
Mechanical Resonators Based on
Graphene and Carbon Nanotubes

Thesis by
Ioannis Tsioutsios

June 2016

Doctoral school in Physics, Universitat Autònoma de Barcelona (UAB)
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Chapter 5

Coupled Graphene Mechanical
Resonators

This chapter is based on the work that has been published in Ref. [95], where we study
coupled graphene mechanical resonators.

In the first section we give a brief introduction on coupled mechanical resonators
and the motivation towards studying coupled mechanical systems based on graphene and
carbon nanotubes. We will then describe the fabrication process steps of such systems.
Afterwards, we will present the main experimental results starting from characterizing
the electrical and mechanical properties of the studied devices. We will then identify
and fully characterize their eigenmodes and discuss the observation of nonlinear coupling
between them explaining this effect by introducing a basic theoretical modelling which
is presented in detail in Appendix A. Finally, we present the results of finity element
simulation of the devices and we compare them with the experimental and the theoretical
modelling predictions.

5.1 Introduction
The interest on studying the motion of coupled mechanical oscillators is very old and has
both fundamental and technological aspects. The first studies can be traced back as early
as in the mid-seventeenth century, where Christiaan Huygens studied novel dynamics in a
pair of coupled pendulum clocks [96]. By hanging them on a common support, he observed
that they exhibit synchronized oscillations and this allows to increase their precision and
stability.

In the area of nanotechnology and nanoscience, research on coupled micro- and nanome-
chanical resonators has attracted considerable attention. Coupling their mechanical mo-
tion can give rise to rich linear and nonlinear dynamics such as vibration localization [97],
synchronization [98], nonlinear mode coupling and chaos [60], paramateric mode splitting
and coherent phonon manipulation [99]. In the quantum regime [7, 8, 100, 101], nonlinear
mode coupling has been proposed as a way to perform quantum non-demolition measure-
ments [102]. From the technological point of view, coupled nanomechanical resonators
have been a subject of intense interest due to their high potential as high-quality factor
resonators [103] and band pass filters [104], mass and charge sensors with high sensitivity
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5.1. INTRODUCTION

500 nm

Figure 5.1: Scanning electron microscopy image of a coupled graphene resonator device. Two
grpahene membranes are susbended and each of them is doubly-clamped by two gold electrodes.
A multiwall carbon nanotube is linking the two graphene membranes at their middle in an
H-shape configuration.

[105, 106, 107, 5], signal amplifiers [108], and logic gates [72].
So far, most of the research attention on coupled nanoresonators, has been mainly con-

centrated on system that are implemented using top-down nanofabrication techniques.
On the other hand, bottom-up fabricated nanoresonators based on nanomaterials like
graphene and carbon nanotubes possess a wide variety of outstanding properties [109,
18, 24, 25, 22, 19, 13, 110]. These systems can be employed as sensitive mass detectors
[20], their resonance frequency can exceed 10 GHz [14, 15], they exhibit strong mechan-
ical nonlinearities [13, 29, 30], and their mechanical vibrations can efficiently couple to
electrons in the Coulomb blockade and the quantum Hall regimes [24, 25, 26, 27, 28].

However, the wealth of graphene and carbon nanotube properties have not yet been
extensively studied in systems where two or more of those devices are coupled. A first
step in this direction was made by Perisanu et al. (2011) [111] where they investigated
the coupling between two vibrating nanotubes by gluing several nanotubes on a tip and
imaging them in a transmission electron microscope [111]. Nonetheless, it is important
to develop coupled vibrational structures with a well-defined layout in order to enable
experiments where nonlinear dynamics, manipulation of mechanical states, and quantum
non-demolition measurements, are performed in a controlled way. The challenge presented
by the fabrication of such structures is that nanotubes and graphene cannot be structured
as easily as other materials. Indeed, graphene can be patterned into complicated shapes
using electron-beam lithography and reactive ion etching, but such graphene structures
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5.2. FABRICATION

are fragile and often tear when suspended. As for nanotubes, it is very difficult to place
them at a predetermined position.

In this chapter, we demonstrate the fabrication and we study the dynamics of coupled
graphene mechanical resonators. These devices consist of two doubly-clamped graphene
mechanical resonators which are linked by a nanotube beam, while the whole structure
is suspended (Figure 5.1). The structure is fabricated using a combination of electron-
beam lithography and atomic-force microscopy nano-manipulation. Each graphene plate
is clamped by two metal electrodes so that mechanical vibrations can be independently
actuated and detected electrically using mixing techniques [18, 77]. Two mechanical eigen-
modes are measured, each corresponding to vibrations localized in a different graphene
resonator. The coupling between the eigenmodes is evaluated by measuring the shift of
the resonance frequency of the one eigenmode as a function of the estimated vibration
amplitude of the other eigenmode.

5.2 Fabrication
In Figure 5.2 the fabrication process flow of coupled graphene mechanical resonators
devices is illustrated. Each process step is separately explained in a more detailed way
below.

500 nm

(g)(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Fabrication of two graphene resonators coupled by a carbon nanotube. (a) Me-
chanical exfoliation of graphene onto an oxidized silicon wafer. (b) Shaping the graphene layer
with reactive ion etching. (c) Deposition of nanotubes. (d) Manipulation of a nanotube with
an AFM tip. (e) Patterning of metal electrodes using electron-beam lithography. (f) Removal
of the silicon oxide below the structure with hydrofluoric acid. (g) Colorized scanning electron
microscope image of the device at the end of the fabrication process.

(a) Graphene exfoliation

The fabrication process starts by depositing graphene flakes on highly doped, oxidized
silicon wafers using the mechanical exfoliation technique (Figure 5.2(a)) [31] 1. Single and
bilayer graphene flakes are selected with an optical microscope by measuring the intensity
of the reflected light, as illustrated in Figure 5.3. The contrast depends on the amount

1Before the exfoliation step, it is very important that the silicon oxide substrate surface is as clean
as possible. For these reason the chips are sonicated in an aceton bath and then in an isopropyl alcohol
bath. Afterworlds an oven annealing step follows, under Ar and H2 flow at 300 oC.
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5.2. FABRICATION

of graphene layer and the thickness of the silicon oxide substrate. The intensity for each
substrate is calibrated after characterizing single and few graphene layers with Raman
spectroscopy. The silicon oxide thickness for this specific type of devices is selected to be
435 nm. This specific thickness provides less optical contrast compared to the commonly
used 285 nm thickness [112]. However, it provides enough thickness in order to etch the
silicon oxide under big graphene structures, while still leaving a part of it and avoid any
short-circuits to the back gate from other graphene flakes or nanotubes that are on the
chip (see the last fabrication step).

20 μm 20 μm

single layer

bilayer

bilayer

Figure 5.3: Optical images of graphene mechanically exfoliated on oxidized silicon substrate.
The silicon oxide thickness is selected to be 435 nm. Left: Single and bilayer graphene. Righ:
The bilayer graphene flake that was used for the device that is illustrated in Figure 5.1.

(b) Graphene patterning

Each flake is patterned into two parallel rectangular plates using electron-beam lithog-
raphy (EBL) and reactive ion etching in oxygen (Figure 5.2(b)). In order to be able to
localize graphene on the chip, we first pattern Au/Cr marks by Electron Beam Lithog-
raphy (EBL), metal deposition, and lift-off (Figure 5.4(a)). The marks are then used for
the alignment process during the electron-beam lithography step, where a PMMA 950
mask is used to shape graphene using reactive ion etching (Figure 5.4(b)).

(c) Carbon nanotubes deposition

A dichloroethane solution containing multi-walled carbon nanotubes is spin-cast onto the
wafer (Figure 5.2(c)). As a result, several nanotubes are found near the already patterned
graphene flakes (Figure 5.4(b)). We also noticed an increased adhesion rate of nanotubes
in the area around graphene that has been exposed in RIE.

(d) Carbon nanotubes positioning with AFM

The tip of an atomic force microscope (AFM) probe is then used, in contact mode, to
position a multi-walled carbon nanotube across the two graphene plates (Figure 5.2(d))
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(a) (b)

20 μm graphene plates
carbon
nanotubes

Figure 5.4: (a) Optical image of graphene flake with Au/Cr alignement marks. (b)Atomi force
microscopy image of graphene shaped into to two graphene plates. Carbon nanotubes are found
next to them, after spin-cast deposition.

[113, 114]. This allows to push the nanotube from the one side and place it at the desired
position 2. In Figure 5.5 the manipulation process is illustrated in a series of AFM images.

(i)

(ii)

(iii)

(iv)

Figure 5.5: Carbon nanotube positioning. A series of AFM images (i-iv) that illustrate the
consecutive steps that are needed to place the multiwall carbon nanotube across the two grpahene
plates. The green arows indicates the path that the AFM tip follows, in contact mode, during
each manipulation step.

(e) Electrodes deposition

Each graphene plate is contacted to a pair of Au/Cr electrodes by EBL, metal deposition,
and lift-off (Figure 5.2(e), Figure 5.6(a)).

