
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



UNIVERSITAT POLITÉCNICA DE 

CATALUNYA 
 

 

 

Programa de Doctorat: 

AUTOMÀTICA, ROBÒTICA I VISIÒ 

Tesis Doctoral 

 DISTRIBUTED LARGE SCALE 

SYSTEMS: A MULTI-AGENT 

RL-MPC ARCHITECTURE 
 

 

Valeria Javalera Rincón. 

Directors: Vicenç Puig i Bernardo Morcego 
 

 

Febrero 2016.  



 

 

Abstract 

DISTRIBUTED LARGE SCALE SYSTEMS: A MULTI-AGENT RL-MPC 

ARCHITECTURE 

 
by Valeria Javalera Rincón 

  

This thesis describes a methodology to deal with the interaction between MPC controllers in a 

distributed MPC architecture. This approach combines ideas from Distributed Artificial 

Intelligence (DAI) and Reinforcement Learning (RL) in order to provide a controller 

interaction based on cooperative agents and learning techniques. The aim of this methodology 

is to provide a general structure to perform optimal control in networked distributed 

environments, where multiple dependencies between subsystems are found. Those 

dependencies or connections often correspond to control variables. In that case, the 

distributed control has to be consistent in both subsystems. One of the main new concepts of 

this architecture is the negotiator agent. Negotiator agents interact with MPC agents to 

determine the optimal value of the shared control variables in a cooperative way using learning 

techniques (RL). The optimal value of those shared control variables has to accomplish a 

common goal, probably different from the specific goal of each agent sharing the variable. 

Two cases of study, in which the proposed architecture is applied and tested are considered, a 

small water distribution network and the Barcelona water network. The results suggest this 

approach is a promising strategy when centralized control is not a reasonable choice. 



i 

 

Table of Contents 
 

List of figures .................................................................................................................. ii 
Chapter 1. Introduction ..................................................................................6 

1.1 Scope .................................................................................................................................. 8 

1.2 Objectives........................................................................................................................ 11 

1.3 Expected contributions ................................................................................................. 12 

Chapter 2. State of Art. ................................................................................ 14 

2.1 Model predictive control philosophy .......................................................................... 14 

2.3 Reinforcement Learning. .............................................................................................. 19 

2.4 Multi Agent Systems ...................................................................................................... 24 

Chapter 3. Formulation of the framework ................................................ 28 

3.1. The problem .................................................................................................................. 28 

3.2 MPC agents ..................................................................................................................... 32 

3.3 Negotiator agents ........................................................................................................... 34 

Chapter 4. Cooperation and learning. ........................................................ 37 

4.1 Cooperation and learning ............................................................................................. 37 

4.2 A model driven control and a model driven integrated learning. ........................... 38 

4.3 Roles of the Negotiator agent. ..................................................................................... 41 

4.4 Behaviors ......................................................................................................................... 41 

4.5 The learning approach in context. ............................................................................... 48 

Chapter 5. Description of the MA-MPC Methodology. ......................... 50 

5.1 Analysis phase. ................................................................................................................ 51 

5.2 Design phase ................................................................................................................... 54 

5.4 Experimentation phase ................................................................................................. 60 

5.5 Implementation phase. .................................................................................................. 61 

5.6 Testing ............................................................................................................................. 61 

Chapter 6. Learning by instruction, an application of the MA-MPC Architecture 62 

6.1 Analysis ............................................................................................................................ 63 

6.2 Design. ............................................................................................................................. 68 

6.3 Experimentation............................................................................................................. 78 

6.4 Conclusions ..................................................................................................................... 83 

Chapter 7. Learning from exploration-validation, an application. ......... 85 

7.1 Design .............................................................................................................................. 86 

7.2. Experimentation. ........................................................................................................... 87 

7.3 Conclusions ..................................................................................................................... 94 

Chapter 8. Application to the Barcelona drinking water network case study. 95 

Conclusions and further research. ................................................................... 109 

Bibliography ............................................................................................................... 111 

 



 

 ii 

List of figures 
Number Page 

Figure 1.1 Agbar´s Centralized Tele-Control System. .................................................................. 10 

Figure 1.2 Diagram of the Barcelona Water Transport Network. .............................................. 11 

Figure 2.1  Example of conventional MPC.................................................................................... 15 

Figure 2.2 MPC taxonomy………………………………………………………………...16 
Figure 2.3  Distributed MPC Taxonomy. ....................................................................................... 17 

Figure 2.4  RL agent interactions  (Alpaydin, 2014). .................................................................... 20 

Figure 3.1 The problem of distributed control. ............................................................................. 29 

Figure 3.2 Resulting multi- agent system associated to the distributes MPC control of the 
system presented in Figure 3.1 ........................................................................................... 30 

Figure 3.3 Network of five nodes fully communicated. ............................................................... 32 

Figure 3.4 Internal structure of MPC agents. ................................................................................ 33 

Figure 3.5 Internal structure of NA ................................................................................................ 35 

Figure 4.1 Integration of the models of MPC agents in the planning process ......................... 39 

Figure 4.2 On the left, comparison of the control obtained by means of a centralized MPC 
and decentralized MA-MPC using PBIB. On the right, contrast between outputs of 
the centralized MPC and MA-MPC system with PBIB. ................................................. 44 

Figure 4.3 simulation of a shared variable in which instructed-evaluative learning was applied. ... 46 

Figure 4.4 Combination of learning techniques used in the negotiation-learning approach of 
the NA. .................................................................................................................................. 48 

Figure 5.1 Flow of the MA-MPC methodology process.............................................................. 50 

Figure 5.2 Processes of the analysis phase. .................................................................................... 51 

Figure 5.3 Examples of system diagrams ....................................................................................... 52 

Figure 5.4 Example of a general partitioning diagrams. ............................................................... 54 

Figure 5.5 Design phase process. .................................................................................................... 55 

Figure 5.6 Examples of architecture of the system diagrams. ..................................................... 55 

Figure 5.7 Examples of relation diagrams. ..................................................................................... 56 

Figure 5.8 Internal structure of the MPC agents. .......................................................................... 58 

Figure 5.9 Internal structure of NA ................................................................................................ 59 

Figure 5.10 Experimentation phase. ............................................................................................... 60 

Figure 5.11 Implementation phase. ................................................................................................. 61 

Figure 5.12 Processes of testing phase ........................................................................................... 61 

Figure 6.1 MA-MPC methodology processes ................................................................................ 62 

Figure 6.2 Processes of the Analysis phase .................................................................................... 63 

Figure 6.3 System diagram of the four tanks with multiple independences problem. ............. 64 

Figure 6.4 General  partitioning diagram. ....................................................................................... 67 

Figure 6.5 Processes of the design phase ....................................................................................... 68 

Figure 6.6 General architecture of the system diagram. ............................................................... 68 

Figure 6.7 Relation diagram of the four tank system. ................................................................... 69 

Figure 6.8 Overlapping of U and V sets of the system. .............................................................. 73 

Figure 6.9 Negotiator’s structure ..................................................................................................... 75 

Figure 6.10 Process of experimentation phase .............................................................................. 78 

Figure 6.11 Different phases of the training using PBIB of the variable u5 .............................. 79 



 

 iii 

Figure 6.12 Contrast between outputs of centralized MPC (green) and MA-MPC using PBIB 
(blue) outputs, red line is the reference, cyan x max, purple x min. ............................. 81 

Figure 6.13 Actions (u´s) applied by the MA-MPC using PBIB (blue) and the centralized 
(green) solution in a simulation of the four tanks with multiple dependences problem. 
Red line u max, cyan u min. ................................................................................................ 82 

Figure 7.1 Process flow made in the iteration between experimentation and design phases . 85 

Figure 7.2 New internal structure of the NA ................................................................................. 86 

Figure 7.3 Comparison of the resulting Q-Tables of the variable u5 using PBEB (a) and PBIB(b)
 ................................................................................................................................................. 89 

Figure 7.4 (a) System partitions. (b) Shared variables between M1 and M2 ............................... 90 

Figure 7.5 Results of the MPC agents (blue) compared with the centralized MPC (green) 
solution. The red line is the reference, purple x min, cyan x max................................. 91 

Figure 7.6 Actions (u´s) applied by the MA-MPC using PBEB with selective reward (blue) and 
the centralized (green) solution in a simulation of the four tanks with multiple 
dependences problem. Red line umax, cyan umin.. ................................................................ 92 

Figure 8.1 System diagram of the Barcelona DWN aggregate network .................................... 96 

Figure 8.2 Relation diagram of the Barcelona aggregate DWN .................................................. 98 

Figure 8.3 General structure of the Barcelona BWN MA-MPC implementation. ................... 99 

Figure 8.4 Internal structure of N1 of the Barcelona DWN ...................................................... 100 

Figure 8.5 Internal structure of N2 of the BWN system ........................................................... 101 

Figure 8.6 Tank volume evolutions of M1 (red sub-sytem). Blue line represents MA-MPC 
solution and green line represents the centralized MPC. ............................................. 104 

Figure 8.7 Tank volume evolutions of M2 (green sub-system). Blue line represents MA-MPC 
solution and green line centralized MPC. ....................................................................... 105 

Figure 8.8 Tank volume evolutions of M3 (blue sub-system). Blue line represents MA-MPC 
solution and green line centralized MPC. ....................................................................... 107 

Figure 8.9 Some of the control variable evolution corresponding to the Barcelona DWN. Blue 
line represents MA-MPC solution and green line centralized MPC. Cyan and red lines 
are min and max values of u. ............................................................................................ 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

 

LIST OF TABLES 

Table 1.1 Metropolitan Area Of Barcelona- Water Net (2006) .................................................... 9 

Table 2.1  Characteristics of the Agents. ........................................................................................ 26 

Table 4.1 Roles of the NA and they respective behavior. ........................................................... 42 

Table 4.2 Relation of roles and behaviors. ..................................................................................... 49 

Table 5.1 Table 𝛾 ............................................................................................................................... 56 

Table 5.2 MPC agent definition table. ............................................................................................ 57 

Table 5.3 Internal correspondence table of NA ............................................................................ 59 

Table 6.1 Functional requirements table of the four tanks with multiple dependencies problem
 ................................................................................................................................................. 65 

Table 6.2 Table γ ................................................................................................................................ 69 

Table 6.3 Definition of MPC Agents M1 and M2 .......................................................................... 70 

Table 6.4 Plant model of M1 and M2 ............................................................................................... 71 

Table 6.5 State variables restrictions of set XM1 ............................................................................ 72 

Table 6.6 State variables restrictions of set XM2 ............................................................................ 72 

Table 6.7 Control variables restrictions of UM1 ............................................................................. 73 

Table 6.8 Control variables restrictions of UM2 ............................................................................. 73 

Table 6.9 Internal correspondence of state variables between XM1 and the centralized system73 

Table 6.10 Internal correspondence of control variables between UM1 and the centralized 
system. Shared variables are highlighted. .......................................................................... 74 

Table 6.11 Internal correspondence table of state variables between XM2 and the centralized 
system ..................................................................................................................................... 74 

Table 6.12 Internal correspondence table of control variables between M2 and the centralized 
system. Shared variables are highlighted. .......................................................................... 74 

Table 6.13 Internal correspondence ................................................................................................ 75 

Table 6.14 Parameters of the NA .................................................................................................... 77 

Table 6.15 Average of absolute error between increasing iterations during training with PBIB
 ................................................................................................................................................. 83 

Table 6.16 Accumulative     between increasing iterations during training ........................... 83 

Table 7.1 Comparioson of the average absolute error between MPC-agents, MA-MPC system 
and centralized MPC solution with trainings of 20, 50 and 100 iterations. ................. 93 

Table 7.2 Comparison of average     between  MA-MPC system and centralized MPC 
solution with trainings of 20, 50 and 100 iterations. ....................................................... 93 

Table 7.3 contrast of errors between the modification of PBEB and PBIB............................. 94 

Table 7.4 contrast of the     between the modification of PBEB and PBIB ......................... 94 

Table 8.1 Dimension comparison between the subsystems and the whole network .............. 96 

Table 8.2 Average    of MA-MPC and centralized MPC solutions....................................... 108 

 

 

 

 

 

 



 

 v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

6 

Chapter 1.  Introduction 

 

Large Scale Systems (LSS) are complex dynamical systems at service of everyone and in charge 

of industry, governments, and enterprises. The applications are wide. Examples of 

applications of LSS in continuous domains are: power networks, sewer networks, water 

networks, canal and river networks for agriculture, etc. Other examples of applications of LSS 

in discrete domain are traffic control, railway control, manufacturing industry, etc. 

 

The quality of management and control of this kind of systems is crucial. Most of them are 

directly related with the quality of life of people in cities and have an impact on the 

environment preservation. As for example: sewer networks, metropolitan water networks, and 

canal and rivers networks for agriculture. If inefficient control strategies are used in these 

systems results might derive on: spills of contaminated water to the field, the sea or within the 

cities, floods, restrictions of water in the cities, bad quality of water, unsatisfied water demand 

needs in agriculture etc. In other types of LSS risks and consequences can be: pollution, traffic 

unsafety, blackouts, etc.  

 

According to (Lunze, 1992), the notion of large-scale systems came into use when it became 

obvious that there are practical control problems that cannot be solved efficiently by the 

principles and methods of the classical control theory. The reason for this is that the systems 

to be controlled are too large and the problems to be solved too complex, in one sense or 

another, so that the amount of computation is too large to be manageable and even the basic 

assumptions of multivariable control are far from being satisfied.  

 

In order to manage the complexity and the amount of computation required analyzing and 

controlling a large-scale system, designers are often forced to break down the whole problem 

into smaller subproblems, solve these subproblems separately, and then combine their 

solutions in order to get a global result for the original task. However, the subproblems are 

not independent. Some coordination or modification of the solutions of the subproblems is 

necessary in order to consider the interrelationships between them. The effort required to deal 

with these subproblems and their coordination can be allocated to various processors, which 

constitute a distributed computing system. Therefore, the concepts and techniques for 

reformulating a control problem as a set of interdependent subproblems and for solving these 

subproblems are often referred to as distributed control. 

 



 

 7 

One of the leading control techniques used to deal with large-scale systems is model predictive 

control (MPC). The success of MPC is due to its ability to handle several dynamically coupled, 

manipulated and controlled variables (up to several hundreds) and constraints on them 

(Badwell, 2003). The latter are almost impossible to tackle by traditional frameworks. Since 

MPC directly embodies technical specifications (model, performance, limits) into the control 

algorithm, no a-posteriori patches are required to take into account limitations on system’s 

variables. Being MPC a systematic design flow, independent of the model chosen and 

performance/constraint specifications, the major benefit is that design and implementation 

errors can be avoided at an early phase of the life cycle of the system, therefore reducing the 

cost and time to market compared to other more conventional control design methodologies. 

 

Traditional MPC procedures assume that all available information is centralized. In fact, a 

global dynamical model of the system must be available for control design (off-line or a priori 

information). Moreover, all measurements must be collected in one location to estimate all 

states and compute all control actions (on-line or a posteriori information).When considering 

large-scale systems, the centrality assumption usually fails to hold, either because gathering all 

measurements in one location is not feasible, or because a centralized high-performance 

computing unit is not available. 

 

A way of circumventing these issues is to look into decentralized or distributed MPC (DMPC) 

algorithms, in which the original large-size optimization problem is replaced by a number of 

smaller and easily tractable ones that work iteratively and cooperatively towards achieving a 

common, system-wide control objective. The industrial success of traditional MPC drives now 

a new interest in this old area of distributed/decentralized control, and 

distributed/decentralized MPC has become one of the hottest topics in process control in the 

early 21st century, both in the US and in Europe. The new research concerns not only the 

issues related to the underlying optimization as feasibility, convergence and computational 

effort, but also the closed-loop issues of stability and robustness. 

 

In decentralized MPC, the resulting subsystems are independent from each other. But the high 

level of connections and interdependence of LSS is the reason why, in most cases, they cannot 

be modeled as decentralized systems. In distributed systems, the resulting subsystems can have 

physical dependencies between them and therefore communication among them. One of the 

main problems of distributed control of LSS is how these dependence relations between 

subsystems are preserved. These relations could be, for example, pipes that connect two 

different control zones of a decentralized water transport network, or any other kind of 

connection between different control zones. When these connections represent control 

variables, the distributed control has to be consistent for both zones and the optimal value of 

these variables will have to accomplish a common goal. In order to do this, many negotiation 

techniques have been proposed (see for example, (Camponogara, 2002), (Negenborn, 2008), 

(Venkat, 2005), (El Fawal, 1998), (Gómez, 1998) and (Rawlings, 2008)). Calculation time, 



 

 8 

problems handling multiple restrictions and multiple objectives and the impossibility to ensure 

convergence are the main problems of these approaches. Although there have been successful 

results there is still a need of a methodology that can be used for all kind of continuous LSS.  

 

The present thesis addresses this open problem in control theory by the combination of 

adequate control and computer science techniques, more precisely, the combination of Model 

Predictive control (MPC), Multi-Agent Systems (MAS), and Reinforcement Learning (RL). 

Considering that Distributed Control (DC) shares philosophic aspects with Distributed 

Artificial Intelligence (DAI), the idea is to apply MAS techniques and technology to DC 

problems as communication, coordination, need of adaptation (learning), autonomy and 

intelligence.  

 

The use of MAS will allow to: 

 

 Enjoy all the benefits of distributed systems like speed-up of the system, due to parallel 

computation, scalability and flexibility due to the modularity of the system, simplicity 

of design and maintenance of the system, robustness and reliability due to the 

possibility to implement failure tolerance. 

 Perform an appropriate coordination and synchronization of the agents. 

 Provide a management and communication platform for the MAS. This will allow 

allocating MPC Agents in different computers of a network. 

 Use appropriate tools of development and standards. 

 Use methods and tools of Analysis and Design in order to make an appropriate 

formalization and documentation of the system. 

 

The use of RL in the negotiation process will allow to: 

 

 Make the process of negotiation adaptive. 

 Learn from its own experience. 

 Explicitly consider the whole problem of two goal-oriented agents. 

 Deal with a dynamical and uncertain environment. 

 Connect the process of negotiation with the one of the MPC control, because of the 

compatibilities found between them. 

1.1 Scope 

The objective of using a real case of study in this work is to validate results and technical 

viability of the proposed architecture. Although the solution obtained by the proposed 



 

 9 

architecture and methodology has to be efficient for the considered case, it has to be general 

enough for being applied in any kind of continuous LSS. 

 

This thesis has been developed in the context of the European Project Decentralized and 

Wireless Control of Large Scale Systems, WIDE - 224168 - FP7-ICT-2007-2. The case of 

study is the Barcelona water transport network. The network is managed by the company 

Aguas de Barcelona (AGBAR), a partner of the WIDE project. AGBAR not only supplies 

water to Barcelona city but also to the metropolitan area (see data in the table 1.1). 

 

 

 

Territorial extension             425     km2 

Drinkable water net          4.470     km 

Drinkable water production             237,7 hm3 

Population 2.828.235       

Table 1.1 Metropolitan Area Of Barcelona- Water Net (2006) 

 

 

The sources of water are the rivers Ter and Llobregat. Since 1976, the network had a 

centralized tele-control system, organized in a two-level architecture (see Figure 1.1). At the 

upper level, a supervisory control system installed in the control center of AGBAR is in 

charge to optimally control the whole network by taking into account operational restrictions 

and consumer demands. This upper level provides the set-points for the lower-level control 

system. This optimizes the pressure profile to minimize losses caused by leakage and provide 

sufficient pressure, e.g. for high buildings. The system responds to changes in network 

topology (ruptures), typical daily/weekly profiles, as well as major changes in demand, etc. 

 



 

 10 

 

Figure 1.1 Agbar´s Centralized Tele-Control System. 

 

The Barcelona water network is comprised of 200 sectors with approximately 400 control 

points. At present, the Barcelona information system receives, in real time, data from 200 

control points, mainly through flow meters and a few pressure sensors. Sensors measurements 

are sent to the operational data base of the telecontrol information system via telephone XTC 

network or GSM radio using the ModBus communication protocol. This water network, as 

any other, is composed by nodes, valves, pumps, tubes, and sources. Figure 1.2 depicts the 

diagram of the Barcelona water transport network. 

 

 

 

REMOTE

STATION

REMOTE

STATION

REMOTE

STATION

REMOTE

STATION

CONTROL CENTRE



 

 11 

 

Figure 1.2 Diagram of the Barcelona Water Transport Network. 

1.2 Objectives 

The specific objectives of this thesis are: 

 To develop a distributed control architecture for LSS based on three main concepts: 

Negotiation-Cooperation-Learning. 

