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Chapter 7

Hybrid nano-optomechanics based
on carbon nanotube resonators

In this chapter we will describe the first steps towards studying suspended doubly-clamped
singly-walled carbon nanotubes, at low temperature, as hybrid nano-optomechanical sys-
tems. This work has been carried out in collaboration with Professor François Dubin
(Institut des nanosciences de Paris (INSP), Pierre and Marie Curie University - Paris 6)
and the group of Professor Frank Koppens (Nano-Optoelectronis group, The Institute of
Photonic Science (ICFO)).

In the first section we give a brief introduction on the objectives of this project. We
then discuss the role of excitons in the optical properties of single-walled carbon nanotubes
and how their coupling to the mechanical vibrations of suspended nanotubes can form the
bases a hybrid nano-optomechanical system. We then present the fabrication process steps
and the layout of the doubly-clamped suspended carbon nanotube devices that were used
in this experiment, while we also discuss the various technological challenges. Afterwards,
we describe the low temperature optical setup that we developed for the purposes of this
study. We then present the experimental data that we obtained, analyzing them and
discussing the technical challenges that we faced. Finally, we discuss the perspectives of
such an experiment taking into account the knowledge that was acquired so far.

7.1 Introduction
In recent years, there has been a great amount of experimental effort in order to prepare,
observe and control the motion of a mechanical resonator in the quantum regime. Such
experiments require the ability to cool a mechanical mode into its ground state (T �
hf/kB), to create and control individual quantums of excitation (phonons), and detect
them with quantum-limited sensitivity (Heisenberg limit). In this direction, different
approaches have been followed.

The emerging field of cavity opto- and electromechanics has tried to achieve the afore-
mentioned goals by coupling a mechanical resonator to a microwave or an optical cavity.
In such systems, the phase of the cavity light field linearly depends on the position of
the mechanical oscillator. At the same time, the light field applies a back-action force on
the resonator due to radiation pressure. In experiments with such systems, it has been
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demonstrated that it is possible to actively cool the motion of a mechanical resonator to
its ground state while detecting its mechanical vacuum fluctuations [8, 9]. Additionally,
evidence of back-action quantum noise has also been observed [10]. However, lineal po-
sition measurements impose limitation when used to manipulate quantum states on the
mechanical resonator. This occurs because the noise of the cavity field can be disguised
as mechanical fluctuations, blurring non-classical states of motion.

An alternative approach is to couple a mechanical resonator to a quantum system,
like a two-level system, that can be externally controlled. O’Connell et al. (2010) [7]
in their pioneer experiments they used an engineered hybrid device, where a supercon-
ducting phase qubit is capacitively coupled to a micromechanical resonator, in order to
perform quantum-coherent measurements and for the first time provide strong evidence
that quantum mechanics applies to motion of objects that are big enough to be seen by
naked eye [7]. The qubit can be approximated as a two-level quantum system, while a
cryogenic refrigerator was used to cool a 6 GHz mode of the mechanical resonator to its
ground state.

Advances in nanotechnology have lead to a new type of hybrid nanomechanical sys-
tems where quantum emitters are embedded into the bulk of mechanical nanoresonators.
Such type of devices have the potential to achieve a large coupling strength through the
deformation potential [161]. Yeo et al. (2013) [162] studied a hybrid system that consist
of a GaAs conical photonic nanowire with optically active InAs quantum dots [162] that
are embedded in it. He demonstrated that the strain mediated coupling between the
energy levels of the quantum dots and the mechanical degrees of freedom of the nanowire
lead to an ultra strong exciton-phonon coupling. Experiments in a similar direction
have shown that it is possible couple the motion of a diamond mechanical resonator to
Nitrogen-Vacancy (NV) center spins, [163], or the motion of MBE-grown GaAs/AlGaAs
coreâĹŠshell nanowires to optically active quantum dots that are build into it [164].

Within the context of hybrid nanomechanics, single-walled carbon nanotube res-
onators qualify as very attractive systems to explore. From the perspective of nanome-
chanics, their exceptional mechanical properties have lead to devices with very high res-
onant frequencies [14, 15], high quality factors [17], and remarkable mass and force sen-
sitivity [20, 23]. For experiments in the quantum regime, high frequencies allow for low
phonon number occupation in cryogenic temperatures, their low mass ensures large zero
point motion (xzpm =

√
~/2mωm), about three orders of magnitude higher compared

to top-down fabricated resonators, and their high quality factors secures long coherence
times. Interestingly, these nano-scale objects are also inherited with very rich electronic
and optical properties. It has been shown that optical transitions in single-walles semicon-
ducting nanotubes are dominated by excitons [165], which are electron-hole bound states.
In addition, it has been demonstrated that individual suspended carbon nanotubes can
host localized excitons that exhibit very high luminescence quantum efficiency as well as
very long decay and coherence times [166, 167]. A localized exciton can be seen as an
optically active quantum dot, a two-level system, that is intrinsically embedded inside
carbon nanotubes.

Theoretical studies have shown that excitonic resonances of carbon nanotubes could
exhibit strong parametrical coupling to flexural motion via strain, which modifies the
deformation potential electron-phonon interactions [168, 169]. The existence of such a
coupling mechanism could lead to a novel hybrid nanomechanical system, where a single
walled-carbon nanotube resonator is coupled to a quantum emitter embedded into it. This
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type of interaction could potentially used to cool a mechanical oscillator to its ground
state [170] and study nanomechanics in the quantum regime by achieving quantum-limited
position sensitivity and creating non-classical states of motion [7]. In a more short-term
perspective, an optical transduction scheme based on exciton-phonon coupling, could
possible improve the displacement sensitivity limits of electrical or optical transduction
schemes used so far in carbon nanotubes resonators [86, 23].

In this chapter, we present the first steps towards the experimental investigation of
suspended single-walled carbon nanotubes as hybrid nanomechanical systems. In this
direction, we developed and systematically studied the fabrication process of suspended
singly-walled carbon nanotubes, while we developed and implemented a low-temperature
micro-photoluminescence optical setup. The main target was to study the existence of
exciton-phonon coupling and the underlying physical mechanisms in such devices. Even
though it wasn’t possible to reach the final goals within the time frame of this Ph.D
thesis, we nevertheless tried to systematically describe and analyze all the drawbacks
and difficulties we faced, trying to give a perspective for the future steps towards the
completion of such an experiment.

7.2 The role of excitons in the optical properties of
single-walled carbon nanotubes

In section 2.3 we described the optical transition of single-wall carbon nanotube as band
to band transitions (Figure 2.7), where an electron-hole pair is optically excited from
the valence band into the conduction band, emitting a photon while recombining. Light
absorption at photon energy E22 is followed by fluorescence emission near E11 (Fig-
ure 7.1(a)), where E11 and E22 are characteristic values for each nanotube specie (n1, n2)
and correspond to the transitions energies between the van-Hove singularities that appear
in electronic states density of nanotubes. Attributed to the linear conic dispersion and
electron-hole symmetry around the K point of the graphene band structure, the expected
ratio between the second and first optical transitions is E22/E11 = 2. Interestingly, ex-
perimental studies have shown that this ratio is closer to ∼ 1.7 [171] (Figure 7.1(b)).

The reason of divergence between experiment and theory is that so far we have fol-
lowed a single particle description, neglecting many-body interactions. In reality, the
low screening of electrostatic interactions and the strong confinement of carriers in one
dimension leads to Coulomb interactions that are considerable enhanced in carbon nan-
otubes. On the one hand, the electron-electron repulsion tends to blue-shift the energies
and renormalize the effective band-gap, an effect which is difficult to be quantified exper-
imentally. On the other hand, the electron-hole attraction leads to bound electron-hole
states instead of free electron-hole pairs. A state like this is called exciton and can be
seen as a quasiparticle with neutral charge. Their energy is much lower compare to
what is expected in optical transition due to the van-Hove singularities in the density
of states of the single-particle picture [165, 171]. The difference in energy is called the
binding energy and it can be significant for single-walled nanotubes with low diameters
[172]. Theoretical estimations predict that it exceed few hundreds of milli-electronvolts
for tubes with diameter that is lower than 1 mm, and scales inversely with the diameter
(∼ 1/d) [173, 174].
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Figure 7.1: Photoluminescence measurements and transition energies characterization for large
number of single-walled carbon nanotubes done by Bachilo et al. in 2002. (a) A typical contour
plot of fluorescence intensity versus excitation and emission wavelengths for a sample of SWNTs.
The E11 emission is enhanced when the excitation energy muches the E22 transition. (b) Mea-
sured ratios of excitation to emission frequencies for peaks shown in, plotted versus excitation
wavelength. Solid and dashed lines show perceived patterns. Figure adapted from [171].

In 2005, Wang et al. experimentally confirmed for the first time that the optical
properties of single-walled carbon nanotubes are dominated by excitons [165]. In this
experiment, the exciton states where treated analogously to the hydrogenic states (Fig-
ure 7.2). By using a two-photon excitation spectroscopy binding-energies of ∼ 400 meV
were found for single-walled carbon nanotubes with 0.8 nm diameter. This value is about
an order of magnitude larger than that for exciton in II-VI or III-V semiconductor quan-
tum dots.

Despite the attractive intrinsic optical properties of semiconducting single-walled car-
bon nanotubes, their quantum-yield 1 and radiative lifetimes have been rather low [175].
This behavior is attributed to various intrinsic or extrinsic mechanisms. On the one hand,
extrinsic non-radiative recombination happens when highly-mobile excitons explore de-
fects and dopands along the nanotube [167]. On the other hand, intrinsic dark-exciton
states affect the photoluminescence (PL) efficiency at temperature below 50 K [176]. How-
ever, in recent experiments it has been demonstrated that it is possible to get semicon-
ducting single-walled carbon nanotubes with very high photoluminescence quantum-yield,
radiative life times close to the intrinsic theoretical predictions as well as long dephas-
ing times [166, 177]. Hofmann et al. (2013) [166] succeed to get very bright excitons,
in suspended as-grown single-walled carbon tubes, with radiative lifetime of 3.35 ns and
resolution limited spectral linewidth of ∼ 40 µeV (∼ 10 GHz) (Figure 7.3). Similar high
values, have also be demonstrated by Sarpkaya et al. (2013) [177] in ultra clean sus-
pended nanotubes. This high performance arise from the localization of exciton states in
the tube, which emerges naturally in as grown suspended nanotubes. Essentially these
zero-dimensional like excitons behave like optically active quantum dots where localiza-
tion protects them from exploring photoluminescence quenching sites. Additionally, it has
been demonstrated that it is also possible to localize excitons and increase their brightness
by chemically modifying them [167].