2A key point for the success of the nanomanipulation process is that the force that is applied from the
AFM tip towards the substrate is well calibrated. It should be high enough to push the nanotube from
the side, while low enough in order not to damage the graphene.
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5.3. EXPERIMENTAL RESULTS

(f) Structure suspension

The graphene plates and the nanotube are suspended by etching 260 nm of the underlying
silicon oxide in hydrofluoric acid. A PMMA 950 mask created with an e-beam lithography
has been used in order to etch the oxide only locally at the area where the device stands
(Figure 5.2(f), Figure 5.6(b)). The structure is released in a critical point drier in order
to avoid its collapsing due to capillary forces. The highly doped silicon substrate is used
as a backgate. Figure 5.2(g) shows a colorized scanning electron microscope image of a
device made from a bilayer graphene sheet upon completion of the fabrication process.

500 nm

nanotubegraphene

(a) (b)

Figure 5.6: (a) Colorized atomic force microscopy image of a bilayer coupled graphene resonators
device after electrods deposition. The Au/Cr electrode are colorized with yellow, graphen plates
with red, and the carbon nanotube with green. (b) Scanning electron microscopy of the device
after the critical point drying step. The whole graphene and nanotube structure is suspended
on top of the substrate. The silicon oxide is only locally etched in the area of the structure.

5.3 Experimental results

5.3.1 Experimental setup
The experimental setup consist of a home-build flow cryostat (Figure 5.7(a)). The sample
is attached to the cold finger of a liquid helium insert (Janis, ST-400). The measurements
have been carried out at 4.2 K (Helium flow) at a pressure of ∼ 10−8 mbar. The sample
is clamped on a printed circuit board which is electrically connected with three RF lines
(SMA) and two 2 DC lines (Figure 5.7(b)). Since the devices have a global back-gate,
which means that there are increased parasitic capacitances, we selected to perform our
experiments using frequency mixing techniques (see subsection 4.2.4) and mainly the
frequency modulation (FM) mixing technique [77]. The source electrode of each graphene
plate is connected to a separate RF line. The third RF line is connected to the doped
silicon substrate which act as a global back-gate. Each drain electrode is connected to a
separate DC line, where the low frequency mixing current is measured for each graphene
plate independently. For each DC line, an on-PCB low pass filter has been implemented
in order to avoid noise from high order mixing components. This electrical configuration
enables us to actuate and detect the vibration of each graphene plate independently.
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(a) (b)
He �ow line4K insert

RF lines

Device

Figure 5.7: Experimental setup. (a) Optical image of the flow cryostat that was used for the
experiment. (b) Optical image of the PCB used for the devices measurement. It is clamped at
the lower part of the cryostat cold figure.

5.3.2 Electrical properties characterization
Three operating devices were fabricated. We first present measurements obtained with
one of them at a temperature of 4.2 K. The two graphene plates have the same length of
1.14 µm (between the clamping electrodes) and the same width of 1 µm. The length of the
nanotube is 1.74 µm and its diameter is 17 nm. The electrical two-point resistances of the
two graphene plates range from 40 to 100 kΩ. In comparison, the resistance of the multi-
walled carbon nanotube measured between the two graphene resonators is about 1MΩ,
and is therefore much larger. Thus, the electrical current flowing through the nanotube
is negligible in the measurements discussed below.

The transconductance characteristics of the devices were studied in order the select
the best operating point that maximizes signal. Figure 5.8 shows the conductance of each
graphene plate as a function of the voltage applied to the back-gate, for the first device.
The modulation of the conductance is attributed to universal conductance fluctuations
(UCF). This layout allows to electrically detect the mechanical vibrations of the two
graphene plates using the frequency-modulation mixing technique (see section 4.2.4).
According to the expression (4.26), the mixing current Imix associated to the motion
of each graphene plate, depends on the transconductance and on the back-gate biasing
(VBG). For each graphene plate there is a specific value of VBG that maximizes the mixing
current.

In order to minimize the consumption of liquid helium, the cryostat is warmed up
overnight. The mechanical properties of the device change only slightly from one day to
the next. For instance, the resonance frequency changes by less than 10%. However, the
changes in the electrical properties are significant. In particular, the universal conductance
fluctuations are completely different from one day to the next, and so is the value of VBG
for which the mixing current is largest.

5.3.3 Eigenmodes characterization
A system of two coupled nonlinear (duffing) mechanical resonators can be modeled by
introducing a linear coupling term, D(x1 − x2), into their individual equations of motion
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Figure 5.8: Conductance versus back-gate voltage for the two graphene plates at 4.3 K.

(eq. 3.25) 3:

ẍ1 + γ1ẋ1 + ω2
1x1 + α1x

3
1 +D(x1 − x2) = F1(t)/m

ẍ2 + γ1ẋ2 + ω2
2x2 + α2x

3
2 +D(x2 − x1) = F2(t)/m, (5.1)

where D is the coupling strength. This set of equations predicts two eigenmodes (for
more information see Appendix A), an in-phase eigenmode I, where the two resonators
are vibrating with the same phase, and an out of phase eigenmode II where the two
resonators are vibrating at a higher frequency (f0

II > f0
I ) but with 180 degrees phase

difference. If the two individual (uncoupled) resonators 1 and 2 are identical (f0
2−f0

1 = 0),
the amplitude of both I and II eigenmodes is delocalized between the two resonators. If
f0

2 > f0
1 , both the in-phase and out of phase eigenmodes still exist, but the amplitude of

eigenmode I is more localized on the first resonator and the amplitude of eigenmode II
on the second.

We first characterize the devices by identifying their eigenmodes and eigenfrequencies.
To do so, one individual graphene resonator is actuated and its vibrations are detected
using the frequency modulation (FM) mixing technique [77] (section 4.2.4), while the other
graphene resonator is kept electrically floating. In this transduction scheme (Figure 5.9),
the measured mixing current (Imix), each time is only proportional to the motion of
each individual resonator. This allows us to identify where, between the two graphene
resonators, the amplitude of each eigenmode is localized.

Figure 5.9 shows one prominent mechanical resonance in the spectrum of each indi-
vidually driven graphene resonator. This result is in agreement with the theory of two
coupled mechanical resonators, and indicates that the amplitude AI , of eigenmode I, is
mainly localized on graphene 1, and the amplitude AII , of eigenmode II, on graphene
2 4. Interestingly, the resonances appear at two distinct frequencies, f0

I ≈ 140 MHz and
f0
II ≈ 180 MHz. This frequency difference and the localization of the eigenmodes, sug-

gests that the elastic coupling between the two eigenmodes is weak (f0
2

2 − f0
1

2 � D),
3A detailed analysis on the dynamics of coupled mechanical resonators is given in Appendix A.
4In order to avoid any confusion, we use the notation I, II for the eigenmodes of the coupled system,

while 1, 2 for the individual resonators (see Figure 5.9).
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Figure 5.9: Characterizing the coupled resonator made from a single layer graphene sheet. Me-
chanical spectrum of graphene resonator 1 and 2 (obtained by measuring the mixing current Imix
as a function of the driving frequency). Eigenmode I is localised in graphene resonator 1 and
eigenmode II in graphene resonator 2. The gate voltage VBG is 5 V for the upper spectrum and
−4 V for the lower spectrum. The quality factors are QI = 5500 and QII = 4000 for plates 1
and 2, respectively. V FM

II and V FM
II are the amplitudes of the FM oscillating voltages.

see section A.1). In other words, the carbon nanotube transfers the vibrations of one
graphene resonator to the other only weakly [105, 106], and the eigenmode frequencies
(f0
I,II) are very close to the frequencies of individual graphene resonator (f0

1,2). Similar
results are obtained with the two other measured devices. We note that in Figure 5.9,
the two graphene resonators feature different current amplitudes on resonance as well as
different background noises; this is attributed to the different electrical properties of the
two graphene resonators (see subsection 5.3.2).

5.3.4 Mechanical properties characterization
The graphene membranes are found to be under tensile stress by measuring their res-
onance frequency f0 as a function of the constant voltage VBG applied to the backgate
(Figure 5.10). The resonance frequency decreases quadratically upon increasing VBG.
Similar results were obtained in previous measurements on single graphene resonators at
low temperature [19, 13, 115]. The convex parabola has an electrostatic origin and indi-
cates that the graphene membrane is under tensile stress because of the metal electrodes,
which contract upon lowering the temperature. The tension T0 within each graphene
membrane can be quantified by fitting the VBG dependence of the resonance frequency to
the expression derived for a resonator under tensile stress, f0(VBG) = fmax−σV 2

BG, where
fmax = 1

2
√
T0/mL and σ = fmaxC

′′L/(4π2T0). Here, m is the mass of the resonator, L
its length, and C ′′ the second derivative of the graphene-gate capacitance with respect
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Figure 5.10: Back gate dependance of the second eigenmode (f0
II). (a) Mixing current as a

function of the carrier frequency and VBG. The amplitude of the mixing current oscillates as a
function of VBG in an aperiodic way due to universal conductance fluctuations. (b) Resonance
frequency shift of the second mode (f0

II) as a function of VBG.

to displacement. The term −σV 2
BG originates from the plate oscillating in an BG electric

field gradient. We find that the tension is 713 nN and 883 nN and the mass is 7.8 fg and
5.8 fg for graphene membrane 1 and 2, respectively. The corresponding mass densities
are 9.2 and 6.9 times larger than that of pristine graphene, suggesting contamination of
the graphene surface. Similar values of tensions and mass densities were found in pre-
vious measurements on single graphene resonators [19, 13, 115]. This further supports
our finding that the nanotube affects the resonance of the individual graphene resonators
only weakly. The difference in mass density between the two graphene membranes may
be attributed to the partial cleaning of the contamination during the manipulation of the
nanotube with the AFM tip during the fabrication of the device [116].