 To combine Model Predictive Control (MPC), Reinforcement Learning (RL) and the 

Agent Oriented Paradigm (AOP) as the basis of the proposed approach. 

 To prove technical feasibility of the proposed approach. 

 To provide a general methodology for the application of the proposed architecture. 

 To validate the proposed architecture applying it to the Barcelona water transportation 

network. 

 To compare results against the centralized MPC and the decentralized approach 

presented in this thesis, applied to the same case of study. 

 
 



 

 12 

1.3 Expected contributions 

As it will be discussed in the state of art (presented in Chapter 2), MPC, RL and AOP are 

powerful tools widely studied and applied each one in their own area. Works have been made 

relating MPC and RL but not in cooperative environments. There is a very short intersection 

between AOP and control and no intersection at all of these three areas. This work proposes 

two main learning techniques obtained as a result of the combination of elements in this 

intersection and a methodology that is expected to support future applications in LSS.  

 

Another expected contribution is to introduce the term agent in the control language as a 

basic element of the AOP and to combine suitable solutions between distributed control and 

Distributed Artificial Intelligence (DAI). 

 

A step by step application of the proposed methodology in a case of study is presented using 

two different learning algorithms proposed (Chapter 6 and Chapter 7). The one that presents 

the best result is applied to the Barcelona case of study (Chapter 8). It is expected that these 

examples motivate other practical applications in LSS using the techniques presented in this 

thesis.    

 

Organization of the thesis is as follows: Chapter 2 presents the state of the art of the related 

areas. Chapter 3 introduces the problem to be solved and describes the formalization of the 

proposed framework. Chapter 4 describes the learning techniques used. Chapter 5 describes 

the proposed MA-MPC methodology. Chapter 6 and 7 are devoted to present the proposed 

approach using learning by teacher and by exploration using selective reward and their 

illustration using an application example. Chapter 8 presents results using the Barcelona water 

network case. And finally, conclusions and further research are shown in Chapter 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 13 

 

Some of the publications related with this thesis are:  

  

Conference proceedings:  

 

 Javalera, V.; Morcego, B.; Puig, V. Distributed  MPC for Large Scale Systems using 

agent-based reinforcement learning., 12th IFAC Symposium on Large-Scale Systems: 

Theory and Applications, 2010, Villeneuve d'Ascq, France, p. 1-6. 

 

 Javalera, V.; Morcego, B.; Puig, V. A multi-agent MPC architecture for distributed 

large scale systems. A: 2nd International Conference on Agents and Artificial 

Intelligence. "2nd International Conference on Agents and Artificial Intelligence". 

Valencia: INSTICC Press. Institute for Systems and Technologies of Information, 

Control and Communication, 2010, p. 544-551. 
 

 Javalera, V.; Morcego, B.; Puig, V. Negotiation and learning in distributed MPC of 

large scale systems. A: American Control Conference. "Proceedings of the 2010 

American Control Conference". Baltimore: IEEE Press. Institute of Electrical and 

Electronics Engineers, 2010, p. 3168-3173. 

 

Book chapter: 

 

 Morcego, B.; Javalera, V.; Puig, V., Vito, R. Distributed MPC using reinforcement 

learning based negotiation: Applications to large scale systems. En  Maestre, J. (eds.), 

Distributed Model Predictive Control made easy. Dordrech: Springer Science+Business 

Media. 2014, p. 517-534. 

 

 

 

 

 

 



 

 14 

Chapter 2. State of Art. 

2.1 Model predictive control philosophy 

As it was mentioned before, MPC is a recognized powerful approach with proven capability to 

handle a large number of industrial control problems. The philosophy of MPC is well resumed 

in (Scattolini, 2009) when it emphasizes that the main characteristic of MPC is to transform 

the control problem into an optimization one, so that at any sampling time instant, a sequence 

of future control values is computed by solving a finite horizon optimal control problem. 

Then, only the first element of the computed control sequence is effectively used and the 

overall procedure is repeated at the next sampling time according to the so-called receding 

horizon principle. For a more detailed explanation about MPC see the text book (Camacho, 

2007). 

 

The main characteristics of centralized MPC are (Negenborn D. S., 2004): 

 The centralized system model is given by a (possibly time-varying) dynamic system of 

difference or differential equations and constraints on inputs, states, and outputs. 

 The goal of the control problem is to minimize a cost function. The control problem 

is stated as a multiple-objective optimization problem that is transformed to a single 

objective one using a weighted approach. 

 The problem is solved by a single centralized agent, the information set of which 

consists of measurements of the physical system, and the control action set of which 

consists of all possible control actions.  

 

A controller based on MPC solves the problem with a three-step procedure (see Figure 2.1): 

 It reformulates the problem of controlling the time-varying dynamic system using a 

time-invariant approximation of the system, with a control and a prediction horizon to 

make the solution computation tractable and a rolling horizon for robustness. 

 It solves the reformulated control problems, often using general, numerical solutions 

techniques, while taking into account constraints on control actions and states. 

 It combines the solutions to the approximations to obtain a solution of the overall 

problem. This typically involves implementing the control actions calculated from the 

beginning of the time horizon of the current approximation, until the beginning of the 

next approximation. 



 

 15 

 

 

Figure 2.1  Example of conventional MPC. 

 
In Figure 2.1, it can be noticed that the solution of the MPC problem is to find actions uk … 

uk + Hc , such that after Hp steps, the system behavior y  approaches to the desired behavior r. 

In this example, y indeed reaches the desired set point r (Negenborn D. S., 2004). One can 

find some advantage and disadvantages of the MPC framework as discussed in the following: 

 

Advantages 

 The MPC framework handles input, state, and output constraints explicitly in a 

systematic way. This is due to the control problem formulation is based on the system 

model which includes the constraints. 

 It can operate without intervention for long periods. This is due to the receding 

horizon principle, which enables the controller to looks ahead to prevent the system 

from going in the wrong direction. 

 It adapts easily to new contexts because of the receding horizon use. 

Disadvantages 

 When the prediction horizon becomes large, the number of variables of which the 

agent has to find the value increases quickly. 

k   k+1            k+Hc            k+Hp 

Setpoint r 
Predicted outputs y 
Computed control 
inputs u 

Control horizon Hc 

Prediction horizon Hp 



 

 16 

 The resources needed for computation and memory may be high, increasing more 

when the time horizon increases. The amount of required resources also grows with 

increasing system complexity. 

 

 

2.1.1 MPC Taxonomy 

New approaches of MPC are continuously arising. Although it is a well-known and accepted 

control strategy, it is still an open field of research. Three main types of structures in which 

MPC is applied can be found in the literature (See Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 MPC Taxonomy 

 

Centralized MPC is the classical way of implementing the MPC strategy. In (Rawlings, 2008) 

the authors state that the move from distributed PID to MPC of small systems was essentially 

a move towards centralized decision making. This technology gained support because the 

performance benefits were large. 

 

But, as it was mentioned before, there are strong reasons that lead MPC to decentralized or 

distributed implementations. According to (Scattolini, 2009), decentralized control (See for 

example (Ocampo, 2014) is based on considering the control input (u) and the controlled 

output (y) variables are grouped into disjoints sets. These sets are then coupled to produce 

non-overlapping pairs from which local regulators can be single-input single-output or 

multivariable (locally centralized) depending on the cardinality of the selected input and output 

groups. 

 

Many proposals have been suggested to define these sets disjoint where they are not naturally 

in that way (Camponogara, 2002) (El Fawal, 1998) (Van Breemen, 2001) (Barcelli, 2008) 

MPC 

Centralized 
 
Decentralized 

Distributed 

Fully conected 
 
 
Partially connected 
 
 



 

 17 

(Rawlings, 2008). Another line of research is to communicate overlapping sets. This is called 

distributed control. 

 

In distributed control structures, it is assumed that some information is transmitted among the 

local regulators, so that each one of them has some knowledge about the behavior of the 

others. In the next section distributed control implemented with the MPC approach is 

discussed. 

2.1.2 Distributed MPC 

When the local regulators of a distributed control structure are designed with MPC, the 

information typically transmitted consists of the future predicted control or state variables 

computed locally. In this way, any local regulator can predict the interaction effects over the 

considered prediction horizon. If the information exchange among the local regulators 

concerns the predicted evolution of the systems states, any local regulator needs only to know 

the dynamics of the subsystem directly controlled. On the contrary, if the predictive control 

actions are transmitted, the local regulators must know the model of all subsystems. In any 

case, it is apparent that the transmission and the synchronization protocols have major impact 

on the achievable performance (Scattolini, 2009). 

 

Fully connected algorithms (see Figure 2.3) are the ones in which every regulator has bi-

directional communication with all the other regulators. If any local regulator has 

communication just with a subset of the others, then it is partially connected. 

 

In (Scattolini, 2009), a taxonomy of MPC approaches based in the protocol used for 

exchanging information among local regulators is provided. This taxonomy is summarized in 

the following diagram: 

 

  

 

 

 
 

 

Figure 2.3  Distributed MPC Taxonomy. 

In iterative algorithms, information is bi-directionally transmitted among local regulator many 

times within the sampling time. In non-iterative algorithms information is bi-directionally 

transmitted among the local regulators only once within each sampling time. 

 

Iterative 
 
 
Non-iterative 

Independent 
 
Cooperative Distributed 

MPC 
Algorithms 
 



 

 18 

In iterative algorithms (see for example (Liu, 2014)) there is a sub-classification. When each 

local regulator minimizes a local performance index, it is said to be an independent algorithm, 

and when they minimize a global cost function it is called cooperative algorithm. 

 

Independent (non-cooperative) algorithms are widely studied in game theory (much more 

widely used in comparison with cooperative algorithms) and also applied in MPC distributed 

control strategies. An example of application of min-max algorithm can be found in (Jia, 

2002). Other application of non-cooperative algorithms examples are (Valencia, 2014), (Betti, 

2014). Negotiation algorithms are also taken as non-cooperative according to many authors, 

an application example of a negotiation algorithm can be found in (Maestre, 2014).    

 

As discussed in (Venkat, 2005), it is apparent that in iterative and independent algorithms each 

local regulator tends to move towards a Nash equilibrium, while iterative and cooperating 

methods seek to achieve the Pareto optimal solution provided by an ideal centralized control 

structure. However, Nash equilibrium can be even unstable and far from the Pareto optimal 

solution. So, specific constraints have to be included in the MPC problem formulation to 

guarantee closed-loop stability (Scattolini, 2009).  As for the MPC algorithms published in the 

literature, the state feedback method described in (Camponogara, 2002) for discrete-time 

linear systems belongs to the set of independent noniterative algorithms. A stability constraint 

is included in the problem formulation, although stability can be verified only a-posteriori with 

an analysis of the resulting closed-loop dynamics. Nash equilibrium solutions are searched in 

the independent, iterative and fully connected methods developed in (Du, 2001) for discrete-

time unconstrained linear systems represented by input–output models (Scattolini, 2009). 

 

There is an analogous classification of distributed MPC taxonomy in game theory. Distributed 

algorithms correspond to algorithms where there is an exchange of information between 

players. MPC iterative algorithms correspond to dynamic algorithms, whereas MPC non-

iterative algorithms correspond to static algorithms. MPC independent algorithms correspond 

to non-cooperative algorithms and cooperative algorithms are called cooperative as well. 

 
Cooperative algorithms are important in distributed control systems because they seek the 

global optimum of the system, besides local optimums. There are many cooperative 

algorithms for DMPC in literature. In (Richards, 2014), cooperation is taken to mean the 

improvement of system-wide performance through the avoidance of greedy behaviors by 

individual agents. Coupled constraint satisfaction is, however, maintained without the need for 

inter-agent negotiation or bargaining. In (Jurado, 2014), cooperative MPC agents 

communicate with their neighbors in a flexible control architecture by adapting it to the 

possible changes in the network conditions. Other applications of cooperative algorithms can 

be found in (Pannocchia, 2014), (Ferramosca L. G., 2014), (Ferramosca, 2014). 

 



 

 19 

An interesting approach is presented in (Venkat, 2005), where an iterative, cooperating 

method for linear discrete-time systems is presented. In particular, the proposed approach 

guarantees the attainment of the global (Pareto) optimum when the iterative procedure 

converges, but still ensures closed-loop stability and feasibility if the procedure is stopped at 

any intermediate iteration (Scattolini, 2009).  

 

In (Rawlings, 2008), an alternative approach to solve the same problem was discussed. The 

novelty involves maintaining the distributed structure of all the local controllers, but changing 

the objective functions so that the local agents cooperate. 

 

The seminal Tamura coordination method was discussed in the book (Brdys, 1994) even 

before MPC was first introduced. This method is based on using augmented Lagrangian to 

negotiate values on overlapping sub-networks in distributed large scale systems. Other works 

have applied this method (El Fawal, 1998) (Gómez, 1998) (Negenborn, 2008).  

2.3 Reinforcement Learning. 

Learning is the incorporation of knowledge and skills by an agent, leading to an improvement 

in the agent’s performance (Busonui L., 2005). Learning techniques are powerful tools used 

mainly in large and complex systems in dynamical environments. Reinforcement learning is 

based on past experience, which, in this work, is used to reduce the need of iterative methods, 

facilitating that the system behaves almost like a reactive system with a very short time of 

response. RL is a well-known and formally studied family of learning techniques. 

 

Moreover, depending on the formulation of the problem and the richness of experience data, 

the chances of convergence are high. Another key feature of reinforcement learning is that it 

explicitly considers the whole problem of a goal-directed agent interacting with an uncertain 

environment. This is in contrast with many approaches that consider subproblems without 

addressing how they might fit into a larger picture (Sutton, 1998). 

 

Due to the difficulties in dealing with open and time-varying environments, most multiagent 

learning algorithms are designed for unchanging environments. They typically involve some 

fixed learning structures that are updated by a set of rules involving some fixed or scheduled 

parameters. This kind of learning is called “static” learning (Busonui L., 2005).  

 

By allowing the learning parameters or structures of the static algorithms to adapt, the learning 

processes of the agents should be able to regain their ability of handling open and time-

varying environments (Busonui L., 2005). 

 



 

 20 

Note that adaptive learning is not a radically different process from learning. It can be viewed 

as a kind of “meta-learning” – that is, a special case of “learning how to learn” (Busonui L., 

2005).In the book (Sutton, 1998), Reinforcement Learning (RL) is defined as: learning what to 

do, how to map situations to actions, so as to maximize a numerical reward signal. The learner 

is not told which actions to take, as in most forms of machine learning, but instead must 

discover which actions yield the maximum reward by trying them. In the most interesting and 

challenging cases, actions may affect not only the immediate reward but also the next situation 

and, through that, all subsequent rewards. These two characteristics (trial-and-error search and 

delayed reward) are the two most important distinguishing features of reinforcement learning. 

 

Reinforcement learning is defined by characterizing a learning problem, rather than by 

characterizing learning methods. Any method that is well suited to solving that problem is 

considered to be a reinforcement learning method. The basic idea is to capture the most 

important aspects of the real problem faced by a learning agent by interacting with its 

environment to achieve a goal. Clearly, such an agent must be able to sense the state of the 

environment to some extent and must be able to take actions that affect the state and return a 

reward (Figure 2.4). The agent also must have a goal or goals relating to the state of the 

environment. The formulation is intended to include just these three aspects (sensation, 

action, and goal) in their simplest possible forms without trivializing any of them (Sutton, 

1998). 

 

 

Figure 2.4  RL agent interactions  (Alpaydin, 2014). 

 

 

Although the applications of RL are typically static, many control applications have been 

developed for dynamical environments (Agostini, 2005), (Martinez E., 2003), (Tesauro, 2003) 

recently (Gatti, 2015) show many examples of experiments of RL applied in dynamical 

environments. In (Hester, 2013) an algorithm to be both data-efficient and computation-

 
ENVIRONMENT 

 
AGENT 

State 

Reward 

Action 



 

 21 

efficient enough to work on real robots in the real world is shown. Even more, there are some 

works that relate MPC and RL. In (Ernst, 2007) a comparison between both approaches is 

made, and in (Ernst D., 2006) they are seen as complementary frameworks. 

 

An interesting paper about cooperative learning applying RL in control is (Bakhtiari, 2007). In 

the area of Distributed Artificial Intelligence, papers about learning in cooperative Multi-

Agent systems with RL are (Lauer, 2000) (Claus, 1998) (Kapentanakis, 2002). The last one 

considers also coordination. Another application of RL for coordination in Multi-agents 

Systems is (Boutilier, 1999). In all those papers, the term Multi-Agent is referring to agents in 

Distributed Artificial Intelligence terminology. In the next section a short description of these 

terms will be introduced. 

 

The theoretical foundations of the approach proposed in this thesis are related to Markov 

Decision Processes (MDP) (Alpaydin, 2014). MDPs are the formal description of discrete 

time stochastic control problems. Its main components are: the state transition probability 

function, which describes the behavior of the process; the controller policy, which is the 

sought function that assigns a control action to a state; and the reward function, which 

evaluates the quality of state transitions. The two areas that have mainly dealt with the 

algorithms that search solutions of problems formulated as MDPs are Dynamic Programming 

(DP) and Reinforcement Learning (RL). DP needs an explicit model of the state transition 

probability function and the reward function while RL does not. Also previously discussed in 

this chapter, RL is a well-established theory and there are many contributions that analyze the 

optimality of its variants. Q-learning, developed by (Watkins, 1989) is one of the most 

celebrated reinforcement learning algorithms. 

 

This learning algorithm was proved to be convergent for discounted Markov decision 

problems (Dayan, 1992), and later it was also proved to be convergent in more general cases 

(Jaakkola, 1994) (Tsitsiklis, 1994). Those proofs allow us to consider the negotiation agent as 

an optimal negotiator given sufficient iterations. The most important step is the appropriate 

selection of the cost function, which will take the MPC agents to the global optimum solution 

or elsewhere. 

2.3.1. Elements of Reinforcement Learning  

 
In this section the main elements of RL are explained. A full specification of the 

reinforcement learning problem in terms of optimal control of Markov decision processes and  

a deeper explanation about the most important RL topics can be found in (Sutton, 1998). 

 

The learning decision maker is called the agent. The agent interacts with the environment that 

includes everything outside the agent. The agent has sensors to sense its state in the environment 



 

 22 

and takes actions that modify its state. When the agent takes an action, the environment 

provides a reward. Time is discrete as k = 0, 1, 2, ... , and sk ∈ S denotes the state of the agent 

at time k where S is the set of all possible states. ak ∈ A (sk ) denotes the action that the agent 

takes at time k where A (sk ) is the set of possible actions in state sk . When the agent in state sk 

takes the action ak , the clock ticks, reward rt+1 ∈ is received, and the agent moves to the next 

state, sk+1. The problem is modeled using a Markov decision process (MDP) (Alpaydin, 2014). 

 

The policy defines the agent´s behavior and is a mapping from the states of the environment to 

actions:      A. The policy defines the action to be taken in any state         = (  )   The 

value of a policy is the expected cumulative reward that will be received while the agent follows 

the policy, starting from state    (Alpaydin, 2014).   

 

In the finite-horizon model, the agent tries to maximize the expected reward for the next T 

steps. Certain tasks are continuing, and there is no prior fixed limit to the episode. In the 

infinite-horizon model, there is no sequence limit, but future rewards are discounted using a 

discount rate α to keep the return finite. If α=0, then only the immediate reward count. As α 

approaches to 1, reward further in the future count more (Alpaydin, 2014). 

 

RL can be used with or without a model. Model in RL, is defined by the reward and the next 

state probability distributions, when we know these, we can solve for the optimal policy using 

dynamic programming. However these methods are costly and we seldom have such perfect 

knowledge of the environment. The more interesting and realistic applications of RL is when 

we do not have the model. This requires exploration of the environment to query the model, 

in order to do that, it is required the environment model to be stationary (Alpaydin, 2014).   

 

When we explore and get to see the value of the next state and reward, we use this 

information to update the value of the current state. These algorithms are called temporal 

difference algorithms because what we do is look at the difference between our current estimate 

of a state and the discounted value of the next state and reward received (Alpaydin, 2014).    

 

In model-free learning, we first discuss the simpler deterministic case, where at any state-

action pair, there is a single reward and next state possible (Alpaydin, 2014): 

  (      )       (         ) 

(2.1) 

And we simple use this as an assignment to update   (      ). When in state    we choose an 

action   , which returns a reward and takes us to state      . We then update the value of 

previous action as (Alpaydin, 2014): 

   (      )              (         ) 

(2.2) 

 



 

 23 

Some models produce a description of all possibilities and their probabilities; these we 

call distribution models. Other models produce just one of the possibilities, sampled according to 

the probabilities; these we call sample models. Distribution models are stronger than sample 

models in that they can always be used to produce samples. However, in surprisingly many 

applications it is much easier to obtain sample models than distribution models (Sutton, 1998). 

