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Abstract

Computational modelling of expressive music performance deals with the
analysis and characterization of performance deviations from the score that
a musician may introduce when playing a piece in order to add expression.
Most of the work in expressive performance analysis has focused on expres-
sive duration and energy transformations, and has been mainly conducted
in the context of classical piano music. However, relatively little work has
been dedicated to study expression in popular music where expressive per-
formance involves other kinds of transformations. For instance in jazz music,
ornamentation is an important part of expressive performance but is seldom
indicated in the score, i.e. it is up to the interpreter to decide how to orna-
ment a piece based on the melodic, harmonic and rhythmic contexts, as well
as on his/her musical background. In this dissertation we present an inves-
tigation in the computational modelling of expressive music performance in
jazz music, using the as a case study. High-level features are extracted from
the scores, and performance data is obtained from the corresponding audio
recordings from which a set of performance actions are obtained semi auto-
matically (including timing/energy deviations, and ornamentations). After
each note is characterized by its musical context description, several ma-
chine learning techniques are explored to, on one hand, induce regression
models for timing, onset and dynamics transformations, and classification
models for ornamentation to render expressive performances of new pieces,
and, on the other hand, learn expressive performance rules to analyse its
musical meaning. Finally. we report on the relative importance of the con-
sidered features, quantitatively evaluate the accuracy of the induced models,
and discuss some of the learnt expressive performance rules. Moreover, we
present different approaches for semi-automatic data extraction-analysis, as
well as, some applications in other research fields. The findings, methods,
data extracted, and libraries developed for this work are a contribution to
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viii RESUMEN

expressive music performance field, as well to other related fields.

Resumen

El modelado computacional de la expresividad en la interpretacion musical
trata sobre el andlisis y la caracterizacién de las desviaciones que, con re-
specto a la partitura, los musicos introducen cuando interpretan una pieza
musical para anadir expresividad. La mayoria del trabajo en andlisis de la
expresividad musical hace énfasis en la manipulacién de la duracién y el
volumen de las notas, y ha sido principalmente estudiada en en el contexto
de piano clasico. Sin embargo, muy poco esfuerzo ha sido dedicado al estu-
dio de la expresividad en miusica popular. Concretamente, en musica jazz
acciones expresivas como los ornamentos son una parte importante de la
expresividad musical ya que estos no estdn indicados en la partitura y es
tarea del musico hacer uso de los mismos anadiendo o substituyendo notas
en la partitura. Los miusicos anaden ornamentos teniendo en cuenta el con-
texto melddico, armoénico o ritmico del tema, o bien segin su experiencia
en el lenguaje jazzistico. En este trabajo, presentamos una investigacion
en el modelado computacional de la expresividad musical en musica jazz,
tomando la guitarra eléctrica como caso de estudio. En primer lugar, ex-
traemos descriptores de alto nivel de las partituras y obtenemos datos de la
ejecucién a partir de las correspondientes grabaciones de audio, de donde
obtenemos semiautoméaticamente la desviaciones temporales y de energia
de cada nota, asi como la deteccién de ornamentos. Después de que cada
nota ha sido caracterizada por su contexto musical, varios algoritmos de
aprendizaje automatico son explorados para, de un lado, inducir modelos
de regresién para duracion, comienzo de nota y volumen, y modelos de clasi-
ficacién para ornamentos para, finalmente, renderizar ejecuciones musicales
expresivas. Por otra parte, aplicamos técnicas de induccién automatica de
reglas al conjunto de descriptores obtenidos para obtener reglas de ejecucion
musical analizando su sentido musical. Por ultimo, analizamos la importan-
cia relativa de los descriptores considerados, cuantitativamente evaluamos la
exactitud de los modelos y discutimos acerca de las reglas obtenidas. Igual-
mente, reportamos métodos para la extraccién-andlisis semi-automatico de



datos, asi como aplicaciones en otros campos de investigacion. Los resul-
tados, los métodos presentados, asi como los datos extraidos y las librerias
de cédigo generadas para llevar a cabo esta investigacién constituyen un
aporte relevante en el campo de estudio computacional de la expresividad
musical, asi como en otras areas de investigacién relacionadas.

Resum

El modelatge computacional de ’expressivitat en la interpretacié musical,
tracta sobre ’analisi i la caracteritzacié de les desviacions que els musics
introdueixen quan interpreten una peca musical, per afegir expressivitat,
respecte la partitura. La major part del treball en analisi de 'expressivitat
musical fa emfasi en la manipulacié de la durada i el volum de les notes. La
majoria dels estudis s’han fet en el context de piano classic i molt poc
esfor¢ ha estat dedicat a la musica popular. Concretament, en musica
jazz, accions expressives com els ornaments, sén una part important de
I’expressivitat musical; Tot i no estar indicats en la partitura, és tasca del
music fer Us dls ornaments, afegir o substituir notes en la partitura, tot
tenint en compte el context melodic, harmonic o ritmic del tema, o bé
segons la seva experiéncia en el llenguatge jazzistic. En aquest treball, pre-
sentem una recerca en el modelatge computacional de I'expressivitat musical
en musica jazz, prenent la guitarra electrica com a cas d’estudi. En primer
lloc, extraiem descriptors d’alt nivell de les partitures i obtenim dades de
I’execucié a partir dels corresponents enregistraments d’audio, d’on també
obtenim semiautomaticament les desviacions temporals i d’energia de cada
nota aixi com la deteccié d’ornaments. Després que cada nota hagi sigut
caracteritzada pel seu context musical, diversos algoritmes d’aprenentatge
automatic sén explorats per a diferents fins. D’un costat, induir models de
regressio per a la durada, el comencament de nota i el volum, i models de
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classificacié per a ornaments per, finalment, renderitzar execucions musi-
cals expressives. D’altra banda, apliquem tecniques d’induccié automatica
de regles al conjunt de descriptors obtinguts, per obtenir regles d’execucid
musical analitzant les seves implicacions musicals. Per tltim, analitzem la
importancia relativa dels descriptors considerats, quantitativament avaluem
I’exactitud dels models i discutim sobre les regles obtingudes. Igualment,
reportem metodes per a l'extraccié-analisi semi-automatic de dades, aixi
com a aplicacions en altres camps de recerca. Els resultats, els metodes
presentats, aixi com les dades extretes i les llibreries de codi generades per
dur a terme aquesta recerca, constitueixen una aportacié rellevant en el
camp d’estudi computacional de 'expressivitat musical i en altres arees de
recerca relacionades.
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CHAPTER ].

Introduction

If you have to ask what jazz is, you will never
know ...

Louis Armstrong

1.1 Motivation

In this dissertation we present an investigation in computational modeling
of expressive music performance, focusing on jazz guitar musicas a case
study. Unarguably, music performance plays an important role in our cul-
ture. People clearly distinguish the manipulation of sound properties by
different performers and create preferences based on these differences. As
depicted in Figure 1.1, these manipulations can be understood as variations
in timing, pitch, and energy, that performers introduce (consciously and/or
unconsciously) when performing a musical piece to add expression. With-
out expressivity music would lack of its human aspect, which is an integral
part of it.

A performance without expression would result in a mechanical rendering of
the score. Unconscious variations might be produced by micro-variations in
timing, energy and pitch, which are specific to the performer intuitive style
of playing. Other expressive variations might be introduced consciously for
specific purposes, e.g. to convey emotions, or to play in a particular music
style (e.g. swinging quavers). Moreover, melodic variations of the written
music (melody) are usually introduce as an expressive resource in the form

1
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Features
Ny:fxg, Xy, Xgp e X}
Nt X, Xg, Xa0 oo X}
Ni:{Xg, Xy, Xgp e X}

Nt X, Xy e )

A

Figure 1.1: Performers introduce deviations in duration, onset, energy and note
ornamentation to add expression

of ornaments. In classical music some of these expressive indications are
present in the score. However, there is little quantitative information about
how and in which contexts expressive performance occurs, as most of the
performance information is acquired intuitively. This is particularly true in
Jazz music where expressive deviations of the score are deliberately shaped
by the musician. Performance annotations (e.g. ornaments and articula-
tions) are seldom indicated in popular music (e.g. jazz music) scores, and
it is up to the performer to include them by adding/substituting groups
of notes based on melodic, harmonic and rhythmic contexts, as well as on
his/her musical background. Therefore, in jazz music it may not always be
possible to characterize ornaments with the archetypical classical conven-
tions (e.g. trills and appoggiaturas). Furthermore, the performance of the
melody in jazz context may lay in between an explicit performance of the
notes of the score and free improvisation (also called free ornamentation).
In Figure 1.2 a transcription of the performance of the first four bars of the
jazz piece “Yesterdays” (by J. Kern) as performed by Wes Montgomery,
illustrate this aspect of free ornamentation. Vertical arrows show the cor-
respondence between the groups of notes used to ornament the melody and
the actual score.

The problem of explaining the melodic expressive deviations in the perfor-
mance of a jazz melody lay down in the domain of expressive music perfor-
mance (EPM) research. EMP has become an important scientific domain of
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Figure 1.2: Free ornamentation in jazz music. A fragment of Yesterdays by J.
Kerm as performed by jazz guitarist Wes Montgomery. Vertical arrows indicate
correspondence between performed notes to parent score notes.

study over the last decades, aiming to quantify and analyze the expressive
qualities imposed by the performer on to a otherwise “dead”, meutral or
inexpressive music score (also called nominal performance). Several studies
on EMP research have been conducted since early 20th century (Gabrielsson
(1999, 2003); Palmer (1997)) from different perspectives (e.g. musicologi-
cal, psycological, cognitive), and it has been mainly studied in classical
music. The measurement of the different aspects of expression in a musical
performance implies the need of using tools for large-scale data analysis.
Therefore, computational approaches to study EPM have been proposed,
in which the data extracted from real performances is used to formalize
expressive models for different aspects of performance (for an overview see
Goebl et al. (2008)). Thus, computational systems for expressive music per-
formance (CEMPS) have been designed aiming to automatically generate
human-like performances of inexrpressive scores by introducing expressive
variations in timing, energy, and pitch, based on both learning and non-
learning computational models (for an overview see Kirke and Miranda
(2013)). However, most of the proposed expressive music systems are tar-
geted to classical piano music. Some exceptions include the work by (Arcos
et al., 1998) and Ramirez and Hazan (2006). The former describe a system
able to infer Jazz saxophone expressive performances from non-expressive
monophonic descriptions using Case Based Reasoning. The later applies
inductive logic programming to obtain models capable of generating and
explaining expressive jazz saxophone performances.

Aforementioned approaches for jazz saxophone music (Arcos et al., 1998;
Ramirez and Hazan, 2006) are able to predict ornamentation (among other
performance actions). Approaches such as Grachten (2006) detects orna-
ments of multiple notes, to render expressive-aware tempo transformations.
Other methods are able to recognize, characterize ornamentation in popular
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music, e.g. (Goémez et al., 2011; Perez et al., 2008). However, due to the
complexity of free ornamentation, most of these approaches characterize or-
namentation in constrained settings, for instance by restricting the study to
one-note ornamentation or to notated trills in classical scores Puiggros et al.
(2006). The study of jazz guitar melody performance in the context of com-
putational music expression modeling, considering complex ornamentation
is an open research question that, to our knowledge, has not been studied
in the past.

In this dissertation we present an investigation in the computational mod-
elling of expressive music performance in jazz music, using the electric guitar
as a case study. The aim of this project is two fold. Firstly, we present a ma-
chine learning approach to automatically generate expressive (ornamented)
jazz performances from un-expressive music scores. Secondly, we present a
data driven computational approach to induce expressive performance rule
models for note duration, onset, energy, and ornamentation transforma-
tions in jazz guitar music. As a first step, high-level features are extracted
from the scores and performance data is obtained from the corresponding
audio recordings, by proposing methodologies to improve automatic perfor-
mance transcription such as pitch profile extraction optimization and rule
based and energy filters. A second step consists on comparing the similarity
between the score and the performance by means of a Dynamic Time Warp-
ing approach, from which a set of performance actions are obtained semi
automatically, which include timing/energy deviations, as well as, ornamen-
tations. After each note is characterized by its musical context description,
several machine learning techniques are explored to, on one hand, induce
regression models for timing, onset and dynamics (i.e. note duration and en-
ergy) transformations, and classification models for ornamentation to later
select the most suitable ornament for predicted ornamented notes based on
note context similarity. On the other hand, we apply machine learning tech-
niques to the resulting features to learn expressive performance rule models.
We analyse the relative importance of the considered features, quantita-
tively evaluate the accuracy of the induced models, and discuss some of the
learnt expressive performance rules. Experiments for semi-automatic data
extraction and analysis are presented reporting on improvements obtained
based on accuracy measures for each specific approach. We also report on
the performance for the ornamentation, duration, onset, and energy models
and rule learners . Similarities between the induced expressive rules and
the rules reported in the literature are discussed.

The rest of this chapter is organized as follows. In Section 1.2, we formally
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define the research problem and main objectives. In Section 1.3 we comment
about the scope of the investigation. Section 1.4 we define the scientific con-
text and mention the areas of research linked to the main topic. In Section
1.5 we point out the the main contributions of this investigation. Finally,
we give a brief overview of the structure of the dissertation in Section 1.6.

1.2 Problem Definition

The motivation of this investigation is to imitate (somehow) the way in
which popular (concretely jazz) music is taught, by means of learning (copy-
ing) from the performances of expert musicians. Thus, the primary objec-
tive of this research is to develop a system for expressive music performance
analysis and synthesis, in the context of jazz melodic performance, using
the electric jazz guitar as a case study, to generate predictive models for
expressive performance deviations in onset, duration, and energy, as well
as complex note ornamentations. These expressive deviations will be cal-
culated based on the measured differences between recorded performances
of professional musicians and its respective scores. The expressive perfor-
mance models will be trained using information (features) extracted from
the score notes. We aim to apply and compare different learning algorithms
to the task of performance deviation prediction and render human-like per-
formances of new pieces. Throughout this dissertation we will use the term
Ezpressive Performance Actions (EPAs) to refer to the mentioned devia-
tions introduced by musicians to add expression. The general framework of
the system is depicted in Figure 1.3.

Some of the research questions that arise within a methodology proposed
in this investigation are: which learning schemes outperform at different
particular performance deviations? The use of a predictive model is better
than simply retrieving the most similar deviation performed on a particular
case? is possible to obtain predicted rendered performances comparable to
the ones made by a human? Furthermore, our goal is not only to obtain
predictive models, but use the information that models provide in order
to achieve a better understanding about how musicians make choices upon
applying these performance deviations over a melody, based on the musical
context of the piece. For instance, which of the score musical context at-
tributes are the most relevant inputs to influence the decision of applying
certain note deviation (e.g. ornament, enlarge/shorten, advance/delay)?
Do the rules on how to apply these deviations obtained by a system have
(or might have) any musical interpretation?
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Figure 1.3: General framework for jazz guitar ornament modelling.

The proposed methodology imply several tasks that the system should
achieve:

o Musical context description: investigate and develop tools for feature
note extraction, in terms of the nominal properties of the notes, the
musical context of the note within the score, as well as, melodic anal-
ysis based on musicological aspects or principles (e.g. expectation
models).

e Melodic transcription: investigate on the methods for melodic extrac-
tion and automatic transcription for monophonic-monotimbral audio
as well as monophonic-multitimbral audio, to obtain a machine rep-
resentation of the recorded pieces in terms of note events (onset, du-
ration, pitch, and energy)

e Score to Performance Alignment: investigate on methods for auto-
matic score to audio alignment, to develop a methodology to obtain
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a correspondence between performed notes and parent notes in the
score.

e Performance Actions Definition: Define and quantify the performance
deviations introduce by the performer, which include variations in tim-
ing energy and pitch as well as the detection and coding of ornaments.

1.3 Scope

To make the research feasible, some considerations about the scope of the
investigation has been taken into account. The EPAs considered for this
study are deviations in duration, onset, energy as well as the use of orna-
mentation, understood as the action of replacing a score note by subtract-
ing or adding a note or a group of notes. The corpus of musical pieces
consist of jazz standards taken from The real book. Melodies are performed
monophonic, obtaining the audio signal directly from the pickups of an
electric guitar, which facilitates the recording of the performance and the
melodic performance transcription. A second type of performance data is
obtained from commercial available audio recordings. In this investigation
we constraint our analysis to the (so called) natural type of expressivity,
in which the performer plays the melody based on his personal criteria on
how he/she believes the piece should sound within jazz style, without any
emotional expressive intention. However an application in mood emotional
modeling is presented in Chapter 7. We mainly focus on musical content ex-
traction/analysis from data, whereas for audio and signal processing tasks,
we will rely on existing implementations for melodic extraction from poly-
phonic signals (Salamon and Gémez, 2012), pitch detection De Cheveigné
and Kawahara (2002), beat tracking (Zapata et al., 2012), available in the
Essentia library, as well as for pitch and time scaling (e.g. Serra (1997)).

1.4 Scientific context

As mentioned previously our investigation lays down in between the scien-
tific domain of expressive music performance and computer science. The
different research tasks involved in this investigation (see Section 1.2) may
involve several areas of research as depicted in Figure 1.4. Data analysis
from score and note description may involve the use of models for melodic
music analysis, for which we make use of models of melodic expectation
and melodic complexity from the domain of music perception and cogni-
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Figure 1.4: Scientific context for computational modeling of expressive music
performance.

tion, and music representation to transform it in a machine readable data.
Data extraction from both monophonic (mono-timbral) and monophonic
(polytimbral) audio signals may require techniques derived from the fields
of automatic music transcription, source separation and signal processing.
A key step is to find the correspondence between performed to parent score
notes, which involve techniques for score to performance alignment used in
the field of music information retrieval. Finally, the use of machine learn-
ing techniques from the domain of artificial intelligence and data mining
are required to obtain predictive models for EPAs.

1.5 Contributions

The main contributions of this work can be summarized based on the dif-
ferent research topics involved in this investigations (explained in section
1.4) as follows.

1. Music expressive performance

e A methodology for expressive performance modeling in jazz mu-
sic, able to operate on complex or free ornamentation, using the
jazz guitar as a case study.
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e An statistical analysis of the performance of different algorithms
used in the prediction of specific EPAs.

e Analysis of the relevance of the features involved in specific per-
formance actions.

2. Music representation and melodic description

e A methodology for note feature extraction and description.

e The introduction of perceptual features for melodic description.
3. Automatic music transcription

e A methodology for music representation of the performance based
on the manipulation of pitch contours extracted from both Monoph-
nic and polyphonic audio into note events.

e A parameter optimization of the algorithm for melodic extraction
from polyphonic signals, to the case study of the electric guitar
in jazz misc context, by using genetic algorithms.

4. System applications

e A system for neuro-feedback for real-time manipulation of ex-
pressive parameters based on the perceived emotional state.

1.6 Outline of the Dissertation

The outline of this dissertation is organized as follows. In Chapter 2 we
present an overview of the state of the art in expressive music performance
research, and the topics involved in this investigation. We focus on the re-
view of the computational approaches for expressive music performance sys-
tems from the perspective of learning and nonlearning systems, and deepen
in the ones targeted for jazz music. Other topics reviewed include automatic
melodic transcription systems, melodic description and analyisis, and score
to performance alignment.

In Chapter 3 we describe the data acquisition stage used for this work. We
describe the musical corpus used in terms of the music scores and the record-
ing material. We give an explanation on the process to obtain a machine
representation of both the scores and the recorded performances for the
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monophonic- monotimbral case as well as for the monophonic multitimbral
case.

In Chapter 4 we explain the methods used to extract note descriptors from
the score data, as well as type of descriptors used. We also describe the
methodology used to obtain the EPAs, which involve a methodology for
score to performance alignment, to obtain the correspondence between per-
formed and parent score notes. Finally, we comment on the process of the
creation of a database of EPAs and note descriptors.

In Chapter 5 experiments for semi-automatic data extraction and analy-
sis are presented reporting on improvements obtained based on accuracy
measures for each specific approach.

In Chapter 6 we describe the modeling stage of the work. For monophonic
monotimbral performances we obtain classification models for ornamenta-
tion, and regressive models for duration, energy and onset deviations. For
monophonic monotimbral models, after discretizing the data we extract
rules for classification for all the EPAs. In the first scenario note concatena-
tion is performed to obtain a MIDI representation of the predicted pieces.
In the second scenario an analysis of the obtained rules is performed in
terms of its musical sense. In both scenarios we analyze which melodic
descriptors are the most influential for each EPA by means of feature selec-
tion. We present an evaluation of the models in terms of its accuracy (for
classification models) and correlation coefficient and explained variance (for
regression models). An statistical improvement analysis against a base line
is performed as well as learning curves on the variation of different relevant
parameters (e.g. number of instance, attributes, and/or algorithm parame-
ters). We perform an evaluation of the system by computing the alignment
distance between the system and the target performance. Similarly, we dis-
cuss on the musical sense of the rules obtained and the feature selection
process.

In Chapter 7 we present two applications of our the computational mod-
eling approach. The first is a system for emotion modelling in real time
with a direct application in neurofeedback. The second is a computational
approach for music performance interaction analysis in jazz music.

Finally, In Chapter 8 we give a summary of the research presented, we
comment on the main contributions of the work and explain the future
directions of the current research.



CHAPTER 2

Background

In this chapter we provide a review of the state of the art in Expressive Mu-
sic Performance Research. Music Expression has been empirically studied
since the beginning of XIX century. This research area investigates the ma-
nipulation of sound properties that musicians (consciously or unconsciously)
introduce when performing a musical piece to add expression. Research in
Expressive Music Performance aims to understand and recreate expression
in performances. We will start by pointing out some aspects of expressive
performance and will define which are the expressive strategies a performer
use to create expression. We will define what is a Computer System for Ex-
pressive Music Performance (CEMPS), and comment on the most relevant
systems. We will categorize CEMPS based on how the performance knowl-
edge is built on these systems. We will briefly review some previous work
on ensemble jazz performance. Later, we will comment some previous work
on the related tasks implied in this work, such as Automatic Melodic Tran-
seription, and Automatic Ornament Recognition. Finally, we will briefly
comment on the background concerning to applications developed in this
project related to EEG emotion recognition, and musical neuro-feeback.

2.1 Expressive Music Performance Overview

There have been different attempts to define expression in music perfor-
mance. Juslin (2001) defines it as the variations in timing, dynamics, tim-
bre and pitch that makes possible to differentiate one performance from
another. Goebl et al. (2008) defines it as an integral part of music: “with-
out expression, music would not be interesting for most part of listeners, (...)

11
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what listeners go to listen, when going to a concert, is the human expression
that gives sense to music”.

2.1.1 Why do performers play expressively?

This research question has been widely investigated in the past. Hypothe-
ses suggests that performers often wish to express emotions (Juslin, 2001),
and/or, that playing expressively helps to clarify the musical structure of a
piece (Roger A. Kendall, 1990). Several studies published in music perfor-
mance, specifically in baroque classical and romantic music (e.g. Seashore
(1938), Palmer (1997) and Gabrielsson (2003)), aim to discover the musical
features (aspects) that performers take into consideration to introduce ex-
pression in performances. One of these features is the hierarchical structure
of music (Lerdahl and Jackendoff, 1983). Performers tend to express this
hierarchy (i.e. notes — motifs — phrases — sections) by slowing down the
tempo at the boundary of each structure in proportion to the level of the
hierarchy. Another regular feature used is that higher pitched notes tend
to be played louder, as well as notes what create melodic tension (relative
to the key).

2.1.2 Expressive performance actions

Expressive performance actions can be defined as the strategies and varia-
tions introduced in a performance, which are not specified by the score. The
most common expressive performance actions are performed as timing, du-
ration, onset, and loudness deviations. Other common performance actions
are ritardando, which is to slow down the tempo as the performer reaches
the end of the piece or a segment or phrase. Articulation is the action
of performing notes more legato (smoothly linked) or staccato (short and
pronounced). Expressive intonation may be introduced in instruments with
continuous pitch (e.g. string instruments), playing notes sharper or flat-
ter or introducing vibrato. Expression may also be introduced by timber
variation.

2.2 Research in Expressive Music Performance

Expressive music performance studies the micro variations a performer in-
troduce (voluntary or involuntary) when performing a musical piece to add
expression. Several studies investigating this phenomenon have been con-
ducted from an empirical perspective,e.g. Gabrielsson (1999, 2003); Palmer
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(1997). Computational approaches to study expressive music performance
have been proposed, in which data is extracted from real performances
and, later, used to formalize expressive models for different aspects of per-
formance (for an overview see Goebl et al. (2008, 2014)). Computational
systems for expressive music performance (CEMP) are targeted to auto-
matically generate human-like performances by introducing variations in
timing, energy, and articulation (Kirke and Miranda, 2013).

2.2.1 Computational Approaches: Non learning models

Two main approaches have been explored to computationally model ex-
pression. On one hand, expert-based systems obtain their rules manually
from music experts. A relevant example is the work of the KTH group
(Bresin and Friberg, 2000; Friberg et al., 2006; Friberg, 2006). Their Direc-
tor Musices system incorporates rules for tempo, dynamic, and articulation
transformations. Other examples of manually generated expressive systems
are the Hierarchical Parabola Model (Todd, 1989, 1992, 1995), and the work
by Johnson (1991a) who developed a rule-based expert system to determine
expressive tempo and articulation for Bach’s fugues from the Well-Tempered
Clavier. The rules were obtained from two expert performers.

2.2.2 Computational Approaches: Learning models

Machine-learning-based systems obtain their expressive models from real
music performance data by measuring the deviations of a human perfor-
mance with respect to a neutral or robotic performance, using computa-
tional learning tools. For example, neural networks were used by Bresin
(1998) to model piano performances, and by Camurri et al. (2000) to model
emotional flute performances. Rule-based learning algorithms were used by
Widmer (2003) to cluster piano performance rules. Other piano expres-
sive performance systems worth mentioning are the ESP piano system by
Grindlay (2005b) which utilize Hidden Markov Models, and the generative
performance system of Miranda et al. (2010a) which uses genetic algorithms
to construct tempo and dynamic curves.

Most of the proposed expressive music systems are targeted to classical
piano music. More recently, there have been several approaches to com-
putationally model expressive performance in popular music by applying
machine learning techniques. Arcos et al. (1998) report on SaxEx, a perfor-
mance system capable of generating expressive solo saxophone performances
in Jazz, based on case-based reasoning. Ramirez and Hazan (2006) compare
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different machine learning techniques to obtain jazz saxophone performance
models capable of both automatically synthesizing expressive performances
and explaining expressive transformations. Grachten (2006) applies dy-
namic programming using an extended version of edit distance, and case-
base reasoning to detect multiple note ornaments and render expressive-
aware tempo transformations for jazz saxophone music.

In previous work (Giraldo, 2012; Giraldo and Ramirez, 2015a,d,c), ornament
characterization in jazz guitar performances is accomplished using machine
learning techniques to train models for note ornament prediction.

2.2.3 Computer systems for expressive performance
(CEMPS)

Computer systems for expressive music performance (CSEMP) have been
developed since early 1980 as a result of the growing use of sequencers
and computers and the introduction of MIDI protocol, which made pos-
sible a standardized way of communication and synchronization between
sequencers. These sequencers and computers were able to perform stored
tunes in perfect metronome timing. However, these performances sounded
robotic, as they lack the variations humans introduce to play expressively.
Thus, a CSEMP is a computer system that aims to generate human-like ex-
pressive music performances. Kirke and Miranda (2013) classify CSEMPs
in automated and semi-automated. An automated CSEMP has the abil-
ity (after set up and/or training) to generate a performance of a musical
piece not seen before by the system, without manual intervention. A semi-
automated system will require some manual input such as musicological
analysis. This automated or manual analysis is done to obtain rules that
control the transformations applied to a particular note (or group of notes)
in order to achieve a desired expressive transformation. This set of rules
will be referred as Performance Knowledge.

CEMPS can be grouped based on how its performance knowledge was built
(rules that the system follows to apply expressive deviations from the score).
The list of the systems, corresponding grouping, instrument model, and
music style are shown in Table 2.1.