5.3.5 Duffing nonlinearity

The response of each eigenmode for high driving amplitude shows nonlinear behavior.
Figure 5.11(a) displays the mixing current for eigenmode I as a function of increasing
driving frequency and for various amplitudes of the driving force. The driving force is
proportional to V FM

I [[77]], the amplitude of the frequency-modulated voltage used to
drive the first graphene resonator. As V FM

I is increased, the resonance lineshape becomes
asymmetric and its peak frequency increases. The resonance frequency is determined as
the frequency for which the current measured with the FM mixing technique is largest
(we verified that this frequency is nearly equal to the frequency for which the motional
amplitude is largest by solving the equation of motion numerically [13]). The dependence
of the peak frequency on V FM

I is shown in Figure 5.11(b). This behavior is attributed
to the Duffing force that originates from the mechanical tension within the graphene
membrane at large motional amplitude; because it is clamped at both ends, graphene
stretches and compresses periodically in time.
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Figure 5.11: Nonlinear (Duffing) resonance. (a) Mixing current for eigenmode I as a function of
increasing driving frequency f and for various amplitudes of the driving force (proportional to
V FM
I ), at a backgate bias VBG = 6.2 V. Each lineshape is offset by 10 pA for clarity. (b) Reso-

nance frequency shift of the first eigenmode (f0
I ) as a function of the driving force (proportional

to V FM
I ).

5.3.6 Masses and spring constants
In order to gain insight into the vibrational properties of the device, it is useful to compare
the masses and the spring constants of the nanotube and the two graphene resonators.
From the built-in tension estimated above, we derive the spring constants kG1 = 6 N/m
and kG2 = 7.4 N/m for graphene membranes 1 and 2, respectively. We calculate the mass
and the spring constant of the nanotube by describing it as a doubly-clamped beam with
no built-in tension, a good approximation for multi-wall nanotubes [91]. Using the mass
density ρCNT = 2200 kg/m3, the Young modulus E = 0.3 TPa [91], as well as the length
(1.74 µm) and diameter (17nm) of the nanotube measured with AFM, we derive a mass
mCNT = 0.2 fg and a spring constant kCNT = 0.1 N/m for this nanotube. These values are
much lower than those of the graphene resonators. This again is in line with our finding
that the nanotube should only weakly couple the two graphene membranes and it should
not strongly modify their mechanical modes.

5.3.7 Nonlinear mode coupling
The coupling between two duffing nonlinear mechanical resonators can lead to very inter-
esting dynamics. Their response can be calculated by the set of equations (5.1) employing
secular perturbation theory methods [60, 117] (for more information see Appendix A).
When the system is driven with an oscillating frequency ωI,II near its eigenfrequency
ω0
I,II , it can be shown that the stationary solution of equations (5.1) is given by

|AI |2 = |GI |
2

ω0
I

2
1

(ε−1(ωI − ω0
I )− αI |AI |2 − βI |AII |2)2 + Γ2

I

, (5.2)

where GI is the amplitude of the driving force that is acting on eigenmode I, AI,II the
motion amplitude of the eigenmodes, αI,I and βI,II are nonlinear parameters calculated
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from α1 and α2, ε is a small expansion parameter that is given by ε = (QIQII)−1/2, and
ΓI the scaled damping rate of eigenmode I.

If eigenmode I is driven in the linear regime and eigenmode II in the nonlinear,
meaning that |AI |2 is small and aI |AI |2 � βI |AII |2, equation (5.2) predicts the frequency
tuning of the first eigenmode as a square of the amplitude of the second eigenmode. In
order to probe this effect we realized a pump-probe experiment as follows: The first
graphene resonator, where eigenmode I is mainly localized, is probed by continuously
recording its resonance lineshape with the FM technique while sweeping the frequency of
the (pump) force applied to the second graphene resonator, where eignemode II is mainly
localized (Figure 5.12(b)). When the applied driving forces are low and both eigenmodes
remain into their linear response regime, no coupling is observed between them. When
we increase the driving force on eigenmode II, the dynamics of the coupled system are
changing. Figure 5.12(a) shows that the resonance frequency of eigenmode I, f0

I , shifts
when the pump frequency is swept through the resonance frequency of eigenmode II,
f0
II = 180 MHz. This shows that the resonance frequency of one eigenmode depends on

the motional amplitude of the other eigenmode, which clearly demonstrates the existence
of a coupling between the two mechanical modes of the system [60, 29, 61, 118]. The
asymmetric shape of the peak in f0

I as a function of fII is attributed to the Duffing
force. In another device, the shift in f0

I is measured as a function of the pump force
amplitude that is applied on eigenmode II. This is a demonstration of the quadratic
coupling which is described in equation (5.2) and can be observed not only in coupled
nonlinear resonator [60], but between the modes of single nonlinear resonator [61, 118] or
the modes of a laser-trapped nanoparticle [119].

We estimate that the strength of the mode coupling of the first device is about ≈
90 kHz/nm2 using a shift in f0

I of 200 kHz (Figure 5.12(a)) and a motional amplitude xII
of 1.5 nm. The latter is estimated in an approximate way, since we neglect the Duffing
nonlinearity and use xII = QC ′V AC

II VBG/kG2 with the pump voltage V AC
II = 40 mV,

VBG = 5, 8 V, the derivative of the capacitance with respect to displacement C ′ = 11 pF/m
(estimated from the device geometry), and the measured quality factor QII = 4000.
The eigenmode coupling of the second device is ≈ 60 kHz/nm2 from Figure 5.13 (xII is
estimated to be ∼= 1.6 nm for V AC

II = 50 mV).
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Figure 5.12: Pump-probe experiment to study the coupling between the eigenmodes. (a) Reso-
nance frequency of eigenomode I as a function of the frequency of the force applied on eigenmode
II. The plot is obtained by continuously measuring the mixing current of the first graphene res-
onator, where eginemode I is localized, as a function of the frequency fI of the probe force, while
sweeping the frequency fII of the pump force. The first mode is probed with V FM

II = 3 mV, and
the second mode is pumped with V ACII = 40 mV. The gate voltage is 5.8 V. (b) Setup of the
measurement scheme.
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Figure 5.13: Shift of the resonance frequency of plate 1 as a function of the pump voltage applied
to plate 2. The measurement corresponds to a device made from a bilayer graphene sheet, which
is different from the one discussed in the rest of the Letter. The first mode is probed with
V FM
I = 5 mV. The gate voltage is 8 V. The resonance frequencies are f0

I = 189.2 MHz and the
f0
II = 175.2 MHz. The red curve corresponds to the quadratic dependence expected from the

theory of eigenmode coupling.
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5.3.8 Finite element simulations

(b)(a)

CNT

graphene 2 graphene 1

Figure 5.14: (a,b) FEM simulation image of the eigenmodes corresponding to the two measured
resonances. The lower figures represent the profiles of the eigenmodes together with a (simplified)
top view of the device. (Each point of the profile corresponds to the largest displacement along
the width of the device.) We perform finite element simulations with ANSYS R© release 14.0 to
calculate the modal shapes and modal frequencies using the geometry of the device measured by
AFM. The separation between the two graphene plates is 450 nm.

The theoretical modeling that was introduced in subsection 5.3.3 and is detailed described
in Appendix A, captures the behavior of the experimental structures in a great extend.
To get a better insight into the dynamics of the devices, Finite Element method with
ANSYS R© release 14.0 has been employed to simulate the eigenmode shapes and the
corresponding resonance frequencies of the measured devices. In the FEM simulations,
we assume that both ends of the nanotube are firmly attached to the graphene membrane
because of the large van der Waals interaction. We also assume that the tension and
the mass density remain uniform over the graphene membranes. We use the geometry
of the device measured by AFM (prior to removing the silicon oxide) and the values
of the built-in tension and the mass density estimated experimentally (see 5.3.4). Fig-
ure 5.14(a,b) shows two eigenmodes, one at 131 MHz and the other at 178 MHz. These
values are relatively close to the measured resonance frequencies. The lower-frequency
eigenmode has a sizeable amplitude in the upper graphene plate only (Figure 5.14(a)).
The higher frequency eigenmode features a large displacement of the second graphene
resonator (Figure 5.14(b)); the motional amplitude of the upper plate can be significant,
yet it is not expected to be detected because of the shape of the mode. Indeed, this mode
has several nodes, so that the motional amplitude integrated over the upper plate is low.
We note that the simulations predict six more modes between the two eigenmodes. How-
ever, these additional modes are not expected to be probed in our measurements, since
the associated vibrations are localized in the nanotube and/or they have a large number
of nodes. In reality, the shape of the eigenmodes is very sensitive to various parameters
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that are unknown, such as the spatial distributions of the contamination and of the me-
chanical tension. A more detailed study of the system and a quantitative estimation of
the coupling will necessitate further work, such as imaging the shape of the eigenmodes
[92].

