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Abstract/Resum

Secure two-party computation is a classic problem in cryptography. It in-
volves two parties computing a function of their private inputs, and only
revealing what the output suggests. Additional security requirements may
include fairness, which states that either all parties receive output, or no
one does. A seminal result from the 1980’s demonstrates that fairness can-
not be guaranteed for all functions, and only recently have certain functions
been shown to be computable with fairness. The two results naturally give
rise to a distinction between fair functions and unfair ones. In this work,
we investigate the characterization of such functions in the two-party set-
ting. In the end, we obtain a full characterization for Boolean functions,
and we develop a number of useful techniques for characterizing arbitrary
fair functions.

Secure two-party computation és un problema clàssic en criptografia. Dos
participants acorden calcular una funció de les seves entrades privades, de
manera que només es revela el que se’n derivi del resultat. Altres requisits de
seguretat poden incloure fairness, que exigeix que o bé tots els participants
obtenen el resultat, o ningú ho fa. Un resultat fonamental de la dècada dels
80 demostra que la propietat no es pot garantir per a totes les funcions, i
només recentment s’ha demostrat que algunes śı que tenen aquesta propie-
tat. Els dos resultats donen lloc a una distinció entre les funcions que són
fair, i les que no ho són. En aquest treball, investiguem la caracterització
d’aquestes funcions en l’entorn de dos participants, obtenint una caracte-
rització completa de funcions Booleanes. A més a més, desenvolupem una
sèrie de tècniques útils per caracteritzar qualsevol funció.
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Chapter 1

Introduction

Steve, a most industrious person, decides to sell a digital artefact over the
internet. Steve advertises his product on a popular message board, and
invites all interested parties to bid on it. Only two parties, Bob and Barbara,
reply to the advertisement. Instead of revealing their bids, the potential
buyers communicate the following request: if they were to make an offer, the
amount they would be willing to pay should be disclosed (and transferred)
to the seller alone1, only if their bid was the highest, and only after they
received the item. Without hesitation, Steve suggests that the three of them
engage in secure multi-party computation.

Secure multiparty computation (MPC) is one of the gems of modern cryp-
tography. It allows several distrusting parties to perform seemingly im-
possible tasks, like the one described above, solely by interacting with one
another. It is useful to think of these tasks as functions/functionalities that
take an input from each party and return an output to each party. In our
example, the buyers inputs’ correspond to their offers, the seller’s input is
the item on sale, and their outputs are functions of these inputs – the seller
receives payment, i.e. the maximum of the buyers’ inputs, the winner ob-
tains the item, i.e. the seller’s input, and the loser obtains a value indicating
that he lost.

Another useful abstraction is to assume that the parties perform tasks by
means of protocols, i.e. sets of instructions that the parties follow in order
to complete the task. Obviously, the protocol must satisfy certain security
requirements. To speak very loosely, we say that a protocol is secure if

1i.e. not the other buyer, nor potential eavesdroppers.

1



2 introduction

the underlying task exhibits certain properties even if some of the parties
deviate from the instructions. Let us describe some of these properties.

• Correctness. The first property is perhaps the most obvious one. It
stipulates that the protocol does what it is supposed to do. In our case,
it means that at the end of the protocol, the seller receives payment
corresponding to the highest bid, the loser is informed that he lost,
and the winner obtains the “correct” item.

• Privacy. As one might expect, privacy is roughly equivalent to the
notion that secret things should be kept secret. However, there is a
caveat. In our example, it would appear that the parties should learn
nothing about each others bids. Since the parties know their own
bids, by the mere fact of winning or losing, the parties can deduce up-
per/lower bounds on one another’s bids. This is unavoidable because
of correctness. Thus, a more precise definition of privacy is to state
that each party may learn only what his input/output suggests.

• Independence of Inputs. The third requirement stipulates that no
party may choose his input as a function of other parties’ inputs. In
our example, it means that the buyers cannot outbid each other by
deviating from the protocol’s instructions.

• Fairness. By cleverly exploiting the protocols’ flaws, suppose that
Barbara, the highest bidder, manages to acquire the item without
giving Steve any recompense. Alternatively, suppose that Steve gets
away with the money without handing the item to Barbara. In both
cases, the outcome of the protocol is unfair. By contrast, a protocol
is fair if either everybody receives output or no one does.

• Guaranteed Output Delivery. The last property stipulates that no
subset of parties can prevent the others from obtaining their output.
If Bob, suspecting he is the lowest bidder, prevents Steve and Barbara
from finalizing the transaction, then output delivery is violated.

Framing the Problem

Next, let us discuss the parties’ ability to communicate, and the potential
threats that the parties may pose.
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The Communication Model. At the very least, one must assume that
the parties have access to a point-to-point network enabling the parties
to communicate with one another. Alternatively, the parties may have
access to more elaborate technologies, such as broadcast channels or public-
key infrastructures. The communication model is the description of all
processes/devices that allow the parties to communicate. We remark that a
communication model may also include trusted parties in the form of servers
that cannot be tampered with, nor can they be made to deviate from their
intended purposes.

It goes without saying that the particularities of the model may be exploited
by the cryptographer. However, protocols that achieve high degrees of secu-
rity with little “help” from the model are clearly superior to protocols that
rely on its characteristic features. Therefore, in designing protocols, the
sensible approach is to make few and/or realistic assumptions that apply
across different communication models. For example, given the way most
people communicate e.g. over the internet, broadcast channels are regarded
as realistic, whereas trusted parties are not.

While the distinction between realistic and unrealistic models is meaning-
ful, we stress that models of the latter type are not without their merits.
First off, dealing with unrealistic models is a legitimate scientific pursuit if
realistic ones are simply too hard to be reckoned with. Second, the security
of schemes in realistic settings is often reducible2 to the security of other
schemes in unrealistic settings, which may prove advantageous considering
that unrealistic models often lend themselves to simpler and more intuitive
analyses.

The Adversary. It is customary to attribute all undesirable behaviour to
an abstract entity, known as the adversary, corrupting a subset of parties
that she utterly controls3, and to model the adversary by framing her capa-
bilities and motives. In the spirit of the previous discussion, the adversarial
model should be broad enough to capture as many threats as possible.
Thus, adversaries with extraordinary computational power, sophisticated
corrupting capabilities, and motives unknown, provide the highest degree
of generality.

Still, there are advantages in considering weaker or limited adversaries. Two

2i.e. the latter implies the former.
3This assumption captures the worst-case scenario where all dishonest parties form a

single coalition. There are cases where this assumption may be too strong, and adversarial
models with non-cooperating coalitions of corrupted parties may be more suitable [24,64].
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types that feature prominently in this work are passive and fail-stop. Passive
adversaries do not deviate from the protocol’s instructions. Rather, their
goal is to extract sensitive information while maintaining an honest façade.
On the other hand, fail-stop adversaries are essentially passive adversaries
with the extra capability of aborting the protocol early.

Security & The Ideal-World Paradigm

Historically, satisfactory definitions of security have been remarkably tricky
to come by. Classic approaches usually focus on specific requirements (like
privacy), or narrow adversarial models. By contrast, modern definitional
frameworks that emanate from the ideal-world paradigm [40] take a more
holistic approach to security. One such framework, known as stand-alone,
gives rise to the security definitions that appear in this work. We discuss it
next in greater detail.

The cryptographer is tasked with demonstrating that a protocol is secure.
The first order of business is to consider an idealized scenario, known as
the ideal model, involving the parties and the adversary, as well as a newly
defined algorithmic entity, the trusted party, that interacts with all partici-
pants, including the adversary, in a predefined and controlled way.

The Ideal Model. To begin with, the honest parties send their inputs
to the trusted party, while the corrupted parties send values of the adver-
sary’s choice. After receiving all the inputs, the trusted party computes
the outputs, and interacts with the adversary in accordance with the cryp-
tographer’s rules that were laid out at the beginning of the exercise. For
example, the trusted party may leak private information to the adversary
and/or let the adversary decide which parties are to receive output – or the
trusted party may do nothing of the sort. In any case, we stress that what-
ever the trusted party concedes to the adversary is a feature of the model,
not a flaw, since the interactions of the trusted party and the adversary are
fully determined by the cryptographer. At the end, in accordance with the
previous step, the trusted party sends outputs to the parties.

Security Definition (Informal) . A protocol is secure with respect to the
ideal model if executing the protocol is no worse than invoking a trusted
party, and having all the participants interact as per the ideal model.
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The ideal model is essentially a thought experiment on the part of the
cryptographer. As such, all aspects of the model, including the adversary,
fall under the cryptographer’s discretion. With that in mind, we make a
couple observations regarding adversary in the ideal model. The adversary
is privy to the inputs/outputs of the corrupted parties, and the values that
the latter send to the trusted party are chosen by the adversary. Other
than that, the adversary is limited to whatever the trusted party might
concede as per the specifications of the model. Thus, the cryptographer’s
security objectives dictate the features of the ideal model. For instance, all
the requirements discussed at the beginning of the introduction (privacy,
fairness, ...) are captured by a model, known as the ideal model with full-
security, where the trusted party pays no attention to the adversary.

A protocol is secure if every (real) adversary is essentially “confined” to
the restrictive framework of the ideal model. More precisely, a protocol is
secure if every adversary admits an ideal-world analogue, i.e.

• Anything that can be extracted from the protocol, can be inferred
from information available to the adversary in the ideal model.

• The ideal-world adversary can replicate the effects of the real-world
adversary on the honest parties’ outputs.

To sum up, security in the ideal-world paradigm is defined by describing a
comprehensive mental picture of the cryptographer’s security aims. Then,
for any specific protocol, security is determined by assessing whether the
protocol emulates this mental picture faithfully. The paradigm’s appeal
stems from this elegant process.

To conclude, we mention that the definitional framework above admits vari-
ous extensions (as in [23]) with security notions that are not captured by the
stand-alone framework. However, these notions are beyond the scope of our
work. For our purposes, the definitions that emanate from the stand-alone
framework suffice.

State of the Art

Protocols satisfying the highest degree of security are known to exist [15,25,
41,70], as long as more than half of the parties are honest. In other words,
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whenever the corrupted parties form a strict minority, there are protocols
that emulate the ideal model with full security, and thus these protocols
satisfy all the requirements described at the beginning of the introduction.

However, mostly4 because of fairness, all bets are off in the presence of
a dishonest (relative) majorities. This limitation was known even before
to the advent of MPC and the ideal-world paradigm. Fairness was first
studied in the context of signature exchange, where two parties exchange
digital signatures on a pre-agreed document. Fairness in this setting is of
paramount importance, since it would be highly undesirable for one party to
be bound to contents of the document, and for the other not to. Even and
Yacobi [35] showed that, for this task, the strongest notion of fairness is out
of the question. Specifically, in any signature-exchange protocol, there is a
point where one party is privy to information that allows him to produce
the relevant output, and the other party is not. Thus, a protocol where one
party obtains output if both do is ruled out for signature exchange. We
mention that protocols satisfying weaker notions of fairness are known for
this task [18,33].

Later, Cleve [26] showed that the limitation described above is somewhat
inherent to secure computation in the presence dishonest majorities: even
something as seemingly mundane as two-party coin-tossing, i.e. the task of
two parties computing a common uniform random bit, is not computable
with fairness. Cleve’s result relies on an intuition similar to the one de-
scribed above. If two parties are performing some interactive task, and the
parties go back and forth exchanging messages in a non-simultaneous way,
it would appear that there must be a point where one party has enough
information to compute the output while the other party does not. By
simply aborting at that point, fairness is clearly breached. As we shall see
later on, this intuition does not apply to all MPC tasks. Following Cleve’s
impossibility, two complementary directions of investigation emerged.

The first one discards fairness altogether. Unfairness is formalized by letting
the adversary decide who receives output in the ideal model. The resulting
model, known as security-with-abort, is meaningful given that it guarantees
correctness, privacy and independence of inputs, and there are protocols [41]
that emulate the model faithfully for any number of corrupted parties, under
suitable assumptions. We stress that most secure-with-abort protocols (like

4For our purposes, it is reasonable to attribute the lack of full-security to fairness.
In arbitrary settings however, output delivery plays an important and distinct role. c.f.
[29, 30]
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the one from [41]) are unfair even when the dishonest parties are in the
minority. A line of work, known as best of both worlds, attempts to combine
full-security and security-with-abort by means of protocols that emulate one
model or the other depending on the ratio of honest-to-dishonest parties. A
number of papers [11, 52, 54] show that such protocols exist as long as the
relevant ratio does not exceed certain values.

The second direction of investigation strives to preserve fairness albeit in a
weaker/alternative form. Alternative notions of fairness roughly fall under
three categories. In the first one, arguably the most natural one, protocols
are (weakly) fair if the probability of breaching fairness is deemed tolerable.
In the second category, (weak) fairness is defined by introducing entities,
in the form of trusted parties or a preexisting networks, that can either
restore fairness or deter the parties from breaching it. Finally, notions
from the third category depart from the malicious/honest dichotomy of the
cryptographic realm, by introducing game-theoretic utility functions and/or
reputation systems for the parties.

Gradual Release, Probabilistic Fairness & 1/p-security. The parties
either learn the output slowly (Gradual Release) [18–20,31,33,34,36,38,39,
51,68,69,73] or their confidence in knowing the output grows as the protocol
approaches its termination (Probabilistic Fairness) [10,14,27,42,61,71]. We
refer to [43] for a detailed survey of the literature on these topics. For a
more modern approach, we mention the 1/p-security notion of Gordon and
Katz [48] that follows the usual real-vs-ideal definitional framework. By
relaxing how faithfully a protocol emulates the ideal model, the authors
obtain a meaningful notion of fairness.

Optimistic Fairness & MPC with Penalties. In the optimistic model,
one assumes the presence of an offline trusted party, dubbed the judge, that
can restore fairness whenever it is breached. The optimistic model is well
studied, and there is a plethora of definitions and feasibility/infeasibility
results that pertain to it [6–9, 21, 32, 37, 56, 58–60, 65, 67]. On the other
hand, in the penalty model, aggrieved parties do not obtain their output by
resorting to a judge, or in fact by any other means. Rather, the parties are
compensated in the form of some crypto-currency, like BitCoin [16, 55, 57].
Needless to say, this approach requires some sort of preexisting network.

Both optimistic fairness and MPC with penalties are application-driven
and may prove useful to the non-academic world. That being said, from
a theoretical perspective, both approaches somewhat defeat the purpose of
secure computation – the objective of secure computation is to do away
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with trusted parties and preexisting setups.

Other Notions of Fairness. Inspired by [50], and finding itself at the
intersection of cryptography and game theory, rational cryptography does
not shy away from speculating about the parties’ behavior. If the cryp-
tographer knows the parties’ preferences because he/she is privy to their
utility functions, then protocols that build appropriate incentives by means
of cryptographic tools provide meaningful notions of security. Alternatively,
one might use reputations systems to achieve similar ends [5].

Complete Fairness

The motivation behind secure-with-abort and weakly-fair computation is
the notion that fairness is impossible for functions other than trivial ones,
i.e. constant functions or functions where only one party is assigned an
output. In [45], Gordon, Hazay, Katz and Lindell show that the notion is
false. In this section, we survey the literature pertaining to the strongest
form of fairness, also known as complete fairness.

Impossibility of Fairness. Coin-Tossing is the functionality that takes
no inputs, and hands the same uniform random bit to a number of parties.
Cleve [26] showed that in any two-party coin-tossing protocol, at least one
party can bias the other party’s output, i.e. the output is tilted toward 1 or
0. This seemingly unrelated fact has profound implications for fairness. In
particular, it implies that coin-tossing is not computable with fairness, since
the parties’ outputs from any fair realization of the coin-tossing function-
ality cannot be biased. By extension, fairness is ruled out for any function
that implies coin-tossing, such as XOR. The work of Asharov, Lindell, and
Rabin [4] tackles this question in depth, and provides a characterization of
all functions that imply coin-tossing. The characterization is known as the
balanced criterion.

Agrawal and Prabhakaran [1] generalized Cleve’s result to arbitrary sam-
pling functionalities. A sampling functionality is a randomized function in
which two parties, with no inputs, sample two bits. The functionality is said
to be non-trivial if the resulting bits exhibit statistical correlation. In [1],
it is shown that any non-trivial sampling functionality is not computable
with fairness in the two-party setting. In addition, the authors analyze
sampling functionalities systematically in the context of fairness, and they
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explore the relationship between sampling functionalities and the task of
exchanging secret bits.

Cleve’s work is also central to the topic of optimally fair coin-tossing [26,28],
i.e. designing protocols that minimize the bias that the parties may inflict.
Cleve showed that the bias is lower-bounded by a value that is inversely pro-
portional to the number of rounds, for any coin-tossing protocol. Malkin,
Naor and Segev [66] confirmed that Cleve’s bound is tight asymptotically.
In the multi-party setting, Beimel, Omri and Orlov [13] deduced asymp-
totically optimal bounds, assuming the corrupted parties do not exceed
two-thirds of the total participants. Haitner and Tsfadia [49] deduced al-
most-optimal bounds for the three-party setting with corrupted majority.

Possibility of Fairness. The topic of complete fairness was single-handedly
revitalized by the work of Gordon, Hazay, Katz and Lindell [45]. Far from
being impossible, Gordon et al. showed that for certain two-party functions,
there exist protocols that are fully secure, and thus satisfy the strongest
notion of fairness. Such functions are inherently fair, as opposed to un-
fair functions like XOR. The question of characterizing functions with re-
spect to full security was reopened. In [45], a distinction is made between
XOR-embedded5 and non XOR-embedded functions. Functions of the lat-
ter type, which includes OR and the greater-than function, are shown to
be fair. Yet XOR-embedded functions are not necessarily excluded from
fully-secure computation. Gordon et al. propose a specific protocol, re-
ferred to as GHKL throughout the present thesis, that computes a certain
XOR-embedded function with full security.

Asharov [2] builds on the work of Gordon et al. by showing that, contrary
to what might be expected, an extraordinary amount o functions are fair.
To prove this result, Asharov delves into the security analysis of protocol
GHKL, and deduces sufficient criteria for the protocol to be fully secure.
Then, by applying classic results from affine geometry and linear algebra,
the author elegantly demonstrates that almost all functions with unequal-
size domains6 satisfy the criteria. On the flip side, using similar arguments,
the security analysis of Gordon et al. is shown to fail for almost all functions
with equal-size domains.

In the multi-party setting, Gordon and Katz [47] showed that three-party
majority function and n-party OR are computable with full security when

5A function is XOR-embedded if restricting the function to a subset of inputs yields
the XOR function.

6i.e. one party has more inputs than the other.
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all-but-one parties are corrupted. Finally, we mention [46] that discusses
complete primitives for fairness, i.e. minimal augmentations of the commu-
nication model that enable completely fair computation.

Our Contributions

In this work, we tackle the central question raised by Gordon et al. regard-
ing the characterization of functions with respect to fairness. Our work is
organized in two parts.

Given a two-party function, is there an easy-to-check criterion that
determines whether that function is computable with full security?

Part I. In the first part, similarly to [45] and [2], we focus on a specific
class of functions. Namely, functions that are finite – the parties have a
finite amount of inputs, symmetric – both parties receive the same output,
Boolean – the output consists of a bit, and deterministic – the output is
fully determined by the inputs. By abusing terminology, functions in this
class are referred to as Boolean functions.

Tight security analysis of GHKL.

Like Asharov, we embark on an in depth analysis of GHKL and its security
proof, and we deduce sufficient criteria for the protocol to be fully-secure.
The criteria of [2] follow from ours as a special case. Then, we show that
our criteria are necessary. That is to say GHKL falls short of full-security,
for any function that does not meet our criteria. We emphasize that our
criteria were found independently of Asharov’s.

Generalization of the Balanced Criterion of Asharov, Lindel and
Rabin.

As mentioned earlier, certain functions are excluded from fully-secure com-
putation because they imply coin-tossing. In Chapter 4, we present a tech-
nique to implement non-trivial sampling functionalities by means of certain
Boolean functions. Since fully-secure computation of sampling functional-
ities is ruled out by [1], the technique results in a necessary condition for
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fairness. The condition, dubbed the semi-balanced criterion, gives rise to a
family of unfair functions that were previously unaccounted .

A new protocol, based on GHKL, that computes all fair Boolean
functions with full security.

At the beginning of Chapter 5, we show that a gap remains in the char-
acterization, i.e. there are functions that lie outside the newly encountered
family of unfair functions and the family of functions for which GHKL is
fully secure. By the end of the chapter, we show that modifying GHKL
results in a protocol that is fully secure for all the functions that lie in the
gap. While our modification may be viewed as generalization of GHKL,
we believe that it departs from the spirit of Gordon et al.’s protocol. The
problem of characterizing Boolean functions is settled.

Theorem (Informal) . A Boolean function is computable with full secu-
rity if and only if the all-one vector or the all-zero vector belong to the
affine span of either the rows or the columns of the matrix describing the
function.

As a conclusion to Part I, we point out that our main result extends to
a complete characterization of – randomized two-party Boolean functions
– multi-party symmetric Boolean functionalities in the presence of relative
dishonest majorities (assuming broadcast). We emphasize that most previ-
ous works in this area (with the exception of [47]) assume that the corrupted
parties form a strict minority.

The exact (non-asymptotic) trade-off between bias and round-
complexity for two-party coin-tossing.

In Chapter 4, we make a brief detour to the topic of optimally fair coin-
tossing. We show that by derandomizing the protocol of Malkin, Naor and
Segev, the theoretical bound from Cleve’s seminal paper is reached.

Part II. Needless to say, Part II aims at characterizing functions from a
broader class of functions – arbitrary functions that are finite. However, we
emphasize that our goals are rather more ambitious. The second half of our
exposition aspires to lay the foundation for a framework that allows for the
systematic analysis of a functions’s fairness. To this end, we “deconstruct”
certain concepts from Part I, and insights that emerge are applied toward
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extracting necessary and/or sufficient criteria for fairness. Unfortunately,
the second part of our work contains a number of unresolved issues. Some
of these issues may be of independent interest, and they are discussed in
the concluding chapter.

What does provable unfairness boil down to?

The question gives rise to a couple of concepts that we refer to as locking
strategies and sampling attacks. As the choice of names may give away,
locking strategies and sampling attacks are algorithmic processes that we
associate with the honest party and the adversary, respectively. We empha-
size that both processes appear repeatedly in Part I, even though they are
only defined at the beginning of Part II. Locking strategies and sampling
attacks are added to the nomenclature in order to systematize the tech-
niques from the first part of our exposition. In Chapter 6, locking strategies
provide meaningful context to the negative criteria from Chapter 4, and
they allow for an intuitive generalization of the semi-balanced criterion to
arbitrary functions.

A notion of security that lies between security-with-abort and full-
security.

Intermediate notions of security are worthy of our consideration for the
possibility that they might provide a route toward full security. This is
precisely what Chapter 7 is all about. We show that certain protocols
satisfying a peculiar security requirement can be used as building blocks
in the design of fully secure protocols. This new requirement, referred to
as security against sampling attacks, relates to sampling attacks as well as
locking strategies.

Designing fully secure protocols for asymmetric Boolean functions.

To illustrate the usefulness of our approach, we focus on asymmetric Boolean
functions as a case study. We show how to construct suitable protocols
that give rise to fully secure ones. Chapter 7 mostly revolves around an
algorithm that we use in this regard. In particular, for any asymmetric
Boolean function, our algorithm either comes up with the description of a
suitable protocol, or it returns that it failed to do so. In the former case,
the function is computable with full security. In the latter case, we suspect
that the function is unfair, even though a proof escapes us at the moment.
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Publications

Most of our results from Chapters 3 and 4 were published in [63]. Our ef-
forts were recognized by the program committee of the Security and Cryp-
tography for Networks Conference in the form of a Best Paper award. The
characterization from Chapter 5 was published in [3].

At the time these lines are being written, the contents of Part II do not
appear in the literature, and we are actively pursuing the publication of the
relevant results. Finally, some preliminary results that are not included in
this thesis can be found in [62].





Chapter 2

Preliminaries

Some familiarity with probability theory and linear algebra is taken for
granted.

2.1 Notation

Let N denote the set of natural numbers and let n ∈ N denote the se-
curity parameter. A function µ(·) = negl(·) is negligible if it vanishes
faster than any (positive) inverse-polynomial. A distribution ensemble X =
{X(a, n)}a∈∆,n∈N is an infinite sequence of random variables indexed by ∆
and N. Two distribution ensembles, X and Y , are computationally indis-
tinguishable if for every non-uniform polynomial-time algorithm D, there
exists a negligible function µ such that for every a and n

|Pr [D(X(a, n)) = 1]− Pr [D(Y (a, n)) = 1] | ≤ µ(n).

Furthermore, we say that X and Y are statistically close if for all a and n,
the following sum is upper-bounded by a negligible function in n:

1

2
·
∑
s

|Pr [X(a, n) = s]− Pr [Y (a, n) = s] |,

where s ranges over the support of either X(a, n) or Y (a, n). We write X
c≡

Y when the ensembles are computationally indistinguishable and X
s≡ Y

when they are statistically close.

15
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Let P1, P2, . . . , Pm denote the parties. An m-party functionality1 or function
f = (f1, . . . , fm) is a random process that maps m-tuples of inputs (one for
each party) to m-tuples of random variables called outputs (one for each
party). The domain of f is denoted X = X1 × · · · ×Xm. Moreover, we say
that f is symmetric if f1 = · · · = fm i.e. all parties output the same value,
and asymmetric otherwise.

An m-party protocol Π computing functionality f is a polynomial-time pro-
tocol satisfying the following. On global input 1n – the security parameter,
and private inputs x1 ∈ X1, . . . , xm ∈ Xm – handed by the parties, the joint
distribution of the outputs in an honest execution of Π is statistically close
to f(x1, · · · , xm) = (f1(x1, . . . , xm), . . . , fm(x1, · · · , xm)). The parties in
the protocol run in polynomial time in the security parameter n.

Following the usual convention, we introduce an adversary A, which is given
an auxiliary input z and corrupts a subset of the parties. The adversary is
static, that is, it chooses the subset it corrupts prior to the execution of the
protocol. The adversary is assumed to be malicious and computationally
bounded. For a protocol Π computing f , let

(OutRealA(z),Π,ViewReal
A(z),Π)(1n, x1, . . . , xm)

denote the joint distribution of the honest parties’ outputs and the adver-
sary’s view during an execution of Π, where x1, . . . , xm are the prescribed
inputs, 1n is the security parameter (in unary representation), and the view
of the adversary consists of the auxiliary input, the inputs of the parties
it controls, their random inputs, and the messages they receive during the
execution of the protocol.

Notation and Results from Linear Algebra. Let R denote the real
field, and fix `, k ∈ N. Column vectors are denoted by bold letters, e.g. v
or 1k (the all-one vector), and matrices are denoted by capital letters, e.g.
M , P . We distinguish row vectors and transposes using the superscript T .
The i-th entry of a vector v is denoted v(i), and we write v ∈ Rk to indicate
that v has k entries. The entry at the intersection of the i-th row and j-
th column of a matrix M is denoted M(i, j), and we write M ∈ R`×k to
indicate that M has size `× k. Given two matrices M and M ′ of same size,
write M ∗M ′ for the entry-wise (Hadamard) product.

We say that w ∈ R` is in the image of M , denoted w ∈ im(M), if there
exists u ∈ Rk such that Mu = w. We say that v ∈ Rk is in the kernel of

1The definition of a functionality is tailored to our purposes.
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M , denoted v ∈ ker(M), if Mv = 0`. Vectors u and v ∈ Rk are said to
be orthogonal if 〈u |v〉 = uTv = 0. Similarly, sets U and V ⊆ Rk are said
to be orthogonal if u and v are orthogonal, for every (u,v) ∈ U ×V. Let
U + V = {u + v | (u,v) ∈ U×V}.

Theorem 2.1 (Fundamental Theorem of Linear Algebra). For any M ∈
R`×k, it holds that im(MT ) and ker(M) are orthogonal, and im(MT ) +
ker(M) = Rk.

Let V ⊆ R` be a finite set of vectors and write 〈V〉 for the vector space
generated by V i.e. the set of vectors obtained as linear combinations of
the elements of V. We say that w ∈ R` is an affine combination of the
elements in V if there exist scalars {av}v∈V such that w =

∑
v∈V av · v

and
∑

v∈V av = 1, and all w’s obtained that way form the affine span of
V. Write H(MT ) for the affine span of the rows of M ∈ R`×k. Finally, for
an arbitrary matrix P ∈ Rk×k, we say that P is an affine endomorphism of
H(MT ) if P · u ∈ H(MT ), for every u ∈ H(MT ).

Lemma 2.2. For any M ∈ R`×k, it holds that 0k is an affine combination
of the rows of M if and only if 1` is not a linear combination of the columns
of M .

Proof. Write M ′ for the matrix obtained from M by concatenating the all-
1 column. It holds that 1` is not a linear combination of the columns of
M if and only if rank(M ′) = rank(M) + 1. Equivalently, dim(ker(M ′)) =
dim(ker(M))−1 and there exists u ∈ R` such that MTu = 0k and 1T` ·u 6= 0.

2

2.2 Security Definition

Let f = (f1, . . . , fm) be an m-party functionality and let Π be a protocol
for computing f . Further assume that an adversary corrupts a fixed subset
B ⊆ {P1, . . . , Pm} of the parties. Security in multiparty computation is
defined via an ideal model. We assume that parties have access to a trusted
party T that computes the functionality for them, and we attempt to show
that protocol Π emulates this idealized scenario. In Figure 2.1, we describe
the ideal model with full security.
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Inputs: Each party Pi holds 1n and xi ∈ Xi. The adversary is given an auxiliary
input z ∈ {0, 1}∗. The trusted party T has no input.

Parties send inputs: Each honest party sends its input to T , each corrupted
party sends a value of the adversary’s choice. Write (x′1, . . . , x

′
m) for the

tuple of inputs received by T .

The trusted party performs computation: If any x′i is not in the appropri-
ate domain (or was not sent at all), then T reassigns the aberrant input to
some default value. Write (x′1, . . . , x

′
m) for the tuple of inputs after (possi-

ble) reassignment. The trusted party then chooses a random string r and
computes f(x′1, . . . , x

′
m; r).

Trusted party sends outputs: Each party Pi receives fi(x
′
1, . . . , x

′
m; r).

Outputs: Each honest party outputs whatever T sent him, the corrupted parties
output nothing, and the adversary outputs a probabilistic polynomial-time
function of its view.

Figure 2.1: The Ideal Model with Full Security.

Let S be an adversary in the ideal world, given auxiliary input z and corrupt-
ing a subset B of the parties. Let OutIdealS(z),f (1n, x1, . . . , xm) denote the hon-
est parties’ outputs in the ideal model, where x1, . . . , xm are the prescribed
inputs and 1n is the security parameter. Let ViewIdeal

S(z),f (1n, x1, . . . , xm) de-
note the adversary’s output in the ideal model.

Definition 2.3. Let Π be a protocol for computing f . We say that Π
computes f with full security tolerating coalitions of size at most t if for
every non-uniform polynomial time adversary A controlling a set B of at
most t parties in the real model, there exists a non-uniform polynomial
time adversary S (called the simulator) controlling B in the ideal model
such that{(

OutRealA(z),Π,ViewReal
A(z),Π

)(
1n, x1, . . . , xm)

}
(x1,...,xm)∈X,
z∈{0,1}∗,n∈N

c≡

{(
OutIdealS(z),f ,ViewIdeal

S(z),f

)(
1n, x1, . . . , xm

) }
(x1,...,xm)∈X,
z∈{0,1}∗,n∈N

.

In effect, showing that the above distribution ensembles are computationally
indistinguishable implies that, in the plain model, the information acquired
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by the adversary together with her influence over the honest parties’ outputs
is no worse than what can be achieved in an idealized situation.

P1

x, 1n

P2

y, 1n

T

A

x′ y′

P1 P2

T

f(x′, y′)

f f

Figure 2.2: Visual Illustration of the Two-Party Fully-Secure Model.

Cryptographic Attacks. From the security definition, it follows that a
protocol is not fully-secure if some (real) adversary does not admit a ideal-
world analogue. Typically, the adversary follows an algorithmic process, in
the real model, that induces a view and/or an effect on the honest party’s
outputs, clearly beyond the simulator’s capabilities in the ideal model. We
refer to any such process as an attack.

