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Abstract

Breast cancer is one of the most dangerous diseases that attack women.

Computer-aided diagnosis systems may help to detect breast cancer early and reduce

mortality. This thesis proposes several advanced computer methods for analyzing

breast cancer images. We analyze breast cancer in three imaging modalities:

mammography, ultrasonography and thermography. Our analysis includes

mass/normal breast tissue classification, benign/malignant tumor classification

in mammograms and ultrasound images, nipple detection in thermograms,

mammogram image registration and analysis of the evolution of breast tumors.

We studied the performance of various texture analysis methods so that the number

of false positives in breast cancer detection could be reduced. We considered

such well-known texture analysis methods as local binary patterns, histogram of

oriented gradients, co-occurrence matrix features and Gabor filters, and proposed

two texture descriptors: uniform local directional pattern and fuzzy local directional

pattern. We also studied the effect of factors such as pixel resolution, integration

scale, preprocessing and feature normalization on the performance of these texture

methods for tumor classification. Finally, we used super-resolution approaches to

improve the performance of texture analysis methods when classifying breast tumors

in ultrasound images. The methods proposed discriminated between different

tissues, and significantly improve the analysis of breast cancer.

For the analysis of breast cancer in thermograms, we propose an unsupervised,

automatic method for detecting nipples that is accurate, simple and fast. To analyze

the evolution of breast cancer, we propose a temporal mammogram registration

method based on the curvilinear coordinates. We also propose a method for

quantifying and visualizing the evolution of breast tumors in patients undergoing

medical treatment that uses flow fields, ordered weighted averaging aggregation

operators and strain tensors. The proposed method quantifies and visualizes breast

tumor changes and it may help physicians to plan treatment. Overall, the methods

proposed in this thesis improve the performance of the state-of-the-art approaches
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and may help to improve the diagnosis of breast cancer.

Keywords: Breast Cancer, Benign, Malignant, Mammogram, Ultrasound,

Thermography, Computer-aided Diagnosis System, Feature Extraction, Texture

Methods, Classification, Super-Resolution, Registration, Optical Flow.
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CHAPTER1

Introduction

1.1 Motivation

Breast cancer is one of the most dangerous diseases because it attacks women in

their 40s worldwide. According to European Union statistics, breast cancer is the

leading cause of cancer death (Malvezzi et al., 2015), and 90800 breast cancer deaths

are predicted in 2015 (14.22 mortality rate for 2015 vs. 15.85 for 2009 per 100,000

population). Death rates from breast cancer have decreased since 1989, with a big

reduction in women younger than 50. This reduction is a result of earlier detection

through screening with computer-aided diagnosis (CAD) systems. Many countries

(e.g. Spain and the UK) have established regular screening programs for their women

in an attempt to detect the early signs of breast cancer, in which the screening is

usually performed every two years.

Physicians usually order mammograms (X-ray images of the breast) to help in their

3
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4 Chapter 1. Introduction

diagnosis of breast cancer, especially to detect tumours that cannot be easily felt.

The common risk factors of breast cancer are age, family profile, genetics and breast

density. Breast density, which represents the amount of dense tissue in the breast,

is regarded as one of the strongest risk factors of breast cancer (Lokate et al., 2010).

The higher the breast density is, the higher the probability of developing breast

cancer.

Mammograms are considered to be the best method for early detection of breast

cancer. However, even though a breast mammogram may show suspicious regions, it

cannot in itself prove that an abnormal area is cancerous. If a mammogram presents a

suspicion of cancer, a biopsy should be performed. This involves extracting a sample

from a suspicious breast tissue which is then analyzed under a microscope. Biopsies

are expensive (1,000 to 5,000 dollars1), painful and a psychological burden for the

patient. Thus, a reduction in the number of false positives (mammograms interpreted

as abnormal by a CAD system when they are actually normal) would yield a huge

reduction in the cost of diagnosing breast cancer. In practice, several methods have

been used as an adjunct to mammography, such as ultrasound, magnetic resonance

and infrared images.

In the last three decades, various CAD systems have been proposed for automatic

breast mass detection using computer vision and machine learning techniques and

the advances in breast cancer diagnosis and CAD systems have led to a 30−50% fall

in mortality in several countries. These methods can be classified as supervised or

unsupervised. In the supervised methods, which are more accurate, feature vectors

are extracted from the regions of interest (ROIs) . The extracted features can be

related to texture, statistic, position and geometry. Fig. 1.1 presents the main

steps in the breast cancer CAD system: ROIs extraction, feature extraction and

classification. The normal and mass regions represent the most interesting ROIs in

breast images. The extracted features are used to train a model, which is used to

predict the class of unknown instances. Unfortunately, supervised methods usually

present a high number of false positive detections. In addition, physicians have few

1http://health.costhelper.com/biopsy.html
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Figure 1.1: The main steps in a breast cancer CAD system

computer programs available to help them predict the pathological response and

adjust the medical treatment so that it has the intended effects. For these reasons,

this PhD thesis focuses on making a useful contribution to improving the performance

of breast cancer CAD systems. Our research focuses on analyzing breast cancer in

mammograms, ultrasound and infrared images, and we study the evolution of breast

tumors using image registration and optical flow methods.

1.2 Thesis objectives

The main objectives of this thesis are:

1. To analyze breast cancer in mammograms. We classify breast tissue into

normal or abnormal, and breast tumors into benign or malignant, and estimate

breast density. To carry out these studies, we analyze the performance of

several CAD systems, feature extraction and classification methods.

2. To evaluate and improve the performance of texture analysis methods

in classifying breast tissues in ultrasound images (normal/abnormal and

benign/malignant).

3. To propose CAD systems to analyze breast tissue in infrared images

(thermograms).

4. To analyze the evolution of breast tumors in temporal mammograms using

motion analysis methods.
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6 Chapter 1. Introduction

1.3 Contributions

The main contributions of this thesis are the following:

1. We analyze the performance of several texture analysis method in classifying

breast tissues in mammograms into normal or abnormal. We propose several

combinations of texture analysis methods and classifiers to improve the

classification results. We also propose a new texture analysis method, called

uniform local directional pattern (ULDP) to analyze the abnormality of breast

tissues and estimate breast tissue density. Moreover, we analyze the impact of

pixel resolution, patch size, preprocessing and feature normalization on texture

analysis when classifying tumors into benign or malignant.

The results of the previous studies have been published in the following

journals:

• Mohamed Abdel-Nasser, Hatem A. Rashwan, Domenec Puig, Antonio

Moreno, “Analysis of tissue abnormality and breast density in

mammographic images using a uniform local directional pattern,” Experts

Systems with Applications, 42(24): 9499-9511 (2015). Impact Factor: 2.24

(Q1).

• Mohamed Abdel-Nasser, Antonio Moreno, Domenec Puig, “Towards Cost

Reduction of Breast Cancer Diagnosis using Mammography Texture

Analysis,” Journal of Experimental & Theoretical Artificial Intelligence,

28(1-2): 385-402 (2016). Impact Factor: 1.00 (Q3).

• Mohamed Abdel-Nasser, Jaime Melendez, Antonio Moreno, Domenec

Puig, “The impact of pixel resolution, integration scale, preprocessing

and feature normalization on texture analysis for mass classification in

mammograms,” International Journal of Optics (in press). SCImago

Journal Rank: 0.3 (Q3).

Preliminary work on improving the performance of texture method for mass

detection in mammograms has been presented in the following book chapter:

• Mohamed Abdel-Nasser, Domenec Puig, Antonio Moreno, “Improvement
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of Mass Detection In Breast X-Ray Images Using Texture Analysis

Methods,” Artificial Intelligence Research and Development: Recent

Advances and Applications, vol. 269, pp. 159-168, IOS press, 2014.

2. We propose a fuzzy version of ULDP, called fuzzy local directional pattern

(FLDP) to cope with the noise and fuzzy regions that may appear in ultrasound

images and mammograms. We also propose the use of image super-resolution

to improve the performance of texture analysis methods when classifying

breast tumors in ultrasound images. We show that our super-resolution-based

approach improves the performance of texture methods and thus outperforms

the state of the art in benign/malignant tumor classification.

The results of the previous study are under review in the following journal:

• Mohamed Abdel-Nasser, Jaime Melendez, Antonio Moreno, Osama

A. Omer, Domenec Puig, “Breast tumor classification in ultrasound

images using texture analysis and super-resolution methods,” Engineering

Applications of Artificial Intelligence. Impact factor: 2.21 (Q1).

Preliminary work on improving the performance of the texture method with

ultrasound images has been presented at the following international conference:

• Mohamed Abdel-Nasser, Domenec Puig, Antonio Moreno, Adel

Saleh, Joan Marti, Luis Martin, Anna Magarolas, “Breast Tissue

Characterization in X-Ray and Ultrasound Images using Fuzzy Local

Directional Patterns and Support Vector Machines,” Proceedings of

the 10th International Conference on Computer Vision Theory and

Applications (VISAPP2015), Vol. 1, pp. 387-394, 2015. Core C.

3. We propose an automatic, accurate and fast method for detecting nipples in

thermograms. The main stages in the method proposed are: human body

segmentation, determination of nipple candidates using adaptive thresholding

and detecting the nipples using a proposed nipple selection algorithm.

The results of the previous study are under review in the following journal:

• Mohamed Abdel-Nasser, Adel Saleh, Antonio Moreno, Domenec Puig,

“Automatic nipple detection in thermograms using image processing and
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8 Chapter 1. Introduction

anatomical information,” Experts Systems with Applications. Impact

Factor: 2.24 (Q1).

4. A temporal mammogram registration method is proposed in this thesis. It is

based on the curvilinear coordinates, which are used to cope with both global

and local deformations in the breast area.

The results of the previous study have been published in the following journal:

• Mohamed Abdel-Nasser, Antonio Moreno, Domenec Puig, “Temporal

mammogram image registration using optimized curvilinear coordinates,”

Computer Methods and Programs in Biomedicine, 127, pages 1-14 (2016).

Impact factor: 1.9 (Q1).

5. We propose a method for quantifying and visualizing the evolution of breast

tumors in patients undergoing medical treatments with flow fields and strain

tensors. The method determines the displacement fields between each follow-up

mammogram and its baseline. The resulting displacement fields are then used

to calculate the strain tensors.

The results of the previous study have been published in the following journal:

• Mohamed Abdel-Nasser, Hatem A. Rashwan, Antonio Moreno, Luis

Martin, Meritxell Arenas, Anna Magarolas, Lorena Diez-Presa, Joan

Marti, Domenec Puig, “Breast Cancer Development Analysis In

Follow-Up Digital Mammograms Through Anatomical-Based Variational

Optical Flow: Preliminary Study,” International Journal of Computer

Assisted Radiology and Surgery, Vol. 10 (Suppl 1): S1-S312. Impact

factor: 1.71 (Q2).

• Mohamed Abdel-Nasser, Antonio Moreno, Hatem A. Raswan, Domenec

Puig, “Analyzing the evolution of breast tumors using flow fields and

strain tensors,” Pattern Recognition Letters (under review). Impact

factor: 1.55 (Q2).

Preliminary work on this topic has been presented in the following book

chapter:

• Mohamed Abdel-Nasser, Antonio Moreno, Domenec Puig, “Analysis
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of the evolution of breast tumours using strain tensors,” Artificial

Intelligence Research and Development: Proceedings of the 18th

International Conference of the Catalan Association for Artificial

Intelligence, vol. 277, pp. 237-246, IOS press, 2015.

1.4 Thesis organization

The thesis is divided into the following six parts:

• Part I: Introduction

– Chapter 1: Introduction

This chapter introduces breast cancer CAD systems. It starts with the

motivation behind the thesis and the contributions it makes to improving

cancer CAD systems.

– Chapter 2: Background

In this chapter we describe the background to breast cancer screening

methods, the stages in the breast cancer CAD system, CAD evaluation,

motion analysis methods and breast cancer databases.

• Part II: Analysis of breast cancer in mammograms

– Chapter 3: Mass analysis in mammograms using texture methods

In this chapter we compare several texture analysis methods for breast

mass detection. To improve mass detection rates, we propose using two

combination schemes. Firstly, we concatenate the best texture analysis

methods. Secondly, we use the classifier voting technique to combine the

predictions given by the best methods.

– Chapter 4: Analysis of tissue abnormality and breast density in

mammographic images using a uniform local directional pattern

This chapter proposes a CAD system to classify breast tissue into normal

or mass, and to estimate the breast density. We propose the ULDP

descriptor for feature extraction. ULDP encodes a neighborhood in

the breast region based on its edge responses, in addition to spatial
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10 Chapter 1. Introduction

information.

– Chapter 5: The impact of image resolution, patch size, preprocessing and

feature normalization on texture analysis for tumor classification

In this chapter we study the impact of factors such as pixel resolution,

integration scale, preprocessing and feature normalization on the

performance of texture methods when applied to tumor classification.

• Part III: Analysis of breast cancer in ultrasound images

– Chapter 6: Breast tissue characterization in ultrasound images using fuzzy

local directional patterns

In this chapter we propose the fuzzy local directional patterns (FLDP)

for breast tissue characterization. FLDP describes each pixel in a given

image by its edge responses and makes use of fuzzy membership functions.

– Chapter 7: Breast tumor classification in ultrasound images using texture

analysis and super-resolution methods

To improve the performance of texture methods when applied to tumor

classification in ultrasound images, this chapter proposes the use of a

super-resolution approach that exploits the complementary information

provided by multiple images of the same target. The proposed CAD

system consists of four stages: super-resolution computation, extraction

of the region of interest (ROI), feature extraction and classification.

• Part IV: Analysis of breast cancer in infrared images

– Chapter 8: Automatic nipple detection in thermograms using image

processing and anatomical information

In this chapter we propose an automatic, accurate and real-time method

to detect nipples in infrared images (thermograms). The main stages

of the method are: human body segmentation, determination of nipple

candidates using adaptive thresholding and finally nipple detection using

rules derived from the anatomical structure of the human body that

appear in thermograms.

• Part V: Analysis of temporal evolution of breast cancer
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– Chapter 9: Temporal mammogram image registration using optimized

curvilinear coordinates

This chapter proposes a registration method for aligning temporal

mammograms. It uses a curvilinear coordinate system to align the

mammograms. In this way the system uses anatomical-driven coordinates

instead of Cartesian coordinates, which ignore the anatomical structure

of the breast.

– Chapter 10: Analyzing the evolution of breast tumors using flow fields and

strain tensors

In this chapter we propose a method for quantifying and visualizing

the changes in breast tumors in patients undergoing medical treatment

through flow fields and strain. It determines the displacement fields

between each follow-up mammogram and its baseline. The resulting

displacement fields are then used to calculate the strain tensors.

• Part VI: Conclusion

– Chapter 11: Concluding remarks.

This chapter presents the conclusions of the thesis and some lines of future

research.
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CHAPTER2

Background

2.1 Introduction

Several screening methods have been used for the early detection of breast cancer, for

example, mammography, ultrasonography and magnetic resonance imaging. Several

CAD systems have been proposed for analyzing breast cancer images using computer

vision, pattern recognition and machine learning techniques. CAD systems that

classify breast tissues into normal/abnormal or benign/malignant usually consist of

three main stages: segmentation of the region of interest (ROI), feature extraction

and classification. In this chapter, we present the background to breast cancer

screening methods, the stages in the breast cancer CAD system, CAD evaluation

and motion analysis methods.

13
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14 Chapter 2. Background

2.2 Breast cancer screening

Breast cancer screening is the process of checking women’s breasts for cancer before

there are signs or symptoms of the disease. A breast mainly consists of lobules, ducts

and stroma. Lobules are milk producing glands, ducts are small pipes that carry the

milk from the lobules to the nipple, and stroma is a fatty and connective tissue

surrounding the ducts and lobules, blood vessels, and lymphatic vessels. Physicians

rely on mammograms to diagnose breast cancer, especially to detect tumors that

cannot be easily felt. The following subsections present the common breast cancer

screening methods.

2.2.1 Mammography

Mammograms are X-ray images of the breast. The common screening

mammographic views are cranio-caudal (CC) and medioLateral oblique

(MLO) (Elmore et al., 2005). As shown in Fig. 2.1, a CC mammographic

view is captured from above of a horizontally compressed breast (the breast is

compressed using compression plates). In turn, the MLO is taken from the side and

at an angle of a diagonally compressed breast1.

Tomosynthesis is a 3D mammography in which a machine takes many low-dose

X-rays as it moves over the breast. The images taken can be combined into a

three-dimensional picture, which may allow doctors to see inside the breast more

clearly than with a standard 2D mammogram, and possibly detect more masses.

2.2.2 Breast ultrasonography (BUS)

Ultrasonography is an imaging method that transmits high-frequency sound waves

through the breast and converts them into images. There is no radiation

involved during the acquisition of the images. Mammograms may fail to detect

cancer in young women because their breasts tend to be dense. In these cases,

ultrasonography may provide help. However, ultrasound is usually used to

1http://en.wikiversity.org
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2.2. Breast cancer screening 15

Figure 2.1: Acquisition of a mammogram (Blausen Gallery 2014)

complement mammography. If an abnormality is seen on mammography or felt

by physical exam, ultrasound is the best way to find out if the abnormality is solid

(such as a benign fibroadenoma or cancer) or fluid-filled (such as a benign cyst). It

can not determine whether a solid lump is cancerous or detect calcifications.

The automated breast ultrasound system (ABUS) is a comfortable, non-ionizing

alternative to other supplemental screening options for women with dense breast

tissue. When ABUS is used in addition to mammography, breast cancer detection

can be improved by 55% over mammography.

2.2.3 Thermography

Thermography uses a special camera to measure the temperature of the skin on

the surface of the breast. It is a non-invasive method that involves no radiation.

Thermography is based on two principles: 1) cancer cells grow and multiply very

fast, so blood flow and metabolism are higher in regions that contain a tumor than
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in other regions, 2) skin temperature goes up as blood flow and metabolism increase.

Indeed, thermography may be used to supplement information from a mammogram

and help identify cancers that are close to the skin. In practice, thermography can

not find cancers that are deeper in the breast or detect small cancers.

2.2.4 Magnetic resonance imaging (MRI)

MRI is a technology that uses magnets and radio waves to produce detailed

cross-sectional images of the inside of the body. MRI does not use X-rays, so it does

not involve any exposure to radiation. Breast MRI has a number of different uses for

breast cancer, such as screening high-risk women, and gathering more information

about an area of suspicion found on a mammogram or BUS images.

2.3 CAD system

A breast cancer CAD system usually consists of three main stages: segmentation of

the ROI from the breast image, feature extraction from the ROI, and classification

of the ROI.

2.3.1 ROI segmentation

The most important regions of interest (ROIs) in the breast are the ones that contain

suspicious tissues. Several methods have been proposed to extract the ROIs from

breast images. The simplest method is to extract the ROIs manually. However,

there are also many automatic methods. A number of works have used the region

growing, thresholding, edge detection segmentation methods to extract the ROI from

the breast (Singh and Al-Mansoori, 2000). For instance, Hong and Sohn (2010)

proposed an approach to automatically segment the ROIs from mammograms by

analyzing both the topological and the geometrical structure of the image based on

an isocontour map that effectively provides image features. The authors assumed

that the ROIs are salient regions, since they stand out against the surrounding

background. Fig. 2.2 shows an example of the ground truth (GT) of a mass region
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GT

ROI

Pectoral
Muscle

Labels

Background

Figure 2.2: ROI extraction from a mammogram

(blue circle), and the ROI (red square surrounding the circle). In turn, the ROIs of

the normal tissues can be randomly selected from the normal regions. In the case of

BUS images, Cai et al. (2015) manually extracted the ROIs while Gómez et al. (2012)

used a semi-automatic ROI extraction method called marker-controlled watershed

transformation (Gómez et al., 2010).

2.3.2 Feature extraction

Features related to texture, statistic, position and geometry have been used in breast

cancer CAD systems. In this thesis, we have considered texture analysis methods

which have usually been applied in the field, such as local binary pattern (LBP),

histogram of oriented gradients (HOG), grey level co-occurrence matrix (GLCM)

features and Gabor filters.

2.3.2.1 Local binary pattern (LBP)

LBP is a grey scale invariant texture feature that is regarded as a good method

for texture image analysis in many computer vision areas (Ojala et al., 2002). The

original LBP operator labels the pixels of an image by comparing the 3× 3 window

surrounding each pixel with the value of the central pixel. Pixels in this window

with a value greater than the central pixel are labeled 1 and the rest as 0; thus, each
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18 Chapter 2. Background

pixel is represented by 8 bits (see Fig. 2.3). The size of the window may vary on

different applications (e.g. 3× 3, 5× 5 or 7× 7).

Uniform LBP is an extension of the original LBP in which only patterns that contain

at most two transitions from 0 to 1 (or viceversa) are considered. For example

00111100 is a uniform LBP whereas 00101010 is a non-uniform LBP. In uniform

LBP mapping there is a separate output label for each uniform pattern and all the

non-uniform patterns are assigned to a single label (the uniform mapping produces

59 output labels for neighbourhoods of 8 points).

Figure 2.3: Calculation of LBP for a given pixel in a small neighborhood

2.3.2.2 Histogram of oriented gradients (HOG)

HOG has been considered as a robust feature extraction method because it

produces distinctive features in the case of illumination change and cluttered

background (Dalal and Triggs, 2005). In the HOG method, the occurrences of edge

orientations in a local image window are counted. The image is divided into blocks

(small groups of cells) and then a weighted histogram is computed for each of them

(see Fig. 2.4). The frequencies in the histograms are normalized in the interval [0,1]

to compensate changes in illumination. The combination of the histograms of all

those blocks represents the HOG descriptors.

Figure 2.4: Calculation of HOG descriptor
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2.3.2.3 Gray level co-occurrence matrix (GLCM)

In the GLCM the distribution of co-occurring grey level values in a given direction

and at a given distance is computed (Haralick et al., 1973). In other words, the

GLCM computes the joint frequencies p(i, j) of pairwise combinations of gray levels

i and j separated by distance d along direction θ (see Fig. 2.5). If Ng is the number

of distinct gray levels in the quantized image, then the size of the GLCM is N2
g . The

GLCM features and their mathematical expressions are listed in Table 2.1 (Haralick

et al., 1973; Soh and Tsatsoulis, 1999; Clausi, 2002). In addition, we present some

terms used to compute the GLCM features in Table 2.2 (Haralick et al., 1973; Soh

and Tsatsoulis, 1999).

4 3 2

5 1

6 7 8

0o

90o
135o 45o

Figure 2.5: Calculation of GLCM along different directions

2.3.2.4 Gabor filters

A two dimensional Gabor filter g(x, y) can be viewed as a sinusoid with a particular

frequency and orientation, modulated by a Gaussian envelope

g(x, y) = exp
−1
2

( x
2

σ2x
+ y2

σ2y
)
exp−j2π(u0x+v0y) (2.1)

where (u0, v0) is the centre of a sinusoidal function and σx, σy are the standard

deviations along two orthogonal directions (which determine the width of the

Gaussian envelope along the x- and y-axes in the spatial domain). Given an input

image I(x, y), the filtered image f(x, y) is the result of convolving I(x, y) and g(x, y).

Tuning Gabor filters to specific frequencies and directions can enable them to detect

both local orientation and frequency information from an image (Jones and Palmer,

1987; Weldon et al., 1996). We can assume that local image regions are spatially
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Table 2.1: The mathematical expressions of GLCM features

No. Feature name Mathematical expression
1 Autocorrelation

∑
i

∑
j(i.j)p(i, j)

2 Contrast
∑

i

∑
j |i− j|2p(i, j)

3 Correlation 1
∑

i

∑
j

(i−µx)(j−µy)p(i,j)

σxσy

4 Correlation 2
∑

i

∑
j

(i.j)p(i,j)−µxµy
σxσy

5 Cluster prominence
∑

i

∑
j(i+ j − µx − µy)4p(i, j)

6 Cluster shade
∑

i

∑
j(i+ j − µx − µy)3p(i, j)

7 Dissimilarity
∑

i

∑
j |i− j|.p(i, j)

8 Energy
∑

i

∑
j p(i, j)

2

9 Entropy −
∑

i

∑
j p(i, j).log(p(i, j))

10 Homogeneity 1
∑

i

∑
j

p(i,j)
1+|i−j|

11 Homogeneity 2
∑

i

∑
j

p(i,j)
1+|i−j|2

12 Maximum probability max
i,j

p(i, j)

13 Sum of squares
∑

i

∑
j(i− µ)2p(i, j)

14 Sum average
∑2Ng

i=2 i.px+y(i)

15 Sum entropy −
∑2Ng

i=2 px+y(i).log(px+y(i))

16 Sum variance
∑2Ng

i=2 (i− sum entropy)2.px+y(i)

17 Difference variance
∑Ng−1

i=0 i2.px−y(i)

18 Difference entropy −
∑Ng−1

i=0 px−y(i).log(px−y(i))
19 Information measure of correlation 1 HXY−HXY 1

max(HX,HY )

20 Information measure of correlation 2
√

(1− exp[−2(HXY 2−HXY )])

21 Inverse difference normalized
∑

i

∑
j

p(i,j)
1+|i−j|2/Ng

22 Inverse difference moment normalized
∑

i

∑
j

p(i,j)
1+(i−j)2/Ng

Table 2.2: Expressions used to calculate GLCM features

Notation Expressions Explication
µ Mean value of p(i, j) The mean of the entire normalized GLCM

px(i)
∑Ng

j=1 p(i, j) ith entry in the marginal-probability matrix
obtained by summing the rows of p(i, j)

py(i)
∑Ng

i=1 p(i, j) ith entry in the marginal-probability matrix
obtained by summing the columns of p(i, j)

µx
∑

i=1

∑
j=1 i.p(i, j) Mean of px

µy
∑

i=1

∑
j=1 j.p(i, j) Mean of py

σ2
x

∑
i=1

∑
j=1(i− µx)2.p(i, j) Variance of px

σ2
y

∑
i=1

∑
j=1(j − µy)2.p(i, j) Variance of py

px+y(k)
∑Ng

i=1

∑Ng
j=1 p(i, j), k = 2, 3, . . . , 2Ng Accumulate the probability matrix entries p(i, j)

that correspond to the sum of a set of pairs of gray levels

px−y(k)
∑Ng

i=1

∑Ng
j=1 p(i, j), |i− j| = k, k = 0, 1, . . . , Ng − 1 Accumulate the probability matrix entries p(i, j)

that correspond to the difference of a set of pairs of gray levels
HX −

∑
i px(i).log(px(i)) Entropy of px

HY −
∑

i py(i).log(py(i)) Entropy of py
HXY −

∑
i

∑
j p(i, j).log(p(i, j)) Entropy of p(i, j)

HXY 1 −
∑

i

∑
j p(i, j).log(px(i)py(i)) Expression similar to entropy equation used to compute

information measure of correlation 1
HXY 2 −

∑
i

∑
j px(i)py(i).log(px(i)py(i)) Expression similar to entropy equation used to compute

information measure of correlation 2
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homogeneous and use the mean and standard deviation of the magnitude of the

filter responses to represent the region for classification. The feature vector f is

constructed using the mean µmn and the standard deviation σmn of the filtered

images, so f = [µ11 σ11 µ12 σ12 µ13 σ13 . . . µmn σmn]. In this expression m and n are

the number of scales and orientations of the filter, respectively.

2.3.3 Classification

Classification models are constructed using a labeled training set of the form

(xi, yi) , i = 1, 2, . . . k, where xi ∈ Rn are the feature values, yi ∈ {1,−1} is the

binary classification, n is the number of features and k is the number of samples.

The feature vectors are normalized in the interval [0, 1], to prevent attributes with

higher numeric ranges from dominating those with lower numeric ranges. The trained

model can predict the class of new unlabeled instances.

2.3.3.1 k-nearest neighbor (k-NN)

The k-NN is a well-known classification method that is used in many applications

(Altman, 1992). Given an instance, k-NN looks for the closest training points with

respect to a particular distance metric (e.g. Euclidean, Manhattan, Minkowski and

Hamming), and then it uses its labels to classify the instance by a majority vote.

2.3.3.2 Linear discriminant analysis (LDA)

The LDA classifier attempts to maximize the ratio of inter-class variance to

the intra-class variance in any particular dataset thereby guaranteeing maximal

separability (Scholkopft and Mullert, 1999). LDA considers maximizing the following

objective:

J(w) =
wTSBw

wTSWw
(2.2)

In this equation, SB is the “between classes scatter matrix” and SW is the “within

classes scatter matrix”.
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2.3.3.3 Support vector machine (SVM)

A SVM is a supervised learning classifier that discriminates between two classes by

finding a hyperplane that separates them. Given a labeled training set of the form

(xi, yi) , i = 1, 2, . . . k, where xi ∈ Rn are the feature values, yi ∈ {1,−1} is the binary

classification, n is the number of features and k is the number of samples, the SVM

classifier solves the following optimization problem:

‖ω‖2
ω,ξ + C

k∑
i=1

ξi

s.t. yi(ω
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0. (2.3)

In this expression, the soft margin parameter C tells the SVM optimization process

how much is needed to avoid misclassifying each training instance. The weight vector

ω is normal to the separating hyperplane. The parameter ξ is used to give a degree

of flexibility to the algorithm when fitting the data and b represents the bias.

During the optimization process of the SVM the training data xi are mapped into a

higher dimensional space using a kernel function, K(xi, xj) = (φT (xi).φ(xj)). SVM

uses the kernel trick, by which the data become linearly separable in the new space.

The SVM classifier finds the hyperplane with a maximum margin of separation

between the classes in the new higher dimensional space. In the case of a linear

SVM (LSVM) classifier, φ refers to a dot product. In a non-linear SVM (NLSVM)

the classifier function is formed by non-linearly projecting the training data of the

input space to a feature space of a higher dimension by using a kernel function. The

radial basis function (RBF) is widely used as a mapping kernel. The RBF can be

defined as follows:

K(xi, xj) = exp
(
−γ‖xi − xj‖2

2

)
(2.4)

In this expression γ = 1/2σ2, ‖xi − xj‖2
2 is the squared Euclidean distance between

the two feature vectors xi and xj, and σ is a free parameter.
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2.3.3.4 Random forests (RF)

RF is an ensemble learning method that operates by constructing a multitude of

decision trees at the training stage and producing the class that is the mode of the

classes output by the individual trees in the test stage (Breiman, 2001). Decision

trees are a supervised learning method used for classification and regression. The

aim of this method is to construct a model that predicts the value of a target by

learning simple decision rules derived from the data. An RF can be built by randomly

sampling a training data subset for each decision tree (as in Bagging (Breiman,

1996)). According to (Breiman, 2001), each tree is trained using 2/3 of the total

training data. Then, each tree is validated using the samples that have not been

used to build that tree (out-of-bag error estimation).

2.3.3.5 Multi-layer perceptron (MLP)

An MLP is a network of simple neurons called perceptrons. Each perceptron

determines a single output from multiple numerical inputs by setting a weight for

each input and then combining them. The combined value is then sent to a nonlinear

activation function (Hornik et al., 1989). This operation can be formulated using

the following expression:

y = φ(
n∑
i=1

wixi + b) (2.5)

In this expression, y is the output of the perceptron, x is the vector of inputs, w is

the vector of weights, b is the bias and φ is the activation function. The common

activation functions are the logistic sigmoid φ(z) = 1/(1 + e−z) and the hyperbolic

tangent φ(z) = tanh(z). Indeed, a single perceptron is not very useful because of

its limited mapping ability. A typical MLP network consists of an input layer, one

or more hidden layers, and an output layer. The input propagates through the

network layer-by-layer to produce the final output. MLP networks are widely used

in supervised learning problems, which can be solved with the back-propagation

algorithm. This algorithm consists of forward and backward passes. In the forward

pass, the predicted outputs corresponding to the given inputs are evaluated. In the
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backward pass, partial derivatives of the cost function with respect to the different

parameters are propagated back through the network.

2.3.4 Evaluation

In medical diagnosis tests, sensitivity (also known as recall) and specificity are usually

calculated. Sensitivity measures the proportion of actual positive instances which are

correctly identified. Specificity measures the proportion of negative instances which

are correctly identified. A perfect breast cancer CAD would have a sensitivity and

specificity of 100%. In addition, precision, accuracy and F-score are used to evaluate

CAD systems. The following terms are defined to calculate the aforementioned

metrics:

• True Positive (TP): positive instance classified as positive.

• True Negative (TN): negative instance classified as negative.

• False Positive (FP): negative instance classified as positive.

• False Negative (FN): positive instance classified as negative.

Table 2.3 presents the mathematical expressions of sensitivity, specificity, precision,

accuracy and F-score. In the literature, the performance of CAD systems is

commonly measured in terms of the area under the curve (AUC) of the receiver

operating characteristic (ROC). The ROC analysis is used to avoid selecting a single

threshold for classification. All the possible thresholds are scanned and the effect

on the true positive rate TP/(TP + FN) (sensitivity) and the false positive rate

FP/(FP +TN) (1-specificity) is recorded. In this way, the ROC curve describes the

performance of a model throughout the range of classification thresholds (Fawcett,

2006). Fig. 2.6 shows an example of ROC with an AUC of 0.79.

Table 2.3: The mathematical expressions of sensitivity, specificity, precision, accuracy and F-score

Metric Expression
Sensitivity TP/(TP + FN)
Specificity TN/(TN + FP )
Precision TP/(TP + FP )
Accuracy (TP + TN)/(TP + TN + FP + FN)
F-score 2TP/(2TP + FP + FN)
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Figure 2.6: ROC curve

2.3.4.1 Cross validation

Cross validation has been widely used to evaluate machine learning algorithms. It

is used to give an indication of how well the model will predict unseen data. Cross

validation is done by partitioning a dataset and using a subset to train the algorithm

and the remaining data to test it. The common cross validation techniques are:

• k-fold cross validation. In this technique, the data are randomly sorted and

divided into k folds (a common value of k is 10). One of the folds is used for

testing and the remaining folds for training the algorithm. This scenario is

repeated k times.

• Leave-one-out-cross validation (LOOCV). In this technique, the data is

partitioned using the k-fold approach where k is equal to the total number of

observations in the data.

• Holdout. This technique divides the data into exactly two subsets of specified

ratio for training and testing.

2.3.4.2 Statistical analysis

Statistical analysis is commonly used to measure the statistical significance of the

results of CAD systems. A result is statistically significant when a p-value is less

than the significance level (α). The p-value is the probability of obtaining at least

as extreme results given that the null hypothesis is true. The significance level α is

the probability of rejecting the null hypothesis given that it is true (Lowry, 2014).
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Statistical methods can be parametric or nonparametric. Parametric methods have

a number of parameters; whereas, nonparametric methods are statistics not based on

parameterized families of probability distributions (i.e., parameters are determined

by the training data). Several parametric statistical methods have been used to

evaluate CAD systems, such as Student’s t-test and ANOVA. Indeed, Student’s

t-test can be applied when the data follows a normal distribution. In turn, many

studies have used nonparametric methods to determine the statistical significance of

the results of CAD systems. The Wilcoxon signed-rank test, which is an example of

these methods, can be used as an alternative to the t-test when the population of

the data does not follow a normal distribution.