CEMP Instrument  Style
Non learning systems

Director of musices: Friberg et al. (2006) All (Piano) Classical
Hierarchical parabola model: Todd (1989, 1992, 1995) Piano Classical
Composer pulse and predictive amplitude shaping: Clynes (1995, 1986) All Classical
Bach fugue system: Johnson (1991b) Keyboard Classical
Trumpet synthesis: Dannenberg et al. (2007); Dannenberg and Derenyi (1998) Trumpet Classical
Rubato: Mazzola G. (1994); G. (2002) All (Piano) Classical
Pop E: Hashida et al. (2007) Piano Classical
Hermode tuning: W. (2004) All Baroque, Jazz/Pop
Computational music emotion rule system: Livingstone et al. (2010) Piano -
Linear regression

Music interpretation system: Katayose et al. (1990) Piano Classical
CaRo: Canazza et al. (2000, 2001, 2003) All -
Artificial neural networks

Artificial neural network piano system: Bresin (1998) Piano -
Emotional flute: Camurri et al. (2000) Flute Classical
Case and instance based systems

SazEx: Arcos et al. (1998) Saxophone  Jazz
Kagurame: Suzuki et al. (1999) Piano Classical
Ha-Hi-Hun: Hirata and Hiraga (2002) Piano Classical
PLCG system: Widmer (2000, 2002, 2003) Piano Classical
Combined phrase decomposition PLCG: Widmer and Tobudic (2003) Piano Classical
Distall system: Tobudic and Widmer (2003) Piano Classical
Statistical graphical models

Music plus one: Raphael (2001b,a, 2003) All Classical
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ESP piano system: Grindlay (2005a) Piano Classical

Other regression models

Drumming system: Carlson et al. (2003) Drums Electronic music
KCCA piano system: Dorard et al. (2007) Piano Classical
Evolutionary computation

Genetic programming jazz sax: Ramirez et al. (2008) Saxophone Jazz

Multiagent system with imitation: Miranda et al. (2010b) Piano -

Ossia: Dahlstedt (2007) Piano Contemporary

Table 2.1: List of CEMPS grouped by performance knowledge
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From the systems presented in Table 2.1, we deepen on some of the most
commonly cited CEMPS in the literature, which have been influential for
this study:

Director of Mucises (KTH)

The KTH rule system for music performance by Friberg et al. (2006) con-
sists of a set of about 30 rules that control different aspects of expressive
performance. These set of rules are the result of research initiated by Sund-
berg (1993); Sundberg et al. (1983) and Friberg (1991). The rules affect
various parameters (timing, sound level, articulation) and may be used to
generate expressive musical performances. The magnitude of each rule is
controlled by a parameter k. Different combinations of k parameters levels
model different performance styles, stylistic conventions or emotional inten-
tion. The result is a symbolic representation that may be used to control
a synthesizer. A real-time based implementation of the KTH system is the
pDM (Pure Data implementation of Director Musices Program) by Friberg
(2006). Friberg implements an arousal/valence space control, defining a
set of k values for the emotion at each quadrant of the space. Seven rules
plus overall tempo and sound level are combined in such a way that they
clearly convey the intended expression of each quadrant of the 2D emotional
plane based on the research by Bresin and Friberg (2000) and Juslin (2001).
Intermediate values are interpolated when moving across the plane.

Computational Music Emotion Rule System (CMERS)

The system proposed by Livingstone (2010) Livingstone et al. (2010) uses a
similar approach to the KTH rule system. It is based on 19 rules obtained
by analysis-by-synthesis applied to a phrase level hierarchy. The system
uses micro-features and macro-features to perform deviations in the score,
generating human-like performances, and also making possible to express
emotions. It uses a 2D emotional plane in which one axis ranges from neg-
ative to positive level, and the other ranges from passive to active states,
similar to the arousal-valence plane which will be explained in section 2.4.
Authors label each quadrant in the 2D emotional plane representing emo-
tions such as angry, bright, contented and despairing. Rules to convey
emotions range from mayor to minor modes changes, tempo and dynamic
variations, as well as, micro-variations introduced by humanization rules.
Authors claim that CMERS is more successful than DM in conveying emo-
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tions, based on listening tests.

CaRo

Carranza et.al 2000 - 2001 Canazza et al. (2000), Canazza et al. (2001),
Canazza et al. (2003) report on a system able to morph monophonic audio
signals to convey different emotions in the emotional 2D plane. It represents
performance actions at the local note level, which include inter-onset inter-
val changes, brightness and loudness-envelope centroid. A linear model is
used to characterize each performance action. The system learns how per-
formances are perceived by listeners in terms of moods (hard, heavy, dark,
bright and soft). This is done by analyzing the variability of results in lis-
tening experiments. A user can select any point in the 2D emotional space
and generate a new expressive version of the piece. A trajectory line can be
drawn in the 2D emotional space morphing different moods, in real-time.

Emotional Flute

Camurri et. al (2000) Camurri et al. (2000) presents a system, which uses
explicit features and artificial neural networks (ANN). Features are similar
to the ones used in the KTH rule system. Expressive actions include inter-
onset intervals, loudness, and vibrato. Another ANN is used to segment
the musical piece into phrases, and separate nets are used for timing, loud-
ness (cressendo/decressendo), and duration. Two models were generated to
handle vibrato. The system was trained with the performance of a flautist
in nine different moods (cold, natural, gentle, bright, witty, serious, rest-
less, passionate and dark). Performances were mapped into a 2D emotional
space. Listening tests gave an accuracy of 77% when listeners attempt to
label a particular emotion to rendered performances.

PLGC system

A long term multi-disciplinary project is reported by Widmer (2000) Wid-
mer (2002), Widmer (2003), to study expressive music performance by the
use of intelligent data analysis. The PCLG (Partition Cluster Learn Gen-
eralize) algorithm is an ensemble rule learning algorithm that aims to learn
simple robust principles from complex data in the form of rules. The learn-
ing approach of the PLCG algorithm is divided into 4 stages. Firstly, a large
dataset of training examples (which consisted of note descriptors along with
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the corresponding performance deviations), is obtained from the recordings
of Mozart piano sonatas performed by a professional pianist. The data
set is partitioned into smaller data subsets. Then, the FOIL algorithm is
used to build rules for the considered performance actions, using each sub-
set of training examples. Later, the most common rules are grouped by
applying hierarchical clustering among the obtained rules using a syntactic-
semantic rule similarity measure. Generalization is measured based on the
coverage of the rules which is used as a stopping criteria for rule selec-
tion. Three performance actions are taken into consideration: tempo (7i-
tardando/accelerando), dynamics (crescendo/diminuendo), and articulation
(staccato, legato, and portato). Rules performance is measured based on the
true/false positives coverage on the training set, as well over a test set. This
test set consisted of the performance recordings of the same piano sonatas
by another pianist, and 22 Chopin piano sonatas performed by 22 differ-
ent pianists. Little degradation in rule coverage is interpreted as a good
indicator of generality of the rule among performers. On the contrary high
degradation is interpreted as unpredictability of the performance action.

2.2.4 Computer systems for expressive performance
actions in jazz

From table 2.1 is clear that most of music expression research has been
done in the context of classical music, concretely in piano classical music.
These might be due to the fact that the piano keys can be easily treated
as on/off switch devices. Moreover, most of the digital pianos have in-built
MIDI interfaces. This facilitates the extraction on of the performance data
in the form of musical events in a machine readable format, and avoids the
complications derived from performing audio signal processing to obtain the
data. In this section we outline the CEMPS presented in Table2.1 targeted
to jazz performance.

Automatic rule induction in jazz performance

Ramirez and Hazan (2006) compares different machine learning techniques
to obtain a jazz saxophone model capable of generating synthesized ex-
pressive performances and to explain the expressive transformations. They
implement a system which uses inductive logic programming (ILP) which
creates a logic set of rules that model expression from both intra-note and
inter-note level. Intra-note level refers to a set of features that are relevant
to the note itself, like pitch, attack, onset (inflections), while inter-note level
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refer to the musical context at which the note appears, like interval with
the previous and the next note, duration and loudness. Thus, considering
a set of inflections (intra-note level) and the musical context (inter note
level), the system could predict the type of inflection to be used in a partic-
ular context. Using this information, they model various performers’ styles
of playing, so when a new performance is presented, the system is able to
identify the performer by analysing the performance style. The intra-note
set of features are represented by: attack level, sustain duration, legato
(left-right), energy mean, spectral centroid and spectral tilt. For inter-note
features set are Pitch, Duration, Previous note pitch, Next note Pitch, Next
duration, and 3 set of Narmour structures. Depending on the type of in-
strument, the aspects of the performance to be taken in account for the
performer identification task may vary. For example, in piano, dynamics
and timing are relevant aspects for performer identification, but not timber,
conversely to saxophone or singing voice, where timber is the most relevant
attribute for this task. Two classifiers are used: one to map melodic frag-
ments to the different possible performers, and a note classifier that maps
each note of the performer to be identified into an Alphabet symbol, which
is the set of clusters generated by all the notes performed by all perform-
ers. These classifiers are obtained by the use of different machine learning
techniques: K-means clustering, Decision trees, Support Vector Machines,
Artificial Neural Networks, Lazy Methods and Ensemble Methods.

The training recordings are segmented and the intra-note descriptors are
computed for each note. Fuzzy k-means clustering is applied using the
intra-note information to group similar notes. Then for each performer, the
training recordings of that performer are collected, and inter-note descrip-
tors are computed for each segmented note in the performer’s recording. A
classifier (Decision Tree) is build using inter-note features as attributes and
the cluster previously calculated as a class. By clustering inter-note features
they obtain sets of similar notes for all performers, and by building decision
trees with intra-note features, they predict the notes a performer will play
within a musical context.

Genetic programming

Ramirez et al. Ramirez et al. (2008) compares different machine learning
techniques to obtain a jazz saxophone model capable of generating synthe-
sized expressive performances and to explain the expressive transformations.
Among the techniques they explore are genetic algorithms (GA) and induc-
tive logic programming (ILP). They implement a system, which uses ILP
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to induce logic set of logic rules that model expression from both intra-note
and inter-note level. Considering a set of inflections (intra-note level) and
the musical context (inter note level), the system could predict the type of
inflection to be used in a particular context. In addition, using this informa-
tion they model various performers styles of playing, and train a classifier
to identify different performer by their playing style.

Case Base Reasoning in jazz performance

Another system for jazz modeling is the one proposed by Arcos et al. (1998),
the SaxEx. They report a system able to infer an expressive performance
from a flat, non monophonic input, by using Case Based Reasoning. The
musical context role of each note of the input is analyzed, and the system
retrieves from a case memory of human performances, notes with similar
roles, and using its properties transform the input notes. A first step of the
note analysis is performed by spectral modelling techniques (Bonada et al.,
2011), by comparing qualitative values (a.e. dynamics in dB) over a single
note, and compare this value to the average value over the whole preformed
piece. The second step of the note analysis uses Narmour’s model (Narmour,
1992) and Generative Theory of Tonal Music (Lerdahl and Jackendoff, 1983)
to determine the role of the note within the musical phrase: place on the
melodic progression, metrical strength, duration, harmonic stability and
relative importance in the bar. However this model can not explain the
transformations realized to the inexpressive performance.

2.2.5 Jazz Guitar Expressive Performance Modeling

To our knowledge, the only published work towards Expressive Performance
Modeling in Jazz Guitar was done by Giraldo (2012). The melody was ex-
tracted from a jazz guitar teaching series book Marshall (2000) in which
the melody was recorded separately from the rhythmic section. This facil-
itated the note segmentation process which was done in a semi automated
way (automatic onset recognition plus manual correction). A critical stage
in the modelling process is to find which groups of notes of the performed
score correspond to an embellished note in the original score. The corre-
lation between score and performed notes was done manually from musi-
cological knowledge by a professional jazz musician. After having the seg-
mented audio melody, the inexpressive score, the performed score, and the
score/performed note correspondence, we proceeded to obtain features for
each note, and also a database of embellishments. We used machine-learning
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techniques to obtain models for duration, energy and embellishments vari-
ations. Feature selection was manually performed by choosing the features
that would correlate better with the performance actions to be modeled,
based on an expert musical knowledge. This initial selection was validated
later using standard feature selection methods such as wrapper (ref) with
forward and/or backward elimination. The best accuracy results were ob-
tained with K star algorithm (REF). Tests were performed using the piece
”Yesterdays” performed by Wes Montgomery as training set, and first eight
bars of the piece ” Autumn Leaves” for testing. Quantitative evaluation was
performed based on listening tests.

2.2.6 Ensemble performance modeling

So far, we have review music expressive performance as the study of the
transformations from the written score to actual performance of a musi-
cal piece. We have seen how CSEMPs make use of several techniques for
analysis of recorded performances, extracting knowledge (in the form of
rules or patterns) to generate both learning and non learning models of
performance. Computer systems make use of the models to automatically
generate human-like expressive performances. However, most of the stud-
ies have been limited to solo expressive music performance, and little work
has been done in ensemble expressive music performance modelling, i.e.
playing expressively in an ensemble, where complex interactions between
musicians (playing several harmonies and melodic lines concurrently) may
occur. Some studies have addressed the problem of synchronization. Repp
(2005) studied synchronization on the task of tapping together, theorizing
on two perceptual mechanisms that enable people to achieve sensory-motor
synchronization: phase and period correction. Phase correction was applied
by Wing et al. (2014) who propose a first-order linear phase correction model
to predict synchronization in classical string quartets performances. Moore
and Chen (2010) report on the modelling of the interactive behaviour of
two members of a classical string quartet when performing musical notes in
rapid succession, by recording the bow movements using angular velocity
sensors. Goebl and Palmer (2009) study the effect of auditory feedback in
ensemble performances of piano duets, in which leader and follower roles
are assigned to each pianist. Expressive performance in string quartet en-
sembles is considered by Sundberg et al. (1989) following an analysis by
synthesis approach. Raphael (2001b,a, 2003) report on a real-time accom-
paniment system able to play back following a soloist performance, using a
Bayesian Belief Network to predict the soloist timing, and a Hidden Markov
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Model (HMM) to relate the soloist and the accompaniment parts. Mar-
chini (2014) studies ensemble expressive performance in classical quartets
by building machine learning models based on audio and music content
analysis, as well as motion caption systems, to predict the use of expressive
parameters in order to obtain insights on the interactions among musicians.

2.3 Computational music processing related
tasks

2.3.1 Melodic Transcription

Over the last decades there has been an increasing interest in the problem
of automatic music transcription, which has proven to be a difficult task, as
it requires both source separation and analysis of these sources (e.g. Ellis
(1996)). According to Plumbley et al. (2002) automatic music transcription
aims at identifying the instruments playing and the onset and duration of
the notes played by each instrument to produce a written transcription of
the piece (usually in the western musical notation). In this dissertation we
will refer to music material based on its monophonic/polyphonic and mono-
timbral/multitimbral nature. Musical pieces are monophonic/polyphonic
when only one instrument is playing one/several notes at a time. Similarly
musical pieces are monotimbral/multitimbral when one/several instruments
are playing at the same time.

Monophonic mono-timbral audio

Transcription from monophonic monotimbral audio has been usually per-
formed in two consecutive steps: pitch tracking, and onset detection. Auto-
correlation has been a widely used approach for fundamental pitch detection
(f0) (De Cheveigné and Kawahara, 2002) and music transcription (Brown
and Zhang, 1991), in which the cross correlation of a signal with itself as a
function of the time lag between them is observed to find periodicities.

Monophonic multi-timbral audio

The most widely used methods for melodic extraction are the ones based
on salience pitch calculation, e.g. Salamon and Gémez (2012). Usually
these methods are performed in three steps. First, a spectral representa-
tion of the signal is computed using spectral analysis techniques (e.g. Fast
Fourier Transform). Second, a salience function (time-frequency represen-
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tation of pitch salience) is computed to obtain several f0 candidates, usually
using weighted harmonic summation methods. Finally, the melody peaks
are selected based on tracking methods over frequency and time. Other
methodologies use source separation based on timber models and group-
ing principles (Ozerov et al., 2007; Durrieu, 2010) , and some use stereo
separation to estimate the panning of each source (Durrieu, 2010).

Some systems have been designed specifically for guitar transcription. Fiss
and Kwasinski (2011) provide a real time polyphonic pitch detection method
for transcribing the audio produced by a guitar into a tablature notation.

2.3.2 Ornament recognition

Automatic recognition and characterization of ornaments in music has been
studied in the past, as part of the research in music expressive analysis.
Perez et al. (2008) model mordents and triplets in Irish fiddle music with
the aid of 3D motion sensors to capture bowing gestures and time-pitch
curves analysis. Trills and appoggiaturas are modelled by Puiggros et al.
(2006) in bassoon recordings by automatically extracting timing and pitch
information from the audio signal, and using machine learning techniques to
induce an expressive performance model. Gémez et al. (2011) automatically
detect ornaments in flamenco music (melismas) categorizing ornaments into
six different types, and adapting the Smith-Waterman algorithm (Smith and
Waterman, 1981) for sequence alignment. Casey and Crawford (2004) use
the MPEG-7 standard audio descriptors to build a Hidden Markov Model
classifier to automatically detect a subset of possible ornaments in 18th and
17th century lute music, based on the hypothesis that HMM state transi-
tions occur at higher rates during ornaments than during non-ornamented
segments of an audio signal.

2.4 Application fields overview

2.4.1 EEG based emotion detection

Emotion detection studies have explored methods using voice and facial ex-
pression information (Takahashi, 2004). Other approaches have used skin
conductance, heart rate, and pupil dilation (Partala et.al, 2000)Partala et al.
(2000). Different methods have been proposed to recognize emotions from
EEG signals, (e.g. Chopin (2000); Takahashi (2004); Lin et al. (2010)),
training classifiers and applying different machine learning techniques and
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methods. Ramirez and Vamvakuosis Ramirez and Vamvakousis (2012) pro-
pose a method based on mapping EEG activity into the bi-dimensional
arousal/valence plane of emotions (Eerola and Vuoskoski, 2010). By mea-
suring the alpha and beta activity on the prefrontal lobe, they obtain indi-
cators for both arousal and valence. The computed values may be used to
classify emotions such as happiness, anger, sadness and calm.

Other relevant approaches make use of fractal dimension for emotion recog-
nition. Such is the case of Liu et al. (2010), which propose a real-time model
based on Higuchi algorithm (Higuchi, 1988) to calculate Fractal dimension
of EEG signal. Fractal dimension can be understood as a measure of the
complexity of a signal. It has been previously used for the analysis of Elec-
troencephalographic time series (Accardo et al., 1997). Liu model calculate
fractal dimension from a band pass filtered EEG signal covering Alfa and
Beta channels (2 Hz to 48 Hz) from FC6 electrode to measure Arousal. Va-
lence calculation is performed from the difference of the fractal dimension
values of electrodes AF3 and F4 based on the asymmetrical brain activation
hypothesis.

2.4.2 Active music listening

Active music listening is a study field that aims to enable listeners to inter-
actively control music. While most of the work in this area has focused on
control music aspects such as playback, equalization, browsing and retrieval,
there have been few attempts to controlling expressive aspects of music per-
formance. Interactive performance systems have been developed in order
to make possible for a listener to control music based on the conductor -
orchestra paradigm. This is the case of the work of Fabiani (2011) who
use gestures to control performance. Gesture parameters are mapped to
performance parameters adapting the four levels of abstraction/complexity
proposed by Camurri et al. (2000). This level of abstraction range from
low-level parameters (physical level), such as audio signal, to high-level pa-
rameters (semantic descriptors), such as emotions. Thus, gesture analysis
is done from low to high-level parameters, whereas synthesis is done from
high to low level parameters. The control of mid and low level parameters
of the performance is carried out using the KTH rule system by Friberg
(2006).






CHAPTER 3

Data Acquisition

This chapter is devoted to present the music material used in this disser-
tation and the methodology used for data acquisition. The musical corpus
used for this study consists of a selection of jazz standard pieces. Score data
is obtained from the lead sheets available in the The real book. The cor-
responding performance data is obtained from both the recordings by pro-
fessional guitarists and recordings extracted from commercial CDs. Score
data is encoded in XMLmusic format, and performance data is extracted
from recordings by proposing methodologies to improve automatic perfor-
mance transcription. Firstly, we propose an approach to optimize pitch
profile extraction from polyphonic signals (i.e. monophonic-multitimbral)
using genetic algorithms. Secondly, we propose a pitch profile segmenta-
tion into note events by using adaptative threshold filters and two rule
based filters, one based on minimum note duration and minimum gap du-
ration, and another based on musical heuristics. Energy estimation from
both monophonic-monotimbral and monophonic-multitimbral audio signals
is mapped to note energy values.

3.1 Musical Corpus

The musical material consists of recordings of jazz standards, whose scores
were available in the The real book. Two different strategies were used to
obtain performance data. The first consisted of extracting musical data from
monophonic audio recordings of an electric guitar, performed by 3 profes-
sional jazz guitarists. We will refer to this type of audio data as monophonic-
monotimbral recordings. The other way was to obtain data from commercial
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audio recordings of a well known jazz guitarist (Grant Green). We will refer
to this second type of audio data as monophonic-multitimbral. Each type
of data source has its own advantages and disadvantages. The first source
(monophonic-monotimbral) avoids the problem of voice separation, which is
present in the second approach (monophonic-multitimbral). It also permits,
not only to obtain a more accurate transcription of the musical events, but
also to have a controlled setting for performance recording (e.g. indications
on the type of expressivity, use of polyphony, or degree of deviation from the
score). The second method validates the musical quality of the performance
in terms of the expertise of the performer by obtaining the expressive musi-
cal data from recordings of a well known guitarists. Moreover, the scenario
of extracting expressive information from commercial audio recordings, is
a common practice used by jazz performers (and students) to learn and
understand the expressive aspects within the music.

3.1.1 Music scores from Real book

The scores were extracted from the The real book, which is a collection of
popular jazz tunes in the form of lead sheets, so called because they con-
tain common aspects to most influential recorded performances, i.e. main
melody, main chord progression, time signature and performance style (e.g.
swing, beebop, ballad, etc.). The tunes were coded in MusicXML, an XML-
based format for representing western music notation, which allows to store
not only information about the notes (pitch, onset, and duration) but also
other relevant information for note description such as chords, key, and
tempo, among others. MusicXML format can be freely used under Public
licence.

3.1.2 Monophonic-monotimbral recordings

The musical material corresponding to the monophonic-monotimbral data
set, consisted of 27 jazz standard audio recordings (resulting in a total of
1383 notes) recorded by a professional jazz guitarist. The melodies selected
belong to the most representative jazz repertoire, and they include different
tempos, composers and jazz styles. As jazz genre comprises numerous sub-
styles, to bound our study, some styles were not taken in consideration, such
as Bee-bop tunes, because of its melodic complexity leave small room for
ornamentation, as well as fusion jazz styles (e.g. bossanova, latin and funk
grooves). Additional recordings of 16 selected pieces from the initial 27 jazz
pieces were recorded by two more professional guitarists. This additional
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recording material was used for validation purposes of the models as will be
explained later in Chapter 6.

The audio of the performed pieces was recorded from the raw signal of an
electric guitar. The guitarist was instructed not to strum chords or play
more than one note at a time. The guitarist recorded the pieces while
playing along with pre-recorded commercial accompaniment backing tracks
(Kennedy and Kernfeld, 2002). We opted to use audio backing tracks per-
formed by professional musicians, as opposed to synthesized MIDI backing
tracks, in order to provide a more natural and ecologically valid performance
environment. However, using audio backing tracks required a preprocessing
beat tracking task. Each piece’s section was recorded once (i.e. no repeti-
tions nor solos were recorded), For instance, a piece consisting in sections
AABB, only sections A and B were considered. A list of the recorded pieces
is presented in Table 3.1 along with the recorded tempo,

3.1.3 Monophonic-multimbral recordings

The music material considered as monophonic-multitimbral data consist of
16 commercial recordings of Grant Green, and their corresponding music
scores (The real book). Table 3.2 shows the audio recordings considered.
The instrumentation for most of the pieces consists of guitar (g), piano (p),
double bass (b), and drums (d) (details can be found in the table). Green’s
particular style of playing uses a linear monophonic approach which facili-
tates voice separation of the main melody performed by the guitrar, from
the acompaniment instruments. A total of 744 note events were extracted
and manually corrected from the recordings. Details of melodic extraction
will be explained in section 3.3)
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Piece
allOfMe

allTheThing.

aloneTog.
autumL.
bodyAndsS.
byeByeBB.
daysOfWR.
equinox
footprints
four
haveYouM.
illRememb.
invitation
justFriends
ladyBird
likeSome.
lullaby OfB.
misty
myFunnyV.
outOfNo.
satinDoll
solar
stellaByS.
sweetGB.
takeTheA.
therelsNoG.
thereWilIN.

Key
C
Ab
Dm
Gm
Db
F
F
Cm
Cm
Eb
F
G
Cm
F
C
C
Eb
Eb
Cm
G
C
Cm
Bb
Ab
C
Bb
Eb

BPM Aebersold Vol.

160
132
126
174
56
138
88
100
176
132
208
210
120
120
152
195
138
66
78
112
128
160
108
234
112
196
168

95
43
41
20
93
39-65
40
57
33
65
25
*
34
59
70-99
23
40
41
25
59
12
88
99
39
65
94
44

DATA ACQUISITION

Form

Ar, As
A1, B, A
Ay, Ay, B, As
Al,AQ,B,
Ay, Ay, B, As
AlaBaAQ
Ar, Ag

A

A

A
A13A27B7A3
A13B27claA2vBQ
A1, B, As
Ay, B, Ay

A

A1, Ao
A1, A2, B, A3
A1, A9, B, A3
Ay, B, As
A17A2
A1, As, B, A3
A

AlaBaAQ
A1, A
Ay, Ay, B, As
Al,B17A2’BQ
Ar, Ay

Section analized
Ay

A, B

A5, B

A5, B

A5, B

A, B

Ay

A

A

A

A, B

Ay, Bg, Cy
A, B

A, B

Ay, B
Ay, B
A, B
Ay, B
AL, B

Ay, B
AlvBl

Table 3.1: Monophonic.monotimbral recordings list.



Album Year Instrumentation Name Author
G. Green (g) All the things you are J. Kern
W. Ware (b) I'll remember April G. de Paul
Standars 1961 A. Harewood (d) I Remember you V. Schertzinger
Love walked in G. Gershwin

If T had you Cambell & Connelly
Connelly

G. Green (g) On green dolphin street B. Kaper
Goodens Corner 1961 S. Clark (p) What is this thing called C. Porter

S. Jones (b) love

L. Hayes (d)

G. Green (g) Airegin S. Rollins
Nigeria 1962 2: iiﬁ; EE;

A. Blakey (d)

G. Green (g) Alone together A. Schwartz
Green Street 1962 B. Tucker (b) Moon river H. Mancini

D. Bailey (d) Round about midnight T. Monk

G. Green (g) If T should lose you R. Rainger
Born to be blue 1962 S. Clark (p) My one and only love G. Wood

S. Jones (b)

L. Hayes (d)

G. Green (g) Tune up M. Davies

S. Clark (p
Oleo 1962 S Jones Eb;

L. Hayes (d)

€
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Matador

G. Green (g) My favorite things
McC. Tyner (p)
B. Cranshaw (b)

E. Jones (d)

1964

Rogers &
Hammerstein

I want to hold
your hand

G. Green (g)
1965 L. Young (o, b)
E. Jones (d)

Speak low

K. Weill

Table 3.2: Monophonic.polytimbral recordings list.
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3.2 Score Data Acquisition

In this section we explain how we obtain a machine readable representa-
tion from musical scores. Several computer music representation has been
developed oriented to different applications (for an overview see Selfridge
1997). One of the most prevalent computer protocol for music representa-
tion is the MIDI (Musical Instrument Digital Interface) protocol established
in the late 80’s. However it is mainly based on protocols for hardware con-
trol, used for sound synthesis. In general, a computer music representation
scheme might (at least) contain information about the pitch, onset, and
duration each note. In this sense MIDI representation is limited in several
situations. For example, MIDI is not able to handle information for note
performance indications (e.g. dynamics, articulation, or ornamentation),
nor chord information.

In general, a musical score is a representation of the essential information
of notes: pitch, duration, and onset. For instance pitch is represented
in the position of a musical figure over the lines or spaces of the staff,
duration is represented by the shape of the note figure (e.g. Hole, half,
quarter notes, quavers, semiquavers, etc.), and onset by the relation between
the timing notation convention (time signature and bars) and the position
of the musical figure within a bar. Other conventions are widely used in
classical notation to indicate expressive performance parameter in a score.
Indications refer to variations in dynamics (e.g. cressendo, piano, forte), as
well to note articulation (e.g. legato and stacato), and ornamentation (e.g.
grace note, trills, echape, etc.).

In classical music the score indicates how to interpret a musical composition,
by means of the western musical notation system that include expressive
performance indications. In contrast scores from the The real book (also
called fake books) are transcriptions of the popular repertoire played by jazz
musicians, intended to give a musician (or a group) the minimal informa-
tion of a tune (melody and chords) so a band can fake an improvised perfor-
mance/arrangement of the tune (if they do not already know it). Therefore,
contrary to classical music, in jazz the performer is not intended to play an
explicit performance of the piece as it is written on the score. There are
two main differences between classical music scores and jazz music scores.
Firstly, the aforementioned expressive performance indications, widely used
in classical notation, are not usually present in the scores from the realbook,
and is the performer who decided when and how introduce them based on
his taste, background, knowledge and playing style. Secondly, in jazz (and
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popular music) the harmonic information is not explicitly written with its
constituent notes on a staff, as is the case of classical music. Instead, several
kinds of chord names and symbols are used above each melodic line. The
performer decides the texture (e.g. inversions, tensions) for accompaniment.
Moreover, ambiguous situations in the melody or chord information might
be encountered between different fake books versions.

3.2.1 Scores to MusicXML Format

In previous section we emphasize on several aspects specific to jazz scores
which serve as requirements to define de type of format needed for encoding.
For this work we choose the musicXML format, an XML format designed for
western musical notation, suitable for classic and popular music. Each score
was re-written using an open source software for music notation (Froment
et al., 2011), and then converted to MusicXML format containing onset,
duration and tempo information, as well as contextual information (e.g.
key, chords, mode). In each piece, tempo and key were adapted to match
the recordings. Ambiguity in chord information in the scores was resolved
as shown in Table 3.4.

Representation of notes

Throughout this dissertation pitch will be expressed rounded units of MIDI
note numbers by

F,
noteNumber pr = round (69 + 12logs (440>> (3.1)

were F{ is the fundamental frequency of the note. Midi note number and
note names and octave is presented in Figure 3.3. Accordingly, key, chroma
and chord root will be represented using the range of the first column of the
Table 3.3 , as will be explained in the following sections.