As discussed in the introduction, if the corrupted parties are in the minority,
then essentially any task can be carried out with full security. Specifically,
if the parties have access to broadcast, and at least half of them are honest,
then any multiparty functionality is computable with full security [70]. The
statement remains true even without broadcast, as long as two thirds of the
parties are honest [15, 25]. Finally, if we allow cryptographic assumptions,
then any multiparty functionality is computable with full security [41], as
long as half of the parties are honest.

% Corrupted Parties < 1/3 < 1/2

with Broadcast Statistical Security
without Broadcast Statistical Security Computational Security
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If the adversary corrupts a majority of parties, then theoretical limitations
relating to fairness prevent fully secure computation, for many functional-
ities. This happens by default in the two-party setting. By doing away
with fairness, what remains is the notion of security-with-abort, which is
formalized by letting the simulator decide which parties receive output in
the ideal model. The definition for security-with-abort follows from the
relevant model in the same way that Definition 2.3 follows from the ideal
model with full security. For more details, see Appendix A p.152.

Theorem 2.4 (GMW87). Under suitable cryptographic assumptions, any
functionality is computable with abort, for any number of corrupted parties.

2.3 The Hybrid Model

Breaking down a difficult task into a number of easier subtasks is arguably
the most useful problem-solving technique there is. However, this technique
is only applicable when the whole corresponds to the sum of the parts. Luck-
ily for us, MPC tasks abide by this rule. Let f (1), . . . , f (t) and f denote mul-
tiparty functionalities. The hybrid model with2 ideal access to f (1), . . . , f (t)

is the communication model obtained by augmenting the real-model with
a trusted party that the parties may call upon to compute any one of the
f (i), and the participants’ interaction play out according to a specific ideal
model that has been fixed in advance. Thus, a hybrid protocol for comput-
ing f is a protocol for computing f in the relevant communication model.
Without loss of generality, any hybrid protocol proceeds in sequence of at
most polynomially-many iterations such that, at each iteration, the parties
either have a real-world interaction, or they make a single call to the trusted
party.

A hybrid protocol Π computes f with full security if for every adversary in
the hybrid model, there is a simulator S in the ideal model such that the
joint distribution of the adversary’s view and honest parties’ outputs in the
ideal and hybrid model are indistinguishable. By virtue of proposition [22]
below, secure protocols in the hybrid model give rise to secure protocols in
the plain model.

Proposition 2.5. For every i ∈ {1, . . . , t}, suppose that (real) protocol ρi
computes f (i) with full-security. If hybrid protocol Π computes f with full

2If no confusion arises, functions f (i) are omitted.
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security, then real protocol Πρ1,...,ρm computes f with full security, where
Πρ1,...,ρm is obtained from Π by replacing ideal calls to the trusted party with
the appropriate protocol.

For positive results, it goes without saying that the hybrid-model approach
makes sense only if every invocation of the trusted party is readily replace-
able with a (real) protocol. Even then, the hybrid model is advantageous
insofar that it conceals all things irrelevant to the analysis, and it rids itself
of the minutiae of the plain-model. Alternatively, by turning the method on
its head, hybrid models also provide convenient routes towards impossibility
results. Whereas the positive direction asks whether the overlying task is
feasible, based on the subtasks, the negative direction asks whether certain
subtasks are impossible, based on the overlying task.

2.4 The Online Dealer Model

For aesthetic as well as practical reasons, the communication model under-
lying most of our work is of the hybrid variety, and any claims pertaining
to the plain model follow from a hybrid-model argument. The model we
use is known as Online Dealer, and it involves a trusted party, dubbed the
dealer, that performs all the computations for the parties, and the parties
receive messages exclusively through the dealer.

To show that a given function is fair, we define an appropriate protocol
as per Figure 2.3, and we argue that the (hybrid) protocol is fully secure.
A protocol in the online dealer model is defined by assigning a function
r ∈ poly(n) for the number of rounds, where n denotes the security param-
eter, and by describing the probability distribution of the parties’ backup
sequences, for all possible inputs. The backup sequences of P1 and P2 are
denoted (a1, . . . , ar) and (b1, . . . , br), respectively. As the name suggests, ai
(resp. bi) denotes the relevant party’s output, if the opponent were to abort
at round i (resp. i+ 1).

Quirks of the Online Dealer Model. Any protocol in the online dealer
model admits a concise and intuitive description. In addition, the model
is convenient in that the adversary is restricted to fail-stop behavior. We
argue that neither of these assumptions incurs loss of generality, in relation
to the plain-model.
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Inputs: Party P1 (resp. P2) holds 1n and x ∈ X (resp. y ∈ Y ). The dealer D has
no input.

Parties compute backup outputs: P1 (resp. P2) is instructed to compute a0
(resp. b0).

Parties send inputs: Parties are instructed to send their inputs to the dealer.
Write (x′, y′) for the inputs received by D.

The dealer performs computation: The dealer computes bits a1, . . . , ar and
b1, . . . , br, where r ∈ N depends on the security parameter.

The dealer sends outputs: For i = 1 . . . r

1. The dealer hands ai to the first party. Then, P1 instructs D to abort
or continue. In the first case, the dealer sends ⊥ to both parties and
halts. Otherwise go to next step.

2. The dealer hands bi to the second party. Then, P2 instructs D to abort
or continue. In the first case, the dealer sends ⊥ to both parties and
halts. Otherwise go to next step.

Outputs: Parties are instructed to output the last bit they successfully con-
structed/received.

Figure 2.3: The Online Dealer Model

For one, in light of standard authentication techniques and secure-with-
abort computation, it is sensible to assume that anything beyond fail-stop
bears no consequence to a (real) protocol’s security. Specifically, by means of
an unfair preprocessing step, the parties may generate a number of random
values, in the form of keys, shares and tags, allowing the parties to keep
tabs on one another. Then, by unfairly exchanging some of these values
in a predefined way, information available to the parties at any give point
may be restricted to whatever the cryptographer intended for. Thus, any
protocol along those lines is only vulnerable to fail stop attacks, at worst.

While theoretically sound, the approach just described comes at a heavy
price. The (real) protocol’s description must carefully keep track of all
the relevant values, even though the values only serve the one purpose.
Other aspects of the protocol are often obscured, and the resulting security
analyses may appear convoluted. By contrast, notice that the online dealer
model achieves similar ends, while avoiding all the hassle.

As discussed in the previous section, a hybrid model is useful if it serves as
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a user-friendly alternative to the real model, which the online dealer model
certainly does. There is a standard transformation from this model to the
plain one, c.f. Appendix B p.153, and thus Proposition 2.5 applies to this
model.

Remark 2.6. The ideal call in the online dealer model is reactive, i.e. it
receives inputs and gives outputs over multiple iterations, whereas the un-
derlying functionalities in a hybrid model are non-reactive. This minor
inconsistency may be resolved in one of two ways. Either by noting that
Proposition 2.5 applies to reactive functionalities as well, or by replacing
the online dealer model with the equivalent offline dealer model from Ap-
pendix B p. 153. The latter is hybrid according to our definition.

Throughout our work, by abusing terminology, the terms plain, real and
online dealer are used interchangeably.





Part I

The Characterization of
Boolean Functions
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Special Notation for Part I

Throughout Part I, f denotes a two-party Boolean function. The input
domain of f will are denoted X × Y , instead of X1 × X2, and we assume
that X = {1, . . . , `}, Y = {1, . . . , k}. In addition, to every function f , we
associate a matrix M ∈ R`×k such that M(x, y) = f(x, y). Finally, the x-th
row and y-th column of M are denoted rowTx and coly, respectively. We say
that a vector is monochromatic if it is equal to the all-1 or all-0 vector.





Chapter 3

Protocol GHKL

Parties P1 and P2 wish compute a boolean function f : X × Y → {0, 1} on
inputs x and y, respectively, by means of protocol GHKL. We ask whether
GHKL computes f with full security. The purpose of the present chapter
is to prove the following theorem.

Theorem 3.1. GHKL computes f with full security if and only if v 7→(
MT · 1`/`

)
∗ v is an endomorphism of H(MT ).

Protocol GHKL proceeds in a sequence of rounds such that the parties
receive backup outputs one after the other. Prior to round i∗, referred to as
the special or threshold round, the parties’ backup outputs are computed
by choosing a fresh random input for the other party. For every round after
i∗, the parties are handed the correct output. At any given round, if either
party aborts, the remaining party is instructed to output the last backup
output he received. It goes without saying that the parties are (mostly)
ignorant of the value of i∗, which is chosen by the dealer according to the
geometric distribution with parameter α.

The present chapter is organized as follows. We begin with the security
analysis that appears in [45], and which gives rise to a set of equations that
the simulator is required to solve. Then, we show that solutions can be
found efficiently if a simple criterion is met. Finally, in the last section, we
show that GHKL is susceptible to an attack, for any function that does not
satisfy the criterion. Interestingly, this means that the simulation of GHKL
is essentially unique, and our analysis is tight.

29
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Protocol GHKL

1. The parties P1 and P2 hand their inputs, denoted x and y respectively,
to the dealer.a

2. The dealer chooses i∗ ≥ 1 according to the geometric distribution with
probability α.

3. The dealer computes out = f(x, y), and for 0 ≤ i ≤ r

ai =

{
f(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗

out otherwise

and

bi =

{
f(x̃(i), y) where x̃(i) ∈U X if i < i∗

out otherwise.

4. The dealer gives b0 to P2.

5. For i = 1, . . . , r, where r(n) = α−1 · ω(log(n)),

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1
and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and
halts.

aIf x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs this value and
the protocol is terminated. The case of an inappropriate y is dealt analogously.

Figure 3.1: Protocol GHKL for Computing f .

3.1 The Analysis of Gordon et al.

The probability that i∗ > r is (1 − α)r. So, if r = α−1 · ω(log n), then
the protocol is correct with overwhelming probability. Next, note that a
corrupted P2 poses no threat to the protocol. Any malicious behaviour on
the part of P2 is utterly harmless, given that P1 receives the correct output
first, no matter what. In fact, a corrupted P2 can be simulated regardless
of the parameters, for any function. On the other hand, precisely because
P1 receives the correct output first, an adversary A controlling P1 may
potentially breach fairness by guessing the threshold round and quitting.

Let us begin with a high-level description of the simulator. The adversary
hands x to the simulator for the computation. The simulator chooses i∗
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The Simulator S for Protocol GHKL

• The adversary A gives its input x to the simulator.a

• The simulator chooses i∗ ≥ 1 according to the geometric distribution
with probability α.

• For i = 1, . . . , i∗ − 1:

– The simulator gives ai = f(x, ỹ(i)) to the adversary A, where
ỹ(i) is chosen according to the uniform distribution.

– If A aborts, then the simulator chooses an input x0 according

to a distribution x
(ai)
x (which depends on the input x and back-

up output ai), gives x0 to the trusted party, outputs the bits
a1, . . . , ai, and halts.

• At round i = i∗, the simulator gives x to the trusted party and gets
the output a = f(x, y).

• For i = i∗, . . . , r: The simulator gives ai = a to the adversary A, if A
aborts, then the simulator outputs the bits a1, . . . , ai and halts.

• The simulator outputs the bits a1, . . . , ar and halts.

aIf the adversary gives an inappropriate x (or no x), then the simulator sends
some default x̂ ∈ X to the trusted party, outputs the empty string, and halts.

Figure 3.2: The Simulator S for Protocol GHKL.

according to the geometric distribution with parameter α, and, for i =
1 . . . i∗− 1, the simulator generates backup outputs for P1 exactly as dealer
does in the protocol, i.e. by choosing an input for the second party uniformly
at random. The backup outputs are handed one-by-one to the adversary,
thus simulating the rounds of the protocol. At any point, if the adversary

aborts, the simulator choose x0 according to a probability vector x
(a)
x , where

a denotes the last value that was handed to the adversary. The simulator
sends x0 to the trusted party, outputs the sequence of bits he handed to the
adversary, and halts. If the simulator runs out of values, and the adversary is
still active, then the simulator sends x to the trusted party and receives the
correct output. Let out denote the output. For i = i∗ . . . r, the simulator
hands out to the adversary, thus simulating the remaining rounds of the
protocol. At any point, if the adversary aborts, the simulator outputs the
sequence of bits he handed to the adversary and halts. See Figure 3.2 for
the complete description of the simulator.
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Recall that the protocol is secure if the adversary’s view and the honest
party’s output in the real and ideal worlds are indistinguishable. Observe
that the corrupted party’s backup sequences are identically distributed, in
both worlds. The question becomes how does the simulator replicate the
effect of an early abort on the honest party’s output, given that he can only
do so by choosing an appropriate input for P1. Thus, the strategy boils

down to the existence of x
(a)
x that will do the trick. Define c

(0)
x , c

(1)
x such

that

c(0)
x (y)

def
=


q(y) if f(x, y) = 1

α · q(y)

(1− α) · (1− p(x))
+ q(y) otherwise

,

c(1)
x (y)

def
=


q(y) if f(x, y) = 0

α · (q(y)− 1)

(1− α) · p(x)
+ q(y) otherwise

,

and
q

def
= MT · 1`, p

def
= M · 1k.

Theorem 3.2 (Gordon et al. [44]). Using the notation above, if for some

α ∈ (0, 1), and all x ∈ {1, . . . , `}, there exist probability vectors x
(0)
x ,x

(1)
x ∈

R` such that
MT · x(a)

x = c(a)
x ,

then GHKL computes f with full security.

Proof. First, observe that the real and ideal backup-sequences of P1 are
identically distributed. It follows that the adversary quits in the real world
if and only if she quits in the ideal world. Next, if the adversary aborts after
i∗ has been surpassed, then the honest party’s output and the adversary’s
view are identically distributed in the real and ideal worlds. Finally, as-
suming the adversary aborts at round i ≤ i∗, P1’s view up to round i− 1 is
independent of the tuple consisting of the honest party’s output and the cor-
rupted party’s backup at round i. Thus, to show that the relevant ensembles
are indistinguishable, it suffices to show that for an adversary quitting at
round i ≤ i∗, the i-th backup output of P1 together and the honest party’s
output admit the same joint distribution in the real and ideal model.

Let (ai, b)
Real and (ai, b)

Ideal denote the i-th backup output of P1 and the
honest party’s output in the relevant model. By analyzing all possible out-
comes, we show that (ai, b)

Real and (ai, b)
Ideal are identically distributed.
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Write c
(a)
x (y) for the probability that P2’s outputs is equal to 1 in the ideal

world, given that the simulator sent an input according to x
(a)
x and P2 holds

y as an input.

First Case: (0, 0). In the real world,

Pr
[
(ai, b)

Real = (0, 0)
]

= α(1− f(x, y))(1− q(y)) + (1− α)(1− p(x))(1− q(y)),

In the ideal world,

Pr
[
(ai, b)

Ideal = (0, 0)
]

= α(1− f(x, y)) + (1− α)(1− p(x))(1− c(0)
x (y)),

Thus, unless p(x) = 1 (in which case the two probabilities are obviously
equal), equality holds if

c(0)
x (y) = q(x) +

α

(1− α)(1− p(x))
· (1− f(x, y))q(x)

Second Case: (1, 0). In the real world,

Pr
[
(ai, b)

Real = (1, 0)
]

= αf(x, y)(1− q(y)) + (1− α)p(x)(1− q(y)),

In the ideal world,

Pr
[
(ai, b)

Ideal = (1, 0)
]

= (1− α)p(x)(1− c(1)
x (y)),

Thus, unless p(x) = 0 (in which case the two probabilities are obviously
equal), equality holds if

c(1)
x (y) = q(x) +

α

(1− α)p(x)
· f(x, y)(1− q(x))

Third Case: (0, 1). In the real world,

Pr
[
(ai, b)

Real = (0, 1)
]

= α(1− f(x, y))q(y) + (1− α)(1− p(x))q(y),

In the ideal world,

Pr
[
(ai, b)

Ideal = (0, 1)
]

= (1− α)(1− p(x))c(0)
x (y),

Thus, unless p(x) = 1 (in which case the two probabilities are obviously
equal), equality holds if

c(0)
x (y) = q(x) +

α

(1− α)(1− p(x))
· (1− f(x, y))q(x)
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Fourth Case: (1, 1). In the real world,

Pr
[
(ai, b)

Real = (1, 1)
]

= αf(x, y)q(y) + (1− α)p(x)q(y),

In the ideal world,

Pr
[
(ai, b)

Ideal = (1, 1)
]

= αf(x, y) + (1− α)p(x)c(1)
x (y),

Thus, unless p(x) = 0 (in which case the two probabilities are obviously
equal), equality holds if

c(1)
x (y) = q(y) +

α

(1− α)p(x)
· f(x, y)(1− q(y))

2

Equivalently, in matrix form, Theorem 3.2 can be stated as follows: if for

some α ∈ (0, 1), and all x ∈ {1, . . . , `}, there exist probability vectors x
(0)
x

and x
(1)
x such that

MT · x(0)
x = q + λ(0)

x · ((1− rowx) ∗ q)

MT · x(1)
x = q + λ(1)

x · (rowx ∗ (1− q)) (3.1)

then GHKL computes f with full security, where

λ(a)
x =



α

(1− α)(1− p(x))
if a = 0 ∧ p(x) 6= 1

α

(1− α)p(x)
if a = 1 ∧ p(x) 6= 0

0 if p(x) = 1− a

and · ∗ · denotes the entry-wise (Hadamard) product.

3.2 The GHKL Criterion

By the distributive property of the Hadamard product, (3.1) is equivalent
to

MT · x(0)
x = q + λ(0)

x · (q− q ∗ rowx)

MT · x(1)
x = q + λ(1)

x · (rowx − q ∗ rowx)
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Since qT = (1/`, . . . , 1/`) ·M , deduce that

MT · x(0)
x = MT (1 + λ(0)

x ) · 1`/`− λ(0)
x · (q ∗ rowx)

MT · x(1)
x = MT (1 + λ(1)

x ) ·

(
1`/`+ λ

(1)
x ex

(1 + λ
(1)
x )

)
− λ(1)

x (q ∗ rowx),

and that

q ∗ rowx = MT

(
1 + λ

(0)
x

λ
(0)
x

· 1`/`−
1

λ0
x

· x(0)
x

)
.

Knowing that 1`/` and x
(0)
x are probability vectors, it follows that q ∗ rowx

is an affine combination of the rows of M . Conversely, suppose there exists
v ∈ R` such that MT · v = q ∗ rowx and

∑
i v(i) = 1. Let us show that we

can find probability vectors satisfying (3.1). Fix α ∈ (0, 1) and define

x̃(0)
x = (1 + λ(0)

x ) · 1`/`− λ(0)
x v

x̃(1)
x = (1 + λ(1)

x ) ·

(
1`/`+ λ

(1)
x ex

(1 + λ
(1)
x )

)
− λ(1)

x v

If the vectors above are positive, then we are done. Otherwise, note that

x̃(a)
x (y) ≥ 1/`− λ(a)

x v(y),

for every j ∈ {1, . . . , `}. Since λ
(a)
x approaches 0 as α tends to 0, there exists

α0 ∈ (0, 1) such that

λ(a)
x ≤

1

`
· 1

maxj{v(j)}
,

for every α ≤ α0 and x ∈ X. The theorem below follows from our discussion.

Theorem 3.3 (GHKL Criterion). If v 7→ q ∗ v is an endomorphism of
H(MT ), then there exists α ∈ (0, 1) such that GHKL computes f with full
security.

3.2.1 Alternative Formulation of the Criterion

Lemma 3.4. Assuming it exists, let b denote the unique pre-image of 1` by
M that belongs to im(MT ), and let Q denote an arbitrary diagonal matrix.
It holds that Q is an endomorphism of H(MT ) if and only if

1. Q is a (linear) endomorphism of im(MT ).
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2. b is a fixed point of Q, i.e. Q · b = b.

If b does not exist then the equivalence holds with the first item alone.

Proof. (⇒) Suppose that Q is an endomorphism of H(MT ). By definition,
Q·rowx ∈ im(MT ) and since Q is a linear map, the first item is trivially true.
For the second item, we know that for some affine vector v, it holds that
Q·rowx = MT ·v. Since

∑
i v(i) = 1, it follows that for every x ∈ {1, . . . , `},

bT ·QMT · ex = 1 .

Equivalently, MQ ·b = 1`, and thus Q ·b = b + v0, for some v0 ∈ ker(M).
To conclude, note that Q is an endomorphism of im(M)T , and thus b+v0 ∈
im(M)T implies that v0 = 0. (⇐) From the first item, it follows that for
every x, there exists v such that MTv = Q · rowx. Using the fact that
Q · b = b, deduce that

bT ·MT · v = bT ·Q · rowx ⇒
(1, . . . , 1) · v = bT · rowx = 1 ,

, and thus v is affine. To conclude, we show that if b does not exist then
H(MT ) = im(MT ), and thus the equivalence holds with the first item alone.
If 1` /∈ im(M), then there exists v0 ∈ ker(M) such that 〈1` |v0〉 6= 0. Hence,
v = MTu implies that

v = MT

(
u +

1− 〈1` |u〉
〈1` |v0〉

· v0

)
,

and thus v is an affine combination of the rows of M . 2

Proposition 3.5. Let Q denote the diagonal matrix such that Q(i, i) =
q(i). It holds that Q is an endomorphism of H(MT ) if and only if

1. Q is an (linear) endomorphism of im(MT ),

2. no linear combination of the non-monochromatic columns of M yields
1`.

Proof. Assume the contrary and let b denote the unique pre-image1 of 1`
that belongs to im(MT ). Assume that Q is an endomorphism of H(MT )

1 If 1` /∈ im(M), then the proposition follows trivially from the lemma.
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and apply the previous lemma. Since Q ·b = b, and Q is diagonal, it follows
that b(y) 6= 0 implies q(y) = 1. Furthermore, since q(y) = 〈1`/` | coly〉, we
deduce that b(y) 6= 0 implies coly = 1`. Without loss of generality, suppose
that the first k′ columns contain 1` in their linear span, and not one of
them is monochromatic. To find a contradiction, we show that b(y) 6= 0,
for some y ∈ {1, . . . , k′}. Let v = (v1, . . . , vk′ , 0, . . . , 0), such that M ·v = 1`.
It follows that v = b + v0, for some v0 ∈ ker(M). Consequently, 〈v |b〉 =
〈b |b〉 > 0, and we conclude that at least one of the first k′ entries of b is
non-zero.

For the converse, since the non-monochromatic columns of M do not span
1`, it holds that b(y) 6= 0 implies coly = 1. Let

µ =
{
y ∈ {1, . . . , k}

∣∣b(y) 6= 0 ∧ coly 6= 1`

}
,

and compute∑
y∈µ

b(y) · coly =
∑
y

b(y) · coly −
∑
y/∈µ

b(y) · 1`

= M · b−

∑
y/∈µ

b(y)

 · 1` =

1−
∑
y/∈µ

b(y)

 · 1` . (3.2)

Define b′ such that b′(y) = b(y) if y ∈ µ, and 0 otherwise. By assumption,
since the non-monochromatic columns of M do not span 1`, equation (3.2)
implies that 1 −

∑
y/∈µ b(y) = 0, and thus b′ ∈ ker(M). However, since

〈b |b′〉 =
∑

y∈µ b(y)2, we deduce that b′ = 0, and that µ is the empty set.
Finally, knowing that q(y) = 〈1`/` | coly〉, we conclude that Q · b = b. 2

Corollary 3.6 (The Simplified Criterion). Using the notation above, matrix
Q is an endomorphism of H(MT ) if and only if Mv = MQv, for every v
such that M · v ∈ 〈1`〉.

Proof. Since Q is diagonal, Q is an endomorphism of im(MT ) if and only
if Q is an endomorphism of ker(M) i.e. ∀v ∈ ker(M), MQv = 0`. On
the other hand, assuming it exists, let b be as in Lemma 3.4. If Q is an
endomorphism of im(MT ), then 1` = Mb = MQb implies that b is a fixed
point of Q, since b is unique. 2

Notice how easy it is to verify whether a given function satisfies the GHKL
criterion. Let B denote an arbitrary basis of {v ∈ Rk |Mv ∈ 〈1`〉}. It
suffices to check whether MQv = Mv, for every v ∈ B.
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3.3 Limits of GHKL

In this section, we show that the converse of Theorem 3.3 is true, and we
dedicate most of this section to the proof of the following proposition.

Proposition 3.7. Let Q be as in Proposition 3.5. If Q is not an endo-
morphism of H(MT ), then for any α such that α−1 ∈ poly(n), it holds that
GHKL is not fully-secure.

As an example, consider the function described by

M =


1 1 0 0
0 0 1 1
0 1 1 0
1 1 1 1

 .

Recall that q = MT ·1/` and Q ·v = q∗v. By the fundamental theorem of
Linear Algebra, it holds that v ∈ im(MT ) if and only if

∑
(−1)i · v(i) = 0.

Observe that q ∗ row1 /∈ im(MT ), and thus Q is not an endomorphism of
H(MT ). We show that GHKL is susceptible to an attack for this particular
function, regardless of the choice of α.

Suppose that P2 chooses an input uniformly at random, and flips his output
if y ∈ {y1, y3}. Notice that, by following these instructions in the ideal
model, P2 is guaranteed to output a uniform random bit, no matter what.
Back to the real model, assume that P1 plays x1 and quits immediately if
a1 = 0, or upon seeing a2, otherwise. Let’s compute Pr

[
outR2 = 1

]
under

these assumptions, where outR2 denotes P2’s output in the real model.

Pr
[
outR2 = 1

]
= Pr

[
outR2 = 1 ∧ i∗ = 1

]
+ Pr

[
outR2 = 1 ∧ i∗ 6= 1

]
= α · Pr

[
outR2 = 1

∣∣∣ i∗ = 1
]

+ (1− α) · 1/2

= α · Pr
[
outR2 = 1 ∧ y ∈ {1, 2}

∣∣∣ i∗ = 1
]

+ α · Pr
[
outR2 = 1 ∧ y ∈ {3, 4}

∣∣∣ i∗ = 1
]

+ (1− α) · 1/2

= α · (1/2 · 1/2 + 1/2 · 3/8) + (1− α) · 1/2
= 1/2− α · 1/16 .

For the general case, we prove that GHKL is susceptible to an attack for
any function that does not satisfy the hypothesis of the Corollary 3.6. Fix
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v such that M · v ∈ 〈1`〉 and Mv 6= MQv. Let δ2 · 1` = Mv, and, without
loss of generality, suppose that eTx1Mv 6= eTx1MQv. Consider protocol Π in
the f -hybrid model.

Protocol Π

1. Inputs: P1 holds x ∈ {1, . . . , `}, P2’s input domain is empty.

2. P2 chooses y ∈ {1, . . . , k} with probability |v(y)|.

3. The parties invoke the trusted party computing f on inputs x and y.
The trusted party hands φ = f(x, y) to both parties.

4. Outputs: The first party outputs φ, the second party outputs φ if
v(y) > 0 and 1− φ otherwise.

Figure 3.3: Protocol Π in the f -hybrid Model.

Claim 3.8. In the hybrid model with ideal access to f , it holds that

Pr
[
outH2 = 1

]
= δ2 +

∑
v(y)<0

|v(y)| ,

where outH2 denote P2’s.

Proof. Write (x′, y′) for the pair of inputs that P1 and P2 hand to the trusted
party.

Pr
[
outH2 = 1

∣∣∣x′ = x
]

=
∑
y∈Y
|v(y)| · Pr

[
outH2 = 1 |x′ = x ∧ y′ = y

]
=
∑

v(y)≥0

v(y) · Pr
[
outH2 = 1 |x′ = x ∧ y′ = y

]
+
∑

v(y)<0

|v(y)| · Pr
[
outH2 = 1 |x′ = x ∧ y′ = y

]
=
∑

v(y)≥0

v(y) · f(x, y) +
∑

v(y)<0

|v(y)| · (1− f(x, y))

= eTx ·Mv +
∑

v(y)<0

|v(y)|

2
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In the real model, consider a corrupt P1 that deviates from the protocol as
follows: Use x1 as an input and quit at round 1 or 2 if a1 = 1 or a1 = 0,
respectively. Let’s compute the real-world probability distribution of P2’s
output. Write outR2 for P2’s output in the plain-model.

Pr
[
outR2 = 1

]
= Pr

[
outR2 = 1 ∧ i∗ = 1

]
+ Pr

[
outR2 = 1 ∧ i∗ > 1

]
.

If i∗ > 1, then a1 is independent of both b0 and b1. Thus,

Pr
[
outR2 = 1 ∧ i∗ > 1

]
= (1− α) ·

δ2 +
∑

v(i)<0

|v(i)|

 . (3.3)

On the other hand,

Pr
[
outR2 = 1 ∧ i∗ = 1

]
= Pr

[
outR2 = 1 ∧ a1 = 0 ∧ i∗ = 1

]
+

Pr
[
outR2 = 1 ∧ a1 = 1 ∧ i∗ = 1

]
.

So, let us compute each of the terms above.

Pr
[
outR2 = 1 ∧ a1 = 1

∣∣∣ i∗ = 1
]

=∑
v(y)≥0

v(y) · f(x1, y) ·
(
1T` /` · coly

)
+

∑
v(y)<0

|v(y)| · f(x1, y) ·
(
1− 1T` /` · coly

)
,

and

Pr
[
outR2 = 1 ∧ a1 = 0

∣∣∣ i∗ = 1
]

=
∑

v(y)<0

|v(y)| · (1− f(x1, y)) .

It follows that

Pr
[
outR2 = 1 ∧ i∗ = 1

]
= α ·

eTx1MQv +
∑

v(y)<0

|v(y)|

 . (3.4)

Combine (3.3) and (3.4), and conclude that if α is noticeable, then P2’s
output is noticeably far from the prescribed distribution. 2



Chapter 4

Inputless Functionalities

An inputless functionality is a random process that takes no inputs and
returns outputs to the parties according to some joint probability distri-
bution. Every known limitation of fairness can be attributed to inputless
functionalities. That being said, fair computation of inputless functionali-
ties is a strange topic in our view. If we take step back from the ideal-world
paradigm, it would appear that inputless functionalities are trivial as far as
fairness is concerned. Recall that an informal way to define fairness is to say
that “one party learns the correct output, if everybody does”. When the
parties are not holding any inputs, it is unclear what the “correct” output
is - if there is one at all. As we shall see later on, this intuition is false.

Chapter 4 begins with the generalization of Cleve’s theorem by Agrawal
and Prabhakaran [1]. Then, we discuss optimally fair coin-tossing, and we
show that Cleve’s lower bound for the bias is tight non-asymtotically. Fi-
nally, we return to Boolean functions, and we present the balanced criterion
of Asharov, Lindell and Rabin that we generalize into the semi-balanced
criterion.

The present chapter is peculiar in that it deviates from the characterization
of Boolean functions. We do so in order to settle a long-standing ques-
tion regarding the exact trade-off between bias and round-complexity in
two-party coin-tossing. Another peculiarity of the chapter is that our own
contributions appear in the middle of the chapter and then at the end. The
choice is deliberate and allows for a smoother exposition.

Coin-Tossing. Processes that emulate the tossing of a physical coin by
informational means alone are known as coin-tossing schemes. The design

41



42 inputless functionalities

of such schemes is a classic cryptographic problem dating back to the early
days of modern cryptography [17] circa 1981. In the jargon of MPC, Coin-
tossing is the inputless functionality that returns the same uniform bit to a
number of parties. On the other hand, sampling is a generic term applied
to any inputless functionality, other than coin-tossing.

Prior to the advent of simulation based security, it was customary to con-
sider each security issue separately. For inputless functionalities, perhaps
the most important security issue relates to the probability distribution of
the honest party’s output. Namely, in any sampling protocol, the probabil-
ity distribution of the honest party’s output should be as close as possible
to the functionality’s prescribed distribution - for coin-tossing that would
be the uniform distribution. This security requirement is captured by a
metric called the bias, which is a positive function of the protocols’ round-
complexity. The further away the bias is from 0, the easier it is for the
adversary to effectively choose the honest party’s output. In particular, a
bias of 0 indicates that the output is distributed according to the function-
ality’s specifications, no matter what. Alas, no such protocol exists in the
plain model. This remarkable result, that we owe to Cleve [26], has pro-
found consequences for fairness. To illustrate, consider Blum’s protocol in
the online dealer model from Figure 4.1.