Furthermore, the kappa statistic has been used to evaluate the results of breast cancer

CAD systems. This statistic compares the accuracy of the system to the accuracy

of a random system. It is used to assess the inter-rater reliability when observing

categorical variables (κ= 1 if there is full agreement ; κ= 0 if there is no agreement).

The kappa coefficient (Landis and Koch, 1977) is defined as

κ =
Pa − Pe
1− Pe

(2.6)

In this equation, Pa is the relative observed agreement among raters and Pe is the

hypothetical probability of the agreement derived by chance using the observed data

to calculate the probabilities of each observer randomly saying each category.

2.4 Analysis of the temporal evolution of breast

tumors

The evolution of breast tumors can be studied through motion analysis methods. In

this thesis, we study image registration and optical flow methods.
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Figure 2.7: Acquisition of CC and MLO views

2.4.1 Mammogram registration

A lesion may not be recognizable from one view, and the appearance may be different

on MLO and CC views (see Fig. 2.7). Registration helps doctors analyze and visualize

mammograms. The comparison of mammograms requires a registration (alignment)

between the mammogram images. The registration process aligns the coordinates of

the current mammogram (template) to the coordinates of a previous one (reference

mammogram). Two main categories of image registration methods can be identified:

intensity-based and feature-based. Intensity-based registration depends on the image

pixel values. The change in illumination between mammograms and the mapping

model affects the accuracy of these methods. In turn, feature-based methods depend

on the features extracted from the mammograms. Control points are the most

commonly used features in the registration of mammogram images. Actually, it is

difficult to extract consistent features from the mammograms because the appearance

of the breast region depends heavily on the compression of the breast.

The registration process has three main components: a similarity function,

deformation model and optimizer. The choice of each component depends on

some assumptions related to the applications. The similarity measure determines

the quality of the alignment between the images. These measures are divided

into intra-modality (registering images from the same modality) and inter-modality

(registering images from different modalities) measures. The sum of square
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differences (SSD) and the cross correlation (CC) are commonly used in intra-modality

registration methods. In turn, mutual information (MI) and normalized mutual

information (NMI) are used in inter-modality registration methods. The large

deformations between mammograms are the main problem of any mammogram

registration method. Deformations mainly occur due to change in breast

compression, acquisition time, position, age and the imaging view angle. The

registration process should compensate the deformations between the reference and

template mammograms and correctly align the interior structures in breast regions.

The deformation models can be rigid or elastic. Rigid deformation models, such as

affine transformation, are applied to the whole image and are used to compensate the

global motion in the breast region. In turn, elastic models, such as the elastic body

spline model (EBS), the B-spline-based model and thin plate spline model (TPS)

are used to compensate for the local motion in the breast region and they may be

applied to selected parts of the image (Crum et al., 2014).

An optimization process is essential if the values of the parameters of the

transformation model used that maximize the similarity measure are to be

found. The simplest optimization technique that guarantees a global optimal

solution is the exhaustive search. The computational complexity of the exhaustive

search is high, so its usage is limited to an optimization problem with a small

search space (e.g. registration methods based on the translational model).

The common optimization methods used in the literature are gradient descent,

genetic algorithm, Newton-Raphson, simulated annealing and Levenberg-Marquardt

optimization (Brown, 1992).

2.4.2 Optical flow

In the last three decades, several approaches have been used to calculate the optical

flow. In general, an optical flow algorithm characterizes the spatial arrangement of

the objects and the rate of change of this arrangement in two successive images of

the same visual scene. An optical flow algorithm produces the flow velocity vector

w =: (u, v)ᵀ, where u is the displacement in the horizontal direction and v is the
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displacement in the vertical direction. Optical flow can be applied locally as proposed

in (Lucas and Kanade, 1981) or globally as proposed in (Horn and Schunck, 1981),

although most optical flow techniques are based on the latter approach.

Assume I1 and I2 are two images captured at times t and t + 1, respectively, x :=

(x, y)ᵀ is a point in the image domain, and w := (u, v)ᵀ includes the displacement

vectors. Several optical flow methods are based on brightness constancy and small

motion assumptions. Brightness constancy can be formulated with the expression

I(x, y, t) ≈ I(x+ u, y + v, t+ dt) (2.7)

where I(x, y, t) is the intensity value of a pixel located at position (x, y) at time t.

Assuming small motion, the corresponding point of a pixel can be found within a

very small neighborhood.

In the case of follow-up mammograms, the variations in breast compression

and radiation dose (which produces changes in illumination) between successive

mammograms violate both the brightness and the small motion constancy

assumptions. To cope with the large deformations that appear in mammograms (due

to variation in compression), large displacement optical flow methods are required.

A coarse-to-fine image warping was introduced to overcome large displacements (a

motion larger than one pixel). This can be used jointly with many robust objective

functions that have been proposed to reduce the effect of illumination change (Sun

et al., 2010).

Coarse-to-fine technique (CTF). For each image, an image pyramid is first

built (see Fig. 2.8). An image pyramid involves a low pass filtering (e.g., a Gaussian

filter) and down-sampling the image. Starting from the lowest resolution level of the

pyramid (coarse level), the optical flow is calculated. This calculated optical flow is

then passed to the next highest resolution level as an initial estimate. The optical

flow estimated at a coarse level is used to warp the second image towards the first one

at the next fine level, and a flow increment is calculated between the first image and

the warped second image. This process is repeated until the coarse level is reached.
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Figure 2.8: Coarse-to-fine technique (in this example, each image pyramid consists of three levels)

2.5 Breast cancer databases

There is a limited number of publicly available breast cancer datasets. In this

subsection, we summarize the ones used in this thesis.

• Mini-MIAS (Suckling et al., 1994). A film-screen (digitized) database

that contains 322 images (pgm format) of 161 women in MLO view only. The

mini-MIAS database was created from the original MIAS database (digitised at

50 µ pixel edge) by down-sampling it to 200 µ pixel and clipping/padding it to

a fixed size of 1024×1024 pixels. The down-sampling was done by the authors

of the database. A GT was prepared by experienced radiologists and confirmed

using a biopsy test. The GT of the mini-MIAS mammograms shows the

location of the abnormality, the radius of the circle which contains the abnormal

region, the characteristics of the background tissues, the breast density of each

image (fatty, glandular or dense) and the severity of each abnormality. The

dataset is available at http://peipa.essex.ac.uk/info/mias.html.

• INbreast (Moreira et al., 2012). A full-field digital mammographic

(FFDM) database that contains images of 115 women. A total of 410 images

were collected between April 2008 and July 2010. The images were acquired

using MammoNovation Siemens FFDM equipment with a solid-state detector

(pixel size of 70µ, 14-bit contrast resolution). The sizes of the acquired
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images are 3328× 4084 or 2560× 3328 pixels. The image size depends on the

compression plates used in the acquisition process (the amount of compression

varied according to the breast size of each woman). The images collected were

saved in the digital imaging and communication in medicine (DICOM) format.

The GT was prepared by an experienced radiologist and validated by a different

one. The annotations were generated using OsiriX (an open-source picture

archiving application) and a communication system (PACS) workstation.

• Breast ultrasound sequences database. A database that contains 31

malignant and 28 benign BUS videos. It is part of a clinical database

of ultrasonic radio frequency strain imaging data that was created by the

Engineering Department, Cambridge University. It is available at http://mi.

eng.cam.ac.uk/research/projects/elasprj/.

• Database of breast thermograms (Silva et al., 2014). A database that

contains 148 thermograms of 148 women, both healthy and sick. We collected

the dataset from the Proeng database, which is available at http://visual.ic.uff.

br/en/proeng/. In a thermogram each pixel corresponds to the temperature of

the acquired scene. The range of temperatures is associated with the gray-scale

of the images. The size of the images is 640×480 pixels. The thermograms were

captured by a FLIR thermal camera, model SC620, which has a sensitivity of

less than 0.04o and captures temperatures from −40oC to 500oC.

2.6 Conclusion

In this chapter, we have presented a background on breast cancer screening

methods, ROI segmentation, texture analysis methods, classification methods, CAD

evaluation, image registration, optical flow and breast cancer datasets. In the next

section we present several methods for analyzing breast cancer in mammograms.
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Analysis of breast cancer in

mammograms
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CHAPTER3

Mass analysis in mammograms using

texture methods

3.1 Introduction

Several methods have been proposed for automatic breast mass detection using

computer vision and machine learning techniques. These methods can be classified

as supervised or unsupervised. In the supervised methods, which are more accurate,

feature vectors are extracted from the ROIs. The extracted features can be related to

texture, statistic, position and geometry. The normal and mass regions are the most

interesting ROIs in breast mammograms. The extracted features are used to train

a model, which is used to predict the class of unknown instances. Unfortunately,

supervised methods usually present a high number of false positive detections.

35
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In practice many factors influence the false positive mass detection rates in CAD

systems, and these should be carefully analyzed to reduce the percentage of errors.

In previous studies we have identified the following factors:

• The ability of given feature extraction methods to distinguish between mass

and normal ROIs.

• The robustness of the classifier used for training and prediction.

• Breast density: dense breast tissue usually produces light gray levels in

mammograms, making them harder to interpret, specially in younger women.

In practice, it is difficult to detect masses in mammograms with high densities.

• Quality of the mammograms: both noise and physical artifacts may degrade

the overall performance of the mass detection algorithms.

Although several feature extraction methods have been proposed for mammogram

image analysis, improving the classification results remains a challenge and an open

problem. In this chapter, we analyze the performance of various texture analysis

methods for breast mass detection in an attempt to reduce the false positives and,

therefore, the number of unnecessary biopsies. We used local binary patterns,

histogram of oriented gradients, co-occurrence matrix features, local grey level

appearance and Gabor filters. The novelty of this study is that we propose local

directional number patterns (LDN) as a new texture feature extraction method for

breast mass detection. Once the features have been extracted by each method,

a binary classifier (mass/normal tissue) is trained. As mentioned above, these

models have shown robust capabilities in classification problems and they have been

widely used in medical applications. We have also analyzed possible combinations

of different texture analysis methods (both considering the majority output of the

individual classifiers and building new models on the concatenation of features

provided by different methods).
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3.2 Related studies

The literature describes single feature and multiple feature breast cancer CAD

systems. Several studies have proposed the use of a single feature family. Oliver et al.

(2007) used the histogram of the Local Binary Pattern (LBP) to reduce the number

of false positives in breast mass detection. They used an SVM for classification.

Unfortunately, LBP may assign the same pattern to a pixel in a tumor region and

another pixel in normal dense tissue. This leads to a noticeable percentage of false

detections. The HOG has also been used for breast mass detection (Pomponiu et al.,

2014). The HOG descriptor can be used to extract features with which to train an

SVM classifier. The cell size and the number of cells per block need to be optimized

because if the block size is unsuitable, the same HOG descriptor may be produced

for a dense normal block and a tumor block leading to high false detections. Qian

et al. (1999) used a multi-resolution and multi-orientation wavelet transform for mass

detection and spiculation analysis in breast mammograms. They observed that the

traditional wavelet can not extract the directional information that characterizes the

spiculations.

Some breast cancer CAD systems used multiple feature families. In (Christoyianni

et al., 2002), grey levels, texture and features related to independent component

analysis are used to train a Neural Network classifier. The usage of grey level

creates a dilemma in the classification stage as the dense normal pixels and the

tumorous pixels have similar intensity values (i.e. they have the same visual

characteristics). A comparison between Haralick’s features, wavelet-based features

and multi-wavelet-based features was presented in (Soltanian-Zadeh et al., 2004).

It was concluded that the multi-wavelet features followed by shape features yielded

the best ROC results, but they still produce a noticeable number of false positives.

The main reason for this is that Haralick’s features depend on the co-occurrence

matrix, which counts the number of pixels that have the same value at a certain

distance and angle. Unfortunately, the same co-occurrence matrix can be achieved

for a tumor ROI and a normal ROI in a dense mammogram. Moreover, a mass
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detection approach used a Growing Neural Gas algorithm to perform a segmentation

step (de Oliveira Martins et al., 2009). A set of shape measures are computed for

each segmented region to suppress bad mass candidates and texture measures are

obtained from Ripley’s K function. The shape measures cannot characterize the

mass regions correctly in dense mammograms. Moreover, the segmentation step

may merge a region that contains dense normal tissue with a region that contains

tumorous tissue, thus yielding a high number of false positives.

The classification stage in breast cancer CAD systems can be unsupervised or

supervised. Zheng (2010) proposed an unsupervised breast mass detection method

that used a circular Gaussian filter followed by a threshold to segment the input

mammogram. Afterwards, a Gabor filter is used to extract features from these

segments. There are many false positives due to the use of a threshold in the

segmentation step, especially in dense mammograms in which different regions can

be merged. Bellotti1 et al. (2006) proposed an automatic breast mass detection

approach based on a supervised classification method. They used an edge-based

segmentation algorithm to separate suspicious regions. In addition, second order

measures obtained from the co-occurrence matrix were used to describe the texture

of each segment. Finally, an Artificial Neural Network is used for classification.

The descriptors used produced a sensitivity of 80%. This result indicates that the

co-occurrence matrix features yield a high number of false positives, and they do

not accurately describe breast tissues. A feature selection procedure based on a

genetic algorithm is used to select the suitable set of features, which are fed into a

k-NN classifier. On the other hand, de Oliveira Martins et al. (2009) used both

supervised and unsupervised learning in breast mass detection. They used the

K-means algorithm for mammogram segmentation, and the co-occurrence matrix

features to describe the texture of the segmented structures. Finally, they classified

these segmented structures using an SVM classifier. The main drawback of this

method is that the co-occurrence matrix can produce the same descriptor for a normal

cluster in a dense region and a tumorous cluster, yielding low classification accuracy.

Indeed, the literature has been unable to define an optimal set of features for the task

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



3.3. Methods 39

of mass/normal breast tissue classification, which means that the methods proposed

in the literature do not accurately describe breast tissues, especially when dense

breasts are considered.

3.3 Methods

Breast masses are usually brighter than normal tissues in mammograms, and they

are defined by the characteristics of their shapes and margins. Mass detection is

quite difficult in dense mammograms, in which normal tissues are also bright and

they cover the masses. If suitable descriptors for characterizing breast tissues are to

be selected, the most significant features of breast masses should be considered.

In this study, we have considered the texture analysis methods which have most often

been applied in the field: for example, LBP, HOG, GLCM features, Gabor filters, and

local grey level appearance (LGA). We also introduce LDN as a new analysis method

in this area and combine different features in an attempt to improve the performance

of breast mass detection. Indeed, our analysis is twofold. First we analyse each

texture method individually, considering two ROI ratios, with classification methods

such as k-NN, LDA, LSVM, NLSVM and RF. And second, we analyze possible

combinations of different texture analysis methods (considering the majority output

of the individual classifiers and building new models on the concatenation of features

provided by different methods).

3.3.1 Feature extraction

This subsection explains the texture analysis methods used and the selection of the

parameters of each method. In section 2.3.2, we explained the local binary pattern

(LBP), the histogram of oriented gradients (HOG), the grey level co-occurrence

matrix (GLCM) features and Gabor filters.

Local directional number pattern (LDN). LDN was proposed

in (Ramirez Rivera et al., 2013) for face analysis. They showed that LDN is

better than LBP because it can detect changes in regions producing different 6-bit

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



40 Chapter 3. Mass analysis in mammograms using texture methods

codes, while LBP can produce the same pattern for pixels in different regions.

Taking into account the advantages of LDN over LBP and the previous use of LBP

in mass detection (Oliver et al., 2007), we felt that LDN could be a good method

for this problem. In LDN, the edge responses are computed in eight different

directions by convolving the Kirsch compass masks with the ROI (see Fig. 3.1). The

authors of LDN chose the location of the top positive and negative edge responses

to generate a meaningful descriptor for each pixel (6-bit code). An example of

LDN is presented in Fig. 3.1. The location codes that return the maximum and

minimum responses are concatenated to form the LDN code of the marked pixel.

LDN encodes the directions in a binary code shorter than LBP’s, and it has been

shown to perform well in such fields as face expression analysis. The feature vector

of LDN is calculated by dividing each ROI into four sub-regions, and the final LDN

feature vector (4× 64 = 256 dimensions) is formed by concatenating the histograms

of the four sub-regions. This step increases the description ability of LDN, as it

adds global spatial information to the final descriptor.

Local binary pattern (LBP). Many variants of LBP have been proposed in the

literature: for example, robust local binary pattern (RLBP), fuzzy local binary

pattern (FLBP) and center symmetric local binary pattern (CSLBP). We computed

the histogram with the frequency of uniform LBPs for each ROI. We used 3 × 3

local windows to generate the uniform LBP for each ROI. Each ROI was divided

into four regions, and the final LBP histogram was created by concatenating the

histograms of the four regions. The final dimension of the LBP feature vector was

236 (4× 59).

Robust local binary pattern (RLBP) divides each 8-bit LBP binary code into

sets of three overlapped bits (Chen et al., 2013). Then, if ‘010’ or ‘101’ are found,

they are replaced by ‘000’ or ‘111’ respectively. The main problem of Chen’s

method is that it converts a natural non-uniform pattern to a uniform pattern,

thus distorting the overall description, because the wrong correction will increment

the number of uniform patterns in the final LBP histogram. The feature vector

of RLBP is calculated by dividing each ROI into four sub-regions, and then the
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Figure 3.1: Example of LDN binary code generation

resulting histograms are concatenated. The final dimension of the RLBP feature

vector was 236 (4× 59).

Centre symmetric local binary pattern (CSLBP) is an extension of the original

LBP operator (Heikkilä et al., 2009). CSLBP compares the center symmetric

pairs of pixels as illustrated in Fig. 3.2. It describes each pixel in the ROI using

4-bits. The feature vector of CSLBP is calculated by dividing each ROI into four

sub-regions, and then the resulting histograms are concatenated (the dimension of

the CSLBP feature vector was 64 (4× 16)).

Fuzzy local binary pattern (FLBP) is an extension of LBP proposed in (Iakovidis
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Figure 3.2: Example of LBP and CS-LBP code generation

et al., 2008). FLBP incorporates fuzzy logic in the representation of local patterns.

Assume that di is the difference between a given pixel pi in a local neighborhood

and its centre pc. A membership function is used to determine the degree of di to

be ‘1’ or ‘0’ (instead of comparing di with zero as in the case of LBP). Fuzzification

allows each local neighborhood to contribute to more than a single bin in the

distribution of the LBP. In (Iakovidis et al., 2008), FLBP is evaluated by classifying

ROIs extracted from thyroid ultrasound images as nodules or non-nodules. In our

experiments, the tuned value of the fuzzy parameter was 15, and the histogram of

FLBP is used as a feature vector (256 dimensions).

HOG features. We used a 3× 3 cell size, 8× 8 cells for the block size, and a 9-bit

histogram. The dimension of the HOG feature vector was 576 (9× 8× 8).

GLCM features. To increase the description given by GLCM, spatial information

should be added, so we divided each ROI into four sub-regions. For each sub-region

we calculated 12 GLCMs by combining four orientations (0o, 45o, 90o and 135o) and

three distances (3, 5 and 10 pixels). From each GLCM we calculated 22 texture
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features, and we concatenated all the features calculated for each GLCM for all the

sub-regions into one feature vector (4× 4× 3× 22 = 1056 dimensions).

Gabor filters. Gabor feature vector f is constructed using the mean

µmn and the standard deviation σmn of the filtered images, so f =

[µ11 σ11 µ12 σ12 µ13 σ13 . . . µmn σmn]. In this expression m and n are the

number of scales and orientations of the filter, respectively. We used 4 scales and 6

orientations to calculate the responses of Gabor filters (4 × 6 = 24 responses). The

feature vector is constructed by concatenating all the resulting means and standard

deviations (4× 6× 2 = 48 dimensions).

Local grey level appearance (LGA). The LGA approach was presented

in (Zwiggelaar, 2010). In order to calculate a Nb-bin LGA histogram, the input

image grey level range is reduced to Nb, and then a w × w local neighborhood is

extracted at each pixel in the input image. A unique LGA number corresponding

to each local neighborhood is computed as follows:

LGA(i, j) =
∑
i,j

N
s(i,j)
b Id(i, j) (3.1)

where Nb is the number of bins in the LGA histogram, s(i, j) = 0, 1, 2 . . . N−1 is the

sequence number of the pixels, N is the number of pixels in the local neighborhood,

and Id(i, j) is the reduced resolution grey level value at position (i, j). We used a 3×3

local window (N=9). The LGA histogram can be built by counting the occurrence

of LGA numbers. We set the number Nb of bins in the LGA histogram to 8. The

feature vector of LGA is calculated by dividing each ROI into four sub-regions, and

the final LGA feature vector is formed by concatenating the histograms of the four

sub regions (4× 8 = 32 dimensions).

3.3.2 Classification

In this study, we used the following classifiers to classify the ROIs into normal or

mass:

• k-NN classifier. We used the Euclidean distance to determine the nearest
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44 Chapter 3. Mass analysis in mammograms using texture methods

neighbours of the test instance (it was empirically determined that the optimum

k was 3).

• LDA classifier. We used its MATLAB-based implementation (MATLAB

R2013a). In our experiments, we found that the best discriminant type for our

problem is the pseudoLinear one.

• SVM classifier. In this thesis, the SVM classifier is implemented with Matlab

and the libSVM library (Chang and Lin, 2011). In addition, a grid search

algorithm was performed to find the optimal values of the kernel’s parameter

γ and the soft margin parameter C. In the grid search algorithm, a k -fold

cross validation was used to divide the training data into k sets. Then k-1

sets were used to train the classifier and the remaining set was used to test

the trained model. Many pairs of (C,γ) were tried and the one with the

highest cross-validation F1 score (the harmonic mean of precision and recall)

was selected. As recommended in (Hsu et al., 2003), the grid search algorithm

tried many exponentially growing sequences of C and γ. Possible values for C

were (2−5, 2−3, . . . , 215) and for γ were (2−15, 2−13, . . . , 23). After determining

the best values for (C, γ), the SVM accurately classified the unknown instances.

For further information about the details of the grid search, the libSVM guide

may provide help (Hsu et al., 2003).

• RF classifier. We used a MATLAB based RF implementation. The optimum

number of trees that stabilizes the out-of-bag error was 30.

3.4 Experimental results and discussion

Our analysis is twofold. First we analyze each texture method individually,

considering two ROI ratios (the ratio between the number of mass ROIs and normal

ROIs). We then present the result of combining these methods. We used two

combination techniques: in the first we concatenated the features obtained by

different methods, and trained a new classifier on the extended set of features,

whereas in the second we used the individual classifiers obtained by different methods
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and considered their majority opinion.

We used the mini-MIAS database in our experiments (Suckling et al., 1994). The GT

of mini-MIAS shows the location of the abnormality, the radius of the circle enclosing

the abnormal region and the characteristics of the background tissues. To generate

ROIs we followed the procedure given in (Garćıa-Manso et al., 2013). In turn,

the ROIs of normal tissue were selected randomly from the normal mammograms.

Normal-tissue ROIs were created with sizes randomly ranging from the smallest to

the largest found in the databases. In the case of the mini-MIAS database, 109

mass ROIs from the mass mammograms and 203 normal ROIs from the normal

mammograms were generated. The ROIs generated are of different sizes because the

tumors in the mini-MIAS images are also of different sizes, so all ROIs were resized

into a common size (150× 150 pixels). We used the k -fold technique to generate the

training and testing datasets (in this study k is set 10). To evaluate the performance

of each texture extraction method, we calculated the mean sensitivity and specificity

across k-folds. A high sensitivity implies a small number of false positives so only a

few of the biopsies performed would be unnecessary.

3.4.1 Analysis of the texture methods

Tables 3.1 to 3.5 show the sensitivity and specificity of each method over all the

iterations of the 10-fold procedure considering the KNN, LDA, RF, LSVM and

NLSVM classifiers, respectively1. In the following tables the methods which have

sensitivities and specificities over 80% are highlighted. Table 3.1 indicates that

LDN, LBP and HOG produce a good description of breast tissues as they have good

sensitivity and specificity with the KNN classifier (the simplest classifier). Results

are good with a balanced dataset, but sensitivity decreases when the dataset is

imbalanced. Table 3.2 shows that the use of Gabor filters is the only method that

produces good sensitivity and specificity with the LDA classifier for both balanced

and imbalanced datasets. These results indicate that the LDA classifier is unsuitable

1In each cell of the tables, we present (mean ± standard deviation) over all the iterations of the
10-fold procedure.
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46 Chapter 3. Mass analysis in mammograms using texture methods

for separating the feature space of other methods into mass and normal classes.

Table 3.1: Sensitivity and specificity of breast mass detection with LDN, LBP, RLBP, CSLBP,
FLBP, HOG, CM, Gabor and LGA using KNN classifier (k=3)

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN 84.43±0.0727 90.33±0.0540 79.74±0.0855 93.59±0.0191
LBP 82.58±0.0712 97.14±0.0206 83.21±0.0759 97.48±0.0159
RLBP 77.45±0.0550 91.28±0.0494 76.56±0.0691 98.07±0.0141
CSLBP 76.46±0.0870 93.28±0.0378 66.83±0.0548 92.27±0.0164
FLBP 72.17±0.0493 89.99±0.0409 53.17±0.1263 93.30±0.0509
HOG 81.80±0.0214 92.45±0.0473 46.60±0.1015 93.93±0.0165
GLCM 47.06±0.1029 74.23±0.0597 51.42±0.0613 77.78±0.0344
Gabor 74.84±0.1174 67.91±0.0502 54.08±0.0491 89.46±0.0305
LGA 58.78±0.1025 73.85±0.0285 45.41±0.0941 85.63±0.0239

Table 3.2: Sensitivity and specificity of breast mass detection with LDN, LBP, RLBP, CSLBP,
FLBP, HOG, GLCM, Gabor and LGA using LDA Classifier

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN 69.00±0.1969 80.00±0.0667 63.00±0.1337 69.50±0.0798
LBP 75.00±0.0850 80.00±0.1155 63.00±0.1636 75.00±0.0882
RLBP 73.00±0.1337 86.00±0.1265 74.00±0.1174 80.00±0.0850
CSLBP 77.00±0.1059 88.00±0.1135 74.00±0.1075 95.00±0.0408
FLBP 67.00±0.1160 63.00±0.2359 69.00±0.1792 66.00±0.1150
HOG 66.00±0.1647 76.00±0.1506 63.00±0.1829 87.50±0.0717
GLCM 74.00±0.1174 77.00±0.1494 75.00±0.1179 92.00±0.0587
Gabor 83.00±0.1337 90.00±0.0816 72.00±0.1135 95.00±0.0333
LGA 39.00±0.0876 86.00±0.0843 37.00±0.1703 94.50±0.0798

Table 3.3 indicates that the RF classifier gives good results with LDN, LBP, RLBP,

CSLBP, FLBP and HOG with both balanced and imbalanced datasets. Furthermore,

Table 3.4 indicates that LDN features are the most linearly separable ones as

they produce the best sensitivity and specificity with the LSVM classifier with

the balanced dataset, and a specificity of 99.0% with the imbalanced dataset. In

turn, Table 3.5 shows that LDN, LBP, RLBP, and HOG have good sensitivity and

specificity for both the balanced and imbalanced datasets with the NLSVM classifier.

On the basis of the previous experiments, we conclude that LDN yields the best

sensitivities and specificities with the NLSVM and RF classifiers. LBP, RLBP and

HOG also gave good results with the NLSVM and RF classifiers, but they have some
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Table 3.3: Sensitivity and specificity of breast mass detection with LDN, LBP, RLBP, CSLBP,
FLBP, HOG, GLCM, Gabor and LGA using the RF classifier (30 trees)

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN 81.00±0.1370 95.00±0.0707 80.00±0.1764 98.50±0.0337
LBP 87.00±0.1494 95.00±0.0707 84.00±0.0516 97.00±0.0258
RLBP 90.00±0.1054 94.00±0.0699 84.00±0.0843 96.50±0.0337
CSLBP 85.00±0.0707 95.00±0.0707 84.00±0.1174 98.00±0.0258
FLBP 84.00±0.1075 90.00±0.1054 84.00±0.1430 94.00±0.0516
HOG 83.00±0.1160 90.00±0.1155 71.00±0.1524 95.50±0.0550
GLCM 73.00±0.1337 81.00±0.1449 70.00±0.1764 95.00±0.0408
Gabor 73.00±0.0949 86.00±0.0966 70.00±0.1700 94.50±0.0550
LGA 63.00±0.1767 80.00±0.1247 45.00±0.0972 93.00±0.0587

Table 3.4: Sensitivity and Specificity of breast mass detection with LDN, LBP, RLBP, CSLBP,
FLBP, HOG, GLCM, Gabor and LGA using the LSVM classifier

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN 80.00±0.1886 96.00±0.0699 64.00±0.1430 99.00±0.0316
LBP 77.00±0.1703 97.00±0.0483 57.00±0.1160 99.00±0.0211
RLBP 78.00±0.1135 97.00±0.0483 69.00±0.1729 99.50±0.0158
CSLBP 79.00±0.1287 93.00±0.0823 62.00±0.1398 98.50±0.0242
FLBP 21.00±0.1101 98.00±0.0632 41.00±0.2234 80.50±0.2034
HOG 72.00±0.0919 95.00±0.0527 63.00±0.1418 97.00±0.0422
GLCM 58.00±0.2394 63.00±0.1636 46.00±0.1578 79.00±0.2092
Gabor 63.00±0.1829 85.00±0.1354 59.00±0.1370 90.50±0.0497
LGA 55.00±0.1269 65.00±0.2550 42.00±0.1751 95.50±0.0369

Table 3.5: Sensitivity and specificity of breast mass detection with LDN, LBP, RLBP, CSLBP,
FLBP, HOG, GLCM, Gabor and LGA using the NLSVM classifier (RBF kernel)

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN 81.00±0.0738 91.00±0.1370 75.00±0.1581 97.00±0.0258
LBP 85.00±0.1179 94.00±0.0843 78.00±0.1317 98.50±0.0242
RLBP 83.00±0.0949 89.00±0.1197 83.00±0.1160 91.50±0.0747
CSLBP 78.00±0.1135 92.00±0.0789 64.00±0.1578 97.00±0.0422
FLBP 53.00±0.0823 75.00±0.1650 33.00±0.2003 88.50±0.2274
HOG 81.00±0.0876 85.00±0.1509 75.00±0.1434 89.00±0.0843
GLCM 67.00±0.1947 52.00±0.1549 58.00±0.2573 71.00±0.2025
Gabor 52.00±0.2658 71.00±0.2885 54.00±0.3438 60.50±0.3086
LGA 67.00±0.1337 49.00±0.1792 42.00±0.1398 95.00±0.0527

problems in describing breast tissues in dense breasts, which lowered their results.

For example, one of the problems of the LBP, RLBP and FLBP descriptors is that
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48 Chapter 3. Mass analysis in mammograms using texture methods

they may assign the same binary code for a pixel in the tumorous region and another

pixel in normal dense tissue because they usually calculate the same difference

between intensities. In addition, GLCM features depend on the co-occurrence

matrix, which counts the number of the pixels that have the same intensity at a

particular offset (distance and angle). Unfortunately, the same co-occurrence matrix

can be provided for a tumorous ROI and a normal ROI in a dense breast region.

Moreover, the problem of the HOG descriptor is the selection of the cell size and

number of cells per block because if an unsuitable block size is used, the same HOG

descriptor will be produced for a dense normal block and a tumorous block, leading

to a high number of false detections.

3.4.2 Analysis of the feature combinations

On the basis of each texture analysis method we selected the ones with best specificity

and sensitivity. From our experiments, we found that LDN, LBP, RLBP and HOG

produced the best sensitivity and specificity with the NLSVM and RF classifiers.

We tried to combine them to improve their individual accuracy. On the one hand,

we concatenated the feature vectors of LDN +LBP , LDN +RLBP , LDN +HOG,

LBP +HOG, RLBP +HOG, LDN+LBP +HOG (named FC1), LDN+RLBP +

HOG (named FC2), and trained a new NLSVM or RF model in each case. We used

principal component analysis (PCA) to reduce the dimensionality of the concatenated

feature vectors (Jolliffe, 2005). We also used the classifier majority voting technique

to combine the outputs of LDN, LBP, RLBP and HOG, using two combinations:

LDN+LBP+HOG (named MV1), and LDN+RLBP+HOG (named MV2). The

majority voting technique is applied within NLSVM models or RF models, trained

with the aforementioned features, separately. Table 3.6 presents the results of the

combination schemes in the case of the NLSVM classifier. Sensitivity is best with

LDN + LBP , with both the balanced and imbalanced datasets. Specificity is 97%

with FC1 with a balanced dataset, and 99% with LDN +LBP with an imbalanced

dataset. Moreover, Table 3.7 shows that LDN + LBP gives good sensitivity and

specificity with both datasets. LDN + RLBP gives the best sensitivity with a
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balanced dataset.

