1575 °C for 1 hour, thermal etching of ground or polished zirconia 

induces similar grain size.  

 

8.  The influence of transformation toughening in the behaviour of small cracks was 

also conducted in conventionally sintered 12Ce-ZrO2 (300 nm grain size) because it has 

much higher plateau fracture toughness than 3Y-TZP (177 nm grain size). By inducing 

a similar short sharp notch using UPLA in both materials, the difference in strength is 

only about 10%. This means that the true fracture toughness difference for these small 

cracks is also less than about 10 % in comparison with plateau values of fracture 

toughness which are different by a factor ≈3. Therefore, the beneficial effect of higher 

indentation fracture toughness in 12Ce-ZrO2 reported in literature has a very small 

effect on the real effective fracture toughness that determines the strength of unshielded 

small cracks.  

  

4.2 Future work 

1. Dispersion is a crucial step in the processing of zirconia-CNT composites. Different 

dispersion solvents of CNTs should be studied and an optimized method for dispersion 

of MWCNTs in ceramic matrix composites should be established. Interfacial bonding 

should be improved by coating zirconia with functionalised CNTs for example. 
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Homogeneous dispersion and interfacial bonding may increase the mechanical 

properties.  

  

2. The addition of CNT up to 4 wt % results in high electrical conductivity, reported 

for the first time, in zirconia-MWCNT composites. It would be interesting to 

investigate the potential of using higher CNT content and high temperatures on the 

electrical conductivity and on the machining of the composites.  

 

3. CNTs are in the nanoscale and they are located in the grain boundaries on zirconia 

matrix. Oxidizing CNTs leaves a porous nanoscale network in zirconia matrix. It 

would be of great interest to use CNTs to produce porous ceramic materials with 

nanosized long channels.  

 

4. Since the thermal etching after grinding SPSed zirconia results in nanograin layer 

with few hundred nanometers in thickness independently of the bulk grain size, a study 

of LTD resistance of thermal etched ground zirconia samples with large bulk grain size 

could be interesting in order to see if this nano-layer protects large bulk grain size 

zirconia from LTD. 

 

5. The use of SPS allows sintering the studied composites in short time and low 

temperature which results in small grain size. An alternative methods as Hot Isostatic 

Pressing (HIP) could be also used to compare with SPS and gain deeper understanding 

of the sintering mechanism.  
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Summary of Papers 

 

Paper I 

Coefficient of friction and wear resistance of zirconia-

MWCNTs composites. 

Summary: The wear rate of 3Y-TZP /3Y-TZP is high in comparison to other 

ceramic pairs like alumina/alumina because of the surface fracture induced by 

microcracking during phase transformation. Moreover, the low thermal conductivity of 

zirconia induces a substantial increase in temperature in the contact zone and weakens 

the material. Therefore, the incorporation of relatively low weight fraction of CNTs in 

zirconia matrix can reduce the wear rate and lower the friction coefficient. 

 In the present paper, the friction coefficient and the wear rate of SPS zirconia-

MWCNT composites were determined. The addition of MWCNT from 0.5 to 2 wt % 

resulted in reduction of 3Y-TZP grain size from 174 to 148 nm respectively. The effect 

of the addition of MWCNT on the coefficient of friction (COF) was studied. Nano-

scratch and macro-scratch tests were conducted using diamond Berkovich and 

Rockwell indenter, respectively. Furthermore, the wear rate was also investigated using 

reciprocating sliding under a load of 5 N. It was found that the COF decreased with 

the increase in MWCNT content. However, in macro-scratch testing, there was a 

critical load over which brittle fracture sets in and its value decreases as the MWCNT 

content increases. The wear resistance was found to be decreasing very slightly for 

MWCNT content less than 1 wt %. However, wear resistance increases strongly for the 

addition of 2 wt % MWCNT.    

 

Author contributions: The powder processing of the composites and all the 

experiments were performed by the author, except for the nanoindentation test which 
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was performed by co-author Joan Josep Rovira. Data evaluation and discussion were 

drawn by the author together with Prof. Marc Anglada. Writing of this article was 

accomplished by the author. 

 

Paper II 

Nanoindentation and fracture toughness of 

nanostructured zirconia/multi-walled carbon nanotube 

composites. 