Blum’s Coin-Tossing

1. The dealer hands a uniform random bit to P1, say b.

2. Party P1 decides to either continue or abort the protocol.

• P1 continues: P2 receives b from the dealer.

• P1 aborts: P2 receives b′ from the dealer, where b′ is a uniform
random bit and is independent of b.

3. Outputs: The parties output whatever they received from the dealer.

Figure 4.1: Blum’s Coin-Tossing Protocol in the Online Dealer Model.

Suppose that P1 is corrupted, and that he aborts the computation whenever
b = 0. In that case, P2 outputs b′. Write out2 for P2’s output and compute
Pr [out2 = 1] = Pr [out2 = 1 ∧ b = 0] + Pr [out2 = 1 ∧ b = 1] =

= Pr
[
b′ = 1 ∧ b = 0

]
+ Pr [b = 1]

=
1

4
+

1

2
=

3

4
.
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Observe that even though b and b′ are uniform random bits, the probability
distribution of P2’s output is 1/4 for 0 and 3/4 for 1. In the jargon of
coin-tossing, P2’s output suffers a bias of 1/4 = |Pr [out2 = 1]− 1/2|.

As we shall see in the following section, the attack above is not specific
to Blum’s protocol. Cleve [26] showed that any coin-tossing protocol is
susceptible to a variant of this attack, and any coin-tossing protocol has
a bias of at least O(1/r), where r denotes the number of rounds. This
result was generalised by Agrawal and Prabhakaran [1] for any (non-trivial)
sampling protocol. On the flip side, variants of Blum’s protocol guarantee a
bias of at most O(1/

√
r), and, by means of a special-round protocol, Malkin,

Naor and Segev [66] matched Cleve’s bound asymptotically. However, there
is a discrepancy between the bounds of [26] and [66] by a factor of 1/2, and
the question of identifying the exact trade-off (i.e. non-asymptotically)
remained open. In Section 4.2, we settle the question by showing that
Cleve’s bound is the correct one.

4.1 The Characterization of Inputless
Functionalities

We visit Cleve’s theorem and its generalization by Agrawal and Prab-
hakaran. We begin by defining (Boolean) sampling functionalities (Figure
4.2).

The Sampling Functionality S(D)

• Parameter: Distribution D over {0, 1}2.

• Inputs: Empty for both parties.

• Outputs: P1 and P2 receive bits a and b respectively, such that
(a, b)← D.

Figure 4.2: The Sampling Functionality.

Let D1 and D2 denote the marginal distributions of the parties’ outputs. In
other words, Di denotes the distribution of Pi’s output that is implied by D.
Furthermore, let D1 ×D2 denote the distribution over {0, 1}2 that samples
a and b independently according to D1 and D2 respectively. Finally, let
SD(D,×) denote the statistical distance between D and D1 ×D2.
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Claim 4.1. Suppose that a and b are sampled according to D, and that
a′ and b′ are sampled according to D1 × D2. It holds that |Pr [a = b] −
Pr [a′ = b′] | = SD(D,×).

Proof. First, note that Pr [a = b]− Pr [a′ = b′] =

Pr [a = b]− Pr [a′ = b′]

2
+

Pr [a′ 6= b′]− Pr [a 6= b]

2
.

Next, observe that Pr [(a, b) = (i, i)] − Pr [(a′, b′) = (i, i)] shares the same
sign with −Pr [(a, b) = (j, 1− j)] + Pr [(a′, b′) = (j, 1− j)] since the two ex-
pressions are in fact equal. Putting everything together, it holds that∣∣∣∣ ∑

i∈{0,1}

Pr [(a, b) = (i, i)]− Pr [(a, b) = (i, i)] +

∑
j∈{0,1}

Pr
[
(a′, b′) = (j, 1− j)

]
− Pr [(a, b) = (j, 1− j)]

∣∣∣∣ =

∑
i∈{0,1}

|Pr [(a, b) = (i, i)]− Pr [(a, b) = (i, i)] |+

∑
j∈{0,1}

|Pr
[
(a′, b′) = (j, 1− j)

]
− Pr [(a, b) = (j, 1− j)] | .

2

Definition 4.2 (Bias). Let Π be a protocol for computing S(D). Write
outi for the output of Pi, and suppose that P3−i is corrupted. The bias of
the honest party’s output is defined to be∣∣Pr [outi = 1]− Pr [z = 1 | z ← Di]

∣∣ .
By extension, the bias of the protocol refers to the maximum bias over all
possible corruptions.

The next theorem relates the bias of any given sampling protocol to its
round complexity. The proof that we provide is similar to the ones that
appear in the literature [1, 26]. The idea is to consider a specific family of
attacks, and to argue that on average these attacks inflict a noticeable bias
on the honest party’s output.
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Our approach differs in that we analyse the attacks independently of one
another. Specifically, we pinpoint the conditions under which any attack is
successful, and we apply the averaging argument to these conditions (rather
than the biases).

Theorem 4.3 (Cleve’s Theorem [1, 26]). Let Π be a correct protocol for
computing S(D) in the plain model. It holds that bias ≥ SD(D,×)/4r,
where r denotes the number of rounds.

Proof. We model Π as follows: Each round consists of a single interaction
between the parties. Party P2 sends a message followed by P1 who waits
for the message to arrive and replies. At the beginning of round i, parties
P1 and P2 hold bits ai−1 and bi−1, respectively. If either party aborts at
round i, the remaining party is instructed to output the bit he has at hand.
Upon receiving their i-th round message, the parties update their back-up
outputs to ai and bi respectively.

We assume that the protocol is a correct, and, as such, ar and br are sam-
pled according to distribution D. We also assume that a0 and b0 are sam-
pled according to D1 × D2. We argue that this last assumption is sensible
even though it incurs some loss of generality. On one hand, a0 and b0 are
independent random variables given that they are constructed before any
communication occurs. On the other hand, if a0 (resp. b0) is not sampled
according to D1 (resp. D2) then, by aborting immediately, an adversary
corrupting P2 (resp. P1) will successfully bias the honest party’s output.

Suppose there is a noticeable difference between Pr [ai = bi−1] and Pr [ai = bi].
We claim that one of the following adversaries corrupting P1 can bias P2’s
output:

• A(0)
i quits at round i if ai 6= 0, or at round i+ 1 if not.

• A(1)
i quits at round i if ai 6= 1, or at round i+ 1 if not.

Let ε = |Pr [ai = bi] − Pr [ai = bi−1] |. Let’s compute the bias of each of
these adversaries. First, note that

Pr
[
out = 0

∣∣∣A(0)
i

]
= Pr [ai = 1 ∧ bi−1 = 0] + Pr [ai = 0 ∧ bi = 0]

Pr
[
out = 1

∣∣∣A(1)
i

]
= Pr [ai = 0 ∧ bi−1 = 1] + Pr [ai = 1 ∧ bi = 1]
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Round 1P1

a1

a0

P2

b0

Round 2P1 P2P1

a2

P2

b1

Round r(n)− 1P2P1P1

ar(n)−1

P2

br(n)−2

Round r(n)P2P1 P2

br(n)

br(n)−1

P1

ar(n)

Figure 4.3: Generic Protocol with Well Defined Outputs.

Thus, on average

bias ≥ 1

2

∣∣∣Pr
[
out = 0

∣∣∣A(0)
i

]
− (1− q) + Pr

[
out = 1

∣∣∣A(1)
i

]
− q
∣∣∣

≥ 1

2
· |Pr [ai 6= bi−1] + Pr [ai = bi]− 1|

≥ 1

2
· |Pr [ai = bi]− Pr [ai = bi−1] | = ε

2
.

where q = Pr [b = 1 | b← D2]. Similarly, if there is a noticeable ε-gap be-
tween Pr [bi = ai+1] and Pr [bi = ai], then an adversary corrupting P2 can
bias the first party’s output by at least ε/2. For i ∈ {1, . . . , r} define

{
ε

(1)
i = |Pr [ai = bi]− Pr [ai = bi−1] |

ε
(2)
i = |Pr [bi−1 = ai]− Pr [bi−1 = ai−1] |

,
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and let ε denote the arithmetic mean of {ε(1)
i , ε

(2)
i }i=1...r. It follows that

ε =
1

2r
·

(
r∑
i=1

ε
(1)
i + ε

(2)
i

)

≥ 1

2r
·

∣∣∣∣∣
r∑
i=1

Pr [ai = bi]− Pr [ai = bi−1] + Pr [bi−1 = ai]− Pr [bi−1 = ai−1]

∣∣∣∣∣
≥ 1

2r
·

∣∣∣∣∣
r∑
i=1

−Pr [ai−1 = bi−1] + Pr [bi = ai]

∣∣∣∣∣
=

1

2r
·
∣∣∣Pr [br = ar]− Pr [a0 = b0]

∣∣∣ =
SD(D,×)

2r

The last equality follows from Claim 4.1. We conclude that at least one of

the ε
(j)
i is greater than SD(D,×)/2r, meaning that there exists an adversary

that can bias the honest party’s output by at least SD(D,×)/4r. 2

Corollary 4.4. Unless D = D1×D2, functionality S(D) is not computable
with complete fairness.

4.2 The Exact Trade-off between Bias and
Round-Complexity

Cleve’s theorem stipulates that any protocol realizing the coin-tossing func-
tionality suffers a bias of at least 1/8r. The MNS protocol of Malkin, Naor
and Segev is known to reach this bound asymptotically. Specifically, in [66],
the authors present a protocol with a bias of at most 1/4r. We show that
Cleve’s bound is the correct one, assuming the existence of oblivious trans-
fer.

The protocol of Malkin, Naor and Segev can be viewed as a variant of
GHKL computing (∅, ∅) 7→ λ, where λ is a uniform bit, and with i∗ chosen
uniformly at random instead of according to a geometric distribution. In
more detail, prior to the special round, each party observes a sequence of
identically and independently sampled bits. From the special round and
onwards, both sequences stabilize to the same fixed value chosen uniformly
at random and independently of the backups that preceded. We stress that,
prior to i∗, the dealer taps into fresh randomness to compute the parties’
backup outputs. This is precisely what enables the adversary to inflict a
bias that is strictly greater than what Cleve’s bound suggests.
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MNSdrnd

1. The dealer fixes the number of rounds r, where r(n) ∈ poly(n).

2. The dealer chooses i∗ ∈ {1, . . . , r(n)} according to the uniform distri-
bution.

3. The dealer samples independently out ∈U {0, 1} and b̃ ∈U {0, 1} ∈,
and constructs sequences (a1, . . . , ar), (b1, . . . , br) such that

ai =

{
out + i∗ − i mod 2 if i < i∗

out if i ≥ i∗ ,

and

bi =

{
b̃ if i < i∗

out if i ≥ i∗ .

4. The dealer hands a0 ∈U {0, 1} to P1, and b0 ∈U {0, 1} to P2.

5. For i = 1, . . . , r,

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1
and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and
halts.

Figure 4.4: A Derandomized Variant of the MNS Protocol.

We define a variant of protocol MNS obtained by derandomization (Fig-
ure 4.4 p. 48). Using the notation from the figure, notice that the players
observe the following sequences:

P1 : · · · out out out out out out out · · ·

P2 : · · · b̃ b̃ b̃ b̃ b̃ out out · · ·
↑
i∗

where out denotes out⊕ 1. Let’s compute the bias for a class of adversaries
with fail-stop strategies that depend only on the value of a1. Write A1 to
denote the class and let A ∈ A1. Furthermore, let ∆1 and ∆0 be two prob-

ability distributions over {1, . . . , r, r + 1} and write p
(a)
i for the probability

that A quits at round i, given that ai = a. In other words, if a1 = 0 then
the adversary quits at round i0 ← ∆0. If a1 = 1 then the adversary quits at
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round i1 ← ∆1. Write out2 for P2’s output. Let’s compute the bias caused
A. Observe that

Pr [out2 = 1] = Pr [a1 = 0 ∧ out2 = 1] + Pr [a1 = 1 ∧ out2 = 1]

=
1

2
· Pr [out2 = 1 | a1 = 0] +

1

2
· Pr [out2 = 1 | a1 = 1] ,

and

Pr [out2 = 1 | a1 = a] =∑
i odd

p
(a)
i · Pr [bi−1 = 1 | a1 = 1] +

∑
i even

p
(a)
i · Pr [bi−1 = 1 | a1 = a] .

Claim 4.5. For every i ∈ {1, . . . , r + 1} and a ∈ {0, 1}, it holds that

Pr [bi−1 = 1 | a1 = a] =


1

2
i odd

1

2
+ (2a− 1) · 1

2r
i even

.

Proof.

Pr [bi−1 = 1 | a1 = 0] = Pr [i∗ even ∧ i∗ ≤ i− 1] +
1

2
· Pr [i∗ ≥ i]

=


i− 1

2r
+
r − i+ 1

2r
i odd

i− 2

2r
+
r − i+ 1

2r
i even

=


1

2
i odd

1

2
− 1

2r
i even

.

Similarly,

Pr [bi−1 = 1 | a1 = 1] = Pr [i∗ odd ∧ i∗ ≤ i− 1] +
1

2
· Pr [i∗ ≥ i]

=


i− 1

2r
+
r − i+ 1

2r
i odd

i

2r
+
r − i+ 1

2r
i even

=


1

2
i odd

1

2
+

1

2r
i even

.

2

Let p(a) =
∑

i even p
(a)
i and deduce that

Pr [out2 = 1 | a1 = a] = (1− p(a)) · 1

2
+ p(a) ·

(
1

2
− 1

2r

)
=

1

2
− p(a) · 1

2r
.
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And thus

Pr [out2 = 1] =
1

4
− p(0) · 1

4r
+

1

4
+ p(1) · 1

4r

=
1

2
+

1

4r

(
p(1) − p(0)

)
.

It follows that bias = 1
4r ·

∣∣p(1) − p(0)
∣∣ and we conclude that the maximum

over all the members of A1 is 1/(4r).

To conclude, we argue that no adversary can do better than the one de-
scribed above. Let A denote an arbitrary adversary corrupting P1. Since
the protocol is defined in the dealer model, the adversary is restricted to
fail-stop behavior. In turn, a fail-stop strategy depends on the adversary’s
view which in our case is a (deterministic) function of a1 and i∗. Notice that
the view leaks the value of i∗ (if it contains two successive backup outputs
that are equal), and so the adversary knows with certainty whether i∗ < i,
at any given round i. In addition, if i ≤ i∗, then the adversary’s view at
round i only depends on a1. Without loss of generality, we can model A
by describing the probabilities of aborting at round i. Namely, assuming
that the adversary is still active at round i, the table below describes the
probability that the adversary quits at that round, depending on a and i∗.

Round i ≤ i∗ i = i∗ + 1 i ≤ i∗ + 2 i ≤ i∗ + 3 . . . i = i∗ + r − 1

1 q
(a)−
1 × × × . . . ×

2 q
(a)−
2 q

(a)+1

2 × × . . . ×
3 q

(a)−
3 q

(a)+1

3 q
(a)+2

3 × . . . ×
...

...
...

...
...

. . .
...

r − 1 q
(a)−
r−1 q

(a)+1

r−1 q
(a)+2

r−1 q
(a)+3

r−2 . . . ×
r q

(a)−
r q

(a)+1
r q

(a)+2
r q

(a)+3
r . . . q

(a)+r−1
r

where q
(a)+i
i , q

(a)−
i ∈ [0, 1]. Since an abort on the part of A does not

influence P2’s output whenever i∗ is surpassed, it follows that the bias caused
by the adversary described by the table above is identical to the bias caused
by an adversary A′ described by the table below.
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Round a1 = a ∧ i ≤ i∗ a1 = a ∧ i > i∗

1 q
(a)−
1 ×

1 q
(a)−
2 q

(a)−
2

...
...

...

r q
(a)−
r q

(a)−
r

.

Deduce that A′ ∈ A1. Finally, by randomizing which of the parties gets
to be P1 and P2 – this can be achieved by having the dealer “inform” the
parties who goes first – we arrive at the following conclusion.

Theorem 4.6. Under suitable cryptographic assumptions, there exists a
coin-tossing protocol with bias at most 1/8r.

4.3 Semi-Balanced Functions

We return to the question of characterizing functions that take input. As a
warm-up, let us consider the XOR function with associated matrix

M =

(
0 1
1 0

)
.

We argue that XOR is not computable with fairness. Assume the contrary
and consider the following process in the hybrid model with ideal access
to XOR: Parties P1 and P2 choose their inputs uniformly at random, they
invoke the trusted party, and they output whatever they receive from the
trusted party. Notice that the process just described defines a fully-secure
coin-toss in the hybrid model with ideal access to XOR. Consequently, a
fully-secure realization of XOR implies the existence of a fully-secure coin-
tossing scheme, in contradiction with Corollary 4.4. Fair computation is
thus ruled out for this function.

Strictly Balanced Functions. While coin-tossing was known to be re-
ducible to many functions (such as XOR), a systematic analysis of these
functions first appears in the work of Asharov, Lindell and Rabin [4]. The
authors identify a family of functions (that we define bellow), and they show
that not only do they all imply coin-tossing, but any function outside the
family does not (information-theoretically) imply coin-tossing. As usual, let
f be an arbitrary Boolean function with associated matrix M ∈ {0, 1}`×k.
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Definition 4.7 (Strictly-Balanced). We say that f is right strictly-balanced
if there exists probability vector q ∈ Rk and real number δ ∈ (0, 1) such
that M ·q = δ ·1`. Similarly, f is left strictly-balanced if fT is right strictly-
balanced. Finally, we say that f is strictly balanced if f is left and right
strictly-balanced.

Suppose that f is strictly balanced. As per the definition above, there
exists probability vectors p, q and real numbers δ1, δ2 ∈ (0, 1) such that
pT ·M = δ1 · 1Tk and M · q = δ2 · 1`. As one might expect, vectors p and
q describe probability distributions over the parties’ inputs. Next, we show
that f implies non-trivial sampling.

Consider the following in the hybrid model with ideal access to f : The
parties invoke the trusted party after choosing their inputs according to p
and q, respectively, and they output whatever they receive from the trusted
party. Write out1 and out2 for the parties’ outputs. Since out1 = out2 and
δi 6= 0, 1 by assumption, it follows that the parties’ outputs are statistically
dependent, and thus coin-tossing is reducible1 to f .

To motivate our generalization of the balanced criterion, consider the fol-
lowing example. Let f be the function with associated matrix

M =


0 1 0 1
1 1 1 0
0 0 1 0
1 0 0 0

 .

We remark that neither f nor fT satisfy the GHKL criterion given that both
the rows and the columns of M span the all-1 vector (c.f. Theorem 3.5 p.
36). In addition, function f is not strictly balanced since M · q = δ · 1`, for
some δ > 0, implies that q(2) < 0.

Assuming there exists a completely fair realization of function f , suppose
that P1 chooses among {x1, x3, x4} with equal probability, P2 chooses y4

with probability 2/5, or one of his other inputs with probability 1/5. Players
compute f on the chosen inputs and receive λ. Define

out1 = λ, out2 =

{
1− λ if P2 chose y2

λ otherwise
.

1We remark that the reduction described above is not from coin-tossing to f , but
rather from functionality (∅, ∅) 7→ (z, z) to f , where Pr [z = 1] = δ ∈ (0, 1). Nevertheless,
any functionality of the latter type implies coin-tossing via the celebrated Von Neumann
technique [72].
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A quick analysis reveals that Pr [out1 = 1] = 1/3, Pr [out2 = 1] = 2/5, and
that the two are equal with probability 4/5. If out1 and out2 were inde-
pendent, they would be equal with probability 8/15, which is not the case.
Finally, it is not hard to see that any malicious behaviour by either party
cannot affect the probability distribution of the other party’s output. It
follows that f is not computable with fairness, since the process described
above results in correlated outputs.

Let M be an arbitrary Boolean matrix of size ` × k, and suppose that the
parties compute M by means of a trusted party. Further assume that P2

chooses an input according to some fixed distribution, and that P2 outputs
a bit that depends on his input and the bit he received from the trusted
party. We ask under what conditions is the resulting bit independent of the
P1’s input. Let us introduce some notation. Write out2 for P2’s output.
Define q(0)(y) and q(1)(y) ∈ R such that

q(b)(y) = Pr [out2 = 1 ∧ input = y | f(x, y) = b] ,

and write q(b) for the resulting vector in Rk.

Claim 4.8. Using the notation above, it holds that out2 is independent of
P1’s input if and only if

M · (q(1) − q(0)) = δ · 1` ,

for some δ ∈ R. Furthermore, Pr [out2 = 1] = δ +
∑

y q(0)(y).

Proof. Write x′ for the input handed by P1 to the trusted party. Since
out2 is a bit, it suffices to show that there exists δ′ ∈ [0, 1] such that
Pr [out2 = 1 |x′ = x] = δ′, for every every x ∈ X. Observe that

Pr
[
out2 = 1

∣∣x′ = x
]

=
∑
y

Pr
[
out2 = 1 ∧ input = y

∣∣x′ = x
]

=
∑
y

q(0)(y) · (1− f(x, y)) + q(1)(y) · f(x, y)

2

We extend all of the above to the first party, and we write out1, p(0), p(1)

for P1’s analogues of out2, q(0), q(1). In addition, assume there exist δ1,
δ2 ∈ R such that

(p(1) − p(0))T ·M = δ1 · 1Tk
M · (q(1) − q(0)) = δ2 · 1` .
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Proposition 4.9. Using the notation above, the following statements are
equivalent.

1. out1 and out2 are statistically dependent.

2. δ1 6= 0 and
∑

y q(1)(y)− q(0)(y) 6= δ2.

3. δ2 6= 0 and
∑

x p(1)(x)− p(0)(x) 6= δ1.

Proof. First consider (p(1) − p(0))T ·M · (q(1) − p(0)). By the associative
property of matrix multiplication, it follows that

δ2 ·

(∑
x

p(1)(x)− p(0)(x)

)
= δ1 ·

(∑
y

q(1)(y)− q(0)(y)

)
. (4.1)

Returning to the question at hand, we know that out1 and out2 are inde-
pendent if and only if

Pr [out1 = 1 ∧ out2 = 1] = Pr [out1 = 1] · Pr [out2 = 1] (4.2)

Note that the left hand side is equal to p(0)T (1−M)q(0) +p(1)TMq(1), and
the right hand side is equal to

(
δ1 +

∑
x p(0)(x))

) (
δ2 +

∑
x q(0)(x))

)
. By

substituting p(1)TM for δ1 · 1Tk + p(0)TM , we deduce that Equation (4.2) is
equivalent to

δ1δ2 = δ1 ·

(∑
y

q(1)(y)− q(0)(y)

)
.

In light of Equation (4.1), this concludes the proof. 2

Definition 4.10. Let f be a finite boolean function with matrix represen-
tation M . We say that f is right semi-balanced if

∃q ∈ Rk such that

{
Mq = 1`∑

y q(y) 6= 1
.

Similarly, f is left semi-balanced if fT is right semi-balanced. Finally, we
say that f is semi-balanced if f is left and right semi-balanced.

Theorem 4.11. If f is semi-balanced, then f is not computable with com-
plete fairness.
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Proof. We show that any secure protocol computing f with respect to the
ideal model with complete fairness, implies the existence of a secure (non-
private) protocol computing S(D), for some D 6= D1 × D2. Assuming f is
left and right semi-balanced, fix q ∈ Rk, p ∈ R` such that

∑
x |p(x)| = 1

pTM = (δ1, . . . , δ1)∑
x p(x) 6= δ1

,


∑

y |q(y)| = 1

Mq = (δ2, . . . , δ2)T∑
y q(y) 6= δ2

.

Consider protocol Π in the f -hybrid model from figure 4.5.

Protocol Π in the f-hybrid model

• Inputs: On empty inputs, P1 chooses x with probability |p(x)|, P2

chooses column y with probability |q(y)|.

• Invoke Trusted Party: P1, P2 invoke the trusted party on inputs
x and y, respectively. As per the ideal model with complete fairness,
both parties receive a bit b.

• Outputs: If p(x) < 0, then P1 outputs 1− b. Similarly, if q(y) < 0,
then P2 outputs 1−b. Otherwise, the parties are instructed to output
b.

Figure 4.5: Reduction from Sampling to f .

Observe that Π is a secure (non-private) realization of S(D), for some D 6=
D1 ×D2, by defining

q(0)(y) =

{
0 if q(y) ≥ 0

|q(y)| otherwise
, q(1)(y) =

{
q(y) if q(y) ≥ 0

0 otherwise
,

and

p(0)(x) =

{
0 if p(x) ≥ 0

|p(x)| otherwise
, p(1)(x) =

{
p(x) if p(x) ≥ 0

0 otherwise
,

and applying Proposition 4.9. 2





Chapter 5

The Characterization

In this chapter, we complete the characterization of Boolean symmetric
functions. We begin by showing that the criteria of Chapters 3 & 4 account
for almost all functions. Then, we discuss a particular function that does
not meet any of the criteria encountered so far. Finally, we propose a new
protocol, and we argue that it computes all unaccounted functions with
full security. Interestingly, by carefully choosing the parameters of the new
protocol, we show that it computes all fair functions with full security.

5.1 The Fairness Landscape so Far

Let f be a finite Boolean function with associated matrix M ∈ {0, 1}`×k.
Define qT = 1T` /` ·M and p = M · 1k/k. We ask whether f is fair or not.
To this end, we have two criteria at our disposal.

• GHKL Criterion: If either v 7→ q∗v is an endomorphism ofH(MT ),
or u 7→ p ∗ u is an endomorphism of H(M), then the function is
computable with fairness.

• Sampling Criterion: If the function is semi-balanced, then it is not
computable with fairness.

We show that the criteria account for almost all Boolean functions.

Theorem 5.1. Suppose that |X| ≥ |Y | and let f be a random element of
2X×Y . If |X| 6= |Y |, then f is fair with probability greater than 1−negl(|X|).
If |X| = |Y |, then f is unfair with probability greater than 1− negl(|X|).

57
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The theorem follows as a corollary of the discussion below. A slightly weaker
variant was first observed by Asharov in [2]. The proof we propose goes
along the same lines as Asharov’s, albeit with greater attention to certain
details. Drawing inspiration from [74], we prove the theorem by applying
Komlós’ Theorem [53], in combination with a couple of lemmas.

Theorem 5.2 (Komlós’ Theorem). Let M be a 0/1-matrix of size d × d.
With probability greater than 1− negl(d), matrix M is non-singular.

Proposition 5.3. If 1` /∈ im(M) and ker(M) = {0k}, then f satisfies the
GHKL criterion. On the other hand, if M is a square matrix i.e. ` = k,
and M and M are both invertible, then f is semi-balanced.

Proof. The first part of the claim is just a trivial instance of Lemma 3.4 (p.
36). For the second part of the claim, since M is full-rank, there exists p
such that M · p = 1. Observe that

∑
i p(i) 6= 1, otherwise M · p = 0` and

thus ker(M) 6= {0k}. It follows that f is right semi-balanced. We apply the
same argument to MT and we conclude that f is semi-balanced. 2

Already, we see that almost all functions f : X×Y → {0, 1} with |X| = |Y |
are not computable with fairness. By Komlós’ Theorem, the probability
that either M or M is singular is at most 2 · negl(|X|). Thus, by Proposi-
tion 5.3, the probability that a random function is semi-balanced is greater
than 1− 2 · negl(|X|) = 1− negl(|X|).

Lemma 5.4 (Ziegler [74]). Let v1, . . .vt be arbitrary vectors in {0, 1}k.
Construct v′1, . . .v

′
t by flipping all the bits indexed by µ ⊆ {1, . . . , `}. In

other words, for every i ∈ {1, . . . , k},v′i(j) = 1−vi(j) if j ∈ µ, and v′i(j) =
vi(j) otherwise. It holds that v2−v1, . . .vt−v1 are linearly independent if
and only if v′2 − v′1, . . . ,v

′
t − v′1 are as well.

Proof. Without loss of generality, suppose that µ = {1, . . . , j} and write
vTi = (vTi [µ],vTi [µ]) in order to distinguish between coordinates in µ and µ.
Observe that (v′i)

T = (1Tj − vTi [µ],vTi [µ]) and thus

vi − v1 =

(
vi[µ]− v1[µ]
vi[µ]− v1[µ]

)
, v′i − v′1 =

(
−vi[µ] + v1[µ]
vi[µ]− v1[µ]

)
.

Clearly, any linear combination that annihilates one set of vectors also an-
nihilates the other. 2
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Lemma 5.5 (Ziegler [74]). Let M be a random 0/1-matrix of size `×k, with
` > k. With probability greater than 1−negl(`−1), it holds that 1` /∈ im(M)
and ker(M) = {0k}.

Proof. First, note that it suffices to prove the claim for k = ` − 1. Let
v1, . . . ,v` denote the rows of M . Construct v′2, . . .v

′
` such that v′i(j) =

1−vi(j) if v1(j) = 1, and v′i(j) = vi(j) otherwise. By applying the previous
claim together with Komlós’ Theorem, deduce that v2 − v1, . . .v` − v1 are
linearly independent with probability at least 1−negl(`−1). Next, we show
that 0k is an affine combination of {v1, . . . ,v`}, assuming v2−v1, . . .v`−v1

are linearly independent. Since ` > k, there exist γ1, . . . , γ` (not all zero)
such that

∑
i γivi = 0k. If

∑
i γi = 0 then−∑

i≥2

γi

 · v1 +
∑
i≥2

γivi =
∑
i≥2

γi(vi − v1)

= 0k

which is a contradiction. Thus, there exist γ1, . . . , γ` with
∑

i γi 6= 0 such
that

∑
i γivi = 0k.

In summary, with probability greater than 1 − negl(` − 1), matrix M has
rank k, and 0k is an affine combination of the rows of M . If so, then
ker(M) = {0k} and 1` /∈ im(M). On one hand, M has maximal rank and
since ` ≥ k, it follows that ker(M) = {0k}. On the other hand, if there
exists b ∈ Rk such that M · b = 1`, then 0 = 0Tk · b = (γ1, . . . , γ`) ·M · b =
(γ1, . . . , γ`) · 1` 6= 0, which is a contradiction. 2

5.1.1 Unaccounted Functions

Consider function f described by the following matrix

M =


0 0 0 1
0 0 1 1
0 1 1 0
1 1 0 1

 .

Function f clearly lies in the gap. It is easy to check that the function is not
semi-balanced, and since the all-1 vector belongs to the linear span of the
rows and columns of M , and none of them are monochromatic, neither is f
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computable with GHKL. In the remainder of this section, we show that the
arguments from Chapter 4 do not apply to this function. Define inputless
functionality F such that P1 and P2 receive (x, z1) and (y, z2), respectively,
according to the probabilities described by the following table.

(x, z1) \ (y, z2) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 1/9 0 0 1/9

(0, 1) 0 1/3 1/9 0

(1, 0) 0 1/9 0 0

(1, 1) 1/9 0 0 1/9

Drawing inspiration from the impossibility result of the previous chapter,
consider protocol Π′ computing F in the f -hybrid model (Figure 5.1).

Protocol Π′

• Inputs: Empty for both parties.

• P1 (resp. P2) chooses x ∈ {1, 3, 4} (resp. y ∈ {1, 3, 4}) uniformly at
random.

• Parties invoke the trusted party for computing f and receive b ∈ {0, 1}
from the trusted party.

• Outputs: P1 (resp. P2) outputs (1, 1− b) if x = 1 (resp. y = 1) and
(0, b) otherwise.

Figure 5.1: Protocol Π′ for Computing F in the f -hybrid Model

Claim 5.6. An honest execution of protocol Π′ is a correct realization of
functionality F . Furthermore, F satisfies the following.

• Any two of {x, y, z1, z2} are independent random variables.

•

{
Pr [x = 1] = Pr [y = 1] = 1/3

Pr [z1 = 1] = Pr [z2 = 1] = 2/3
.

• x⊕ z1 = y ⊕ z2.

Proof. Immediate. 2
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The first thing to note is that, contrary to semi-balanced functions, z1 and
z2 are not statistically dependent, and thus the semi-balanced criterion does
not apply here. Assuming a fully secure realization of f , observe that no
adversary corrupting P1 (resp. P2) can attack the marginal distributions of
y and z2 (resp. x and z1).