Table 3.6: Mean sensitivity and mean specificity of each feature combination strategy using the
NLSVM classifier

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN + LBP 92.00±0.0632 94.00±0.0516 90.00±0.0667 99.00±0.0211
LDN +RLBP 82.00±0.1476 93.00±0.0675 79.00±0.0994 98.50±0.0337
LDN +HOG 85.00±0.0850 94.00±0.0843 76.00±0.1350 97.50±0.0354
LBP +HOG 88.00±0.1135 93.00±0.0483 89.00±0.0876 97.50±0.0354
RLBP +HOG 84.00±0.0843 96.00±0.0516 79.00±0.1524 96.50±0.0530
FC1 86.00±0.0699 97.00±0.0483 78.00±0.1317 98.50±0.0337
FC2 82.00±0.1874 96.00±0.0516 76.00±0.1350 98.50±0.0242
MV 1 84.00±0.0966 93.00±0.0675 82.00±0.1229 98.00±0.0258
MV 2 83.00±0.1160 91.00±0.0738 87.00±0.0949 95.50±0.0438

Table 3.7: Mean sensitivity and mean specificity of each feature combination strategy using the
RF classifier

Method
1/1 ROI 1/2ROI

Sensitivity Specificity Sensitivity Specificity
LDN + LBP 88.00±0.1398 96.50±0.0516 87.00±0.0966 98.50±0.0425
LDN +RLBP 90.00±0.0816 96.00±0.0699 83.00±0.1252 97.50±0.0337
LDN +HOG 86.00±0.0516 91.00±0.1197 80.00±0.0816 97.50±0.0486
LBP +HOG 86.00±0.0966 91.00±0.0568 86.00±0.0966 97.50±0.0264
RLBP +HOG 87.00±0.1059 93.00±0.0823 84.00±0.0823 97.50±0.0354
FC1 85.00±0.1354 95.00±0.0850 83.00±0.0949 98.00±0.0258
FC2 88.00±0.1229 93.00±0.0675 81.00±0.0994 98.00±0.0258
MV 1 86.00±0.1174 93.00±0.0823 84.00±0.1506 97.50±0.0425
MV 2 83.00±0.0949 93.00±0.0823 82.00±0.1229 97.50±0.0354

Indeed, other combination methods (FC2, MV 1 and MV 2) gave lower sensitivities

and specificities than LDN + LBP and LDN + RLBP . The later combinations

integrate the LDN descriptor (which depends on the minimum and maximum edge

responses in the neighborhood of each pixel) with the LBP descriptor (which provides

a description of all the elements in the neighborhood of each pixel). LBP focuses on

encoding the variation of the grey levels in a local neighborhood, while LDN focuses

on encoding the variation of the edge responses of each pixel in eight directions. In

this way, we integrate the description abilities of LDN and LBP. Moreover, the use

of the histograms of LDN and LBP leads to an overall description for each ROI.
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50 Chapter 3. Mass analysis in mammograms using texture methods

Dividing a given ROI into sub-regions also adds some spatial information for the

descriptors used. In this study, we did not discuss the effect of the rotation on the

accuracy of the proposed methods because the mammograms are acquired from fixed

positions (i.e., CC and MLO mammographic views). LDN+LBP gives the smallest

percentage of false positives; as a result, if it were used in a CAD system the number

of unnecessary biopsies would be decreased.

3.5 Conclusion

In this chapter we have compared several texture analysis methods for breast mass

detection, using images from a public breast cancer database. In particular, we have

proposed LDN as a new feature extraction method in this field. LDN improved the

results of such well-known texture analysis methods as LBP, HoG, GLCM or Gabor

filters. In order to improve mass detection rates, we proposed using two combination

schemes. First, we concatenated the features of the best texture analysis methods.

Of all the concatenations, LDN+LBP gave the best overall results with the NLSVM

and RF classifiers. Second, we used the classifier voting technique to combine the

predictions given by LDN, LBP, RLBP and HOG. The results were good. The

LDN + LBP combination detected the false positives of breast mass detection; as

a result, the number of unnecessary biopsies would be reduced (less diagnosis cost).

In the next chapter we propose a CAD system to classify breast tissue into normal or

mass and estimate the breast density. We propose the ULDP descriptor for feature

extraction.
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CHAPTER4

Analysis of tissue abnormality and breast

density in mammographic images using a

uniform local directional pattern

4.1 Introduction

Mammograms are regarded as the best screening tool for detecting breast cancer

early. The most common risk factors of breast cancer are age, family profile, genetics

and breast density. Breast density is the amount of dense tissue in the breast, and

it is the clearest risk factor of breast cancer (Lokate et al., 2010). The higher the

breast density, the greater the probability of breast cancer. In addition, there is a

relation between the age of women and their breast densities, as younger women
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Chapter 4. Analysis of tissue abnormality and breast density using

ULDP

usually have denser breasts than older women. The breast masses are brighter than

normal tissues in mammograms, and they are defined by their shapes and margins.

In practice, mass detection is a big challenge in dense mammograms because normal

tissues also appear as bright areas, and cover the places that contain masses.

Some of the breast density standards classify breast tissues into fatty, glandular

or dense (Suckling et al., 1994). Fig. 4.1 shows examples of these tissues in

mammograms. It can be seen that it is easy to distinguish between mass and

normal regions in the case of fatty tissues (the red circle refers to the location of

the mass region), whereas mass detection is very difficult in the case of the dense

mammogram. The fatty-glandular breasts are between these two cases. Furthermore,

the breast imaging reporting and data system standard (BI-RADS) (Orel et al.,

1999), presented by the American College of Cancer, provides the following breast

density classification:

• BI-RADS I: almost entirely fatty breast (0-25%).

• BI-RADS II: some fibroglandular tissue (26%-50%).

• BI-RADS III: heterogeneously dense breast (51%-75%).

• BI-RADS IV: extremely dense breast (76%-100%).

(a) (b)

(c) (d)

Figure 4.1: Examples of mammograms from the mini-MIAS breast cancer database (Suckling
et al., 1994). A fatty mammogram containing: (a) normal tissue and (b) mass tissue. A dense
mammogram containing: (c) normal tissue and (d) mass tissue
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A breast cancer computer-aided diagnosis (CAD) system is a program that uses

digitized (film-screen) or digital mammograms to assist radiologists by enhancing the

quality of mammograms and detecting the early signs of breast cancer. Although

radiologists try hard to estimate breast density and detect masses by making a visual

judgment of mammograms, they insist on requesting CAD systems to help them in

this difficult task.

The breast cancer CAD systems exploit various computer vision and image processing

techniques. In general, a CAD system consists of three main steps: segmentation of

the ROIs from the images, feature extraction from the ROIs and final classification.

Both breast density classification and breast mass detection play an important role

in improving of the treatment of breast cancer. Unfortunately, CAD systems do

not perform as well in the case of dense mammograms (see Fig.4.1). Noise and

artifacts in mammograms may also degrade the performance of feature extraction

methods. The common artifacts that can exist in mammograms are: detector-based,

machine-based, patient-related, processing and storage artifacts. The literature

shows no consensus on the optimal set of features that characterize breast tissue.

A poor description of breast tissues leads to a high number of false positives

(mammograms interpreted by a CAD system as abnormal cases when they are

actually normal).

The work reported in this chapter proposes a CAD system for analyzing breast

tissues. This CAD system performs two tasks: breast tissue classification within

a region of interest (mass or normal) and breast density classification. The main

contributions of this chapter are the following:

• We propose the uniform local directional pattern (ULDP) as a texture

descriptor for breast tissues in mammograms. ULDP codes a local

neighborhood in the breast region based on its edge responses. As will

be shown in this chapter, the proposed descriptor can discriminate between

different masses in mammograms regardless of their size, shape or margin, and

significantly improve the analysis of breast cancer.

• ULDP is used to classify breast tissues into mass or normal, and estimate breast
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density. Two publicly available mammographic databases are used: mini-MIAS

(screen-film database) and INbreast (full field digital database).

• We studied the effect of breast density on the performance of ULDP when

classifying breast tissues into mass or normal.

4.2 Related work

This section summarizes some of the other studies that have been made on

mass/normal breast tissue classification and breast density classification. We discuss

the feature extraction methods used in each study and highlight the advantages of

the descriptor proposed.

4.2.1 Breast tissue classification

Fig. 4.2 shows the common shapes and margins of breast masses. The shape of a

particular breast mass can be round, oval, lobular or irregular. The circumscribed

oval and round masses are usually benign, whereas malignant masses usually have

irregular shapes. The margins of breast masses can be circumscribed, microlobulated,

obscured, indistinct or spiculated (Garćıa-Manso et al., 2013).

marginsshapes
Breast 
masses

Figure 4.2: Common shapes and margins of breast masses

Several features extraction methods have been proposed for breast tissue

classification. Here we present several studies on breast tissue classification, and

discuss the descriptors they used. Table 4.1 summarizes some of this previous work.
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Table 4.1: Summary of breast tissue classification methods

Method Feature extraction method Utilized classifiers
(Oliver et al., 2007) LBP SVM
(Liu and Zeng, 2015) GLCM SVM

and completed local binary pattern
(Beura et al., 2015) GLCM Back propagation neural network
(Chu et al., 2015) Shape features and texture features SVM
(Jen and Yu, 2015) Mean and standard deviation Principal component analysis
(Wang et al., 2014b) GLCM and morphological features Extreme learning machine
(de Oliveira et al., 2015) Taxonomic diversity index SVM

and taxonomic distinctness
(Dheeba et al., 2014) Laws texture energy measures Particle swarm optimized wavelet

neural network
(Zheng, 2010) Gabor filters Threshold-based approach
(Pomponiu et al., 2014) HOG SVM

Oliver et al. (2007) used the LBP to reduce the number of false positives in breast

mass detection. LBP can assign the same pattern to a pixel in a tumorous region

and to another pixel in a normal dense tissue, which leads to a noticeable number

of false detections, as illustrated in the section below. This happens when the values

of all the neighbors are higher/smaller than the value of the central pixel. This

problem of LBP is called the saturation problem.

The approaches that use the GLCM features still produce a noticeable number of false

positives. The main reason for this is that the GLCM features basically depend on

the co-occurrence matrix, which counts the number of pixels that have the same value

at a particular offset (distance and angle). Thus, identical matrices are produced for

the tumorous and normal ROIs in dense mammograms, thus increasing the number

of false positives.

The shape, size and morphological features depend on the accuracy of the

segmentation step, so segmentation errors degrade the performance of those

descriptors. Moreover, the texture features used depend on the intensity values

of the ROIs. Thus, the same features are computed for a dense normal pixel and

a tumorous pixel, which causes a dilemma in the classification step. Although the

taxonomic indices produce a good mass/normal classification result, they fail to

classify mass and normal tissues in dense ROIs (de Oliveira et al., 2015).

Both HOG and LDN use directional information to describe breast tissues. In the

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



56
Chapter 4. Analysis of tissue abnormality and breast density using

ULDP

case of HOG, if the block size is unsuitable, the same HOG descriptor is produced

for a normal block and a tumorous block in dense mammograms, which leads to a

high number of false detections. Although LDN gives good results, it only encodes

the maximum and minimum of the edge responses for each pixel, leading to a loss

of relevant information about the neighborhood.

The aforementioned descriptors may fail with dense mammograms because they can

not properly discriminate between mass and normal ROIs in dense mammograms.

Noise and artifacts in mammograms (e.g. dead pixels, dead or unread lines,

non-uniformities and ghosting (Ayyala et al., 2008)) may also degrade the

performance of those feature extraction methods.

Unlike the proposals made in other studies, the proposed ULDP descriptor describes

each neighborhood in a given ROI on the basis of its edge responses, taking into

account both magnitudes and spatial information. It does not depend on the

intensity values of the images. ULDP generates binary codes, from which we select

the uniform patterns. These patterns are used to construct a histogram. The

non-uniform patterns are assigned to a single bin in the ULDP histogram because

they represent unwanted noise. As we will show in section 4.3.1, ULDP generates

different histograms for mass and normal breast tissues even in dense mammograms.

Although many CAD systems such as (Chu et al., 2015) use a segmentation method

to determine the suspicious regions in mammograms, in this study we analyze

breast tissue in manually selected ROIs to avoid the errors of segmentation methods

especially in dense mammograms.

4.2.2 Breast tissue density classification

The relationship between breast density and the risk of developing breast cancer

was reported by Wolfe in (Wolfe, 1976), where breast density was categorized into

different classes. Nowadays, BI-RADS breast density categories are widely used.

Below, we show several breast density classification methods and discuss the feature

analysis methods they use.

Although such studies as (Zheng et al., 2015; Angulo et al., 2015; Muhimmah and
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Zwiggelaar, 2006) have focused on the use of gray level histograms it seems that

these histograms might not be sufficient for classifying mammograms into BI-RADS

categories (Oliver et al., 2008). The main reason is that similar histograms may be

produced for different breast densities.

Several descriptors have been used to analyze breast density: for example,

LBP (Zheng et al., 2015), GLCM (Petroudi et al., 2015) and Gabor

filters (Gamdonkar et al., 2015). In (Oliver et al., 2015), texture features (such as

LBP, GLCM), intensity and morphologic features are fed into a SVM to distinguish

between fatty and dense pixels. These descriptors may be affected by noise, so they

cannot properly describe breast densities. The descriptor proposed in this chapter is

more robust against the noise and changes in breast density, as will be shown below.

Several breast density classification methods have used a segmentation step to

segment the breast region into different clusters. In (Oliver et al., 2005), each

mammogram is divided into two clusters based on a fuzzy C-means algorithm.

Then nine GLCM features are extracted from each cluster to train two classifiers: a

k -nearest neighbor (KNN) classifier and a decision tree. The classification accuracies

were 67% (KNN) and 73% (ID3). In (Oliver et al., 2008), the method proposed

in (Oliver et al., 2005) is used to classify the breast density of mammograms retrieved

from the mini-MIAS and DDSM databases. To avoid the errors of segmentation

methods, several studies have proposed to extract features from manually selected

ROIs. Indeed, radiologists generally focus on the breast region in each mammogram

to be analyzed. In (Sharma and Singh, 2014), GLCM features, histogram-based

features, fractal features and Law’s texture energy measures are extracted from each

ROI and classified into fatty or dense. In (Sharma and Singh, 2015; Muštra et al.,

2012), the GLCM features are extracted from each ROI, while (Subashini et al.,

2010) extracted various statistical features from each ROI to train a SVM.

The performance of the descriptors used in the methods discussed above may be

degraded by the noise and artifacts in mammograms (e.g. dead pixels, dead or

unread lines, non-uniformities and ghosting). The GLCM and LBP may produce

similar descriptors for different tissues. The studies discussed above reveal that the
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use of ROIs is one of the most appropriate techniques in breast tissue analysis. In

this study, we extract ULDP features from manually selected ROIs and then we use

a multi-class SVM to predict the density of each ROI.

4.3 Methods

The main steps in the proposed breast cancer CAD system are ROI selection, feature

extraction and classification. A physician selects a ROI from the breast region

to be analyzed by the CAD system. Given the selected ROI, ULDP features are

extracted and sent to a classifier to perform two classifications: mass/normal tissue

classification and breast density classification. SVMs have been widely used in breast

tissue classification and breast density classification methods, and results have been

good in both tasks. Therefore, we use a linear SVM and a non-linear SVM in the

classification step.

4.3.1 Uniform local directional pattern

In this section we describe the most related descriptors (e.g. (Oliver et al., 2007;

Ramirez Rivera et al., 2013)) and we provide a detailed explanation of the proposed

ULDP descriptor.

Related descriptors. An important drawback of LBP is that it depends on the

intensity difference of the pixels, which is very sensitive to noise and illumination

changes. Fig. 4.3 presents an example of the calculation of LBP codes of two pixels:

pixel A, which lies in a tumorous region, and pixel B, which lies in a normal region.

Although A and B belong to completely different regions, LBP assigns 00000000 to

both pixels, which creates a dilemma in the classification step.

Chen et al. proposed a method for correcting the non-uniform patterns in the LBP

binary codes to reduce the effect of noise. Chen’s method partitioned each 8-bit LBP

binary code into sequences of three consecutive bits. If 010 or 101 are found in the

binary code, they are replaced by 000 or 111 respectively. Chen’s method converts

a natural non-uniform pattern into a uniform pattern, which distorts the overall
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Figure 4.3: The binary codes generated with LBP, RLBP, LDP, LDN and MLDP for pixel A,
which belongs to a tumorous region, and pixel B, which belongs to a normal region

description, because all wrong corrections affect the quality of the final histogram.

Local directional pattern (LDP) is a robust texture descriptor that encodes the

directional information (i.e., the edge responses) in a local neighborhood. Therefore,

LDP reduces the LBP dependence on the intensity difference.

LDP computes the edge responses in eight directions by using the compass Kirsch

masks (Gonzalez and Woods, 2002). Jabid et al. (2010) set the positions of the

top three responses to 1 and the positions of other directions to 0, generating an

8-bit binary code for each pixel. Fig. 4.3 shows an example of the calculation of the

LDP codes for pixels A and B. LDP assigns 00101001 to pixel A and 10100001 to

pixel B. Although LDP generates different codes, the reliance on only the top three

responses leads to a loss of information about the local neighborhoods.

An example of LDN calculation is presented in Fig. 4.3. LDN can distinguish

between pixels A and B by assigning different binary codes 100111 and 010111,

respectively. However, this descriptor also leads to a loss of information about the

neighbors in a particular neighborhood, because only the minimum and maximum

responses in the neighborhood are considered. In (Mohamed et al., 2014), a modified

local directional pattern (MLDP) is proposed for an illumination-robust optical flow

estimation. MLDP encodes the edge responses computed by using compass masks

based on a Gaussian filter. In MLDP, the positive responses are set to 1 and the
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bits corresponding to negative responses are set to 0. As shown in Fig. 4.3, MLDP

produces 10000011 and 10001011 for pixels A and B, respectively. Although MLDP

can discriminate between the two pixels, it is still sensitive to noise because there

are many bitwise jumps in their binary codes.

Proposed descriptor. We propose the uniform local directional pattern (ULDP)

as a texture descriptor for breast tissues in mammograms. ULDP describes each

neighborhood in the breast region on the basis of its edge responses, taking into

account not only their magnitudes but also spatial information. ULDP computes

the edge responses using the eight Kirsch compass masks (Gonzalez and Woods,

2002), and then all the positive responses are set to 1 (the intensity has changed

from dark to light), whereas the negative responses are set to 0 (the intensity has

changed from light to dark). Fig. 4.4 shows an example of ULDP code calculation

for a pixel in a ROI.

Given an N×N gray level ROI, an 8-bit code is calculated for each pixel. After all the

patterns in the ROI have been calculated, only the uniform patterns are considered.

A uniform pattern contains at most two transitions from 0 to 1 or vice versa when

the bit pattern is traversed circularly. The non-uniform patterns usually have some

undesirable characteristics, such as partial correlation and unwanted noise (Ojala

et al., 2002). For instance, 00111100 is a uniform pattern, whereas 00101010 is a

non-uniform pattern. In ULDP, a separate label of the final histogram is set for each

uniform pattern. The uniform mapping produces 58 output labels, whereas the other

198 non-uniform patterns are assigned to a single label. Thus, there are 59 labels in

the resulting histogram.

Given an N × N gray level ROI, the ULDP codes are converted to decimal values

and then the histogram of ULDP is computed as follows:

H(ROI) =
∑
x,y

M (I(x, y) = i) , i = 0, 1, . . . , n− 1 (4.1)

where I is a matrix containing the decimal values and n is the number of different

labels (n=59). If I(x, y) is equal to i then M (I(x, y) = i) = 1, otherwise
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Figure 4.4: Example of ULDP code generation
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M (I(x, y) = i) = 0.

Fig. 4.5 shows how ULDP can distinguish between mass and normal breast tissues.

Both normal and tumorous ROIs in a dense breast have similar visual characteristics,

as can be observed in Fig. 4.5 (a) and Fig. 4.5 (b). LBP generated a large number

of repetitions of the uniform pattern 11111111, which is labeled in the bin number

58 of the LBP histogram, as shown in Fig. 4.5 (c) and Fig. 4.5 (d). This is the

saturation problem of the LBP descriptor that was explained above. RLBP assigned

the code 00000000 to many pixels in the normal and mass regions, a result of wrong

corrections being made to the descriptor (many sub-patterns were wrongly converted

from 010 to 000). In turn, ULDP produces distinctive histograms for the ROIs, and

the resulting histograms are well distributed, as shown in Fig. 4.5 (g) and Fig. 4.5 (h).

To increase the discriminative capability of ULDP, spatial information is considered

by dividing each ROI into Ns subregions. The final descriptor HULDP of a given ROI

can be constructed by concatenating the ULDP histograms as follows:

HULDP (ROI) =
⊎
j

Hj, j = 1, 2, . . . , Ns (4.2)

where
⊎

is the concatenation operator, Hj is the histogram of the subregion j, and

Ns is the number of subregions.

In the following section we calculate the number of subregions and the optimal

ROI size which yield the best classification result. ULDP can properly discriminate

between different tissues in mammograms regardless of their sizes, shapes or margins,

as shown in the experimental section below.

4.3.2 Classification

In this study we used LSVM and NLSVM with RBF to discriminate between mass

and normal tissues. In the case of mass/normal breast tissue classification, the

optimal pair (C,γ) of ULDP with the mini-MIAS database was (0.5, 0.015625)

while with the INbreast database it was (0.25, 0.0625). In addition, a multi-class

classifier based on a SVM was implemented to separate breast tissue densities. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Comparison between the histograms of ULDP, LBP and RLBP. The first row shows
two ROIs extracted from the mini-MIAS database: normal ROI (extracted from mdb174) and
mass ROI (extracted from mdb204). The remaining figures show the resulting histograms of (a,
b) with LBP (c, d), RLBP (e, f) and ULDP (g,h), respectively
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common way to extend a binary SVM classifier to the multi-class scenario is to

decompose an M-class problem into a series of binary problems. A set of binary

classifiers are constructed to obtain the M -class classifier. Two different techniques

can be applied: one-against-all and one-against-one. In this study, we used the

one-against-all technique (Liu and Zheng, 2005; Hsu and Lin, 2002), where each

classifier is trained to separate one class from the rest.

4.4 Experimental results

In this section the performance of ULDP in mass/normal breast tissue classification

and breast tissue density classification is evaluated. Firstly, for mass/normal breast

tissue classification, the ROIs were extracted from each database according to its

ground truth (gold standard) (Pomponiu et al., 2014; Oliver et al., 2007). Then, the

resulting histogram of each ROI was sent to a recognition system based on supervised

learning: LSVM and NLSVM. A quantitative comparison between the classification

with ULDP and some of the state-of-the-art descriptors, such as LBP (Oliver et al.,

2007), HOG (Pomponiu et al., 2014), GLCM (Liu and Zeng, 2015; Beura et al., 2015)

and Gabor filters (Zheng, 2010) was also made. Secondly, for the breast tissue density

classification, the ROIs were extracted from the breast regions behind the nipple, as

described in (Sharma and Singh, 2014; Muštra et al., 2012; Subashini et al., 2010).

A multi-class classifier was used to classify each ROI into different breast densities.

To show the robustness of the SVM in these two classification tasks we also evaluated

the performance of two more classifiers: LDA and MLP. In the case of MLP, we

used the configuration presented in (Garćıa-Manso et al., 2013). We used two

breast cancer databases in our experiments: mini-MIAS (Suckling et al., 1994) and

INbreast (Moreira et al., 2012).

The performance of ULDP in mass/normal breast tissue classification was measured

in terms of the AUC of the ROC, whereas its performance in breast tissue density

classification was measured in terms of the accuracy and the confusion matrix. The

k -fold cross validation technique was used to generate the training and testing
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datasets. In addition, the confusion matrix shows the TP, TN, FP and FN of

the classification process on an m × m matrix, where m is the number of the

classes. The diagonal of the confusion matrix shows the correctly classified instances.

Furthermore, we used the Kappa statistic to measure the observed agreement among

the raters of breast tissue density classification. This statistic compares the accuracy

of the system to the accuracy of a random system. It is used to assess the inter-rater

reliability when observing categorical variables (κ= 1 if there is full agreement; κ=

0 if there is no agreement).

4.4.1 Mass/normal breast tissue classification

In this section two experiments were made to evaluate the performance of ULDP

when classifying mass and normal breast tissues. The first experiment used a set of

ROIs extracted from the mini-MIAS database, while the second used a set of ROIs

extracted from the INbreast database. Given a set of mass and normal ROIs, in

both experiments the ULDP features were extracted from each ROI and sent to a

LSVM or a NLSVM to be classified into mass or normal tissue. In order to create

the ROIs, we followed the procedure given in (Pomponiu et al., 2014; Garćıa-Manso

et al., 2013; Oliver et al., 2007). The GT of each database was used to determine the

smallest square region that contains the mass. In turn, the ROIs of the normal tissues

were randomly selected from the normal mammograms, and they were created with

random sizes ranging from the smallest to the largest size found in the database.

Using the methodology explained above, 109 mass ROIs were extracted from the mass

mammograms and 203 normal ROIs were extracted from the normal mammograms

of the mini-MIAS database. In the case of the INbreast database, 107 mass ROIs

were extracted from the mass mammograms and 300 from the normal mammograms.

The extracted ROIs were of different sizes, so they were resized into a fixed template,

keeping the same aspect ratio. It has been demonstrated that resizing the ROIs into

a common template preserves the mass malignancy information (Campanini et al.,

2004; Hong and Brady, 2003). To determine the optimal size of the ROIs, different

sizes were considered (32× 32, 64× 64, 75× 75 and 150× 150 pixels) and the AUC
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values for each size were computed. Fig. 4.6 shows the effect of the ROI size on the

classification of breast tissue. The AUC values are plotted against the change in ROI

size (the AUC values were calculated using LSVM). In the case of the mini-MIAS

database, the best ROI size is 75×75 pixels, while the 64×64 and 75×75 sizes gave

comparable AUC values in the case of the INbreast database. Thus, we recommend

using a template with a size of 75× 75 pixels.
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Figure 4.6: The effect of the ROI size on the performance of mass/normal breast tissue
classification in the mini-MIAS (blue) and INbreast (red) databases

To add spatial information to ULDP, each ROI was divided into Ns subregions.

The ULDP histogram was calculated for each subregion, and then the resulting

histograms were concatenated to build the final descriptor (see section 4.3.1). The

descriptor was then normalized to unit length using the L2-norm. Fig. 4.7 shows

the relationship between the number of subregions and the resulting AUC values

(calculated using LSVM). A total of 16 subregions yielded the highest AUC value

with the mini-MIAS database and 4 subregions yielded the best AUC value with

the INbreast database. The reason for the considerable variation in the number of

subregions is that the INbreast database contains high contrast digital mammograms,

so the masses and other internal structures in a breast region are more visible in

INbreast than in mini-MIAS.

Each mammogram may contain many mass regions. Thus, if a normal/mass ROI of

a certain mammogram is used in the testing stage, the other ROIs extracted from

the same mammogram must be excluded in the training stage. This step ensures a
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Figure 4.7: The effect of the number of subregions on mass/normal breast tissue classification
with two databases: (a) mini-MIAS and (b) INbreast

full separation between the training and testing instances even when using a cross

validation process.

Table 4.2 presents the classification results with the ULDP descriptor applied to the

mini-MIAS database, as well as the results of mass/normal breast tissue classification

with LBP (Oliver et al., 2007), RLBP (Chen et al., 2013), HOG (Pomponiu et al.,

2014), LDP (Ramirez Rivera et al., 2013), MLDP (Mohamed et al., 2014), Gabor

filters (Zheng, 2010) and GLCM (Liu and Zeng, 2015; Beura et al., 2015). All

descriptors were normalized to unit length. We implemented LBP, RLBP, LDP and

MLDP using the same procedure followed with ULDP (i.e., each ROI was divided into

subregions and their histograms were concatenated). The values of the parameters

in our implementation of HOG were a 3 × 3 cell size, 8 × 8 cells for the block size

and a 9-bit histogram.

The results with ULDP outperformed all other descriptors, yielding an AUC value
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of 0.9325 with the LSVM and 0.9292 with the NLSVM classifier. MLDP, Gabor

filters and GLCM gave AUC values lower than 0.70 with LSVM and NLSVM, which

show they are weak at describing the internal structures of the breast tissues in the

case of the mini-MIAS database. LBP produced acceptable results with the NLSVM

classifier, but the LBP features could not be linearly separated. RLBP gave good

AUC values with both the LSVM and NLSVM classifiers.

Table 4.3 shows the results of the classification with the INbreast database. The

AUC values obtained with ULDP, LBP, RLBP, HOG, LDP and GLCM were over

0.978 with LSVM and NLSVM. The main reason for these excellent results is that

INbreast (which is a digital database) has very good contrast (i.e. masses are more

visible in digital mammograms). LDP produced a slightly greater AUC value than

ULDP because we added spatial information for LDP as we did in ULDP. The

MLDP descriptor produced an AUC of 0.5254 with LSVM and an AUC of 0.7896

with NLSVM, indicating that these features cannot distinctively characterize breast

tissues in digital mammograms.

Table 4.2: Comparison between the AUC values of mass/normal breast tissue classification using
ULDP, LBP, RLBP, HOG, LDP, MLDP, Gabor and GLCM features using LSVM, NLSVM, LDA
and MLP classifiers with the mini-MIAS database

Methods LSVM NLSVM LDA MLP
ULDP 0.9325 ± 0.0630 0.9292 ± 0.0567 0.9133±0.0524 0.9224±0.0626
LBP 0.6978 ± 0.0295 0.8947 ± 0.0159 0.7728±0.1349 0.6271±0.0722
RLBP 0.9103 ± 0.0697 0.9228 ± 0.0725 0.9277±0.0680 0.9295±0.0475
HOG 0.7664 ± 0.0311 0.8874 ± 0.0920 0.7495±0.1668 0.9065±0.0674
LDP 0.8195 ± 0.1310 0.705 ± 0.1935 0.7070±0.1134 0.7879±0.0828
MLDP 0.5404 ± 0.2150 0.5338 ± 0.1767 0.6258±0.0784 0.5397±0.0955
Gabor 0.6901 ± 0.1052 0.6412 ± 0.1546 0.8582±0.0763 0.7459±0.0870
GLCM 0.6803 ± 0.2154 0.6217 ± 0.2968 0.8490±0.0846 0.7884±0.1082

The statistical significance of the AUC values gives further evidence supporting

ULDP. The statistical significance simply means that a given result is unlikely to

have occurred by chance. The t-student test (David and Gunnink, 1997) was used

to calculate the statistical significance of the AUC values. An AUC value of 0.5

means that the output is produced by chance. The number of experiments equals

8 and the significance level α of a single experiment equals 0.05; so, according to

the Bonferroni correction (Curtin and Schulz, 1998), the actual significance level is
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Table 4.3: Comparison between the AUC values of mass/normal breast tissue classification using
ULDP, LBP, RLBP, HOG, LDP, MLDP, Gabor and GLCM features using LSVM, NLSVM, LDA
and MLP classifiers with the INbreast database

Methods LSVM NLSVM LDA MLP
ULDP 0.9930 ± 0.0102 0.9926 ± 0.0113 0.9413±0.0587 0.9987±0.0032
LBP 0.9789 ± 0.0238 0.9918 ± 0.0104 0.9732±0.0577 0.9207±0.0595
RLBP 0.990 ± 0.0228 0.9902 ± 0.0022 0.9105±0.0631 0.9888±0.0148
HOG 0.9925 ± 0.0335 0.9934 ± 0.0293 0.9600±0.0459 0.9983±0.0050
LDP 0.9983 ± 0.0028 0.9978 ± 0.0045 0.8590±0.0831 0.9786±0.0189
MLDP 0.5254 ± 0.1292 0.7896 ± 0.1383 0.8402±0.0973 0.6080±0.1284
Gabor 0.9547 ± 0.0409 0.9468 ± 0.0504 0.2210±0.1170 0.4816±0.0854
GLCM 0.9875 ± 0.0035 0.9845 ± 0.0017 0.9898±0.0216 0.9979±0.0067

0.0063 (0.05/8). With the mini-MIAS database, the AUC values with ULDP, LBP,

RLBP, HOG, LDP, Gabor filters and GLCM were statistically significant (p-value

< 0.0001). In turn, the AUC values with MLDP were not statistically significant

(p-value > 0.0063), indicating that the AUC values with the MLDP were produced

by chance. With the INbreast database, the AUC values with ULDP, LBP, RLBP,

HOG, LDP, MLDP and GLCM were statistically significant (p-value < 0.0001),

but the AUC values with Gabor filters were not statistically significant (p-value >

0.0063).

Moreover, with the mini-MIAS database the AUC values with ULDP were

statistically more significant (p-value < 0.0001) than the ones with LBP, MLDP and

Gabor filters with LSVM; in addition, the AUC values with ULDP were statistically

more significant than the ones with all the other descriptors with NLSVM. In the

case of the INbreast database, considering both LSVM and NLSVM, the results with

ULDP were statistically more significant than the results of all other descriptors. The

overall results confirm that ULDP produces a good description of breast tissues.

In our experiments, we evaluated how other classifiers such as LDA and MLP

classified mass/normal breast tissue using the proposed descriptor. In the case of

the mini-MIAS database, LDA and MLP gave lower AUC values than with ULDP

and LSVM. In contrast, RLBP with LDA and MLP gave better AUC values than

with ULDP (Table 4.2). With the INbreast database, LDA and MLP with ULDP

gave similar AUC values to those with LSVM and NLSVM (Table 4.3). LDA with

LBP, HOG and GLCM gave higher AUC values than with ULDP.
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We also calculated the statistical significance of the AUC values with LDA and MLP.

With LDA, the AUC values of ULDP were statistically more significant than those

of LDP and MLDP with the mini-MIAS database (p-value < 0.0063), while the

AUC values of ULDP were statistically more significant than those of Gabor filters

with the INbreast database. In the case of MLP, the AUC values of ULDP were

statistically more significant than the ones of LBP, LDP, MLDP and Gabor filters

with the mini-MIAS and the INbreast. The AUC values of ULDP were statistically

more significant than the ones of GLCM with the mini-MIAS while they were not

statistically significant with INbreast.

4.4.2 Breast tissue density classification

In this section we evaluated how well the ULDP descriptor classified breast tissue

density. To classify the mammograms according to their breast densities, a 100×100

ROI of each mammogram was manually extracted as proposed in (Sharma and Singh,

2014; Muštra et al., 2012). The selected ROI contains breast tissues that lie behind

the nipple, in the densest region of the breast (excluding the pectoral muscle). Each

ROI was then divided into 25 subregions (in this study, this number was obtained

empirically). Afterwards, the ULDP histograms were individually extracted from

each subregion and concatenated to build the final descriptor. As explained in

section 9.4.2, a multi-class supervised learning classifier based on an SVM was used

to classify the ROIs into different densities.

Two experiments were performed with the mini-MIAS database: fatty/dense and

fatty/glandular/dense breast tissue classifications. Table 4.4 presents the confusion

matrix of the fatty/dense classification of 30 mammograms per class in which an

accuracy of 96.67% with a Kappa coefficient κ = 0.933 was achieved. Table 4.5

presents the confusion matrix of the fatty/dense classification of 50 mammograms

per class in which an accuracy of 98.0% (κ = 0.99) was obtained. The high accuracy

of the results and the noticeable agreement between the raters attest the ability of

ULDP to distinguish between fatty and dense tissues.

We also tested the classification into fatty/glandular/dense breast densities. The
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Table 4.4: Confusion matrix of
the fatty/dense breast tissue density
classification in mini-MIAS

fatty dense
fatty 0.9667 0.0333
dense 0.0333 0.9667

Table 4.5: Confusion matrix of
the fatty/dense breast tissue density
classification in mini-MIAS

fatty dense
fatty 0.98 0.02
dense 0.02 0.98

glandular class is between fatty and dense tissues (i.e. it has characteristics in

common with fatty and dense tissues). As shown in Table 4.6, ULDP achieved

an accuracy of 87.78% with 30 mammograms per class (κ = 0.8167) and an accuracy

of 88.0% (κ = 0.820) with 50 mammograms per class (Table 4.7). The correct

classification rate in the fatty/glandular/dense classification is lower than the correct

rate in the fatty/dense classification due to the addition of the glandular class.