Summary: The fracture toughness (   ) in 3Y-TZP can be increased by promoting 

phase transformation from tetragonal (t) to monoclinic (m) phase in front of a 

propagating crack tip referred to transformation toughening. However, the stronger the 

tendency for stress induced transformation, the higher the risk for premature 

spontaneous t-m transformation in humid atmosphere. This is called hydrothermal 

degradation or low temperature degradation (LTD) and can result in microcracking and 

loss of strength. This phenomenon is the main drawback for the wider use of 3Y-TZP. 

The resistance to LTD can be increased by reducing the grain size into the nanoscale by 

using Spark Plasma Sintering (SPS). However, the reduction of grain size will reduce 

the transformation toughening and the fracture toughness will decrease. 

 In the current study MWCNTs have been used as a toughening phase due to their 

excellent mechanical properties. On the other hand, the "true"     of the composites is 

still under debate since the indentation method is not an accurate method as it 

overestimates the values of    .  

In the current study, a novel and accurate method for the calculation of "true"     was 

developed. The method is based on producing a very sharp notch with submicrometer 

radius less than 0.5 μm using Ultra-short Pulsed Laser Ablation (UPLA). It was found 

that "true"     of the composites with CNT content ranging from 0.5 up to 2 wt % 

CNT is hardly increasing with the addition of CNTs content while the indentation 

fracture toughness is increasing. Hence, the resistance to indentation cracking of the 

composites by adding CNTs to 3Y-TZP matrix does not indicate higher true fracture 

toughness. The reasons of the low     of the composites could be related to the drop in 

hardness and elastic modulus found using Berkovich nanoindentation. 

 

Author contributions: The preparation of the composite powders was accomplished 

by the author. Mechanical testing and damage analysis were accomplished by the 

author. The nanoindentation test was performed by co-author Joan Josep Rovira. The 

discussion and the analysis of the results were drawn together by the author and Prof. 

Marc Anglada. 
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Paper III 

The influence of unshielded small cracks in the fracture 

toughness of yttria and of ceria stabilised zirconia used 

in medical applications. 

Summary: Based on fracture mechanics criteria, if the critical natural flaw and the 

fracture toughness are precisely determined, then it is possible to predict the strength of 

advanced ceramics.  

In the present work, the novel method Ultra-short Pulsed Laser Ablation (UPLA) was 

used to investigate the influence of transformation toughening on the strength and on 

the fracture toughness of both 12Ce-ZrO2 and 3Y-TZP with two different grain sizes; 

300 nm and 177 nm. A sharp notch induced using UPLA in 300 nm-3Y-TZP, 177 

nm-3Y-TZP and 12Ce-ZrO2 results in similar and small cracks in both materials.  

Three regions can be distinguished from the fracture surface of the samples; the region 

of the notch (zone A), the micro-crack region (zone B) and the final fracture (zone C). 

The notch plus micro-cracked region act as unshielded sharp crack and the effective 

fracture toughness was found to be similar for all studied materials in spite of the large 

differences in plateau and steepness of their R-curves.  

The strength of 330 nm-3Y-ZrO2 is much higher compared to the strength of 12Ce-

ZrO2 which has higher grain size and higher transformation induced fracture in 

specimens with natural cracks. However, by inducing a very sharp notch using UPLA, 

the initial crack size from which fracture takes place is practically the same in both 

materials and the difference in strength is only about 10 %. Therefore, the beneficial 

effect of higher indentation fracture toughness in 12Ce-ZrO2 in comparison with 3Y-

ZrO2, widely referred in the literature, has a very small effect on the real effective 

fracture toughness that determines the strength of unshielded small cracks.  

 

Author contributions: The preparation of the specimens was accomplished by the 

author and co-author Miquel Turron-Vinas. The processing of the laser notch using 

UPLA method was manufactured by Dr. Pablo Moreno Pedraz at the University of 

Salamanca. Mechanical testing and all characterization techniques were carried out by 

the author. The discussion and the writing were accomplished by the author and Prof. 

Marc Anglada. 
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Paper IV 

Material removal mechanisms by EDM of zirconia 

reinforced MWCNT nanocomposites. 

Summary: Zirconia ceramic has good mechanical properties and therefore a wide 

range of applications. However, its high hardness and brittleness limits its ability to be 

machined with conventional techniques. Electrical Discharge Machining (EDM) is one 

of the most promising techniques to machine ceramic matrix composites. Nevertheless, 

a crucial requirement in the use of EDM is the need for an electrically conductive work 

piece.  

In the current paper, the effect of MWCNT on the electrical conductivity and the 

machinability of the composites were studied. Moreover, the thermal conductivity of 

the composites at two different SPS temperatures; 1350 °C and 1500 °C, was 

investigated. The damage produced and the material removal mechanisms were 

investigated after EDM machining.   