 

Models can be used to mimic or simulate experience. Given a starting state and action, a 

sample model produces a possible transition, and a distribution model generates all possible 

transitions weighted by their probabilities of occurring. Given a starting state and a policy, a 

sample model could produce an entire episode, and a distribution model could generate all 

possible episodes and their probabilities. In either case, we say the model is used 

to simulate the environment and produce simulated experience (Sutton, 1998). 

 

The word planning is used in several different ways in different fields. In RL the term is used to 

refer to any computational process that takes a model as input and produces or improves a 

policy for interacting with the modeled environment (Sutton, 1998). 

 

In artificial intelligence, there are two distinct approaches to planning. In state-space planning, 

planning is viewed primarily as a search through the state space for an optimal policy or path 

to a goal. Actions cause transitions from state to state, and value functions are computed over 

states. In what we call plan-space planning, planning is instead viewed as a search through the 

space of plans. Operators transform one plan into another, and value functions, if any, are 

defined over the space of plans. Plan-space planning includes evolutionary methods 

and partial-order planning, a popular kind of planning in artificial intelligence in which the 

ordering of steps is not completely determined at all stages of planning. Plan-space methods 

are difficult to apply efficiently to the stochastic optimal control problems that are the focus in 

reinforcement learning (Sutton, 1998).  

 

Learning and planning are similar. The heart of both, learning and planning methods, is the 

estimation of value functions by backup operations. The difference is that whereas planning 

uses simulated experience generated by a model, learning methods use real experience 

generated by the environment. Of course this difference leads to a number of other 

differences, for example, in how performance is assessed and in how flexibly experience can 

be generated. But the common structure means that many ideas and algorithms can be 

transferred between planning and learning. In particular, in many cases a learning algorithm 

can be substituted for the key backup step of a planning method. Learning methods require 

only experience as input, and in many cases they can be applied to simulated experience just as 

well as to real experience. Algorithm 1 shows a simple example of a planning method based 

on one-step tabular Q-learning and on random samples from a sample model. This method, 

which we call random-sample one-step tabular Q-planning, converges to the optimal policy for the 



 

 24 

model under the same conditions that one-step tabular Q-learning converges to the optimal 

policy for the real environment (each state-action pair must be selected an infinite number of 

times in Step 1, and α must decrease appropriately over time). 

 

 Algorithm  1 Random-sample one-step tabular Q-planning. 

1. Do forever: 

2. Select a state, s  ∈ S, and an action a ∈ A(s), at random 

3. Send s, a to a sample model, and obtain a sample next state s´, and a sample 

next r 

4. Apply    (   )    (   )       𝛾        (    )   (   )] 

5. end 

  

 

The benefits of planning in small, incremental steps enables planning to be interrupted or 

redirected at any time with little wasted computation, which appears to be a key requirement 

for efficiently intermixing planning with acting and with learning of the model. More 

surprisingly, there is evidence that demonstrate that planning in very small steps may be the 

most efficient approach even on pure planning problems if the problem is too large to be 

solved exactly (Sutton, 1998). 

 

2.4 Multi Agent Systems 

 

The term agent has been used indiscriminately until now in this work. In control, distributed 

and decentralized systems are usually called Multi-agent Systems and their local controllers are 

called agents. In RL, the controller or the software entity that performs a RL algorithm is also 

called agent. There is a branch of Artificial Intelligence called Distributed Artificial Intelligence 

(DAI). This branch arises as a result of the natural evolution of the systems that could be 

found because they are more and more complex, large and often heterogeneous. 

 

The solution of problems of this nature under a traditional scheme, involved the design of 

large and complex algorithms that use to consume a very high level of resources for 

calculation. It was about the 80´s that it was thought that small and simple programs that 

interact with each other could considerably simplify the design and development of these 

systems reducing the necessary resources. 

 



 

 25 

Many DAI researchers have defined the term Agent. This term is still a controversial issue. In 

(Stan, 1996), the main agent definitions are presented and explained, and a taxonomy of 

autonomous agents is also provided. Next, some of these definitions are presented. 

 

The Maes Agent: "Autonomous agents are computational systems that inhabit some complex 

dynamic environment, sense and act autonomously in this environment, and by doing so 

realize a set of goals or tasks for which they are designed" (Stan, 1996).  

 

The IBM Agent: "Intelligent agents are software entities that carry out some set of operations 

on behalf of a user or another program with some degree of independence or autonomy, and 

in doing so, employ some knowledge or representation of the user's goals or desires." (Stan, 

1996). 

 

The Wooldridge and Jennings Agent: A hardware or (more usually) software-based computer 

system that enjoys the following properties: 

 Autonomy: agents operate without the direct intervention of humans or others, and 

have some kind of control over their actions and internal state; 

 Social ability: agents interact with other agents (and possibly humans) via some kind of 

agent-communication language; 

 Reactivity: agents perceive their environment, (which may be the physical world, a user 

via a graphical user interface, a collection of other agents, the Internet, or perhaps all 

of these combined), and respond in a timely fashion to changes that occur in it; 

 Pro-activeness: agents do not simply act in response to their environment, they are 

able to exhibit goal-directed behavior by taking the initiative (Stan, 1996).  

 

As a result of many years of research in this area, important contributions have been made on 

theory, methodologies, communications protocols, standards and software tools (Pokahr A., 

2013), (Milan Vidakovic, 2013) that lead to the appearance of the Agent Oriented Paradigm 

(AOP). In (Woolridge, 1995), a survey of agent theories, architectures and programming 

languages present at that time is presented. Since then, many books journals and conferences 

have appeared. In (Balke, 2013), the status of agent applications in most important agent-

related scientific conferences and journals is presented; the stage of the adoption of this 

paradigm in industry is also discussed.   

 

The AOP is widely used in software applications and especially in Internet applications (for 

example e-commerce (Rahman, 2001), (Hartung, 2013), (Hakansson, 2010) and in service 

oriented computing (Morge, 2013)). Other interesting applications in robotics can be found in 

literature (Novak, 2013). 

 



 

 26 

In control applications sometimes the terms of agent in DAI and in control are not consistent 

although there are some applications in terms of agents in the AOP way. Examples of these 

applications are: (Maturana, 2005) were new tools for developing MAS in distributed control 

applications are described and a case of study of a chilled-water system of a ship is presented; 

in (Tatara, 2007), an application in distributed control network of interconnected chemical 

reactors is presented. 

 

In (Stan, 1996), we can find the following table that shows some properties of the agents. 

 

Property Other Names Meaning 

 

Reactive (sensing and 

acting) 

 

Responds in a timely fashion 

to changes in the 

environment. 

Autonomous  Exercises control over its own 

actions. 

Goal-oriented 

 

pro-active 

purposeful 

Does not simply act in 

response to the environment. 

Temporally 

continuous 

 Is a continuously running 

process 

Communicative 

 

socially able Communicates with other 

agents, perhaps including 

people. 

Learning 

 

adaptive Changes its behavior based on 

its 

previous experience. 

Mobile  Able to transport itself from 

one 

machine to another. 

Flexible  Actions are not scripted 

Character  Believable "personality" and 

emotional state. 

 

Table 2.1  Characteristics of the Agents. 

2.4.1 Potential advantages of Multi-Agent Systems 

Some of MAS principal potential advantages over centralized systems are listed in 

(Busonui L., 2005): 



 

 27 

 Speed-up of the system activity, due to parallel computation. 

 Robustness and reliability, when the capabilities of the agents overlap. The system is 

tolerant to faults in one or several agents, by having other agents take over the activity 

of the faulty ones. 

 Scalability and flexibility. In principle, since MAS are inherently modular, adding and 

removing agents to the system should be easy. In this way, the system could adapt to a 

changing task on-the-fly, without ever needing to shut down or to be redesigned. 

 Ease of design, development, and maintenance. This also follows from the inherent 

modularity of the MAS. The potential benefits described above should be carefully 

weighed with the simplicity of a centralized solution, considering the characteristics of 

the task. 

 

. 



 

 28 

Chapter 3. Formulation of the framework 

3.1. The problem 

In order to control an LSS in a distributed way, some assumptions have to be made on its 

dynamics, i.e. on the way the system behaves. Let us assume first that the system can be 

decomposed into n subsystems, where each subsystem consists of a subset of the system 

equations and the interconnections between them. The problem of determining the partitions 

of the system is not addressed in this work (see e.q. (Lunze, 1992) for classical ways of 

addressing this problem). The set of partitions should be complete. This means that all system 

states and control variables should be included at least in one of the partitions. 

 

Definition 3.1 System partitions. P is the set of system partitions and is defined by 

 

  {          } 

(3.1) 

where each system partition (subsystem) pi is described by a deterministic linear time-invariant  

(LTI) model that is expressed in discrete-time as follows 

 

  (   )      ( )     ( )        ( ) 

  ( )      ( )        ( )        ( ) 

(3.2) 

where variables x, y, u and d are the state, output, input and disturbance vectors of appropriate 

dimentions, respectively; A, B, C and D are the state, output, input and direct matrices, 

respectively. Subindexes u and d refer to the type of inputs the matrices model, either control 

inputs or exogenous inputs (disturbances). Control variables are classified as internal or shared 

according if they belong only to the subsystem or are shared with other subsystems. 

 

Definition 3.2 Internal Variables. Internal variables are control variables that appear in the 

model of only one subsystem in the problem. The set of internal variables of a partition i is 

defined by 

 



 

 29 

   {           } 

(3.3) 

Definition 3.3 Shared Variables. Shared variables are control variables that appear in the model 

of at least two subsystems in the problem. Their values should be consistent in the subsystems 

they appear. They are also called negotiated variables because their values are obtained 

through a negotiation process.  Vij is the set of negotiated variables between partitions i and j, 

defined by 

 

    {            } 

(3.4) 

Each subsystem i is controlled by an MPC controller using: 

 

 the model of the dynamics of subsystem i given by Eq. (3.2); 

 the measured state xi(k) of subsystem i; 

 the exogenous inputs di(k) of subsystem i over a specific horizon of time; 

 

 

As a result each MPC controller calculates directly the internal control actions, ui(k), of 

subsystem i.  

 

 

 

Figure 3.1 The problem of distributed control. 



 

 30 

 
Figure 3.1, on the left, shows a sample system divided into three partitions. Sub-system 1 has 

two shared variables with sub-system 2 and sub-system 2 has one shared variable with sub- 

system 3. The relations that represent those variables are shown on the right as lines. The 

problem consists in optimizing the manipulated variables of the global system using a 

distributed approach, i.e. with three local control agents that should preserve consistency 

between the shared variables. 

 

In order to solve the problem described above, a new framework has been developed. This 

framework comprises a methodology, so called the MA-MPC methodology (described in Chapter 

5) and the MA-MPC architecture described in this chapter. The methodology helps to 

implement the architecture. 

 

The main idea of this framework is to develop a multi-agent system where the MPC 

controllers of the LSS partitioned into subsystems above become MPC agents that interact with 

negotiation agents in order to solve cooperatively the value of the shared variables. According to 

this concept, the resulting multi-agent system of Figure 3.1 will look like   Figure 3.2, where 

Negotiator agent 1 will solve the value of two shared variables and Negotiator agent 2 of one (See 

relations in   Figure 3.1). As can be seen in Figure 3.2 only MPC agents with shared variables 

among them are communicated. This is made through a bidirectional communication of a 

negotiator agent with each MPC agent related to the shared variables. Next, the MA-MPC 

architecture and its elements are described. 

 

Figure 3.2 Resulting multi- agent system associated to the distributes MPC control of the system 
presented in Figure 3.1 

  

MPC agent 
1 

MPC agent 
2 

MPC agent 
3 

Negotiator agent 
1 

Negotiator agent 
2 



 

 31 

 

Definition 3.4 MA-MPC architecture. The MA-MPC distributed control architecture is defined 
as: 

 

𝛾  {             } 

(3.5) 

where:  

M is the set of MPC agents and is defined by 

 

  {          } 

(3.6) 

N is the set of negotiator agents and is defined by 

 

  {          } 

(3.7) 

P is the set of system partitions already defined in Eq. (3.1), W is the set of nodes defined in Eq. 

(3.6), V is the set formed by all sets of shared variables in Eq. (3.4), U is the set formed by all 

sets of internal variables in Eq. (3.3) and b is the Agent platform. 

 

Definition 3.5  Nodes. A node is the physical device (commonly a computer) in which the 

agents are located, they are communicated via some communication infrastructure (LAN, 

WAN or Internet). W is the set of nodes defined by 

 

  {           } 

(3.8) 

Definition 3.6 Agent Platform. The agent platform provides the agents with a homogenous 

medium to communicate and provides the user a way to manage agents. The agent platform is 

denoted by b. This platform has to be installed and running in all nodes. 

 



 

 32 

 

 

Figure 3.3 Network of five nodes fully communicated. 

  

 

The main elements of the MA-MPC architecture are MPC agents and negotiator agents. Next, these 

elements are explained in further detail. 

3.2 MPC agents 

An MPC agent solves an MPC multivariable control problem considering the internal variables of 

its partition and cooperating with one or more negotiator agents to determine the optimal 

value of the shared variables.  

 

Definition 3.7 MPC agent. An MPC agent is the entity that is in charge of controlling one 
specific partition of the system. There is one MPC agent for each system partition (pi).  

 

Each MPC agent is arranged to cooperate so that the negotiator agent solves the optimization of 

a common goal by means of a reinforcement learning algorithm.  

 

The cooperative behavior of MPC agents is a basic issue in the proposed approach. In order 

to behave in such a cooperative way, MPC agents implement three actions: 

 

 They provide the data required by the negotiator agent. 

 They accept the value(s) provided by the negotiator agent of its shared variable(s). 



 

 33 

 They solve the MPC control problem of its partition, adjusting the value(s) of its 

shared control variable(s) in order to coordinate the solution of the negotiation. 

3.2.1 Internal Structure of MPC agents 

 

The internal structure of MPC agents has three main elements: models, an MPC controller, and a 

communication module (Figure 3.4). Next, the three main elements will be explained. 

 

 

Figure 3.4 Internal structure of MPC agents. 

 

Definition 3.8 Models. Plant model and disturbance model are used in order to implement the 

MPC technique of the MPC agent. They are also involved in the learning process as it will be 

explained later. The model of each MPC agent is described by a deterministic linear time-

invariant model expressed in discrete-time defined in Eq. (3.2).  

 

Definition 3.9  MPC controller. A local MPC controller is in charge of the control of each 

partition Pi, formed by all its internal variables Eq. (3.3), constraints, objective functions, 

prediction horizon (HP) and control horizon (Hc).  

 

MPC 
controller 

Disturbance 
Model  

Communication 
module 

Plant 
Model  

MPC agent 



 

 34 

Definition 3.10  Constraints. Physical or security limits of the sensors and actuators. The 

Prediction Horizon (Hp)  (Interval of finite future time in which the MPC computes the 

predictive values by using the model in Eq. (3.2) and Control Horizon (Hc) (Interval of finite 

future time in which the MPC computes the control values by using the model in Eq. (3.2) are 

also constrains. 

 

Definition 3.11 Objective function. It is a function that represents a performance criterion. This 

function is denoted by: 

∑ 

  

   

 ( ) 

(3.9) 

where i is an interval of time, Hp is the prediction horizon and J represents the function 

criteria. 

 

 

Definition 3.12 Communication module. The communication module is the interface that 

communicates and synchronizes the MPC agent with other agents (specifically negotiator 

agents).  

3.3 Negotiator agents 

Definition 3.13 Negotiator agent. A negotiator agent (NA) is the entity that is in charge of 

determining the value of one or more shared variables between two MPC agents. A negotiator 

agent exists for every pair of MPC agents that have one or more shared variables in common.  

 

Each negotiator agent determines the optimal value of one or more shared variables in the set 

V. Each shared variable is solved seeking a global optimum for both MPC agents which are 

agree to cooperate. The NA carries out its optimization based on the reinforcements given at 

each step and on the experience obtained. This experience is stored in a knowledge base. 

 

The NA considers the shared variables as belonging to a single problem with a single goal, 

instead of two different problems with conflicting goals. The negotiator agent solves the 

optimization problem for that variable and communicates the result to the MPC agents at 

each sampling time. Then, MPC agents set those values as constraints in their respective 

internal control variables and solve again the MPC problem associated to its partition. The 

optimization algorithm of the negotiator agent is based on its experience and on maximizing 

the reinforcements received at every action taken in the past on similar situations. The internal 

architecture of a negotiator agent is defined next. 



 

 35 

3.3.1 Internal Architecture of negotiator Agents 

The internal architecture of the Negotiators agents (Figure 3.5) comprises the following 

elements: Communication module, knowledge base and behaviors module. Next, these elements are 

described in further detail. 

 

The communication module of the NA is the analogous of Definition 3.12 in the MPC agent. It 

deals with the interaction between NA and MPC agents involved in the solution of one or 

more shared variables. 

 

 

Figure 3.5 Internal structure of NA 

 

Definition 3.14 Q-table. A Q-table is a tri-dimensional matrix that represents the knowledge 

related to one particular shared variable. It maintains the Q-value gained for each possible pair 

of states (of the MPC agents related to that shared variable) and an action. Each Q-table is 

defined as follows: 

 (          ) 

(3.10) 

where sa1 and sa2 are the states of  two MPC agents  and un is their shared control (action). 

 

Definition 3.15 Knowledge base. The Knowledge base of the Negotiator agent is constituted by 

a set of Q-tables, one for each shared variable. 

Communication 
module 

Behaviors module 

Qv1 Qv2 Qvn … 

Knowledge base 

NA 



 

 36 

 

 

Since the negotiator has to reach the global optimum, it has to observe the state of the agents 

related to the shared variable, and map it to an action, leading to tridimensional Q-tables. 

  

Definition 3.16 State of an MPC agent (sa). A state of an MPC agent is a measure used to 
describe the state of an MPC agent as a whole.  
 

Considering that an MPC agent can have many state variables (internal variables) used by the 

MPC controllers to calculate its outputs (see Definition 3.9), for the negotiator agent there is 

just one state variable (sa) for each MPC agent. This state variable has to be aggregated enough 

to represent the state of the agent.  

 

In order to build the Q-table, the states sa1 and sa2 are taken as indexes of this table. Moreover, 

the minimum and maximum values that sa1 and sa2 can take have to be defined and they need 

to be discretized. Another index that should be defined is un that represents all the possible 

actions that the agents can take. The values have to be discretized in order to be used in the Q-

table. The Q-table is updated with Q-values according to the NA behavior with knowledge 

acquired from the interaction with its environment.  

 

Definition 3.17  Q-values. Q-values represent how good an action is for a specific pair of states 

sa1 and sa2, The largest the Q-value is, the better the action is. Q-values are calculated in the 

behavior module of a NA and updated in the Q-table during a training process. 

 

Definition 3.18 Behaviors module. The behaviors module is the core of the NA. All the 

processes related to negotiation and learning are defined here. Through its behaviors, the NA 

updates and uses its Knowledge Base.  

 

Chapter 4 describes the learning processes which involve all the definitions introduced above.    

 



 

 37 

Chapter 4.  Cooperation and learning. 

As it was mentioned in Chapter 3, the main elements of the MA-MPC architecture are MPC 

Agents (Definition 3.7) and Negotiator Agents (NA) (Definition 3.13). Cooperation and 

learning are key elements of the NA. In this chapter the learning problem is formulated and 

the behaviors of the NA are described. Due to LSS are critical systems, the proposed 

behaviors separates the learning process from control, in order to eliminate the number of 

learning steps while the NA are controlling and coordinating the system. The 

planningByIntruction and planningByExploration behaviors are two planning (see section 2.3.1) 

techniques proposed. But the models used in these techniques are not stochastic or tabular, as 

the ones commonly used in planning. In this work, the models used are the LTI models of the 

system partitions in charge of MPC agents. Once the knowledge is obtained thru an off line 

training, an exploitation algorithm; greedy behavior; is use in line, in order to coordinate and 

optimize de value of shared variables. This work proposes, with this combination of techniques, 

a solution to unfeasibility when applying RL in critical control systems where the number of 

learning steps required to converge toward an optimal or sub-optimal policy is an issue. 