Table 4.6: Confusion matrix of the
fatty/glandular/dense breast tissue density
classification in mini-MIAS

fatty glandular dense
fatty 0.8333 0.1667 0

glandular 0.1 0.8 0.1
dense 0 0 1

Table 4.7: Confusion matrix of the
fatty/glandular/dense breast tissue density
classification in mini-MIAS

fatty glandular dense
fatty 0.84 0.16 0

glandular 0.16 0.8 0.04
dense 0 0 1

The INbreast database contains only 28 BI-RADS IV mammograms. So, 30

mammograms from BI-RADS I, BI-RADS II and BI-RADS III were added, in an

attempt to make a balanced classification. As shown in Table 4.8, accuracy was

92.37% and agreement high (κ=0.9091). This high accuracy certifies the ability

of ULDP to discriminate between different breast densities. Table 4.9 shows the

confusion matrix of an imbalanced classification process, in which 50 mammograms

were used from BI-RADS I, BI-RADS II and BI-RADS III, as well as the 28

mammograms of BI-RADS IV. As a result of the imbalanced dataset, the accuracy

decreased to 76.97%.

The performance of LDA and MLP with breast density classification was also

evaluated. With mini-MIAS, MLP produced classification results similar to those

produced with SVM. In the case of fatty/dense classification, MLP with the
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Table 4.8: Confusion matrix of the breast
tissue density classification in INbreast

I II III IV
I 0.9667 0.0333 0 0
II 0.0667 0.8667 0.0667 0
III 0 0 0.9333 0.0667
IV 0 0 0.0357 0.9643

Table 4.9: Confusion matrix of the breast
tissue density classification in INbreast

I II III IV
I 0.82 0.1 0.04 0.04
II 0.14 0.7 0.1 0.06
III 0.06 0.04 0.86 0.04
IV 0 0.0714 0.1071 0.8214

mini-MIAS achieved an accuracy of 96.66% with 30 mammograms per class (κ =

0.93) and an accuracy of 97.67% (κ = 0.9733) with 50 mammograms per class. In

the case of fatty/glandular/dense classification, MLP with the mini-MIAS achieved

an accuracy of 78.24% with 30 mammograms per class (κ = 0.656) and an accuracy

of 81.3% (κ = 0.7184) with 50 mammograms per class. The classification results of

MLP were much lower than those of SVM in the case of INbreast. It achieved an

accuracy of 26.67% (κ = 0.0248) with 30 mammograms per class and an accuracy of

39.26% (κ = 0.1655) with 50 mammograms per class. LDA was much less accurate

than SVM in the case of mini-MIAS and INbreast (max. 50%).

4.4.3 Effect of breast density on the performance of ULDP

The effect of breast density on the performance of mass/normal breast tissue

classification using ULDP is at the heart of this discussion. In practice, the higher

the breast density, the more difficult it is to detect the breast masses. The effect

of the breast density on mass/normal breast tissue classification was discussed

in (Garćıa-Manso et al., 2013) using a set of ROIs extracted from the DDSM

database (Heath et al., 1998). In this chapter we studied the effect of breast density

on the ability of ULDP to perform mass/normal breast tissue classification by

considering the mass and normal ROIs extracted from the same breast density class.

For instance, in order to study the effect of the fatty tissue, the classification process

was performed using the mass and normal ROIs extracted from fatty mammograms.

In the case of mini-MIAS, we divided the mammograms into three datasets according

to their breast densities (fatty, glandular and dense). Consequently, three datasets

were generated: fatty (106 mammograms), glandular (104 mammograms) and dense
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(112 mammograms). In each dataset, the mass and normal mammograms were

identified. The mass/normal classification was then performed using these extracted

mass and normal ROIs (the ROIs were generated using the methodology explained

in section 4.4.1). In turn, the INbreast database was divided into four datasets :

BI-RADS I (132 mammograms), BI-RADS II (148 mammograms), BI-RADS III

(97 mammograms) and BI-RADS IV (28 mammograms). On the basis of a

leave-one-out cross validation study, Fig. 4.8 presents the effect of breast density

on the ability of ULDP to classify breast tissues into normal or mass. Both LSVM

and NLSVM classifiers were used in the classification step. With the mini-MIAS

database, mass/normal breast tissue classification using NLSVM performs more or

less constantly with all densities. However, there is a small variation in the AUC

values in the case of LSVM. In the case of the INbreast database, there is a small

variation in the AUC values with LSVM and NLSVM. These experiments attest that

ULDP performs well and indicates that it is able to characterize different tissues in

the breast area, regardless of density.

4.5 Discussion

The main advantage of ULDP is that it uses uniform patterns to build a robust

descriptor. The non-uniform patterns are assigned to a single bin in the final

histogram because they usually have undesirable characteristics, such as partial

correlation and unwanted noise. Moreover, calculating the edge responses in eight

different directions provides a good representation for the micro-patterns in a given

ROI. Consequently, if a micro-pattern is missed in a particular direction, it can

be captured in other directions. In this way, ULDP can describe the structures of

different tissues in the breast region.

As observed from the experiments, the optimal number of subregions varies in the

film-screen and FFDM databases, because the breast tissues are more visible in the

digital mammograms, whereas a film-screen mammogram usually contains blurred

regions and noise in the breast area (Pisano et al., 2005). The ROIs generated were of
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Figure 4.8: The effect of breast density on the discrimination ability of ULDP with LSVM and
the NLSVM and two databases: (a) mini-MIAS and (b) INbreast

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



4.5. Discussion 75

different sizes, because the masses are naturally of different sizes. Thus, all the ROIs

were resized into a template with a common size. With the mini-MIAS database, the

best ROI size in mass/normal breast tissue classification was 75 × 75 pixels, whilst

both 64 × 64 and 75 × 75 pixels gave comparable results in the case of INbreast

(in this study, the template size was 75 × 75 pixels). ULDP outperformed some of

the state-of-the-art descriptors in mass/normal breast tissue classification such as

LBP (Oliver et al., 2007), HOG (Pomponiu et al., 2014), GLCM (Liu and Zeng, 2015;

Beura et al., 2015) and Gabor filters (Zheng, 2010). In addition, ULDP gave the

best AUC (0.9325) with the mini-MIAS database and its results were statistically

significant, which means that ULDP provides a distinctive description for breast

masses in film-screen mammograms. In the case of INbreast, results were good with

ULDP, LBP, RLBP and LDP (about 0.99) as a result of the clear visibility of the

breast tissues in digital mammograms.

In addition, the ULDP descriptor was evaluated for its ability to classify breast tissue

density. With the mini-MIAS database, results were reliable in both fatty/dense and

fatty/glandular/dense classification. The main reason for these results is that ULDP

is independent of the intensity values, because it is a structural descriptor based on

edge responses. Table 4.10 presents a quantitative comparison between the accuracy

of breast tissue density classification using ULDP and the results of the methods

proposed in (Oliver et al., 2008, 2005; Muštra et al., 2012; Sharma and Singh, 2014)

which were applied to the mini-MIAS database. The working principles of these

methods have been discussed in section 4.2.2.

Table 4.10: Comparison between fatty/dense and fatty/glandular/dense breast density
classification using ULDP with some related studies which used the mini-MIAS database

Method 2 classes 3 classes
Proposed 99.0% 85.5%
Oliver (Oliver et al., 2008), (Oliver et al., 2005) 91% 73%
Mustra (Muštra et al., 2012) 91.6% 82.5%
Sharama (Sharma and Singh, 2014) 96.46% −
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The proposed method gave better accuracy than other methods in both

fatty/dense and fatty/glandular/dense breast tissue density classification. In

addition, the classification of breast tissue density with the proposed method based

on ULDP achieved high agreement between raters (κ = 0.82), while (Oliver et al.,

2008) achieved a kappa coefficient of 0.81.

With the INbreast database, breast density was classified into four classes. Only a

few studies have used digital databases, so a quantitative comparison was made with

only two related studies (Tortajada et al., 2012; Muštra et al., 2012). Tortajada et al.

used a private FFDM database for breast density classification and they achieved an

accuracy of 92.0% with κ = 0.88. Muštra et al. achieved an accuracy of 76.2% with

a private FFDM database.

Table 4.11 compares the classification accuracy of the proposed method based on

ULDP and other methods (Muštra et al., 2012; Tortajada et al., 2012) when they

are applied to the INbreast database. Our approach achieved an accuracy of 92.37%

with κ = 0.9091, higher than that of other methods.

Table 4.11: Comparison of the accuracy of breast density classification of ULDP with (Muštra
et al., 2012) and (Tortajada et al., 2012) using INbreast

Method Accuracy
Proposed 92.37%
Mustra (Muštra et al., 2012) 88.2%
Tortajada (Tortajada et al., 2012) 89.0%

In this study we used LSVM and NLSVM to classify breast tissues into mass or

normal and to classify breast density. We also evaluated the performance of LDA

and MLP with the proposed ULDP descriptor. For breast tissue classification, LSVM

and the NLSVM gave the highest AUC values with the mini-MIAS database, while

all the classifiers gave comparable AUC values with the INbreast database. In the

case of breast density classification, the multi-class SVM was most accurate with the

mini-MIAS and INbreast databases.

Our experiments reveal that ULDP can properly describe breast tissues even in dense

mammograms. Although the proposed descriptor gave good results for breast tissue
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classification and breast density classification, the main limitations of the current

study are:

• The ROIs were manually selected, so the current CAD system is not fully

automatic. In future work on breast tissue classification we will use an

automatic approach to select the suspicious ROIs from mammograms. In

the case of breast density classification, we will use ULDP to segment dense

regions from the breast area, and then the breast density will be calculated as

a percentage between the area of the dense tissue and the area of the whole

breast.

• We have evaluated the proposed descriptor with ROIs extracted from the

middle of the breast area; however, in some cases the masses are located close

to the pectoral muscle. Thus, the extracted ROIs may contain a small part

from the pectoral muscle which is white in mammograms (like dense tissues).

In these cases, we are not sure whether the proposed descriptor will give good

mass/normal classification results or not.

• The proposed descriptor was evaluated with mass/normal breast tissue

classification in breast ultrasound images. The result was not good because of

the presence of speckle noise. In chapter 6 we propose the fuzzy local directional

pattern to improve the results of mass detection in ultrasound images.

4.6 Conclusion

In this chapter we proposed a CAD system for analyzing breast tissues in

mammograms. The analysis included breast tissue classification and breast density

classification. We proposed the ULDP descriptor for feature extraction. This

descriptor encodes a neighborhood in the breast region on the basis of its edge

responses and spatial information. The ULDP histogram can characterize breast

masses as well as different tissues in the breast. Two main experiments have

been performed to evaluate ULDP with two databases: mass/normal breast tissue

classification and breast tissue density classification using mini-MIAS (film-screen
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database) and INbreast (full field digital database). Our experiments enable us to

draw the following conclusions:

• ULDP can properly discriminate between different tissues in mammograms

regardless of their sizes, shapes or margins. Results were good for both

mass/normal breast tissue classification and breast tissue density classification.

In addition, breast tissue density classification based on the ULDP histogram

yielded a high Kappa coefficient.

• The correct classification rate based on the ULDP descriptor with digital

mammograms was higher than the rate with film-screen mammograms, due

to the good contrast of digital mammograms.

• We studied the effect of breast density on the performance of the proposed

descriptor. ULDP performed more or less constantly with different breast

densities.

In the next chapter we study the impact of such factors as pixel resolution,

integration scale, preprocessing and feature normalization on the performance of

texture methods for breast tumor classification.
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CHAPTER5

The impact of image resolution, patch size,

preprocessing and feature normalization on

texture analysis for tumor classification

5.1 Introduction

CAD systems are typically used to analyze mammograms in screening. While

radiologists are generally pleased with the performance of CAD for clustered

microcalcification detection, they have little confidence in CAD for mass detection.

The most common complaint by radiologists is that CAD systems lead to a large

number of false positives (Gilbert et al., 2008).

Although mammography is a highly sensitive method for the early detection of
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breast cancer, specificity is low in the classification of benign and malignant masses.

Texture analysis methods are one of the options for improving the specificity of

classification algorithms applied to mammography. These methods may provide

additional information in distinguishing benign and malignant masses. Although

several feature extraction methods have been proposed for analyzing mammograms,

improving the classification performance remains a challenge.

Texture analysis methods have been widely used to analyze mammographic images

because they produce information about the spatial arrangement of intensities in

the mammogram. Texture is one of the major mammographic characteristics

for mass classification. For instance, several studies have used texture analysis

methods to distinguish between normal and abnormal tissue (Bellotti1 et al., 2006;

Melendez et al., 2014; Oliver et al., 2007; Pomponiu et al., 2014; Zheng, 2010), or to

discriminate between benign and malignant masses (Chan et al., 1997; Rangayyan

et al., 2010; Soltanian-Zadeh et al., 2004). Other studies have used texture analysis

methods to estimate breast density (Oliver et al., 2008) or to segment masses from

mammograms (Oliver et al., 2010).

CAD systems usually focus on a ROI to study breast masses. The texture of this

ROI describes the pattern of spatial variation of grey levels in a neighborhood that

is smaller than the breast area but big enough to include the masses. In other words,

texture must be analyzed in a region, and the size of this region should be tuned.

Thus, the following question needs to be answered: what is the optimal neighborhood

size (integration scale) for texture analysis? In addition, the size of a mammogram is

usually in the range of thousands of pixels. Consequently, several works have reduced

the original resolution of a mammogram to reduce the computational complexity

and the execution time of their algorithms (Sampat et al., 2008), or to save resources

(e.g. memory and storage space). However, image downsampling may also affect the

performance of the texture analysis methods. Therefore, the following question also

needs to be answered: how far can we downsample the image without affecting the

performance of the texture methods?

In breast cancer CAD systems, such preprocessing operations as image filtering
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or enhancement are usually applied to mammograms. Pisano et al. (1998) show

that the contrast-limited adaptive histogram equalization (CLAHE) applied to a

mammogram before it is displayed can make the indicative structures of breast

cancer more visible. Sharpening (SH) is used to improve the detection of clustered

calcifications (Anand et al., 2013). The median filter (MF) is used to remove the

noise from the mammograms (Subashini et al., 2010). Preprocessing may affect

the performance of texture analysis methods because it effectively changes the gray

levels of the images. This effect should be assessed. After extracting the texture

features from a given mammogram, they are usually normalized before proceeding

to the classification stage. The normalization method used may also affect the final

classification results.

In this chapter, we study the effect of pixel resolution, integration scale, preprocessing

and feature normalization on the performance of texture analysis methods when used

to classify masses in mammograms. To this end, we have chosen five widely/recently

used texture methods: LBP, LDN, HOG, Haralick’s features (HAR) and Gabor filters

(GF). In order to evaluate the performance of these methods, we extracted a set of

ROIs containing lesions from the mini-MIAS database (Suckling et al., 1994), and

we used each texture analysis method to classify the ROIs into benign or malignant.

The performance of each texture method is evaluated with five pixel resolutions (200

µm, 400 µm, 600 µm, 800 µm, 1000 µm), six integration scales (25 × 25, 32 × 32,

50× 50, 64× 64, 75× 75, 100× 100 pixels), three preprocessing steps (CLAHE, MF,

SH), and five feature normalization methods. Linear and nonlinear SVM classifiers

are also used.

To the best of our knowledge, only one previous study has conducted a similar

evaluation. Rangayyan et al. studied the effect of pixel resolution on texture features

of breast masses in mammograms (Rangayyan et al., 2010). However, they only took

pixel resolution and Haralick’s features into account. In contrast, the current study

takes into account a wider range of factors–for example, pixel resolution, integration

scale, preprocessing and feature normalization–and considers a larger number of more

powerful texture descriptors that have been successfully applied in recent work. We
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also include linear and nonlinear SVMs so that both relatively simple and complex

classification approaches can be assessed. Lastly, we analyze the combination of the

best options for those factors using three approaches: the greedy method, sequential

forward selection (SFS) and exhaustive search (ExS).

5.2 Methods

In this study, we assess the performance of five texture analysis methods (LBP,

LDN, HOG, HAR, GF) while varying the pixel resolution, integration scale, image

preprocessing algorithm and data normalization method. To this end, we extracted

a set of ROIs containing either benign or malignant masses from the mini-MIAS

database. Given a particular texture analysis method, a feature vector is extracted

from each ROI and fed into a linear support vector machine (LSVM) or a nonlinear

support vector machine (NLSVM). The trained models are used to determine if an

unseen ROI contains a benign or a malignant mass.

The mini-MIAS database, consisting of 322 mediolateral oblique images of 161 cases,

is used in our experiments. It was created from the original MIAS database by

downsampling the images from 50 µm to 200 µm per pixel and clipping/padding

to a fixed size of 1024 × 1024 pixels. A ground truth was prepared by experienced

radiologists and confirmed using a biopsy procedure. In this study 109 ROIs, 60

containing a benign mass and 49 containing a malignant mass, were used. Fig. 5.1

shows examples of the extracted ROIs.

(a) (b)

Figure 5.1: ROIs extracted from the mini-MIAS breast cancer database. A ROI containing: (a)
a benign mass and (b) a malignant mass

The authors of the mini-MIAS database reported that they reduced the pixel
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resolution of the original MIAS database (digitized at 50 µm ) to 200 µm by popular

request. Moreover, several studies have used the pixel resolution 200 µm as a baseline

resolution in their applications (Karssemeijer, 1998; Sampat et al., 2008). We do the

same in here.

5.2.1 Texture analysis methods

This section explains the texture analysis methods used and the parameters selected

for each of them.

• Local binary pattern. In this study, a 3×3 neighborhood is used to generate

the histogram of uniform LBPs for each ROI. The uniform mapping produces

59 output labels (59 dimensions) for neighborhoods of 8 pixels.

• Local directional number. In the LDN (Ramirez Rivera et al., 2013), the

edge responses are computed in eight different directions by convoluting the

Kirsch compass masks Kirsch (1971) with the ROIs. The location of the top

positive and negative edge responses are used to generate a 6-bit code for each

pixel. Finally, the histogram of the LDN codes is calculated in the given ROI

(64 dimensions).

• Histogram of oriented gradients. In order to get the best performance out

of HOG, its parameters have been empirically tuned. In this study, we used a

3× 3 cell size, 8× 8 cells for the block size, and a 9-bit histogram.

• HAR features. A GLCM is computed from each ROI, and then 14

texture features are calculated: angular second moment, contrast, correlation,

variance, inverse difference moment, sum average, sum variance, sum entropy,

entropy, difference variance, difference entropy, information measure of

correlation 1, information measure of correlation 2 and maximal correlation

coefficient (Rangayyan et al., 2010). The mathematical expression of each

feature can be found in Section 2.3.2.3.

• Gabor filters. In this study, we used 4 scales and 6 orientations to obtain

these filtered ROIs. This design produces 24 responses. For each ROI, the

energies of the 24 responses are calculated, and then they are aggregated in
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order to form the feature vector.

5.2.2 Preprocessing

The performance of the texture analysis methods is evaluated with three

preprocessing algorithms: CLAHE, median filter (MF) and sharpening (SH).

• CLAHE : it works on small regions of the input ROI (known as tiles). The

contrast of each tile is enhanced, so the histogram of the output region

approximately matches a pre-defined distribution (Puff et al., 1994). In this

study, the Rayleigh distribution is used Pisano et al. (1998).

• MF : each pixel in the filtered ROI contains the median value of the m × n

neighborhood around the corresponding pixel in the input ROI Subashini et al.

(2010). In this study, a 3× 3 neighborhood is used.

• SH : in order to sharpen a ROI, it is first blurred; then, the edges are detected

in the blurred ROI and added to it to produce a sharper image (Anand et al.,

2013).

Fig. 5.2 shows examples for MF, SH and CLAHE when they are applied to benign

and malignant masses.

Benign ROI Malignant ROI

MFCLAHE SHMFCLAHE SH

Figure 5.2: Examples of ROI preprocessing

5.2.3 Feature normalization methods

Feature vectors are normalized in order to prevent attributes with higher numeric

ranges from dominating those with lower numeric ranges. Given a feature vector
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x = [x1, x2, x3, . . . , xN ], the normalized feature vector xnew is calculated using five

normalization methods as follows (Aksoy and Haralick, 2001; Juszczak et al., 2002):

• The zero mean unit variance (zs) method: xnew = (x − µ)/σ, where µ and σ

are the mean and the variance of x.

• The maximum-minimum (mn) method: xnew = (x−xmin)/(xmax−xmin), where

xmax and xmin are the maximum and minimum of x.

• The l1 method scales x to unit length using the `1-norm, xnew = x/
∑N

n=1 |xn|.

• The l2 method scales x to unit length using the `2-norm, xnew =

x/
√∑N

n=1 |xn|2.

• The nh method scales x to unit length as follows, xnew = x/
∑N

n=1 x.

Fig. 5.3 shows examples of normalizing LBP features extracted from a ROI that

contains a benign mass using zs, mn, l1, l2, nh normalization methods.
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Figure 5.3: Feature normalization using (a) zs, (b) mn, (c) l1, (d) l2 and (e) nh normalization
methods
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5.3 Experimental results

In this section, we present the effect of pixel resolution, integration scale,

preprocessing steps, and normalization methods on the performance of the texture

analysis methods when they are applied to benign/malignant mass classification

in mammograms. We also study the effect of different combinations of the

aforementioned factors.

The performance of each texture analysis method is measured in terms of

AUC (Fawcett, 2006). The SVM classifier provides decision values related to the

membership of each class. To generate a ROC curve, we vary a threshold over the

decision values. We also use the k -fold cross validation technique to generate the

training and testing data. In this study, k=10. The mean AUC value is calculated

over the cross validation process.

5.3.1 Effect of pixel resolution and integration scale

As we commented in Section 5.2, the pixel resolution 200 µm has been widely used

in several studies (Karssemeijer, 1998; Sampat et al., 2008). So, in this experiment

we start with this pixel resolution and then the mammograms are downsampled to

generate different pixel resolutions. The downsampling step includes anti-aliasing

filtering and a bicubic interpolation. Five pixel resolutions are generated (200 µm,

400 µm, 600 µm, 800 µm, 1000 µm), and then we use six integration scales (25× 25,

32 × 32, 50 × 50, 64 × 64, 75 × 75, 100 × 100 pixels) to analyze the texture of

each ROI. In this experiment, no preprocessing is applied, and the standard zs

normalization method is used to normalize the extracted feature vectors. The effect

of pixel resolution and integration scale on the performance of LBP, LDN, HOG,

HAR and GF with the LSVM and the NLSVM is shown in Fig. 5.4.

As shown in Fig. 5.4, each texture method gives its best AUC value at a particular

pixel resolution and integration scale. Of all the texture methods, LBP gives the

best AUC value (0.78) at pixel resolution 800 µm and integration scale 75× 75.

The analysis of variance (ANOVA) test (Armitage et al., 2008) has been used
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Figure 5.4: The effect of pixel resolution and integration scale on the performance of the texture
methods with LSVM (left) and NLSVM (right), (a)-(b) LBP, (c)-(d) LDN, (e)-(f) HOG, (g)-(h)
HAR and (i)-(j) GF
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to examine the interaction between pixel resolutions and integration scales. The

experimental design of ANOVA includes two factors: pixel resolution (Res) and

integration scale (IS). Res has five levels (200 µm, 400 µm, 600 µm, 800 µm, 1000

µm), whereas IS has six (25×25, 32×32, 50×50, 64×64, 75×75, 100×100 pixels).

Each combination of the levels of Res and IS produces an AUC value (response).

The confidence level is set to 0.05. The results are shown in Tables 5.1 and 5.2.

Table 5.1: Summary of the ANOVA results of pixel resolution and integration scale with the
LSVM (the value in each cell is a p-value)

Method Res IS Res*IS
LBP 0.0024 0.001 0.908
LDN 0.1174 0.4035 0.8037
HOG 0.3905 0.6515 0.4636
HAR 0.7846 0.0962 0.2895
GF 0.083 0.8259 0.9864

Table 5.2: Summary of the ANOVA results of pixel resolution and integration scale with the
NLSVM (the value in each cell is a p-value)

Method Res IS Res*IS
LBP 0.9332 0.0101 0.0095
LDN 0.2387 0.0772 0.6451
HOG 0.0448 0.0103 0.5138
HAR 0.4253 0.004 0.0847
GF 0.6552 0.3109 0.2024

As shown in Table 5.1, with LBP and the LSVM, the mean responses for the levels of

pixel resolution are significantly different (p=0.0024). Similarly, the mean responses

for the integration scale levels are significantly different. In the case of LDN, HOG,

HAR and GF, the mean responses for the pixel resolution and integration scale levels

are not significantly different. The p-values indicate that the interaction between the

levels of pixel resolution and integration scale (Res*IS) are not significant.

As shown in Table 5.2, the mean responses for the levels of pixel resolution are

significantly different in the case of HOG with NLSVM. In the case of LBP,

LDN, HAR and GF, the mean responses for the levels of pixel resolution are

not significantly different. The mean responses for the integration scale levels are

significantly different in the case of LBP, HOG and HAR. With LBP and NLSVM,
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the interaction between pixel resolution and integration scale (Res*IS) is significant.

5.3.2 Effect of preprocessing

In this experiment, the integration scale that gave the highest AUC value with each

texture analysis method at the baseline pixel resolution of 200 µm and the standard

zs normalization method are used. The effect of no preprocessing (NP), CLAHE, MF

and SH on the performance of each texture analysis method is shown in Fig. 5.5. As

can be seen, each texture method produces the highest AUC value with a particular

preprocessing algorithm. In this experiment, LBP gives the highest AUC value with

SH and NLSVM, while LDN and HAR give the highest AUC value with NP and

LSVM. HOG gives the highest AUC value with CLAHE and LSVM. In turn, GF

gives the highest AUC value with CLAHE and NLSVM.
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Figure 5.5: Texture analysis methods with NP, CLAHE, MF and SH using (a) LSVM, and (b)
NLSVM
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5.3.3 Effect of feature normalization methods

In this experiment, we study the effect of five normalization methods (zs, mn, l1, l2,

nh) on the performance of each texture analysis method. For each texture analysis

method, we use the integration scale that gives the highest AUC value at pixel

resolution 200 µm. No preprocessing method is used. The effect of the normalization

methods is shown in Fig. 5.6. With the LSVM, zs normalization has led LBP and

LDN to AUC values that are better than other normalization methods, while GF

gives its highest AUC value with l1 normalization and NLSVM. As shown in the

figure, each texture analysis method gives its highest AUC value with a particular

normalization method.
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Figure 5.6: Texture analysis methods with different feature normalization methods using (a)
LSVM, and (b) NLSVM

5.3.4 Summary of the results

The best AUC values of each texture analysis method for the experiments in

Sections 5.3.1, 5.3.2 and 5.3.3 are summarized in Table 5.3. LBP produces the
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best AUC value (0.78) at pixel resolution 800 µm, integration scale 75 × 75, no

preprocessing, zs normalization method and LSVM. In turn, HAR produces the

lowest AUC value (0.61). LBP, LDN, HOG and HAR give their best values with

LSVM, whereas GF gives its best AUC value with NLSVM.

Table 5.3: Best AUC value for each texture analysis method and the configuration that yields it
considering the experiments in Sections 5.3.1, 5.3.2 and 5.3.3

Method Best value Res(µm) IS classifier preprocessing Normalization
LBP 0.78 800 75× 75 LSVM NP zs
LDN 0.68 600 64× 64 LSVM NP zs
HOG 0.72 600 64× 64 LSVM NP zs
HAR 0.61 200 32× 32 LSVM NP nh
GF 0.75 200 100× 100 NLSVM CLAHE zs

5.3.5 Combining the levels of all factors

To find the best combination among the levels of all factors, we use three

approaches: the greedy approach, sequential forward selection (SFS) and exhaustive

search (ExS). In the greedy approach, we try to combine the best options of the

aforementioned factors. For each texture analysis method, we summarize the best

levels of pixel resolution, integration scale and normalization methods in Table 5.4.

Table 5.4: The best option of pixel resolution, integration scale, preprocessing and normalization
methods with each texture method

Method Res (µm) IS (pixels) Preprocessing Normalization
LBP 800 75×75 SH zs
LDN 600 64×64 NP zs
HOG 600 64×64 CLAHE mn
HAR 200 32×32 NP nh
GF 400 50×50 CLAHE l1

Table 5.5 shows that combining the best levels of pixel resolution, integration

scale, preprocessing and feature normalization does not improve the AUC values of

the texture analysis methods reported in Table 5.3. In fact, LBP, HOG and GF

produced substantially lower AUC values. LSVM yields higher AUC values than

NLSVM.

Secondly, we use an SFS approach to find the best combination. This consists

of two sequential steps: finding the normalization method that most improves
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Table 5.5: Results of the greedy approach (AUC)

Method LSVM NLSVM
LBP 0.46 0.40
LDN 0.68 0.52
HOG 0.44 0.44
HAR 0.61 0.48
GF 0.58 0.54

the current performance, and then finding the preprocessing method that keeps

improving this performance. For each texture method, in the first step, we start

with the best pixel resolution and integration scale summarized in Table 5.4.

Then, with no preprocessing, the extracted features are separately normalized

by each normalization method. Then, the one that improves the performance in

combination with the previous two factors is added. In the second step, we apply

each preprocessing option to the ROIs (NP, CLAHE, MF, SH). Then we extract the

texture features and normalize them using the best normalization method obtained

in the previous step. Both LSVM and NLSVM are used to classify the ROIs.

Table 5.6 shows that the SFS does not improve the AUC value of GF achieved in

Table 5.3. LBP, LDN, HOG and HAR give AUC values close to the ones listed in

Table 5.3. With all the texture methods, the SFS approach gives better AUC values

than the greedy approach.

Table 5.6: Results of the SFS approach

Method Best AUC Best parameters
LBP 0.780 zs, NP, LSVM
LDN 0.679 zs, NP, LSVM
HOG 0.716 zs, NP, LSVM
HAR 0.605 nh, NP, LSVM
GF 0.720 zs, CLAHE, NLSVM

Lastly, we use an ExS algorithm, which searches for the best combination

of five pixel resolutions, six integration scales, four preprocessing methods (NP,

CLAHE, MF and SH) and five data normalization methods, and finds a total of 600

combinations. In the previous experiments, we found that LSVM usually gives the
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best results except with GF. NLSVM has two parameters that need to be optimized

to provide the best classification results. Adding NLSVM’s parameter optimization

to the ExS substantially increases its complexity. So we decided to use only LSVM

in this final test. As shown in Table 5.7, the ExS approach improves the AUC values

of LDN, HOG and HAR. The GF gives an AUC value lower than the one listed in

Table 5.3 because the LSVM can not perfectly separate the GF features.

Table 5.7: Results of the ExS approach

Method Best AUC Best parameters
LBP 0.78 800, 75× 75, NP, zs
LDN 0.70 600, 75× 75, MF, zs
HOG 0.737 1000, 50× 50, SH, mn
HAR 0.666 800, 32× 32, CLAHE, nh
GF 0.691 600, 32× 32, NP, l1

5.4 Discussion

The performance of texture analysis methods when applied to benign/malignant

mass classification can be affected by many factors. In this study, we focus on

the effect of factors such as pixel resolution, integration scale, preprocessing and

feature normalization. We use the well-known mini-MIAS database. We start with

the original pixel resolution of the mini-MIAS database (200 µm), and then we

downsample the mammograms in order to generate the pixel resolutions 400 µm,

600 µm, 800 µm, 1000 µm. In addition, six integration scales are used (25 × 25,

32× 32, 50× 50, 64× 64, 75× 75, 100× 100 pixels). These integration scales cover

most of the sizes of the masses in the mini-MIAS database, which range from a few

pixels to tens of pixels (the mean diameter of the circle containing the masses is

about 49 pixels). Several previous studies have used one of these integration scales

to analyze the texture of mammograms (Oliver et al., 2007; Pomponiu et al., 2014).

Thus, we hypothesize that the aforementioned integration scales are able to deal

with all the masses appearing in the mini-MIAS database.

The shape of breast masses is one of the powerful features that can be used to
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discriminate between benign and malignant masses. The boundaries of malignant

masses usually have irregular shapes, while the boundaries of benign masses have

regular ones. In the case of breast mass analysis, pixel resolution may be a critical

factor because image downsampling may remove some fine detail from the image.

However, as our results indicate, it would be possible to decrease the resolution far

beyond 200 µm and still obtain good classification results. A notable example is

LBP, which actually performed best at 800 µm. One possible explanation for this

is that core information such as that contained in the boundary of masses may still

be preserved even after downsampling and be more useful for methods such as LBP

that operate over higher order statistics of grey intensity values. Obviously, when the

resolution is far too low, the classification performance degrades, as the shape of the

boundaries of benign and malignant masses will be very similar. Another important

factor is the integration scale, as it should be big enough to cover the masses and

their boundaries, and small enough to exclude other tissues. The effect of pixel

resolution and integration scale on the performance of texture methods should be

studied jointly.

As summarized in Table 5.4, each texture method gives its highest AUC value at a

particular pixel resolution and integration scale. HAR gave its highest AUC value at

a pixel resolution of 200 µm and an integration scale of 32× 32 pixels. In turn, LBP

gave its best AUC value at a pixel resolution of 800 µm and an integration scale of

75× 75 pixels. The integration scale and pixel resolution interact with each other in

a particular way. In the case of LBP, LDN and HOG, the texture features of each

method are represented in a histogram. This histogram contains the repetition of

the patterns detected by each method at a particular pixel resolution and integration

scale. LBP features calculated at a pixel resolution of 200 µm are different from those

calculated at a pixel resolution of 400 µm. LDN and HOG also produce different

patterns at different pixel resolutions. The local patterns of LBP, LDN, HOG are

usually calculated within a particular integration scale. Different integration scales

will yield different histograms for the local patterns. For instance, the histograms

of LBP that are calculated with the integration scales 75 × 75 and 100 × 100 are
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different.

ANOVA results show that the mean AUC values of the pixel resolutions are

significantly different in the case of LBP with LSVM. In addition, the mean AUC

values of the integration scales are significantly different with LBP, HOG and HAR,

and NLSVM. The performance differences with respect to the pixel resolutions and

the integration scales are only significantly different with the LBP and the NLSVM

(p=0.0095). These results indicate that the choice of pixel resolution and integration

scale has a direct effect on the performance of a texture-based CAD system, because

of its effect on the texture method used.

Image preprocessing also affects the performance of the texture analysis methods.

HOG and GF give the highest AUC values with CLAHE, while LDN and HAR

perform better with NP. Indeed, CLAHE, MF and SH change the intensities of

the mammograms in different ways. As a result, each texture analysis method

will produce a different AUC value with each preprocessing technique. In general,

the preprocessing approach that makes the small-scale structures in the ROIs more

visible would give the texture methods more discriminative power. For instance,

CLAHE leads GF to its best AUC value (0.75). There is also a relation between

the principle of operation of some texture methods and the preprocessing used. For

instance, the binary patterns of the LDN are calculated on the basis of the edge

responses of each pixel in the image. MF removes the outliers before calculating

the edge responses. Thus, the edge responses will be properly calculated, and the

discriminative power of LDN will improve.