It was found that the studied zirconia-MWCNT composites have high electrical 

conductivity which results in successful EDM machining of the composites with 1 and 

2 wt % CNT content. However, there was only a relatively small increase of thermal 

conductivity with the addition of MWCNTs. A recast layer was found on the surface 

after machining where zirconium carbide (ZrC) was detected. The material removal 

mechanisms were found to be melting/evaporation and spalling.  

 

Author contributions: The composites powder processing was done by the author. 

Damage characterization after EDM was done by the author. Electrical and thermal 

conductivities were measured by the author with the help of co-authors Andreas Kaiser 

and Nikolaos Bonanos at Technical University of Denmark (DTU). EDM was 

performed by the company Zentrum für Mechatronik und Automatisierungstechnik 

(ZeMA) in Germany. The writing of the paper was accomplished by the author. 

 

Paper V 

Surface microstructural changes of Spark Plasma 

Sintered zirconia after grinding and annealing 

Summary: Machining zirconia ceramics is considered as a crucial step in the 

manufacturing of long lasting and strong zirconia components. The damage induced by 

machining zirconia ceramics could affects it´s integrity and reliability. 

In the present study, an investigation of the effect of grinding was conducted on 3Y-

TZP sintered using SPS at different temperatures; 1350 °C, 1450 °C and 1600 °C. A 
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thermal etching at 1100 °C for one hour of the ground samples revealed the presence 

of a nano-grain layer of about 60 μm grain sizes independent of the SPS temperature. 

The thickness of the nano-grain layer was in the order of few hundred nanometers. 

This nanograin layer is formed by recrystallization of a very thin highly deformed 

surface layer produced during grinding. Moreover, a heat treatment in air at 1200 °C of 

the ground samples showed that the surface grain size increases fast but it still remains 

smaller than in the starting polished specimens. Finally, when the ground layer is 

exposed to 1575 C annealing temperature, the surface grains grow to a size which is 

roughly similar to that achieved in polished specimens by heat treatment to the same 

temperature. The formation of the nano-grain layer could increase the resistance to 

LTD of zirconia ceramics. Furthermore, it may be of interest when a rough surface is 

beneficial as for example for implants since roughness favours osseointegration. 

 

Author contributions: The powder processing of the composites was done by the 

author. The SPS of samples was conducted by co-author Farid Akhtar. The 

experiments were performed by the author. The SEM image analysis was carried out 

together by the author and co-author Johanne Mouzon. The writing of the paper was 

completed by the author. All the co-authors participated in the improvements of the 

paper. 
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Abstract 

Spark plasma sintered zirconia (3Y-TZP) specimens have been produced of 140 

nm 372 nm and 753 nm grain sizes by sintering at 1250 C, 1450 C and 1600 

C, respectively. The sintered zirconia specimens were grinded using a diamond 

grinding disc with an average diamond particle size of about 60 µm, under a 

pressure of 0.9 MPa. The influence of grinding and annealing on the grain size 

has been analysed. It was shown that thermal etching after a ruff grinding of 

specimens at 1100 C for one hour induced an irregular surface layer of about a 

few hundred nanometres in thickness of recrystallized nano-grains, independently 

of the initial grain size. However, if the ground specimens were exposed to 

higher temperature, e.g. annealing at 1575 °C for one hour, the nano-grain layer 

was not observed and the final grain size was similar to that achieved by the same 

heat treatments on carefully polished specimens. Therefore, by appropriate 

grinding and thermal etching treatments, nanograined surface layer can be 

obtained which increases the resistance to low temperature degradation.  
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1 Introduction 

Yttria stabilised tetragonal polycrystalline zirconia (3Y-TZP) has a wide range of 

applications, especially in the medical sector, because of its biocompatibility and 

very good mechanical properties, such as strength and toughness. The local and 

constrained phase transformation from tetragonal (t) to monoclinic (m) structure 

generates compressive stresses at the crack tip which enhances toughness. 

However, 3Y-TZP suffers from surface spontaneous t-m transformation in humid 

atmosphere, often referred to as hydrothermal degradation, aging or low 

temperature degradation (LTD), which is accompanied by formation of near 

surface microcracks and loss of surface mechanical properties [1–4]. 