5.4 Conclusions and outlook
In this chapter, we fabricated and experimentally studied the dynamics of nanomechani-
cal systems that consist of two graphene resonators coupled by a carbon nanotube. From
the technological point of view, we demonstrated the potential of modern nanofabri-
cation techniques in realizing complex suspended vibrating structures, combining one-
dimensional and two-dimensional materials. We employed electrical mixing transduction
techniques to extensively characterized the complex vibrational dynamics of these devices
at cryogenic temperature. Their layout allowed to independently actuate and detect the
vibrations of each graphene membrane. Systematic measurements on different devices,
reveal that these systems host two fundamental eigenmodes, an in-phase and an out of
phase, as expected from the theory of two coupled resonators. In all studied devices, the
amplitude of the each eigenmodes is localized either in the one or the other graphene
resonator, while the carbon nanotube introduces only a weak linear coupling between
the two individual resonators. Most interestingly though, we observed nonlinear coupling
between the eigenmodes of these resonators.

Coupled resonators based on nanotube and graphene, hold promise for the study of
nonlinear dynamics, such as synchronization [98, 119], chaos [60], Landau-Zener transition
[120], parametric mode splitting [99], and the coherent manipulation of phonon population
[99, 121]. Indeed, owing to the low dimensionality of nanotube and graphene, mechanical
nonlinearities emerge at relatively low driving forces and strongly affect their dynamics
[13, 29, 30, 122, 123]. Coupled mechanical resonators also offer alternate strategies to
improve the quality factor [103], as well as to detect charge [108] and mass [107] with
high sensitivity. In the quantum regime [7, 8, 100, 101], it has been proposed to use such
nonlinear couplings between the eigenmodes for quantum nondemolition measurements
[102].
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Chapter 6

Brownian fluctuations in carbon
nanotube resonators

In this chapter we study the Brownian fluctuations of carbon nanotube resonators, at
room temperature, by coupling their motion to a focused electron beam. This work has
been carried out in collaboration with Professor Pierre Verlot (Institut Lumière Matière,
Université Claude Bernand Lyon 1).

In the first section we give a brief introduction. We then describe the fabrication
process steps for the type of carbon nanotube mechanical resonators that were used in
this study. Afterwards we describe the principle of operation of the motion transduc-
tion scheme. We then study the real-time dynamics of our devices by measuring their
quadratures of motion. We study their decoherence characteristics by calculating the
autocovariance of their energy and extracting their intrinsic quality factors. We compare
these values with the measure mechanical linewidths and we conclude that the measured
decoherence is dominated by dissipation mechanisms. We then analyze the statistics of
their motion and we demonstrate that the measured nanomechanical fluctuations describe
a Brownian motion of a mechanical resonator at thermal equilibrium. We then switch
our attention on investigating the influence of the amorphous carbon deposition, due to
the electron beam, to the mechanical properties of the nanotubes. Finally, we perform
phase-coherent measurements to characterize the mass deposition in real-time.

6.1 Introduction
Nanomechanical systems [124] have recently been at the origin of a number of important
advances, allowing the observation of the zero-point motion fluctuations at a macroscopic
scale [7, 9, 8], the demonstration of the quantum backaction noise [10], and the creation
of non-classical optomechanical states [11, 125]. The exceptional performance of nanome-
chanical systems primarily rely on their ultra-small effective massmeff , enabling to convert
a very small force δF into a very large displacement, δxF ∝ δF/meff according to New-
ton’s Law. In this context, carbon nanotube resonators [18, 126] belong to the extreme
category of nanomechanical devices: These nano-beams are the smallest mechanical trans-
ducers fabricated thus far, with effective masses reaching the attogram-range (10−21 kg).
This remarkable property has been recently exploited to significantly improve the perfor-
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mances in mass and force measurements, with carbon nanotube-based sensors reaching
the yoctogram (10−27 kg) and the zeptonewton (10−21 N) detection ranges [20, 23, 17].

The performance of nanomechanical systems in sensing applications [127, 128, 129,
130, 131] are intimately related to the motion imprecision [127, 128, 132]. Upon shrinking
mechanical resonators, the effects of these fluctuations can be so large that the mechanical
motion becomes nonlinear [133], yielding to strongly reduced sensing abilities [122]. In
particular, the presence (or not) of thermally driven nonlinear states in carbon nanotubes
has recently attracted considerable attention [134, 135, 136, 137]. However, the nature of
the thermal motion in carbon nanotubes remains to be addressed experimentally: Indeed,
their study requires the ability to detect the mechanical fluctuations in real-time, which
has been a long-standing, yet unsuccessful goal thus far. Progresses in this direction
include the measurement of motion fluctuations integrated over a comparatively long
time [23, 86, 79]. However, this type of measurement have been shown to be dominated
by extrinsic frequency noise mechanisms [138], leaving the thermal dynamics unresolved.

In this chapter, we report the real-time measurement of nanotube resonators for the
first time. We demonstrate an electron beam readout scheme enabling the detection of
the instantaneous position of free-running carbon nanotube resonators. This allows us
to achieve the complete characterization of their vibrational state, both in space and
time domains. Despite their very large vibrational fluctuations, in the 100 nm range,
our singly-clamped suspended carbon nanotube resonators behave as linear nanomechan-
ical devices [122, 139], dominated by external dissipation mechanisms. Their trajecto-
ries describe a Brownian motion in the phase-space [140, 141], that is, both mechanical
quadratures follow uncorrelated Brownian evolutions [142]. These results imply that car-
bon nanotube resonators are compatible with phase-coherent measurement schemes at
room temperature, which we further demonstrate by implementing a piezo-driven res-
onant phase-locked loop which we use in order to characterize the long-term frequency
dynamics in our nanomechanical systems. Our work establishes the viability of carbon
nanotube resonators technology at room temperature and opens novel perspectives for
the ultra-sensitive characterization, measurement and control of carbon-based nanome-
chanical systems.

6.2 Fabrication of singly-clamped carbon nanotube res-
onators

The mechanical resonators used in this work consist of singly-clamped carbon nanotubes
that are anchored at the edge of highly N-doped silicon substrates (Figure 6.1). The
fabrication process starts by depositing few droplets of catalyst and leaving them to dry
for 1-2 minutes. Then, by blowing the sample with a controlled flow of nitrogen, most
of the catalyst is remove and only few catalyst spots of various dimensions eventually
stay on the sample’s surface (Figure 6.1). The samples are then baked for 5 min at 150
◦C, before they are inserted into the oven for the growth of carbon nanotubes, which
is done by chemical vapor deposition (CVD). In this step, thermal decomposition of a
CH4 vapor is achieved in the presence of a Fe catalyst. Nanotubes are growing from the
catalyst island towards all the direction. A fraction of them will be found singly-clamped
suspended at the edges of the substrate (Figure 6.1). The growth temperature is at 830
◦C and the growth-time is 6 min. These parameters are optimized in order to increase
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2 μm1 μm

Figure 6.1: SEM images showing typical singly-clamped carbon nanotubes obtained with chem-
ical vapour deposition (CVD) growing method. The catalyst (white particles) is spread all over
the surface of a N-doped silicon substrate (darker area). After the CVD growth step, sinlgy-
clamped ultra-low diameter carbon nanotubes are found at the edges of the substrate (highlighted
in red, false colors).

the amount of low diameter single-walled nanotubes that are produced after the CVD
growth. The length of suspended tubes is found to vary from few hundreds of nanometers
to few micrometers. For the purposes of this study we specifically consider 4 distinct
devices, labelled D1 to D4.

6.3 Motion detection with a focused electron beam
The detection scheme relies on coupling nanomechanical motion to a focused beam of
electrons [143, 144]. Electron beams can be focused to spot sizes approaching the diameter
of nanotube resonators, ensuring a much higher interaction overlap compared to usual
capacitive or optical techniques used to detect nanomechanical motion [145]. The principle
of the detection works as follows [144]: The collisions between the electron beam and the
nanotube yield to the emission of so-called secondary electrons (SEs), which result from
inelastic scattering mechanisms. The displacements of the nanotube within the electron
beam create a strong modulation of the secondary electrons current, whose fluctuations
are detected by means of a high bandwidth scintillator. Note that previous measurements
of nanotubes using electron beams did not resolve neither the power spectrum nor the real-
time evolution of their mechanical fluctuations [93, 94]. The principle of the experiment
is depicted on Figure 6.2. The samples are mounted onto a 3-dimensional positioning
stage hosted in a commercial Scanning Electron Microscope (SEM) (FEI Inspect F50)
delivering a highly focused, ultra-low noise electron beam [144].