Turning to F , we stress that it cannot be implemented securely. Indeed, F
is a sampling functionality, and there always exists an adversary corrupting
either P1 or P2 that can bias the honest party’s output, for any realization
of F . In other words, the adversary can always alter the joint distribution
of (x, z1) - or (y, z2).

That being said, we would like to show something slightly stronger. It
seems that, in any realization of F , the adversary should be able to attack
the marginal distributions of the first or second output of the honest party.
The reason for this is that each party’s (global) output contains information
about both the first and second output of the opponent. Alas, this intuition
is false. In the remainder of this section we argue why it is wrong. Consider
protocol Π in the online dealer model (Figure 5.2).

Protocol Π

1. P1 (resp. P2) computes x (resp. y) such that Pr [x = 1] = 1/3 (resp.
Pr [y = 1] = 1/3).

2. Parties invoke the dealer on inputs x and y. If P1 fails to engage with
the dealer (or invokes the dealer on an aberrant value), the dealer
sends an abort symbol to P2 and halts. P2 outputs (y, y ⊕ 1). If P2

fails to engage with the dealer (or invokes the dealer on an aberrant
value), P1 outputs (x, z′1) where z′1 is sampled independently such that
Pr [z′1 = 1] = 2/3.

3. The dealer chooses z according to the prescribed distribution, and
computes z1 = z ⊕ x and z2 = z ⊕ y.

a) The dealer sends z1 to P1. If P1 aborts, the dealer sends an
abort symbol to P2 and halts. P2 outputs (y, y ⊕ 1).

b) The dealer sends z2 to P2 and halts.

4. Parties output (x, z1) and (y, z2) respectively.

Figure 5.2: Protocol Π for Computing F .



62 the characterization

Claim 5.7. No adversary can attack the marginal distributions of the honest
party’s output bits.

Proof. First, notice that a corrupt P2 cannot affect P1’s (global) output
distribution. In fact, an adversary corrupting P2 can be simulated in the
ideal model with full security. Thus, we need only consider the case where
the adversary corrupts P1. Since y is chosen before any interaction occurs,
we deduce that the marginal distribution of P2’s first output cannot be
attacked. For the second bit, it is not hard to see that the adversary’s
attacking strategy boils down to the following:

1. The adversary chooses x whichever way she wants.

2. Upon seeing z1, the adversary decides to abort depending on her view
thus far.

Recall that z2 does not depend on x, so as long as y is chosen according to
the prescribed distribution, z2 will also satisfy its prescribed distribution.
Now consider the following probabilities.

Pr [y = 1 | (x, z1)] =


1/2 if x = z1

0 if (x, z1) = (1, 0)

1/4 if (x, z1) = (0, 1)

.

Thus,

Pr [z2 = 1 | (x, z1)] =


1/2 if x = z1

1 if (x, z1) = (1, 0)

3/4 if (x, z1) = (0, 1)

.

Finally, recall that P2’s backup for z2 (in case of an early abort) is 1 ⊕
y. Notice that the probability distribution of the latter, given x and z1,
corresponds exactly to the probability distribution of z2 conditioned on the
same x and z1. 2

5.2 Protocol FairTwoParty

In this section, we describe a new protocol for computing functions fairly.
As usual, let f : X × Y → {0, 1} be a finite Boolean function with the
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associated matrix M of size `×k. Without loss of generality, X = {1, . . . , `}
and Y = {1, . . . , k}. Our protocol is based on the protocol of Gordon,
Hazay, Katz and Lindell. As such, we take a moment to “deconstruct”
GHKL. Recall that security is almost a trivial matter when P2 is corrupted.
Therefore, all the comments below are made with a corrupted P1 in mind.

Throughout this thesis, protocols are defined by specifying the parties’
backup outputs at any given round. In light of the hybrid-model technique,
this approach does not incur any loss of generality. Designing protocols that
are secure is thus an exercise in choosing the appropriate backup outputs.
In GHKL, the backup outputs depend on the function, the parties inputs,
and the special round i∗. Namely, once the special round has been assigned,
P2’s backup outputs (b0, b1, . . . , br) are constructed as follows. If i ≥ i∗ then
bi = f(x, y), and if i < i∗ then bi = f(x̃(i), y), where x̃(i) denotes1 an element
of X chosen uniformly at random.

One interpretation is to say that, prior to the special round, P2 computes
his backup output by choosing an input for P1 that is independent of his
own input. This approach is directly inspired by the ideal model, where
the simulator hands an input for P1 to the trusted that is independent of
P2’s input2. So, a natural generalization of GHKL involves modifying the
distribution of x̃(i). Instead of the uniform distribution, x̃(i) may be chosen
according to a more elaborate probability distribution. This generalization
was noticed independently by Asharov [2] and Makriyannis [63]. It results
in variant of GHKL that is meaningful, as was shown in [63]: there is a net
benefit in considering different distributions, and these distributions can be
found efficiently. For further details, the reader is referred to Appendix C
p. 157.

However, we argue that this is not the right way to go. One one hand,
we note that this generalization is somewhat superfluous. Before round
i∗, P1’s view is independent of P2’s backup output. Specifically, because
(a0, . . . , ai∗−1) is independent of (b0, . . . , bi∗−2), changing the probability
distribution of (b0, . . . , bi∗−2) is inconsequential to the security analysis, as
long as the distribution remains consistent with P2’s input. On the other
hand, we claim that this generalization is rather restrictive. When we define
bi∗−1 = f(x̃, y), where x̃← ∆(X) and ∆(X) denotes an arbitrary distribu-
tion over X, then the probability distribution of bi∗−1 is limited to those
distributions that can be constructed that way.

1As the superscript suggests, a fresh input is chosen at every round.
2We are merely highlighting the “independence of inputs” security requirement.



64 the characterization

Our protocol addresses both of these issues by leaving (b0, . . . , bi∗−2) as
is, and letting bi∗−1 take an arbitrary distribution. We believe that this
modification goes against the spirit of GHKL. Indeed, when computing his
backup output at round i∗ − 1, it can no longer be said that P2 chooses an
input for P1 because (in general) no such input exists, i.e. ∀∆(X), ∃y ∈ Y
such that Pr [bi∗−1 = 1 | y] 6= Pr [f(x̃, y) = 1 | x̃← ∆(X)].

Remark 5.8. It would seem that we are opening ourselves to one of the
following traps: Either bi∗−1 is inconsistent with P2’s output, e.g. if bi∗−1 =
0, and there exists y ∈ Y such that for all x ∈ X, f(x, y) = 1, and thus
the protocol’s correctness comes into question, or the implicit input x̃ that
P2 uses for P1 (i.e. f(x̃, y) = bi∗−1) depends on y, in contradiction with our
discussion regarding independence of inputs. These issues will be addressed
at the end of this section. For now, we draw the attention of the reader to
the formal description of Protocol FairTwoPartyσ (Figure 5.3).

Our protocol differs from the GHKL protocol in that bi∗−1 = σ and the fact
that i∗ ≥ 2 to accommodate for this change (cf. Steps 3 and 4 in Figure 5.3).
For some functions we choose σ = 0 and for others we choose σ = 1; the
choice of σ depends only on the function and is independent of the inputs.
This seemingly small change will enable to compute all Boolean functions
that are fair.

The Round-Complexity & The Choice of σ. There are two parameters
in Protocol FairTwoPartyσ that are unspecified – the parameter α of the
geometric distribution and the number of rounds r. We show that there
exists a constant α0 (which depends on f) such that taking any α ≤ α0

guarantees full security (provided that f satisfies some conditions). As for
the number of rounds r, even if both parties are honest the protocol fails
if i∗ > r (where i∗ is chosen with geometric distribution). The probability
that i∗ > r is (1 − α)r. So, if r = α−1 · ω(log n) (where n is the security
parameter), the probability of not reaching i∗ is negligible.

Before we proceed with the security analysis of the protocol, we remark
that computing f with σ = 1 is equivalent to computing 1− f with σ = 0
and flipping the output from the computation. Thus, FairTwoParty1

computes f with full security if and only if FairTwoParty0 computes
1 − f with full security. Therefore, without loss of generality, we restrict
ourselves to σ = 0.
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Protocol FairTwoPartyσ

1. The parties P1 and P2 hand their inputs, denoted x and y respectively,
to the dealer.a

2. The dealer chooses i∗ ≥ 2 according to the geometric distribution with
probability α.

3. The dealer computes out = f(x, y), and for 0 ≤ i ≤ r

ai =

{
f(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗

out otherwise

and

bi =

 f(x̃(i), y) where x̃(i) ∈U X if i < i∗ − 1
σ if i = i∗ − 1
out otherwise.

4. The dealer gives b0 to P2.

5. For i = 1, . . . , r,

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1
and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and
halts.

aIf x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs this value and
the protocol is terminated. The case of an inappropriate y is dealt analogously.

Figure 5.3: Protocol FairTwoPartyσ for Computing f .

5.2.1 Security Analysis

Theorem 5.9. Let M be the associated matrix of a Boolean function f .
If 0k is an affine combination of the rows of M , then there is a constant
α0 > 0 such that Protocol FairTwoParty0 with α ≤ α0 is a fully-secure
protocol for f .

It is easy to see that the protocol is secure against a corrupted P2, using a
simulator similar to [45]. Intuitively, this follows directly from the fact that
P2 always gets the output after P1. Next, we demonstrate that the proto-
col is secure against a corrupted P1 by constructing a simulator for every
adversary A in the real world controlling P1. The simulator we construct
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is given black-box access to A and we denote it by SA. The simulation is
described in Figure 7.2. It operates along the same lines as in the proof
of [45]. The main difference is in the analysis of the simulator, where we

prove that there exist distributions (x
(a)
x )x∈X,a∈{0,1}, which are used by the

simulator to choose the input that P1 gives to the trusted party.

The Simulator S for Protocol FairTwoParty0

• The adversary A gives its input x to the simulator.a

• The simulator chooses i∗ ≥ 2 according to the geometric distribution
with probability α.

• For i = 1, . . . , i∗ − 1:

– The simulator gives ai = f(x, ỹ(i)) to the adversary A, where
ỹ(i) is chosen according to the uniform distribution.

– If A aborts, then the simulator chooses an input x0 according to

a distribution x
(ai)
x (which depends on the input x and the last

bit that was chosen), gives x0 to the trusted party, outputs the
bits a1, . . . , ai, and halts.

• At round i = i∗, the simulator gives x to the trusted party and gets
the output a = f(x, y).

• For i = i∗, . . . , r: The simulator gives ai = a to the adversary A, if A
aborts, then the simulator outputs the bits a1, . . . , ai and halts.

• The simulator outputs the bits a1, . . . , ar and halts.

aIf the adversary gives an inappropriate x (or no x), then the simulator sends
some default x̂ ∈ X to the trusted party, outputs the empty string, and halts.

Figure 5.4: The Simulator S for Protocol FairTwoParty0.

We next prove the correctness of the simulator, that is, if (0k)
T is an affine

combination of the rows of M , then the output of the simulator and the
output of P2 in the ideal world are distributed as the adversary’s view and
the output of the honest P2 in the real world. The simulator generates an
output identical to the view of P1 in the execution of the protocol in the real
world. First, it chooses i∗ as in Protocol FairTwoParty0, i.e., according
to a geometric distribution. Up to round i∗ − 1, the backup outputs are
uncorrelated to the input of the honest party. That is, for all i < i∗ the
output ai = f(x, ỹ) is chosen with a uniformly random ỹ. Starting with
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round i = i∗, the backup outputs are correlated to the true input of the
honest party, and are set as ai = f(x, y), exactly as in the real execution.

As a result the adversary seeing the same view, A aborts in the simulation
if and only if it aborts in the protocol. Furthermore, if the adversary aborts
after round i∗, the output of P2 in the protocol and in the simulator is
identical – f(x, y). The only difference between the simulation and the
protocol is the way that the output of P2 is generated when the adversary
aborts in a round i ≤ i∗. If the adversary aborts in round i∗, the output of P2

in Protocol FairTwoParty0 is bi∗−1 = 0, while the the output of P2 in the
simulation is f(x, y). To compensate for this difference, in the simulation
the output of P2 if the adversary aborts in a round 1 ≤ i ≤ i∗−1 is f(x0, y),

where x0 is chosen according to a distribution x
(ai)
x to be carefully defined

later in the proof.

To conclude, we only have to compare the distributions (ViewA, out2) in the
real and ideal worlds given that the adversary aborts in a round 1 ≤ i ≤ i∗.
In the remainder of the proof, we let i be the round in which the adversary
aborts, and we assume that 1 ≤ i ≤ i∗. The view of the adversary in both
worlds is a1, . . . , ai. Notice that in both worlds a1, . . . , ai−1 are identically
distributed and are independent of (ai, out2). Consequently, we only need
to compare the distribution of (ai, out2) in each world.

Let us introduce the following notation

qT = 1T` /` ·M, p = M · 1k/k. (5.1)

For example, q(y) is the probability that f(x̃, y) = 1, when x̃ is uniformly
distributed. Furthermore, for every x ∈ X, y ∈ Y , and a ∈ {0, 1}, define

c
(a)
x (y) , Pr [f(x′, y) = 1], where x′ is chosen according to distribution x

(a)
x .

That is, c
(a)
x (y) is the probability that the output of P2 in the simulation is

1 when the the adversary aborts in round i < i∗, the input of P1 is x, the

input of P2 is y, and ai = a. Finally, we define vector c
(a)
x , (c

(a)
x (y))y∈Y .

Using this notation,

x(a)T
x M = c(a)T

x , (5.2)

where we represent distribution x
(a)
x = (x

(a)
x (x′))x′∈X by a column vector.

Next, we analyze the four options for the values of (ai, out2).

First case: (ai, out2) = (0, 0). In the real world (ai, out2) = (0, 0) if one
of the following two events occurs:



68 the characterization

• i < i∗, ai = f(x, ỹ) = 0, and out2 = bi−1 = f(x̃, y) = 0. The
probability of this event is (1− α)(1− p(x))(1− q(y)).

• i = i∗, ai∗ = f(x, y) = 0, and out2 = bi∗−1 = 0. Recall that in Protocol
FairTwoParty0 bi∗−1 = 0 with probability 1. The probability of this
event is α · (1 − f(x, y)) · 1 (that is, it is 0 if f(x, y) = 1 and it is α
otherwise).

Therefore, in the real world Pr [(ai, out2) = (0, 0)] = (1 − α)(1 − p(x))(1 −
p(y))+α(1−f(x, y)).On the other hand, in the ideal world (ai, out2) = (0, 0)
if one of the following two events occurs:

• i < i∗, ai = f(x, ỹ) = 0, and out2 = f(x0, y) = 0. The probability of

this event is (1− α)(1− p(x))(1− c
(0)
x (y)).

• i = i∗, ai∗ = f(x, y) = 0, and out2 = f(x, y) = 0. The probability of
this event is α · (1− f(x, y)).

Therefore, in the ideal world Pr [(ai, out2) = (0, 0)] = (1− α)(1− p(x))(1−
c

(0)
x (y)) +α(1− f(x, y)). To get full security we need that these two proba-

bilities in the two worlds are the same, that is,

(1− α)(1− p(x))(1− q(y)) + α(1− f(x, y)) =

(1− α)(1− px)(1− c(0)
x (y)) + α(1− f(x, y)) ,

i.e.,

c(0)
x (y) = q(y) . (5.3)

As this is true for every y, we deduce, using Equation (5.1) and Equa-
tion (5.2), that

x(0)T
x M = c(0)T

x = 1`/` ·M . (5.4)

Thus, the uniform distribution, i.e. x
(0)
x = 1`/`, satisfies these constraints.

Second case: (ai, out2) = (0, 1). In the real world Pr [(ai, out2) = (0, 1)] =
(1 − α)(1 − px)sy (in the real world out2 = 0 when i = i∗). On the other

hand, in the ideal world Pr [(ai, out2) = (0, 1)] = (1 − α)(1 − px)q
(0)
x (y) (in

the ideal world ai∗ = out2 = f(x, y)). The probabilities in the two worlds

are equal if Equation (5.3) holds and thus it suffices that x
(0)
x = 1`/`.
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Third case: (ai, out2) = (1, 0). In the real world Pr [(ai, out2) = (1, 0)] =
(1−α)p(x)(1−q(y)) +α · f(x, y) · 1. On the other hand, in the ideal world

Pr [(ai, out2) = (1, 0)] = (1 − α)p(x)(1 − c
(1)
x (y)). The probabilities in the

two worlds are equal when

(1− α)p(x)(1− q(y)) + αf(x, y) = (1− α)p(x)(1− c(1)
x (y)).

If px = 0, then f(x, y) = 0 and we are done. If not, equality holds if and
only if

c(1)
x (y) = q(y)− αf(x, y)

(1− α)p(x)
. (5.5)

As this is true for every y, we deduce, using Equation (5.1) and Equa-
tion (5.2), that

x(1)T
x M = c(1)

x = 1`/` ·M −
α

(1− α)p(x)
· rowTx

=

(
1`/`−

α

(1− α)p(x)
· ex
)
M, (5.6)

where rowx is the row of M labelled by the input x, and ex is the x-th unit

vector. Before analyzing when there exists a probability vector x
(1)
x solving

Equation (5.6), we remark that if the equalities hold for the first 3 cases of
the values for (ai, out2), the equality of the probabilities must also hold for
the case (ai, out2) = (1, 1). In the rest of the proof we show that there exist

probability vectors x
(1)
x for every x ∈ X solving Equation (5.6).

Claim 5.10. Fix x ∈ X and let α be a sufficiently small constant. If 0k
is an affine combination of the rows of M , then there exists a probability

vector x
(1)
x solving Equation (5.6).

Proof. By the conditions of the claim, there exists a vector u ∈ R` such that

uT ·M = 0Tk and
∑

i∈X u(i) = 1. Define vector x
(1)
x = 1`/`+ α

(1−α)p(x)(u−
ex). Observe that x

(1)
x is a solution to Equation (5.6) since uT ·M = 0Tk .

We need to show that it is a probability vector. First,∑
i∈X

x(1)
x (i) = 1T` · x(1)

x = 1T` · 1`/`+ 1T` ·
α

(1− α)p(x)
(u− ex)

= 1 +
α

(1− α)p(x)
(1− 1) = 1.
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Second, x
(1)
x (i) ≥ 1/`− α

(1−α)p(x)(1 + |u(i)|). Thus, as long as

α ≤ min
x∈X |p(x)6=0

{
p(x)/`

1 + maxi∈X{|u(i)|}+ p(x)/`

}
,

then3 x
(1)
x is a probability vector, for any x ∈ X.

2

To sum up, we showed that if 0k is an affine combination of the rows of
M , then there exists probability vectors solving Equation (5.6). Further-
more, these probability vectors can be found efficiently. Using these prob-
ability distributions in the simulator we constructed proves that protocol
FairTwoParty0 is fully secure for f . 2

5.2.2 Limits of Protocol FairTwoParty

Theorem 5.11. If 0` is not an affine combination of the rows of M , then
for any α such that α−1(n) ∈ poly(n), protocol FairTwoParty0 is suscep-
tible to an attack.

Proof. First, from Lemma 2.2 p. 17, it follows that that 1` ∈ im(M). So,
fix b such that

∑
i |b(i)| = 1 and M · b = δ · 1`, for some δ 6= 0. Now, in

the hybrid model with ideal access to M , suppose that P2 chooses an input
and flips the output according to b. It holds that, regardless of the input
chosen by P1,

Pr
[
outH2 = 1

]
= δ +

∑
b(i)<0

|b(i)| .

Replace the call to the trusted party with an execution of FairTwoParty0.
Consider a corrupted P2 that quits immediately upon receiving a2. Observe
that P2 outputs b1 if b(y) ≥ 0 and 1− b1 otherwise. Let us compute

Pr
[
outR2 = 1

]
= Pr

[
outR2 = 1 ∧ i∗ = 2

]
+ Pr

[
outR2 = 1 ∧ i∗ 6= 2

]
3 We remark that since the size of the function’s input-domain is constant, vector u

is fixed and α is a constant.
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Note that Pr
[
outR2 = 1 ∧ i∗ 6= 2

]
= (1 − α)

(
δ +

∑
b(i)<0 |b(i)|

)
, and that

Pr
[
outR2 = 1 ∧ i∗ = 2

]
= Pr [i∗ = 2] · Pr [b(y) < 0]. Thus,

Pr
[
outR2 = 1

]
= α ·

∑
b(y)<0

|b(y)|+ (1− α)

δ +
∑

b(i)<0

|b(i)|


= Pr

[
outH2 = 1

]
− αδ .

2

Recall that GHKL computes f with full security if and only if v 7→
(
MT · 1k

)
∗

v is a (linear) endomorphism of im(MT ) and the non-monochromatic columns
of M do not span the all-1 vector.

Claim 5.12. If GHKL computes f with full security then FairTwoParty0

computes at least one of {f, fT , 1− fT } with full security.

Proof. Suppose that M contains monochromatic columns. It holds that,

• if 0` ∈ {coly}y∈Y then FairTwoParty0 computes fT with full secu-
rity,

• if 1` ∈ {coly}y∈Y then FairTwoParty0 computes 1 − fT with full
security.

If M does not contain monochromatic columns, the second condition of
the GHKL criterion stipulates that 1` /∈ im(M) and thus 0k is an affine
combination of the rows of M . It follows that FairTwoParty0 computes
f with full security. 2

Revisiting Remark 5.8. We now return to our discussion regarding the
choice of bi∗−1. It seems odd that one can fix bi∗−1 = 0 and still be able to
compute at least as many functions as the GHKL protocol. In Remark 5.8,
two issues were raised, one relating the protocol’s correctness (the honest
party’s output), the other to the independence of inputs security require-
ment.

To address these issues, we must ask what implicit input is chosen for P1 at
round i∗ − 1, i.e. to construct bi∗−1. As an example, consider the function
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f given by the matrix below.

M =


1 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0

 .

Since (−1, 1, 0, 1) ·M = (0, 0, 0, 0), it follows that FairTwoParty0 com-
putes f with full security. The implicit input for P1 must be encoded by a
probability vector u such that uT ·M = (0, 0, 0, 0). However, a quick anal-
ysis reveals that no such vector exists (!?). The apparent paradox arises
because our question is somewhat misplaced. Since the adversary is oblivi-
ous to the value of i∗, by quitting at round i, the honest party’s output is
a probabilistic combination of bi<i∗ and the correct output. The paradox
is resolved by observing that the implicit input used in bi<i∗ is encoded by
the vector

u =


1/4− 5/4α
1/4 + 3/4α
1/4− 1/4α
1/4 + 3/4α

 = (1− α) ·


1/4
1/4
1/4
1/4

+ α


−1
1
0
1

 ,

which is a probability vector since bi<i∗ and b1 are identically distributed.
The reason this phenomenon4 does not occur in GHKL is that bi∗−1 and
bi<i∗ are identically distributed.

5.3 Characterizing Boolean Functions

Claim 5.13. Protocol FairTwoParty1 computes f with full security if
and only if 1k is an affine combination of the rows of M .

Proof. Note that 1k is an affine combination of the rows of M if and only
if 0k is an affine combination of the rows of 1`×k −M . To conclude, re-
call that FairTwoParty1 computes f with full security if and only if
FairTwoParty0 computes 1− f with full security. 2

Next, we present a equivalent statement of the semi-balanced criterion.

4It is worth mentioning that one way to interpret this phenomenon is to say that the
implicit input in bi∗−1 is sampled with “negative probabilities”.
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Claim 5.14. Function f is semi-balanced if and and only if neither of the
following statements apply to f :

• 0k or 1k is an affine combination of the rows of M .

• 0` or 1` is an affine combination of the columns of M .

Proof. We show that if 0k or 1k is an affine combination of the rows of
M , then f is not right semi-balanced. Recall that a function is right semi-
balanced if there exists q ∈ Rk such that

∑
y q(y) 6= 1 and Mq = 1`. We

know that 1` /∈ im(M) if and only if 0k is an affine combination of the rows
of M . It remains to show that if 1k is an affine combination of the rows,
then any linear combination of columns that yields 1` is affine. Indeed, let
a ∈ R` such that

∑
x a(x) = 1 and aTM = 1Tk . Suppose there exists b ∈ R`

such that M · b = 1`. Then,

1 = aT · 1` = aTM · b = 1Tk · b =
∑
y

b(y) .

We apply the same arguments to MT and we conclude that if 0` or 1` is an
affine combination of the columns of M , then f is not left semi-balanced.

2

The theorem below follows as a corollary.

Theorem 5.15 (Characterization of Boolean Functions). Function f is
computable with with full-security if and only if f is not semi-balanced.

5.3.1 Randomized Functions

The characterization of randomized Boolean functions follows effortlessly
from our discussion so far. Let f : X×Y → ∆({0, 1}) denote a randomized
Boolean function. We claim that the arguments from Chapters 4 & 5 apply
almost verbatim to randomized functions. Define associated matrix M ∈
R`×k such that M(x, y) = Pr [f(x, y) = 1], and extend the semi-balanced
definition. Functionality f is semi-balanced if there exist non-affine vectors
p and q such that MT · p = 1k and M · q = 1`.

Theorem 5.16. Functionality f is computable with with full-security if and
only if f is not semi-balanced.

The details are left to reader.
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5.3.2 The Multi-Party Setting

We can also extend the characterization to the multiparty setting when at
most half of the parties are corrupted. Let f : X1 × . . .×X2t → ∆({0, 1})
denote a randomized symmetric functionality. Since a multi-party protocol
is a two-party protocol in particular, it follows that every function obtained
by partitioning the input domains into two equal sets must be fair in the
two-party setting. Conversely, using secret sharing techniques [11, 12], we
can devise a multi-party protocol which from the adversary’s perspective,
or the honest parties taken as a whole, essentially amounts to protocol
FairTwoPartyσ. Thus, one can show that the necessary condition is
sufficient. For µ ∈

(
[2t]
t

)
, write fµ : Xµ × Yµ → ∆({0, 1}) for the two-party

functionality where Xµ = ×
i∈µ
Xi, Yµ = ×

j∈µ\[2t]
Xi and fµ(~x, ~y) = f(~x, ~y).

Theorem 5.17. Multiparty functionality f is computable with with full-
security in the presence of relative corrupted majorities if and only if two-
party functionality fµ is not semi-balanced, for every µ ∈

(
[2t]
t

)
.

We refer to [3] for an in-depth exposition.
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Special notation for Part II

For practical reasons, we reboot some of the notation. Let [m] denote the set
{0, . . . ,m−1}. We focus on arbitrary (possibly randomized) finite functions
of the form f : X × Y → {0, . . . ,m − 1}2. Letters α, β denote values in
[m]. In Chapter 7, the geometric distribution is chosen with parameter γ,
instead of α as in Part I.

Matrix Representation. For any f , definem2 matrices {M (a,b)}0≤a,b≤m−1

where M (a,b)(x, y) = Pr [f(x, y) = (a, b)] . In addition, for every µ and ν ⊆
[m], let

M (µ,ν) =
∑
i∈µ
j∈ν

M (i,j) .

In other words, the entries of M (µ,ν) are the probabilities that the parties
outputs’ belong to µ× ν on the corresponding inputs. If µ or ν are equal to
[m], then we write M (∗,ν) and M (µ,∗) respectively, instead of M (µ,ν). Given
an arbitrary matrix C, the i-th row and j-th column of C will be denoted
[C ]i,∗ and [C ]∗,j , respectively.

Notation ∗ . We use this notation in a number of somewhat inconsistent
but convenient ways that we believe are very easy to distinguish. Like
Part I, A ∗ B denotes the entrywise (Hadamard) product of two matrices.
As mentioned above, the notation may denote rows/columns of matrices,
and it may also be used to denote a summation. Also, the notation may be
used as a place-holder for inputs, either to avoid a universal quantifier, or to
indicate that a value has not been assigned by the relevant party. Finally,
i∗ denotes the special round of a threshold protocol – it is symbol in its own
right and should not bring about any confusion. In any case, which of these
interpretations applies should be obvious from the context.





Transition from Part I to
Part II

In Part I, we characterized symmetric Boolean functions with respect to
full-security thanks to two complementary results/tools: The semi-balanced
criterion that relies on Cleve’s Theorem, and protocol FairTwoParty, a
variant of GHKL. While these suffice for the characterization of Boolean
functions, we cannot help but find that the insights they provide are lack-
ing, as far as fairness is concerned. For one thing, the semi-balanced crite-
rion relies on a technicality5, and it is far from clear why it plays such an
important role in fully secure computation.

In our view, the same can be said of GHKL. The security of the protocol
is often attributed to its core characteristic – the special round i∗ – by ar-
guing that the adversary never knows whether the special round has been
reached, and that the all-or-nothing (memoryless) property of the geomet-
ric distribution guarantees that the probability of her guessing i∗ correctly
doesn’t get “too big”. While this may be true whenever GHKL is fully
secure, it says nothing about the shortcomings of the protocol. Specifically,
it is unclear why the protocol requires tweaks in order to compute all the
remaining functions that we now know to be fair.

In the end, the biggest flaw in the analysis so far is the lack of generality.
Straightforward generalizations of the semi-balanced criterion and protocol
FairTwoParty shed very little light on the characterization of arbitrary

5i.e. skilful or efficient way of doing or achieving something. Our use of the term is
anything but disparaging.
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functionalities. It must be said that our intention is not to downplay the
importance of Cleve’s theorem or GHKL. Rather, we are suggesting that
each of these tools represents the core of some concept/notion we have yet
to grasp.

Example. Define f(x, y) = (f1(x, y), f2(x, y)), where f1, f2 are given by
the following matrices

M (1,∗) =


1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1

 , M (∗,1) =


1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

 .

The example serves to illustrate the limitations of our exposition thus
far. It appears that only trivial sampling functionalities reduce6 to f .
What’s more, protocols computing f that follow naturally from GHKL and
FairTwoParty fall short of full-security, yet a protocol with a most bizarre
feature is fully-secure for f .

Limits of FairTwoParty and GHKL. Suppose the parties compute
f by executing an asymmetric variant of GHKL. Write (a0, . . . , ar) and
(b0, . . . , br) for the backup outputs of P1 and P2, respectively. Suppose that
P2 chooses his input uniformly at random from {y1, y2}. For any protocol
computing f with full security, this particular choice of inputs results in P2

obtaining a uniform bit as an output, regardless of the actions of P1.

We claim that a corrupt P1 can bias P2’s output towards 0, and thus the
protocol does not compute f with full security. Consider an adversary A
using x3 as an input, and aborting at the first or second round, if a1 = 1
or a1 = 0, respectively. Let’s compute the probability that P2’s output is
equal to 1 in the presence of A.

Pr [out2 = 1] = Pr [out2 = 1 ∧ i∗ 6= 1] + Pr [out2 = 1 ∧ i∗ = 1] ,

and thus

Pr [out2 = 1] = (1− α)
1

2
+ α ·

(
Pr [a1 = 1 ∧ b0 = 1 | i∗ = 1] +

Pr [a1 = 0 ∧ b1 = 1 | i∗ = 1]
)

(1− α)
1

2
+ α ·

(
1

4
+ 0

)
=

1

2
− α1

4
.

6More precisely, augmenting the balanced criterion to asymmetric functions does not
account for f .
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Notice that A can guess i∗ with non-negligible probability (A is betting
that i∗ = 1), and since P1 obtains ai∗ before P2 obtains bi∗ , it follows that
P2’s output suffers a bias. Now, in the spirit of protocol FairTwoPartyσ,
suppose that i∗ ≥ 2 and Pr [bi∗−1 = 1 | y′ = y] = py, where y′ denotes the
input handed to the dealer by P2. Define A(0) and A(1) such that A(a) uses
x3+a as an input, and aborts at the second or third round if a2 = 1− a or
a2 = a, respectively. For each case, let’s compute the probability that P2’s
output is equal to 1 in the presence of each of these adversaries.

Pr
[
out2 = 1 | A(a)

]
= Pr [out2 = 1 ∧ i∗ > 2] + Pr [out2 = 1 ∧ i∗ = 2]

= (1− α) · 1

2
+ α ·

(
Pr [a2 = 1 ∧ b2−a = 1 | i∗ = 2]

+ Pr [a2 = 0 ∧ b1+a = 1 | i∗ = 2]
)

=


(1− α) · 1

2
+ α · py1

2
if a = 1

(1− α) · 1

2
+ α ·

(
1

2
+
py1
2

)
if a = 0

Conclude that for any value of py1 ∈ [0, 1], at least one of the attacks
results in a bias. We remark that a corrupted P1 can bias P2’s output
regardless of how the function is described, i.e. the choice of associated
matrices. Specifically, flipping some of the rows of M (1,∗) and/or some of the
columns of M (∗,1) is not helpful, since the attacks can be easily modified to
successfully bias P2’s output, and, switching the players’ roles is not helpful
either, since one matrix is the transpose of the other.