During the processes of final shaping and surface finishing, 3Y-TZP may be 

subjected to different machining processes (cutting, polishing, grinding, and 

milling). The damage induced by machining affects structural integrity and 

reliability of the material. Therefore, machining zirconia is considered as a critical 

step in the manufacturing of long lasting and strong 3Y-TZP components.  

Previous investigations have shown that grinding influences the surface integrity 

and the flexural strength of 3Y-TZP materials [5]. Therefore, most of the studies 

on ground zirconia have focussed on characterizing surface microstructural 

changes that may affect the chemical and mechanical behaviour. The main 

changes frequently observed in the X-ray diffraction (XRD) spectrum are the 

following: (1) t–m phase transformation; (2) asymmetrical broadening of the (1 1 

1) tetragonal peak at ~30° (2θ); (3) intensity reversal of the tetragonal doublet at 

34.64° and 35.22° (2θ) corresponding to the (0 0 2) and (2 0 0) planes [6–10]. 

On the other hand, a TEM investigation of the ground surface by Munoz et al. 

[11] reported the existence of three different regions from the ground surface 

towards the bulk : (1) a recrystallized zone, exactly at the surface, where the 

grains have a diameter in the range 10–20 nm; (2) a plastically deformed zone; (3) 

a t-m transformed zone, which is mainly responsible for the formation of 

compressive residual stresses that usually increase the flexure strength and the 

apparent fracture toughness of ground specimens [11]. 

The near surface monoclinic phase formed during machining operations can be 

reversed to tetragonal by annealing. The operation of grinding and the time and 

temperature of annealing have an influence on the resistance to LTD, which can 

be inhibited or delayed [12]. The evolution of the resistance to LTD of 

specimens of initially 330 nm grain size subjected to grinding and annealing at 

1200 °C for different times (1 min, 10 min and 1h) was analysed by Muñoz et al. 
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[13]. The results showed that LTD of ground 3Y-TZP was supressed due to the 

formation of a recrystallized nano-grain layer on the surface. Moreover, the 

resistance to LTD was decreasing during long time annealing at 1200 °C after 

that grain size reached grew beyond the initial surface grain size of 330 nm. The 

effect of different high annealing temperatures in the range 1200 °C - 1600 °C 

on the surface microstructure of ground zirconia was recently studied by Roa et 

al. [14]; this group also found the recrystallized surface nano-grain layer after 

annealing at 1200 °C by milling a small cross section of the near surface region by 

FIB/SEM, while at 1600 °C the near surface microstructure was composed of 

larger grain sizes than the grain size of the bulk material.  

To the best of our knowledge, previous studies of the effect of grinding on 3Y-

TZP have been carried out only on conventionally sintered zirconia with grain 

size in the range of approximately 330 nm. The present work is focussed on the 

analysis of surface microstructural changes after grinding and annealing Spark 

Plasma Sintered (SPS) zirconia with different initial grain sizes of 140 nm, 370 

nm and 750 nm achieved by sintering at 1250 °C, 1450 °C and 1600 °C, 

respectively.  

2 Experimental 

2.1  Material processing  

Zirconia powder stabilized with 3 mol % of yttria (TZ-3YSB-E, Tosoh, Tokyo, 

Japan) with a crystalline size of 36 nm was sintered using spark plasma sintering 

(SPS) at 1250 °C, 1450 °C and 1600 °C for 5 minutes. The pressure maintained 

during the sintering cycle was 55 MPa and the heating rate was 100 °C/min.  

The final samples were ceramic discs (50 mm x 3 mm). The average grain size 

was determined using the line intercept method on SEM images and the density 

was measured by the Archimedes method. 

 The samples were ground using a new diamond grinding disc (MD-Piano 220 

Struers) with an average particle size of about 60 μm, under a pressure of 0.9 

MPa with a constant grinding speed of 3.6 m/s in one direction and water 

cooling. The selection of this grinding condition was based on a previous work 

of Juy et al. [15], who found that these particular parameters produce an increase 

in mechanical properties. The samples were then thermally etched at 1100 °C for 

1 hour in standard furnace in air in order to observe grain size in the scanning 

electron microscope (SEM). 
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The samples studied will be referred to as SPS 1250, SPS 1450 and SPS 1600 

according to the temperature used for sintering at 1250 °C, 1450 °C and 1600 

°C, respectively. The samples were divided into two batches. The first batch 

corresponds to the as-ground samples which are referred in the current study as 

ASgr (AS ground). In order to reveal the grain size of the ASgr samples, they 

were maintained at 1100 °C for 1 hour for thermal etching, 1200 °C for 

annealing, and at 1575 °C for high temperature annealing.  The second batch 

consists of specimens that were polished starting with 9 μm diamond down to 1 

μm and finally polished with colloidal silica. The polished samples were subjected 

to the same heat treatment temperatures, and are herein referred to as ASpol (AS 

polished). In fact, each heat treatment on ground and polished specimens was 

carried out on the very same sample by polishing one face of the disc and 

grinding the other face in order to ensure that both faces were exactly subjected 

to the same temperature during annealing.   

