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Abstract

The Lattice Boltzmann LBM method has become in tool for studying hy-

drodynamically and thermally developing, and also chemical reaction and

fluid structure interaction among other. Several researchers have aroused

great interest of the LBM in all fields of computational fluid dynamic CFD.

Due to his easy implementation, variety of the numerical methods could be

found in many literature to solver the Navier-Stoker equation. The topic

of this thesis is the study of the LBM and implementation in a fluid flow,

temperature and concentrations fields, we focus on boundary conditions

and accuracy of the method. In order to apply the method, a developed

code of Lattice Boltzmann was built. The code was developed using an

open-source LBM code and modified for the purpose to simulate the heat

and mass transfer phenomena. This thesis is divided in two sections.

(I) Various simulations were carried out using LBM for the different ap-

proaches of the method, for two-dimensional numerical simulation case, us-

ing the D2Q9-model Multiple Relaxation Time model (MRT), this model

was implemented for the fluid flow, and temperature concentration field.

Three different case for laminar flow were studied in order to validate

the method, first stage a Hagen-Poiseuille flow in a channel and a pipe

were simulate, the results were compared with the exact solution of the

Poiseuille-flow equations. As well as, the Lid-driven cavity for a incom-

pressible laminar flow was executed for a set of Reynolds number, Re =

100, 1000 and 7500, obtained good result by comparing with other numer-

ical method, such as U.Ghia et al [1] at 1982 presented a benchmark of the

Lid-driven cavity for High Reynolds number using a multi-grid method.

Moreover, convection-diffusion problem of a Gaussian pulse, Natural con-

vection in a closed cavity and mass flux rate in a flat plate were performed

with the objective to analyze the boundary condition of LBM implement

for passive scalar concentration, these results were compared with previous

research [2, 3, 4, 5, 6].

(II) Second stage, the main objective of this thesis was the study of the

steady and unsteady laminar flow in a channel with open cavity and heated

bottom wall. A two-dimensional simulation has been carried out for the

mixed convective flow, using a D2Q9 model for the flow and temperature
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fields. MRT-model with a Boussinesq approximation equation were ap-

plied, and it obtained a good accuracy and stability. LBM is compared

against results obtained by ANSY-Fluent software for validation. Temper-

ature, velocity and Nusselt number, calculated with TLBM presented very

well agreement in the range of Reynolds and Richardson numbers stud-

ied, i.e. 50ďReď1000 and 0.01ďRiď10. The observations indicate that

the effect of the buoyancy force is negligible for Riď0.1, for all values of

the Reynolds number considered. For Riě4 and Reą200, buoyancy effects

are important causing the development of the upstream secondary vortex

and the stratification of the flow into two main recirculating cells. For

high enough Ri, the recirculation is no longer encapsulated, therefore the

flow becomes unsteady, and an oscillatory instability develops. According

to the simulation results, observed from Re = 500, Ri = 10. The analy-

sis of the unsteady regime reveals a very rich phenomenology where the

geometry of the problem couples with the oscillatory thermal instability.

This regime is characterized by the periodic emission of pairs of vortices

generated from the upper downstream vertex of the square cavity, and

pseudo-periodic variations of the Nusselt number which persist at least up

to Re = 1500, while the two main vortices remain in the cavity. The obser-

vations extend previous studies and shed a new light on the characteristics

of the oscillatory instability and the role of the Reynolds and Richardson

numbers.
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Symbols

fi Density distribution function

feqi Equilibrium density distribution function

gi Internal energy distribution function

geqi Equilibrium internal energy distribution function

Aσi Concentration distribution function of species

Aσeqi Equilibrium Concentration distribution function of species

AAi Concentration distribution function of species A

AA, eqi Equilibrium Concentration distribution function of species A

ABi Concentration distribution function of species B

AB, eqi Equilibrium Concentration distribution function of species B

τ Dimensionless relaxation time for momentum

τg Dimensionless relaxation time for energy

τσ Dimensionless relaxation time for concentration of species

τA Dimensionless relaxation time for concentration of species A

τB Dimensionless relaxation time for concentration of species B

cs Lattice speed of sound,=c{
?

3

ci Discrete velocity directions

ωi Weights of LBM,(i “ 0´ 8; D2Q9), (i “ 0´ 18; D3Q19), lu

c Speed on the Lattice, =∆x{∆t, Lattice space and time step size

tlbm Characteristic time in lattice, lu

νlbm Kinematic viscosity, Lattice units, lu

αlbm Thermal diffusivity, Lattice units, lu

ulbm Lattice characteristic velocity, Lattice units, lu

xi
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Cσ Lattice concentration of species, Lattice units, lu

CA Lattice concentration of species A, Lattice units, lu

CB Lattice concentration of species B, Lattice units, lu

Dσ Lattice mass diffusivity of species, Lattice units, lu

DA Lattice mass diffusivity of species A, Lattice units, lu

DB Lattice mass diffusivity of species B, Lattice units, lu

∆x Discrete space, Lattice units, lu

∆t Discrete time, Lattice units, lu

N Number of nodes

u Macroscopic velocity, lu

Tlbm Local temperature, Lattice units, lu

T8,lbm Reference temperature, Lattice units, lu

Th,lbm hot temperature, Lattice units, lu

Tc,lbm cold temperature, Lattice units, lu

Ω Collision matrix operator, MRT model

S Matrix S, MRT model

M Matrix M, MRT model

m components of the momentum vector, MRT model

φ Scalar variables (energy, mass and momentum)

l0 Characteristic length, m, cm

t0 Characteristic time, s

u0 Characteristic velocity, cm{s´m{s

ν kinematic viscosity, m2{s

α Thermal diffusivity, m2{s

T0 Local temperature, K

T8 Reference temperature, K

T0,cold cold temperature, K

T0,hot hot temperature, K

Df Diffusion coefficient, m2{s

Re Reynolds number, = u0l0{ν
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Ra Rayleigh number, =Gr ¨ Pr=gβpTh´ T8ql
3
0{να

Pr Prandtl number, =ν{α

Gr Grashof number, = gβpTh´ T8ql
3
0{ν

2

Ri Richardson number, = Gr{Re2 = gβpTh´ T8ql0{u
2
0

Nu Local Nusselt number, = ´ L
∆T

BT
By |wall

Nu Average Nusselt number, = 1{L
şL
0 Nudx

Fi External force, = 3ρωigβpT0 ´ T8q

D Dimensionless diameter

ud Dimensionless characteristic velocity

T Dimensionless temperature

L Dimensionless length of the domain

θ Dimensionless temperature in the mid plane of the cavity

D Dimensionless diffusion coefficient

C Dimensionless concentration

Ux Dimensionless x-comp. of the velocity - vertical mid plane

Uy Dimensionless y-comp. of the velocity - horizontal mid plane
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Chapter 1

Introduction

In the last decade the Lattice Boltzmann Method (LBM) has become a

powerful alternative to finite element and finite volume methods, for solv-

ing different problems and applications in various engineering fields such

as different fluid flow cases, transport problems for single and multiphase

flow, heat and mass transfer, compressible flows, porous media, magneto-

dynamics, chemical reaction and biomedical simulation [8].

The LBM evolved from the lattice gas automata (LGA) [9, 10], and was

first proposed as a model by von Neumann in the late 1940’s as cellular

automata (CA) [11]. LGA was developed as a simple, fully discrete mi-

croscopic model for a fluid flow based on “fictitious” particles occupying

a regular lattice point in space, which can collide with similar neighbors.

Afterwards, certain mass- and momentum-conserving collision rules are

applied in the cell, updating the velocities of the colliding particles. The

important feature of the LGA is that mass and momentum are explic-

itly conserved, unlike the CA. This proved to be useful to simulate real

physical problems. It can be shown that the summation of the micrody-

namical mass and momentum equations are asymptotically equivalent to

the Navier-Stokes equations for incompressible flows [12].

Let us consider fictitious particles inside of a hexagonal lattice, see Fig. 1.1,

moving together with a determined velocity and particular position, Fig. 1.1(A).

In each generation the particles move in only one direction in the lattice,

Fig. 1.1(B); the dispersion of the particles caused by motion makes that

1
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2 Chapter 1 Introduction

these particles change the direction in the lattice Fig. 1.1(C), if these par-

ticles arrived to the same site, they can collide with each other, which can

disperse the particles and change their velocity. However, the collisions

cannot change the total number of particles and mass and momentum are

conserved.

(a)

(b) (c)

Figure 1.1: 6-Speed hexagonal lattice, FHP model

Henceforth, the LGA is constructed as a simplified, fictitious molecular

dynamics in which space, time and particle velocities are all discrete. Com-

posed of Boolean variable nip~x, tq, where i “ 0, ...,M represent occupation

of the the particles, M means the number of directions of the particles

velocities at each node of the lattice. The evolution of the equation can be

described for the LGA in the following form,

nipx` ciδt, t` 1q “ nipx, tq ` Ωipnipx, tqq, i “ 0, ...,M (1.1)

where nipx, tq “ 0 or 1 representing the number of particles moving with

discrete velocity ci at node x at time t, δt is the time step. Ωi is the

collision operator representing the influence of the particle collisions. For

simplicity, no more that one particle is allowed at a given time and node

with a given velocity [13]. For LBM, the distinctive feature is to replace

the particles ni by a single particle distribution function fi “ xniy, where

xniy means an ensemble average [14]. In LBM, the primitive variables are

the averaged particle distributions, which are now mesoscopic variables,
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Chapter 1 Introduction 3

being the kinetics still the same as in the LGA, and the advantages of

locality in the kinetic approach are retained.

In this thesis, a LBM code is written using a well-stablished methodology

in order to study numerically heat and mass transfer processes inside a

cavity in laminar mixed convection regime, in two and three dimensions,

and the results are compared with the traditional methodology used in

computational fluid dynamics. In the last decade, several authors have

implemented the LBM to simulate engineering problems, such as heat

exchange, catalysis reaction, multiphase flow, advection-diffusion problems

among others [15, 16, 17]. Particularly, G. Barrios et al. [3] and Kuen-

Hau Lin et al. [18], implemented the LBM to study the heat transfer

in a cavity with a partially heated wall under natural convection and a

complex geometry. Moreover, Almalowi et at. [15] carried out a study

on the laminar developing flow in a channel, obtaining excellent results

for the momentum and thermal field. These results were compared with

the ANSYS-FLUENT software, obtaining a good agreement, indicating

that the LBM is an effective computational fluid dynamic tool to study

non-isothermal flow problems.

In order to demonstrate the applicability of our LBM code for non-isothermal

and isothermal flows, different benchmark cases will be analyzed to vali-

date the code for momentum, heat and mass transfer phenomena. These

results will be compared with those obtained with different methods (e.g.,

Finite Volume method, Finite difference method, etc). For some cases, the

exact solution is available, or found in the literature [2, 19, 20]. Finally, a

study of laminar mixed convection in an open cavity, in both steady and

unsteady state will be carried out. The results obtained with our LBM

code are compared with those obtained using the ANSYS-FLUENT soft-

ware. They complement the knowledge available in the literature of such

problems with new data, like the development of secondary vortices with

and the onset of unsteady flow and the accompanying mechanism of vortex

ejection [21].

In the following sections, all the physical problems chosen for the validation

cases and their numerical impementation will be described. The details of

the LBM implementation are also described: in the LBM, different bound-

ary condition schemes can be implemented depending on the geometry of

the problem. Likewise, different approaches can be applied to the force
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4 Chapter 1 Introduction

term (i.e. the buoyancy force term used in natural and mixed convection)

[22]. The results obtained will be compared with those available in the

literature, and their validation will be analyzed in detail.

1.1 Objectives of the thesis

As pointed out above, the main objective of this thesis is the design and

implementation of the Lattice Boltzmann code to study the steady and

unsteady laminar flow in a channel with an open square cavity heated

at the bottom. The effect of the buoyancy force in combination with the

external flow in the channel reveals the generation of interesting structures.

In order to achieve this goal, some important tasks need to be examined

before the implementation. These are the following,

• Development of a Fortran code for the implementation of the LB

equations for momentum, heat and mass transfer processes.

• Implementation of the LBM and its different approaches: appro-

priate boundary condition schemes, and most relevant geometrical

configurations in two and three dimensions.

• Analysis of the incompressible regime for laminar fluid flow.

• Adjustment and testing of the accuracy and stability of the solver

for simulation of problems with heat and mass transfer processes.

• Generation of the numerical mesh and the boundaries for each case

studied.

• Validation and comparison of the results obtained in each case with

bibliographic data.

1.2 Document Structure

The present document is organized as follows:
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Chapter 1 Introduction 5

1. Chapter 2 introduces the Lattice Boltzmann Method and its basic

concepts, models, boundary schemes and stability conditions, and

the most relevant equations.

2. Chapter 3 shows an analysis and implementation of the LBM equa-

tion for the SRT (Single Relaxation Time) and MRT (Multiple Re-

laxation Time) models. Also, the stability of the method is analyzed

for the three following cases: Two dimensional Hagen–Poiseuille flow

in a channel, Lid-Driven cavity flow and three dimensional Poiseuille

flow, which is used to validate the LBM for incompressible fluid flow.

3. In Chapter 4 the LBM is applied in three different problems in order

to validate the model used for temperature and concentration fields.

First, a Gaussian pulse is used to simulate and observe the advection-

diffusion effect. Then, natural convection in a cavity is considered

and their results compared with those in the literature. Finally,

a mass transfer problem on a flat plate is implemented (Léveque

problem).

4. Chapter 5 shows the application of the Thermal Lattice Boltzmann

method to a laminar mixed convection problem. The results ob-

tained were compared with ANSYS-FLUENT software, analyzing

the agreement obtained for the different variables.

5. Chapter 6 present a general conclusion for the different problems

used for validation, and a detailed discussion of the main case of

study completes the thesis.
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Chapter 2

Lattice Boltzmann Method -

LBM

As explained in Chapter 1, LBM is being used more frequently to simulate

complex fluid flow problems. It was first developed in the 90’s as the lattice

gas automaton to solve the Navier-Stokes Equation [9, 10]. Currently, it

is one of the most applied methods in the field of computational fluid dy-

namics (CFD). The LBM is focused on the average macroscopic behaviour.

Solving the kinetic equation provides many of the advantages of molecular

dynamics (MD), including clear physical pictures, easy implementation of

boundary conditions, and fully parallel algorithms (OpenMP)[23].

Furthermore, there are different methods currently used for transport

equations (e.g., heat, mass, momentum) that can be simulated on dif-

ferent scales. On a macroscopic scale, partial differential equations (PDE)

like Navier-Stokes equations (NS) are used. These equations are difficult

to solve analytically due to non linearity, complex geometry and bound-

ary conditions. With the help of numerical schemes like the finite differ-

ence method (FDM), the finite volume method (FVM), the finite element

method (FEM), the system of PDEs is converted into a system of algebraic

equations.These equations are used to solve iteratively until convergence

is achieved of the results.

On the other side, the Hamilton’s equations is applied in MD on small

particles (e.g., atoms, molecules) where these particles collide with each

7
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8 Chapter 2 Lattice Boltzmann Method - LBM

other, the problem of this method is to track the location and velocity of

each particle (i.e., its trajectory), as well as the amount of data required

to compute macroscopic variables (i.e., temperature, pressure, thermo-

physical properties). The main idea of LBM is to bridge the gap between

micro-scale and macro-scale by not considering the individual details of

each one of the particles, but the behavior of the collection of particles as

a unit [24], in Fig. 2.1 we can observe the different scales applied in the

different methods: LBM is located in the meso-scale as mentioned above.

Figure 2.1: Illustration of open cavity with boundary conditions.

2.1 Lattice Boltzmann Equation

The LBM is based on the discretization of the Boltzmann equation in

time and space, so that the set of discretized velocity distribution func-

tions fipx, tq evolves propagating from node to node in every single time

step. Specifically, LBM is performed in two main steps: during the propa-

gation step, the particles are forced to move along some prescribed lattice

directions, while the collision step imposes thermalization with some char-

acteristic time scale after one mean free path.

McNamara and Zanetti [25] used the Lattice Boltzmann method for the

first time as an alternative to LGA in 1988. Later, other researchers made

different contributions with the same goal: to simplify the collision term.
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Chapter 2 Lattice Boltzmann Method - LBM 9

Higuera and Jimenez et. al. [26], made in 1989 an important simplification,

linearizing the collision operator by assuming that the distribution function

is close to the local equilibrium state.

2.1.1 The collision operator

A simple linearized version of the collision operator, which relaxes towards

the local equilibrium using a Single Relaxation Time, is the Bhatnagar-

Gross-Krook collision operator (BGK) [27], subsequently used by several

authors [28, 29]. This has become the most commonly form used in LBM

at present [8, 25, 30, 31].

The collision operator is as follows,

Ω “ ωpfeq ´ fq “
1

τ
pfeq ´ fq (2.1)

where ω “ 1{τ is the collision frequency, τ is the relaxation time and feq

is an approximation of the Maxwellian equilibrium distribution function.

The BGK model with Single Relaxation Time (SRT), which is commonly

used in the LBM, is given by

fipx` ci∆t, t`∆tq ´ fipx, tq
l jh n

Streaming

“
1

τ
rfeqi px, tq ´ fipx, tqs

l jh n

Collision

(2.2)

where fi (i “ 0, ...8, in the case of a two-dimensional model such as the

D2Q9 that will be explained in more details on the next subsection) de-

notes the discrete velocity distribution function, and ci the corresponding

discrete velocities. Some of these models will be explained in the next

paragraph.

Equation (2.2) shows a linear relaxation equation where the right side

represents the collision term of the LBM, whereas the left side accounts

for advection or streaming:

• Streaming: each particle moves to the nearest node in the direction

of its velocity
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10 Chapter 2 Lattice Boltzmann Method - LBM

• Collision: particles arrive at a node and interact by changing their

velocity directions according to the scattering rules mentioned in the

Chapter. 1.

2.2 Lattice Models

There are different velocity discretizations for the LBM, responding to

different configuration models for the lattice domain. For one dimen-

sional simulations, D1Q2, D1Q3 and D1Q5 are frequently used. For two-

dimensional simulations D2Q5 and D2Q9 are the most common models

[24]. In this work we consider D2Q9 for momentum and temperature and

concentration grids. For three dimensional simulations, different models

such as LBM, D3Q15, D3Q19 and D3Q27 are commonly applied. We

opted for D3Q19 for this work. In the next subsections, the models used

for the different simulations are explained.

2.2.1 Two Dimensional

2.2.1.1 D2Q9-model

The main two-dimensional model for LBM, D2Q9 has eight velocity vector

issued from the central nodes. This choice is very common in the LBM,

used to solve problems of fluid flow and heat transfer. The number of

velocity vectors (the choice of discretization) imposes different weights in

the discrete velocity distribution functions at equilibrium, coming from the

discretization and expansion of the Maxwellian solution feqi px, tq.
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Chapter 2 Lattice Boltzmann Method - LBM 11

C1

C2

C3

C5C6

C4 C8C7

C0

x

y

Figure 2.2: D2Q9, Lattice velocities

Figure 2.2, shows the geometry of the D2Q9 lattice, with the set of velocity

vectors ci used for the discretization, the components of which are shown

in Table. 2.1.

Table 2.1: Lattice velocities for the D2Q9 model, ci, i “ 0, 8

c0 c1 c2 c3 c4 c5 c6 c7 c8

ux 0 1 0 -1 0 1 -1 -1 1

uy 0 0 1 0 -1 1 1 -1 -1

The local equilibrium distribution function feq is the key element of the

method as the fi relax towards feqi according to Eq. (2.2). The derivation

of the local equilibrium distribution feq of the standard D2Q9 model can

be found in [10], which leads to the following D2Q9 discretized probability

densities [12].

feqi “ ωiρ

„

1` 3
ci¨u

c2
`

9

2

pci¨uq
2

c4
´

3

2

u¨u

c2



, (2.3)

where ρ is the local material density, u is the macroscopic velocity, and

c “ ∆x{∆t, being ∆x and ∆t the lattice space and the lattice time step

size, which are set to unity. The weights ωi and the discrete velocities ci
are given by
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12 Chapter 2 Lattice Boltzmann Method - LBM

ωi “

$

’

&

’

%

4{9, i “ 0

1{9, i “ 1, 2, 3, 4

1{36, i “ 5, 6, 7, 8

(2.4)

2.2.2 Three-Dimensional

For three-dimensional problems, the most common models used are D3Q15,

D3Q19 and D3Q27. From these models, the D3Q15 model entails a faster

calculation. However, this advantage impacts the precision in the result.

For simulations in which there is no need of a high accuracy, the D3Q15

can be used for quick implementation to simulate 3-D problems [32].

Figure 2.3 shows the speeds of the D3Q15 model, and Table 2.2 their

respective weight factors for the local equilibrium distribution function

feq.

2.2.2.1 D3Q15-model

1

7

13

2

8

14

12

5
11

9

10

6

3

4

x

z y

Figure 2.3: D3Q15- Lattice velocities vectors
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Chapter 2 Lattice Boltzmann Method - LBM 13

Table 2.2: Lattice velocities for D3Q15 model, ci, i “ 0, 14 with their
respective speeds for 3-D simulations

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

ux 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1

uy 0 0 0 1 -1 0 0 1 -1 1 1 -1 1 -1 1

uz 0 0 0 0 0 1 -1 1 -1 -1 1 1 -1 -1 1

ωi “

$

’

&

’

%

16{72, i “ 0

8{72, i “ 1´ 6

1{72, i “ 7´ 14

(2.5)

2.2.2.2 D3Q19-model

D3Q19 has 19 velocity vectors, with speed zero on the central vector. Table

2.3 shows the different weights of the model and the velocity components

for each direction.

1
7

9

2
8

10

12
15

5
16

11

13

14 17

6

18

3

4

x

z y

Figure 2.4: D3Q19- Lattice velocities vectors
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14 Chapter 2 Lattice Boltzmann Method - LBM

Table 2.3: The lattice velocity for D3Q19 model, ci, i “ 0, 18

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

ux 0 1 -1 0 0 0 0 1 1 -1 -1 1 -1 1 -1

uy 0 0 0 1 -1 0 0 1 -1 1 -1 0 0 0 0

uz 0 0 0 0 0 1 -1 0 0 0 0 1 1 -1 -1

c15 c16 c17 c18

0 0 0 0

1 1 -1 -1

1 -1 1 -1

ωi “

$

’

&

’

%

12{36, i “ 0

2{36, i “ 1´ 6

1{36, i “ 7´ 18

(2.6)

2.2.2.3 D3Q27-model

Together with D3Q15 and D3Q19, the D3Q27 model is one of the most

commonly applied LBM models in three dimensions [33]. This model is

characterized by a higher precision with respect to the other models, since

more degrees of freedom are incorporated as the number of velocity direc-

tions is increased. However, this has a direct effect on the computational

time, total number of iterations and the increasing complexity of the cod-

ing. Figure 2.5 and Table 2.4 show the configuration, velocity vectors and

the weight coefficients of the equilibrioum distribution for this model.
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1
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21
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24

19
23

x

z y

Figure 2.5: D3Q27- Lattice velocity vectors

Table 2.4: The lattice velocity for D3Q27 model, ci, i “ 0, 26

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

ux 0 1 -1 0 0 0 0 1 1 -1 -1 1 -1 1 -1

uy 0 0 0 1 -1 0 0 1 -1 1 -1 0 0 0 0

uz 0 0 0 0 0 1 -1 0 0 0 0 1 1 -1 -1

c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26

0 0 0 0 1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 -1 1 -1 1 -1 -1 1

ωi “

$

’

’

’

&

’

’

’

%

8{327, i “ 0

2{27, i “ 1´ 6

1{216, i “ 7´ 14

1{54, i “ 15´ 26

(2.7)

In this Ph.D thesis, the D2Q9 model is used for two-dimensional problems

for momentum, temperature and concentration fields: this model is the

most commonly applied in these problems, due to its simple implementa-

tion as well as a quick convergence. For three-dimensional problems the
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16 Chapter 2 Lattice Boltzmann Method - LBM

D3Q19 model has been chosen due to its good accuracy with less compu-

tational cost with respect to D3Q15 and D3Q27, respectively. Also, the

D3Q19 has been proven to provide good results.

2.3 Macroscopic Properties

For a better understanding, let us imagine a regular uniform spatial grid

(i.e., a Lattice) as shown in Fig. 2.6. At each node, a number of dis-

tribution functions fipx, tq is defined, each associated to a given velocity

vector ci. These represent the density of particles with velocity ci at the

location x, at time t. These distribution functions have all the informa-

tion on the macroscopic properties (e.g., density, velocity, temperature,

concentration).

f1(x,t)

f2(x,t) f5(x,t)f6

f3(x,t)

f7 f4(x,t) f8(x,t)

f0(x,t)

}Lattice units, lu

(x,t)

(x,t)

Figure 2.6: Scheme of the lattice grid, example of D2Q9 model

Therefore, fipx, tq can be used to compute all the macroscopic variables,

such as density ρ and velocity u, calculated as follows:

ρpx, tq “
8
ÿ

i“0

fipx, tq, (2.8)

ρupx, tq “
8
ÿ

i“0

cifipx, tq, (2.9)
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Chapter 2 Lattice Boltzmann Method - LBM 17

Just as the distribution function of the momentum, energy and mass trans-

fer have their respective distribution functions, gi and Ai

gipx` ci∆t, t`∆tq “ gipx, tq `
1

τg
rgeqi px, tq ´ gipx, tqs , (2.10)

Aσi px` ci∆t, t`∆tq “ Aσi px, tq `
1

τσ
rAσeqi px, tq ´Aσi px, tqs , (2.11)

Also, the temperature T and concentration Cσ are defined through the

averages with the corresponding discrete distributions, gi and Ai,

Tlbmpx, tq “
8
ÿ

i“0

gipx, tq, (2.12)

Cσpx, tq “
8
ÿ

i“0

Aσi px, tq. σ “ pa, b, c..q, (2.13)

where the index σ refers to the different species. Similarly to Eq. (2.3),

a set of discrete temperature distribution functions are defined, for which

their local equilibrium counterparts read

geqi “ ωiTlbm

”

1`
ci¨u

c2

ı

. (2.14)

For the concentration of the species σ, the local equilibrium distribution

functions Aσeqi are defined by

Aσeqi “ ωiC
σ
”

1`
ci¨u

c2

ı

, (2.15)

where the weights ωi and discrete velocities ci are given as presented in

Sec. 2.2, for the different two and three dimensional models discussed.

The relaxation times τ control the rates approaching equilibrium for the

momentum, temperature and concentration fields. The kinematic viscosity

ν, the thermal diffusivity α and the mass diffusivity Dσ are directly related

to the relaxation time parameters τ , τg, τσ for each lattice grid. These

parameters control the stability of the method and are defined in terms

of their respective relaxation times [3, 18]. The macroscopic viscosity,

thermal diffusion coefficient and mass difussivity are calculated as:
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18 Chapter 2 Lattice Boltzmann Method - LBM

νlbm “

ˆ

τ ´
1

2

˙

c2
s∆t, (2.16)

αlbm “

ˆ

τg ´
1

2

˙

c2
s∆t, (2.17)

Dσ “
ˆ

τσ ´
1

2

˙

c2
s∆t. σ “ pa, b, c..q, (2.18)

where cs “ c{
?

3, is the lattice speed of sound.

2.4 Stability Conditions

The main parameter to ensure stability in the LBM is the value of the

relaxation time τ , which plays a important role in the collision step. This

parameter is fixed during the initialization process and is directly linked to

the lattice kinematic viscosity νlbm, as explained in Section. 2.3. Therefore,

one has to be careful while discretizing the system because the value of τ

cannot be changed once fixed [34].

Two more parameters are important to ensure a correct accuracy of the

method, which are the Mach number Ma = u0{cs and the characteristic

field velocity u0. The Lattice Boltzmann Method simulates incompress-

ible flow under low Mach numbers, so that the Mach number should be

set within a small enough range (i.e., Maď 0.3) to maintain the incom-

pressibility condition of the flow and ensure both an accurate solution

and stability. Therefore the characteristic velocity u, must range between

u0 ď 0.1 and u0 ě 0. The Reynolds number Re in dimensional/dimen-

sionless system units has to be equal to the Reynolds number in lattice

units Relbm. Therefore, Re =u0 ¨ l0{ν0 = Relbm = ulbm ¨N{νlbm, where u0

is the characteristic velocity of the system in dimensional units, and l0 is

the characteristic length of the macroscopic scale and ν0 is the kinematic

viscosity of the fluid. Then, ulbm is the velocity in lattice, N is the number

of node in the characteristic length or height of the computational domain

and ν is the macroscopic viscosity in lattice. The following section presents

an example to clarify the discretization of the dimensional system in a real

case.
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Chapter 2 Lattice Boltzmann Method - LBM 19

As mentioned above, the relaxation time parameter τ is the most important

parameter and must be carefully set in the optimal range to keep a good

stability and accuracy of the simulations. Commonly, this value is set

based on the range 0.53 ď τ ď 1.80. This is due to the fact that for Single-

Relaxation-Time models, the method becomes unstable when τ ď 0.53.

One way to increase this value is to, for example, modify the parameters

related to the viscosity of the lattice νlbm (e.g., Reynolds number, Relbm “

ulbm¨N{νlbm). Modifying some of the parameters one can increase the value

of νlbm and respectively the value of τ because these tw parameters are

directly related considering that cs “ c{
?

3, c “ ∆x{∆t where ∆x “ 1 and

∆t “ 1. Therefore, Eq. (2.16) can be reformulated as νlbm “ pτ ´ 1{2q¨1{3.

So, by isolating τ from the former equation, we have:

τ “ 3 ¨ νlbm `
1

2
(2.19)

Another alternative could be used when we find these ranges of relaxation

time under τ ď 0.53. Other relaxation time models can be implemented

in the Lattice Boltzmann equation. In this thesis it is implemented the

Multiple Relaxation time model (MRT) [35, 16, 36, 37], ensure a good

accuracy and stability of the method in this range of τ . This model is

further explained in the next section.

2.5 MRT-Multiple Relaxation Time

2.5.1 MRT-D2Q9 model

The Single Relaxation Time (SRT-BGK) is the most common scheme used

in LBM for two and three-dimensional simulations due to its simplicity, but

this simplicity leads to the two problems: a possible lack of acuracy in some

cases when the correct implementation of boundary conditions is used, and

the inability to simulate problems at a high Prandtl number, Reynolds,

Richardson, Rayleigh and Schmidt numbers among others. In this case,

the LBM can overcome these deficiencies using the Multiple Relaxation

Time (MRT) approach [37]. The collision operator is thus modeled by

a linear relaxation process with multiple relaxation parameters, which is

carried out in the moment space as first proposed by d’Humières. Therefore
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20 Chapter 2 Lattice Boltzmann Method - LBM

we have opted here for the Multiple-Relaxation Lattice Boltzmann scheme

[24, 37, 16], where Eq. (2.2) is used as follows,

fipx` ci∆t, t`∆tq ´ fipx, tq “ ´Ω rfeqi px, tq ´ fipx, tqs , (2.20)

where Ω is the collision matrix[24]. In the D2Q9 model, the matrix oper-

ator Ω can be expressed through the diagonal matrix S of the inverse of

the relaxation times for the following 9-component moment vector,

m “ pρ, e, ε, jx, qx, jy, qy, pxx, pxyq
T (2.21)

which conform a moment space of macroscopic quantities,

• Density (0th order) : ρ

• Energy (2th order) : e

• Energy-square (4th order) : ε

• Momentum in x and y direction (1th order) : jx, jy

• Heat flow in x and y direction (3th order) : qx, qy

• Diagonal and off-diagonal stress(2th order) : pxx,xy

obtained as averages with the velocity distribution functions which serve

as a basis for the linear transformation,

m “ M ¨ f, f “ M´1 ¨m, (2.22)

leading to the MRT-D2Q9 LBM model,

fipx` ci∆t, t`∆tq ´ fipx, tq “ ´M´1 ¨ S ¨ rmpx, tq ´meqpx, tqs (2.23)
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Chapter 2 Lattice Boltzmann Method - LBM 21

where the nine components of the equilibrium moment vector meq read

meq
0 “ ρ

meq
1 “ ´2ρ` 3

`

j2
x ` j

2
y

˘

meq
2 “ ρ´ 3

`

j2
x ` j

2
y

˘

meq
3 “ jx

meq
4 “ ´jx

meq
5 “ jy

meq
6 “ ´jy

meq
7 “

`

j2
x ` j

2
y

˘

meq
8 “ jx ` jy

(2.24)

Here jx and jy are the components of the linear momentum

jx “ ρux “
8
ÿ

i“0

feqi cix jy “ ρuy “
8
ÿ

i“0

feqi ciy (2.25)

Finally, the matrix M and its inverse are

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1 1 1 1

´4 ´1 ´1 ´1 ´1 2 2 2 2

4 ´2 ´2 ´2 ´2 1 1 1 1

0 1 0 ´1 0 1 ´1 ´1 1

0 ´2 0 2 0 1 ´1 ´1 1

0 0 1 0 ´1 1 1 ´1 ´1

0 0 ´2 0 ´2 1 1 ´1 ´1

0 1 ´1 1 ´1 0 0 0 0

0 0 0 0 0 1 ´1 1 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.26)
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and

M´1 “ a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

4 ´4 4 0 0 0 0 0 0

4 ´1 ´2 6 ´6 0 0 9 0

4 ´1 ´2 0 0 6 ´6 ´9 0

4 ´1 ´2 ´6 6 0 0 9 0

4 ´1 ´2 0 0 ´6 6 ´9 0

4 2 1 6 3 6 3 0 9

4 2 1 ´6 ´3 6 3 0 ´9

4 2 1 ´6 ´3 ´6 ´3 0 9

4 2 1 6 3 ´6 ´3 0 ´9

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.27)

where a “ 1{36, and the diagonal matrix S reads

S “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

s0 0 0 0 0 0 0 0 0

0 s1 0 0 0 0 0 0 0

0 0 s2 0 0 0 0 0 0

0 0 0 s3 0 0 0 0 0

0 0 0 0 s4 0 0 0 0

0 0 0 0 0 s5 0 0 0

0 0 0 0 0 0 s6 0 0

0 0 0 0 0 0 0 s7 0

0 0 0 0 0 0 0 0 s8

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.28)

In the compact notation, the matrix S is :

S “ diag p1.0, 1.4, 1.4, s3, 1.2, s5, 1.2, s7, s8q, where s7 “ s8 “ 1{τ and s3;

s5 are arbitrary and can be set initially to 1.0.
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2.5.2 MRT-D2Q9 model for scalar variables

As mentioned in Sec. 2.2, the model D2Q5 is commonly applied to solve

the momentum field, while for the temperature and concentration fields

some authors prefer to use the D2Q5 because of its quick convergence.