4.1 Cooperation and learning  

According to Definition 3.3, shared variables appear in the model of at least two subsystems 

in the problem and their values should be consistent in the subsystems they appear. This is 

necessary because when a network is partitioned, some variables appear duplicated in two or 

more subsystems. This is done in order to provide each MPC Agent involved in the relation 

with an internal representation of the shared variable. In Figure 4.1, variable V is in MPC 

agent1 and in MPC agent2 and Qvn is the representation of V in the NA. The Negotiator agent 

seeks to restore the connections broken in the partitioning problem, connecting what was 

divided, unifying these duplicate variables in just one as in the original model. Therefore, for 

the Negotiator Agent, these two control variables are taken as just one.  

 

The philosophy of the negotiation agent is to consider the determination of shared variables 

not as two different problems with conflicting goals but as one problem with just one goal, a 

global optimum, like in the centralized approach. This is why in the internal structure of the 

NA there is one Q-table for each shared variable in its knowledge base. 

 



 

 38 

Therefore, each shared variable constitutes an optimization problem that it is assigned to the 

negotiator agent. This particular optimization problem is a learning problem and the way of 

dealing with it corresponds to the learning approach of the negotiator.   

 

The learning approach is in every component of the negotiator agent, defining the way that it 

interacts with other agents, in the role that it is playing, in its internal processes, its behaviors etc. 

The coordination between subsystems is necessary and learning is the way to make it happen. 

4.2 A model driven control and a model driven integrated learning. 

The MA-MPC architecture integrates a model driven control (MPC) and a model driven 

learning process. In order to perform the negotiation of the shared variables, the negotiator 

agent learns to think globally, by means of an offline training where negotiator and MPC agents 

interact and accumulate meaningful experience. This offline training is made using a model of 

each subsystem environment computing value functions (Q-tables) whose optimality and 

efficiency are proved in the experimentation phase, in order to be used later in the negotiation 

process. This allows to eliminate iterative communication between agents in the negotiation 

process, increasing efficiency, decreasing time of response and making a safe implementation 

phase, (see Chapter 5 for the definition of these phases).   

 

Usually, RL systems can be considered as trial-and-error learners. The use of models is a 

relatively new development in RL systems. In the RL literature, the use of simulated 

experience generated by a model is called planning (Barto, 1998). But in this case, the models 

used are not stochastic or tabular, as the ones commonly used in planning. Here the models 

used are the models of each system partition (subsystem) pi, Eq. (3.1) of the MPC agents.  

 

Figure 4.1 shows the integration of the models of MPC agents in the planning process. The NA 

assigns the values of V to the MPC agents. Each MPC agent has its own reference, 

disturbance model and plant model according to Eq. (3.2). The local MPC takes V as 

constraints, computes vector c and applies the control action to the plant model producing y and 

e it that feedback y to the MPC controller and e to the NA. e is an error vector that indicates to 

the NA how good or bad the actions (V) were. In order to evaluate that it is necessary to 

calculate the state of both MPC agents. This is made based in the cost function of the MPC 

agents, as for example, 

 

 

   ∑ 

  

   

 ( )  ∑ 

  

   

   ( )  ∑ 

  

   

    ( ) 

(4.1) 



 

 39 

 
 

 

 

Figure 4.1 Integration of the models of MPC agents in the planning process 

 

 

 

   ∑ 

  

   

 ( )  ∑  

  

   

   ( )  ∑ 

  

   

    ( ) 

(4.2) 

where, 

  ( )    ⃗ ( )     ⃗( )   and     ( )     ⃗⃗⃗⃗⃗⃗  ( )     ⃗⃗⃗⃗⃗⃗ ( ) 

(4.3) 

The  reward (r), is calculated using the states of both MPC agents with the equation: 

          

(4.4) 

 where   represents the reward r and   is a constant that satisfies: 

        

(4.5)  

Qv1 Qv2 Qvn … 

MPC 

Disturbance 
Model 1 

MPC agent1 MPC agent2 

NA 

V V d r1 
c 

y 

d r2 

y 

c e2 

MPC Plant 
Model 2 

Disturbance 
Model 2 

Plant 
Model 1 

e1 

Planning 



 

 40 

Given that s1 and s2 represents the state (Definition 3.16) of MPC agent1 and MPC agent2 of 

Figure 4.1 respectively and the state is a sum of quadratic errors (4.1), (4.2), the reward (4.4) will 

be always positive. With a smaller sum of errors the reward will be larger and vice versa. 

 

s1 and s2 have to be discretized in order to be use in (4.6) that is the function that updates each 

Q-table where the parameters   is a learning rate (see section 2.3.1 ) and rates past experience. 

 

 (          )      (       ) 

(4.6) 

The purpose of this three-dimensional matrix is to map the state of MPC agent 1 (  ) and the 

state of MPC agent 2 (  ) to a single action. The coordination feature of the NA lies in the fact 

that, in exploitation, the NA will map to an optimal (or sub-optimal) action every    and    

eliminating with this conflicts between MPC agents assigning the value of shared variables. 

 

NA uses this simulated experience and updates the Q-values in the Q-tables (see Definition 

3.14), one for each shared variable of the vector V in order to improve its policy. All this 

process is implemented through the PlannigByInstruction and PlaningByExploration behaviors of 

the NA that will be explained in further detail in Section 4.4.1 and 4.4.2 respectively.  In   

Figure 4.1 the communication module of the agents is omitted in order to clarify how the 

relation of the models in the agents is made, although all interactions between agents is made 

through the communication module of the agents.     

 

The integration of RL with the model and MPC in this approach offers high cohesion to the 

system.  The support that the LTI model offers is completely deterministic, descriptive and 

highly trusted. So, the integration of these techniques coupled by the implementation of the 

methodology makes the planning process efficient and trusted. 

 

The policy obtained is evaluated in the experimentation phase (see section 5.4). The fact that the 

policy is obtained offline is a very important characteristic of this approach due to the critical 

nature of LSS. The use of a standard trial-and-error technique of RL would make the 

implementation of this approach unfeasible. If the learning process is driven from real 

experience in the plant, the system will be unfeasible most of the time at the beginning of the 

process and the actuators can be damaged. That is why, in this framework, in order to arrive 

to the implementation phase (see Section 5.5), the optimality of the obtained policy has to be 

tested beforehand.  

 

 



 

 41 

4.3 Roles of the Negotiator agent. 

In the last section it was discussed how a learning technique of the NA called planning is 

integrated, but the NA also has to optimize (negotiate) and, in some cases, it has to learn and 

optimize simultaneously. To achieve this, the negotiator agent plays many roles. 

 

Definition 4.1 Role of an agent. The role of the agent is the particular function that the agent 

plays in its environment. The role of the agent determinates the behavior that the agent 

performs during a specific situation.  

 

In this work, there are four roles defined for the negotiator agent:    Learner, Explorer, 

Negotiator and Adaptive negotiator. 

 

Definition 4.2  Learner role. The NA is a learner when it is acquiring knowledge from a teacher 

in a process performed offline. During this process the learner updates its knowledge base 

implementing the PlanningByInstruction behavior. 

 

Definition 4.3 Explorer role. The NA is an explorer when it is acquiring knowledge from his 

own experience by means of the interaction with its environment in a process performed 

offline. During this process the explorer updates its knowledge base implementing the 

PlannigByExploration behavior.     

 

Definition 4.4 Negotiator role. The NA is a negotiator when it is optimizing. This process is 

performed online. During this process the negotiator exploits its knowledge base 

implementing the Greedy behavior.  

 

Definition 4.5 Adaptive negotiator role. NA is an adaptive negotiator when it is optimizing for a 

given period of time and exploring new actions the rest of the time. Both processes are 

performed online. During this processes the negotiator exploits and update its knowledge base 

implementing the Soft-max behavior (Sutton, 1998). 

 

4.4 Behaviors  

As it was mentioned before, the role of the agent determines its behavior. In this section, the 

behavior of each role of the NA is defined. The NA uses four behaviors: PlanningByInstruction, 

PlannigByExploration, Greedy and Soft-max. Table 4.1 shows the roles of the NA and their 

respective behavior. Next, the definition of behavior is made.   

 

 



 

 42 

 

Table 4.1 Roles of the NA and they respective behavior. 

 
Definition 4.6  Behavior. It is the way in which the agent interacts with its environment 

according to its role in order to archive its goal. 

 

In order to fulfil its goal, as it was mentioned before, the NA has to learn first. The main 

learning behaviors in this work are PlanningByInstruction and PlanningByExploration behaviors.  

The difference between these behaviors is the way of choosing the actions and the type of 

feedback in the learning process. PlanningByInstruction applies leaning by instruction and evaluative 

feedback (see Section 4.4.1) and PlanningByExploration applies learning by exploration and selective 

feedback (see Section 4.4.2 ).         

4.4.1 Learning by instruction- evaluation. 

In contrast to some IA learning methods, like supervised learning, in this work, the term 

instruction refers to the way in which the action is selected in the learning process, and not to 

the type of the feedback used. Hereafter the terms planning and learning will be synonyms 

(because planning is a type of learning and is the learning technique used in this work as it was 

justified in Section 4.2). So, PlannigByInstruction behavior (PBIB) is a learning behavior that 

implements a specific combination of choosing actions and providing feedback.  

 

The purpose of this learning behavior is to obtain an optimal policy (Q), constructing a knowledge 

base (Definition 3.15) based on the evaluation of actions given by a teacher. This teacher has to 

be a trustable controller, like a centralized MPC or the actions taken by a human expert. These 

actions are simulated in the model system of MPC agents and the result (states sa1 (4.1) and sa2 

(4.2), is evaluated obtaining a reward (4.4) that is used to obtain the new Q-value (4.6). n 

iterations are made for the complete control horizon with random initial conditions. This 

behavior is performed offline in the training phase of the MA-MPC methodology described in 

Chapter 5. Assuming that there is a single negotiation variable, the PlanningByInstruction behavior 

algorithm describes the training algorithm that the NA executes in order to update its Q-table by 

this learning behavior:   

  

 

 

 

Role Behavior  

Learner PlanningByInstruction 

Explorer PlanningByExploration 

Negotiator Greedy 

Adaptive Soft-max 



 

 43 

 Algorithm  2 PlanningByInstruction behavior algorithm. 

1. Define   that satisfies (4.3), n,  sa1   random, sa2   random, controlHorizon,  
teacherAction (1-control horizon),  k=1 

2. loop while iterations ≤ n 

3. loop while k ≤ controlHorizon 

4. Va1 (k)   teacherAction (k) 

5. Va2 (k)   teacherAction (k) 

6. sa1   send Va1 (k) to MPCagent1 , MPCagent1 set the action Va1 (k) and 

        calculates its internal variables, apply all the controls (actions) obtained  

        (and given) for step k to its LTI model of its partition and calculates sa1 

            using  (4.1). 

7. sa2   send Va2 (k) to MPCagent2, MPCagent2 set the action Va2 (k) and 

calculates its internal variables, apply all the controls (actions) obtained 

(and given) for step k to its LTI model of its partition and calculates sa2 

using (4.2). 

8. r     - sa1 - sa2 

9. Q (sa1’, te cherAction (k)’, sa2’ )  r +α Q(sa1, teacherAction (k), sa2) 

10 sa1’  sa1 

11 sa2’  sa2 

12 k=k+1 

13 end loop 

14 iterations=iterations+1 

15 end loop 

In this algorithm, sa1 and sa2 represents the states of MPCagent1 and MPCagent2 (the two MPC 

agents that share that particular negotiation variable). Va1 and Va2 are the internal 

representations of the shared variable in MPCagent1 and MPCagent2 (sub-indices a1 and a2 

respectively) for k instant. teacherAction is a vector that contains the actions dictated by the 

teacher for the complete control horizon of the MPC agents, that most be the same for both.  

 

In order to define the number of iterations of the training n (step 1) it is necessary to evaluate 

the Q (sa1’, teacherAction (k)’, sa2’) obtained. This is made in an iterative process in the 

experimentation phase of the MA-MPC methodology explained in Chapter 5, the performance 

analysis and validation process is made after training. There are two methods to perform this 

analysis: one is comparing the shape of the graphics of the Q obtained  with different values 

of n, if the shape of Q obtained whit 100 iterations its similar than the one obtained with 150 

for example, the training can stop, if they are different increase the value of n  and compare 

again the last two versions of Q obtained. 

The other method is to calculate the average absolute error of both parameters in (4.1) of a 

succession of simulations (using greedy behavior, section 4.4.3) using for example different 

initial conditions, references, demands, etc., increment the value of n, calculate the new 



 

 44 

average as before and compare, if the average absolute errors of both simulations are similar, 

the training can stop.  

  
 

 

 

Figure 4.2 On the left, comparison of the control obtained by means of a centralized MPC and 

decentralized MA-MPC using PBIB. On the right, contrast between outputs of the centralized MPC 

and MA-MPC system with PBIB.  

Figure 4.2 presents the results of the simulation of a shared variable in which instructed-evaluative 

learning was applied. The learning behavior used for the training was PlanningByInstruction 

behavior (PBIB). In this case, the teacher was a centralized MPC version of the system. The NA 

performed a learner role. On the left, controls applied in a 24 hours simulation of a shared 

variable trained with instructed-evaluative learning after a training of 50 iterations are shown. 

On the right, the output (volume in a tank) of the corresponding state variable is depicted. 

 

As it can be appreciated on the left part of Figure 4.2, the controls applied by the NA were 

more constant in time than the centralized MPC, even though the outputs were good enough. 

In Chapter 6, a case of study that uses the instructed-evaluative learning implementing 

PlanningByInstruction behavior will be presented in detail. 

4.4.2 Learning by exploration-selection. 

Learning by exploration is the main type of learning technique used in RL. It is based on 

trying random actions from a deterministic and finite set, in order to obtain a feedback that 

represents how good the taken action was. Learning by exploration in LSS can be a difficult 

task because of the size and complexity of these systems. The PlanningByExploration behavior 

(PBEB) implements learning by exploration combined with selective feedback. The use of 

selective feedback reduces drastically the time of training needed in order to obtain an optimal 

policy (Q) and the difficulty to find a good parameterization of the learning process in the 

experimentation phase  (Section 5.6).  

The purpose of this learning behavior is to obtain an optimal policy (Q), constructing a knowledge 

base based on the exploration of a deterministic and finite set of actions. These actions are 

simulated in the model system and the result (states sa1 and sa2) is evaluated and only in case a 

feasible solution for both agents (MPCagent1 and MPCAgent2) is found, the feedback is 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 2 - Control u4

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x4

Time (hr)

V
o
lu

m
e
 (

m
3
)

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

MA-MPC 
MPC 
u max  
u min 
 

MA-MPC 
MPC 
Reference 
x max 
x min 



 

 45 

selected for leaning. For those cases, a reward (r) is obtained and used to calculate the new Q-

value (Q (sa1’,a’, sa2’)). n iterations are made for the complete control horizon with random initial 

conditions. This behavior is performed offline in the training phase of the MA-MPC 

methodology described in section Chapter 5. Assuming that there is a single negotiation 

variable, the PlanningByExploration behavior algorithm describes the training algorithm that the 

NA executes in order to update its Q-table by this learning behavior, the name of the variables 

and the definition of the number of iterations of the training n (step 1) are the same than the 

ones in Algorithm 2. 

 

 Algorithm  3  PlanningByExploration behavior algorithm. 

1. Define   that satisfies (4.3), n,  sa1   random, sa2   random, controlHorizon,  
k=1 

2. loop while iterations ≤ n 

3. loop while k ≤ controlHorizon 

4. a   r ndo  ( ) ∈ A  Q (s1′,a, s2′) 

5. Va1 (k)   a 

6. Va2 (k)   a 

7. sa1   send Va1 (k) to MPCagent1 , MPCagent1 set the action Va1 (k) and 

        calculates its internal variables, apply all the controls (actions) obtained  

        (and given) for step k to its LTI model of its partition and calculates sa1 

            using  (4.1). 

8. sa2   send Va2 (k) to MPCagent2, MPCagent2 set the action Va2 (k) and 

calculates its internal variables, apply all the controls (actions) obtained 

(and given) for step k to its LTI model of its partition and calculates sa2 

using (4.2). 

9. if MPCagent1 and MPCagent2 have a feasible solution 

10. r     - sa1 - sa2 

11. Q (sa1’, a’, sa2’ )  r +α Q(sa1, a, sa2) 

12. sa1’  sa1 

13. sa2’  sa2 

14. else 

15. sa1’  random 

16. sa2’  random 

17. end if 

18. k=k+1 

19. end loop 

20. iterations=iterations+1 

21 end loop 

 

 



 

 46 

Figure 4.3 presents, the results of the simulation of a shared variable in which instructed-

evaluative learning was applied. Below three shared variables trained with explorative-selective 

learning after a training of 50 iterations. Centralized MPC (green) and decentralized MA-MPC 

(blue), umax (red) and umin (cyan).  Above, output (volume in a tank) of a state variable related 

with the tree shared variables. Centralized MPC output (green), MA-MPC (blue), reference 

(red), xmax (cyan) and xmin(purple). The learning behavior used for the training was 

PlanningByExploration behavior. The NA performed a learner role. 

 
 

As it can be appreciated in   Figure 4.2 (above), the performance of this behavior is better than 

one obtained by a centralized MPC controller and the values of the shared variables (below) 

were more constant in time than the centralized MPC. 

 

 
 

Figure 4.3 simulation of a shared variable in which instructed-evaluative learning was applied. 

 

 

 

This learning behavior was developed for cases were there was no teacher available, but the 

combination of explorative-selective learning resulted to be very efficient. The use of selective 

feedback reduces drastically the time of training needed and, when a full exploration is made 

(this is when all possible actions are evaluated), an optimal policy is guaranteed.  In Chapter 7, 

  

   

 

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x2

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u5

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u4

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Agent 1 - Control u6

Agent 2 - Control u6

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

MA-MPC 
MPC 
Reference 
x max 
x min 

 

   



 

 47 

a case of study that uses explorative-selective learning implementing PlanningByExploration 

behavior (PBEB) is presented in detail. 

4.4.3 Negotiation-Optimization process. 

These are processes executed by the NA when it is optimizing on a negotiator role. In order to 

achieve this negotiation-optimization the NA uses its greedy behavior. This behavior only can be 

used after a training phase when the knowledge base is already constructed.  Due to LSS are 

critical systems, the greedy behavior is implemented separated from the learning process, in order 

to eliminate the number of learning steps while the NA are controlling and coordinating the 

system.  Once the knowledge is obtained thru an off line training using planningByIntruction 

and/or planningByExploration behaviors, an exploitation algorithm; greedy behavior; is use in line, 

in order to coordinate and optimize de value of shared variables. This combination of techniques 

provides a solution of the unfeasibility of applying RL in critical control systems where the 

number of learning steps required to converge toward an optimal or sub-optimal policy is an 

issue. The algorithm of the greedy behavior is: 

 

 Algorithm  4 Greedy behavior algorithm 

1. Q (s1,a, s2) ∀ s ∈ S, a ∈ A 

2. observe initial state, s1,s2 

3. loop 

4. a  max a ′∈ A  Q (s1′,a, s2′) 

 sa1   send Va1 (k) to MPCagent1, MPCagent1 set the action Va1 (k) and 

    calculates its internal variables, apply all the controls (actions) obtained  

    (and given) for step k to its LTI model of its partition and calculates sa1 

 using  (4.1). 

      sa2   send Va2 (k) to MPCagent2, MPCagent2 set the action Va2 (k) and 

calculates its internal variables, apply all the controls (actions) obtained 

(and given) for step k to its LTI model of its partition and calculates sa2 using 

(4.2). 

5. s1 s1′ 

6. s2  s2′ 

7. end loop 

 

The NA can also perform an adaptive role, this is an important characteristic of any Multi-

agent system. This characteristic is implemented through a soft-max behavior. This means that 

the NA, after having been trained by any of the learning techniques described above, when 

optimizing, combines the use of the greedy behavior for a period of time and the 

PlanningByExploration behavior (PBEB) for the rest of time. This combination is not trivial and 

has to be properly tested.    



 

 48 

4.5 The learning approach in context. 

The negotiation-learning approach of the negotiator can be beyond the behaviors and roles 

described in this work. Other roles, behaviors and learning techniques can be extended and 

applied to the MA-MPC architecture. The techniques described in this chapter have proved 

efficiency at the experimentation made in this work (see case of studies in Chapter 6 and 

Chapter 7). They also integrate efficiently the elements of the architecture as a whole. These 

learning techniques are in the field of RL (Sutton, 1998) and were combined in order to suit 

the problem. Some of these techniques are: Instructed RL, RL with model, evaluative learning 

and learning by selection (see Figure 4.4).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Instructed RL+RL with model+ evaluative learning +learning by selection. 