2.2 Mechanical testing 

Hardness was measured by Vickers indentation with a load of 98.1 N. The cracks 

emanating from the vertex of the residual impressions were used to measure 

indentation fracture toughness using Niihara equation [16] taking into account 

the observed Palmqvist configuration of the indentation cracks. Anstis et al. [17] 

equation was also applied for comparative purposes.  However, as extensively 

reported in the literature [18], indentation fracture toughness does not really 

represent the "true" fracture toughness (KIc) of the material. Therefore, the 

fracture toughness measurements in the present work have been used only as an 

indication of t-m transformability under localised sharp contact of compressive 

loads.  

2.3 Surface Analysis  

The crystallographic phases were identified by X-ray diffraction (XRD) with 

Bragg-Brentano symmetric-geometry, using PANalytical Empyrean equipment 

with PIXcel-3D detector and Cu-Kα (45kV and 40mA) radiation. The XRD 

spectra were obtained in a scan range of 20° ≤ 2θ ≤ 100°, using a step size of 

0.013° and an anti-scatter slit of 1°. The monoclinic phase content was calculated 

by the equation proposed by Toraya et al. [19]. 
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Surface damage analysis of all the specimens was performed by extreme high 

resolution scanning electron microscopy (XHR-SEM) (Magellan 400, FEI 

Company) at an acceleration voltage of 3 kV. Microstructural changes below the 

surface induced during the grinding process were investigated by preparing thin 

cross-sections using focused ion beam (FIB). Cross sectioning observations were 

conducted using a dual beam workstation (Zeiss Neon 40). A thin platinum layer 

was deposited on the sample prior to FIB with the aim of reducing ion-beam 

damage. A Ga+ ion source was used to mill the surface at a voltage of 30 kV. 

Final polishing of the cross-section was performed at a current of 500 pA. 

3 Results and discussion 

The present study shows clearly that the use of SPS results in dense zirconia 

samples of about 99 % of theoretical density, see Table 1. SPS is a highly 

efficient technique for the densification of zirconia ceramics compared with 

conventional sintering such as Hot Pressing (HP) for example. Self-heating from 

spark discharge between the particles could be the reason behind the low 

temperature and short time for sintering. It has been found that during SPS the 

residual gases in the powder will be efficiently removed as long as the system is 

open. As the pressure will not be applied until the isothermal temperature is 

reached, CO2(g) and H2O(g) can then escape before the densification starts [20]. 

Furthermore, by increasing the SPS temperature, the grain size increases from 

140 nm to 750 nm for SPS 1250 and SPS 1600, respectively, see Table 2 and 

Fig. 1. It has been reported that the presence of an electric field could enhance 

the grain growth in yttria-stabilized cubic zirconia by increasing the grain 

boundary mobility [21]. Moreover, a dependency was shown between grain size 

and the heating-rate which promoted grain growth by increasing the defect 

concentration [22]. 

Fig. 2 shows the XRD spectra of ASgr in all SPS zirconia samples. It can be 

observed the presence of a broadening of the tetragonal peaks and that the 

tetragonal peak at 2θ≈30° that corresponds to (111)t  has a speak shoulder that 

may correspond to either the rhombohedral phase or to distorted tetragonal phase 

as was reported in [14]. The presence of monoclinic phase at 2θ≈ 28° and 16° 

was also observed. It has been found that the monoclinic phase detected in ASgr 

is 13 %, 14 % and 12 % for SPS 1250, SPS 1450 and SPS 1600 respectively, see 

Fig. 3.  
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After annealing at 1200 °C and 1575 °C, the peak shoulder disappears and no 

monoclinic phase is detected due to the m-t transformation that actually starts at 

lower temperatures [23]. It could also be observed that the intensity of (002) and 

(200) tetragonal peaks at 2θ=34°, 64° and 35,22° is reversed compared to the 

ASpol. In ASpol, the intensity ratio of   
    )

  
    )

⁄  is equal to 0.45 while in 

ASgr annealed at 1575 °C,   
    )

  
    )

⁄  the ratio is equal to 1.63. This is 

attributed to the texture due stress induced reorientation from ferroelastic domain 

switching [7]. 