A Special Round Protocol with a Twist. Consider Protocol FairT-
woPartySpecial from Figure 5.5. We note that it is not susceptible7 to
any of the attacks mentioned above since, for x ∈ {x3, x4}, party P1 receives
his output only after P2 receives his. Protocol FairTwoPartySpecial
shares the familiar trait of having a special round, but unlike GHKL and
FairTwoParty where only P1 may pose a threat, our newest protocol
gives the advantage to one party or the other depending on P1’s input. In
Appendix D p. 159, we show that FairTwoPartySpecial computes f
with full-security. Alternatively, a significantly shorter proof is provided at
the end of Chapter 7 that relies on the main result from that chapter.

7We encourage to reader to consider what happens if the adversary chooses x1 or x2,
and carries out a similar attack, or if a corrupted P2 attempts to do so.
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Protocol FairTwoPartySpecial

1. P1 and P2 hand their inputs, denoted x and y respectively, to the dealer.8

2. The dealer chooses i∗ ≥ 1 according to a geometric distribution with proba-
bility α.

3. The dealer computes out1 = f1(x, y), out2 = f2(x, y) and for 0 ≤ i ≤ r

ai =

 f1(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗

f1(x, ỹ(i)) where ỹ(i) ∈U Y if i = i∗ and x ∈ {x3, x4}
out1 otherwise

bi =

{
f2(x̃(i), y) where x̃(i) ∈U X if i < i∗

out2 otherwise.

4. The dealer gives b0 to P2.

5. For i = 1, . . . , r,

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1 and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and halts.

Figure 5.5: Protocol FairTwoPartySpecial for Computing f .

Motivation for Part II. The purpose of Part II is to generalize the char-
acterization to arbitrary functionalities. We intend for the second half our
exposition to be much more insightful. The topic of Attacks on Fairness
serves as a starting point for Part II. We show that the different attacks
from Part I are actually of the same “type”, i.e. all of them follow a similar
pattern, and they rely on a specific hybrid-model technique described by
Figure 5.6. Next, we revisit each of these attacks.

In Section 5.2.2, we showed that FairTwoParty0 is not fully-secure for any
function whose associated matrix contains the all-1 vector in its image. In
the proof, P2 constructs an ideally unbiased bit as a deterministic function of
his input/output. Then, by simply quitting at round 2, the adversary causes
a bias. In Section 3.3, we showed that the GHKL-criterion is necessary by
proving that, whenever it is not met for some function, a process similar
to the one above excludes GHKL from computing the function with full
security. The process involves an honest P2 constructing an ideally unbiased
bit, which the adversary can bias with a quitting strategy that is only
slightly more elaborate than the one for protocol FairTwoParty0.

Interestingly, the process from Figure 5.6 is also the crux of Cleve’s Theorem
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Impossibility via Hybrid-Model

1. The honest party chooses an input according to some pre-determined distri-
bution.

2. The corrupted party is handed an input of the adversary’s choice.

3. The parties execute the protocol, while the adversary caries out a fail-stop
attack.

4. Output: the honest party applies a (possibly randomized) function to the
input/output from the protocol and outputs a bit.

The purpose of Items 1 and 4 is to define in the hybrid model an output for the hon-
est party – not necessarily equal to the output of the protocol/functionality – that
is independent of the corrupted party’s input. In other words, in the presence of a
trusted party, Items 1 and 4 result in an (hybrid) output with a fixed probability
distribution, regardless of the adversary’s course of action. Using the terminology
from coin-tossing, Items 1 and 4 result in an ideally unbiased bit. Since the distri-
bution of the output is invariant in the hybrid model, to show that a protocol is
not fully-secure, it suffices to specify an attack for Item 3 with a noticeable effect
on the (real) distribution of the output, i.e. a bias.

Figure 5.6: Sketch of Impossibility Proof.

and its generalization (Section 4.1). Recall that in the proof of Cleve’s
Theorem, each round of a non-trivial sampling protocol is assigned to an
adversary that quits at that round or the next depending on the backup
output of the assigned round. Using an averaging argument, it is shown
that at least one of the attacks results in a bias.

Locking Strategies & Sampling Attacks. For convenience, we intro-
duce a couple of terms to the nomenclature. Items 1 and 4 will be referred
to as a locking strategy, Item 3 will be referred to as a sampling attack. A
sampling attack differs from an arbitrary fail-stop attack in that the former
specifically aims at biasing the output resulting from some locking strategy.
We say that a sampling attack (or the adversary) disrupts a locking strat-
egy, if the attack is successful. Most of Part II discusses the implications of
the proposition below.

Proposition (Informal) . If a protocol is fully secure, then no adversary
may disrupt a locking strategy with a sampling attack.





Chapter 6

Locking Strategies

Let f : X × Y → [m]2 denote an arbitrary two-party function. Let ∆i

denote a distribution over the inputs of Pi, and let φi(z, c) denote a (possibly
randomized) function, where c ∈ [m] and z denotes an element from Pi’s
input domain. Suppose that in the hybrid model with ideal access to f ,
party Pi chooses an input z according to ∆i, and outputs φi(z, outi) – where
outi denotes the value sent to Pi by the trusted party. We say that (∆i, φi)
is a locking strategy if Pi’s output from the procedure is independent of
P3−i’s input. To speak loosely, a locking strategy is a procedure allowing
either party to “lock” the probability distribution of his output.

For the semi-balanced functions from Part I, the functions φi amounted to
deterministic flips depending on the input, i.e. for a certain partitioning
Z0 t Z1 of the input space, z ∈ Zj ⇔ φi(z, c) = j ⊕ c. The strategies
were deduced by solving a simple linear system. Naturally, we ask how to
find relevant functions and distributions for arbitrary functions. In order to
maintain the highest degree of generality, suppose that Φ1 and Φ2 denote
the set of randomized functions that take inputs in X × [m] and Y × [m],
respectively, and output elements in N. Assume there exist (φ1, φ2) ∈ Φ1 ×
Φ2 and distributions ∆1, ∆2 such that, in the hybrid model with ideal access
to f ,

φ1
x←∆1

(x, f1(x, ∗)), φ2
y←∆2

(y, f2(∗, y))

are independent of P2’s and P1’s choice of input, respectively.

Claim 6.1. Using the notation above, it follows that for every α ∈ N, and
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every y, y′ ∈ Y

Pr
x←∆1

[φ1(x, f1(x, y)) = α] = Pr
x←∆1

[
φ1(x, f1(x, y′)) = α

]
.

Similarly, for every β ∈ N, and every x, x′ ∈ X

Pr
y←∆2

[φ2(y, f2(x, y)) = β] = Pr
y←∆2

[
φ2(y, f2(x′, y)) = β

]
.

By definition, (∆1, φ1) and (∆2, φ2) yield statistically dependent outputs if
there exists (α, β) ∈ N2 such that

Pr
x←∆1
y←∆2

[(φ1(x, f1(x, y)), φ2(y, f2(x, y))) = (α, β)] 6=

Pr
x←∆1

[φ1(x, f1(x, ∗)) = α] · Pr
y←∆2

[φ2(y, f2(∗, y)) = β] . (6.1)

In line with the discussion from Chapter 4, we investigate how to find pairs
(∆1, φ1) and (∆2, φ2) based on f . We begin by effectively restricting the
function-space to those functions that have Boolean output. If there exists
(α, β) as in Equation (6.1), then it is easy to see that pairs (∆1, φ̃1), (∆2, φ̃2)
yield statistically dependent outputs, where

φ̃1(x, a) =

{
1 if φ1(x, a) = α

0 otherwise
, φ̃2(y, b) =

{
1 if φ2(y, b) = β

0 otherwise
.

From now on, assume that φi : Z × [m]→ {0, 1}.

Definition 6.2. We say that σ1 = (∆1, φ1) is a locking strategy for P1 with
respect to f if for every y, y′ ∈ Y it holds that

Pr
x←∆1

[φ1(x, f1(x, y)) = 1] = Pr
x←∆1

[
φ1(x, f1(x, y′)) = 1

]
.

Similarly, we say that σ2 = (∆2, φ2) is a locking strategy for P2 with respect
to f if for every x, x′ ∈ X it holds that

Pr
y←∆2

[φ2(y, f2(x, y)) = 1] = Pr
y←∆2

[
φ2(y, f1(x′, y)) = 1

]
.

Next, we generalize the semi-balanced criterion for arbitrary functions.
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Definition 6.3. We say that f is semi-balanced if there exist locking strate-
gies σ1 = (∆1, φ1) and σ2 = (∆2, φ2) for P1 and P2 respectively such that
the resulting outputs are statistically dependent, i.e.

Pr
x←∆1
y←∆2

[φ1(x, f1(x, y)) = 1 ∧ φ2(y, f2(x, y)) = 1] 6=

Pr
x←∆1

[φ1(x, f1(x, ∗)) = 1] · Pr
y←∆2

[φ2(y, f2(∗, y)) = 1] .

In particular, we say that strategies σ1 and σ2 are dependent.

Remark 6.4. To alleviate notation, an economical approach is taken with
regards to denoting summations. Specifically, the limits of sums are almost
never denoted in full detail. In particular, “ zξ(z) > 0 ” in the lower limit of
a sum indicates a summation over ξ and z such that zξ(z) > 0, and other
inequalities follow the same logic. Furthermore, “ ξ | c ∈ ξ ” in the lower
limit of a sum indicates a summation over all ξ such that c ∈ ξ.

6.1 Locking Strategies are (Quasi) Linear

We show that locking strategies are endowed with a quasi-linear struc-
ture, i.e. we can embed them into a vector space. This is highly desirable
since using vectors and matrices, instead of distributions and functions,
greatly simplifies the analysis. To show that such an embedding exists,
we interpret φ1 and φ2 as probabilistic combinations of deterministic in-
dicator functions. First, we introduce further notation. For every y, let

dy = Pr [y0 = y | y0 ← ∆2]. Furthermore, let {b(y)
0 , b

(y)
1 , . . . , b

(y)
m−1} be an or-

dering of [m] such that

Pr
[
φ2(y, b

(y)
0 ) = 1

]
≤ Pr

[
φ2(y, b

(y)
1 ) = 1

]
≤ · · · ≤ Pr

[
φ2(y, b

(y)
m−1) = 1

]
.

For i ∈ {−1, . . . ,m} define p
(y)
i such that

p
(y)
i =


0 if i = −1

Pr
[
φ2(y, b

(y)
i ) = 1

]
if 0 ≤ i ≤ m− 1

1 if i = m

.

Observe that, for i ∈ {0, . . . ,m}, it holds that

φ2(y, b) = τ
(y)
i (b) with probability p

(y)
i − p

(y)
i−1 ,
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where τ
(y)
i (b) = 1 if b ∈ {b(y)

i , . . . , b
(y)
m−1} and 0 otherwise. Let M consist

of all the non-empty subsets of {0, 1 . . . ,m − 1} of size strictly less than
m/2, and the subsets of size m/2 that do not contain 0. Define vectors
{yµ}µ∈M ⊆ Rk, such that

yµ(y) =


dy · (p(y)

i − p
(y)
i−1) if τ

(y)
i (b) = 1⇔ b ∈ µ

dy · (−p(y)
i + p

(y)
i−1) if τ

(y)
i (b) = 1⇔ b /∈ µ

0 otherwise

.

Finally, define vectors y∅ and y[m] such that

y∅(y) = dy · (1− p(y)
m−1) ,

y[m](y) = dy · p(y)
0 .

Claim 6.5. Vectors {yµ}µ∈M are well defined.

Proof. {yµ}µ∈M are well defined if every entry is accounted for exactly once.
It suffices to show that the following sets have cardinality at most 1 and at
least one of them is empty{

i ∈ {1, . . . ,m− 1}
∣∣∣ τ (y)
i (b) = 1⇔ b ∈ µ

}
,{

i ∈ {1, . . . ,m− 1}
∣∣∣ τ (y)
i (b) = 1⇔ b /∈ µ

}
. (6.2)

Observe that for every y, for every i 6= j, it holds that τ
(y)
i 6= τ

(y)
j . Thus,

the sets above have cardinality at most 1. It remains to show that at least

one of the two is empty, i.e. for every i, j ∈ [m], it holds that τ
(y)
i 6= 1−τ (y)

j .
Note that

τ
(y)
∗ (b) = 1⇔ b ∈ {b(y)

∗ , . . . , b
(y)
m−1}

and thus τ
(y)
i (b

(y)
0 ) = τ

(y)
j (b

(y)
0 ), since i, j ≥ 1. 2

Proposition 6.6. It holds that the procedure from Figure 6.1 is functionally
equivalent to σ2. In addition,

1`×k · y[m] +
∑
µ∈M

M (∗,µ) · yµ =

δ2 −
∑

yµ(y)<0

|yµ(y)|

 · 1` ,



6.1. locking strategies are (quasi) linear 89

Locking Strategies from Vectors

• Offline.

1. With probability y∅(y) choose y and τ such that τ ≡ 0.

2. With probability y[m](y) choose y and τ such that τ ≡ 1.

3. With probability |yµ(y)| choose y and τ such that

a) If yµ(y) ≥ 0,

τ(b) =

{
1 if b ∈ µ
0 otherwise

.

b) If yµ(y) < 0,

τ(b) =

{
1 if b /∈ µ
0 otherwise

.

• Online. P2 sends y to the trusted party. The latter replies with
b = f2(x, y), where x denotes the input chosen by P1.

• Output. P2 outputs τ(b).

Figure 6.1: How to Obtain Locking Strategies from Vectors.

where δ2 denotes the probability that strategy σ2 returns 1. Conversely, up to
a multiplicative factor, vectors {yµ}µ∈M ∪ {y∅,y[m]} such that y∅,y[m] ≥ 0
define a locking strategy if∑

µ∈M
M (∗,µ) · yµ = δ2 · 1` ,

for some δ2 ∈ R.

Proof. Fix an arbitrary x and observe that∑
yµ(y)<0

Pr [f2(x, y) ∈ µ] · yµ(y) =
∑

yµ(y)<0

(1− Pr [f2(x, y) /∈ µ]) · yµ(y)

By construction, δ2 is equal to∑
yµ(y)≥0

Pr [f2(x, y) ∈ µ] · yµ(y) +
∑

yµ(y)<0

Pr [f2(x, y) /∈ µ] · |yµ(y)|+
∑
y∈Y

y[m](y) .

We omit the proof of the converse. 2
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6.1.1 Dependent Strategies

So far, we showed that strategies for P2 are encoded by vectors {yµ}µ∈M ∪
{y∅,y[m]} that satisfy

∑
µ∈MM (∗,µ)·yµ = δ2·1`, for some δ2 ∈ R. Extend all

of the above to the first party, and deduce that strategies for P1 are encoded
by vectors {xµ}µ∈M∪{x∅,x[m]} that satisfy

∑
µ∈M xTµ ·M (µ,∗) = δ1 ·1Tk ,for

some δ1 ∈ R.

Proposition 6.7. Using the notation above, it holds that the associated
locking strategies yield statistically dependent outputs if and only if∑

µ,ν∈M
xTµ ·M (µ,ν) · yν 6= δ1δ2 .

Proof. To prove the claim, we show that

Pr [(out1, out2) = (1, 1)] =
∑

µ,ν∈M
xTµ ·M (µ,ν) · yν

+ δ1 ·

〈y[m] |1k
〉

+
∑

yν(y)<0

|yν(y)|

+ δ2 ·

〈x[m] |1`
〉

+
∑

xµ(x)<0

|xµ(x)|


+

〈x[m] |1`
〉

+
∑

xµ(x)<0

|xµ(x)|

 ·
〈y[m] |1k

〉
+

∑
yν(y)<0

|yν(y)|


So, for every (µ, ν) ∈M2, define matrix M̂ (µ,ν) such that

M̂ (µ,ν)(x, y) =


Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) ≥ 0,yν(y) ≥ 0

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) ≥ 0,yν(y) < 0

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) < 0,yν(y) ≥ 0

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] if xµ(x) < 0,yν(y) < 0

.

Let |xµ| and |yν | denote the vectors obtained from xµ and yν by taking the
absolute value of all the entries. Clearly, Pr [(out1, out2) = (1, 1)] =

∑
µ,ν∈M

|xµ|T ·M̂ (µ,ν) · |yν |+

δ1 +
∑

xµ(x)<0

|xµ(x)|

 · 〈y[m] |1k
〉

+

δ2 +
〈
y[m] |1k

〉
+

∑
yµ(y)<0

|yµ(y)|

 · 〈x[m] |1`
〉
.
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Next, |xµ|T · M̂ (µ,ν) · |yν | =∑
xµ(x)≥0
yν(y)≥0

xµ(x)·Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · yν(y)

+
∑

xµ(x)≥0
yν(y)<0

xµ(x) · Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · |yν(y)|

+
∑

xµ(x)<0
yν(y)≥0

|xµ(x)|·Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · yν(y)

+
∑

xµ(x)<0
yν(y)<0

|xµ(x)| · Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] · |yν(y)| .

Now, note that

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] =

Pr [f1(x, y) ∈ µ]− Pr [(f1(x, y), f2(x, y)) ∈ µ× ν]

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] =

Pr [f2(x, y) ∈ ν]− Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] ,

and that

Pr [(f1(x, y), f2(x, y)) ∈ µ× ν] =

1 + Pr [(f1(x, y), f2(x, y)) ∈ µ× ν]− Pr [f1(x, y) ∈ µ]− Pr [f2(x, y) ∈ ν] .

From all of the above, it follows that
∑

µ,ν∈M |xµ|T · M̂ (µ,ν) · |yν | =∑
µ,ν∈M

xTµ ·M (µ,ν) · yν +
∑

yν(y)<0

|yν(y)| ·
∑
µ

xTµ

[
M (µ,∗)

]
∗,y

+
∑

xµ(x)<0

|xµ(x)| ·
∑
ν

[
M (∗,ν)

]
x,∗

yν +
∑

xµ(x)<0
yν(y)<0

|xµ(x)| · |yν(y)|

=
∑

µ,ν∈M
xTµ ·M (µ,ν) · yν + δ1 ·

∑
yν(y)<0

|yν(y)|

+ δ2 ·
∑

xµ(x)<0

|xµ(x)|+
∑

xµ(x)<0
yν(y)<0

|xµ(x)| · |yν(y)|

2
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6.2 Locking Strategies made Simple

To conclude, we restrict locking strategies to ones that are deemed “simple”.
Observe that the party applying a locking strategies chooses from among
2m/2 + 1 maps. In light of Proposition 6.7, let us assume that y∅ = y[m] =
0k, in effect restricting the number of maps to 2m/2 − 1. In what follows,
we show that we can restrict the number of maps to m− 1.

Using the notation from the previous section, consider a locking strategy
represented by vectors {yµ}µ∈M. Let us move a few terms around in the
expression below.

∑
µ∈M

M (∗,µ) · yµ =
∑
µ∈M

∑
b∈µ

M (∗,b)

 · yµ
= M (∗,0) ·

 ∑
µ | 0∈µ

yµ

+

m−1∑
b=1

M (∗,b) ·

 ∑
µ | b∈µ

yµ

 .

Now, since M (∗,0) = 1`×k −
∑m−1

b=1 M (∗,b), it follows that

∑
µ∈M

M (∗,µ) · yµ =

 ∑
µ | 0∈µ

〈yµ |1k〉

 · 1` +
m−1∑
b=1

M (∗,b) ·

 ∑
µ | b∈µ

yµ −
∑
µ | 0∈µ

yµ


(6.3)

Define1 vectors {yb}b∈[m] such that

yb =
∑
µ | b∈µ

yµ −
∑
µ | 0∈µ

yµ .

We note that these vectors encode a new locking strategy. In accordance
with the notation so far, the locking strategy associated with {yb}b∈[m] is
functionally equivalent to the locking strategy associated with {y′µ}µ∈M,
where

y′µ =

{
yb if µ = {b}
0k otherwise

.

1No confusion should arise between {yµ}µ∈M and {yb}b∈[m]. One family consists of
vectors indexed over sets, the other family is indexed over integers.
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The fact that the resulting vectors encode a locking strategy follows from
Equation (6.3), the fact that {yµ}µ∈M encode a locking strategy, and Propo-
sition 6.6. Immediately, we see that {yb}b∈[m] is much “simpler” than
{yµ}µ∈M, since we have exponentially fewer maps to choose from. Next,
we show that any loss of generality that this simplification incurs does not
affect our analysis of the semi-balanced criterion.

Proposition 6.8. Let {xµ}µ∈M, {yµ}µ∈M and {yb}b∈[m] be as above. The
outputs from the locking strategies associated with {xµ}µ∈M and {yµ}µ∈M
are statistically dependent if and only the outputs from the strategies asso-
ciated with {xµ}µ∈M and {yb}b∈[m] are as well.

Proof. Since {xµ}µ∈M and {yµ}µ∈M are locking strategies, let δ1, δ2 ∈ R
such that δ1 · 1Tk =

∑
µ∈M xTµ ·M (µ,∗) and δ2 · 1` =

∑
ν∈MM (∗,ν) · yν . The

proof relies on applying Proposition 6.7. Let us compute

∑
µ,ν∈M

xTµ ·M (µ,ν) · y′ν =
∑
µ

m−1∑
b=1

xTµ ·M (µ,b) · yb

=
∑
µ

m−1∑
b=1

xTµ ·M (µ,b) ·

 ∑
ν | b∈ν

yν −
∑
ν | 0∈ν

yν


=
∑
µ

xTµ ·

m−1∑
b=1

∑
ν | b∈ν

M (µ,b) · yν −
m−1∑
b=1

∑
ν | 0∈ν

M (µ,b) · yν


=
∑
µ

xTµ ·

∑
ν

∑
b∈ν\{0}

M (µ,b) · yν −
∑
ν | 0∈ν

m−1∑
b=1

M (µ,b) · yν

 .

Now, observe that
∑m−1

b=1 M (µ,b) =
∑m−1

b=0 M (µ,b)−M (µ,0) = M (µ,∗)−M (µ,0).∑
µ,ν∈M

xTµ ·M (µ,ν) · y′ν =

∑
µ

xTµ ·

∑
ν

∑
b∈ν\{0}

M (µ,b) · yν +
∑
ν | 0∈ν

(
M (µ,0) −M (µ,∗)

)
· yν

 .
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Thus,

∑
µ,ν∈M

xTµ ·M (µ,ν) · y′ν =
∑
µ

xTµ ·

∑
ν

∑
b∈ν

M (µ,b) · yν −M (µ,∗) ·
∑
ν | 0∈ν

yν


=
∑
µ,ν

xTµ ·M (µ,ν) · yν −

(∑
µ

xTµ ·M (µ,∗)

) ∑
ν | 0∈ν

yν

=
∑
µ,ν

xTµ ·M (µ,ν) · yν − δ1 · 1Tk ·
∑
ν | 0∈ν

yν

=
∑
µ,ν

xTµ ·M (µ,ν) · yν − δ1 ·
∑
ν | 0∈ν

〈yν |1k〉 .

To conclude, observe that by Equation (6.3),

∑
ν∈M

M (∗,ν) · y′ν =

δ2 −
∑
ν | 0∈ν

〈yν |1k〉

 · 1` .
2

6.2.1 Main Theorem

Let L2 denote an arbitrary basis of the vector space consisting of all vectors
y of the form yT = (yT1 , . . . ,y

T
m−1) such that

(
M (∗,1)

∥∥∥M (∗,2)
∥∥∥ · · · ∥∥∥M (∗,m−1)

)
·

 y1

...
ym−1

 = δ2 · 1` ,

for some δ2 ∈ R. Similarly let L1 denote an arbitrary basis of the vector
space consisting of all vectors x of the form xT = (xT1 , . . . ,x

T
m−1) such that

(
xT1 , . . . ,x

T
m−1

)
·

 M (1,∗)
...

M (m−1,∗)

 = δ1 · 1Tk ,

for some δ1 ∈ R.
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Theorem 6.9. Function f is semi-balanced if and only if there exist x ∈ L1

and y ∈ L2 such that

m−1∑
a,b=1

xTa ·M (a,b) · yb 6= δ1δ2 ,

where δ1 · 1Tk =
∑m−1

a=1 xTa ·M (a,∗) and δ2 · 1` =
∑m−1

b=1 M (∗,b) · yb .

In this chapter, we defined locking strategies and we generalized the semi-
balanced criterion. Locking strategies are algorithmic processes associated
with functions, that enable the parties to output bits that are independent of
each others’ inputs. Strategies are defined by means of the communication
model with ideal access to a given function f i.e. the hybrid model. We
showed that they are encoded by vectors and that, under certain conditions,
they yield statistically dependent outputs, rendering the associated function
unfair by Cleve.

Remark 6.10. The GHKL-criterion stipulates that the protocol computes
f with full security if and only if v 7→

(
MT · 1k/k

)
∗ v is an endomorphism

ofH(MT ). Using the new terminology, GHKL computes f with full security
if for every v ∈ 〈L2〉, the strategies associated with v and

(
MT · 1k/k

)
∗ v

are functionally equivalent.





Chapter 7

Sampling Attacks

Recall the attacks from the proof of Cleve’s Theorem. Depending on the
corrupted party’s backup output at some predetermined round, the adver-
sary either aborts the computation immediately, or carries on honestly for
exactly one more round. In this chapter, we discuss a distinct but somewhat
related class of attacks that we refer to as sampling attacks. Informally, in
a sampling attack, the adversary observes a subset of the corrupted party’s
backup outputs (of constant-size in the security parameter), and aborts ei-
ther upon receiving the last back-up in the subset or not at all, i.e. carries
on honestly. It is worth mentioning that sampling attacks do not include
the attacks attributed to Cleve, although they are qualitatively “stronger”,
as we shall see later in the chapter.

The main result of this chapter is a generic transformation from a subclass of
constant-round passively secure protocols to the class of fully-secure proto-
cols. A protocol belongs to the relevant subclass if it satisfies an additional
security requirement pertaining to locking strategies and sampling attacks.

7.1 Security against Sampling Attacks

Knowing that locking strategies are encoded by vectors, let y denote some
locking strategy for P2, and L2 denote an arbitrary basis of the relevant
vector space. Suppose that A corrupts P1 and define {In}n∈N such that
In ⊂ N and |In| < ∞, and ∃n0 ∈ N such that |In| = |In0 |, for every
n ≥ n0. Without loss of generality, assume that In = {j0, j1, . . . , jin}, and
that j0 < j1 . . . < jin .

97
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Definition 7.1. A sampling attack is fail-stop attack parametrized by
{In}n∈N. The adversary executes the protocol with an input of her own
choosing, observes the subsequence (aj0 , aj1 , . . . , ajin ) of the backup se-
quence, and, depending on the adversary’s specifications, quits either at
round jin or not at all, i.e. carries on honestly.

Under what conditions does a sampling attack disrupt P2’s locking
strategy?

Write ôut2 for the output resulting from the locking strategy in an ex-
ecution of Π. Protocol Π is secure against sampling attacks if for ev-
ery y ∈ 〈L2〉, for every A carrying out a sampling attack, it holds that∣∣Pr
[
ôut2 = 1

]
− δ2

∣∣ = negl(n), where δ2 denotes the probability that P2 out-
puts 1 in the hybrid model with ideal access to f . Next, for every {In}n∈N,
for every x ∈ X, for every y ∈ 〈L2〉, define a−In = (aj0 , . . . , ajin , b̂jin−1)

and a+
In

= (aj0 , . . . , ajin , b̂r), where b̂∗ denotes the bit obtained from b∗ by
applying y.

Proposition 7.2. The protocol is secure against sampling attacks if and
only if for every {In}n∈N as above, for every x ∈ X, for every y ∈ 〈L2〉, it
holds that random variables a−In and a+

In
are statistically close.

Proof. In pursuit of a contradiction, say there exists {In}n∈N, and (~αIn , βn) ∈
[m]|In| × {0, 1} and t ∈ poly such that for an infinite number of n’s∣∣Pr

[
a+
In

= (~αIn , βn)
]
− Pr

[
a−In = (~αIn , βn)

]∣∣ ≥ 1

t(n)

Now consider the following attack: If (aj0 , . . . , ajin ) = ~αIn , quit at round
jin . Otherwise proceed honestly. We show that the attack results in a bias.
Let’s compute the probability that the honest party’s output is equal to βn.

Pr
[
ôut2 = βn

]
= Pr

[
~aIn = ~αIn ∧ b̂jin−1 = βn

]
+ Pr

[
~aIn 6= ~αIn ∧ b̂r = βn

]
= Pr

[
~aIn = ~αIn ∧ b̂i−1 = βn

]
− Pr

[
~aIn = ~αIn ∧ b̂r = βn

]
+ Pr

[
b̂r = βn

]
(7.1)

By correctness ∣∣∣Pr
[
b̂r = βn

]
− Pr

[
f̂2 = βn

]∣∣∣ ≤ negl(n) . (7.2)
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Combining (7.1) and (7.2), and using the triangle inequality, it follows that∣∣∣Pr
[
ôut2 = βn

]
− Pr

[
f̂2 = βn

]∣∣∣ ≥∣∣∣Pr
[
ôut2 = βn

]
− Pr

[
b̂r = βn

]∣∣∣− ∣∣∣Pr
[
b̂r = βn

]
− Pr

[
f̂2 = βn

]∣∣∣
≥∣∣Pr

[
a+
In

= (~αIn , βn)
]
− Pr

[
a−In = (~αIn , βn)

]∣∣− negl(n)

≥ 1

t(n)
− negl(n) ≥ 1

c · t(n)
,

for any fixed c > 1 and n large enough. Turning to the converse, suppose
that for every {In}n∈N, for every x and y, and every (~αIn , βn) ∈ [m]|In| ×
{0, 1} it holds that∣∣Pr

[
a+
In

= (~αIn , βn)
]
− Pr

[
a−In = (~αIn , βn)

]∣∣ ≤ negl(n) .

Let p~αIn denote the probability that the adversary quits at round jin having
observed ~αIn . Let’s compute the bias. By the triangle inequality,∣∣∣Pr

[
ôut2 = 1

]
− Pr

[
f̂2 = 1

]∣∣∣ ≤∣∣∣Pr
[
ôut2 = 1

]
− Pr

[
b̂r = 1

]∣∣∣+
∣∣∣Pr
[
b̂r = 1

]
− Pr

[
f̂2 = 1

]∣∣∣ .
(7.3)

And thus

(7.3) ≤

∣∣∣∣∣∣
∑
~αIn

Pr
[
ôut2 = 1 ∧ ~aIn = ~αIn

]
− Pr

[
b̂r = 1 ∧ ~aIn = ~αIn

]∣∣∣∣∣∣+ negl(n)

≤
∑
~αIn

p~αIn ·
∣∣Pr
[
a−i = (~αIn , 1)

]
− Pr

[
a+
In

= (~αIn , 1)
]∣∣+ negl(n)

≤ negl(n) .

The first inequality follows by a simple expansion. The second inequality
follows from the triangle inequality and the fact that

Pr
[
ôut2 = 1 ∧ ~aIn = ~αIn

]
=

p~αIn · Pr
[
b̂jin−1 = 1 ∧ ~aIn = ~αIn

]
+ (1− p~αIn ) · Pr

[
b̂r = 1 ∧ ~aIn = ~αIn

]
.

The last inequality follows from the hypothesis of the claim and the fact
that |In| is constant in the security parameter. 2
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Sampling Attacks vis-à-vis Fairness. An informal definition of fairness
states that one party obtains output if and only if both do. We ask if se-
curity against sampling attacks admits a statement along those lines. Fix
y ∈ 〈L2〉 and write f̂2 for P2’s output resulting from y in the hybrid model
with ideal access to f . Observe that Proposition 7.2 admits the following
interpretation: the protocol is susceptible to sampling attacks if, for some
input x ∈ X, the adversary perceives a noticeable difference between the
probability distributions of f̂2 and b̂jin−1. Alternatively, one could say that
a protocol is secure against sampling attacks if, at any given round, what-
ever the adversary can infer about about the honest party’s output1, the
information is already contained in the honest party’s backup output. To
illustrate, consider the symmetric Boolean function given by

M =


0 0 0 1
0 0 1 1
0 1 1 0
1 1 0 1

 .