This is so because the model has less degrees of freedom than D2Q9 (i.e.,

only 4 discrete velocities). Along with a low computational cost, it also

possesses good accuracy and implementation simplicity. In the literature,

there exists a lot of information related to these methods [24, 35, 36]. In

this Ph.D. thesis, the D2Q9 MRT model is applied to the velocity as well

as the temperature and concentration fields, because the focus is on the

precision of the results rather than the saving of computational costs. The

relaxation equation for the distribution function of scalar variables is of

the same form as Eq. (2.23),

φipx` ci∆t, t`∆tq ´ φipx, tq “ ´M´1 ¨ Sφ ¨ rmpx, tq ´meqpx, tqs (2.29)

where the nine components of the equilibrium moment vector meq are

analogous to those in Eq (2.24), with minor differences. That means for

example, that meq
7 “ 0 and meq

8 “ 0 the value is zero, whereas the other

equilibrium moments are
meq

0 “ φ

meq
1 “ ´2φ

meq
2 “ 2φ

meq
3 “ uxφ

meq
4 “ ´uxφ

meq
5 “ uyφ

meq
6 “ ´uyφ

meq
7 “ 0

meq
8 “ 0

(2.30)
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The diagonal matrix Sφ reads

Sφ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

s0 0 0 0 0 0 0 0 0

0 s1 0 0 0 0 0 0 0

0 0 s2 0 0 0 0 0 0

0 0 0 s3 0 0 0 0 0

0 0 0 0 s4 0 0 0 0

0 0 0 0 0 s5 0 0 0

0 0 0 0 0 0 s6 0 0

0 0 0 0 0 0 0 s7 0

0 0 0 0 0 0 0 0 s8

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.31)

and its compact notation is Sφ “ diag p1.0, 1.1, 1.1, s3, s4, s5, s6, 1.2, 1.2q,

where s3 “ s4 “ s5 “ s6 “ 1{τφ, and s7; s8 are arbitrary and are set

initially to 1.2 in this thesis.

2.6 Boundary conditions

A crucial part of any computational fluid dynamics method is the im-

plementation of initial and boundary conditions (BC). Depending on the

boundary conditions, a unique solution is obtained. For the case of the

LBM, the application of boundary conditions is not different. There are

different types and approaches to use BC, and the accuracy of the method

depends on the right implementation of the boundary conditions. This

implies that different types of BC may be used depending of the case.

A peculiar aspect occurs for BC applied in LBM, where the distribution

function equation (i.e., Eq. 2.2) contains all the information about the

fluid, which is integrated in the domain and needs to be determined at the

boundaries.

Currently, different approaches are being used and suggested by several

authors. The most relevant are explained in the following sub-sections.
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2.6.1 Bounce Back

The bounce-back scheme was originally taken from Lattice Gas method

[38]. This model was used for solid walls at rest, moving boundaries and

flow over obstacles. The bounce-back scheme for the LBM may be con-

sidered ideal to simulate fluid flow in complex geometries, such as porous

medium. Also called no-slip boundary condition, the bounce-back scheme

takes a particle going from a fluid node towards a solid boundary (e.g., a

wall) and bounces it back to the last node of the flow domain (e.g., fluid

flow).

Figure 2.7 shows a simple bounce back where the particles are exactly

located at the wall node; before the streaming step, the distribution func-

tions pertaining to opposite directions are exchanged. The bounce back

scheme is a simple approach to fix the unknown distribution functions at

the wall nodes. This scheme is first order accurate [10]. Thus the distri-

bution functions, f5, f2 and f6, are simply, f5 “ f7, f2 “ f4 and f6 “ f8,

where f7, f4 and f8 are known from the streaming step, and can be easily

calculated directly at the solid node.

Still another type of bounce-back is used in LBM (see Fig. 2.8). This

scheme locates the wall at half the distance from the lattice sites, i.e.,

between a fluid and a solid node. The distribution functions, f4, f7 and f8

are known from the streaming step. Its is assumed that, when these known

distribution functions hit the wall, bounce back to the solution domain.

Therefore, f5 “ f7, f2 “ f4 and f6 “ f8 , where f4 at node px, yq is equal

to f2 at node px, y ´ 1q. This scheme is called half-way bounce-back and

is second order accurate, so it has has better accuracy than the full-way

bounce-back. These bounce-back schemes also fulfill conservation of mass

and momentum at the boundaries [10, 24, 27].

This Ph.D. considers different schemes of boundary conditions implemented

in the different study cases of the next chapters.

2.6.2 Periodic boundary condition

Periodic boundary condition become necessary to apply to isolate a repeat-

ing flow conditions. This boundary condition are used commonly in some
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Figure 2.7: Full-way bounce back scheme

benchmarks to validate the system. For instance, this scheme may be used

in the case of a flow in a channel, where bounce-back boundaries may be

applied at the slit wall and periodic boundaries may be applied at the inlet

and the outlet of the channel. The distribution functions that enter the

inlet are the same as the distribution functions leaving the domain at the

position x “ L (i.e., outlet). Consequently, the distribution functions, f1,

f5, and f8 are unknown at the inlet x “ 0 and f3, f7, and f6 are unknown

at the outlet x “ L. Hence, the application of these boundary conditions

is as follows,

fx“0
1 “ fx“L1 , fx“0

5 “ fx“L5 , fx“0
8 “ fx“L8

fx“L3 “ fx“0
3 , fx“L7 “ fx“0

7 , fx“L6 “ fx“0
6 (2.32)
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Figure 2.8: Half-way bounce back scheme

2.6.3 Zou-He boundary condition

In some physical cases, boundary conditions for the velocity or pressure

are known. For example, in a channel flow, where the velocity at the inlet

is specified, the three unknown distribution functions may be calculated

as seen in Fig. 2.9. Let us suppose that the velocity components for west

are known. The Zou-He boundary conditions may be used to calculate the

unknown distribution functions [31]. Eq. (2.8) and Eq. (2.9) are imposed,

ρ “ f0 ` f1 ` f2 ` f3 ` f4 ` f5 ` f6 ` f7 ` f8, (2.33)

ρux “ f1 ` f5 ` f8 ´ f6 ´ f3 ´ f7 (2.34)

ρuy “ f5 ` f2 ` f6 ´ f7 ´ f4 ´ f8, (2.35)

after the streaming, f0, f2, f4, f6, f3, f7 are known and the color arrows

(see Fig. 2.9) f5, f1 and f8 on the west need to be calculated with some
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equations presented hereafter.
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Figure 2.9: Boundaries and direction of streaming velocities.

Zou-He describes a method to calculate these unknown distributions as-

suming that the bounce-back rule still holds for the non-equilibrium part of

the particle distribution normal to the boundary. In the case of Fig. 2.9,

the east-west exchange of the non-equilibrium distributions at the inlet

reads

f1 ´ f
eq
1 “ f3 ´ f

eq
3 , (2.36)

where the equilibrium distributions feq1 and feq3 can be calculated using

Eq. (2.3). After substituting one obtains

f1 ´ f
eq
1 “ f3 `

2

3
ρux. (2.37)

For the other two unknown distribution functions f5 and f8, the procedure

is also applied,

ρ “
1

1´ ux
rf0 ` f2 ` f4 ` 2pf3 ` f6 ` f7qs (2.38)

f5 “ f7 ´
1

2
pf2 ´ f4q `

1

6
ρux `

1

2
ρuy (2.39)
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f8 “ f6 `
1

2
pf2 ´ f4q `

1

6
ρux ´

1

2
ρuy. (2.40)

Thus the distribution functions are now known in the west part of the

domain. The same procedure can be used for the rest of the boundaries

if needed (e.g., the velocity components are known at the east, north or

south boundaries). For instance, f3, f7 and f6 are calculated as

ρ “
1

1´ ux
rf0 ` f2 ` f4 ` 2pf1 ` f5 ` f8qs (2.41)

f3 “ f1 ´
2

3
ρux (2.42)

f7 “ f5 `
1

2
pf2 ´ f4q ´

1

6
ρux ´

1

2
ρuy (2.43)

f6 “ f8 ´
1

2
pf2 ´ f4q ´

1

6
ρux `

1

2
ρuy, (2.44)

for cases in which the velocity component is known in the east boundary.

If the velocity is known in the north boundary, the unknown distribution

functions f4, f7 and f8 are calculated in the following way

ρ “
1

1´ uy
rf0 ` f1 ` f3 ` 2pf2 ` f6 ` f5qs (2.45)

f4 “ f2 ´
2

3
ρuy (2.46)

f7 “ f5 `
1

2
pf1 ´ f3q ´

1

6
ρuy ´

1

2
ρux (2.47)

f8 “ f6 `
1

2
pf3 ´ f1q `

1

2
ρux ´

1

6
ρuy. (2.48)

Finally, for the south boundary the unknown distribution functions are f2,

f5 and f6, computed as

ρ “
1

1´ uy
rf0 ` f1 ` f3 ` 2pf4 ` f7 ` f8qs (2.49)

f2 “ f4 `
2

3
ρuy (2.50)

f5 “ f7 ´
1

2
pf1 ´ f3q `

1

6
ρuy `

1

2
ρux (2.51)

f6 “ f8 `
1

2
pf1 ´ f3q `

1

6
ρuy ´

1

6
ρux. (2.52)
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2.6.4 Dirichlet boundary condition

For instance, let us suppose that in Fig. 2.9, the heated wall on the west

satisfies a boundary condition with a specified temperature (e.g., Tw “ 1,

in dimensionless units). A Dirichlet boundary condition can be used to

calculate the flux through a conservation principle [24, 22]. The unknown

distribution functions, g1, g5 and g8 are evaluated as follows. For g1 one

has

g1 ´ g
eq
1 ` g3 ´ g

eq
3 “ 0. (2.53)

Since geq1 at the heated wall is equal to ω1Tw, the above equation can be

rewritten as

g1 “ Twpω1 ` ω3q ´ g3, (2.54)

where w1 and w3 are the weights of the applied lattice model explained in

Section. 2.2. Similarly, the rest of the unknown distribution functions can

be calculated as

g5 “ Twpω5 ` ω7q ´ g7 (2.55)

g8 “ Twpω8 ` ω6q ´ g6. (2.56)

In cases when the wall is at a colder temperature (i.e., Tc “ 0),

g1 “ ���
0

Tcpω1 ` ω3q ´ g3, (2.57)

the equations are expressed in the following form,

g1 “ ´g3, g5 “ ´g7, g8 “ ´g6. (2.58)

2.6.5 Open Boundaries

As an opposite case to the very common problem that the velocity at the

inlet (e.g., a flow in a channel) is known, as for instance when the velocity

is specified at the inlet as a uniform flow field along the channel direction,

there is also the case when the outlet velocity is unknown. A solution to

solve this problem is calculating the unknown distribution functions using

a double extrapolation at the outlet boundary. Figure 2.10 represents the
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outlet and the nodes used to calculate the unknown distribution functions.

The equations are as follows,

X=n-1 X=nX=n-2

Outlet
   

56 2

1
3

8
7

4

6 n-1

3 n-1

7 n-1

6 n-2

3 n-2

7 n-2

Wall

Wall

ϝ(ρ,ν)

Figure 2.10: Open boundary condition scheme, outlet nodes of a chan-
nel.

f3,n “ 2 ¨ f3,n´1 ´ f3,n´2 (2.59)

f6,n “ 2 ¨ f6,n´1 ´ f6,n´2 (2.60)

f7,n “ 2 ¨ f7,n´1 ´ f7,n´2 (2.61)

where n is the last node of the domain (i.g., channel), n ´ 1 and n ´ 2

are the nodes two position backwards in the lattice domain. The outlet

boundary conditions for the temperature and the concentration are written

similarly, where f is replaced respectively by g and Aσ.
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2.7 Lattice units

It is well known that in the field of computational fluid dynamics (CFD),

the main goal is to represent in a simulation a physical problem with real

units, and obtain a numerical solution. During the implementation of the

LBM, difficulties are encountered sometimes when mapping the variables

of such real problem. One of the difficulties with LBM is the macroscopic

variable conversion, as LBM works in a mesoscopic scale with Lattice vari-

ables (e.g., density and viscosity of the lattice, discrete velocities, etc).

These variables are not scaled like physical variables, and for this reason

it is necessary to convert the physical variables into the lattice scale to be

equivalent and then compared.

The correct way to convert the physical variables into LBM variables and

vice versa is the following. The first step consists in converting the physical

variables into dimensionless variables, then these dimensionless variables

can be transformed into lattice variables. Sometimes the physical param-

eters are unknown or irrelevant and the process of the unit conversion can

be calculated the other way around, that is, arbitrary lattice variables can

be used and then converted into physical variables if needed. Further-

more the solution to the incompressible Navier stokes equations depends

on the values of certain dimensionless parameters (e.g., Reynolds number,

Richardson number, among others). Therefore, the Reynolds number for

example, has to be the same in both physical and lattice units. For this

purpose one can set the appropriate values of the discretization parame-

ters ∆x and ∆t. These parameters are important to determine the correct

space and time scales for the characteristic discrete velocity, in order to en-

sure the stability and accuracy of the method. For a better understanding,

a simple example case is shown in the following paragraph.

Lest us start with a simple physical case in two dimensions. Figure 2.11

shows a rectangular channel with an inlet on the left and an outlet on the

right side. The top and bottom consist of fixed walls, ux “ uy “ 0.
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y=l0
Outlet

x

y

x=H0

Inlet, u0

Figure 2.11: Physic problem scheme, Flow in channel with uniform
inlet velocity.

For the inlet-flow, a uniform velocity is fixed as u0 “ 0.1004cm{s. The

kinematic viscosity of the fluid is ν “ 0.01004cm2{s, the reference length

l0 “ 10cm. Knowing these parameters, the Reynolds number for the

system can be calculated,

Re “
u0 ¨ l0
ν

, (2.62)

hence,

Re “
0.1004cm{s ¨ 10cm

0.01004cm2{s
“ 100. (2.63)

To ensure the correctness of the simulation, the Reynolds number to apply

in the Lattice Boltzmann method must be exactly the same obtained from

Eq. (2.62), (i.e., Relbm = Re). Knowing this condition, one can proceed

to the next step, which consists in chosing the discretization parameters,

for example the grid size; 100ˆ300. That means that we set 100 nodes for

the width l0 in the x-coordinate, and 300 nodes in the y-coordinate. Thus,

the discrete space interval ∆x (or ∆y) is defined with the number of nodes

(N) in the characteristic length of the computational domain. Therefore,

∆x “
1

N
. (2.64)

Thus, ∆x “ 1{100 “ 0.01.

It is not intuitive to select a value for ∆t. In other schemes ∆t is often

linked to ∆x to provide stability in the calculation. To ensure the stability
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and accuracy of the LBM, most common relation used is ∆t ∼ ∆x2 [24].

In LBM ∆t and ∆x are linked by a different constraint, involving ulbm
which is calculated through ∆t{∆x. The value of ulbm cannot be larger

than the speed of sound cs, moreover the Mach number Ma = u{cs should

be kept small for an accurate incompressible-flow solution. Therefore, the

value of ulbm should be in the range 0.1 v 0.2, in order to ensure the range

of Maď 0.3 for incompressible flow (LBM does not support supersonic

flows). As a matter of fact, LBM is in the class of quasi-incompressible

fluid solvers. Understanding this, a good choice for ∆t to start is

∆t ∼ ∆x2. (2.65)

Consequently, ∆t “ 0.0001. But this choice is not restrictive, if accuracy

and stability of the method is a concern the value of ∆t could be increase

this is achieved in particular increase a bit the value of ∆x. Several author

used the following approximation (e.g., ∆t ∼ ∆x2 ¨ 2). Knowing the val-

ues of ∆t and ∆x, the other variables such as velocity and viscosity may

be converted from physical to dimensionless variables, and afterwards to

lattice variables as follows. For instance for the dimensionless velocity,

ud “
t0
l0
u0. (2.66)

where t0 is the characteristic time of the system and could be calculated

as t0 “ l0{u0, that means the time needed by a passive scalar in the fluid

to travel a distance l0. To help the intuition, one may consider that in the

dimensionless system ud “ 1, and the dimensionless viscosity as νd “ 1{Re.

Thus,

ud “
99.601594 s

10 cm
¨ 0.1004 cm{s “ 1. (2.67)

We can calculate the lattice characteristic velocity ulbm and the lattice

viscosity νlbm from the following equations,

ulbm “
∆t

∆x
ud, (2.68)

and

νlbm “
∆t

∆x2

1

Re
, (2.69)
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Therefore, we have

ulbm “
0.0001

0.01
1 “ 0.01 νlbm “

0.0001

p0.01q2
1

100
“ 0.01 (2.70)

and

Relbm “
ulbmN

νlbm
“

0.01 ¨ 100

0.01
“ 100, (2.71)

It is not necessary to use Eq. (2.69) if we first know the value of Re, that

means that we can calculate the value of νlbm from Eq. (2.71); νlbm “

ulbm ¨ N{Relbm. If we are using Single Relaxation Time SRT, it has to

be ensured that the value of τ for the hydrodynamic lattice is not in the

range τ ă 0.53 (because we may face accuracy and stability problems)

when calculating τ through Eq. (2.19).

In conclusion, these are required parameters in the set up of the lattice

variables to reproduce the physical problem.

Table 2.5: Parameters of the example (see text), physical and lattice
variables for the LBM simulation

Parameters

Physical units Lattice Units (`u)

u0 “ 0.1004 cm{s ulbm “ 0.01

ν0 “ 0.01004 cm2{s νlbm “ 0.01

l0 “ 10 cm N “ 100

t0 “ 99.6016 s tlbm “ 10000

Re “ 100 Relbm “ 100

τ “ 0.53

It can be seen in in Table 2.5, that the value of τ “ 0.53 is relatively low,

and depending on the case we may face stability and accuracy problems.

To solve this difficulty, some parameter linked with τ should be modified,

to increase its value. Instead of SRT, Multiple relaxation time MRT is

used for this low-range value of τ , but this configuration implies a higher

computational cost than SRT. There are simple solutions or alternatives

within the SRT scheme that can be used to increase the value of τ :
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36 Chapter 2 Lattice Boltzmann Method - LBM

• Increase the values of νlbm, so that in order to modify this value we

have to use the equation for the Reynolds number, Eq. (2.71).

• Increase the number of nodes in the characteristic length N

• Increase the value of the lattice velocity ulbm, according to certain

conditions in which the LBM works under the assumption of incom-

pressible regime, the value of ulbm need to be ď 0.1

The parameters above can be used to modify the range of τ through

Eq. (2.71), changing one value and keeping the rest of the parameters

fixed in the equation. In order to increase the value of τ , we then change

the number of nodes in the characteristic length N from the last example,

obtaining the new value of the viscosity νlbm,

νlbm “
ulbmN

Relbm
“

0.01 ¨ 200

100
“ 0.02 τ “ 3 ¨ 0.02` 1{2 “ 0.56. (2.72)

If the increase of the number of nodes is not feasible, we can choose any

of the rest of parameters that can be modified (i.e., ulbm). Thus,

νlbm “
0.05 ¨ 100

100
“ 0.05 τ “ 3 ¨ 0.05` 1{2 “ 0.65 (2.73)

Equation (2.73) we have freely chosen the lattice velocity ulbm. For this rea-

son the value of ∆t needs to be recalculated, as ulbm was computed before

through Eq (2.65) using the discretized lattice space and time (∆x,∆t).

Consequently, the new value ∆t can be obtained as follows,

∆t “ ulbm ¨∆x “ 0.05 ¨ 0.01 “ 0.0005. (2.74)

When dealing with thermal flows, where cold and heated walls are consid-

ered, the reference temperature, Tc can be chosen arbitrarily and it does

not affect the evolution of the flow, as the buoyancy term only depends on

the difference Th ´ Tc. For example, for the Rayleigh Bernard convection

the temperature in two apposite boundaries is defined as
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Chapter 2 Lattice Boltzmann Method - LBM 37

T0,hot “ Tc `
1

2
∆Tp T0,cold “ Tc ´

1

2
∆Tp (2.75)

where ∆T is the temperature difference between the two boundaries. As

mentioned above, a constant non zero Tc is not eligible as a reference, as

its value have no influence on the flow evolution.

In LBM, fixing ∆T is a less crucial step than fixing the value of ∆x and

∆t. ∆T does not intervene in the calculation of the lattice variables ex-

cept for determining the value of Tlbm (e.g., initial condition). Even so,

the temperature scale imposed through ∆T is not expected to affect the

numerics in a significant way, as the advection-diffusion equation for the

temperature is linear. For simplicity, Tc,lbm “ 0 and Th,lbm “ 1 are chosen,

and

T “
Tlbm ´ Tc,lbm
Th,lbm ´ Tc,lbm

(2.76)

where T is the dimensionless temperature, Tlbm is the local temperature

of lattice. For example, in a closed square cavity with two different tem-

peratures on two parallel walls (see Fig. 2.12), the conditions are chosen

such that the heated wall temperature is T0,hot “ 313.150 K and the tem-

perature of the cold wall is T0,cold “ 293.150 K), being the top and bottom

adiabatic boundaries (i.e., thermal insulation).

To represent these parameters in a LBM simulation, it is enough to define

the hot and cold temperature as Th,lbm “ 1 and Tc,lbm “ 0, respectively

(see Fig. 2.12)

Periodic Bc Periodic Bc

Tc,lbm

Th,lbm

Figure 2.12: Example of domain of a natural convection problem in a
close cavity.
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38 Chapter 2 Lattice Boltzmann Method - LBM

The results of the temperature field in the domain obtained from the sim-

ulation are in a interval of range T “ r0, 1s. With a simple process we can

get the physic values of the temperature, starting from the LBM variables,

by means of the following conversion,

T0 “ pT0,hot ´ T0,cold ¨ Tlbmq ` T0,cold. (2.77)

For example, if Tlbm “ 0.56 is obtained in the simulation, the value in the

physical system is

T0 “ p313.150K ´ 293.150K ¨ 0.56q ` 293.150K “ 305.47K, (2.78)

To conclude, in the inverse situation, we use the following form to convert

the physical temperature into the LBM temperature,

Tlbm “
T0 ´ T0,cold

T0,hot ´ T0,cold
. (2.79)

Other parameters can as well be converted, for example time,

Time,lbm “
Tstep,lbm ¨ ulbm

∆t
, (2.80)

Time,d “
Time,lbm
pN{ulbmq

, (2.81)

where Tstep,lbm is the time step in the LBM simulation, Time,lbm is the time

in lattice units and Time,d is the dimensionless time in the physical system.

2.8 Algorithm for the Lattice Boltzmann Method

Algorithm of LBM, a step by step description of the different phases of the

algorithm is presented.

1. The first step consists in rescaling the physical system to a dimen-

sionless system suitable to be applied the LBM (e.g., obtaining u0,

l0). Conversion units are explained in the next section.
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Chapter 2 Lattice Boltzmann Method - LBM 39

2. The second step is discretizing the problem from the dimensionless

physical system to the lattice system, building the uniform grid in

cartesian coordinates generated by the spacial step ∆x and time

step ∆t according to the geometry, and ensure the restriction on the

Mach number Ma ă 0.3 to maintain the incompressible regime in a

subsonic flow simulation.

3. In the initialization step, the distribution function is constructed and

the initial macroscopic variables are computed (e.g., ρpx, tq, upx, tq),

The density of the LBM is initialized as ρpx, tq “ 1.0.

4. Impose boundary conditions at the macroscopic level. Construct the

unknown distribution functions streaming from the solid to the bulk

on the kinetic level, based on the imposed boundary conditions. Dif-

ferent boundary dynamics are chosen according to the requirement

of stability, accuracy and efficiency.

5. In the Collision step, according with the collision rule explained in

section (2.1) and the boundary conditions imposed, the distribution

function is relaxed towards the local equilibrium in all nodes. In

the streaming step, the distribution function propagates to neighbor

nodes at the discrete set of velocities ci of the chosen model, and

according to the boundary condition imposed.

6. The last step is the post processing, if certain stopping condition

is satisfied. Otherwise go back to step (Boundary conditions) and

recalculate again the imposed boundary condition.
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40 Chapter 2 Lattice Boltzmann Method - LBM

2.8.1 Code

Code, Fortran 90

The code used was acquired from the open-source Palabos organization.

This code was modified and implemented the different existing models in

the literature related on the LBM, such as Temperature and concentration

field, Multiple Relaxation Time (MRT-model) for momentum, tempera-

ture and concentration, and the different schemes of the boundary condi-

tion for LBM. In addition, a new subroutine was created in order to export

the data result to a visualization software and (Gnuplot, Paraview). This

code was implemented in Fortran 90 programming language, and can be

found in the appendix of this thesis. (http://www.palabos.org/)

2.8.2 Visualization tools and data analysis

Paraview

The Paraview software is an open-source language used for data anal-

ysis and visualization. It has been used by several authors to depict

frame rate for large datasets. To this end, the Paraview visualization

tool-kit (VTK) libraries offer the advantage of a quick and easy imple-

mentation to create contour of different scalars, iso-volumes, streamlines,

2D-3D glyphs vectors, animations. It also contains a calculator tool which

can be used to compute new variables using the existing calculated vari-

ables. (http://www.paraview.org/).

Gnuplot

Is an open-source command line program used to generate accurate plots,

Mathematica functions and interactive data in two and three dimension. It

also allows to directly generate output graphs or images in different formats

(eps, jpeg, svg, png, etc.). It contains a built-in module for inserting large

or complex equations.
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Chapter 3

LBM for incompressible

fluid flow

3.1 Introduction

In this section, numerical simulations are presented which were carried

out using the Lattice Boltzmann method (LBM) in two-dimensions, in the

incompressible regime and laminar flow. In order to verify the accuracy of

the LBM, these results are compared with either analytical or numerical

solutions using other methods. The numerical stability is analyzed for

single relaxation time (SRT) and multiple relaxation time (MRT), as well

as the performance of the boundary condition used. A uniform grid was

implemented for all the studied cases in this thesis. For the stationary

solid wall of the simulations, full-way bounce-back boundary condition

and Zou-He boundary condition was used for these cases of study, in the

form explained in Sec. 2.6.

A total of three cases of study were selected for this section, with the main

goal of validating the codes:

• 2D - Poiseuille flow

• Lid - Driven cavity flow

• 3D - Poiseuille flow

41
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42 Chapter 3 LBM for incompressible fluid flow

These cases will be analyzed in the following paragraphs.

3.1.1 2D - Poiseuille flow

A basic example is the Hagen-Poiseuille flow, a steady state incompressible

flow which develops between two stationary parallel plates at rest, and an

inlet flow boundary condition in the form of a pressure gradient or an

specified inlet velocity. In this study, a velocity boundary condition will

be used at the inlet of the domain. The x-component of the Navier-Stokes

equations reduces in this simple case to:

Bp

Bx
“ µ

B2u

By2
(3.1)

and the y component

´
1

ρ

Bp

By
“ 0 (3.2)

Assuming the higher pressure region is on the left side and the lower pres-

sure region on the right, the pressure gradient Bp{Bx would be negative

as the fluid velocity is directed to the right side, meaning that the fluid is

moving from the higher pressure region to the lower pressure one. Such

as the plane Couette flow, the velocity lies in the x direction and is a

function of y alone, but the pressure gradient is not zero, but a constant

instead ´C. Hence, µB2u{By2 “ ´C. According to the equations defined

previously, this expression can be solved to obtain the maximum velocity

as follows [39]

umax “
C ¨D2

8µ
“

3

2
u0. (3.3)

Thus the velocity solution of the incompressible Navier-Stokes equations

corresponding to the Poiseuille flow inside the channel is

upyq “ umax

„

1´
‖ R´ y ‖2

R2



, (3.4)
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Chapter 3 LBM for incompressible fluid flow 43

where umax is the maximum value of the velocity, R “ D{2 is the radius

of the channel, (D being the characteristic length of the system). In order

to ensure a fully developed velocity profile, the channel should be long

enough. In the laminar flow regime this can be approximated as [39]

L

D
“ 0.06 ¨ Re; L “ 6D, (3.5)

for Re in the order of 100. Figure 3.1 shows the domain for this case.

The fluid in this simulation is water with a kinematic viscosity of ν “

1e´6 m2{s and a characteristic length D “ 0.05 m. The uniform velocity is

fixed at the inlet and is determined from the Reynolds number, Eq. (2.62),

u0 “
Re ¨ ν

D
; “

50 ¨ 1e´6 m2{s

0.05 m
; “ 0.001 m{s (3.6)

for a Reynolds number of Re =50.

Inlet, u0

u(y)

Umax

L=0 L=6D

D

x

y

Figure 3.1: Study domain of the channel flow

3.1.1.1 Simulation setup

The uniform grid is buildt using D “ 52 and L “ 312 nodes. To determine

the correct space and time scales for the discrete velocity, the uniform

velocity of the entrance of the channel is fixed, and it is calculated using the

discrete variable ∆x and ∆t. According to the approximation explained

in Section. 2.2 of the Eq. (2.65), ∆t is calculate as ∆t ∼ ∆x2. Hence,

∆x “ 1{N “ 1{52 “ 0.01923 and ∆t “ 3.846ˆ10´4. The discrete velocity

is then ulbm “ ∆t{∆x “ 0.02.

Figure 3.2 shows the scheme of the computational domain and the un-

known distribution function which will be calculated (arrows in color).
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44 Chapter 3 LBM for incompressible fluid flow

For the solid wall, bounce-back boundary schemes are applied for the sta-

tionary solid walls (see Section. 2.6.1) for f4, f7, f8 for the upper wall

and f2, f5, f6 for the bottom wall. At the entrance of the channel, the

density is fixed ρ “ 1.0. The unknown distribution functions for the inlet

f1, f5, and f8 are calculated through the Zou-He boundary condition (see

Section. 2.6.3), with Eqs. (2.37, 2.39, 2.39) in the following form.

Inlet boundary, Zou and He scheme:

ρ “
f0 ` f2 ` f4 ` 2pf3 ` f6 ` f7q

1´ ux

f1 “f3 `
2

3
ρux

f5 “f7 ´
1

2
pf2 ´ f4q `

1

6
ρux

f8 “f6 `
1

2
pf2 ´ f4q `

1

6
ρux,

and for the outlet open boundary condition is implemented as follows:

f3 “2¨ f3,L“6D´1 ´ f3,L“6D´2

f6 “2¨ f6,L“6D´1 ´ f6,L“6D´2

f7 “2¨ f7,L“6D´1 ´ f7,L“6D´2

Inlet, U

L=0 L=6D
x

y

Wall

Wall

56 2

56 2

56 2 56 2

13

13

13

13

87 4

87 4

87 4

87 4

Figure 3.2: Domain for the 2D Poiseuille flow, LBM simulation with
the D2Q9 model, Re=50, ulbm=0.1.