1Quantum-yield of an optical emitter is the emitted photons per absorbed photon.
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(a) (b)

excitonic picture single-particle picture

Figure 7.2: Two-photon excitation experiment done by Wang et al. (2005) [165]. (a) A schematic
representation of the density of states in single-walled carbon nanotubs. Left side: In the exciton
picture, the 2p and 1s states lie below the continuum of states in the band-gap. The 1s exciton
state is forbidden under two-photon excitation. The 2p exciton and continuum states are excited.
They relax to the 1s exciton state and fluoresce through a one-photon process. Right side: In
the single-particle picture, the threshold for two-photon excitation lies at the band edge. The
relaxation fluorescence emission energy is defined by the van-Hove singularities. (b) Contour plot
of two-photon extcitation spectra of single-walled carbon nanotubes. The two-photon excitation
energy is shown in the x-axis and the single-photon emission energy in the y-axis. The two-photon
excitation peaks are shifted substantially above the energy of the corresponding emission feature,
as is apparent by comparison with the single-particle picture where excitation and emission
energies are equal. The large shift arises from the excitonic nature of single-walled carbon
nanotube optical transitions.
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Figure 7.3: Role of spectral fluctuations in the photoluminescence lineshape in the experiment
done by Hofmann et al. (2013) [166]. (a-c) Photoluminescence spectra measured in 1 s for a
commercial micelle encapsulated CoMoCAT-nanotube on SiO2 (a), a single as-grown nanotube
on SiO2 (b), and a single as-grown nanotube suspended over a SiO2 crater (c).
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7.3 Suspended single-walled carbon nanotubes as hy-
brid nano-optomechanical resonators

In a theoretical study in 2004, I.Wilson-Rae et al. [161] proposed a scheme where it is
possible to cool a mechanical nanoresonator’s mode to its ground state. The proposed
system consist of a GaAs semiconducting beam structure with embedded InAs quantum
dots (Figure 7.4(a)). As the beam vibrates, flexion induces extensions and compressions
in the structure. As a result, the longitudinal strain will modify the energy of the quantum
dot electronic states through deformation potential coupling [178]. This strain mediated
coupling between the mechanical degrees of freedom and the energy levels of the embedded
two-level system leads to a new type of mesoscopic hybrid optomechanical systems, where
coherent optomechanical transduction and sideband cooling schemes can be applied in a
similar manner as in cavity optomechanical systems [9] and trapped ions [179, 180].

An experimental demonstration of such a system by Montinaro et al. (2014) [164]
is shown in Figure 7.4(b,c). The mechanical vibrations of a GaAs/AlGaAs core - shell
nanowire cantilever are upconverted to optical frequencies though strain mediated mod-
ification of the transition energy levels of a quantum dot that is embedded inside the
structure. The mechanical vibrations will then appear as a blurring on the emission spec-
tra of the quantum dot. The optically active quantum dot can be described as a two-level
system with a ground state |g〉 and an excited state |e〉. Such a hybrid system is well
described by the independent spin-boson Hamiltonian [181]

H = ~Ω0(a†a+ 1/2) + ~ω0σz/2 + ~g0σz(a†a+ a), (7.1)

where Ω0 is the mechanical resonator eigenmode frequency, ~ω0 the quantum dot transi-
tion energy for the wire at rest, a the phonon annihilation operator, and σz = |e〉 〈e| −
|g〉 〈g| the Pauli operator of the two-level system. The interaction between the mechanical
degrees of freedom and the two-level system is given by the vacuum coupling rate

g0 = ∂ω0

∂x
|x=0 δxzpf , (7.2)

where x is the amplitude of the mechanical eigenmode, x = 0 the equilibrium position,
~ω0 the quantum dot transition energy which depends on x, and δxzpf the zero point
fluctuation (zpf). Practically, g0 describes how strong is the interaction between the
quantum dot transition energy and the lattice deformation. When this value is comparable
or exceeds the decoherence rate of the quantum dot T−1

2 as well as the mechanical damping
rate γm various applications are accessible. A regime where g0/Ω0 is close to unity has
been achieved in the system of Montinaro et al. (2014) [164] as well as in a similar hybrid
optomechanical system from Yeo et al. (2013) [162]. However, non of these systems where
close to a regime where g0 exceeds the coherence time of the quantum-dots.

Similarly to the already reported hybrid optomechanical systems [162, 164], a sus-
pended single-walled carbon nanotube, can be seen as a hybrid optomechanical system
with nanoscale dimensions (Figure 7.5), where the localized zero-dimensional excitons be-
have like optically active quantum dots. The coupling rate g0 of a such a system is likely
to be rather strong [168, 169] leading to an exploration of new optomechanical regimes
[170]. In Figure 7.5 a conceptual schematic of a carbon nanotube based hybrid optome-
chanical system is illustrated. As the carbon nanotube is vibrating, the transition energy
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Figure 7.4: Optomechanical systems based on strain mediated coupling. (a) Top: Schematic
diagram of a GaAs bridge, with an embedded InAs quantum dot. Bottom: Vertical cross sections
through the axis of the bridge illustrating the deformations suffered by the quantum dot, when
the beam is bent slightly in the vertical direction (x), modifying the energy level of the quantum
dot. Figure adapted form [161]. (b,c) Emission spectra of a quantum dot that is embedded
in a suspended single-clamped nanowire versus the mechanical actuation frequency and driving
amplitude of the nanowire. When the nanowire is actuated on its resonant frequency, the emission
energy of the the quantum dot is periodically modulated on the vibrational frequency, appearing
as a blurring on the spectrometer. Figures (b) and (c) adapted from [164].
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Figure 7.5: Conceptual schematic of an hybrid nano-optomechanical system based on singly-
walled carbon nanotubes. A laser beam is used to excite the energy transition of a localized
exciton. As the nanotube vibrates, the emission energy of the electrons is changing due to the
modification of the deformation potential.
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level of the localized excitons state will change through the modification of the deforma-
tion potential. The existence and the physical mechanisms of such an optomechanical
coupling is the subject of the research effort that is described in this chapter.

7.4 Device layout and fabrication
7.4.1 Considerations and challenges
In order to meet the demands of this experiment, several consideration were taken into
account regarding the layout and fabrication of the devices. Below the most important
are listed:

Ultra clean carbon nanotubes

It is well known that the surrounding environment strongly affects the optical proper-
ties of carbon nanotubes. In particular, unintentional doping on their surface can cause
no-radiative Auger process [182, 183] which can lead to blinking and spectral wondering
of excitons [184]. The presence of such effects can reduce the performance of the sys-
tem that we intend to study. Thus, for the purposes of this experiment, it is crucial to
work with clean pristine optically active carbon nanotubes. For this reason, we developed
a fabrication process where carbon nanotubes are grown at the very last step (subsec-
tion 7.4.2) avoiding the exposure to PMMA, evaporated metals, process chemicals and
other materials that could possible contaminate and degrade their optical properties.

Low diameter nanotubes

The optical detection efficiency is one of the most important aspects of such an exper-
iment. Most sensitive detectors (CCD camera or single photon counter avalanche pho-
todetector) are found in the visible to near infrared (NIR). As we have seen earlier, due
to high carriers confinement, carbon nanotubes with low diameter exhibit higher exciton
and binding energies. In order to get nanotubes with photoluminescence emission in the
visible to NIR, diameters below 1 nm are needed. Systematic control of this fabrication
aspect is a non-trivial issue.

Individual suspended nanotubes

Photoluminescence quantum yield of semiconducting single-walled carbon nanotubes can
be greatly decreased due to bundling (Figure 7.6). Excitons can decay non radiatively
because of neighboring metallic nanotubes, leading to quenching of their photolumines-
cence efficiency [185]. We tried to tackle this issue by deterministically depositing and
controlling the density of the used catalyst, as well as by working on the layout of the
devices.

Sample layout

There are various parameters taken into account for the design and layout of the devices.
An important one is the actuation mechanism for the flexural mechanical modes of the
nanotubes. One way is to capacitively drive them using the N doped silicon substrate as a
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1 um 1 um

(a) (b)

Figure 7.6: Bundling effect in carbon nanotubes. (a). The excessive amount of catalyst near the
trenches, leads to suspend nanotubes that form bundles. (b) An suspended individual carbon
nanotube.

5 um

Trenches 
Catalysts (a) (b) (c)

catalyst spots

Figure 7.7: Sample layout. (a). Schematic of the samples layout: green rectangle mask defines
the openings for the catalyst and the brown mask defines the trenches. (b) An optical microscope
image of a sample after the electron beam lithography step for the catalyst openings. The array
of opening can been seen next to the trenches. (c) A scanning electron microscope image of a
sample after the lift-off process. Catalyst spots can be identified.

back gate. The drawback of this approach is that the gate-field induced doping opens non
radiative recombination channels and quenches the photoluminescence yield of nanotubes
[186, 187]. The approach that we decided to follow is to mount the samples on top of a
piezoelelctric actuator, and drive the nanotubes by inertial forces. The drawback here is
that commercial piezoelectic actuators have cut-off frequency of few tenths of megahertz.
Therefore we selected the length of the suspended part of the nanotubes to be in the range
of 5 µm to 20 µm, leading to resonant frequencies in the kHz - MHz regime. Another key
parameter is the depth of the trenches. We used a reactive ion etching process to achieve
a depth of 10 µm, in order to avoid parasitic luminescence that does not originate from
the nanotubes.