Representation of chords

Chord information was represented by its root and its type (e.g. root: C,
type: Maj7). Chord type was encoded using a description scheme based
on note degrees. Note degrees refer to the relative position of a note with
respect to its tonic (main note of the scale). In jazz music theory a similar
approach is used for chord definition, in which the chord note degrees (notes
conforming a particular chord) are expressed as the relative distance with
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Octave
Note -1 0 1 2 3 4 5 6 7 8 9
C 0 12 24 36 48 60 72 8 96 108 120
C+#/Db 1 13 25 37 49 61 73 & 97 109 121
D 2 14 26 38 50 62 74 86 98 110 122
C+#/Eb 3 15 27 39 51 63 75 87 99 111 123
E 4 16 28 40 52 64 76 83 100 112 124
F 5 17 29 41 53 65 77 89 101 113 125
F#/Gb 6 18 30 42 54 66 78 90 102 114 126
G 7 19 31 43 55 67 79 91 103 115 127
G#/Ab 8 20 32 44 56 68 80 92 104 116 -
A 9 21 33 45 57 69 81 93 105 117 -
A#/Bb 10 22 34 46 58 70 82 94 106 118 -
B 11 23 35 47 59 71 83 95 107 119 -

Table 3.3: MIDI note numbers

respect of the root of the chord. For example a dominant seventh chord is
said to be conformed by the root, the third, the fifth, and the flat seventh
(1,3,5,b7). In the Table 3.4 we define a chord topology, consistent with
the representation of notes in terms of the MIDI number (Section 3.2.1)to
facilitate interval operations (e.g. addition, substraction, distance) for de-
scriptors calculation. In the table, Chord note degrees are represented using
the range of the first column of Table 3.3, in which the root of the chord
(fist degree) is indexed by zero, and the remaining are indexed accordingly.
A total of 26 chord definitions are considered.

In some machine learning scenarios (e.g. regresion problems) this 26 labels
for chord definitions would generate 26 features when data is converted from
nominal to numerical (binary) which may generate overfitting problems. In
this type of schemes we used instead a binary representation that reduces
to 12 the number of numerical features needed to describe a chord. Thus,
root is represented based on chroma information (in a range from 0 to
11), whereas chord degrees (within one octave) are represented by boolean
variables. An example of this binary representation for a G7b9b13 is shown
in Table 3.5

Representation of key

We opted for two representations of Key. First we used a linear represen-
tation in which the key center note is represented using a range from zero
to eleven, according to the first column of Table 3.3. This representation is
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Chord Type Chord degrees

major 047
m (minor) 037
sus2 027
sus4 057
dim 036
aug 048
Maj7 04711
6th 0479
m7 03710
m6 0379
mMaj7 03711
m7b5 03610
dim7 0369
Tth 04710
Tsus4 05710
T#5 04810
7b5 04610
T#11 046710
Maj9 024711
m9 023711
6/9 02479
m6/9 02379
9th 024710
7b9 014710
T#9 034710
13 0247910
7b9b13 0147810
Talt 01346810

Table 3.4: Chord description list.

Chord degree

Root 09 2 b3 3 4 #11 5 b13 6 b7 7
9 #9 11 b5 #5 13

G7b9b13 8 1 0 0 1 O 0 1 1 0 1 0

Table 3.5: Example of a binary representation of a G769b13 chord.
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Figure 3.1: Numerical representation of the circle of fifths.

useful for interval operations for note description (e.g. distance between a
note and the key). Second a representation using the circle of fifths. The
circle of fifths is constructed by, starting at any pitch, ascending in inter-
vals of fifths and descending in intervals of fourths. Distance between pitch
classes in the circle of fifths (for notes, scales, key and chords) are associated
to consonance or dissonance. High and low distance are correlated to high
and low tension respectively (Lerdahl, 1996). Numerical representation of
pitch clases in the circle of fifths is presented in Figure 3.1.

3.2.2 MusicXML Parser

From the score representation in musicXML format, we implemented a rou-
tine to parse the xml file and obtain a note data representation in the matlab
environment. Note representation was obtained in two formats. First we
followed the representation used in the Miditoolbox by Eerola and Toivi-
ainen (2004), in which notes are represented in a note matrix. Table 3.6,
shows an example of the notes events of the first four bars of the piece All of
me. The motivation for using this representation was the possibility of using
the tools provided music analysis in the Midi Toolbox as note descriptors
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Onset Duration channel Pitch Energy Onset Duration

(beat) (beat) (MIDI #) (MIDI #) (sec.) (sec.)
1,00 1,00 1,00 72,00 80,00 0,00 0,38
2,00 0,50 1,00 67,00 80,00 0,38 0,19
2,50 4,50 1,00 64,00 80,00 0,56 1,69
7,00 0,67 1,00 72,00 80,00 2,25 0,25
7,67 0,67 1,00 74,00 80,00 2,50 0,25
8,33 0,67 1,00 72,00 80,00 2,75 0,25

Table 3.6: Note events matrix obtained by the XML parser in the Miditoolbox
format.

,/ ’ Score - \\\‘
Fifts timeBeats
Key Mode beatType
Timing I divisions
Chords Tempo
Notes measure
duration root
pitchStep rootAlter
pitchAlter kind
pitchOctave
figureTyper
; dot )
\ slurType /
N e

Figure 3.2: Score data structure.

(as will be explained in section 4.1). Second we obtain representation of
each score on a data structure, which include note information (e.g. dura-
tion, pitch, etc.), as well as score context information (tempo, key, chords),
as depicted in Figure 3.2. This type of encoding permits to handle data
information for note description calculation in a more efficient way.

3.3 Performance Data Acquisition

In this section we will describe our approach to obtain a machine read-
able representation of the performance from the aforementioned two type
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Figure 3.3: Automatic transcription of performance data.

of recordings: monophonic-monotimbral and monophonic-multitimbral. A
similar approach was used for both types of recordings to obtain the data
and is depicted in Figure 3.3, which differs only in the pitch profile extrac-
tion. A first stage consists on obtaining from recorded audio, a represen-
tation of the performed melody by its pitch profile. Pitch profile is defined
by (Goto, 2004) as a sequence of fundamental frequency (F0) values corre-
sponding to the perceived pitch of the main melody. In parallel we obtain a
fame based energy estimation for the main melody. A second stage consists
in the pitch profile segmentation into note events. As mentioned in Section
3.2.1, note events should include information about the onset, duration and
energy of the note. Finally, this information is stored in MIDI format to
later performance analysis 4.2.

3.3.1 Monophonic mono-timbral pitch profile extraction

Monophonic-monotimbral pitch profile extraction was performed using YIN
algorithm (De Cheveigné and Kawahara, 2002), which performs a frame
based estimation of the the fundamental frequency (F0) using autocorre-
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lation methods. Yin algorithm was used with a hop size of 2.9ms., and
a window size of 46,44ms.. Minimum and maximum frequencies were set
accordingly to the guitar tessitura. We assume a comfortable (acceptable)
range between notes A2 (110Hz) and D6 (1175 Hz) for playing a melody on
a electric guitar in a jazz context.

Energy estimation

In the case of monophonic-monotimbral signal the energy estimation was
done calculating the root mean square (RMS), using the same windowing
scheme over the recorded melody signal as explained in Section 3.3.1.

3.3.2 Monophonic multi-timbral pitch profile extraction

For monophonic multi-timbral pitch contour extraction we used an opti-
mized approach of the salience pitch method used by Salamon and Gémez
(2012). However, the default parameters that the algorithm uses, were
tuned using a grid search method over different data bases in which melody
was performed mainly by singing voice, therefore, these default parameters
fail to extract the melody for some specific instrument settings (jazz guitar
recordings in our case). To overcome this issue, we proposed a method to op-
timize the algorithm’s main parameters using genetic algorithms (Giraldo
and Ramirez, 2014), to obtain optimal combination of parameter values
swited for jazz guitar melodic extraction.

Melodia parameters for optimization

In Melodia approach melodic extraction is performed in several steps. First,
in the sinusoidal extraction stage, the signal is filtered to enhance the most
audible frequencies of human hearing range. Then a Short Fourier Trans-
form is calculated using a Hanning window of 46.4ms with a hop size of
2.9ms and a 4 zero padding factor. Finally, the peaks are corrected using
instantaneous frequency method (Paiva et al., 2006). Second, the salience
function computation is performed based on the summation of the weighted
energy of the harmonic peaks of a given frequency in order to obtain the f0
candidates. The number of harmonics considered and the weighting scheme
is an important factor that affects the salience computation. Third, at the
pitch contour computation stage, the peaks detected in the previous step
are grouped into pitch contours, based on several thresholds defined per
frame basis, as well as per time continuity basis. A fourth stage is contour
characterization in which the melody contour is chosen among the contours
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created in the previous step. In this stage, a set of features that guide the
system to select the main melody is implemented. These features include
pitch deviation, pitch trajectory, presence of vibrato, as well as contour
pitch, length and salience. The fifth and final stage consists on the melody
selection which is performed in four main steps: voicing detection, octave
error minimization, pitch outliers removal, and final melody selection.

The following algorithm’s parameters, involved on previous calculations and
subjected for optimization, were the ones found to be more sensitive in the
medic extraction accuracy, based on initial testes:

e Peak Distribution Threshold: Allowed deviation below the peak salience
mean over all frames (fraction of the standard deviation)

e Peak Frame Threshold: Per-frame salience threshold factor (fraction
of the highest peak salience in a frame)

e Pitch Continuity: Pitch continuity cue(maximimal lower pitch change
during 1ms time period)

e Time Continuity: Time continuity cue (the maximum allowed gap
duration for a pitch contour)

Using genetic algorithms for parameter optimization

Genetic Algorithms (GA) are stochastic optimization algorithms which im-
itate the biological mechanisms of natural selection. GA are widely used
in several optimization problems involving discontinuous, noisy, high- di-
mensional, and multi-modal objective functions. In contrast to other opti-
mization algorithms, the search that GA’s perform is done in a more global
context, whereas others (e.g. gradient descent) perform search in a more
local context. Genetic algorithms work as follows: First, an initial ran-
dom population of individuals is created. This initial population serves as
seed to generate future generations by means of combining different parents
(crossover) and randomly modifying a single individual (mutation). The
algorithm iterates, and in each iteration it selects the best subjects based
on a fitness function. The next generation of individuals is generated by
applying mutation and crossover. The individuals with best fitness values
are preserved in the next generation, while the others are discarded. The
process iterates until a maximum number of iterations is reached or the
fitness relative value of the best individual does not change more than a
tolerance value during several generations. The most popular applications
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of GA in a musical context have been done for music composition (Koga
et al., 2013; Mati¢, 2013). Other approaches have used GA’s for automatic
music transcription (Reis et al., 2008), music segmentation (Rafael et al.,
2013), and interactive music applications (Hung and Chang, 2011), among
many others.

We used a ground truth generated with the monophonic monotimbral record-
ings to optimize the parameters. The monophonic-multitimbral recordings
were used for testing. We manipulate the implementation of Melodia found
in Essentia library (Bogdanov et al., 2013) to set the selected parameters
as input variables. The initial population was setted using Melodia’s de-
fault parameters, and maximum and minimum parameter values were set
(according to the values reported) as,

Highbound = [1,1, 30, 150],
Initialpoint = [0.9,0.9,27.56, 100],
Lowbound = [0.5,0.5, 10, 50],

in which each value on each row vector corresponds to peak distribution
threshold, peak frame threshold, pitch continuity, and time continuity re-
spectively. Initial population was set randomly to 20 individuals (i.e. 20
vectors with different parameter values combinations). The stopping crite-
ria used in this study was set to a maximum of 500 iterations, and a relative
threshold change in fitness function of 12107, Crossover factor was set to
0.8 and mutation factor was set to 0.02, which are typical settings for these
values.

A fitness function was implemented in which the cost of the fitness function
is calculated based on the overall accuracy measure, defined as the total
proportion of frames correctly estimated by the algorithm compared to the
ground truth (as reported by melodia authors). This proportion is measured
based on the true negatives (TN) and true positives (TP) for which the pitch
estimation is correct (between a range of +/- 1/4 of tone of the ground
truth). TN and TP were calculated as follows,

al FO0,er(n)
TP = 1200 * lo mez) > H0cents 3.2
> 0 ( o (3.2)
N
FO l(n)
TP+ TN = 1200 * [ —_mer / 3.3
FTN = 371200 logs ( T (3.3)

n=1
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where F0p,¢(n) and FOg4(n) corresponds to the frequency value obtained
for the n'h window frame of the input signal (from a total of N frames in
which the signal is windowed) by the melodia algorithm and the obtained
as ground truth respectively. Thus the cost functions was calculated as,

J=1- (&) (3.4)

Different experiment configurations were set, for example, different audio
mixes were created in which the melody (which was recorded on a separate
channel) is at different sound levels with respect to the accompaniment
track. Details on the experiments settings, parameter values obtained, and
improvement measures can be found in Chapter 5

Energy estimation

The FEssentia implementation of Melodia was modified to obtain an estima-
tion of the energy of the main melody on a frame basis. Melodia calculates
a confidence factor based on the average energy of the retrieved melodic seg-
ments (best candidates of main melody). This part of the implementation
was modified for the algorithm to (additionally) output the energy value of
each frame, rather than the average of the melody segment. This way we
could obtain a frame by frame estimation of the main melody energy.

3.3.3 Segmentation of pitch profile

In this section we describe our approach to segment the obtained pitch pro-
file into a set of discrete note events, i.e. grouping pitch frames in to notes
defined by its pitch (in MIDI number), duration (seconds), onset (seconds),
and energy (in MIDI velocity number). Essentia implementation for pitch
contour segmentation uses the approach by Mcnab et al. (1996) which is
based on energy and pitch segmentation. It uses an island building strategy
to deal with gross errors and a fixed minimum and maximum energy thresh-
old to find the notes’ start and end boundaries. This approach is targeted
for singing voice, in which examples were performed singing the syllables
“da” or “ta”, which permits to distinguish repeated notes with the same
pitch based on amplitude. However, a fixed threshold might not be that
successful in signals with significant loudness changes. In the case of gui-
tar recordings, a fixed threshold would miss onsets (and offsets), specially
when consecutive notes of the same pitch are played, in which the the energy
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drop is less accentuated. Therefore, we followed a similar approach (based
on pitch and energy segmentation) but introducing several improvements.
Firstly, for segmentation based on amplitude, we created an energy filter
based on an adaptive threshold scheme. We explore two types of filter: a
median filter to down-sample the envelope curve from the audio signal, and
adaptative threshold filter using a low pass filter with Hanning windowing
as a detection function (see Bello et al. (2005)), to remove peaks from the
obtained pitch profile. This adaptative threshold might improve onset and
offset detection as the threshold will increase in regions in which more note
energy is present (e.g. consecutive notes). Secondly, for segmentation based
in pitch, a rule based filter based on pitch transients was used. A set of rules
based on maximum an minimum duration thresholds were defined and are
explained in Section 3.3.3. Finally, a third filter was performed based on
the note events obtained, in which duration and energy of the neighbour
notes is used.

Adaptative energy threshold filtering

In Figure 3.4, a representation of the wave form (a) and the extracted pitch
profile (b) is shown. In order to filter errors due to note transitions, or noise,
a filter based on adapative energy threshold was implemented, following the
approach described in Bello et al. (2005) for onset detection.

First an envelope curve (Figure 3.4c, blue) was obtained from the audio
signal using the approach by Zolzer (2008) (implemented in essentia). The
obtained envelop was down-sampled using a median filter, for which we
employed the same hop-size (3ms) and frame-size (46.4ms) used for pitch
detection. Thus, for each segment frame in the envelope we calculate the
first third median value as follows:

envelopedownSample|t] = sort(envelope frame|round(frameSize/3)]) (3.5)

The down-sampled signal is depicted in Figure 3.4c¢ (blue), which is then
filtered using a low pass filter. For doing this, the signal is windowed (again)
using a Hanning window of length 290ms (W = 100 Frames). Each value
of the filtered signal is obtained as follows:

W2
envelope filered|t] = ro—i—)\*w* Z hann(frame[n]) * frame[n] (3.6)
n=—W/2
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Figure 3.4: Pitch profile segmentation based on energy and pitch filters.

where W is the window length, and ro and A are positive constants to in-
crease/decrease position (over the energy axis) and range (max-min width)
of the filter, respectively. Values for ro and \ were set as 0.05 and 0.8. The
values used for ro, A, and W were empirically found by experimentation
over the data (an optimization approach to improve the selection of these
parameters will be considered for future work). The obtained adaptative
threshold curve is is shown in Figure 3.4 (green). Finally, the pitch pro-
file values for which the down-sampled energy envelope is higher than the
adaptative threshold obtained were kept, whereas the ones below were set
to zero. The effect of applying the adaptative energy filter on the pitch
profile is depicted in Figure 3.4d.
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Rule Based Filtering

The first filter is aimed to remove short notes (20-40ms) and silent gaps (3-
5ms). Short notes were defined to have an f0 > 55H z and a duration shorter
than w = 30ms. Gaps were defined as notes with f0 = 0 and duration
equal to five frames (3.6ms). Thus, short notes were filtered considering the
following three cases (Gaps were always filtered using case 1):

e Case 1: The short note is a peak or a gap in the middle of a long note
(previous interval equals the next interval in opposite direction). In
this case the peak (or gap) is removed.

e Case 2: If the note is right in the middle of an ascending or descending
interval. In this case the first half of the short note is assigned to the
previous note and the second half of the note is assigned to the second
note.

e Case 3: The short note is in an ascending or descending interval. In
this case the short note is assigned to the closest long note (a note
longer than 30ms).

Finding onsets and offsets

We designed a detection function based on the signal pitch changes. By
differentiating the pitch profile, positive changes in pitch were set as onsets
and negative were set as offsets.

Note energy mapping

The down-sampled signal envelope was also used to compute MIDI velocity,
in which the mean energy of the frames composing a note was linearly
mapped to a number between 60 to 100.

Rule based post filtering

We assumed that short notes (between 30ms and 100ms), and with low
energy (compared to their respective neighbour notes) are prone to be errors.
We calculated the product of duration and energy for each short note and
the mean product of four neighbour notes (two consecutive previous and
next notes). Notes with a product of less than 10 compared to the product
of the neighbour notes were considered as errors.



CHAPTER 4

Data analysis

In this chapter we explain the process for score data analysis and perfor-
mance data analysis. Firstly, high-level features are extracted from the
scores which include mominal descriptors that include information about
the note about the note itself (e.g pitch, duration, onset, etc.), local con-
text descriptors that include information about the neighbouring notes (e.g.
previous/next duration, prev/netxt interval, etc.), global context descriptors
which include information about the musical context in which the note oc-
curs (e.g. key, tempo, current chord, etc) and finally, perceptual descriptors
which include information calculated based on cognitive models. Secondly,
performance data is analysed by comparing the similarity between the score
and the performance by means of a Dynamic Time Warping approach, from
which a set of performance actions are obtained semi automatically, which
include timing/energy deviations, as well as, ornamentations. Finally, we
explain how we construct a performance data base in which each note is
characterized by the extracted descriptors along with the corresponding
calculated performance action, which might include ornamentation.

4.1 Score analysis: feature extraction

In this section we explain the process to obtain note descriptors from the
score data representation explained in previous sections. Feature extraction
was performed following an approach similar to (Giraldo, 2012), in which
each note was characterized by its nominal properties, its Local and Global
context, and by a categorization based on perceptual models of music per-
ception and cognition. We implemented our own feature extraction library

47
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for computing all the reported features, with the exception of the perceptual
features for which we used the methods provided by the miditoolbox (Eerola
and Toiviainen, 2004). We implemented the method by Grachten (2006) to
parse the melodies and obtain for each note the label of the I-R Narmour
structure (Narmour, 1992) to which it belongs. The concept of closure was
based on metrical position and duration. The basic Narmour structures (P,
D, R, and ID) and their derivatives (VR, IR, VP, and IP) are represented
in Figure 4.1.The complete list of the 30 descriptors used for this study and
its definition is summarized in Table 4.2.

Nominal descriptors

Nominal descriptors refer to the intrinsic properties of score notes (e.g.
pitch, duration, and onset). Duration and onsets were described both in
beats and seconds, as the duration in seconds depends on the tempo of
the piece. For example the choice of ornamenting two different notes from
different pieces with quarter note duration (beats) may differ if the pieces
are played at slow and fast tempos. The energy descriptor refers to the
loudness of the note, which in MIDI format is measured as velocity (how
fast a piano key was pressed).

Local context descriptors

Given a particular note, its Local context descriptors refer to the properties
of its neighboring notes, e.g. previous/next interval, previous/next duration
ratio, previous/next inter-onset interval. In this work, only one previous
and one following note were considered. Inter-onset distance (Giraldo and
Ramirez, 2015a) refers to the onset difference between two consecutive notes.

Global context descriptors

Global context descriptors refer to the musical context in which the note
occurs, e.g. tempo, chord, and key. The phrase descriptor (Giraldo and
Ramirez, 2015a) refers to the note position within a phrase: initial, middle,
or end. Phrase descriptors were obtained using the melodic segmentation
approach by Cambouropoulos (1997), which indicates the probability of
each note being at a phrase boundary. Probability values were used to
decide if the note was a boundary note, annotated as either initial (i) or
ending (e). Non boundary notes were annotated as middle (m). The phrase
descriptor was introduced based on the hypothesis that boundary notes (i.e.
initial or ending phrase notes) are more prone to be ornamented than middle
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Time Signature Very strong Strong Weak Very Weak
4/4 Beat 1 Beat 3 Beats 2 and 4 other
3/4 Beat 1 none Beats 2 and 3 other
6/8 Beat 1 Beat 2.5 Beats 1.5, 2, 3, and 3.5 other

Table 4.1: Metrical strength categorization.

notes. Note to key and note to chord descriptors are intended to capture
harmonic analysis information, as they refer to the interval of a particular
note with respect to the key and to the chord root, respectively. Key and
mode refers to the key signature of the song (e.g. key: C, mode: Major).
Mode is a binary descriptor (major or minor), whereas, key is represented
numerically in the circle of fifths (e.g. Bb=—1,C =0, F' = 1 etc). However
for some calculations (e.g note to key in Table 4.2) a linear representation
of the notes (e.g. C' =0, C#/Db =1, D = 2, etc) is used for key. Also,
it is worth noticing that the key descriptor may have 13 possible values as
the extreme values (—6 and 6) correspond to enharmonic tonalities (Gb and
F+#). The descriptor Is chord note was calculated using the chord type
description of Table 3.4 in which each of the notes of the chord are shown
using the aforementioned linear note representation. If a note corresponds
to any of the notes included in the chord type description it is labelled as
yes.

The metrical strength concept refers to the rhythmic position of the note
inside the bar (Cooper and Meyer, 1963). Four levels of metrical strength
were used to label notes in three common time signatures, depending on
the beat at which the note occurs, as shown in Table 4.1.

Perceptual descriptors

Perceptual descriptors are inspired by music perception cognition models.
Narmour’s implication-realization model (Narmour, 1992) proposes eight
basic melodic structures based intervallic expectation in melodies. The ba-
sic Narmour structures (P, D, R, and ID) and their derivatives (VR, IR, VP,
and IP) are represented in Figure 4.1. Symbols refer to prospective or restro-
spective (shown in parenthesis in the Range column of Table 4.2) realization.
Schellenberg (1997) simplified and quantified Narmour’s model into 5 prin-
ciples: registral direction, intervallic difference, registral return, proximity,
and closure. Tonal stability Krumhansl and Kessler (1982) represents the
degree of belonging to the (local) key context. Melodic attraction Lerdahl
(1996) measures the weight (anchoring strength) of the pitches across the
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Figure 4.1: basic Narmour structures P, D, R, and ID, and their derivatives VR,
IR, VP, and IP

0o W @ W W

pitch space. Tessitura and mobility are measures proposed by Von Hippel
(2000). Tessitura is the standard deviation of the pitch height distribution
and predicts the listener expectation of the tones being close to the me-
dian pitch. Mobility is based on the intuition that a melody is constrained
to its tessitura and therefore melodies change direction after long intervals
otherwise they will fall outside their comfortable range. This measure is
calculated using one lag autocorrelation between consecutive pitches.



Descriptor Abbreviation Units Formula Range
Duration dsp, Seconds dso [0, +o0]
Duration dby, Beats dbo [0, +00]

—  Onset onsy, Seconds 050 [0, 4+00]

S Onset onby, Beats obyg [0, +o0]

% Onset in Bar obm, Beats 0bo%bpb [0, +bpb]

Z  Pitch Dn Semitones Do [1,127]
Chroma chp Semitones po%12 [0, 11]
Energy Un, MIDI vel Vo [1,127]
Prev. duration pds, Seconds ds_y [0, +00]
Prev. duration pdb, Beats db_y [0, 4+00]

5 Next duration nds, Seconds dsq [0, +o0]

é Next duration  ndb, Beats dby [0, 4+00]

e Prev. interval  pint, Semitones P_1— Do [—60, 60]

2 Next interval nint, Semitones P1 — Po [—60, 60]
Prev. io dist.  piod, Seconds 089 — 05_1 [0, +o0]
Next. io dist.  piod, Seconds 051 — 050 [0, +o00]
Measure My, Bars mo [0, +o0]
Tempo tn Bpm to [30, 260]
Key K, Semitones ko [—6, 6]
Mode mody, Label mod {major, minor}
Note to Key n2ky, Semitones cho — ko(linear) [0,11]

- Chord root chry, Semitones chrg [0, 11]

8 {+, 6, 7, T#11, T#5, T#9, Talt

é Chord type chty, Label chtg 705.769, M aj7, dim, dim?7,

m, m6, m7, m7b5, major}

T
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4]

Note to chord  n2ch, Semitones chg — chrg [0, 11]
Is chord note  ichn, Boolean isChNote(chrg, chtg, chp) {true, false}
Met. Strength  mir, Label metStry Cptong. Strons:
Phrase phy, Label phraseg {initial, middle, final}
narly, nar(p—1,po, P1) {P,D,R,ID,(P),(D),(R),
Narmour 'R nar2, Label nar(p_2,p—1,po) (ID),VR,IR,VP,IP,(VR),
nar3dy nar(po, p1,p2) (IR),(VP),(IP),dyadic, monadic}
Regist. Dir. narRD int nar RegDir() {0,1}
Inter. Diff. narID int narIntDif f() {0,1}
Tss Regist. Ret. narRR int narRegRet() {0,1,2,3}
2, Proximity narP int narProx() {0,1,2,3,4,5,6}
& Closure narClos int narClos() {0,1,2}
g, Consonance cons int consonance() {0,10}
Tonal stability — tonal int tonality {0,10}
Mel. Attract.  mel At % melattraction() {0,1}
Tessitura tessit semitones tessitura() {0,inf}
Mobility mob % mobility {0,1}

Table 4.2: Features extracted from music scores. In the fifth row,
in column Formula, bpb means beats per bar

SISATVNYVY VIVd
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4.2 Performance Analysis

Appoggiaturas, trills, mordents, turns, etc. are achetypical ornaments used
in classical music to categorize ornaments. However this approach does not
always apply in jazz music, as melodic embellishment in jazz lays in be-
tween this archetypical ornamentation and free improvisation. The context
in which a musician may use ornaments is usually learnt by copying the play-
ing style of other professional musicians. Furthermore, in popular music,
ornaments depend widely on the musician background, taste and current
intention, and they are used based on melodic, harmonic and rhythmic con-
text. In the case of jazz music, the performance of a piece usually include
the addition of different types of ornaments, such as passing notes, neighbor
notes and chord scale notes. Typically, these ornaments may include short
musical phrases (also called licks), often used as a preparation for a target
note, or to replace long notes.

Thus, in jazz music the performance of a melody is not expected to be
an explicit render of the written music, due to the improvisational nature
of melodic ornamentation. Our aim is to automatically obtain for each
performed note (or group of notes) its corresponding parent note in the
score, as depicted in Figure 1.2.

In this section we will explain our approach for expressive performance
analysis which consists on the categorization and measurement of the mu-
sical devices and deviations from the score that a musician introduce when
performing a musical piece. Throughout this study we will refer to these
deviations as performance actions (PAs).

4.2.1 Performance to score alignment

Score to performance alignment was performed to correlate each performed
note with its respective parent note in the score as depicted in Figure
1.2. This procedure was carried out following the approach of (Giraldo
and Ramirez, 2015b), in which Dynamic Time Warping (DTW) techniques
were used to match performance and score note sequences. A similarity
cost function was designed based on pitch, duration, onset, and phrase on-
set/offset deviations.

Distance Cost Function

Phrase onset and offset deviation were introduced to force the algorithm to
map all the notes of particular short ornament phrase (lick) to one parent
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note in the score. We assumed that a group of notes conforming a lick are
played legato. Therefore, the performed sequence is segmented in phrases,
in which the time gap between consecutive notes is less than 50 ms. This
threshold was chosen based on human time perception studies (Woodrow,
1951).

Each note from the score and the corresponding performed sequence is rep-
resented by a five position cost vector as

cs = (p(i),ds(i),ons(i),ons(i),ofs(i)) (4.1)

and
cp = (p(4),ds(j),ons(5), Phons (i), Phoss(d)) (4.2)

respectively, where cs is the score cost vector and cp us the performance
cost vector. Index i refers to a note position in the score sequence, and j
refers to a note position at the performed sequence. The onset of the first
note of the lick phrase in which the j** note of the performance sequence
occurs is represented by phops(j). Similarly phegs(j) refers to the offset of
the last note of the lick phrase in which the j* note of the performance
sequence occurs.

