
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



Universitat Politècnica de Catalunya
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Abstract

The variational approach to brittle fracture in materials with
anisotropic surface energy and in thin sheets

Bin Li

Fracture mechanics of brittle materials has focused on bulk materials with isotropic

surface energy. In this situation different physical principles for crack path selection

are very similar or even equivalent. The situation is radically different when con-

sidering crack propagation in brittle materials with anisotropic surface energy. Such

materials are important in applications involving single crystals, extruded polymers, or

geological and organic materials. When this anisotropy is strong, the phenomenology

of crack propagation becomes very rich, with forbidden crack propagation directions

or complex sawtooth crack patterns. Thus, this situation interrogates fundamental

issues in fracture mechanics, including the principles behind the selection of crack

direction. Similarly, tearing of brittle thin elastic sheets, ubiquitous in nature, tech-

nology and daily life, challenges our understanding of fracture. Since tearing typically

involves large geometric nonlinearity, it is not clear whether the stress intensity factors

are meaningful or if and how they determine crack propagation. Geometry, together

with the interplay between stretching and bending deformation, leads to complex be-

haviors, restricting analytical approximate solutions to very simplified settings and

specific parameter regimes.

In both situations, a rich and nontrivial experimental record has been success-

fully understood in terms of simple energetic models. However, general modeling

approaches to either fracture in the presence of strong surface energy anisotropy or

to tearing, capable of exploring new physics, have been lacking. The success of ener-

getic simple models suggests that variational theories of brittle fracture may provide

a unifying and general framework capable of dealing with the more general situations

considered here.

To address fracture in materials with strongly anisotropic surface energy, we pro-
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pose a variational phase-field model resorting to the extended Cahn-Hilliard frame-

work, originally proposed in the context of crystal growth. Previous phase-field models

for anisotropic fracture were formulated in a framework restricted to weak anisotropy.

We implement numerically our higher-order phase-field model with smooth local max-

imum entropy approximants in a direct Galerkin method. The numerical results ex-

hibit all the features of strongly anisotropic fracture, and reproduce strikingly well

recent experimental observations. To explore tearing of thin films, we develop a geo-

metrically exact model and a computational framework coupling elasticity (stretching

and bending), fracture, and adhesion to a substrate. We numerically implement the

model with subdivision surface finite elements. Our simulations qualitatively and

quantitatively reproduced the crack patterns observed in tearing experiments.

Finally, we examine how shell geometry affects fracture. As suggested by previous

results and our own phase-field simulations, shell shape dramatically affects crack

evolution and the effective toughness of the shell structure. To gain insight and

eventually develop new concepts for optimizing the design of thin shell structures,

we derive the configurational force conjugate to crack extension for Koiter’s linear

thin shell theory. We identify the conservative contribution to this force through an

Eshelby tensor, as well as non-conservative contributions arising from curvature.
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Chapter 1
Introduction and Overview

1.1 Classical brittle fracture mechanics

A material is called brittle if it remains linear elastic up to the initiation of fracture.

If the characteristic linear dimension of the region around the crack front where the

material undergoes inelastic deformation is much smaller than the crack length or

some other characteristic dimension of the specimen, the so called small-scale yielding

assumption (Dugdale, 1960), the material is called quasi-brittle. Classical brittle

fracture mechanics is concerned with the study of the growth of pre-existing cracks in

brittle and quasi-brittle materials (Cherepanov, 1979).

Towards understanding the conditions under which cracks will propagate and how

they will propagate, a major goal of classical brittle fracture mechanics is to determine

the local stress and deformation fields in the vicinity of the crack tip. In the case

of two dimensional problems (anti-plane shear, plain strain and plane stress), it is

possible to derive closed-form expressions for the stresses in a cracked body, under

the assumption of homogeneous linear elastic material behaviour and infinitesimal

strain. The asymptotic stress distribution around a quasi-static crack tip, in polar

coordinates (r, θ) with origin at the crack tip as shown in Figure 1.1, are given by

(Anderson, 2005; Zehnder, 2012)
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Figure 1.1: Definition of the local frame at any point on the crack front.

Mode I: 
Opening

Mode II:
In-plane shear

Mode III:
Out-of-plane shear

Figure 1.2: Schematic of three modes of loading. Mode I, an opening mode normal
to the plane of crack. Mode II, a shear mode acting parallel to the plane of crack and
perpendicular to the crack front. Mode III, a shear mode acting parallel to the plane
of the crack and parallel to the crack front. The actual crack may experiences mixed
Mode-I, II, III loadings and this mixed mode may vary along the crack front.
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σmij (r, θ) =
Km√
2πr

fmij (θ) +O(
√
r), (1.1)

where Km are the stress intensity factors (SIFs) corresponding to the three funda-

mental modes of loading. See Figure 1.2 for a graphical illustration of KI , KII and

KIII . These factors can be formally defined as

KI = lim
r→0

√
2πrσyy(r, 0), KII = lim

r→0

√
2πrσyx(r, 0), KIII = lim

r→0

√
2πrσyz(r, 0), (1.2)

and play a central role in the characterization of the energy flux during the fracture

process and in the prediction of crack onset and evolution path (Anderson, 2005;

Zehnder, 2012). The stress diverges to infinity at the crack tip, regardless of the

geometrical configuration of the cracked body.

The analysis of quasi-static crack propagation, in general, consists of two steps.

The first step is to decide if the crack will propagate for given loading conditions. In

Griffith’s (Griffith, 1921) or Irwin’s (Irwin, 1957) theory, crack propagation arises as

a balance between the surface energy and the release of elastic energy; a crack will

propagate in a direction given by the angle θ when the relation

G(θ) = Gc (1.3)

holds, where G(θ) is the elastic energy release rate for a crack along θ and Gc is the

surface energy of the newly created crack faces. The second step is to decide in which

direction the crack will propagate. Although Griffith’s theory has proved to be very

useful to describe the various features of cracks (Freund, 1998), it does not address

the important question of how to determine the crack path, that is the angle θ. For

this a number of crack path selection criteria have been proposed, including (1) the

maximum hoop stress (MHS) criterion (Erdogan and Sih, 1963), (2) the principle of

local symmetry (PLS) criterion (Cotterell, 1965; Goldstein and Salganik, 1974), (3)

the minimum strain energy density (MSED) criterion (Sih, 1974), or (4) maximum

energy release rate (MERR) criterion (Wu, 1978; Palaniswamy and Knauss, 1978).
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The MHS criterion (Erdogan and Sih, 1963) postulates that a crack will grow in the

direction for which the hoop stress σθθ is maximum. In the PLS criterion (Cotterell,

1965; Goldstein and Salganik, 1974), the crack advances in the direction such that

the KII = 0 at new crack tip. This implies that the crack only propagates in a

pure opening mode with a symmetrical stress distribution about its local coordinate

axis. The MSED criterion (Sih, 1974) states that the crack will grow in the direction

for which the strain energy density factor S = rU around the crack tip is minimum,

where r is the distance to the crack tip and U is the strain energy density. The MERR

criterion (Wu, 1978; Palaniswamy and Knauss, 1978) dictates the crack propagates

along the direction that maximizes the energy release rate G = −∂Π/∂A, where Π is

the potential of the system and A is the area of the crack surface (crack length for

two-dimensional problems). For isotropic and homogeneous materials under in-plane

load, all these criterion are capable of predicting the crack path with good accuracy

and in general, predict very similar crack paths (Kuna, 2013); in fact, PLS and MERR

are identical under certain conditions (Amestoy and Leblond, 1992; Chambolle et al.,

2009; Hakim and Karma, 2009)). In addition to these criteria, the configurational

forces approach has also been applied to crack propagation (Cherepanov, 1979; Gurtin

and Podio-Guidugli, 1996; Gurtin, 2000). It postulates that the crack will advance

in the direction of the configurational force vector J . This criterion predicts results

very close to the MEER criterion if KII/KI 6 1, but significantly deviates from

this criterion and from experimental observations when KII/KI > 1, i.e., for large

transverse shear load (Cherepanov, 1979; Kuna, 2013).

1.2 Challenges of classical brittle fracture mechan-

ics and goal of this thesis

The above two-step analysis procedure for quasi-static crack propagation has been

successfully applied to understand and predict crack propagation in brittle and quasi-

brittle materials with isotropic surface energy under in-plane load (mode I, mode II
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and mixed-mode I+II). However, there are significant and fundamental challenges in

dealing with brittle fracture in materials with anisotropic surface energy, thin sheets

under out-of-plane loading and three dimensional curved crack propagation. As ar-

gued below, these more general situations oblige us to reconsider our physical under-

standing of brittle fracture, particularly with regards to the path selection criterion.

These more general situations provide an opportunity to discriminate between the

different crack path criteria, which no longer produce nearly identical results or are

not even applicable.

Let us focus first on materials with anisotropic surface energy. For the sake of

discussion, suppose that the material under consideration is elastically isotropic. Its

is physically clear that the existence of surface orientations with lower surface en-

ergy will bias the direction of crack propagation. However, a stress-based criterion

such as that based on the maximum hoop stress is not capable of detecting this fact

since our material is elastically isotropic; therefore, this criterion is not physically rea-

sonable in this setting. Some pioneering works have examined the problem of crack

path selection in materials with anisotropic surface energy. The maximum energy

release rate criterion had been generalized to materials with orientation dependent

surface energy Gc(θ) (Palaniswamy and Knauss, 1978; Gurtin and Podio-Guidugli,

1998; Gurtin, 2000; Chambolle et al., 2009), by noticing that the Griffith’s criterion is

first met along a direction θ such that G(θ)/Gc(θ) is maximized. If these functions are

smooth, the optimality necessary condition results in dG/dθ = dGc/dθ, which can be

identified as a configurational torque balance (Hakim and Karma, 2005, 2009). In ad-

dition, the PLS criterion has also been extended to materials with anisotropic surface

energy recently (Hakim and Karma, 2005, 2009), but not yet widely accepted. For

two-dimensional smooth crack propagation, the two criteria coincide, yet, they predict

very different crack direction for non-smooth cracks (Hakim and Karma, 2005, 2009).

Recent experiments (Takei et al., 2013) on thin anisotropic films have interrogated

the variational principle for path selection based on maximization of G(θ)/Gc(θ),

suggesting that crack path is governed by its local maximization. When the surface

energy of the materials is isotropic, the symmetry of loading dictates that the crack
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Figure 1.3: Tearing of thin anisotropic sheets experiments (Takei et al., 2013). When
the anisotropy is strong, the phenomenology of crack propagation becomes very rich,
with forbidden crack propagation directions or complex sawtooth crack patterns.

propagation will be in the direction of tearing θ = α, see the Figure 1.3. In the

case of the anisotropic surface energy, this symmetry is broken. For a material with

weak anisotropy, small deviations θ − α are observed in the experiments. When this

anisotropy is strong, the phenomenology of crack propagation becomes very rich, with

forbidden crack propagation directions or complex sawtooth crack patterns, see the

Figure 1.3.

For thin plates (Williams, 1961; Sih et al., 1962; Zehnder and Viz, 2005) or shells

(Folias, 1977) under the Kirchhoff assumption, in addition to the usual in-plane stress

intensity factors KI and KII , there are two other stress intensity factors k1 and k2,

which correspond to a symmetric bending mode and antisymmetric twisting and shear-

ing mode. The inherent kinematic assumption of Kirchhoff plate theory results in

r−3/2 singularity rather than r−1/2 in the out-of-plane shear stresses, which can be

rectified using Reissner plate theory (Hui and Zehnder, 1993). These effects only

matters around the crack tip in a region in the order of the plate thickness. However,

large geometric non-linearities are often involved in the tearing thin sheets (Hamm

et al., 2008; Bayart et al., 2010, 2011; Kruglova et al., 2011; Romero et al., 2013;

Takei et al., 2013), see the Figure 1.3 and Figure 1.4, and it is not fully clear whether

the near crack tip fields still have the same universal divergent forms as in the linear

plate or shell theory analysis (Hui et al., 1998). In this case, whether the crack path
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1

(c) (d)

(b)(a)

Figure 1.4: Fracture of brittle thin sheets by tearing with or without adhesion to
substrates. (a) three flaps experimental configuration (Bayart et al., 2011); (b) spiral
tearing experimental configuration (Romero et al., 2013); (c) thin sheet adhered to flat
substrate (Hamm et al., 2008); (d) thin sheet adhered to cylinder substrate (Kruglova
et al., 2011).
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selection criteria of bulk materials can be generalized or make physical sense is not

yet understood.