7.4.2 Fabrication process flow
The fabrication process starts by spin coating PMMA resist onto Si/SiO2 substrate (Fig-
ure 7.8(a)). After an electron beam lithography (Figure 7.8(b)) and a reactive ion etching
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Figure 7.8: Fabrication process flow. (a) PMMA spin coating. (b) Electron beam lithography
(EBL) used to define trenches. (c) Reactive ion etching is used to open the trenches. (d) Another
PMMA spin coating and EBL step is used to create the opening for the catalyst deposition. (e)
Catalyst deposition followed by a lift off process step. (f) Chemical vapor deposition (CVD)
growth of carbon nanotubes.

step (Figure 7.8(c)), 10 µm deep trenches are opened. Another PMMA spin coating and
electron beam lithography step are used to prepare openings before the catalyst deposi-
tion (Figure 7.8(d)). The catalyst solution is composed of Fe catalytic particle and Al2O3
while methanol is used as solvent. The deposition is done by covering the sample with
few droplets of catalyst and leaving it to dry for 1-2 minutes. Then, by blowing the
sample with a low nitrogen flow, only a thin layer of the catalyst covers the openings and
the PMMA surface (Figure 7.8(e)). The samples are then baked for 5 min at 150 oC.
For the lift-off process, the samples are left for 30 minutes in warm aceton and then are
sonicated for 5 s to 10 s, depending on the sonication power. After the lift-off, islands of
catalyst are found at the openings position. The growth of carbon nanotubes is done by
chemical vapor deposition (CVD). In this step, thermal decomposition of a CH4 vapor is
achieved in the presence of a Fe catalyst. Nanotubes are growing from the catalyst island
towards all directions. A fraction of them will be found suspended on top of the trenches
(Figure 7.8(f)). The growth temperature can vary from 830 ◦C to 900 ◦C and the time
from 2 to 10 min.

7.5 Confocal microscope setup
For the purposes of this experiment we built and developed a low temperature optical
setup that is based around a confocal microscope and a 2.8 K base-temperature cryostat,
with optical and electrical accesses 2. Due to the wide range of single-walled carbon
nanotubes with various chiralities and optical transition energies, the setup had to be
achromatic in the widest possible wavelength range. We selected the components in
order to be able to address the lowest diameter single-walled carbon nanotube species
((6,2),(6,4),(6,5),(7,0),(8,3),(9,1)), which have the highest binding energy. To overcome

2This setup has been designed so as to meet the long term goals of this project as well as for in-
vestigating mechanical resonators based on other materials such as graphene or other two-dimensional
structures.
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the low photoluminescence efficiency of nanotubes, the efficiency of the setup had to
be maximized. The low temperature environment of the cryostat guaranties the lowest
possible decoherence rate both for the mechanical modes of the suspended nanotubes and
for the exciton states. The main parts of the setup are described below following the path
of the light field from excitation to collection and detection (Figure 7.9):

• The excitation source is a continues wave (CW), narrow linewith, and widely tun-
able Titanium Sapphire laser (SolsTiS from M squared lasers Ltd). The excitation
wavelengths range from 725 nm to 975 nm and the spectral linewidth is below 50
KHz. A 50:50 beam splitter is used in order to send a part of the output beam
to a wavemeter that is used as an absolute frequency reference (HighFinesse WS-6
wavelength meter), while the other part is focused and coupled to a single mode
optical fiber and then sent to the excitation path.

• On the excitation path, a lens is used to collimate light that is coming out of the
fiber, followed by a high quality sharp short-pass filter. This filter is required in order
to remove the broad background of light at longer wavelengths that is generated due
to the strong inelastic scattering of the high intensity laser field inside the optical
fiber. Since this background is at longer wavelengths than the excitation, it would
otherwise be collected to the spectrometer, covering the signal expected from the
optical resonances of the nanotubes.

• A half-waveplate and a polarized beam splitter are used to control the power and
give an initial polarization to the laser beam.

• Another half-waveplate and a quarter-waveplate are used to fully control the polar-
ization of the light field. The half-waveplate is used to polarize the beam along the
tube axis in order to maximize the excitation efficiency. The quarter-waveplate is
used to circularly polarize light, so as to maximize excitation efficiency when scan-
ning large areas in order to find nanotubes that have random orientations on the
chips.

• BS 1 is the central beam splitter of the setup. This component essentially defines the
excitation and collection paths. Since there is plenty of availably excitation power
from the Ti:S laser, this splitter is selected to be 10:90 (Reflection : Transmission)
in order to maximize the efficiency of the collection path.

• The second beam splitter (BS 2) defines a secondary collection path that is used to
acquire the reflection signal from the surface of the sample. This allows to image
the surface of the devices and to optimize the focus.

• The following two beam splitters (10:90) combined with a LED source and a CMOS
camera are used for real space imaging. This greatly facilitates the aligning of the
setup, the focusing and finding the orientation on the sample. Both beam splitters
are mounted on a flipping stage so as to be possible to be removed when performing
photoluminescence experiments.

• An objective is used to focus the light field onto the samples, while it is placed
outside the cryostat chamber, due to the limited available space inside. For this
reason a high working distance objective was selected: a 100X Mitutoyo Plan Apo
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NIR HR infinity corrected objective which has 10 mm working distance and 0.7
numerical aperture (NA). It is mounted on top of a XYZ piezoelectric stage (Jena
NV40 3 CLE) with a range of 100 µm × 100 µm and resolution of 2 nm. This
allows to scan the surface of the devices with very high accuracy. The piezo and
the objective are mounted on top of a millimeter accuracy XYZ position for coarse
positioning.

• The samples our mounted inside a low vibration closed Helium cycle optical cryo-
stat from Montana Instruments. The system has two principle stages, each with
thermometers to accurately measure and control the temperature. The samples are
mounted on the main stage which can reach base temperature of 2.8 K, while it can
be also set in any value between 2.8 K and 300 K. A radiation shield is attached
at the second stage, which is at 30 K. Hard vacuum is achieved using cryopumping
charcoal absorbers. A critical feature of this system is the high level of vibrations
isolation which is accomplished through active and passive damping techniques.
Two glass windows (UQG spectrosil) are separating the sample from the objective.
Both are selected to have the lowest possible thickness, 0.5 mm for the outer and 0.1
mm for the inner, in order to improve the light field collection efficiency. Further-
more, the system supports up to 4 RF and 4 DC lines in order to access electrically
the studied devices. In the basic configuration, only one RF line is connected to
a fast piezoelectric stage that is used to actuate the suspended nanotubes through
inertia forces.

• Reflected, scatted and emitted light fields follow the same opposite path towards
the primary collection path, apart from a fraction that is collected from the real
space imaging path and from the secondary collection path. The first element of the
primary collection path is a high quality sharp long-pass filter, which is needed to
remove the reflected laser light which is orders of magnitude more intense than the
PL signal and would otherwise saturate the spectrometer. The respective cut-off
wavelengths of the short- and long-pass filters have to be carefully chosen. Their
transmission ranges should not overlap, and their particular values also determine
which nanotube chiralities can be detected and at what energies can be excited. At
typical set of filter that we used have a cut-off at 830 nm, and this covers most of
the chiralities that we are interested in and are detectable by our spectrometer (see
spectrometer part). After filtering, the light field is focused in a single-mode optical
fiber that its transmission efficiency is optimized for the emission wavelengths that
we are interested in. This single-mode optical fiber plays the role of clear-aperture
pinhole that is used in a conventional confocal microscope, but provides greater
flexibility, less dust accumulation problems and easier alignment. The output of the
fiber can be sent to a spectrometer, to an avalanche photodiode (APD) or any other
desired detection and analysis equipment.

• The spectrometer is a 500 mm focal-length ANDOR Shamrock 500i. There are two
grating installed: one with 600 l/mm (∼ 150 µeV at 900 nm), which can reach a
resolution close to 0.2 nm (∼ 300 µeV at 900 nm), and another with 1200 l/mm
which can reach a resolution close to 0.1 nm. The detector is a CCD camera from
ANDOR (iDus 416), with 2000 × 256 pixel and maximum efficiency in near infrared
(NiR).
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Figure 7.9: Semi-realistic schematic of the optical setup that was developed for the experiment.
Details are given in the main text.

• Apart from the spectrometer, and single photon count avalanche photodiode (Ex-
celitas SPCM-AQRH-15) is also installed on the setup.

• The interfacing of the setup has been done in Python using QTLab, an IPython-
based measurement environment.

7.6 Experimental data
7.6.1 Characterization using phonon assisted excitation
In every fabricated sample a large variety of nanotubes with different chiralities and
optical properties exist. It is therefore very challenging and time consuming to identify
the tubes that are suspended, optically active, with low diameter, and detectable with our
optical setup ((6,2),(6,4),(6,5),(7,0),(8,3),(9,1)). To achieve this, we run high resolution
photoluminescence maps of 100 µm × 100 µm size (the range of the piezoelectric stage), at
base temperature (2.8 K), using the piezoelectric stage. In principle, the most efficient way
to perform photoluminescence measurements is to excite at E22 transition and measure
the emission at E11. However, the tunability range of our Ti:S laser (725nm - 995 nm)
is not sufficient to address both E11 and E22 transitions. Therefore, we employed an
alternative technique named phono-assisted photoluminescence excitation [188]. This
method is based on the existence of phonon-assisted transition which are associated with
the excitation of E11. What we practically do is to excite nanotubes with energies that
are higher than E11 and utilize the available phonon bands, namely the intermediate
frequency modes [189], to excite E11 through phonon-relaxation process (Figure 7.10).
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Figure 7.10: Schematic of phonon-assisted PL excitation. Figure adopted from [184].

In Figure 7.11 a typical example of a reflection/photoluminescence map is shown. The
reflection map (Figure 7.11(a)), which is obtained with the secondary collection path,
allows to accurately know the position of the laser beam on the sample, while it provides
information about the surface. In Figure 7.11(c), a photoluminescence map which is
obtained through the primary collection path, is illustrated. For each point of the map,
the emission spectrum is recorded (Figure 7.11(b)). Such maps are very useful since they
provide both spectral and spatial information on the optical emission of the surface of the
sample, and therefore we are able to locate and characterize the optically active carbon
nanotubes.