The second party has a unique locking strategy encoded by vector q =
(−1, 1, 0, 1)T . Consider the single-round protocol defined by means of the
backup outputs (a0, a1) and (b0, b1) such that a0 = f(x, ỹ), where ỹ ∈U Y ,
b0 = 1 and a1 = b1 = f(x, y). Write b̂∗ for the bit obtained from b∗ by
applying strategy q. In the hybrid model, P2’s output is equal to 1 with
probability 2/3, regardless of P1’s choice of input. On the other hand, in
the real model, observe that

x \ Pr[̂bi = 1 | a1 = α] α = 0 α = 1

x1 1/2 1
x2 1/2 1
x3 1/2 1
x4 →← 2/3

for i ∈ {0, 1}, and thus from P1’s perspective, b̂1 and b̂0 are identically
distributed.

Sampling vs Cleve-type attacks. We show that if a protocol is secure
against sampling attacks, then it is also secure against Cleve-type attacks.
Using the notation above and going back to the proof of Cleve’s Theorem in
Chapter 4, a protocol is secure against Cleve-type attacks if, for every x ∈

1Resulting from the locking strategy.
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X, for every y ∈ 〈L2〉, and every i ∈ N, the following pairs are statistically
close

(ai, b̂i−1), (ai, b̂i) .

If the protocol is secure against sampling attacks, it follows that

(ai, ai+1, b̂i), (ai, ai+1, b̂r)

are close, and obviously (ai, b̂i) and (ai, b̂r) are as well. Now, once again be-
cause the protocol is secure against sampling attacks, we have that (ai, b̂i−1)
and (ai, b̂r) are close, and since statistical closeness is transitive, we conclude
that (ai, b̂i) and (ai, b̂i+1) are close as well. Hence, sampling attacks are at
least as good as Cleve-type attacks.

7.1.1 Sampling Attacks in Linear-Algebraic Terms

In this section, we show how security against sampling attacks can be ex-
pressed in linear-algebraic terms. First, we define closeness for vectors. Let
{vn}n∈N and {un}n∈N denote two families of vectors indexed by N. We say
that vn is close to un if ‖un − vn‖ ≤ negl(n).

Definition 7.3. For every {In}n∈N, for every ~αIn = (αj1 , . . . , αIjin
) ∈

[m]jin+1 with jin ≥ 1, and every β ∈ [m], define matricesB
(~αIn ,β)
− , B

(~αIn ,β)
+ ∈

R`×k such that

B
(~αIn ,β)
− (x, y) = Pr

[
(~aIn(x, y), bjin−1(x, y))) = (~αIn , β)

]
B

(~αIn ,β)
+ (x, y) = Pr [(~aIn(x, y), br(x, y))) = (~αIn , β)] .

Similarly, for every ~βi = (βj1 , . . . , βjin ) ∈ [m]i and every α ∈ [m] define

matrices A
(α,~βIn )
− , A

(α,~βIn )
+ ∈ R`×k such that

A
(α,~βIn )
− (x, y) = Pr

[(
ajin (x, y),~bIn(x, y)

)
= (α, ~βIn)

]
A

(α,~βIn )
+ (x, y) = Pr

[(
ar(x, y),~bIn(x, y)

)
= (α, ~βIn)

]
.

Theorem 7.4. Protocol Π is secure against sampling attacks if and only if
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• for every y ∈ 〈L2〉, for every {In}n∈N, for every ~αIn ∈ [m]|In|, the
vector below is close to 0`.

(
B

(~αIn ,1)
+ −B(~αIn ,1)

−

∥∥∥ · · · ∥∥∥B(~αIn ,m−1)
+ −B(~αIn ,m−1)

−

)
·

 y1

...
ym−1


(7.4)

• for every x ∈ 〈L1〉, for every {In}n∈N, for every ~βIn ∈ [m]|In|, the
vector below is close to 0Tk .

(
xT1 , . . . ,x

T
m−1

)
·


A

(1,~βIn )
+ −A(1,~βIn )

−
...

A
(m−1,~βIn )
+ −A(m−1,~βIn )

−

 (7.5)

Proof. Write f̂2 for P2’s output resulting from some strategy yT = (yT1 , . . . ,y
T
m−1)

and let |y| denote the vector obtained from y by taking the absolute value

of all the entries. In addition, define B̂
(~αIn ,β)
+ and B̂

(~αIn ,β)
− such that

B̂
(~αIn ,β)
+ (x, y) =

{
Pr [(~aIn(x, y), br(x, y)) = (~αIn , β)] if yβ(y) ≥ 0

Pr [~aIn(x, y) = ~αIn ∧ br(x, y) 6= β] if yβ(y) < 0
,

B̂
(~αIn ,β)
− (x, y) =

{
Pr
[
(~aIn(x, y), bjin−1(x, y)) = (~αIn , β)

]
if yβ(y) ≥ 0

Pr
[
~aIn(x, y) = ~αIn ∧ bjin−1(x, y) 6= β

]
if yβ(y) < 0

.

Let us compute the probability that (~aIn , f̂2) is equal to (~αIn , 1).

Pr
[
(~aIn , f̂2) = (~αIn , 1)

]
=

m−1∑
b=1

B̂
(~αIn ,β)
+ · |yb|

=

m−1∑
b=1

B
(~αIn ,β)
+ · yb +

∑
yb(j)<0

|yb(j)| ·
[
B

(~αIn ,∗)
+

]
∗,j

Pr
[
(~aIn , b̂jin−1) = (~αIn , 1)

]
=

m−1∑
b=1

B̂
(~αIn ,β)
− · |yb|

=

m−1∑
b=1

B
(~αIn ,β)
− · yb +

∑
yb(j)<0

|yb(j)| ·
[
B

(~αIn ,∗)
−

]
∗,j
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Notice that

Pr
[
(~aIn , f̂2) = (~αIn , 1)

]
= Pr [~aIn = ~αIn ]− Pr

[
(~aIn , f̂2) = (~αIn , 0)

]
Pr
[
(~aIn , b̂jin−1) = (~αIn , 1)

]
= Pr [~aIn = ~αIn ]− Pr

[
(~aIn , b̂i−1) = (~αIn , 0)

]
,

and thus (~aIn , f̂2) is close to (~aIn , b̂jin−1) if the vector in (7.4) is close to 0`.
We omit the proof for an honest P1. 2

7.2 Towards Full Security

Needless to say, our goal is to design protocols that are fully secure. We
show that constant-round protocols that satisfy passive security and secu-
rity against sampling attacks are easily transformed into fully secure pro-
tocols. Let Π be a protocol for computing f satisfying all the relevant
properties. We model the protocol in the usual way. The parties’s backup
outputs for Π will be denoted (c0, . . . , cr′) and (d0, . . . , dr′), respectively,
where r′ denotes the number of rounds.

We assume that r′ is constant in the security parameter. This assumption
is desirable for reasons that will become clear in the next section, and it is
good enough for our purposes. Nevertheless, the question of determining the
optimal round complexity for protocols that are passively secure and secure
against sampling attacks may be of independent interest. We conjecture
that for the class of functions we have in mind, i.e. finite & constant-size
domain, if such protocols exist, then constant-round protocols exhibiting
the same security features should exist as well.

Conjecture 7.5. For any finite function f , passive security and security
against sampling attacks can either be achieved in a constant number of
rounds or not at all.

Since the protocol is assumed to be passively secure, there exist simulators,
that we denote {Spi }i∈{1,2}, that can recreate the backup sequences in the
ideal model. In addition, since the protocol is constant-round, it follows
that the ideal sequences are statistically close to the real ones. Formally,

(c0, . . . , cr′ , dr′)
Real s≡ (c0, . . . , cr′ , f2)Ideal

(d0, . . . , dr′ , cr′)
Real s≡ (d0, . . . , dr′ , f1)Ideal .
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Since the protocol is constant-round, by assumption, Theorem 7.4 applies
to Π in a very straightforward way. Using the notation from the previous
section,

• For every y ∈ 〈L2〉, for every i = 1, . . . , r′, for every ~αi ∈ [m]i+1, the
vector below is close 0`.(

B
(~αi,1)
+ −B(~αi,1)

−

∥∥∥ · · · ∥∥∥B(~αi,m−1)
+ −B(~αi,m−1)

−

)
· y .

• For every x ∈ 〈L1〉, for every i = 0, . . . , r′ − 1, for every ~βi ∈ [m]i+1,
the vector below is close to 0Tk .

xT ·


A

(1,~βi)
+ −A(1,~βi)

−
...

A
(m−1,~βi)
+ −A(m−1,~βi)

−

 .

We are going to combine the main ingredient of the GHKL protocol – the
threshold round i∗ – with the protocol above. Specifically, we are going
to instruct the parties to run a protocol such that, at some point in the
execution, unbeknownst to them, the parties begin running Π.

This is achieved by choosing a random threshold round according to a ge-
ometric distribution. Prior to that round, the parties exchange backup
outputs that are independent of each other, and, once the threshold round
has been reached, the parties exchange backups according to the specifica-
tions of Π. Formally, consider protocol SecSamp2Fair(Π) from Figure 7.1.
For the new protocol, i∗ ≥ r′ + 1 is chosen according to a geometric distri-
bution with parameter γ. If i < i∗ − r′, then ai and bi are independent of
one another. If i∗ − r′ ≤ i < i∗, then ai and bi are equal to ci−i∗+r′ and
di−i∗+r′ , respectively. Finally, if i ≥ i∗, then ai and bi are equal to f1(x, y)
and f2(x, y), respectively.

7.3 Security Analysis

We only deal with the case where P1 is corrupted. The other case is virtually
analogous. Write A for the adversary corrupting P1. We begin with a high-
level description of the simulator. The simulator S chooses i∗ according to
the specifications of the protocol, and simulates the rounds of the protocol
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Protocol SecSamp2Fair(Π)

1. The parties P1 and P2 hand their inputs, denoted x and y respectively,
to the dealer.a

2. The dealer executes Π locally on inputs x and y and security parameter
n. Write (c0, . . . , cr′) and (d0, . . . , dr′) for the sequences of backup
outputs computed by the dealer.

3. The dealer chooses i∗ ≥ r′+ 1 according to the geometric distribution
with parameter γ.

4. The dealer computes (out1, out2) = (f1(x, y), f2(x, y)), and for 0 ≤
i ≤ r

ai =

 f1(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗ − r
ci−(i∗−r′) if i∗ − r′ ≤ i < i∗

out1 otherwise

and

bi =

 f2(x̃(i), y) where x̃(i) ∈U X if i < i∗ − r
di−(i∗−r′) if i∗ − r′ ≤ i < i∗

out2 otherwise.

5. The dealer gives b0 to P2.

6. For i = 1, . . . , r,

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1
and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and
halts.

aIf x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs this value and
the protocol is terminated. The case of an inappropriate y is dealt analogously.

Figure 7.1: Protocol SecSamp2Fair(Π) for Computing f .
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as follows. Prior to iteration/round i∗ − r′, the simulator generates backup
outputs in exactly the same way as the dealer does in the real model. If
the adversary decides to abort, S sends x0 ∈ X to the trusted party, where

x0 is sampled according to probability vector z
(~αr′ )
x ∈ R`. As the notation

suggests, z
(~αr′ )
x depends on x (the input handed by the adversary for the

computation) and the last r′ + 1 backup outputs computed by the simula-
tor. At iteration i∗−r′, assuming the adversary is still active, the simulator
hands x to the trusted party, and receives output a = f1(x, y). In order to
reconstruct the next values of the backup sequence, the simulator invokes
Sp2 , and hands one-by-one to A the values computed by Sp2 . At every iter-
ation following i∗, the simulator hands a to A. At any given point, if the
adversary aborts, the simulator outputs the sequence of values he handed
to A, and halts.

Why does this work? By definition, the simulator’s output together with
the honest party’s output in the ideal model is required to be indistinguish-
able from the adversary’s view and the honest party’s output in the real
model. In our case, the adversary’s view corresponds to the sequence of
backup outputs she observes. Notice that the backup up sequences of each
world are statistically close, which follows from the way i∗ is chosen in both
worlds, the passive security of Π, and the fact that prior to i∗−r′ the backup
outputs in the real and ideal world are identically distributed. The hard

part is to argue that there exists z
(~αr′ )
x from which the simulator can sample

from. As we shall see, the existence of z
(~αr′ )
x follows from a corollary of the

fundamental theorem of Linear Algebra, which comes into play because of
the security against sampling attacks assumption.

As a warm-up to the proof, we verify that introducing the threshold round
does not affect security against sampling attacks. In Protocol Π, an im-
mediate abort on the part of P1 results in P2 outputting d0. However,
by introducing the threshold round, aborting immediately upon receiving
c0 (i.e. ai∗−r′) results in P2 outputting bi∗−r′−1. Write b̂∗ for the bit ob-
tained from b by applying some locking strategy y. It suffices to show that
(c0, b̂i∗−r′−1) and (c0, b̂r) are close, for every x ∈ X and every y ∈ 〈L2〉.
Define2 matrices B

(α,β)
− and B

(α,β)
+ ∈ R`×k such that

B
(α,β)
− (x, y) = Pr [(c0(x, y), bi∗−r′−1(x, y)) = (α, β)] ,

2We remark that these matrices were not previously defined.
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The simulator S for Protocol SecSamp2Fair(Π)

• The adversary A gives its input x to the simulator.a

• The simulator chooses i∗ ≥ r′ + 1 according to the geometric distri-
bution with parameter γ.

• For i = 1, . . . , i∗ − r′ − 1:

– The simulator gives ai = f(x, ỹ(i)) to the adversary A, where
ỹ(i) is chosen according to the uniform distribution.

– If A aborts, then the simulator chooses an input x0 according to

a distribution z
(ai−ρ,...,ai)
x (which depends on the input x and the

last sequence ρ + 1 values that the simulator generated, where
ρ = min(r′, i)), gives x0 to the trusted party, outputs the bits
a1, . . . , ai, and halts.

• At round i = i∗ − r′, the simulator gives x to the trusted party and
gets the output a = f1(x, y).

– The simulator constructs (ai∗−r′ , . . . , ai∗−1) such that
ai∗−r′+j = âj by invoking Sp2 on input x, output a = f1(x, y)
and security parameter n.

• For i = i∗ − r′, . . . , i∗ − 1: The simulator gives ai to the adversary A,
if A aborts, then the simulator outputs the bits a1, . . . , ai and halts.

• For i = i∗, . . . , r: The simulator gives ai = a to the adversary A, if A
aborts, then the simulator outputs the bits a1, . . . , ai and halts.

• The simulator outputs the bits a1, . . . , ar and halts.

aIf the adversary gives an inappropriate x (or no x), then the simulator sends
some default x̂ ∈ X to the trusted party, outputs the empty string, and halts.

Figure 7.2: The Simulator S for Protocol SecSamp2Fair(Π).
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and

B
(α,β)
+ (x, y) = Pr [(c0(x, y), bi∗(x, y)) = (α, β) .]

We argue that, for any y ∈ L2,[
B

(α,0)
+ −B(α,0)

−

∥∥∥ · · · ∥∥∥B(α,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗
· y = 0` . (7.6)

Since Π is defined in the plain model, and c0 is constructed before any
communication occurs, it follows that c0 is a function of P1’s input and
P1’s local coins. Similarly, bi∗−r′−1(x, y) can be viewed as a function of P2’s
input and P2’s local coins. Hence, c0(x, y) is independent of bi∗−r′−1(x, y).
Next, notice that c0 is independent of f̂2, where the latter denotes P2’s
output resulting from y in the hybrid model. Indeed, P2’s output from y is
independent of x, and f2(x, y) is independent of P1’s local coins. Thus,

Pr
[
(c0(x,y), f̂2(x̃,y)) = (α, β)

∣∣∣ x̃ ∈U X] =

Pr [c0(x) = α] · Pr
[
f̂2(x̃,y) = β

∣∣∣ x̃ ∈U X]
(7.7)

and

Pr
[
(c0(x,y), f̂2(x,y)) = (α, β)

]
= Pr [c0(x) = α] · Pr

[
f̂2(x,y) = β

]
.

(7.8)

Equations (7.7) and (7.8) imply Equation (7.6). Moving on, recall that for

i = 1 . . . r′ matrices B
(α0,...,αi,β)
− and B

(α0,...,αi,β)
+ denote

B
(α0...αi,β)
− (x, y) = Pr [(c0, . . . , ci, di−1)(x, y) = (α0, . . . , αi, β)]

B
(α0...αi,β)
+ (x, y) = Pr [(c0, . . . , ci, dr′)(x, y) = (α0, . . . , αi, β)]

Now, define p
(α)
x = Pr [f1(x, ỹ) = α | ỹ ∈U Y ]. To alleviate notation, we will

omit the security parameter.

As mentioned earlier, the corrupted party’s backup sequences in the real and
ideal world are statistically close. Therefore, if the adversary quits in the
real world, then the adversary quits in the ideal world as well with all but
negligible probability – and vice versa. The whole point of the simulation
is to show that early aborts do not breach security. In particular, if the
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adversary quits after round i∗, then the relevant distributions3 in the real
and ideal world are statistically close. Our analysis only deals with aborts
that take place prior to round i∗.

Regarding the adversary’s view, we only focus on the last r′ + 1 elements
of the corrupted party’s backup sequence. Having assumed that i∗ has
not been surpassed, anything prior the last r′ + 1 elements is essentially
noise, and it has no bearing on the security analysis. For every sequence of
elements ~αr′ ∈ [m]r

′+1 and every β ∈ [m], we compute the probability that
the adversary’s view and honest party’s output in the real world is equal to
(~αr′ , β), and we express the result in terms of the B( , )

− -matrices. Similarly,
for the ideal world, we compute the probability that the simulator’s output
and honest party’s output is equal to (~αr′ , β), and we express the result in
terms of the B( , )

+ -matrices and vector z
(~ar′ )
x .

The point of the exercise is to obtain (linear) constraints for vector z
(~ar′ )
x .

Then, we ask if the constraints are satisfiable, and, if so, whether solutions
can be found efficiently. The second question can be readily answered. If an
appropriate solution exists, the simulator can compute it efficiently. Indeed,
the simulator can approximate the probability distribution of all possible
sequences of size r′ + 1, and, assuming it exists, the simulator computes
z
(~ar′ )
x by solving a linear system of size |X| × (m− 1) · |Y |. Thus, it suffices

to show that z
(~ar′ )
x exists. The security features of Π come into play in this

regard.

An early abort on the part of the adversary alters the conditional4 proba-
bility distribution of the honest party’s output. Security against sampling
attacks guarantees that the output remains consistent with the function at
hand. Thus, by introducing a threshold round and fine-tuning its parame-
ter, we restrict5 the distribution of the output until it falls within the range
of the function, and the simulator can match it with an appropriate input.
In that case, an early abort is essentially equivalent to lying about one’s
input from the beginning. Our analysis relies on a statistical variant of the
Fundamental Theorem of Linear Algebra and a couple of arguments from
topology.

We remark that, while the case where the adversary aborts before round

r′ needs special consideration, in reality, the only difference is that z
(~ai)
x

3The adversary’s view together with the honest party’s output.
4conditioned on the adversary’s view.
5Obviously, this argument does no apply to unfair functions, like semi-balanced func-

tion.
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depends on fewer elements. The analysis is largely the same and we do not

address this case any further. Finally, we assume that p
(α)
x 6= 0, for every

α ∈ [m] and x ∈ X. This assumption allows for a smoother exposition by
disregarding degenerate cases.

7.3.1 Real vs Ideal.

For every sequence ~αr′ = (α0, . . . , αr′) ∈ [m]r
′+1 and every β ∈ [m], we

compute the probability that the adversary observes ~αr′ and the honest
party outputs β.

Claim 7.6. In the real model, it holds that

Pr
[
(ai−r′ , . . . , ai, bi−1)Real = (~αr′ , β)

∣∣∣ i ≤ i∗] =

(1− γ)r
′+1 · p(α0)

x · · · p(αr′ )
x · q(β)T + γ(1− γ)r

′ · p(α0)
x · · · p(αr′−1)

x ·
[
B

(αr′ ,β)
−

]
x,∗

+

. . .+ γ(1− γ) · p(α0)
x ·

[
B

(α1...αr′ ,β)
−

]
x,∗

+ γ ·
[
B

(~αr′ ,β)
−

]
x,∗

,

where q(β) = M (∗,β)T · 1`.

Proof. Simple expansion over possible values of i∗. 2

Define c
(~αr′ ,β)
x ∈ Rk such that c

(~αr′ ,β)
x (y) = Pr

[
f2(x0, yi) = β

∣∣∣x0 ← z
(~αr′ )
x

]
.

Claim 7.7. In the ideal model, it holds that

Pr
[
(ai−r′ , . . . , ai, f2)Ideal = (~αr′ , β)

∣∣∣ i ≤ i∗] =

(1− γ)r
′+1 · p(α0)

x · · · p(αr′ )
x · c(~αr′ ,β)T

x + γ(1− γ)r
′ · p(α0)

x · · · p(αr′−1)
x ·

[
B

(αr′ ,β)
+

]
x,∗

+

. . .+ γ(1− γ) · p(α0)
x ·

[
B

(α1...αr′ ,β)
+

]
x,∗

+ γ ·
[
B

(~αr′ ,β)
+

]
x,∗

.

Thus, we require that c
(~αr′ ,β)T
x is close to

q(β)T +
r′∑
i=0

λi(γ, ~αr′) ·
[
B

(αr′−i...αr′ ,β)
− −B(αr′−i...αr′ ,b)

+

]
x,∗

,
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where

λi(γ, ~αr′) =
γ(1− γ)r

′−i · p(α0)
x · · · p(αr′−i−1)

x

(1− γ)r′+1 · p(α0)
x · · · p(αr′ )

x

=
γ

(1− γ)i+1
· 1

p
(αr′−i)
x · · · p(αr′ )

x

.

Proposition 7.8. If there exists probability vector z
(~αr′ )
x ∈ Rk such that

z
(~αr′ )T
x ·

(
M (∗,1)

∥∥ · · · ∥∥M (∗,m−1)
)

is close to(
q(1)T

∥∥∥ · · · ∥∥∥q(m−1)T
)

+ λ0 ·
[
B

(αr′ ,1)
+ −B(αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(αr′ ,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗

+

. . .+ λr′ ·
[
B

(~αr′ ,1)
+ −B(~αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

,

then Protocol SecSamp2Fair(Π) is fully secure.

Proof. If z
(~αr′ )T
x · M (∗,β) is close to q(β)T +

[
B

(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

, for

every β ∈ [m], it follows that z
(~αr′ )T
x ·

(
M (∗,0)

∥∥M (∗,1)
∥∥ · · · ∥∥M (∗,m−1)

)
is

close to

(
q(0)T

∥∥∥ · · · ∥∥∥q(m−1)T
)

+λ0 ·
[
B

(αr′ ,0)
+ −B(αr′ ,0)

−

∥∥∥ · · · ∥∥∥B(αr′ ,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗

+

. . .+ λr′ ·
[
B

(~αr′ ,0)
+ −B(~αr′ ,0)

−

∥∥∥ · · · ∥∥∥B(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

.

In light of the equations

M (∗,0) = 1`×k −
m−1∑
β=1

M (∗,β) , q(0)T = 1k −
m−1∑
β=1

q(β)T

B
(αi...αr,∗)
+ −B(αi...αr,∗)

− =

m−1∑
β=0

B
(αi...αr,β)
+ −B(αi...αr,β)

− = 0`×k

and the fact that z
(~αr′ )
x is a probability vector, conclude that the first item

in the concatenation can be discarded. 2

Corollary 7.9. If there exists u
(~αr′ )
x of the form{∑

x0
u

(~αr′ )
x (x0) = 0

∀y, u
(~αr′ )
x (y) ∈ [1/`, 1− 1/`]
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such that u
(~αr′ )T
x ·

(
M (∗,1)

∥∥ · · · ∥∥M (∗,m−1)
)

is close to

λ0 ·
[
B

(αr′ ,1)
+ −B(αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(αr′ ,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗

+

· · ·+ λr′ ·
[
B

(~αr′ ,1)
+ −B(~αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

,

then Protocol SecSamp2Fair(Π) is fully secure.

Proof. Define u
(~αr′ )
x = z

(~αr′ )
x − 1`/` and note that

1T` /` ·
(
M (∗,1)

∥∥∥ · · · ∥∥∥M (∗,m−1)
)

=
(
q(1)T

∥∥∥ · · · ∥∥∥q(m−1)T
)
.

2

7.3.2 Four Useful Lemmas

Lemma 7.10. Let M be an arbitrary matrix and let {vn}n∈N be a family
of vectors such that | 〈c |vn〉 | = negl(n), for every c ∈ ker(M). Then, there
exist {zn}n∈N such that MT zn is close to vn.

Proof. From standard linear algebra, we know that there exist {un}n∈N and
{cn}n∈N such that un ∈ im(MT ), cn ∈ ker(M) and vn = un + cn. Now, let
K denote an arbitrary orthonormal basis of ker(M) and observe that, for
any c ∈ K,

| 〈c |vn〉 | = | 〈c |un〉+ 〈c | cn〉 |
= | 〈c | cn〉 | = negl(n) ,

and thus ‖cn‖2 =
∑

c∈K 〈c | cn〉
2 = |K| · (negl(n))2 = negl(n). 2

Lemma 7.11. Let M ∈ Rd×d′ be an arbitrary matrix and let {cn}n∈N
denote some family of vectors in Rd′. There exists {un}n∈N such that∑

j un(j) = 0 and MTun is close to cn if and only if 〈cn |v〉 = negl(n),
for every v satisfying M · v ∈ 〈1d〉.

Proof. (⇐) Let wn = cTn−uTn ·M . By assumption, ‖wn‖ = negl(n). Deduce
that for any v such that M · v = δ · 1d, it holds that

〈cn |v〉 = (uTn ·M + wT
n ) · v

= δ ·
∑
j

un(j) + wT
n · v = 0 + negl(n) ,
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since
∑

j un(j) = 0 by assumption, and | 〈wn |v〉 | ≤ ‖wn‖ · ‖v‖ by the
Cauchy-Schwartz inequality. (⇒) For the converse, define

M ′ =

−1 1 . . . 0
...

...
. . .

...
−1 0 . . . 1

 ·M .

We argue that there exists {un}n∈N of the form
∑

j un(j) = 0 such that

uTn ·M is close to cTn if and only if there exists arbitrary {u′n}n∈N such that
u′Tn ·M is close to cTn . Indeed, it suffices to note that the row-space of M ′

is equal to the the image of the hyperplane {z ∈ Rd |
∑

j z(j) = 0} by MT .

Finally, note that ker(M ′) =
{

v ∈ Rd′
∣∣∣M · v ∈ 〈1d〉} and conclude using

the previous lemma. 2

Lemma 7.12. Let M ∈ Rd×d′ be an arbitrary matrix and define

V =
{

v ∈ Rd
′
∣∣∣Mv ∈ [−1, 1]d ∧ v ∈ im(MT )

}
.

There exists ρ ∈ R+ such that ‖v‖ ≤ ρ, for every v ∈ V.

Proof. Let T : im(MT ) → Rd such that T (v) = Mv and note that T is
injective and continuous. In addition, note that [−1, 1]d ∩ im(M) is topo-
logically compact. It follows that the preimage of [−1, 1]d ∩ im(M) by T is
compact, i.e. closed and bounded. 2

Lemma 7.13. Let u ∈ Rd and u′ ∈ Rd−1 such that uT =
[
u(1) ‖u′T

]
and

u(1) = −
∑d−1

i=1 u′(i). It holds that ‖u‖ ≤ ‖u′‖ ·
√
d.

Proof. First of all, ‖u‖2 = 〈1d−1 |u′〉2 + ‖u′‖2. Then, 〈u′ |1d−1〉2 ≤ ‖u′‖ ·
‖1d−1‖ by the Cauchy-Schwartz inequality. Conclude. 2

7.3.3 Connecting the Dots

Theorem 7.14. Let Π be a protocol for computing f . If Π is constant-
round, passively secure, and secure against sampling attacks, then f is com-
putable with full security.
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Proof. We apply Corollary 7.9 in combination with the Lemmas of the pre-
vious section. Since Π is secure against sampling attacks, deduce that for
any i ∈ {0, . . . , r′}, for any y ∈ 〈L2〉, and any (αr′−i . . . αr′) ∈ [m]i+1, it
holds that the value of[
B

(αr′−i...αr′ ,1)
+ −B(αr′−i...αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(αr′−i...αr′ ,m−1)
+ −B(αr′−i...αr′ ,m−1)

−

]
x,∗
·y

is close to 0. As a consequence, there exist {u(~αr′ )
x,i }r

′
i=0 such that

•
(∑r′

i=0 λiu
(~αr′ )T
x,i

)
·
(
M (∗,1)

∥∥ · · · ∥∥M (∗,m−1)
)

is close to

λ0 ·
[
B

(αr′ ,1)
+ −B(αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(αr′ ,m−1)
+ −B(αr′ ,m−1)

−

]
x,∗

+

· · ·+ λr′ ·
[
B

(~αr′ ,1)
+ −B(~αr′ ,1)

−

∥∥∥ · · · ∥∥∥B(~αr′ ,m−1)
+ −B(~αr′ ,m−1)

−

]
x,∗

.

•
∑

x0∈X
∑r′

i=0 λiu
(~αr′ )
x,i (x0) = 0 .

• ∃ρi ∈ R+ such that ρi ≥ ‖u
(~αr′ )
x,i ‖, regardless of the security parameter.

The first two items follow from Lemma 7.11. For the last item, observe that[
B

(αr′−i...αr′ ,β)
+ −B(αr′−i...αr′ ,β)

−

]
x,∗
∈ [−1, 1]k

and apply Lemmas 7.12 and 7.13. It remains to show that∣∣∣∣∣
r′∑
i=0

λiu
(~αr′ )
x,i (x0)

∣∣∣∣∣ ≤ 1/` ,

for every x0 ∈ X. Recall that

λi(γ, ~αr′) =
γ

(1− γ)i+1
· 1

p
(αr′−i)
x · · · p(αr′ )

x

and thus ∣∣∣∣∣
r′∑
i=0

λiu
(~αr′ )
x,i (x0)

∣∣∣∣∣ ≤ γ

(1− γ)r′+1
· (r′ + 1) ·max(ρj)

p
(α0)
x · · · p(αr′ )

x

. (7.9)
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To conclude, argue that we can fix γ ∈ [0, 1] such that the right-hand side of
Equation (7.9) is upper-bounded by 1/`. Alternatively, set γ(n) = 1/ log(n),
and deduce that ∣∣∣∣∣

r′∑
i=0

λiu
(~αr′ )
x,i (x0)

∣∣∣∣∣ ≤ 1/` ,

for n large enough. 2

7.4 Applications

In this chapter, we showed how to build fully-secure protocols starting with
a constant-round passively secure protocol satisfying an additional require-
ment pertaining to sampling attacks. The most logical step to take next, is
to investigate how to design such protocols (c.f. Chapter 8).

We remark that fully secure protocols from Part I can be viewed as special
cases of our approach. Below, we specify the underlying constant-round,
passively secure, and secure against sampling attack protocol for every pro-
tocol we encountered so far. We conclude with a short proof of full security
for protocol FairTwoPartySpecial.

• Protocol GHKL.

Round P1 P2

0 a0 b0
1 a1 b1

0. (a0, b0) = (f(x, ỹ), f(x̃, y)), where

{
x̃ ∈U X
ỹ ∈U Y

.

1. (a1, b1) = (f(x, y), f(x, y)).

• Protocol FairTwoPartyσ.

Round P1 P2

0 a0 b0
1 a1 b1
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0. (a0, b0) = (f(x, ỹ), σ), where ỹ ∈U Y .

1. (a1, b1) = (f(x, y), f(x, y)).

• Protocol FairTwoPartySpecial.

Round P1 P2

0 a0 b0
1 a1 b1
2 a2 b2

0. (a0, b0) = (f1(x, ỹ), f2(x̃, y)), where

{
x̃ ∈U X
ỹ ∈U Y

.