The (lattice) kinematic viscosity can be calculated with Eq. (2.72), using

the previous parameters, thus

νlbm “
ulbm ¨N

Re
“

0.02 ¨ 52

50
“ 0.0208, (3.7)
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Chapter 3 LBM for incompressible fluid flow 45

Then the kinematic viscosity is used to calculated the relaxation time τ

using Eq. (2.19). Then, τ “ 3¨ν`1{2 “ 3¨0.0208`0.5 “ 0.5624. According

to the stability of the method explained in Sec. 2.4, the value of τ has to be

of about ě 0.53 to ensure a correct stability and accuracy of the method.

In the present case, τ “ 0.5624 ensures the stability of the method. The

norm error L2 is defined with the following form:

L2 “

d

ři“Ny

i“0 ‖ upyq ´ upyq,lbm ‖2

Ny
(3.8)

3.1.1.2 Results and validation

The analytical solution of the Poiseuille flow is presented and compared

with the LBM result. The Poiseuille profile will not be developed imme-

diately past the entrance of the channel. For this reason, some distance

from the inlet is necessary before the profile is fully developed, Eq. (3.5).

Figure (3.3, 3.4) shows the velocity profiles as obtained from the LBM

simulation, with the effect due to the development of the flow in the channel

past the entrance, for Re “ 50. The location along the channel for the

selected velocity profiles is X “ 0.0016, 0.0160, 0.1602, 0.3205, 0.5608,

measured in a dimensionless distance from the inlet.

Inlet, U Outlet

L=0 L=6Dx

y

Wall

Wall

x1 x2 x3 x4 x5

Figure 3.3: Distances along the channel for the plot of the velocity
profiles, SRT-LBM simulation, Re=50.
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u
(y

)

Y

X1-0.0016

X2-0.0160

X3-0.1602

X4-0.3205

X5-0.5608

Figure 3.4: Velocity profiles at different distances from the inlet, SRT-
LBM simulation, Re=50.

Three different SRT-LBM simulations were carried out for a grid-independence

test to observe the convergence of the solution. The results are shown in

Fig. 3.5, in green for N “ 52, blue for N “ 104, and red for N “ 204,

compared with the analytical solution. An appropriate quantity to char-

acterize the error is the deviation with respect to the exact solution, L2.

The norm L2 is tabulated in Table 3.1 for the three different grid sizes. As

expected, the value of the error decreases as the number of lattice nodes

increases.

Table 3.1: Norm error L2 for the grid convergence test performed with
the laminar-Poiseuille-flow validation example.

N Norm L2

52 6.40e´4

104 1.46e´4

204 5.68e´5
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Figure 3.5: Dimensionless velocity in the vertical center line of the
channel. Analytical and SRT-LBM solutions.

Figure 3.6 displays the contour plot of the dimensionless magnitude of the

velocity for N “ 52. On the left side (inlet) a small distortion can be seen

due to an incipient numerical instability, which can be better observed in

the zoom of the region in Fig. 3.7. This occurs because of the value of

the relaxation time parameter τ , which for the case of N “ 52 approaches

the limit for the SRT model, τ „ 0.53. The cases N “ 104 and N “ 204

do not present these problems since τ increases with the number of nodes

above the critical value.

Figure 3.6: Dimensionless velocity contour plot for the SRT model:
Re=50, ulbm=0.02, N “ 52ˆ 312.
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48 Chapter 3 LBM for incompressible fluid flow

Figure 3.7: Zoom of the inlet region showing the dimensionless velocity
contour plot.

Two more simulations were carried out in order to compare the SRT and

the MRT models. It was observed that the MRT model does not present

the instability for the case N “ 52 (see Fig. 3.8). Likewise, the error

L2 “ 3.52e´4, is smaller than that found in the SRT simulation. In

Fig. 3.9, the results from both models in the three cases are depicted along

with the analytical solution1.

Figure 3.8: Dimensionless velocity contour plot for the MRT model:
Re=50, ulbm=0.02, N “ 52ˆ 312.

1The LBM codes for the Poiseuille flow in a channel were written in Fortran 90
programming language, and can be found in the AppendixC
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Figure 3.9: Dimensionless velocity in the vertical center line of the
channel: analytical solution and LBM solution, showing also the MRT

vs. SRT profiles for the case N “ 52.

Table 3.2 shows the errors obtained in simulations for both models. In the

first place, it has to be emphasized that for the same grid size, the MRT-

model renders smaller errors, however this is more pronounced in the case

N “ 52. In conclusion, the grid size N “ 104 can be used for either model

to obtain similar results, whereas N “ 204 presents a slightly smaller error

at the cost of a significant increase of the computational trade-off.

Table 3.2: Norm error L2 for the SRT and MRT models obtained in
the test cases.

N L2 SRT-model L2 MRT-model

52 6.40e´4 3.52e´4

104 1.46e´4 1.43e´4

204 5.68e´5 4.81e´5
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50 Chapter 3 LBM for incompressible fluid flow

3.1.2 2D Lid-Driven cavity flow

This case, commonly known as the Lid-Driven cavity (LDC) problem, is

one of the most common benchmark test problems for incompressible fluid

flow, and has been used to evaluate the accuracy and efficiency of numerical

methods used in the Computational Fluid Dynamic field (CFD), such as

multi-grid method, finite element, volume method, etc. The LDC is a

type of flow developed within a square box in two-dimensions. The flow

is driven by moving the top wall of the cavity with a constant velocity. A

schematic example is provided in Fig. 3.10. For the rest of the walls, the

velocity is set to zero, which in LBM schemes is accomplished by using

bounce-back boundary conditions (see Sec. 2.6.1). The main goal of LDC

is to study the effect of the Reynolds number on the structure of the steady

vortices in the cavity, several author analyze the location of the different

vortex generated, a primal vortex appear near to the center of the cavity,

of the corners two small counter-rotation vortex are developed (secondary

vortices), when the Re is increases, the secondary vortices grow up and

the primal vortex is moves to the center of the cavity.

x

y

ux=1.0, uy=0

ux= uy= 0 ux = uy = 0Fluid
(ρ,ν)

ux = uy = 0

L

Figure 3.10: Lid-Driven cavity flow scheme.

On the other hand, for LBM, the moving top wall needs a special treat-

ment. Zou and He [31] proposed to use the boundary condition explained

in Sec. 2.6.3 to calculate the distribution function stream of the moving

wall. The boundary conditions for the LDC are used as follows: Top(north)
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Chapter 3 LBM for incompressible fluid flow 51

boundary condition; the Zou-He scheme is used, the velocity of the moving

wall is fixed, ux “ ux= constant, the distribution function is calculated

with this velocity in the x-component; north boundary condition for mov-

ing top wall, ux “ ux, uy “ 0:

ρ “f0 ` f1 ` f3 ` 2pf2 ` f6 ` f5q

f4 “f2

f7 “f5 `
1

2
pf1 ´ f3q ´

1

2
ρux

f8 “f6 `
1

2
pf3 ´ f1q `

1

2
ρux.

Three numerical studies were carried out for validation at different Reynolds

numbers, Re=100, 1000 and 7500, with the Reynolds number of the cav-

ity flow being defined by Re = u0 ¨ l0{ν, where u is the velocity of the

moving wall, l0 is the characteristic length of the cavity (L Dimensionless

length) and ν is the kinematic viscosity. The LBM results were validated

by means of the most relevant study of the cavity flow by Ghia et al [1], who

in the 1980’s published a thorough numerical study based on a multi-grid

method, analyzing the position of the vortex centers appearing in the left

bottom corner, the right bottom corner and left top corner of the cavity.

3.1.2.1 Simulation setup for the grid independence test

For the grid-independence test, different grid sizes were selected depending

on the Reynolds number. For Re = 100, the grids were N “ 128 ˆ 128,

N “ 160ˆ 160, N “ 260ˆ 260 and N “ 400ˆ 400. For Re = 1000 and Re

= 7500, only the grids N “ 400 ˆ 400 and N “ 600 ˆ 600 were used, as

smaller grids cannot ensure, at these values of the Reynolds number, the

stability and accuracy of the method, even if MRT was used in all cases2.

The discretization units and the rest of the relevant parameters for the

LBM simulations are calculated as follows.

2The Fortran 90 code for the Lid Driven cavity flow can be found in AppendixD
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52 Chapter 3 LBM for incompressible fluid flow

For Re = 100:

• The characteristic velocity of the moving wall is fixed at ulbm “ 0.1;

the discrete density ρ “ 1.0 is also imposed initially.

• The discrete length, ∆x “ 1{N gives 0.0078125, 0.00625, 0.003847

and 0.0025 for the grid sizes specified above. The value of the kine-

matic viscosity in lattice units is calculated through the Reynolds

equation 2.71, resulting in a range of 0.4 ď νlbm ě 0.128.

• The value of the relaxation time parameter is calculated using Eq. (2.19).

The obtained values are in the range 1.7 ď τ ě 0.884 for the grid

sizes used.

For Re = 1000:

• The two different grid sizes used in this case result in a spatial dis-

cretization of ∆x “ 1{N “ 0.0025 for N “ 400 ˆ 400 and 0.001667

for N “ 600ˆ 600. The values of the kinematic viscosity for the two

grid sizes are νlbm “ 0.040 and 0.06, whereas the relaxation times

are τ “ 0.62 and 0.68, respectively.

For Re = 7500:

• As the grids are the same as in the previous case, ∆x “ 1{N are also

the same, whereas the values of the kinematic viscosity for the two

grids give νlbm “ 0.00533, 0.0080, and the relaxation times τ “ 0.516,

0.524.

3.1.2.2 Results and validation

The results presented in this section were obtained from the Lattice Boltz-

mann method and were compared with benchmark by Ghia et al [1] (1982),

since it includes several results for various Reynolds numbers.

Figure 3.11 shows the magnitude of the dimensionless velocity of the y-

component Uy for Re = 100. Different grid sizes were used, N “ 128ˆ128,

160ˆ 160, 260ˆ 260 and 400ˆ 400. For N “ 128 (yellow dashed line), the
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Chapter 3 LBM for incompressible fluid flow 53

mean relative error with respect to the reference values is of ε “ 5.2 %,

with a maximum relative error of ε “ 12 %. In the case of N “ 160

(green dashed line), the mean relative error decreased to ε “ 3.7 % with

a maximum value of ε “ 8.4 %. For N “ 260 (red solid line), a mean

relative error of ε “ 1.9 % and a maximum of ε “ 3.4 % were obtained.

For the most refined grid N “ 400 (blue dashed line), the mean relative

error decreased considerably to ε “ 1.0 %, with a maximum relative error

of ε “ 1.7 %.
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Figure 3.11: Grid-independence test for Re =100: y-component of the
velocity along the centreline of the square cavity, Uy.

Figure 3.12 shows the location of the different vortices appearing in the

cavity at Re=100. The streamlines of the dimensionless velocity were

compared with the results by Ghia et al. [1].

At Re = 100, a primary vortex is located near the center of the cavity. At

the bottom corners, two counter-rotating secondary vortices appear on the

left and right side of the walls. Table. 3.3 at the end of the sub-section,

shows the x-location and y-location of the vortex centers, as compared

to the reference values. The agreement is good in general; the relative

error for the primary vortex is ε “ 0.49 and 0.12 % respectively. For

the left-corner vortex, a greater discrepancy was observed, with a relative
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54 Chapter 3 LBM for incompressible fluid flow

error of ε “ 13 %, in the x-location. Seemingly, N is not large enough to

adequately resolve the bottom left vortex. Therefore a smaller grid space

(i.e., ∆x) near the walls could be a solution, resulting in a local refinement

at the corners. For the left vortex, bigger than the left one, the errors are

much smaller: ε “ 0.67 and 0.00 % for the x- and y-location of the vortex

center.

Figure 3.12: Streamlines for Re=100, LBM simulation.
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Chapter 3 LBM for incompressible fluid flow 55

Figure 3.13: Streamlines for Re=1000, LBM simulation.

At Re = 1000 (see Fig. 3.13), the primary vortex has moved to the center of

the cavity. Also, the left and right counter-rotating vortices in the bottom

corners grow in size as compared with Re = 100. In the upper left corner,

a small recirculation appears in the transient stages, but it is not further

developed and is not visible in the steady state. In the study of Ghia

et al. [1], this vortex appears in the steady flow solution when the value

of the Reynolds’ number approaches Reě2000. In this study, it was not

necessary to test all Reynolds’ number ranges, given that the main goal is

to validate the LBM code by comparing the results obtained with those

from other studies.
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56 Chapter 3 LBM for incompressible fluid flow

Figure 3.14: Streamlines for Re=7500, LBM simulation.

At Re=7500 (see the Fig. 3.14), the primary vortex is situated in the

center of the cavity, with the two counter-rotating vortices of the left and

right bottom corners presenting a substantial growth. A secondary vortex

appears in the right top corner of the cavity, now fully developed in the

steady state.
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x

y

ux=1.0, uy=0

Uy

Ux

Figure 3.15: Scheme for the vertical and horizontal mid plane of x,
y-component of the velocity.

In addition, the x-velocity (Ux) and y-velocity (Uy) profiles were analyzed

in the center lines of the cavity (see Fig. 3.15 for a scheme). A good

agreement with respect to the reference values is obtained in this case, as

observed from Figs. 3.16 and 3.17. For Re = 100, using a grid of N “ 400,

the mean relative error obtained for Ux was ε “ 1.0 %, and ε “ 1.7 %

for Uy. For Re = 1000, using a grid of N “ 600, the mean relative error

obtained for Ux was ε “ 1.9 % and an ε “ 1.5 % for Uy. For Re = 7500,

the mean relative errors were ε “ 2.7 % for Ux and ε “ 2.2 % for Uy using

a grid of N “ 600. The velocity profiles at high Re becomes linear in most

of the cavity: linear profiles in the central core confirm the approximately

uniform vorticity region generated in the center of the cavity at high Re

numbers.

Figure 3.18 shows the dimensionless velocity contour. The left side presents

the contour of the dimensionless velocity field, while the right side shows

the contour of the dimensionless vorticity field for each Re. For Re = 100,

a higher region of vortex near the moving wall can be observed as the Re

is increases. Several regions of high vorticity gradients are observed in the

cavity when the Re increases, and the effect of the rotation generated a

uniform vorticity in the center of the cavity with a contrary effect near

the wall and to the top corner close to the moving wall. Moreover, some

instability is produced in the corner of the cavity when Reě7500. In
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58 Chapter 3 LBM for incompressible fluid flow

Fig. 3.19, the dimensionless pressure contour is presented for the different

cases. Notice that for Re = 100, the pressure is constant through the whole

cavity. As the Re increases, the pressure gradient decreases in the center

of the cavity (see Fig. 3.19(C))
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Figure 3.16: Dimensionless x-component of the velocity Ux along the
vertical centerline of the cavity, Re = 100, 1000 and 7500.
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Figure 3.17: Dimensionless y-component of the velocity Uy along the
horizontal centerline of the cavity, Re = 100, 1000 and 7500.
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60 Chapter 3 LBM for incompressible fluid flow

Figure 3.18: Contours of the dimensionless magnitude of the velocity
(left) and vorticity (rigth); Re = 100 (top), Re = 1000 (middle) and Re

= 7500 (bottom).
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(a) Re = 100 (b) Re = 1000

(c) Re = 7500

Figure 3.19: A) Pressure contour for Re = 100, ulbm=0.02 lat-
tice units(ln), 256ˆ256 nodes was used for this case. B) Re = 1000,
ulbm=0.02,400x400 nodes C) Re = 7500, ulbm=0.02, 400ˆ400 nodes.
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Table 3.3: Location of the vortices found in LDC flow at Re=100, 1000
and 7500. LBM simulations and bibliographic data.

Re “ 100

Primary LBM Ghia et al.[1] ε %

Location, x,y 0.6142, 0.7353 0.6172, 0.7344 0.470, 0.12

First left vortex

Location, x,y 0.0353, 0.0369 0.0313, 0.0391 12.78, 5.63

First right vortex

Location, x,y 0.9390, 0.0625 0.9453, 0.0625 0.67, 0.00

Re “ 1000

Primary LBM Ghia et al.[1] ε p%q

Location, x,y 0.5316, 0.5639 0.5313, 0.5625 0.056, 0.25

First left vortex

Location, x,y 0.0824, 0.0760 0.0859, 0.0781 4.07, 2.67

First right vortex

Location, x,y 0.8633, 0.1125 0.8594, 0.1094 0.42, 2.84

Re “ 7500

Primary LBM Ghia et al.[1] ε %

Location, x,y 0.5126, 0.5321 0.5117, 0.5322 0.18, 0.019

Top left vortex

Location, x,y 0.0688, 0.9116 0.0664, 0.9118 3.62, 0.022

First left vortex

Location, x,y 0.0665, 0.1504 0.0645, 0.1504 3.10, 0.00

First right vortex

Location, x,y 0.7903, 0.0662 0.7813, 0.0625 1.15, 0.06

Second right vortex

Location, x,y 0.9526, 0.03829 0.9492, 0.0430 0.36, 10.96
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3.1.3 3D - Poiseuille flow

The Poiseuille flow is a recurrently used problem to validate different meth-

ods. Due to its simplicity, it has been selected as a benchmark case to

demonstrate the accuracy and stability of our 3D model. A simulation of

the 3D-Poiseuille flow was carried out in order to validate our implemen-

tation of the D3Q19 model for three dimensional problems. A full-way

bounce-back scheme was imposed on all solid walls as follows,

fi,nwall
“ fi,nwall, opposite

where i “ 6, 13, 14, 16 and 18 for the upper wall i “ 5, 11, 12, 15 and 17

for the bottom wall and. At the outlet, an open boundary condition was

imposed. The unknown distribution functions at the outlet were calculated

with the second order extrapolation scheme explained in Sec. 2.6.

The double extrapolation is applied at the outlet node in the form:

fi,n “ 2¨ fi,n´1 ´ fi,n´2

where here i are the discrete directions for the unknown distribution func-

tions at the outlet, f2, f9, f10, f12 and f14.

Figure 3.20 displays the unknown distribution functions equation that need

to be determinated, Sec. 2.2.

2
9

10

12

14

1
7

8

11

13

Inlet 

Outlet

Bounce-Back scheme

Bounce-Back scheme

Figure 3.20: Scheme for Inlet/Outlet of the unknown distribution func-
tions equations fpx, yq. 3D-Poiseuille flow.

For the inlet boundary condition, the density was fixed to ρ “ 1.0 and the

velocity upx, yq, being the velocity at the pipe entrance. In addition, the
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unknown distribution functions f1, f7, f8, f11 and f13 were calculated with

the equilibrium distribution equation

3.1.3.1 Simulations setup:

Figure 3.21: Domain for 3D-Poiseuille flow, D3Q19-LBM simulation.

Figure 3.21 shows the computational domain. The length of the channel

needs to be long enough to ensure that the velocity profile is fully devel-

oped. In this case, the characteristic length of the system is the diameter

of the pipe, which is equal to D “ 60 nodes. Consequently, the length of

the pipe should be L « 6D nodes. Notice that the length of our compu-

tational domain is equal to L “ 350 nodes. Considering the chosen grid

size (i.e., 60 nodes in the y and z directions, and 350 in the x-direction),

the values of the LBM velocity ulbm are calculated through ∆x and ∆t.

∆x “ 1{D “ 1{60 “ 0.01667 and in this case, the velocity was chosen as

ulbm “ 0.02, which complies with the restriction ulbm ď 0.1 to ensure the

incompressible limit.

Since ulbm “ ∆t{∆x, thus ∆t can be calculate as ∆t “ ulbm ¨ ∆x “

0.02 ¨ 0.01666 “ 0.0003333 (resulting in ∆t « ∆x2).
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The Reynolds number was fixed to Re=20, and the kinematic viscosity of

lattice is calculated through Eq. 2.16.

νlbm “
0.02 ¨ 60

20
“ 0.06,

Finally, the relaxation time τ is obtained using Eq. (2.19):

τ “ 3 ¨ 0.06` 0.5 “ 0.68

3.1.3.2 Results and validation

The simulation results were converted into laboratory dimensionless vari-

ables and then compared with the analytical solution of the Poiseuille flow

in a pipe. The analytical velocity profile in a pipe is given by

upyq “ umax

„

1´
‖ R´ y ‖2

R2



, (3.9)

where umax is the maximum value of the velocity, calculated as umax “ 2u0,

u0 being the characteristic velocity of the flow. R is the radius of the

channel, and D “ 2R is the characteristic length of the channel.

Figure 3.22 displays the comparison of the LBM velocity profiles with

respect to the exact solution. Three simulations were carried out; the

first one (blue dash line) used N “ 40 nodes in the characteristic length,

giving an error relative to the exact solution of ε “ 3.9 %. The second

simulation (red dashed line) is the result for N “ 60, showing a closer

agreement with a mean relative error equal to ε “ 1.4 %. The results for

N “ 100 (solid black line) are the most accurate, with a mean relative

error of ε “ 0.7965 %.

Figure 3.23 shows the results obtained from the D3Q19-LBM simulation.

Figure 3.23a displays the development of the velocity profiles along the

pipe at different positions, as well as the 3D view in Fig. 3.23b.

In Fig. 3.23c a longitudinal section was made to show the velocity along

the x-coordinate, and in Fig. 3.23d a section of the pipe near the outlet

was made in order to observe a correct velocity field distribution, ensured
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by an appropriate choice of outlet boundary conditions (open boundary

conditions in this case).
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Figure 3.22: Velocity profiles of LBM simulation and analytical solu-
tion for 3D-Poiseuille flow.
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Chapter 4

LBM for Heat and Mass

transfer phenomena

4.1 Advection-Diffusion equation

In this chapter, heat and mass transfer processes using LBM as the solution

method are considered for advection-diffusion equation. In the process

of advection-diffusion, the advection and diffusion occur simultaneously.

Advection process, the governing advection equation for one-dimension

for the transport of heat, mass and momentum can be expressed as

Bφ

Bt
` u

Bφ

Bx
“ 0 (4.1)

where φ is the scalar quantity (e.g., energy, mass, momentum etc.) and u is

the advection velocity, fluid flow velocity. for two-dimensional advection-

diffusion equation is gives as

Bφ

Bt
` u

Bφ

Bx
` v

Bφ

Byx
“ η

ˆ

B2φ

Bx2
`
B2φ

By2

˙

(4.2)

where η is the diffusion coefficient (i.g., mass diffusion or thermal diffusion

for heat transport)

69
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70 Chapter 4 LBM for Heat and Mass transfer phenomena

In order to validate the Lattice Boltzmann method in two-dimensions for

some phenomena of heat and mas transfer processes, three simulations

were carried out in the state-steady regimen for an incompressible fluid

flow.

• Advection - Diffusion case

• Free or Natural Convection

• Mass Flux Case

In this section, part of the obtained results will be compared with their

respective analytical solution, while the rest will be compared with results

obtained by other authors, using different numerical methods as well as

commercial software. For all studied cases, a uniform grid is used.

4.1.1 Advection - Diffusion equation for Lattice Boltzmann

method

The advection-diffusion problem with or without source or reaction term

is very common in engineering applications. In the Lattice Boltzmann

method, this problem can be solved through Eq. (2.15), explained in

Sec. 2.1,

Aipx` ci∆t, t`∆tq “ Aipx, tq `
1

τA
rAeqi px, tq ´Aipx, tqs , (4.3)

where Ai is the discretized distribution function, τA and ωi are the relax-

ation time parameter and weight factors for the model (see Section. 2.2)

and i “ 0, 1, ..8 are the discrete velocities for the model used.

In this example, a D2Q9-model is implemented, being CA the concentra-

tion of the substance A that diffuses in the medium. The equilibrium

distribution function Aeqi is expressed as

Aeqi “ ωiC
A
”

1`
ci¨u

c2

ı

, (4.4)
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Chapter 4 LBM for Heat and Mass transfer phenomena 71

The relaxation time parameter τA for the concentration is calculated by

the diffusion coefficient DA, corresponding to species A as:

τA “ 3DA ` 1

2
(4.5)

4.1.1.1 Advection - Diffusion problem: Gaussian pulse

The Gaussian pulse problem is the evolution of an initial concentration

pulse inside of a rectangular domain with dimensionless length xp0, 2q and

yp0, 2q.

The initial Gaussian pulse is advected with constant velocity in a diagonal

line across the domain, and is given by the following expression,

Cpx, yq “ aexp

ˆ

´
px´ x0q

2

Dx
´
py ´ y0q

2

Dy

˙

(4.6)

where Cpx, y, 0q is the Gaussian function of the concentration, a is the

amplitude and x0 and y0 are the positions of the center of the pulse at

t “ 0. The results obtained for the LBM simulation were compared with

the exact solution. The analytical solutions for the concentration are given

by

Cpx, y, tq “
1

4t` 1
exp

ˆ

´
px´ ut´ x0q

2

Dxp4t` 1q
´
py ´ vt´ y0q

2

Dyp4t` 1q

˙

, (4.7)

where Dx and Dy are the dimensionless diffusion coefficients in their re-

spective x and y direction, t is the time, and u and v are the velocity

components for the x and y directions.

4.1.1.2 Simulation setup

Two different uniform grid size were selected; N “ 80 ˆ 80 and N “

160 ˆ 160. The LBM velocity for this case must be determined, however

an initial guess to select a velocity can be calculated through ∆x and ∆t,

to then obtain a characteristic velocity of the lattice.
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Figure 4.1 shows the computational domain and the dimensionless pa-

rameters. The size of the domain is equal to x=y=2. The dimensionless

diffusion coefficient is fixed to Dx “ Dy “ 0.01

The initial Gaussian pulse is generated using Eq. (4.6), positioned at coor-

dinates x “ 0.5 and y “ 0.5 in the domain, with a maxima initial concen-

tration a “ 1. The diffusion coefficient is fixed to Dx “ Dy “ 0.01, and

the characteristic velocity for the Gaussian pulse is selected as Upx, yq “ 1.

The concentration of the pulse was measured in the position x “ 1.5 and

y “ 1.5 for the dimensionless time t “ 1, and the characteristic length of

the case is L “ 2. Periodic boundary conditions were implemented in all

boundaries (see Section. 2.6.2).

Ux,y

x

y

y=0.5

y=1.5

x=0.5

x=1.5

y=0

y=2

x=0 x=2

Periodic BcPeriodic Bc

Periodic Bc

Periodic Bc

C=1.0

t=0 

t=1

D=0.01

Figure 4.1: Domain scheme for the propagation of the Gaussian pulse
(dimensionless parameters).

To proceed with the discretization of the lattice space and time scales,

we calculate ∆x and ∆t using Eq. (2.64). Then, ∆x “ 2{80 “ 0.025 for

N “ 80 ˆ 80 and ∆x “ 2{160 “ 0.0125 for N “ 160 ˆ 160, according to

the procedure explained in Sec. 2.7 after Eq. (2.65), that is ∆t ∼ ∆x2. An

approximation may also be useful in order to increase the accuracy of the

method as ∆t ∼ ∆x2 ¨2, or ∆t ∼ ∆x4 ¨2, obtaining ∆t “ 0.0252 ¨4 “ 0.0025

for N “ 80 and ∆t “ 0.000625 for N “ 160. Therefore, the LBM velocity
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can be calculated through ulbm “ ∆t{∆x “ 0.00125{0.025 “ 0.05 for the

x- and y-directions.

The Reynolds number was fixed arbitrarily to Re=100 in order to calculate

the respective viscosity of the lattice, using Eq. (2.71). Then, the viscosity

is equal to νlbm “ 0.05 ¨ 40{100 “ 0.02 for N “ 80 ˆ 80 and νlbm “

0.05 ¨ 80{100 “ 0.04 for N “ 160 ˆ 160, obtaining the relaxation time for

both grid sizes as τ “ 3 ¨ 0.02` 0.5 “ 0.56 and τ “ 3 ¨ 0.04` 0.5 “ 0.62.

The LBM diffusion coefficient is calculated using the expression

DA “ ∆t

∆x2
¨D, (4.8)

where D represents the dimensionless diffusion coefficient mentioned pre-

viously, Dx “ Dy “ 0.01. Then,

DA “ 0.0025

0.000625
¨ 0.01 “ 0.04, N “ 80 (4.9)

(4.10)

DA “ 0.000625

0.00015625
¨ 0.01 “ 0.04, N “ 160 (4.11)

The relaxation time parameter for diffusion τA is calculated with the diffu-

sion coefficient Eq. (2.18) previously obtained. Hence, τA “ 3 ¨DA` 0.5 “

3 ¨ 0.04` 0.5 “ 0.62.

4.1.1.3 Results and validation

The analytical solution for the Gaussian pulse is compared with the LBM

results for the two different grid sizes and for the MRT and the SRT mod-

els. Figure 4.2 displays the pulse located in the initial position x=y=0.5.

The decrease in the initial concentration C “ 1 at px0, y0q due to diffu-

sion is noticeable at t “ 1, when the gaussian pulse has been advected to

the position x=y=1.5, and where the maximum concentration is C=0.2.

Figure 4.2b shows the two-dimensional domain, with a contour of the con-

centration with respect to time.

First, two simulations were carried out using the SRT model for N “

80 ˆ 80 and N “ 160 ˆ 160. A deviation with respect to the analytic

solution was observed, with the relative error for N “ 80 being ε “ 2.2%.
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(a)

(b)

Figure 4.2: Contours of the dimensionless concentration field C: A)
view of the pulse diffusing and moving from the initial to the final posi-

tion. B) Embossed contours of the concentration.
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For N “ 160, an upgrade was achieved, obtaining a value of ε “ 0.86%.

Figure 4.3 shows the results for N “ 80 (blue-dashed line) and N “ 160

(red-dashed line).

Afterwards, other two simulations were ran using the MRT-model, obtain-

ing a significant improvement with respect to SRT. Figure 4.3 shows the

concentration profiles across a bisector for N “ 80 (green-dashed line) and

N “ 160 (purple solid line) along with the exact result. The relative errors

were ε “ 1.7% and ε “ 0.10% respectively, in the final peak concentration

at t=1.
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Figure 4.3: Results of the LBM simulations and their comparison
with the analytical solution of the concentration pulse at the location
x “ y=1.5 at time t=1. Blue (SRT) and red (MRT) dashed lines are for
N “ 80ˆ 80, and green dashed (SRT) and purple solid (MRT) lines are

for N “ 160ˆ 160.
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4.2 Convection

4.2.1 Incompressible Navier-Stokes Equations for Natural

Convection

The incompressible form of the governing hydrodynamic equations may

be derived from the general Navier-Stokes equation, which can be found

in numerous bibliographic references [19, 20]. In this study, the steady-

state natural convection will be considered. The buoyancy force term is

simplified through the Boussinesq approximation, where the density in the

buoyancy term is represented by a liner variation of the temperature. This

means that all physical properties are constant, with the exception of the

density, which is usually expressed in terms of the temperature,

ρ “ ρ0p1´ β∆T q, (4.12)

where ρ0 is the bulk fluid density, ρ is the fluid density, ∆T “ pT0 ´

T8q for T0 is the local temperature of the fluid and T8 is the reference

temperature and β is the coefficient of thermal expansion. For a single

fluid incompressible flow, ρ “ ρ0, so that the thermal expansion can be

calculated by β “ 1{T8 [20, 40].