7.6.2 Nanotube diameter characterization
As it was mentioned earlier, one of the key requirement of this experiment is to systemati-
cally fabricate samples with high density of low diameter single-walled carbon nanotubes.
It is well known that their density and diameter strongly depends on the CVD growth
temperature [190, 191]. In order to optimize our growth process towards low diameter
single-walled nanotubes, we investigated various growth temperatures. Figure 7.12 shows
histograms of nanotubes measured at 2.8 K. Values are compared with literature ones in
order to address chirality and diameter. We do not observe a clear trend in the diameter
distribution when growth temperature goes from 830 to 900 oC. Nevertheless, significant
fraction of sub-nanometer nanotubes are observed ((6,4) and (6,2)).

7.6.3 Excitons decoherence and stability
One of the key targets of this experiment is to obtain suspended carbon nanotubes that
exhibit excitons with very low decoherence rate. In our samples we have successfully
observe narrow linewidth emission from spatially localized excitons, but only in regions
where the nanotubes are not suspended. Figure 7.13(a) shows the emission spectra of a
carbon nanotube which emits at 893 nm, suggesting an (6,2) nanotube. We measured the
optical linewidth using both of the available gratings (600 l/mm and 1200 l/mm) and each
time we would get a linewidth close to the resolution limit of the corresponding grating (∼
150 µeV and ∼ 300 µeV ), indicating that we are limited by the spectrometer resolution.
This performance is comparable to recent observation of ultra narrow linewidth localized
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Figure 7.11: A typical example of reflection/PL map taken at 2.9 K. The wavelength of the
excitation beam is at 800 nm, circularly polarized with 1.5 mW of power. (a) Reflection spatial
color map of a sample acquired using the secondary collection path. X and Y axis correspond
to position while the color scales with intensity of the reflected beam. The laser beam is focused
on the surface of the sample. The trenches are depicted in the blue part of the image where the
reflected light is less. (b,c) A photoluminescence map of the lower trench. Each point of the
map correspond to a spectra acquired with the spectrometer. In (b), the emission spectra which
corresponds to a specific point of the map is depicted, revealing a peak at 890 nm, arising from
a nanotube that lies on the substrate. The emission spectra of all the map points, are plotted
on the background with faint gray color. This reveal areas where tubes of different chiralities
emit in different wavelengths. The color scale of the PL map that is shown at (c), corresponds
to emission intensity at 890nm for each point on the map, revealing 3 points where emission at
this wavelength appears. This allows to locate the various nanotubes on the map that emit in
different wavelengths.
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Figure 7.14: Time traces of photoluminescence emission from a nanotube for different excitation
power at 4 K. At 60 µW (left), the PL spectra show considerably spectral wandering and blinking.
At higher excitation power (300µW) spectral wondering and blinking increases before it quenches
completely.

excitons in suspended nanotubes [166, 177]. In our experiment, we also attribute the low
decoherence rate to excitons localization, however, the origin of the localization requires
further investigation.

Another import parameter is the photoluminescence stability of carbon nanotubes.
Figure 7.14 shows the emission spectra from another non suspended nanotube for differ-
ent excitation power. Even in the lowest possible excitation power, where we can still
detect a signal, there is considerable spectral wandering and blinking. In higher power
the PL emission irreversibly quenches. This behavior constitutes a major hurdle for an
optomechanics experiment and requires further investigation. It has been reported that
PL stability can considerably increase in suspended nanotubes [166, 177].
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Figure 7.15: Photoluminescence map of a sample at 2.8 K with 1 mW circularly polarized 798nm
laser beam excitation. (a) The color map (bottom figure) is calibrated according to the G-band
Raman mode (top figure). Three tubes can be identified that are crossing the trench. (b) The
color map (bottom figure) is calibrated according to the PL peak at 883 (top figure). There is
no any carbon nanotube crossing the trench showing PL emission.

7.6.4 Photoluminescence quenching on suspended nanotubes
The biggest obstacle that we faced towards studying the excitons-phonons coupling in
carbon nanotubes is that the PL emission from suspended nanotubes was a very rare event
in our samples. The very few times that we succeeded to get emission from a suspended
region of a nanotube, it was very unstable and irreversibly quenched after exposed for
short amount of time under a very low excitation power. In Figure 7.15 a typical PL map
of a sample is presented. While at least 3 suspended nanotubes show Raman scattering of
the G-mode, non of them presents photoluminescence at any wavelength that is detectable
with our setup.

The photoluminescence quenching of carbon nanotubes can be attributed to different
mechanisms. As we stated earlier, excitons in a single-walled carbon nanotube decay
non radiatively if the tube bundles with a metallic one. Indeed, SEM inspection reveal
that there is a higher tendency for bundled tubes to be found suspended compared to
individual tubes. Another reason may be related to the excessive excitation power that is
used in order to overcome possible limited collection efficiency of our setup. As a result,
the PL is quenched at the very beginning of each measurement. Finally, it is known that
the PL efficiency of nanotubes is related to their environment. A non ideal vacuum of the
chamber may lead to contamination of the nanotubes surface resulting in PL quenching.

7.7 Conclusions and outlook
In this chapter, we presented the first steps of a research effort towards studying the cou-
pling between the motion of suspended single-walled carbon nanotubes and the localized
zero-dimension excitons [166, 177] that exist in their structure. Suspended singly-walled
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carbon nanotubes can be seen a hybrid nano-optomechanical system where the optical de-
grees of freedom are embedded inside their structure. For the purposes of this experiment
we developed a low temperature micro-photoluminescence optical setup and a fabrica-
tion process for suspended single walled carbon nanotubes with low diameter. However,
we faced various difficulties which prevented us from reaching our targeted goals in the
time-frame of this Ph.D thesis. The main drawback is related to the difficulty to observe
photoluminescence from carbon nanotubes that are suspended, preventing us from moving
on the next step of studying the coupling to mechanical vibrations. The absence of pho-
toluminescence can be attributed to various mechanisms with the most prominent to be
the bundling between semiconducting and metallic nanotubes. Consequently, additional
effort is required for the fabrication of high quality low diameter unbundled suspended
tubes with high yield. Moreover, a further development of the optical setup, in order to
improve the collection efficiency, will greatly facilitate this experiment.
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Chapter 8

Conclusions

8.1 Summary
Over the course of this thesis we investigated a wide variety of different nanomechanical
resonators based on graphene and carbon nanotubes, employing different transduction
schemes and performing experiments from ambient to low temperatures.

In Chapter 5 we succeed to push the limits of modern nanofabrication techniques by
realizing coupled graphene mechanical resonator devices for the first time. These complex
all suspended structures consist of two graphene membranes coupled by a multi-walled
carbon nanotube. We studied their dynamics at 4 K using frequency mixing techniques
in order to fully characterizing their eigenmodes. Interestingly, even though the carbon
nanotube introduces only a weak linear coupling between the two individual graphene
resonators, in the high driving amplitude regime we observed nonlinear coupling between
the eigenmodes of the system, highlighting the crucial role of nonlinearities at the ultimate
one-dimensional and two-dimensional scaling limit of nanomechanics.

In Chapter 6 we switch our attention to even smaller systems by studying singly-
clamped carbon nanotubes at room temperature. We were able to detect their noise
dynamics with very high sensitivity by coupling their motion to the focused electron
beam of a scanning electron microscope. This transduction scheme enabled us to extract
the motion quadratures for each of the measured eigenmodes. We presented a detailed
analysis of the two-dimensional noise trajectories both in space and time, and showed that
such small objects behave as Brownian particles evolving in a two-dimensional harmonic
potential. Moreover, we demonstrated phase-coherent measurements, which are central
to the mechanical sensing [131], by implementing a phase-locked loop which allowed us
to track the mechanical resonant frequency in real-time.

In Chapter 7 we presented the first steps of a research effort towards studying the
coupling between the motion of suspended single-walled carbon nanotubes and their lo-
calized zero-dimension excitons [166, 177]. As grown carbon nanotubes can be seen as a
hybrid nano-optomechanical system where the optical degrees of freedom are embedded
inside the nanotube’s structure. For the purposes of this experiment we developed a low
temperature micro-photoluminescence optical setup and a fabrication process for long
suspended single-walled carbon nanotubes with low diameter. We were able to observe
narrow linewidth localized excitons from nanotubes that are found on the substrate, but
we would rarely observe an optical response from suspended tubes, preventing us from
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investigating optomechanical interactions. Although the final goals of this study were not
reachable within the time-frame of this Ph.D thesis, plenty of useful knowledge was accu-
mulated on the fabrication technologies, the optical properties of carbon nanotubes at low
temperatures, and the experimental techniques that are required for such an experiment.

8.2 Outlook
Our work in Chapter 5 provided us considerable understanding on coupled low dimen-
sional nanomechanical resonators. Nonetheless, there are plenty of intriguing phenomena
to investigate in the future, including synchronization [98, 119], chaos [60], Landau-Zener
transition [120], parametric mode splitting [99], coherent manipulation of phonon pop-
ulation [99, 121], and creation of mechanical ’dark’ states [192]. In this direction, the
progress in growth of graphene with chemically vapor deposition (CVD) [78] in addi-
tion to the advancements in two-dimensional materials transfer techniques [193] (see also
Appendix D) allow for easy integration of graphene devices in a large scale. A possible
extension on our work is to study coupled graphene resonators without using nanotubes as
a coupling element, but shaping the suspended structure from on single piece of graphene.
Such a technique will furthermore allow us to study systems with more than two coupled
resonant elements.

In chapter 6 we made a significant progress on understanding the dynamics of carbon
nanotube mechanical resonator at room temperature using a focused electron beam in
order to detect their Brownian fluctuation in real-time. A next logical step is to use the
same transduction scheme and methodology to investigate their dynamics at low temper-
atures in order to further shine light into their decoherence processes and explore novel
thermodynamic regimes that were not accessible before. Additionally, by working in ultra
high vacuum to avoid matter deposition from the electron beam, will allow us to perform
mass and force sensing experiments with high sensitivity in real-time. A long term goal is
that the above experiment can be possible combined with the objectives, methodologies
and optical transduction techniques that we developed in Chapter 7. This would required
further investigation on the fabrication side by better controlling the properties of the
produces carbon nanotube resonators, as well as more detailed understanding on their
exciton properties and the interaction of carbon nanotubes with light.