The total cost is calculated using the Euclidean distance as follows.

5

cost(i, ) = \| > _ (es(n)i — ep(n);)? (4.3)

n=1

Notice that in equation (6.2) phrase onset and offset deviations are calcu-
lated when n equals four and five.

Dynamic Time Wrapping Approach

We apply dynamic time warping (DTW): a similarity matrix H,,y,) is
defined in which m is the length of the performed sequence of notes and n
is the length of the sequence of score notes. Each cell of the matrix H is
calculated as follows.

Hi,j = COSt—|—min(Hi_Lj,Hi7j_1,HZ'_17]’_1) (44)

where min is a function that returns the minimum value of the preceding
cells (up, left, and up-left diagonal). The matrix H is indexed by the note
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position of the score sequence and the note position of the performance
sequence.

A backtrack path is obtained by finding the lowest cost calculated in the
similarity matrix. Starting from the last score/performance note cell, the
cell with the minimum cost at positions, H(;_1), H(; j—1), and H_1 j_1) is
stored in a backtrack path array. The process iterates until indexes arrive
to the first position of the matrix, assigning each note in the performance
to a parent note in the score.

Figure 4.2 presents an example of the resulting similarity matrix obtained
for one of the recorded songs. The x-axis corresponds to the sequence of
notes of the score and the y-axis corresponds to the sequence of performed
notes. The cost of correspondence between all possible pair of notes is de-
picted darker for the highest cost (less similar) and lighter for the lowest
cost (most similar). The dots on the graph show the backtrack path (or
optimal path) found for alignment. Diagonal lines represent notes which
were not ornamented, as the correspondence from the performance notes to
the parent score notes is one to one. On the contrary vertical lines represent
notes which were ornamented, as two or more performed notes correspond
to one parent note in the score. Similarity horizontal lines represent consol-
idation (i.e. two or more notes are consolidated into one note). Blank cells
on the horizontal context represent score notes being omitted (deletion) as
well as blank cells on the vertical context represent a note addition (i.e a
note added by the performer which does not have an specific correspondence
to any note in the score).

Because there are not concrete rules to map performance notes to parent
score notes, our alignment algorithm was evaluated by comparing its output
with the level of agreement between five human experts who were asked to
manually align performance and score note sequences. Accuracy of the
system was estimated by quantifying how much each note pair produced
by the algorithm agreed with the human experts, using penalty factors for
high, medium, and low agreement. The results of the evaluation showed
that the performance of our approach was comparable with that of the
human annotators. Details of these evaluation will be explained in 5.

4.2.2 Expressive performance actions calculation

Previously we defined PAs in Section 4.2 as a set of musical resources used
by musicians to add expression when performing a musical piece. In this
section we explain how we categorize these PAs based on the type of align-
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Figure 4.2: Similarity matrix of performed notes and score notes. Dots indicate
alignment path between score and performance notes.

ment obtained in Section 4.2.1, following a similar approach as Grachten
(2006). Concretely, we will consider PAs for two main classes out of the
note alignment. The first class is the non ornamented (Figure 4.3), which
represents the notes that have aforementioned one to one correspondence.
For this non-ornamented notes, we will calculate three different PAs based
on deviations in onset, duration, and energy with respect of the score.

The second class corresponds to ornamented notes (Figure 4.4). We will
show in Chapter 6 that ornamented notes are a minority class (30% of the
examples). Therefore, for this study we will classify as ornamented any
PA consisting on the addition, deletion, consolidation, or fragmentation of
notes.

Performance actions were calculated for each score note, as defined in Table
4.3, by measuring the deviations in onset, energy and duration. Again,
indexes i and j refer to the note position at the score and the performance
sequence, respectively.

4.2.3 Database Construction

The data collected was organized, storing each note descriptors along with
its corresponding performance action. The pitch, duration, onset, and en-
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Time if beats
MIDI vel / MIDI vel

(c¢) Energy ratio.

Figure 4.3: Expressive performance actions calculated for not-ornamented class.
Red and green boxes corresponds to score and peformed notes respectively. Ver-
tical lines indicate performance to score alingment. Notes linked with one line
correspond to not ornamented class
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(a) Adition.

Time in beats

(b) Deletion.

50 55 &0
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(c¢) Consolidation (red) and fragmentation (blue).

Figure 4.4: Expressive performance actions labeled as ornamented class. Red
and green boxes corresponds to score and peformed notes respectively. Vertical
lines indicate performance to score alingment. Notes linked with two of more lines
(or not linked) correspond to ornamented class
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PA Abbreviation Units Formula Range

Ornamentation  Orn,, Boolean  ornament(N,) {yes,no}
Duration Ratio  Dr, Percentage % * 100 [0, 400
Onset Deviation Od, Beats ob; — ob; [0, +00]
Energy Ratio Er, Percentage me;’-jl(“) %100 [0, 4+00]

Table 4.3: Expressive performance actions calculation.

Score note Perform. note  Pitch dev.  Onset dev. Durat. ratio

index (7) index (j) (semitones) (beats) (beat frac.)
1 1 -1 —1/2 1/16
1 2 0 0 2/3
2 3 -3 - -1/2 /2
2 4 0 0 1/2
4 6 0o - -1/2  1/16
4 7 0 1/2 1/16
4 8 -1 3/2 1/16
4 9 0 2 1/16
[ T ) R i 2 T 12 =
5 11 0 1
6 12 - -1/2 /8
6 13 0 0 1/8
6 14 —2 1/2 1/8
6 15 0 1 1/8
6 16 0 3/2 1/8

Table 4.4: Example of ornament annotation for the music excerpt of Figure 1.2.

ergy deviations of each ornament note with respect to the score parent note
were annotated as shown in Table 4.4.






CHAPTER 5

Preliminary Experiments

In Chapter 3 and 4 we explained how performance data was obtained from
the corresponding audio recordings, by proposing methodologies to improve
automatic performance transcription such as pitch profile extraction opti-
mization and rule based and energy filters. In this chapter we present
a set of experiments to validate the improvements proposed for perfor-
mance data extraction and analysis. Firstly we present experiments on
the task of obtaining a performance representation in the form of note
events from the pitch profile segmentation. Secondly, we present exper-
iments on the optimization on the extraction of the pitch profile from
monophonic-multitimbral audio signals. Thirdly, we present some exper-
iments performed to validate our score to performance alignment approach
using Dynamic Time Warping. This validation is performed based on the
agreement level between human annotators. Finally, we report on improve-
ments obtained, which were quantified based on accuracy measures designed
for each specific approach.

5.1 Pitch profile segmentation

Our approach for automatic pitch profile segmentation was tested over 27
monophonic-monotimbral recordings (Section 3.1.2). As explained in sec-
tion 3.3.3 our aim is to segment the obtained pitch profile in to note events
defined by onset, offset, pitch, and energy. An evaluation on the accuracy
of the automatic segmentation approach was performed based on Clarisse
et al. (2002), by comparing the similarity between a ground truth of tran-
scribed melodies (hand corrected by a musician) and the ones extracted by
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the system. This comparison was performed using dynamic time warping
(DTW), for which we used the cost function explained in Section 4.2.1.
First, the alignment between the transcription obtained by the system and
the human corrected transcription is done. Later, we determine the num-
ber of insertions, deletions, and one to one note correspondence. For the
later case, we distinguished between exact correspondence and pitch recog-
nition error higher than one semitone. The above criteria for accuracy is
summarized as follows:

e Notes omitted: is the percentage of notes not detected by the system
and present in the ground truth (percentage of deletions).

e Notes omitted + added: is the sum of above two measures.

e Right detected notes: is the percentage of notes detected by the system
and present in the ground truth with "exact” one to one correspon-
dence.

e Note recognition error > 1 semitone: is the percentage of notes de-
tected by the system ans present in the ground truth with one to one
correspondence, but with a pitch error higher than 1 semitone.

5.1.1 Experiment set up

We applied the aforementioned accuracy measures were tested on three
different transcriptions obtained at three different stages of the pitch profile
segmentation process: a first transcription obtained from the raw pitch
profile (not filtered), a second transcription obtained using the adaptative
energy threshold filter (only), and a third transcription obtained from using
the adaptative energy filter and the rule based filter. We were also interested
in testing our scheme and compare it against the approach proposed by
Mcnab et al. (1996) (implemented in Essentia library (Bogdanov et al.,
2013)) and the transcription approach by Mauch et al. (2015). Therefore,
we obtained a midi transcription of the same melodies using our approach
and the two aforementioned methods, to later calculate the same accuracy
measures with respect the ground truth.

5.1.2 Results

Detailed results of the evaluation made on each transcription stage are pro-
vided in Table 5.1. In general, improvement on all the accuracy measures
proposed is observed, specially at the note addition/omission indexes.
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Not filtered AET filter AET + RB Filter
notes omitted 5.54% 5.90% 9.58%
notes added 86.70% 26.49% 7.85%
notes omitted + added 92.24% 32.39% 17.43%
right detected notes 35.50% 74.99% 84.40%
note recognition error > 1 semitone 231 % 1.43% 1.10 %

Table 5.1: Results obtained by comparing extracted and corrected melodies using
at different filtering stages. AET and RB are used as an acronyms for adaptative
energy threshold and rule based, respectively.

McNab Tony AET + RB Filter

notes omitted 5.54%  5.90% 9.58%
notes added 86.70%  26.49% 7.85%
notes omitted 4 added 92.24%  32.39% 17.43%
right detected notes 35.50% 74.99% 84.40%
note recognition error > 1 semitone 2.31 % 1.43% 1.10 %

Table 5.2: Accuracy measures comparison among transcription systems.

In Table 5.2 we compare the accuracy measures obtained using the approach
by Mcnab et al. (1996) and our adaptative energy threshold approach with
heuristic rules. From the table it can be seen an improvement in perfor-
mance for all the accuracy measures. This might be due to the effect of
the use of the addaptative threshold, which improves the onset and offset
detection of the note events with the same pitch occurring consecutively at
small time intervals.

These results are good indicators that pitch profile segmentation for melody
transcription is improved by applying the two filtering strategies (adaptative
energy threshold filter and rule based filter based on musical heuristics).
However, it is important to notice that transcription accuracy is sensitive
to the parameters set for energy filtering, as well as to the values defined
for minimum (allowed) note/gap lengths.

5.2 Optimization of melodic extraction from
polyphonic signals for jazz guitar
In this section we will deepen on the methodology and the experiments

performed to optimize the parameters of the melodia algorithm Salamon and
Gémez (2012). Two experiments were proposed to test our methodology
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for optimizing melody extraction. A first experiment was carried out using
22 simultaneous audio midi recordings. Ground truth was generated from
the recorded MIDI data. A second experiment set-up was created in which
the data was extracted from a jazz guitar teaching series book in which
the melody is recorded separately from the accompaniment track. In this
case ground truth was build from automatic extraction of the pitch contour
of the melody track, using YIN algorithm (De Cheveigné and Kawahara,
2002) and performing manual correction afterwards.

5.2.1 First Experiment Set-up

The train data set consisted of 22 of the 27 jazz standard pieces, recorded
by a professional guitarist, as mentioned in Section 3.1. The recording
conditions were the ones mentioned in Section 3.1.2: The indications given
to the musician were that melodies should be played monophonic, with no
chord strums, or double notes. Only the main melody of the tune was
recorded. Non repeated sections of the recorded melody were selected as
shown in Table 3.1. The melodies were recorded over commercial backing
tracks recordings (Kennedy and Kernfeld, 2002), in which bass and piano
parts are recorded separately on each stereo channel. This made possible
to create two different instrument settings:

e Trio setting: drums, bass and guitar.

e Quartet setting: piano, drums, bass and guitar (quartet).

Following a similar approach as Salamon and Gémez (2012), we created
three audio mixes for each piece and for each setting (trio and quartet), in
which the melody is at three different sound levels (—6dB, 0dB and +6dB)
with respect to the overall sound level of the backing track. Eighteen of
the tracks were used as train data to optimize parameters. The optimized
parameters were tested in the four songs that were left aside for testing.

Building a ground truth

All the melodies were simultaneously recorded in both audio and MIDI,
using a commercial guitar to MIDI converter (Limited, 2012). Because the
accuracy of the device is not perfect, manual correction of the audio to
MIDI converted melody was performed after each recording. Each MIDI
event (note) has information of pitch (midi number), onset (in seconds) and



5.2. OPTIMIZATION OF MELODIC EXTRACTION FROM POLYPHONIC
SIGNALS FOR JAZZ GUITAR 65

duration (in seconds). Using this information and a hop size of 46.4 ms
(as used by the melody extractor algorithm) it was possible to obtain the
ground truth pitch contour of the melody frame by frame.

5.2.2 Second Experiment Set-up

In a second experiment, the data set consisted of four standard jazz tunes
obtained from a jazz guitar teaching series book (Marshall, 2000), in which
melody is recorded separately from the accompaniment track. This set was
chosen to test our optimization strategy in a more real context in which
common effects such as reverb can make melody extraction more difficult.
We set up three different mixes with different sound levels of the melody,
as performed in experiment number one (Section 5.2.1). For each mix we
used a ”leave one out” approach in which tree of the songs were used to
optimize the parameters, and a forth was used for testing. This process was
repeated iteratively four times.

Building a ground truth

In this case, the pitch contour of the melody was obtained from the melody
track using Yin algorithm (De Cheveigné and Kawahara, 2002). We set the
frame resolution for extraction of the algorithm to 46.4ms to be consistent
with the frame resolution of melodia algorithm. Typical errors such as oc-
tave shifts and/or missing pitches, were corrected manually (by a trained
musician) by comparing the obtained pitch contour against the melody sig-
nal spectrum.

5.2.3 Implementation: Genetic Algorithm

After defining an initial point, a range for each parameter and a fitness
function, as explained in section 3.3.2, the genetic algorithm parameters
were set with an initial population of a set of 20 individuals, i.e. vectors
with different parameter values combinations. The stopping criteria was set
to a maximum of 500 iterations, and a relative threshold change in fitness
function of 121075, Crossover factor was set to 0.8 and mutation factor was
set to 0.02, which are typical settings for these values.

5.2.4 Results

For the first experiment (18 songs) the results for the training set is pre-
sented in Table 5.3. For each instrument setting (Trio and Quartet) we
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Trio Quartet
Optimization:  Before After Before After
Mix level Acc (%) Acc (%) Acc (%) Acc (%)

0dB 54.25 73.16 46.43 73.49
-6 dB 41.93 55.44 46.34 54.62
6 dB 79.75 82.80 81.15 82.54

Table 5.3: Accuracy after and before optimization for the training set for first
experiment, at different mixing levels, and for each of instrument settings (Trio
and Quartet).

Trio Quartet
Optimization:  Before After Before After
Mix level Acc (%)  Acc (%) Acc (%) Acc (%)

0 dB 52.29 72.58 59.92 73.16
-6 dB 43.10 53.06 46.95 55.45
6 dB 81.52 82.80 74.08 81.37

Table 5.4: Accuracy after and before optimization for the test set for first
experiment, at different mixing levels, and for each of instrument settings (Trio
and Quartet).

apply the optimization methodology on the three different mixing levels.
The accuracy was calculated summing all the frames of all the analysed
tunes following the Equation 3.4, presented in section 3.3.2, for each instru-
ment setting, before an after optimization.

In Table 5.5 we present the accuracy obtained in the test set. The melodies
of the test songs were extracted using the default parameters, and the op-
timized ones. The results are shown for both of the instrument settings at
the three different mixing levels, before and after optimization.

For the second experiment, a data-set of four songs extracted from a jazz
guitar education series book (Marshall, 2000). We optimized the parameters
using a leave one out approach. In Table 5.5 we present, the mean accuracies
before and after optimization for the 4 folds.

From the tables it can be seen that the performance of the algorithm in-
creases as the sound level of the mix increases, however the improvement on
-6dB scenario is less than in +6dB scenario. This is expected since, as it is
the case for human listeners, the melody is harder to be differentiated from
the backing track if the sound level is too low. In Table 5.5, the results are
similar as the ones described above, but the accuracy is lower in general.
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Trio Quartet
Optimization:  Before After Before After
Mix level Ace (%)  Acc (%) Acc (%) Acc (%)

0dB 52.29 72.58 59.92 73.16
-6 dB 43.10 53.06 46.95 55.45
6 dB 81.52 82.80 74.08 81.37

Table 5.5: Mean accuracy after and before optimization for the leave one out
approach for second experiment, at different mixing levels, and for each of in-
strument settings (Trio and Quartet).

hw
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Figure 5.1: Learning curve of accuracy over number of iterations. Genaetic
algorithm converges after 250 iterations.

This is due to the fact that we are now testing on unseen data. However in
all the cases there is a considerable improvement of the performance using
optimized parameters compared to the default ones.

In Figure 5.1 the error against the number of iterations is plotted for the
quartet setting and an mix of +6dBs. In this figure it is possible to notice
how after approximately 250 iterations the algorithm finds a minimum.
Also, during the first iterations of the algorithm, it is possible to notice how
sensitive is the algorithm to the chosen parameters.

5.2.5 Discussion

The work presented in this section refers to a methodology to solve an spe-
cific problem, rather than a system to be used to general problems (e.g as
a melodic extraction plug-in). This same methodology could be applied to
other performance settings for other instruments and other music styles.
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However, the need of an annotated data set will be necessary in any case.
For example if we aim to improve melody extraction for a certain perfor-
mance settings (e.g. melody played by saxophone), an annotated data set
with the ground truth would be necessary to optimize the parameters of the
algorithm for that specific type of musical setting.

Choosing genetic algorithms against other search methods (e.g. Grid Search)
was done mainly for efficiency reasons, as they provide an smarter strategy
when searching over a six dimensional space. If we think of a method like
grid search on a six dimensional space and we set 10 values per parameter,
we will need to try 106 combinations to extract the melody. This is more
computational expensive, compared to the method proposed: In Figure 3.1
the best fitness value is plotted against the number of iterations for one of
the scenarios. A minimum is found after 250 iterations, with a population of
20 individuals per iteration, resulting in 5000 computations. In all scenarios
the minimum was found in a similar number of iterations.

5.3 Human score to performance sequence
matching for ornament detection.

Because there are not clear rules of how embellishments are performed,
there is no ground truth for establishing a correspondence between perfor-
mance and score notes. In this section we describe a methodology to obtain
a ground truth for melodic correspondence matching between performances
and scores, based on the agreement between the trained musicians’ align-
ment. An experiment set-up was created in which we asked 5 musicians to
align each score to its respective performance. Later an agreement analysis
was performed between the alignments realized by the musicians. A mea-
sure to evaluate the automatic alignment against the alignment performed
by the musicians was created based on the agreement analysis using penal-
ization factors based on high, medium, and low agreement. Based on the
accuracies obtained we estimate how close behaves the automatic alignment
with respect to the human alignment.

5.3.1 Experiment set up.

In this experiment, we asked trained musicians to manually match per-
formed notes with the corresponding parent score notes for each piece. Each
of the pieces was annotated by 5 different musicians. Musicians were asked
to associate performance notes to score notes by drawing lines in a piano
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Figure 5.2: GUI for manual aligment of score and performance. Top sequence
represents the score, botom represents the performance. Users were asked to link
score and performance notes using vertical lines

roll representation in a GUI developed for this purpose. Figure 5.3 shows
an example annotation of one user for a piece fragment. The upper note
sequence corresponds to the score, and lower note sequence corresponds to
the performance. Vertical/diagonal lines were marked by the musician to
indicate performance to parent score note correspondence.

5.3.2 Agreement analysis

There are some cases in which the correspondence is ambiguous. Therefore,
different musicians may choose to match different performance notes with
one score note. In those cases we weighted each couple of linked notes based
on how many musicians chose to link that particular pair of notes. Link
occurrence count was stored in a matrix defined as follows:

corresp;,j(u)

Hagree[iaj] = Z (51)

u=U

Where i, j corresponds to the note indexes of score and performance se-
quences, respectively, U is the total number of annotators (five), and corresp
is a binary function that returns 1 or 0 if the user u gave a positive or neg-
ative correspondence to a score-performance pair [i, j] (i.e. if the pair was
linked or not). This, the highest rating was given to a pair of notes which
were matched by all five musicians (i.e. highagreement = 5), whereas the
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Figure 5.3: Agreement analysis example for All of me. Horizontal and vertical
axes correspond to score and performance note sequences respectively. Red dots
indicate regions of high agreement, whereas clouds of blue, yelow and green dots
indicate low agreement

lowest rating was given to notes for which no musician match the pair (i.e.
lowagreement = 0). In Figure 5.3, we present a graph of the link occurrence
count matrix of one of the pieces in the dataset. In the figure is possible
to identify sections in the piece with high agreement and sections with low
agreement (ambiguity).

5.3.3 Results

We quantify the overall performance of our approach, based on the back-
track path output of the algorithm and the agreement analysis of human
annotations. Accuracy was calculated by penalizing it when the algorithm
output when it diverges from the human agreement. The evaluation criteria
was defined as follows:

e High Agreement: if the algorithm matches a pair of notes with the
highest agreement of the annotated dataset (i.e. all experts agree with
the algorithm output), then the penalization is zero. On the contrary
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if the predicted matching pair of notes was not annotated by any of
the experts then the penalty is 1.

e Medium Agreement: if the automatically matched pair of notes has
medium agreement (i.e. 4/5 of the experts agree and 1/5 do not)
the penalization is proportional to the agreement between a certain
expert among the rest of the experts.

e Low Agreement: if the automatically matched pair of notes has medium
agreement (i.e. 3/5 of the experts agree and 2/4 do not) the penaliza-
tion is proportional to the agreement between a certain expert among
the rest of the experts.

This means that the algorithm makes a mistake which is similar to the one
a human expert would make. The overall accuracy is then calculated as
follows:

Z?;l Z?:l Pfﬁai])

accuracy =
Y < size(HDTW)

where Hpwr is the alignment matrix obtained using the dynamic time
warping approach (as described in Section 4.2.1), and Pyi,j is a penal-
ization factor calculated by comparing (cell by cell) the alignment matrix
obtained with the algorithm (Hprw ) and the one obtained with the agree-
ment analysis (Hggree), as follows:
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Low
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if H[4, jlagree = 5 and Hprw i, j] =1
if H[i, jlagree = 5 and Hprw i, j] =0
if H[4, jlagree = 0 and Hprw i, j] =1
if H[i, j]agree = 0 and Hprw i, j] = 0
L
(if H[i, jlagree = 4 and Hprwli, j] = 1
if H1i, jlagree = 4 and Hppw[i, j] = 0
if H[i, jlagree = 1 and Hprw i, j] =1
if H[i, jlagree = 1 and Hprw i, j] =0
if H[i, jlagree = 3 and Hprw i, j] =1
if H[i, jlagree = 3 and Hprw i, j] =0
if H[i, j]agree = 2 and Hppwli, j] = 1

if Hi, jlagree = 2 and Hppwli, j] = 0

\

The mean accuracy obtained for the 27 recordings set is of 80,76%, with a
standard deviation of 0.10 (10%). We also quantify the agreement among
experts. Each expert alignment was compared to the alignment made by
the other 4 experts on each song, following the same evaluation criteria.
In Figure 5.4 the calculated accuracy of the algorithm for each individual
piece is depicted in the first bar of each song. The second bar represents the
average agreement among experts. Results may indicate that the behaviour
of the automatic alignment is comparable with the annotations made by

humans.
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CHAPTER 6

Expressive Performance
Modeling

In this chapter we present the experiments performed using our approach
for expressive music performance modelling using machine learning. After
each note was characterized by its musical context description (see Chapter
4), several machine learning techniques are explored to achieve two concrete
aims. On one hand, from the recordings made by a professional guitarist
(monophonic-monotimbral) we induce regression models for timing, onset
and dynamics (i.e. note duration and energy) transformations, and classifi-
cation models for ornamentation, to later select the most suitable ornament
for predicted ornamented notes based on note context similarity, and fi-
nally render an expressive performance applying the performance actions
predictions obtained with the induced models. On the other hand, from
the commercial audio recordings of a well known guitarist (monophonic-
multitimbral) we apply automatic knowledge discovery techniques to the
resulting features to learn expressive performance rule models. We analyse
the relative importance of the considered features, quantitatively evaluate
the accuracy of the induced models, and discuss some of the learnt expressive
performance rules. We report on the performance for the ornamentation,
duration, onset, and energy models and rule learners . Similarities between
the induced expressive rules and the rules reported in the literature are
discussed. The rules’ performer specificity /generality is assessed by apply-
ing the induced rules to performances of the same pieces performed by two
other professional jazz guitar players.
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6.1 Models from monophonic-monotimbral
recordings

The aim of this section is twofold: 1) to train computational models of
music expression using recordings of a professional guitar jazz player, and
2) synthesize expressive ornamented performances from inexpressive scores.
In order to train a jazz guitar ornamentation model, we recorded a set of 27
jazz standards performed by a professional jazz guitarist (Section 3.1.2. We
extracted symbolic features from the scores using information of each note
, information of the neighbor notes, and information related to the musical
context (Section 4.1. The performed pieces were automatically transcribed
by applying note segmentation based on pitch and energy information (Sec-
tion 3.3). After performing score to performance alignment, using Dynamic
Time Warping (Section 4.2.1) , we calculated performance actions by mea-
suring the deviations between performed notes and their respective parent
notes in the score (Section 4.2.2. For model evaluation the data set was
split using a leave-one-piece-out approach in which each piece was in turn
used as test set, using the remaining pieces as training set. The expres-
sive actions considered in this section were duration ratio, onset deviation,
energy deviation and ornamentation transformations. Concatenative syn-
thesis was used to synthesize new ornamented jazz melodies using adapted
notes/ornaments samples from the segmented audio recordings.

6.1.1 Expressive performance modeling

Several machine learning algorithms (i.e. Artificial Neural Networks (ANN),
Decision Trees (DT), Support Vector Machines (SVM), and k-Nearest Neigh-
bor (k-NN)) were applied to predict the ornaments introduced by the mu-
sician when performing a musical piece. The accuracy of the resulting clas-
sifiers was compared with the baseline classifier, i.e. the classifier which
always selects the most common class. Timing, onset and energy perfor-
mance actions were modeled by applying several regression machine learning
methods (i.e. Artificial Neural Networks, Regression Trees (RT), Support
Vector Machines, and k-Nearest Neighbor).

Based on their accuracy we chose the best performance model and feature
set to predict the different performance actions. Each piece (used as test
set) was in turn predicted based on the models obtained with the remaining
pieces (used as training set) and synthesized using a concatenative synthesis
approach.



6.1. MODELS FROM MONOPHONIC-MONOTIMBRAL RECORDINGS 77

Algorithm comparison

In this study we compared four classification algorithms for ornament pre-
diction, and four regression algorithms for duration ratio, onset deviation,
and energy ratio. We used the implementation of the machine learning algo-
rithms provided by the WEKA library (Hall et al., 2009). We applied, k-NN
with £k = 1, SVM with linear kernel, ANN consisting of a fully-connected
multi-layer neural network with one hidden layer, and DT/RT with post
pruning.

A paired T-test with a significance value of 0.05 was performed for each
algorithm for the ornamentation classification task, over all the data set
with 10 runs of 10-fold cross validation scheme. Experiments results are
presented in Table 6.3 and will be commented in Section 7.2.4.

Feature selection

Both filter and wrapper feature selection methods were applied. Filter meth-
ods use a proxy measure (e.g. information gain) to score features, whereas
wrappers make use of predictive models to score feature subsets. Features
were filtered and ranked by information gain values, and a wrapper with
greedy search and decision trees accuracy evaluation was used to select opti-
mal feature subsets. We used the implementation of these methods provided
by WEKA library (Hall et al., 2009). Selected features are shown in Table
6.1, and will be commented in Section 7.2.4.

Learning curves on the number of features, as well as on the number of
instances were obtained to measure the learning rate of each of the algo-
rithms. The selection of the model was based on the evaluation obtained
with these performance measures.

Synthesis

Predicted pieces were created in both MIDI and audio formats. A con-
catenative synthesis approach was used to generate the audio pieces. This
process consists of linking note audio samples from real performances to
render a synthesis of a musical piece. The use of this approach was pos-
sible, as we have monophonic performance audio data in which onset and
offset information was extracted based on energy and pitch information as
described in Section 3.3.1. Therefore, it is possible to segment the audio sig-
nal into individual notes, and furthermore, obtain complete audio segments
of ornaments.
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Figure 6.1: Concatenative Synthesis Approach.

Similarly to the evaluation of the different machine learning algorithms, for
synthesis we have followed a leave-one-piece-out scheme in which on each
fold, the notes of one piece were used as test set, whereas the notes of the
remaining 26 songs were used as training set.

Note concatenation

The note concatenation process is divided into three different stages as
depicted in Figure 6.1.

e Sample retrieval: For each note predicted as ornamented, the k-NN

algorithm, using Fuclidean distance similarity function based on note
description, was applied to find the most suitable ornamentation in
the database (see Section 4.2.3). This was done searching the most
suitable ornament in the songs in the training set (Section 6.1.1).

Sample transformation: For each note classified as ornamented, trans-
formations in duration, onset, energy and pitch (in the case of orna-
ments) were performed based on the deviations stored in the database,
as seen in Figures 6.2a and 6.2b. For audio sample transformation we
used the time and pitch scaling approaches by Serra (1997). Notes
classified as not ornamented were simply transformed as predicted by
the duration, onset and energy models.