Indentation fracture toughness is similar to that for conventionally sintered 3Y-

TZP with similar grain size, independently of the indentation equation used for 

calculating the fracture toughness. On the other hand, there is a small decrease in 

hardness with grain size which may be related to a higher transformability as the 

grain size increases, see Table 2. 

The specimens ASgr with subsequent thermal etching at 1100 °C for 1 hour 

show a nanometric grain size on the surface as can be seen on the images of left 

column of Fig. 3. The larger grain size observed in ASgr was always much 

smaller than the average grain size in ASpol. After thermal etching at 1100 °C, 

the grain size in the ASgr was reduced by a factor of 2 compared to the ASpol in 

SPS 1250 and by a factor of 10 in SPS 1575.  However, if ASgr specimens are 

annealed at 1200 °C or 1545 °C, the surface grain size increases fast and it 

reaches dimensions roughly similar to as ASpol specimens subjected to the same 

high temperature treatment. This can be appreciated by comparing ASgr and 

ASpol specimens under the same heat treatment (see Fig. 3).  

The analysis of sections perpendicular to the surface obtained by FIB (Fig. 4) 

shows that there is a very thin layer of surface damage on ASgr specimens after 

grinding. The layer extends to depths of only a few hundred nanometers. The 

depth is not uniform and it changes from one place to another. It is deeper close 

to places where the material is piling up at the side of the grinding scratches. The 

same observation was carried out after annealing and they are shown in Fig. 5.  

Fig. 5 shows the presence of the nano-grain layer with a depth corresponding to 

the same depth of the nano-grain layer seen in the ground specimens before 

annealing.  

The existence of this surface nano-grain size layer on thermal etched ASgr 

specimens can also be detected on the fracture surface of specimens as shown in 

Fig. 6 where the fracture surface of ASpol and ASgr are compared. The presence 

of nano-grain layer in the etched ASgr specimens can be clearly observed. This 

c) 

 

b) 
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nano-grain layer is formed by recrystallization of a very thin highly deformed 

surface layer produced during grinding. Since the usual procedure to observe the 

grain size is by means of grinding with decreasing diamond particle size and 

careful polishing, the damage layer is finally removed so that no recrystallization 

is detected during standard specimen preparation and thermal etching for grain 

size determination. 

 In one the earliest investigations on this topic, it was shown that this 

recrystallized  nanometric layer can be useful for preventing hydrothermal 

degradation because the resistance to LTD increases as the zirconia grain size 

decreases [12]. The requirement of a smooth polished surface for many 

applications makes this procedure feasible when a specular smooth surface finish 

is not required. It may be of interest when a rough surface is beneficial as for 

example for implants since roughness favours osseointegration [24].  

 Regarding the influence of the surface damage induced by grinding on the 

strength, it was shown that it does not affect the strength of ground specimens. 

On the contrary, grinding  induces the formation of a compressive surface layer 

which results in an increase of the strength [25,26]. However, after thermal 

etching and recrystallization, the compressive forces disappear as monoclinic 

phase is transformed back to tetragonal and then the strength may slightly 

decrease depending on the damage induced by grinding [11].  

It is still unknown how much minimum plastic deformation by grinding is 

needed in order to form nanocrystals during etching. It will be interesting to find 

out which are the weakest grinding conditions for which recrystallization still 

takes place during thermal etching. Fig. 7 shows a shallow scratch left on a 

polished surface where recrystallization still takes place in and around the scratch. 

This shows that the recrystallization could still remain after polishing if a deep 

scratch is not fully removed by subsequent operations of grinding with smaller 

particle size followed by polishing. 

4 Conclusions  

Spark plasma sintered 3Y_TZP specimens have been produced with different 

grain sizes of 140 nm, 372 nm and 753 nm by sintering at 1250 C, 1450 C and 

1600 C. The influence of grinding and annealing has been analysed. Two main 

conclusions can be derived from the present work: a) the effect of the grinding 

conditions used in this study induces a few hundred nanometer surface layer 

which recrystallizes during thermal etching at 1100 C.  The surface layer 

200 nm 
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contains recrystallized nano-grains with a grain size smaller and practically 

independent of the initial grain size depending on the SPS temperature. This 

behaviour is similar to that of conventionally sintered zirconia specimens; b) if 

the ground layer is exposed to higher annealing temperatures, the nano-grain 

layer disappears and the surface grains grow to a size which is similar to that 

achieved in polished specimens by heat treatment to the same temperature. 