The buoyancy term based on the approximation is included in the in-

compressible Navier-Stokes equation for two-dimensions in the momentum

equations, and its formulation may be rewritten as follows,

The conservation of mass equation

Bu

Bx
`
Bv

By
“ 0, (4.13)

the Boussinesq buoyancy model in the balance of x-momentum,

ρ

ˆ

u
Bu

Bx
` v

Bu

By

˙

“ ´
Bp

Bx
` µ

ˆ

B2u

Bx2
`
B2u

By2

˙

` ρgxr1´ βpT0 ´ T8qs (4.14)
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the balance of y-momentum,

ρ

ˆ

u
Bv

Bx
` v

Bv

By

˙

“ ´
Bp

By
` µ

ˆ

B2v

Bx2
`
B2v

By2

˙

` ρgyr1´ βpT0 ´ T8qs (4.15)

and the thermal energy transport equation in an incompressible gas,

u
BT0

Bx
` v

BT0

By
“ α

ˆ

B2T0

Bx2
`
B2T0

By2

˙

(4.16)

The buoyancy force term per unit volume is βgρ0∆T . It is sometimes pre-

ferred that the aforementioned equations are used in a dimensionless form,

and thus these equations can be rewritten by selecting the characteristic

quantities linked with the repective case of study (e.g., characteristic ve-

locity u0, characteristic length l0, reference temperature T8, etc). Thus

dimensionless parameters for the study of natural convection can be de-

fined,

t “
t0
l0{α

, X “
x

l0
, U “

u0 ¨ l0
α

(4.17)

T “
T0 ´ T8
Th ´ T8

, P “
p´ l0
ρ0 ¨ α2

. (4.18)

where Th is the hot temperature here, the dimensionless governing equa-

tions with the body force can be rewritten as

BU

BX
`
BV

BY
“ 0, (4.19)

U
BV

BX
` V

BV

BY
´
BP

BY
` Pr

ˆ

B2V

BX2
`
B2V

BY 2

˙

`RaPrT, (4.20)

U
BT

BX
` V

BT

BY
“
B2T

BX2
`
B2T

BY 2
. (4.21)

In the study of natural convection, the buoyancy flow is characterized by

the Rayleigh number Ra,

Ra “
gβpTh ´ T8qL

3

να
(4.22)
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The Rayleigh number is related to the Prandtl and Grashof numbers by

means of Ra= Gr¨Pr, where

Gr “
gβ∆TL3

ν2
, Pr “

ν

α
. (4.23)

Here β is the thermal expansion coefficient, ∆T “ pTh ´ T8q is the dif-

ference between the surface temperature and reference temperatures, g is

the gravity force, and ν and α are the kinematic viscosity and the ther-

mal diffusion coefficient of the fluid. Therefore, the relative importance

of the inertia and viscous forces depend on the Prandtl number; if Prě1,

the inertia term will be negligible and the viscosity term will balance the

buoyancy term. Moreover if Prď1, the inertia term is considerable and

balances the buoyancy term in the steady state [19, 41].

4.2.2 Natural convection for the Lattice Boltzmann Method

To apply the Lattice Boltzmann Method to study natural convection phe-

nomena, the distribution function equation Eq. (2.2) used previously for

the momentum transfer needs to be modified.

Since a new term must be incorporated in the right hand side of the equa-

tion, the body force is added to the distribution function equation [4],

fipx` ci∆t, t`∆tq “ fipx, tq `
1

τv
rfeqi px, tq ´ fipx, tqs `∆tFi. (4.24)

where the particular expression of Fi resorts to the Boussinesq approx-

imation for the buoyancy force term, in which all fluid properties are

constant except for the body force [42], where the density varies as ρ “

ρ̄r1 ´ βpTlbm ´ Tlbm,8qs. Tlbm is the local temperature, Tlbm,8 is the ref-

erence temperature, ρ̄ is the corresponding density, and β the thermal

expansion coefficient.
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4.2.2.1 Force term

For natural convection driven flow, the force term is used as

F “ ρgyβ∆T (4.25)

gy being the gravitational vector and ∆T “ pTlbm´Tlbm,8q. The external

force term is expressed in the LBM as follows [22],

Fi “ ωiF ¨ ci{c
2
s, (4.26)

where i “ 0, ...8 and cs “ c{
?

3 are, as previously mentioned, the speed of

sound in Lattice units. Therefore, Eq. (4.26) can be rewritten as

Fi “ 3ωiρgyβ∆T. (4.27)

There are different ways to add the external force to the collision operator

in the LBM. Mohamad and Kuzmin [22] studied the results given by three

different schemes, in particular, those suggested by L.S-Luo [43, 44], Shan

and Chen [45] and Guo et al. [46]. After analyzing the velocities and

the Nusselt number inside of a square cavity, the authors of these studies

concluded that all schemes produced very similar results.

In this thesis, the scheme used by Mohamad et at. [22] has been imple-

mented, using the expression for the external force as

Fi “ 3ρωigβpTlbm ´ Tlbm,8q. (4.28)

Analogously, for the temperature field, a distribution function equation

has to be implemented for the energy transfer as explained in Sec. 2.3,

using Eq. (2.10).

4.2.2.2 Natural convection in a closed cavity

Natural convection in a close cavity can be found in many engineering

situations, such as airflow in gaps, cavities of building walls, or air near

heated surfaces. Several authors have studied this phenomenon, primarily
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with the aim of reducing heat transfer. Enhancing the accuracy of the dif-

ferent numerical methods used in simulations of heat transfer mechanisms

has been another important goal in these studies. In the literature, several

results and data about this case can be found, especially by G. De Vahl

Davis. [2], who reported many interesting results of natural convection in

closed cavities in two dimensions.

In order to validate our code, the results obtained with the Thermal Lat-

tice Boltzmann method (TLBM) were compared with the method imple-

mented by G. De Vahl Davis. [2], based on second-order, central difference

approximations. The configuration of this case consisted in two differen-

tially heated vertical side walls, with zero flux at top and bottom (i.e.,

adiabatic boundary condition), and zero velocity on the four lateral walls.

Fig. 4.4 displays the computational domain, where H is the width and

height of the cavity and g is acting along the direction of the negative y-

coordinate. Th and Tc are the dimensionless temperature for the hot and

cold walls.

x

y

g

Adiabatic wall

Adiabatic wall

Th Tc
Ux=Uy=0 Ux=Uy=0

Ux=Uy=0

Ux=Uy=0

Fluid

(ρ,ν)

H

Figure 4.4: Scheme of the computational domain for the study of
natural convection in a two-dimensional closed square cavity.

The most relevant dimensionless parameter when describing the convective

heat transport processes is the Nusselt number Nu. This value is used to

measure the heat transfer rate on a surface in a heated wall. The local

Nusselt number is based on the cavity height or width, here H “W ,

Nu “ ´
H

∆T

BT

By
|wall, (4.29)
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and the average Nusselt number is calculated by integrating Eq. (4.29)

along the cavity height and dividing by the number of Lattice nodes,

Nu “
1

H

ż H

0
Nudx. (4.30)

4.2.2.3 Simulation setup

In accordance to the reference values [2], four values of the Rayleigh num-

ber were selected: Ra=103, 104, 105 and 106. In the study of natural

convection in a closed cavity, the maximum horizontal velocity along the

vertical mid-line of the cavity Umax and its location Y, and the maximum

vertical velocity along the horizontal mid-line of the cavity Vmax and its

location X, are compared with the reference results. Also, the average

Nusselt number Nu over the heated wall is compared.

A grid-independence test was carried out for the purpose of observing the

convergence of the variables as the grid is refined. Different grid sizes were

selected, such as N “ 51 ˆ 51, 61 ˆ 61, 101 ˆ 101, 151 ˆ 151, 201 ˆ 201,

301ˆ 301, and 401ˆ 401. No-slip boundary conditions were implemented

on the four walls (in the form of the bounce-back scheme explained in

Sec. 2.6.1). For the top and bottom walls, an adiabatic boundary condition

was used. There are different schemes of the LBM for zero heat flux on

a solid wall. For instance, the one used by A.A. Mohamed [24] which is

implemented by writing the adiabatic boundary condition for the top wall

as

g4,H “ g4,H´1, g7,H “ g7,H´1, g8,H “ g8,H´1,

whereas for the bottom wall, the unknown distribution functions can be

calculated as

g2,1 “ g4,2, g6,1 “ g6,2, g5,1 “ g5,2.

Several authors use the Bounce-Back scheme (Section. 2.6.1) for the adi-

abatic boundary condition [5, 6, 47]. This scheme is applied according to

the following equations. For the top adiabatic wall, it is calculated through

g7,H “ g5,H , g8,H “ g6,H , g4,H “ g2,H ,
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and for the bottom adiabatic wall, it reads

g2,1 “ g4,1, g6,1 “ g8,1, g5,1 “ g7,1.

In this thesis, we opted for the scheme suggested by A.A. Mohamed [24] fits

better to the adiabatic boundary conditions. The results will be presented

in the next paragraphs. The Prandtl number was fixed to Pr = 0.71(air)

to ensure the stability of the method. Moreover, the viscosity of lattice

was selected as νlbm “ 0.01, and the thermal coefficient on the lattice

is calculated through Eq. (4.23), that is, Pr = ν{α. Also, α “ ν{Pr “

0.01{0.71 “ 0.014085 to guaranty the correct property of the fluid. The

temperatures were established as Thot,lbm “ 1 for the heated wall and

Tc,lbm “ 0 for the cold wall1.

4.2.2.4 Results and validation

Figure 4.5 displays the convergence for the dimensionless variables object

of study and the number of nodes in the characteristic length of the cavity,

for Ra =103. It was observed that for N “ 51, the relative errors obtained

for the maximum x- and y-components of the velocity, Umax and Vmax,

were ε “ 3.6% and ε “ 4.0%, respectively. The average Nusselt number

resulted in an error equal to ε “ 0.37%. For N “ 401, an upgrade was

achieved, with relative errors of ε “ 3.6% for Umax and ε “ 0.45% for

Vmax, and an error in the average Nusselt number equal to ε “ 0.044%.

The results obtained for other Rayleigh numbers, Ra = 103, 104, 105 and

106 are shown in Table. 4.1. In view of the results, the grid size N “

401ˆ 401 was selected for all cases of study. As mentioned previously, the

maximum velocities for the x- and y-component and the average Nusselt

number were compared with the reference values. In addition, the location

of the maximum velocities are presented in Table. 4.1 below.

A discrepancy was found in the location for the y-component of the velocity

Vmax for Ra = 105, with a relative error of ε “ 1.51%. These discrepancies

were also found by H.N. Dixit et al [47] and Y. Peng et al [42], who

1The LBM codes for the natural convection in a close cavity can be found in the
AppendixE
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Figure 4.5: Grid-independence test for the problem of natural convec-
tion in a closed cavity, Ra = 103, with TLBM.

studied the natural convection in a closed cavity using both the LBM and

simplified schemes of the TLBM. Figure 4.6 represents the streamlines of

the velocity field in steady state, where the structures in the cavity for the

range of the Ra = 103, 104, 105, 106 can be observed. In Figs. 4.6a,4.6b

only one structure is observed, which is the one located in the center of

the cavity. For Ra=105 (Fig. 4.6c) the structure in the center has split

into two symmetrical structures; one located close to the top left corner

and the other close to the bottom right corner. For Ra = 106 (Fig. 4.6d),

these structures have moved closer to the hot and cold walls.

The dimensionless temperature contours are shown in Fig. 4.7. For Ra

= 103, it can be deduced from the structure of the contour lines, that

the heat transfer processes are dominated by conduction. As the Rayleigh

number is increased, the contour lines are compressed close to the hot and

cold walls respectively. A thermal stratification is generated, the flow in

the cavity increases, as well as the velocity gradients, as the number of

streamlines close to the wall indicate.
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Table 4.1: Comparison of the LBM simulation with the bench-
mark solution of G.De Vahl Davis. [2], for Rayleigh number Ra =

103, 104, 105, 106.

Ra 103 104 105 106

Grid used (401x401) (401x401) (401x401) (401x401)

Umax LBM 3.6328 16.1211 34.8132 64.8046

Vahl.D[2] 3.6490 16.1780 34.7300 64.6300

Error(%) 0.44 0.35 0.24 0.27

Y-Location LBM 0.8134 0.8258 0.8564 0.8503

Vahl.D[2] 0.8130 0.8230 0.8500 0.8500

Error(%) 0.05 0.35 0.17 0.01

Vmax LBM 3.6818 19.5354 68.2480 220.058

Vahl.D[2] 3.6970 19.6170 68.5900 219.360

Error(%) 0.41 0.47 0.5 0.32

X-Location LBM 0.1795 0.1243 0.0650 0.0374

Vahl.D[2] 0.1800 0.1250 0.0660 0.0379

Error(%) 0.28 0.50 1.51 1.30

Nu LBM 1.1750 2.2471 4.5353 8.8310

Vahl.D[2] 1.1700 2.2380 4.5090 8.8170

Error(%) 0.04 0.41 0.36 0.16
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(a) (b)

(c) (d)

Figure 4.6: Streamlines of the dimensionless velocity. A) Ra = 103, B)
Ra = 104, C) Ra = 105, D) Ra = 106, as obtained from LBM simulations

using a grid N “ 401ˆ 401.
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(a) (b)

(c) (d)

Figure 4.7: Contour of the dimensionless temperature field. A) Ra =
103, B) Ra = 104, C) Ra = 105, D) Ra = 106, as obtained from LBM

simulations using a grid 401ˆ 401.
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convection in a closed cavity, LBM simulations on a 401 ˆ 401 grid vs.
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Figure 4.8 shows the comparison of the average Nusselt number Nu calcu-

lated over the heated wall (LBM on a 401ˆ401 grid), taking as a reference

the benchmark values obtained by De Vahl Davis [2]. As in Table. 4.1, the

accuracy of the Nu results is demonstrated by obtaining a minimum dis-

crepance of ε “ 0.04% (for Ra = 103) and a maximum of ε “ 0.41% (for

Ra = 104).
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4.3 Mass transfer

4.3.1 Lévêque problem for Mass flux

The Lévêque problem is a simple case of analysis of the mass transfer

through a reactive surface (plate), where an engineering application is

comparable to a chemical catalysis reaction. This problem consists in a

two-dimensional Poiseuille flow fully developed in a laminar region, with

a constant concentration at the entrance of the channel. The fluid flow

passes through parallel plates separated by a fixed height. A fraction of

the channel length contains a reaction region, where the concentration

is determined by the mass flux through the boundary condition. In the

Lévêque problem, in the region of the catalythic surface it is assumed that

the reaction is infinitely fast and thus the dimensionless concentration is

set to C “ 0. The numerical solution is examined varying the value of the

Péclet number Pe, which represents the relative strenght of diffusive and

convective mass transport processes. Therefore, Pe is defined as the mass

transfer rate occurring by advection to the mass transfer due to diffusion.

For mass transfer, it is the product of Re and Sc. When Peą1, the effects

of convection exceed those of diffusion when determining the overall mass

flux, and contrarily when Peă1, the behavior is dominated by diffusion.

The Péclet number is calculated as

Pe “
u ¨ L

Df
“ Re ¨ Sc (4.31)

where u is the velocity of the flow, L is the characteristic length, Df is the

diffusion coefficient of the substance and Sc represents the Schmidt num-

ber. Sc is the analogous to the Pr number for heat transfer processes, as

a relation between the diffusion of momentum and the material diffusivity

[20]. For a gas, both Sc and Prv are equal to 0.7.

Sc “
ν

Df
“

µ

ρDf
(4.32)

The interest in the Lévêque problem resides on measuring the total mass

transfer in the reaction region on the whole length. As discussed above, the

reaction on the catalysis surface is assumed to be infinity fast. Therefore,
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Chapter 4 LBM for Heat and Mass transfer phenomena 89

the mass transfer per unit length is characterized by the dimensionless pa-

rameter Sh (Sherwood number). The Sherwood number appears in many

correlations, depending on the geometry in combination with other dimen-

sionless parameters (e.g., Re or Sc). There are several correlations in the

literature that can be used for a quick comparison of the results [20, 48].

Most notably over the whole length of a flat plate, Sh can be calculated

according to the following correlation,

Sh “
kL

Df
“ 0.664Re

1{2
L ¨ Sc1{3 (4.33)

where Df is the diffusion coefficient of the component in the fluid, k is the

convective mass transfer coefficient and L is the characteristic length of

the system. The Reynolds number ReL is based on the length of the flat

plate (i.e., the catalysis region). Meanwhile, the Sherwood number Sh is

analogous to the Nusselt number Nu for heat transfer processes, and can

be expressed through the gradient of the dimensionless concentration on

the flat plate. Thus,

Sh “
kL

Df
“
BC

BY
|react´wall, (4.34)

and the average Sherwood number is calculated as Sh as

Sh “
1

L

ż L

0
Shdy. (4.35)

4.3.1.1 Simulation setup

Figure 4.9 illustrates the computational domain of the Lévêque problem for

mass flux through a plate. In order to reproduce the benchmark case, the

velocity at the entrance of the channel is implemented as a fully developed

profile.
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CA=1 Outlet

x

y
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Inlet, Flow

CA=0

L

H
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Figure 4.9: Scheme of the Léveque problem.

A constant concentration CA “ 1 is fixed at the entrance as a Dirichlet

boundary condition (as explained in Sec. 2.6.4) which allows us to calculate

the distribution functions Aip0, yq for the concentration,

A1 “ CApω1 ` ω3q ´A3,

A5 “ CApω5 ` ω7q ´A7,

A8 “ CApω8 ` ω6q ´A6,

where w1, w3, w5, w7, w8, w6 are the weights of the applied lattice model

(D2Q9). At the outlet, an open boundary condition (see Section. 2.6.5) is

implemented for the concentration field through the following settings,

A3,Lt “ 2 ¨A3,Lt´1 ´A3,Lt´2,

A6,Lt “ 2 ¨A6,Lt´1 ´A6,Lt´2,

A7,Lt “ 2 ¨A7,Lt´1 ´A7,Lt´2.

Similarly, for the region of the plate where the mass transfer occurs, the

value is fixed to CA “ 0 (infinitely fast reaction), applying the scheme for

a Dirichlet boundary condition,

A2 “ ´A4, A6 “ ´A8, A5 “ ´A7.

the total length Lt of the domain is 10 times the height H of channel, the

length of the catalyst layer in the flow direction is L0 “ 9, that is, H “ 100

nodes for the height, and thus Lt “ 1000 nodes in the x-direction. Also,

the catalysis layer length is L0 “ 100. Then, it follows that H “ L.
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Chapter 4 LBM for Heat and Mass transfer phenomena 91

Different values of the Péclet number were set in order to compare with

the values obtained by E. Holzbecher [7] on the Lévêque problem for a

range of Pe between 0.01 and 108 using a package software (COMSOL).

The range of Pe used in the LBM simulations is 0.01 to 2000. Once the

values of Pe are chosen and using a range of characteristic lattice velocities

0.0001ď ulbm ď0.1, they can be used in Eq. (4.31) to calculate the lattice

diffusion coefficient DA,

DA “ ulbm ¨ Lt
Pe

. (4.36)

Once the different values ofDA are obtained, the relaxation time parameter

can be calculated for all cases using Eq. (2.18) for each of the diffusion

values as (τA “ 3 ¨ DA ` 0.5, SRT-model). As for the velocity field, the

solution of the two-dimensional fully developed Poiseuille flow was directly

implemented, as the study of the Lévêque problem is made in the steady

state in a laminar flow with Re “ 10.

Several grid sizes were used in order to obtain an appropriate relaxation

time and to achieve the necessary stability and accuracy: N “ 52 ˆ 520,

62ˆ 620, 72ˆ 720, 92ˆ 920, 102ˆ 1020 and finally 202ˆ 2020.

4.3.1.2 Results and validation

The results obtained from the LBM simulations are presented hereafter.

Figura 4.10 shows the Sherwood number Sh as a function of the Péclet

number Pe, along with the reference values by E. Holzbecher [7], where

the package software (COMSOL) was used. The agreement is good up to

Pe = 3000, where the value of the relaxation time parameter τA reached

the minimum value permissible in the SRT model to ensure the accuracy

and stability of the method (τA ă 0.51).
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Figure 4.10: Results of the Sherwood number vs. Péclet number,
as obtained from SRT-LBM simulations. The reference data are from

E.Holzbecher [7], by using COMSOL software.

Figure 4.11 shows the contours of the dimensionless concentration in the

channel for low Péclet numbers, Pe = 0.1, 2, 5, 10. For this range of

Pe, it can be observed that the diffusion predominates over advection, the

material boundary layer is large and thus the concentration is low across

the channel.
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(a)

(b)

(c)

(d)

Figure 4.11: Contours of the dimensionless concentration C for low
Péclet numbers: A) Pe = 0.1, B) Pe = 2, C) Pe = 5, D) Pe = 10, as

obtained from LBM simulations.

Figure 4.12 displays the contours of the concentration for higher Péclet

numbers, where the advection is dominant, the boundary layer is smaller

and the concentration across the channel is larger, as Pe increases.

Table. 4.2 shows the results of the Sherwood number for the set of Péclet

numbers studied, compared with the reference results through the relative

error ε. Some discrepancies were found for Pe = 0.01, Pe = 20 and Pe =

500, with a maximum relative error of ε “ 1.40%.
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(a)

(b)

(c)

(d)

(e)

Figure 4.12: Contours of the dimensionless concentration C for higher
Péclet numbers: A) Pe = 50, B) Pe = 100, C) Pe = 200, D) Pe = 500,

E) Pe = 2000, as obtained from LBM simulations.
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Chapter 5

LBM for laminar mixed

convection in an open cavity

5.1 Introduction

In the section, LBM is applied to study the heat transfer processes in

laminar mixed convection. An open cavity with a heated bottom wall

will be considered. This particular case can be found in various engineer-

ing applications such as solar devices, heat exchangers, nuclear reactors,

electronic systems, etc. Experimental studies of buoyant flow in open cav-

ities can be found in the literature [49, 50]. Mixed convection in cavities

has received less attention, but several authors have previously analyzed

this problem: in the early ’90s, Papanicolaou et al. [51, 52, 53] studied

the mixed convection in a rectangular enclosure, analyzing the flow for

different inlet/outlet and heat source locations as it happens in a cooled

electronic device. Manca et al. [54] studied the natural and mixed con-

vection in rectangular cavities with a T-type of geometry and the effect of

the position of the heated wall. Stiriba el at. [55, 56] carried out a nu-

merical study of mixed convection for incompressible laminar flow past an

open cubical cavity, showing that it exhibits a three-dimensional structure.

These authors presented results for steady and unsteady laminar regimes

in three dimensions, where the effect of the buoyancy force was analyzed

for a range of Reynolds and Richardson numbers. The results obtained

97
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98 Chapter 5 LBM for laminar mixed convection in an open cavity

by previous authors clearly show that the geometry of the problem has a

great influence in the flow and the instabilities observed.

In this section the Thermal Lattice Botlzmann method (TLBM) approach

is used, combined with ANSYS-FLUENT simulations to validate our find-

ings. Using the same T configuration as in the three-dimensional case[55,

56], we will show how in two dimensions and above a certain value of the

Richardson number, i) the main vortex in the cavity is split into two cells

and 2) an unsteady flow regime is found, exhibiting an intermittent pattern

characterized by the periodic emission of hot plumes towards the channel

outlet, originating from the upstream vertex of the cavity.

As usual in natural convection problems, the evolution of the distribution

function includes the body force term as in Eq. (2.2) of Sec. 2.1. In the

case of the temperature field, a distribution function equation accounts

for the energy transfer mechanisms, as explained in Sec. 2.3. As well, the

addition of an external force implies a modification of the equation for the

macroscopic momentum, Eq. (2.9) of Sec. 2.3 [35]. The external force is

computed as suggested by Mohamad et at. [22], as Fi “ 3ρωigβpTlbm´T8q

and added as follows

ρupx, tq “
ÿ

i

cifipx, tq `
Fi
2
. (5.1)

The dimensionless buoyancy force introduces the Richardson number Ri.

The Richardson number, which determines the relative importance of

forced convection vs. natural convection, is defined as

Ri “
gβpT ´ T8ql0

u2
, (5.2)

where β is the thermal expansion coefficient of the fluid, u is the charac-

teristic velocity of the flow, l0 the characteristics length and g the gravity

force. The Richardson number can also be expressed as a function of the

Grashoff and Reynolds numbers as Ri = Gr/Re2.

The model system consists of an open square cavity with a dimensionless

length L Fig. 5.1. The bottom of the cavity is heated at constant temper-

ature Th, while the other walls are adiabatic (zero flux temperature), at a
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Chapter 5 LBM for laminar mixed convection in an open cavity 99

Prandtl number for the fluid equal to Pe = 0.7. The channel is of length

3L, in order to minimize the effect of recirculation in some cases. For the

inlet boundary and the top wall, we fix the temperature at T8, and an

uniform inlet velocity u0 is set. The choice of the velocity profile at the

inlet mimicks the flow from a convergent nozzle, which is relatively easy to

reproduce experimentally. Moreover, an inlet boundary condition where a

fully developed velocity profile is set does not alter the features of the flow

and the results obtained are similar.

Outlet

x

y

Fluid

(ρ,ν)

Adiabatic wall Adiabatic wall

Adiabatic wall

Tcold

Thot

ux=uy=0

ux=uy=0

ux=uy=0

ux=uy=0

Inlet, u0 L

L

L

L

3L

Figure 5.1: Illustration of the open cavity with boundary conditions.

5.1.1 Simulation setup

The values of T0,hot and u0 were varied to give the different cases for the

Reynolds numbers Re = 50, 100, 200, 400, 600, 1000 and Richardson

numbers Ri = 0.01, 0.1, 1, 10 considered. Temperature T8 is chosen

as 298.1450 K (room temperature) in real units, and T8,lbm “ 0 and

Th,lbm “ 1 for the LB simulations.

A non-slip, bounce-back scheme (Sec. 2.6.1) is used and adiabatic bound-

ary conditions are applied at all the other boundaries using the model

implemented by A.A Mohamed [24]. The velocity is specified at the inlet

as an uniform flow field along the channel direction. The Zou-He approach

(see Sec. 2.6.3) is implemented to calculate the unknown distribution func-

tions of the momentum field as
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100 Chapter 5 LBM for laminar mixed convection in an open cavity

f1 “f3 `
2

3
ρux

f5 “f7 ´
1

2
pf2 ´ f4q `

1

6
ρux

f8 “f6 `
1

2
pf2 ´ f4q `

1

6
ρux,

for the inlet, whereas an open boundary condition is used for the outlet to

avoid reverse flow (see Sec. 2.6.5). Thus the unknowns at the outlet are

extrapolated as

f3 “2¨ f3,Lout´1 ´ f3,Lout´2

f6 “2¨ f6,Lout´1 ´ f6,Lout´2

f7 “2¨ f7,Lout´1 ´ f7,Lout´2

The boundary conditions for the temperature are treated similarly as in

the previous case studied when the value of the scalar is known: a Dirich-

let boundary condition (Sec. 2.6.4) at the heated bottom wall which sets

Th,lbm “ 1 in LBM units, is supplemented with the prescriptions for the

unknowns g6, g2 and g5. These are calculated in the heated nodes as

follows

g6 “ Th,lbmpω6 ` ω8q ´ g8 (5.3)

g2 “ Th,lbmpω2 ` ω4q ´ g4

g5 “ Th,lbmpω5 ` ω7q ´ g7.

For the outlet, an open boundary condition is used for the temperature,

with a similar approach to that applied to the momentum distribution

functions (i.e., f3, f6, f7 above).

A grid independence test was carried out at the highest values of the

Reynolds and Richardson numbers, Re= 1000 and Ri = 10. Figure 5.2

shows on the left hand side, the x-velocity component in the vertical mid

line, as well as the y-velocity component in the horizontal mid line inside
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Chapter 5 LBM for laminar mixed convection in an open cavity 101

the cavity. On the right hand side, it shows the average dimensionless

temperature along the vertical mid line of the cavity.

Results are obtained for three different grid refinements, where convergence

is observed. The maximum discrepancy in the temperature is of 0.77%,

between the intermediate (N = 151) and finest grid (N = 201). A similar

convergence is obtained for the velocities.
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Figure 5.2: Grid independence test at Re=1000 and Ri=10 for LBM
simulations in the cavity for the dimensionless velocities Ux, Uy and the

dimensionless temperature θ.

The results obtained with LBM are compared with those from an inde-

pendent method, ANSYS-FLUENT (ANS) for validation. Unlike LBM,

non-uniform grids can be used here whenever required, to correctly model

the boundary layers. For ANS software a grid refinement was applied

close to the walls for an appropriate gradient resolution, which serves as a

reference for our LBM simulations. Additionally, second order upwind is

used for momentum and energy advection, and the second order implicit

scheme is chosen for transient formulation. The convergence criterion is

based on the absolute convergence of scaled residuals with the thresholds
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102 Chapter 5 LBM for laminar mixed convection in an open cavity

10´8, 10´3 and 10´7 for the continuity, momentum and energy equations,

respectively.

5.1.2 Results and validation

Results are obtained for the different values of the Reynolds number stud-

ied: Re = 50, 100, 200, 400, 600 and 1000. For each of these values, the

Richardson numbers Ri = 0.01, 0.1, 1, and 10 are chosen. These results

will be analyzed with special attention to the stability of the flow and

the structures generated. At sufficiently low Ri, where the external flow

dominates, it is expected that the structure of the flow inside the cavity re-

sembles that of the Lid-Driven-Cavity flow problem, with a main vortex in

the middle (Chapter 3). First we analyze the heat transfer inseide the cav-

ity. Table 5.1, shows the results of the comparison of the average Nusselt

number Nu (computed as in Eq. (4.30) of Sec. 4.2). For all the Reynolds

and Richardson numbers, Nu the results from LBM are compared with

those obtained with ANSYS-FLUENT (ANS).

The results from both methods show good agreement, with small differ-

ences in general which do not exceed 2-4% at low values of the Richardson

number. For Re = 600, 1000 and above Ri = 1, the discrepancy raises

up to 7% in some cases. At these values of the Richardson number, the

recirculating flow in the cavity is being reorganized into two main cells,

and a slight drop can be observed in the plot of Nu as a function of Ri,

Fig. 5.3, in such a way that the variation is non-monotonous. For Ri ď1,

the Nusselt number is approximately constant and the flow is steady, but

above Ri = 1, it rapidly increases indicating an enhanced heat transport.

This occurs specially at the highest values of the Reynolds number stud-

ied (Re = 400, 600 and 1000), therefore implying that the mechanism is

coupled to the changes in the flow structure that are taking place in the

cavity. These structures will be analyzed in the following subsection.
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Figure 5.3: Average Nusselt number as a function of the Richardson
number, for different Reynolds numbers.

5.1.2.1 Effect of the Richardson number

In this section we will be focused on analyzing the effect of the buoyancy

force in the cavity and the behavior of the flow structures. The velocity

profiles will be analyzed along the mid lines of the cavity, as shown in

Fig. 5.4. The velocities have been made dimensionless by referring them

to the velocity of the flow at the inlet, u0. The dimensionless x-component

of the velocity, Ux, is analyzed along the vertical line, and the y-component

Uy along the horizontal line. In the cases where a steady state is devel-

oped, the analysis of the streamlines will be useful. The temperature field

is tracked by means of the isotherms inside the cavity and the profiles

obtained along the mid lines shown in Fig. 5.4. In the unsteady cases en-

countered, instantaneous temperature contours will be analyzed. All the

results are obtained and compared for both the LBM and ANS simulations.
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Table 5.1: Summary of the average Nusselt number obtained in ANS
and LBM for the set of Richardson and Reynolds numbers. The values
of the lattice velocity ulbm and number of lattice nodes N along the

cavity height L are specified

Re = 50 Re = 100

Ri Nu Nu

ANS 0.01 1.004 1.347

LBM 1.070 ulbm=0.01 N=101 1.344 ulbm=0.02 N=101

ANS 0.1 1.075 1.507

LBM 1.082 ulbm=0.01 N=101 1.463 ulbm=0.02 N=101

ANS 1 1.410 2.586

LBM 1.364 ulbm=0.01 N=101 2.480 ulbm=0.02 N=101

ANS 10 2.945 4.202

LBM 3.013 ulbm=0.01 N=151 4.424 ulbm=0.0135 N=151

Re = 200 Re = 400

Ri Nu Nu

ANS 0.01 1.919 2.738

LBM 1.873 ulbm=0.02 N=101 2.680 ulbm=0.01 N=101

ANS 0.1 2.362 3.441

LBM 2.278 ulbm=0.02 N=101 3.341 ulbm=0.02 N=101

ANS 1 3.837 3.334

LBM 3.712 ulbm=0.02 N=101 3.074 ulbm=0.02 N=101

ANS 10 4.753 6.988

LBM 4.580 ulbm=0.01 N=151 6.952 ulbm=0.02 N=151

Re = 600 Re = 1000

Ri Nu Nu

ANS 0.01 3.390 4.468

LBM 3.331 ulbm=0.01 N=151 4.201 ulbm=0.025 N=101

ANS 0.1 4.262 5.535

LBM 4.160 ulbm=0.01 N=151 5.184 ulbm=0.025 N=101

ANS 1 4.529 6.236

LBM 4.068 ulbm=0.01 N=151 5.921 ulbm=0.025 N=151

ANS 10 10.90 15.92

LBM 9.670 ulbm=0.01 N=151 14.18 ulbm=0.025 N=151
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ϴUx

Uy

Ux-time

Figure 5.4: Scheme of the vertical and horizontal mid lines used to
plot the velocity profiles, Ux and Uy as well dimensionless temperature,
θ, and the location of the node where the instantaneous velocities have

been recorded in the unsteady regime.