Sample concatenation: Retrieved samples were concatenated based
on final onset and duration information after transformation. The
tempo of the score being predicted (in BPM), was imposed to all the
retrieved notes.
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(a) Piano roll of a score (All of me). Gray and white boxes represent notes predicted
as not ornamented and ornamented, respectively. The transformation for note 3 is
explained in Figures b and c.
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(b) Piano roll of the most similar note found. Top sequence represents the score in
which the closest note (note 23) was found (Satin Doll). Bottom sequence represents

the performance of the score. Vertical lines show note correspondence between score
and performance.
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(c) Piano roll of a partial predicted score (All of me). Note number 3 of Figure (a)
has been replaced by notes 27, 28, and 29 of Figure (b), obtaining notes 4, 5, and 6.

Figure 6.2: Sample retrieval and conatenation example.
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Info-Gain + Ranker Wrapper + Greedy

Duration (sec) Duration beat
Duration (beat) Prev. duration (sec)
Phrase Tempo

Prev. duration (sec)  Phrase

Onset in bar Velocity

Metrical strength Onset beat

Prev. duration (beat) Duration (sec)
Next duration (beat)  Prev. duration (beat)

Next duration (sec) Next duration (beat)
Narmour 1 Narmour 3
Tempo Metrical strength
Chord type Onset in Bar
Prev. interval Narmour 1
Next interval Prev. interval
Narmour 2 Narmour 2
Narmour 3 Is chord note
Is chord note Onset sec
Mode Key
keyMode Chord root
Next duration (sec)
Pitch
Note to key
Note to chord
Measure
Next interval
Chroma
Chord type

Table 6.1: Features selected using Filter and the Wrapper (with J48 classifier)
methods.

6.1.2 Results
Feature selection

The most relevant features found using the two selection methods described
in Section 6.1.1 are shown in Table 6.1. The average correctly classified in-
stances percentage (C.C.1.%) obtained using the features selected by the
information gain filtering and the greedy search (decision trees) wrapper
methods were 78.12% and 78.60%, respectively (F-measure of 0.857 and
0.866, respectively). Given that both measures are similar, i.e., not signifi-
cantly different, the smallest subset was chosen.
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Figure 6.3: Accuracies on increasing the number of attributes.

In Figure 6.3, accuracy on increasing the number of features based on the
information gain ranking (explained in Section 6.1.1) are presented, for each
of the algorithms used (SVM, ANN, DT). From the curves it can be seen
that the subset with the first 3 features contains sufficient information,
as additional features do not add significant accuracy improvement. SVM
exhibits better accuracy on the cross validation scheme, and less over-fitting
based on the difference between cross validation (CV) and train set (TS)
accuracy curves.

Quantitative evaluation

Algorithm comparison results

For the (ornament) classification problem we compared each of the algo-
rithms (SVM, DT, ANN and k-NN) with the baseline classifier (i.e. the
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Dataset Baseline  k-NN DT SVM ANN

(CCI%) (CCI%) (CCI%) (CCI%) (CCI%)
Ornament 72.74 70.58 78.68 oo  T7.64 oo  76.60 oo
o, e statistically significant improvement or degradation against Baseline
classifier.

o, * statistically significant improvement or degradation against Instance
base learner.

Table 6.2: Correctly Classified Instances (CCI%) comparison with Paired-T test
for classification task.

Dataset k-NN Reg. Trees  reg. SVM ANN
PCC R?* PCC R? PCC R? PCC R?
Dur. rat. 020 004 025 006 0.17 003 0.19 0.04
Enr. rat. 0.19 0.04 037 014 038 0.14 037 0.14
Omnset dev. 041 0.17 051 026 043 0.18 0.44 0.19
mean 0.25 0.08 038 015 033 012 033 0.12

Table 6.3: Pearson Correlation Coefficient (PCC) and Explained Variance (R?)
for the regression task.

majority class classifier) following the procedure explained in Section 6.1.1.
From Table 6.2 it can be seen that all the algorithms present a statisti-
cally significant improvement, except k-NN. Given the accuracy results, we
apply the ornamentation prediction model induced by the DT algorithm
to determine whether a note is to be ornamented or not. We discarded
the use of k-NN for this task due to its low accuracy, which led to larger
mis-classifications of ornamented and not ornamented notes.

For the regression problems (duration, onset and energy prediction) we
applied regression trees, SVM, neural networks, and k-NN, and obtained
the correlation coefficient values shown in Table 6.3. Onset deviation has
the highest correlation coefficient, close to 0.5.

For ornamentation classification using k-NN we explored several values for
k (1 <k <10). However, all of the explored values for k resulted in inferior
classification accuracies when compared with decision trees and SVM. As
in the case of k = 1, both the decision trees and SVM classifiers resulted in
statistically significant higher accuraccies (based on T-test) when compared
with the classifiers for 2 < k < 10.
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Figure 6.4: Accuracies on increasing the number of instances.

Learning Curves

The learning curves of accuracy improvement, for both cross validation and
training sets, over the number of instances are shown in (Figure 6.4). The
learning curves were used to measure the learning rate and estimate the
level of overfitting. Data subsets of different sizes (in steps of 100 randomly
selected instances) were considered and evaluated using 10-fold cross vali-
dation. In general, for the three models, it can be seen that the accuracy
on CV tends to have no significant improvement above 600 instances.

Overfitting can be correlated to the difference between accuracy in CV and
TS, in which a high difference means higher levels of overfitting. In this
sense, in Figure 6.4 (c), SVM shows a high tendency for overfitting, but
seems to slowly improve it over the number of instances. On the other hand,
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in Figure 6.4 (a) and (b), ANN and DT seem to improve overfiting between
700 and 1100 instances. This could mean that adding more instances may
improve slightly the accuracy on both CV and TS for the three models, and
may slightly improve overfitting for SVM, but this may not be the case for
ANN and DT.

Obtained pieces

Figure 6.5 shows a MIDI piano roll of an example piece performed by a pro-
fessional musician and the predicted performance obtained by the system,
using a decision trees classifier. It can be noticed how the predicted piano
roll follows a similar melodic structure as the one performed by the musi-
cian. For instance, for the score notes predicted correctly as ornamented
(true positives), notes 1, 10, and 34 in Figure 6.5(a) (top sequence), the
system finds ornaments of similar duration, offset and number of notes as
the musician’s performance. Also, score notes 3 and 9 of Figure 6.5(b) (false
positives), are ornamented similarly as score notes 18 and 26 (Figure 6.5(a))
which are in a similar melodic context.

Duration and energy ratio curves

Duration and energy deviation ratio measured in the musician performance
and predicted by the system for one example piece (All of me) are compared
in Figure 6.6(a) and 6.6(b), respectively. We obtained similar results for the
other pieces in the data set. Similarity between the contour of the curves
indicate that the deviations predicted by the system are coherent with the
ones performed by the musician.

Musical Samples

Musical examples of the automatically generated ornamented pieces can be
found at the Online Supplement. The rendered audio of the Yesterdays
music piece generated by the system (as test piece) has been included in
this site.

6.1.3 Evaluation

Perceptual tests to evaluate our approach on how the generated pieces are
perceived by listeners presents a significant complication, because of vari-
ability in perception, as individual responses may be subjected to personal
expectations (Poli et al., 2014). Moreover, ranking tests might be bias by
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Figure 6.5: Musician vs. predicted performance. Top and bottom sequences
represents score and performance piano roll respectively. Vertical lines indicate
score to performance note corresponcence. Gray and white boxes represent notes
predicted as not ornamented and ornamented, respectively.
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(b) Energy ratio: performed vs. predicted.

Figure 6.6: Performed vs. predicted duration and energy ratio example for All
of Me. Gray and black lines represent performed and predicted ratios, respecively,
for each note in the score.

the quality of the synthesis (which is out of the scope of this dissertation).
Therefore, we followed a similar approach as Grachten (2006) to evaluate the
performances generated by the system by computing the alignment distance
between the system and the target performance. According to Grachten,
the cost function must reflect the human perception of similarity between
performances. Therefore, the cost function was redefined to include a weight
vector for each cost distance component (i.e. pitch, duration, onset, orna-
ment onset, and ornament offset) between score and performance. Given
that a similarity ground truth was previously built based on agreement
among human annotators (see Section 5.3), we optimized the weights of the
new cost function to achieve the closest alignment as to the one obtained
with the human annotations with highest agreement. Thus, the weights
obtained might reflect the relevance of each distance component based on
human perception.
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Distance cost function redefinition

Alignment distance was previously computed using the cost function defined
in Section 4.2.1 (see Equations 4.1 to 6.2). The weight vector for each
distance component was defined as follows:

weigth(n) = [wpa W(s, Wonsy Wph—ons» wph—pfs] (6.1)

where wy, Wqs, Wons, Wph—ons, and wpp_prs are weighting factors for each
distance component (previously defined for pitch (p(i)), duration (ds(i)),
onset (ons(i)), ornament onset (phons(i), and ornament offset (phofs(i))),
respectively. Thus, Equation 6.2 for cost calculation using the Fuclidean
distance is redefined as follows:

5

cost(i,j) = Z ((es(n)i — ep(n);) = (weight(n)))? (6.2)

n=1

Optimization of individuals weights for the cost function

For optimization we followed a similar approach as the one described in
Section 3.3.2, using genetic algorithms for weights optimization. In this case
the fitness function corresponds to the accuracy calculated for automatic
alignment (se Section5.3.2) as measured in Equations 5.2 and 5.3. The
initial population was setted as follows:

weightHighbound = [L 17 17 17 1]7
weightlnitialpoint == [05, 05, 05, 05],
weightLowbound = [07 07 07 07 O]a

according to the defined five dimensional vector of Equation 6.1. The opti-
mization was run with an initial population set to 20 individuals, a stopping
criteria of 500 iterations and relative threshold change in fitness function
of 12107, Again crossover and mutation factors were set to 0.8 and 0.02,
respectively.

Distance evaluation results

Each piece was rendered using the predictions of each of the generated mod-
els. Later we calculate the similarity of each of the obtained pieces with
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Figure 6.7:

respect a target performance, i.e. the performance recorded by the musi-
cian. Similarity was calculated by, firstly, calculating the alignment of each
rendered piece and the corresponding target performance using the opti-
mized cost function described in previous section. Normalized values for
similarity are presented in Figure 6.7, where 1 accounts for maximum sim-
ilarity and zero accounts for minimum similarity. From the figure it can be
seen how k-NN algorithm similarity is lower than other algorithms. How-
ever, similarity obtained by all algorithms show a similar tendency over the
pieces, which might indicate that performance of the models is dependent
on the musical pieces it self.

6.1.4 Discussion

In this section we have presented a machine learning approach for expressive
performance (ornament, duration, onset and energy) prediction and synthe-
sis in jazz guitar music. We used a data set of 27 recordings performed by
a professional jazz guitarist, and extracted a set of descriptors from the
music scores and a symbolic representation from the audio recordings. In
order to map performed notes to parent score notes we have automatically
aligned performance to score data. Based on this alignment we obtained
performance actions, calculated as deviations of the performance from the
score. We created an ornaments database including the information of the
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ornamented notes performed by the musician. We have compared four learn-
ing algorithms to create models for ornamentation, based on performance
measures, using a significance Paired T-test. Feature selection techniques
were employed to select the best feature subset for ornament modeling. For
synthesis purposes, instance based learning was used to retrieve the most
suitable ornament from the ornamentation data base. A concatenative syn-
thesis approach was used to automatically generate expressive performances
of new pieces (i.e. pieces not in the training set).

6.2 Models from monophonic-multitimbral

In Chapter 7 we have reviewed several studies in computational modelling
of expressive music performance. However, little attention was paid to the
perspicuity of the extracted models in terms of its musical interpretation.
Furthermore, the accuracy of the generated models is usually reported based
mainly on accuracy measures. In this section we induce expressive perfor-
mance rules by applying machine learning methods. In particular, we apply
a propositional rule learner algorithm to obtain expressive performance rules
from data extracted from commercial audio jazz recordings. We are inter-
ested in rules characterizing variations in timing (i.e. onset and duration
deviation), energy (i.e. loudness) and ornamentation (i.e. insertion and
deletion of an albitrary number of melody notes) in jazz guitar music. We
align the scores to the corresponding audios and extract descriptors and
EPA from the resulting alignment. We apply feature selection and machine
learning algorithms to induce rule models for energy, onset, duration and
ornamentation. Finally, we evaluate the accuracy of each of the models
obtained, and discuss the obtained rules from a musicological perspective.

6.2.1 Materials

As mentioned in Section 3.1, the music material considered in this section
consists of 16 commercial recordings of Grant Green (see Table 3.2), and
their corresponding commercially available music scores (The real book).
Music scores were obtained from The real book, a compilation of jazz pieces
in the form of lead sheets. The collected music scores contain melody and
harmony (i.e. chord progressions) information for the music material inves-
tigated.
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6.2.2 Feature extraction: nominal descriptors

In Section 6.2.2 we explained how music scores were characterized by au-
tomatically extracting descriptors for each note. Because the aim of this
Section is to obtain interpretable rules from a musical perspective, we select
a set of features which were discretized as follows:

e Duration nominal. Duration in seconds was discretized into classes
very large, large, nominal, short, and very short. We defined duration

thresholds in seconds, as follows:

verylarge
large
durationpem(n) = < nominal

short

veryshort

if ds,, > 1.6s.

if 1.6s. < ds, < 1s.

if 1s. < ds, < 0.25s. (6.3)
if 0.25s. < ds,, < 0.125s.

if ds,, < 0.125s.

e Chroma nominal. The chroma value of each note was labelled as
pitch classes (e.g. C, D#, Eb), according to the definition given in
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Section3.2.1, as follows:

C#/Db

D+#/Eb

chromanem(n) =

F#/Gb

Gt/ Ab

A#/Bb

if chy, =0
ifch, =1
if ch, =2
if ch,, = 3
ifch, =4
if ch, =5
if ch,, = 6 (64)
ifch, =7
if ch, = 8
ifch, =9
if chy, = 10
if chy, = 11

e Previous and next interval direction. Positive and negative intervals
were labelled as descending and ascending intervals respectively, ac-
cording with the calculation of previous interval (pint,) and next in-
terval (nint,) given in Table 4.3, whereas intervals equal to zero were

labelled as unison:

ascending

pTevlntdir (n) — uUNISon

descending

if pint, > 0
if pint,, =0 (6.5)

if 1s. < pint, <0
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ascending if nint, > 0

4 _ ) unison if nint, =0
nextIntg,-(n) = (6.6)

descending if nint, <0

e Previous and next interval size. Interval sizes were categorized into
small and large based on the Implication-Realization model of Nar-
mour (Narmour, 1992), which assumes that intervals smaller/larger
than 6 semitones are perceived to be small/large. In this implemen-
tation we define intervals equal to 6 semitones to be large (as imple-
mented by Grachten (2006)).

large if pint, <6

revint,om(n) = 6.7
P (n) small if pint, < 6 (6.7)

large it nint,, <6

nextInt n) = 6.8
nom (1) small if nint,, <0 (6.8)

e Tempo nominal. Tempo indications in jazz often are refereed based
on the performance style (e.g. Bebop, Swing) or on the sub-genre of
the piece (e.g. medium, medium up swing, up tempo swing). How-
ever ambiguity on the BPM range for which this categorization cor-
responds exists among performers. In this section the discretization
of the tempo of the piece was performed based on the performers’
preferred tempo clusters found by Geoffrey L. Collier (1994). In the
study, the tempo of several jazz recordings datasets are analysed and
preferred tempo clusters of performers are found at 92, 117, 160, and
220 bpm. The study is based on the assumption that tempos in the
range of 4 tempo cluster (attractor) may gravitate toward it. Based
on this, we defined four different bpm ranges around each cluster and
labelled it as follows.
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(Up — tempo if t,, > 180
Medium if 180 > ¢, > 139
femponom () =N \foderate 6139 > £, > 105 (6.9)
Slow if 105 > t,,

\

e Harmonic analysis (chord function). Chord definitions were discretized
based on the chord simplification rules by Hedges et al. (2014), in
which the notation of the chord type (e.g.Ebmaj7) is simplified ac-
cording to the harmonic function of the chords. In this study we
adapted the rules according to make them consistent according to the
chord degree definitions given in Table 3.4, as follows:

dom if [4,10] € chord degrees

maj if [4] € chord degrees A [10] ¢ chord degrees

min if [3,7] € chord degrees

dim if ([0,3,6,] V[0, 3,6,9]) = chord degrees

chord pune(n) = { 449 if [#5, 4] C cht,,

hdim if [0, 3, 6, 10] = chord degrees

dom if [10] € chord degrees A [sus] C chty,

maj if [10] ¢ chord degrees A [sus] C chty,

NC if no chord

(6.10)

6.2.3 Expressive performance actions characterizaton

Score notes aligned to exactly one performance note were labeled as non
ornamented, whereas score notes aligned to non or several performance notes
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were labeled as ornamented. Performance actions deviations in duration,
onset, and energy were discretized into classes, according to the Equations
6.11, 6.12, and deviation in energy was discretized according to Equation
6.13, as follows:

lengthen if db; — db; > 1/16
durationge,(i,j) = § none if —1/16 <db; —db; <1/16 (6.11)

shorten if db; — db; < —1/16

delay if ob; — ob; > 1/16
onsetgey(i,7) = § none if —1/16 < ob; —ob; < 1/16 (6.12)

advance if ob; — ob; < —1/16

piano if v, — mean(v) < —0.4 * stdev(v)
energydes(i,J) = § none if —0.4 % stdev < v, — mean(v) < 0.4 * stdev
forte if v, — mean(v) > 0.4 * stdev

(6.13)

where ¢ and j refers to the index of the score and performance notes, re-
spectively. In Equations 6.11 and 6.12

Duration was discretized into lengthen, shorten, and none; onset into ad-
vance, delay, and none; and energy into piano, forte and none. A note is
considered to belong to class lengthen/shorten, if its performed duration is
one semiquaver longer/shorter (or more/less) than its duration according to
the score. Otherwise, it belongs to class none. Classes advance, delay, and
none are defined analogously. A note is considered to be in class forte/piano
if it is played louder/softer than the mean energy of the piece plus/minus
40% of its standard deviation and in class none otherwise.
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6.2.4 Expressive performance modelling
Learning task.

We explored machine learning techniques to induce models for predicting
the different expressive performance actions defined above. Concretely, our
objective is to induce four classification models M1, M2, M3 and M4 for
ornamentation, note duration, note onset, and note energy, respectively.
The models are of the following form:

M1(FeatureSet) — Ornamentation

M2(FeatureSet) — Duration
M3(FeatureSet) — Onset
MA4(FeatureSet) — Energy

Where M1, M2, M3 and M4 are functions which take as input the set of fea-
tures (FeatureSet) shown in Table 2, and Ornamentation, Duration, Onset
and Energy are the set of classes defined above for the corresponding per-
formance actions.

Learning algorithm

We applied Ripper (Cohen, 1995), a rule learner algorithm. This algorithm
is an optimized version of the sequential covering technique used to generate
rules (e.g. PRISM algorithm by Cendrowska (1987)). The main motivation
for applying the Ripper algorithm was that Ripper examines the classes in
ascending order, starting with the minority class, which is very convenient
in our problem set, as the classes for ornamentation are unbalanced. i.e. the
percentage of ornamented notes is considerably lower than the percentage
of non ornamented ones. Thus, the covering algorithm approach will try to
isolate first the minority class (i.e. the class of ornamented notes)

Ripper evaluates the quality of rules using heuristic measures based on
coverage (i.e. how much data they cover) and accuracy (i.e. how many
mistakes they make). Once a rule is obtained the instances covered by the
rule are removed from the data set, and the process iterates to generate
a new rule, until no more data set is left. We used the WEKA library
implementation of RIPPER (Hall et al., 2009).

Feature Selection

Automatic feature selection is a computational technique for identifying
the most relevant features for a particular predictions task. We applied
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EPA  Wrapper Filter
- Duration (secs) duration (beat)
g Next duration (beats) Next duration (sec)
% Phrase Next interval
= Next Interval Tessitura
© Next duration (secs)  Narmour;
Duration (secs) Duration (beats)
.S Narmour Duration (secs)
® Duration (beats) Chroma
5 Met. Strenght Is chord note
Phrase
Tempo Pitch
. Duration (secs) Narmour
z Next duration (secs)  Tempo
o Prev. duration (secs)
Chord Type
Pitch Pitch
2 Tempo Tempo
g Narmour Phrase
Lg key

Metrical Strength

Table 6.4: Most relevant features for each performance action obtained by both
filter and wrapper feature selection

feature selection to identify the features which are most relevant for pre-
dicting the different expressive performance actions studied. We considered
feature selection methods based both on the information gain provided by
each individual feature (filter feature selection), and based on the accu-
racy of RIPPER applied to different feature subsets for predicting the EPA
(wrapper feature selection). In both cases (i.e. filter and wrapper feature
selection) we identified the best 5 features for each of the EPA.

6.2.5 Results
Feature selection

The most relevant feature subsets for each performance action and each
feature selection method are shown in Table 6.4.
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Dataset Baseline Ripper
Ornament 66.67 69.38

Duration 45.03 57.10
Onset 36.69 60.53
Energy 39.11 52.48

o = statistically significant improvement
(p<0.05) w.r.t baseline classifier

Table 6.5: Accuracy of models trained with all extracted features

Dataset Baseline Ripper

Ornament (filter) 66.67  71.03 o
Ornament (wrapper) 66.67  70.47 o
Duration (filter) 45.03  57.000
Duration (wraper) 45.03 58.36 o
Onset (filter) 36.69 51.75 0
Onset (wraper) 36.69  53.340
Energy (filter) 39.11 39.44

Energy (wrapper) 39.11 42.81 o

o = statistically significant improvement
(p<0.05) w.r.t baseline classifier

Table 6.6: Accuracy of models trained with selected features

Model Evaluation

Table 6.5 and Table 6.6 show the accuracy of each performance action model
trained with information of all features considered, and trained with selected
features only. All results are obtaining using test data not used for training
(i.e. using 10 runs of 10-fold cross validation), A statistical significance test
(paired T-test with significance value of 0.05) against the majority class
classifier was performed to validate the obtained results.

Expressive performance rules

The set of induced expressive performance rules for each performance action
is shown bellow. A rule is expressed as

IF (condition) THEN (action)

where action computes a deviation of a parameter EPA.
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e Ornamentation rules

. IF duration of note is very long THEN ornament note

. IF  duration of note is long AND note is the final note in a

phrase THEN ornament note

. IF duration of note is long AND next note’s duration is long

THEN ornament note

. IF note is the 3rd note in an IP (Narmour) structure AND pre-

vious note’s duration is not short AND next note’s duration is
short THEN ornament note

e Duration rules

1.

IF note is the final note of a phrase AND the note appears in an
IP (Narmour) structure THEN shorten note

. IF note duration is longer than a dotted half note AND tempo is

Medium (90-160 BPM) THEN shorten note

. IF note duration is less than an eighth note AND note is in a

very strong metrical position THEN lengthen note.

o Onset deviation rules

1.

IF the note duration is short AND piece is up-tempo (> 180
BPM) THEN advance note.

. IF the duration of the previous note is not short nor long AND

the note’s metrical strength is very strong THEN advance note.

. IF the duration of the previous note is short AND piece is up-

tempo (> 180 BPM) THEN advance note.

. IF the tempo is medium (90-160 BPM) AND the note is played

within a tonic chord AND the next note’s duration is not short
nor long THEN delay note.

e Energy deviation rules

1.

IF the interval with next note is ascending AND the note pitch
not high (lower than B3) THEN play piano.

. IF the interval with next note is descending AND the note pitch

is very high (higher than C5) THEN play forte.

. IF the note is an eight note AND note is the initial note of a

phrase THEN play forte
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Performance Grant Green Musician 1 Musician 2
Action # Rules TP FP TP FP TP FP
Orn Yes 52.4% 13.3% 60.6% 30.6% 52.5% 22.3%
" No 4 86.7% 47.6% 69.4% 39.4% T11.T% 47.5%
DR Lengthen 3 50% 9.4% 32%  127%  27%  16.5%
Shorten 51% 2.4%  45.2%  5.2% 31% 8.4%
ER Forte 3 34.7% 11.7% 17.1% 185% 24.4% 18.9%
Piano 21.3% 58% 13.6% 6.9% 15.9% 10.4%
oD Advance 4 38.6% 6.6% 1.9% 10.8% 7.1% 4.8%
Delay 49.8% 104% 28.8% 36.5% 29.9% 25.2%

Table 6.7: Model performance measured as true/false positives on train data
(Grant Green) and test data (Musicians 1 and 2). Abbreviations Orn., DR, ER, and
OD correspond to the studied performance actions ornamentation, duration ratio,
energy ratio, and onset deviation. Similarly TP and FP accounts for true/false
positives.

6.2.6 Evaluation

In order to assess the degree of performer-specificity of the rules induced
from the Grant Green’s recordings we have, similarly to Widmer (2003),
applied the induced rules to performances of the same pieces performed
by two other professional jazz guitar players. The two guitarists recorded
the pieces while playing along with prerecorded accompaniment backing
tracks, similarly to the Grant Green recording setting. We processed the
recordings following the same methodology explained in Section 2.2. In
Table 6.7 we summarize the coverage of the rules measured in terms of the
true positive (TP) and false positive (TN) rate, which is the proportion of
correctly and incorrectly identified positives, respectively. As seen in the
first two rows of the table, no significant degradation on the rule coverage
was found for ornamentation prediction, which might be a good indicator
for generality the ornamentation rules. However, rules for duration, energy,
and onset show a higher level of degradation, which may indicate that these
performance actions vary among Grant Green and the other two musicians.
Nevertheless, in order to fully validate this results a much larger number of
performances should be taken into consideration.

6.2.7 Discussion

As can be seen from the feature selection analysis (Table 6.4), the most
influential descriptors for predicting ornamentation in the investigated per-
formance recordings are duration in beats and Duration in seconds. This
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may be explained by the fact that it is easier and more natural to orna-
ment longer notes as opposed to shorter ones. In addition to allowing more
time to plan the particular ornamentation when playing long notes, it is
technically simpler to replace a long note with a sequence of notes than it
is for shorter notes. Duration in seconds represents the absolute duration
of a note, while duration in beats represents the relative duration of a note
measured in beats. In general, notes with same duration in beats values
may vary considerable depending on the tempo of the piece to which they
belong. Intuitively, it is the duration of a note in seconds which is the most
important feature according to what we have discussed above, so the fact
that one feature selection method (e.g.filter feature selection) ranked first
the duration in beats feature may indicate that the variation in tempo in
the pieces in our data-set is not too important to show this fact. Similarly,
next duration in beats and next duration in seconds have been found to be
very informative features by the feature selection algorithms. This may be
explained as in the case of the duration in beats and duration in seconds
features: notes that are followed by long notes are more likely to be or-
namented since it is possible to introduce extra notes by using part of the
duration of the following note.

Next interval and Nar Next interval are other informative features for orna-
mentation prediction as detected by the feature selection algorithms. The
importance of Next interval may be interpreted by the fact that notes that
are followed by notes forming an interval of more than 1 or 2 semitones may
be ornamented by inserting one or more approximation notes. Phrase has
been also identified as informative. This confirms our intuition that notes in
phrase boundaries are more likely to be ornamented. Nar is related to the
degree of expectation of a note’s pitch, so the fact that this feature is among
the five most informative features for predicting ornamentation may be due
that musicians tend ornament highly expected notes in order to add vari-
ation and surprise to the performed a melody. This is interesting because
according to Narmour’s theory this expectations are innate in humans so
it may be the case that the choice to ornament expected /unexpected notes
can be the results of an intuitive and unconscious process.

As expected, the most informative features for predicting ornamentation
include both temporal (e.g. Duration in seconds and Duration in beats)
and melodic features (e.g. Next interval and Nar). They involve not only
properties of the note considered, but also properties that refer to its mu-
sical context, i.e. its neighbouring notes (e.g. Next duration, Next interval,
Phrase and Nar). Similar results were obtained for the other expressive
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performance actions (i.e. duration, onset and energy variations): Temporal
features of the note considered and its context (e.g. Duration in seconds,
Duration in beats, Next duration and Prev duration) are found to be in-
formative, as well as melodic features (e.g. (e.g. Pitch, Next interval and
Nar). Interestingly, Pitch was found to be the most informative feature for
energy prediction. This may be explained by the tendency of the performer
to play higher pitch notes softer than lower pitch ones. Metrical strength
was found to be informative for duration variation prediction which seems
intuitive since the note’s duration is often used to emphasize the metrical
strength or weakness of notes in a melody.

The difference between the results obtained (see Table 6.5) and the accuracy
of a baseline classifier, i.e. a classifier guessing at random, indicates that
the audio recordings contain sufficient information to distinguish among the
different classes defined for the 4 performance actions studied, and that the
machine learning method applied is capable of learning the performance
patterns that distinguish these classes. It is worth noting that almost every
model produced significantly better than random classification accuracies.
This supports our statement about the feasibility of training classifiers for
the data reported. However, note that this does not necessary imply that
it is feasible to train classifiers for arbitrary recordings or performer.