The goal of this thesis is to examine computationally brittle fracture in two situ-

ations where the classical view based on bulk isotropic brittle fracture is challenged:

materials with strongly anisotropic surface energy and thin elastic sheets. As illus-

trated above, there is ample and rich experimental literature on these phenomena.

Interestingly, many of these observations have been explained by simplified models

based on energy minimization.

Based on this observation, the major hypothesis motivating this thesis is that a

variational/energetic theory of brittle fracture should be capable of modeling crack

propagation in general situations including materials with anisotropic surface energy

or thin sheets. To test this hypothesis, we will resort to phase-field models of fracture,

reviewed next, which will need to be generalized.

1.3 The variational approach to brittle fracture

Computational approaches to brittle fracture mechanics require criteria to predict

the onset of crack extension, the direction of crack propagation and possibly crack

branching. Moreover, specialized techniques are necessary to numerically represent

and track sharp cracks, such as sophisticated adaptive remeshing schemes that in-

troduce new boundaries when the crack propagates (Ingraffea and Saouma, 1985;

Rangarajan et al., 2015), or local enrichment of the approximation space to account

for discontinuities and asymptotic fields in the extended finite element method (Moës

et al., 1999). Some of the challenges of sharp interface approaches to fracture with

regards to crack nucleation or branching can be addressed by combining them with

damage models, see (Tamayo-Mas and Rodŕıguez-Ferran, 2015) for a recent example,

or by efficient diffuse damage models such as the thick level set method (Cazes and

Moës, 2015).

In recent years, phase-field models of fracture have emerged as a promising ap-

proach to computational fracture mechanics. In these models, the complexity of

8



tracking and evolving cracks is addressed by introducing an additional field describ-

ing cracks in a smeared way, which needs to be solved for using a partial differential

equation coupled to the equations of elasticity. These models are founded on the vari-

ational approach to brittle fracture proposed by Francfort and Marigo (1998), which

formulates the crack initiation and quasi-static evolution in terms of the minimiza-

tion of a Griffith-like energy functional consisting of the elastic energy and surface

energy of a cracked body. This theory was subsequently regularized into a phase-field

or gradient damage model suitable for numerical calculations (Bourdin et al., 2000;

Bourdin, 2007), and which converges to the sharp variational theory of brittle fracture

(Bourdin et al., 2008). Subsequently, Pham et al. (2011); Pham and Marigo (2013)

interpreted it as a non-local gradient damage model and proposed a general class

of variational gradient damage models that Gamma-converge to Griffith brittle frac-

ture theory (Braides, 1998) and have some advantages from numerical and theoretical

standpoints (Pham et al., 2011). These works have prompted further developments

extending the original approach to account for fracture in piezoelectric and ferroelec-

tric materials (Abdollahi and Arias, 2012), fracture in rubbery polymers (Miehe and

Schänzel, 2014), complex crack patterns induced by thermal shocks (Maurini et al.,

2013; Bourdin et al., 2014; Sicsic et al., 2014), thin film fracture and delamination

(Mesgarnejad et al., 2013; Baldelli et al., 2013, 2014), pressurized fractures (Wheeler

et al., 2014), or fracture in linear thin shells (Amiri et al., 2014). Phase-field models

have been formalized into a thermodynamic framework by Miehe et al. (2010a,b).

Independently from the variational approach to brittle fracture based on Griffith’s

theory, a series of alternative phase-field descriptions of crack growth in brittle ma-

terials have been proposed by Aranson et al. (2000); Karma et al. (2001); Eastgate

et al. (2002); Marconi and Jagla (2005); Spatschek et al. (2006). Various numerical

simulations have demonstrated their ability to reproduce the onset of crack propaga-

tion at Griffith’s threshold as well as dynamical branching and oscillatory instabilities

(Henry and Levine, 2004; Karma and Lobkovsky, 2004), helical crack-front instability

in mixed mode I and III fracture (Pons and Karma, 2010) and thermal fracture (Cor-

son et al., 2009). These alternative phase-field models typically involve some form of
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viscous dynamics, as in the phase-model developed by Miehe et al. (2010b); Kuhn and

Müller (2010), and can only describe the propagation of a preexisting crack (Bourdin

et al., 2014).

Hakim and Karma (2005, 2009) have pointed out that in a quasi-static setting

the PLS and MERR criteria are embedded in phase-field fracture models. Moreover,

simplified theoretical models based on a variational/energetic approach combining

Griffith’s theory with the MERR criterion have successfully explained crack paths

observed in experiments of tearing thin sheets with adhesion (Hamm et al., 2008;

Sen et al., 2010), without adhesion (Roman, 2013; Brau, 2014) and in anisotropic

thin sheets (Takei et al., 2013). There have been attempts to develop theories that

explain tearing in thin sheets including geometric nonlinearity (Cohen and Procaccia,

2010), which have focused on characterizing the stress state in the vicinity of the

crack tip and have invoked a generalized the PLS criterion. This reference captures

some qualitative features of crack propagation such as convergent cracks in three-flap

tearing tests, but fails to describe the power-law geometry of the crack path (Bayart

et al., 2010, 2011). These previous results suggest that the variational approach could

provide a general description of fracture, applicable in a variety of non-standard crack

propagation problems.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we propose a variational

phase-field model for anisotropic fracture, which resorts to the extended Cahn-Hilliard

framework proposed in the context of crystal growth. We implement numerically our

higher-order phase-field model with smooth local maximum entropy approximants in

a direct Galerkin method. The numerical results exhibit all the features of strongly

anisotropic fracture, and reproduce strikingly well recent experimental observations.

In Chapter 3, we develop a variational phase-field model and a computational frame-

work coupling elasticity (stretching and bending), fracture, and adhesion to a sub-

strate. We numerically implement the model with subdivision surface finite elements.
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The simulations reproduce the crack patterns observed in tearing experiments re-

markably well. In Chapter 4, based on our phase-field computational model, we find

a striking influence of shell shape on crack propagation, suggesting that geometric

features could be used to control crack propagation and path. To shed light on this

phenomenon, we derive an expression for the configurational force conjugate to crack

extension for Koiter’s linear theory of thin shells. In Chapter 5, we present some

concluding remarks and discuss future research directions.
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Chapter 2
Fracture in brittle materials with

anisotropic surface energy

2.1 Introduction

Most materials are anisotropic, also with regards to their fracture behavior. While

most theoretical and computational studies have focused on elastic anisotropy (Stroh,

1958; Barnett and Asaro, 1972; Gao and Chiu, 1992), the anisotropy of the fracture

toughness influences more strongly the crack propagation of a wide variety of materi-

als including single crystals (Argon and Qiao, 2002; Pérez and Gumbsch, 2000; Riedle

et al., 1996), extruded polymers (Takei et al., 2013), geological materials (Donath,

1961; Duveau et al., 1998), including sedimentary (Niandou et al., 1997) and granitic

rocks (Nasseri and Mohanty, 2008), or apple flesh (Khan and Vincent, 1993). The

issue of brittle crack propagation in materials with anisotropic surface energy deeply

interrogates our understanding of fracture, and is receiving increasing attention from

a variety of points of view, such as molecular dynamics (Marder, 2004), continuum

mechanics (Gurtin and Podio-Guidugli, 1998; Chambolle et al., 2009), phase-field

modeling (Hakim and Karma, 2005, 2009), and experiments (Takei et al., 2013; Azh-

dari et al., 1998). Here, by exploiting the analogy with crystal growth, we develop

and implement numerically a phase-field model for brittle fracture of materials with

strongly anisotropic surface energy, and interpret our numerical results in the light of
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recent theories and experiments.

As reviewed in Chapter 1, different popular crack path selection criteria, in gen-

eral, provide similar predictions for homogeneous isotropic materials. However, a

stress-based criterion such as that based on the maximum hoop stress is not phys-

ically reasonable when the material is elastically isotropic but its surface energy is

anisotropic. The PLS and MERR criteria greatly differ when generalized to materials

with anisotropic surface energy, in which the fracture toughness Gc(θ) is orientation

dependent.

Recent experiments on thin anisotropic films have interrogated the MERR cri-

terion in materials with anisotropic fracture toughness, examining the global maxi-

mization of G(θ)/Gc(θ) as a crack path principle (Takei et al., 2013). By examining

strongly anisotropic materials, these experiments established a close analogy with

crystal growth and the Wulff construction for the equilibrium shape of a crystal in

materials with strongly anisotropic surface energy, which exhibit forbidden orienta-

tions and faceted surfaces. This analogy had been previously pointed out theoretically

in Gurtin and Podio-Guidugli (1998). Furthermore, these experiments report crack

propagation along metastable directions, suggesting a principle based on local maxi-

mization rather than global maximization of G(θ)/Gc(θ).

Phase-field models have been used previously to examining crack propagation in

materials with anisotropic surface energy (Hakim and Karma, 2005, 2009). However,

they have been developed within a framework that only allows for weakly two-fold

anisotropic surface energies (elliptic polar energy graphs). Yet, many of the inter-

esting features of fracture in anisotropic materials, such as sawtooth crack patterns

or forbidden crack directions, are directly related to the non-convexity of strongly

anisotropic surface energies (Takei et al., 2013). Here, we start from a regularized

variational theory of brittle fracture (Bourdin et al., 2000), and modify it by formu-

lating a strongly anisotropic surface energy inspired by phase-field models of crystal

growth. This results in a fourth-order system of partial differential equations (PDE)

for the displacement and for the phase-field representing the cracks. The variational

nature of this model suggests that the underlying crack-path selection principle is re-
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lated to the MERR criterion, and in fact it has been shown through asymptotic anal-

ysis that cracks propagate obeying the configurational equilibrium dG/dθ = dGc/dθ

in a weakly anisotropic phase-field model (Hakim and Karma, 2009). We implement

numerically the proposed model with local maximum entropy meshfree approximants

(Arroyo and Ortiz, 2006), which allow us to directly deal with the high-order nature

of the PDE (Rosolen et al., 2013a,b), and explore the fracture behavior of the model

in the light of the experiments by Takei et al. (2013).

In Section 2.2 we summarize previous variational phase-field models for fracture,

introduce the notion of the extended Cahn-Hilliard model to define anisotropic surface

energies, and show how to integrate it in a model for fracture. Section 2.3 succinctly

describes the numerical implementation of the model, and Section 2.4 presents rep-

resentative simulations, showing the fundamental features of fracture in materials

with strongly anisotropic surface energy. Section 2.5 collects our final remarks and

conclusions.

2.2 Phase-field model for materials with anisotropic

surface energy

2.2.1 Background

A variational free-discontinuity generalization of Griffith’s theory of brittle fracture

was proposed by Francfort and Marigo (1998), addressing issues such as crack nucle-

ation, path selection, and discontinuous crack propagation. In this theory, the total

energy, including bulk elastic and crack surface contributions, is simultaneously mini-

mized with respect to any admissible crack set and displacement field. This theory was

subsequently regularized into a phase-field model, suitable for numerical calculations

(Bourdin et al., 2000), and which converges to the sharp variational theory of brittle

fracture (Bourdin et al., 2008). These works have prompted a large body of literature

in mathematics, mechanics, and computational mechanics that we do not attempt to
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review here. In the regularized model, cracks are represented by a phase-field variable

(scalar order parameter) φ, which is 0 inside a cracked zone, 1 away from the crack,

and changes from 0 to 1 smoothly. The total free energy of a possibly cracked elastic

body Ω is modeled by

E[u, φ] =

∫

Ω

(φ2 + ηk)W (ε) dΩ +

∫

Ω

Gc

[
(φ− 1)2

4κ
+ κ|∇φ|2

]
dΩ, (2.1)

where u is the displacement field, W is the elastic strain energy depending on the

strain tensor ε = 1/2
(
∇u +∇uT

)
, and Gc is the energy release rate (fracture surface

energy). This family of functionals is parametrized by κ > 0, a regularization param-

eter with units of length dictating the width of the smeared crack. When it goes to

zero, the regularized model converges to the Griffith-like model studied in Francfort

and Marigo (1998), but numerical simulations require a finite value of κ, which needs

to be resolved by the grid. The parameter ηk is such that 0 < ηk << 1 and can

be seen as a vanishing residual stiffness of the cracks. Although it is not technically

necessary from a mathematical standpoint (Bourdin et al., 2011), it is used to prevent

ill-conditioning of stiffness matrix in the numerical implementation. For simplicity,

we do not consider here body forces or surface tractions. The first integral of the

functional is the elastic energy of a possibly damaged material, while the second inte-

gral approximates the surface energy. The minimization of the functional in Eq. (2.1)

with respect to both u and φ, subject to Dirichlet data and to irreversibility of cracks

provides a computable approximation of the generalized Griffith’s fracture theory.