Acknowledgements 

The authors gratefully acknowledge the financial support given by the 

“Ministerio de Ciencia e Innovación”, Spain through research grant MAT2011-

23913. The authors acknowledge the EU for financial support through the e-

Create-Network of the Rise program. L. Melk acknowledges the fellowship 

award received from the European Joint Doctoral Programme in Materials 

Science and Engineering (DocMASE) of the European Union. Finally, all 

authors thank Dr. Trifon Trifonov and Dr. Joan Josep Roa from UPC for their 

assistance in the FIB/SEM equipment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

References 

[1]  K. Kobayashi, H. Kuwajima, T. Masaki, Phase change and mechanical 
properties of ZrO2-Y2O3 solid electrolyte after ageing, Solid State Ionics. 3 
1981)489–493.  

[2]  M. Yoshimura, T. Noma, K. Kawabata, S. Somiya, Role of H2O on the 
degradation process of Y-TZP, J. Mat. Sci Lett. 6 (2000) 465–467. 

[3]  S. Lawson, Environmental Degradation of Zirconia Ceramics, J. Eur. 
Ceram. Sci. 15 (1995) 485–502. 

[4]  J. Chevalier, L. Gremillard, A. V. Virkar, D.R. Clarke, The Tetragonal-
Monoclinic Transformation in Zirconia: Lessons Learned and Future 
Trends, J. Am. Ceram. Soc. 92 (2009) 1901–1920.  

[5]  T. Kosmač, Č. Oblak, P. Jevnikar, N. Funduk, L. Marion, Strength and 

reliability of surface treated Y-TZP dental ceramics, J. Biomed. Mater. Res. 
53 (2000) 304–313.  

[6]  H. Hasegawa, Rhombohedral phase produced in abraded surfaces of 
partially stabilized zirconia (PSZ), J. Mater. Sci. Lett. 2 (1983) 91–93.  

[7]  A. V. Virkar, R.L.K. Matsumoto, Ferroelastic Domain Switching as a 
Toughening Mechanism in Tetragonal Zirconia, J. Am. Ceram. Soc. 69 
(1986) C–224–C–226.  

[8]  J. Kitano, Y. Mori, A. Ishitani, T. Masaki, A Study of Rhombohedral 

Phase in Y2 O3 -Partially Stabilized Zirconia, MRS Proc. 78 (1986) 17.  

[9]  N. Mitra, K. Vijayan, B. Bai, S.K. Biswas, Phase Transformation 
Introduced by Mechanical and Chemical Surface Preparations of 
Tetragonal Zirconia Polycrystals, J. Am. Ceram. Soc. 76 (1993) 533–535.  

[10]  D.P. Burke, W.M. Rainforth, Intermediate rhombohedral (r-ZrO2) phase 
formation at the surface of sintered Y-TZP’s, J. Mater. Sci. Lett. 16 (1997) 
883–885.  

[11]  J.A. Munz-Tabares, E. Jiménez-Piqué, J. Reyes-Gasga, M. Anglada, 
Microstructural changes in ground 3Y-TZP and their effect on mechanical 
properties, Acta Mater. 59 (2011) 6670–6683.  

[12]  P.J. Whalen, F. Reidinger, R.F. Antrim, Prevention of low-temperature 
surface transformation by surface recrystallization in yttria-doped tetragonal 
zirconia, J. Am. Ceram. Soc. 72 (1989) 319–321.  

[13]  J.A. Muñoz-Tabares, M. Anglada, Hydrothermal degradation of ground 
3Y-TZP, J. Eur. Ceram. Soc. 32 (2012) 325–333.  

[14]  J.J. Roa, M. Turon-Vinas, M. Anglada, Surface grain size and texture after 
annealing ground zirconia, J. Eur. Ceram. Soc. 36 (2016) 1519–1525.  



11 

 

[15]  A. Juy, M. Anglada, Surface phase transformation during grinding of Y-
TZP, J. Am. Ceram. Soc. 90 (2007) 2618–2621.  

[16]  K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist 
crack in ceramics, J. Mater. Sci. Lett. 2 (1983) 221–223.  

[17] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshal, A critical evaluation 

of indentation techniques for measuring fracture toughness: I Direct crack 
measurements, J. Am. Ceram. Soc. 46 (1981) 533–538. 