Our ultimate longterm vision is to achieve absolute control both on the fabrication
of these nano-scale object, as well as on the detection and manipulation of their motion,
reaching a point where we will be able to engineer complex, multifunctional, large-scale
optoelectromechanical systems around graphene, carbon nanotubes, and other novel low-
dimensional materials.
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Appendix A

Theory of two coupled mechanical
resonators

In this section we will develop the theoretical modelling in order to gain a better un-
derstanding on the dynamics of coupled graphene mechanical resonators that we study
in chapter 5. We will closely follow the theoretical analysis and formalism on coupled
nanomechanical resonators that are reported in Refs. [60, 117].

A system of two suspended graphene plates that are connected with a carbon nan-
otube, in a first approximation can be modeled as two resonators (graphene plates) that
are coupled by an elastic spring (nanotube). We will first start by studying the coupling
without including any nonlinearities in the equation of motion of each resonator. Then,
we will study the behavior of coupled nonlinear resonators, as the structures that we
experimentally investigated.

A.1 Coupling of two linear resonators

A system of two mechanical resonators, that are coupled by an elastic spring, can be
modeled by introducing a linear coupling term D(x1 − x2) in their equations of motion
(3.5), where D is the coupling strength. Assuming equal masses, m1 = m2 = m, the
dynamics of the coupled system will be then described by the following set of equations

mẍ1 +mγ1ẋ1 +m(ω2
1 +D)x1 −mDx2 = F1(t) (A.1)

−mDx1 +mẍ2 +mγ2ẋ2 +m(ω2
2 +D)x2 = F2(t), (A.2)

where x1 and x2 are the displacement, γ1 and γ2 the mechanical dissipation rate, and
F1(t) and F2(t) the external driving force of each resonator.

The equation of motion for the whole system can be then expressed in a matrix form

M ẍ + Γẋ + V x = F, (A.3)

where x = (x1, x2) is a displacement vector and F = (F1, F2) is a vector of forces exerted
on the individual resonators. M is the mass matrix, Γ is the damping matrix and V is
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the potential matrix. These are given by

M =
(
m 0
0 m

)
(A.4)

Γ =
(
mγ1 0

0 m1γ2

)
=
(
m ω1
Q1

0
0 m ω2

Q2

)
(A.5)

V =
(
m(ω2

1 +D) −mD
−mD m2(ω2

2 +D)

)
(A.6)

We assume that there is no damping (γ1,2 = 0) and no external driving force (F1,2(t) =
0). In a normal mode, we assume all the masses oscillate at the same frequency, thus we
try a harmonic solution on equation (A.3):

x1(t) = x0,1e
iωt and x2(t) = x0,2e

iωt. (A.7)

and we get

−ω2x0,1 + (ω2
1 +D)x0,1 −Dx0,2 = 0 (A.8)

−Dx0,1 − ω2x0,2 + (ω2
2 +D)x0,2 = 0. (A.9)

These set of equations is a typical eigenvalue problem and is equivalent to diagonalizing
the potential matrix V (

m(ω2
1 +D) −mD
−mD m(ω2

2 +D)

)
x = ω2

I,IIx, (A.10)

where the eigenvectors give the mode shapes and the eigenvalues (ω2
I,II) give the angular

frequency of the eigenmodes. The determinant of |V − ω2
I,III| should equal zero∣∣∣∣ω2

1 +D +−ω2 −D
−D ω2

2 +D − ω2

∣∣∣∣ = 0. (A.11)

The solution of (A.11) gives the eigenvalues

ω2
I = ω2

m +D −
√
D2 + δ2 (A.12)

ω2
II = ω2

m +D +
√
D2 + δ2, (A.13)

where I and II denote the eigenmodes of the system. For convenience we introduced the
mean frequency ω2

m = 1
2 (ω2

1 +ω2
2) and the detuning value δ = 1

2 (ω2
1−ω2

2). The orthogonal
normalized eigenvectors will be then given by

eI = 1
NI

(
δ+
√
δ2+D2

D
1

)
, eII = 1

NII

(
δ−
√
δ2+D2

D
1

)
, (A.14)

where N2
I = 1 + (δ+

√
δ2+D2)2

D2 and N2
II = 1 + (δ−

√
δ2+D2)2

D2 .
For D = 0 equations (A.12,A.13) describe a system of two independent resonators

where the eigenfrequencies values correspond to their natural resonant frequencies (see
Figure A.1(a))

ω2
I = ω2

1 (A.15)
ω2
II = ω2

1 + 2δ = ω2
2 . (A.16)
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Figure A.1: Representation of the eigenmode frequencies versus detuning (δ = 1
2 (ω2

2 −ω2
1)) for a

sytem of two lineraly coupled resonators. (a) When the coupling equals zero (D = 0), it means
that the two resonators can vibrate independendly in different frequencies. (b) When D 6= 0 and
δ ≈ 0, a splitting of ω2

II − ω2
I = 2D appears as an avoiding cross pattern in the eigenfrequencies

versus detuning plot.

For D 6= 0, the solution of the above eigenvalues problem describes a system of two
coupled resonators that has two independent eigenmodes (A.14) with two corresponding
eigenfrequencies (A.12,A.13). Assuming that the two resonators are identical (δ = 0),
the first eigenmode is completely symmetric, with the two resonators vibrating in-phase
with the same amplitude (eI = (1, 1)) at an angular frequency which corresponds to
the resonance frequency of each individual uncoupled resonator (ωI = ωm = ω1 = ω2).
The second eigenmode is antisymmetric (eII = (−1, 1)), meaning that the two resonators
vibrate out of phase with the same amplitude, while its angular frequency is higher
compared to the first eigenmode (ω2

II = ω2
I + 2D).

In the case of two individual resonators that are not identical (δ 6= 0), the system
still has an in-phase and an out of phase mode, but the amplitudes are not symmetric or
antisymetric any more. The amplitude of the in-phase mode is mainly localized on the
first resonator (the low frequency resonator), while the amplitude of the second eigenmode
is mainly localized on the second mode. In the limit of δ � D, the eigenfrequencies are
given by:

ω2
I ≈ ω2

1 +D + δ − |δ| (A.17)
ω2
II ≈ ω2

1 +D + δ + |δ|. (A.18)

The behavior of eigenfrequencies versus detuning δ, for D 6= 0 is illustrated in Fig-
ure A.1(b), where a characteristic avoiding cross appears between the two eigenmodes
when δ ≈ 0.

The diagonalization process of the potential matrix V , which is described above, re-
sults in the eigenmodes of the coupled system which are orthogonal. This allows as to
treat the coupled system as two independed resonators. Following a dediagonalization
procedure we can extract the new mass, damping and potential matrices. We define the
conversion matrix as

A =
(

eI,1 eII,1
eI,2 eII,2

)
, (A.19)
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where in the case of orthogonal eigenvectors, its transpose is equal the inverse, AT = A−1.
By multiplying equation (A.3) with A−1 we get

M ′ẍ′ + Γ′ẋ′ + V ′x′ = F′, (A.20)

and the matrices will be then given by:

x′ = ATx, M ′ = ATMA, Γ′ = ATΓA, V ′ = ATV A, F ′ = ATFA. (A.21)

As the eigenvectors are a result of a diagonalization process of V , V ′ is diagonal matrix.
Also M ′ is a diagonal matrix, while damping the matrix Γ′ has diagonal components if
γ1 6= γ2.

A.2 Coupling of two nonlinear resonators
In the previous section, we described a method to study the dynamics of two coupled
resonators by introducing a linear coupling term. We extracted the eigenmodes and
eigenfrequencies of such a system through a diagonalization process of the potential matrix
V . However, we excluded any nonlinearities and external driving in the equation of
motion.

To investigate a nonlinear system, we will employ secular perturbation theory [194].
In the limit of weak damping (Q � 0), a small expansion parameter ε = (QIQII)−1/2

can be introduced, where QI and QII are the quality factors of the two eigenmodes. The
physical parameters are then rescaled using two time scales: angular frequency ω = 1+εΩ,
damping rate γ1,2 = εΓ1,2, force gD1,2 = ε3/2g1,2 and time t = ε−1T . A system of two
coupled equations of motion, where the masses are equal (m1 = m2), will be then written
as

ẍ1 + γ1ẋ1 + ω2
1x1 + α1x

3
1 + η1x

2
1ẋ1 +D(x1 − x2) = gD1(t)

ẍ2 + γ2ẋ2 + ω2
2x2 + α2x

3
2 + η2x

2
2ẋ2 +D(x2 − x1) = gD2(t).

(A.22)

The motion of the resonator away from equilibrium is expected to be on the order of ε1/2.
Then the solution to this coupled nonlinear system, as expressed by modal eigenvectors
(see equation A.21), is given by

x =
√
ε

2 [AI(T )eiωIteI +AII(T )eiωIIteII + c.c.] + e3/2x(1)(t) + ... , (A.23)

where the two-dimensional vectors are indicated with bold font; the components of x are
the displacement of each resonator (x0,1, x0,2), eI = (eI,1, eI,2) and eII = (eII,2, eII,2)
are the eigenvectors representing the mode shapes, and x(1)(t) is a vector of next order
corrections.

The forces that are driving each individual resonator, which appear in the coupled
equation of motion (A.22), are given by gD1,2 = ε3/2g1,2. In the most general case, where
each resonator can be independently actuated in both resonant frequencies simultaneously,
the scaled forces are given by

g1(t) = 1
2 [g1,I(T )eiωIt + g1,II(T )eiωIIt + c.c.]

g2(t) = 1
2 [g2,I(T )eiωIt + g2,II(T )eiωIIt + c.c.],

(A.24)
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where gi,j(T ) 1 indicates the part of the driving force exerted upon the ith resonator
near the resonance frequency of mode j. If the driving force frequency is offset to the
corresponding resonant frequency, ωDj = ωj + εΩj , then the expression for the force has
the form gi,j(T ) = |gi,j(T )|eiΩjT .