The results also indicate that certain tasks proved to be more difficult to dis-
criminate than others: The ornamentation model was found to be the most
accurate, 78.8% trained with all features and 70.1% trained after feature se-
lection (wrapper method). The onset model accuracy was found to be 60.5%
when trained with all features and 63% when trained with selected features
(wrapper method). The least accurate models and thus the most difficult
to predict were the models for duration (51% and 56.1% for all features and
selected features training, respectively) and energy variation (52.4% and
52.2% for all features and selected features training, respectively).

The accuracy of all models except the energy variation model improved after
performing feature selection. In all cases wrapper feature selection resulted
in better accuracies than filter feature selection. The improvement found
with feature selection is marginal in most cases. However, this shows that it
suffices to take into account a small subset of features (i.e. 5 or less features)
in order to be able to predict with similar accuracy the performance actions
investigated. The selected features contain indeed sufficient information to
distinguish among the different classes defined for the 4 performance actions
studied.
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The expressive performance models induced consist of sets of conjunctive
propositional rules which define a classifier for the performance actions,
i.e. ornamentation, and duration, onset and energy deviation. These rules
capture general patterns for classifying the musician’s expressive decisions
during performance.

The first ornamentation rule (i.e. (IF duration of note is very long THEN
ornament note) specifies that if a note’s duration is very long (i.e. longer
than 1.6 seconds) then it is predicted as ornamented with a probability of
0.79. The precondition of this rule is fulfilled by 111 notes in the data set
from which 88 are actually ornamented and 23 are not. This rule makes
musical sense since long notes are likely to be ornamented. The second
ornamentation rule (Rule O2) is similar in spirit, it specifies that if a note’s
duration is long (i.e. longer than 1 second) and this note is the ending note
of a musical phrase, then it is predicted as ornamented with a probability of
0.74. Thus, this rule relaxes the constraint on the duration of the note but
requires that the note appears at the end of a phrase in order to classify it as
ornamented. The rule captures the intuition that phrase boundary notes (in
this case notes at the ending of a phrase) are more likely to be ornamented.
Rule O3 and Rule O4 add conditions about the duration of neighbouring
notes (i.e. next and previous notes) in order to classify notes as ornamented.
The intuition of these rules is that notes may be ornamented by using part
of the duration of the neighbouring notes.

The rules about duration and onset transformations involve conditions that
refer to note duration, metrical strength, and tempo. Long notes in medium
tempo pieces are likely to be shortened (Rule D2), while short notes appear-
ing in strong metrical positions are lengthened (Rule D3). The first onset
rule (Rule T1) states that short notes in up-tempo pieces likely to be ad-
vanced, while Rule T2 constrains the first rule stating to advance notes
that occur within a sequence of short notes. On the other hand, a note
is delayed if it belongs to a medium tempo (i.e. 90-160 BPM) piece and
it is played within a tonic chord and succeeded by a medium length note
(Rule T4). Finally, energy deviation rules contain conditions that refers to
the direction of the interval with respect to the next note. Rule E1 states
that notes occurring in a low pitch register and in an ascending interval are
played softer, whereas notes coming from higher pitch registers and in a
descending intervals are played forte (Rule E2). Rule E3 states that a note
occurring at the beginning of a phrase is accentuated by playing it forte.

The duration and energy rules induced in this section were compared with
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the rules obtained by Widmer (2003, 2002) (applying machine learning tech-
niques to a data set of 13 performances of Mozart piano sonatas) as well
as with the rules obtained by Friberg et al. (2006) (using an analysis by
synthesis approach). Duration rule D3 is consistent with Widmer’s TL2
rule ” Lengthen a note if it is followed by a substantially longer note”, which
may imply that the note in consideration is short. However it contradicts
its complementary condition TL2a (” Lengthen a note if it is followed by
a longer note and if it is in a metrically weak position”). This might be
due to the fact that note accentuation in jazz differ considerably from note
accentuation in a classical music context, e.g. in case of swinging quavers,
the first quaver (stronger metrical position) is usually lengthen. This how-
ever, is consistent with Friberg’s inégales rule (" Introduce long-short pat-
terns for equal note values (swing)”). Duration rule D2 can be compared
with Widmer’s rule TS2 (” Shorten a note in fast pieces if the duration ratio
between previous note and current note is larger than 2:1, the current note
is at most a sixzteen note, and it is followed by a longer note). Similarly,
duration rule D2 and D3 are consistent with Firdberg’s Duration-contrast
(7 Shorten relatively short notes and lengthen relatively long notes” ), as dot-
ted half notes can be considered relatively long notes, and eight notes can
be considered as relatively short notes. The rules take as preconditions the
duration of the note and the tempo of the piece. Energy rules E1 and E2
are consistent with Friberg’s high-loud (” Increase sound level in proportion
to pitch height”) and phrase-arch (Create arch-like tempo and sound level
changes over phrases”) rules, as notes in an ascending context might be
played softer and vice-versa. However energy rule E3 contradicts phrase-
arch rule. Energy rule E2 shares the interval condition of the next note of
Widmer’s DL2 rule (" Stress a note by playing it louder if it forms the apex
of an up-down melodic contour and is preceded by an upward leap larger
than a minor third”). In addition, Widmer’s rules for attenuating dynam-
ics of notes (play softer) and our energy rules share the fact that the rule
preconditions include intervals with respect to neighbour notes.

All in all there are similarities between the rules induced in this section
and the rules reported in the literature. However, at the same time, there
are differences and even opposite findings, fact that is expected given the
different data sets considered in the studies. While there seems to be simi-
larities in expressive patterns in both classical and jazz music, clearly, both
traditions have their own peculiarities and thus it is expected to find differ-
ent /contradictory rules.

It has to be noted that the obtained expressive rules are specific to the



104 EXPRESSIVE PERFORMANCE MODELING

studied guitarist and in particular to the considered recordings. Thus, the
rules are by no means general rules of expressive performance in jazz gui-
tar. Nevertheless, the induced rules are of interest since Grant Green is a
musician recognized for his expressive performance style of jazz guitar.



CHAPTER 7

Applications

In this chapter we present two main applications of our machine learnign
approach for expressive music performance modelling. Firstly, and applica-
tion consisting of a real-time systems for music neuro-feedback that allow
users to control expressive parameters of a musical piece based on its de-
tected emotional state. The system is later utilized in a pilot clinical study
to treat depression in elderly people by combining music therapy, music
neuro-feedbak, and emotional state recognition based on EEG. Secondly,
an approach for ensemble expressive music performance analysis of a jazz
quartet recording (guitar, bass, drums and piano), in which we make use of
our modelling framework to extract models from the guitar and extend our
methodology to extract and analyse performance data from the piano. We
applied machine learning techniques to train models for each performance
action, considering both solo and ensemble descriptors. The models’ ac-
curacy improvement when ensemble information was considered, might be
explained by the interaction between musicians.

7.1 Emotional modelling for neuro-feedback

Active music listening has emerged as a study field that aims to enable
listeners to interactively control music. Most of active music listening sys-
tems aim to control music aspects such as playback, equalization, browsing,
and retrieval, but few of them aim to control expressive aspects of music to
convey emotions. In this section our aim is to allow listeners to control ex-
pressive parameters in music performances using their perceived emotional
state, as detected from their brain activity. We obtain electroencephalogram

105
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Figure 7.1: Theoretical frame work for expressive music control based on EEG
arousal - valence detection.

(EEG) data using a low-cost EEG device and then map this information into
a coordinate in the emotional arousal-valence plane. On the other hand, we
train expressive performance models using linear regression for four different
moods: happy, sad, angry and tender. We then interpolate these models
in order to to obtain intermediate expressive models for other emotions.
We apply the resulting models to generate performances with emotional
content. Such implementation allows the generation of performances with
mood transitions in real-time, by manipulating a cursor over the arousal
valence plane. Thus the resulting coordinate obtained from the brain ac-
tivity is used to apply expressive transformations to music performances in
real time by mapping the output arousal valence coordinate obtained from
the brain activity into the input coordinate of the expressive performance
modelling system.

7.1.1 Brain activity to mood estimation

Our proposed approach to real-time EEG- based emotional expressive per-
formance control is depicted in Figure 7.1. First, we detect EEG activity
using the Emotiv Epoch headset (Researchers, 2012) . We base the emo-
tion detection on the approach by Ramirez and Vamvakousis (2012). We
measure the EEG signal using electrodes AF3, AFy, F3, and Fjy, which
are located on the pre-frontal cortex. We use these electrodes because it
has been found that the pre-frontal lobe regulates emotion and deals with
conscious experience.

We model emotion using the arousal- valence plane, a two dimensional emo-
tion model which proposes that affective states arise from two neurological
systems: arousal related to activation and deactivation, and valence related
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to pleasure and displeasure. We are interested in characterizing four dif-
ferent emotions: happiness, anger, relaxation, and sadness. As depicted
in Figure 7.1, each studied emotion belongs to a different quadrant in the
arousal valence plane: happiness is characterized by high arousal and high
valence, anger by high arousal and low valence, relaxation by low arousal
and high valence, and sadness by low arousal and low valence.

Signal reprocessing

Alpha and Beta waves are the most often used frequency bands for emotion
detection. Alpha waves are dominant in relaxed awake states of mind.
Conversely Beta waves are used as an indicator of excited mind states.
Thus, the first step in the signal preprocessing is to use a band pass filter
in order to split up the signal in order to get the frequencies of interest,
which are in the range of 8-12 Hz for alpha waves, and 12-30 Hz for beta
waves. After filtering the signal we calculate the power of each alpha and
beta bands using the logarithmic power representation proposed by Aspiras
and Asari (2011). The power of each frequency band is computed by:

N
LPy =1+ log( 1= > (ra)?) (7.1)

n=1

where is the magnitude of the frequency band f (alpha or beta), and N is
the number of samples inside a certain window. Hence, we are computing
the mean of the power of a group of N samples in a window and then
compressing it by calculating the logarithm of the summation.

Arousal and valence calculation

After the band power calculation, the arousal value is computed from the
beta/alpha ratio. Valence is calculated based on the asymmetric frontal
activity hypothesis, where left frontal inactivation is linked to a negative
emotion, whereas right frontal inactivation may be associated to positive
emotions. Thus arousal and valence are calculated as follows:

brs + bra
ap3 + apq

arousal =

valence = 2F4 _ 913 (7.3)

brs  brs
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The values obtained for arousal and valence are calculated using sliding
windows over the signal in order to smooth the signal. It is worth noting
that there are not absolute levels for the maximum and the minimum values
for both arousal and valence, as these values may differ from subject to
subject, and also vary over time for the same subject. To overcome this
problem we computed the mean of the last five seconds of a 20 second
window and normalize the values by the maximum and minimum of these
20 second window. This way we obtain values that range between minus
one and one. We consider a window size of 4 second with a hop size of 1
second.

Arrousal-Valence Accuracy Experiments

Two types of experiments were performed: a first one listening while sit-
ting down and motionless and the other listening while playing (improvis-
ing) with a musical instrument. In both the aim was to evaluate whether
the intended expression of the synthesized music corresponds to the emo-
tional state of the user as characterized by his/her EEG signal. In both
experiments subjects sat down in a comfortable chair facing two speakers.
Subjects were asked to change their emotional state (from relaxed/sad to
aroused/happy and vice versa). Each trial lasted 30 seconds with 10 seconds
between trials. In experiment one the valence is set to a fixed value and
the user tries to control the performance only by changing the arousal level.
In experiment 2 the expression of the performance is dynamically changed
between two extreme values (happy and sad), while the user is improvising
playing a musical instrument. A 2-class classification task is performed for
both experiments.

Two classifiers, Linear Discriminant Analysis and Support Vector Machines,
are evaluated to classify the intended emotions, using 10 cross-fold valida-
tion. Initial results are obtained using the LDA and SVM implementations
of the OpenVibe library (OpenVibe, 2010). Our aim was to quantify in
which degree a classifier was able to separate the two intended emotions
from the arousal/valence recorded data. For high-versus-low arousal clas-
sification we obtained a 77.23% for active listening without playing, and
65.86% for active listening when playing an instrument (improvising) along
the synthesized expressive track, using SVM with radial basis kernel func-
tion. Results were obtained using 10-fold cross validation.

In Figure 7.2 is depicted one trial of the first experiment. The EEG signal
of a subject and the calculated arousal are shown for the first, second, third



7.1. EMOTIONAL MODELLING FOR NEURO-FEEDBACK 109

EEG signal
4500 T -

4400

4300

4200

4100

4000 un s leddous Jeddourn, ehn Loendl |
0 0.5 1 1.5 2 2.5 3 35 4 4.5
samples (st 128Hz EEG sample rate) %107

Monnalized Arousal and Class Awerage

0.5+ -

My
05F —— 'Lv [ J\V-g"ﬂ.,“""\ . d(\ LS| l[\m

Arouzal Momalized
=3

LAY lP
Rl

threshold

I AW
1 e | A -wL n I H-Lp\lhl"[b'ifﬂ A L end L
0 [ 1 1.5 2 2.5 35 4 4.5
samples (st 128Hz EEG sample rale) 107

Figure 7.2: A subject’s EEG signal (top) and calculated arousal (bottom). Ver-
tical lines delimit each sub-trial for high arousal (1st and 4th sub-trials) and low
arousal (2nd and 3rd sub-trials). Horizontal line represents the average of each
class segment.

and fourth sub-trials. First and fourth sub-trials corresponds to time slots
in which the user was asked to change his emotional state to high arousal.
Second and third sub-trials correspond to low arousal, accordingly. In the
figure, the average of the high arousal level sub-trials sections are noticeably
higher than low-level ones.

7.1.2 Expressive performance system for real-time emotion
modelling

In this section we explain the expressive performance system for real-time
emotion modelling. The general framework of the modelling/synthesis sys-
tem is depicted in Figure 7.3. Four moods were considered for this study
(happy, sad, angry, tender) each corresponding to a quadrant in the arousal-
valence plane. On the other hand three performance actions were taken in
to consideration (duration, energy and articulation. A total of twelve Linear
regression models were trained (three performance actions per four moods)
using recordings of musical pieces performed by a professional guitarist in
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Figure 7.3: Theoretical frame work for expressive music control based on EEG
arousal - valence detection.

each of the four moods. The input of the system is a control coordinate
on the arousal valence plane. The coefficients of the linear models are in-
terpolated along the arousal valence plane to obtain the prediction of the
performance actions, which serve as input for mood modelling-synthesis
system.

Data acquisition

The first step was to obtain a musicXML representation of the score of a
set of pieces, which was performed as explained in Section 3.2.1.

On the other hand, we obtained recordings of performances of the pieces
in four different emotions by 4 professional guitarists. The guitarists were
instructed to play the same tune on each of the moods: happy, sad, angry
and tender. Each performer could freely choose to play the tempo, energy,
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and articulation variations they considered better express each mood. Gui-
tarists were also instructed not to ornament notes and not to perform pitch
variations (i.e. play only the notes of the score). The recordings were ob-
tained without metronome, to permit tempo variations in the performances.
The audio signal of the recordings was processed as explained in Section 3.3,
to obtain a machine readable representation of the performances.

Expressive performance actions

Expressive performance actions were defined in Section 4.2 as the strategies
and changes introduced in a performance, which are not specified by the
score. In this section we will focus on three specific performance actions:

e Duration ratio: Ratio between the score duration and the performed
duration (see Table 4.3)

e Energy ratio: Ratio between loudness of a note and average loudness
(see Table 4.3

e Articulation gap: Measures the level of staccato - legato, i.e. time
interval (in seconds) between the offset of a note and the onset of the
next note.

Performance actions were calculated for each note in the score-performance.
Notice that for this application the note to performance alignment was one
to one note correspondence, as performer were instructed not to include
ornamentations.

Feature Extraction

Each note in the training data is annotated with a number of attributes rep-
resenting both properties of the note itself (Intra-note features) and some
aspects of the context in which the note appears (Inter-note features). In-
formation about the note includes note duration, energy, pitch, while infor-
mation about its context includes relative pitch and duration of neighbour
notes, as well as, melodic and harmonic analysis. A complete list of the
features and its description can be found on Table 4.2 .

Each note in the training data is annotated with a number of attributes as
described in Section 4.1 representing nominal properties of the note as well
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as local and global contextual information of the note (see Table 4.2). Nom-
inal descriptors were discretized so that each categorical value was encoded
as a binary attribute.

Machine learning modelling

Linear regression models were trained to predict each performance action for
each of the four moods considered. A total of twelve models were generated,
expressed as a linear product between the set of features and trained weights
with the following form:

e Models for happy mood

hO(77)npR = Z0O(hpR)0 + T10(hDR)1 + -+ + TnO(hDR)N (7.4)
hO(27)nER = ToO(hER)O + T10(hER)L + - + TnOhER)N (7.5)

hO(Zn)nac = Tobnacyp + T10nacy + - + Tubracyn (7.6)

e Models for sad mood

h8(77.))spr = 00 (spRr)0 + T10(sDR)1 + - + Tnb(sDR)R (7.7)
ho(z7)ser = 200 (spr)0 + T10(ER)L + - + Tnb(sER)N (7.8)

ho(z7n)sac = 08(sac)0 + T10(saq)1 + - + Tnb(sac)n (7.9)
e Models for angry mood
ho(77)apr = T00@DR)0 + T10@DR)1 + -+ + TnbwDR)n (7.10)

hO(77.)aer = 200(aER)0 + T10(0ER)L T+ - + TnO(ER (7.11)

ho(2n)aac = 200@ac)o + T10@ac)1 + - + Tnbaacyn (7.12)
e Models for tender mood
ho(zn)ipr = 200pR)0 + 1004DR)1 + - + Tub(tDR)N (7.13)

ho(zn)ier = 200(iER)0 + T10tER)L + -+ + TnbER)N (7.14)

hO(77.)tac = 200 acyo + T10ac)1 + - + b agyn (7.15)
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Where hf are functions which take as input the set of features z,, (extracted
from the scores) of the note n being played, and 6 are the set of weights
trained to predict each of the performance actions defined above. Each
group of models were trained with the corresponding happy, sad, angry,
and tender performances, respectively. Sub-indices conventions h,s,a, and ¢
are abbreviations for happy, sad, angry, and tender, respectively. Similarly
DR, ER, and AR are abreviations for duration ratio, energy ratio, and
articulation gap (e.g. sub-index hDR refers to Articulaton Ratio at happy
mood context).

Feature selection was performed using wrapper method with ”best first” as
a search method and with forward and backward elimination. Ten cross-
fold validation was used for testing and evaluating the models. For each
model we obtained a list of features that were most frequently selected by
the feature selection method over the ten folds. For interpolation purposes
we selected the same features for the four emotion models for each perfor-
mance action, selecting the average of the most relevant features for the
four models.

Interpolation

A coordinate c(v;, a;) define 4 weighting areas on the arousal plane as de-
picted in Figure 7.4. The four emotions considered are defined at each
quadrant of the arousal valence space. Given the coordinate, the amount
of each of the four emotions present conforming the emotional state are
defined by a weight proportional to the areas of the square which is formed
in the opposite corner. Thus, the emotional state defined by the coordinate
will consist of a proportion of each of the four emotion as follows:

ho,(vi, a;) = A1+A213A3+A4 (7.16)
ag, (v, a;) = A1+A2ﬁ4A3+A4 (7.17)
sop(vi, a;) = A1~|—A21il|—1A3+A4 (7.18)
toy (v, a;) = A1+A2ﬁ2A3+A4 (7.19)

The percentage of each emotion calculated is applied to each the pre-trained
model (duration, energy, and articulation ratios) as follows:
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Figure 7.4: Emotion weighting areas defined by a coordinate c(v;,a;) on the
arousal-valence plane. Each emotion is proportional to the area formed on the

opposite corner of the emotion defined at each quadrant.

Mpr (27, vi, a;) = ho(vi, a;) * hO(27,)nDR
+ so;(vi, a;) * hO(27)spR
+ ao (v, a;) * hO(20)aDR
+ toy(vi, a;) * hO(27,)tpR

MEgg(Zn, vi, ay = hy (vi,a;) x hO(Z7)nDR
+ sg;(vi, a;) * hO(Zy,)spR
+ agy, (1)2‘, ai) * h@(l‘_ﬁ)aDR

—

+ toy (vi, a;) * hO(23,)iDR

MaG (%7, vi, ay = ho(vi, a;) * hO(23)nDR
+ 89 (vi, a;) * hO(27,)spR
+ ag(vi, a;) * h0(2)apR
+ to (vi, a;) * hO(27)ipR

(7.20)

(7.21)

(7.22)

Where Mpr, Mggr, and M ¢ is are functions that take as input the set of
features 27;, of the n* note being played, and a coordinate (v;,a;) on the
arousal valence plane to apply the transformations in duration, energy and

articulation to the note.
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Angry Tender Happy Sad
DR  0.75 0.05 0.54  0.45
AG  0.34 0.37 0.42  0.43
ER  0.27 0.28 037 024

Table 7.1: Correlation Coeficients for Duration Ratio (DR), Articulation Gap
(AG) and Energy Ratio (ER), with linear regression.

Synthesis

The linear regression modelling system was implemented in pure data. Note
information and its descriptors were saved on a text file. Each time a note
is read from the text file, the performance actions are calculated using the
model and the interpolated coefficients based on a control position on a
arousal valence plane. Thus, duration, energy (velocity midi control) and
articulation (duration 4 time delay to the next note) are calculated.

Evaluation

In Table 7.1 the correlation coefficients for each model are shown. Variabil-
ity in accuracy indicate that some combinations of performance actions-
moods are more difficult to be captured by the models (e.g. duration ratio
for tender mood and angry mood). Results are not surprising though, given
the fact that human performers might have clearer performance strategies to
convey certain moods better than others. For example, during the recording
sessions, performers manifest to have a clearer idea towards an angry/sad
performance, rather than tender/happy one.

7.1.3 Applications in neuro-feedback

The potential benefits of combining music therapy, neurofeedback and emo-
tion detection for treating depression in elderly people was studied and
reported in Ramirez et al. (2015), by introducing our music neurofeedback
approach, allowing users to manipulate expressive performance parameters
in music performances using their emotional state. A pilot clinical exper-
iment was conducted at a residential home for the elderly in Barcelona,
involving 10 participants (9 female, and 1 male, mean = 84, SD = 5.8),
consisting of 10 sessions (2 per week) of 15 minutes each. On each session
the participant was asked to sit comfortable in a chair facing two speakers,
close their eyes and not to move (to avoid artefacts on the EEG signal).
Wile listening to pre-selected music pieces, participants were encouraged to
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increase the loudness and the tempo of the pieces, which were mapped to the
calculated levels of arousal and valence obtained from their brain activity.
As explained in Section 7.1.1, arousal was computed as the ration between
beta to alpha activity in the frontal cortex, whereas valence was computed
as the relative frontal alpha activity of the right lobe compared to the left
lobe. The coordinate in the arousal valence plane, obtained from the user’s
EEG activity is mapped to the pre-trained expressive performance system
(Section 7.1.2) to apply the expressive transformations on the musical pieces
being played on real-time. Pre and post evaluation was performed using the
BDI (Beck Depression Inventory) test, which showed an average improve-
ment on the depression condition of the participants. Moreover, the EEG
data showed an statistically significant increase of the overall valence level
at the end of the treatment compared to the starting level. This result may
be interpreted as a decrease of the alpha activity in the frontal lobe which
may indicate (as well) an improvement in the depression condition.

7.2 Performance interaction analysis in jazz

In previous sections, several examples of systems for expressive music per-
formance have been presented. In Chapter 2 we have presented a review of
CSEMPs in which there was a clear prevalence of systems targeted for clas-
sical piano music (see Table 2.1). Some exceptions included studies in jazz
saxophone music (Ramirez and Hazan (2006), Arcos et al. (1998), Grachten
(2006). Throughout this dissertation we have investigated in computational
systems for music expressive performance in jazz guitar. In Section 2.2.6
we review some previous studies on ensemble performance which has been
conducted in classical context (e.g. Marchini (2014); Sundberg et al. (1989).
However, to our knowledge, few work has been done in the analysis of en-
semble expressive performance in jazz context. In this Section we present
an approach to study the interaction between performers on a jazz quartet
(guitar and piano). We extend our modelling approach for guitar to ex-
tract horizontal descriptors for melody and chords, i.e. characterize each
note from the melody as well as each chord from the scores. We will also
calculate vertical descriptors which combine information from both melody
and chords. Performance actions are calculated for guitar (melody) and
piano (chords) respectively. After, we train computational models to pre-
dict the measured performance actions for guitar and piano, and compare
the performance of the models between solo (considering only horizontal)
and ensemble (considering horizontal and vertical) descriptors. Interaction
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between musicians is measured based on the improvement when ensemble
information is considered.

This part of the research was done as part of the B. S. thesis by Bantula
(2015) under the supervision of the author of this dissertation. This work
was reported in Bantula et al. (2016).

7.2.1 Data acquisition

The music material used on this experiment consisted on the recording
of seven jazz standard pieces performed by a jazz quartet (electric guitar,
piano, electric bass, and drums) in a professional recording studio. The
audio was captured separately for each instrument. Piano MIDI data was
recorded simultaneously with audio from the standard MIDI out of the
keyboard. Guitar performance was acquired in monophonic-monotimbral
audio, as the guitarist was instructed to play the melodies of the pieces
with out including chords or multiple notes at a time. On the other hand
the pianist (as well as the other instruments) was instructed to accompany
the performance of the guitarist, following the same score (which included
chord information). For this study only guitar (melody) and piano (chords)
data was taken in consideration. The scores were obtained from the The
real book.

7.2.2 Data analysis

In this section we explain the data analysis for both guitar and piano, which
consisted on the extraction of descriptors from the score of the pieces to
obtain melodic information (performed by the guitar) and chord information
(performed by the piano), as well as the calculation of the performance
actions for both guitar and piano. Descriptors from the score were extracted
to characterize every chord and every note from its horizontal and vertical
contexts.

Score melodic data analysis

Melodic data analysis was performed following the methodology explained
in Chapter 4, which consisted on the characterization of each note by a set
of descriptors (see Section 4.1). In Figure 7.5 we illustrate an example of
a note characterization: note description includes information of the note
itself (reference note), information of its neighbour notes (horizontal context
of reference note) and harmonic information calculated from the chord in
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Figure 7.5: Excerpt of All Of Me: Horizontal and Vertical contexts for a reference
note

Reference chord .
Horizontal context of reference chord

Vertical context of reference chord

Figure 7.6: Excerpt of Autumn Leaves: horizontal and vertical contexts for the
reference chord F7

which the note occurs (vertical context of reference note). Reference and
horizontal descriptos were calculated according to the definition of nominal
and neighbour descriptors of Table 4.2, whereas vertical descriptors were
calculated as indicated in Table 7.6.

Score chord data analysis

A similar approach was used to perform the piano-chord data analysis.
Chord descriptors (see Figure 7.6) included information of the chord itself
(refence chord), information from the neighbour chords (horizontal context
of reference chord), and averaged information of the notes occurring within
the chord (vertical context of reference chord). Reference, horizontal, and
vertical chord descriptors are shown in Tables 7.2, 7.4 and 7.3, respectively.

Guitar performance analysis

For guitar performance analysis, we followed the same approach as explained
in Section 4.2, in which we first obtain a machine readable representation
from the audio of the performance, by applying automatic transcription
techniques. After, we aligned the performance to the score by applying
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descriptor | units computation range
id num | root — number [0,11]

{M7 m, +a77
type label type dim, half_dim}
tens label tenspn bas.ed on {++, +, -, - -}

musical criteria
C_dur_b beats C_durd [1,00)
on.b beats onb [1,00)

Table 7.2:

Individual descriptors for a reference chord (no context).

descriptor units computation range
onset_b beats min(onset,otes) [1,00)
max(onsetnotes)
dur_b beats +max(durnotes) [1,00)
—min(onset,otes)
meanPitch MIDI note mean(pitch ) [36,96]
(mP) p notes )
onset s seconds 60 * Grscll [1,00)
dur.s seconds 60 % [1,00)
half
chroma tones modi2(mP) [0,11]
measure num measure [1,00)
pre_dur_b beats pre_dur_b [1,00)
pre_dur_s seconds 60 x % [1,00)
nxt_dur_b beats nat_dur_b [1,00)
nxt_dur_s seconds 60 * %ZZJ’ [1,00)
. half
prev_int tonoes prevy,p — mP [1,00)
. half
next_int tones mP — next,,p [1,00)
half
note2key tones chroma — key [0,11]
note2chord half chroma — id [0,11]
tones
isChordN* label - {y.n}
« {strong,
mtr label mean(metpys(notes)) weak}
intHop* num mean(intervals) [0,96]
melody* num Fonotes -

Table 7.3: Chord melodic descriptors (vertical)
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descriptor | units computation range
tempo bpm tempo [1,300]
keyMode label keyMode {H.la‘]or’
minor }
key position in
mumKey | mum | P Cirele | (01
. half .
keyDistance tones id — numKey [0,11]
{strongest,
metP* label | metrical position strong,
weak,
weakest }
. {tonic,
harmonic
. . subdom,
function label analysis from
keyDistance dom,
y no_func}
. half .
next_root_int tones id — next;y [0,11]
. half ,
prev.rootint | = previg — id [0,11]

Table 7.4: Chord harmonic descriptors (horizontal)

dynamic time warping techniques (see Section 4.2.1), and calculated per-
formance actions as described in Table 4.3. Finally, we constructed a data
base with the notes description along with the calculated performance ac-
tions, as explained in Section 4.2.3. Notice that for this study only orna-
mentation was considered, and other performance actions were not taken
in consideration.