 
2 RL with model + learning by selection. 

 
3 RL with model+ evaluative learning + learning by selection. 

 
4 learning by selection + evaluative learning  

Figure 4.4 Combination of learning techniques used in the negotiation-learning approach of the NA. 

 

 

The diagram shows the combination used in the negotiation-learning approach described in this 

chapter. The next table shows the roles and behaviors described and the corresponding area in 

the diagram according to the combination of techniques implemented.  

 

 

1 
3 

2 

Evaluative 
Learning 

Learning  
by 
selection  

Instructed 
RL  

RL with 
model 

4 



 

 49 

Diagram area Role Behavior  

1 Learner PlanningByInstruction (PBIB) 

3 Explorer PlanningByExploration (PBEB) 

2 Negotiator Greedy 

4 Adaptive Soft-max 

Table 4.2 Relation of roles and behaviors. 



 

 50 

Chapter 5. Description of the MA-MPC 

Methodology. 

 

This chapter describes the MA-MPC methodology. This methodology has been developed in 

order to properly define and integrate the MA-MPC architecture (see Chapter 4). First 

attempts to define this methodology can be found in (Javalera V., 2010) where a distributed 

MPC for a drinking water network was developed using the proposed framework and 

compared against a centralized MPC controller.     

 
 

Figure 5.1 Flow of the MA-MPC methodology process. 

 



 

 51 

 

The MA-MPC methodology comprises five phases: analysis, design, experimentation, 

implementation and testing. Figure 5.1 shows the process of the methodology. Each grey box 

represents a phase and the white boxes represent processes that are part of that phase. As it 

can be seen, some processes are sequential (as the case of all the processes of the analysis 

phase), some others can be made in parallel (as the definition of the MPC agent and definition 

of negotiator agent processes of the design phase), and there are also iterative processes (as. 

e.g., the processes of the experimentation phase). Next, each phase is described in further 

detail. 

5.1 Analysis phase. 

The purpose of the analysis phase (Figure 5.2) is to define the problem and the requirements 

of the system. It is the basis of all the processes of the MA-MPC methodology. In the analysis 

phase there are five steps to be defined:  

 

 

Figure 5.2 Processes of the analysis phase.  

 

 

 

 System description. 

 Definition of control objectives.  

 Definition of functional requirements. 

 Definition of restrictions and considerations.  

 Definition of the partitioning.    

 



 

 52 

The processes are sequential, each process is the basis for the next one. An explanation of 

each one is presented below. 

 

5.1.1 System description. 

It is a description of the system to be controlled. It should include the new required elements 

and the ones that will be preserved (if there is a system already in use), the relations between 

elements, boundaries of the system, etc. The system description also includes a system diagram 

that shows the topology and elements of the system to be controlled in a distributed way (see   

Figure 5.3 for exemplification purposes). Some important elements of system diagrams are: 

components ( e.g., reservoirs), relations (connections), actuators (valves, pumps, etc.). 

 

 

 

 
 

Figure 5.3 Examples of system diagrams 

 

 

5.1.2 Definition of control objectives. 

The control objectives are the desirable criteria that should rule the system. The system can 

have multiple objectives; for example: minimize the cost of operation, maintain the value of 

some variables close to some desired set-points, preserve the life of actuators by means of the 

smooth operation of the actuators, etc. 



 

 53 

5.1.3 Definition of functional requirements 

In this process all the functions that the distributed control system should be able to do are 

defined. All its desirable performances will be listed in the functional requirement table, where they 

should be assigned a reference or identification (FR1, FR2, etc.), a name and a description of 

the requirement.  

 

Requirements are important especially in complex systems because all the efforts of the 

system development have to be guided by what it is expected to achieve. They are also helpful 

in the communication between the development team and especially between the team and 

final users.    

 

 

5.1.4 Definition of restrictions and considerations.  

In this section, the constraints (Definition 3.10) and other considerations, as e.g. safety levels 

for reservoirs and other elements should be defined. It is important to define all the minimum 

and maximum values that sensors and actuators can have. The physical restrictions of every 

element of the system has to be considered. The exact values of these restrictions will be 

needed in the design phase. 

5.1.5 Definition of the partitioning.    

Once the system is defined and the objectives, requirements and restrictions are clear; it is 

time to define the partitioning of the network. There can be different partitioning criteria: 

geographical, structural, etc. Here, the partitioning will be defined by a general partitioning 

diagram (see   Figure 5.4 as an example). 

 

 



 

 54 

 

 

 

Figure 5.4 Example of a general partitioning diagrams. 

 
A general partitioning diagram has to show all the elements of a system diagram but specifying the 

partitioning by grouping the elements of each new partition. The name of relations, or control 

elements between subsystems and the name of subsystems (partitions) have to be shown 

clearly in the diagram.   

5.2 Design phase 

The design phase (Figure 5.5) comprises three processes: definition of the MA-MPC 

architecture, definition of the MPC agents and definition of negotiator agents. The definition 

of the MA-MPC architecture is made first, once defined the architecture, the definition of the 

MPC agents and NA can be made. The whole problem formulation is done in this phase.  

This problem formulation is based on the information gathered in the analysis phase.  

 

5.2.1 Definition of the MA-MPC Architecture. 

In order to apply the MA-MPC Architecture to the problem, first, the architecture of the system 

diagram (Figure 5.6) based on the general partitioning diagram has to be constructed according to 

the following directions: 

 

 Circles represent agents. 

 Make one MPC agent for each partition represented in the general partitioning diagram. 

 Identify in the general partitioning diagram, partitions with relations among them. 

 



 

 55 

 

Figure 5.5 Design phase process.  

 

 

 

 Place a NA between the corresponding MPC agents that have these relations. 

 Represent the relations using arrows.   

 

 

 

 

Figure 5.6 Examples of architecture of the system diagrams. 

 

 

Once the architecture of the system diagram is made, the next step is to construct the relations 

diagram.   The relations diagram shows the relations between MPC agents (The NA are not 

shown). The MPC agents are placed and each relation is represented with arrows respecting 

the direction of the relation (see Figure 5.7 as example).   

 

A1 A2 

N
1 

A1 
A2  

A3 

N1 

N2 



 

 56 

 

 

 

Figure 5.7 Examples of relation diagrams. 

 

 

 

 

 

 

 

 

 

 

Table 5.1 Table 𝛾 

 

 

Next, based on the architecture of the system diagram and the relations diagram, identify the elements 

of the MA.MPC architecture (Definition 3.4) using Table 5.1. 

 

𝛾  {             } 

(5.1) 

where: M is the set of MPC Agents, N is the set of Negotiator Agents, P is the system 

partitions, W is the set of nodes, V is the set formed by all sets of shared variables, U is the set 

formed by all sets of Internal Variables and b is the Agent platform. 

 

Next define the elements of the MPC agent definition table (Table 5.2) for each MPC agent.  

 

 

Element Definition 

M {set of MPC agents} 

N {set of Negotiator agents }               

P {X, U, E, D} 

W {set of nodes} 

V { et  of V’ } 

U {sets of U´s} 

A1 A2 

u3 
u4 

u5 

u6 

u5 

u2

7 

u8 



 

 57 

 

 

Table 5.2 MPC agent definition table. 

 

 

At this point, an important step is to check that the partitioning of the plant leads to a 

complete set of partitions. This is accomplished verifying that all the state variables in the 

problem are considered in one partition and all the control variables belong to the set of 

shared or internal variables. The following relation has to be verified: 

 

 

  {        } 

(5.2) 

 

5.2.2 Definition of the MPC Agents. 

Now is time to define the elements of the internal structure of MPC agents. At this point, the 

elements of P have been defined for each MPC agent in the MPC agent definition table, such that, 

the elements defined in the analysis phase are the basis of the construction of MPC agents. 

 

In order to define the MPC controller the constraints (Definition 3.10) and objective functions 

(Definition 3.11) for each MPC agent have to be defined.  

 

 

 

Mn 

pn ={ XMn, UMn, EMn, DMn, VMn} 

XMn = {} 

UMn = {} 

EMn= {} 

DMn = {} 

V Mn= {} 



 

 58 

 

Figure 5.8 Internal structure of the MPC agents. 

 

In order to define the plant model (see Figure 4.1) and the disturbance model, the agent definition 

table, the general partitioning diagram and the relation diagram are used to obtain: 

 

  (   )      ( )        ( )        ( ) 

  ( )      ( )        ( )        ( ) 

(5.3) 

where variables x, y, u and d are the state, output, input and disturbance vectors, respectively; 

A, B, C and D are the state, output, input and direct matrices, respectively. Subindexes u and d 

refer to the type of inputs in the matrices model, either control inputs or exogenous inputs 

(disturbances).  

 

For the configuration of the communication module it is necessary to construct an internal 

correspondence table for each MPC agent. This table is used to track the name of the variables 

between the centralized and decentralized models and diagrams.  

 

 

MPC 
controller 

Disturbance 
Model  

Communication 
module 

Plant Model 

MPC agent 



 

 59 

5.3.3 Definition of the Negotiator Agents 

The definition of the internal elements of the Negotiator agents (Figure 5.9) is made using the 

architecture of the system diagram, the relations diagram, the table 𝛾 and each set V of the MPC agent 

definition tables.  

Figure 5.9 Internal structure of NA 

 

The communication module of each NA also needs an internal correspondence table to help 

finding the shared variables under the name that gives each subsystem. 

 

 

 

 

 

 

 

Table 5.3 Internal correspondence table of NA 

 

The behaviors module was defined in Chapter 4. The knowledge base (Definition 3.15) is defined 

by means of the Q-tables (Definition 3.14) which in turn needs to define the discretized states 

(Definition 3.16) and actions of the Q-tables.  

Qn Q1 Q2   Qn 

Vn     

Ua1     

Ua2     

Communication 
module 

Behaviors module 

Qv1 Qv2 Qvn … 

Knowledge base 

NA 



 

 60 

 (          ) 

(5.4) 

where Sa1 and Sa2 are the states of the two MPC agents related and un is the associate action. 

5.4 Experimentation phase 

The experimentation phase has three iterative processes. It is also an iterative phase along with 

the design phase (Figure 5.1). This is because it can be necessary to adjust parameters or, even 

more, make changes in the design of the agents in order to improve the results obtained in the 

simulation and performance analysis and validation processes. 

 
 

 

Figure 5.10 Experimentation phase. 

 

 

The training process is an off-line iterative procedure to set up the negotiator agents knowledge 

bases (see Chapter 4). The agents’ shared variables are assigned according to the agent 

behavior. On training, the behaviors used are PlanningByInstruction (PBIB) (see Section 4.4.1) 

and PlanningByExploration (PBEB) (Section 4.4.2 ). 

 

The simulation process uses the knowledge obtained in the training process to simulate the 

performance of the large scale system in a decentralized way. The shared variables of each 

MPC agent are assigned according to Greedy behavior (see Section 4.4.3).  The performance is 

analyzed and validated in the performance analysis and validation process, where many iterations are 

made until the performance meets the objectives and all the functional requirements listed in 

the analysis phase are achieved.  



 

 61 

5.5 Implementation phase. 

The implementation phase aims to integrate the MA-MPC system to the real world. Before 

that, it is necessary to make a component assignment diagram in order to specify how the physical 

components of the network (hardware) will be distributed; and a logical diagram of the distributed 

system, in order to assign each agent and knowledge base to a specific computer. The 

distribution and component assignment should fulfill the requirements of the analysis phase. 

 

 

Figure 5.11 Implementation phase. 

5.6 Testing 

Before the system release, some testing has to be done. The test should comprise node testing in 

order to evaluate de performance of a specific node and its assigned agents and an overall testing 

in order to evaluate the performance of the complete system and the communications 

between remote nodes and agents.  The tests have to evaluate how well the requirements of 

the functional requirements table were accomplished. 

 

 

Figure 5.12 Processes of testing phase 



 

 62 

Chapter 6. Learning by instruction, an 

application of the MA-MPC Architecture  

In this chapter, the MA-MPC framework is applied to a small water distribution network 

composed of four tanks with multiples interdependencies among them for illustrative 

purposes. This example assesses the behavior and efficiency of the framework when strong 

dependencies between shared and internal variables are present. A step by step application of 

the methodology described in Chapter 5 is shown. The learning method performed in this 

example is instructed learning, which means that the negotiator agent (NA) will learn from a 

teacher, in this case a centralized MPC controller, the behavior of the shared variables (by the 

PBIB).  On the experimentation phase, illustrative results are shown. 

 

As it was explained in Chapter 5, the MA-MPC methodology comprises five phases (see   

Figure 6.1). In this example the first three phases are going to be developed and explained 

(analysis, design and experimentation). Chapter 6 will show a different training using PBEB, in 

the methodology process this chapter represents an iteration of the phase three. 

 

Figure 6.1 MA-MPC methodology processes 



 

 63 

6.1 Analysis 

Phase one of the flow of the processes shown in Figure 6.1 is analysis. The purpose of this 

phase is to define the problem and the requirements of the system. Figure 6.2 shows the 

processes of the analysis phase. 

 

Figure 6.2 Processes of the Analysis phase  

 

Next, each process of the analysis of the four tanks with multiple interdependences problem is 

defined. 

 

a) System description. 

 

The optimization of the water distribution network of the Figure 6.3, in a distributed manner, 

is required. The partitioning of the network will obey a geographical criterion, so there will be 

two partitions, north and south.   The tanks x1 and x2 will belong to the north sector where a 

local control is required. The tanks x3 and x4 will belong to the south sector, with its 

corresponding local controller. 

 

There are two supply sources and four demand points, one for each tank. Typically the 

demands have a sinusoidal behavior throughout the day that try to emulate the actual demand 

behavior. The system shall operate in a distributed way but looking for global optimum in the 

controlled tank levels, satisfying the demand points of both subsystems, and avoiding 

collisions or conflicts among them.  

 



 

 64 

It is expected that the performance of the tank levels follow a reference variable in time, but 

without performing drastic actions in the actuators. That is, control to be applied on the 

actuators should be smooth, in order to prevent actuator breakdowns. 

 

b) Control Objective 

The target control is defined as follows: 

 

For each tank (x1, x2, x3, x4)   there is a given reference that describes the desirable behavior of the levels of 

these tanks. These levels will be achieved through the manipulation of the control variables (u1, u2,… , u8 ) 

with minor variations over time. 

 

Figure 6.3 System diagram of the four tanks with multiple independences problem. 

 

 



 

 65 

 

c) Functional requirements 

 

The functional requirements are obtained from the system description. For the four tanks system, 

seven requirements were defined.   

 

 

 

Req 

No. 

Name of the requirement.  Description. 

FR1 Type of partitioning. Geographical criterion. Two partitions, north 

and south are required. 

FR2 Distributed control. One controller for each partition. 

FR3 Tracking.  The behavior of tank levels should follow a 

reference variable in the time given. 

FR4 Smooth control. Control actions should increase / decrease in 

small quantities. 

FR5 Avoid conflicts and 

collisions. 

Avoid conflicts and collisions between 

subsystems. 

FR6 Satisfy demands. All demands have the same priority. 

FR7 Global optimization Seek the global optimality of the system. 

Table 6.1 Functional requirements table of the four tanks with multiple dependencies problem 

 

 

d) Restrictions and considerations. 

 

The following restrictions and considerations were abstracted from the system description and 

from the system diagram of the four tanks with multiple dependences problem (Figure 6.3)   

 

 The demands are considered measurable disturbances. Typically, demands have a 

sinusoidal-like behavior throughout the day.  

 The network of this example does not contain nodes.   

 Each tank has a minimum and maximum volume.  

 Each control variable has a minimum and maximum value. 

 

e) Definition of the partitioning. 

 

Taking into account the functional requirements FR1 and FR2, the partitioning of the 

network is defined as follows: 



 

 66 

  {     }                    

(6.1) 

where    and    are described by a deterministic linear time-invariant model that is expressed in 

discrete-time as follows 

 

  (   )      ( )        ( )        ( ) 

  ( )      ( )        ( )        ( ) 

(6.2) 

 

where variables x, y, u and d are the state, output, input and disturbance vectors, respectively; 

A, B, C and D are the state, output, input and direct matrix, respectively. Subindexes u and d 

refer to the type of inputs the matrix model, either control inputs or disturbances. Control 

variables are classified as internal or shared. 
 

Systems matrices for  p1  are 

 

   [
  
  

]
  

  
 

(6.3) 

 

                                                                                          

   [
     
   

   
    
    

]
  

  
 

(6.4) 

 

                                                                            

                                       [
   
   

]
  

  
                                                 

(6.5) 

while system matrices for  p2 are 

 

   [
  
  

]
  

  
 

(6.6) 

 

                                                                                    

   [
   
   

   
    
    

]
  

  
 

(6.7) 



 

 67 

                 

      [
   
   

]
  

  
 

(6.8) 

In these matrices, the corresponding name of the variable (as it appears in the general 

partitioning diagram, Figure 6.4) is indicated. 

 

Figure 6.4 General  partitioning diagram. 

 

 

 

 



 

 68 

6.2 Design. 

a) Definition of the MA-MPC Architecture. 

 

According to Eq. (6.1), two partitions have been defined. Each partition is assigned to an 

MPC agent, M1 for p1 and M2 for p2. These two agents have four shared variables and the 

negotiation of the value of these variables will be in charge of the NA named N1. Figure 6.6 

shows the general structure of the MA-MPC architecture of this problem. 

 

 

Figure 6.5 Processes of the design phase 

 
Figure 6.7 shows the shared variables between M1 and M2 as well as the direction of the flow. 

The variables u3, u4 and u5 will provide flow to M2 and u6 to M1. 

 

 
 

Figure 6.6 General architecture of the system diagram. 

M1 M2 

N1 



 

 69 

 

  

Figure 6.7 Relation diagram of the four tank system. 

 
 
According to Definition 3.4, the MAMPC distributed control architecture is defined as: 

 

 

 

 

(6.9) 

where: M is the set of MPC agents, N is the set of negotiator agents, P is the set of system 

partitions, W is the set of nodes, V is the set formed by all sets of shared variables, U is the set 

formed by all sets of control variables and b is the agent platform. Next, each of these 

variables is defined.  

 

 

Variable Definition 

M {M1, M2 }, 

N {N1 },               

P {X, U, E, D}, 

W {W1, W2}, 

V {V }, 

U {U1, U2} 
 

Table 6.2 Table γ 

 

 

where: 

 

X= {XM1, XM2}, U= {UM1, UM2, V}, E= {EM1, EM2}, D= {DM1, DM2} and  V= {VM1, VM2} 

(6.10) 

𝛾  {             } 

 

M1 M2 

u3 
u4 
u5 

u6 



 

 70 

E is the set of node matrices. In this case there are no nodes in M1 or M2, and that is why EM1 

and EM2 are empty. D is the set of disturbance matrices, in this case the demands. This variable 

is related to the variable Bd of the LTI model of the plant in Eq. (6.5) and Eq. (6.8)  and in the 

plant model definition shown below.  

  

 
Defining MPC Agents M1 and M2 as follows 

 

M1 

p1 = {XM1, UM1, EM1, DM1, VM1} 

M2 

p2 = {XM2, UM2, EM2, DM2, V M2} 

XM1 = {x1, x2} 

UM1 = {u1, u2} 

EM1= {  } 

DM1 = {d1, d2} 

V M1= {u3, u4 } 

 

XM2 = {x3, x4} 

UM2 = {u7, u8} 

EM2= {  } 

DM2 = {d3, d4} 

V M2={u5, u6 } 

 

Table 6.3 Definition of MPC Agents M1 and M2 

 

 

W is the set of physical control stations that the system will have. Two control stations were 

assigned obeying to the functional requirement FR2. The multi-agent platform on which the 

system will operate will be Jade (Pokahr A., 2013). 

 

Verifying the completeness  property: 

   {     } 

(6.11) 

 

{                                               }   

{                                 } 

(6.12) 

 

Therefore p1 and p2  are a complete set of partitions of the system. 

 

 

 

 

 



 

 71 

b) Definition of MPC agents. 

Plant model definition. 