Since the Euler-Lagrange equations resulting from Eq. (2.1) is a system of second

order PDE, it has been referred to as a second order phase-field theory of fracture

(Borden et al., 2014). The profile of the phase-field perpendicular to the crack can be

analyzed by neglecting the elastic energy and looking for a one dimensional stationary

solution. As shown in Figure 2.1(a), the second order phase-field model leads to a C0

solution, exhibiting a discontinuous derivative at the crack. Since greater regularity

of the exact solution provides better accuracy and convergence rates for numerical

solutions, a higher order phase-field model was introduced (Borden et al., 2014),
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Figure 2.1: One dimensional phase-field approximation of crack at x = 0: (a) second
order phase-field theory, (b) fourth order phase-field theory.

where total free energy is given by

E[u, φ] =

∫

Ω

(φ2 + ηk)W (u) dΩ +

∫

Ω

Gc

[
(φ− 1)2

4κ
+

1

2
κ|∇φ|2 +

1

4
κ3(∆φ)2

]
dΩ. (2.2)

This fourth order phase-field theory leads to C1 continuous solutions, as shown in

Figure 2.1(b).

When turning to materials with anisotropic surface energy, the parameter Gc in the

model can no longer be a scalar since it needs to be orientation-dependent. Anisotropic

surface energy is also very important in crystal growth or solidification, extensively

studied in the materials science literature. Anisotropic surface energy has been specifi-

cally studied in the context of phase-field models for crystal growth/solidification. In a

classical model (Kobayashi, 1993), the coefficient pre-multiplying |∇φ|2 in the surface

energy is made dependent on the phase-field approximation of the outer normal vector

n = ∇φ
|∇φ| to the interface. In this way, such models introduce explicitly an orientation-

dependent surface energy, Gc(n) in our context. This approach is very appealing

because it allows one to freely choose the functional form of this dependence. For

strongly anisotropic surface energy, i.e. when the polar plot of the reciprocal surface

energy, 1/Gc(n), is non-convex, is has been shown that the corresponding phase-field

equations become ill-posed (Taylor and Cahn, 1998). An expedite and homogenized

approach to deal with strongly anisotropic surface energies is to convexify the surface
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energy (Eggleston et al., 2001), at the expense of missing interesting details of the

geometric structure of the free-surface. Since strongly anisotropic surface energies are

important in applications and the details about the free-surface matter, researchers

have developed other remedies to this difficulty, for instance regularizing the phase-

field functional by adding the square of the Laplacian or a phase-field approximation

to the Willmore curvature energy, see (Torabi et al., 2009) and references therein.

This method works well for models with phase-field variations across the interface

approximating smoothly step functions, such as hyperbolic tangent profiles, but un-

fortunately cannot be used for phase field model of fracture. The higher-order terms

required to regularize the model result in a C1 continuous phase-field for the crack

as in Figure 2.1(b). At the center of the crack, ∇φ = 0, which renders the formula

n = ∇φ
|∇φ| inapplicable. One can try to remedy this problem by defining the outer

normal vector n using eigenvectors of the Hessian matrix ∇2φ, but this definition

becomes problematic at other regions, particularly at the crack tip.

A different and natural way to take anisotropy into account is to follow the ap-

proach presented in the original work by Cahn and Hilliard (1958), and write the

Taylor series expansion of the free energy including higher order terms. In the con-

text of crystal growth, this idea has been shown to provide a satisfactory way of

describing systems with anisotropic surface energy and are intrinsically regularized

(Abinandanan and Haider, 2001; Torabi and Lowengrub, 2012). However, as shown

later, this method imposes constraints on the kinds of orientation dependence of

Gc(n). In this paper, we adapt this approach to fracture.

2.2.2 Extended Cahn-Hilliard interface model

The classical phase-field model for isotropic systems was developed in Cahn and

Hilliard (1958). In this diffuse interface description, the behavior of a nonuniform

system is characterized by the interfacial free energy F , and expressed as an integral

of the local free energy density f that is a function of the phase-field φ. It can be ex-

panded in a Taylor series about a given phase-field, provided that f is a continuously
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differentiable function of its variables:

f(φ,∇φ,∇2φ, . . .) = f0(φ) +
∑

i

Li
∂φ

∂xi
+
∑

ij

κ
(1)
ij

∂2φ

∂xi∂xj

+
1

2

∑

ij

κ
(2)
ij

∂φ

∂xi

∂φ

∂xj
+ . . . ,

(2.3)

where ∇ and ∇2 are the gradient and the Hessian operators, and

Li =

(
∂f

∂pi

)∣∣∣∣
0

, pi =
∂φ

∂xi
, (2.4)

κ
(1)
ij =

(
∂f

∂qij

)∣∣∣∣
0

, qij =
∂2φ

∂xi∂xj
, (2.5)

κ
(2)
ij =

(
∂2f

∂pi∂pj

)∣∣∣∣
0

. (2.6)

The subscript 0 indicates evaluation at a given phase-field. By applying the divergence

theorem, the two second-rank tensor κ
(1)
ij and κ

(2)
ij can be reduce to only one (Cahn

and Hilliard, 1958). Therefore, the interfacial free energy is given by

F [φ] =

∫

Ω

(
f0(φ) +

∑

i

Li
∂φ

∂xi
+
∑

ij

κij
∂φ

∂xi

∂φ

∂xj

)
dΩ, (2.7)

where κij = −dκ
(1)
ij

dφ
+ 1

2
κ

(2)
ij . This model for the interfacial energy involves a second-

rank tensor, κij. Therefore, it can describe up to orthorhombic weak anisotropy, as

exploited in previous phase-field models of anisotropic fracture (Hakim and Karma,

2009). But this anisotropy is too restrictive; for instance, it cannot describe the

common cubic symmetry and cannot model strongly anisotropic effects (Taylor and

Cahn, 1998). Since higher-rank tensors can produce more general anisotropy, we

extend the Taylor series expansion of local free energy density to higher order, here up

to fourth order. This leads to extended Cahn-Hilliard-type equations (Abinandanan

and Haider, 2001; Torabi and Lowengrub, 2012; McKenna et al., 2009).

18



Following this approach, we expand the local free energy density f to higher order

f(φ,∇φ,∇2φ, . . .) = f0(φ) +
∑

ij

κ
(1)
ij

∂2φ

∂xi∂xj
+

1

2

∑

ij

κ
(2)
ij

∂φ

∂xi

∂φ

∂xj

+
1

24

∑

ijkl

λ
(1)
ijkl

∂φ

∂xi

∂φ

∂xj

∂φ

∂xk

∂φ

∂xl
+

1

6

∑

ijkl

λ
(2)
ijkl

∂2φ

∂xi∂xj

∂φ

∂xk

∂φ

∂xl

+
1

2

∑

ijkl

λ
(3)
ijkl

∂2φ

∂xi∂xj

∂2φ

∂xk∂xl
+

1

2

∑

ijkl

λ
(4)
ijkl

∂3φ

∂xi∂xj∂xk

∂φ

∂xl

+
∑

ijkl

λ
(5)
ijkl

∂4φ

∂xi∂xj∂xk∂xl
+ . . . .

(2.8)

The tensorial Taylor series coefficients must reflect the underlying symmetry of ma-

terial. We omit odd-ranked tensors, since they are zero for the centrosymmetric

materials of interest in the present study. As in Cahn and Hilliard (1958), we present

below a formal definition of the remaining even-ranked tensors:

λ
(1)
ijkl =

(
∂4f

∂pi∂pj∂pk∂pl

)∣∣∣∣
0

, (2.9)

λ
(2)
ijkl =

(
∂3f

∂qij∂pk∂pl

)∣∣∣∣
0

, (2.10)

λ
(3)
ijkl =

(
∂2f

∂qij∂qkl

)∣∣∣∣
0

, (2.11)

λ
(4)
ijkl =

(
∂2f

∂rijk∂pl

)∣∣∣∣
0

, rijk =
∂3φ

∂xi∂xj∂xk
, (2.12)

λ
(5)
ijkl =

(
∂f

∂sijkl

)∣∣∣∣
0

, sijkl =
∂4φ

∂xi∂xj∂xk∂xl
. (2.13)

From these definitions and since the order of differentiation can be exchanged for

sufficiently smooth functions, these tensors possess various symmetries. Following

similar arguments as before, the number of fourth-rank tensors can be reduced from

five to three (Abinandanan and Haider, 2001), and hence the local free energy density
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f can be written as:

f(φ,∇φ,∇2φ) = f0(φ) +
∑

ij

κij
∂φ

∂xi

∂φ

∂xj
+
∑

ijkl

α̃ijkl
∂φ

∂xi

∂φ

∂xj

∂φ

∂xk

∂φ

∂xl

+
∑

ijkl

β̃ijkl
∂2φ

∂xi∂xj

∂φ

∂xk

∂φ

∂xl
+
∑

ijkl

γ̃ijkl
∂2φ

∂xi∂xj

∂2φ

∂xk∂xl
.

(2.14)

2.2.3 Anisotropic phase field fracture model

Here, we only consider cubic symmetry, and therefore the second-rank tensor κij

should be isotropic, i.e. a scalar coefficient κ, which as discussed earlier has units of

length in the present context, see Eq. (2.1). Under cubic symmetry, any given fourth-

rank tensor Cijkl expressed in the material principal axes has only three independent

parameters. Resorting to Voigt notation, such tensors in 3D take the form




C11 C12 C12

C12 C11 C12 0

C12 C12 C11

C44

0 C44

C44




, (2.15)

while in 2D the tensor Cijkl can be written as




C11 C12 0

C12 C11 0

0 0 C44


 . (2.16)

See Appendix A for the expression of these tensors when the principal material axes

are not aligned with the coordinate axes.

By using this rule for α̃ijkl, β̃ijkl and γ̃ijkl, and rescaling these tensors as (α, β, γ) =
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(α̃, β̃, γ̃)/κ3 to make them non-dimensional, the surface energy F in 2D becomes

F [φ] = Ḡc

∫

Ω

{
f0(φ) + κ|∇φ|2 + κ3

[
2 (α12 + 2α44 − α11)

(
∂φ

∂x

)2(
∂φ

∂y

)2

+α11|∇φ|4 + (β12 − β11)

(
∂2φ

∂x2

(
∂φ

∂y

)2

+
∂2φ

∂y2

(
∂φ

∂x

)2
)

+4β44
∂2φ

∂x∂y

∂φ

∂x

∂φ

∂y
+ β11|∇φ|2∆φ+ 2(γ12 − γ11)

∂2φ

∂x2

∂2φ

∂y2

+4γ44

(
∂2φ

∂x∂y

)2

+ γ11 (∆φ)2

]}
dΩ, (2.17)

where Ḡc is an energy per unit area scale for the surface energy. As discussed below,

the actual surface energy Gc(θ) in this model is orientation dependent, and therefore

Ḡc does not have a direct mechanical interpretation. The 3D interfacial free energy

can be written analogously.