6.3.1 SEM scanning mode
We first operate the SEM in the conventional “scanning mode”, with the electron beam
being scanned over the surface of the sample and the SEs response simultaneously ac-

71



6.3. MOTION DETECTION WITH A FOCUSED ELECTRON BEAM
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Figure 6.2: Schematic of the experimental setup. The carbon nanotube resonators are mounted
inside a Scanning Electron Microscope (SEM), where their motion is detected via the Secondary
Electrons (SEs) emission [143, 144], whose fluctuations are collected at the video output of the
SEM and further sent to a spectrum analyser or a lock in amplifier.

quired. Figure 6.3(a) shows a typical SEs image obtained by scanning a suspended carbon
nanoresonator representative of those investigated in this work (device D1). The image
seems increasingly blurred towards the upper end of the nanoresonator, which is inter-
preted as a consequence of position noise [93, 94]. When the latter is large compared to
the spatial extension of the electron beam, the integrated current I(r, p) = 1

∆t
∫∆t

0 I(rp, t)
becomes simply proportional to the probability P (rp,∆t) to find the object at the elec-
tron beam position rp within the integration time ∆t (here I denotes the SEs emis-
sion rate). Provided that the image integration time is long with respect to the motion
coherence time, the signal becomes proportional to the asymptotic probability, that is
the spatial Probability Density Function (PDF) associated with the position noise [142],
P∞(rp) = lim

∆t→+∞
P (rp,∆t). For a singly-clamped, unidimensional Euler-Bernoulli beam

vibrating in the scanning plane and at thermal equilibrium, this probability is given by

P∞(rp) = u(rp · eCNT) 1√
2πσth

e
− (epe1)2

2σ2
th , (6.1)

with eCNT and e1 respectively denoting the axis and vibrational direction of the carbon
nanotube resonator, u its fundamental mode shape [146] and σ2

th the thermal motion
variance (the origin of the referential being taken at the anchor point of the resonator).
Figure 6.3(b) shows a cross-section of Figure 6.3(a) (white, dashed arrow), confirming the
Gaussian scaling of the SEs emission rate and enabling to extract a quantitative value for
σth = 20.7 nm. Images were taken for electron beam (e-beam) currents in the 0.1 nA to
100 nA range, with no significant change of the variance being observed, corroborating
its thermal origin, as we will also further discuss in subsection 6.3.3.
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Figure 6.3: Static mechanical characterization using a SEM. (a) Magnified SEM micrograph
showing a suspended carbon nanotube representative of those used in the present work (device
D1). The image is clearly blurred towards the upper end of the nanotube, characteristic of the
thermal excitation of its fundamental vibrational mode. (b) Intensity profile taken across the
section denoted by the dashed arrow on (a). The straight line corresponds to a Gaussian fit,
enabling to extract the motion variance σ2

th = (20.7 nm)2. (c) Power spectral density of the
electromechanical signal. The SEM is operated in spot mode, the electron beam being set at
the edge of the carbon nanotube. The resulting SEs fluctuations are collected at the SEM video
output and further sent to a spectrum analyser. A peak is observed at the fundamental resonant
frequency Ω0/2π = 1.9 MHz, enabling to determine the effective mass meff = KBT/σ

2
thΩ2

0.

6.3.2 SEM spot mode

To further establish the vibrational origin of this motion imprecision, we turn the SEM
into “spot mode”, where the electron beam is fixed at a given position. We set the
electron beam at the tip of the resonator and acquire the SEs current fluctuations using
a spectrum analyser (Agilent N9020A) [143, 144]. Figure 6.3(c) shows a peak centred at
ω0/2π ' 1.9 MHz, consistent with the expected resonant behaviour. We verified that
this peak vanishes when decoupling the electron beam from the nanoresonator, therefore
identifying the peak to the fundamental mechanical resonance frequency.

The combination of the spatial PDF measurement (Figure 6.3(b)) and the spectral
measurement (Figure 6.3(c)) enables to determine the static mechanical properties of
the carbon nanotube resonator. The motion variance can be written as a function of
the lateral spring constant k, σ2

th = kBT/k, yielding th k ' 9 × 10−6 Nm−1, with the
temperature T = 300 K. On the other hand, the spring constant expresses in terms of
the spring constant and mechanical resonance frequency, meff = k/ω2

0 ' 64 ag. From the
values of the lateral spring constant and nanotube length, the radius can be evaluated on
the order of r ' 1.4 nm, consistent with a nanotube containing one wall (subsection 6.3.4).
We subsequently repeat this procedure for determining k and meff of all devices reported
in this work.
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6.3.3 Effect of the electron beam intensity in scanning mode
In this section, we consider the influence of the electron beam intensity on the motion
statistic as measured in scanning mode. For simplicity, the following discussion will be
performed in the one-dimensional case, without restricting generality.

The average intensity Ī(x) received by the carbon nanotube resonator expresses as

Ī(x) =
∫ +∞

−∞
dydI in(y)P(x− y), (6.2)

with Iin(y) = I0√
2πw0

e−
x2

2w0 denoting the (Gaussian) intensity profile of the electron beam
(e-beam) (I0 the e-beam intensity, w0 the e-beam waist), P the position probability den-
sity function (PDF) of the carbon nanotube resonator and x the position of the electron
beam, relative to the equilibrium position of the nanotube (see Figure 6.4). For an e-beam
waist large compared to the nanotube diameter w0 � d, equation (6.2) simplifies as

Ī(x) = dI0Px. (6.3)

In particular, it follows from Eq. (6.3) that the averaged secondary electron emission
ĪSE(x) = βĪ(x) (with Îš the secondary electron yield) is proportional to the motion PDF
of the nanotube resonator, a result which we use in order to calibrate our devices [93,
94]. Importantly, such calibration prominently relies on the assumption that the carbon
nanotube resonator remains at thermal equilibrium. However, due to their extremely
reduced dimensions, the dynamics of carbon nanotube resonators may be affected by
the electron beam itself. In the following, we show that such effects result in strong
modifications of the effectively measured motion PDF, which are not observed with our
carbon nanotube resonators, ensuring that the dominant source of excitation is of a
thermal origin.

Assuming that the nanomechanical motion is driven by the electron beam introduces
a dependence of the PDF with respect to the average absorption rate, I(x) w dI0P(x, Ĩx),
describing a multistable system in general. This behaviour can be understood as follows:
The driving strength of the electron beam is proportional to the electron absorption rate,
which increases with the probability to find the nanotube resonator within the electron
beam, as shown by equation (6.3). If we assume that the nanotube resonator is initially
staying at thermal equilibrium with motion variance σth (Figure 6.4(b-0)), the electron
beam exposure is maximized at the center of the thermal trajectory, where the thermal
motion PDF is peaking (Figure 6.4(b-1)). The effect of the electron beam is to increase
the motion variance to σel, that is to spread the motion PDF, which subsequently results
in a drastic decrease of the electron absorption rate (Figure 6.4(b-2)). The effect of the
electron beam being reduced at this point, the nanotube resonator returns to its thermal
equilibrium: Therefore, the dynamics of nanotube resonator switches back and forth
between the two states (1) and (2), where it is alternately driven by the electron beam.

To give a more quantitative description of the expected dynamics in presence of elec-
tron beam driving, we further assume the e-beam driven nanomechanical state to remain
Gaussian, with corresponding PDF P written as

P (x, Ī(x)) = 1√
2πσ[Ī(x)]

exp
{
− x2

2σ2[Ī(x)]

}
, (6.4)
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where σ[Ī(x)] = σth

√
1 + P(x)

Pth
ξe the motion variance. Here Pth(x) demotes the thermal

PDF and ξe the e-beam to thermal forces spectral densities ratio 1. Equation (6.4) can
be solved by means of pertubative approach. Witting P(x) as the sum of the thermal
PDF plus a correction, Pth(x) + P̃(x), one obtains the first order in ξe:

P̃(x) ' −
√
π

2 ξe

(
1− x2

2σ2
th

)
σthP2

th(x). (6.5)

Figure 6.4(c) shows the theoretically expected motion PDF P(x) = Pth(x) + P̃(x) for
increasing values of ξe. Figure 6.4(c-i) shows the unchanged (thermal) PDF in absence of
e-beam drive (ξe = 0). Figure 6.4(c-ii) shows the modified PDF for ξe = 0.5, that is when
e-beam drive contributes to 1/3 of the total motion fluctuations. The corresponding
distribution is strongly deformed, showing important flattening and broadening. Fig-
ure 6.4(c-iii) and fig. 6.4(c-iv) show the theoretical expectation for the measured motion
PDF for ξe = 1 and ξe = 1.5. An increasing splitting is observed, which is a manifesta-
tion of the above described scenario: The nanotube resonator tends to escape the central
region, where e-beam driving is larger. Note that further predicting the evolution of P̃(x)
at higher ebeam strength requires expanding equation (6.4) to higher orders, resulting in
the appearance of multiple solutions around the central region, which accounts for the
above mentioned multistable behaviour.

To verify the influence of the electron beam on the motion PDF, we have realized a
series of images acquired at various input current. The resulting PDF where found to
remain of a Gaussian nature, with no significant distortion being observed, which is a first
indication that e-beam driving effects are negligible. Moreover, fitting the width of the
PDF enables a quantitative determination of the motion variance, as already discussed in
the main manuscript. The results are shown on fig. 6.4(d), demonstrating that the motion
variance remains constant (within the measurement uncertainties) while increasing the
input current over more than a decade. We therefore conclude that the effect of the
electron beam remains negligible in scanning mode, the observed fluctuations being of a
thermal origin.