According to Eqs. (6.3) to (6.8), the plant model of the M1 and M2 are the following: 

 

 

 

 

 

 

 

 

Table 6.4 Plant model of M1 and M2 

 

Cost function 

Both MPC agents (M1 and M2) have the same cost function. The cost function was designed in 

order to fulfill  functional requirements FR3 and FR4 (see Table 6.1). FR3 requires that the 

behavior of tank levels should follow a reference variable in the given time. FR4 requires a 

smooth control that is achieved by forcing that the control actions increase/decrease in small 

quantities. So, the cost function needed should minimize the error of the output (level of 

tanks) with respect to the given reference and minimize de variation of control actions 

applied. The cost function for this problem is: 

 

 

∑ 

  

   

 ( )  ∑ 

  

   

   ( )  ∑ 

  

   

    ( ) 

(6.13) 

where, 

  ( )    ⃗ ( )     ⃗( )    

(6.14) 

     ( )     ⃗⃗⃗⃗⃗⃗  ( )     ⃗⃗⃗⃗⃗⃗ ( ) 

(6.15) 

 

The first term of the cost function     in Eq. (6.13) considers the sum of the quadratic errors 

(e) of the state variables (x) with respect to the state set-points for all tanks in the   instant for 

Name of the agent: M1 

Type of agent: Agent MPC 

Name of the agent: M2 

Type of agent: Agent MPC 

   [
  
  

] 

   [
     
   

   
    
    

] 

      [
   
   

] 

   [
  
  

] 

   [
   
   

   
    
    

] 

      [
   
   

] 

 



 

 72 

the complete prediction horizon Hp. In the second term,     in Eq. (6.13) considers the sum 

of the control effort applied for all control variables (u) of the sub-system for the complete 

prediction horizon Hp. 

 

As a result the aggregated value of  ( ) gives a scalar that takes into account both objectives 

state     and      in the prediction horizon Hp.    and     are weights that are used to 

establish the priority of each objective, being selected to satisfy  ≤    ≤   and  ≤    ≤

 , where 1 is more important and 0 not important. 

 

Since     ( ) is related to the variation of the states around the set-points and    ( ) is related 

to the variation of the control variables, the resulting values of the term related to     ( ) will 

be much bigger than the resulting values of the term related to     ( ). So, in order to achieve 

a fair prioritization of these objectives, a normalization is needed.  

 

 

Constraints. 

Next, the physical restrictions of the state variables (x) and control variables (u) are shown.  

The restrictions of x correspond to the minimum and maximum volume in tanks and are 

measured in m3. The restrictions of u represent the minimum and maximum flow in actuators 

and are measured in m3/seg. 

 

 

 

 

 

Table 6.5 State variables restrictions of set XM1 

 
 

 

 

 

Table 6.6 State variables restrictions of set XM2 

 

 

 

 

 

XM1 x1 x2 

Min. 0 0 

Max. 10 10 

XM2 x1 x2 

Min. 0 0 

  Max. 10 10 



 

 73 

UM1 

 u1 u2 u3 u4 u5 u6 

Min. 0 0 0 0 0 0 

Max. 0,0020  0,0050 0,0020 0,0020 0,0020 0,0020 

Table 6.7 Control variables restrictions of UM1 

 

UM2 

 u1 u2 u3 u4 u5 u6 

Min. 0 0 0 0 0 0 

Max. 0,0020  0,0020 0,0020 0,0050 0,0020 0,0020 

Table 6.8 Control variables restrictions of UM2 

 

Internal correspondence. 

In order to preserve the relation between subsystems, the MA-MPC architecture overlaps the 

sets of U and V. In this case this overlapping is shown in Figure 6.8. 

 

 

 

 

  

 

 

 

 

Figure 6.8 Overlapping of U and V sets of the system. 

 

 

Due to u3, u4, u5   and u6  are shared variables, a copy of each one has to be in the three sets but 

under different names, that is why it is necessary to use internal correspondence tables. The 

state variables do not overlap but they also change their name, as it is shown below.  

 

  

M1   

XM1 x1     x2 

Centralized system x1     x2 

Table 6.9 Internal correspondence of state variables between XM1 and the centralized system 

 

 

u1

u2 

u3  
u4 

u5   

u6 
 

u7

u8 

UM1      V     UM2 



 

 74 

M1        

UM1     u1     u2    u3   u4  u5 u6  

Centralized system     u1     u2    u3   u4  u5 u6  

Table 6.10 Internal correspondence of control variables between UM1 and the centralized system. 
Shared variables are highlighted.  

 

 

 

M2   

XM2 x1     x2 

Centralized system x4     x5 

Table 6.11 Internal correspondence table of state variables between XM2 and the centralized system 

 

M2        

UM2     u1     u2    u3   u4  u5 u6  

Centralized system     u7     u3    u5   u8  u4 u6  

Table 6.12 Internal correspondence table of control variables between M2 and the centralized system. 
Shared variables are highlighted. 

 

c) Definition of the Negotiator. 

 

Once the MPC agents are defined the NA has to be designed. For the problem addressed here 

with two MPC agents, M1 and M2 , there is just one NA needed between them. This NA will 

have to negotiate the value of four variables. Figure 7.9 shows the resulting internal 

architecture of the NA. There can be seen that the NA communicates bi-directionally trough 

the communication module. The negotiation-learning module is comprised of the behaviors 

implemented, in this case PBIB and Greedy (see 4.4.1 and 4.4.3). The knowledge base consists 

of four tables (Q1 ,  Q2 , Q3 ,  Q4 ), one for each negotiation variable.  



 

 75 

 

Figure 6.9 Negotiator’s structure 

 

Table 6.13 the correspondence between each Q-table and the shared variables of the 

centralized system (V) is shown as well as the corresponding internal control variables for M1 

and M2 (UM1  and  UM2 respectively)  

 

 

 
 

Qn Q1 Q2 Q3 Q4 

V u3 u4 u5 u6 

UM1 u3 u4 u5 u6 

UM2 u2 u5 u3 u6 

 

Table 6.13 Internal correspondence 

 

One important issue in the design of the NA is the formulation of the negotiation-learning 

problem and the definition of the Q-tables, structurally and logically. Structurally for the 

addressing problem each Q-table is defined as follows: 

 

 (          )        ∈ {     }   ∈ {     }  

(6.16) 

Communication 
module 

Behaviors module 
PBIB 

Greedy 

Q1 Q2 Q4 

Knowledge base 

NA 

Q3 



 

 76 

The purpose of this three-dimensional matrix is to map the state of M1 (  ) and the state of 

M2 (  ) to a single action. In this case, there are 200 possible states defined for    and    and 

100 possible actions. 

 

 

The negotiation feature of the NA lies in the fact that, in exploitation, the NA will map to an optimal (or 

sub-optimal) action every    and   . 

 

 

The logical definition of the NA is related to the way in which the states (in this case    

and    ) are defined. In order to make this important definition, it is necessary to find a 

measure, aggregated enough, to define the global state of the corresponding MPC agent.  

 

In this case the definition of the states has been defined as follows: 

 

 

 

   ∑ 

  

   

 ( )  ∑ 

  

   

   ( )  ∑ 

  

   

    ( ) 

(6.17) 

 

   ∑ 

  

   

 ( )  ∑  

  

   

   ( )  ∑ 

  

   

    ( ) 

(6.18) 

where, 

 

 

  ( )    ⃗ ( )     ⃗( )   and     ( )     ⃗⃗⃗⃗⃗⃗  ( )     ⃗⃗⃗⃗⃗⃗ ( ) 

(6.19) 

 

 

Table 6.14 some particular parameters values in the implementation of the NA, that are 

considered in the illustrative example, are shown.  

 

  

 

 



 

 77 

 

 

 

 

 

 

Table 6.14 Parameters of the NA 

 

 

s1 and s2 have to be discretized. This is made as follows 

 

Sn     
  

      
 

(6.20) 

 

for both s1 and s2, where smax is the maximum value that the state of the agent can have (before 

discretization). 

 

Reward calculation  

 The  reward (r), was calculated with the equation: 

 

          

(6.21) 

 where   represents the reward r and   is a constant that satisfies: 

  

        

(6.22)  

Given that s1 and s2 represents a sum of quadratic errors (see Eq. (6.17) to (6.19)), the reward 

will be always positive. With a smaller sum of errors the reward will be larger and vice versa. 

 

Eq. (6.23) is the function that updates each Q-table where the parameters rates past 

experience and is set to 0.5 in the illustrative experiments 

 

 

 (          )      (       ) 

(6.23) 

 

Parameters 

    =        

UX1 min=0 

UX2 max=0.0020 

 



 

 78 

6.3 Experimentation 

Once all agents are designed, it is time to define some experiments to illustrative how the 

proposed approach works. As it was mentioned at the beginning of this chapter, the type of 

learning implemented is instructed learning (described in Chapter 5). Instructed learning is an easy 

and efficient way to train the NAs. The training is made offline and no exhaustive training is 

needed. It is a good option of training, when a centralized solution of the system is available. 

The learning behavior used in this example (also defined in Chapter 4) is planningByInstruction 

(PBIB). In this case, the teacher is a centralized MPC version of the system.  The first part of 

the experimentation phase, according to MA-MPC methodology is training. 

 

 

 

Figure 6.10 Process of experimentation phase.  

 

a) Training            

In the training phase of this example, the planningByInstruction behavior (PBIB, Algorithm 2 of 

section 4.4.1) was implemented and executed 300 times (line 1 of the algorithm PBIB, n=300), 

for the complete control horizon (line 4, 24 hrs.) of agents M1 and M2. Random initial 

conditions were set for each complete horizon. During the training, the Q-table for the shared 

variable was filled with the Q-values calculated for each state visited.  the value of s1 and s2 is 

calculated by it respective MPC agent using Eqs. (6.17) and (6.18), the value is discretized 

using Eq. (6.20).  

 

Figure 6.11 shows a representation of the Q-values calculated in different phases of the training 

of the variable u5. The Q-table contrast the error of M1 and M2 (or the discretize state of each 

agent) with the action taken.  

 



 

 79 

In order to use only positive errors, in the Figure 6.11, errors range from 0 to 200. Negative 

errors range from 0 to 99, 100 corresponds 0 and from 101 to 200 are range the positive 

errors. Actions are ranging from 0 to 100. As it can be appreciated in the figure, the states 

visited in this training tend to be denser near the optimum state (100). This is because all the 

actions were dictated by the teacher, the centralized system. Making a comparison between 

sub-figures (a), (b), (c) and (d) of the Figure 6.11, it can be seen that the Q-values cloud is 

spreading on the axis of the actions and becomes denser as the training progresses. 

 

 

  

Q-table Negotiation variable u5 training 

of 50 iterations 

(a) 

Q-table Negotiation variable u5 training 

of 100 iterations 

(b) 

  

Q-table Negotiation variable u5 training 

of 200 iterations 

(c) 

Q-table Negotiation variable u5 training 

of 300 iterations 

(d) 

Figure 6.11 Different phases of the training using PBIB of the variable u5 

 

 

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7



 

 80 

It is important to notice that the only random factor in this training (using PBIB) are the initial 

states of the M1 and M2. The fact that in this training instructed learning is used makes it fast and 

efficient. The Q-values stored in these Q-tables represents meaningful and evaluated experience 

(because of the accumulation of the rewards). 

 

It can be noticed that between section c and d of the Figure 6.11, there is not much 

difference. This is one of the factors that can show that no more iterations are needed. 

Additionally, the results of the exploitation phase are necessary in order to determinate that 

the training phase is finished. Similar results are obtained for the rest of the q-tables 

 

A training based on PBIB can be also used as a good start (or seed) before a non-instructed 

learning technique.  

 

 

 

b) Simulation. 

As it was mentioned before, in order to know if the training phase is finished it is necessary to 

evaluate the Q-tables making test and exploiting. In order to do that, the greedy behavior (Section 

4.4.3) is implemented using the Algorithm  4 Greedy behavior algorithm of section 4.4.3. 
 

This algorithm observes the state of the MPC agents s1 and s2 (in a discretized way) and maps 

it to the action that maximizes the accumulated Q-value. Figure 6.12 shows the result of a 

simulation in the exploitation phase. The outputs (the level in tanks) of the four tanks with 

multiple dependences problem are shown  (see Figure 6.1 and Figure 6.2). 

 

Figure 6.12 compares the output given by the proposed framework, the MA-MPC architecture 

using PBIB, the centralized solution and the reference. Many simulations were made in to 

prove the efficiency of the learning performed.  

  
0 5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x1

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x2

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

  



 

 81 

  

Figure 6.12 Contrast between outputs of centralized MPC (green) and MA-MPC using PBIB (blue) 
outputs, red line is the reference, cyan x max, purple x min. 

 

Figure 6.13 shows the resulting actions applied in the simulations shown above. Sections (c), 

(d), (e) and f of this figure show shared variables, while sections (a), (b), (g) and (h) show internal 

variables of the MPC agents M1 and M2, respectively. As it can be noticed, the actions 

calculated by the NA (the shared variables) vary less over time, as it was required in FR4 (see 

Table 6.1). This is archived without sacrificing performance.  

 

 
(a) 

 
(b) 

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x3

Time (hr)

V
o
lu

m
e
 (

m
3
)

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x4

Time (hr)

V
o
lu

m
e
 (

m
3
)

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u1

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3 Agent 1 - Control u2

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

  

  



 

 82 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 6.13 Actions (u´s) applied by the MA-MPC using PBIB (blue) and the centralized (green) 
solution in a simulation of the four tanks with multiple dependences problem. Red line u max, cyan u 

min. 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Agent 1 - Control u3

Agent 2 - Control u2

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Agent 1 - Control u4

Agent 2 - Control u5

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Agent 1 - Control u5

Agent 2 - Control u3

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Agent 1 - Control u6

Agent 2 - Control u6

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 2 - Control u1

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3 Agent 2 - Control u4

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

  

  

  



 

 83 

c) Performance analysis and validation. 

Table 6.15 shows the average absolute error of the output of 30 simulations. The first column 

was calculated with a training of 50 iterations, next ones with 100 iterations, 200 and 300 

iterations. The sum of the error M1 and error M2 is provides the total error. It can be seen how 

the error in the MA-MPC system (the first three) decreases as the iterations of the training 

progresses. Also it can be noticed that between 200 and 300 iterations there is not much 

difference in the error.  The analysis of this table and the differences between the resulting Q-

tables (see Figure 6.11) is useful to establish when the training is completed. The results shown 

in the Table 6.15 show that the MA-MPC system using instructed learning by implementing 

the PlanningByInstruction behavior (PBIB) has a better performance than the centralized MPC 

solution  from iteration 200.  

 

   50 it 100 it 200 it 300 it 

Error M1 62,36     24,04 18,07 17,14     

Error M2 60,11 24,23     17,20     17,37     

Total error MA-MPC (PBIB) 122,47 48,27 35,27 34,49     

Total error Centralized MPC 45,91 

 

44,08 45,04 44,71 

Table 6.15 Average of absolute error between increasing iterations during training with PBIB  

 

Table 6.16 shows the accumulative ∆u objective applied by the MA-MPC and the centralized 

MPC solution in 30 simulations.  The first column was calculated with a training of 50 

iterations, next ones with 100, 200 and 300 iterations. 

 

Table 6.16 Accumulative     between increasing iterations during training  

6.4 Conclusions  

The results of this example shows that a system with multiples dependences between its 

components can be governed efficiently using distributed controllers and, even more, it can 

increase its performance using the MA-MPC architecture implementing instructed learning by 

the PBIB behavior. 

 

    50 it 100 it 200 it 300 it 
 entralized MPC 4,666e-05 6,333e-05 5,000e-05 6,333e-05 
MA-MPC 0,0140833 0,0153533 0,0116933 0,0155466 



 

 84 

It can also be observed that the actions calculated by the NA (the shared variables) vary less 

over time without sacrificing performance. But the accumulative control effort is minor 

compared with the centralized MPC. 

 

Other experiments have been carried varying the weights of the parameters      and    of 

Eq. (6.19) presented in Table 6.14. Making the same changes in the teacher (the centralized 

MPC) and performing a new training, the NA adapts to the new parameterization providing 

similar results than ones obtained with the weights presented in Table 6.14.  

  



 

 85 

Chapter 7.  Learning from exploration-

validation, an application. 

 

In Chapter 6, the four tanks with multiple interdependencies problem was successfully solved 

applying instructed learning, but, what happens when there is no teacher available? Is 

exploration-validation a better method of training? This chapter proposes an extension of the 

MA-MPC methodology to the case that no teacher is available. The achieved performance is 

illustrated with the same four tank problem already introduced in Chapter 6 allowing the 

comparison with the teacher based approach. Figure 7.1 shows the process flow of the 

extended methodology. The starting point of this chapter is the finishing point of Chapter 6, 

i.e., the final process of the experimentation phase. From there, we will go back to the design 

phase, i.e. to the definition of the NA. This will change the core of the NA (that is, the behaviors 

module) in order to try a learning by exploration-validation behavior, PBEB (presented in Section 

4.4.2). This means that the negotiator agent (NA) will learn from its own experience the behavior 

of the shared variables in a selective way.  Finally, promising results are shown on the 

experimentation phase. 

 

Figure 7.1 Process flow made in the iteration between experimentation and design phases  

 

 
 
 
 
 
 

 
 
 
 
 
 



 

 86 

7.1 Design 

As it was mentioned before, the proposed extended methodology modifies the definition of the 

NA process, the other processes of the design phase remains unchanged. So, in the behaviors 

module of the NA, the behavior PBEB is added while the greedy behavior is still used. All the 

other definitions of the NA remain the same (see Section 7.2).  The new structure of the NA 

is shown in Figure 7.2.  

 

 

 

 

Figure 7.2 New internal structure of the NA  

  
 
 
 
The PBEB algorithm used is explained in Section 4.4.2. In this algorithm, s1  Eq. (6.17) and s2 

Eq. (6.18) represents the state of M1 and M2 (the two MPC agents that share that particular 

negotiation variable). These variables are calculated taking in to account Eqs. (6.19), (6.17) and 

(6.18), the value is discretized using Eq. (6.20). and the parameters presented in Table 6.13. 

Communication 
module 

Behaviors module 
PBEB 

Greedy 

Q1 Q2 Q4 

Knowledge base 

NA 

Q3 



 

 87 

Once calculated, they have to be discretized using Eq.(6.20). The discretized value of s1 and s2 

are used in the algorithm. V1 and V2 are the internal representation if the shared variable in M1 

and M2 for each time instant k. a is the random action selected. The calculus of the reward (r), 

in line 9 obeys Eq.(6.21) and Eq. (6.22).  

 

The objective of this algorithm is to learn by exploration, trying random actions but using just 

the meaningful experience and discarding the actions that lead to unfeasible states. 

7.2. Experimentation. 

Once the design phase is completed, it is time to define the experiments. The first part of the 

experimentation phase, according to MA-MPC methodology is training. 

7.2.1 Training.               

The training implements the PlanningByExploration behavior. Many experiments were made in 

this phase. First experiments were made using just explorative learning. Then, the  

PlanningByExploration behavior (PBEB) was implemented varying the number of the iterations 

in the training. Then, PBEB with selective penalization of reward was implemented.  All 

training was made for the complete control horizon (24 hrs.) for each shared variable. 

Random initial conditions were set for each complete horizon. During training, the Q-table for 

each shared variable was filled with the Q-values calculated for all states visited.   

 

Eq. (7.1) is the function that updates each Q-table. Rates past experience and is set on 0.5 

 

 (            )      (         ) 

(7.1) 

The learning behavior PlanningByExploration, selects the actions that leads to a feasible solution 

of the related MPC agents. In this experiment, PBEB with selective penalization of reward 

was implemented applying a penalization in the opposite case, this means that if there is no 

feasible solution for MA-MPC agents, a negative reward was assigned (-1000). This negative 

reward ensures that the Q-value of state-action-state that leads to critical states stays low and 

accelerates drastically the training process allowing the MA-MPC system to improve the 

centralized MPC solution from the iteration 20 (see Table 7.1). 

 

 

 

 

 



 

 88 

 Algorithm  5  PlanningByExploration behavior algorithm with selective penalization 

1. Define   that satisfies (4.3), n,  sa1   random, sa2   random, controlHorizon,  
k=1 

2. loop while iterations ≤ n 

3. loop while k ≤ controlHorizon 

4. a   r ndo  ( ) ∈ A  Q (s1′,a, s2′) 

5. Va1 (k)   a 

6. Va2 (k)   a 

7. sa1   send Va1 (k) to MPCagent1 , MPCagent1 set the action Va1 (k) and 

        calculates its internal variables, apply all the controls (actions) obtained  

        (and given) for step k to its LTI model of its partition and calculates sa1 

            using  (4.1). 