Having the above anisotropic interfacial free energy F , we can formulate the

anisotropic phase field model for fracture as

E[u, φ] =

∫

Ω

(g(φ) + ηk)W (ε) dΩ + F [φ], (2.18)

where there are different choices for the functions f0(φ) and g(φ) consistent with the

variational theory of brittle fracture, see, for example, (Pham et al., 2011; Pham and

Marigo, 2013) for a discussion. Here we adopt the standard choices f0 = (1− φ)2/(4κ)

and g(φ) = φ2, although it has been suggested that g(φ) = φ3 prevents the emergence

of spurious damage away from the crack tip and better mimics a linear elastic-brittle

behavior for finite κ (Borden, 2012), at the expense of nonlinearity in the model.

2.2.4 Resulting anisotropic surface energy

To gain insight about the resulting anisotropic surface energy, we consider a planar

crack interface with a normal vector n forming an angle θ with the x-axis, and in-
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troduce a coordinate perpendicular to the crack z = x · n. We neglect the elastic

energy and rewrite the free energy in Eq. (2.17) assuming that φ = φ(z). We have
∂φ
∂x

= ∂φ
∂z

cos θ and ∂φ
∂y

= ∂φ
∂z

sin θ, and consequently the surface energy becomes

F [φ] = Ḡc

∫

Ω

{
f0(φ) + κ

(
∂φ

∂z

)2

+ κ3

[(
α11 +

1

2
(α12 − α11 + 2α44) sin2(2θ)

)(
∂φ

∂z

)4

+

(
β11 +

1

2
(β12 − β11 + 2β44) sin2(2θ)

)
∂2φ

∂z2

(
∂φ

∂z

)2

+

(
γ11 +

1

2
(γ12 − γ11 + 2γ44) sin2(2θ)

)(
∂2φ

∂z2

)2
]}

dΩ. (2.19)

The tensor βijkl has no contribution to the surface energy, since

∫

Ω

(
β11 +

1

2
(β12 − β11 + 2β44) sin2(2θ)

)
∂2φ

∂z2

(
∂φ

∂z

)2

dΩ

=
1

3

(
β11 +

1

2
(β12 − β11 + 2β44) sin2(2θ)

)(
∂φ

∂z

)3
∣∣∣∣∣

+∞

−∞

,

(2.20)

and ∂φ/∂z vanishes away from the crack. Consequently, this term does not enter into

the Euler-Lagrange equation in this idealized planar crack setting. Accordingly the

energy in Eq. (2.19) simplifies to

F [φ] = Ḡc

∫

Ω

{
f0(φ) + κ

(
∂φ

∂z

)2

+ κ3

[
α

(
∂φ

∂z

)4

+ γ

(
∂2φ

∂z2

)2
]}

dΩ, (2.21)

where γ is given by

γ = γ0 (1 + γ4 cos(4θ)) , (2.22)

γ0 =
3γ11 + γ12 + 2γ44

4
, γ4 =

γ11 − γ12 − 2γ44

3γ11 + γ12 + 2γ44

, (2.23)

and α can be written similarly.
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Figure 2.2: Polar representation of the surface energy (top) and its reciprocal (bot-
tom) only considering the tensor γijkl (α and β are set to zero). (a) shows a weakly
anisotropic energy (convex reciprocal energy plot) with γ0 = 10.0 and γ4 = 0.5. (b)
shows a strongly anisotropic energy with γ0 = 10.0 and γ4 = 0.9.
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In absence of an analytical solution to the Euler-Lagrange equation of this func-

tional, the crack profile and interface energy can be calculated numerically. To com-

pute the surface energy as a function of orientation, Gc(θ), we fix θ and solve the Euler-

Lagrange equation of the functional in Eq. (2.21), a 4th order ordinary differential

equation, subject to the following boundary conditions: φ(0) = φ′(0) = φ′(+∞) = 0

and φ(+∞) = 1. In practice, one of the boundaries is taken sufficiently far away from

z = 0, e.g. 50 κ, and the differential equation is approximated with MATLAB’s bvp4c

function, implementing an adaptive collocation method. For each θ, we evaluate the

functional in Eq. (2.21) at corresponding optimal profile to obtain a polar plot of the

surface energy and its reciprocal, as shown in Figure 2.2 for several parameter values.

It is clear that, consistently with the assumed cubic symmetry of the model, the polar

plots exhibit four-fold symmetry. The figure shows that the tensor γijkl can produce

both weakly and strongly anisotropic energies, as indicated by the convexity of the

polar plots of 1/Gc(θ). Since the tensors αijkl and βijkl introduce nonlinearity in the

surface energy, that becomes non-quadratic, here we focus on models including only

the tensor γijkl. It is interesting to note that models with only the tensor αijkl can

produce strongly anisotropic surface energies (not shown here), but result in nonlinear

second order partial differential equations. This makes the numerical discretization

simpler, as C0 finite elements could be directly used, but as previously discussed, other

second-order strongly anisotropic models have been shown to be ill-posed because the

energy of kinks is not stabilized (Taylor and Cahn, 1998).

With Figure 2.2 at hand, we can further discuss the notion of strong surface energy

anisotropy. The classical Wulff construction for the equilibrium shape of crystals

(Herring, 1951) naturally distinguishes between energies with convex and non-convex

reciprocal energy plot. Non-convex plots lead to forbidden free surface directions and

faceting. In the crystal growth literature, there is another local notion of surface

stability, given in 2D by the surface stiffness

S(θ) = G′′c (θ) +Gc(θ), (2.24)
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which has the sign of the curvature of the polar plot of the reciprocal surface en-

ergy (Müller and Métois, 2008). This local characterization of convexity, and of

strong/weak anisotropy, does not coincide with the global characterization in terms

of the convexity of the polar plot of 1/Gc(θ) for non-smooth energies. Furthermore,

as illustrated in the examples and in Takei et al. (2013), the local characterization of

free surface (crack) stability is less restrictive than the global characterization, in that

it allows for metastable orientations. The local characterization of surface stability in

3D is discussed in Sekerka (2005).

We note that in the present phase-field model, the thickness of the interface de-

pends on the orientation. Identifying the smallest thickness is important to set the

parameter κ, with units of length, relative to the grid spacing. In the isotropic limit,

this model gives rise to a family of higher order phase-field models. In particular, if

all terms αij, βij and γij are zero except for γ11 = γ12, we recover the fourth-order

model proposed in Borden et al. (2014).

2.3 Numerical implementation

Since the free energy involves second order derivatives of φ, a direct Galerkin ap-

proach requires C1 continuous approximations. We resort here to the local maximum

entropy (LME) approximants (Arroyo and Ortiz, 2006), a meshfree method with non-

negative and smooth basis functions. In this method, the support size of the basis

functions can be modified through a non-dimensional aspect ratio parameter, which

we take equal to 1.0 in all examples (Rosolen et al., 2010). LME approximants have

been successfully applied to fourth-order phase-field models, e.g. in the simulation of

biomembranes (Rosolen et al., 2013b; Peco et al., 2013). Adaptive local refinement

is straightforward, and leads to very efficient phase-field solutions as elaborated in

the references above, although we do not fully exploit this feature here. Adaptive

refinement can be cumbersome in other techniques delivering smooth approximants,

such as isogeometric methods. However, recent advances in T-Splines (Scott et al.,

2012) and hierarchical B-Splines (Vuong et al., 2011) alleviate the rigidity of these
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methods, and may soon become accessible in 3D (Wang et al., 2013). These adaptive

spline techniques have been exploited in the numerical approximation of higher-order

phase-field models of fracture (Borden et al., 2014). To combine the highly accurate

boundary representation of isogeometric methods with the flexibility of LME in the

bulk, we have recently proposed a blending method (Rosolen and Arroyo, 2013).

We make sure that the phase-field profile is sufficiently resolved by the grid, by

requiring that the regularization length κ is large enough compared to the grid spacing

h, i.e. κ > 2h. Since the crack path is not known a priori, we consider uniform grids,

except in the regions where cracks cannot propagate, see Examples 2 and 3 below.

All the simulations consider an elastically isotropic material with Young’s modulus

E = 109 N/m2 and Poisson’s ratio ν = 0.3.

We minimize the total energy in Eq. (2.18) with respect to the displacement field

and the phase-field following the alternate minimization algorithm described in (Bour-

din, 2007). At each load step, the energy is first minimized with respect to u holding

φ fixed, and then minimized with respect to φ holding u fixed. This procedure is

iterated until convergence. This algorithm is particularly convenient in our examples.

Since we only consider the extended Cahn-Hilliard model with the tensor γijkl, each

one of the minimization steps involves a quadratic functional, and hence the solution

of a linear system. The minimization of the total energy can be performed with a va-

riety of methods, including a monolithic Newton-type method. It is important to bear

in mind that the staggered minimization process, as most optimization algorithms,

leads in general to local minimizers, and could even lead to saddle points of the total

energy.

2.4 Results

We now demonstrate through representative numerical simulations the ability of the

proposed model to capture nontrivial crack patterns in brittle materials with strongly

anisotropic surface energy.
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Figure 2.3: Example 1: geometry and boundary condition (a) and polar plot of the
reciprocal surface energy (b), exhibiting strong anisotropy. The green arrow indicates
a fixed material direction (one of the weakest directions) and α denotes the angle
between the fixed material direction and the x axis.

2.4.1 Example 1: crack propagation direction as a function

of material orientation

We consider first a square domain with boundary conditions that promote the nu-

cleation of a crack at the center of the left side of the domain, as depicted in Figure

2.3 (a). The material used for the simulations has cubic symmetry and strongly

anisotropic fracture surface energy. The surface energy parameters (Ḡc = 500.0 N/m,

γ11 = 19.0, γ12 = −18.0, γ44 = 0.5) are chosen so that the maximum and minimum

of Gc(θ) are 1157.5 N/m and 707.1 N/m. The model is discretized with 200 × 200

uniformly distributed control points and the regularized length scale parameter κ is

set to 0.01 m. Fixing κ = 0.01 m, we observe no dependence of the results when the

mesh is refined. The polar plot of the reciprocal surface energy is shown in Figure

2.3 (b), where α denotes the angle between a fixed material direction and the x axis.

For materials with isotropic surface energy, the symmetry of the surface energy and

of the boundary conditions imposes a crack propagation along the x axis. In con-

trast, for a material with anisotropic surface energy, the crack path will emerge from

a competition between elastic energy release rate maximization and surface energy
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Figure 2.4: Example 1, as the material orientation is rotated relative to the sample
geometry (top to bottom). α denotes the material orientation and θ the crack orien-
tation, both relative to the x axis aligned with the specimen. The first column shows
the phase field for a material oriented as shown in the second column, representing the
polar plot of the reciprocal surface energy. The right column shows a schematic polar
representation of the crack orientation (red segments, weak directions are vertical and
horizontal) and the material orientation (black segment).

minimization, and therefore will in general deviate from the x direction.

We analyze next how the crack direction changes as we change the material ori-

entation. When the fixed material direction represented by the green arrow, a weak

direction, coincides with the x axis, the crack will propagate along this axis, see Fig-

ure 2.4 (a) and (b). This situation is schematically shown in Figure 2.4 (c), where

the black line, representing material orientation, and red line, representing the crack

propagation direction, are collinear. When the fixed material direction is rotated

clockwise by an angle α (α ≤ 45◦) with respect to the x axis, the crack orientation
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(a) (b) 

Figure 2.5: Systematic dependence of crack propagation (red segments) with material
orientation (black segments), represented as a rosace with the convention of the pre-
vious figure (a). The polar plot of the reciprocal surface energy is represented in (b),
and color coded depending on whether a given orientation is ever observed (black) or
not (red) as we continuously rotate the material orientation. The inset shows that
there are observed crack directions within the convex hull of the polar plot. The
region of observed cracks appears to correspond with the region of positive surface
energy stiffness S(θ) (positive curvature of the polar plot), see Eq. (2.24).

also rotates clockwise by an angle θ relative to the x axis, see Figure 2.4 (d) and (e).