Piano performance analysis

We detected chords in the piano data by grouping notes played at the
same time using heuristic rules based on the work done by Traube and
Bernays (2012), who identify groups of consecutive notes which have near-
synchronous onsets. Our approach consisted of three rules: the first one
searched and grouped notes which were played at the same time. The sec-
ond one, merged chords with an inter onset difference < 100ms. Finally, the
third rule was designed to parse pedal notes (i.e. notes sustained through
several chord changes).

Alignment was performed to link the detected chords with the score chords



7.2. PERFORMANCE INTERACTION ANALYSIS IN JAZZ 121

on a beat level basis: onsets/offsets of each performed chord were converted
from seconds to beats (based on beat tracking information). Later, each
score chord was aligned with the performed chord (or group of chords).
Based on the alignment, performance actions for every score chord three
performance actions were calculated for piano performance:

e density, defined as low or high depending on the number of chords
used within a chord indicated in the score, as follows:

> chordsp
l =< 1/2
o ' dur(chordg) <1/
den(chordg) = (7.23)
, .. > chordsp
high f=——2>1/2
" ' dur(chordg) — /

where chordg is the corresponding chord on the score, ) chordsp
is the amount of performed chords for a chord on the score, and
dur(chordg) is the duration of the corresponding chord on the score

e weight, defined as low or high according to the total number of notes
which were utilized to perform a score chord, as follows:

.. Y. notesp

l =<4
o ' > chordsp <
wei(chordg) = (7.24)
. .. Y.notesp
high t=——
" ' > chordsp —

where, chordg is the corresponding chord on the score, ) notesp is
the total number of performed notes for a chord on the score, and
> chordsp is the amount of performed chords for a chord on the
score

e amplitude, defined as low or high if the distance in semitones from
the highest to the lowest performed note per chord in the score was
larger than 18 (an octave and a half), as follows.

low  if max(pitchpy) — min(pitchpy) < 18
amp(chordg) =

high  if max(pitchpn) — min(pitchpy) > 18
(7.25)
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where chordg is the corresponding chord on the score and pitchpy is
the vector of pitch of the performed notes (PN) for a chord on the
score.

Beat detection data

Recordings were performed without metronome, therefore, the tempo var-
ied during the performance and beat positions were not equidistant. Beat
tracking was performed over the audio mix using the approach by Zapata
et al. (2012) to obtain a beat grid to set the onset and duration in beats.
Later, the average tempo of each song was computed as,

60
tempo = round <mecm(diff(beats))> (7.26)

where beats is the vector of tracked beats.

7.2.3 Machine learning
Datasets

Machine Learning models were trained to predict the aforementioned per-
formance actions for both piano and guitar from the datasets of descriptors
of chords and notes obtained from the scores. Hence we constructed three
types of datasets, as shown in Figure 7.7. Training datasets combining
horizontal and vertical descriptors were created as follows:

Simple Datasets (D1): Horizontal score context. Contains individual
descriptors of the chords/notes.

Score Mixed Datasets (DD2): D1 plus vertical score context. Contains
merged descriptors of chords and notes.

Performance Mixed Datasets (D3): D1 plus vertical performance
context (extracted from the manual transcriptions of the performances).
Contained merged features of chords and notes. This data set aims to
measure the interaction among musicians.

Piano models were trained as follows:

f(Chord) — (Den, Wei, Amp) (7.27)
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vertical vertical
score performance
descriptors descriptors

individual +
horizontal
descriptors

Figure 7.7: Three different datasets depending on the included descriptors

D1 D2 D3
metP mtr metP
C_dur_b metP C_dur-b

function | C_dur-b intHop
type isChordN | isChordN
tens type function
metP tens type
tens

Table 7.5: Selected features for density

where f(chord) is a function that takes as input the C'hord chord horizontal
and/or vertical descriptors, and Den, Wei, Amp are the predicted density,
weight, and amplitude performance actions, respectively.

Similarly, guitar models were trained as follows.

f(Note) — (Emb) (7.28)

where f(note) is a function that takes as inputs a Note characterized by
the set of horizontal and/or vertical descriptors, and Emb is the predicted
embellishment.

Feature Selection

For every dataset, we evaluated the descriptors by their information gain.
Tables 7.2.3, 7.2.3, 7.2.3, and 7.2.3 show the best ranked descriptors for
density, weight, amplitude and embellishments, respectively.
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D1 D2 D3
tens tens tens
function | function function

C_dur_b type type
metP metP metP
isChordN | keyMode
keyMode | isChordN
mtr tens

Table 7.6: Selected features for weight

D1 D2 D3
numKey numKey numKey
function dur_s pre_dur_s

type duration_b | prev_int
tens pre_dur_b function

keyMode | nxt_dur_b type
metP isChordN mtr

function isChordN

mtr

tens
type keyMode
tens metP
keyMode
metP

Table 7.7: Selected features for amplitude

D1 D2 D3
phrase phrase phrase
dur_b dur_b dur_b
dur_s dur_s dur_s

pre_dur_b | pre_.dur_b

pre_dur_b
pre.durs | pre.dur-s | pre_dur_s
onset onset onset
tens tens
type type
function function

isChordN | isChordN
keyMode | keyMode
metP

Table 7.8: Selected features for embellishments, extracted from Table 4.2
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Algorithms

We applied decision trees, Support Vector Machine (SVM) with a linear
kernel and Neural Networks (NN) with one hidden layer. We used the
implementation of these algorithms in the Weka Data Mining Software (Hall
et al., 2009).

7.2.4 Results

Three models were generated for each performance action according to the
three datasets (reference, horizontal, and vertical) datasets provided. We
compared the accuracy among datasets and algorithms.

Piano data: density, weight and amplitude

We evaluated the accuracy (percentage of correct classifications) using 10-
cross fold validation with 10 iterations. We performed statistical testing by
using the t-test with a significance value of 0.05 to compare the methods
with the baseline and decide if one produced measurably better results than
the other. Table 7.9 shows the results for density. It can be seen that the
accuracy increased when ensemble information was considered (datasets
D1 and D2). The significant improvements were achieved by the algorithms
NN and SVM, being 65.13 the highest accuracy reached with the dataset
D2 which consisted in both harmonic and melodic score descriptors. For
weight (Table 7.10), none of the results was statistically significant and
the performance of the three models can be interpreted as random. The
highest results were achieved when only piano information was considered
(D1), showing no interaction between this performance action and the guitar
melody. Table 7.11 presents the results for amplitude. In that case, the
three algorithms reached their maximum accuracy when information of the
ensemble performance (D3) was considered, which can be explained as a
presence of correlation between the amplitude of the chords performed and
the melody the piano player was hearing. Moreover, the results for the
algorithms NN and SVM were statistically significant.

Guitar data: embellishments

Because guitar data presented a skewed classes distribution, we evaluated
the performance of the models based on the sensitivity (true positive rate)
rather than on the accuracy of the model. Table 7.12 presents the results
obtained. It can be seen that, despite the low percentage of sensitivity,
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Dataset Baseline NN SVM Decision Tree
D1 51.82 61.190 62.130 53.75
D2 51.82 61.72 65.13 o 55.34
D3 51.82 55.75 61.75 57.65

o, e statistically significant improvement or degradation

Table 7.9: Accuracy for the models of density in comparision to the baseline using
NN, SVM and Decision Trees

Table 7.10:

Dataset Baseline NN SVM Decision Tree
D1 53.73 63.52  52.96 54.48
D2 53.73 50.62  49.64 51.85
D3 53.73 57.70  50.90 51.36

o, e statistically significant improvement or degradation

Accuracy for the models of weight in comparision to the baseline

using NN, SVM and Decision Trees

Table 7.11:

Dataset Baseline NN SVM Decision Tree
D1 56.73 54.51 62.06 63.72
D2 56.73 57.11  60.90 60.93
D3 56.73 58.83 67.850 67.98 o

o, e statistically significant improvement or degradation

Accuracy for the models of amplitude in comparision to the baseline

using NN, SVM and Decision Trees

the results for the three algorithms increased when considering ensemble
information (D2, D3).

Dataset NN SVM Decision Tree
D1 26 20 12
D2 30 38 26
D3 30 32 24

Table 7.12: Sensitivity percentage for embellishments
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7.2.5 Discussion

We have generated models for different datasets consisting of information
from individual performances and ensemble performances. Based on the
accuracy and sensitivity of the models, we have obtained numerical results
which have allowed us to estimate the level of interaction between musicians.
The data analysis indicated that, in general terms, the performance actions
of the accompaniment were influenced by the soloist and vice versa, since
both written and performed descriptors contributed to a better performance
of the models.






CHAPTER 8

Conclusions

In this chapter we present a summary of the main topics covered in this dis-
sertation (Section 8.1). We also present the main contributions of our work
in each of the topics investigated which were involved in the methodology
(Section 1.5). Finally, we comment on some future work which we consider
will complement the current investigation, exploring areas not fully covered
as well as on future possible implementations and/or applications(Section
8.3).

8.1 summary

In this dissertation we have presented a computational modelling approach
for expressive performance prediction and synthesis in jazz guitar music.
Our primary objective has been to develop a system to generate predic-
tive models for music expressive performance deviations in onset, duration,
energy, as well as, complex ornamentation. Our motivation has been that,
contrary to classical music, in jazz music expressive performance indications
are seldom indicated on scores, and is the performer who introduce them
based on his/her musical background/knowledge. The expressive devices
used by musicians in popular music (concretely in jazz) is usually learnt by
copying from the performance of expert musicians. Therefore, there is little
quantitative information on how and in which context the manipulation of
these expressive deviations occurs. The music material considered in this
dissertation was obtained from both recordings from professional guitarists
and commercial recordings obtained from audio CDs, and scores were ob-
tained from The real book. We extracted a set of descriptors from the music

129
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scores and a symbolic representation from the audio recordings by imple-
menting an automatic transcription scheme. In order to map performed
notes to parent score notes we have automatically aligned performance to
score data using a dynamic time warping approach. Based on this align-
ment we obtained performance actions, calculated as deviations of the per-
formance from the score. We created an ornaments database including the
information of the ornamented notes performed by the musician. Finally,
we have applied machine learning to train predictive models for duration,
onset, and energy deviations, as well as, for ornaments. Automatic induced
rules were analysed from a musical perspective. In the next sections we
summarize the main tasks performed in this work.

8.1.1 Semi-automatic data extraction

We have presented several approaches for semi-automatic data extraction
from both monophonic-monotimbral/multitimbral audio signals. Firstly,
we have presented an approach to automatically segment the extracted
pitch profile form a monophonic-monotimbral/multitimbral audio signal,
to obtain a MIDI-like representation of the note events. We have used Yin
(De Cheveigné and Kawahara, 2002) and Melodia (Salamon and Goémez,
2012) algorithms respectively to extract a pith profile of the signal. On-
set detection was performed applying adaptative energy filters, as well as,
and pitch change detection. Heuristic rules were used to filter the resulting
note events to remove noisy data. Results show good performance in the
transcription of 30 audio samples. Secondly, we have presented a system
to automatically recognize ornamentations in jazz music. We have used a
data set of 27 audio recordings of jazz standards performed by a professional
guitarist. We have applied Dynamic Time Warping to align the score with
the performance of the musician, and match notes of the performance with
the corresponding parent notes in the score. For evaluation purposes we
have analysed the annotations of jazz musicians to generate an agreement
level chart between the performance notes and parent score notes. Based on
the experts’ annotations, we have estimated the accuracy of the system by
creating penalty factors based on how much the output of the algorithm dif-
fers from the human experts agreement. Results indicate that the accuracy
of our approach is comparable with the accuracy of annotations of music
experts. Thirdly, we have proposed a method to optimize the extraction
parameters of Melodia algorithm for predominant melody extraction from
polyphonic signals, using Genetic Algorithms. Our approach was oriented
to improve the melodic extraction for specific instrument settings (e.g. elec-
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tric guitar, bass, piano and drums). We have performed two experiments,
a first one using 22 simultaneous midi and audio recordings, in which man-
ual transcription was used to build the ground truth. Optimization was
performed in 18 songs and 4 songs were left for testing. Two instrument
settings were created: trio (guitar, bass, drums) and quartet (guitar, bass,
piano, drums). Also different audio mixes were created in which the melody
was at different sound levels with respect to the accompaniment track. The
second experiment was performed on four commercial recordings in which
the melody was recorded in a separated channel from the accompaniment
track. In this experiment we used a leave one out approach for optimiza-
tion and testing. Results show that our optimization methodology improves
in all cases the overall accuracy of the detection for the first experiment.
Lower improvement in overall accuracy in the second experiment was ob-
served, which might be explained by the recordings context in which aspects
like sound effects (e.g. reverb) in the melody track may induce more errors
in the melodic detection.

8.1.2 Machine learning

He have reported on two main experiments applying machine learning tech-
niques on data obtained from monophonic monotimbra and monophonic
multitimbral data, respectively. In the first case our aim was to obtain
models to rendering expressive performances and, on the second, was to
obtain rules to be analysed from a musical perspective.

From monophonic monotimbral recordings, we have presented a machine
learning approach for expressive performance (ornament, duration, onset
and energy) prediction and synthesis in jazz guitar music. We used a data
set of 27 recordings performed by a professional jazz guitarist, and extracted
a set of descriptors from the music scores and a symbolic representation
from the audio recordings. In order to map performed notes to parent score
notes we have automatically aligned performance to score data. Based on
this alignment we obtained performance actions, calculated as deviations of
the performance from the score. We created an ornaments database includ-
ing the information of the ornamented notes per- formed by the musician.
We have compared four learning algorithms to create models for ornamen-
tation, based on performance measures, using a significance Paired T-test.
Feature selection techniques were employed to select the best feature subset
for ornament modelling. For synthesis purposes, instance based learning
was used to retrieve the most suitable ornament from the ornamentation
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data base. A concatenative synthesis approach was used to automatically
generate expressive performances of new pieces (i.e. pieces not in the train-
ing set). Subjective perceptual evaluation based on listening tests might
present difficulties based on the based on personal expectations of listeners

Therefore, we evaluated the performances generated by the system by
computing the alignment distance between the system and the target per-
formances. Evaluation results were consistent with the findings based on
accuracy tests. Results may indicate that selected features contain sufficient
information to capture the considered performance actions.

For the monophonic-multitimbral data we have presented a machine learn-
ing approach to obtain rule models for ornamentation, duration, onset
and energy expressive performance actions. We considered 16 polyphonic
recordings of American jazz guitarist Grant Green and the associated music
scores. Note descriptors were extracted from the scores and audio record-
ings were processed in order to obtain a symbolic representation of the notes
the main melody. Score to performance alignment was performed in order
to obtain a correspondence between performed notes and score notes. From
this alignment expressive performance actions were quantified. After dis-
cretizing the obtained performance actions we induced predictive models
for each performance action prediction by applying a machine learning (se-
quential covering) rule learner algorithm. Extracted features were analysed
by applying (both filter and wrapper) feature selection techniques. Models
were evaluated using a 10-fold cross validation and statistical significance
was established using paired t-test with respect to a baseline classifier. Con-
cretely, the obtained accuracies for the ornamentation, duration, onset, and
energy models are 71%, 58%, 60%, and 52%, respectively. Both the fea-
tures selected and model rules showed musical significance. Similarities and
differences among the obtained rules and the ones reported in the litera-
ture were discussed. Pattern similarities between classical and jazz music
expressive rules were identified, as well as expected dissimilarities expected
by the inherent particular musical aspects of each tradition. The induced
rules’ specificity /generality was assessed by applying them to performances
of the same pieces performed by two other professional jazz guitar players.
Results show a consistency in the ornamentation patterns between Grant
Green and the other two musicians, which may be interpreted as a good
indicator for generality of the ornamentation rules.
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8.1.3 Applications

Finally, we have presented two applications of our the modelling strategies.
A first application is a neuro-feedback approach which permits a user to
manipulate some expressive parameters (duration, articulation and energy)
of music performances using their emotional state in real-time. We have
implemented a system for controlling in real-time the expressive aspects of
a musical piece, by means of the emotional state detected from the EEG
signal of a user. We have perform experiments in two different settings: a
first one where the user tries to control the performance only by changing
the arousal level, and a second one where the performance is dynamically
changed between two extreme values (happy and sad), while the user is
improvising playing a musical instrument. We applied machine learning
techniques (LDA and SVM) to perform a two class classification task be-
tween two emotional states (happy and sad). Results suggest that EEG
data contains sufficient information to distinguish between the two classes.
This approach was utilized in a clinical pilot study for treating depression in
elderly people, in which 10 participants were subjected to neuro-feedback
sessions. Participants were instructed to listen to music pieces and were
encouraged to increase the loudness and the and tempo of the pieces based
on their arousal and valence levelsResults on the pre and post BDI depres-
sion test showed an average improvement on the BDI score. Also, EEG
data analysis showed a relative decrease on the alpha activity. In a second
application we have presented a study on the interaction between musicians
by using our machine learning approach for jazz music. We have created a
database consisting of recordings of 7 jazz standards performed by a quartet
(piano, guitar, bass and drums) and their corresponding scores. After audio
and score data extraction processing, we have computed vertical and hor-
izontal descriptors for both notes and chords. Similarly, after aligning the
score and the performance, we have measured some performance actions for
guitar and piano. Finally, we have generated models for different datasets
created with different combinations of horizontal (individual performances)
and vertical (ensemble performances) descriptors. Based on the accuracy
and sensitivity of the models, we have obtained numerical results which
have allowed us to estimate the level of interaction between musicians. The
data analysis may indicate that, the performance actions of the accompa-
niment are influenced by the soloist and vice versa, since both written and
performed descriptors contributed to a better performance of the models.
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8.2

CONCLUSIONS

Contributions

In this section we outline the main contributions of the dissertation

8.2.1 Contributions in expressive music performance

modelling

A methodology for expressive performance modeling in jazz music,
able to operate on complex or free ornamentation, using the jazz guitar
as a case study.

A database of recordings with its respective transcription in machine
readable format (MIDI) and score to performance alignment analysis,
from 4 jazz guitar players, consisting of a total of 54 recordings that
contain a total of 4537 notes.

An statistical analysis of the performance of different algorithms used
in the prediction of specific EPAs.

Analysis of the relevance of the features involved in specific perfor-
mance actions.

Analysis of rules obtained from a musical perspective
A comparison from the obtained rules with rules in literature

An analysis on the gereability of the rules, based of rule coverage on
jazz guitarrists performances.

8.2.2 Contributions on melodic representation and melodic

description

A library for note feature extraction and description implemented in
Matlab code.

A database of music scores and score descriptors with measured per-
formance actions measured as deviations in timing, pitch, energy.
Data base of descriptors include numerical and nominal descriptors.
Similarly performance actions are obtain as numerical indexes as well
as in the form of categories.

The introduction of perceptual features for melodic description.
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e Discretization of numerical features for the induction/study of expres-
sive performance rules.

8.2.3 Contributions on automatic music transcription

e A methodology for music representation of the performance based on
the manipulation of pitch contours extracted from both Monophnic
and polyphonic audio into note events.

e A parameter optimization of the algorithm for melodic extraction from
polyphonic signals, to the case study of the electric guitar in jazz misc
context, by using genetic algorithms.

8.2.4 Contributions on score to performance alignment

e A methodology to automatically obtain score to performance corre-
spondence for jazz guitar music, able to work on complex ornamenta-
tion cases.

e A GUI to facilitate the annotation of ground truth for score to per-
formance alignment

e A framework to obtain a ground truth on jazz performance score align-
ment, based on agreement

8.2.5 Contributions of the applications developed

e A system for neuro-feedback for real-time manipulation of expressive
parameters based on the perceived emotional state.

8.3 Future directions

8.3.1 Onset detection using ensemble methods

Currently we are extending our approach for automatic music transcription
by applying the staked generalization ensemble method (staking), in which
the output of three different pitch profile segmentation algorithms is used to
train a metalearner to discover how best to combine the output of the three
approaches for transient detection (i.e. detect the frames in which a note
transition onset and/or offset occurs). The dataset is constructed based on
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the onset transition marking on a frame level (2.9 miliseconds) based on the
pitch profile segmentation performed on 21 monophonic audio recordings
of jazz standard pieces, performed by three different jazz guitarists, using
two well known algorithms (Mcnab et al. (1996) and Mauch et al. (2015))
(which were reviewed previously in section 2.3.1), as well as our pitch profile
segmentation approach based on energy and heuristic filters explained in
Section 3.3.3. The manual transcribed pieces created by an human expert
are marked as well on the same frame basis, and transition markings on the
corresponding frames are used as classes. In all cases, each frame is marked
as transition = yes when a note onset/offset (or both) is present in that
particular frame, and transition = no otherwise. Thus, each frame will be
treated as an instance for which we have 3 features which are the makings
obtained based on the segmentation of the three algorithms considered. In
real machine learning schemes, staking method does not simply attach the
predictions of each classifier to build a training instance, as it will allow to
learn simplistic rules by the meta learner. Usually 10 cross fold validation
and leave one out methods are used to use the models generated on each
fold to create new predictions on the data which to create the instances of
the metalearner. In our specific case we used a sliding window of 100ms,
based on the MIREX (Music Information Retrieval Evaluation eXchange)
framework validation approach for onset detection. Thus, the features of
the frames within a window are line up together to generate a 100 feature
size instance that corresponds to the center frame of the window. We plan
to test several machine learning schemes for the metalearner and compare
them upon on the accuracy measured as correctly classified instances.

8.3.2 Polyphonic hexaphonic guitar expressive
performance modelling

So far we have presented a monophonic approach for guitar expressive analy-
sis. However, guitar is by nature a polyphonic instrument, therefore we plan
to extend our approach for expressive guitar modelling to the hexaphonic
scenario. We have explored the extraction and analysis of hexaphonic guitar
signals in Angulo et al. (2016), where we presented an approach to visualize
guitar performances, transcribing musical events into visual forms. Hexa-
phonic guitar processing was carried out (i.e. processing each of the six
strings as an independent monophonic sound source) to obtain high level
descriptors from the audio signal, and, after, different visualization map-
pings were tested to meaningfully/intuitively represent music. This work
was part of the M.S. thesis by (Angulo et al., 2016) which was directed by
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the author of the present dissertation. Contributions of this work include
several hexaphonic recordings, hardware for hexaphonic recording, as well
as, libraries for independent string signal filtering and processing. Thus, we
have a framework which makes feasible apply our machine learning approach
to hexaphonic recordings.

8.3.3 Evaluation of performance based on machine learning
modelling.

In the context of the TELMI project, we plan to implement our expressive
approach for expressive music performance. On one hand we plan to obtain
high level audio features and gesture actions from multimodal recordings
of violin experts. From the estimation of music/sound features, we will
propose models and techniques that map the sound domain to the control
(gesture) domain (force, velocity, etc.). On the other hand we plan to
propose generalized models from the analysis of a reference database of
violin masters, to obtain metrics for the automatic evaluation and learning
assessment.

Y%labelpart:appendix






Bibliography

Each reference indicates the pages where it appears.

A. Accardo, M. Affinito, M. Carrozzi, and F. Bouquet. Use of the fractal
dimension for the analysis of electroencephalographic time series. Bio-
logical cybernetics, 77(5):339-50, November 1997. ISSN 0340-1200. URL
http://www.ncbi.nlm.nih.gov/pubmed/9418215. 25

Inigo Angulo, Sergio Giraldo, and Rafael Ramirez. Hexaphonic guitar
transcription and visualization. In Richard Hoadley, Chris Nash, and
Dominique Fober, editors, Proceedings of the International Conference
on Technologies for Music Notation and Representation - TENOR2016,
pages 187-192, Cambridge, UK, 2016. Anglia Ruskin University. ISBN
978-0-9931461-1-4. 136

Josep Lluis Arcos, Ramon Lopez De Mantaras, and Xavier Serra. Saxex:
A case-based reasoning system for generating expressive musical perfor-
mances. Journal of New Music Research, 27(3):194-210, 1998. 3, 13, 15,
21, 116

T. H. Aspiras and V. K. Asari. Log power representation of eeg spectral
bands for the recognition of emotional states of mind. In Information,
Communications and Signal Processing (ICICS) 2011 8th International
Conference on, pages 1-5, Dec 2011. doi: 10.1109/ICICS.2011.6174212.
107

Helena Bantula. Multi player expressive performance modeling in jazz mu-
sic. B.s. thesis, Pompeu Fabra University, Barcelona, Spain, 2015. 117

Helena Bantula, Sergio Giraldo, and Rafael Ramirez. Jazz ensemble ex-
pressive performance modeling. In Proc. of the 17th Int. Conf. on Music

139


http://www.ncbi.nlm.nih.gov/pubmed/9418215

140 BIBLIOGRAPHY

Information Retrieval (ISMIR), pages 31-37, New York, New York, USA,
2016. 117

J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B.
Sandler. A tutorial on onset detection in music signals. IEEFE Transac-
tions on Speech and Audio Processing, 13(5):1035-1047, Sept 2005. ISSN
1063-6676. doi: 10.1109/TSA.2005.851998. 44

Dmitry Bogdanov, Nicolas Wack, E. Gémez, Sankalp Gulati, Perfecto
Herrera, O. Mayor, Gerard Roma, Justin Salamon, J. R. Zapata, and
X. Serra. Essentia: an audio analysis library for music information re-
trieval. In International Society for Music Information Retrieval Confer-
ence (ISMIR’13), pages 493-498, Curitiba, Brazil, 04/11/2013 2013. 42,
62

J. Bonada, X. Serra, X. Amatriain, and A. Loscos. Spectral processing.
In Udo Zolzer, editor, DAFX Digital Audio Effects, pages 393—444. John
Wiley and Sons Ltd, 2011. ISBN 978-0-470-66599-2. 21

Roberto Bresin. Artificial neural networks based models for automatic per-
formance of musical scores. Journal of New Music Research, 27(3):239-
270, 1998. 13, 15

Roberto Bresin and Anders Friberg. Emotional coloring of computer-
controlled music performances. Computer Music Journal, 24(4):44-63,
2000. 13, 17

Judith C. Brown and Bin Zhang. Musical frequency tracking using the
methods of conventional and narrowed autocorrelation. The Journal of
the Acoustical Society of America, 89(5):2346-2354, 1991. doi: http://dx.
doi.org/10.1121/1.400923. URL http://scitation.aip.org/content/
asa/journal/jasa/89/5/10.1121/1.400923. 23

Emilios Cambouropoulos. Music, Gestalt, and Computing: Studies in Cog-
nitive and Systematic Musicology, chapter Musical rhythm: A formal
model for determining local boundaries, accents and metre in a melodic
surface, pages 277-293. Springer, Berlin, Heidelberg, 1997. ISBN 978-3-
540-69591-2. 48

Antonio Camurri, Roberto Dillon, and Alberto Saron. An experiment on
analysis and synthesis of musical expressivity. In Proceedings of 13th
Colloguium on Musical Informatics, 2000. 13, 15, 18, 25

S. Canazza, G. De Poli, C. Drioli, A. Roda, and A. Vidolin. Audio morphing
different expressive intentions for multimedia systems. IEEE MultiMe-
dia, 7(3):79-83, July 2000. ISSN 1070-986X. URL http://dl.acm.org/
citation.cfm?id=614667.614998. 15, 18


http://scitation.aip.org/content/asa/journal/jasa/89/5/10.1121/1.400923
http://scitation.aip.org/content/asa/journal/jasa/89/5/10.1121/1.400923
http://dl.acm.org/citation.cfm?id=614667.614998
http://dl.acm.org/citation.cfm?id=614667.614998

BIBLIOGRAPHY 141

S. Canazza, G. De Poli, C. Drioli, A. Roda, and A. Vidolin. Expressive
morphing for interactive performance of musical scores. In Web Delivering
of Music, 2001. Proceedings. First International Conference on, pages
116-122, 2001. 15, 18

S. Canazza, G. De Poli, A. Roda, and A. Vidolin. An abstract control space
for communication of sensory expressive intentions in music performance.
Journal of New Music Research, 32(3):281-294, 2003. doi: 10.1076/jnmr.
32.3.281.16862. 15, 18

L. Carlson, A. Nordmark, and R. Wikilander. Reason version 2.5 propeller-
head software, 2003. 16

Michael Casey and Tim Crawford. Automatic location and measurement of
ornaments in audio recordings. In Proc. of the 5th Int. Conf. on Music
Information Retrieval (ISMIR), pages 311-317, 2004. 24

Jadzia Cendrowska. Prism: An algorithm for inducing modular rules. In-
ternational Journal of Man-Machine Studies, 27(4):349-370, 1987. 95

A. Chopin. Eeg-based human interface for disabled individuals: Emotion
expression with neural networks. Master’s thesis, Tokyo Institute of Tech-
nology, Yokohama, Japan, 2000. 24

L. P. Clarisse, J. P. Martens, M. Lesaffre, B. De Baets, H. Demeyer, and
M. Leman. An auditory model based transcriber of singing sequences. In
in ISMIR, pages 116-123, 2002. 61

M. Clynes. Generative principles of musical thought: Integration of mi-
crostructure with structure. Communication and Cognition Al, Journal
for the Integrated Study of Artificial Intelligence, Cognitive Science and
Applied Epistemology, (3), 1986. 15