[18]  G.D. Quinn, R.C. Bradt, On the Vickers Indentation Fracture Toughness 
Test, J. Am. Ceram. Soc. 90 (2007) 673–680.  

[19]  H. Toraya, M. Yoshimura, S. Somiya, Calibration Curve for Quantitative 
Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, 

Commun. Am. Ceram. Soc. (1984) 119–121. 

[20]  P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, et al., 
Densification and properties of zirconia prepared by three different 
sintering techniques, Ceram. Int. 33 (2007) 1603–1610.  

[21]  S.W. Kim, S.G. Kim, J. Il Jung, S.J.L. Kang, I.W. Chen, Enhanced grain 
boundary mobility in yttria-stabilized cubic zirconia under an electric 

current, J. Am. Ceram. Soc. 94 (2011) 4231–4238.  

[22]  B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, Effects of heating rate on 
microstructure and transparency of spark-plasma-sintered alumina, J. Eur. 
Ceram. Soc. 29 (2009) 323–327.  

[23]  O. Fabrichnaya, F. Aldinger, Assessment of thermodynamic parameters in 
the system ZrO2-Y2O3-Al2O3, Zeitschrift Für Met. 95 (2004) 27–39.  

[24]  Q. Flamant, F. García Marro, J.J. Roa Rovira, M. Anglada, Hydrofluoric 
acid etching of dental zirconia. Part 1: etching mechanism and surface 
characterization, J. Eur. Ceram. Soc. 36 (2016) 121–134.  

[25]  A. Juy, L. Llanes, M. Anglada, Strength of Yttria-Stabilised Zirconia with 
Near-Surface Grinding Residual Stresses, ECF14, Cracow 2002. (2013). 

[26]  T. K. Gupta, Strengthening by Surface Damage in Metastable Tetragonal 

Zirconia, J. Am. Ceram. Sci. 63 (1980) 117. 

 

 

 

 

 



12 

 

Tables 

Table 1. Density and grain size of the SPS zirconia specimens before and after annealing. 

  Temperature/Grain size 

Specimen 
Density  

(g.cm
-3

) 

1100°C 

ASpol 

(nm) 

1100°C 

ASgr 

(nm) 

1200°C 

ASpol 

(nm) 

1200°C 

ASgr 

(nm) 

1575°C 

ASpol 

(nm) 

1575°C 

ASgr 

(nm) 

SPS1250 6.00 ±0.03 140±10 59±7 144±16 105±9 611±93 602±153 

SPS1450 5.99± 0.09 372±50 66±15 386±29 149±22 699 ±79 896±167 

SPS1600 6.05± 0.04 753±60 67±11 658±76 ± 856±57 708±97 

 

 

Table 2. Vickers hardness and indentation fracture toughness of the SPS zirconia samples. 

Specimen 

Vickers hardness 

(HV10) 

(GPa) 

Indentation KIC  

(Niihara) 

(MPa·m1/2) 

Indentation KIC 

(Anstis) 

(MPa·m1/2) 

SPS 1250  14.7±0.2 5.2±0.1 3.9±0.2 

SPS 1450  13.8±0.1 5.1±0.1 3.8±0.1 

SPS 1600 13.6±0.2 5.2±0.1 4.0±0.1 
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Figures 

 

 

 

Fig. 1 SEM images showing the microstructure of ASpol after thermal etching at 1100 °C for 

1h: a) SPS 1250 b) SPS1450 and c) SPS1600.  
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Fig. 2 XRD spectra of SPS zirconia ASpol, ASgr, ASgr+annealed at 1200 °C and 

ASgr+annealed at 1575 °C. 
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Fig. 3 Grain size of ASgr SPS specimens after thermal etching for 1 hour at the temperatures 

indicated on the top row. 
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Fig. 4 Microstructure of ASgr below the surface a) SPS 1250; b) SPS1450 and c) SPS 1600 

after grinding and before thermal etching. 
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Fig. 5 Microstructure of ASgr after  thermal etching a) SPS 1250 top left; b) SPS1450 top right 

c) SPS 1600 bottom after grinding and thermal etching.  
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Fig. 6 Fracture surfaces of ASpol (top) and ASgr (bottom) SPS1250. General views on the left 

and high magnification details of the surfaces on the right. 
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Fig. 7 Surface of polished SPS 1450 after etching at 1100 °C with the initial grains and the 

recrystallized grains which appear in scratches still left on the surface after polishing.   
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