The schematic representation of this situation is shown in Figure 2.4 (f). The sum of

these signed angles α + θ, i.e. the deviation of the red segment from the horizontal,

quantifies the crack deviation from the weakest material direction. When the fixed

material direction is further rotated clockwise (α ≥ 45◦), the crack no longer fol-

lows the clockwise rotation of the material, but rather finds an energetically favorable

configuration by rotating counter-clockwise by a smaller amount, see Figure 2.4 (g),

(h), and (i). Following the analogy of Wulff’s construction (Takei et al., 2013), this

behavior can be understood by noting that the preferred crack direction is given by

the first tangency point of the polar plots in Figure 2.4 (b,e,h) with a vertical line

moving leftwards towards the polar plot. Since this analogy is only an approximation

in the present setting, the red points denoting the actual crack orientations slightly

deviate from the tangency points just described.
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We analyze next the systematic dependence of the crack propagation direction

as a function of material orientation, and visualize it with the previously introduced

schematic representation as a rosace plot in Figure 2.5 (a). This figure clearly high-

lights the four sectors of forbidden crack directions, as in the experiments in (Takei

et al., 2013). The polar plot of the reciprocal surface energy is shown in Figure 2.5

(b), where the black line indicates the directions of observed cracks and the red line

indicates the crack directions never observed as we continuously rotate the material

orientation. The grey line is the double-tangent construction forming the convex hull

of the plot, as in the classical Maxwell construction (Huang, 2005). The inset shows

that there are observed crack directions inside of the convex-hull of the polar plot,

suggesting that a mere convexification of the energy may yield a poor effective model.

The regions where cracks are observed seem to agree well with the local stability con-

dition given by the stiffness in Eq. (2.24), and graphically determined by the regions

of the polar plot with positive curvature. The experiments in Takei et al. (2013) are

consistent with this behavior suggesting a local MERR principle as discussed in the

introduction, which in the simulations may be related to the trapping of the algorithm

at local minima. However, we find that the point separating observed and forbidden

directions, i.e. separating the black from the red portions of the curve, does not coin-

cide with the point where the stiffness of the surface energy, see Eq. (2.24), changes

sign. The point where S(θ) = 0 is marked with a cross in the inset of Figure. 2.5 (b).

This difference may be due to inaccuracies in the numerical estimation of the crack

direction, or to the effect of boundary conditions. In any case, it deserves further

scrutiny.

2.4.2 Example 2: Zigzag crack paths

In the presence of strong surface energy anisotropy, we analyze now how a crack

propagates when the boundary conditions constrain the crack propagation along a

forbidden direction. In the present example, we fully constrain the displacement field

in the upper and lower bands of the domain as shown in Figure 2.6 (a) to guide the
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Figure 2.6: Example 2: crack propagation guided along a forbidden direction. (a)
Computational model with boundary conditions. The displacement field at top and
bottom bands is fully constrained. (b) Zigzag crack path obtained when the crack is
guided along a forbidden direction. (c) The polar plot of the reciprocal surface energy
and the double-tangent construction

crack as in the groove of a double cantilever beam crack propagation experiment (Wu

et al., 1995). A similar crack-guiding device has been implemented in Takei et al.

(2013) with tougher adhesive tapes. The surface energy parameters are the same as

in Example 1, and κ is set to 0.005 m. The domain is discretized with a spacing of

1/400 m in a central band of 0.5 m height, while the grid is coarser in the upper and

lower parts of the domain.

Figure 2.6 (b) shows that, as in Example 1, the system initially chooses crack

direction close to a weak direction. However, as the crack feels the presence of the

constrained region but before touching it, it sharply turns to adopt a distant weak

orientation that drives it apart from the obstacle. Interestingly, this new crack segment

with angle θ2 turns upwards further apart from the constrained band in the lower part

of the domain. Analogously, the third and last kinking event occurs before the crack
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reaches the upper constrained band. The kinking events are presumably the result

of a more favorable elastic energy release rate as the crack deviates from the straight

horizontal trajectory and approaches a mechanically constrained region. There is

probably an energy cost associated to crack bending, here sharp kinking, implicit in

the model and due to the second derivatives in the phase-field in the surface energy.

Therefore, the elastic energy release rate incentive to kinking presumably needs to

overcome this energetic penalty to sharply turning crack direction. Figure 2.6 (c)

shows the representation of the two crack orientations in the polar plot. In an effective

model with a convexified surface energy there are no forbidden directions and, if

guided, the crack will propagate along the x axis (blue point) with an energy cost

given by the double-tangent construction, here 972.5 N/m. We compare this energy

with the average surface energy per projected length along x, 1008.5 N/m to find a

reasonable agreement. One of the factors that may explain the difference is, again,

the energetic cost of kinks implicit in the model, which we have not explored so far.

2.4.3 Example 3

Inspired by the experiments in Takei et al. (2013), we consider now a longer domain

with similar boundary conditions to Example 2, as shown in Figure 2.7 (a). We

consider here a slightly different surface energy (Ḡc = 500.0N/m, γ11 = 17.0, γ12 =

−15.0, γ44 = 2.0) so that the maximum and minimum of Gc(θ) are 1131.7 N/m and

826.4 N/m. As before, a central strip 0.15 m high has uniformly distributed points

with a small node spacing of 1/400 m, while the remainder of the domain has a coarser

grid. The regularized length scale parameter κ is set to 0.005 m. As before, we expect

that the crack will initially deflect away from the x axis towards a weak direction.

However, as shown in Figure 2.7 (b), if the boundary of the guide (here parallel to

x) is not a forbidden direction, see Figure 2.7 (c), rather than kinking to adopt a

weak direction, the crack runs along a direction of relatively large surface energy. In

contrast, if the direction of the guide is a forbidden direction, as in Figure 2.7 (d,e),

the crack adopts a sawtooth configuration as in Example 2. Now, the upper kinking
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Figure 2.7: Example 3: crack propagation guided along an allowed but high energy
direction (b,c) or along a forbidden direction (d,e). The red and green dots in (c) rep-
resent the initial and final crack orientation, while in (e) represent the two orientations
of the sawtooth pattern.
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points are precisely at the upper boundary of the crack guide, while the lower kinks

are very far apart from the lower boundary of the guide. As before, the location of

these kinks emerges from the competition of elastic energy release rate, surface energy,

and possibly kinking energy. The essential phenomenology of these two calculations

has been reported experimentally in Takei et al. (2013).

2.5 Conclusions

The fracture behavior of materials with strongly anisotropic surface energy is very

important in many applications, and leads to very interesting physics, including for-

bidden crack propagation directions, the possibility of guiding cracks along relatively

high-energy directions, and sawtooth crack patterns. However, strongly anisotropic

fracture had not been simulated computationally before to the best of our knowledge.

This problem of fracture mechanics forces us to deeply interrogate fundamental ques-

tions such as the criteria to select the crack path. Recent theoretical (Chambolle et al.,

2009) and experimental (Takei et al., 2013) studies favor a natural generalization of

the maximum energy release rate (MERR) criterion. Previous phase-field models for

weak anisotropy of the surface energy are consistent with this view, and support a

configurational torque balance (Hakim and Karma, 2009) equivalent to MERR under

certain conditions. The current work, presenting a variational phase-field model for

materials with strongly anisotropic surface energy, provides a new tool to analyze this

problem from the computational side, and may be a starting point for the mathemat-

ical analysis of this problem. From a computational viewpoint, phase-field models

appear as the best approach to investigate this complex problem where the crack ori-

entation selection is so crucial. The variational nature of the model suggests that it

obeys a MERR principle to select crack paths, and since we obtain crack propagation

directions within the convex-hull of the polar plot of the reciprocal surface energy,

the MERR principle appears to rely on local maximization, as also suggested in Takei

et al. (2013). We are planning further studies to closely examine these issues.

To formulate the phase-field model for strongly anisotropic fracture, we have com-
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bined the classical variational phase-field model of brittle fracture (Bourdin et al.,

2000) with the extended Cahn-Hilliard (ECH) framework (Abinandanan and Haider,

2001; Torabi and Lowengrub, 2012), proposed in the context of phase-field models

of crystal growth. The result is a fourth-order model, since the energy functional

involves the Hessian of the phase-field. Consequently, its numerical implementation

by direct Galerkin methods requires smooth basis functions. Here, we resort to lo-

cal maximum entropy approximants, a family of smooth meshfree basis functions.

We present a selected set of numerical examples that illustrate the main features of

strongly anisotropic crack propagations. Our results reproduce many of the experi-

mental observations in Takei et al. (2013).

35



Chapter 3
Tearing of brittle thin sheets

3.1 Introduction

Thin elastic sheets are very common in nature and technology. Tearing refers to the

situation in which cracks propagate in a thin sheet driven by out-of-plane loading

(mode III). Tearing a thin sheet is a very common experience in our daily life as

we peel a piece of fruit or open a package. Classical fracture mechanics has been

successful in predicting crack propagation in bulk brittle materials invoking various

crack path selection criteria reviewed in Chapter 1. However, this theory is challenged

by the tearing of thin sheets (Takei et al., 2013; Roman, 2013).

There have been previous studies examining the stress field around linear elastic

thin plates (Williams, 1961; Sih et al., 1962; Zehnder and Viz, 2005), identifying two

additional stress intensity factors (SIFs) and stronger r−3/2 singularities in the out-

of-plane shear. However, since tearing typically involves large geometric nonlinearity

(Hamm et al., 2008; Bayart et al., 2010, 2011; Kruglova et al., 2011; Takei et al., 2013;

Roman, 2013), it is not clear whether the crack tip fields of the linear theory, and

hence the SIFs, are meaningful (Hui et al., 1998) or if and how they determine crack

propagation (Cohen and Procaccia, 2010). For instance, the proper generalization of

the principle of local symmetry is not clear in a setting with four SIFs (Roman, 2013).

The interplay between geometry, surface energy, stretching and bending deforma-

tion leads to non-trivial and rich behaviors (Bayart et al., 2010, 2011; Takei et al.,
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2013; Brau, 2014), particularly when the thin film is adhesively coupled to a flat

(Hamm et al., 2008) or curved (Kruglova et al., 2011) substrate. The complexity of

these problems restricts analytical approximate solutions to very simplified settings

and specific parameter regimes (Hamm et al., 2008; Roman, 2013; Brau, 2014). Sim-

ple energetic models in these references have been remarkably successful in explaining

almost quantitatively nontrivial observations such as the dependence of crack path on

interfacial adhesion (Hamm et al., 2008; Roman, 2013) or on peeling angle (Bayart

et al., 2011; Roman, 2013; Brau, 2014). However, a general modeling approach to tear-

ing, capable of examining in detail the mechanics of tearing as probed in experiments

or of exploring new physics has been lacking.

The success of energetic simple models suggests that variational theories of brittle

fracture may provide a unifying and general framework extending from bulk brittle

fracture to materials with strongly anisotropic surface energy (Chapter 2) or to thin

elastic sheets.

To explore tearing of thin films, we develop next a model and a computational

framework coupling elasticity (stretching and bending), fracture, and adhesion to a

substrate. We consider a geometrically exact model, see Section 3.2. The fracture

of brittle thin sheets is modeled using the variational approach to fracture (Bourdin

et al., 2008). The delamination of thin sheets adhered to substrates is modeled with

a cohesive model (Xu and Needleman, 1994). We numerically implement the model

with subdivision surface finite elements (Cirak et al., 2000), see Section 3.3, show a

gallery of representative simulations capturing nontrivial observations in Section 3.4,

and collect our final remarks and conclusions in Section 3.5.

3.2 Theoretical model

3.2.1 Nonlinearly elastic model of thin sheets

We model thin elastic sheets with a geometrically exact nonlinear thin shell formula-

tion sometimes referred to as the nonlinear Koiter shell model (Ciarlet, 2005). This
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model is based on the Kirchhoff–Love kinematical assumption, which states that the

material line orthogonal to the middle surface in the undeformed configuration re-

mains straight, unstretched and orthogonal to the middle surface during deformation.

We provide below a succinct description of this theory. More details can be found in

Ciarlet (2005) or in Millán et al. (2011, 2013) and references therein.