1Note that defined as such, SFel = ξeSth
F (Sth

F the thermal force spectral density) corresponds to the
equivalent e-beam force noise spectral density required for driving the carbon nanotube resonator into a
Gaussian state with variance σrl =

√
ξeσth.

75



6.3. MOTION DETECTION WITH A FOCUSED ELECTRON BEAM

e-beam current (nA)
10 100

σ 
2

(n
m

)
40

60

80

100

d

W0

<x2>
Iin(x)

P(x)

x

(a)

(d)(c)

0

0.2

0.4

0 2 4-4 -2
x/σth

P(
x)

 (m
-1

)

(i) (ii)

(iii)

(iv)

σth

I1 ≈ I0 w0/σth I2 ≈ I0 w0/σel

σelσth
(0) (1) (2)

(b)

Figure 6.4: Effect of the e-beam on the motion PDF in scanning mode. (a) Schematic repre-
senting the geometric quantities of interest. (b) Schematic illustrating the expected multistable
behaviour of the nanotube resonator under e-beam excitation. Initially resting at thermal equi-
librium (0), the nanotube resonator is exposed to the electron beam at the centre of its Gaussian
thermal trajectory, where its presence probability is maximum (1). This exposure yields to a
strong mechanical excitation, resulting in a large increase of the motion variance (2). As a conse-
quence, the presence probability is strongly reduced in the central region, resulting in a strongly
reduced e-beam exposure. The nanotube resonator therefore returns to its thermal equilibrium,
where it becomes again sensitive to e-beam excitation. (c) Calculated motion PDF of an e-beam
driven nanotube resonator. The e-beam strength is defined relative to the thermal noise by the
parameter ξe (see main text), with ξe = 0 (i), ξe = 0.5 (ii), ξe = 1 (iii), ξe = 1.5 (iv). (d)
Motion variance as a function of the e-beam input current. Each point is obtained by fitting the
corresponding second electron image using a Gaussian distribution.

6.3.4 Estimation of the diameters of carbon nanotube resonators
To estimate the diameter of our carbon nanotube resonators, we follow the protocol
introduced in the work from Krishnan et al. in Ref [146]. Indeed, the motion variance
σ2 (as obtained via the Secondary Electrons (SEs) images (Figure 6.3(a))) can be further
related to the physical parameters of the nanotubes via the expression [146]

σ2 = 0.1061L
3kBT

Y r3G
, (6.6)

where L is the length of the nanotube, kB the Boltzmann’s constant, T the temperature, Y
the Young’s modulus, r the radius of the nanotube, and G its wall thickness. Therefore,
in the case of device D1, we have measured σ = 20.7 nm and L = 1 µm; assuming a

76



6.4. REAL-TIME DYNAMICS

Young’s modulus Y = 1.25 TPa [146] and a single wall nanotube thickness G = 0.34 nm,
we finally obtain a radius r = 1.4 nm.

6.4 Real-time dynamics
The potential of nanomechanical devices relies on their ultra-sensitive dynamical be-
haviour, which requires the ability to operate them close to their fundamental limits and
in real-time [131, 132]. To do so, we connect the scintillator output of the SEM to an ultra-
fast lock-in Amplifier (Zurich Instruments UHFLI), which we use for demodulating the
quadratures of the electromechanical signal around the mechanical resonance frequency
(see Appendix B). Figure 6.5(a) shows the fluctuations spectrum of the out-of-phase
quadrature obtained with device D2 (k ' 4.8 × 10−6 Nm−1, meff = 938 ag), with the
demodulation frequency being set to 356 kHz. Two peaks are observed, with comparable
widths and heights: Similar to what has been recently observed with larger scale singly
clamped nanomechanical cantilevers [147, 148, 149], carbon nanotube resonators behave
as vectorial devices, showing 2 eigendirections of vibration, which both contribute to the
transduced electromechanical signal if not aligned with the SEs emission gradient [144].
Figures 6.5(b) and 6.5(c) further show the spectrum of the electromechanical signal as
demodulated around each resonance frequency. The data adjust very well to Lorentzian
models (straight lines), suggesting that the nanotube resonator behaves as a linearly
damped, 2-dimensional harmonic oscillator at thermal equilibrium.

To address the origin of the observed mechanical linewidths [17, 138], we compute
the autocovariance of the energy of the electromechanical signal CI2(t, t + τ) = 〈(I2(t +
τ) − 〈I2〉)(I2(t) − 〈I2〉)〉 (see section C.1), with t the time, τ the measurement delay
time, and 〈...〉 statistical average. The energy autocorrelation has indeed the property to
be insensitive towards frequency noise (see section C.3), enabling the pure extraction of
the mechanical damping rates, with the additional benefit of minimal driving amplitude,
therefore avoiding possible nonlinear artefacts [150]. For a linear, stationary driven non-
degenerate 2-dimensional mechanical oscillator, this energy autocovariance is independent
of t and can be shown to read as (see section C.2)

CI2(τ) = g4
1σ

4
1e
−γ1τ + g4

2σ
4
2e
−γ2τ + 2g2

1g
2
2σ

2
1σ

2
2e
− γ1+γ2

2 τ cos ∆ωτ, (6.7)

with ∆ω/2π the frequency splitting between the two modes and the width Γi, σ2
i = 〈x2

i 〉
and gi = 1√

2
∂I
∂xi

the mechanical damping rate, the motion variance and the electrome-
chanical coupling rate associated with each vibrational direction (i ∈ {1, 2}), respectively.
The terms on the first line of equation (6.7) identify to the individual energy components
associated with each mode, whereas the second line simply corresponds to the acoustic
beat between the two motional polarizations. Figure 6.5(d) shows the electromechani-
cal energy autocovariance corresponding to the spectrum shown on Figure 6.5(a). The
experimental data (dots) are found to adjust very well to the theoretical model set by
equation (6.7) (straight line).

It is interesting to compare the “apparent”quality factors Q̃i = ωi/δωi obtained from
the fits of the quadrature spectrum ( δωi denoting the mechanical linewidth associated
with each vibrational direction, i ∈ {1, 2}), to the “intrinsic”quality factors Qi = ω1/γ1,
measured via the autocovariance of the energy. The measurements presented on Figures
6.5(a) and 3(d) are consecutively repeated a number of times and used for extracting the
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Figure 6.5: Real-time dynamics of a carbon nanotube resonator (device D2). (a) Motion
quadrature spectrum of a free running carbon nanotube resonator. The quadratures of the
electromechanical signal are demodulated at ωd/2π = 356kHz using an ultra-fast lock-in ampli-
fier while the electron beam being set at the upper edge of the device. The spectrum is obtain as
the Fourier transform of the 1 s-averaged autocorrelation of the out-of-phase electromechanical
quadrature. Two peaks are observed, associated to the motion imprecision in each vibrational
direction of the resonator. Straight lines correspond to Lorentzian adjustments (individual in
purple and orange, dual incoherent sum in blue), enabling to extract both mechanical resonance
frequencies ω1/2π = 356.577kHz and ω2/2π = 370.243kHz and the values of the apparent qual-
ity factors Q̃1 = ω1/δω1 = 541 and Q̃2 = ω2/δω2 = 591. (b) Motion spectrum associated
with mode 1. The data are obtained by demodulating the electromechanical signal around fre-
quency ω1/2π and further computing the Fourier transform of its 1s-averaged autocorrelation.
The straight line corresponds to a single Lorentzian fit with additional, incoherent background.
(c) Same as (b) but for mode 2. (d) Electromechanical energy autocovariance calculated as
CI2(t, t + τ) = 〈(I2(t + τ) − 〈I2〉)(I2(t) − 〈I2〉)〉. with I the SEs current, t the time, τ the
measurement delay time, and 〈...〉 statistical average. The straight line stands for the theoretical
adjustment set by equation (6.7), yielding to the values of the intrinsic quality factors Q1 = 582
and Q2 = 559. (e) Time series of the apparent quality factors as measured from a series of
spectra similar to the one shown on (a). Dashed lines correspond to the average value obtained
for Q̃1 and Q̃2 (purple and orange, respectively). (f) Time series of the intrinsic quality factors
as measured from a series of spectra similar to the one shown on (a). Dashed lines correspond
to the average value obtained for Q1 and Q2 (purple and orange, respectively).
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corresponding damping parameters. The results are reported on Figures 6.5(e) and 6.5(f).
Dashed lines stand for the average value of each series of points, yielding to Q̃1 = 412,
Q̃2 = 570, and Q1 ' Q2 = 583. These values show no significant difference between the
apparent and intrinsic quality factors, which establishes that the measured decoherence is
dominated by dissipation mechanisms in the carbon nanotube resonator. In other words,
the Duffing restoring force and the mode-mode coupling forces, which arise from inertial
nonlinear effects in singly-clamped beams [151, 152], are weak enough so that motional
fluctuations do not induce sizable dephasing.