Prior to mass classification, the calculated texture features should be normalized

to prevent attributes with higher numeric ranges from dominating those with lower

numeric ranges. As shown in our experiments, each texture method produces its

highest AUC value with a particular normalization method. This is because each

normalization method produces numerical values with different distributions (see

Fig. 5.3). Consequently, the arrangement of the texture features in the feature space

with one normalization method is different than with other normalization methods.

Thus, the normalization method changes the final values of the features computed
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by each texture method. As shown in Table 5.4, LBP and LDN give the highest

AUC values with zs normalization, HOG with mn, HAR with nh, and GF with l1.

In the classification stage, we use two widely used classifiers in the field of

mammogram analysis: LSVM and NLSVM. The first one linearly separates the

texture features in the feature space, while the second one uses a kernel function

(RBF). As shown in Table 5.3, LBP, LDN, HOG and HAR give their highest AUC

values with LSVM. GF, however, gives its best AUC value with NLSVM, indicating

that GF features are not linearly separable.

Table 5.3 shows a summary of the levels of pixel resolution, integration scale,

preprocessing and normalization methods that have led each texture method to its

best AUC value in the experiments in Sections 5.3.1, 5.3.2 and 5.3.3 . HAR and GF

give the best AUC values at a pixel resolution of 200 µm, while LDN and HOG give

their best results at a pixel resolution of 600 µm. No method gives its best AUC

value with the integration scales 25× 25 and 50× 50 pixels.

The greedy, SFS and ExS approaches are used to find the best combination of

the levels of all factors. Although the greedy approach is the least complex

approach, it yielded poor AUC values. In contrast, the ExS gave good results,

but computationally it is the most complex. The SFS approach provides a trade-off

between accuracy and computational complexity. It is not as complex as the ExS

approach and it does not produce such poor AUC values as the greedy approach. In

the case of LBP, LDN, HOG, HAR, Table 5.6 shows that the SFS approach produces

approximately the same results as those obtained with the ExS approach. The GF

gave better AUC values with the SFS approach because it used NLSVM, whereas

with the ExS approach the calculation of the optimal values of its internal parameters

was a challenge.

Rangayyan et al. extracted 111 ROIs from mammograms obtained from three

different sources: the mammographic image analysis society (MIAS), the teaching

library of the Foothills Hospital in Calgary, and a screening test (the Alberta program

for the early detection of breast cancer) (Rangayyan et al., 2010). Although using

mammograms from different sources may be helpful to assess the robustness of the
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texture methods studied, the three mammogram sets used by Rangayyan et al. were

digitized at different pixel resolutions. Thus, the characteristics of the textures

extracted from the 111 ROIs may be different. This changes the characteristics of the

features extracted, so the effect of pixel resolution on the performance of the texture

methods may have not been properly studied. In contrast, in the current study, the

ROIs were extracted from a single source (the mini-MIAS database). Rangayyan

et al. extracted ROIs of different sizes (each ROI included a mass) and they did

not mention the effect of the integration scale on the performance of the texture

methods. Conversely, the current study has considered six integration scales. With

a pixel resolution of 800 µm, an integration scale of 75 × 75, no preprocessing, the

zs normalization method and LSVM, the LBP gives a better AUC value (0.78) than

other texture methods, exceeding the best AUC value (0.75) achieved by Rangayyan

et al. (2010).

5.5 Conclusion

When applied to benign/malignant mass classification in mammograms, texture

analysis methods are sensitive to changes in pixel resolution, integration scale,

preprocessing and feature normalization. The best combination of these factors

should be identified so as to obtain the best discriminative power for each texture

analysis method. We expect that the assessment performed in this study will help

researchers to do this. Because of its computational cost advantage, sequential

forward selection would be a suitable approach for determining a reasonable (possibly

the best) factor configuration.

In the next section we propose the fuzzy local directional pattern for analyzing breast

cancer in ultrasound images. We also propose the use of super-resolution approaches

to improve the performance of texture methods when applied to tumor classification

in ultrasound images.
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Part III

Analysis of breast cancer in

ultrasound images
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CHAPTER6

Breast tissue characterization in

ultrasound images using fuzzy local

directional patterns

6.1 Introduction

In a mammography, each breast is compressed using compression plates, and then it

is X-rayed from top to bottom or at an angle. Sonographies are safer and painless,

and they generate real time images of the inside of the breast using ultrasound

waves. Breast density is one of the main failure factors of mammographies because

dense tissues may hide some tumor regions. Breast density represents the relative

amounts of fibroglandular and fat tissue in a woman breast (Lokate et al., 2010). The
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well-known mini-MIAS breast cancer database (Suckling et al., 1994) classifies breast

density into three categories: fatty, fatty-glandular and dense glandular. Dense

breasts have more glandular and fibrous tissues, and they show up white in the

mammogram. Therefore, they hide cancer regions, which also usually show up white

in mammograms. In turn, fatty breasts have more fatty tissues and they show up

grey in mammograms. Thus, it is easy to detect cancer in fatty breasts. Indeed,

sonographies are better than mammographies at detecting abnormalities in dense

breasts. Sonographies have provided important support to mammographies in breast

cancer detection. They cannot replace a mammogram for breast screening, but they

can provide physicians with more help.

Several CAD systems have been proposed to analyze breast cancer in ultrasound

and X-ray images. Shi et al. (2010) discuss the approaches used in ultrasound

breast images CAD stages and summarize their advantages and disadvantages. A

breast cancer CAD system based on a fuzzy support vector machine is developed

in (Shi et al., 2010) to automatically detect masses in ultrasound images. Moreover,

fuzzy local binary patterns (FLBP) are proposed in (Keramidas et al., 2011). FLBP

incorporate fuzzy logic in the representation of local patterns in ultrasound images.

FLBP are extracted from a set of ROIs acquired from thyroid ultrasound images,

and then they are classified by a SVM classifier into nodule or non-nodule classes.

Noise, breast density and variation in breast compressions give the breast tissues a

fuzzy appearance. Unfortunately, the literature shows no consensus on an optimal

feature set for mass/normal breast tissue classification, which means that the

methods proposed in the literature do not produce a complete characterization of

different tissues in breast images, so the number of false positives is high.

In this chapter, we propose the fuzzy local directional pattern (FLDP) for

characterizing breast tissues. FLDP is an extension of the ULDP (chapter 4). The

rationale behind the use of fuzzy logic is to compensate for the uncertainty of the

visual appearance of breast tissues due to noise, breast density and variation in

breast compressions. FLDP describes the shapes, margins, spots, edges, corners,

junctions and other structures of different tissues in a breast region. FLDP is
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evaluated with mass/normal classification of ROIs extracted from ultrasound images

and mammograms.

6.2 Fuzzy local directional pattern

The FLDP describes a given pixel through its edge responses. The edge responses

ER of each pixel are computed using the Kirsch compass masks (see Fig.6.2). Given

a particular pixel, its eight edge responses ER can be defined as:

ER = {ER0, ER1, . . . ER7} ∈ R8 (6.1)

Let A be the set of ER greater than zero, and B the set of ER smaller than zero:

A ≡ {ERi | 0 ≤ i ≤ 7, ERi ≥ 0} (6.2)

B ≡ ER− A ≡ {ERi | 0 ≤ i ≤ 7, ERi < 0} (6.3)

In crisp approaches, a hard threshold is used to determine the prediction of each

variable. In turn, fuzzy logic allows the use of a membership function to determine

the class of each variable. In the fuzzification process, each input variable is mapped

to its corresponding fuzzy variable according to a set of fuzzy rules (Zadeh, 1965).

A and B can be defined as two fuzzy sets
∼
A and

∼
B, where

∼
A contains the positive

edge responses, and
∼
B contains the negative edge responses. The fuzzy sets

∼
A and

∼
B can be expressed as:

∼
A ≡ {(ERi, µ+ (ERi)) | 0 ≤ i ≤ 7, µ+ (ERi) ≥ µ− (ERi)} (6.4)

∼
B ≡ {(ERi, µ− (ERi)) | 0 ≤ i ≤ 7, µ− (ERi) > µ+ (ERi)} (6.5)

Given an edge response, its degree of membership to these fuzzy sets can be

computed. We used a linear function to calculate the degree of each edge response

ERi to be negative, or the degree of each ERi to be positive (see Fig. 6.1). Let µ+
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Figure 6.1: Linear membership functions, the green curve represents the membership function of
the positive fuzzy set, whereas the blue curve represents the membership function of the negative
fuzzy set

define the degree of each ERi to be positive:

µ+(ERi) =


0 if ERi < −α

0.5 + ERi/2α if −α ≤ ERi ≤ α

1 if ERi > α,

(6.6)

where α is a threshold. In addition, µ− defines the degree of each ER to be negative:

µ−(ERi) = 1− µ+(ERi) (6.7)

Given the vector ER of a certain pixel, the degree of membership of each edge

response to the positive and negative fuzzy sets can be computed. Each edge response

ERi may belong to one of the following categories:

a) µ+(ERi) = 1, µ−(ERi) = 0, [ERi ≥ α]

b) µ+(ERi) = 0, µ−(ERi) = 1, [ERi ≤ −α]

c) µ+(ERi) > 0, µ−(ERi) > 0, [−α < ERi < α]

Let us define the subset of edge responses that belong to category c:

ER′ = {ERi| 0 ≤ i ≤ 7, µ+(ERi) > 0, µ−(ERi) > 0} (6.8)

where ER′ ⊆ ER. ER contains eight edge responses, and ER′ is the subset of those

edge responses in the fuzzy interval [−α, α]. For a given pixel, let us define the

number of the elements in the subset ER′ as k = |ER′|, 0 ≤ k ≤ 8. Given ER and

ER′ of a particular pixel, 2k different 8-bits binary codes can be built as follows:
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• If an edge response ERi belongs to category a, (µ+(ERi) = 1, µ−(ERi) = 0),

then all the 2k codes will have ‘1’ in position i of the binary code.

• If an edge response ERi belongs to category b, (µ+(ERi) = 0, µ−(ERi) = 1),

then all the 2k codes will have ‘0’ in position i of the binary code.

• The remaining k edge responses belong to category c, and the k bits associated

with these k edge responses will be assigned different codes from 000 . . . 0︸ ︷︷ ︸
k- bits

to

111 . . . 1︸ ︷︷ ︸
k- bits

in the 2k binary codes to be built.

Fig. 6.2 presents an example of the calculation of FLDP with the threshold α = 100.

Both ER2 = −10 and ER3 = 30 are located in the fuzzy interval [−α, α]. In this

example, k = 2, so 22 FLDP codes are computed as follows:

• ER0,1,6 belong to category b (‘0’ will be assigned to the associated positions).

• ER4,5,7 belong to category a (‘1’ will be assigned to the associated positions).

• ER2,3 belong to category c, so four 2-bit combinations: ‘00’, ‘10’, ‘01’ and ‘11’,

are assigned to the associated positions of ER2,3 in the four 8-bits codes.

The critical parameter of FLDP is the selection of the proper value of threshold α.

The role of α in the generation of FLDP codes can be explained as follows:

• If α is big, most of the edge responses will belong to category c, and the number

of fuzzy cases (i.e. k) for each pixel will be high (on the limit, 256).

• If α is small, most of the edge responses will belong to categories a and b, and

the number of fuzzy cases for each pixel will be low (in the limit, 1).

• If α = 0, the calculations will be performed in the crisp space (i.e. there is

no fuzzy interval). Consequently, the crisp sets of Eq. 6.2 and Eq. 6.3 will be

used to calculate the binary codes. If the edge response is positive, ‘1’ will be

assigned to its associated position in the binary code. If the edge response is

negative, ‘0’ will be assigned to its associated position in the binary code.

To find the best value of α, a grid search procedure is used. In this chapter, α is

allowed to vary in the range 102 ≤ α ≤ 103. For each pixel, a set of m 8-bits binary

codes (1 ≤ m ≤ 256) with values between 0 and 255 is generated. Each of these

8-bits codes C = [c0c1 . . . c7] may be assigned a particular weight wc, depending

on the degree of the membership function of the associated edge response to the
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Figure 6.2: Example of the calculation of FLDP codes

positive or negative fuzzy sets (depending on whether the bit in the code is ‘1’ or ‘0’,

respectively). Given a binary code C, its weight wc can be computed as follows:

wc(C) =
7∏
i=0

ci.µ+(ERi) + (1− ci).µ−(ERi) (6.9)

Given a particular pixel with a set of edge responses from which 2k codes have been

generated, it can be proved that the addition of the weights of these 2k codes is

1. Recalling the example in Fig. 6.2, we can use Eq. 6.6 and Eq. 6.7 to calculate

the degree of membership of ER2 and ER3 to the positive and negative fuzzy
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sets as follows: µ+(ER2)=µ+(−10)=0.45, µ−(ER2)=0.55, µ+(ER3)=µ+(30)=0.65,

µ−(ER3)=0.35. The weight of each fuzzy code can be calculated using Eq. 6.9,

wc(C1)=0.55 × 0.35 = 0.1925, wc(C2)=0.35 × 0.45 = 0.1575, wc(C3)=0.55 × 0.65 =

0.3575, wc(C4)=0.45 × 0.65 = 0.2925. It is clear that the addition of the weights

(0.1925 + 0.1575 + 0.3575 + 0.2925) of the fuzzy codes of the pixel given in Fig. 6.2

equals 1.

The codes associated with a pixel may be represented graphically in a histogram in

which the x-axis is the decimal value of each code (0-255) and the y-axis is the weight

associated with that code. Given a grey level ROI, the complete FLDP histogram

is computed by adding the weights of all the pixels in the input ROI (Ahonen and

Pietikäinen, 2007).

6.3 Experimental results and discussion

In this study, we claim that FLDP is good at characterizing different tissues in breast

images. Given a set of normal and mass ROIs, FLDP is extracted from each ROI

and fed into an SVM classifier. Then, the trained model is used to classify a query

ROI as mass or normal.

A set of 267 breast BUS images is used. The images were collected from 267 patients

at the UDIAT Diagnostic Centre of Sabadell (Spain) using a Siemens ACUSON

Sequoia C512 system 17L5 HD linear array transducer (8.5 MHz). Of the images,

104 are normal and 163 contain masses. The BUS database contains the GT of the

lesions that appear in the abnormal image. We also use the mini-MIAS database

(X-ray images) in our experiments (Suckling et al., 1994).

With the BUS database, 32×32 pixel ROIs were extracted (Keramidas et al., 2011).

A total of 107 mass ROIs and 300 normal ROIs were extracted. To generate the ROIs

we followed the procedure given in (Garćıa-Manso et al., 2013). Fig. 6.3 presents an

example of the normal and mass ROI generation in breast ultrasound images. With

the mini-MIAS database, 109 mass ROIs were extracted from the mass mammograms

and 203 normal ROIs were extracted from the normal mammograms. The extracted
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Normal ROI

Ground Truth

Mass ROI

(a)

Figure 6.3: ROI generation of BUS images

ROIs were of different sizes, so they were resized into a fixed template (in this chapter,

75× 75 pixels). Fig. 6.4 (a) shows the ROC curves of BUS ROIs, while Fig. 6.4 (b)

shows the ROC curves of X-ray ROIs, with the LSVM and the NLSVM classifiers.

With the two datasets, the AUC value is best with the NLSVM classifier.

As mentioned in Section 2, the critical parameter of the proposed descriptor is the

threshold α. A grid search procedure is used to find the value of α which yields the

best AUC value. In our experiments, the optimum value with the X-ray ROIs is 900,

whereas with the BUS ROIs it is 750.

To assess the performance of the proposed descriptor, the best mass/normal

classification results of the proposed descriptor were compared with some of

the-state-of-the-art methods. Table 6.1 presents the results of mass/normal breast

tissue classification with the FLDP descriptor applied to the mini-MIAS database, as

well as the results of mass/normal breast tissue classification with FLBP (Keramidas

et al., 2011), LBP (Oliver et al., 2007), RLBP (Chen et al., 2013), HOG (Pomponiu

et al., 2014), LDP (Jabid et al., 2010), MLDP (Mohamed et al., 2014), Gabor (Zheng,

2010) and GLCM features (Soltanian-Zadeh et al., 2004). These descriptors are

calculated from the extracted ROIs, and then classified with the same procedure

used with FLDP (all descriptors are normalized to unit length). Table 6.1 shows that
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Figure 6.4: ROC curves of mass/normal breast tissue classification using FLDP with (a) BUS
and (b)X-ray datasets

MLDP, Gabor and GLCM features produce the worst AUC values, which indicates

that they do not produce a robust description for the breast tissues in the X-ray

images. Table 6.1 also shows that Gabor’s features produce the worst AUC value

with the BUS ROIs.

According to the experiments, FLDP produces the best results with the SVM

classifiers. The other descriptors have considerable problems in characterizing the

breast tissues particularly in noisy images or dense breasts. For instance, LBP and

FLBP assign the same binary code to a pixel in a tumorous region and another pixel

in a normal dense region. This happens when the values of all the neighbours are

higher/smaller than the value of the centre pixel of a local neighbourhood.
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Table 6.1: Comparison between the AUC values of mass/normal breast tissue classification in
BUS as well as X-ray images using FLDP, FLBP, LBP, RLBP, HOG, LDP, MLDP, Gabor, and
GLCM features with LSVM and NLSVM classifiers

Method
BUS Mini-MIAS

LSVM NLSVM LSVM NLSVM
FLDP 0.8665 0.9140 0.9203 0.9412
FLBP 0.8915 0.8981 0.9010 0.9141
LBP 0.9012 0.8775 0.6978 0.8947
RLBP 0.8398 0.8553 0.9103 0.9228
HOG 0.8810 0.8862 0.7664 0.8874
LDP 0.8350 0.9087 0.8195 0.7050
MLDP 0.8408 0.8910 0.5404 0.5338
Gabor filters 0.7560 0.7388 0.6901 0.6412
GLCM 0.8636 0.8882 0.6803 0.6217

In addition, GLCM features depend on the co-occurrence matrix which calculates

the number of the pixels with the same intensity at a particular offset (distance and

angle). Unfortunately, a similar co-occurrence matrix is produced for a tumorous

ROI and a normal ROI in a dense breast region. Moreover, the problem of HOG is

the selection of the cell size and the number of cells per block. If the block size is

unsuitable, the same HOG descriptor will be produced for a dense normal block and

a tumorous block leading to a high number of false detections.

The key advantage of FLDP is the encoding of the edge responses of each pixel using

fuzzy logic. Indeed, calculating the edge responses in eight different directions leads

to the good characterization of the micro-patterns in a particular ROI. Consequently,

if a micro-pattern is missed in one direction, it can be captured in another. In this

way, FLDP describes the shapes, margins, spots, edges, corners, junctions and other

structures of different tissues in a breast region. Unlike the methods used in the

comparison, the use of fuzzy logic provides a range of uncertainty, which makes FLDP

able to generate binary codes that compensate the effect of deformations (because

of compression), breast density variation and noise. In addition, the histogram that

accumulates the weights of the FLDP codes increases the discrimination ability of

FLDP, because it encodes both the local information of each pixel as well as the

global information of a particular ROI.
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6.4 Conclusion

In this chapter, we have proposed FLDP for breast tissue characterization. It

properly discriminates between mass and normal tissues in both dense and fatty

breasts. FLDP describes each pixel in a given image by its edge responses and makes

use of fuzzy membership functions. We have used a breast BUS database and the

mini-MIAS database in the experiments. In addition, LSVM and NLSVM classifiers

are used to demonstrate the effectiveness of FLDP at discriminating between mass

and normal tissues. The results show that the proposed descriptor gives better results

than some of the state-of-the-art descriptors.

In the next chapter we propose using super-resolution approaches to improve the

performance of texture analysis methods when applied to tumor classification in

BUS images.
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CHAPTER7

Breast tumor classification in ultrasound

images using texture analysis and

super-resolution methods

7.1 Introduction

Although mammography is the most commonly used screening method, breast

ultrasound (BUS) has been regarded as a powerful adjunct to mammography for

women who have dense breasts, as they permit to identify small cancers that do

not appear on mammograms (Scheel et al., 2015). BUS images are also used to

discriminate benign tumors from malignant ones.

CAD systems are widely used to analyze masses in BUS images. A CAD system

113

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



114
Chapter 7. Breast tumor classification in ultrasound images using

texture analysis and super-resolution methods

generally consists of three main components: segmentation of the ROI, feature

extraction and classification (Jalalian et al., 2013). Texture features are commonly

used to characterize benign and malignant tumors. Unfortunately, BUS images suffer

from several artifacts, such as speckle noise, which may distort the appearance of

local structures and degrade the performance of texture analysis methods.

In the literature, several CAD systems based on texture analysis methods have been

proposed in the last years to discriminate between benign and malignant tumors in

BUS images. In (Yang et al., 2013), each BUS image was decomposed into multiple

ranklet images. GLCM texture features were extracted from each ranklet image and

then sent to a SVM. They used the AUC to evaluate their method. With three

BUS datasets, AUC values were 0.918, 0.943 and 0.934. In (Gómez et al., 2012),

GLCM texture features were extracted from each ROI and then input into a Fisher

discriminant analysis classifier. The best AUC of this method was 0.87. In (Ding

et al., 2012), each BUS image was first divided into non-overlapping subregions, and

then GLCM features were extracted from each subregion and input into a SVM to

define a rough ROI. For each pixel in the ROI, four GLCM features were extracted

and a self organizing map was used to construct bags of visual words. An AUC of

0.96 was obtained.

Shi et al. (2010) used GLCM and fractal features with a fuzzy SVM to classify BUS

images into benign or malignant, with an AUC of 0.964. In (Lo et al., 2015a,b),

BUS images were transformed into the ranklet domain and then GLCM and speckle

features were extracted. With a binary logistic regression, an AUC of 0.83 was

achieved. In (Flores et al., 2015), the authors selected the best feature set from 26

morphological and 1465 texture features from BUS images. The best classification

result was an AUC of 0.942 with a set of five morphological features and the local

Fisher discriminant analysis classifier. In (Cai et al., 2015), the authors combined the

phase congruency with local binary pattern (PCLBP) to discriminate between benign

and malignant tumors. They extracted PCLBP from manually defined ROIs. With

SVM, an AUC of 0.894 was achieved. In (Uniyal et al., 2015), the authors extracted

texture features from radio-frequency time series and from manually defined ROIs to
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generate malignancy maps. They obtained AUC values of 0.86 with SVM and 0.81

with RF.

As shown above, previous work has focused on methods extracting texture features

from a single BUS image for each breast, which mainly suffers from speckle noise

and low contrast. These factors may degrade the discrimination power of the applied

texture methods. To address this problem, this chapter proposes the use of an

image super-resolution (SR) approach prior to texture analysis. This super-resolution

approach extracts a high-resolution (HR) image from a set of low-resolution (LR)

images. The HR image obtained provides not only a better visual appearance

but also more details with less noise and artifacts; thus, texture analysis methods

can accurately characterize breast tumors. We have used five texture methods to

demonstrate the effectiveness of our approach. These methods have been included in

our CAD system, which consists of four successive stages. In the first stage, an HR

BUS image is obtained from a set of BUS images of the same tumor. In the second

stage, the ROI is segmented from the HR BUS image. In the third stage, texture

features are extracted. Finally, using these features, the segmented ROI is classified

into benign or malignant.

7.2 Methods

Fig. 7.1 presents the proposed CAD system. It has two phases: training and testing.

In the training phase, the SR algorithm reconstructs an HR image from a set of LR

images extracted from an input BUS image sequence. Then, the system extracts

texture features from the ROIs that are segmented from the HR images. Finally, the

extracted features are fed into a classifier to build a model. The model is trained to

discriminate between benign and malignant ROIs. Note that in the training phase

the labels (benign or malignant) of the input image sequences are known. The

testing phase is similar to the training phase. The only difference is that we feed the

extracted features into the model obtained in the training phase. The model predicts

the label of the input image sequence (label ‘1’ for malignant cases and label ‘0’ for
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Figure 7.1: The training and testing phases of the proposed CAD system

benign cases). In the sections below, we provide more details.

7.2.1 Input images

A database of 31 malignant and 28 benign BUS image sequences is used to evaluate

the proposed CAD system. This dataset is part of a clinical database of ultrasonic

radio frequency strain imaging data that was created by the Engineering Department

of Cambridge University. The complete database is available at http://mi.eng.cam.

ac.uk/research/projects/elasprj/.

7.2.2 Computing the HR BUS image

Given a set of LR images of the same scene, which are degraded versions of an HR

image X, the following degradation process models the observation of LR images:

Y k = DHF kX + V k (7.1)

In this expression, Y k is the kth observed LR image, X is the HR image, D is a

down-sampling operator, H is a blurring operator, F is the motion operator and V k

is the noise in the kth frame, k = 1, . . . , N , where N is the number of LR images.
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As we can see in Eq. 7.1, the SR problem is an inverse problem. The HR image X̂

can be estimated from a set of LR images by minimizing the following cost function:

X̂ = arg m
X
in

[
N∑
k=1

ρ(Y k, DHF kX) + λΓ(X)

]
(7.2)

In Eq. 7.2 ρ is a similarity cost function, Γ is a regularization function and λ is a

regularization parameter.

For the similarity cost function, L1- and L2- norms are widely used to fuse LR images

(Farsiu et al., 2004; Elad and Hel-Or, 2001). The performance of the L1- and L2-

norms was compared in (Farsiu et al., 2004), and the L1-norm proved to be more

robust. In this study, then, we use the L1-norm as a similarity cost function. It can

be calculated as follows:

ρ(Y k, DHF kX) = ||Y k −DHF kX||1 (7.3)

The bilateral total variation (BTV) is used for regularization. It can be defined as

Γ(X) =

p∑
l=−p

p∑
m=−p

α|l|+|m|||X − SlxSmy X||1 (7.4)

where α is a scalar weight (0 < α < 1) used to apply a spatially decaying effect to

the summation of the regularization term. Slx is a shifting operator in the horizontal

direction by l pixels, whereas Smy is a shifting operator in the vertical direction by

m pixels.

Parameter settings. We set the parameters of the L1-norm SR method (Farsiu

et al., 2004) as follows. For the number of LR images N, we assessed several values

(3, 5, 7 and 9). The LR images were selected from the middle of each input sequence.

The resolution increment factor was set to 2. The motion parameters were estimated

blindly from the LR images using Lucas-Kanade affine motion model (Bouguet,

2001). The spatial window size in the gradient of the bilateral-filter was set to

5 × 5. The size of the point spread function (PSF) was set to 5 × 5. This value
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was common to all frames. The exponential decay coefficient (α) and the steepest

descent coefficient were set to 0.2 and 0.5, respectively. The maximum number of

iterations was set to 10. However, when the cost function converged, the algorithm

automatically stopped.

7.2.3 ROI extraction

We used the algorithm proposed in (Shan et al., 2008) to automatically extract the

ROIs that contain the tumors. This method automatically selects the seed point

for BUS image segmentation. It consists of four steps: speckle reduction, iterative

threshold selection, removing of the boundary-connected region and ranking of the

regions. After selecting the seed point, a region growing method is used to obtain

a preliminary lesion boundary. Based on the region growing result, the minimum

bounding rectangle containing the segmented mass is extracted, which constitutes

the desired ROI.

The ROI extraction method used requires a few parameters to be set. We used the

same values as in (Shan et al., 2008). The number of iterations of speckle reduction

was 10. The ratio of the number of foreground points in the iterative threshold

step was 0.1. The region growing method used 8-neighborhood connectivity. To

understand the role of SR and ROI extraction stages in the proposed CAD system,

Fig. 7.2 shows benign and malignant ROIs before and after using the SR algorithm.

As we can see, the boundaries of the tumor are clearer with SR. Thus, the

texture features used in the feature extraction stage can precisely characterize

those boundaries, which is important if the benign and malignant cases are to be

discriminated (Mendelson et al., 2013).

7.2.4 Texture features

In this subsection we briefly explain the five texture analysis methods used in this

study: GLCM, LBP, phase concurrency based local binary pattern (PCLBP), HOG

and pattern lacunarity spectrum (PLS).

Gray level co-occurrence matrix. In the GLCM the distribution of co-occurring
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      Benign  LR ROI         Benign  HR ROI  

  Malignant   LR ROI   Malignant   HR ROI 

Figure 7.2: ROIs of benign and malignant cases segmented from LR- and HR-BUS images

grey level values in a given direction and at a given distance is computed (Haralick

et al., 1973). In other words, the GLCM computes the joint frequencies p(i, j) of

pairwise combinations of gray levels i and j separated by distance d along direction

θ. If Ng is the number of distinct gray levels in the quantized image, then the size

of the GLCM is N2
g .

Different texture descriptors can be computed from GLCM. To compute GLCM

features, we used four orientations (0o, 45o, 90o and 135o), a distance of 5 and

a quantification level of 32. From each GLCM, we calculated 22 texture features

and concatenated all of them into one feature vector (its length was 4 × 22 = 88

dimensions). The GLCM features and their mathematical expressions are listed in

Tables 2.1 and 2.2 of Section 2.3.2.3.

Local binary pattern. In this study we used 3×3 local neighborhoods to generate

an LBP descriptor of each ROI (each pixel is represented by eight bits). We computed

the histogram with the frequency of uniform LBPs for each ROI. The dimension of

the LBP feature vector was 59.

Phase congruency based local binary pattern. Cai et al. (2015) combined

the phase congruency (PC) with the local binary pattern (PCLBP) to discriminate

between benign and malignant tumors. They extracted PCLBP from manually

defined ROIs. PC acts as a line or edge descriptor of the input ROI. Unlike other

edge detectors, it is insensitive to image variations due to illumination changes,
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blurring and magnification (Štruc and Pavešić, 2009). It has this robustness because

it is calculated using multi-scale and multi-orientation responses. Moreover, only

the phase information, which is less sensitive to the above variations, is used to

calculate it. Assume that Rst is a 2D log-Gabor filter at scale s and orientation t,

where s = 1, 2, . . . , Ns and t = 1, 2, . . . , Nt. Ns is the number of scales and Nt is the

number of orientations. The convolution of the input ROI with each filter response

Rst produces two components for each pixel: Ast, which is the real part, and =st,

which is the imaginary part. The 2D-PC can be calculated as follows.

PC =

∑
t

∑
sWt(x)ψ(Ast(x)∆Φst(x)− Tt)∑

t

∑
sAst(x) + ε

(7.5)

In this equation, ∆Φst(x) is the phase deviation at pixel x, Tt is the estimated noise

energy at orientation t, Wt(x) is a weighting function that weights for the frequency

spread, ε is used to avoid division by zero and ψ() is a function that rectifies the

input as follows: ψ(X − T ) outputs (X − T ) if X > T ; otherwise, it outputs ‘0’.

After estimating the 2D-PC form the input ROI, the LBP codes are extracted from

the PC image. The resulting features are called PCLBP.

Histogram of oriented gradients (HOG). In this study we used a 3×3 cell size,

4 × 4 cells for the block size, and a 9-bit histogram. The dimension of the HOG

feature vector was 144 (9× 4× 4).

Pattern lacunarity spectrum. Several fractal-dimension based methods have

been proposed to analyze textures of medical images (Chen et al., 2005; Cabral

and Rangayyan, 2012). Their basic idea is to use multiple fractal dimensions to

summarize the spatial distribution of image patterns. Lacunarity is a specialized

term in fractal geometry referring to a measure of how patterns fill the space. It can

characterize spatial features and describe multi-fractal and even non-fractal patterns.

In (Quan et al., 2014), pattern lacunarity spectrum (PLS) was proposed for texture

classification. In this study we evaluate the performance of PLS in classifying benign

and malignant tumors in BUS images.

To calculate the PLS descriptor, the following four sequential steps are performed:

1. Calculate LBP label images (Z1, Z2, . . . , ZN) using different (Pi,Ri) pairs,
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where Pi denotes the shape of the neighborhood, and Ri defines the size of

the neighborhood, i = 1, 2, . . . , N .

2. Determine binary images Bi,j(x, y) from each LBP label image Zi with j =

1, 2, . . . , Pi + 2 as follows.

Bi,j(x, y) =

 1 if Zi(x, y) = j

0 otherwise
(7.6)

3. Calculate lacunarity-related features [D(Bi,j), L(Bi,j)] from each binary image

Bi,j(x, y).

4. Concatenate all lacunarity-related features into one vector (called PLS).

To compute the lacunarity-related features D(Bi,j) and L(Bi,j), the lacunarity is

determined first. The simplest method for calculating lacunarity on a binary image

Bi,j is the sliding box method (Allain and Cloitre, 1991), where an s × s box is

slid through the binary image. The number of mass points within the box at each

position is calculated. Then, a histogram Xs(n) is built; n denotes the number of

mass points falling into the box, and Xs(n) is the number of boxes containing n mass

points. The lacunarity at scale s can be calculated as follows:

As(Bi,j) =
E[(Xs)

2]

(E[Xs])2
(7.7)

In (Mandelbrot, 1983), it is stated that lacunarity exhibits power law behaviors with

respect to its scale s as follows:

As(Bi,j) ∝
(

1

s

)D(Bi,j)

(7.8)

By taking the logarithm on both sides of the above equation, the following equation

is obtained

lnAs(Bi,j) = D(Bi,j) ln s+ L(Bi,j) (7.9)

Finally, the linear least squares fitting technique is used to estimate D(Bi,j) and

L(Bi,j). In this study we used the same parameter values as in (Quan et al., 2014).
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The scale range for estimating lacunarity was [2,14] with a step of 1. The parameters

(Pi, Ri) were (4, 1), (16, 2), (16, 3), (8, 5) and (16, 5).

7.2.5 Classification stage

In this study, we used an RF with 30 trees, which was the optimal number

of trees that stabilized the out-of-bag error. We used the leave-one-out cross

validation (LOOCV) technique to generate the training and testing sets (LOOCV

is recommended for small size datasets). The ROC curve was obtained for each

experiment, and the area under the ROC curve (AUC) was used to measure the

performance of each texture analysis method.

7.3 Results

Table 7.1 shows the AUC values obtained for each texture analysis method using

HR images computed from different sets of LR images. With all texture methods,

AUC values are best when the number of LR images is set to 5. With 5 LR images,

the AUC value is best with the HOG descriptor (0.989) followed by LBP (0.950).

With nine LR images, LBP gives the worst AUC value (0.541). This demonstrates

that the number of LR images affects the quality of the reconstructed HR image, so

it also affects the performance of the proposed CAD system.