We follow the usual convention for Latin and Greek indices, referring to Cartesian

and curvilinear coordinates, respectively (i.e. i = 1, 2, 3; α = 1, 2). A comma before an

index denotes partialial differentiation, subscripts refer to covariant components, and

superscripts denote contravariant components. We parametrize the middle surface of

a shell Ω using ϕϕϕ, a mapping from the parametric space A ⊂ R2 into R3. Let t be a

field of unit vectors (a field of directors). The pair (ϕϕϕ, t) then describes a configuration

of the shell as a three dimensional object through the mapping

Φ(ξξξ) = ϕϕϕ
(
ξ1, ξ2

)
+ ξ t

(
ξ1, ξ2

)
, (3.1)

where ξξξ = {ξ1, ξ2, ξ3} and ξ = ξ3. See Figure 3.1 for an illustration. Assuming that the

thickness is uniform, this mapping takes values in the referential body A × [−t/2, t/2]

and defines the current configuration of the shell

S =

{
x ∈ R3| x = Φ(ξξξ), − t

2
≤ ξ ≤ t

2
,
(
ξ1, ξ2

)
∈ A

}
. (3.2)

The area element of the middle surface can be computed as dΩ = j̄ dξ1dξ2, where

j̄ = |ϕϕϕ,1 ×ϕϕϕ,2|.

Denoting by {Ek} the basis vectors of the Cartesian coordinates {ξ1, ξ2, ξ3} in the

reference configuration, the derivative of the configuration mapping can be written as

DΦ =
∂Φ

∂ξi
⊗Ei = gi ⊗Ei, (3.3)

where gα = ∂Φ
∂ξα

= ϕϕϕ,α + ξ t,α and g3 = ∂Φ
∂ξ

= t are sometimes referred to as the

convective basis vectors of the deformed configuration. The covariant components of
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Figure 3.1: Reference, deformed and parametric configurations of the middle surface
of thin shell.

the metric tensor in convected coordinates are given by gij = gi · gj.
We have described so far a general deformed configuration using a mapping from

a reference body. To define deformation we compare a deformed configuration with a

specific configuration, called undeformed configuration. The subscript 0 denotes quan-

tities in this undeformed configuration of the thin object; for instance ϕϕϕ0 parametrizes

the undeformed middle surface. Local deformation measured by the Green–Lagrange

strain tensor is then expressed in terms of the difference between the metric tensors

of the undeformed and deformed configurations of the shell, i.e.

Eij =
1

2
(gij − g0ij) =

1

2
(Φ,i ·Φ,j −Φ0,i ·Φ0,j). (3.4)

According to the Kirchhoff–Love kinematical assumptions of thin shells, we con-

strain the deformed director t to coincide with the unit normal of the deformed middle

surface of the shell, i.e.

t =
ϕϕϕ,1 ×ϕϕϕ,2

j̄
, ϕϕϕ,α · t = 0, |t| = 1, t · t,α = 0. (3.5)

With the Kirchhoff–Love kinematic assumption, which is well suited when the ratio
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between the shell thickness and its characteristic lateral dimension is � 1, the only

non-zero contributions to the Green–Lagrange strain tensor retained up to first order

in t are

Eαβ = εαβ + ξ ραβ, (3.6)

where εαβ = 1
2
(ϕϕϕ,α · ϕϕϕ,β − ϕϕϕ0,α · ϕϕϕ0,β) is the membrane strain tensor and ραβ = ϕϕϕ,α ·

t,β − ϕϕϕ0,α · t0,β is the bending strain tensor. It is clear that εαβ measures changes in

the in-plane metric tensor or first fundamental form. Similarly, ραβ measures changes

in second fundamental form (Do Carmo, 1976).

Thus, Kirchhoff–Love kinematical assumption leads to a thin shell model where

strain is expressed exclusively in terms of the kinematics of the middle surface. There-

fore, for an elastic shell the strain energy is a functional of the deformed configuration

mapping ϕϕϕ only, and can be written in terms of the strain energy density per unit

undeformed W as

Πela[ϕϕϕ] =

∫

Ω0

W (ε,ρ) dΩ0, (3.7)

where Ω0 is the reference middle surface of the thin shell. Generally, geometric non-

linearity is much more important than material nonlinearity in the mechanics of thin

shells. For this reason, we consider a simple isotropic Kirchhoff–St. Venant elastic

material model, whose strain energy density is

W (ε,ρ) =
1

2
Cαβγδ

(
t εαβεγδ +

t3

12
ραβργδ

)
, (3.8)

with

Cαβγδ =
E

(1− ν2)

[
νaαβ0 aγδ0 +

1

2
(1− ν)

(
aαγ0 aβδ0 + aαδ0 a

βγ
0

)]
, (3.9)

where (a0)αβ = ϕϕϕ0,α·ϕϕϕ0,β are the convected components of the metric tensor, aαγ0 (a0)γβ =

δαβ , E is the Young’s modulus and ν is the Poisson’s ratio.
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The membrane and bending stress resultants in this theory are given by

nαβ =
∂W

∂εαβ
= t Cαβγδεγδ,

mαβ =
∂W

∂ραβ
=
t3

12
Cαβγδργδ,

(3.10)

In the numerical implementation, it is convenient to resort to Voigt’s notation, denoted

by {·}, which exploits the symmetry of the tensors involved in the theory. With this

notation, we have

{n} =




n11

n22

n12


 = t{C}{ε}, {m} =




m11

m22

m12


 =

t3

12
{C}{ρ}, (3.11)

{ε} =




ε11

ε22

2ε12


 , {ρ} =




ρ11

ρ22

2ρ12


 , (3.12)

and

{C} =
E

1− ν2




(a11
0 )2 νa11

0 a
22
0 + (1− ν)(a12

0 )2 a11
0 a

12
0

(a22
0 )2 a22

0 a
12
0

symm 1
2

[(1− ν)a11
0 a

22
0 + (1 + ν)(a12

0 )2]


 .

(3.13)

Using this notation and referring the integral to the referential domain, the elastic

energy can be written as

Πela[ϕϕϕ] =

∫

A

1

2

(
t{ε}T{C}{ε}+

t3

12
{ρ}T{C}{ρ}

)
j̄0 dξ

1dξ2. (3.14)
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3.2.2 Phase-field approximation of brittle fracture

In the variational approach to brittle fracture proposed by Francfort and Marigo

(1998), the crack initiation and quasi-static evolution are the natural results of the

minimization of a Griffith-like energy functional defined as the sum of the elastic

energy and the surface energy of the cracked body. The minimization has to be taken

among all the kinematically admissible displacements and admissible crack sets, and

subjects to Dirichlet boundary conditions and an irreversibility condition to avoid

unphysical healing of cracks. This theory has been subsequently regularized into a

phase-field or gradient damage models, suitable for numerical calculations (Bourdin

et al., 2000; Bourdin, 2007; Bourdin et al., 2008), and which converge to the sharp

variational theory of brittle fracture (Bourdin et al., 2008). These and related models

(Pham et al., 2011; Pham and Marigo, 2013) have been studied in detail in bulk

materials and only barely explored in thin shells (Amiri et al., 2014).

In the regularized approximation of brittle fracture, cracks are represented by a

phase-field variable (scalar order parameter) φ, which is 0 inside a cracked zone, 1

away from the crack, and changes from 0 to 1 smoothly. In the present setting, we

choose to describe φ as a field on the middle surface of the undeformed shell Ω0 only,

implicitly assuming that the phase-field is constant across the thickness of thin sheet.

Physically, this means that our model rules out partial cracking through the thickness,

which is reasonable to model very thin shells, but may not be adequate for thicker

shells progressively cracking under bending. The model cannot resolve effects that

may depend on the structure of the crack front though-the-thickness. Despite these

potential limitations, we will explore such a model, where the phase-field couples to

the elastic energy through the modified elastic energy functional

Πela[ϕϕϕ, φ] =

∫

Ω0

φ2W (ε,ρ) dΩ0. (3.15)

The other ingredient in a phase-field model of brittle fracture is a functional depending

on φ approximating the crack length. In a finite deformation setting, it is natural to

consider the length of the crack in the undeformed configuration. We consider here
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a recently proposed higher-order phase-field model (Borden et al., 2014), which here

needs to be formulated in the curved two-dimensional middle surface of the thin shell

in its undeformed configuration as

Πfrac[φ] =

∫

Ω0

Gct

[
(φ− 1)2

4κ
+
κ

2
|∇sφ|2 +

κ3

4
(∆sφ)2

]
dΩ0, (3.16)

where Gc is the critical energy release rate and ∇s and ∆s are the surface gradient

and Laplacian operators in the undeformed middle surface. The metric tensor of this

surface is given by aαβ = ϕ0,α · ϕ0,β and its contravariant components are given by

the relation aαγaγβ = δαβ . Then, the expressions involving surface operators can be

computed from

|∇sφ|2 = aαβφ,αφ,β, (3.17)

and

∆sφ = aαβφ,αβ − aαβφ,γΓγαβ, (3.18)

where the comma denotes partial differentiation and

Γγαβ =
aγµ

2

(
∂aαµ
∂ξβ

+
∂aβµ
∂ξα

− ∂aαβ
∂ξµ

)
, (3.19)

are the Christoffel symbols of the second kind (Marsden and Hughes, 1983).

The regularization parameter κ has units of length and dictates the width of the

smeared crack. A finite value of κ is necessary for the numerical simulations and needs

to be resolved by the mesh. Although the convergence of this higher-order model

to Griffith’s fracture theory has not yet been established, numerical investigations

have provided evidence that the fourth-order model possesses better accuracy and

convergence rates for computationally practical choices of κ (Amiri et al., 2015). It

is noteworthy that this fourth-order model is a particular instance of the extended

Cahn-Hilliard model for fracture developed in Chapter 2 (Li et al., 2015).

Besides the advantages of the fourth-order phase-field model of fracture mentioned

above, our main motivation is computational. Since we rely on the Kirchhoff-Love
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theory of shells, the governing equations are fourth-oder in the deformation of the

shell, which we address with smooth subdivision spline-like approximants. As shown

in Borden et al. (2014); Amiri et al. (2015), discretizing the second-order phase-field

model of fracture with smooth approximants leads to poor convergence. Thus, to

treat both the phase-field and the thin shell parts of the model with subdivision

approximants on an equal footing, a natural choice is to resort to the fourth-order

phase-field model of fracture.

3.2.3 Adhesion energy between a thin sheet and a substrate

We model the adhesive interaction between thin shells and rigid substrates by cohesive

zone model based on an exponential potential (Xu and Needleman, 1994). In this

model, the adhesion energy is expressed as

Πadh[ϕϕϕ] =

∫

Ω0

Φn

[
1−

(
1 +

∆n

δn

)
exp

(
−∆n

δn
− ∆2

t

δ2
t

)]
dΩ0, (3.20)

where the Φn is interfacial adhesion energy per unit area, and δn and δt are char-

acteristic length-scales. The ∆n and ∆t are the normal and tangential components

of the displacement jump across the interface. In this model, the total interfacial

adhesion energy is independent of the decohesion mode. For a thin sheet adhered

to a curved surface, ∆n and ∆t are computed by projecting the displacement of the

middle surface u = ϕϕϕ − ϕϕϕ0 along the normal and tangential directions, ∆n = u · n
and ∆t = |u− (u · n)n|.
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3.2.4 Phase-field model of fracture in brittle adhesive thin

sheets

Collecting all the ingredients in the previous sections, the total energy of a possibly

fractured adhesive thin sheets is

Πtot[ϕϕϕ, φ] = Πfrac[φ] + Πela[ϕϕϕ, φ] + Πadh[ϕϕϕ]. (3.21)

The minimization of functional Eq.(3.21) with respect to both ϕϕϕ and φ, subject to

Dirichlet boundary condition and to irreversibility of cracks provides a computable

approximation of the generalized Griffith’s brittle fracture model for geometrically

nonlinear thin and adhesive shells.