Starting from equation (A.23), it is also possible to calculate ẋ0,i(t), ẍ0,i(t), x3
0,i(t),

x2
0,i(t), ẍ0,i(t). After substituting those quantities and equations (A.23,A.24) into equation

(A.22), it can be shown that the equation of motion takes the form:(
− d2

dt2 − ω
2
1 −D D

D − d2

dt2 − ω
2
2 −D

)
x(1) = eiωIt

[
iωIA

′
I

(
eI,1
eI,2

)
+ iωI

2 AI

(
Γ1eI,1
Γ2eI,2

)
+ 3

8 |AI |
2AI

(
α1e

3
I,1

α2e
3
I,2

)
+ 3

4 |AII |
2AI

(
α1eI,1 e

2
II,1

α2eI,1 e
2
II,2

)
+ i

1
8ωI |AI |

2AI

(
η1e

3
I,1

η2e
3
I,2

)
+ i

1
4ωI |AII |

2AI

(
η1eI,1 e

2
II,1

η2eI,1 e
2
II,2

)
− 1

2

(
g1,I
g2,I

)
+ c.c.

]
+ eiωIIt[...] + e−iωIIt[...]

+ nonresonant terms,

(A.25)

where Γi = ε−1γi are the scaled damping parameters for each resonator, and A′I the
derivative of the first eigenmode amplitude with respect to the slow time T .

The left hand side of equation (A.25) represents a system of two resonators with no
damping. Therefore, the right hand side terms that are time-varying at ωI and ωII must
be orthogonal to eigenvectors eI and eII respectively. Following this requirement, we can
extract the secular equations of motion for the amplitudes of each eigenmode, AI and
AII . For ‖eII‖ = ‖eI‖ = 0, AI is given by

iωIA
′
I + i

ωI
2 AI(Γ1e

2
I,1 + Γ2e

2
I,2) + 3

8 |AI |
2AI(α1e

4
I,1 + α2e

4
I,2)

+ 3
4 |AII |

2AI(α1e
2
I,1ε

2
II,1 + α2e

2
I,2e

2
II,2)

+ i
ωI
8 |AI |

2AI(η1e
4
I,1 + η2e

4
I,2) + i

ωI
4 |A

2
II |AI(η1e

2
I,1e

2
II,1 + η2e

2
I,2e

2
II,2)

= 1
2(g1,IeI,1 + g2,IeI,2),

(A.26)

and AII by

iωIIA
′
II + i

ωII
2 AII(Γ1e

2
II,1 + Γ2e

2
II,2) + 3

8 |AII |
2AII(α1e

4
II,1 + α2e

4
II,2)

+ 3
4 |AI |

2AII(α1e
2
II,1ε

2
I,1 + α2e

2
II,2e

2
I,2)

+ i
ωII
8 |AII |

2AII(η1e
4
II,1 + η2e

4
II,2) + i

ωII
4 |A

2
I |AII(η1e

2
II,1e

2
I,1 + η2e

2
II,2e

2
I,2)

= 1
2(g1,IIeII,1 + g2,IIeII,2),

(A.27)

1Where i denotes the number of the individual resonator and j the number of the eigenmode.
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where only the resonant terms of each eigenmode are kept. These two secular equations
can be rewritten in the following form:

iωI
dAI
dT

+ iωΓIAI + αI |AI |2AI + βI |AII |2AI

+iωI(ξI |AI |2AI + ΨI |AII |2AI) = GI(t)

iωII
dAII
dT

+ iωΓIIAII + αII |AII |2AII + βII |AI |2AII

+iωII(ξII |AII |2AII + ΨII |AI |2AII) = GII(t),

(A.28)

where for mode I:

ΓI = 1
2[Γ1e

2
I,1 + Γ2e

2
I,2]

αI = 3
8[α1e

4
I,1 + α2e

4
I,2]

βI = 3
4[α1e

2
I,1e

2
II,1 + α2e

2
I,2e

2
II,2]

ξI = 1
8[η1e

4
I,1 + η2e

4
I,2]

ΨI = 1
4[η1e

2
I,1e

2
II,2 + η2e

2
I,2e

2
II,2]

GI = 1
2[g1,IeI,1 + g2,IeI,2],

(A.29)

and equivalently for mode II:

ΓII = 1
2[Γ1e

2
II,1 + Γ2e

2
II,2]

αII = 3
8[α1e

4
II,1 + α2e

4
II,2]

βII = 3
4[α1e

2
I,1e

2
II,1 + α2e

2
I,2e

2
II,2]

ξII = 1
8[η1e

4
II,1 + η2e

4
II,2]

ΨII = 1
4[η1e

2
II,1e

2
I,2 + η2e

2
II,2e

2
I,2]

GII = 1
2[g1,IIeII,1 + g2,IIeII,2].

(A.30)

When the eigenmodes are driven near their resonant frequencies with frequency shift
ΩI,II , so that GI,II(T ) = |GI,II |eiΩI,IIT , the eigenmode amplitudes will be given by
AI,II(T ) = |AI,II |eiΩI,IIT . The stationary solution for the set of equations (A.29) will be
given by

|AI |2 = |GI |
2

ω2
I

1
(ΩI − αI |AI |2 − βI |AII |2)2 + (ΓI + ξI |AI |2 + ΨI |AII |2)2

|AII |2 = |GII |
2

ω2
II

1
(ΩII − αII |AII |2 − βII |AI |2)2 + (ΓII + ξII |AII |2 + ΨII |AI |2)2 .

(A.31)
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Equation (A.31) predicts some very interesting phenomena that appear in a system
of two coupled nonlinear mechanical resonators. Assuming that there is no nonlinear
dumping (ΨI,II = 0, ξI,II = 0), if mode I is driven in the linear regime, meaning that
|AI |2 is small and αI |AI |2 � βI |AII |2, and if mode II is driven in the nonlinear regime,
then the resonance frequency of mode I varies like the square amplitude of mode II.
Essentially the frequency of mode I can be tuned by controlling the amplitude of mode
II. This frequency pulling effect appears due to the nonlinearities that exist in the
equation of motion of each individual resonator, even though their coupling is modeled
by just a linear term D. 2

2 This effect should not be confused with the mode splitting due to the strong linear coupling that is
described in the previous section.
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Appendix B

Quadratures of motion

B.1 Concept

A convenient way to describe a periodic signal a(t) = A(t) cos((ωt) + φ(t)) is to express
it in a rotating frame at the oscillating frequency ω. It will then take the following form:

a(t) = I(t) cos(ωt) +Q(t) sin(ωt), (B.1)

where I(t) and Q(t) are time-varying amplitudes, the so-called quadratures of signal a(t).
To study the motion x(t) of a mechanical resonator, it is preferable to work in the rotating
frame of its mechanical resonant frequency ω0 [141]. The amplitude of motion will be
then given by

x(t) = X1(t) cos(ω0t) +X2(t) sin(ω0t), (B.2)

where X1(t) is the in-phase quadrature and X2(t) the out of phase quadrature of motion.
This formalism allows to study the evolution of a mechanical resonator in the phase
space, using only the slowly-varying in time components X1(t) and X2(t) (their time
scales are above 1/γm) and removing the intrinsic oscillatory dependence with time at
ω0. Experimentally it is more convenient to work with the low frequency signal of the
quadrature components (≤ γm), due to the low bandwidth requirements compared to a
signal at the mechanical resonant frequency (γm � ω0).

In the frequency space the Fourier components of the quadratures can be written as
[141]

X1(ω) = x(ω0 + ω) + x(−ω0 + ω),
X2(ω) = −i(x(ω0 + ω)− x(−ω0 + ω)), (B.3)

where ω = ωa − ω0 is the frequency missmatch between the analysis frequency ωa and
the mechanical resonant frequency ω0, and is always considered small compared to ω0.

From equation (3.7) and (3.8) by inserting the expressions of x(ω0+ω) and x(−ω0+ω)
in the definitions of X1(ω) and X2(ω), we can extract the quadratures in presence of
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applied force:

X1(ω) = − 1
2mω0

(
1

−iω + γ/2

)
F2(ω),

X2(ω) = 1
2mω0

(
1

−iω + γ/2

)
F1(ω), (B.4)

where F1(ω) and F2(ω) correspond to the two quadratures of the applied force defined in
the Fourier space.

In [195] it has been shown that the autocorrelation function of the thermal force F th

as expressed in the quadrature frame is given by

〈F th(ω)
1 F

th(ω′)
1 〉 = 〈F th(ω)

2 F
th(ω′)
2 〉 = 4meffγmkBT2πδ(ω + ω′). (B.5)

The double sideband power spectral density of F1 and F2 is frequency independed and is
given by

Sth
F1F1

= Sth
F2F2

= 4meffγmkBT = 2Sth
F . (B.6)

Using equation (B.4) we can then extract the double sided displacement spectral density
of each quadrature:

Sth
X1X1

(ω) = Sth
X2X2

(ω) = γmkBT

meffω2
0(ω2 + γ2

m/4) . (B.7)

The integral of the single sided power spectral density of each quadrature will be given
by

〈X2
1 〉 = 〈X2

2 〉 = kBT

meffω2
0

= 〈xth〉. (B.8)

As we can see, this result is equal as the one we obtained for an integration of the
displacement spectrum of the trajectory x(t) in the standard frame.

The temporal correlation function of the quadratures is defined as Cij = 〈Xi(t)Xi(t+
τ)〉, where i and j give the indices of the quadratures and 〈...〉 denotes statistical averaging.
It can be shown that [141]:

C12(τ) = C21(τ) = 0 (B.9)

Cii(τ) = 〈X2
i 〉e−

γmτ
2 . (B.10)

The last expression the amplitude of the autocorrelation function exponentially decays
with a decay rate given by the half of the mechanical dissipation.