Physicians use the shape of the boundary of the lesion to discriminate between

benign and malignant lesions. The boundaries of benign lesions usually have a

regular shape, while malignant lesions are usually irregular. Thus, an accurate

characterization of the boundaries of the lesions leads to good classification results.

HOG characterizes the edges in each ROI and works well in the case of illumination

changes. Given a ROI extracted from an HR image, HOG produces an accurate

characterization for the edges. This is the main reason why the AUC values of HOG

are larger than with the other methods.

To understand why the HOG descriptor leads to the best classification results with

SR, we can visualize its output. Fig. 7.3 shows the HOG features extracted from
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Table 7.1: AUC values of the proposed CAD system when using different texture methods and
different numbers of LR images to compute HR images

Methods/NLR 3 5 7 9
LBP 0.667 0.950 0.595 0.541
HOG 0.786 0.989 0.777 0.802
PCLBP 0.660 0.923 0.638 0.652
GLCM 0.711 0.888 0.602 0.725
PLS 0.510 0.857 0.560 0.706

a ROI before and after the SR step. To make a clear visualization, we construct

a HOG descriptor with a cell size of 8 × 8 pixels. In the case of HR-ROI, HOG

produces a good description for the whole boundary of the tumor, whereas in the

case of LR-ROI, it produces a poor description and the resulting output disregards

a large amount of information about the boundary. The accurate HOG description

achieved with SR helps the classifier to discriminate between benign and malignant

cases, leading to excellent classification results.

As explained in the introduction, the authors of the studies of a similar nature to

LR ROI HR ROI

Figure 7.3: Visualizing HOG features in LR-ROI and HR-ROI

this one used a single image for each breast while the proposed CAD system uses

an HR image computed from multiple LR images. To compare the results of the

proposed system with those of the other studies, the second column in Table 7.2

shows the performance of the texture methods when a single image is used from

each input image sequence (with no pre-processing (NP)). In this experiment, we

pick one LR frame from the middle of each input sequence (the middle of the LR

sets that we used to construct HR images). Then, we extract texture features from

the selected frame and input them into a RF classifier to discriminate between
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benign and malignant cases. We call this approach the one image system (OIS).

HOG gives higher AUC values (0.828) than the other texture methods. GLCM

gives the lowest one (0.464). As the GLCM counts the co-occurrence of the pixels,

any small noise will lead to an inaccurate characterization. Therefore, the texture

features calculated from each GLCM do not properly describe the lesions of BUS

images. In addition, LBP compares the intensity values of the central pixels in a

small neighborhood with the intensities of its neighbors. Thus, noise may push LBP

to calculate the same binary codes for two different neighborhoods leading to an

inaccurate description of the ROI. As a result, noise also affects the performance of

LBP leading to a low AUC of 0.563.

We also analyze the effect of pre-processing operations when using OIS and compare

its results with the proposed system. To do so, we adopted the median filter (MF)

and histogram equalization (HE) techniques. In the case of MF, we replaced each

pixel by the median of a 3 × 3 neighborhood centered around it. As shown in

Table 7.2, both MF and HE fail to improve the performance of the texture methods.

The best AUC of OIS is achieved with HOG with no pre-processing.

Table 7.2: AUC values of OIS with NP, MF and HE operations

Methods NP MF HE
LBP 0.563 0.518 0.492
HOG 0.828 0.787 0.807
PCLBP 0.578 0.559 0.572
GLCM 0.464 0.402 0.412
PLS 0.619 0.536 0.540

To illustrate the discrimination capability of the proposed system, we computed

the malignancy score of each case with the new SR-based approach and the OIS

system using HOG features. The scores of the RF were used to compute the

malignancy score. Note that RF scores indicate the likelihood that a label comes

from the malignant class. We ranked the cases according to their malignancy score

in descending order. A perfect classification system should assign a malignant case

with a rank from 1 to 31, and a benign case with a rank from 32 to 59. Fig. 7.4

shows some malignant and benign cases. The proposed system assigned the first
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rank to the malignant case shown in Fig. 7.4(a) while it assigned rank 25 to the

malignant case shown in Fig. 7.4(b). In turn, the OIS system assigned rank 39 to

the case shown in Fig. 7.4(a) and rank 44 to the case shown in Fig. 7.4(b). Thus,

OIS wrongly classified both cases as benign tumors. The OIS system assigned ranks

26 and 27 to the benign cases shown in Fig. 7.4(c) and 7.4(d), respectively. These

ranks make the OIS system wrongly classify these cases as malignant tumors. In

contrast, the SR-based system assigned the last rank (59 ) to the benign case shown

in Fig. 7.4(d) and rank 37 to the case shown in Fig. 7.4(c). As a result, the proposed

system correctly classified these cases as benign tumors. The previous cases were

better discriminated using SR, which demonstrates the effectiveness of the proposed

method.

(a) (b)

(c) (d)

Figure 7.4: Comparing the performance of the SR-based approach and the OIS system. (a-b)
malignant, (c-d) benign cases

Statistical analysis. The AUC values in Table 7.1 are better than those in

Table 7.2, which indicates that the proposed CAD system improves the classification

results of all texture methods. It is interesting to determine the statistical significance

of the differences of performance between the proposed CAD system and the OIS in

terms of the AUC. To do so, we analyzed the statistical significance of the difference

in AUC values of each texture method considering the proposed CAD system and

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



126
Chapter 7. Breast tumor classification in ultrasound images using

texture analysis and super-resolution methods

using 5 LR images and the OIS with NP. Then we used Welch’s t-test (significance

level < 0.05) to determine the difference in AUC values. The normality of the

distributions of the AUC values was assessed by means of bootstrapping and the

Shapiro-Wilk test. We found that all the AUC values follow a normal distribution.

We also used the F-test to check if two different groups had the same variance: the

variances between all pairwise groups were unequal. Note that, in our analysis, the

number of comparisons equals 5 and the significance level α of a single experiment

equals 0.05; so, according to the Bonferroni correction (Curtin and Schulz, 1998), the

actual significance level is 0.01 (0.05/5). Table 7.3 shows the statistical analysis of the

AUC values obtained. In this table, a p-value lower than 0.01 indicates statistical

significance. As can be seen in Table 7.3, the AUC values of the proposed CAD

system with all texture methods are significantly better than the values of the OIS.

Table 7.3: Comparison between the proposed CAD system and OIS in terms of the AUC
(Statistically significant differences are shown in bold)

Proposed vs. OIS Best AUC of the proposed CAD Best AUC of the OIS p-value
LBP 0.950 0.563 <0.0001
HOG 0.989 0.828 <0.0001
PCLBP 0.923 0.578 <0.0001
GLCM 0.888 0.464 <0.0001
PLS 0.857 0.619 <0.0001

7.4 Discussion

BUS images suffer from speckle noise, shadowing and other artifacts. BUS artifacts

are the set of structures in ultrasound images that do not have corresponding

anatomical structures. Artifacts usually appear when a BUS image is displayed;

they are produced by the physical properties of ultrasound themselves. Artifacts

can be classified into four main categories: missing structures, degraded images,

falsely perceived objects and structures with a mis-registered location (Sehmbi and

Perlas, 2015). Obviously, artifacts may yield unwarranted clinical intervention.

These factors also degrade the performance of BUS-CAD systems that use texture

analysis methods in their feature extraction stage. Some texture analysis methods,

such as GLCM and LBP, are quite sensitive to the aforementioned factors. Thus,
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enhancing BUS images before feature extraction can improve the overall performance

of CAD systems. In this study, we used SR to enhance the input images of

BUS-CAD systems. As we have shown, texture features calculated from SR images

can accurately characterize breast lesions.

In general, CAD systems include a pre-processing stage to prepare BUS images.

For instance, Veeramani and Muthusamy (2015) use an adaptive median filter to

minimize the effect of noise and preserve useful details. Lo et al. (2015a,b) use

the ranklet transformation to reduce the effect of image variations. Cai et al.

(2015) compared the effect of three pre-processing operations on PCLBP: contrast

improvement, gamma correction and histogram equalization. They showed that

PCLBP produced comparable results with the three pre-processing operations. In

turn, we used SR in this study. As shown in Fig. 7.4, instances of malignant and

benign cases were better discriminated using SR. The proposed system obtained high

malignancy ranks for malignant cases and low malignancy ranks for benign ones. In

contrast, the OIS system obtained high malignancy ranks for several benign cases

and low malignancy ranks for several malignant ones. In addition, statistical analysis

showed that the AUC values of the proposed CAD system were significantly better

than those of OIS. These findings show the discrimination power of the proposed

system and that the use of SR improves the performance of state-of-the-art CAD

systems.

In this study, we used SR in the pre-processing stage and studied its effect on five

texture analysis methods: LBP, HOG, PCLBP, GLCM and PLS. The AUC value

was the highest with HOG. Indeed, several studies have used the HOG descriptor

with ultrasound images. Kawahara et al. (2014) proposed an approach to predict the

probability that an input frame contains tumorous tissue using RF. The accuracy of

the approach was 85.5%. In (Veeramani and Muthusamy, 2015) the HOG descriptor

is used to detect abnormalities in ultrasound lung images. In (Agarwal et al., 2013),

HOG is used to discriminate parasternal long axis (PLAX) and short axis (SAX)

B-mode echocardiograms with an accuracy of 98%. Unlike the aforementioned

methods, the proposed CAD system uses the SR in its pre-processing stage and
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classifies between benign and malignant tumors, achieving an AUC of 0.989 with

HOG.

In this chapter, we focused on improving the performance of the texture methods

when classifying malignant and benign lesions. Alternatively, other works like (Zhou

et al., 2015) focused on characterizing the shape of the tumor contour using a set

of shape features. Zhou et al. (2015) have considered the fact that the top half

part of the tumor contour is less affected by posterior acoustic shadowing (PAS).

Half-contour features were used to classify benign and malignant breast tumors,

with a final AUC of 0.81. Obviously, the performance of (Zhou et al., 2015) can be

improved if it is combined with the proposed system. Specifically, SR can be used to

reconstruct a HR image from a set of LR images for the same lesion. Given the HR

image, the calculated shape features will be more descriptive and give more accurate

classification results.

7.5 Conclusion

This chapter proposes the use of image super-resolution to improve the performance

of texture analysis methods when applied to benign/malignant tumor classification

in breast ultrasound images. Given an ultrasound image sequence, we select a set

of LR frames and then use them to reconstruct a HR image. The texture features

extracted from the HR images properly describe lesions. In this way, the performance

of CAD systems that use texture analysis methods in the feature extraction step can

be improved. The proposed CAD system achieved an AUC of 0.99 with 5 LR images.

Statistical analysis showed that the AUC values of the proposed CAD system were

significantly higher than the values of OIS schemes. In general, SR as a pre-processing

step need not be restricted to CAD systems that use texture analysis methods; it

can also be used with other feature extraction approaches, such as shape descriptors.

In the next section, we propose an automatic method for detecting nipples in

thermograms.
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Analysis of breast cancer in

infrared images
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CHAPTER8

Automatic nipple detection in

thermograms using image processing and

anatomical information

8.1 Introduction

Current breast cancer studies show that detecting breast cancer in its early stage

may reduce mortality (Siegel et al., 2015). The study of mammographies is the

most common method for detecting breast cancer. Besides, the study of breast

thermographies has been considered as an adjunct breast cancer screening procedure

(Ng and Sudharsan, 2004). Thermograms are infrared images of the human body that

can be used to detect breast cancer in its early stage. They can also reveal tumors

131
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in dense tissues, outperforming other modalities such as mammographies. However,

the accuracy of thermographies is dependent on such factors as the symmetry of

breast temperature and temperature stability.

Infrared imaging can be used for breast cancer screening because the metabolic

activity and vascular circulation in pre-cancerous tissue and in the area surrounding

a developing breast cancer are always higher than in normal breast tissue.

Mammographies, sonographies and magnetic resonance images try to find the

physical tumor. In turn, thermograms detect the heat produced by increased blood

vessel circulation and metabolic changes associated with a tumor’s genesis and

growth.

A number of CAD systems have been proposed for analyzing thermograms. A basic

step in the use of thermal images is the design of CAD systems because they help

technicians to execute medical exams using specified routines and protocols (similar

to mammography exams). CAD systems give physicians good support in the analysis

and interpretation of the outcomes of thermograms.

In the literature, several studies have focused on analyzing thermograms. Borchartt

et al. (2013) presented a review of the literature on image processing and techniques

related to the analysis of thermographies for the detection and diagnosis of breast

diseases. In (Saniei et al., 2015), a computer method for quantifying the bilateral

differences between left and right breasts was proposed. Ali et al. (2015) proposed

a simple segmentation approach for extracting the ROI from breast thermograms.

They extracted statistical and texture features from the segmented ROI and used

a support vector machine classifier to discriminate between normal and abnormal

breasts. Krawczyk et al. (2015) analyzed breast thermograms by extracting features

describing bilateral symmetries between the two breasts, and then classifying them

into benign or malignant. Schaefer et al. (2009) manually segmented the breast

region from each thermogram and then extracted a set of statistical features from

them. Finally, they used a fuzzy rule-based algorithm to discriminate between benign

and malignant cases.

The nipples are an important anatomical landmark in thermograms. The location
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of the nipples is invaluable in tasks such as image registration and modality fusion.

Indeed, physicians use the location of nipples to find the corresponding masses in

breast images that were acquired using different modalities (e.g., a thermogram and

a mammogram). For instance, Saniei et al. (2015) manually picked the nipples to

register the images of breasts. When analyzing a large number of thermograms,

manual nipple detection may be time consuming; in addition, the accuracy of nipple

detection varies with user precision. Therefore, the design of an automatic nipple

detection method may be very useful in the analysis of thermograms.

Several methods have been proposed for detecting nipples in mammograms (Jas

et al., 2013; Chakraborty et al., 2015) or in ultrasound images (Moghaddam

et al., 2014; Wang et al., 2014a). However, few solutions have been proposed

for detecting nipples in thermograms. Koay et al. (2004) proposed a method for

classifying thermograms using an artificial neural network. They briefly mentioned

an abridged rule-based method for detecting nipples. However, they did not explain

any parameter settings or present an evaluation of the method because the main

aim of their work was the classification of thermograms into normal, fibrocystic or

cancerous. Unlike this study, in this chapter we propose an unsupervised, automatic,

accurate, simple and fast method for detecting nipples in thermograms using image

processing operations and anatomical information. Moreover, we propose a novel

selection algorithm that selects the nipples from a set of candidates.

8.2 Proposed method

The stages of the proposed method are summarized in Fig. 8.1. As shown, there

are three sequential stages: human body segmentation, determination of nipple

candidates using adaptive thresholding and detection of the nipples using a selection

algorithm.
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Human body 
  extraction

  Nipple 
candidates

  Selection
 algorithm

 Input 
thermograms

  

Detected 
nipples

 X X

Figure 8.1: Proposed system

8.2.1 Human body segmentation

Thresholding is used to segment the human body from a given image by setting all

pixels whose intensity values are above a threshold to a foreground value (one) and

all the remaining pixels to a background value (zero). A threshold of 50 is used in

this study to generate the human body mask (binary image), which is then smoothed

by morphological operations. We applied morphological closing to the binary mask

using a disk-shaped structuring element with a radius of 3 to fill the gaps. We then

used a morphological dilation with a disk-shaped structuring element with a radius

of 10. Fig. 8.2(a) shows an example of an input thermogram and how the generated

human body binary mask (Fig. 8.2(b)) is used to segment the human body image

(Fig. 8.2(c)).

(a) (b) (c)

Figure 8.2: Human body segmentation. (a) the input thermogram image, (b) the human body
mask, and (c) the segmented image
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8.2.2 Determination of nipple candidates using an adaptive

threshold

To determine nipple candidates, we process the image that contains the human body

by means of an adaptive thresholding algorithm. Adaptive thresholding typically

takes an image as input and produces a segmented image and the labels of the

segmented regions. It is a method that can separate the foreground from the

background with non-uniform illumination (He and Yung, 2004).

For each pixel in the image, a threshold has to be calculated. If the pixel value

is below the threshold it is set to the background value; otherwise, it is set to the

foreground value. To find the local threshold, the algorithm statistically examines

the intensity values of the local neighborhood of each pixel. Functions such as mean

or median of the local intensity distribution can be used. In Algorithm 1, we present

the steps of the adaptive thresholding.

Algorithm 1 Adaptive thresholding algorithm

1: Input: a gray scale image
2: Output: a binary image
3: procedure Adaptive thresholding
4: Convolution of the image with a suitable statistical operator (the median or

mean).
5: Subtraction of the original image from the convolved one.
6: Thresholding the difference image with a constant C.
7: Invert the thresholded image.
8: end procedure

In this study we used the median operator with a local neighborhood of 15 pixels

and C was 0.03. Fig. 8.3 shows nipple candidates extracted from the human body

image using the adaptive thresholding algorithm. As shown, most candidates are a

long way from the real position of the nipples. Moreover, some regions correspond to

external objects, like necklaces, bracelets or wristwatches (e.g., in Fig. 8.3 we can see

a necklace on the upper part of the image). Thus, we need a selection algorithm to

pick the correct location of nipples. In the subsection below we explain the proposed

nipple selection algorithm.
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Figure 8.3: Determining nipple candidates using adaptive thresholding

8.2.3 Nipple detection

To select the correct position of the nipples from a set of candidates we applied

several selection rules. We used our knowledge of the features of thermograms to

design these rules. Breast nipples have some unique anatomical and visual features

that can be used to design the selection rules. We used the following facts:

• Nipples lie inside the outer boundary of the human body.

• The human body has only two nipples, which occupy small regions.

• Nipples do not lie in the lowest or uppermost parts of thermograms.

• A thermogram has only two nipples, one on the left and another on the right.

• A breast nipple is approximately circular.

Exploiting the first fact. The human body boundary is extracted by defining

the outermost edges in the human body mask. To do so, the rows and columns are

scanned twice. Each row of the mask is scanned from the left to determine the right

most edge points, and then they are scanned from the right to determine the left

most edge points. Each column of the mask is scanned from the top to determine

the bottom most edge points and then scanned from the bottom to determine the

top most edge points.

Exploiting the second fact. We count the number of pixels in the region of each

candidate. If the number of pixels in a given region is less than a predefined threshold

Np, we delete it from the nipple candidates list. In this study Np was set to 20.

Exploiting the third fact. We generate a binary mask (maskUL) to exclude the
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regions that lie in the uppermost and lowermost parts of the image. Fig. 8.4 shows

the upper region (regionup) and lower region (regionlw). Candidate regions that lie

in or touch the regionup or regionlw are excluded from the nipple candidates list.

The regions that correspond to regionup and regionlw in maskUL are set to zero; the

rest of the image is set to one. Assume that Him, Hup and Hlw are the height of

the input thermogram, regionup and regionlw, respectively. Hup and Hlw have been

defined as follows.

• Hup was set to 0.35 ∗Him.

• Hlw was set to 0.3 ∗Him.

A similar setting was used in (Ali et al., 2015) to segment the breast region.

Exploiting the fourth fact. To determine the left and right regions of the input

(a)

Figure 8.4: Determining the upper region (regionup), the lower region (regionlw) and the
center-line (Lcnt)

thermogram, we determine the center-line (Lcnt) as shown in Fig. 8.4. Lcnt divides

the input image into two equal regions: one region includes the left breast and the

other includes the right breast.

Exploiting the fifth fact. As nipples are approximately circular, we also use this

feature to select the correct nipples from the candidates list (N). In this study we

use the roundness measure to identify the candidates that are round in shape. To

measure the roundness (R) of a given region we used the following metric (Crocker
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et al., 1983):

R = 4π.A/P 2 (8.1)

In this equation A and P are the area and the perimeter of the region of a given

candidate, respectively. As the value of R approaches 0, it indicates an oblong

(non-circular) object. A value of 1.0 indicates a perfect circle. The area of a region is

measured simply by counting the number of pixels. Given the locations of the points

of the boundary of a certain region {(x1, y1), (x2, y2), . . . , (xn, yn)}, we estimate the

region’s perimeter with the expression

P =
n∑
i=1

√
((xi+1 − xi)2 + (yi+1 − yi)2) (8.2)

in which n is the number of points of the boundary.

After applying the above rules, we can detect the regions of the nipples. Fig. 8.5(a)

shows the regions that have a number of pixels greater than Np and that lie inside the

boundary of the body (in this study Np was set to 20). Fig. 8.5(b) shows the regions

that do not lie in regionup or regionlw of the thermograms. This step excludes the

regions that lie away from the breasts. Fig. 8.5(c) shows the roundness measure of the

regions selected in Fig. 8.5(b). As shown, the three regions have a roundness measure

of 0.72, 0.75 and 0.80. The regions that have the two highest values correspond to

the nipples.

In Algorithm 2, we present the steps of nipple selection from the given candidates.

The algorithm receives the list of nipple candidates and outputs the location of the

left and right nipples. To understand the proposed nipple selection algorithm, we

summarize and explain the notations used in Algorithm 2 in Table 8.1. The main

steps of the algorithm are the following:

• Steps 4-8. The algorithm suppresses the regions that lie outside the human

body boundary (HBB) and that touch or lie regionup or regionlw from the list

of candidates (N).

• Steps 9-18. The algorithm identifies a list containing the left nipple candidates

(Lleft) and then finds the region that has the maximum roundness. However,
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(a) (b)

0.80 0.75

0.72

(c)

Figure 8.5: Applying the selection rules to detect the nipples. (a) regions having a number of
pixels greater than Np, (b) the regions that lay outside regionup and regionlw, and (c) the roundness
of the selected regions

Figure 8.6: Detected nipples

if two regions have the same maximum roundness, it selects the region that has

the biggest area. Note that, if Lleft includes one region, the algorithm directly

identifies it as a left nipple.

• Steps 19-28. The algorithm repeats steps 9-18 to detect the right nipple.

Finally, we calculate the centroid of each region and plot it on the input thermogram

to highlight the location of the detected nipple. Fig. 8.6 shows the final position of

the nipples in the input thermogram.
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Algorithm 2 Nipple selection algorithm

1: Inputs: The list of nipple candidates N , HBB and the center-line (Lcnt)
2: Outputs: Locations of the two nipples (nippleleft and nippleright)
3: procedure Nipple selection
4: for each candidate i ∈ N do
5: Delete i, if any element of i /∈ HBB
6: Delete i, if any element of i ∈ regionup
7: Delete i, if any element of i ∈ regionlw
8: end for
9: Find left nipple candidates Nleft that lay at the left of Lcnt

10: if length(Lleft) > 1 then
11: ml = max{R(Lleft)}
12: if length(ml) > 1 then
13: m′l = max{A(Lleft(ml))}
14: nippleleft = Lleft(m

′
l)

15: elsenippleleft = Lleft(ml)
16: end if
17: elsenippleleft = Lleft
18: end if
19: Find right nipple candidates (Lright) that lay at the right of (Lcnt)
20: if length(Lright) > 1 then
21: mr = max{R(Lright)}
22: if length(mr) > 1 then
23: m′r = max{A(Lright(mr))}
24: nippleright = Lright(m

′
r)

25: elsenippleright = Lright(mr)
26: end if
27: elsenippleright = Lright
28: end if
29: end procedure
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Table 8.1: Notation used in Algorithm 2

Notation Meaning
N List of nipple candidates.
HBB Human body boundary.
A The area of a given region.
R The roundness of a given region.
Lcnt The center-line of the image.
regionup Indices of the upper region.
regionlw Indices of the lower region.
Lleft List of left nipple’s candidates.
Lright List of right nipple’s candidates.
max A function that finds the index of the region that has the

maximum roundness or biggest area.
ml Index of the region that has the maximum roundness in Lleft.
mr Index of the region that has the maximum roundness in Lright.
m′l Index of the region that has the biggest area in Nleft.
m′r Index of the region that has the biggest area in Nright.
nippleleft The left nipple.
nippleright The right nipple.

8.3 Experimental results and discussion

The proposed method has been tested using a breast thermography dataset that

contains 148 thermograms. We collected the dataset from the Proeng database

(Silva et al., 2014). We described this database in Section 2.5.

8.3.1 Evaluation

We used the Recall, Precision and F-score to evaluate the proposed method. If the

centroid of the selected region is inside the region of the true nipple, then it is a true

positive (TP). On the other hand, if the centroid of the selected region is outside the

region of the true nipple, it is a false positive (FP). To calculate the recall, precision

and F-score, we determine the following identities:

• TP = correctly identified nipples.

• FP= incorrectly identified nipples.

• Ppos=the number of positive instances (number of nipples).
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Then, the Recall, Precision and F-score can be calculated as follows:

Recall = TP/Ppos (8.3)

Precision = TP/(TP + FP ) (8.4)

F-score =
2.precision.recall

(precision+ recall)
(8.5)

8.3.2 Results

Fig. 8.7 shows examples of correctly detected nipples on thermograms for different

women. We show the results of the proposed method with small breasts (Fig. 8.7

(c,d,g)), medium breasts (Fig. 8.7 (e,h,i)) and big breasts (Fig. 8.7(a,b,f,j−o)). As

shown, in all cases the proposed method correctly determines the location of the

nipples.

We evaluated the proposed method with the whole dataset. Note that the

thermograms used contain at least one nipple in their profile. Indeed, we have

excluded the thermograms that do not include any nipples in their profiles. However,

the dataset still contains very difficult cases, where nipple detection is difficult even

for humans. Table 8.2 shows the evaluation of the proposed method with the whole

dataset. The nipple detection results were outstanding (precision close to 0.99).

Note that the dataset used includes several cases in which it is difficult to identify

the nipples even with the human eye.

Table 8.2: Evaluation of the performance of the proposed method

Method Recall Precision F-score Time (s)
Proposed 0.930 0.989 0.958 0.30
(Koay et al., 2004) 0.500 0.652 0.566 0.91

Fig. 8.8 shows examples of false positive nipples. As shown, the algorithm fails to

detect some nipples in these cases. Indeed, the regions of undetected nipples are not

clear in the images, so detecting the nipples with the human eye is also difficult.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 8.7: Examples of correctly detected nipples using the proposed method
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144 Chapter 8. Automatic nipple detection in thermograms

Consequently, the nipples can not be detected using the proposed method in these

cases.

(a) (b) (c)

Figure 8.8: Examples of false positives

8.3.3 Comparison with related work

Indeed, very few methods have been proposed to detect nipples in thermograms.

In this subsection we compare our method with the approach suggested in (Koay

et al., 2004), in which the authors used an adaptive thresholding and morphological

operations to detect the nipples. They also removed big contour regions and regions

in the upper breasts, and assumed that the nipples have an eccentricity close to

one. Indeed, they did not present any parameter settings and made no evaluation

of nipple detection because the main goal of their work was to classify thermograms

into normal, fibrocystic or cancerous. We implemented the aforementioned rules and

tuned the values of the parameters to obtain the best performance.

As can be seen in Table 8.2, the proposed method easily outperforms the method

of (Koay et al., 2004) in terms of recall, precision and F-score. Fig. 8.9 (a-b) shows

the performance of the two methods in a thermogram containing two nipples. The

proposed method easily detects the two nipples in the cases presented (Fig. 8.9 (a))

while (Koay et al., 2004) does not (Fig. 8.9 (b)). Fig. 8.9 (c-d) shows the performance

of the two methods in a thermogram containing one clear nipple (right nipple) in

its profile (the left nipple is fuzzy). The proposed method successfully detects the

right nipple (Fig. 8.9 (c)) while (Koay et al., 2004) does not (Fig. 8.9 (d)). These

results demonstrate that the rules used in (Koay et al., 2004) produce poor detection

results.
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(a) (b)

(c) (d)

Figure 8.9: Comparing the performance of proposed method (a,c) and the approach proposed in
(Koay et al., 2004) (b,d)

The two methods were implemented using MATLAB on an Intel processor core 2

Quad at 2.5GHz and 8 GB of RAM. As presented in Table 8.2, the proposed method

takes 0.3s to determine the nipples. This time is approximately one-third of the

execution time of (Koay et al., 2004), indicating that the proposed method is more

suitable for working with real-time applications.

8.3.4 Possible applications of the proposed method

As we have shown above, our method accurately detects the nipples in real-time

(0.3s). Thus, it could be used in such applications as the following:

• It can be used to find two seed points to segment the breast region into

thermograms. Thus, we can integrate our method with the cancer detection

approach proposed in (Schaefer et al., 2009) where the breasts were manually

segmented. We suggest replacing this step by an automatic segmentation

method based on the method suggested in this study. This makes the approach

proposed in (Schaefer et al., 2009) fully automatic.

• Given two thermograms, the proposed method can be used to register one

breast to the coordinates of another. Thus, it can be used to improve the

registration step used in (Saniei et al., 2015).
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146 Chapter 8. Automatic nipple detection in thermograms

• It can be used to find the correspondence location of masses in images that

were acquired using different modalities (e.g., thermograms and mammograms)

for the same breast.

• It can be used to design a robust thermogram registration framework. In

chapter 9 we used an optimization approach to find the optimal location of

the origin of the curvilinear coordinates to register mammograms; in turn,

the nipples detected by our method will be used as origins to establish the

curvilinear coordinates in order to align thermograms.

8.3.5 Limitations

Like any computer approach, the proposed method has some limitations:

• It does not work in thermograms in which nipples do not appear or are not

clearly visible.

• It fails to detect nipples in thermograms that contain fuzzy regions, and in

which even the human eye would have trouble detecting them.

8.4 Conclusion

An unsupervised, automatic, accurate, simple and real-time method for detecting

nipples in thermograms is proposed in this chapter. The main stages of the proposed

method are: human body segmentation, determination of nipple candidates using

adaptive thresholding and finally detection of the nipples using rules derived from

the anatomical structure of the human body. The proposed method takes 0.3s to

detect the nipples. It gives very accurate results in real-time.

In the next section we propose a registration method for aligning temporal

mammograms. We also propose a method for quantifying and visualizing the changes

in breast tumors in patients undergoing medical treatment through strain tensors.
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Part V

Analysis of temporal evolution of

breast cancer
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CHAPTER9

Temporal mammogram image registration

using optimized curvilinear coordinates

9.1 Introduction

The goal of image registration is to find the optimal transformation function that

aligns one image with another. In other words, the registration process should bring

the coordinates of the current (template) mammogram to the coordinates of the

previous one. Registration helps doctors analyze and visualize mammograms. The

comparison of mammograms requires a registration (alignment) method. Four breast

mammogram comparisons are usually performed (Oliver et al., 2010):

• Temporal analysis is performed between mammograms for the same breast at

different screening examinations.
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150 Chapter 9. Temporal mammogram image registration

• Bilateral analysis is performed between mammograms of the left and right

breasts of the same woman.

• Ipsilateral analysis is performed between the CC and MLO views of the same

breast.

• Analysis of breast images acquired from different modalities (e.g. X-ray with

MRI).

A full review of medical image registration methods can be found in (Oliveira and

Tavares, 2014; Sotiras et al., 2013). Few studies have evaluated the performance

of image registration methods using mammograms. In (van Engeland et al.,

2003), four registration methods with MLO-MLO or CC-CC mammogram pairs

were evaluated. The methods used were: nipple-based alignment, center of mass

alignment, warping based on manually selected control points and MI registration

method. The MI-based method yielded the best registration results, whereas,

the control points-based method performed worst. Diez et al. (2011) presented a

quantitative evaluation of state-of-the-art intensity-based image registration methods

applied to mammographic images. The study assessed the suitability of global

rigid transformation and local deformable registration methods for mammographic

image analysis. They showed that local deformations (multi-resolution B-Spline

deformations) provide the most accurate registration results. In (Pereira et al., 2010),

a comparison between affine, fluid and free-form deformation registration methods

was shown. The study concluded that the affine method gave the best registration

results. The main drawbacks of the existing mammogram registration methods are

that they use either non-realistic global transformations or local deformable models.

The global registration methods cannot properly cope with the local deformations;

in turn, the local deformation models may yield unrealistic deformations.

In this chapter, we propose a framework for temporal mammogram registration

based on a transformation model derived from the breast anatomy: namely the

curvilinear coordinate system. In curvilinear mapping, a coordinate pair (s, t) is

assigned to each pixel in Cartesian coordinates, (x, y). The theoretical point of view

of the proposed representation was inspired from the work proposed in (Daugman,
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2004) where a dimensionless polar coordinate system was used to generate a new

representation for iris images. The construction of the curvilinear coordinates does

not require any information about the internal structures of the breast. To construct

the curvilinear coordinates, we use the breast boundary and a reference point located

on it. Thus the resulted representation of a given mammogram is invariant to changes

in the size, position and orientation of the internal structures of the breast (the

internal structures do not play any role on the construction process). We utilized

the curvilinear coordinates to cope both with global and local deformations in the

breast area and compensate the deformations between the mammograms.

Fig. 9.1 shows a mammogram that has been forwardly transformed from the

Cartesian coordinates to the curvilinear coordinates, and then it has been inversely

transformed from the curvilinear coordinates to the Cartesian coordinates. The use of

curvilinear coordinates in mammogram registration enables us to build a registration

approach based on a reasonable grid which mimics the anatomy of the breast, instead

of using the Cartesian grid which is composed of vertical and horizontal lines. In

addition, mammogram registration based on the curvilinear coordinates does not

require control points to be determined nor a correspondence algorithm to be used.

The parameters of curvilinear coordinates may be optimized, as will be shown later,

to find the best alignment between the reference and template images.

Image in the Cartesian            
coordinates

Image in the curvilinear            
coordinates

The  grid of the curvilinear            

coordinates 

Image after inverse
mapping 

(x,y)(s,t) (s,t)(x,y)

Forward 
mapping

Inverse
mapping

Figure 9.1: The curvilinear coordinates
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152 Chapter 9. Temporal mammogram image registration

9.2 Related work

In general, image registration methods can be divided into feature-based and

intensity-based methods. However, with mammogram registration, there are

more specific registration categories such as breast contour-based, anatomical

structures-based and image representation-based methods. Here, we discuss the the

work done on each category.

9.2.1 Feature-based registration methods

Feature-based methods depend on the features extracted from mammograms.

Control points are the most commonly used features for registrating mammograms.

Marias et al. (1999) used a set of breast boundary points and internal points with

thin plate spline to register a pair of temporal mammograms. They used a matching

approach to detect the potential internal points by comparing the features of the local

maximum and minimum points in the breast region in the reference and template

mammograms. Hong and Brady (2005) also proposed a method for comparing

mammogram pairs. They extracted salient regions in a topological way. An integral

invariant representation of shape, in combination with area and distance measures,

was used to establish the correspondences between mammograms. Furthermore, Wai

and Brady (2005) proposed a curvilinear structure-based mammogram registration

approach in which they incorporated junctions of curvilinear structures as internal

landmarks. The curvilinear structures describe connective tissue, blood vessels and

mammary ducts, which are detected by an algorithm based on the monogenic signal.