M. Clynes. Microstructural musical linguistics: composers pulses are liked
most by the best musicians. Cognition, 55(3):269 — 310, 1995. ISSN
0010-0277. doi: 10.1016/0010-0277(94)00650-A. URL http://www.
sciencedirect.com/science/article/pii/001002779400650A. 15

William W Cohen. Fast effective rule induction. In Proceedings of the twelfth
international conference on machine learning, pages 115-123, 1995. 95

Grosvenor Cooper and Leonard B Meyer. The rhythmic structure of music,
volume 118. University of Chicago Press, 1963. 49

P. Dahlstedt. Autonomous Evolution of Complete Piano Pieces and Per-
formances. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I,
Coutinho, A. (eds.) ECAL 2007, 4648, 2007. 16

RB. Dannenberg, H. Pellerin, and I. Derenyi. A study of trumpet envelopes.
In The 1998 International Computer Music Conference, number April,


http://www.sciencedirect.com/science/article/pii/001002779400650A
http://www.sciencedirect.com/science/article/pii/001002779400650A

142 BIBLIOGRAPHY

pages 57-61, San Francisco, USA, 2007. International Computer Music
Asociation. 15
Roger B Dannenberg and Istvan Derenyi. Combining instrument and per-

formance models for high-quality music synthesis. Journal of New Music
Research, 27(3):211-238, 1998. 15

Alain De Cheveigné and Hideki Kawahara. Yin, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of
America, 111(4):1917-1930, 2002. 7, 23, 39, 64, 65, 130

L. Dorard, DR. Hardoon, and J. Shawe-Taylor. Can Style be Learned? A
Machine Learning Approach Towards ’Performing’ as Famous Pianists.
Music Brain and Cognition Workshop, 2007. 16

Jean-Louis Durrieu. Automatic transcription and separation of the main
melody in polyphonic music signals.  PhD thesis, Ecole nationale
supérieure des telecommunications-ENST, 2010. 24

T. Eerola and J. K. Vuoskoski. A comparison of the discrete and dimensional
models of emotion in music. Psychology of Music, 39(1):18-49, August
2010. ISSN 0305-7356. doi: 10.1177/0305735610362821. URL http:
//pom.sagepub.com/cgi/doi/10.1177/0305735610362821. 25

Tuomas Eerola and Petri Toiviainen. MIDI Toolbox: MATLAB Tools for
Music Research. University of Jyvaskyla, Jyvaskyla, Finland, 2004. URL
www. jyu.fi/musica/miditoolbox/. 37, 48

Daniel PW Ellis. Prediction-driven computational auditory scene analysis.
PhD thesis, Massachusetts Institute of Technology, 1996. 23

M. Fabiani. Interactive computer-aided expressive music performance. PhD
thesis, KTH School of Computer Science and Communication, Stockholm,
SWEDEN, 2011. 25

X. Fiss and A. Kwasinski. Automatic real-time electric guitar audio
transcription. In 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 373-376, May 2011. doi:
10.1109/ICASSP.2011.5946418. 24

Anders Friberg. Generative rules for music performance: A formal descrip-
tion of a rule system. Computer Music Journal, 15(2):56-71, 1991. 17

Anders Friberg. pdm: an expressive sequencer with real-time control of
the kth music-performance rules. Computer Music Journal, 30(1):37—48,
2006. 13, 17, 25

Anders Friberg, Roberto Bresin, and Johan Sundberg. Overview of the kth

rule system for musical performance. Advances in Cognitive Psychology,
2(2-3):145-161, 2006. 13, 15, 17, 103


http://pom.sagepub.com/cgi/doi/10.1177/0305735610362821
http://pom.sagepub.com/cgi/doi/10.1177/0305735610362821
www.jyu.fi/musica/miditoolbox/

BIBLIOGRAPHY 143

Nicolas Froment, Werner Schweer, and Thomas Bonte. GTS: GNUmus-
escore. http://www.musescore.org/, 2011. 34

Mazzola G. The Topos of Music: Geometric Logic of Concepts, Theory,
and Performance. Birkhduser, Boston, 2002. 15

Alf Gabrielsson. The performance of music. In Diana Deutsch, editor, The
psychology of music, volume 2, pages 501-602. Elsevier, 1999. 3, 12

Alf Gabrielsson. Music performance research at the millennium. Psychology
of music, 31(3):221-272, 2003. 3, 12
James Lincoln Collier Geoffrey L. Collier. An exploration of the use of

tempo in jazz. Music Perception: An Interdisciplinary Journal, 11(3):
219-242, 1994. ISSN 07307829, 15338312. 92

Sergio Giraldo. Modeling embellishment, duration and energy expressive
transformations in jazz guitar. Master’s thesis, Pompeu Fabra University,
Barcelona, Spain, 2012. 14, 21, 47

Sergio Giraldo and Rafael Ramirez. Optimizing melodic extraction algo-
rithm for jazz guitar recordings using genetic algorithms. In Joint Con-
ference ICMC-SMC 2014, Athens, Greece, pages 256—27, 2014. 40

Sergio Giraldo and Rafael Ramirez. Computational modeling and synthesis
of timing, dynamics and ornamentation in jazz guitar music. In 11th
International Symposium on Computer Music Interdisciplinary Research
CMMR 2015, Plymuth, UK, pages 806-814, 2015a. 14, 48

Sergio Giraldo and Rafael Ramirez. Performance to score sequence match-
ing for automatic ornament detection in jazz music. In International
Conference of New Music Concepts ICMNC 2015, Treviso, Italy, page 8,
2015b. 53

Sergio Giraldo and Rafael Ramirez. Computational modelling of ornamen-
tation in jazz guitar music. In International Symposium in Performance
Science, pages 150-151, Kyoto, Japan, 02/09/2015 2015¢. Ryukoku Uni-
versity, Ryukoku University. URL http://www.mtg.upf.edu/system/
files/publications/ISPS2015_Giraldo.pdf. 14

Sergio Giraldo and Rafael Ramirez. Computational generation and syn-
thesis of jazz guitar ornaments using machine learning modeling. In
Proceedings of the 11th International Conference on Machine Learning
and Music(MML 201}4) held in Vancouwver, Canada, August, 2015, pages
10-12, 2015d. 14

W. Goebl and C. Palmer. Synchronization of timing and motion among

performing musicians. Music Perception, pages 427-438, 2009. URL
http://www. jstor.org/stable/10.1525/mp.2009.26.5.427. 22


http://www.musescore.org/
http://www.mtg.upf.edu/system/files/publications/ISPS2015_Giraldo.pdf
http://www.mtg.upf.edu/system/files/publications/ISPS2015_Giraldo.pdf
http://www.jstor.org/stable/10.1525/mp.2009.26.5.427

144 BIBLIOGRAPHY

Werner Goebl, Simon Dixon, Giovanni De Poli, Anders Friberg, Roberto
Bresin, and Gerhard Widmer. Sense in expressive music performance:
Data acquisition, computational studies, and models. Sound to sense-
sense to sound: A state of the art in sound and music computing, pages
195-242, 2008. 3, 11, 13

Werner Goebl, Simon Dixon, and Emery Schubert. Quantitative methods:
Motion analysis, audio analysis, and continuous response techniques. Fz-
pressiveness in music performance: Empirical approaches across styles
and cultures, page 221, 2014. 13

Francisco Gémez, Aggelos Pikrakis, Joaquin Mora, Juan Manuel Diaz-
Béanez, Emilia Gémez, and Francisco Escobar. Automatic detection of
ornamentation in flamenco. In Fourth International Workshop on Ma-
chine Learning and Music MML, pages 20-22, 2011. 4, 24

Masataka Goto. A real-time music-scene-description system: predominant-
f0 estimation for detecting melody and bass lines in real-world audio
signals. Speech Communication, 43(4):311 — 329, 2004. ISSN 0167-6393.
doi: http://dx.doi.org/10.1016/j.specom.2004.07.001. URL http://www.
sciencedirect.com/science/article/pii/S0167639304000640. Spe-
cial Issue on the Recognition and Organization of Real-World Sound. 39

Maarten Grachten. Ezpressivity-aware tempo transformations of music per-
formances using case based reasoning. PhD thesis, Universitat Pompeu
Fabra, 2006. 3, 14, 48, 56, 86, 92, 116

G. Grindlay. Modelling Fxpressive Musical Performance with Hidden
Markov Models. PhD thesis, UNIVERSITY OF CALIFORNIA SANTA
CRUZ, 2005a. 16

Graham Charles Grindlay. Modeling expressive musical performance with
Hidden Markov Models. 2005b. 13

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H Witten. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10-18, 2009. 77, 95, 125

M. Hashida, N. Nagata, and H. Katayose. jpop-e: an assistant system for
performance rendering of ensemble music. In Proceedings of the 7th inter-
national conference on New interfaces for musical expression, NIME ’07,
pages 313-316, New York, NY, USA, 2007. ACM. doi: 10.1145/1279740.
1279808. URL http://doi.acm.org/10.1145/1279740.1279808. 15

Thomas Hedges, Pierre Roy, and FranA§ois Pachet. Predicting the com-

poser and style of jazz chord progressions. Journal of New Music Re-
search, 43(3):276-290, 2014. doi: 10.1080/09298215.2014.925477. URL


http://www.sciencedirect.com/science/article/pii/S0167639304000640
http://www.sciencedirect.com/science/article/pii/S0167639304000640
http://doi.acm.org/10.1145/1279740.1279808

BIBLIOGRAPHY 145

http://dx.doi.org/10.1080/09298215.2014.925477. 93

T. Higuchi. Approach to an irregular time series on the basis of the fractal
theory. In Physica D, volume 31, page 277-283. 1988. 25

K. Hirata and R. Hiraga. Ha-hi-hun : Performance rendering system of high
controllability, 2002. URL http://www.fun.ac.jp/~hirata/Papers/
icad2002-rencon-ws.pdf. 15

Jui-Chung Hung and Ann-Chen Chang. Combining genetic algorithm and
iterative music searching doa estimation for the cdma system. FExpert
Systems with Applications, 38(3):1895-1902, 2011. 42

Margaret L Johnson. Toward an expert system for expressive musical per-
formance. Computer, 24(7):30-34, 1991a. 13

ML. Johnson. Toward an expert system for expressive musical performance.
Computer, 24(7):30-34, 1991b. ISSN 0018-9162. doi: 10.1109/2.84832.
15

P. Juslin. Communicating emotion in music performance: A review and a
theoretical framework. In Juslin and Sloboda, editors, Music and emo-
tion: Theory and research.Series in affective science., pages 309-337. Ox-
ford University Press, New York, 2001. 11, 12, 17

H. Katayose, T. Fukuoka, K. Takami, and S. Inokuchi. Expression ex-
traction in virtuoso music performances. In Pattern Recognition, 1990.
Proceedings., 10th International Conference on, volume i, pages 780-784
vol.1, 1990. doi: 10.1109/ICPR.1990.118216. 15

Gary Kennedy and Barry Kernfeld. Aebersold, jamey. In The new Grove
dictionary of jazz, vol. 1 (2nd ed.), pages 16-17. New York: Grove’s
Dictionaries Inc, 2002. ISBN 1561592846. 29, 64

Alexis Kirke and Eduardo R Miranda. An overview of computer systems
for expressive music performance. In Guide to computing for expressive
music performance, pages 1-47. Springer, 2013. 3, 13, 14

Shinpei Koga, Takafumi Inoue, and Makoto Fukumoto. A proposal for in-
tervention by user in interactive genetic algorithm for creation of music
melody. In Biometrics and Kansei Engineering (ICBAKE), 2013 Inter-
national Conference on, pages 129-132. IEEE, 2013. 42

Carol L Krumhansl and Edward J Kessler. Tracing the dynamic changes in
perceived tonal organization in a spatial representation of musical keys.
Psychological review, 89(4):334, 1982. 49

F Lerdahl and R. Jackendoff. A generative theory of tonal music / Fred
Lerdahl, Ray Jackendoff. MIT Press, Cambridge, Mass. :, 1983. ISBN
0262120941 0262620499 026262107. 12, 21


http://dx.doi.org/10.1080/09298215.2014.925477
http://www.fun.ac.jp/~hirata/Papers/icad2002-rencon-ws.pdf
http://www.fun.ac.jp/~hirata/Papers/icad2002-rencon-ws.pdf

146 BIBLIOGRAPHY

Fred Lerdahl. Calculating tonal tension. Music Perception: An Interdisci-
plinary Journal, 13(3):319-363, 1996. 37, 49

Sonnus Limited. G2m universal guitar to midi converter, 2012. URL http:
//www.sonuus.com/products_g2m.html. 64

Y. Lin, C. Wang, T. Jung, Senior Member, T. Wu, S. Jeng, J. Duann, and
J. Chen. EEG-Based Emotion Recognition in Music Listening. IEEE
Transactions on Biomedical Engineering, 57(7):1798-1806, 2010. 24

Y. Liu, O. Sourina, and MK. Nguyen. Real-Time EEG-Based Human Emo-
tion Recognition and Visualization. In 2010 International Conference
on Cyberworlds, pages 262-269. Ieee, October 2010. ISBN 978-1-4244-
8301-3. doi: 10.1109/CW.2010.37. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5656346. 25

SR. Livingstone, RM., AR. Brown, and WF. Thompson. Changing mu-
sical emotion : a computational rule system for modifying score and
performance. Computer Music Journal, 34(1):41-64, 2010. URL http:
//eprints.qut.edu.au/31295/. 15, 17

Marco Marchini. Analysis of ensemble expressive performance in string
quartets: a statistical and machine learning approach. PhD thesis, Uni-
versitat Pompeu Fabra, 2014. 23, 116

W. Marshall. Best of Jazz. Hall Leonard, Milwaukee, W, USA, 2000. 21,
65, 66

Dragan Matié¢. A genetic algorithm for composing music. Yugoslav Journal
of Operations Research ISSN: 0354-0243 EISSN: 2334-6043, 20(1), 2013.
42

M. Mauch, C. Cannam, R. Bittner, G. Fazekas, J. Salamon, J. Dai, J. Bello,
and S. Dixon. Computer-aided melody note transcription using the tony
software: Accuracy and efficiency. In Proceedings of the First Interna-
tional Conference on Technologies for Music Notation and Representa-
tion, May 2015. accepted. 62, 136

Zahorka O. Mazzola G. Tempo curves revisited: Hierarchies of per-
formance fields. Computer Music Journal, 18(1):40-52, 1994. doi:
10.1080/09298219808570747. 15

Rodger J. Mcnab, Lloyd A. Smith, and [an H. Witten. Signal processing
for melody transcription. In Proc. 19th Australasian Computer Science
Conf., 301-307, pages 301-307, 1996. 43, 62, 63, 136

Eduardo R Miranda, Alexis Kirke, and Qijun Zhang. Artificial evolution
of expressive performance of music: an imitative multi-agent systems
approach. Computer Music Journal, 34(1):80-96, 2010a. 13


http://www.sonuus.com/products_g2m.html
http://www.sonuus.com/products_g2m.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5656346
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5656346
http://eprints.qut.edu.au/31295/
http://eprints.qut.edu.au/31295/

BIBLIOGRAPHY 147

ER Miranda, A. Kirke, and Q. Zhang. Artificial Evolution of Expressive Per-
formance of Music: An Imitative Multi-Agent Systems Approach. Com-
puter Music Journal, 34(1):80-96, March 2010b. ISSN 0148-9267. doi:
10.1162/comj.2010.34.1.80. URL http://dx.doi.org/10.1162/comj.
2010.34.1.80. 16

G. P Moore and J. Chen. Timings and interactions of skilled musicians.
Biological cybernetics, 103(5):401-14, November 2010. ISSN 1432-0770.
doi: 10.1007/s00422-010-0407-5. URL http://www.ncbi.nlm.nih.gov/
pubmed/21046143. 22

Eugene Narmour. The analysis and cognition of melodic complexity: The
implication-realization model. University of Chicago Press, 1992. 21, 48,
49, 92

A. Ogzerov, P. Philippe, F. Bimbot, and R. Gribonval. Adaptation of
bayesian models for single-channel source separation and its application
to voice/music separation in popular songs. IEEE Transactions on Au-
dio, Speech, and Language Processing, 15(5):1564-1578, July 2007. ISSN
1558-7916. doi: 10.1109/TASL.2007.899291. 24

Rui Pedro Paiva, Teresa Mendes, and Amilcar Cardoso. Melody detection
in polyphonic musical signals: Exploiting perceptual rules, note salience,
and melodic smoothness. Computer Music Journal, 30(4):80-98, 2006.
40

Caroline Palmer. Music performance. Annual review of psychology, 48(1):
115-138, 1997. 3, 12

T. Partala, M. Jokinierni, and V. Surakka. Pupillary Responses To Emo-
tionally Provocative Stimuli. In ETRA 00: 2000 Symposium on FEye
Tracking Research & Aplications, pages 123-129, New York, New York,
USA, 2000. ACM Press. 24

Alfonso Perez, Esteban Maestre, Stefan Kersten, and Rafael Ramirez. Ex-
pressive Irish fiddle performance model informed with bowing. In Proceed-
ings of the international computer music conference. ICMC 2008, sarc,
Belfast, N. Ireland, 2008. 4, 24

Mark D Plumbley, Samer A Abdallah, Juan Pablo Bello, Mike E Davies,
Giuliano Monti, and Mark B Sandler. Automatic music transcription and
audio source separation. Cybernetics €&Systems, 33(6):603-627, 2002. 23

Giovanni De Poli, Sergio Canazza, Antonio Roda, and Emery Schubert.
The role of individual difference in judging expressiveness of computer-
assisted music performances by experts. ACM Trans. Appl. Percept., 11
(4):22:1-22:20, December 2014. ISSN 1544-3558. doi: 10.1145/2668124.


http://dx.doi.org/10.1162/comj.2010.34.1.80
http://dx.doi.org/10.1162/comj.2010.34.1.80
http://www.ncbi.nlm.nih.gov/pubmed/21046143
http://www.ncbi.nlm.nih.gov/pubmed/21046143

148 BIBLIOGRAPHY

URL http://doi.acm.org/10.1145/2668124. 84

Montserrat Puiggros, Emilia Gémez, Rafael Ramirez, Xavier Serra, and
Roberto Bresin. Automatic characterization of ornamentation from bas-
soon recordings for expressive synthesis. In Proceedings of 9th Inter-
national Conference on Music Perception and Cognition. University of
Bologna (Italy), August 22-26, ICMP, 2006. 4, 24

Brigitte Rafael, Michael Affenzeller, and Stefan Wagner. Application of
an island model genetic algorithm for a multi-track music segmentation
problem. In International Conference on FEvolutionary and Biologically
Inspired Music and Art, pages 13-24. Springer, 2013. 42

Rafael Ramirez and Amaury Hazan. A tool for generating and explaining
expressive music performances of monophonic jazz melodies. Interna-
tional Journal on Artificial Intelligence Tools, 15(04):673-691, 2006. 3,
13, 19, 116

Rafael Ramirez and Zacharias Vamvakousis. Detecting Emotion from
EEG Signals Using the Emotive Epoc Device, pages 175-184. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35139-6.
doi: 10.1007/978-3-642-35139-6_17. URL http://dx.doi.org/10.1007/
978-3-642-35139-6_17. 25, 106

Rafael Ramirez, Amaury Hazan, Esteban Maestre, and Xavier Serra. A
genetic rule-based model of expressive performance for jazz saxophone.
Computer Music Journal, 32(1):38-50, 2008. 16, 20

Rafael Ramirez, Manel Palencia, Sergio Giraldo, and Zacharias Vamvak-
ousis. Musical neurofeedback for treating depression in elderly people.
Frontiers in Neuroscience, 9(354), 2015. ISSN 1662-453X. doi: 10.
3389 /fnins.2015.00354. URL http://www.frontiersin.org/auditory_
cognitive_neuroscience/10.3389/fnins.2015.00354/abstract. 115

C. Raphael. Can the Computer Learn to Play Music Expressively? In
In Jaakkola T, Richardson T (eds) Proceedings of eighth international
workshop on arificial inteligence and statistics, pages 113-120. Morgan
Kaufmann, 2001a. 15, 22

C. Raphael. A bayesian network for real-time musical accompaniment. In
Advances in Neural Information Processing Systems, NIPS 14, page 14.
MIT Press, 2001b. 15, 22

Christopher Raphael. Orchestra in a box: A system for real-time musical
accompaniment. In IJCAI workshop program APP-5, pages 5-10, Aca-
pulco, Mexico, 2003. Morgan Kaufmann. 15, 22

Gustavo Reis, Nuno Fonseca, Francisco Ferndndez De Vega, and Anibal


http://doi.acm.org/10.1145/2668124
http://dx.doi.org/10.1007/978-3-642-35139-6_17
http://dx.doi.org/10.1007/978-3-642-35139-6_17
http://www.frontiersin.org/auditory_cognitive_neuroscience/10.3389/fnins.2015.00354/abstract
http://www.frontiersin.org/auditory_cognitive_neuroscience/10.3389/fnins.2015.00354/abstract

BIBLIOGRAPHY 149

Ferreira. Hybrid genetic algorithm based on gene fragment competition
for polyphonic music transcription. In Workshops on Applications of
Evolutionary Computation, pages 305-314. Springer, 2008. 42

BH. Repp. Sensorimotor synchronization: A review of the tapping lit-
erature. Psychonomic Bulletin € Review, 12(6):996-992, 2005. URL
http://link.springer.com/article/10.3758/BF03206433. 22

Emotiv Systems Inc. Researchers. Emotive epoc, 2012. URL http:
//emotiv.com/epoc/. 106

Edward C. Carterette Roger A. Kendall. The communication of musical
expression. Music Perception: An Interdisciplinary Journal, 8(2):129-
163, 1990. ISSN 07307829, 15338312. URL http://www.jstor.org/
stable/40285493. 12

Justin Salamon and Emilia Gémez. Melody extraction from polyphonic
music signals using pitch contour characteristics. Awudio, Speech, and
Language Processing, IEEE Transactions on, 20(6):1759-1770, 2012. 7,
23, 40, 63, 64, 130

E Glenn Schellenberg. Simplifying the implication-realization model of
melodic expectancy. Music Perception: An Interdisciplinary Journal, 14
(3):295-318, 1997. 49

CE. Seashore. Psicology of Music. McGraw-Hill, New York, 1938. 12

Xavier Serra. Musical sound modeling with sinusoids plus noise. Musical
stgnal processing, pages 91-122, 1997. 7, 78

Temple F Smith and Michael S Waterman. Identification of common molec-
ular subsequences. Journal of molecular biology, 147(1):195-197, 1981. 24

J. Sundberg, A. Friberg, and L. Frydén. Rules for automated performance of
ensemble music. Contemporary Music Review, 1989. URL http://www.
tandfonline.com/doi/full/10.1080/07494468900640071. 22, 116

Johan Sundberg. How can music be expressive? Speech communication, 13
(1):239-253, 1993. 17

Johan Sundberg, Anders Askenfelt, and Lars Frydén. Musical performance:
A synthesis-by-rule approach. Computer Music Journal, 7(1):37-43, 1983.
17

T. Suzuki, T. Tokunaga, and H. Tanaka. A case based approach to the
generation of musical expression. In In Proc. of IJCAI pages 642—648,
1999. 15

K. Takahashi. Remarks on Emotion Recognition from Bio-Potential Signals.
2nd International Conference on Autonomous Robots and Agents, pages


http://link.springer.com/article/10.3758/BF03206433
http://emotiv.com/epoc/
http://emotiv.com/epoc/
http://www.jstor.org/stable/40285493
http://www.jstor.org/stable/40285493
http://www.tandfonline.com/doi/full/10.1080/07494468900640071
http://www.tandfonline.com/doi/full/10.1080/07494468900640071

150 BIBLIOGRAPHY

186-191, 2004. 24

The real book. The real book. Hall Leonard, Milwaukee, WI, USA, 2004. 7,
27, 28, 29, 33, 89, 117, 129

A. Tobudic and G. Widmer. Relational ibl in music with a new structural
similarity measure. In In Proceedings of the International Conference on
Inductive Logic Programming, pages 365-382. Springer-Verlag, 2003. 15

Neil Todd. A computational model of rubato. Contemporary Music Review,
3(1):69-88, 1989. 13, 15

Neil P McAngus Todd. The dynamics of dynamics: A model of musical
expression. The Journal of the Acoustical Society of America, 91(6):3540—
3550, 1992. 13, 15

Neil P McAngus Todd. The kinematics of musical expression. The Journal
of the Acoustical Society of America, 97(3):1940-1949, 1995. 13, 15

Caroline Traube and Michel Bernays. Piano Touch Analysis: a Matlab
Toolbox for Extracting Performance Descriptors from High Resolution
Keyboard and Pedalling Data. Journées d’Informatique Musicale (JIM),
2012. 120

Paul Von Hippel. Redefining pitch proximity: Tessitura and mobility as
constraints on melodic intervals. Music Perception: An Interdisciplinary
Journal, 17(3):315-327, 2000. 50

Sethares W. Tuning timbre, spectrum, scale. Springer, London, 2004. 15

G. Widmer. Large-scale induction of expressive performance rules: First
quantitative results. In In Proceedings of the International Computer
Music Conference (ICMC’2000). San Francisco, CA: International Com-
puter Music Association, pages 344-347, 2000. 15, 18

Gerhard Widmer. Machine discoveries: A few simple, robust local expres-
sion principles. Journal of New Music Research, 31(1):37-50, 2002. 15,
18, 103

Gerhard Widmer. Discovering simple rules in complex data: A meta-
learning algorithm and some surprising musical discoveries. Artificial
Intelligence, 146(2):129-148, 2003. 13, 15, 18, 99, 103

Gerhard Widmer and Asmir Tobudic. Playing mozart by analogy: Learn-
ing multi-level timing and dynamics strategies. Journal of New Music
Research, 32(3):259-268, 2003. 15

Alan M. Wing, Satoshi Endo, Adrian Bradbury, and Dirk Vorberg. Op-

timal feedback correction in string quartet synchronization. Journal
of The Royal Society Interface, 11(93), 2014. ISSN 1742-5689. doi:



BIBLIOGRAPHY 151

10.1098 /rsif.2013.1125. URL http://rsif.royalsocietypublishing.
org/content/11/93/20131125. 22

Herbert Woodrow. Time perception. Wiley, 1951. 54

José R Zapata, André Holzapfel, Matthew EP Davies, Joao Lobato Oliveira,
and Fabien Gouyon. Assigning a confidence threshold on automatic beat
annotation in large datasets. In 13th International Society for Music In-
formation Retrieval Conference, Porto, Portugal, October 8th-12th, IS-
MIR, pages 157-162, 2012. 7, 122

Udo Zdlzer. Digital audio signal processing. John Wiley & Sons, 2008. 44


http://rsif.royalsocietypublishing.org/content/11/93/20131125
http://rsif.royalsocietypublishing.org/content/11/93/20131125

	Abstract
	Resumen
	Resum
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Definition
	Scope
	Scientific context
	Contributions
	Outline of the Dissertation

	Background
	Expressive Music Performance Overview
	Why do performers play expressively?
	Expressive performance actions

	Research in Expressive Music Performance
	Computational Approaches: Non learning models
	Computational Approaches: Learning models
	Computer systems for expressive performance (CEMPS)
	Computer systems for expressive performance actions in jazz
	Jazz Guitar Expressive Performance Modeling
	Ensemble performance modeling

	Computational music processing related tasks
	Melodic Transcription
	Ornament recognition

	Application fields overview
	EEG based emotion detection
	Active music listening


	Data Acquisition
	Musical Corpus
	Music scores from Real book
	Monophonic-monotimbral recordings
	Monophonic-multimbral recordings

	Score Data Acquisition
	Scores to MusicXML Format
	MusicXML Parser

	Performance Data Acquisition
	Monophonic mono-timbral pitch profile extraction
	Monophonic multi-timbral pitch profile extraction
	Segmentation of pitch profile


	Data analysis
	Score analysis: feature extraction
	Performance Analysis
	Performance to score alignment
	Expressive performance actions calculation
	Database Construction


	Preliminary Experiments
	Pitch profile segmentation
	Experiment set up
	Results

	Optimization of melodic extraction from polyphonic signals for jazz guitar
	First Experiment Set-up
	Second Experiment Set-up
	Implementation: Genetic Algorithm
	Results
	Discussion

	Human score to performance sequence matching for ornament detection.
	Experiment set up.
	Agreement analysis
	Results
	Discussion


	Expressive Performance Modeling
	Models from monophonic-monotimbral recordings
	Expressive performance modeling
	Results
	Evaluation
	Discussion

	Models from monophonic-multitimbral
	Materials
	Feature extraction: nominal descriptors
	Expressive performance actions characterizaton
	Expressive performance modelling
	Results
	Evaluation
	Discussion


	Applications
	Emotional modelling for neuro-feedback
	Brain activity to mood estimation
	Expressive performance system for real-time emotion modelling
	Applications in neuro-feedback

	Performance interaction analysis in jazz
	Data acquisition
	Data analysis
	Machine learning
	Results
	Discussion


	Conclusions
	summary
	Semi-automatic data extraction
	Machine learning
	Applications

	Contributions
	Contributions in expressive music performance modelling
	Contributions on melodic representation and melodic description
	Contributions on automatic music transcription
	Contributions on score to performance alignment
	Contributions of the applications developed

	Future directions
	Onset detection using ensemble methods
	Polyphonic hexaphonic guitar expressive performance modelling
	Evaluation of performance based on machine learning modelling.


	Bibliography