Several comparisons were carried out for LBM and ANS. Figure 5.5 dis-

plays the dimensionless contour of the temperature of the cavity for the

range of 50 ă Re ă 400 and each one of the Richardson numbers con-

sidered: Fig. 5.5a shows the results of the LB simulation, and Fig. 5.5b

the results of ANS. For all these cases, a steady state was established,

characterized by the encapsulated flow in the cavity, which means that the

external flow does not penetrate inside. For the lower Ri, the temperature

contours are parallel to the hot wall, indicating that forced convection is

dominant; when Ri increases, the temperature grows on the left wall of

the cavity, indicative that the natural convection is dominant. In Fig. 5.6

streamlines are generated in order to observe the velocity field and the

encapsulation of the structures in the cavity. Figure 5.6a displays the

streamlines for the case Re = 50 and Ri = 10, where it can be observed

that the external flow encapsulates the flow inside the enclosure, and a sin-

gle main structure is generated. As both the Reynolds and the Richardson

numbers increase, Fig. 5.6b, the main recirculation cell is pushed upwards,

whereas a lower vortex develops from the bottom right corner of the cav-

ity. The motion of the fluid on the bottom is reversed, and the right wall

becomes warmer than the left wall. This has been observed in the range

of Ri investigated in our simulations above Re = 200, where the second

vortex is formed between Ri = 3.9 and Ri = 4: the higher the Reynolds

number, the earlier the bifurcation is observed, in terms of the value of Ri.
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(a) (b)

Figure 5.6: Streamlines and recirculation region in the cavity, LBM
simulation. A) Re = 50, Ri = 10, B) Re = 200, Ri = 10.
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Figure 5.5: Contours of the dimensionless temperature inside the cav-
ity, for A) LBM and B)ANSYS simulations.

The growth of the second recirculating cell is associated to the increase

of the Richardson number. Let us momentarily consider the case where

thermal effects are negligible, and the increase of the Reynolds number

originates the development of secondary vortices at the cavity corners. At
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Re = 50 they are barely visible, but as Re increases, these grow in size pro-

gressively, such that at Re = 1000 they involve a small but non-negligible

portion of the flow in the cavity, attached to the bottom corners. Among

the two secondary vortices, the downstream vortex is bigger. When the ef-

fects of buoyancy increase as Ri increases, the fluid at the bottom becomes

lighter, and a pressure gradient is established in the vertical direction. At

the same time, more fluid is incorporated into the lower vortex circulation.

As a consequence, the growth of the lower vortex and the stratification

of the flow is then observed: the upper vortex fills the region of higher

pressure, whereas the lower region is occupied by the fluid circulating at a

lower pressure. This is well illustrated by the contours of pressure and the

streamlines of the case at Re = 600 which we will analyze in more detail

in the next section, when the unsteady flow is discussed.

The profiles of the dimensionless temperature θ along the vertical mid line

of the cavity, for Re = 50, 100, 200 and 400 can be observed in Figs. 5.7 for

a quantitative comparison between LBM and ANS results. These profiles

reflect the changes induced in the flow when varying the Reynolds and the

Richardson numbers, and particularly the development of the second main

recirculating cell. The agreement is very good in general, with small devi-

ations. At higher Reynolds numbers, and as the flow is being reorganized

into two main recirculating cells inside the cavity when Ri increases, the

temperature is larger in the middle in ANS. That implies a slightly larger

bottom vortex, where the fluid is warmer, than in our LBM simulations.
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Figure 5.7: Dimensionless temperature θ in the vertical mid plane of
the cavity, for Re = 50, 100, 200 and 400 and Ri = 0.01, 0.1, 1, 10. Ri
= 0.01 has been omitted for Re = 50 and 100, because the temperature

differences are too small and the changes are minimal.

The profiles of the velocity components Ux, Uy are shown in Figs. (5.8a,

5.8b). The x-component is plotted along the vertical mid line of the cav-

ity, and the y-component along the horizontal mid line. The agreement

between LBM and ANS is very good, and the differences do not exceed

8% in any case. The appearance of the second vortex and the changes in

the circulation of the flow inside the cavity are manifested in the changes

of sign of Uy, Ux, respectively at Re = 200 and 400, when Ri increases.
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Figure 5.8: Dimensionless velocity profiles Ux and Uy along the vertical
and horizontal mid lines of the open cavity, respectively, as Ri is varied

from 0.01 to 10. A) Re = 50, 100, B) Re= 200, 400.
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5.1.2.2 Unsteady flow

For Reynolds numbers above 400, in the range of Richardson numbers

studied, one can observe the development of unsteady flow. At Re =

600, below a critical value of Ri, a steady flow regime is found up to

Ri„1, with a well developed double vortex at Ri = 1 and the typical

temperature contours seen already at lower Reynolds numbers (Fig. 5.5).

The qualitative and quantitative good agreement between both methods

is apparent by comparing the velocity and the temperature profiles along

the centerlines of the cavity. In Fig. 5.9 we plot the dimensionless velocity

and temperature profiles, and in Fig. 5.10 the contours of temperature are

shown.
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Figure 5.9: Dimensionless velocity profiles along the vertical and hori-
zontal mid line of the cavity (left) and temperature (right), for Re = 600
and Ri = 0.01, 0.1, 1, 10. In the case of Ri = 10, the temperature and
the velocity have been averaged over time once the unsteady regime is
established. Observe the decrease of the temperature inside the cavity

which accompanies the development of the unsteady flow.
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Figure 5.10: Comparison of the temperature contour plots for Re =
600 and Ri = 0.01 (left), Ri = 0.1 (center) and Ri = 1 (right): LBM

(top) and ANS (bottom) simulations.

At Re = 600, Ri = 10 the unsteady flow has already reorganized into

two main recirculating cells in the cavity (Fig. 5.11) visible not only in

the averaged but also in the instantaneous contour plots, (Figs. 5.12, 5.13

respectively).

Beyond what the averaged results show, persistent oscillations of the flow

variables have been recorded along time, manifested for example in the

Nusselt number measured along the heated wall of the cavity. After a

short transient, a pseudo-periodic regime sets up characterized by the in-

termittent emission of hot structures from the cavity (Fig. 5.13), which

move downstream towards the outlet. The vortices are emitted period-

ically, in a pattern reminiscent of a Von Karman vortex street without

alternation, although the primary nature of the instability is of thermal

type. The instantaneous temperature contours show a complete sequence

of the periodic emission of vertical structures from the downstream upper

vertex of the cavity. The observation of the unsteady temperature fields of

Fig. 5.13 reveals interesting information about the nature of the ejection

mechanism. In the unsteady regime, for a sufficiently high value of the

Richardson number, the mixing layer between the two vortices as well as

the virtual interface separating the cold fluid in the channel from the warm
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(a) (b)

(c) (d)

Figure 5.11: Pressure contours and streamlines (LBM) for Re = 600
and A) Ri = 0.01 B) Ri = 0.1 C) Ri = 1 D) Ri = 10. In (D) the flow
is unsteady, and time-averaged results are shown. Observe the develop-
ment of the secondary vortices at the bottom corners as Ri increases.

(a) LBM (b) ANSYS

Figure 5.12: LBM and ANS averaged temperature contours in the
unsteady regime, for Re = 600 and Ri = 10.
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(a)

(b)

(c)

(d)

Figure 5.13: (A - D) Sequence of instantaneous temperature contours
in the unsteady flow regime (LBM) showing the vortex production at
the upstream corner of the enclosure and the changes in the mixing layer

between the two vortices, for Re = 600 and Ri = 10.
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fluid inside the cavity is unstable. As the fluid circulating in the lower vor-

tex warms up and becomes more buoyant (A), destabilizes the mixing layer

by climbing up the left vertical wall (B, C). The build-up is complete in

(D) where the bulging shape of the upper vortex indicates that soon (A)

the next puff of warm fluid is going to be ejected, while cold fluid from

the channel is being incorporated into the enclosure at the downstream

vertical wall. The entrance of cold fluid into the enclosure has the effect of

lowering the temperature (compare the temperature profiles in Fig. 5.9),

favoring mixing and heat transfer, and thus enhancing the rise of the Nus-

selt number (Fig. 5.3). The vorticity plot in Fig. 5.14, reveals the structure

of the dual vortex emission, whereas the instantaneous streamlines show

little disturbance in those regions, due to the more dominant contribution

of the main flow. Fig. 5.15 shows the oscillations of the Nusselt number.

Figure 5.14: Vorticity field in the unsteady regime for Re = 600 and
Ri = 10 (LBM), showing the dual character of the vortex production:

regions with negative vorticity are shaded in blue, positive in red.
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Figure 5.15: Nusselt number measured on the heated wall along time
in the unsteady regime for Re = 600 and Ri = 10 (ANS).

The recirculation remains inside the cavity for all these cases, but at Ri

= 10, the flow is no longer encapsulated. At Ri = 10, the buoyancy force

is stronger than the external flow, and pushes the flow upstream, outside

the cavity. At Ri = 10 and approaching Re = 500, the flow becomes

unsteady as the double vortex becomes unstable, and a transient regime

sets in where the cavity intermittently emits large plumes of warm fluid

which slide over the downstream vertical wall of the cavity, while a current

of cold fluid enters the enclosure from the upstream region (see Fig. 5.16.

This pattern does not damp with time. The spatially averaged Nusselt

number computed on the heated wall shows also very strong fluctuations

and unpredictable temporal behavior, as in Fig. 5.17.
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(a)

(b)

(c)

(d)

Figure 5.16: (A - D) Sequence of instantaneous temperature contours
in the unsteady regime (LBM) showing the production of hot plumes at
the upstream side of the enclosure, for Re = 500 and Ri = 10. The warm
fluid on the bottom cell is periodically evacuated from the enclosure,

sliding over the downstream vertical wall.
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Figure 5.17: Velocity component Ux and spatially averaged Nusselt
number recorded at a single lattice node (LBM) in the unsteady regime
as a function of time, Re = 500, Ri = 10. The node is located in
the middle of the upper-left quadrant of the square cavity, as shown in

Fig. 5.4.

A further increase of the Reynolds number does not change the previously

described characteristics of the flow. At Re = 1000, we find a similar

behavior as for Re = 600, meaning that for Richardson numbers 0.01, 0.1,

1, the flow is steady amd the external flow encapsulates the flow inside the

cavity. At Ri = 10, the flow is unsteady, as for Re = 600. Figure 5.18

shows again a good agreement between the steady temperature contours

obtained by means of LBM and ANS, for Re = 1000.
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Figure 5.18: Comparison of the temperature contour plots for Re =
1000 and Ri = 0.01 (left), Ri = 0.1 (center) and Ri = 1 (right):LBM

(top) and ANS (bottom) simulations.

At Re = 1000 and Ri = 10, the external flow cannot encapsulate the flow

permanently and the buoyancy force pushes the flow outside the cavity.

Figure 5.19 displays a sequence of instantaneous flow structures obtained

from the LBM simulation. The comparison between the LBM and ANS

results is shown in the average temperature contours of Fig. 5.20. Simi-

larly to the case Re = 600, the buoyancy periodically generates structures

that expand and propagate towards the channel output. The unsteady

regime is accompanied by oscillations in the velocities and the tempera-

tures inside the cavity. For example, observe the continued oscillations of

the x-velocity component Ux along the vertical mid line of the cavity. The

Nusselt number measured along the heated wall shows the same type of

oscillations, as shown in Fig. 5.21. The comparison of the velocity and

the temperature profiles along the centerlines of cavity can be observed in

Fig. 5.22.

Papanicolaou and Jaluria [51] found similar, although more regular oscilla-

tions studying the mixed convection in a two dimensional cavity, but also

found that after increasing the Reynolds number above 200, oscillations

disappeared and a steady solution was observed. We do not observe such

stabilizing effect in our simulations: first, increasing the Reynolds number
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(a)

(b)

(c)

(d)

Figure 5.19: (A - D) Sequence of instantaneous temperature contours
in the unsteady regime (LBM) showing the vortex production at the

upstream corner of the enclosure, for Re = 1000 and Ri = 10.
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(a) LBM (b) ANSYS

Figure 5.20: Average temperature contours for Re = 1000, Ri = 10.

has the effect of decreasing the critical Richardson number above which

the main vortex is replaced by two steady main vortices (see Fig. 5.5).

This pair of vortices inside the cavity was not observed in Ref. [51], but

the geometry of the cavity, square with two opposite vertical openings,

was different from the one used here, a true channel embedding a square

cavity as an inclusion. Likewise, we do not observe oscillations at Re =

100 for the values of the Ri studied (Ri À 10), because a higher value of

Ri should in principle be required (according to Ref. [51], Ri = 32 is the

required value for oscillations at Re = 100).
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Figure 5.21: A) Velocity component Ux recorded at a single lattice
node (LBM) in the unsteady regime as a function of time, Re = 1000,
Ri = 10. The node is located in the middle of the upper-left quadrant
of the square cavity, as shown in Fig. 5.4. The bottom plot is the zoom
of the rectangular region of the upper plot. B) The Nusselt number

measured on the heated wall along time in the unsteady regime
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Figure 5.22: Dimensionless velocity profiles along the vertical and
horizontal mid-lines of the cavity (left) and temperature (right), for Re
= 1000 and Ri = 0.01, 0.1, 1, 10. In the case of Ri = 10, the temperature
and the velocity have been averaged over time once the unsteady regime

is established.

5.1.2.3 The oscillatory regime

The oscillatory regime is observed in a wide range of Reynolds and Richard-

son numbers, however the complexity of the oscillations increases as Re

increases approaching the transitional regime in the channel, and also as

Ri increases. Considering a fixed value of Ri = 10, oscillating variables like

the spatially averaged Nu and the instantaneous velocity inside the cavity

have been observed above Re » 500, and are still well visible at Re = 1500

(see Fig. 5.23). Oscillations start at Re = 500 with large amplitudes at

a dominant low frequency mode (Fig. 5.17). These large variations of Nu

imply also relatively large deviations when comparing the average values

(Table 5.1) obtained by LBM and ANS, because the time series need to be

very long. After the inception of the oscillatory regime, at Re = 600 oscil-

lations have become regular (Fig. 5.15). As Re increases, the frequency of
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vortex emission increases and the Nusselt time series show a progressively

larger spectral content (Figs. 5.21, 5.24).

(a)

(b)

(c)

(d)

Figure 5.23: Sequence of instantaneous temperature contours in the
unsteady regime (ANS) for Re = 1500, Ri = 10.
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Figure 5.24: Spatially averaged Nusselt number as a function of the
dimensionless time, measured on the heated wall in the unsteady regime

for Re = 1500 and Ri = 10.

This is brought out by the FFT of the signal shown in Fig. 5.25, displaying

a comparative panel of the power-spectrum of the velocity Ux measured

in the middle of the upper-left quadrant of the square cavity, and the

spatially averaged Nu for Re = 1000 and 1500, Ri = 10. The increase of

the Reynolds number causes the main components of the power-spectrum

to shift towards higher frequencies.

In order to investigate the effect of the Richardson number on the oscil-

lations, a simulation at Re = 1000, Ri = 100 was conducted. As seen in

Fig. 5.26, the vortices are emitted at a higher frequency and early detach

from the channel wall in their way to the outlet as a consequence of the

stronger buoyancy. The buoyancy force pushes the flow outside the cavity,

generating pairs of vortices moving along and across the channel. This

results in a more complex time series of the spatially averaged Nu and a

richer power-spectrum in the frequency space, Fig. 5.27.

Two more numerical simulations were carried out in order to observe the

effect of the position of the heated wall and the generation of flow struc-

tures in the cavity. The simulations reveal that the position of the heated

wall is also crucial for the development of the corner vortices: if the square

cavity is heated from a vertical wall the second vortex never develops. This
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Figure 5.25: Power spectrum of the instantaneous velocity Ux and
spatially averaged Nusselt number Re = 1000, Re = 1500 (ANS), as a

function of the dimensionless frequency F .

and other results are included in Appendix A. On the other hand, the do-

main used for this mixed convection problem may serve to study the mass

transfer processes in the open cavity configuration, where an external flow

is imposed in the channel and a simple surface reaction is considered. The

bottom wall of the cavity has been chosen as the catalytic surface, where

a first order reaction is implemented in LBM without temperature depen-

dence. It is assumed that the reaction does not affect the flow field. The

surface reaction is regarded as irreversible and the mass transfer of reac-

tant A and product B is simplified, where the species A entering the cavity

from the inlet encounters a reactant at the bottom wall (e.g., catalytic flat

plate) generating a substance B as the resulting product. These results,

which will constitute the material of another publication, are briefly pre-

sented in Appendix B).
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(a)

(b)

(c)

(d)

Figure 5.26: (A - D) Sequence of instantaneous temperature contours
in the unsteady regime for Re = 1000 and Ri = 100 (ANS).
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Figure 5.27: Power spectrum of the instantaneous velocity Ux and
spatially averaged Nusselt number for Ri = 10 and 100, Re = 1000, as

a function of the dimensionless frequency F .
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Figure 5.28: Spatially averaged Nusselt number as a function of the
dimensionless time, measured on the heated wall in the unsteady regime

for Re = 1000 and Ri = 100.
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Chapter 6

Conclusions

Several numerical simulations were carried out using the LBM, both STR-

and MRT-models (D2Q9) for incompressible fluid flow, to study and an-

alyze momentum, heat and mass transfer phenomena. The implemen-

tation of the LBM implied the development of a code using Fortran90

programming language, modified from a basic existing code from Pala-

bos (http://www.palabos.org/) for isothermal flows, and supplied with

numerous novel subroutines in order to implement the required schemes:

buoyancy force for natural and mixed convection, lattice meshes for mass

and heat transfer, different boundary conditions, variety of geometries.

Chapter 3 analyzed different problems which were compared to exact so-

lutions and/or to results obtained in previous research using alternative

methods. In this study, different grid sizes were tried for the SRT-model,

which in some cases, rendered the method unstable. Regarding the MRT-

model, the D2Q9 model was appropriately implemented to maintain the

stability and accuracy of the method. Boundary conditions and bounce-

back schemes used by Zou and He, on one hand, and Dirichlet boundary

conditions on the other hand, were used observing an excellent agreement

for each one of the studied cases. The results obtained for the flow, tem-

perature and concentration fields matched very closely bibliographic data,

as expected.

Chapter 4 was devoted to natural convection in a closed cavity, to validate

the Thermal-LBM solver (TLBM). In this case a better grid refinement
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(number of lattice nodes) would be necessary to obtain good results. This

is due to some flow structures growing close to the walls, and the fact

that the uniform grid of the LBM approach is not sufficient to properly

capture the information contained in these small structures in the corners

of the cavity. To this end, a local refinement may be the most appropriate

solution to consider.

In Chapter 5, a study on mixed convection in an open square cavity heated

from below was carried out. Steady and unsteady flows were analyzed in

the incompressible limit as a function of the Reynolds and Richardson

numbers. Temperature, velocity and Nusselt number were compared with

ANSYS-FLUENT, obtaining very good agreement in general, which makes

TLBM an accurate tool to study mixed convection in steady and unsteady

regimes. The main differences between the solutions provided by both

solvers are not found close to the walls, where the boundary layers are

properly resolved, but in the temperature field around the mixing layer,

in the middle of the cavity, for the velocity field the discrepancy is always

small. For low Re =50, 100, the agreement was very good, at higher Re the

development of the bottom vortex as Ri increases, is accompanied by the

highest differences in the temperature field. The second vortex develops at

Ri ă 4.0 starting from Re = 200, and the greatest differences are found in

the temperature field around the values of Ri where this happens. These

differences are evident at Re = 200, Ri = 10, and even larger at Re = 400,

Ri = 1. At higher Re, the second vortex appears at Ri ă 1. Accordingly,

the greatest discrepancy of the temperatures in the middle of the cavity

is observed for Re=600 and Re=1000 at Ri = 1. In the unsteady regime,

the LBM simulations give for Ri = 10 consistently smaller values of the

temperature inside the cavity which translate into slightly smaller Nusselt

numbers. The behaviour of the spatially averaged Nu as a function of Ri

with varying Re is similar as in the three dimensional case, revealing an en-

hanced heat transfer when Rią1 in the range of Reynolds numbers studied

50ďReď1500. When Ri À 1, the convective buoyancy force is negligible

with respect to the external flow, and the flow remains steady and encap-

sulated. One and two recirculating cells are observed in the cavity: above

a critical value of the Richardson number, lower as the Reynolds number

increases, a double vortex develops inside the cavity as a steady solution,

instead of the generally observed single vortex. At Ri = 10, when Re»500,
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the effect of the buoyancy force is important and the flow is no longer en-

capsulated. That initiates a fully unsteady regime, characterized by cyclic

dual counter rotating vortex emission at a characteristic main frequency

from the upper right corner of the enclosure, of growing complexity and

spectral components as the Reynolds number increases. Oscillations of the

flow variables and in particular of the spatially averaged Nu are observed

and studied. As found Papanicolaou et al. [52], these oscillations are per-

manent and do not damp with time, however in our problem do not vanish

as Re increases. As the buoyancy force is further increased (Ri = 100) the

vortices emitted from the cavity detach from the channel wall and quickly

mix with the main channel flow.
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Appendix A

Effect of the heated wall

position in the open cavity

The vertical heated wall on the inflow side of the cavity was set in order

to observe the structure and the characteristics of the flow. Figure B.1

displays the computational domain and the boundary conditions for the

LBM simulations. These conditions are transposed with those of the case

where the heat comes from the bottom, since in this case, the upstream

vertical wall is heated at constant temperature. As for the rest of the set-

up, the flow conditions are identical. Three different Richardson numbers

were considered for each Reynolds number in the range 50ăReă1000: Ri

= 0.01, 0.1 and 1.0. However for Ri = 0.01, the effect of the buoyancy

force was always negligible.

Outlet

x

y

Fluid

(ρ,ν)

Adiabatic wall
Ux=Uy=0

Adiabatic wall
Ux=Uy=0

Adiabatic wall
Ux=Uy=0

Tcold

Thot

Ux=Uy=0

Inlet, U L

L

L

3L

Figure A.1: Scheme of the open cavity with a vertical heated wall.
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Figure A.2: Dimensionless velocity profile, vertical and horizontal mid
line of the cavity, Re=50, Re=100. (L,Ri) represent the set of Richardson
number for the position of the heated wall, left vertical heated wall and

(B,Ri) bottom heat wall.

Figure A.2 shows the dimensionless velocity profile Ux,Uy for Re=50 and

Re=100 on the left vertical heated wall case comparison with the veloc-

ities of the bottom heated wall case. Similarly to the previous case, the

x-component of the velocity is plotted along the vertical mid-line of the

cavity, and the y-component along the horizontal mid-line. Small varia-

tions of the profiles were found with respect to those of the previous case;

the recirculation in the cavity presented a main single vortex as in the

previous case for small Re values. Likewise, for Re =500 and Re = 1000 in

the range of Ri = 0.1 to Ri = 10, a single main recirculating cell was also

observed. Figure A.3a displays the velocity profile for Re = 500 and all

the values of Ri. Figure A.3b shows the profiles for Re = 1000, where the

y-velocity profiles differ with respect to the case when the heated wall is

at the bottom, because with a vertical heated wall, a single main structure

is generated, for all ranges of Re and Ri studied.
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Figures. (A.4, A.5) show the contours of the dimensionless temperature

for Ri =0 .1 and Ri = 1.0 for all the values of the Reynolds number Re =

50, 100, 500, 1000, in the steady state.
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Figure A.3: Dimensionless velocity profiles along the vertical and hor-
izontal mid lines of the cavity (left) and temperature (right), for A)

Re=1000 and B) Re=1000.
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(a)

(b)

(c)

(d)

Figure A.4: Contours of the dimensionless temperature T for Ri=0.1:
A) Re=50, B) Re=100, C) Re=500, D) Re=1000.
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(a)

(b)

(c)

(d)

Figure A.5: Contours of the dimensionless temperature T for Ri =
1.0: A) Re = 50, B) Re = 100, C) Re = 500 , D) Re = 1000.
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(a)

(b)

Figure A.6: Contours of the dimensionless temperature T for Ri = 10:
A) Re = 50, B) Re = 100.

Figure A.6 displays the contours of the dimensionless temperature for Re

= 50 and Re = 100 (Ri = 10), where a single recirculation cell is found

in the cavity and the flow continues encapsulated in the steady regime.

Additionally, for Re=500 and Re=1000, the development of the unsteady

flow is shown in Figs. (A.7, A.8), where the instantaneous contours of

temperature can be observed.

In the same way as in the case of a bottom heated wall when Riě10 and

Reě500, a pseudo-periodic regime starts with an intermittent generation

and emission of hot plumes. Then, the plume is dragged along the exter-

nal channel. Figure A.11 shows the average contour of the dimensionless

temperature of the cavity where a single main vertical structure can be

observed.

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



140 Appendix A Effect of the heated wall position in the open cavity

(a) (b)

(c) (d)

Figure A.7: (A - D) Sequence of instantaneous dimensionless tempera-
ture contours in the unsteady flow regime, showing the vortex production
at the upstream corner of the enclosure with a single recirculation inside

the cavity, for Re = 500 and Ri = 10.

(a) (b)

(c) (d)

Figure A.8: (A - D) Sequence of instantaneous dimensionless tempera-
ture contours in the unsteady flow regime, showing the vortex production
at the upstream corner of the enclosure with a single recirculation inside

the cavity for Re = 1000 and Ri = 10.
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(a)

(b)

Figure A.9: Contours of the average dimensionless temperature T for
Ri = 10: A) Re = 500, B) Re = 1000.

For Re = 500 and Ri = 10, an interesting behavior was observed inside

the cavity. Up to three small counter-rotating vortices were found inside

the main recirculation region formed by the primal vortex of the cavity,

rotating in opposed directions, with the main recirculation also moving

these small structures in a particular direction. Some instantaneous of the

streamlines of the velocity for Re = 500 and Ri = 10 are presented to better

understand this distinctive effect (see Figs. A.10). The average streamlines

of the velocity are shown in Fig. A.11a, where the small structures inside

of the primal vortex are observed. For Re = 1000 and Ri = 10, these

small structures do not appear, and only a pure main vortex is generated.

However, a small structure is generated at the bottom left side of the

cavity. These velocity streamlines are displayed in Fig. A.11b.
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Figure A.10: Sequence of the instantaneous streamlines showing the
flow structures present in the cavity, Re=500, Ri=10.
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(a)

(b)

Figure A.11: Streamlines of the average dimensionless velocity in the
cavity for Ri = 10: A) Re = 500, B) Re = 1000.
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Appendix B

First order surface reaction

in the open cavity

Outlet
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y

Fluid

(ρ,ν)

Ux=Uy=0

∂C/∂y = 0
Reaction plate

CA=1

Ux=Uy=0

∂C/∂y = 0

Ux=Uy=0

∂C/∂y = 0

Ux=Uy=0

∂C/∂y = 0

Inlet, uprof L

L

L

L

Figure B.1: Scheme of the open cavity with a reactive bottom flat
plate.

A ÝÑ B (B.1)

During the course of the reaction, reactant A is consumed when coming

into contact with the reaction flat plate, where product B is generated.

We assume isothermal conditions and a reaction-diffusion dynamics, where

both species are simply advected by an external flow. The geometry of the

problem is the same as the system in Chapter. 5, with the reaction flat plate
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146 Appendix B First order surface reaction in the open cavity

located at the bottom wall of the cavity. The reaction rate is determined

by a measure of the concentration, either when the concentration of A

decreases or the concentration of B increases. The consumption of reactant

A is expressed in the following form

R “ ´κCA (B.2)

where κ is the reaction constant and CA, CB are the concentrations of

reactant A and product B, respectively. The flow field is modeled in LBM

with the D2Q9 model, in a similar way as in Chapter. 5, where the same

geometry has been used. For the concentration field of species A and B, two

new lattice meshes for the mass transfer processes are required. The two

new transport equations are written in the LBM formalism as relaxation

equations for the distribution functions of both species. Additionally, a

term for the chemical reaction Sy needs to be added as a source, which

accounts for the rate of production of species B. It is calculated as

Sy “ ωiκC
A. (B.3)

The LBM equations for species A and B then read

Aipx` ci∆t, t`∆tq “ Aipx, tq `
1

τA
rAeqi px, tq ´Aipx, tqs ´ Sy, (B.4)

Bipx` ci∆t, t`∆tq “ Bipx, tq `
1

τB
rBeq

i px, tq ´Bipx, tqs ` Sy, (B.5)

where Ai and Bi are the distribution function equations for the mass trans-

fer of species A and B. The source term Sy in the distribution function of

Ai is negative in order to express that the consumption of reactant A will

correspond to the generation of product B.

The concentration of the species can be calculated through the following

equations:

CApx, tq “
8
ÿ

i“0

Aipx, tq, CBpx, tq “
8
ÿ

i“0

Bipx, tq, (B.6)
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Appendix B First order surface reaction in the open cavity 147

The dimensionless parameter characteristic of the problem is the Damkohler

number, defined as the ratio of the reaction rate over the diffusion rate,

Da “
κδ

DA
(B.7)

where δ is the characteristic length of the reaction plate, and DA is the

diffusion coefficient of species A.

For Daą 1, the reaction rate is greater than the diffusion rate distribu-

tion. This is known as diffusion limited reaction (diffusion is slowest so its

characteristics dominate and the reaction is assumed to be instantaneously

in equilibrium). When Daă 1, diffusion occurs faster than the reaction.

Thus, diffusion reaches an equilibrium before the reaction reaches it. In

this analysis, Da was fixed to 1, considering that the diffusion and reaction

rate are bounded, which means that neither of them completely controls

the system.

The Péclet number Pe can be determined with the relation of the Reynolds

number and the Schmidt number as Pe=ReSc, where Sc is the Schmidt

number and is defined as Sc=ν{D. The Schmidt number is the ratio of

the momentum difussivity ν and the mass diffusivity D of the substance

in the medium. For instance, the mass diffusivity of CO2 in air is equal

to Dco2,air “ 19 ¨ 10´6, and the Schmidt number is Sc=1.14 [57]. In this

scheme, the value of Sc was fixed to ScA=ScB “ 1. The reaction rate κ can

be determined from Da to obtain the source term Sy in Eq. (B.3), needed

in Eqs. (B.4,B.5) for Ai and Bi,

κ “
Da ¨DA

δ
. (B.8)

Subsequently, the diffusion coefficient is determined by

DA “
uδ

Pe
(B.9)

where u is the characteristic flow velocity. The Péclet number Pe is calcu-

lated from Pe = ReSc for species A and B, varying Re = 1, 2, 5, 7, 10 for

Da =1 .
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148 Appendix B First order surface reaction in the open cavity

We will show the results and a preliminary analysis. Figures. B.2, B.3 dis-

play the contours of the dimensionless concentration of A and B. The gen-

eration of B is controlled by Da via Eq. (B.8). The effect of the Reynolds

number in the cavity is such that the material diffusion of B into the chan-

nel is reduced as Re increases, and the concentration of product B is then

reduced.

Figure B.4 shows a plot with the concentrations of species A and B in

the center of the cavity as a function of time. For Re = 1, the saturating

concentration occurs as the product B reaches a value of 0.52, and the

remaining of reactant A reaches 0.48. For Re = 10 instead, the maximum

concentration of product B decreases to 0.37, whereas the concentration

of A saturates at 0.63 as Fig. B.6 shows.

Figure (B.7) displays different simulations using different settings of the

Damkohler number, Da = 0.1, 1.0, 10, 100. The Reynolds number was

fixed at Re = 5 in order to observe the effect of the Damkohler number

in the production of substance B. As one can observe, the increase of Da

causes the concentration of B to increase (and the corresponding decrease

of A) in both the cavity and the channel. Compare for example the results

for Da = 0.1 (Figs. B.7a, B.7b) with those for Da = 100 (Figs. B.7g, B.7h).

In the first case, the reaction speed is much lower, and the production of B

reaches a maximum value of 0.06 in the center of the cavity. In the case of

Da = 100, the reaction is much faster and the reactant A is absorbed almost

entirely. Notice that the concentration of product B reaches a maximum

at a value of 0.66 in the center of the cavity, as shown in Fig. B.10.