The junctions are extracted using a local energy-based method, which considers the

orientation information provided by the monogenic signal.

Indeed, it is difficult to extract consistent features from the mammograms because the

appearance of the breast region depends heavily on the strength of the compression

which was applied to the breast using the compression paddles; therefore, few

distinct landmarks can be determined. The main drawback of the aforementioned

methods is that the extracted features (e.g. points and regions) may differ due to
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the compression, and this may cause inaccurate registration results.

9.2.2 Intensity-based registration methods

Intensity-based registration depends on the image pixel values. The illumination

change between mammograms and the mapping model affects the accuracy of these

methods. Richard and Cohen (2003) combined a region matching procedure and

segmentation by formulating the energy minimization problem with free boundary

conditions. A multi-grid implementation with a coarse-to-fine strategy was used to

reduce the execution time. The gradient descent algorithm was used to optimize

the energy. The main drawback of this method is that the gradient descent

may get trapped into a local minimum, yielding inaccurate registration results; in

addition, the accuracy of the segmentation process controls the success of the overall

registration model.

In (Rueckert et al., 1999) an affine transformation was used to recover the global

deformations between magnetic resonance breast images followed by a free-form

deformation based on B-splines to model the local deformations. Normalized mutual

information was used as a similarity measure. Rohlfing et al. (2003) added a

regularization term to (Rueckert et al., 1999) to preserve the local volumes. Fischer

and Modersitzki (2004) proposed a unified approach to fast image registration and

a new curvature-based registration technique. The internal forces are designed to

minimize the curvature of the displacement field. The illumination change between

mammograms and the mapping model affects the accuracy of these methods.

9.2.3 Breast contour-based registration methods

Breast contour alignment provides a good basis for registering the mammograms.

Sallam and Bowyer (1999) proposed an automated technique for identifying

differences between corresponding mammograms. Their method recovered

an approximate deformation between a pair of mammograms based on the

determination of corresponding features across the two mammograms. The

registration process was completed by using an un-warping technique to transform
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154 Chapter 9. Temporal mammogram image registration

the template mammogram into the coordinate system of the reference mammogram.

Marias et al. (2000) proposed a multi-scale landmark selection approach to improve

the accuracy of temporal mammogram registration. They explained the need

to establish correspondences between internal regions in temporal mammograms

for robust and more accurate registration results. On the basis of automatically

detected boundary landmarks, they made a partial registration and subsequently

analyzed the mammogram pair using a non-linear wavelet scale-space to identify

the significant regions of interest. They showed that a small (but significant)

number of internal correspondences greatly improved the registration accuracy

and better approximated the complex internal tissue deformation in the breast

region. In addition, in (Marias et al., 2005) they proposed a three-step framework

for the registration of mammogram sequences: boundary registration, extraction

of the correspondence between internal points using wavelet-based analysis, and,

finally, thin plate spline transformation to un-warp the template mammogram using

the boundary and the internal points. Although the registration results were

acceptable, the accuracy of these methods depends mainly on the internal points.

The compression applied during the acquisition process deforms the internal regions

of the breast, which may yield an error in the determination of the internal control

points. These errors may produce bad registration results.

9.2.4 Anatomical structures-based registration methods

Some studies have used the anatomical structures of the breast in mammogram

registration. Rajagopal et al. (2008) used an anatomically realistic bio-mechanical

model of the breast. A model was customized to each breast. These models were

generated by fitting a geometrical model to segmented data from breast MRIs.

Boucher et al. (2010) proposed a two-step mammogram registration approach. In the

first step, they used the pectoral muscle and the nipple to make a rigid alignment of

MLO mammogram pairs. This step minimizes the differences caused by positioning

and compression. In the second step, some deformation based on linear scalings

was applied to local regions in the mammograms. This method can not be used to
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register CC mammographic pairs.

9.2.5 Image representation-based registration methods

Image representations may improve the registration accuracy. Image representations

should be invariant to changes in the size, position and orientation of internal

structures. In (Daugman, 1993, 2004), a representation for iris images was proposed.

This representation used a dimensionless polar coordinate system to generate a new

representation for each iris image. The invariance to the aforementioned factors

was achieved by mapping the iris images onto a double dimensionless pseudo-polar

coordinate system. In (Daugman, 1993), the rubber sheet model was used to assign

each pixel of the iris image, regardless of its size and papillary dilation, with a pair

of real coordinates (r,θ), where r is in the unit interval [0, 1] and θ is an angle in

[0,2π].

The above methodology prompted us to build a new coordinate system for breast

mammograms (the curvilinear coordinates), in which the breast boundary and the

nipple can be used as a basis for establishing these coordinates for each mammogram.

Like Daugman’s coordinates (Daugman, 1993), the curvilinear coordinates generated

for each mammogram are invariant to changes in the size, position and orientation

of the internal structures.

Brandt et al. (2011) used anatomical coordinates to represent the breast region

within a mammogram. These coordinates were based on the breast anatomy of 2D

medio-lateral (ML) or MLO view mammograms. The mammograms were registered

according to the location of the pectoral muscle, the nipple and the shape of the

breast boundary. A second-order approximation for the breast boundary was based

on the location of the nipple, two points in the breast boundary and the pectoral

muscle. Then, a non-linear mapping was used to map one image to the coordinates

of the second image. Despite the effectiveness of the method in (Brandt et al.,

2011), it can not be applied to register CC-CC or CC-MLO mammogram pairs

because CC mammograms do not contain pectoral muscle. The manual selection

of these points is the main disadvantage of this method because the construction
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of the coordinates (which map the image) is sensitive to the accuracy of the

user. Moreover, second-order polynomials are insufficient to approximate the breast

boundary under different compression levels. In addition, detecting the location of

the nipple is particularly difficult in mammograms which do not show the nipple in

the mammogram profile. Unlike Brandt’s method (Brandt et al., 2011), the proposed

method is fully automatic (no need for manual inputs) and it can also be applied to

both CC-CC and MLO-MLO mammographic pairs.

9.3 Methods

A dataset of 100 temporal mammogram pairs is used in our experiments. It was

collected from the Hospital Universitari Sant Joan (Reus, Spain). The temporal

mammograms are full field digital mammograms (FFDM) with sizes of 1770× 2370,

3540× 4740 and 2364× 2964 pixels, and with spatial resolution of 100µ. The image

size depends on the compression plates used in the acquisition process (the amount

of the compression varies according to the breast size of each woman). The images

collected were saved in the digital imaging and communication in medicine (DICOM)

format.

Prior to registration, each mammogram was preprocessed to extract the breast

area, identify the orientation and determine the breast boundary. The curvilinear

coordinates are used to represent the breast region in each mammogram. The

breast region representation using the curvilinear coordinates is based on the breast

boundary and an arbitrary reference point (origin). The breast boundary is used as

a centreline, and to generate the curvilinear grid. An exhaustive search technique

is used to find the optimal reference points which maximize the MI between the

reference and template mammograms. The proposed method can properly align

both the breast boundary and the internal structures of the breast region. Fig. 9.2

presents the main steps of the proposed registration approach.
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Figure 9.2: Mammogram registration framework

9.3.1 Preprocessing stage

The steps of the preprocessing stage can be summarized as follows:

1. The mammograms used in this study were of different sizes, so they were

resized into a common size. We tried many image sizes and found that

1024 × 1024 pixels maintains the performance of the proposed method with

little computational complexity.

2. If accuracy is to be acceptable, the mammograms need to be enhanced without

distorting the soft details. We used the median filter for noise suppression and

image enhancement. The median filter is used to generate a low-frequency

image by replacing the pixel value of each pixel in the mammogram with the

median pixel value computed over a square area of 11 × 11 pixels centered at

the pixel location (Sun and Neuvo, 1994).

3. The breast region is extracted from the mammogram image by removing

the artifacts and background. To do this, we used the approach proposed

by Subashini et al. (2010). The intensity values of mammograms were scaled

to the range [0, 255] and a threshold of 18 was used to convert each mammogram

to a binary image (mask). The connected component labeling algorithm was

used to select the largest object from each binary image (the breast area and

the pectoral muscle). Then, morphological operations were used to remove the

isolated pixels (clean operation) and reduce noise (majority operation, 3 × 3

neighborhood). We used the resulting mask to remove the labels and the

artifacts from the mammograms.
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158 Chapter 9. Temporal mammogram image registration

4. The mammogram has the image of the breast at the center with left or right

orientation. In the first case, the chest wall is to the left of the mammogram

image, whereas in the second, it is to the right. For mammograms to be

registered, they should have the same orientation. In (Chandrasekhar and

Attikiouzel, 1996), pixels near the left and right corners were extracted and

the pixel with brightest value determined the orientation of the breast. Given

the binary mask resulting from step 3, we removed 1/8 of the number of rows

from the top and bottom borders and 1/8 of the number of columns from

the left and the right sides; this reduces the black boundaries surrounding the

breast region. Then the sum of the first column (Sf ) and the sum of the last

column (Sl) were calculated. If Sf < Sl, the breast is right-oriented; otherwise,

it is left-oriented. In this study, we work with right-oriented images. After the

orientation has been estimated, all mammograms are converted to the same

orientation.

5. To eliminate the pectoral muscle, we used the binary mask resulting from step

3 and the mammogram orientation which we determined in step 4 to determine

the location of the seed of a region growing segmentation (threshold = 30). If

the mammogram was left-oriented, the location of the seed was set to (5th row

, 5th column), and if it was right-oriented, the location of the seed was set

to (5th row, number of columns-5 ). After these operations, the mask of the

pectoral muscle was generated. To smooth this mask, we used erosion and

dilation morphological operations with a flat, disk-shaped structuring element

(the radius was set to 5).

6. To detect the breast skin boundary, we used the algorithm proposed by Maitra

et al. (2011). This algorithm consists of two stages: image enhancement and

edge detection. The breast contour is extracted by defining the outermost

edges, so the starting point of the scanning process should be determined.

Each row of the mammogram is scanned from the left to determine the right

most edge points. This scanning process is repeated for all the rows to find the

breast contour.
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Fig. 9.3 shows an example for a mammogram image before and after the

preprocessing step. We can notice the absence of the pectoral muscle and the labels

in the processed image; in addition, the estimated breast boundary is shown in blue

colour.

Pectoral
muscle

labels

Breast
region

Nipple

Breast
Boundary

After PreprocessingBefore Preprocessing

(a)

Figure 9.3: Result of the preprocessing stage

9.3.2 Curvilinear mapping

In curvilinear mapping, a coordinate pair (s, t) is assigned to each pixel in Cartesian

coordinates, (x, y). This operation represents a direct mapping from Cartesian to

curvilinear coordinates

(x, y)
Mc−→ (s, t) (9.1)

where c is the breast skin boundary that generates the curvilinear coordinates and

Mc is the mapping operator which transforms the image from Cartesian coordinates

I(x, y) to curvilinear coordinates I(s, t) as follows:

I(s, t) = Mc {I(x, y)} (9.2)

In curvilinear mapping, each pixel is identified by its surface distance, s, and

penetration distance, t. The surface distance, s, is measured from the reference

point of the coordinate system (point γ on the breast skin boundary) while t is
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160 Chapter 9. Temporal mammogram image registration

measured from the breast’s surface. The direct mapping Mc can be interpreted as

a boundary-driven function that computes the (s, t) coordinates that correspond to

each (x, y) Cartesian coordinate pair.

(a)
(b)

Figure 9.4: Curvilinear grid, (a) generation of the curvilinear grid, (b) explanation of the
curvilinear coordinates

As shown in Fig. 9.4(a), the process starts with the breast skin boundary c (red

curve) and reference point γ (this point belongs to the breast boundary c, see the

yellow arrow in Fig. 9.4(a)). Then s-coordinate (green curves) and t-coordinate (blue

curves) are generated. The domain of the s-coordinate is normalized to s ∈ [0, 1],

in correspondence with the two extreme points of the breast boundary around the

reference point. The domain of the t-coordinate is also normalized to t ∈ [0, 1].

The curvilinear coordinates can be generated from the breast boundary c as follows.

Let the breast boundary be c = (x(u), y(u)) with length L. The surface distance s

of a point (x, y) is defined as:

s(x, y) =

∣∣∣∣∣∣ 2L
∫ √(

dx

du

)2

+

(
dy

du

)2

du− 1

∣∣∣∣∣∣ (9.3)
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As illustrated in Fig. 9.4 (b), the two segments around the reference point (γ) can

be approximated using two N-degree parametric polynomials of s, φ0(s) and φ1(s):

φ1(s) = (x1, y1),

φ0(s) = (x0, y0)
(9.4)

These polynomials correspond to the parametric curves for all the points in

curvilinear coordinates with t = 0 and t = 1, respectively. The variables x0, y0,

x1 and y1 can be computed as follows.

x0 =
N∑
n=1

P0,ns
n,

y0 =
N∑
n=1

P1,ns
n,

x1 =
N∑
n=1

P2,ns
n,

y1 =
N∑
n=1

P3,ns
n

(9.5)

where P0,n, P1,n, P2,n and P3,n are constant coefficients. In this study N is set to 4.

To generate the parametric curves for all the points at any t (the orange curve in

Fig. 9.4(b)), we define the auxiliary curve φ̄(x̄, ȳ) as follows.

x̄ = (t− 1)(x0cosθ0 + y0sinθ0) + t(x1cosθ1 + y1sinθ1),

ȳ = (t− 1)(y0cosθ0 − x0sinθ0) + t(y1cosθ1 − x1sinθ1)

(9.6)

where θ0 and θ1 are the angles at the extreme points of φ0(s) and φ1(s) (see

Fig. 9.4(b)), by substituting s = 1 in Eq. 9.5, they are calculated as follows.

θ0 = tan−1( y
0

x0
),

θ1 = tan−1( y
1

x1
)

(9.7)
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162 Chapter 9. Temporal mammogram image registration

The analytical expression that transforms each (x, y) pair into its corresponding (s, t)

pair is calculated by rotating the auxiliary curve in Eq. 9.6 by θ(t),

x(s, t) = x̄cosθ(t)− ȳsinθ(t),

y(s, t) = x̄sinθ(t) + ȳcosθ(t)

(9.8)

The angle θ(t) = (θ1 − θ0)t+ θ0 is a function of t and the extreme angles θ0 and θ1,

and it represents the rotation angle that goes from θ0 to θ1 as t moves from 0 to 1.

Fig. 9.5 shows examples of the curvilinear mapping. For each mammogram we show

the breast boundary, the curvilinear grid and the (s, t) mapping. For the sake of

clear display for the curvilinear grid, few points of s- and t-coordinates are plotted.

As shown, the two parametric polynomials, φ0(s), and φ1(s), properly fit the breast

boundary (they yielded an interpolation error lower than 0.5%); moreover, they do

not stretch inside breast region. As we mentioned before, N is set to 4. This value

yields a good approximation for breast contours (see the examples of Fig. 9.5).

9.3.3 Inverse mapping and registration

As the curvilinear mapping Mc establishs a one-to-one correspondence between each

coordinate pair
[
(x, y)

Mc−→ (s, t)
]
, it is possible to invert the curvilinear mapping to

recover the original image in Cartesian space as follows:

I(x, y) = M−1
c {I(s, t)} (9.9)

In other words, the inverse mapping M−1
c transforms each curvilinear coordinate pair

(s, t) to its corresponding Cartesian coordinate pair (x, y) as follows:

(x, y)
M−1
c←−−− (s, t) (9.10)

To align the template mammogram It with the coordinates of the reference

mammogram Ir, they are both mapped to the curvilinear coordinate system as
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9.5: Examples of curvilinear mapping. The left column shows the breast boundary of each
mammogram. The middle column shows the curvilinear grid which is generated from the breast
boundary. The right column shows the (s, t) mapping of each mammogram
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164 Chapter 9. Temporal mammogram image registration

follows:

Ir(s, t) = Mcr {Ir(x, y)} ,

It(s, t) = Mct {It(x, y)}
(9.11)

where Ir(s, t) is the curvilinear mapping of Ir(x, y) using the breast boundary of the

reference mammogram Cr, and It(s, t) is the curvilinear mapping of It(x, y) using the

breast boundary of the template mammogram Ct. The registered mammogram Ireg

can be estimated by reverse mapping the template mammogram using the boundary

of reference mammogram Cr as follows:

Ireg(x, y)
M−1
cr←−−− It(s, t) (9.12)

where M−1
cr is the reverse mapping using the boundary of the reference mammogram

Cr.

Since Eq. 9.8 cannot be analytically inverted, the inverse mapping M−1
c can only

be obtained numerically. We used the Quickhull algorithm (Barber et al., 1996)

to perform the inverse mapping (it yielded an interpolation error lower than 0.5%).

Note that both the direct and inverse mapping can be implemented in one step. That

is, it is possible to implement the operation M−1
cr {Mct{It(x, y)}} without needing to

perform inverse mapping operations.

The position of the reference point (origin) of the curvilinear grid may be assumed to

be in the middle of the breast boundary as in (Pertuz et al., 2014). A more accurate

assumption is to consider the nipple position as a reference point for the coordinate

system. However, the nipple is not visible in most mammograms and it also appears

as a region in the mammogram, so choosing a reference point from that region is

problematic. Fig. 9.6 shows the curvilinear grid at six different positions (P1-P6) for

the reference point (the yellow arrow points to the reference point of the grid). It is

clear that P4 is the most suitable position at which to establish the curvilinear grid.

Fig. 9.7 shows the sensitivity of the registration process to the position of the

reference point of the curvilinear mapping. As the position of the reference point

changes, the MI between the registered and the reference mammograms changes.
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9.3. Methods 165

Figure 9.6: The curvilinear grid at six different positions (P1-P6) of the reference point

The indices of the breast boundary are normalized to [0, 1], and the position of

the reference point is set at one of the breast boundary indices. In Fig. 9.7, the

x-axis represents the possible reference point positions of the reference mammogram

while the y-axis represents the possible reference point positions of the template

mammogram. The position which produces the maximum MI will be selected to

establish the curvilinear mapping and to estimate the registered mammogram Ireg.

Taking the position of the reference point of the reference and template
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Figure 9.7: Effect of reference point selection on the registration process
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166 Chapter 9. Temporal mammogram image registration

mammograms γ = [γ1, γ2] into account, the registration process can be formulated

as an optimization problem as follows.

γ∗ = arg max
γ

S(Ir(s, t), It(s, t)) (9.13)

where S is a function that measures the degree of similarity between the reference

and template mammograms (Ir,It) and γ∗ = [γ1, γ2] is the vector that contains the

position of the reference point of the reference mammogram γ1 and the reference

point of the template mammogram γ2. The sum of square differences is often

used as a similarity measure in mono-modal image registration because the grey

levels are approximately the same in the reference and template images (Guo et al.,

2006). However, breast compression and the presence of pathological subjects in

mammograms such as lesions invalidate the assumption of grey level constancy

between images. For this reason, we used the MI as a similarity measure (cost

function). MI measures the dependency between the intensity distributions of two

images (Maes et al., 1997). It can work properly with pixels that are non-linearly

related.

As there are only two parameters to be optimized (the location of the reference

points), we used an exhaustive search procedure to find the optimal values (γ1, γ2)

which maximize the MI between the reference and registered mammograms. In this

study, we restricted the domain of (γ1, γ2) to [0.3-0.7] in steps of 0.04. The optimal

reference points are fed into the curvilinear mapping to transform the template

mammogram to the coordinates of the reference mammogram.

9.4 Experimental results and discussion

To evaluate the ability of the proposed method to register temporal mammograms,

we have carried out several experiments. The results are summarized in this section.
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9.4. Experimental results and discussion 167

9.4.1 Evaluation

Measuring the performance of mammogram registration methods is a particularly

difficult task because the deformation may be different in each mammogram and the

breast region structures may change due to the growth of tissues or masses. In this

study, the structural similarity (SSIM) index (Wang et al., 2004) is used to evaluate

the proposed registration framework. The SSIM index is an implementation of the

idea of structural similarity between two images considering contrast, luminance

and structure. An SSIM value of 1 indicates perfect similarity between the two

mammograms while 0 indicates that they are completely different. The SSIM index

between images x and y is defined as follows.

SSIM(x, y) = (2µxµy+C1)(2σxy+C2)

(µ2x+µ2y+C1)(σ2
x+σ2

y+C2)
,

σxy = 1
T−1

T∑
i=1

(xi − µx)(yi − µy)
(9.14)

where T is the total number of pixels in each image, µx is the average of x, µy is the

average of y, σx is the standard deviation of x, and σy is the standard deviation of y.

C1 = (k1L)2 and C2 = (k2L)2 are two variables to stabilize the division with small

denominator. L is the dynamic range of the pixel values (in our case it is 256). The

values of k1 and k2 are 0.01, and 0.03, respectively (Wang et al., 2004).

The joint histogram between the reference and the registered mammograms is a

visualization of the correspondence between the pixels in the mammograms. As

the amount of dispersion in the joint entropy image decreases, the MI between

the reference and the registered mammograms increases, indicating that a better

geometric alignment between the two mammograms has been achieved (Maes et al.,

1997). We also calculate the error against manually-defined landmarks, between each

registered mammogram, and the reference mammogram. The set of landmarks are

extracted from anatomical regions (nipple, visible masses and linear structures).
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168 Chapter 9. Temporal mammogram image registration

9.4.2 Mammogram registration results

We define the oversampling factor (OSF), which sets the number of the points of

s- and t- coordinates as an integer factor of the number of the pixels along x- and

y-coordinates, respectively. In our experiments, the size of the mammograms is

1024 × 1024 pixels (the number of the pixels along x- and y-coordinates is 1024);

therefore, the number of the points of s- and t- coordinates is 1024×OSF . Table 9.1

shows that the change in OSF has little effect on the performance of the proposed

method. In this study, OSF is set to 2. Fig. 9.8 shows an example of a pair

Table 9.1: Effect of the OSF on registration accuracy

OSF 1 2 3
SSIM 0.8706 0.8773 0.871
MI 1.1753 1.1777 1.1779

of temporal mammograms. The proposed method produced a good alignment

between the reference and current (template) mammograms by compensating for

the deformations between them. In addition, the proposed method aligned the local

deformation without producing unrealistic results. Fig 9.9 shows the joint entropy

image between the reference and current mammogram before and after registration.

The entropy image after registration has less dispersion, indicating that alignment

is better when the proposed method is used.

(a) (b) (c)

Figure 9.8: An example of mammogram image registration using the proposed approach: (a) the
reference mammogram, (b) the current mammogram and (c) the registered mammogram

The optimization-based scheme is compared with a nipple-based scheme where the

location of the nipple is manually detected so that it can be used as a reference point.

As shown in Table 9.2, the mammogram registration using optimized reference points
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Figure 9.9: The joint entropy image between the reference and current mammograms, (a) before
the registration, (b) after the registration using the proposed approach

improves the results of registration using nipples because it is sensitive to nipple

detection accuracy and, moreover, the nipple is not visible in most mammograms.

In addition, the nipple appears as a region in the mammogram, so choosing the exact

reference point is problematic.

We evaluated the accuracy of the automatic scheme against the nipple-based scheme

using the Wilcoxon rank sum test, and found that the SSIM and the MI values

obtained with the automatic scheme vs. those obtained with the nipple-based scheme

were not statistically significant (p-value> 0.05).

Table 9.2: Similarity between each temporal mammogram pair before registration, using the
proposed nipple-based approach and finally using the proposed approach based on an optimized
reference point

Method SSIM MI
No registration 0.5706 ± 0.138 1.0267 ± 0.012
Nipple-based 0.7379 ± 0.011 1.1827± 0.082
Optimized reference 0.8918 ± 0.097 1.1912± 0.095

To demonstrate the effectiveness of the proposed method, we also compared it with

three related methods: Demons (Lombaert et al., 2014), DRAMMS (Ou et al., 2011)

and Brandt’s method (Brandt et al., 2011).

Pectoral muscle usually appears in MLO mammograms. Several studies (e.g. (van

Engeland et al., 2003)) have reported that the suppression of pectoral muscle

improves the registration results. To study the effect of the pectoral muscle, we

compared the registration results of the proposed approach, Demons and DRAMMS
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170 Chapter 9. Temporal mammogram image registration

Table 9.3: Similarity between each temporal mammogram pair with and without pectoral muscle

Method
With pectoral muscle Without pectoral muscle
SSIM MI SSIM MI

Proposed 0.8362 ± 0.0955 1.1755 ± 0.036 0.8619 ± 0.1145 1.1825 ±0.137
Demons 0.7156±0.0903 1.0630±0.0826 0.7215±0.0975 1.0471±0.0688
DRAMMS 0.8267±0.0572 1.2242±0.0981 0.8229±0.0560 1.1850±0.1170

with a set of 50 MLO mammogram pairs with and without pectoral muscle. We did

not consider Brandt’s method in this experiment because it can only be applied in

the absence of the pectoral muscle. Table 9.3 shows the SSIM and MI values of the

proposed method (with and without the pectoral muscle). The results indicate that

pectoral muscle suppression improves the performance of the proposed approach.

The SSIM values of Demons without the pectoral muscle were better than those

with the pectoral muscle; in turn, the SSIM values of DRAMMS with and without

the pectoral muscle were comparable. The MI values of the Demons and DRAMMS

with the pectoral muscle were better than those without the pectoral muscle. Both

SSIM and MI values without the pectoral muscle were significantly better than the

values of the proposed approach with pectoral muscle (Wilcoxon rank sum test,

p-value< 0.05). In the case of Demons and DRAMMS, the SSIM and MI values with

and without the pectoral muscle were not statistically significant (Wilcoxon rank

sum test, p-value> 0.05). With and without pectoral muscle, the SSIM values of

the proposed method were of greater statistical significance than the Demons values

(p-value< 0.01) and the MI values were of greater statistical significance than the

DRAMMS values (p-value< 0.01).

9.4.3 Effect of boundary segmentation

Here we discuss the effect of the accuracy of boundary segmentation on the proposed

method. Segmenting the breast tissue is not such a complex process because we

simply separate the breast region from a black background. This process does

not produce noticeable errors. Fig. 9.10 shows five segmentation scenarios of the

boundaries of the reference and the template mammograms (each boundary has

a different color). For each segmentation scenario, we applied the curvilinear
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transformation and the registered mammogram was determined. Finally, the SSIM

index between the reference and registered mammograms was calculated. Each

segmentation scenario produced a different SSIM value (Fig. 9.10 (c)). The best

segmentation scenario is seg1 (the red boundary) whereas the worst one is seg5

(the magenta boundary). Although seg1, seg2 and seg3 are different, they yielded

comparable SSIM values. Indeed, the accuracy of the boundary segmentation affects

the accuracy of the registration process. However, if the segmentation is good, the

proposed method will provide good results. In turn, high segmentation errors may

lead to very bad registration results. In the preprocessing step, we adjusted the

settings of the segmentation step in order to assume a good boundary segmentation.

The segmentation step did not produce such bad segmentation results as in the seg5

scenario.
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Figure 9.10: Effect of boundary segmentation, (a) the reference mammogram, (b) the template
mammogram and (c) the SSIM between the reference and the registered images in each segmentation
scenario
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172 Chapter 9. Temporal mammogram image registration

9.4.4 Comparison with other existing methods

Both Demons and DRAMMS are general-purpose medical image-registration

methods while the proposed method and Brandt’s method are designed to register

only mammograms. DRAMMS is an attribute-based deformable image registration

method. It describes each pixel by high-dimensional Gabor attributes extracted

from multiscale and multi-orientation neighborhoods of each pixel. Demons is an

intensity-based deformable registration approach that considers image registration

as a non-parametric diffusion process. In this approach, the pixels are matched to

their correspondences by local intensity characterizations.

We used the ITK implementation of Demons. Our method, as well as DRAMMS and

Brandt’s were implemented using the MATLAB language. In the case of DRAMMS,

free form deformation was used as the deformation model and discrete optimization

as the optimization strategy. In the discrete optimization, the regularization

parameter was set to 0.1. In the attribute extraction, Gabor filters were used, the

number of scales was set to 4 and the number of orientations was set to 6. The

distance between the control points was set to 7 pixels in xy directions.

With Demons, we used the DeformableRegistration2 ITK algorithm. The number

of iterations was set to 50. The standard deviation of the Gaussian kernel which

smooths the deformation field after each iteration, was set to 1.0. The aforementioned

parameters produce reasonable results.

Table 9.4 presents the SSIM and MI values of the registration of 50 mammogram

pairs. It also shows the error between each registered mammogram and the reference

mammogram against expert-defined landmarks. The landmarks were selected from

anatomical regions in the breast (nipple, visible masses and linear structures). The

Euclidean distance is used to calculate the landmark errors. The proposed method

yields the best SSIM values and the smallest landmark errors. The DRAMMS

method gives MI values that are similar to those of the proposed method.

DRAMMS and Demons ignore the anatomical structure of the breast, as they are

general purpose registration methods, whereas our method depends on the structure

of the breast. The main disadvantage of Brandt’s method is that it has many manual

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



9.4. Experimental results and discussion 173

inputs (e.g. the location of the nipple) which makes it very sensitive to the accuracy

of the user. We called the time that is required to make the manual inputs MT. In

contrast, the proposed method is fully automatic.

Table 9.4: Comparison between the performance of Demons, DRAMMS, Brandt’s, and the
proposed method

Method SSIM MI Landmark errors (mm) Time (min)
Demons 0.742 ± 0.017 1.011 ± 0.031 6.10 ± 1.32 3.7
DRAMMS 0.880 ± 0.350 1.228 ± 0.201 7.05 ± 3.32 35.3
Brandt’s 0.798 ± 0.251 1.015 ± 0.092 6.93 ± 2.52 MT + 0.04
Proposed 0.903 ± 0.142 1.232 ± 0.108 5.23 ± 2.11 1.2

The results of the Wilcoxon rank sum test indicated that the landmark errors

obtained with the proposed method were not significantly better than those obtained

with Demons and Brandt’s methods (p-value> 0.05). The MI values obtained with

the proposed method were of statistically greater significance than those obtained

with the Demons and Brandt methods. In turn, the MI values obtained with the

proposed method were not significantly better than those obtained with DRAMMS.

Although the results of the proposed method and DRAMMS are comparable, the

execution time of the proposed method is much shorter than for DRAMMS.

Unlike the related methods, the proposed method does not need to find control

points or a correspondence algorithm. It can also cope with both global and local

deformations in the breast area without causing unrealistic deformations. Table 9.5

provides a final overall comparison between the merits of the proposed method

and some of the related methods. Table 9.5 shows that our method is a novel

contribution, as it is fully automatic and it does not require a correspondence step.

Both Demons and DRAMMS include an attribute matching step in the registration

framework. In this step, an automatic approach is used to find some corresponding

pixels in the reference and template images by comparing their attributes (features).

The main disadvantage of Demons and DRAMMS is that the compression applied

during the screening deforms the breast tissues and yields different features for the

corresponding regions, which has a detrimental effect on their performance. In our

experiments, the average execution time for one curvilinear transformation was 2.8

seconds. To find the optimal reference points, the exhaustive search tried 10 points
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174 Chapter 9. Temporal mammogram image registration

Table 9.5: Comparison to other studies

Feature Proposed Brandt Demons DRAMMS
Full Automatic yes no yes yes
Anatomical-based yes yes no no
It does not require yes yes no no
a matching step
It works with CC-CC yes no yes yes
and MLO-MLO pairs
It requires a yes yes no no
segmentation step

(10 transformations) in the range of [0.3,0.7] in steps of 0.04. In this study, we have

evaluated the performance of the proposed method using temporal mammograms

from the same mammographic view (CC-CC or MLO-MLO mammographic images).

The proposed method can not register mammograms that were acquired from

different views (e.g. CC with MLO) because the breast has a different shape in each

view. Moreover, the current version of the proposed method cannot register breast

images that were acquired from different modalities (e.g. registering mammogram

with MRI images for the same breast).

9.5 Conclusion

In this chapter, a new registration approach for aligning temporal mammogram

images has been presented. The proposed approach uses a curvilinear coordinate

system to align the mammograms. The system uses anatomical-driven coordinates

instead of Cartesian coordinates, which ignore the anatomical structure of the breast.

Unlike Brandt’s method, which requires many manual inputs and which was designed

to register only MLO-MLO mammographic pairs, the proposed method is fully

automatic and it can also be applied to both CC-CC and MLO-MLO mammographic

pairs. It has been shown that the representation of the curvilinear coordinates

depends on its reference point. An exhaustive search is made to find the best

reference point of the reference and the template mammograms which maximizes

the MI between them.
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The proposed registration approach was evaluated using a set of temporal

mammograms. The performance of the proposed approach was compared with

another scheme based on manually detected nipples. The SSIM and MI values

in the case of optimized reference points were higher than these obtained by the

nipple-based scheme. The SSIM and MI values of the proposed method were better

than those of the three image registration methods (Demons, DRAMMS and Brandts

method). It also gave the smallest landmark errors (5.23mm).

In the next chapter we propose a method for quantifying and visualizing the changes

in breast tumors of patients undergoing medical treatment through strain tensors.
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CHAPTER10

Analyzing the evolution of breast tumors

using flow fields and strain tensors

10.1 Introduction

Breast cancer is a group of cancer cells that can grow larger in breast tissues and

may move to other areas of the human body. Mammographies are an effective

method for detecting breast cancer in its early stage. Physicians usually monitor the

breast tumor changes of their patients during the course of chemotherapy, and they

attempt to predict pathological response in order to adjust the treatment to produce

the intended effects. CAD systems help physicians to diagnose and follow-up their

cases. In this chapter, we propose a computer method for quantifying and visualizing

breast tumor changes in follow-up mammograms. Optical flow models with strain
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tensors are proposed to make this analysis.

In the literature, several studies have been carried out to detect the changes between

two successive medical images of the same subject (breast, lung, heart, etc.). Most

are based on computing optical flow. Given two successive images for the same view,

an optical flow algorithm computes the flow fields (i.e., displacement vectors), which

map all pixels from the first image onto their new positions in the second image.

Indeed, several optical flow methods have been used in medical image analysis.

Bhat and Liebling (2009) used the Lucas-Kanade (LK) method to separate the

bright-field microscopy image sequence of the beating embryonic heart into two

image sequences, which were then analyzed to characterize the motion of the blood

and heart-wall separately. In (Wu et al., 2015; Ou et al., 2015), six deformable

registration algorithms were compared to quantify tumor changes during neoadjuvant

chemotherapy. The authors used Jacobian determinants and intensity residual color

map to visualize the changes. Teo and Pistorius (2014) investigated the feasibility

and accuracy of tracking the motion of an intruding organ-at-risk at the edges of a

treatment field using a local optical flow analysis of electronic portal images. Antink

et al. (2013) used a modified version of the LK method to estimate the flow fields

between thoracic 4D computed tomography sequences. Krueger et al. (1998) used

an optical flow method to estimate the displacement of pre- and post-compression

ultrasound images. Lee (1997) used optical flow methods to align mammograms and

then they compared and evaluated them to detect abnormalities.