6.5 Motion statistics
We now turn our attention to the statistical analysis of nanomechanical motion. We insist
that this aspect is indispensable for resolving the nature and origin of the vibrational state:
Indeed, fundamental differences in vibrations, such as those reported in Refs. [8, 134,
149, 153, 154], can be resolved only by measuring their motion quadrature distribution
[155]. Figure 6.6(a-i) (resp. Figure 6.6(b-i)) shows the time evolution of the motion
quadratures (X11(t), X12(t)) of x1 (resp. (X21(t), X22(t)) of x2), defined as the cross-
phase, slowly varying components of mechanical motion [141], xi(t) = Xi1(t) cosωit +
Xi2(t) cosωit. The corresponding real-time displacements x1(t) and x2(t) are shown on
Figures 6.6(a-ii) and 6.6(b-ii). Figures 6.6(a-iii) and 6.6(b-iii)) show the quadratures
cross-correlation functions CX,i(τ) = 〈Xi,1(t)Xi,2(t, t + τ)〉 (i ∈ {1, 2}) associated with
each trajectory. These correlations are found to vanish below the 10% level and can
therefore be safely neglected. Figures 6.6(a-(iv,v)) and 6.6(b- (iv,v)) show the histogram
of the normalized motion quadratures, which are all found to be Gaussian distributed with
unit variance (straight lines). In total, these measurements show that the quadratures of
the nanomechanical fluctuations in each vibrational direction describe a Brownian motion
[142], consistent with a 2-dimensional mechanical resonator at thermal equilibrium. These
results establish that nonlinear mechanical effects in singly-clamped nanotube resonators
at room temperature remain weak. Figure 6.7(a) and Figure 6.7(b) further show the
corresponding motion trajectory and associated histogram in real-space, confirming a
bivariate, symmetric Normal distribution of the position noise.

To complete our study, we evaluate the spatial correlations defined as 2σ1σ2C12(τ) =
〈{X11(t) + iX12(t)}{X21(t) − iX22(t)}〉 The result is reported on Figure 6.7(c), where
the real and imaginary parts are shown separately. The very low level of correlations
indicates that potential landscape nonlinearities have negligible effects, to first order
[156, 149]. Finally, we note that the 2-dimensional, non-degenerate nature of suspended
nano-cantilevers provides them with the peculiar property to develop short-term spatial
correlations under random external driving, such as the one resulting from measurement
backaction. These correlations manifest through strong distortions in the electromechan-
ical spectrum [157], which are not observed in our measurements (see Figure 6.5(a) and
section 6.6). This indicates the absence of any random external driving source, and in
particular to the innocuity of the electron beam towards the vibrational state. Thus, the
observed Brownian motion is likely to be a thermal origin.
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Figure 6.6: Motion statistics of a carbon nanotube resonator (device D2). (a) (a-i) Time evo-
lution of the motion quadratures for mode 1. (a-ii) Corresponding real-time evolution of the
position x1(t). (a-iii) Quadratures cross-correlation for mode 1. (a-iv,v) Histograms of the nor-
malized quadratures associated with x1(t). Straight lines are Gaussian curves with unit variance.
(b) Same as (a) for mode 2. (c) Nanomechanical trajectory (x1(t), x2(t)) in real-space. (d) His-
togram of the nanomechanical trajectory (x1(t), x2(t)) in real- space. (e) Spatial correlations
as a function of time. The upper and lower curves stand for the imaginary and real parts of the
spatial correlation function, respectively (see text).
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Figure 6.7: Motion statistics of a carbon nanotube resonator (device D2). (a) Nanomechanical
trajectory (x1(t), x2(t)) in real-space. (b) Histogram of the nanomechanical trajectory (x1(t),
x2(t)) in real-space. (c) Spatial correlations as a function of time. The upper and lower curves
stand for the imaginary and real parts of the spatial correlation function, respectively (see text).

6.6 2-dimensional nanomechanical response

In this part we take into account the 2-dimensional motional nature of the carbon nan-
otube resonator, that is its ability to vibrate along two perpendicular directions (e1, e2).
In this basis, Newton’s law can be written as:

meff
d2x1

dt2 = −k1x1(t)−meffγ1
dx1

dt + Fel(t) · e1 + Fth,1(t)

meff
d2x2

dt2 = −k2x2(t)−meffγ2
dx2

dt + Fel(t) · e2 + Fth,2(t), (6.8)

with x1,2(t) the motion trajectories along directions e1,2, k1,2 and γ1,2 the effective spring
constants and linear damping rates associated with displacements x1,2, Fth{1,2} the (un-
correlated) thermal forces in the eigendirections of motion, and Fel the (random) force
exerted by the electron beam onto the nanotube resonator. Noting β = (e1,Fel) the
angle between the first motional eigendirection and the electron beam induced force, the
stationary solutions of equation (6.8) write in Fourier space:

x1(ω) = χ1(ω)(cosβFel[ω] + Fth,1(ω))
x2(ω) = χ2(ω)(cosβFel(ω) + Fth,2(ω)), (6.9)

with ω the Fourier frequency, χ1,2(ω) = 1/2meff (ω2
1,2 − ω2 − iγ1,2ω) the mechanical

susceptibilities associated with modes 1 and 2 (ω2
1,2 = k1,2/meff the mechanical resonant

frequencies), and Fel = ‖Fel‖.
Our detection scheme projects the 2-dimensional nanomechanical motion onto a given

direction um along which the linear displacement sensitivity becomes maximum [149]. The
measured signal is subsequently proportional to the projected displacements xθ given by:

xθ(t) = cos θx1(t)− sin θx2(t), (6.10)

where θ = e1 ·um. Combining equations (6.8) and (6.9) enables to derive the output fluc-
tuation spectrum 2πδ[ω′+ω]Sθ(ω) = 〈xθ(ω)xθ(ω′)〉 (δ demoting the Dirac delta function
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and 〈...〉 statistical averaging):

Sθ(ω) = cos2 θ|χ1(ω)|2Sth
F,1(ω) + sin2 θ|χ2(ω)|2Sth

F,2(ω)

+ 1
2 |χ1(ω)(2 cos2 θ cosβ + sin 2θ sin β) + χ2(ω)(2 sin2 θ cosβ − sin 2θ sin β)|2Sel(ω)

F .

(6.11)

The two first terms in equation (6.11) correspond to the (uncorrelated) thermal contri-
butions of mode 1 and 2 as projected in the direction defined by um: In absence of any
further driving term, one retrieves the usual result that linear motion detection yields to
a composite spectrum whose peak amplitudes enables to determine the relative orienta-
tions of the eigenaxis of vibration [148, 149, 144]. Instead, the second line in equation
(6.11) shows that the driving contribution arising from the e-beam fluctuations features
the coherent sum of the mechanical response, where the relative phase of their response
towards the e-beam noise is partially preserved: Contrary to thermal excitations, which
are by nature uncorrelated along the eigen axis of vibration, the electron beam as a driv-
ing bath creates motion correlations that are characteristic of the common origin of the
fluctuations when observed in two perpendicular transduction directions.

It is difficult to favor one particular mechanism that could be the dominant contri-
bution to the electron beam backaction. In the perfect, Heisenberg limited probe case,
the backaction is expected to exert along the optimal detection direction um. However
quantum backaction mechanisms remain to be further investigated in the present case of
electron beam assisted detection of nanotube resonators, and we prefer not to make any
definitive assumption at this stage and to leave the quantum backaction force orientation
(as defined by the angle β) as a free parameter. Figure 6.8 shows the evolution of the com-
posite spectrum Sθ(ω) for 4 different values of β covering the forward half plane (β = 0◦,
45◦, 90◦, and 135◦ from Figure 6.8(a) to 6.6(d)). Each subset shows the backaction free
case (Sel

F = 0, in blue) together with the full spectrum as computed from Eq. (6.11) (in
yellow, with Sel

F = 100Sth
F,{1,2}), for various orientations of the eigenaxis of vibration with

respect to the optimal detection direction um (θ = 0◦ to θ = 160◦ from (i) to (ix)). The
spectra have been normalized in order to better appreciate the differences induced by the
presence of e-beam driving. One sees that measuring one of the eigenvibration along the
optimal detection direction (θ = 0◦) does not enable to spectrally distinguish the ther-
mally driven case from the e-beam driven case: In that case, the detection is simply not
sensitive to the other vibrational direction and the problem is purely one-dimensional,
with no difference between the thermal and the e-beam noise being spectrally possible.
Instead, one observes that even for small tilts of the measurement directions relatively to
the eigenaxis of vibration, the composite signal becomes immediately and strongly sen-
sitive to the aforementioned correlations, which materialize through spectral holes being
formed around frequencies that are determined by the combined mechanical and detec-
tion phases [157]: These strong spectral distortions are the signature of the presence of
electron beam driving, and vice-versa. Overall, the absence of such distortions in the
measured spectra indicates that the force noise induced by the electron beam is likely
weaker than the thermal force noise of the nanotube.
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Figure 6.8: Composite detection spectrum in presence of electron beam induced driving. The
composite spectrum Sθ(ω) (eq. 6.11) is computed for 4 different force backaction orientations,
β = 0◦, 45◦, 90◦, and 135◦ from (a) to (d). For each subset, both the thermal spectrum
(Sel

F = 0, in blue) and the full composite spectrum (yellow) are plotted for various values of the
angle θ, from θ = 0◦ to θ = 160◦ from (i) to (ix). The parameters used for evaluating equation
(6.11) are Sel