Finally, Fig. B.11 displays the value of the average Sherwood number

Eq. (4.35) for product B and the set of Damkohler numbers used.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.2: Steady state dimensionless concentration for reactant A
(left) and product B (right), for Da = 1 and varying Reynolds numbers:

Re = 1 (A, B); Re = 2 (C, D); Re = 5 (E, F); Re = 7 (G, H).
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150 Appendix B First order surface reaction in the open cavity

(a) (b)

Figure B.3: Steady state dimensionless concentration for reactant A
(left) and product B (right), for Da = 1 and Re =1 0.
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Figure B.4: Plot of the dimensionless concentration of A and B along
time measured in the center of the cavity for Re = 1, 2, 5, 7 and Da =

1.
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Figure B.5: Plot of the dimensionless concentration of A and B along
time measured in the center of the cavity for Re = 10 and Da = 1.
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Figure B.6: Plot of the dimensionless concentration of A and B in the
center of the cavity as a function of Re.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.7: Steady state dimensionless concentration for reactant A
(left) and product B (right), for Re = 5 and varying Damkohler numbers:

Da 0.1 (A, B); Da = 1 (C, D); Da = 10 (E, F); Da = 100 (G, H).

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



Appendix B First order surface reaction in the open cavity 153

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C

Da = 0.1

CA CB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C

Time

Da = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

Da = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

Time

Da = 100

Figure B.8: Dimensionless concentration of A and B in the middle of
the cavity, for Re = 5 and Da = 0.1, 1.0, 10 and 100.
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Figure B.9: Average Sherwood number for product B measured on
the reaction plate at the bottom of the cavity, for Re = 5 and Da = 0.1,

1.0, 10 and 100.
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Figure B.10: Dimensionless concentration of A and B in the middle
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Figure B.11: Average Sherwood number for product B measured on
the reaction plate at the bottom of the cavity as a function of Da, for

Re = 5.
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Appendix C

2D - Poiseuille flow in a

channel

LBM code D2Q9 model - Flow in a channel, Fortran 90.

ParaView subroutine for post-processing data output (.VTK format file)

MODULE cellConst

integer, parameter:: fluid = 0, wall = 1, inlet = 2 , outlet = 3

END MODULE cellConst

MODULE D2Q9Const

!=================================================================================

! Weights for D2Q9-model, Discrete directions (v), Matrix M and S for MRT-model

!=================================================================================

double precision,parameter:: t(0:8) =

(/4.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/36.0d0,&

&1.0d0/36.0d0,1.0d0/36.0d0,1.0d0/36.0d0/)

integer:: v(0:8,0:1)

integer:: opposite(0:8) = (/0,3,4,1,2,7,8,5,6/)

real:: Ma(0:8,0:8)

real:: Minvert(0:8,0:8)

real:: S(0:8,0:8)

real::SMinvert(0:8,0:8)

END MODULE D2Q9Const

! ========================================================

! Simulation Parameters:

! Reynolds number, length and height, Velocity of Lattice

! ========================================================

MODULE simParam

integer, parameter:: yDim = 52

integer, parameter:: yDim_d = yDim/2-1

integer, parameter:: xDim = yDim*6

integer, parameter:: iterper = 100

integer, parameter:: tMax = 3000000

double precision, parameter:: uMax = 0.02d0
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156 Appendix C 2D - Poiseuille flow in a channel

double precision, parameter:: Re = 50

END MODULE simParam

! ========================================================

! Main program, principal loop

! ========================================================

PROGRAM unsteady

USE simParam, ONLY: xDim, yDim, tMax,iterper

implicit none

double precision:: omega, time1, time2, timeTot, Cs, nu

double precision, dimension(:,:,:), allocatable:: f, fEq, u, meq, m

double precision, dimension(:,:), allocatable:: rho, uSqr, mom

integer, dimension(:,:), allocatable:: image

integer:: tStep, iter, cont_4

! ========================================================

! Flow

! ========================================================

allocate(f(yDim,xDim,0:8))

allocate(fEq(yDim,xDim,0:8))

allocate(u(yDim,xDim,0:1))

allocate(uSqr(yDim,xDim))

allocate(rho(yDim,xDim))

allocate(image(yDim,xDim))

! ========================================================

! MRT_model

! ========================================================

allocate(m(yDim,xDim,0:8))

allocate(meq(yDim,xDim,0:8))

CALL computeOmega(omega,nu,Cs)

CALL constructImages(image,omega)

CALL initMacro(rho,u,uSqr,image,iter,cont_4,tStep)

CALL computeFeq(fEq,rho,u,uSqr)

CALL computemeq(mEq,rho,u,uSqr)

f = fEq

timeTot = 0.0d0

do tStep = tStep, tMax , 1

CALL CPU_TIME(time1)

CALL inletOutlet(f,rho,u,image,uSqr)

CALL computeMacros(f,rho,u,uSqr,image)

CALL computeFeq(fEq,rho,u,uSqr)

CALL computemeq(mEq,rho,u,uSqr)

CALL collide(f,fEq,omega,image,u,rho,meq,uSqr,m)

CALL stream(f)

CALL boundaries(f,image)

CALL write_data(u,rho,tStep,f,iter,image,cont_4,omega,nu)

CALL CPU_TIME(time2)

timeTot = timeTot + (time2-time1)

end do

write(*,*) dble(tMax) * (dble(yDim * xDim)) / timeTot ,’cells per second’

write(*,*) ’total time:’, timeTot, ’ seconds’

deallocate(f)

deallocate(fEq)

deallocate(u)

deallocate(uSqr)

deallocate(rho)
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deallocate(image)

deallocate(m)

deallocate(meq)

END PROGRAM unsteady

! ========================================================

! Computer relaxation time

! ========================================================

SUBROUTINE computeOmega(omega,nu,Cs)

USE simParam, ONLY: xDim,yDim,Re,Umax

implicit none

double precision, INTENT(INOUT):: omega, nu

double precision :: Cs

Cs = (1.0d0/sqrt(3.0d0))

nu = uMax * dble(yDim-1)/ Re

omega = 1.0d0 / (3.0d0*nu+0.5d0)

END SUBROUTINE computeOmega

! ========================================================

! Construct an array the defines the flow geometry

! ========================================================

SUBROUTINE constructImages(image,omega)

USE cellConst

USE simParam

USE D2Q9Const, ONLY: v, Ma, S, Minvert

implicit none

integer, INTENT(INOUT):: image(yDim,xDim)

double precision, INTENT(INOUT):: omega

double precision:: a

integer:: x,y,i,j

v(0:8,0) = (/0,1,0,-1,0,1,-1,-1,1/)

v(0:8,1) = (/0,0,1,0,-1,1,1,-1,-1/)

! ========================================================

! Domain - Cartesian coordinate system

! ========================================================

image=fluid

image(:,1)= inlet

image(:,xDim)= outlet

image(1,:)= wall

image(yDim,:)= wall

! ========================================================

! Matrix M for MRT-model

! ========================================================

Ma(0:8,0) = (/ 1, 1, 1, 1, 1,1, 1, 1, 1/)

Ma(0:8,1) = (/-4,-1,-1,-1,-1,2, 2, 2, 2/)

Ma(0:8,2) = (/ 4,-2,-2,-2,-2,1, 1, 1, 1/)

Ma(0:8,3) = (/ 0, 1, 0,-1, 0,1,-1,-1, 1/)

Ma(0:8,4) = (/ 0,-2, 0, 2, 0,1,-1,-1, 1/)

Ma(0:8,5) = (/ 0, 0, 1, 0,-1,1, 1,-1,-1/)

Ma(0:8,6) = (/ 0, 0,-2, 0, 2,1, 1,-1,-1/)

Ma(0:8,7) = (/ 0, 1,-1, 1,-1,0, 0, 0, 0/)

Ma(0:8,8) = (/ 0, 0, 0, 0, 0,1,-1, 1,-1/)

a = 1.0d0/36.0d0

! ========================================================

! Matrix M^-1 for MRT-model

! ========================================================
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Minvert(0:8,0)=(/4.d0*a,-4.d0*a,4.d0*a,0.d0,0.d0,0.d0,0.d0,0.d0,0.d0/)

Minvert(0:8,1)=(/4.d0*a,-1.d0*a,-2.d0*a,6.d0*a,-6.d0*a,0.d0,0.d0,9.d0*a,0.d0/)

Minvert(0:8,2)=(/4.d0*a,-1.d0*a,-2.d0*a,0.d0,0.d0,6.d0*a,-6.d0*a,9.d0*a,0.d0/)

Minvert(0:8,3)=(/4.d0*a,-1.d0*a,-2.d0*a,-6.d0*a,6.d0*a,0.d0,0.d0,9.d0*a,0.d0/)

Minvert(0:8,4)=(/4.d0*a,-1.d0*a,-2.d0*a,0.d0*a,0.d0*a,-6.d0*a,6.d0*a,-9.d0*a,0.d0/)

Minvert(0:8,5)=(/4.d0*a,2.d0*a,1.d0*a,6.d0*a,3.d0*a,6.d0*a,3.d0*a,0.d0*a,9.d0*a/)

Minvert(0:8,6)=(/4.d0*a,2.d0*a,1.d0*a,-6.d0*a,-3.d0*a,6.d0*a,3.d0*a,0.d0*a,-9.d0*a/)

Minvert(0:8,7)=(/4.d0*a,2.d0*a,1.d0*a,-6.d0*a,-3.d0*a,6.d0*a,-3.d0*a,0.d0*a,9.d0*a/)

Minvert(0:8,8)=(/4.d0*a,2.d0*a,1.d0*a,6.d0*a,3.d0*a,-6.d0*a,-3.d0*a,0.d0*a,-9.d0*a/)

! ========================================================

! Matrix S for MRT-model

! ========================================================

!S(:) = (/1.0d0,1.40d0,1.40d0,1.0d0,1.20d0,1.0d0,1.20d0,tau,tau/)

S(0:8,0) = (/1.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,1) = (/0.d0, 1.4d0, 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,2) = (/0.d0, 0.d0 , 1.4d0, 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,3) = (/0.d0, 0.d0 , 0.d0 , 1.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,4) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 1.2d0, 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,5) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 1.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,6) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 1.2d0, 0.d0, 0.d0/)

S(0:8,7) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , omega,0.d0/)

S(0:8,8) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, omega /)

END SUBROUTINE constructImages

! ========================================================

! Initialization of Parameter: Umax, Density

! ========================================================

SUBROUTINE initMacro(rho,u,uSqr,image,iter,cont_4,tStep)

USE simParam, ONLY: xDim, yDim,uMax

USE cellConst

implicit none

double precision, INTENT(INOUT):: rho(yDim,xDim), u(yDim,xDim,0:1),

uSqr(yDim,xDim)

integer, INTENT(INOUT):: iter,cont_4,tStep

integer, INTENT(IN):: image(yDim,xDim)

integer:: y,x,i

iter = 0 ; tStep = 1 ; cont_4 = 0

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == wall) then

u(y,x,0) = 0.0d0

u(y,x,1) = 0.0d0

else

u(y,x,0) = umax

u(y,x,1) = 0.0d0

end if

end do

end do

rho = 1.0d0

uSqr = u(:,:,0) * u(:,:,0) + u(:,:,1) * u(:,:,1)

END SUBROUTINE initMacro

! ========================================================

! Compute Equilibrium distribution function

! ========================================================

SUBROUTINE computeFeq(fEq,rho,u,uSqr)
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USE D2Q9COnst, ONLY: t, v

USE simParam, ONLY: xDim, yDim

implicit none

double precision, INTENT(IN):: rho(yDim,xDim), uSqr(yDim,xDim), u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: fEq(yDim,xDim,0:8)

integer:: i, x, y

double precision:: uxy

do x = 1, xDim

do y = 1, yDim

do i = 0, 8

uxy = u(y,x,0) * v(i,0) + u(y,x,1) * v(i,1)

fEq(y,x,i) = t(i) * rho(y,x) * (1.0d0 + 3.0d0 * uxy + 4.5d0 * uxy * uxy - 1.5d0 *

uSqr(y,x))

end do

end do

end do

END SUBROUTINE computeFeq

! ========================================================

! Compute Momentum equations for MRT-model D2Q9

! ========================================================

SUBROUTINE computemeq(mEq,rho,u,uSqr)

USE D2Q9COnst, ONLY: t, v

USE simParam, ONLY: xDim, yDim

implicit none

double precision, INTENT(IN):: rho(yDim,xDim), uSqr(yDim,xDim), u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: mEq(yDim,xDim,0:8)

integer:: i, x, y

double precision:: uxy

do x = 1, xDim

do y = 1, yDim

meq(y,x,0) =rho(y,x)

meq(y,x,1) =-2.0d0*rho(y,x) + 3.0d0*rho(y,x)*((u(y,x,0)*u(y,x,0) +

u(y,x,1)*u(y,x,1)))

meq(y,x,2) =rho(y,x) - 3.0d0 *rho(y,x)*(u(y,x,0)*u(y,x,0) + u(y,x,1)*u(y,x,1))

meq(y,x,3) =u(y,x,0)*rho(y,x)

meq(y,x,4) = -u(y,x,0)*rho(y,x)

meq(y,x,5) =u(y,x,1)*rho(y,x)

meq(y,x,6) = -u(y,x,1)*rho(y,x)

meq(y,x,7) = (u(y,x,0)*u(y,x,0)) - (u(y,x,1)*u(y,x,1))*rho(y,x)

meq(y,x,8) = (u(y,x,0)*u(y,x,1))*rho(y,x)

end do

end do

END SUBROUTINE computemeq

! ============================================================

! Compute Macro-scope variables, Density and x and Y velocities

! ============================================================

SUBROUTINE computeMacros(f,rho,u,uSqr,image)

USE simParam, ONLY: xDIm, yDim

USE cellConst

USE D2Q9COnst, ONLY: t, v

implicit none

double precision, INTENT(IN):: f(yDim,xDim,0:8)

double precision, INTENT(INOUT):: u(yDim,xDim,0:1),rho(yDim, xDim),uSqr(yDim,

xDim)

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



160 Appendix C 2D - Poiseuille flow in a channel

integer, INTENT(IN):: image(yDim,xDim)

integer:: x,y,i

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == wall) then

u(y,x,0) = 0.0d0

u(y,x,1) = 0.0d0

else

rho(y,x) = f(y,x,0) + f(y,x,1) + f(y,x,2) + f(y,x,3) + f(y,x,4) + f(y,x,5) +

f(y,x,6) + f(y,x,7) + f(y,x,8)

u(y,x,0) = ((f(y,x,1) - f(y,x,3) + f(y,x,5) - f(y,x,6) - f(y,x,7) + f(y,x,8)) )/

rho(y,x)

u(y,x,1) = ((f(y,x,2) - f(y,x,4) + f(y,x,5) + f(y,x,6) - f(y,x,7) - f(y,x,8))) /

rho(y,x)

uSqr(y,x) = u(y,x,0) * u(y,x,0) + u(y,x,1) * u(y,x,1)

end if

end do

end do

END SUBROUTINE computeMacros

! ============================================================================

! Implement Boundary conditions, Bounce-Back scheme for solid wall, Full way

! ============================================================================

SUBROUTINE boundaries(f,image)

USE D2Q9Const

USE cellConst

USE simParam, ONLY: xDim, yDim

implicit none

integer, INTENT(IN):: image(yDim,xDim)

double precision, INTENT(INOUT):: f(yDim,xDim,0:8)

double precision:: fTmp(0:8)

integer:: i, x, y

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == wall) then

do i = 0, 8

fTmp(i) = f(y,x,opposite(i))

end do

do i = 0, 8

f(y,x,i) = fTmp(i)

end do

end if

end do

end do

END SUBROUTINE boundaries

! ================================================================

! Inlet Outlet Boundary condition,

! ================================================================

SUBROUTINE inletOutlet(f,rho,u,image,uSqr)

USE cellConst, ONLY: inlet, outlet

USE simParam

USE D2Q9Const, ONLY: t, v

implicit none

double precision, INTENT(INOUT):: f(yDim,xDim,0:8), u(yDim,xDim,0:1),

rho(yDim,xDim)
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double precision, INTENT(IN):: uSqr(yDim,xDim)

integer, INTENT(IN):: image(yDim,xDim)

double precision:: uxy(0:8)

integer:: x, y, i

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == inlet) then

u(y,x,0) = umax

u(y,x,1) = 0.0d0

CALL inletZou(f(y,x,:),u(y,x,:),rho(y,x)) ! Zou-he on inlet boundary condition

else if (image(y,x) == outlet) then

do i = 0, 8

f(y,x,i) = 2 *f(y,x-1,i) - f(y,x-2,i) !Open boundary condition on outlet

end do

end if

end do

end do

CONTAINS

! ================================================================

! Zou-he scheme, Rutine for outlet distribution functions

! ================================================================

SUBROUTINE inletZou(f,u,rho)

implicit none

double precision, INTENT(INOUT):: f(0:8),rho

double precision, INTENT(IN):: u(0:1)

double precision:: fInt, fInt2

fInt = f(0) + f(2) + f(4)

fInt2 = f(3) + f(6) + f(7)

rho= (fInt + 2.0d0 * fInt2) / (1.0d0 - u(0))

CALL zouWestWall(f,rho,u)

END SUBROUTINE inletZou

SUBROUTINE zouWestWall(f,rho,u)

implicit none

double precision, INTENT(INOUT):: f(0:8)

double precision, INTENT(IN):: rho, u(0:1)

double precision:: fDiff, rhoUx, rhoUy

fDiff = 0.5d0 * (f(2) - f(4))

rhoUx = rho * u(0) / 6.0d0

rhoUy = 0.5d0 * rho * u(1)

f(1) = f(3) + 4.0d0 * rhoUx

f(5) = f(7) - fDiff + rhoUx + rhoUy

f(8) = f(6) + fDiff + rhoUx - rhoUy

END SUBROUTINE zouWestWall

END SUBROUTINE inletOutlet

! ================================================================

! Streaming step for all distribution functions, Full way

! ================================================================

SUBROUTINE stream(f)

USE simParam

USE cellConst

implicit none

double precision, INTENT(INOUT):: f(yDim,xDim,0:8)

f(:,2:xDim,1) = f(:,1:xDim-1,1) ! right direction

f(2:yDim,:,2) = f(1:yDim-1,:,2) ! up direction
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f(:,1:xDim-1,3) = f(:,2:xDim,3) ! left direction

f(1:yDim-1,:,4) = f(2:yDim,:,4) ! down direction

f(2:yDim,2:xDim,5) = f(1:yDim-1,1:xDim-1,5) ! up-right direction

f(2:yDim,1:xDim-1,6) = f(1:yDim-1,2:xDim,6) ! up-left direction

f(1:yDim-1,1:xDim-1,7) = f(2:yDim,2:xDim,7) ! down-left direction

f(1:yDim-1,2:xDim,8) = f(2:yDim,1:xDim-1,8) ! down-right direction

END SUBROUTINE stream

! =======================================================

! LBGK collision step

! ========================================================

SUBROUTINE collide(f,fEq,omega,image,u,rho,meq,uSqr,m)

USE simParam, ONLY: xDim, yDim

USE cellConst

USE D2Q9Const, ONLY: Ma, Minvert,S,SMinvert,v,t

implicit none

integer, INTENT(IN):: image(yDim,xDim)

double precision, INTENT(IN):: fEq(yDim,xDim,0:8),

omega,u(yDim,xDim,0:1),uSqr(yDim,xDim)

double precision, INTENT(IN):: rho(yDim,xDim),meq(yDim,xDim,0:8)

double precision, INTENT(INOUT):: f(yDim,xDim,0:8),m(yDim,xDim,0:8)

double precision:: mom , sume

integer:: x,y,i,j,k

do x = 1, xDim

do y = 1, yDim

do i = 0,8

mom = 0.0d0

do k = 0,8

mom = mom + Ma(k,i) * f(y,x,k)

end do

m(y,x,i) = mom

end do

end do

end do

do i = 0,8

do j = 0,8

SMinvert(j,i) = 0.0d0

do k = 0,8

SMinvert(j,i) = SMinvert(j,i) + ( Minvert(k,i) * S(j,k))

end do

end do

end do

do x = 1, xDim

do y = 1, yDim

do i = 0, 8

sume = 0.0d0

do k = 0,8

sume = sume + SMinvert(k,i) * ( m(y,x,k) - meq(y,x,k))

end do

if (image(y,x) /= wall) then

! ================================================================

! SRT model, (remove exclamation mark for on) and comment MRT-model

! ================================================================

!f(y,x,i) = (1.0d0 - omega) * f(y,x,i) + omega * feq(y,x,i)
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! ================================================================

! MRT-model, compute the different matrices

! ================================================================

f(y,x,i) = (f(y,x,i) - sume )

end if

end do

end do

end do

END SUBROUTINE collide

! ================================================================

! Post-processing, VTK file format .VKT ( PARAVIEW software)

! ================================================================

SUBROUTINE write_data(u,rho,tStep,f,iter,image,cont_4,omega,nu)

USE simParam

USE cellConst

USE D2Q9const,ONLY: v, opposite

implicit none

double precision, INTENT(IN)::

u(yDim,xDim,0:1),f(yDim,xDim,0:8),rho(yDim,xDim),omega

integer, INTENT(INOUT):: iter,cont_4

integer, INTENT(IN):: image(yDim,xDim),tStep

double precision, INTENT(IN):: nu

double precision :: d_loc_t,Cs

integer:: x,y,i

character (LEN=100):: file_name,filename, path1, pathTMP

character (LEN=100):: itercar,Ncar,Recar,Ucar,Macar, Racar, Ricar

Cs = (1.0d0/sqrt(3.0d0))

d_loc_t = 0.0d0

cont_4 = 0

do x = 1 , xDim

do y = 1 , yDim

if (image(y,x) /= wall) then

do i = 0 , 8

d_loc_t = d_loc_t + f(y,x,i)

end do

cont_4 = cont_4 +1

end if

end do

end do

if (d_loc_t >= yDim*xDim*2.0d0*rho(yDim,xDim)) then

write(*,*) ’Stop program, error’

STOP

end if

! ========================================================

! <<Generator for PARAVIEW ".vtk">>

! ========================================================

if (mod(tStep,1000)==0) then

iter = iter+1

write(file_name,’(a4,i5.4,a4)’) ’data’,iter,’.vtk’

write(path1,’(a47)’) ’/home/lattice/Documents/VTKs/2_MRT_D2Q9_canal/N’

write(itercar,’(i3)’)iter

write(Ncar,’(i3.2)’) xDim

write(Recar,’(i3.3)’) int(Re)

file_name = trim(file_name)
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OPEN(unit=15,file=trim(path1)//trim(Ncar)//’’//’/Re’//trim(Recar)

//’’//’/’//file_name,STATUS=’unknown’)

write(15,’(a26)’)’# vtk DataFile Version 3.0’

write(15,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

write(15,’(a5)’)’ASCII’

write(15,’(a23)’)’DATASET STRUCTURED_GRID’

write(15,’(a10,2i6.2,a2)’)’DIMENSIONS’, xDim, yDim, ’ 1’

write(15,’(a7,i8,a6)’)’POINTS ’,xDim*yDim,’ float’

do y= 0 , (yDim-1)

do x= 0 , (xDim-1)

write(15,’(i6.1,i6.1,a2)’)x,y,’ 0’

end do

end do

write(15,*)

write(15,’(a11,i8)’)’POINT_DATA ’,xDim*yDim

! ================================================================

! Writing Domain

! ================================================================

write(15,’(a23)’)’SCALARS dominio FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y=1, yDim

do x=1, xDim

write(15,’(i2.1)’) image(y,x)

end do

end do

! ================================================================

! Writing Velocities Field

! ================================================================

write(15,’(a23)’)’VECTORS velocidad float’

do y= 1 , yDim

do x= 1 , xDim

write(15,’(F23.6,F23.6,a2)’)u(y,x,0),u(y,x,1),’ 0’

end do

end do

! ================================================================

! Writing Density of Lattice

! ================================================================

write(15,’(a24)’)’SCALARS densitat FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y = 1, yDim

do x = 1, xDim

write(15,’(F31.16)’)rho(y,x)

end do

end do

close(15)

end if

!======================================================

! <<U vs Tstep >>

!======================================================

if (mod(tStep,1)==0) then

write(file_name,’(a5)’) ’U.txt’
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write(path1,’(a47)’) ’/home/lattice/Documents/VTKs/2_MRT_D2Q9_canal/N’

write(Ncar,’(i3.2)’) xDim

write(Recar,’(i3.3)’) int(Re)

file_name = trim(file_name)

OPEN(unit=20,file=trim(path1)//trim(Ncar)//’’//’/Re’//trim(Recar)//’’//

’/Parametros’//’/’//file_name,STATUS=’unknown’,position =’append’)

y = yDim/2

x = xDim/2

write(20,’(i8,F18.7)’) tStep , u(y,x,0)

close(20)

if (mod(tStep,1)==0) then

write(file_name,’(a9)’) ’U_max.txt’

write(path1,’(a47)’) ’/home/lattice/Documents/VTKs/2_MRT_D2Q9_canal/N’

write(Ncar,’(i3.2)’) xDim

write(Recar,’(i3.3)’) int(Re)

file_name = trim(file_name)

OPEN(unit=16,file=trim(path1)//trim(Ncar)//’’//’/Re’//trim(Recar)//’’

//’/Parametros’//’/’//file_name,STATUS=’unknown’)

do y = 1, yDim

x = xDim/2

write(16,’(i8,F12.7)’) y, u(y,x,0)

end do

close(16)

end if

end if

END SUBROUTINE write_data

! ========================================================

! Print out simulation parameters to screen

! ========================================================

SUBROUTINE writeInput(omega,nu)

USE simParam

implicit none

double precision, INTENT(INOUT):: omega, nu

write(*,*) ’xDim = ’, xDim

write(*,*) ’yDim = ’, yDim

write(*,*) ’tMax = ’, tMax

write(*,*) ’nu = ’, nu

write(*,*) ’omega= ’, omega

END SUBROUTINE writeInput
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Appendix D

Lid Driven Cavity

LBM code - Flow in a channel, Fortran 90.

attach the routine for ParaView data.

Replaced the following MODULES and SUBROUTINE of the previous

Code

!==========================================================

!Main parameter (input),

!yDim and xDim = dimension of the grid,

!uMax = 0.1(the maximum velocity that can be used in LBM)

!===========================================================

MODULE simParam

integer, parameter:: yDim = 600

integer, parameter:: xDim = 600

integer, parameter:: iterper = 100

integer, parameter:: tMax = 10000000

double precision, parameter:: uMax = 0.1

double precision, parameter:: Re = 7500

integer, parameter:: obstR = 8

real, parameter:: Ri = 10.00

END MODULE simParam

! ========================================================

!Compute viscotiy of lattice, the relaxation time tau, t > 0.51

! ========================================================

SUBROUTINE computeOmega(omega,nu,Cs)

USE simParam, ONLY: xDim,yDim,Re,Umax

implicit none

double precision, INTENT(INOUT):: omega, nu

double precision :: Cs

Cs = (1.0d0/sqrt(3.0d0))

nu = (uMax * (dble(yDim-1))) / Re

omega = 1.0d0 / (3.0d0*nu+0.5d0)

END SUBROUTINE computeOmega
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! ========================================================

! Construct an array the defines the flow geometry

! ========================================================

SUBROUTINE constructImages(image,omega)

USE cellConst

USE simParam

USE D2Q9Const

implicit none

integer, INTENT(INOUT):: image(yDim,xDim)

double precision, INTENT(INOUT):: omega

integer:: x,y,i,j

double precision:: a

v(0:8,0) = (/0,1,0,-1,0,1,-1,-1,1/)

v(0:8,1) = (/0,0,1,0,-1,1,1,-1,-1/)

image = fluid

image(:,1)= wall

image(:,xDim)= wall

image(1,:)= wall

image(yDim,:)= lid_wall

\emph{Include the respective matrix for MRT model and the module of the momentum

vector}

!========================================================================

!inizialication of the macroscopic variables, Bondary condition for moving wall,

Zou-He scheme

!========================================================================

SUBROUTINE initMacro(rho,u,uSqr,image,iter,cont_4,tStep)

USE simParam, ONLY: xDim, yDim,uMax

USE cellConst

implicit none

double precision, INTENT(INOUT):: rho(yDim,xDim), u(yDim,xDim,0:1),

uSqr(yDim,xDim)

integer, INTENT(INOUT):: iter,cont_4,tStep

integer, INTENT(IN):: image(yDim,xDim)

integer:: y,x,i

iter = 0 ; tStep = 1 ; cont_4 = 0

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == wall)then

u(y,x,0) = 0.0d0

u(y,x,1) = 0.0d0

else

u(y,x,0) = uMax

u(y,x,0) = 0.0d0

end if

end do

end do

rho = 1.0d0

uSqr = u(:,:,0) * u(:,:,0) + u(:,:,1) * u(:,:,1)

END SUBROUTINE initMacro

SUBROUTINE boundaries(f,image,u,uSqr,rho)

USE D2Q9Const

USE cellConst
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USE simParam, ONLY: xDim, yDim,uMax

implicit none

integer, INTENT(IN):: image(yDim,xDim)

double precision, INTENT(INOUT)::

f(yDim,xDim,0:8),u(yDim,xDim,0:1),uSqr(yDim,xDim)

double precision, INTENT(INOUT):: rho(yDim, xDim)

double precision:: fTmp(0:8), uxy(0:8)

integer:: i, x, y

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == lid_wall) then

u(y,x,0) = uMax

u(y,x,1) = 0.0d0

CALL Norte(f(y,x,:),u(y,x,:),rho(y,x))

else if (image(y,x) == wall) then

do i = 0, 8

fTmp(i) = f(y,x,opposite(i))

end do

do i = 0, 8

f(y,x,i) = fTmp(i)

end do

end if

end do

end do

CONTAINS

! ========================================================

! Zou/He boundary on norte(up)

! ========================================================

SUBROUTINE Norte(f,u,rho)

implicit none

double precision, INTENT(INOUT):: f(0:8),rho

double precision, INTENT(IN):: u(0:1)

double precision:: fInt, fInt2

fInt= f(0) + f(1) + f(3)

fInt2 = f(2) + f(6) + f(5)

rho = (fInt + 2.0d0 * fInt2) / (1.0d0 + u(1))

CALL zouWestWall(f,rho,u)

END SUBROUTINE Norte

SUBROUTINE zouWestWall(f,rho,u)

implicit none

double precision, INTENT(INOUT):: f(0:8)

double precision, INTENT(IN):: rho, u(0:1)

double precision:: fDiff, rhoUx, rhoUy

fDiff = 0.5d0 * (f(1) - f(3))

rhoUy = rho * u(1) / 6.0d0

rhoUx = 0.5d0 * rho * u(0)

f(4) = f(2) - 4.0d0 * rhoUy

f(7) = f(5) + fDiff - rhoUy - rhoUx

f(8) = f(6) + 0.5d0 * (f(3) - f(1)) + rhoUx - rhoUy

END SUBROUTINE zouWestWall

END SUBROUTINE boundaries
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Appendix E

Natural convection in a

closed cavity

LBM code - Flow in a channel, Fortran 90.