B.2 Quadratures demodulation
The experimental principles of quadratures demodulation, as implemented for the exper-
iments that are presented in chapter 6, are depicted in Figure B.1. The electromechanical
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fluctuations signal x(t) at the output of the secondary electrons detector 1 is splitted into
two branches. Each branch is mixed with the in-phase (cosωdt) and the out of phase
signal (sinωdt) of the same local oscillator at the demodulation frequency ωd:

Ĩ(t) = x(t)× cosωdt (B.11)
Q̃(t) = x(t)× sinωdt. (B.12)

Assuming that there is a detuning between the demodulation frequency and the actual
mechanical resonant frequency (ωd 6= ω0), the measured quadratures can be expressed
in terms of the intrinsic mechanical quadratures X1(t) and X2(t), as they are defined in
equation (B.2),

Ĩ(t) = 1
2 [cos(ω0 − ωd)t+ cos(ω0 + ωd)t]X1(t) + 1

2 [sin(ω0 + ωd)t+ sin(ω0 − ωd)t]X2(t)

Q̃(t) = 1
2 [sin(ω0 + ωd)t− sin(ω0 − ωd)t]X1(t) + 1

2 [cos(ω0 − ωd)t− cos(ω0 − ωd)t]X2(t).
(B.13)

A low-pass filter is applied in each branch to suppress the high frequency component and
leaving only the slowly varying signal at baseband frequencies. Assuming that |ω0−ωd| �
ωm, the previous expressions can be simplified to

I(t) = (F ∗ Ĩ)(t) = 1
2X1(t) cos(ω0 − ωd)t+ 1

2X2(t) sin(ω0 − ωd)t

Q(t) = (F ∗ Q̃)(t) = −1
2X1(t) sin(ω0 − ωd)t+ 1

2X2(t) cos(ω0 − ωd)t, (B.14)

where F denotes low-pass filtering convolution. I(t) and Q(t) express the quadratures
of motion in a referential rotating frame of the demodulation frequency ωd, which is
detuned by ∆ω = |ω0 − ωd| from the actual mechanical resonant frequency at ω0. The
above expression can be expressed in a matrix form[

I(t)
Q(t)

]
= 1

2

[
cos(ω0 − ωd)t sin(ω0 − ωd)t
− sin(ω0 − ωd)t cos(ω0 − ωd)t

] [
X1(t)
X2(t)

]
(B.15)

⇒
[
I(t)
Q(t)

]
= RT

[
X1(t)
X2(t)

]
, (B.16)

where RT is the transpose of the rotation matrix

R =
[
cos(ω0 − ωd)t − sin(ω0 − ωd)t
sin(ω0 − ωd)t cos(ω0 − ωd)t

]
.

For a rotation matrix it holds true that RT = R−1, thus the intrinsic quadratures will be
given by[

X1(t)
X2(t)

]
=
[
(X̃1 ∗ F )(t)
(X̃2 ∗ F )(t)

]
= 2

[
cos(ω0 − ωd)t − sin(ω0 − ωd)t
sin(ω0 − ωd)t cos(ω0 − ωd)t

] [
I(t)
Q(t)

]
, (B.17)

1Depending on the available bandwidth, the quadratures demodulation technique principles can be
applied in conjunction to other transduction schemes, like the electro-optomechanical signal that comes
out of a photodiode in optical transduction schemes, or the electromechanical signal in the direct electrical
readout.
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cos(ω0t)

sin(ω0t)

x(t)

X1(t)

X2(t)

LPF

LPF

LO

mixer

mixer

SEs Detector

Figure B.1: Quadratures demodulation scheme as used in chapter 6. The electromechanical signal
x(t) at the output of the secondary electrons detector is splitted into two different branches. The
one branch is mixed with the in-phase signal of a local oscillator (cos(ωdt)) and the other branch
with a out of phase shifted signal of the same local oscillator (sin(ωdt)). The demodulation
frequency ideally is selected to be the frequency of the mechanical mode of interest (ωd =
ω0). The mixing process will create components at baseband frequencies (DC) and at higher
frequencies. The slowly-varying in time X1(t) and X2(t) components are extracted with a low
pass filter at the output of each branch, that removes the high frequency and keep only the
baseband frequency mixing components.

where the factor 2 can be seen as a scaling parameter depending on the relative amplitude
of the local oscillator reference signal that was used for the mixing process. Starting from
equation (B.2) and using (B.17), it can be shown that

x(t) = 2I(t) cosωdt+ 2Q(t) sinωdt. (B.18)

An alternative and convenient way to represent the quadratures of motion, and per-
form all the necessary signal processing, is to use complex numbers. The electromechanical
signal will be given by

x(t) = <((X1(t) + iX2(t))e−iω0t) = X1(t) cosω0t+X2(t) sinω0t. (B.19)

The demodulation process will be described by

x̃(t) = (x(t)eiωdt) ∗ F ) = 1
2X1(t)e−i(ω0−ωd)t + i

1
2X2(t)e−i(ω0−ωd)t =[1

2 [X1(t) cos(ω0 − ωdt) +X1(t) sin(ω0 − ωdt)]
]
+

i[ 12 [−X1(t) sin(ω0 − ωdt) +X2(t) cos(ω0 − ωdt)], (B.20)

where I(t) = <(x̃(t)) and Q(t) = =(x̃(t)) are the demodulated quadratures at a referential
rotating framing of ωd, expressed in the real mechanical quadratures as we have seen
before.

A perfect demodulation of the electromechanical signal x(t) is achieved when ωd = ω0,
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resulting into the extraction of the intrinsic quadratures of the mechanical trajectory

X1(t) = 1
2I(t)

X2(t) = 1
2Q(t). (B.21)
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Appendix C

Energy autocorrelation function of a
noise driven harmonic oscillator

C.1 Single-mode energy autocorrelation

In this section, we derive the expression of the energy autocorrelation function CE(t, t+
τ) = 〈E(t)E(t+ τ)〉, with E(t) = X2

1 (t) +X2
2 (t) the mechanical energy, X1,2(t) the motion

quadratures, and where 〈...〉 denotes statistical averaging over the driving external bath.
In the following, we will assume the mechanical oscillator to be driven by a stationary,
Gaussian bath.

We start with calculating the second moment autocorrelation function CX2(t, t+τ) =
〈X2(t)X2(t+ τ)〉 associated with one given quadrature X (the mechanical motion being
assumed to be driven by a Gaussian noise, this expression will be identical for any given
motion quadrature). For a high-Q harmonic oscillator, the time evolution of such quadra-
ture corresponds to the convolution between the quadrature impulse response χ(t) and
an effective Gaussian driving noise F thX (t) such that 〈F thX (t)F thX (t′) = 2SthF δ(t′ − t)〉 (SthF
the single sideband force spectral density associated with the external driving bath, and
Îť the Dirac delta function)

X(t) =
∫ +∞

−∞
dt1χ(t− t1)F th

X (t1) (C.1)

χ(t) = 1
2meffω0

Θ(t)e−
γm
2 t, (C.2)

with meff , ω0, and γm the mass, mechanical resonant frequency and the mechanical damp-
ing rate of the oscillator, and with Θ denoting the Heaviside step function. Assuming
the stationary nature of the problem, all correlation functions are time independent,
CX2(t, t + τ) = CX2(0, τ) = CX2(τ). Using equations (C.1) and (C.2), this autocorrela-
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tion function can be subsequently expanded as

CX2(τ) = 〈X2(0)X2(τ)〉

= 〈
(∫ +∞

−∞
dt1χ(−t1)F th

X (t1)
)2(∫ +∞

−∞
dt2χ(τ − t2)F th

X (t2)
)2

〉

= 〈
∫ ∫ ∫ ∫
[−∞,+∞]4

dt1dt2dt3dt4χ(−t1χ(−t2)χ(τ − t3)χ(τ − t4)F th
X (t1)F th

X (t2)F th
X (t3)F th

X (t4)〉

=
∫ ∫ ∫ ∫
[−∞,+∞]4

dt1dt2dt3dt4χ(−t1χ(−t2)χ(τ − t3)χ(τ − t4)〈F th
X (t1)F th

X (t2)F th
X (t3)F th

X (t4)〉,

(C.3)

where the integral and the statistical average have been swapped between the third and
last steps because of the stationarity of the problem. To determine the value of the
quadruplet 〈F th

X (t1)F th
X (t2)F th

X (t3)F th
X (t4)〉, we use Wick’s theorem 1, which states that

it can be rewritten as the sum of all possible binomial contractions of its components:

〈F th
X (t1)F th

X (t2)F th
X (t3)F th

X (t4)〉 = 〈F th
X (t1)F th

X (t2)〉〈F th
X (t3)F th

X (t4)〉 +
〈F th
X (t1)F th

X (t3)〉〈F th
X (t2)F th

X (t4)〉 +
〈F th
X (t1)F th

X (t4)〉〈F th
X (t2)F th

X (t3)〉. (C.4)

Using that 〈F th
X (t)F th

X (t′) = 2Sth
F δ(t′ − t)〉, we finally obtain:

CX2(τ) =4(Sth
F )2

∫ ∫ ∫ ∫
[−∞,+∞]4

dt1dt2dt3dt4×

(δ(t2 − t1)δ(t4 − t3) + δ(t3 − t1)δ(t4 − t2) + δ(t4 − t1)δ(t3 − t2)). (C.5)

It is therefore straight to simplify equation (C.5) to obtain:

1
4(Sth

F )2CX2(τ) =
∫ ∫

[−∞,+∞]2

dt1dt3χ2(−t1)χ2(τ − t3) + 2
(∫ +∞

−∞
dt1χ(−t1)χ(τ − t1)

)2

.