3.3 Numerical implementation

Because the total energy involves second-order derivative of both the shell deformation

ϕϕϕ and of the phase-field φ, a C1 continuous approximation scheme is necessary to

apply a straightforward Galerkin discretization approach. In Chapter 2, we resorted

to smooth meshfree basis functions. Here, we use subdivision surface finite elements

(Cirak et al., 2000; Cirak and Ortiz, 2001; Cirak and Long, 2011) to approximate

the deformation ϕϕϕ and the phase-field φ. We follow a total Lagrangian approach,

with the same parameter space and basis functions for the undeformed and deformed

configurations. Letϕϕϕ0 be the undeformed configuration mapping of the middle surface,

defined over the parametric space A. It is numerically represented as

ϕϕϕ0(ξ1, ξ2) =
N∑

a=1

Ba(ξ
1, ξ2) ϕϕϕ0a, (3.22)

where Ba(ξ
1, ξ2) are subdivision surfaces basis functions, N is the number of nodes in

the mesh, and ϕϕϕ0a is the position in three-dimensional space of the a−th control point
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defining the undeformed shell middle surface. Similarly, the deformed configuration

and the phase field are discretized as

ϕϕϕ(ξ1, ξ2) =
N∑

a=1

Ba(ξ
1, ξ2) ϕϕϕa, (3.23)

and

φ(ξ1, ξ2) =
N∑

a=1

Ba(ξ
1, ξ2) φa. (3.24)

Inserting Eqs. (3.23,3.24) into Eq. (3.21), we obtain a total energy function de-

pending on nodal variables ϕϕϕa and φa, a = 1, 2, . . . ,N . We minimize this energy

with respect to deformation and phase field degrees of freedom following the alter-

nate minimization algorithm developed in (Bourdin, 2007; Bourdin et al., 2008). At

each load increment, the energy is first minimized with respect to ϕϕϕa freezing the

phase-field using Newton’s method combined with line-search (Millán et al., 2013),

and then minimized with respect to φa freezing the deformation, which results in a

linear algebraic system. This procedure is iterated until convergence reached. We

introduce the strain-history field following Miehe et al. (2010a) to enforce the irre-

versibility condition. We make sure that the phase-field profile is sufficiently resolved

by the mesh, by requiring that the regularization length κ is large enough compared

to the mesh size h (at least where cracks are expected to propagate). From extensive

numerical test, we enforce the condition κ > 2h. Similarly, the discretization needs

to resolve the cohesive lengths, which requires that δn > 2h and δt > 2h.

3.4 Numerical Experiments

In this section, we consider numerical experiments split in two groups, depending on

whether or not the brittle thin sheet is adhered to a substrate.
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crack tip

initial cut

(a) (b)

Figure 3.2: Spiral crack produced by pulling a flap of thin sheet.(a) The initial cut
is tangent to the circular hole in the thin sheet and the flap is pulled vertically. (b)
Deformed configuration obtained by the numerical simulation.

3.4.1 Tearing of thin sheet without adhesion

We first consider a setup by which a spiral crack is produced by pulling a flap perpen-

dicularly to the thin sheet (Romero et al., 2013). We consider a annular thin sheet

with traction-free boundary conditions in the circular hole located at the centre and

clamped boundary conditions at the outer boundary of the annulus. A small flap is

formed by an initial cut tangent to the circular hole. The flap is pulled vertically to

propagate the crack, see Figure 3.2(a). The final deformation resulting from the spi-

ral crack propagation is shown in Figure 3.2(b). The parameter space of the problem

is characterized by four non-dimensional groups: ν, Rinn/Rout, t/Rinn, and Et/Gc,

the latter two bearing more physical significance. In the calculations shown here, we

considered ν = 0.4, Rinn/Rout = 0.1, t/Rinn = 10−3, and Et/Gc = 102.

The fracture process is dictated by the competition between the elastic energy

(bending and stretching) concentrated at the fold connecting the flap with the thin

sheet and the fracture energy. The experiments performed by Romero et al. (2013) ar-

gued that the crack trajectories approximate a logarithmic spiral r = r0 exp(θ cot θ0),

r0 being the distance between the origin and the crack tip of the initial cut, θ the angle
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Figure 3.3: Spiral crack trajectory in the reference configuration. (a) Rotation angle
θ of the spiral as a function of the radius r. (b) Semi-logarithmic plot of the crack
trajectories.
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ZY

Figure 3.4: The schematic of trouser-like configuration, examined experimentally by
Bayart et al. (2010, 2011). The thin sheet is pulled from the three flaps as shown by
the arrows.

between the tangent and radial line at the point (r, θ), and θ0 this angle at the initial

cut. To test our theoretical model, we measure the spiral crack trajectories in polar co-

ordinate (r, θ), see Figure 3.3(a), and plot θ(r) in Figure 3.3(b). The semi-logarithmic

plot of Figure 3.3(b) shows that the crack path can be approximately described by

a logarithmic spiral, consistent with the experiments. We believe that the deviation

could be alleviated by numerical simulations with a finer mesh and smaller parameter

κ. Furthermore, in the experiments reported in Romero et al. (2013) the parameters

are such that t/Rinn ≈ 10−2 and Et/Gc ≈ 10.

In the second numerical experiment we consider a long elastic thin sheet with

two cracks positioned symmetrically and parallel to the centre axis of the sheet, thus

creating three flaps at one end of the sheet. Then the flaps are torn apart as shown

in Figure 3.4. The length and width of the thin sheet are denoted by L and W , while

the initial width of the central flap is w0. In the simulations, we consider ν = 0.3,

L/W = 2.6, w0/W = 0.3, t/w0 = 6 × 10−3 and Ew0/Gc = 103. To prepare the

initial configuration, we deform the three flaps to form a 90◦ angle with the rest of the

sheet, and connect these flaps through cylindrical segments, see Figure 3.4. Then, the

system is relaxed while the ends of the three flaps are fully constrained and the other

end of the strip is constrained in the z direction. Then, to induce crack propagation,

49



(a)

l

w

(b)

lo
g

w

log l
-1.0 0.1 1.2 2.3

-1.3

-0.7

-0.1

0.5

Slope 0.60

Figure 3.5: (a) As the convergent cracks develop, the inner flap develops a tongue-like
shape. The crack is represented by phase-field. (b) Log-log plot of the width w of the
centre flap as a function of the distance l to the tip defined by the merging point of
the two crack.

the outer flaps are incrementally displaced in the −z direction while the inner flap

is displaced in the z direction. During this loading, all other degrees of freedom are

constrained and the ends of the flaps and the z degrees of freedom are constrained

along the bottom end of the strip.

Similarly to experimental observations, in our simulations the cracks converge as

they propagate, eventually meeting and splitting the sheet into two parts. The inner

flap detached from the rest of the sheet adopts a characteristic tongue-like shape as

shown in Figure 3.5(a). We analyze the crack trajectory by measuring the width w

of the inner flap as a function of the distance l to the tip of the tongue. We find

that w(l) follows a power law with exponent 0.60 as shown in the Figure 3.5(b). The

exponent 0.60 is in very good agreement with the exponent 0.64 ± 0.06 measured

experimentally (Bayart et al., 2010, 2011) and with the exponent 2/3 predicted by a

theoretical model by Brau (2014), which combines Griffith’s criterion, the maximum

energy release rate, and Euler’s elastica to estimate the elastic energy.

In the third numerical experiment, we consider a peel-like experimental configura-
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Figure 3.6: The schematic of peel-like experimental configuration and simulation re-
sult. (a) The rectangular thin sheet is clamped along its lateral boundary, the flap
is pulled horizontally at constant displacement until it detached from the thin sheet.
(b) The flap detaches from the thin sheet with a tongue-like shape (the crack is rep-
resented by the phase-field).

tion, with the same material and geometric parameters as in the previous experiment.

A thin sheet is laterally clamped. Two parallel edge cracks are initially created par-

allel to the center axis of the sheet, creating a flap. Then, the flap is lifted and pulled

as shown in Figure 3.6(a) to propagate the cracks. The material and geometrical

parameters of thin sheet are exactly same as the second simulation. Similarly to

the previous example, we prepare the initial configuration by displacing and rotating

the flap so that it remains parallel to the undeformed sheet and by connecting the

displaced flap to the rest of the sheet through a half-cylinder fold. Then this config-

uration is relaxed keeping the lateral boundaries and the end of the flap constrained.

As the flap is pulled, the distance between the end of the flap and the planar sheet is

kept constant.

Similarly to the previous example, the width of the flap decreases as the cracks

propagate, eventually vanishing as the flap detaches from the thin sheet, see Figure

3.6(b). The final shape of the flap is qualitatively similar to the first simulation and can

also be described by a power law of exponent 0.62 as shown in Figure 3.7(a). However,

the exponent measured in experiments is 0.77±0.05 (Bayart et al., 2011; Roman, 2013)

and is theoretically predicted to be 8/11 by Brau (2014) in the unstretchable limit,
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Figure 3.7: Log-log plot of the width w of the flap as a function of the distance l to
the tip defined by the merging point of the two cracks (a). The snapshots from the
simulation show that the pulling angle changes during crack propagation (b).

Ew0/Gc � 1.

We attribute the large discrepancy between our results and the experiments to the

pulling angle variation during our simulations, as illustrated in Figure 3.7(b). As clear

from the figure, our simulation protocol did not precisely control the pulling angle to

180◦ during crack propagation. Closely examining the geometry of the ridge joining

the flap to the sheet, we observe that at the onset and during crack propagation

this ridge is doubly curved. This effect can be seen in the zoom-in inset in Figure

3.7(b). Thus, this ridge is necessarily stretched and resembles the stretching ridges

characteristic of crumpling (Witten, 2007). Because the elastic energy of the stretching

ridge, which determines the crack trajectory, is quite sensitive to the angle it subtends

(Brau, 2014), our failure to control the pulling angle can result in significantly different

crack paths. Furthermore, the parameter ranges in the experiments (t/w0 ≈ 1.5 ·10−3,

Ew0/Gc ≈ 2 · 104) differ from those used in the simulations.

52



✓

u

✓

'
w

Figure 3.8: Schematic diagram of the tearing experiments of adhesive thin sheets on
a flat substrate and of the geometrical parameters necessary to describe the shape of
the tear.

3.4.2 Tearing thin sheets adhered to substrate

We consider now an elastic thin sheet adhered to a flat substrate, in which a rectan-

gular flap is created by cutting two paralleled cracks on one end of its edges. Before

launching the simulation, we first prescribe a cylindrical segment connecting the sub-

strate to the flap, which form an angle of ϕ (see the Figure 3.8). The radius of

curvature of the cylindrical segment is estimated as in Kruglova et al. (2011). Then,

fixing the hight of the end of the flap, we relax the system. The initial length of

the flap is long compared to the radius of curvature, minimizing any boundary effect.

The flap is then pulled with fixed peeling angle ϕ, causing the initially parallel cracks

to propagate inwards and the flap to progressively detach from the substrate. As in

experiments, the two crack tips merge into a point, completely detaching the flap and

leaving a perfectly triangular tear characterized by the angle θ.

In the limit Φnw � Gct, the fold connecting the the flap and the adhered sheet is

singly curved, its energy is purely due to bending, and can be modeled by the classical

Euler elastica theory (Hamm et al., 2008; Roman, 2013). In this limit, following an

energy method combining Griffith’s theory with the maximum energy release rate

path selection criterion, an analytical expression can be obtained for the crack path
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Figure 3.9: Crack paths for numerical experiments with different adhesion energy: (a)
Φn = 0.5, (b) Φn = 1.0, (c) Φn = 1.5, (d) Φn = 2.0, (e). Φn = 2.5, (f) Φn = 3.0. The
crack angle sin(θ)Gct/

√
2B versus

√
Φn/η, with η = 0.54 (g).

angle as (Roman, 2013)

sin θ =

√
2ΦnB

Gct

[
1− cos(ϕ/2)

sin(ϕ/2)

]
, (3.25)

where B = Et3

12(1−ν2)
is the bending rigidity of the elastic sheet. This equation shows

that the triangular shape of the tear is determined by the material constants B, Φn

and Gct, and by the peeling angle ϕ. The case ϕ = 180◦ was carefully studied experi-

mentally and theoretically in Hamm et al. (2008), where B and Gct were varied. With

our computational tool at hand, we can examine this relationship through numerical

simulations. We chose in the simulations E = 2 · 105, ν = 0.3, t = 10−3 and w = 0.4

in a square domain of unit lateral size.