ParaView software for post-processing data (.VTK format file)

! ========================================================

! Constants that identify different cell-types according

!to the dynamics they implement

! ========================================================

MODULE cellConst

integer, parameter:: fluid = 0, wall_th = 3, wall_tc = 4, wall_top = 5, wall_bot

= 6

integer, parameter:: corner_1 = 2, corner_2 = 7, corner_3 = 8, corner_4 = 9, wall

= 1

integer, parameter:: wall_1 = 10 , wall_2 = 11, wall_3 = 12, wall_4= 13

integer, parameter:: corner_5 = 14, corner_6 = 15, corner_7 = 16, corner_8 = 17

END MODULE cellConst

! ========================================================

! Lattice constants for the D2Q9 lattice

! ========================================================

MODULE D2Q9Const

! D2Q9 Weights

double precision,parameter:: t(0:8) =

(/4.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0&

&,1.0d0/36.0d0,1.0d0/36.0d0,1.0d0/36.0d0,1.0d0/36.0d0/)

!D2Q9 Directions

integer:: v(0:8,0:1)

!= (/(/0,1,0,-1,0,1,-1,-1,1/),(/0,0,1,0,-1,1,1,-1,-1/)/)

integer, parameter:: opposite(0:8) = (/0,3,4,1,2,7,8,5,6/)

END MODULE D2Q9Const

! ========================================================

! Constants for simulation setup

171
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172 Appendix E Natural convection in a closed cavity

! ========================================================

MODULE simParam

integer, parameter:: yDim = 202

integer, parameter:: xDim = yDim

integer, parameter:: iterper = 50

integer, parameter:: tMax = 10000000

double precision, parameter:: uMax = 0.0d0

integer, parameter:: tc = 0.0d0

integer, parameter:: th = 1.0d0

integer, parameter:: Ra = 10000

double precision, parameter:: Pr = 0.71d0

END MODULE simParam

! ========================================================

! The main program, implementing a Square_cavity with Temp

! ========================================================

PROGRAM Square_cavity

USE simParam, ONLY: xDim, yDim, tMax,iterper

implicit none

double precision:: omega, nu, time1, time2, timeTot, Cs,

omega_t,alfa,gbeta,tv,tf,C,delta_x,delta_t

double precision, dimension(:,:,:), allocatable:: f, fEq, u, gEq,g

double precision, dimension(:,:), allocatable:: rho, uSqr,temp

integer, dimension(:,:), allocatable:: image,imaget

integer:: tStep, iter, cont, cont_2, cont_3, cont_4

allocate(f(yDim,xDim,0:8))

allocate(g(yDim,xDim,0:8))

allocate(fEq(yDim,xDim,0:8))

allocate(gEq(yDim,xDim,0:8))

allocate(u(yDim,xDim,0:1))

allocate(uSqr(yDim,xDim))

allocate(rho(yDim,xDim))

allocate(temp(yDim,xDim))

allocate(image(yDim,xDim))

allocate(imaget(yDim,xDim))

CALL constructImages(image)

CALL constructImagesTemp(imaget)

CALL computeOmega(omega,nu,Cs,omega_t,alfa,gbeta,tv,tf,C,delta_x,delta_t)

CALL initMacro(rho,u,uSqr,iter,cont,cont_2,cont_3,cont_4,tStep)

CALL initMacroTemp(temp,imaget)

CALL computeFeq(fEq,rho,u,uSqr)

CALL computeqEq(gEq,temp,u,uSqr)

f = fEq

g = gEq

timeTot = 0.0d0

do tStep = tStep, tMax , 1

CALL CPU_TIME(time1)

CALL boundaries(f,image)

CALL boundariesg(g,imaget)

CALL computeMacros(f,rho,u,uSqr,image)

CALL computeMacrosTemp(g,temp,imaget)

CALL computeFeq(fEq,rho,u,uSqr)

CALL computeqEq(gEq,temp,u,uSqr)

CALL write_data(u,rho,tStep,f,iter,image,nu,cont,cont_2,cont_3,

cont_4,omega,omega_t,gbeta,alfa,temp)
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Appendix E Natural convection in a closed cavity 173

CALL collide(f,fEq,omega,image,u,rho,gbeta,temp)

CALL collideg(g,geq,omega_t,u,temp)

CALL stream(f)

CALL streamg(g)

CALL CPU_TIME(time2)

timeTot = timeTot + (time2-time1)

end do

write(*,*) dble(tMax) * (dble(yDim * xDim)) / timeTot ,’cells per second’

write(*,*) ’total time:’, timeTot, ’ seconds’

deallocate(f)

deallocate(g)

deallocate(fEq)

deallocate(gEq)

deallocate(u)

deallocate(uSqr)

deallocate(rho)

deallocate(temp)

deallocate(image)

deallocate(imaget)

END PROGRAM Square_cavity

! ========================================================

! Compute the relaxation parameter, Rayleigh number, Prandtl number

! ========================================================

SUBROUTINE computeOmega(omega,nu,Cs,omega_t,alfa,gbeta,tv,tf,C,delta_x,delta_t)

USE simParam

implicit none

double precision, INTENT(INOUT):: omega, nu, omega_t, alfa,gbeta

double precision :: Cs,tv,tf,C,delta_x,delta_t

Cs = (1.0d0/sqrt(3.0d0))

nu = 0.01

omega = 1.0d0 / (3.0d0*nu+0.5d0)

!=====================================================================

!omega Termico

alfa = nu / Pr

omega_t = 1.0d0 / (3.0d0*alfa+0.5d0)

!=====================================================================

gbeta = Ra * nu * alfa / (xDim*xDim*xDim) !Rayleigh number

END SUBROUTINE computeOmega

! ========================================================

! Construct an array the defines the flow geometry

! ========================================================

SUBROUTINE constructImages(image)

USE cellConst

USE simParam, ONLY: xDim, yDim

USE D2Q9Const, ONLY: v

implicit none

integer, INTENT(INOUT):: image(yDim,xDim)

integer:: x,y,i

v(0:8,0) = (/0,1,0,-1,0,1,-1,-1,1/)

v(0:8,1) = (/0,0,1,0,-1,1,1,-1,-1/)

image= fluid

image(:,1)= wall_2

image(:,xDim)= wall_4

image(1,:)= wall_1
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174 Appendix E Natural convection in a closed cavity

image(yDim,:)= wall_3

image(1,1)= corner_5

image(yDim,1)= corner_6

image(yDim,xDim)= corner_7

image(1,xDim)= corner_8

write(*,*) xDim, yDim

END SUBROUTINE constructImages

SUBROUTINE constructImagesTemp(imaget)

USE cellConst

USE simParam, ONLY: xDim, yDim

USE D2Q9Const, ONLY: v

implicit none

integer, INTENT(INOUT):: imaget(yDim,xDim)

integer:: x,y,i

v(0:8,0) = (/0,1,0,-1,0,1,-1,-1,1/)

v(0:8,1) = (/0,0,1,0,-1,1,1,-1,-1/)

imaget(:,1)= wall_th

imaget(:,xDim)= wall_tc

imaget(yDim,:)= wall_top

imaget(1,:)= wall_bot

imaget(1,1)= corner_1

imaget(yDim,1)= corner_2

imaget(yDim,xDim)= corner_3

imaget(1,xDim)= corner_4

END SUBROUTINE constructImagesTemp

! ========================================================

! Initialize

! ========================================================

SUBROUTINE initMacro(rho,u,uSqr,iter,cont,cont_2,cont_3,cont_4,tStep)

USE simParam

USE cellConst

implicit none

double precision, INTENT(INOUT):: rho(yDim,xDim), u(yDim,xDim,0:1),

uSqr(yDim,xDim)

integer, INTENT(INOUT):: iter,cont,cont_2,cont_3,cont_4,tStep

double precision:: uProf

integer:: y,x,i

iter = 0 ; tStep = 1

cont = 0 ; cont_2 = 0 ; cont_3 = 0 ; cont_4 = 0

do y = 1, yDim

do x= 1, xDim

u(y,x,0) = 0.0d0

u(y,x,1) = 0.0d0

end do

end do

rho = 1.0d0

uSqr = u(:,:,0) * u(:,:,0) + u(:,:,1) * u(:,:,1)

END SUBROUTINE initMacro

! ========================================================

! Initialize the simulation to Temperature

! ========================================================

SUBROUTINE initMacroTemp(temp,imaget)

USE simParam, ONLY: xDIm, yDim, tc, th

USE cellConst
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implicit none

double precision, INTENT(INOUT):: temp(yDim,xDim)

integer, INTENT(IN):: imaget(yDim,xDim)

integer:: y,xe

do y = 1,yDim

do x = 1,xDim

if (imaget(y,x) == wall_th) then

temp(y,x) = th

else

temp(y,x) = tc

end if

end do

end do

END SUBROUTINE initMacroTemp

! ========================================================

! Compute equilibrium distribution

! ========================================================

SUBROUTINE computeFeq(fEq,rho,u,uSqr)

USE D2Q9COnst, ONLY: t, v

USE simParam, ONLY: xDim, yDim

implicit none

double precision, INTENT(IN):: rho(yDim,xDim), uSqr(yDim,xDim), u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: fEq(yDim,xDim,0:8)

integer:: i, x, y

double precision:: uxy

do i = 0, 8

do x = 1, xDim

do y = 1, yDim

uxy = u(y,x,0) * v(i,0) + u(y,x,1) * v(i,1)

fEq(y,x,i) = t(i) * rho(y,x) * (1.0d0 + 3.0d0 * uxy + 4.5d0 * uxy * uxy - 1.5d0 *

uSqr(y,x))

end do

end do

end do

END SUBROUTINE computeFeq

========================================================

! Compute equilibrium distribution, Temperature

! ========================================================

SUBROUTINE computeqEq(gEq,temp,u,uSqr)

USE D2Q9COnst, ONLY: t, v

USE simParam, ONLY: xDim, yDim

implicit none

double precision, INTENT(IN):: temp(yDim,xDim), uSqr(yDim,xDim), u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: gEq(yDim,xDim,0:8)

integer:: i, x, y

double precision:: uxy

do i = 0, 8

do x = 1, xDim

do y = 1, yDim

uxy = u(y,x,0) * v(i,0) + u(y,x,1) * v(i,1)

gEq(y,x,i) = t(i) * temp(y,x) * (1.0d0 + 3.0d0 * uxy + 4.5d0 * uxy * uxy - 1.5d0

* uSqr(y,x))

end do
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176 Appendix E Natural convection in a closed cavity

end do

end do

END SUBROUTINE computeqEq

! ========================================================

! Compute density and velocity from distribution functions

! ========================================================

SUBROUTINE computeMacros(f,rho,u,uSqr,image)

USE simParam, ONLY: xDIm, yDim

USE cellConst

implicit none

double precision, INTENT(IN):: f(yDim,xDim,0:8)

double precision, INTENT(INOUT):: u(yDim,xDim,0:1),rho(yDim, xDim),uSqr(yDim,

xDim)

integer, INTENT(IN):: image(yDim,xDim)

integer:: x,y

do x = 1, xDim

do y = 1, yDim

rho(y,x) = f(y,x,0) + f(y,x,1) + f(y,x,2) + f(y,x,3) + f(y,x,4) + f(y,x,5) +

f(y,x,6) + f(y,x,7) + f(y,x,8)

u(y,x,0) = (f(y,x,1) - f(y,x,3) + f(y,x,5) - f(y,x,6) - f(y,x,7) + f(y,x,8)) /

rho(y,x)

u(y,x,1) = (f(y,x,2) - f(y,x,4) + f(y,x,5) + f(y,x,6) - f(y,x,7) - f(y,x,8)) /

rho(y,x)

uSqr(y,x) = u(y,x,0) * u(y,x,0) + u(y,x,1) * u(y,x,1)

end do

end do

END SUBROUTINE computeMacros

! ========================================================

! Compute Temperature from distribution functions

! ========================================================

SUBROUTINE computeMacrosTemp(g,temp,imaget)

USE simParam, ONLY: xDIm, yDim, tc, th

USE cellConst

implicit none

double precision, INTENT(IN):: g(yDim,xDim,0:8)

double precision, INTENT(INOUT):: temp(yDim, xDim)

integer, INTENT(IN):: imaget(yDim,xDim)

integer:: x,y

do x = 1,xDim

do y = 1,yDim

if (imaget(y,x) == wall_th) then

temp(y,x) = th

else if (imaget(y,x) == wall_tc) then

temp(y,x) = tc

else

temp(y,x) = g(y,x,0) + g(y,x,1) + g(y,x,2) + g(y,x,3) + g(y,x,4) + g(y,x,5) +

g(y,x,6) + g(y,x,7) + g(y,x,8)

end if

end do

end do

END SUBROUTINE computeMacrosTemp

!================================================================================

! Implement Bounce-back on upper/lower/left/rigth boundaries, corner boundaries

!================================================================================
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SUBROUTINE boundaries(f,image)

USE D2Q9Const, ONLY: opposite

USE cellConst

USE simParam, ONLY: xDim, yDim

implicit none

integer, INTENT(IN):: image(yDim,xDim)

double precision, INTENT(INOUT):: f(yDim,xDim,0:8)

double precision:: fTmp(0:8)

integer:: i, x, y

do y= 1,yDim

do x= 1,xDim

if (image(y,x) == wall_1) then

f(y,x,6) = f(y,x,8)

f(y,x,5) = f(y,x,7)

f(y,x,2) = f(y,x,4)

f(y,x,3) = f(y,x,1)

else if (image(y,x) == wall_4) then

f(y,x,3) = f(y,x,1)

f(y,x,7) = f(y,x,5)

f(y,x,6) = f(y,x,8)

f(y,x,4) = f(y,x,2)

else if (image(y,x) == wall_2) then

f(y,x,1) = f(y,x,3)

f(y,x,5) = f(y,x,7)

f(y,x,8) = f(y,x,6)

f(y,x,4) = f(y,x,2)

else if (image(y,x) == wall_3) then

f(y,x,4) = f(y,x,2)

f(y,x,7) = f(y,x,5)

f(y,x,8) = f(y,x,6)

f(y,x,0) = f(y,x,0)

f(y,x,3) = f(y,x,1)

else if (image(y,x) == corner_5) then

f(y,x,5) = f(y,x,7)

else if (image(y,x) == corner_6) then

f(y,x,8) = f(y,x,6)

else if (image(y,x) == corner_7) then

f(y,x,7) = f(y,x,5)

else if (image(y,x) == corner_8) then

f(y,x,6) = f(y,x,8)

end if

end do

end do

END SUBROUTINE boundaries

!==========================================================================

! Implement Bounce-back on upper/lower/left/rigth boundaries, Temperature

!==========================================================================

SUBROUTINE boundariesg(g,imaget)

USE D2Q9Const

USE cellConst

USE simParam, ONLY: xDim, yDim,th,tc

implicit none

integer, INTENT(IN):: imaget(yDim,xDim)

double precision, INTENT(INOUT):: g(yDim,xDim,0:8)
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integer:: i, x, y

do y= 1,yDim

do x= 1,xDim

!==========================================

!Hot wall

if (imaget(y,x) == wall_th) then

g(y,x,1) = th * (t(1)+ t(3))-g(y,x,3)

g(y,x,5) = th * (t(5)+ t(7))-g(y,x,7)

g(y,x,8) = th * (t(8)+ t(6))-g(y,x,6)

!==========================================

!Cold wall

else if (imaget(y,x) == wall_tc) then

g(y,x,6) = -g(y,x,8)

g(y,x,3) = -g(y,x,1)

g(y,x,7) = -g(y,x,5)

!========================================================

!A.A Mohamed LBM

! Adiabatica wall

!==========================================

else if (imaget(y,x) == wall_top) then

g(yDim,x,8) = g(yDim-1,x,8)

g(yDim,x,7) = g(yDim-1,x,7)

g(yDim,x,6) = g(yDim-1,x,6)

g(yDim,x,5) = g(yDim-1,x,5)

g(yDim,x,4) = g(yDim-1,x,4)

g(yDim,x,3) = g(yDim-1,x,3)

g(yDim,x,2) = g(yDim-1,x,2)

g(yDim,x,1) = g(yDim-1,x,1)

g(yDim,x,0) = g(yDim-1,x,0)

!==========================================

! Adiabatic wall

!==========================================

else if (imaget(y,x) == wall_bot) then

g(1,x,8) = g(2,x,8)

g(1,x,7) = g(2,x,7)

g(1,x,6) = g(2,x,6)

g(1,x,5) = g(2,x,5)

g(1,x,4) = g(2,x,4)

g(1,x,3) = g(2,x,3)

g(1,x,2) = g(2,x,2)

g(1,x,1) = g(2,x,1)

g(1,x,0) = g(2,x,0)

!*****************************************************************************

!Other configuration of Adiabatic boundary conditions g7=g5_n-1

!*****************************************************************************

!else if (imaget(y,x) == wall_top) then

!g(yDim,x,8) = g(yDim-1,x,6)

!g(yDim,x,7) = g(yDim-1,x,5)

!g(yDim,x,4) = g(yDim-1,x,2)

!else if (imaget(y,x) == wall_bot) then

!g(1,x,6) = g(2,x,8)

!g(1,x,5) = g(2,x,7)

!g(1,x,2) = g(2,x,4)

end if

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



Appendix E Natural convection in a closed cavity 179

end do

end do

END SUBROUTINE boundariesg

! ========================================================

! Streaming step

! ========================================================

SUBROUTINE stream(f)

USE simParam

implicit none

double precision, INTENT(INOUT):: f(yDim,xDim,0:8)

! right direction

f(:,2:xDim,1) = f(:,1:xDim-1,1)

! up direction

f(2:yDim,:,2) = f(1:yDim-1,:,2)

! left direction

f(:,1:xDim-1,3) = f(:,2:xDim,3)

! down direction

f(1:yDim-1,:,4) = f(2:yDim,:,4)

! up-right direction

f(2:yDim,2:xDim,5) = f(1:yDim-1,1:xDim-1,5)

! up-left direction

f(2:yDim,1:xDim-1,6) = f(1:yDim-1,2:xDim,6)

! down-left direction

f(1:yDim-1,1:xDim-1,7) = f(2:yDim,2:xDim,7)

! down-right direction

f(1:yDim-1,2:xDim,8) = f(2:yDim,1:xDim-1,8)

END SUBROUTINE stream

! ========================================================

! Streaming step, Temperature

! ========================================================

SUBROUTINE streamg(g)

USE simParam

implicit none

double precision, INTENT(INOUT):: g(yDim,xDim,0:8)

! right direction

g(:,2:xDim,1) = g(:,1:xDim-1,1)

! up direction

g(2:yDim,:,2) = g(1:yDim-1,:,2)

! left direction

g(:,1:xDim-1,3) = g(:,2:xDim,3)

! down direction

g(1:yDim-1,:,4) = g(2:yDim,:,4)

! up-right direction

g(2:yDim,2:xDim,5) = g(1:yDim-1,1:xDim-1,5)

! up-left direction

g(2:yDim,1:xDim-1,6) = g(1:yDim-1,2:xDim,6)-

! down-left direction

g(1:yDim-1,1:xDim-1,7) = g(2:yDim,2:xDim,7)

! down-right direction

g(1:yDim-1,2:xDim,8) = g(2:yDim,1:xDim-1,8)

END SUBROUTINE streamg

! ========================================================

! LBGK collision step

! ========================================================
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SUBROUTINE collide(f,fEq,omega,image,u,rho,gbeta,temp)

USE simParam, ONLY: xDim, yDim,tc

USE cellConst

USE D2Q9COnst, ONLY: t, v

implicit none

integer, INTENT(IN):: image(yDim,xDim)

double precision, INTENT(IN):: fEq(yDim,xDim,0:8), omega,u(yDim,xDim,0:1),gbeta

double precision, INTENT(IN):: rho(yDim,xDim),temp(yDim,xDim)

double precision, INTENT(INOUT):: f(yDim,xDim,0:8)

double precision:: force

integer:: x,y,i

do x = 1, xDim

do y = 1, yDim

do i = 0, 8

force = 3.0 * t(i) * gbeta * temp(y,x) * v(i,1) * rho(y,x)

if (( x .eq. 1) .or. (x .eq. xDim)) force = 0.0

if (( y .eq. 1) .or. (y .eq. yDim)) force = 0.0

if ((image(y,x) /= wall_1).or.(image(y,x) /= wall_2).or.(image(y,x) /=

wall_3).or.&

(image(y,x) /= wall_4).or.(image(y,x) /= corner_5).or.(image(y,x) /=

corner_6).or.&

&(image(y,x) /= corner_7).or.(image(y,x) /= corner_8)) then

f(y,x,i) = (1.0d0 - omega) * f(y,x,i) + omega * feq(y,x,i) + force

end if

end do

end do

end do

END SUBROUTINE collide

! ========================================================

! LBGK collision step, Temperature

! ========================================================

SUBROUTINE collideg(g,geq,omega_t,u,temp)

USE simParam, ONLY: xDim, yDim,tc

USE cellConst

USE D2Q9COnst, ONLY: t, v

implicit none

double precision, INTENT(IN):: omega_t,gEq(yDim,xDim,0:8),u(yDim,xDim,0:1)

double precision, INTENT(IN):: temp(yDim,xDim)

double precision, INTENT(INOUT):: g(yDim,xDim,0:8)

integer:: x,y,i

do x = 1, xDim

do y = 1, yDim

do i = 0, 8

g(y,x,i) = (1.0d0 - omega_t) * g(y,x,i) + omega_t * geq(y,x,i)

end do

end do

end do

END SUBROUTINE collideg

! ========================================================

! <<POSTPROCESSING>>

! Write coordinates, velocities, domain in vtk format

!calculation of coeffs.

! ========================================================

SUBROUTINE write_data(u,rho,tStep,f,iter,image,nu,cont,cont_2,cont_3,cont_4,
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omega,omega_t,gbeta,alfa,temp)

USE simParam

USE cellConst

USE D2Q9const,ONLY: v, opposite

implicit none

double precision, INTENT(IN)::u(yDim,xDim,0:1),f(yDim,xDim,0:8),nu,

rho(yDim,xDim),omega,omega_t,gbeta,alfa,temp(yDim,xDim)

integer, INTENT(INOUT):: iter,cont,cont_2,cont_3,cont_4

integer, INTENT(IN):: image(yDim,xDim),tStep

double precision ::d_loc_t,Cs,

snul,snur,rnul,rnur,avnl,avnr,tempe,cont5,rnul_extra,&

&snul_extra, avnl_extra

integer:: x,y,i

character (LEN=100):: file_name,filename, path1, pathTMP

character (LEN=100):: itercar,Ncar,Recar,Ucar,Macar, Racar

Cs = (1.0d0/sqrt(3.0d0))

d_loc_t = 0.0d0

cont_4 = 0

do y = 1 , yDim

do x = 1 , xDim

if ((image(y,x) /= wall_1).or.(image(y,x) /= wall_2).or.(image(y,x) /=

wall_3).or.(image(y,x) /= wall_4)) then

do i = 0 , 8

d_loc_t = d_loc_t + f(y,x,i)

end do

cont_4 = cont_4 +1

end if

end do

end do

if (d_loc_t >= yDim*xDim*2.0d0*rho(yDim,xDim)) then

write(*,*) ’stop’

STOP

end if

! ========================================================

! <<Data generation PARAVIEW ".vtk">>

! ========================================================

!if ((mod(tStep,iterper)==0) .and. (tStep >= tMax-40*iterper)) then

!if (mod(tStep,iterper)==0) then

if (mod(tStep,1000000)==0) then

iter = iter+1

write(file_name,’(a4,i5.4,a4)’) ’data’,iter,’.vtk’

write(path1,’(a43)’) ’/home/lattice/Documents/VTKs/data_termico/N’

write(itercar,’(i3)’)iter

if (xDim >= 100) then

write(Ncar,’(i3.2)’) xDim

else

write(Ncar,’(i2.2)’) xDim

end if

write(Racar,’(i5.3)’) int(Ra)

file_name = trim(file_name)

OPEN(unit=15,file=trim(path1)//trim(Ncar)//’’//’/Ra’//trim(Racar)//

’/’//file_name,STATUS=’unknown’)

write(15,’(a26)’)’# vtk DataFile Version 3.0’

write(15,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep
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write(15,’(a5)’)’ASCII’

write(15,’(a23)’)’DATASET STRUCTURED_GRID’

write(15,’(a10,2i6.2,a2)’)’DIMENSIONS’,xDim,yDim, ’ 1’

write(15,’(a7,i5,a6)’)’POINTS ’,xDim*yDim,’ float’

do y= 0 , (yDim-1)

do x= 0 , (xDim-1)

write(15,’(i6.1,i6.1,a2)’)x,y,’ 0’

end do

end do

write(15,*)

write(15,’(a11,i8)’)’POINT_DATA ’,xDim*yDim

write(15,’(a24)’)’SCALARS density FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y = 1, yDim

do x = 1, xDim

write(15,’(F31.16)’)rho(y,x)

end do

end do

!Dominio

write(15,’(a23)’)’SCALARS domain FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y=1, yDim

do x=1, xDim

write(15,’(i2.1)’) image(y,x)

end do

end do

write(15,*)

!Velocidades

write(15,’(a23)’)’VECTORS velocity float’

do y= 1 , yDim

do x= 1 , xDim

write(15,’(F23.6,F23.6,a2)’)u(y,x,0),u(y,x,1),’ 0’

end do

end do

write(15,’(a27)’)’SCALARS Temperature FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y = 1, yDim

do x = 1, xDim

write(15,’(F30.15)’)temp(y,x)

end do

end do

close(15)

! ========================================================

! <<Umax >> Horizontal mid plane

! ========================================================

if (tStep == tMax) then

!if (mod(tStep,10000)==0) then

write(file_name,’(a5,i5.4,a4)’) ’U_max’,iter,’.txt’

write(path1,’(a43)’) ’/home/lattice/Documents/VTKs/data_termico/N’

if (xDim >= 100) then

write(Ncar,’(i3.2)’) xDim

else

write(Ncar,’(i2.2)’) xDim

end if
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write(Racar,’(i5.3)’) int(Ra)

file_name = trim(file_name)

OPEN(unit=16,file=trim(path1)//trim(Ncar)//’’//’/Ra’//trim(Racar)//

’/Parametros’//’/’//file_name,STATUS=’unknown’)

write(16,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

do y = 1, yDim

x = xDim/2

write(16,’(i8,F12.7,F12.7)’) y, u(y,x,0)/ (alfa/xDim)

end do

close(16)

! ========================================================

! <<Vmax >> Vertical mid plane

! ========================================================

write(file_name,’(a5,i5.4,a4)’) ’V_max’,iter,’.txt’

write(path1,’(a43)’) ’/home/lattice/Documents/VTKs/data_termico/N’

if (xDim >= 100) then

write(Ncar,’(i3.2)’) xDim

else

write(Ncar,’(i2.2)’) xDim

end if

write(Racar,’(i5.3)’) int(Ra)

file_name = trim(file_name)

OPEN(unit=17,file=trim(path1)//trim(Ncar)//’’//’/Ra’//trim(Racar)//

’/Parametros’//’/’//file_name,STATUS=’unknown’)

write(17,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

do x = 1 ,xDim

y = yDim/2

write(17,’(i8,F12.7,F12.7)’) x, u(y,x,1) /(alfa/yDim)

end do

close(17)

write(file_name,’(a2,i5.4,a4)’) ’Nu’,iter,’.txt’

write(path1,’(a43)’) ’/home/lattice/Documents/VTKs/data_termico/N’

if (xDim >= 100) then

write(Ncar,’(i3.2)’) xDim

else

write(Ncar,’(i2.2)’) xDim

end if

write(Racar,’(i5.3)’) int(Ra)

file_name = trim(file_name)

OPEN(unit=18,file=trim(path1)//trim(Ncar)//’’//’/Ra’//trim(Racar)//

’/Parametros’//’/’//file_name,STATUS=’unknown’)

write(18,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

snul= 0.0

snur= 0.0

!******local Nusselt*****************************************

do y = 1,yDim

rnul = (temp(y,1)-temp(y,2))*(xDim)

rnul_extra = (temp(y,2)-temp(y,3))*(xDim)

rnur = (temp(y,xDim-1)-temp(y,xDim))*(xDim)

snul= snul + rnul

snul_extra= snul + rnul_extra

snur= snur + rnur

end do

! ========================================================
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! <<Average Nusselt>>

! ========================================================

avnl = snul/(xDim)

avnl_extra = snul_extra/(xDim)

avnr = snur/(xDim)

write(18,’(a5,a8,a12,a10)’) ’Ra ’,’ Nu_hot’,’ Nu_cool’,’ Nu_prm’

write(18,’(i5,a2,F8.4,a2,F8.4,a2,F8.4,F8.4)’) ra,’ ’, snul,’ ’, snur,’ ’,

avnl, avnl_extra

close(18)

! ========================================================

! <<Temperature mid plane >>

! ========================================================

write(file_name,’(a11,i5.4,a4)’) ’Temp_center’,iter,’.txt’

OPEN(unit=21,file=trim(path1)//trim(Ncar)//’’//’/Ra’//trim(Racar)//

’/Parametros’//’/’//file_name,STATUS=’unknown’)

write(21,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

x = xDim/2

y = yDim/2

write(21,’(i8,F12.7)’) x, temp(y,x)

close(21)

end if

write(*,*)’=================================’

write(*,*)’Parameters’

write(*,*)’=================================’

!write(*,*) ’Richardson number (Ri)= ’,Ri

!write(*,*)’Reynolds numbers (Re) = ’,Re

write(*,*) ’delta temp (T_hot-T_ref) = ’,th-tc

write(*,*) ’Rayleigh number (Ra) = ’,Ra

write(*,*) ’Prandtl number (Pr)= ’,Pr

!write(*,*) ’caract velocity (Umax) = ’,Umax

write(*,*)’================================= ’

write(*,*)’Lattice’

write(*,*)’================================= ’

write(*,*) ’omega = ’,omega

write(*,*) ’t = ’,(3.0d0*nu+0.5d0)

write(*,*) ’viscosity (nu)= ’,nu

write(*,*)’================================= ’

write(*,*)’ Lattice termico ’

write(*,*)’================================= ’

write(*,*) ’omega termico = ’,omega_t

write(*,*) ’t_temp= ’,(3.0d0*alfa+0.5d0)

write(*,*) ’Thermal diffusivity (alfa)= ’,alfa

write(*,*) ’gravity*Thermal exp coef = ’,gbeta

write(*,*)’================================= ’

write(*,*)’Densidad total= ’,d_loc_t

!write(*,*)’Mach number inicial (Ma) = ’, Umax/Cs

!write(*,*)’nusselt local = ’,snul

write(*,*)’================================= ’

end if

! ========================================================

! <<Temperature vs Tstep >>

! ========================================================
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if (mod(tStep,iterper)==0) then

write(file_name,’(a17)’) ’Temp_vs_Tstep.txt’

write(path1,’(a43)’) ’/home/lattice/Documents/VTKs/data_termico/N’

if (xDim >= 100) then

write(Ncar,’(i3.2)’) xDim

else

write(Ncar,’(i2.2)’) xDim

end if

write(Racar,’(i5.3)’) int(Ra)

file_name = trim(file_name)

OPEN(unit=20,file=trim(path1)//trim(Ncar)//’’//’/Ra’//

trim(Racar)//’/Parametros’//’/’//file_name,&

&STATUS=’unknown’, position = ’append’)

write(20,’(i8,F12.7)’) tStep , temp(yDim/2,xDim/2)

close(20)

end if

! ========================================================

! <<U vs Tstep >>

! ========================================================

if (mod(tStep,iterper)==0) then

write(file_name,’(a14)’) ’U_vs_Tstep.txt’

write(path1,’(a43)’) ’/home/lattice/Documents/VTKs/data_termico/N’

if (xDim >= 100) then

write(Ncar,’(i3.2)’) xDim

else

write(Ncar,’(i2.2)’) xDim

end if

write(Racar,’(i5.3)’) int(Ra)

file_name = trim(file_name)

OPEN(unit=21,file=trim(path1)//trim(Ncar)//’’//’/Ra’//

trim(Racar)//’/Parametros’//’/’//file_name,&

&STATUS=’unknown’, position = ’append’)

x = xDim/2

y = yDim/2

write(21,’(i8,F12.7,F12.7)’) tStep, u(y,x,0)

close(21)

end if

END SUBROUTINE write_data
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Appendix F

Mixed convection in an open

cavity

LBM code - Flow in a channel, Fortran 90.

ParaView software for post-processing data (.VTK format file)

MODULE cellConst

integer, parameter:: fluid = 0, wall = 1, inlet = 10 , outlet = 11

integer, parameter:: wall_a = 2, wall_hot = 3, inlet_temp = 4 , outlet_temp =

5, wall_cold = 6

END MODULE cellConst

MODULE D2Q9Const

! D2Q9 Weights

double precision,parameter:: t(0:8) =

(/4.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0,1.0d0/9.0d0&

&,1.0d0/36.0d0,1.0d0/36.0d0,1.0d0/36.0d0,1.0d0/36.0d0/)

!D2Q9 Directions

integer:: v(0:8,0:1)

integer:: opposite(0:8) = (/0,3,4,1,2,7,8,5,6/)

real:: Ma(0:8,0:8)

real:: D(0:8,0:8)

real:: Minvert(0:8,0:8)

real:: S(0:8,0:8)

real::SMinvert(0:8,0:8)

END MODULE D2Q9Const

MODULE simParam

integer, parameter:: yDim = 202

integer, parameter:: yDim_d = yDim/2

integer, parameter:: xDim = yDim * 2.5

integer, parameter:: iterper = 100

integer, parameter:: tMax = 10000000

double precision, parameter:: uMax = 0.02d0

double precision, parameter:: Re = 500

real, parameter:: Ri = 1.00

187
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double precision, parameter:: tc = 0.0d0

double precision, parameter:: th = 1.0d0

double precision, parameter:: Pr = 0.71d0

END MODULE simParam

!==================================================

!The main program

!==================================================

PROGRAM unsteady

USE omp_lib

USE simParam, ONLY: xDim, yDim, tMax,iterper

implicit none

double precision:: omega, time1, time2, timeTot, Cs,nu, alfa, omega_t, gbeta

double precision, dimension(:,:,:), allocatable:: f, fEq, u, meq, m, gEq, g

double precision, dimension(:,:), allocatable:: rho, uSqr, mom,temp

integer, dimension(:,:), allocatable:: image,imaget

integer:: tStep, iter, cont, cont_2, cont_3, cont_4

allocate(f(yDim,xDim,0:8))

allocate(fEq(yDim,xDim,0:8))

allocate(u(yDim,xDim,0:1))

allocate(uSqr(yDim,xDim))

allocate(rho(yDim,xDim))

allocate(image(yDim,xDim))

allocate(m(yDim,xDim,0:8))

allocate(meq(yDim,xDim,0:8))

allocate(g(yDim,xDim,0:8))

allocate(gEq(yDim,xDim,0:8))

allocate(imaget(yDim,xDim))

allocate(temp(yDim,xDim))

CALL computeOmega(omega,nu,Cs,alfa,gbeta,omega_t)

CALL constructImages(image,imaget,omega)

!’______________LOAD_ROUTINE______________________’

! CALL read_data(f,g,tStep,iter,u,rho,temp)

CALL initMacro(rho,u,uSqr,image,iter,cont,cont_2,cont_3,cont_4,tStep,temp,imaget)!