1. (a1, b1) =

{
(f1(x, ỹ′), f2(x, y)) if x ∈ {x1, x2}, where ỹ′ ∈U Y
(f1(x, y), f2(x, y)) if x ∈ {x3, x4}

.

2. (a2, b2) = (f1(x, y), f2(x, y)).

7.4.1 Short Proof of Security for FairTwoPartySpecial

In light of Theorem 7.14, it suffices to show that the 3-round protocol un-
derlying protocol FairTwoPartySpecial is passively secure and secure
against sampling attacks. The fact that the protocol is passively secure is
immediate. Recall function f defined by means of the following matrices.

M (1,∗) =


1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 0

 , M (∗,1) =


1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

 .

Observe that each party effectively has a unique locking strategy, namely

p = q =


1/2
1/2
0
0

 .
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Now, the distributions of (a1, b0) and (a1, b2) are described by the matrices
below

B
(0,1)
− =


0 0 0 1/2

3/4 1/4 1/2 0
3/8 1/8 1/4 1/4
3/8 1/8 1/4 1/4

 , B
(0,1)
+ =


0 0 0 0
1 0 0 0

1/2 0 0 0
0 1/2 1/2 1/2



B
(1,1)
− =


3/4 1/4 1/2 0
0 0 0 1/2

3/8 1/8 1/4 1/4
3/8 1/8 1/4 1/4

 , B
(1,1)
+ =


1 0 1 0
0 0 0 1

1/2 0 0 0
0 1/2 1/2 1/2



From an honest P2’s perspective, the protocol is secure against sampling

attacks since b2 = b1 and (B
(α,1)
+ − B(α,1)

− ) · q = 04, for every α ∈ {0, 1}.
Similarly, the distributions of (a1, b1) and (a2, b1) are described by the ma-
trices below

A
(1,0)
− =


0 1 0 0
0 0 0 0
0 1/2 1/2 1/2

1/2 0 0 0

 , A
(1,0)
+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



A
(1,1)
− =


1 0 1 0
0 0 0 1

1/2 0 0 0
0 1/2 1/2 1/2

 , A
(1,1)
+ =


1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1


Hence, from an honest P1’s perspective, the protocol is secure against sam-

pling attacks since pT · (A(1,β)
+ −A(1,β)

− ) = 0T4 , for every β ∈ {0, 1}. 2





Chapter 8

The Asymmetric Case

Our analysis of locking strategies and sampling attacks culminates in The-
orem 7.14 from the previous chapter. The theorem states that, in order
to demonstrate that a given function is computable with full security, it
suffices to design a constant-round, passively-secure protocol that is secure
against sampling attacks. In this chapter, we look for relevant protocols
for asymmetric Boolean functions. We propose an algorithm that takes the
function as input, and, depending on the termination step, either returns
the description of an appropriate protocol, or, it returns that it failed to do
so.

We begin by visiting some mathematical tools and a few useful lemmas.
Next, we define a game involving the parties computing f and the dealer.
The game simulates the last interaction in a correct protocol computing f ,
and whose purpose is for the dealer to hand a backup1 output to the dis-
advantaged party without compromising any of the security requirements.
Finally, largely as an extension of the game, we obtain an algorithm for
designing constant-round protocols that are passively secure and secure
against sampling attacks. Using the tools and the lemmas from Section 8.1,
we demonstrate that our algorithm satisfies correctness.

Speculative Remark. For what it is worth, numerical results on small
cases indicate that our algorithm accounts for the overwhelmingly majority
of non semi-balanced functions. We also encountered a handful of non
semi-balanced functions for which our algorithm fails to come up with a
suitable protocol. These functions are noteworthy because we suspect that

1Other than the actual output.
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their unknown status cannot be attributed to potential shortcomings of our
algorithm. We believe that our algorithm is as good at finding suitable
protocols as can be expected. In support of this point, towards the end of
the chapter, we show that one of these functions seems to be computable
with fairness, but only at the expense of privacy.

8.1 Irreducible Locking Strategies

Let f : X×Y → {0, 1}2 denote some Boolean asymmetric (possibly random-
ized) finite function. Since f is asymmetric, it has four associated matrices
M (0,0), M (0,1), M (1,0), M (1,1) ∈ [0, 1]`×k. Recall that locking strategies for
P1 and P2 correspond to elements of the following vector spaces.

〈L1〉 =
{

x ∈ R`
∣∣∣∃δ1 ∈ R : xTM (1,∗) = δ1 · 1Tk

}
,

〈L2〉 =
{

y ∈ Rk
∣∣∣ ∃δ2 ∈ R : M (∗,1)y = δ2 · 1`

}
,

where L1 and L2 denote arbitrary bases of each space. Without loss of
generality, assume |L1| = s1 and |L2| = s2. Locking strategies endow a
matrix with a matroid structure, in the same way that linear dependence
does. We define the matroid by means of its minimally dependent sets, i.e.
circuits.

Definition 8.1. We say that the columns of M (∗,1) indexed by Y ′ ⊆ Y are
minimally dependent if

•
{
M (∗,1)ey

}
y∈Y ′ ∪ {1`} are linearly dependent,

• for every y0 ∈ Y ′, it holds that
{
M (∗,1)ey

}
y∈Y ′\{y0}∪{1`} are linearly

independent.

Similarly, we say that the rows of M (1,∗) indexed by X ′ ⊆ X are minimally
dependent if

•
{
eTxM

(1,∗)}
x∈X′ ∪

{
1Tk
}

are linearly dependent,

• for every x0 ∈ X ′, it holds that
{
eTxM

(1,∗)}
x∈X′\{x0} ∪

{
1Tk
}

are lin-

early independent.
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Proposition 8.2. Suppose that the columns of M (∗,1) indexed by Y ′ ⊆ Y
are minimally dependent. Up to a multiplicative factor, there exists a unique
q ∈ Rk \ {0k} such that M (∗,1)q ∈ 〈1`〉 and supp(q) = Y ′.

Proof. By definition, there exists q ∈ Rk such that M (∗,1)q ∈ 〈1`〉 and
supp(q) = Y ′. The non-trivial task is to show that this vector is unique, up
to a multiplicative factor. Suppose there exists q′ such that supp(q′) ⊆ Y ′

and M (∗,1)q′ ∈ 〈1`〉. In pursuit of a contradiction, assume that q′ 6= λq, for
every λ ∈ R. Equivalently, there exists i, j ∈ Y ′ such that q(i) = λiq

′(i)
and q(j) = λjq

′(j), with λi 6= λj . Without loss of generality, say that
λi 6= 0 and define q′′ = λi · q′ − q. Deduce that M (∗,1)q′′ ∈ 〈1`〉 and
supp(q′′) ( Y ′, in contradiction with the fact that the columns indexed by
Y ′ are minimally dependent. 2

Definition 8.3. If q ∈ Rk is as in Proposition 8.2, we say that q is irre-
ducible.

Proposition 8.4. There exists a basis of 〈L2〉 consisting of irreducible
strategies.

Proof. It is a well known result from Linear Algebra that any generating set
contains a basis. Thus, we prove the Claim by showing that irreducible lock-
ing strategies form a generating set. Let y ∈ 〈L2〉 and consider supp(y). Let
µ1, . . . , µty denote all the subsets of supp(y) that index minimally dependent
columns, and write q1, . . . ,qty for the associated unique irreducible locking
strategies. We show that y ∈ 〈q1, . . . ,qty〉 by constructing a sequence of
locking strategies y0, . . . ,ysy such that

y0 = y

yj+1 = yj − αj · q(j)

ysy = 0`

,

where αj ∈ R and q(j) ∈ {q1, . . . ,qty}. Let q(0) be an arbitrary element of

{q1, . . . ,qty} and fix j0 such that q(0)(j0) 6= 0. Define y1 = y− y(j0)

q(0)(j0)
·q(0).

Notice that y1 is a locking strategy and that supp(y1) ( supp(y). Since
y1 is a locking strategy, it follows that µ(1) ⊂ supp(y1), for some µ(1) ∈
{µ1, . . . , µty}. Write q(1) for the associated locking strategy. Similarly to

what we just did, fix j1 such that q(1)(j1) 6= 0, define y2 = y1− y1(j1)

q(1)(j1)
·q(1),

and notice that y2 is a locking strategy and that supp(y2) ( supp(y1).
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Repeat the procedure and conclude that it terminates in at most |supp(y)|
steps. 2

Define Y0, . . . , Yk′ to be a partitioning of the input domain Y that we con-
struct as follows. First, y ∈ Y0 if ey ⊥ 〈L2〉. Next, for i ≥ 1, let q(i) be an
irreducible locking strategy such that supp(q(i)) ∩ (Yi−1 ∪ . . . ,∪Y0) = ∅.

• y ∈ Yi if ∃ irreducibles q
(i)
1 , . . . ,q

(i)
ty such that

q(i) = q
(i)
1

supp(q
(i)
j ) ∩ supp(q

(i)
j+1) 6= ∅

y ∈ supp(q
(i)
ty )

.

8.2 The Dealer Game

In this section, we present a game involving the parties computing f and
the dealer. The purpose of the game is to define a simplified variant of the
security against sampling attacks requirement.

Assume that the honest party applies some locking strategy y while execut-
ing a protocol for computing f . If the protocol is secure against sampling
attacks, then the adversary cannot distinguish between the correct output
and the backup output of the honest party. In the worst case, the adversary
is handed the output of the corrupted party before the honest party’s re-
ceives his. In such an event, we ask what the honest party’s backup output
ought to be, other than the correct output.

Write ai (resp. bi) for P1’s (resp. P2’s) backup output at round i. Let
b̂∗ denote the bit obtained from b∗ by applying2 y, and let r denotes the
number of rounds. From an honest P2’s perspective, we require that the
pairs (ai, b̂i−1) and (ai, b̂r) are statistically close, for every x ∈ X, y ∈ 〈L2〉
and i ∈ {1 . . . r}.

Consider the following process involving a dealer. The dealer receives
inputs x and y from P1 and P2, respectively, and computes f(x, y) =
(f1(x, y), f2(x, y)). Then, the dealer hands f1(x, y) to P1 and a bit b to
P2, where b is a probabilistic function of P2’s input and f2(x, y). We inves-
tigate how to construct b with the following goals in mind.

2Recall that y encodes an input distribution but also a certain transformation.
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1. minimize the information b contains about f2(x, y)

2. (f1, f̂2) is statistically close to (f1, b̂), for every x ∈ X and q ∈ 〈L2〉.

Let us introduce vectors b(0), b(1) ∈ Rk such that

b(β)(y0) = Pr
[
b = 1

∣∣∣ f2(x, y) = β ∧ y = y0

]
.

Fix y ∈ Y , and notice that b ≡ f2 on input y if b(0)(y) = 0 and b(1)(y) = 1.
On the other hand, b contains no information about f2(x, y) if and only if
b(0)(y) = b(1)(y). Consequently, our aim is for b(0) and b(1) to be equal on
as many indices as possible. See Figure 8.1 for a concise description of the
process.

Toward Security against Sampling Attacks

• Offline: The dealer chooses vectors b(0),b(1) ∈ [0, 1]k.

• P1 chooses x ∈ X, P2 samples y according to y, where y is a locking
strategy of P2’s own choosing. Parties hand their inputs to the dealer.

• The dealer computes f(x, y) = (α, β) ∈ {0, 1}2 and hands the follow-
ing bits to the parties

1. P1 receives α.

2. P2 receives b such that Pr [b = 1] = b(β)(y).

• Outputs: P1 outputs α, P2 outputs b̂ which denotes the bit obtained
from b by applying the transformation that is implicit in y.

• Aim of the Game:

– Maximize the number of y’s such that b(0)(y) = b(1)(y),

– (f1, f̂2)
s≡ (f1, b̂), for every x ∈ X and y ∈ 〈L2〉.

Figure 8.1: The Dealer Game for Security against Sampling Attacks.

Claim 8.5. The purpose of the game from Figure 8.1 is to construct b(0),b(1) ∈
[0, 1]k such that b(0) is equal to b(1) on as many indices as possible such that{

M (0,0)
(
b(0) ∗ y

)
+M (0,1)

(
b(1) ∗ y

)
= M (0,1)y

M (1,0)
(
b(0) ∗ y

)
+M (1,1)

(
b(1) ∗ y

)
= M (1,1)y

, (8.1)

for every y ∈ 〈L2〉.
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Proof. The first part of the claim follows from the discussion above. For
the second part of the claim, fix x ∈ X, y ∈ 〈L2〉, α ∈ {0, 1}, and note that

Pr
[
(f1, f̂2) = (α, 1)

]
= eTx

 ∑
y(y)≥0

[
M (α,1)

]
∗,y

y(y) +
∑

y(y)<0

[
M (α,0)

]
∗,y
|y(y)|


= eTx

M (α,1)y +
∑

y(y)<0

[
M (α,∗)

]
∗,y
|y(y)|


On the other hand, Pr

[
(f1, b̂) = (α, 1)

]
=

∑
y(y)≥0

eTx

([
M (α,1)

]
∗,y
· b(1)(y) +

[
M (α,0)

]
∗,y
· b(0)(y)

)
y(y)+

∑
y(y)<0

([
M (α,1)

]
∗,y
· (1− b(1)(y)) +

[
M (α,0)

]
∗,y
· (1− b(0)(y))

)
|y(y)| ,

and thus Pr
[
(f1, b̂) = (α, 1)

]
=

eTx

M (α,0)
(
b(0) ∗ y

)
+M (α,1)

(
b(1) ∗ y

)
+
∑

y(y)<0

[
M (α,∗)

]
∗,y
|y(y)|

 .

To conclude, note that since b(0),b(1) are fixed vectors, it holds that (f1, f̂2)
and (f1, b̂) are statistically close if and only if they are identically distributed.

2

From the Statistical to the Perfect Realm. We could have defined
vectors b(0),b(1) with respect to a security parameter. However, this seem-
ingly more general approach is not helpful. Vectors b(0),b(1) can be viewed
as solutions to linear systems satisfying inequality constraints. As such, the
lemma below allows us to disregard the security parameter.

Lemma 8.6. Let M ∈ Rd×d′ be some arbitrary matrix and let c be a fixed
vector in Rd. Further assume that there exist {zn}n∈N such that zn ∈ [0, 1]d

′

and Mzn is close to c. It holds that there exists z ∈ [0, 1]d
′

such that
Mz = c.

Proof. The existence of z follows from the fact that the image of [0, 1]d by
M is a closed set (in the topological sense). 2
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Another seemingly more general approach involves instructing the dealer
to hand {an}n∈N to P1 such that an is close to f1. Again, there is no gain

in pursuing such an approach. Consider families of matrices {A(0)
n }n∈N and

{A(0)
n }n∈N such that A

(α)
n is close to 0`×k, for every α. By the Cauchy-

Schwartz inequality, it holds that A
(0)
n · b(0)

n + A
(1)
n · b(1)

n is close to 0`, for

every pair of families {b(0)
n }n∈N and {b(1)

n }n∈N such that b
(β)
n ∈ [0, 1]k. Thus,

it must hold that
∥∥∥M (0,0)

(
b(0)
n ∗ y

)
+M (0,1)

(
b(1)
n ∗ y

)
−M (0,1)y

∥∥∥ ≤ negl(n)∥∥∥M (1,0)
(
b(0)
n ∗ y

)
+M (1,1)

(
b(1)
n ∗ y

)
−M (1,1)y

∥∥∥ ≤ negl(n)
,

and we fall back on the previous case.

Moving on, fix Yi ∈ {Y0, . . . , Yk′} and suppose there exist b(0),b(1) satisfying
Equation (8.1) such that b(0)(y0) 6= 0 or b(1)(y0) 6= 1, for some y0 ∈ Yi.
We show that there exist b′(0),b′(1) satisfying Equation (8.1) such that
b′(0)(y) = b′(1)(y), for every y ∈ Yi. This is where the underlying matroid
structure will come in handy.

Proposition 8.7. It holds that b(1)(y)− b(0)(y) = b(1)(y0)− b(0)(y0), for
every y ∈ Yi. In addition, vectors b′(1), b′(0) satisfy Equation (8.1), where

b′(b)(y) =


b(b)(y) if y /∈ Yj

b(0)(y)

b(0)(y0)− b(1)(y0) + 1
if y ∈ Yj

.

Proof. For the first part of the claim, we make use of Proposition 8.2. The
case i = 0 is left to the reader. Let i ≥ 1 and fix irreducible q such that
y0 ∈ supp(q). We know that, for any y ∈ 〈L2〉,

M (0,0)
(
b(0) ∗ y

)
+M (0,1)

(
b(1) ∗ y

)
= M (0,1)y , (8.2)

M (1,0)
(
b(0) ∗ y

)
+M (1,1)

(
b(1) ∗ y

)
= M (1,1)y . (8.3)

Let y = q and add the two expressions.(
1`×k −M (∗,1)

)(
b(0) ∗ q

)
+M (∗,1)

(
b(1) ∗ q

)
= M (∗,1)q .

By moving a few terms around, deduce that M (∗,1)
(
(b(1) − b(0)) ∗ q

)
∈

〈1`〉. Consequently, by Proposition 8.2, b(1)(y) − b(0)(y) = b(1)(y0) −
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b(0)(y0), for every y ∈ supp(q). Moving on, fix an arbitrary y ∈ Yi. We

know there exists a sequence of irreducibles q
(i)
1 . . .q

(i)
t′y

such that


q = q

(i)
1

supp(q
(i)
j ) ∩ supp(q

(i)
j+1) 6= ∅

y ∈ supp(q
(i)
t′y

)

,

Apply the same argument as above and, by induction, deduce that b(1)(y)−
b(0)(y) = b(1)(y0) − b(0)(y0). For the second part of the claim, we rely on
the following observations.

• Vectors b
(0)
0 and b

(1)
0 satisfy equations (8.2) and (8.3), where

b
(0)
0 =

{
b(0)(y) if y /∈ Yi
0 if y ∈ Yi

, b
(1)
0 =

{
b(1)(y) if y /∈ Yi
1 if y ∈ Yi

.

• Solutions to Equations (8.2) and (8.3) can be combined linearly.

The second item is trivial. For the first item, we show that vectors b
(0)
0

and b
(1)
0 are solutions to the equations for a particular basis of 〈L2〉. By

Proposition 8.4, consider a basis of 〈L2〉 that consists of irreducible strate-
gies. Conclude by observing that Yi ∩ supp(q′) = ∅, for every irreducible q′

such that supp(q) * Yi. Next, define

b′(b) =
1

b(0)(y0)− b(1)(y0) + 1
·b(b) +

(
1− 1

b(0)(y0)− b(1)(y0) + 1

)
·b(b)

0 .

We note that b′(0), b′(1) admit the right expression. It remains to show that
b′(b)(y) ∈ [0, 1], for every y. Since b′(b)(y) = b(b)(y) if y /∈ Yj , it suffices to
show that

b(0)(y)

b(0)(y)− b(1)(y) + 1
∈ [0, 1] , (8.4)

for y ∈ Yi. We conclude by observing that (8.4) is equivalent to 0 ≤ b(0)(y)
and b(1)(y) ≤ 1. 2
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8.3 Designing Fully Secure Protocols

In this section, we show how to construct passively-secure protocols that
are also secure against sampling attacks. The idea is to build the backup
outputs from the bottom-up, i.e. start with ar ≡ f1 and br ≡ f2, and
construct ar−1 and br−1 such that ar−1 (resp. br−1) only depends on x
and f1(x, y) (resp. y and f2(x, y)) without compromising security against
sampling attacks.

To this end, we employ a simple minimization algorithm in combination
with Proposition 8.7. Without loss of generality, we begin by assuming
that P1 is corrupted, and that he observes ar ≡ f1(x, y). To define br−1,
we run an optimization algorithm that constructs vectors {b(β)}β∈{0,1}, and

we delete any input y ∈ Y for which b(1)(y) − b(0)(y) 6= 1. Then, in order
to define ar−1, we run an optimization algorithm that constructs vectors
{a(α)}α∈{0,1}, assuming P2 is corrupted, and the party is privy to the output
only if the input he used was not deleted in the previous step. We proceed
by deleting any input x ∈ X for which a(1)(y) − a(0)(y) 6= 1. We carry on
in this fashion until one party runs out of inputs, or the process does not
allow for any further deletions.

Remark 8.8. Getting ahead of ourselves, we note that deleted inputs can-
not be used by the adversary to mount a successful sampling attack. In
light of Proposition 8.7, if an input was deleted at iteration i, then every
backup output until round r− i contains no information about the output.

8.3.1 Additional Notation

Before we describe the algorithm, let us introduce some notation. For every
q ∈ L2 and X ′ ⊆ X, define

Aq(X ′) =


[
M (0,0) ∗Q

]
X′

[
M

(0,1)
X′ ∗Q

]
X′[

M (1,0) ∗Q
]
X′

[
M (1,1) ∗Q

]
X′

M (∗,0) ∗Q M (∗,1) ∗Q

 , ~bq =


[
M (0,1)

]
X′

q[
M (1,1)

]
X′

q

M (∗,1)q


where Q = 1` · qT and the notation [ · ]X′ indicates that only the rows
indexed by X ′ ⊆ X appear. Write L2 = {q1, . . . ,qs2} and consider the
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following linear system for unknown (b(0)T ,b(1)T ).


Aq1(X ′)
Aq2(X ′)

...
Aqs2

(X ′)

 ·
(

b(0)

b(1)

)
=


~bq1(X ′)
~bq2(X ′)

...
~bqs2 (X ′)

 (8.5)

(
0k
0k

)
≤
(

b(0)

b(1)

)
≤
(

1k
1k

)

Remark 8.9. We remark that any solution to Equation (8.5) amounts to
the following: Assuming P1 learns his output if x ∈ X ′ and nothing3 if
x /∈ X ′, then by handing P2 a backup according to (b(0)T ,b(1)T ), security
against sampling attacks is preserved.

Similarly, for every p ∈ L1 and Y ⊆ Y ′, define

Bp(Y ′) =


[
M (0,0)T ∗ P

]
Y ′

[
M (1,0)T ∗ P

]
Y ′[

M (0,1)T ∗ P
]
Y ′

[
M (1,1)T ∗ P

]
Y ′

M (0,∗)T ∗ P M (1,∗)T ∗ P

 , ~ap =


[
M (1,0)T

]
Y ′

p[
M (1,1)T

]
Y ′

p

M (1,∗)Tp


where P = 1k · pT and the notation [ · ]Y ′ indicates that only the rows
indexed by Y ′ ⊆ Y appear. Write L1 = {p1, . . . ,ps1} and consider the
following linear system for unknown (a(0)T ,a(1)T ).


Bp1(Y ′)
Bp2(Y ′)

...
Bps1

(Y ′)

 ·
(

a(0)

a(1)

)
=


~ap1(Y ′)
~ap2(Y ′)

...
~aps1 (Y ′)

 (8.6)

(
0`
0`

)
≤
(

a(0)

a(1)

)
≤
(

1`
1`

)

Remark 8.10. We remark that any solution to Equation (8.6) amounts
to the following: Assuming P2 learns his output if y ∈ Y ′ and nothing if
y /∈ Y ′, then by handing P1 a backup according to (a(0)T ,a(1)T ), security
against sampling attack is preserved.
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Building the Backup Outputs

1. Inputs: f , L1, L2.

2. Define X− = X and Y − = Y ∪ {k + 1}.

3. Minimize −1Tk b(0) + 1Tk b(1) subject to
Aq1

(X−)
Aq2

(X−)
...

Aqs2
(X−)

 ·
(

b(0)

b(1)

)
=


~bq1

(X−)
~bq2

(X−)
...

~bqs2 (X−)


(

0k
0k

)
≤
(

b(0)

b(1)

)
≤
(

1k
1k

)
Define Y + consisting of all the y’s such that b(1)(y)− b(0)(y) = 1.

4. If Y + = Y − or Y + = ∅ stop, otherwise set Y −
def
= Y + and go to Step

5.

5. Minimize −1T` a(0) + 1T` a(1) subject to
Bp1

(Y −)
Bp2

(Y −)
...

Bps1
(Y −)

 ·
(

a(0)

a(1)

)
=


~ap1

(Y −)
~ap2

(Y −)
...

~aps1 (Y −)


(

0`
0`

)
≤
(

a(0)

a(1)

)
≤
(

1`
1`

)
Define X+ consisting of all the x’s such that a(1)(x)− a(0)(x) = 1.

6. If X+ = X− or X+ = ∅ stop, otherwise set X−
def
= X+ and go to

Step 3.

7. Output: The transcript of the execution.

Figure 8.2: An Algorithm for Designing Fully-Secure Protocols.

8.3.2 The Algorithm

As noted earlier, the idea is to delete inputs from the parties in a sequence
of iterations. Namely, we begin by running a linear program that minimizes

3 Other than his input.
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−1Tk b(0) + 1Tk b(1) under the constraints of Equation (8.5), with X ′ = X.
At this point, we delete any input y ∈ Y for which b(1)(y) − b(0)(y) <
1. Write Y − ⊆ Y for the remaining inputs. We proceed by running a
linear program that minimizes −1T` a(0) + 1T` a(1) under the constraints of
Equation (8.6), with Y ′ = Y −. Again, we delete any input x ∈ X for
which a(1)(x) − a(0)(x) < 1. We repeat the procedure until either one of
the parties runs out of inputs or no further deletions can be made, for
either party. See Figure 8.2 for a full description of the algorithm. Next,
we discuss the ramifications of the terminating step.

Running out if Inputs. Assume that the algorithm terminates because
one of the parties ran out of inputs. Without loss of generality, say that
Y + = ∅ and write(

b
(0)
0

b
(1)
0

)
· · ·

(
b

(0)
t

b
(1)
t

)
,

(
a

(0)
1

a
(1)
1

)
· · ·

(
a

(0)
t

a
(1)
t

)

for the vectors computed in the execution of the algorithm – starting from

the bottom-up, i.e. b
(0)
0 ,b

(1)
0 denote the last vectors computed for P2 and

b
(0)
t ,b

(1)
t denote the first vectors computed for P2. Similarly, a

(0)
1 ,a

(1)
1 de-

note the last vectors computed for P1 and a
(0)
t ,a

(1)
t denote the first vectors

computed for P1. Now, assume4 that for every i ∈ {1, . . . , t}, and every

j ∈ {1, . . . , `}, either a
(1)
i (j)−a

(0)
i (j) = 1 or a

(1)
i (j) = a

(0)
i (j). Similarly, for

every i ∈ {0, . . . , t}, and every j ∈ {1, . . . , k}, either b
(1)
i (j)−b

(0)
i (j) = 1 or

b
(1)
i (j) = b

(0)
i (j). Consider the protocol from Figure 8.3.

Theorem 8.11. Protocol PassSecSamp is passively secure and secure
against sampling attacks.

Proof. Protocol PassSecSamp is passively secure since the parties’ backup
outputs are randomized functions of each party’s input/output pair, respec-
tively. For security against sampling attacks, it suffices to note that

b
(1)
i (y) 6= b

(0)
i (y) ⇒ ∀j ≥ i, b

(1)
j (y)− b

(0)
j (y) = 1

b
(1)
i (y)− b

(0)
i (y) 6= 1 ⇒ ∀j ≤ i, b

(1)
j (y) = b

(0)
j (y),

4In light of Proposition 8.7, we can construct vectors admitting the required expres-
sion.
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Protocol PassSecSamp

1. The parties P1 and P2 hand their inputs, denoted x and y respectively,
to the dealer.a

2. The dealer computes f(x, y) = (α, β) and constructs (a0, . . . , at+1)
and (b0, . . . , bt+1) such that

• a0 = f1(x, ỹ), where ỹ ∈U Y .

• b0 is sampled independently such that Pr [b0 = 1] = b
(0)
0 (y) =

b
(1)
0 (y).

• For every i ∈ {1, . . . , t}, ai and bi are bits satisfying{
Pr [ai = 1] = a

(α)
i (x)

Pr [bi = 1] = b
(β)
i (y)

• at+1 = f1(x, y) and bt+1 = f2(x, y).

3. The dealer hands a0 to P1 and b0 to P2.

4. For i = 1, . . . , t+ 1,

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1
and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and
halts.

aIf x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs this value and
the protocol is terminated. The case of an inappropriate y is dealt analogously.

Figure 8.3: Protocol PassSecSamp for Computing f .
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and

a
(1)
i (x) 6= a

(0)
i (x) ⇒ ∀j ≥ i, a

(1)
j (x)− a

(0)
j (x) = 1

a
(1)
i (x)− a

(0)
i (x) 6= 1 ⇒ ∀j ≤ i, a

(1)
j (x) = a

(0)
j (x).

Explicitly, the adversary either knows the output or knows nothing about
it. In both cases, she will not be able to disrupt the honest party’s locking
strategy with a sampling attack. In the first case because of how the dis-
tributions are constructed, in the second because the only information at
her disposal (i.e. the input) says nothing about the honest party’s output
resulting from the locking strategy. 2

As an example, consider the function given by the following matrices.

M (1,∗) =


0 1 1 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 1 1

 , M (∗,1) =


1 1 1 1 0
1 0 0 1 0
0 0 0 0 0
1 1 0 1 1
1 1 0 1 1


Define

L1 =
{
x1 = (0,−1, 1, 0, 0)T ,x2 = (1,−1, 0,−1, 1)T

}
,

L2 =
{
y1 = (−1, 0, 0, 1, 0)T ,y2 = (0,−1, 1, 0, 1)T

}
.

Let us walk through each step of the algorithm.

1st Step. The first optimization returns

b(0) = (1, 0, 0, 1, 0)T

b(1) = (1, 1, 1, 1, 1)T .

We set Y + = {2, 3, 5}, and we go to the next step.

2nd Step. The second optimization returns

a(0) = (1, 1, 1, 1/2, 1/2)T

a(1) = (1, 1, 1, 1/2, 1/2)T .

Notice that X+ = ∅ and the algorithm terminates. Deduce that vectors
{b(0),b(1)} and {a(0),a(1)} can be used to design a 2-round passively secure
protocol that is secure against sampling attacks.
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8.4 Fairness vs Privacy

We turn our attention to functions for which the algorithm returns Y + 6=
∅ and X+ 6= ∅. Semi-balanced functions fall under this category. By
Cleve [26], protocols that satisfy both correctness and security against sam-
pling attacks do not exist in the plain model. We ask if the algorithm ter-
minates in similar fashion for other functions. It turns out that it does.
Define deterministic asymmetric function f = (f1, f2) given by the matrices

M (1,∗) =


1 1 1 1 0
0 1 0 1 1
1 1 1 1 1
0 0 1 0 1
1 0 0 0 1

 , M (∗,1) =


1 1 0 0 0
1 0 0 0 1
1 0 0 1 0
0 0 1 1 1
0 1 0 1 0

 .

Let L1, L2 denote the following bases of the parties’ locking strategies.

L1 = {x = (2, 1, 0, 1, 1)T ,x′ = (0, 0, 1, 0, 0)T } ,
L2 = {y = (1, 1, 0, 1, 1)T } .

Notice that the function is not semi-balanced since,

M (∗,1) · y = 2 · 15, xT0 ·M (1,∗) =

{
3 · 1T5 if x0 = x

1T5 if x0 = x′
,

and

xT0 ·M (1,1) · y =

{
6 if x0 = x

2 if x0 = x′
.

For this function, the algorithm returns X+ = X− = {x1, x2, x4, x5} and
Y + = Y − = {y1, y2, y4, y5}. Consequently, for any protocol Π in the under-
lying communication model, the following must be true.{

Pr
[
ai = f1(xj , y)

∣∣ j ∈ {1, 2, 4, 5}] = 1− negl(n)

Pr
[
bi = f2(x, yj)

∣∣ j ∈ {1, 2, 4, 5}] = 1− negl(n)
=⇒{

Pr
[
ai−1 = f1(xj , y)

∣∣ j ∈ {1, 2, 4, 5}] = 1− negl(n)

Pr
[
bi−1 = f2(x, yj)

∣∣ j ∈ {1, 2, 4, 5}] = 1− negl(n)
,

where (ai, bi) and (ai−1, bi−1) denote the parties’ backup outputs at rounds
i and i − 1 respectively. Since the number of rounds is polynomial in the
security parameter, and the protocol is assumed to be correct, we conclude
that no such protocol exists.
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Remark 8.12. The key phrase in the discussion above is “the underly-
ing communication model”. We assumed that the dealer hands backups
based solely on the input-output pair of each party. While this assumption
seems extremely sensible (after all, this is how the simulator generates the
adversary’s view in the ideal model) we do not know whether it incurs a
prohibitive loss of generality. Nevertheless, we suspect the conjecture below
to hold true.