8. sa2   send Va2 (k) to MPCagent2, MPCagent2 set the action Va2 (k) and 

calculates its internal variables, apply all the controls (actions) obtained 

(and given) for step k to its LTI model of its partition and calculates sa2 

using (4.2). 

9. if MPCagent1 and MPCagent2 have a feasible solution 

10. r     - sa1 - sa2 

11. Q (sa1’, a’, sa2’ )  r +α Q(sa1, a, sa2) 

12. sa1’  sa1 

13. sa2’  sa2 

14. else 

15. r   -1000 

16.     Q (sa1’, a’, sa2’ )  r +α Q(sa1, a, sa2) 

17. sa1’  random 

18. sa2’  random 

19. end if 

20. k=k+1 

21. end loop 

22. iterations=iterations+1 

23. end loop 
 

 

 

The experimentation made on this example shows that using just using exploration, the 

system can not recover from states related to unfeasible solutions. In addition, these states 

have high frequency of visits because it is more likely that the random action selected were not 

the good one. This affects negatively the learning process because the accumulation of many 

small rewards becomes in larges Q-values. 

 



 

 89 

In order to solve that issue, selective feedback was applied (as shown in the algorithm 

described in Section 4.4.2). This reduces drastically the iterations needed using just exploration 

and the Q-values result more reliable. Moreover, the use of a negative reward in the selected 

actions that lead to unfeasible states also provide a huge improvement. After assigning the 

negative reward,  s’1  and s’2    are set to random in order to  continue the learning process 

effectively. 

 

With these conditions a training of 100 iterations was carried out. Figure 7.3 (a) shows a color 

representation of the Q-values calculated in the learning process. The Q-table allows to present 

the error of M1 and M2 (or the discretize state of each agent) with the action taken. In order to 

use only positive errors, the errors are scaled from 0 to 200. Negative errors are scaled  from 0 

to 99, 100 is 0 while values from 101 to 200 correspond to positive errors. Actions are ranging 

from 0 to 100.  The figure compares the Q-tables obtained using PBEB (a) and (PBIB) (b). 

From Figure 7.3 (a), it can be noticed that the cloud of data spreads all over the action axis, 

meaning that all actions were explored. Figure 7.3 (b) shows the Q-table of  shared variable u5  

with a training of 300 iterations using PBIB. In this Q-table, the cloud of Q-values is more 

compact because its training only tried the actions dictated by the teacher (in this case, 

centralized MPC).  

 

 

 

 (a)  (b) 

Figure 7.3 Comparison of the resulting Q-Tables of the variable u5 using PBEB (a) and PBIB(b)  

7.2.2 Simulation. 

 

In other to know if the training phase is finished it is necessary to evaluate the elements of  

the Q-table by means of testing and exploiting. The simulation process implements the greedy 

behavior (section 4.4.3). This algorithm observes the state of the MPC agents, s1 and s2 (in its 

discretized form), and maps it to the action that maximizes the accumulated Q-value.  

 

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

500

1000

1500

2000

2500

3000

3500

4000

0

50

100

0

50

100

150

200
0

50

100

150

200

 

Action

QTable Negotiator 1 - Variable u5

Error Agent 1
 

E
rr

o
r 

A
g
e
n
t 

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x 10
7



 

 90 

Figure 7.5 shows the results of a simulation in the exploitation phase presenting the states (the 

volume in tanks) of the four tanks with multiple dependences problem (see Figure 7.4). 

 

 

 

 

  

 

 

                               (a) (b) 
 

Figure 7.4 (a) System partitions. (b) Shared variables between M1 and M2 

 

The simulation results presented in Figure 7.5 allow to compare the MA-MPC using PBEB 

(blue line) and the centralized solution (green line) with the same random initial conditions 

and references (red line), obtained after a training of 100 iterations using PBEB with selective 

penalization of reward explained above. Notice that the reference is variable in time. The 

parameters of MPC agents and the centralized MPC system are the same. From Figure 7.5, it 

can be noticed that both approach force the system to track the reference.      
 

  
0 5 10 15 20 25

0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x1

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (hr)

V
o
lu

m
e
 (

m
3
)

Agent 1 - Output x2

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

M1 M2 

u3 
u4 
u5 

u6 

 

 

  



 

 91 

  

 

Figure 7.5 Results of the MPC agents (blue) compared with the centralized MPC (green) solution. The 
red line is the reference, purple x min, cyan x max. 

 

Figure 7.6 shows the resulting actions applied to the four tanks with multiple dependences 

problem. Sections c, d, e and f of Figure 7.6 show shared variables while section a, b, g and h of 

this figure shows internal variables of the MPC agents M1 and M2, respectively. It can be noticed, 

the actions calculated by the NA (the shared variables) vary less over time, without sacrificing 

performance.  

 
(a) 

 
(b) 

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x3

Time (hr)

V
o
lu

m
e
 (

m
3
)

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10
Agent 2 - Output x4

Time (hr)

V
o
lu

m
e
 (

m
3
)

 

 

MA-MPC

Cetralize MPC

Reference

x Max

x Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u1

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3 Agent 1 - Control u2

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

  

  



 

 92 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 7.6 Actions (u´s) applied by the MA-MPC using PBEB with selective reward (blue) and the 
centralized (green) solution in a simulation of the four tanks with multiple dependences problem. Red 

line umax, cyan umin.. 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u3

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u4

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 1 - Control u5

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Agent 1 - Control u6

Agent 2 - Control u6

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3 Agent 2 - Control u7

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3 Agent 2 - Control u8

Time (hr)

A
c
ti
o
n
  

(m
3
/s

e
g
)

 

 

MA-MPC

Cetralize MPC

u Max

u Min

  

  

  



 

 93 

7.2.3 Performance analysis and validation. 

Many simulations were made to assess the performance of the extended proposed approach. 

Table 7.1 shows the comparison of the average absolute error (with respect to the reference) 

of 30 simulations in the training process of the best Q-tables found, the ones obtained using 

PBEB with selective penalization of reward. Columns show the results of a training of 20, 50 

and 100 iterations with random reference and initial conditions. From this table, it can be 

noticed that the MA-MPC solution improves the centralized solution since the first 20 

iterations of the training and keeps improving slightly as iterations increase.  

 

   20 it 50 it 100 it 

Error a1 17,2429    15,8219    16,3230    

Error a2 18,3069    17,5714 16,3808    

Total error MA-MPC 35,5499    33,3932 32,7038    

Total error Centralized MPC 45,3116     43,7657 42,8805     

Table 7.1 Comparioson of the average absolute error between MPC-agents, MA-MPC system and 
centralized MPC solution with trainings of 20, 50 and 100 iterations.    

 

Table 7.2 shows the comparison of the average     between  MA-MPC system and the 

centralized MPC solution with trainings of 20, 50 and 100 iterations. The system stops 

improving after a training of 100 iterations. 

 

 

 

 

 

 

 

Table 7.2 Comparison of average     between  MA-MPC system and centralized MPC solution with 
trainings of 20, 50 and 100 iterations. 

 

 

It was observed that the actions calculated by the NA (the shared variables) vary less over time 

without sacrificing performance. But, the accumulative control effort is grater compared with 

the centralized MPC. 

 

Other experiments were made increasing or decreasing the negative reward but for this 

problem the best negative reward was -1000.  

 

 

    20 it 50 it 100 it 
Centralized MPC 0,0001     0,0001     0,0001 
MA-MPC 0,0109    0,0110 0,0111 



 

 94 

7.3 Conclusions 

Explorative training is usually exhaustive. This complexity is reduced applying selective 

feedback (using PBEB) but the combination of the use of negative reward for the selected 

feedbacks not just improves the results compared to the centralized MPC but also the 

PlanningByInstruction Behavior (PBIB) and decrease drastically the iterations needed in the 

training phase. Table 7.3 shows the average absolute error with respect to the reference of 30 

simulations of the PBEB with selective penalization of reward and the PBIB. Random initial 

conditions and random references were use. The random cases calculated for PBEB with 

selective penalization of reward were different than the ones calculated for PBIB. The training 

of the PBEB with selective penalization of reward, involves 100 iterations while in the case of 

the PBIB uses 300 iterations.  

 

 PBEB selective reward PBIB 

Error M1 16,3230    24,04 

Error M2 16,3808    24,23     

MA-MPC 32,7038    48,27 

Centralized MPC 42,8805     44,08 

Table 7.3 contrast of errors between the modification of PBEB and PBIB 

 

Table 7.4 shows the average     obtained using the MA-MPC and the centralized MPC 

solution in the same experimentation conditions that those used to obtain the results 

presented the Table 7.3. 

 

 

 PBEB PBIB  
Centralized MPC 0,0001     6,333e-05  
 MA-MPC 0,0107 0,0153533  

Table 7.4 contrast of the     between the modification of PBEB and PBIB 

 
Thus, the experimentation results obtained in this example show that the modification of the 

PBEB is a more efficient learning technique than PBIB due to the reduction of the error and 

the iterations needed in training. 

  



 

 95 

Chapter 8.  Application to the Barcelona 

drinking water network case study. 

In this chapter, the PBEB with selective penalization of reward was applied to the Barcelona 

drinking water network (DWN) case study. The Barcelona DWN, managed by Aguas de 

Barcelona, S.A. (AGBAR), not only supplies drinking water to Barcelona city but also to the 

metropolitan area. The sources of water are the Ter and Llobregat rivers, which are regulated 

at their head by some dams with an overall capacity of 600 cubic hectometers. Currently, there 

are four drinking water treatment plants (WTP): the Abrera and Sant Joan Despí plants, which 

extract water from the Llobregat river, the Cardedeu plant, which extracts water from Ter 

river, and the Besòs plant, which treats the underground flows from the aquifer of the Besòs 

river. There are also several underground sources (wells) that can provide water through 

pumping stations. Those different water sources currently provide a flow of around 7 m3/s. 

The water flow from each source is limited and with different water prices depending on 

water treatments and legal extraction canons. 

 

The Barcelona DWN is structurally organized in two layers. The upper layer, named transport 

network, links the water treatment plants with the reservoirs distributed all over the city. The 

lower layer, named distribution network is sectored in subnetworks. Each subnetwork links a 

reservoir with each consumer. This application case study is focused on the transport network. 

Thus, each subnetwork of the distribution network is modeled as a demand sector. The 

demand of each sector is characterized by a demand pattern, which can be predicted using a 

time-series model (Quevedo, 2010). The control system of the transport network is also 

organized in two layers. The upper layer is in charge of the global control of the network, 

establishing the set-points of the regulatory controllers at the lower layer. Regulatory 

controllers are of PID type, while the supervisory layer controller is of MPC type. Regulatory 

controllers hide the network non-linear behavior to the supervisory controller. This fact allows 

the MPC supervisory controller to use a control-oriented linear model. 

 

In this chapter, the Barcelona DWN aggregate network presented in Figure 8.1 has been used. 

From this figure, it can be seen that the network is comprised of 17 tanks (state variables), 61 

actuators (26 pumping stations and 35 valves), 11 nodes and 25 main sectors of water demand 

(model disturbances). The model has been derived using the control oriented modeling 

methodology proposed in (Ocampo-Martinez, 2011). The obtained model has been compared 

against real behavior assessing its validity. The detailed information about physical parameters 

and other system values are reported in (Fambrini, 2009). 

 



 

 96 

Using the partitioning obtained in (Ocampo-Martinez, 2011), the aggregate model of the 

Barcelona DWN is decomposed in three subsystems, as depicted in Figure 8.1 in different 

colors.  

 

 

Figure 8.1 System diagram of the Barcelona DWN aggregate network 

 

Table 8.1 collects the resultant dimensions for each subsystem and the corresponding 

comparison with the dimensions of the vectors of variables for the entire aggregate network. 

 

 

Elements Subsyst 1 Subsyst 2 Subsyst 3 Whole Model 

Tanks 2 5 10 17 

Actuators 5 22 34 61 

Demands 4 9 22 25 

Nodes 2 3 6 11 

 

Table 8.1 Dimension comparison between the subsystems and the whole network 

c70PAL

c125PAL

CPIV

d110PAP c110PAP

CPII

d54REL_8

d100FCE c100FCE

VSJD_29

c100LLO

d80GAVi80CAS 

85CRO

c80GAVi80CAS

c70LLO

VCA

CRE

CGIV

CCA
d115CAST

c115CAST

VCR

CB

dPLANTA

ApotLL1

CPLANTA70
CPLANTA50

d10COR

c10COR

PLANTA10

CC50

CC70

c70FLL

VZF

VCT

VT

c100BLLsud

VRM

VCO CCO

VS

CE

VE

c130BAR

CF200

CF176

d200BLL

c200BLL

VF

d176BARsud
c176BARsud

c200BARs-c

VB

VP

VMC

d200ALT

c200ALT

VBSLL

d200BARnord
c200BARnord

d101MIR

c101MIR

CA

c100BLLcentre

VPSJ

d100BLLnord

c100BLLnord

VCOA

d70BBEsud

c70BBEsu

d

CC100

CC130

CRO

aMS
bMS

aPousB

aPousE

aPouCast

bPousB

bPousE

bPouCast

d130BAR

c140LLO

d125PAL

nAportA1_1

nAportA2_1

N70pal_2

n100LLO_3

n70LLO_4

n140LLO_5

n100BLLsud_6

n70FLL_7

n200BARsc_9

n100BLLcentre_8

VALVA45

VALVA

VALVA47

VALVA48

VALVA53

VALVA54

VALVA55
VALVA56

VALVA57

nAportT_11

ApotLL2

c176BARcentre

n176BARcentre_10

ApotA

VALVA60

VALVA61

VBMC

VALVA64

VALVA50

VALVA312

VALVA309VALVA308

ACast bCast

CPR

CMO

d120POM

c120POM

VCON

n135SCG_11

c135SCG

u(1)

u(2)

u(3)

u(5)

u(4)

u(6)

u(7)

u(8)

u(10)

u(9)

u(11)

u(12) u(16)

u(18)

u(14)
u(19)

u(13)

u(15)

u(20)

u(17)

u(21)

u(27)

u(22)

u(23)

u(24)

u(25)

u(26)

u(28)

u(29)

u(30)

u(31)

u(32)

u(33)

u(34)

u(35)

u(43)

u(36)

u(37)

u(38)

u(39)

u(40)

u(41)

u(47)

u(45)

u(42)

u(44)

u(49)

u(46)

u(53)

u(56)

u(48) u(60)

u(55)

u(54)

u(57)

u(58)

u(51)

u(52)

u(50)

u(59)

u(61)

nPLANTA

x(1)

x(2)

x(9)

x(4)x(3)

x(5)

x(8)

x(6)

x(7)

x(11)

x(10)

x(12)

x(17)

x(13)

x(14)

x(15)
x(17)

d(1)

d(2)

d(3)

d(8)

d(9)

d(5)

d(4)

d(7)

d(6)

d(10)

d(15) d(18)

d(17)

d(14)

d(13)

d(21)

d(20)

d(19)

d(11)

d(12)

d(16)

d(22)

d(25)

d(24)



 

 97 

 

 

 

The proposed framework was applied to the Barcelona DWN using the partitioning of the 

aggregated network (Figure 8.1). The functional requirements of this system are presented in 

Table 8.2. The control objective in this case, is reflected in FR3 and FR4, this means that the 

priority of the control is to maintain the system inside the security levels, a desirable reference 

is use but the priority are FR3 and FR4, the last one, refers to a smooth control, that means 

that control actions should increase /decrease in small quantities.  

 

 

Req 

No. 

Name of the requirement.  Description. 

FR1 Type of partitioning. As defined in Figure 8.1. 

FR2 Distributed control. One controller for each partition. 

FR3 Security levels.  The behavior of tank levels should maintain in 

the defined limits. 

FR4 Smooth control. Control actions should increase / decrease in 

small quantities. 

FR5 Avoid conflicts and 

collisions. 

Avoid conflicts and collisions between 

subsystems. 

FR6 Satisfy demands. All demands have the same priority. 

FR7 Global optimization Seek the global optimality of the system. 

 

Table 8.2 Functional requirements of the Barcelona DWN.  

 

 

According to FR2, an MPC agent (named M1, M2 and M3 respectively) was assigned to each 

partition (subsystem). The Figure 8.2 shows the MPC agents and the relations between them 

in the relation diagram of the system. 

 

 



 

 98 

 

Figure 8.2 Relation diagram of the Barcelona aggregate DWN  

 
 
A NA was placed between the MPC agents with shared variables between them. Three MPC 

agents and two negotiator agents were required. Figure 8.3 shows the resulting general 

structure of the DWN system diagram. Eq. (8.1) and Table 8.3 defines de MA-MPC 

architecture for this system. 

 
 

 

(8.1) 

 

 

 

 

 

 

 

 

 

Table 8.3 Table γ of the Barcelona DWN . 

𝛾  {             } 

Variable Definition 

M {M1, M2 , M3}, 

N {N1 ,  N2},               

P {X, U, E, D}, 

W {W1, W2, W3}, 

V {V1, V2,V3}, 

U {U1, U2, U3} 
 

M1 

M3 M2 

u18 
 u20 

u21 

u34 

u32 

u40 

u47 

u56 

u60 

u6 



 

 99 

where: 

 

X= {X1, X2, X3}, U= {U1, U2, U3 , V}, E= {E1, E2, E3}, D= {D1, D2, D3} and  V= {V1, V2, V3} 

(8.2) 

 

 

Figure 8.3 General structure of the Barcelona BWN MA-MPC implementation. 

 

 

 

In this way, N1 is in charge of shared variable u6 and N2 is in charge of u18, u20, u21, u34, u32, u40, 

u47, u56 and u60. Figure 8.4 and Figure 8.5 show the internal structure N1 and N2, respectively.  

 

 

M1 

M3 

M2 
N1 

N2 



 

 100 

 

Figure 8.4 Internal structure of N1 of the Barcelona DWN 

 

 

 

Q1 (see Figure 8.4) represents the Q-table for shared variable u6 and it has the form  (       ). 

The knowledge base of N2 has Q-tables with the same structure as Q1 to Q9 for shared variables 

u18, u20, u21, u34, u32, u40, u47, u56 and u60, respectively (Figure 8.5). In the behaviors module PBEB 

and greedy behavior are implemented. 

 

 

 

 

 

 

 

 

 

 

Communication 

module 

Behaviors module 
PBEB 
Greedy 

Q1 

Knowledge base 

N1 



 

 101 

 

 

 

Figure 8.5 Internal structure of N2 of the BWN system 

 

The calculus of states, reward and the prediction orizon Hp are the same for all MPC agents 

and are defined next,  

 

   ∑ 

  

   

 ( )  ∑ 

  

   

   ( )  ∑ 

  

   

    ( ) 

(8.3) 

 

Communication 
module 

Behaviors module 
PBEB 
Greedy 

Q1 

Knowledge base 

N2 

Q3 Q4 

Q6 

Q2 

Q7 Q8 Q9 

Q5 



 

 102 

   ∑ 

  

   

 ( )  ∑  

  

   

   ( )  ∑ 

  

   

    ( ) 

(8.4) 

 

     ⃗      ⃗   and          ⃗⃗⃗⃗⃗⃗       ⃗⃗⃗⃗⃗⃗  

(8.5) 

 

the weights have selected as follows 

 

    =       

(8.6) 

and the prediction horizon is chosen as 

Hp=24 

(8.7) 

Finally, s1 and s2 have been discretized as in (6.21). 

 

 

Reward calculation  

 The reward (r) was calculated as follows 

 

          

(8.8) 

 where   represents the reward r and   is a constant that complies: 

  

        

(8.9)  

The PBEB was implemented using a penalization instead of just discarding actions that leads 

to unfeasible states. The algorithm below was used simultaneously for each Q-table. So M1 and 

M2 represent the two MPC agents with shared variables between them (M1 and M3; M3 and 

M2).  

 

 

 

 

 



 

 103 

 Algorithm  5  PlanningByExploration behavior algorithm with selective penalization 

1. Define   that satisfies (8.9), n,  sa1   random, sa2   random, controlHorizon,  
k=1 

2. loop while iterations ≤ n 

3. loop while k ≤ controlHorizon 

4. a   r ndo  ( ) ∈ A  Q (s1′,a, s2′) 

5. Va1 (k)   a 

6. Va2 (k)   a 

7. sa1   send Va1 (k) to MPCagent1 , MPCagent1 set the action Va1 (k) and 

        calculates its internal variables, apply all the controls (actions) obtained  

        (and given) for step k to its LTI model of its partition and calculates sa1 

            using  (8.3). 

8. sa2   send Va2 (k) to MPCagent2, MPCagent2 set the action Va2 (k) and 

calculates its internal variables, apply all the controls (actions) obtained 

(and given) for step k to its LTI model of its partition and calculates sa2 

using (8.4). 