F = 100Sth
F , γ1 = γ2, and ω2 − ω1 = 10γ1.
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6.7 Long-term electromechanical measurements

The above presented results have been obtained on relatively short measurement time
scales, in the 1 - 10 s range. On a longer timescale, electron beam exposure is known to
catalyze matter deposition [158]. To quantitatively determine the impact of a prolonged
e-beam exposure on the mechanical properties of the carbon nanotube resonator, we
proceed as follows. We set the SEM in spot mode and expose the sample for a given time.
We subsequently determine both motion variance and mechanical resonance frequency
using the calibration procedure described above. The results are shown on Figure 6.9 and
have been obtained with device D3 (k = 3.7× 10−6 Nm−1, meff ' 52 ag). Figure 6.9(a)
shows the scanning SEs images obtained at the beginning (left, t = 0 s) and at the end
(right, t = 200 s) of the exposure. A clear deposition can be observed at the upper
end of the carbon nanotube, where the electron beam spot has been set during exposure.
Figure 6.9(b) and Figure 6.9(c) show the evolution of the thermal variance and mechanical
resonance frequency as functions of the exposure time. The thermal variance is found to
be essentially invariant in time, suggesting no change in the restoring properties of the
carbon nanotube resonator. In contrast, the mechanical resonance frequency decreases
as a function of exposure duration, consistent with the increase of the effective mass.
Figure 6.9(d) and Figure 6.9(e) show the same results as 6.9(b) and 6.9(c) expressed
in terms of the lateral spring constant and defective mass. In particular, Figure 6.9(e)
enables to determine a (linear) deposition rate of 0.8 ag s−1. We have verified that this
deposition rate can be decreased to much lower values at lower pressure and by carefully
eliminating hydrocarbon molecules from the vacuum chamber.

6.8 E-beam assisted phase-coherent measurements

An important conclusion of our work relies in the fact that our carbon nanotube resonators
are found to operate in the linear regime, an indispensable prerequisite for further imple-
menting phase-coherent measurement schemes, which are central in mechanical sensing
[131]. Here we demonstrate a Phase-Locked Loop (PLL) which we use for tracking the
mechanical resonance frequency in real-time. Its principle is depicted in Figure 6.10(a): a
piezo actuator is driving the carbon nano-resonator close to its mechanical resonance. The
phase of the resulting mechanical response is detected via the electromechanical signal
and fed back to the driving oscillator, which subsequently follows the frequency changes
of the nanotube resonator. The results of Figures 6.10(b) and 6.10(c) have been obtained
with device D4 (k = 1.3 × 10−6 Nm−1, meff = 260 ag). Figure 6.10(b) shows the piezo-
driven amplitude response of the nanotube resonator, with a typical doublet of resonance
being observed, with respective quality factors of ' 130 and ' 260 being measured for
the lower and higher frequency modes, respectively. Note that these values have been
verified to match those obtained from the thermal response (see subsection 6.8.1). We set
the PLL to the higher frequency mode and acquire the corresponding frequency changes,
induced by e-beam hydrocarbon deposition. The mechanical frequency is found to drift
with a slope ' 20 Hzs1, corresponding to a deposition rate of 35 zgs−1. Interestingly,
the equivalent mass sensitivity, inferred from the Allan deviation of the centred frequency
fluctuations, is found on the order of 16 zg for an integration time of 1 s, which is already
two orders of magnitude beyond the current state of the art at room temperature [159].
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Figure 6.10: E-beam assisted phase-coherent measurements (device D4). (a) Simplified
schematic of the piezo-driven phase-locked loop. A piezo actuator is driving the carbon nanores-
onator close to its resonance. The phase of the resulting mechanical signal is detected via
the electromechanical signal and fed back to the driving oscillator. (b) Piezo-driven frequency
response of the carbon nanotube resonator. The straight, dashed line corresponds to the back-
ground associated with two independently driven harmonic oscillators. The lower displacement
level in the intermediate frequency range is related to motion correlations, which result from
the common excitation source for both in-plane and out-of-plane vibrational modes [157]. (c)
Evolution of the upper resonance frequency (right peak of (b)) as a function of time. The linear
frequency drift of −20 Hz s−1 enables to determine a mass deposition rate of 35 zg s−1. The
equivalent 1 s-integrated mass imprecision of 16 zg is determined as the Allan deviation of the
centred frequency fluctuations, obtained after subtracting the linear drift component.
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Figure 6.11: 2-dimensional incoherent and coherent response of a carbon nanotube resonator.
(a) Thermal spectrum obtained as the fast Fourier transform of the electromechanical signal.
(b) Piezo-driven response acquired using the ultra-fast lock-in amplifier.

6.8.1 Thermal versus driven response
In this section, we compare the piezo-driven response to the electromechanical spectrum
obtained with device D4. The results are shown on Figure 6.11(a) shows the spectrum
the electromechanical signal obtained as the fast Fourier Transform of the SEs current
demodulated around 220 kHz. Two peaks are observed, with comparable heights and
quality factors Q1 = 145 and Q2 = 86, respectively. These resonant peaks are in good
agreement with those found from the piezo-driven response (Figure 6.11(b)) which yields
to two peaks as well, with quality factors Q1 = 205 and Q2 = 70. We attribute the
slight unbalance of the two peaks to the orientation of the piezo-induced inertial force,
which is rather aligned in the direction of the second vibrational mode. Note the presence
of an anti-resonance at intermediate frequencies, resulting from a negative interference
between the two mode. This is perfectly captured by the theoretical adjustment, which
corresponds to the coherent sum of two resonant Lorentzian curves.

6.9 Discussion
The present work demonstrates that our novel measurement method enables to detect the
vibrations of nanotube-based resonators with masses as low as 50 ag. The measurement of
such ultra-low mass resonators raises the question of the limits of our approach. Besides
the strong, sub-nanometre confinement of the electron probe, the other key element of
our scheme lies in the layout of the device. The absence of any electron scatterer within
the immediate vicinity of the free-standing nano-object enables a very high SEs contrast,
which is at the origin of the high motion sensitivity.

On the technical side, the sample contamination arising from e-beam exposure repre-
sents a limitation under unoptimized vacuum conditions. However it can also be viewed
as a profitable tool: Indeed, as suggested above, the ability to monitor the PDF of the
nanoresonator implies a nonlinear transduction mechanism, where the motion fluctuations
of the probed region are large compared to the electron beam dimensions. E-beam expo-
sure can therefore be used for linearising the electromechanical coupling, by controllably
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shaping the edge of the nanotubes via electron beam assisted hydrocarbon deposition
[158]. The corresponding added mass can be kept below the 10 ag range (10−20 kg) so
that it does not significantly affect the mechanical properties of our systems. Moreover
we have shown that such deposition effect can be minimized by working at lower external
pressure, which can be achieved e.g. by implementing ultra-high vacuum environment.

On a more fundamental side the measurement is responsible for a random backaction
that may affect the vibrational fluctuations of the measured objects [160]. While such
effects are not observed in the present work (where the investigated devices are driven
by thermal forces ranging between (2 aNHz− 1

2 )2 and (10 aNHz− 1
2 )2), they may become

significant for nanotube resonators with higher quality factors. Indeed, e-beam quantum
backaction acting on thick semiconducting scatterers has recently been evaluated to be
on the order of (1 aNHz− 1

2 )2 under standard operating conditions [144], which should be
in reach e.g. at low temperature, where the mechanical quality factors are found to be
enhanced by several orders of magnitude [17]. Though certainly representing a limit from
the sensing point of view, this points out that singly-clamped nanotube resonators are
devices of choice for probing and controlling quantum properties of electronic beams.

Lastly, we would like to once more attract the attention on a very important and
useful characteristic of our singly clamped suspended nanotube resonators, that is their
2-dimensional vibrational nature. This property makes these resonators sensitive to spa-
tially induced motion correlations, resulting in strong distortions in their electromechani-
cal spectrum. These signatures (such as the non-Lorentzian resonance lineshapes observed
on Figure 6.10(b) in response to an external piezo drive) enable to address the presence
and nature of external driving forces, with no further calibration being required [149]. In
particular, it is interesting to note that these nanomechanical objects are expected to sur-
pass the limits set by quantum backaction in principle [157], which has so far never been
observed and would represent an important step from the perspective of Quantum Mea-
surement. This 2-dimensional behaviour has also been highlighted as a strong asset in the
context of ultra-sensitive nanomechanical detection, related to the corresponding ability
to self-discriminate the external noise mode in phase-coherent measurements [139, 148],
which will be highly beneficial to our systems.

6.10 Conclusions and outlook
We have shown that the focused electron-beam of a SEM operated in “spot mode”allows to
detect the noise dynamics of attogram-scale singly-clamped suspended carbon nanotubes
resonators in real-time. We have demonstrated that a SEM operated in spot mode be-
haves as a stereo-scope with our devices, enabling the tri-dimensional reconstruction of
their motion fluctuations in real-time. We have presented a detailed analysis of the 2-
dimensional noise trajectories both in space and time, and shown that such small objects
behave as Brownian particles evolving in a two-dimensional harmonic potential. Our work
paves the way towards the exploration of novel thermodynamic regimes at scales which
have been so far inaccessible experimentally.
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