(C.6)

The two terms on the right side of equation (C.6) can be straight forward computed:

∫ ∫
[−∞,+∞]2

dt1dt3χ2(−t1)χ2(τ − t3) =
(

1
2meffω0

)4

× 1
γ2

m
, (C.7)

(∫ +∞

−∞
dt1χ(−t1)χ(τ − t1)

)2

=
(

1
2meffω0

)4

× 1
γ2

m
e−γm|τ |, (C.8)

1Indeed, Wick’s theorem applies, F th
X being a Gaussian, centered statistical variable.
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and finally:

CX2(τ) = 4
(

1
2meffω0

)4(
SthF
γm

)(
1 + 2e−γm|τ |

)
. (C.9)

We now resume and terminate the calculation of the energy autocorrelation function
CE(τ) = CE(0, τ) = 〈(X2

1 (0)X2
2 (0))(X2

1 (τ)X2
2 (τ))〉, which can be expanded as

CE(τ) = 〈X2
1 (0)X2

1 (τ)〉+ 〈X2
2 (0)X2

2 (τ)〉+ 〈X2
1 (0)X2

2 (τ)〉+ 〈X2
2 (0)X2

2 (τ)〉. (C.10)

The first two of equation (C.10) are identical and given by equation (C.9), whereas
〈X2

i (0)X2
j (τ)〉i6=j = 〈X2

i (0)〉 × 〈X2
j (τ)〉 = 〈X2〉2, due to the uncorrelated nature of X1

and X2 and to the isotropic distribution of the driving fluctuations. Finally, we obtain:

CE(τ) = 2(CX2(τ) + 〈X2〉2)

= 4
(

kBT

meffω0

)2(
1 + e−γm|τ |

)
, (C.11)

where we have assumed the driving bath to be of a thermal nature with temperature T ,
SthF = 2meffγmkBT , yielding to 〈X2〉 = kBT/meffω

2
m. Equation (C.11) shows that the

energy autocorrelation function is an exponentially decaying function of time, with a time
constant 1/γm.

C.2 Two-modes energy autocorrelation
For suspended nanomechanical cantilevers (chapter 6), the mechanical mode of interest
comes along with a second mechanical mode associated with the perpendicular direction
of vibration. In the frame rotating at the mechanical resonance frequency ω1 associated
with mode 1, the quadratures of the mechanical signal I and Q can be therefore expressed
as

I(t) = 1
2(X11(t) +X21(t) cos ∆ω(t)) + 1

2X22(t) sin ∆ω(t) (C.12)

Q(t) = − sinX21(t) sin ∆ωt+ 1
2(X12(t) +X22(t) cos ∆ωt), (C.13)

where Xij denote the jth quadrature associated with mode i and with ∆ω = ω2 −ω1 the
frequency splitting between the two mechanical modes. The ”energy” as obtained from I
and Q, Ẽ(t) = I2(t) +Q2(t) is given by

Ẽ(t) = E1(t) + E2(t) + 2(X11(t)X21(t) +X12(t)X22(t)) cos ∆ωt
+ 2(X11(t)X22(t)−X21(t)X12(t)) sin ∆ωt, (C.14)

where we noted Ẽi(t) = X2
i1(t)+X2

i2(t) the enrgy of mode i. The autocorrelation CẼ(τ) =
〈Ẽ(t)Ẽ(t)〉 therefore reads:

〈Ẽ(t)Ẽ(0)〉 = CE1(τ) + CE2(τ)+
2〈(X11(0)X21(0) +X12(0)22(0))(X11(τ)X21(τ) +X12(τ)22(τ)) cos ∆ωτ〉
= CE1(t) + CE2(t) + 4(C11(τ)C12(τ) + C12(τ)C22(τ)) cos ∆ωτ, (C.15)
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C.3. ENERGY AUTOCORRELATION IN THE PRESENCE OF FREQUENCY
NOISE

with Cij(τ) = 〈Xij(0)Xij(τ)〉. To obtain equation (C.15), we have utilized the station-
arity of the problem 〈E(t)E(t + τ)〉 = 〈E(0)E(τ)〉, and we have assumed modes 1 and 2
to be perfectly uncorrelated, 〈Xij(0)Xkl(τ)〉 = δikδjlCij(τ) (δ the Kronecker delta sym-
bol). Thereby, equation (C.15) shows that the two-modes energy autocorrelation function
writes as the sum of the individual energy autocorrelation functions, plus a beat signal
at the splitting frequency ∆ω. Note that even for negligible splitting (∆ω � γ1, γ2),
separating the contributions of each mode remains possible as long as they have distinct
mechanical decay rates, which is often the case. Indeed, the sum of the two first terms
in Eq. 20 is no longer a purely exponentially decaying function of time, and the devia-
tions from this model therefore enable to accurately address the presence of 2 modes and
their corresponding quality factors through the slope irregularities. Note that this would
not be equivalent to possible Lorentzian irregularities in the motion spectrum, which is
subjected to frequency noise (see below) and does not enable damping extraction to the
same level of accuracy.

C.3 Energy autocorrelation in the presence of frequency
noise

A widely known advantage of extracting the dissipation properties from the autocorrela-
tion function of the energy is that it is immune to unavoidable sources of frequency noise
[150], which becomes critical in the ultra-high Q-factor regime [139, 17].

The energy of a mechanical mode demodulated in a referential rotating frame of
ωd 6= ω0, using equation (B.14) is given by

E(ωd, t) = I2(t) +Q2(t)

= 1
4X

2
1 (t) cos2(ω0 − ωd)t+ 1

4X
2
2 (t) sin2(ω0 − ωd)t

+ 1
2X1(t)X2(t) cos(ω0 − ωd)t sin(ω0 − ωd)t

+ 1
4X

2
1 (t) sin2(ω0 − ωd)t+ 1

4X
2
2 (t) cos2(ω0 − ωd)t

− 1
2X1(t)X2(t) cos(ω0 − ωd)t sin(ω0 − ωd)t

= 1
4
[
X2

1 (t) +X2
2 (t)

]
. (C.16)

Equation (C.16) therefore shows that the energy does not depend of the demodulation
procedure. In particular, this result holds even in presence of frequency noise, that is for
ω0 = ωd + δω(t), with δω(t) a slowly varying frequency noise term.
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Appendix D

Graphene transfer technique

In this section we are going to present our PMMA supported transfer technique of two-
dimensional materials, which was firstly developed at Columbia university [196]. We
established this technique as a part of this Ph.D thesis and we further developed and
optimized it according to the needs of our experiments. Such a fabrication process is
beneficial when there is a need to transfer graphene (or other two-dimensional materials)
on top of other structures that are already fabricated. For instance in our work where we
coupled a graphene resonator to a superconducting cavity [68] or in graphene resonators
where we wanted to implement localized gates to reduce the parasitic capacitances (Fig-
ure D.2(b)).

In Figure D.1 the process flow of the PMMA supported transfer technique is briefly
illustrated. The process starts by preparing a polymer stack on top of silicon substrates,
on which the graphene will be exfoliated. The polymer stack consist of water-soluble layer
(PVA) and PMMA 950 (Figure D.1(a)). The PMMA thickness is precisely tuned in order
to provide enough contrast for the identification of graphene with optical means. Single
and few-layer graphene flakes are selected with an optical microscope by measuring the
intensity of the reflected light, similarly as in graphene on top of SiO2 that is described
in section 5.2. The contrast depends on the amount of graphene layers and the thickness
of the polymer stack. The intensity per single layer of graphene for each substrate is
calibrated after characterizing single and few graphene layers with Raman spectroscopy.
After the identification of the graphene flake that will be used for the transfer, the Si-
PVA-PMMA chips are placed on the surface of a water bath (Figure D.1(b)). Few minutes
afterwards, the PVA is dissolved by water and as a result the Si substrate sinks at the
bottom of the water bath while the PMMA-Graphene layer floats on the water surface.
A volcano-shaped holder is then used in order to “fish”the membrane from the surface
of the water bath (Figure D.1(c)). It is then placed on a heater at 100 C◦ for 5 min
to evaporate the water. Afterwards, the holder is place on a XYZ micro-manipulator
mounted on a microscope setup. It is then placed between the objective and the target
chip as illustrated in Figure D.1(d). The target substrate lies on a XY motorized stage
on top of a heater which is used to evaporate any water that is absorbed on the surface
of the target substrate. The microscope objective is used to focus either on the substrate
or on the PVA focal plane. The motorized stage and the micro-manipulator provide
all the necessary degrees of freedom to align the graphene with respect to the target
structure. When everything is aligned, we use the Z-directin of the position to place the
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Figure D.1: Graphene PMMA supported transfer technique steps. (a) Graphene exfoliation
on PVA/PMMA polymer stack. (b) PVA dissolution in water results in the release of the
PMMA membrane. (c) PMMA membrane “fishing”using the volcano-shaped transfer holder.
(d) Transfer of the PMMA/graphene mebrane on the target substrate. The volcano-shaped
holder is attached on a XYZ micro-positioner and the target substrate lies on a XYZ motorized
stage. The microscope objective is used to observe both the focal plane of graphene and the one of
the target substrate, while the micro-positioner and the motorized stage are used for alignment.
(e) Transfered membrane on top of the target substrate. (f) PMMA cross-linking using electron
beam lithography. (g) The graphene membrane is released in acetone bath followed by a critical
point drying step.
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Figure D.2: Examples of graphene resonators that the transfer technique was employed for their
fabrication. (a) Graphene resonators coupled to a superconducting cavity [68]. (b) Graphene
resonator in a 3-terminal configuration with a local-gate, fabricated on highly resistive Si sub-
strate to reduce the parasitic capacitances. (c) Graphene membranes suspended on top of gold
nanoparticle arrays in a distance below 50 nm.

PMMA/graphene membrane on the target substrate (Figure D.1(e)).
A key requirement for most of the nanoresonators that we realized for our experiments

is that the separation distance between the graphene and the structure underneath is min-
imal. For this reason we introduce a development with respect to the original transfer
technique: We perform an electron beam lithography step where we cross-link part of
the PMMA using a 10000 µC/cm2 electron beam dose Figure D.1(e). An acetone bath
followed by a critical point drying step is used in order to dissolve PMMA and suspend
graphene avoiding capillary force, respectively. The cross-linked part of the PMMA is
immune to acetone and as a result it remains on the substrate forming supporting clamp-
ing pads for the grpahene. This technique allowed to suspend graphene resonators with
a separation distance between the counter structure that as low as 50 nm for few mi-
crometer long graphene resonators. In Figure D.2 scanning electron microscope images
of graphene mechanical resonators that we fabricated with this technique are illustrated.
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