9. if MPCagent1 and MPCagent2 have a feasible solution 

10. r     - sa1 - sa2 

11. Q (sa1’, a’, sa2’ )  r +α Q(sa1, a, sa2) 

12. sa1’  sa1 

13. sa2’  sa2 

14. else 

15. r   -1000 

16.     Q (sa1’, a’, sa2’ )  r +α Q(sa1, a, sa2) 

17. sa1’  random 

18. sa2’  random 

19. end if 

20. k=k+1 

21. end loop 

22. iterations=iterations+1 

23. end loop 

 

 

The objective of this algorithm is to learn by exploration, trying random actions but using just 

the meaningful experience and penalizing the actions that lead to unfeasible states. A training 

of just 50 iterations using a negative reward of -1000 was applied in order to obtain the results 

below. Simulations use same random initial state and reference. The results obtained by means 

of the proposed framework are compared with those obtained when a centralized MPC 

strategy is used. The model parameters and measured disturbances (demands) have been 



 

 104 

supplied by AGBAR. Demands data correspond to consume of drinking water of the city of 

Barcelona during the year 2007. 

 

 

 

 

 

(a) 

 

(b) 

Figure 8.6 Tank volume evolutions of M1 (red sub-sytem). Blue line represents MA-MPC solution and 
green line represents the centralized MPC.  

 
 

Figure 8.6 shows the volume evolution of tanks of M1 (red sub-system). Blue line represents 

MA-MPC solution and green line centralized MPC. Black dotted lines are min and max 

volume values. Red line is the reference. In Figure 8.6 (a) Volume evolution of tank 1 of the 

MPC agent and centralized MPC overlap.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
150

200

250

300

350

400

450
Agent 1 - output x1

0 5 10 15 20 25
300

400

500

600

700

800

900

1000
Agent 1 - output x2



 

 105 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 Figure 8.7 Tank volume evolutions of M2 (green sub-system). Blue line represents MA-MPC solution 
and green line centralized MPC.  

Tank volume evolutions presented in Figure 8.7 (a), (b) and (c) are the ones that are farthest 

from the reference they are kept in the boundaries of security. On the other hand, tank 

volume evolutions presented in Figure 8.7 (d) and (e) corresponds to the ones that better 

approach to the reference.  

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000
Agent 2 - output x3

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500
Agent 2 - output x4

0 5 10 15 20 25
0

5000

10000

15000
Agent 2 - output x5

0 5 10 15 20 25
2

3

4

5

6

7

8

9

10
x 10

4 Agent 2 - output x12

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800
Agent 2 - output x17



 

 106 

 

  

  

  

  

0 5 10 15 20 25
500

1000

1500

2000

2500

3000

3500
Agent 3 - output x6

0 5 10 15 20 25
1

2

3

4

5

6

7
x 10

4 Agent 3 - output x7

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000
Agent 3 - output x8

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000
Agent 3 - output x9

0 5 10 15 20 25
2000

4000

6000

8000

10000

12000

14000

16000
Agent 3 - output x10

0 5 10 15 20 25
200

300

400

500

600

700

800

900

1000

1100
Agent 3 - output x11

0 5 10 15 20 25
500

1000

1500

2000

2500

3000

3500

4000

4500
Agent 3 - output x13

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Agent 3 - output x14



 

 107 

  

Figure 8.8 Tank volume evolutions of M3 (blue sub-system). Blue line represents MA-MPC solution 
and green line centralized MPC.  

 

 

 

 

 Abs. error MA-MPC Abs. error Centralized MPC 

M1        274,50        332,96 

M2 249.867,02    15.000,60 

M3   74.702,00    35.244,99 

Total  324.843,53    50.578,55 

Table 8.4 Average absolute error of MA-MPC and centralized MPC solutions. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000
Agent 3 - output x15

0 5 10 15 20 25
1000

1500

2000

2500

3000

3500

4000

4500

5000
Agent 3 - output x16



 

 108 

 

       

       

       

       

       

       
 

Figure 8.9 Some of the control variable evolution corresponding to the Barcelona DWN. Blue line 
represents MA-MPC solution and green line centralized MPC. Cyan and red lines are min and max 

values of u. 

 

 

 

    M1 M2 M3 Total 

Centralized MPC 4,7837 1,7244 132,4717  138,9798 

MA-MPC 1,4916     0       69,4476       70,9393 

Table 8.2 Average    of MA-MPC and centralized MPC solutions. 

 

 

Conclusions. 

The implementation of the PBEB with selective reward of -1000 in the case of the Barcelona 

DWN  leads to a good solution were all the states are kept within the limits with a cost      of 

almost half of the centralized solution. Two of the tree MPC agents (M1 and M3) had better 

performance (according to FR2 and FR3 defined in Table 8.2) that the centralized system, this 

means that the system accomplish the objectives of keep within the security levels and to 

maintain a smooth control better that to track the reference. It seems that with a more 

balanced partitioning of two agents the DWN performance could still improve.  

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25
0

0.005

0.01

0.015

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-5

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25
0

1

2

3

4

5

6
x 10

-3

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25
0

1

2

3

4

5

6

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25
0

5

10

15

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25
0

5

10

15

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6



 

 109 

Conclusions and further research. 

 

The results presented in this thesis suggest that the use of the MAMPC architecture for the 

implementation of distributed MPC can converge and even improve the centralized MPC 

taking advantage from the MAS properties. Moreover, the Agent Oriented Paradigm  provides 

a suitable framework for development and implementation. Even more, the application of 

learning techniques allow to develop the Negotiator Agents that allow the coordination of the 

MPC Agents. Training of the Negotiator Agents can be made directly from a centralized 

MPC, from human operator driven control (PBIB) or from exploration with selective 

feedback and negative reward. Data from the centralized MPC is advisable but not essential. 

The type and quality of the training is a very important issue in order to obtain an efficient 

optimization. Moreover, the compromise between exploration and exploitation can be 

implemented on-line to enable the system not just adaptation to the problem but adaptation 

to changes in time. Communication protocols and coordination methods for MAS have to be 

studied and tested in a more complex case of study in which many agents interact. The 

application of the framework using different partitioning of the network has to be also 

studied.  

 

The first attempts of establishing a meaningful cost function were focused on taking the MPC 

agent error as the error associated to the subsystem state directly related to the negotiated 

variable. That way of managing the state of an agent poses several questions, such as: what to 

do when a negotiated variable is related to more than one state in the subsystem; what to do 

when a negotiated variable is weakly but directly related to one particular state and strongly 

but indirectly related to other state(s); what to do if other optimization objectives (economic 

costs associated to control variables, for instance) are wanted to be considered. The error as 

defined in this work is general enough to give proper answer to all those questions. 

 

The MAMPC architecture presented in this work is currently being tested on the complete 

Barcelona DWN. The Barcelona water network is comprised of 200 sectors with 

approximately 400 control points. At present, the Barcelona information system receives, in 

real time, data from 200 control points, mainly through flow meters and a few pressure 

sensors. This network has been used as a LSS case of study to test several LSS control 

approaches, see (Brdys, 1994) and (Fambrini V., 2009) (Barcelli, 2008) (Ocampo-Martinez C., 

2011). As starting point for the application of the MAMPC Architecture, recent work on 

centralized and decentralized MPC (Ocampo, 2014) (Morcego B, 2014). applied to the 



 

 110 

Barcelona network is being used, as well as the partitioning algorithm developed by (Watkins, 

1989).  

  



 

 111 

Bibliography 
 

Agostini, A. &. (2005). Feasible control of complex systems using automatic learning. 
ICINCO. Barcelona. 

Alpaydin, E. (2014). Introduction to Machine Learning. Cambridge: The MIT Press. 
Badwell, Q. (2003). A survey of industrial model predictive control technology. Control 

Engineering Practice, 11(XX):, 733–764. 
Bakhtiari, A. N. (2007). A cooperative learning aproach to mixed performance controller 

design: A behavioural viewpoint. Intelligent Systems Technologies and applications , 2, 137-
160. 

Balke, B. H. (2013). Assessing Agent Applications — r&D vs. R&d. En M. G. (Eds.), 
Multiagent Systems & Applications (págs. 1-20). Berlin Heidelberg: Springer-Verlag. 

Barcelli, D. (2008). Optimal decomposition of Barcelona’s water distribution network system for applying 
distributed Model Predictive Control.Master thesis. Universitat Politècnica de Cataluña-IRI-
Universitá degli Study di Siena. 

Barto, R. S. (1998). Reinforcement Learning, an Introduction. Cambridge, Massachusetts: MIT Press. 
Betti, M. F. (2014). Distributed MPC: A Noncooperative Approach Based on Robustness 

Concepts. En J. M. Negenborn (Ed.), Distributed Model Predictive Control Made Easy 
(Vols. Intelligent Systems, Control and Automation: Science and Engineering 69, págs. 
421-436). Dordrecht: Springer Science+Business Media. 

Boutilier. (1999). Secuential Optimality and coordination in Multi-Agent Systems. Sixteenth 
International Joint Conference on Artificial Intelligence.  

Brdys, M. A. (1994). Operational control of water systems, Structures, Algorithms and Applications. 
Great Britain: Prentice Hall International. 

Busonui L., D. S. (2005). Learning and coordination in dynamic Multiagent Systems. The 
Neatherlands: Delf center for Systems and control . 

Camacho, B. (2007). Model Predictive Control (Advanced Textbooks in Control and Signal Processing). 
Springer. 

Camponogara, E. J. (2002). Distributed Model Predictive Control. IEEE Control Systems 
Megazine, 44-52. 

Claus, B. (1998). The dynamics of Reinforcement Learning in cooperative multiagent systems. 
Fifteenth National Conference on Artificial Intelligence.  

Dayan, C. W. (1992). Q-learning. Machine Learning, 8(X),, 279–292. 
Du, Y. X. (2001). Distributed Model Predictive Control for Large Scale Systems. Proceedings of 

the IEEE American Control Conference, (págs. 3142-3143). Arlington, VA, USA. 
El Fawal, H. G. (1998). Optimal control of complex irrigation systems via descomposition-

coordination and the use of augmented lagrangian. IEEE Int. conference Systems, man and 
cybernetics, 4 (págs. 3874-3879). San Diego. CA.: IEEE (Ed.). 

Ernst D., G. M. (2006). Model Predictive Control and Reinforcement Learning as a two 
complementary frameworks. Proceedings of the 13th IFAC Workshop on Control Applications 
of Optimisation.  

Ernst, C. W. (2007). Reinforcement Learning Vs Model Predictive Control: A comparison on 
a power system problem. IEEE Transactions on Power Systems , 22. 



 

 112 

Fambrini V., C. O.-M. (2009). Modelling and decentralized Model Predictive Control of drinking water 
networks. Technical Report IRI-TR-04-09,. Barcelona: Institut de Robòtica i Informàtica 
Industrial (CSIC-UPC). 

Fambrini, C. O.-M. (2009). Modelling and decentralized Model Predictive Control of drinking water 
networks. Technical Report IRI-TR-04-09,. Barcelona: Institut de Robòtica i Informàtica 
Industrial (CSIC-UPC). 

Farokhi, I. S. (2014). Distributed MPC Via Dual Decomposition and Alternative Direction 
Method of Multipliers. En J. M. Negenborn (Ed.), Distributed Model Predictive Control 
Made Easy (Vols. Intelligent Systems, Control and Automation: Science and 
Engineering 69, págs. 115-132). Springer Science+Business Media Dordrecht. 

Ferramosca, A. (2014). Cooperative MPC with Guaranteed Exponential Stability. En J. M. 
Negenborn (Ed.), Distributed Model Predictive Control Made Easy (Vols. Intelligent 
Systems, Control and Automation: Science and Engineering 69, págs. 585-600). 
Dordrecht: Springer Science+Business Media . 

Ferramosca, L. G. (2014). Cooperative Distributed MPC Integrating a Steady State Target 
Optimizer. En J. M. Negenborn (Ed.), Distributed Model Predictive Control Made Easy 
(Vols. Intelligent Systems, Control and Automation: Science and Engineering 69, págs. 
569-584). Dordrecht: Springer Science+Business Media. 

Gatti, C. (2015). Design of experiments for Reinforcement Learning. Springer. 
Gómez, M. R. (1998). Decentralized adaptive control for water distribution. IEEE International 

on systems, man and cybernetics (págs. 1411-1416). San Diego. CA. USA: IEEE (ed.). 
Hakansson, H. a. (2010). Agent and Multi-agent Technology for Internet and Enterprise Systems. 

Springer-Verlag. 
Hartung, A. H. (2013). Agent and Multi-Agent Systems in Distributed Systems – Digital Economy and 

E-Commerce. Springer. 
Hester, T. (2013). TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-

Constrained Domains. Springer. 
Jaakkola, M. I. (1994). Q-learning. Machine Learning, 8(X), 1185–1201. 
Javalera V., B. M. (2010). Distributed mpc for large scale systems using agentbased 

reinforcement learning. IFAC Symposium Large Scale Systems,. Lille, France. 
Javalera V., M. B. (2010). Negotiation and learning in distributed MPC of large scale systems. 

ACC 2010. Baltimore, USA: IEEE Press. Institute of Electrical and Electronics 
Engineers. 

Javalera V., M. S. (2010). A multi-agent MPC architecture for distributed large scale systems. 
INSTICC Press. Institute for Systems and Technologies of Information, Control and 
Communication.  

Jia, B. K. (2002). Min-max feedback model predictive control for distributed control with 
communications. Proceedings of the IEEE American Control Conference, (págs. 4507-4512). 
Anchorage, AK. USA. 

Jurado, D. E. (2014). Cooperative Dynamic MPC for Networked Control Systems. En J. M. 
Negenborn (Ed.), Distributed Model Predictive Control Made Easy (Vols. Intelligent 
Systems, Control and Automation: Science and Engineering 69, págs. 357-373). 
Springer Science+Business Media Dordrecht. 

Kapentanakis, K. (2002). Reinforcement Learning of coodination in cooperative multi-agents 
systems. Eighteenth national conference on Artificial intelligence, (págs. 326-331). Edmonton, 
Alberta, Canada. 



 

 113 

Lauer, R. (2000). An algorithm for distributed Reinforecement Learning in cooperative Multi-
Agent system. Proceedings of the Seventeenth International Conference on Machine Learning, 
(págs. 535-542). 

Liu, D. M. (2014). Lyapunov-Based Distributed MPC Schemes: Sequential and Iterative 
Approaches. En J. M. Negenborn (Ed.), Distributed Model Predictive Control Made Easy 
(Vols. Intelligent Systems, Control and Automation: Science and Engineering 69). 
Springer Science+Business Media Dordrecht. 

Lunze, J. (1992). Feedback Control of Large Scale Systems. Prentice Hall. 
Maestre, D. M. (2014). Distributed MPC Based on Agent Negotiation. En J. M. Negenborn 

(Ed.), Distributed Model Predictive Control Made Easy (Vols. Intelligent Systems, Control 
and Automation: Science and Engineering 69, págs. 465-478). Dordrecht: Springer 
Science+Business Media. 

Martinez E., D. P. (2003). Control Inteligente de Procesos usando aprendizaje por interacción. 
XXIV Jornadas de Automática. León, Spain. 

Maturana, S. K. (2005). Metodologies and tools for intelligent agents in distributed control. 
IEEE Intelligent Systems , 42-49. 

Milan Vidakovic, M. I. (2013). Extensible Java EE-Based Agent Framework – Past, Present, 
future. Springer-verlag. 

Morcego B, j. V. (2014). Distributed MPC Using Reinforcement Learning Based Negotiation: 
Application to Large Scale Systems. En J. M. (eds.), Distributed Model Predictive Control 
made easy (págs. 517-534). Dordrech: Springer Science+Business Media. 

Morge, J. M. (2013). Argumentative Agents for Service-Oriented Computing. En M. G. Jain, 
Multiagent Systems and Applications, (Vol. I, págs. 217-256). Berlin, Heidelberg: Springer-
Verlag. 

Negenborn, D. S. (2004). Multi-Agent model predictive control: A survey. The Netherlands: Delf 
University of Technology, Delf center for systems and control. 

Negenborn, R. R. (2008). Multi-Agent Model Predictive Control with applications to power 
networks. Engineering Applications of Artificial Intelligence. 21., 353-366. 

Novak, K. e. (2013). Simulated Multi-robot Tactical Missions in Urban Warfare. En M. G. 
Jain, Multiagent Systems and Applications. Springer-Verlag. 

Ocampo, V. P.-d.-O. (2014). Multi-layer Decentralized MPC of Large-scale Networked 
Systems. En J. M. Negenborn (Ed.), Distributed Model Predictive Control Made Easy (Vols. 
Intelligent Systems, Control and Automation: Science and Engineering 69, págs. 495-
516). Dordrecht: Springer Science+Business Media. 

Ocampo-Martinez C., B. D. (2011). Hierarchical and decentralised model predictive control of 
drinking water networks: Application to the barcelona case study. IET Control Theory & 
Applications. 

Pannocchia, S. J. (2014). On the Use of Suboptimal Solvers for Efficient Cooperative 
Distributed Linear MPC. En J. M. Negenborn (Ed.), Distributed Model Predictive Control 
Made Easy (Vols. Intelligent Systems, Control and Automation: Science and 
Engineering 69, págs. 553-568). Dordrecht: Springer Science+Business Media. 

Pokahr A., L. B. (2013). The Jadex Project: Programming Model. En M. G. Jain, Multiagent 
Systems & Applications (págs. 21-53). Berlin Heidelberg: Springer-Verlag. 

Quevedo, V. P. (2010). Validation and reconstruction of flow meter. Control Engineering Practice, 
640-651. 

Rahman, S. M. (2001). Internet Commerce and Software Agents: Cases, Technologies and Opportunities. 
Hershey, P.A.: IGI Global. 



 

 114 

Rawlings, S. (2008). Coordinating multple optimization-Based controllers: New opportunities 
and challenges. Journal of process control (18), 839-845. 

Richards, P. A. (2014). Cooperative Tube-based Distributed MPC for Linear Uncertain 
Systems Coupled Via Constraints. En J. M. Negenborn, Distributed Model Predictive 
Control Made Easy (Vols. Intelligent Systems, Control and Automation: Science and 
Engineering 69, págs. 57-72). Springer Science+Business Media Dordrecht. 

Scattolini, R. (2009). Architectures for distributed and hiearical Model Predictive Control- A 
Review. Journal of Process Control , 723-731. 

Stan, G. (1996). Is it an agent or just a program?: A taxonomy of autonomous agents. Third 
International workshop on Agent theories, architectures and lenguages . Springer-Verlag. 

Sutton, B. (1998). Reinforcement Learning, An introduction. London, England: MIT Press 
Cambridge Massachussetts. 

Tatara, Ç. T. (2007). Control of complex distributed systems with distributed intelligent 
agents. Journal of process control , 415-427. 

Tesauro. (2003). Extending Q- Learning to General Adaptive Multi-gent System. Advances in 
Neural Information Processing Systems. 

Tsitsiklis, J. (1994). Asynchronous stochastic approximation and q-learning. . Machine Learning, 
16(X):185–202. 

Valencia, J. D. (2014). Bargaining Game Based Distributed MPC. En J. M. Negenborn (Ed.), 
Distributed Model Predictive Control Made Easy (Vols. Intelligent Systems, Control and 
Automation: Science and Engineering 69, págs. 41-56). Dordrecht: Springer 
Science+Business Media. 

Van Breemen, T. D. (2001). Design and implementation of a room thermostat using an agent 
based approach. Control Eng. Practice, , 233-248. 

Venkat, A. N. (2005). Stability and Optimality of distributed Model Predictive Control. IEEE 
Conference on Decision and Control / IEE European. IEEE/IEE European. 

Watkins. (1989). Learning from Delayed Rewards. Doctoral dissertation. Cambridge, United 
Kingdom: University of Cambridge. 

WIDE - 224168 - FP7-ICT-2007-2. (2007). Proyect final report. Recuperado el 18 de 03 de 2015, 
de WIDE - 224168 - FP7-ICT-2007-2: 
http://cse.lab.imtlucca.it/hybrid/wide/index.php?p=deliverables 

WIDE - 224168 - FP7-ICT-2007-2. (2009). Decentralized Wireless Control of Large-Scale Systems.  
Woolridge, J. (1995). Agent theories, architectures, and languages: a survey. ECAI-94 

Workshop on Agent Theories. Architectures and Languages Eds. 



 

 4 

 