CALL computeFeq(fEq,rho,u,uSqr,gEq,temp)

CALL computemeq(mEq,rho,u,uSqr)

f = fEq

g = gEq

timeTot = 0.0d0

do tStep = tStep, tMax , 1

CALL CPU_TIME(time1)

CALL inletOutlet(f,rho,u,image,uSqr,g,temp,imaget)

CALL computeMacros(f,rho,u,uSqr,image,imaget,temp,g,gbeta)

CALL computeFeq(fEq,rho,u,uSqr,gEq,temp)

CALL computemeq(mEq,rho,u,uSqr)

CALL

collide(f,fEq,omega,image,u,rho,meq,uSqr,m,nu,g,gEq,temp,imaget,omega_t,gbeta)

CALL stream(f,g)

CALL boundaries(f,image,g,imaget)

CALL write_data(u,rho,tStep,f,iter,image,omega,nu,omega_t,temp,alfa,gbeta,imaget)

!’______________SAVE_ROUTINE______________________’

CALL save_data(f,g,tStep,iter,u,rho,temp)

CALL CPU_TIME(time2)

timeTot = timeTot + (time2-time1)

end do

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



Appendix F Mixed convection in an open cavity 189

write(*,*) dble(tMax) * (dble(yDim * xDim)) / timeTot ,’cells per second’

write(*,*) ’total time:’, timeTot, ’ seconds’

deallocate(f)

deallocate(fEq)

deallocate(u)

deallocate(uSqr)

deallocate(rho)

deallocate(image)

deallocate(m)

deallocate(meq)

deallocate(g)

deallocate(gEq)

deallocate(temp)

deallocate(imaget)

END PROGRAM unsteady

SUBROUTINE computeOmega(omega,nu,Cs,alfa,gbeta,omega_t)

USE simParam, ONLY: xDim,yDim,Re,Umax,yDim_d,obstR,Ri,Pr,tc,th

implicit none

double precision, INTENT(INOUT):: omega, nu,omega_t, alfa,gbeta

double precision :: Cs,Gr

Cs = (1.0d0/sqrt(3.0d0))

nu= (uMax * (dble(yDim_d-1))) / Re

omega = 1.0d0 / (3.0d0*nu+0.5d0)

alfa = nu / Pr

omega_t = 1.0d0 / (3.0d0*alfa+0.5d0)

gbeta = (uMax*uMax*Ri)/ (dble(yDim_d-1))

END SUBROUTINE computeOmega

!========================================================

!Construct an array the defines the flow geometry

!========================================================

SUBROUTINE constructImages(image,imaget,omega)

USE cellConst

USE simParam

USE D2Q9Const

implicit none

integer, INTENT(INOUT):: image(yDim,xDim),imaget(yDim,xDim)

double precision, INTENT(INOUT):: omega

integer:: x,y,i,j

double precision:: a

v(0:8,0) = (/0,1,0,-1,0,1,-1,-1,1/)

v(0:8,1) = (/0,0,1,0,-1,1,1,-1,-1/)

image = fluid

image(yDim/2:yDim,1)= inlet

image(yDim/2:yDim,xDim)= outlet

image(1:yDim/2,1:xDim/5)= wall

image(1:yDim/2,2*xDim/5:xDim)= wall

image(1,:) = wall

image(yDim,:)= wall

imaget(yDim/2:yDim,1)= inlet_temp

imaget(yDim/2:yDim,xDim)= outlet_temp

imaget(yDim,:)= wall_cold

imaget(1:yDim/2,1:xDim/5)= wall_a

imaget(1:yDim/2,2*xDim/5:xDim)= wall_a
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imaget(1,:)= wall_a

imaget(2:yDim/2-1,xDim/5)= wall_hot

!========================================================================

!MATRIX M

!========================================================================

Ma(0:8,0) = (/ 1, 1, 1, 1, 1,1, 1, 1, 1/)

Ma(0:8,1) = (/-4,-1,-1,-1,-1,2, 2, 2, 2/)

Ma(0:8,2) = (/ 4,-2,-2,-2,-2,1, 1, 1, 1/)

Ma(0:8,3) = (/ 0, 1, 0,-1, 0,1,-1,-1, 1/)

Ma(0:8,4) = (/ 0,-2, 0, 2, 0,1,-1,-1, 1/)

Ma(0:8,5) = (/ 0, 0, 1, 0,-1,1, 1,-1,-1/)

Ma(0:8,6) = (/ 0, 0,-2, 0, 2,1, 1,-1,-1/)

Ma(0:8,7) = (/ 0, 1,-1, 1,-1,0, 0, 0, 0/)

Ma(0:8,8) = (/ 0, 0, 0, 0, 0,1,-1, 1,-1/)

a = 1.0d0/36.0d0

!========================================================================

!MATRIX M^-1

!========================================================================

Minvert(0:8,0)=(/4.d0*a, -4.d0*a, 4.d0*a, 0.d0 , 0.d0 , 0.d0 , 0.d0 ,

0.d0 , 0.d0/)

Minvert(0:8,1)=(/4.d0*a, -1.d0*a, -2.d0*a, 6.d0*a, -6.d0*a, 0.d0 , 0.d0 ,

9.d0*a, 0.d0/)

Minvert(0:8,2)=(/4.d0*a, -1.d0*a, -2.d0*a, 0.d0 , 0.d0 , 6.d0*a, -6.d0*a,

-9.d0*a, 0.d0/)

Minvert(0:8,3)=(/4.d0*a, -1.d0*a, -2.d0*a, -6.d0*a, 6.d0*a, 0.d0 , 0.d0 ,

9.d0*a, 0.d0/)

Minvert(0:8,4)=(/4.d0*a, -1.d0*a, -2.d0*a, 0.d0*a, 0.d0*a, -6.d0*a, 6.d0*a,

-9.d0*a, 0.d0/)

Minvert(0:8,5)=(/4.d0*a, 2.d0*a, 1.d0*a, 6.d0*a, 3.d0*a, 6.d0*a, 3.d0*a,

0.d0*a, 9.d0*a/)

Minvert(0:8,6)=(/4.d0*a, 2.d0*a, 1.d0*a, -6.d0*a, -3.d0*a, 6.d0*a, 3.d0*a,

0.d0*a, -9.d0*a/)

Minvert(0:8,7)=(/4.d0*a, 2.d0*a, 1.d0*a, -6.d0*a, -3.d0*a, -6.d0*a, -3.d0*a,

0.d0*a, 9.d0*a/)

Minvert(0:8,8)=(/4.d0*a, 2.d0*a, 1.d0*a, 6.d0*a, 3.d0*a, -6.d0*a, -3.d0*a,

0.d0*a, -9.d0*a/)

!========================================================================

!MATRIX S

!========================================================================

!S(:) =(/1.0d0,1.40d0,1.40d0,1.0d0,1.20d0,1.0d0,1.20d0,tau,tau/)

S(0:8,0) = (/1.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,1) = (/0.d0, 1.4d0, 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,2) = (/0.d0, 0.d0 , 1.4d0, 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,3) = (/0.d0, 0.d0 , 0.d0 , 1.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,4) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 1.2d0, 0.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,5) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 1.d0, 0.d0 , 0.d0, 0.d0/)

S(0:8,6) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 1.2d0, 0.d0, 0.d0/)

S(0:8,7) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , omega,0.d0/)

S(0:8,8) = (/0.d0, 0.d0 , 0.d0 , 0.d0 , 0.d0 , 0.d0, 0.d0 , 0.d0, omega /)

END SUBROUTINE constructImages

!========================================================================

SUBROUTINE

initMacro(rho,u,uSqr,image,iter,cont,cont_2,cont_3,cont_4,tStep,temp,imaget)

USE simParam, ONLY: xDim, yDim, th,tc,uMax
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USE cellConst

implicit none

double precision, INTENT(INOUT):: rho(yDim,xDim), u(yDim,xDim,0:1),

uSqr(yDim,xDim),temp(yDim,xDim)

integer, INTENT(INOUT):: iter,cont,cont_2,cont_3,cont_4,tStep

integer, INTENT(IN):: image(yDim,xDim),imaget(yDim,xDim)

double precision:: uProf

integer:: y,x,i

iter = 0 ; tStep = 1

cont = 0 ; cont_2 = 0 ; cont_3 = 0 ; cont_4 = 0

do x = 1, xDim

do y = 1, yDim

if ((image(y,x) == wall).or.(x > xDim/5).and.(x < 2*xDim/5).and.(y < yDim/2)) then

u(y,x,0) = 0.0d0

u(y,x,1) = 0.0d0

else

u(y,x,0) = uMax

u(y,x,1) = 0.0d0

end if

if (imaget(y,x) == wall_hot) then

temp(y,x) = th

else

temp(y,x) = tc

end if

end do

end do

rho = 1.0d0

uSqr = u(:,:,0) * u(:,:,0) + u(:,:,1) * u(:,:,1)

END SUBROUTINE initMacro

!===================================================================

SUBROUTINE computeFeq(fEq,rho,u,uSqr,gEq,temp)

USE D2Q9COnst, ONLY: t, v

USE simParam, ONLY: xDim, yDim

implicit none

double precision, INTENT(IN):: rho(yDim,xDim), uSqr(yDim,xDim),

u(yDim,xDim,0:1),temp(yDim,xDim)

double precision, INTENT(INOUT):: fEq(yDim,xDim,0:8),gEq(yDim,xDim,0:8)

integer:: i, x, y

double precision:: uxy

do x = 1, xDim

do y = 1, yDim

do i = 0, 8

uxy = u(y,x,0) * v(i,0) + u(y,x,1) * v(i,1)

fEq(y,x,i) = t(i) * rho(y,x) * (1.0d0 + 3.0d0 * uxy + 4.5d0 * uxy * uxy - 1.5d0 *

uSqr(y,x))

gEq(y,x,i) = temp(y,x) * t(i) * (1.0d0 + 3.0d0 * uxy)

end do

end do

end do

END SUBROUTINE computeFeq

SUBROUTINE computemeq(mEq,rho,u,uSqr)

USE D2Q9COnst, ONLY: t, v

USE simParam, ONLY: xDim, yDim

USE omp_lib

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



192 Appendix F Mixed convection in an open cavity

implicit none

double precision, INTENT(IN):: rho(yDim,xDim), uSqr(yDim,xDim), u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: mEq(yDim,xDim,0:8)

integer:: i, x, y

double precision:: uxy

do x = 1, xDim

do y = 1, yDim

meq(y,x,0) =rho(y,x)

meq(y,x,1) =-2.0d0*rho(y,x) + 3.0d0*rho(y,x)*((u(y,x,0)*u(y,x,0) +

u(y,x,1)*u(y,x,1)))

meq(y,x,2) =rho(y,x) - 3.0d0 *rho(y,x)*(u(y,x,0)*u(y,x,0) + u(y,x,1)*u(y,x,1))

meq(y,x,3) =u(y,x,0)*rho(y,x)

meq(y,x,4) = -u(y,x,0)*rho(y,x)

meq(y,x,5) =u(y,x,1)*rho(y,x)

meq(y,x,6) = -u(y,x,1)*rho(y,x)

meq(y,x,7) = (u(y,x,0)*u(y,x,0)) - (u(y,x,1)*u(y,x,1))*rho(y,x)

meq(y,x,8) = (u(y,x,0)*u(y,x,1))*rho(y,x)

end do

end do

END SUBROUTINE computemeq

!================================================================

SUBROUTINE computeMacros(f,rho,u,uSqr,image,imaget,temp,g,gbeta)

USE simParam, ONLY: xDIm, yDim, tc, th

USE cellConst

USE D2Q9COnst, ONLY: t, v

USE omp_lib

implicit none

double precision, INTENT(IN):: f(yDim,xDim,0:8),g(yDim,xDim,0:8),gbeta

double precision, INTENT(INOUT):: u(yDim,xDim,0:1),rho(yDim, xDim),uSqr(yDim,

xDim),temp(yDim, xDim)

integer, INTENT(IN):: image(yDim,xDim),imaget(yDim,xDim)

integer:: x,y,i

double precision:: force

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == wall) then

u(y,x,0) = 0.0d0

u(y,x,1) = 0.0d0

else

rho(y,x) = f(y,x,0) + f(y,x,1) + f(y,x,2) + f(y,x,3) + f(y,x,4) + f(y,x,5) +

f(y,x,6) + f(y,x,7) + f(y,x,8)

do i = 0, 8

force = 3.0d0 * t(i) * gbeta * (temp(y,x)) * v(i,1) * rho(y,x)

u(y,x,0) = ((f(y,x,1) - f(y,x,3) + f(y,x,5) - f(y,x,6) - f(y,x,7) + f(y,x,8)) +

(force/2.0d0))/ rho(y,x)

u(y,x,1) = ((f(y,x,2) - f(y,x,4) + f(y,x,5) + f(y,x,6) - f(y,x,7) - f(y,x,8)) +

(force/2.0d0)) / rho(y,x)

uSqr(y,x) = u(y,x,0) * u(y,x,0) + u(y,x,1) * u(y,x,1)

end do

end if

if (imaget(y,x) == wall_hot) then

temp(y,x) = th

else if (imaget(y,x) == wall_cold)then

temp(y,x) = tc

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL STUDY OF THE HEAT AND MASS TRANSFER PROCESSES WITH THE LATTICE BOLTZMANN METHOD: LAMINAR MIXED 
CONVECTION IN A SQUARE OPEN C 
Javier Burgos Vergara 



Appendix F Mixed convection in an open cavity 193

else

temp(y,x) = g(y,x,0) + g(y,x,1) + g(y,x,2) + g(y,x,3) + g(y,x,4)+g(y,x,5) +

g(y,x,6) + g(y,x,7) + g(y,x,8)

end if

end do

end do

END SUBROUTINE computeMacros

!===========================================================

SUBROUTINE boundaries(f,image,g,imaget)

USE D2Q9Const

USE cellConst

USE simParam, ONLY: xDim, yDim,th,tc

USE omp_lib

implicit none

integer, INTENT(IN):: image(yDim,xDim),imaget(yDim,xDim)

double precision, INTENT(INOUT):: f(yDim,xDim,0:8),g(yDim,xDim,0:8)

double precision:: fTmp(0:8),gTmp(0:8)

integer:: i, x, y

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == wall) then

do i = 0, 8

fTmp(i) = f(y,x,opposite(i))

end do

do i = 0, 8

f(y,x,i) = fTmp(i)

end do

end if

if (imaget(y,x) == wall_hot) then

g(y,x,1) = th * (t(1) + t(3)) - g(y,x,3)

g(y,x,8) = th * (t(8) + t(6)) - g(y,x,6)

g(y,x,5) = th * (t(5) + t(7)) - g(y,x,7)

else if (imaget(y,x) == wall_cold) then

g(y,x,4) = -g(y,x,2)

g(y,x,8) = -g(y,x,6)

g(y,x,7) = -g(y,x,5)

else if (imaget(y,x) == wall_a) then

do i = 0, 8

gTmp(i) = g(y,x,opposite(i))

end do

do i = 0, 8

g(y,x,i) = gTmp(i)

end do

end if

end do

end do

END SUBROUTINE boundaries

!===============================================================

SUBROUTINE inletOutlet(f,rho,u,image,uSqr,g,temp,imaget)

USE cellConst, ONLY: inlet, outlet,inlet_temp, outlet_temp

USE simParam

USE D2Q9Const, ONLY: t, v

USE omp_lib

implicit none
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double precision, INTENT(INOUT):: f(yDim,xDim,0:8), u(yDim,xDim,0:1),

rho(yDim,xDim)

double precision, INTENT(INOUT):: g(yDim,xDim,0:8), temp(yDim,xDim)

double precision, INTENT(IN):: uSqr(yDim,xDim)

integer, INTENT(IN):: image(yDim,xDim),imaget(yDim,xDim)

double precision:: uProf, uxy(0:8)

integer:: x, y, i

do x = 1, xDim

do y = 1, yDim

if (image(y,x) == inlet) then !ZOU/He INTEL

u(y,x,0) = uMax

u(y,x,1) = 0.0d0

CALL inletZou(f(y,x,:),u(y,x,:),rho(y,x))

else if (image(y,x) == outlet) then !OPEN BOUNDARY CONDITION

do i = 0, 8

!if ((i == 3) .or. (i == 7) .or. (i == 6)) then

uxy(i) = u(y,x-1,0) * v(i,0) + u(y,x-1,1) * v(i,1)

f(y,x,i) = t(i) * rho(y,x-1) * (1.0d0 + 3.0d0 * uxy(i) + 4.5d0 * uxy(i) * uxy(i)

- 1.5d0 * uSqr(y,x-1))

!end if

end do

end if

if (imaget(y,x) == inlet_temp) then

temp(y,x) = 0.0d0

g(y,x,1) = - g(y,x,3)

g(y,x,5) = - g(y,x,7)

g(y,x,8) = - g(y,x,6)

else if (imaget(y,x) == outlet_temp) then

g(y,x,7) = 2 * g(y,x-1,7) - g(y,x-2,7)

g(y,x,6) = 2 * g(y,x-1,6) - g(y,x-2,6)

g(y,x,3) = 2 * g(y,x-1,3) - g(y,x-2,3)

end if

end do

end do

CONTAINS

!!!=========================================================

!!!!Zou/He boundary on inlet

!!!=========================================================

SUBROUTINE inletZou(f,u,rho)

implicit none

double precision, INTENT(INOUT):: f(0:8),rho

double precision, INTENT(IN):: u(0:1)

double precision:: fInt, fInt2

fInt = f(0) + f(2) + f(4)

fInt2 = f(3) + f(6) + f(7)

rho= (fInt + 2.0d0 * fInt2) / (1.0d0 - u(0))

CALL zouWestWall(f,rho,u)

END SUBROUTINE inletZou

SUBROUTINE zouWestWall(f,rho,u)

implicit none

double precision, INTENT(INOUT):: f(0:8)

double precision, INTENT(IN):: rho, u(0:1)

double precision:: fDiff, rhoUx, rhoUy

fDiff = 0.5d0 * (f(2) - f(4))
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rhoUx = rho * u(0) / 6.0d0

rhoUy = 0.5d0 * rho * u(1)

f(1) = f(3) + 4.0d0 * rhoUx

f(5) = f(7) - fDiff + rhoUx + rhoUy

f(8) = f(6) + fDiff + rhoUx - rhoUy

END SUBROUTINE zouWestWall

END SUBROUTINE inletOutlet

!===============================================================

SUBROUTINE stream(f,g)

USE simParam

USE cellConst

implicit none

double precision, INTENT(INOUT):: f(yDim,xDim,0:8),g(yDim,xDim,0:8)

f(:,2:xDim,1) = f(:,1:xDim-1,1)

f(2:yDim,:,2) = f(1:yDim-1,:,2)

f(:,1:xDim-1,3) = f(:,2:xDim,3)

f(1:yDim-1,:,4) = f(2:yDim,:,4)

f(2:yDim,2:xDim,5) = f(1:yDim-1,1:xDim-1,5)

f(2:yDim,1:xDim-1,6) = f(1:yDim-1,2:xDim,6)

f(1:yDim-1,1:xDim-1,7) = f(2:yDim,2:xDim,7)

f(1:yDim-1,2:xDim,8) = f(2:yDim,1:xDim-1,8)

g(:,2:xDim,1) = g(:,1:xDim-1,1)

g(2:yDim,:,2) = g(1:yDim-1,:,2)

g(:,1:xDim-1,3) = g(:,2:xDim,3)

g(1:yDim-1,:,4) = g(2:yDim,:,4)

g(2:yDim,2:xDim,5) = g(1:yDim-1,1:xDim-1,5)

g(2:yDim,1:xDim-1,6) = g(1:yDim-1,2:xDim,6)

g(1:yDim-1,1:xDim-1,7) = g(2:yDim,2:xDim,7)

g(1:yDim-1,2:xDim,8) = g(2:yDim,1:xDim-1,8)

END SUBROUTINE stream

!=======================================================

!LBGK collision step

!========================================================

SUBROUTINE

collide(f,fEq,omega,image,u,rho,meq,uSqr,m,nu,g,gEq,temp,imaget,omega_t,gbeta)

USE simParam, ONLY: xDim, yDim

USE cellConst

USE D2Q9Const, ONLY: Ma, Minvert,S,SMinvert,D,v,t

USE omp_lib

implicit none

integer, INTENT(IN):: image(yDim,xDim),imaget(yDim,xDim)

double precision, INTENT(IN):: fEq(yDim,xDim,0:8),

omega,u(yDim,xDim,0:1),uSqr(yDim,xDim),gEq(yDim,xDim,0:8)

double precision, INTENT(IN)::

rho(yDim,xDim),meq(yDim,xDim,0:8),temp(yDim,xDim),omega_t,gbeta

double precision, INTENT(INOUT)::

f(yDim,xDim,0:8),nu,m(yDim,xDim,0:8),g(yDim,xDim,0:8)

double precision:: mom ,sumb, a, sume, tau, s7,s8

integer:: x,y,i,j,k

double precision:: force

do x = 1, xDim

do y = 1, yDim

do i = 0,8

mom = 0.0d0
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do k = 0,8

mom = mom + Ma(k,i) * f(y,x,k)

end do

m(y,x,i) = mom

end do

end do

end do

do i = 0,8

do j = 0,8

SMinvert(j,i) = 0.0d0

do k = 0,8

SMinvert(j,i) = SMinvert(j,i) + ( Minvert(k,i) * S(j,k))

end do

end do

end do

do x = 1, xDim

do y = 1, yDim

do i = 0, 8

force = 3.0d0 * t(i) * gbeta * (temp(y,x)) * v(i,1) * rho(y,x)

sume = 0.0d0

do k = 0,8

sume = sume + SMinvert(k,i) * ( m(y,x,k) - meq(y,x,k))

end do

if (image(y,x) /= wall) then

f(y,x,i) = (f(y,x,i) - sume ) + force

end if

end do

if (imaget(y,x) /= wall_a) then

do i = 0, 8

g(y,x,i) = (1.0d0 - omega_t) * g(y,x,i) + omega_t * geq(y,x,i)

end do

end if

end do

end do

END SUBROUTINE collide

!<<POSTPROCESSING>>

SUBROUTINE

write_data(u,rho,tStep,f,iter,image,omega,nu,omega_t,temp,alfa,gbeta,imaget)

USE simParam

USE cellConst

USE D2Q9const,ONLY: v, opposite

USE omp_lib

implicit none

double precision, INTENT(IN)::

u(yDim,xDim,0:1),f(yDim,xDim,0:8),rho(yDim,xDim),omega,omega_t,temp(yDim,xDim)

double precision, INTENT(IN):: gbeta,alfa

integer, INTENT(INOUT):: iter

integer, INTENT(IN):: image(yDim,xDim),tStep,imaget(yDim,xDim)

double precision, INTENT(IN):: nu

double precision :: d_loc_x,d_loc_y, d_loc_t,Cs,

snul,snur,rnul,rnur,avnl,avnr,teta1,teta2,tempe,cont5,rnul_extra,&

&snul_extra, avnl_extra

integer:: x,y,i,cont_4

character (LEN=100):: file_name,filename, path1, pathTMP
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character (LEN=100):: itercar,Ncar,Recar,Ucar,Macar, Racar, Ricar

!========================================================

!<<PARAVIEW Generator".vtk">>

if (mod(tStep,1000)==0) then

iter = iter+1

write(file_name,’(a4,i5.4,a4)’) ’data’,iter,’.vtk’

write(path1,’(a42)’) ’/home/lattice/Documents/VTKs/T_2posicion/N’

write(itercar,’(i3)’)iter

write(Ncar,’(i3.2)’) xDim

write(Racar,’(i6.3)’) int(Ra)

write(Recar,’(i3.3)’) int(Re)

write(Ricar,’(F4.2)’) (Ri)

write(Ucar,’(F6.4)’) (uMax)

file_name = trim(file_name)OPEN(unit=15,file=trim(path1)//trim(Ncar)//’’//’/Re’//

trim(Recar)//’’//’/Ri’//trim(Ricar)//’/’//file_name,STATUS=’unknown’)

OPEN(unit=15,file=trim(path1)//trim(Ncar)//’’//’/Re’//trim(Recar)//&

&’’//’/Ri’//trim(Ricar)//’’//’/uMax’//trim(Ucar)//’/’//file_name,STATUS=’unknown’)

write(15,’(a26)’)’# vtk DataFile Version 3.0’

write(15,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

write(15,’(a5)’)’ASCII’

write(15,’(a23)’)’DATASET STRUCTURED_GRID’

write(15,’(a10,2i6.2,a2)’)’DIMENSIONS’, xDim, yDim, ’ 1’

write(15,’(a7,i8,a6)’)’POINTS ’,xDim*yDim,’ float’

do y= 0 , (yDim-1)

do x= 0 , (xDim-1)

write(15,’(i6.1,i6.1,a2)’)x,y,’ 0’

end do

end do

write(15,*)

write(15,’(a11,i8)’)’POINT_DATA ’,xDim*yDim

!Dominio

write(15,’(a23)’)’SCALARS domain FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y=1, yDim

do x=1, xDim

write(15,’(i2.1)’) image(y,x)

end do

end do

!Velocidades

write(15,’(a23)’)’VECTORS velocity float’

do y= 1 , yDim

do x= 1 , xDim

write(15,’(F23.6,F23.6,a2)’)u(y,x,0),u(y,x,1),’ 0’

end do

end do

write(15,’(a27)’)’SCALARS Temperature FLOAT 1’

write(15,’(a20)’)’LOOKUP_TABLE default’

do y = 1, yDim

do x = 1, xDim

write(15,’(F30.15)’)temp(y,x)

end do

end do

write(15,’(a24)’)’SCALARS density FLOAT 1’
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write(15,’(a20)’)’LOOKUP_TABLE default’

do y = 1, yDim

do x = 1, xDim

write(15,’(F30.15)’)rho(y,x)

end do

end do

close(15)

write(*,*)’=================================’

write(*,*)’Input parameters ’

write(*,*)’=================================’

write(*,*) ’Richardson number (Ri)= ’,Ri

write(*,*)’Reynolds numbers (Re) = ’,Re

write(*,*) ’Rayleigh number (Ra) = ’,Ra

write(*,*) ’Prandtl number (Pr) = ’,Pr

write(*,*) ’caract velocity (Umax) = ’,Umax

write(*,*) ’omega = ’,omega

write(*,*) ’t = ’,(3.0d0*nu+0.5d0)

write(*,*) ’viscosity (nu)= ’,nu

write(*,*) ’omega termico = ’,omega_t

write(*,*) ’t_termico = ’,(3.0d0*alfa+0.5d0)

write(*,*) ’Thermal diffusivity (alfa)= ’,alfa

write(*,*) ’gravity*Thermal exp coef = ’,gbeta

write(*,*)’================================= ’

write(*,*)’Densidad total= ’,d_loc_t

write(*,*)’================================= ’

end if

!======================================================

!<<U vs Tstep punto espec >>

!========================================================

if (mod(tStep,1)==0) then

write(file_name,’(a5)’) ’U.txt’

write(path1,’(a42)’) ’/home/lattice/Documents/VTKs/T_2posicion/N’

write(Ncar,’(i3.2)’) xDim

write(Recar,’(i3.3)’) int(Re)

write(Ricar,’(F4.2)’) (Ri)

write(Ucar,’(F6.4)’) (uMax)

file_name = trim(file_name)

OPEN(unit=20,file=trim(path1)//trim(Ncar)//’’//’/Re’//trim(Recar)//

’’//’/Ri’//trim(Ricar)//’’//&

&’/uMax’//trim(ucar)//’/Parametros’//’/’//file_name,STATUS=’unknown’,position

=’append’)

y = 3*yDim/8

x = xDim/5+ 10

!WRITE(*,*) 3*yDim/8

write(20,’(i8,F18.7)’) tStep , u(y,x,0)

close(20)

write(file_name,’(a6)’) ’Nu.txt’

write(path1,’(a42)’) ’/home/lattice/Documents/VTKs/T_2posicion/N’

write(itercar,’(i3)’)iter

write(Ncar,’(i3.2)’) xDim

write(Recar,’(i3.3)’) int(Re)

write(Ricar,’(F4.2)’) (Ri)

write(Ucar,’(F6.4)’) (uMax)

file_name = trim(file_name)
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Appendix F Mixed convection in an open cavity 199

OPEN(unit=18,file=trim(path1)//trim(Ncar)//’’//’/Re’//trim(Recar)//

’’//’/Ri’//trim(Ricar)//’’//&

&’/uMax’//trim(ucar)//’/Parametros’//’/’//file_name,STATUS=’unknown’,position

=’append’)

!write(18,’(a5,i5,a7,i6.1)’)’iter ’,iter,’ total ’,tStep

snul= 0.0

snur= 0.0

!!******local Nusselt*****************************************

do y = 2,yDim/2-1

rnul = (temp(y,xDim/5) - temp(y,xDim/5+1))*( float(yDim_d) )

snul= snul + rnul

end do

!!<<Nusselt Promedio >>

avnl = snul/(ABS(2-yDim/2-1))

write(18,’(i8,F12.7)’) tStep, avnl

!write(18,’(F5.2,a3,F8.4,a3,F8.4)’) Ri,’ ’, snul,’ ’,avnl

close(18)

end if

END SUBROUTINE write_data

SUBROUTINE read_data(f,g,tStep,iter,u,rho,temp)

USE simParam

implicit none

double precision, INTENT(INOUT)::

f(yDim,xDim,0:8),g(yDim,xDim,0:8),u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: temp(yDim,xDim),rho(yDim,xDim)

integer, INTENT(INOUT):: tStep, iter

integer:: x,y,i

character(100):: cwd

call getcwd(cwd)

open(96,file=trim(cwd)//’/save/save_2.dat’)

write(*,*) ’reading file =save_2.dat’

!open(96,file=trim(cwd)//’/save/save_1.dat’)

!write(*,*) ’reading file = save_1.dat’

read(96,*) tStep, iter

read(96,*)

do y = 1,yDim

do x = 1,xDim

do i = 0,8

read(96,*) f(y,x,i), g(y,x,i),u(y,x,0),u(y,x,1),rho(y,x),temp(y,x)

end do

end do

end do

close(96)

END SUBROUTINE read_data

SUBROUTINE save_data(f,g,tStep,iter,u,rho,temp)

USE simParam

implicit none

double precision, INTENT(IN):: f(yDim,xDim,0:8),g(yDim,xDim,0:8),u(yDim,xDim,0:1)

double precision, INTENT(INOUT):: temp(yDim,xDim),rho(yDim,xDim)

integer, INTENT(IN):: tStep, iter

integer:: x,y,i

character(100):: cwd

call getcwd(cwd)

if (mod(tStep,10000)==0) then
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open(69,file=trim(cwd)//’/save/save_2.dat’)

write(*,*) ’writing at tstep and file =’, tstep, ’save_2.dat’

else if (mod(tStep,20000)==10000) then

open(69,file=trim(cwd)//’/save/save_1.dat’)

write(*,*) ’writing at tstep and file =’, tstep, ’save_1.dat’

end if

if (mod(tStep,10000)==0) then

write(69,*) tStep, iter

write(69,*)

do y = 1,yDim

do x = 1,xDim

do i = 0,8

write(69,*) f(y,x,i), g(y,x,i),u(y,x,0),u(y,x,1),rho(y,x),temp(y,x)

end do

end do

end do

close(69)

end if

END SUBROUTINE save_data
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