Conjecture 8.13. If f is computable with full security, then the algorithm
from Figure 8.2 terminates with either one of the parties running out of
inputs.

Throughout our work, we have used “fairness” and “full-security” inter-
changeably. We take a moment to argue that this equivalence is perhaps
misplaced. Specifically, it does not follow that fairness should imply privacy.
For one, consider any of the fully secure protocols we encountered, and in-
struct the parties to broadcast their inputs at the end of the execution. The
resulting protocols are still fair but obviously not private.

Furthermore, it is not unreasonable to expect that, for some functions,
fairness can only be achieved at the expense of privacy. We believe this to
be the case for the function above, even though a proof escapes us at this
time. As evidence for our belief, we present a protocol for this function
that satisfies all the requirements of full security except privacy. We refer
the reader to Appendix E p. 164 for the definition of full security without
privacy. The definition follows from a new ideal model, dubbed the leaky
model, which is identical to the fully-secure model in every respect except
that the trusted party leaks the honest party’s output to the adversary.

In the spirit of Chapter 7, we begin with a constant-round protocol that
is secure against sampling attacks. In contrast with Chapter 7, we do not
require the protocol to be passively secure. Then, we introduce a threshold
round, and we argue that the resulting protocol is fair but not private.
Consider protocol Π♥ from Figure 8.4.

Claim 8.14. Protocol Π♥ is secure against sampling attacks.

Proof. We show that (a1, b0) and (a1, b1) are identically distributed for every
x ∈ X and q ∈ L2 and that (a1, b1) and (a2, b1) are identically distributed
for every p ∈ L1 and y ∈ Y . So, assuming P2 plays according to y, the
relevant probabilities are given by the table below.
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Protocol Π♥

1. The parties P1 and P2 hand their inputs, denoted x and y respectively,
to the dealer.a

2. The dealer computes f(x, y) = (α, β) and constructs (a0, a1, a2) and
(b0, b1, b2) such that

• a0 = f1(x, ỹ), where ỹ ∈U Y .

• b0 ∈U {0, 1} .

• a1 is bit satisfying

Pr [a1 = 1] =


0 if x = x5 ∨

(
x = x4 ∧ y ∈ {y2, y4}

)
1/2 if x = x1 ∧ y = y1

1 otherwise

.

• b1 = β .

• a2 = α and b2 = β.

3. The dealer hands a0 to P1 and b0 to P2.

4. For i = 1, 2,

a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1
and halts.

b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and
halts.

aIf x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs this value and
the protocol is terminated. The case of an inappropriate y is dealt analogously.

Figure 8.4: Protocol Π♥ for Computing f .
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x \ (a1, b∗) (0, 0) (0, 1) (1, 0) (1, 1)

x1 1/8 1/8 3/8 3/8
x2 0 0 1/2 1/2
x3 0 0 1/2 1/2
x4 1/4 1/4 1/4 1/4
x5 1/2 1/2 0 0

Next, we turn to an honest P1 playing according to x.

y \ (a∗, b1) (0, 0) (0, 1) (1, 0) (1, 1)

y1 1/5 1/5 1/5 2/5
y2 1/5 1/5 1/5 2/5
y3 2/5 0 2/5 1/5
y4 0 2/5 3/5 0
y5 2/5 0 1/5 2/5

2

Using the transformation from the previous chapter, consider SecSamp2Fair(Π♥).
Note that i∗ ≥ 3 is chosen with parameter γ, and that backup sequences
(a0, . . . , ar) and (b0, . . . , br) are computed as follows.

• Party P1.

– Pr [ai = 1] = Pr [f1(x, ỹ) = 1] where ỹ ∈U Y if i < i∗ − 1,

– Pr [ai∗−1 = 1] =


0 if x = x5 ∨

(
x = x4 ∧ y ∈ {y2, y4}

)
1/2 if x = x1 ∧ y = y1

1 otherwise

.

– Pr [ai = 1] = f1(x, y) if i ≥ i∗.

• Party P2.

– Pr [bi = 1] = Pr [f2(x̃, y) = 1] where x̃ ∈U X if i < i∗ − 2,

– Pr [bi = 1] = 1/2 if i = i∗ − 2,

– Pr [bi = 1] = f2(x, y) if i ≥ i∗ − 1.

From a corrupt P2’s perspective, we remark protocol Π♥ is passively secure
and secure against sampling attacks. It follows that SecSamp2Fair(Π♥)
is fully secure for a corrupt P2.
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Proposition 8.15. Discounting privacy, SecSamp2Fair(Π♥) is fully-secure
for a corrupt P1.

Proof. The proof from the previous chapter applies here as well. The only
difference is that, in order to recreate the backup sequence, the simulator
must use information about the input that was leaked by the trusted party.
Other than that, the remaining analysis is the same. Alternatively, see
Appendix F p. 166 for a direct proof . 2

From Proposition 8.15, it does not follow that the protocol is insecure. After
all, fully secure protocols are also secure with respect to the leaky model.
We show that the protocol is insecure by means of an attack. Specifically,
we define a game between the honest party and the adversary, and we
conclude by showing that there is a discrepancy between the probability of
the adversary winning in the real world, compared to the probability of her
winning in the ideal world.

Proposition 8.16. SecSamp2Fair(Π♥) is not fully secure for a corrupt
P1.

Proof. Consider the game from Figure 8.5 between the corrupted party P1

and the honest party P2. A quick analysis reveals that the optimal strategy
for A in the ideal model is to play x4, and to pick an input from one of the
sets {y1, y2, y4} and {y3, y5}, depending on the output she received from the
trusted party. It follows that Pr [A wins (Ideal)] ≤ 2/5.

Turning to the real model, consider the following attack. A hands x4 for the
computation. If out1 = 1, set guess ∈U {y3, y5}. If out1 = 0, set guess = y1

or guess ∈U {y2, y4} if a2 = 1 or a2 = 0, respectively. Depending on the
value of i∗, Pr [A wins (Real) | i∗ 6= 2] = 2/5 and

Pr [A wins (Real) | i∗ = 2] =
2

5
· 1

2
+

2

5
· 1

2
+

1

5
=

3

5
.

It follows that

Pr [A wins (Real)] = (1− γ) · 2

5
+ γ · 3

5

=
2

5
+ γ · 1

5
> 2/5 .

2
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Yet Another Game

1. The honest party chooses an input y ∈ Y uniformly at random.

2. The corrupted party chooses x ∈ X.

3. On the inputs chosen by the parties,

• Real Parties execute SecSamp2Fair(Π♥) for computing f .

• Ideal Parties invoke the trusted party computing f .

4. The honest party accepts if out2 = f2(x4, y).

5. The adversary outputs guess ∈ Y .

The adversary wins if P2 accepts and guess = y.

Figure 8.5: A Passive Attack on Protocol SecSamp2Fair(Π♥)



Concluding Remarks

The semi-balanced criterion in combination with protocol FairTwoParty
account for whether a given finite symmetric Boolean function is fair. The
characterization states that a function is fair if and only if it is not semi-
balanced. The characterization was extended to randomized and multi-
party functions. For the latter, we assumed that the parties have access to
broadcast, and that the honest parties form a relative majority, at worst.

We defined locking strategies and sampling attacks, and we showed how
the two concepts can be put to use toward the characterization of arbitrary
finite functions. In particular, the semi-balanced criterion was extended to
arbitrary functions, and a transformation was established from protocols
satisfying “simple” security requirements to protocols that are fully secure.
Specifically, the transformation involves introducing a threshold round to
protocols that are passively secure and secure against sampling attacks.

Finally, we investigated the characterization of asymmetric Boolean func-
tions, and we proposed an algorithm that builds relevant protocols for non
semi-balanced functions. Unfortunately, the semi-balanced criterion and
the algorithm do not account for whether every asymmetric Boolean func-
tion is fair. For one such problematic function, we showed that fairness can
be achieved at the expense of privacy. We conclude with a short list of open
problems.

Beyond locking strategies.

Locking strategies are defined in a communication model where the parties
make a single call the an ideal functionality, and no other interactions is

139
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allowed to occur. We ask whether analogous-but-distinct strategies exist, if
we allow plain model interactions or multiple calls to the function and its
transpose.

The optimal round complexity for passive-security and security
against sampling attacks.

As stated in Conjecture 7.5, for a finite function, we suspect that passive
security and security against sampling attacks can either be achieved in a
constant number of rounds or not at all.

Assumptions regarding the backup sequences in the online-dealer
model.

In the game serving as a prelude to the algorithm from Chapter 8, we
assumed that the dealer computes the backup outputs of each party as a
randomized function of its input/output pair. It would be interesting to
know whether this assumption incurs any loss of generality, and how the
assumption is reconciled with passive security, if it does. If the assumption
does not incur any loss of generality, then the question of characterizing
asymmetric Boolean functions is settled. At the same time, it indicates
that fairness and full-security are not equivalent.

Fairness vs Privacy.

As stated in Conjecture 8.13, if f is computable with full security, then we
suspect that the algorithm from Figure 8.2 terminates with either one of the
parties running out of inputs. If so, then the function from Chapter 8 is the
first example of a non semi-balanced fair function that is not fully secure.
In any case, functions of unknown status require further investigation.

Other Classes of Functions.

Little is known about the characterization for functions other than Boolean
ones. Designing algorithms similar to the one from Chapter 8 may be helpful
in this regard. Similarly, little is known for functions with input domains of
infinite size, or functionalities defined as a families of functions indexed by
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the security parameter. It is unclear how the framework we propose applies
to such functions, if it does at all. In particular, definitions for locking
strategies and sampling attacks are not immediate for such functions.

The Multiparty Case.

For reasons mentioned in Part I, most of Part II carries on to finite MPC
functions in the presence of relative dishonest majorities. However, once
the 1/2-threshold has been crossed, several difficulties arise in applying
our framework. Specifically, while locking strategies and sampling attacks
remain meaningful notions, the transformation from Chapter 7 may not be
applicable to the multiparty case, or it may be rather more involved.
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Appendix A

Security-with-Abort

Inputs: Each party Pi holds 1n and xi ∈ Xi. The adversary is given an auxiliary
input z ∈ {0, 1}∗. The trusted party T has no input.

Parties send inputs: Each honest party sends its input to T , each corrupted
party sends a value of the adversary’s choice. Write (x′1, . . . , x

′
m) for the

tuple of inputs received by T .

The trusted party performs computation: If any x′i is not in the appropri-
ate domain (or was not sent at all), then T reassigns the aberrant input to
some default value. Write (x′1, . . . , x

′
m) for the tuple of inputs after (possi-

ble) reassignment. The trusted party then chooses a random string r and
computes f(x′1, . . . , x

′
m; r).

Trusted party sends outputs to corrupted parties: Each corrupted party
Pi ∈ B receives fi(x

′
1, . . . , x

′
m; r).

Adversary decides whether to abort: The adversary instructs the trusted
party to either abort or continue.

Trusted party sends outputs to honest parties: Each honest party Pi /∈ B
receives ⊥ or fi(x

′
1, . . . , x

′
m; r), depending on the adversary’s choice in the

previous step.

Outputs: Each honest party outputs whatever T sent him, the corrupted parties
output nothing, and the adversary outputs a probabilistic polynomial-time
function of its view.

Figure A.1: The Ideal Model with Abort.

In this model, the simulator (ideal-world adversary) decides who receives
output. The honest parties’ outputs and the adversary’s view in the model-
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with-abort are denoted (OutIM abort
S(z),f ,ViewIM abort

S(z),f ).

Definition A.1. We say that Π computes f securely with abort tolerating
coalitions of size at most t if for every non-uniform polynomial time adver-
sary A, there exists a non-uniform polynomial time adversary S (called the
simulator) controlling B in the ideal model such that{(

OutRealA(z),Π,ViewReal
A(z),Π

)(
1n, x1, . . . , xm)

}
(x1,...,xm)∈X,
z∈{0,1}∗,n∈N

c≡

{(
OutIM abort

S(z),f ,ViewIM abort
S(z),f

)(
1n, x1, . . . , xm

) }
(x1,...,xm)∈X,
z∈{0,1}∗,n∈N

.

P1

x, 1n

P2

y, 1n

T

A

x′ y′

P1 P2

T

f(x′, y′)

f or ⊥ f or ⊥

Figure A.2: Visual Illustration of the Two-Party Secure-with-Abort Model.



Appendix B

Dealer Model to Plain Model
Transformation

The first step is to transform the dealer from an interactive player that is
invoked multiple times, to an offline player that is only invoked once at the
beginning. Define message authentication code (Gen, Mac, Vrfy) consisting
of three algorithms such that

• Gen takes as input 1n and generates a key k,

• Mac takes as inputs a message m and a key k, and generates a tag
t = Mack(m),

• Vrfy takes as inputs a message m, a tag t and a key k, and outputs a
bit b = Vrfyk(m ; t) .

In the offline dealer model, the parties are instructed to reconstruct bits ai
and bi by interacting with one another. Thus, instead of receiving a1 . . . ar
(for P1) and b1 . . . br (for P2) in a sequence or r iterations, parties receive

shares {a(1)
i , b

(1)
i }i=1...r and {a(2)

i , b
(2)
i }i=1...r respectively in a single invo-

cation of the dealer. As the notation suggests, aji and bji are shares of a
2-out-of-2 sharing scheme of ai and bi respectively.

Now, for i = 1 . . . r, party P2 is instructed to send a
(2)
i to P1, followed

by P1 who is instructed to send b
(1)
i to P2. To prevent parties from lying,

these shares are signed using a secure message authentication code described
above. See Figure B.1 for a full description of the offline dealer model.
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Inputs: Party P1 (resp. P2) holds 1n and x ∈ X (resp. y ∈ Y ). The dealer D has
no input.

Parties compute backup outputs: P1 (resp. P2) is instructed to compute a0
(resp. b0).

Parties send inputs: Parties are instructed to send their inputs to the dealer.
Write (x′, y′) for the inputs received by D.

The dealer performs computation: The dealer computes bits a1, . . . , ar and
b1, . . . , br, where r ∈ N depends on the security parameter. The dealer

generates random bits a
(1)
1 , . . . , a

(1)
r , b

(1)
1 , . . . , b

(1)
r , and computes a

(2)
i = a

(1)
i ⊕

ai and b
(2)
i = b

(1)
i ⊕ bi, for every i ∈ {1, . . . , r}. The dealer generates keys ka

and kb and computes tags t
(2)
i = MACka

(
a
(2)
i

∥∥∥ i) and t
(1)
i = MACkb

(
b
(1)
i

∥∥∥ i),

for every i ∈ {1, . . . , r}.

The dealer replies:

1. Party P1 receives a
(1)
1 , . . . , a

(1)
r , b

(1)
1 , . . . , b

(1)
r from the dealer, as well as

key ka and tags t
(1)
1 , . . . , t

(1)
r . Then, P1 instructs D to abort or continue.

In the first case, the dealer sends⊥ to both parties and halts. Otherwise
go to next step.

2. Party P2 receives a
(2)
1 , . . . , a

(2)
r , b

(2)
1 , . . . , b

(2)
r from the dealer, as well as

key kb and tags t
(2)
1 , . . . , t

(2)
r .

Parties exchange information: For i = 1 . . . r

1. Party P2 sends (a
(2)
i , t

(2)
i ) to P1. If Vrfyka

(
a
(2)
i ‖ i ; t

(2)
i

)
= 1, party P1

sets ai = a
(1)
i ⊕ a

(2)
i and proceeds to the next step. In any other case

(early abort or failed verification), P1 halts and outputs the last ai−1.

2. Party P1 sends (b
(1)
i , t

(1)
i ) to P1. If Vrfykb

(
b
(1)
i ‖ i ; t

(1)
i

)
= 1, party P1

sets bi = b
(1)
i ⊕ b

(2)
i and proceeds to the next step. In any other case

(early abort or failed verification), P2 halts and outputs bi−1.

3. If i = r, parties output ar and br respectively.

Figure B.1: The Offline Dealer Model



Appendix C

Playing with the Parameters of
GHKL

Recall that, prior to round i∗, the backup outputs of P2 are distributed
according to q = MT · 1`/`. That is by choosing an input for P1 uniformly
at random. For some functions, the uniform distribution is problematic.
For example, GHKL is not fully secure for the function described by the
matrix

M =



1 1 0 1 0
1 1 1 0 0
0 0 1 0 1
0 1 1 1 1
0 0 0 1 1
1 0 0 1 1
1 0 0 0 0


.

However, it can be shown that the protocol is fully secure if q = MT · (e2 +
17)/8. That is by choosing an input for P1 according to the more elaborate
distribution encoded by (e2 + 17)/8. We investigate how to find relevant
distributions for arbitrary functions.

Fix probability vector u and redefine q = MT ·u in protocol GHKL. Using
the same simulator as Gordon et al. we deduce the generalized protocol
is fully secure if1 for some α ∈ (0, 1), and all x ∈ {1, . . . , `}, there exist

probability vectors x
(0)
x and x

(1)
x such that

MT · x(0)
x = q + λ(0)

x · ((1k − rowx) ∗ q)

MT · x(1)
x = q + λ(1)

x · (rowx ∗ (1k − q)) , (C.1)

1We stress that the conditions depend on the simulator.
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where λ
(a)
x ∈ R depends on α and M .

Proposition C.1. The following statements are equivalent.

• ∃α ∈ (0, 1), ∀x ∈ X, ∃ probability vectors x
(0)
x , x

(1)
x satisfying Equa-

tion (C.1).

• There exists a strictly positive probability vector u such that v 7→ q∗v
is an endomorphism of H(MT ).

Proof. (⇑) If Q is an endomorphism of H(MT ) and u is strictly positive,
then relevant vectors can be found by adjusting the parameter of i∗, exactly
like in the proof from Chapter 3. (⇓) Define µ = { j |u(j) = 0}. Obviously,
v 7→ v ∗ q is an endomorphism of H(MT ). We show that there exists
u0 ∈ ker(MT ) such that

∑
j u0(j) = 0 and u0(i) > 0, for every i ∈ µ. From

Equation (C.1), deduce that there exist a
(0)
x and a

(1)
x such that

MT · a(0)
x = (1k − rowx) ∗ q

MT · a(1)
x = rowx ∗ (1k − q) ,

where
∑

j a
(a)
x (j) = 0 and a

(a)
x (i) ≥ 0, for every i ∈ µ. Moving a few terms

around, deduce that

MT · a(0)
x −MT · u = rowx ∗ q

MT · a(1)
x +MT · ex = −rowx ∗ q .

Define u0 = a
(0)
x −u+a

(1)
x +ex and notice that u0 ∈ ker(MT ),

∑
j u0(j) = 0,

u0(x) > 0, and u0(x′) ≥ 0, for every x′ ∈ µ. Repeat the process for every
x ∈ µ and conclude. 2

Let P0 denote the orthogonal projection onto the kernel of M , and write Qi
for the diagonal matrix Qi(j, j) = rowi(j).

Theorem C.2. If the non-monochromatic columns of M do not contain 1`
in their linear span and the equation below admits a strictly positive solution,
then GHKL computes f with full security.P0 ·Q1

...
P0 ·Q`

MT

r1

...
r`

 =

0
...
0

 . (C.2)
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Proof. Assuming the non-monochromatic columns of M do not contain 1` in
their linear span, we analyse the conditions under which v 7→

(
MT · u

)
∗v is

an endomorphism of im(MT ), for strictly positive u. Write u = (r1, . . . , r`)
T

and note that Q =
∑

i riQi. It holds that Q defines an endomorphism of
im(MT ) if and only if

∀j ∈ {1, . . . , `},

(∑
i

riQi

)
rowTj ∈ im(MT ) . (C.3)

Since the matrices are all diagonal, and thus commute, we deduce that(∑
i

riQi

)
rowj =

(∑
i

riQi

)
Qj · 1` = Qj

(∑
i

rirowi

)

= Qj

(∑
i

rirowi

)
= Qj ·MT (r1, . . . , r`)

T .

Consequently, (C.3) holds if and only if (C.2) admits a strictly positive
solution, in which case the probability vector is obtained by normalization.

2





Appendix D

FairTwoPartySpecial:
Proof of Security

We follow the proof from the symmetric case, with two important modifi-
cations. First, we need two distinct simulations for P1, depending on the
choice of input. In particular, if A hands x1 or x2 to S, then the simulation
follows the symmetric case exactly. If A hands x3 or x4, then we simulate
P1 as if he were P2 in the symmetric case. For the second player, we claim
that simulating P2 as if he were P1 in Protocol FairTwoPartyσ results
in the correct simulator. We begin our analysis with a corrupt P1, and we
assume that the adversary hands either x1 or x2 to the simulator.

Let q = MT · 1` and p = M · 1k. We compare the distribution of (ai, out2)
in the two worlds given that the adversary aborts in round i ≤ i∗. We

compute vectors c
(0)
x and c

(1)
x where q

(a)
x (y) is the desired probability that

the output of P2 in the simulation (given that the adversary has aborted
in round i < i∗) is 1 when the input of P1 is x, the input of P2 is y and
ai = a. Next, assuming the adversary hands x ∈ {x1, x2}, we consider the
four possible values of (ai, out2), we deduce that

c(0)
x (y) = q(y) +

α

(1− α)(1− p(x))
(1− f1(x, y))(q(y)− f2(x, y))

c(1)
x (y) = q(y) +

α

(1− α)p(x)
f1(x, y)(q(y)− f2(x, y)) ,
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and conclude that M (∗,1)Tx
(a)
x = c

(a)
x for the following vectors x

(a)
x :

x(0)
x1 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)(1− p(x1))
1/2 · (0, 1,−1, 0)T

x(1)
x1 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)p(x1)
1/4 · (−3,−1, 3, 1)T

x(0)
x2 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)(1− p(x2))
1/4 · (1,−1,−1, 1)T

x(1)
x2 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)p(x2)
1/2 · (0,−1, 1, 0)T .

It remains to show that for some α ∈ (0, 1) the above vectors become
probability vectors - they already sum to 1, we just need them to be positive.
A straightforward calculation reveals that any α ≤ 1/9 will do.

Corrupt P2. As mentioned above, we construct a simulator S given a
black-box to A that is completely analogous to P1’s simulator in protocol
FairTwoPartyσ. Namely, say that A hands y ∈ Y to S for the com-
putation of f . The simulator chooses i∗ according to a geometric distri-
bution with parameter α and • for i = 0, . . . , i∗ − 1, the simulator hands
bi = f(x̃(i), y) to A, where x̃(i) ∈U X. If A decides to quit, S sends y0

according to distribution y
(bi)
y (to be defined below), outputs (b0, . . . , bi)

and halts. • for i = i∗, the simulator sends y to the trusted party, re-
ceives b = f2(x, y) and hands bi∗ = b to A. If A decides to quit, S outputs
(b0, . . . , bi∗) and halts. • for i = i∗ + 1, . . . , r, the simulator hands bi = b
to A. If A decides to quit, S outputs (b0, . . . , bi) and halts. • If A is still
active at the end, S outputs (b0, . . . , br) and halts.

For reasons mentioned in the proof of Theorem 5.9, we only need to compare
the distributions (ViewA, out1) in the real and ideal worlds given that the
adversary aborts in a round 1 ≤ i ≤ i∗. Thus, in the rest of the proof
we let i be the round in which the adversary aborts and assume that 1 ≤
i ≤ i∗. The view of the adversary in both worlds is b0, . . . , bi. Notice
that in both worlds b1, . . . , bi−1 are equally distributed and are independent
of (bi, out1). Thus, we only compare the distribution of (bi, out1) in both

worlds. Now, for every x ∈ X, y ∈ Y , and b ∈ {0, 1}, define d
(b)
y ∈ R`

such that d
(b)
y (x) = Pr [f1(x, y0) = 1], where y0 is chosen according to the

distribution y
(b)
y . Consider the probability that (bi, out1) is equal to (0, 0)
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and (0, 1), and deduce that

d(0)
y1 =


3/4
1/4
1/2
1/2

+
α

(1− α)(1− q(y1))


0
0
0

1/2

 ,

d(0)
y2 =


3/4
1/4
1/2
1/2

+
α

(1− α)(1− q(y2))


0
0

1/2
0

 ,

and

d(0)
y3 =


3/4
1/4
1/2
1/2

+
α

(1− α)(1− q(y3))


0
0

1/2
0

 ,

d(0)
y4 =


3/4
1/4
1/2
1/2

+
α

(1− α)(1− q(y4))


0
0
−1/2

0

 .

It follows that M (1,∗)y
(0)
y = d

(0)
y for the following vectors:

y(0)
y1 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)(1− q(y1))
1/2 · (0, 1,−1, 0)T

y(0)
y2 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)(1− q(y2))
1/2 · (1, 0,−1, 0)T

y(0)
y3 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)(1− q(y3))
1/2 · (1, 0,−1, 0)T

y(0)
y4 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)(1− q(y4))
1/2 · (−1, 0, 1, 0)T .

To obtain probability vectors, any α ≤ 9 will do. Similarly, consider the
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probability that (bi, out1) is equal to (1, 0) and (1, 1), and deduce that

d(1)
y1 =


3/4
1/4
1/2
1/2

+
α

(1− α)q(y1)


0
0
−1/2

0

 ,

d(1)
y2 =


3/4
1/4
1/2
1/2

+
α

(1− α)q(y2)


0
0
0
−1/2

 ,

and

d(1)
y3 =


3/4
1/4
1/2
1/2

+
α

(1− α)q(y3)


0
0
0

1/2

 ,

d(1)
y4 =


3/4
1/4
1/2
1/2

+
α

(1− α)q(y4)


0
0
0
−1/2

 .

It follows that M (1,∗)y
(1)
y = d

(1)
y for the following vectors:

y(1)
y1 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)q(y1)
1/2 · (−1, 0, 1, 0)T

y(1)
y2 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)q(y2)
1/2 · (0,−1, 1, 0)T

y(1)
y3 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)q(y3)
1/2 · (0, 1,−1, 0)T

y(1)
y4 = 1/4 · (1, 1, 1, 1)T +

α

(1− α)q(y4)
1/2 · (0,−1, 1, 0)T .

To obtain probability vectors, any α ≤ 9 will do. 2



Appendix E

The Leaky Model

As the name suggests, in the leaky model, the honest party’s output is
leaked to the adversary.

Inputs: Parties P1, P2 hold 1n, and x ∈ X and y ∈ Y respectively. The adversary
is given an auxiliary input z ∈ {0, 1}∗. The trusted party T has no input.

Parties send inputs: The honest party sends its input to T , the corrupted party
sends a value of the adversary’s choice. Write (x′, y′) for the couple of inputs
received by T .

The trusted party performs computation: If either x′ or y′ is not in the ap-
propriate domain (or was not sent at all), then T reassigns the aberrant
input to some default value. Write (x′, y′) for the pair of inputs after (pos-
sible) reassignment. The trusted party then chooses a random string r and
computes f(x′, y′; r).

Trusted party sends outputs: Each party Pi receives fi(x
′, y′; r).

Trusted party leaks inputs: T hands the honest party’s input (x′ or y′) to A.

Outputs: Each honest party outputs whatever T sent him, the corrupted parties
output nothing, and the adversary outputs a probabilistic polynomial-time
function of its view.

Figure E.1: The Ideal Model with Leakage.

Notice that the ideal model satisfies the security requirements of – cor-
rectness – independence of inputs – fairness, but not privacy. Let S be
an adversary in the ideal model (also called the simulator) given auxiliary
input z, and write (OutLeakS(z),f ,ViewLeak

S(z),f )(1n, x, y), for the honest party’s
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output and the simulator’s output in the leaky ideal model.

Definition E.1. Let Π be a protocol for computing f . We say that Π
computes f with fairness if for every non-uniform polynomial time adver-
sary A controlling party Pi in the real model, there exists a non-uniform
polynomial time adversary S controlling Pi in the ideal model such that{(

OutRealA(z),Π,ViewReal
A(z),Π

)(
1n, x, y

)}
(x,y)∈X×Y,
z∈{0,1}∗,n∈N

c≡

{(
OutLeakS(z),f ,ViewLeak

S(z),f

)(
1n, x, y

) }
(x,y)∈X×Y,
z∈{0,1}∗,n∈N

.

P1

x, 1n

P2

y, 1n

T

A

T

x′ y′

P1 P2

T

f(x′, y′)

f f

z′ ∈ {x′, y′}

Figure E.2: Visual illustration of the Two-Party Leaky Model.



Appendix F

Direct Proof of
Proposition 8.15

For a corrupt P1, we show the protocol is secure with respect to the leaky
model – Appendix E p. 164. The difference between this model and the
fully secure one is that the trusted party leaks the honest party’s output
to the adversary. The simulation for P1 is identical to the simulation of
protocol SecSamp2Fair with one major difference. In order to construct
ai∗−1 in the ideal model, the simulator uses the input leaked by the trusted
party.

Write p and qT for M (1,∗)1k and 1T`M
(∗,1). Define p′x0 ∈ Rk such that

p′x0(y0) = Pr [ai∗−1 = 1 | (x, y) = (x0, y0)] where x and y denote the inputs
that the dealer receives from the parties. Observe that p′x2 = p′x3 = 15 −
p′x5 = 15,

p′x1 =
1

2
· (1, 2, 1, 2, 1)T , p′x4 = (1, 0, 1, 0, 1)T .

Next, for an adversary quitting at round i, let ai denote the last bit handed
to the adversary and let out2 denote the honest party’s output. Write
(ai, out2)R and (ai, out2)Id for the pair in the relevant model. For reasons
encountered in many other proofs, it suffices to compare the probability
distributions of (ai, out2)R and (ai, out2)Id, assuming i∗ − 1 has not been
surpassed. So, in the real model:

Pr
[
(ai, out2)R = (0, 0)

]
= (1− γ)(1− p(x))(1− q(y)) + γ(1− p′x(y))/2

Pr
[
(ai, out2)R = (0, 1)

]
= (1− γ)(1− p(x))q(y) + γ(1− p′x(y))/2
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and

Pr
[
(ai, out2)R = (1, 0)

]
= (1− γ)p(x)(1− q(y)) + γp′x(y)/2

Pr
[
(ai, out2)R = (1, 1)

]
= (1− γ)p(x)q(y) + γp′x(y)/2 .

Turning to the ideal model, write c
(α)
x (y) for the distribution of the honest

party’s output. Again, assuming i∗ − 1 has not been surpassed:

Pr
[
(ai, out2)Id = (0, 0)

]
= (1− γ)(1− c(0)

x (y))(1− p(x))

+ γ(1− f2(x, y))(1− p′x(y))

Pr
[
(ai, out2)Id = (0, 1)

]
= (1− γ)c(0)

x (y)(1− p(x)) + γf2(x, y)(1− p′x(y)) ,

and

Pr
[
(ai, out2)Id = (1, 0)

]
= (1− γ)(1− c(1)

x (y))p(x) + γ(1− f2(x, y))p′x(y)

Pr
[
(ai, out2)Id = (1, 1)

]
= (1− γ)c(1)

x (y)p(x) + γf2(x, y)p′x(y) .

Thus

c(0)
x (y) = q(y) +

γ(1− p′x(y))(1/2− f2(x, y))

(1− γ)(1− p(x))

c(1)
x (y) = q(y) +

γp′x(y)(1/2− f2(x, y))

(1− γ)p(x)
.

In matrix form:

c(0)
x = q + λ(0)

γ,x · (1− p′x) ∗
(
15/2−M (∗,1)Tex

)
c(1)
x = q + λ(1)

γ,x · p′x ∗
(
15/2−M (∗,1)Tex

)
where λ

(α)
γ,x = γ · (1 − γ)−1 · (1 − α + (−1)α+1p(x))−1. Finally, note that

〈L2〉 = 〈(1, 1, 0, 1, 1)T 〉 and deduce that, for every y ∈ 〈L2〉,(
(15 − p′x) ∗

(
15/2−M (∗,1)Tex

))T
· y = 0(

p′x ∗
(
15/2−M (∗,1)Tex

))T
· y = 0 .

Conclude using the fundamental theorem of Linear Algebra.
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