In general, the main limitation of using optical flow methods with medical images

is the lack of a ground truth for assessing their accuracy. To solve this problem, we

propose using a set of robust optical flow methods with mammograms and then

aggregate the best ones. This yields more confident results, since we combine

the merits of these optical flow methods. In this study, we use ordered weighted

averaging aggregation (OWA) operators to aggregate the results of the optical

flow methods. The inputs of the proposed system are two mammograms for the

same breast, one before the treatment (baseline mammogram) and one after the

treatment (follow-up mammogram). To estimate the strain tensors, the system
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applies five successive stages to the input mammograms (see Fig. 10.1). Firstly,

five preprocessing operations are applied. Secondly, the optical flow between

mammograms is computed. In this study, we assess eight robust optical flow

methods. Thirdly, an OWA aggregation approach (Yager, 1988) is used to aggregate

the results of the best optical flow methods. The aggregated flow fields are then used

to calculate the strain tensors. Finally, strain tensors are shown to physicians to

examine tumor changes. A negative strain denotes the decrease in distance between

two reference points, and thus indicates a regional shrinkage. In contrast, a positive

strain refers to a regional expansion. The proposed system produces color codes that

help to visualize breast tumor changes.

10.2 Methods

Fig. 10.1 presents the five stages of the proposed system: pre-processing, computation

of optical flow, aggregation, calculation of strain tensors and visualization. The

subsections below give a detailed explanation of the first four steps of the proposed

system.

Figure 10.1: Proposed system

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED COMPUTER METHODS FOR BREAST CANCER IMAGE INTERPRETATION THROUGH TEXTURE AND TEMPORAL 
EVOLUTION ANALYSIS 
Mohamed Abdelnasser Mohamed Mahmoud 



180
Chapter 10. Analyzing the evolution of tumors using flow fields and

strain tensors

10.2.1 Preprocessing

The preprocessing stage includes five steps: mammogram resizing, enhancement,

breast region segmentation, determination of the orientation and suppression of the

pectoral muscle. We explained the steps of the preprocessing stage in section 9.3.1.

The mammograms used in this study are of different sizes. In order to reduce the

computation time of the optical flow methods, all the mammograms were re-sized

to a resolution of 256 × 256 pixels. We used the detail preserving median filter

proposed in (Sun and Neuvo, 1994) for noise suppression and image enhancement,

and preserved the discontinuity between different regions in the breast. With this

filter, the median value is computed over a square area of 5 × 5 pixels centered at

the pixel location.

10.2.2 Calculation of the flow fields

To quantify the evolution of tumors and to reveal heterogeneous changes in disparate

sub-regions within tumors, we assess eight robust optical flow methods. In the next

subsections, we introduce the calculation of optical flow and briefly explain some

robust optical flow methods.

10.2.2.1 LK method

The LK method assumes that the displacement of the image contents between two

consecutive images is small and approximately constant within the neighborhood

of each pixel (Bouguet, 2001). LK uses small neighborhoods and the least squares

method to calculate the optical flow.

 ∑Np
i=1 I

2
xi

∑Np
i=1 IxiIyi∑Np

i=1 IxiIyi
∑Np

i=1 I
2
yi

 u

v

 =

 −∑Np
i=1 IxiIti

−
∑Np

i=1 IyiIti

 (10.1)

In this equation, Np is the number of pixels in each neighborhood, and Ix, Iy and

It are the gradients in x-, y- and t- directions, respectively. An iterative approach
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is used to solve this equation. In this study, we implemented this method to detect

the large displacements that exist in mammograms.

10.2.2.2 Horn−Schunck method

The Horn−Schunck (HS) method (Horn and Schunck, 1981) is the baseline for a

large family of global optical flow methods. The HS method formulates the flow as

a global energy functional, and then it attempts to find the global minimum of the

following objective function in terms of the displacement vector w:

E(w) = E(w)intensity + E(w)smooth (10.2)

E(w)intensity is an energy term that penalizes the deviation from the brightness

constancy.

E(w)intensity =

∫
Ω

Ψ(|I2(x+ w(x))− I1(x)|2)dx (10.3)

where Ψ(z2) =
√
z2 + ε2 is used to deal with outliers (ε = 0.001). E(w)smooth is a

regularity constraint used to enforce a smooth optical flow field by penalizing the

total variation (TV) in the optical flow as follows:

E(w)smooth =

∫
Ω

Ψ(|∇u(x)|2 − |∇v(x)|2)dx (10.4)

10.2.2.3 Large displacement optical flow (LDOF)

LDOF is an extension of the HS method (Brox and Malik, 2011). It uses the CTF

technique and it attempts to find the global minimum of the following objective

function in terms of the displacement vector w:

E(w) = E(w)intensity + γE(w)gradient + αE(w)smooth+

βE(w,w1)match + E(w1)descriptor (10.5)

In this equation γ, α and β are tuning parameters. E(w1)descriptor is an energy term

that matches a set of dense descriptors (histogram of oriented gradients; (Dalal and
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Triggs, 2005)) extracted from the two mammograms. E(w,w1)match integrates the

descriptor correspondences from a descriptor matching step (discrete process) into

the variational approach (continuous process), where w1 is an auxiliary variable.

Due to the illumination change, the pixel constancy assumption is usually violated,

so the E(w)intensity term does not work properly. For this reason, the E(w)gradient is

used to add the gradient constancy constraint:

E(w)gradient =

∫
Ω

Ψ(|∇I2(x+ w(x))−∇I1(x)|2)dx (10.6)

where ∇(z) calculates the gradients of z in x- and y- directions of the image domain.

10.2.2.4 HOG- and MLDP- based optical flow

To cope with illumination changes, the L1-TV optical flow model was used to

calculate the optical flow at point p = (x, y) with the expression

min E
u,v

(u, v) =

∫
Ω

(λρ(x, y, v, u)2 + ||∇u||+ ||∇v||) (10.7)

where ρ is a function that measures the similarity between the images and λ is a

weight. The similarity function ρ can be defined as

ρ(x, y, u, v) = S2(x+ u, y + v)− S1(x, y) (10.8)

where S1 and S2 are two descriptors based on HOG or MLDP extracted from the

two images I1 and I2, respectively.

MLDP-based optical flow. In (Mohamed et al., 2014) the similarity function used

in the data term was obtained by extracting texture features through the modified

local directional pattern descriptor from two consecutive frames within the dual TV

optical flow algorithm. Mohamed et al. (2014) proposed a modified version of the

local directional pattern descriptor (MLDP) that assigns an 8-bit binary code to

each pixel. To construct the descriptor, edge responses were calculated using the

eight Kirsch compass masks for each image. For each pixel, if the edge response is
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positive, the corresponding location in the binary code is set to ‘1’; otherwise, it is

set to ‘0’. In this case, each mammogram is represented by eight binary channels.

HOG-based optical flow. In (Rashwan et al., 2013) the histogram of oriented

gradients (HOG) is used to extract texture features from two consecutive images.

HOG produces distinctive features in cases of illumination change and cluttered

background (Dalal and Triggs, 2005). To construct the HOG descriptor, the

occurrences of edge orientations in a local image window are counted. The image is

divided into blocks (small groups of cells) and a weighted histogram is computed for

each of them. The frequencies in the histograms are normalized in the interval [0,1]

by using the L1-norm to compensate for illumination changes. The combination of

the histograms of all blocks represents the final HOG descriptor. In the HOG-based

optical flow each mammogram is represented by n channels, where each channel

corresponds to one bin of the resulting histogram.

10.2.2.5 Census-based optical flow

Müller et al. (2011) proposed a global optical flow method that uses the standard

total variation and census as a texture descriptor in the data term. The census

operator labels the pixels of an image by comparing the elements of the kc × kc

neighborhood surrounding each pixel with the value of this pixel (Ojala et al., 2002).

Pixels in this window with a value greater than the central pixel are labeled as ‘1’

and the rest as ‘0’; thus, if kc is set to 3, each pixel is represented by 8 bits.

10.2.2.6 Classic+NL optical flow

The Classic+NL method (Sun et al., 2010) is a modified and optimized version of

the HS method. To determine the optical flow it uses a median filter-based non-local
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term, in addition to the CTF technique and it optimizes the following energy:

EO(u, v) =
∑
i,j

{Ψd(I1(i, j)− I2(i+ ui,j, j + vi,j))

+λ1[Ψs(ui,j − ui+1,j) + Ψs(ui,j − ui,j+1)

+Ψs(vi,j − vi+1,j) + Ψs(vi,j − vi,j+1)]

+λ2(‖u− û‖2 + ‖v − v̂‖2)} (10.9)

EC(û, v̂) = λ2(‖u− û‖2 + ‖v − v̂‖2) +∑
i,j

∑
(q,z)∈Ni,j

ωi,j,q,z (|ûi,j − ûq,z|+ |v̂i,j − v̂q,z|)︸ ︷︷ ︸
non-local term

EO(u, v) is the main energy function and EC(û, v̂) is the proposed non-local term

used to refine the resulting optical flow of Eq. 10.9. û and v̂ are auxiliary flow fields.

Ni,j is a set of neighbors of pixel (i, j), and λ1 and λ2 are scalar weights. For each

pixel, a non-local term is used to determine which pixels in the area belong to the

same surface. Subsequently, they are weighted using ωi,j,q,z which determines the

probability of pixel (q, z) existing in the same surface of pixel (i, j). In this way, the

details of the optical flow at the boundaries of the regions are preserved. In the case

of Classic+NL, all values of ωi,j,q,z are equal and belong to the edges of the regions.

Below we refer to Classic+NL by CL-NL and Classic+NL-FULL by CL-Full.

10.2.3 Aggregating optical flow models using OWA

operators

As we mentioned above, the main problem in evaluating the performance of optical

flow methods is the lack of ground truth. A landmark-based error can give us a

provisional evaluation for the optical flow methods. To estimate the optical flow

accurately, we selected some recent optical flow methods. Indeed, each optical

flow method has its own characteristics. For example, the HOG, MLDP and

LDOF methods are based on feature extraction and they are more robust against
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illumination changes. In turn, the standard methods, such as HS or CL-NL, are

based on intensity or color values that hold all information about image pixels and

image sensors. In this study we aggregated the displacements obtained using OWA

operators. We assessed three OWA operators: ‘at least half ’, ‘most of them’ and

‘as many as possible’. We used the optical flow obtained from the best aggregation

method to calculate the strain tensors. In the following subsections, we introduce

the OWA operators and the method used to aggregate the results of the optical flow

methods.

10.2.3.1 OWA operators

Yager (1988) used the OWA operators to perform several aggregation tasks. Given

an input vector f = [f1, f2, . . . , fn] and a weighting vector w = [w1, w2, . . . , wn], the

aggregated value of f can be calculated as follows:

F (f1, f2, . . . , fn) =
n∑
k=1

wkrk (10.10)

where
∑n

k=1wk = 1, n is the number of elements of f and rk is the kth largest

element of f , k = 1, 2, . . . , n.

To calculate the weights we used the increasing linguistic quantifier Q proposed by

Yager (1993). They can be calculated as follows:

Q(r) =


0 if r < 0

(r−a)
b−a if a ≤ r ≤ b

1 if r > b

(10.11)

Using the values of a and b, we can define different increasing quantifiers. To calculate

‘at least half’, ‘most of them’ and ‘as many as possible’, (a, b) are set to (0, 0.5),

(0.3, 0.8) and (0.5, 1), respectively. For a specific quantifier, the weights can be
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calculated as follows:

wk = Q

(
k

n

)
−Q

(
k − 1

n

)
for k = 1, . . . , n (10.12)

Fig. 10.2 shows these three quantifiers.

(a)

(b)

(c)

Figure 10.2: The linguistic quantifiers (a) ‘at least half’, (b) ‘most of them’ and (c) ‘as many as
possible’

10.2.3.2 Aggregating optical flow models

Given L optical flow methods, for each pixel in the image (i, j), the qth optical flow

method produces the displacement field (uq(i, j), vq(i, j)). We apply the aggregation

function on the values of u and v separately. For instance, if there are three

optical flow methods (L = 3), for each pixel, the optical flow methods produce

three displacement vectors (u1, v1), (u2, v2) and (u3, v3). The aggregation operator

aggregates u1, u2 and u3 into one value uagg. In the same way, v1, v2 and v3 are

aggregated into one value vagg. Therefore, for each pixel in the image, the aggregation
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operator produces the aggregated displacement field (uagg,vagg). Thus, aggregating

optical flow methods using ‘at least half’, ‘most of them’ and ‘as many as possible’

produces (Uleast, Vleast), (Umost, Vmost) and (Umany, Vmany), respectively.

10.2.4 Calculation of the strain tensors

Strain is the change in length per length unit. A negative strain denotes a shrinkage

while a positive strain denotes an expansion. It can be defined using the displacement

gradient with the expression (Abd-Elmoniem et al., 2008)

∇w(p, t) =

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 (10.13)

where p = [x, y]T are the coordinates of each pixel in the image and u and v are the

aggregated flow fields. Then the deformation gradient F is given by

F (p, t) = (I−∇w(p, t))−1 (10.14)

where I is the identity matrix. Finally, the strain tensor is defined as

s(p, t) =
1

2

[
I− (F−1(p, t))TF−1(p, t)

]
(10.15)

s(p, t) =

 sxx sxy

sxy syy

 (10.16)

where sxx, sxy, syx and syy are the components of the strain tensor. sxx is the unit

elongation for an element originally in the x-direction. syy is the unit elongation for

an element originally in the y-direction. sxy gives the decrease in angle between two

elements initially in the x- and y- directions. Note that the components of the strain

tensor are the same size as the mammograms. sxy and syx are identical, so we only

show sxy in our experiments.
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10.3 Experimental results and discussion

A dataset of 34 mammogram pairs was used in our experiments. It was collected

from the Hospital Universitari Sant Joan (Reus, Spain). The temporal mammograms

are Full Field Digital Mammograms (FFDM) with sizes of 1770× 2370, 3540× 4740

and 2364× 2964 pixels, and with a spatial resolution of 100µ.

To evaluate the performance of the optical flow methods, we calculate the error

between each registered follow-up mammogram and the baseline mammogram

against manually-defined landmarks. The extracted landmarks are in corresponding

anatomical regions (nipple, visible masses and linear structures). The number of

landmarks varies from one mammogram pair to another. Assume that Lbase is the list

that contains the positions of the landmarks picked from the baseline mammogram,

and Lfol contains the corresponding positions of the landmarks in the follow-up

mammogram. The Euclidean distance is used to calculate the landmark error.

Statistical analysis may provide more evidence when analyzing optical flow methods,

so we calculate the statistical significance between the landmark error of the optical

flow methods using the Wilcoxon signed rank test.

10.3.1 Analysis of optical flow methods

In this subsection we analyze the performance of eight optical flow methods.

We experimentally tuned the parameters of each optical flow method, which are

summarized in the following paragraph.

Parameter configuration. The parameters of LK were 9 pyramid levels, a 9× 9

neighborhood and 30 iterations. In the case of HS, image pyramids were constructed

using the configuration proposed in (Bruhn et al., 2005), there were 10 warpings

per image pyramid level and 5 pyramids. With LDOF, each HOG descriptor was

calculated in 15 different orientations and computed in 7 × 7 neighborhoods. The

final HOG descriptors were calculated by combining the histograms at the central

pixel and the eight neighbors at a distance of four pixels. Parameters γ, α and β were

5, 30 and 300, respectively. There were 92 levels in the image pyramid. This number
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was selected so that the discrete derivative filters could still be applied at the top

of the pyramid. In the case of CL-NL and CL-Full, the number of levels of image

pyramids in the first stage of graduated non-convexity (GNC) optimization was 4,

while it was 2 in the second stage of GNC. There were 10 warpings per pyramid level.

The half window size of the weighted median filter was 10 and the size of the median

filter was 5 × 5 pixels. With OF-Census, the census descriptor was calculated in a

3× 3 neighborhood around each pixel. With OF-HOG, the HOG was computed in a

5×5 neighborhood with 8 orientations. With OF-MLDP, the MLDP were calculated

using eight Kirsch compass masks convoluted with a Gaussian kernel to reduce the

effect of illumination change. With OF-Census, OF-HOG and OF-MLDP, there were

10 warps per level and 64 levels in the image pyramid. The weighting of the data

term was 10.

The experiments were carried out using MATLAB on an Intel processor core 2

Quad at 2.5GHz and 8 GB of RAM. In this study, we use state-of-the-art optical

flow methods. Their implementations are freely available. The implementations of

CL-NL, CL-Full and HS are available at http://cs.brown.edu/people/black/code.

html/. The implementations of OF-HOG, OF-MLDP and OF-Census can be

requested from the authors of (Rashwan et al., 2013). The implementation of LDOF

is available at http://www.cs.berkeley.edu/∼katef/LDOF.html/.

Evaluation. Table 10.1 presents the evaluation of the optical flow methods using

Table 10.1: Evaluating optical flow methods

Method Landmarks error p-value Significance
LK 4.92±1.61 0.0011 yes
HS 4.58±2.65 0.0573 no
LDOF 6.64±4.40 0.00091568 yes
OF-HOG 4.27±2.00 0.0553 no
OF-MLDP 6.23±4.24 0.00092726 yes
OF-Census 6.05±3.30 0.0014 yes
CL-NL 3.33±1.81 - -
CL-Full 4.69±2.56 0.0013 yes

the mean and the standard deviation of the landmark error. It also shows the results

of the Wilcoxon signed rank test. CL-NL gives the smallest landmark error (the best
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performance) followed by OF-HOG and HS. LDOF has the biggest landmark error

(both mean and standard deviation of landmark error) and, therefore, performs

worst. The results in Table 10.1 enable the optical flow methods studied to be

grouped in three categories as follows. The first category contains only the CL-NL

method, which has a landmark error smaller than 4. The second category contains

the LK, HS, OF-HOG and CL-Full methods, which show a landmark error smaller

than 5. The third category contains the LDOF, OF-Census and OF-MLDP methods,

which have a landmark error greater than 6. Obviously, CL-NL is the best optical

flow method because it produces the smallest landmark error. Cl-NL uses a weighted

median filter (in the non-local term) to remove the outliers from the calculated optical

flow in each level of the CTF, and this makes the resulting optical flow more accurate.

As CL-NL is the optical flow method that performs best we measure the statistical

significance of its results using other methods and the Wilcoxon signed rank test.

In the third column of Table 10.1, a p-value lower than 0.05 means that there is

a significant difference with respect to the CL-NL method. In the fourth column,

‘yes’ means that the errors have a significant difference. As shown in Table 10.1, the

results of CL-NL are significantly better than the results of LK, LDOF, OF-MLDP,

OF-Census and CL-Full (p-value < 0.05). On the contrary, the results of CL-NL

are not different enough from the results of the HS and OF-HOG methods. This

means that the performances of HS and OF-HOG are similar to the performance of

CL-NL. These findings prompt us to aggregate CL-NL, HS and OF-HOG (the top

three methods) in the next stage of the proposed system.

Fig. 10.3 presents the average execution time of the optical flow methods. HS

determines the optical flow in the shortest average execution time followed by LDOF.

CL-Full takes longest to determine the optical flow. CL-NL and OF-HOG take less

than 5 minutes. The best three optical flow methods (CL-NL, HS and OF-HOG)

take less time than the CL-FULL and LK to determine the optical flow. Thus, the

optical flow methods that are to be aggregated are also good in terms of execution

time.
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Figure 10.3: The average execution time of the optical flow methods

10.3.2 Analysis of the aggregation methods

Here we analyze the performance of three aggregation methods based on OWA

operators: ‘at least half’, ‘most of them’ and ‘as many as possible’. Below, we

refer to these operators as ‘least’, ‘most’ and ‘many’, respectively. We selected the

top three optical flow methods to be aggregated: CL-NL, OF-HOG and HS. We also

used the Wilcoxon signed rank test and the landmark error to evaluate the results of

the aggregation methods.

Table 10.2 shows the landmark error of the aggregation methods. Optical flow

aggregation using the ‘many’ approach gives the smallest landmark error (2.92±1.38)

followed by the ‘least’ approach. The worst aggregation results are given by the

‘most’ operator. The mean and the standard deviation of the landmark error are

smaller for ‘many’ than for CL-NL. This means that ‘many’ more accurate than the

other aggregation methods or the individual use of any other optical flow method.

As the ‘many’ aggregator is the best option, we measure the statistical significance

of its results in comparison with the ‘least’ and the ‘most’. As shown in Table 10.2,

the results of ‘many’ are significantly better than the ones of ‘least’ and ‘most’.

Table 10.2: Results of the aggregated optical flow models

Method least most many
Landmark-error 4.28±2.34 5.56±3.61 2.92±1.38
p-value 0.01 8.21E-004 -
significant yes yes -

We also calculate the statistical significance of the results of the ‘least’, ‘most’ and

‘many’ approaches in comparison with the results of CL-NL. As shown in Table 10.3,
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the results of CL-NL are significantly better than the results of the ‘most’ approach

(p-value < 0.05), but not better than the results of the other two aggregators (p-value

> 0.05).

Table 10.3: Statistical analysis of the aggregation approaches

CL-NL vs. least most many
p-value 0.08 1.56E-002 0.35
significant no yes no

10.3.3 Analysis of tumor changes

On the basis of the findings of the above experiments, we use the aggregated

optical flow of ‘many’ to calculate the strain tensors. The strain tensors at a given

pixel indicate the change between the follow-up and the baseline mammograms:

>0 for expansion, <0 for shrinkage, and 0 for no change. Below, we present

two examples of the calculation of strain tensors using the proposed method. In

both examples, the baseline mammogram was acquired before the treatment. The

follow-up mammogram of the first example was acquired after a short period of

treatment. The follow-up mammogram of the second example was acquired after a

long period of treatment. The four components of the strain tensor have the same

size of mammograms. Although the strain tensor has four components (sxx, sxy, syx

and syy), we show only three of them in the figures because sxy and syx are identical.

Fig. 10.4 shows the strain tensors based on the ‘many’ approach. The period between

the baseline and the follow-up mammograms was 49 days. In this case, the landmark

error is 4.8012 pixels. As shown in Fig. 10.4, at each point, the color map of the

components of the strain tensor (sxx, sxy and syy) provides a quantification of the

tumor changes. In particular, they show expansions in the middle and shrinkage in

the bottom-left side of the breast.

To summarize the color maps of the three strain tensors (sxx, sxy and syy) on one

color map, we calculate the maximum absolute eigenvalue (λmax) of the strain tensor

at each pixel s(p, t) in the mammogram. Fig. 10.4 (f) shows λmax. Some shrinkage in

the middle and in the bottom-left side of the breast clearly appear in λmax. Fig. 10.5
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Figure 10.4: The calculated strain tensors using the ‘many’ approach for a patient undergoing
short-term treatment: (a) the baseline mammogram, (b) the follow-up mammogram, (c) sxx, (d)
sxy, (e) syy and (f) λmax
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Figure 10.5: The calculated strain tensors using the ‘many’ approach for a patient undergoing
long-term treatment: (a) the baseline mammogram, (b) the follow-up mammogram, (c) sxx, (d)
sxy, (e) syy and (f) λmax

shows the calculated strain tensors for a patient undergoing long-term treatment

(415 days). In this case, the landmark error is 1.7619 pixels. As shown, the strain

tensors can help to visualize breast tumor changes. The λmax color map shows little
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expansion in the middle of the breast of this patient.

10.4 Conclusion

In this chapter we have proposed a computer method for quantifying and visualizing

the changes in breast tumors for patients undergoing medical treatments using strain

tensors. The proposed method consists of five successive stages: pre-processing,

calculation of the optical flow, aggregation, calculation of strain tensors and

visualization. We determined the displacement fields between each follow-up

mammogram and its baseline. The displacement fields obtained were then used

to calculate the strain tensors. We evaluated the performance of eight optical flow

methods using the landmark error and the Wilcoxon signed rank test. We found

that CL-NL produces the smallest landmark error (best performance) followed by

HS and OF-HOG. Cl-NL accurately estimates optical flow because it uses a weighted

median filter to remove the outliers from the calculated optical flow on each level of

the CTF.

As there is no ground truth for evaluating optical flow methods when they are applied

to mammograms, we propose to aggregate the top three optical flow methods using

OWA operators. To do so, we assessed three OWA-based aggregation approaches:

‘at least half’, ‘most of them’ and ‘as many as possible’. The aggregated optical

flow methods using the ‘as many as possible’ operator produced smaller landmark

error than the method using CL-NL, which indicates that this aggregation approach

improves the accuracy of the optical flow calculation. As a result, the optical flow

obtained in the ’as many as possible’ approach is used to calculate the strain tensors.

The proposed system displays the strain tensors as well as the maximum absolute

eigenvalue (λmax). The proposed method provides a good quantification and

visualization of breast tumor changes and it may help physicians to plan treatment

for their patients.

In the next section we conclude the thesis and present some lines of future research.
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Conclusion
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CHAPTER11

Concluding remarks

11.1 Summary of contributions

In this thesis, we have analyzed breast tissues in three imaging modalities:

mammography, ultrasonography and thermography. Our analysis includes

mass/normal breast tissue classification, benign/malignant tumor classification

in mammograms and ultrasound images, nipple detection in thermograms,

mammogram registration and analysis of the evolution of breast tumors. The thesis

is divided into six parts: introduction (chapters 1 and 2), analysis of breast cancer in

mammograms (chapters 3, 4 and 5), analysis of breast cancer in ultrasound images

(chapters 6 and 7), analysis of breast cancer in infrared images (chapter 8) and

analysis of the temporal evolution of breast cancer (chapters 9 and 10).

In chapter 3, we compared several texture analysis methods for breast mass detection,

using images from a public breast cancer database. In particular, we proposed LDN
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as a new feature extraction method in this field. LDN improved the results of such

well-known texture analysis methods as LBP, HOG, GLCM or Gabor filters. To

improve mass detection rates, we proposed using two combination schemes. Firstly,

we concatenated the features of the best texture analysis methods. Of all the

concatenations, LDN+LBP gave the best overall results. Secondly, we used the

classifier voting technique to combine the predictions given by LDN, LBP, RLBP

and HoG. Results were good. The LDN + LBP combination detected the false

positives of breast mass detection; as a result, the number of unnecessary biopsies

can be reduced.

In chapter 4, we proposed a CAD system for analyzing breast tissues in

mammograms. This analysis included breast tissue classification and breast density

classification. We proposed the ULDP descriptor for feature extraction. On the basis

of our experiments in chapter 4, we can conclude the following:

• Results were good with both mass/normal breast tissue classification and

breast tissue density classification. In addition, breast tissue density

classification based on the histogram of ULDP yielded a high kappa coefficient.

• The correct classification rate based on the ULDP descriptor with digital

mammograms was higher than the one with film-screen mammograms, due

to the good contrast of digital mammograms.

• We studied the effect of breast density on the performance of the proposed

descriptor. ULDP performed more or less constantly with different breast

densities.

In chapter 5, we studied the effect of factors such as pixel resolution, integration scale,

preprocessing and feature normalization on the performance of these texture methods

for mass classification. Texture analysis methods, when applied to benign/malignant

mass classification in mammograms, are sensitive to these factors. The best

combination of these factors should be identified to achieve the best discriminative

power of each texture analysis method. We expect that the assessment performed

in this study will help researchers to do so. Due to its computational cost

advantage, sequential forward selection would be a suitable approach for determining
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a reasonable (possibly the best) factor configuration.

In chapter 6, FLDP is proposed for breast tissue characterization in ultrasound

images. FLDP describes each pixel in a given image by its edge responses and

makes use of fuzzy membership functions. LSVM and NLSVM classifiers are used to

demonstrate the effectiveness of FLDP at discriminating between mass and normal

tissues. The results show that the proposed descriptor leads to better results than

some of the state-of-the-art descriptors.

In chapter 7, we proposed the use of super-resolution approaches, which exploit

the complementary information provided by multiple images of the same target.

The proposed CAD system consists of four stages: super-resolution computation,

extraction of the region of interest, feature extraction and classification. We

evaluated the performance of five texture methods with the proposed system: gray

level co-occurrence matrix features, local binary patterns, phase congruency-based

local binary pattern, histogram of oriented gradients and pattern lacunarity

spectrum. We showed that our super-resolution-based approach improves the

performance of the evaluated texture methods and thus outperforms the state of

the art in benign/malignant tumor classification.

An automatic, accurate and real-time method for detecting nipples in thermograms

was proposed in chapter 8. The main stages of the proposed method are: human

body segmentation, determination of nipple candidates using adaptive thresholding

and detection of the nipples using the proposed nipple selection algorithm.

A registration approach for aligning temporal mammogram images was presented in

chapter 9. The proposed approach uses a curvilinear coordinate system to align the

mammograms. In this way the system uses anatomical-driven coordinates instead

of Cartesian coordinates, which ignore the anatomical structure of the breast. The

proposed method is fully automatic and it can also be applied to both CC-CC and

MLO-MLO mammographic pairs. The performance of the approach was compared

with another scheme based on manually detected nipples. The SSIM and MI values

in the case of optimized reference points were higher than these obtained in the

nipple-based scheme. The method gave better registration results than three image
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registration methods (Demons, DRAMMS and Brandt’s method).

In chapter 10, we proposed a computer method for quantifying and visualizing the

changes in breast tumors for patients undergoing medical treatments using flow fields

and strain tensors. In general, the main limitation of using optical flow methods with

medical images is the lack of a ground truth to asses their accuracy. To solve this

problem, we proposed using a set of robust optical flow methods with mammograms

and then aggregating the best ones. This yielded more confident results, since we

tend to combine the merits of these optical flow methods. We have used OWA

operators to aggregate optical flow methods. The proposed method provides good

quantification and visualization of the evolution of breast tumor, and it may help

physicians to plan treatment for their patients.

11.2 Future research lines

The work presented in this thesis makes a contribution to the interpretation of breast

cancer image analysis. We believe this is an interesting and important field of

research. Several directions of future work have been identified during this work.

For example:

1. Deep learning techniques for analyzing breast cancer images. First, we will

explore the use of deep convolution neural network and autoencoders to analyze

breast ultrasound images. Second, we will apply unsupervised feature learning

techniques to analyze dynamic thermograms.

2. Combination schemes to improve the performance of a computer-aided

diagnostic system based on multiple mammographic views and different breast

images modalities, such as magnetic resonance and ultrasound.

3. ULDP to predict the malignancy of the suspicious ROIs in mammograms

(classification of the mass ROIs into benign or malignant). We will also use

ULDP to segment dense regions from the breast area, then we will calculate

the breast density as a percentage of the area of the dense tissue and the area

of the whole breast. Given the calculated percentage, we will determine the
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corresponding BI-RADS category. Moreover, we will use the ULDP to classify

the breast density of each ultrasound image according to BI-RADS categories.

4. A biopsy procedure is usually used to discriminate between benign and

malignant masses. Although biopsies are expensive, they are often carried out

unnecessarily. To reduce this cost, we will implement a CAD system to improve

the results of benign/malignant mass classification. Given a mammogram and

an ultrasound image for each patient, we will aggregate the ULDP features

extracted from the suspicious ROIs. Then we will use these features to classify

the masses into benign or malignant.

5. Extension of the FLDP descriptor by using higher order membership functions

such as Gaussian and Trapezoidal functions. In addition, we will use

neutrosophic logic instead of fuzzy logic. Neutrosophic logic is a general

framework for unifying many existing logics including fuzzy logic. Thus,

principles such as neutrosophic sets and neutrosophic probability will be used

instead of fuzzy sets and the degree of membership.

6. Integration of the nipple detection method with such applications as

breast region segmentation and finding similar masses in mammograms and

thermograms of the same patients. In addition, we will use the proposed nipple

detection method to find the optimal location of the origin of the curvilinear

coordinates, which will be used to register thermograms.

7. Adaptation of the curvilinear registration approach for multi-modal

mammogram image registration (for example, registering mammograms and

MRI images for the same breast). In addition, we will evaluate the performance

of the proposed approach with tomosynthesis image registration.

8. The use of the flow aggregation approach to estimate strain tensors in breast

ultrasound elastography. Moreover, the optical flow aggregation approach can

be used in several applications, specially those that require displacement fields

to be calculated, such as medical image super-resolution and image registration.
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The acronyms are arranged in the order of the first appearance in the work.

CAD computer-aided diagnosis, page 3

ROIs regions of interest, page 4

ULDP uniform local directional pattern, page 6

FLDP fuzzy local directional pattern, page 7

ROI region of interest, page 10

CC cranio-caudal, page 14

MLO medioLateral oblique, page 14

BUS breast ultrasonography, page 14

MRI magnetic resonance imaging, page 16

GT ground truth, page 16

LBP local binary pattern, page 17

HOG histogram of oriented gradients, page 17

GLCM grey level co-occurrence matrix, page 17

k-NN k-nearest neighbor, page 21

LDA linear discriminant analysis, page 21

SVM support vector machine, page 22

LSVM linear support vector machine, page 22

NLSVM nonlinear support vector machine, page 22

RF random forests, page 23

MLP multi-layer perceptron, page 23

TP true positive, page 24

TN true negative, page 24

FP false positive, page 24

FN false negative, page 24

AUC area under the curve, page 24

ROC receiver operating characteristic, page 24
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LOOCV leave-one-out-cross validation, page 25

MI mutual information, page 28

CTF coarse-to-fine technique, page 29

LDN local directional number patterns, page 36

RLBP robust local binary pattern, page 40

FLBP fuzzy local binary pattern, page 40

CSLBP center symmetric local binary pattern, page 40

LGA local grey level appearance, page 43

PCA principal component analysis, page 48

MLDP modified local directional pattern, page 59

CLAHE contrast-limited adaptive histogram equalization, page 81

SH sharpening, page 81

MF median filter, page 81

HAR Haralick’s features, page 81

GF Gabor filters, page 81

SFS sequential forward selection, page 82

ExS exhaustive search, page 82

zs zero mean unit variance data normalization, page 85

mn maximum-minimum data normalization, page 85

ANOVA analysis of variance, page 86

Res pixel resolution, page 88

IS integration scale, page 88

NP no preprocessing, page 89

PCLBP phase congruency with local binary pattern, page 114

SR super-resolution, page 115

HR high-resolution, page 115

LR low-resolution, page 115

OIS one image system, page 124

HE histogram equalization, page 124

HBB human body boundary, page 138
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FFDM full field digital mammograms, page 156

DICOM digital imaging and communication in medicine, page 156

SSIM structural similarity, page 167

OSF oversampling factor, page 168

LK Lucas-Kanade optical flow method, page 178

OWA ordered weighted averaging aggregation, page 178

HS Horn−Schunck optical flow method, page 181

LDOF large displacement optical flow, page 181

GNC graduated non-convexity, page 189
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