Fixing peeling angle ϕ = 180◦, we first perform simulations with different adhesion

energies Φn and with fracture surface energy Gc = 20. In our simulations Φnw/(Gct)

ranges from 10 to 60. In Figure 3.9, we compare the simulation results with the

theoretical predictions. We find a good agreement, in that the sine of the crack angle

depends linearly with the square root of the adhesion energy, with a numerical factor η

also needed to quantitatively explain experiments (Hamm et al., 2008). There is only

a significant discrepancy for the lower value of Φn corresponding to Φnw/(Gct) = 10,
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Figure 3.10: The connecting ridge shown for a peeling angle of ϕ = 180◦ (a), top view
of the connecting ridge (b), and side view of the connecting ridge (c). The double
curvature of the ridge requires stretching. In this example, Φnw/(Gct) = 10.
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Figure 3.11: Crack paths for numerical experiments with different fracture energy:
(a) Gc = 20, (b) Gc = 18, (c) Gc = 16, (d) Gc = 15, (e) Gc = 14, (f) Gc = 13. The
crack angle sin(θ)t/

√
2BΦn versus 1/ (ηGc), with η = 0.54 (g).

which should be very large for Eq. (3.25) to be applicable. Indeed, as shown in Figure

3.10, in this case there is significant stretching in the connecting ridge, an effect not

considered in the theory behind Eq. (3.25).

We perform next simulations with different fracture surface energy Gc and fixed

Φn = 1.0. The simulation results show that the sine of the crack angle linearly

depends on the reciprocal of fracture surface energy, as shown in the Figure 3.11.

We also run the simulations with different peeling angles, fixing Φn = 1.0 and Gc =

20. The simulation results show that the sine of the crack angle linearly depends

on (1− cos(ϕ/2)) / (η sin(ϕ/2)), as shown in the Figure 3.12. Here, the agreement

is also good except for a peeling angle of ϕ = 90◦. We hypothesize that a low

peeling angles, the cohesive length-scale in Eq. (3.20) plays a significant role. In

principle, this length-scale could be reduced even further, but at the cost of a finer

mesh. In summary and despite these discrepancies, our simulation results show that

the regularized variational model of fracture of thin elastic sheets essentially captures

the behavior of teared thin sheet adhered on a flat substrate and is consistent with

the theoretical expression in Eq. (3.25).

Experiments have shown that the geometry of the substrate can control the shape

of the tears (Kruglova et al., 2011). The two crack paths in a pulled flap can either
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Figure 3.12: Crack paths for numerical experiments with different peeling angles: (a)
ϕ = 90◦, (b) ϕ = 120◦, (c) ϕ = 135◦, (d) ϕ = 150◦, (e) ϕ = 165◦, (f) ϕ = 180◦,. The
crack angle sin(θ)Gct/

√
2BΦn versus (1− cos(ϕ/2)) / (η sin(ϕ/2)), with η = 0.51 (g).

converge or diverge, depending on the curvature of a cylindrical substrate. We repro-

duce next the experiments of tearing thin sheets adhered on cylindrical substrates.

The initial configurations used in the simulations are shown in Figure 3.13. Because

these configurations necessarily involved stretching, the classical motifs of crumpling

appear after relaxation, such as conical point features and stretching ridges. The flap

is then pulled at constant peeling angle. The material and geometry parameters are

chosen as E = 4 · 105, ν = 0.3, Gc = 20, Φn = 1.0, t = 10−3, a cylinder radius of

0.29 and a width of the flap of w = 0.2/w = 0.37 for the negatively/positively curved

substrate.

We first consider the negatively curved substrate an a peeling angle of 100◦. The

simulation result shows that the initially parallel cracks converge and eventually the

centre flap detaches from the substrate, as shown in the Figure 3.14. The positive cur-

vature case with peeling angle of 70◦ leads to divergent cracks as shown in Figure 3.15.

The convergent/divergent crack paths in the negatively/positively curved substrates

observed in the simulations are in good agreement with the experimental observations

by Kruglova et al. (2011). Furthermore, unlike the planar case, simulations and ex-

periments show that the crack path significantly deviates from a straight path. To

further examine the effect of substrate curvature on crack path, we performed simu-
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curvature

negative  
curvature

Figure 3.13: Tearing thin sheets adhered on cylinder substrate experiments. Tearing
adhesive thin sheet on exterior side of a cylinder (negative curvature, a). Tearing
adhesive thin sheet on the interior side of a cylinder (positive curvature, b).

open

(a) (b)

Figure 3.14: Tearing an adhesive thin sheet on the exterior side of a cylinder. Converg-
ing crack path on the undeformed cylindrical configuration (a) and on the “unrolled”
undeformed configurations (b).
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(a) (b)

Figure 3.15: Tearing an adhesive thin sheet on the interior side of a cylinder. Diverging
crack path on the undeformed cylindrical configuration (a) and on the “unrolled”
undeformed configurations (b).

lations of spherical thin sheets adhered on spherical substrates, see Figure 3.16. We

found that crack paths consistently followed “straight” paths, understood as geodesic

curves of the sphere, suggesting that the deviations for cylindrical substrates could

result from curvature anisotropy.

3.5 Conclusions

In this Chapter, we have developed a robust numerical strategy to simulate brittle

fracture in thin elastic sheets accounting for geometric nonlinearity and adhesion to

a substrate. We have simulated a wide variety of tearing experiments of thin sheets

adhered to a substrate or not. Our simulations have reproduce the qualitative features

of the crack paths, such as their power-law or logarithmic spiral geometry, as well as

theoretical estimates for the crack path in adhered sheets. Taken together, our results

show that the regularized variational approach to brittle fracture naturally generalizes

to fracture in thin elastic sheets.
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(a) (b)

Figure 3.16: Tearing an adhesive thin sheet from the exterior side of a spherical
substrate. Deformed configuration during tearing (a) and converging cracks closely
following geodesic curves shown in green (b).
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Chapter 4
Configurational forces for brittle

thin shells

4.1 Introduction

Thin shells are ubiquitous in engineering structures, such as fuselages of airplanes,

boat hulls, pressure vessels, or architectural domes. They are also prominent in bi-

ology. In most of these situations, shells are curved and fracture is a major failure

mode. Fracture can also be a requirement for function, such as in packaging or for

the ejection of seeds from seedpods (Deegan, 2012). In this chapter, we examine the

influence of shell geometry on crack propagation.

Early theoretical studies on fracture in shallow thin shells showed that curvature

reduced the resistance to fracture (Folias, 1969, 1970). In contrast, recent work has

shown significantly enhanced effective toughness in sinusoidally corrugated graphene

plates, where the out-of-plane shape disturbances were the result of patterned defects

in the crystalline structure (Zhang et al., 2014). This work, however, could not discern

the relative effect of geometry and defects on fracture.

Using the model and computational approach described in the previous chapter,

we report in Figure 4.1 a selection of a phase-field simulations examining the effect

on crack propagation of bump-like geometrical features in an otherwise planar plate

with a pre-crack. In these simulations, the top and bottom boundaries of the plate
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Figure 4.1: Phase-field simulations of crack propagation in linearly elastic thin Koiter
plates containing a preexisting crack, in the presence of bump-like shape disturbances
(left panels), and corresponding reaction force versus imposed displacement at the top
and bottom boundaries (right panels). For reference, the force-displacement curve for
a bump-free plate, where the crack propagates following a straight path, is shown in
blue. The aspect ratio of the bumps is illustrated in (e).
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are incrementally displaced in an opening mode. The figure shows that cracks are

consistently attracted by bumps, but then arrested as they reach the periphery of the

shape disturbance. The arrest can be physically understood because near a bump,

the nominal in-plane tension can be locally relaxed by bending, which is energetically

less costly, hence reducing the driving force for crack propagation (the energy release

rate). In our simulations, subsequent crack propagation required nucleation of one or

several new cracks, leading eventually to failure of the structure. Because the stress

at which cracks nucleate increases as the phase-field parameter κ decreases (Borden

et al., 2012), it is not clear if cracks could propagate through a bump if a smaller

value of κ (requiring a finer mesh) was selected. In any case, simulations show that

bumps first attract and then arrest cracks. At a structural level, the presence of

the bumps slightly decreases the stiffness of the plate but considerably enhances the

energy dissipation of failure (about three-fold) and even the ultimate load, as shown in

the force-displacement curves. Furthermore, the arrangement of multiple upward or

downward bumps significantly affects the crack patterns. Unlike circular perforations,

bumps do not compromise the integrity of the shell as a barrier. Thus, these results

suggest that the toughness and crack path in thin shells could be tuned by properly

designed shape patterns.

Towards understanding the effect of geometry on fracture, we analyze in this chap-

ter the energy release rate associated with crack extension, i.e. the driving force in

brittle fracture. To compute this quantity, we resort to the method of configura-

tional forces, interpreted as the relative variation of the total energy of a given system

as some variable describing the configuration of that system changes (Gurtin, 2000;

Kienzler and Herrmann, 2000). Physically, such variable could be the location of a

dislocation or inclusion, the change in size or shape of a cavity, the extension of a crack

or the change in location of a phase boundary in a material. The main advantage of

the theory of configurational forces is that it provides a unified and systematic method

to study microstructure evolution involving possibly multiple mechanisms. Configu-

rational forces have been applied to fracture mechanics (Freund, 1972; Gurtin, 1979;

Eischen and Herrmann, 1987; Gurtin and Podio-Guidugli, 1998; Gurtin, 2000; Kien-
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zler and Herrmann, 2000), recovering the J-integral (Cherepanov, 1967; Rice, 1968) by

which the energy release rate of a straight traction-free crack in an homogeneous ma-

terial can be computed as a path-independent contour integral involving the Eshelby

energy-momentum tensor. Recalling Noether’s theorem, this path-independence is a

consequence of translational symmetry. Because geometry breaks translation invari-

ance (think of the bumps in the previous examples), we should not expect in general

a path-independent J-integral in our setting. To our knowledge, the calculation of

the energy release rate in general curved shells has not been fully addressed before,

despite previous work such as Kienzler and Herrmann (2000) for Mindlin-Reissner

linear thin shells.

We focus on the linear version of Koiter’s theory of thin shells, which is briefly

reviewed in Section 4.2. We then derive the configurational force field conjugate to a

material rearrangement and identify the Eshelby tensor, as well as non-conservative

contributions to the energy release rate associated with curvature in Section 4.3.

Our approach is linear with respect to the shell deformation, but considers the full

nonlinearity associated with shell geometry. Finally, in Section 4.4 we analyze with

this theory the energy release rate of crack extension for a plate with a pre-crack and

finite geometric disturbance, highlighting the new terms arising from the presence of

the geometric feature.

4.2 The linear theory of Koiter thin shells

The Koiter thin shell model (Ciarlet, 2005; Chapelle and Bathe, 2010) is based on the

Kirchhoff–Love kinematical assumption, which states that the material line orthogonal

to the middle surface in the undeformed configuration remains straight, unstretched

and always orthogonal to the middle surface during the deformations. We summa-

rize next the formulation of this theory, focusing on its linearized version. For an

asymptotic derivation of the theory, we refer readers to Ciarlet (2000).

As in the previous chapter, we denote the shell middle surface by Ω, which is

parametrized by the mapping ϕϕϕ : Ω̄ −→ R3. We introduce the covariant basis vectors
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tangent to the middle surface and the unit vector normal

aα = ∂αϕϕϕ = ϕϕϕ,α, a3 = n =
a1 × a2

|a1 × a2|
, (4.1)

where the comma in a subscript refers to partial differentiation. The “contravariant

vectors” (one-forms) of the surface aα are defined by the duality relations aαaβ = δαβ .

These bases allow us to express vector fields v = vαaα and one-forms f = fαa
α in

terms of their components.

The first and second fundamental forms of the middle surface are given by

aαβ = aα · aβ and bαβ = n · ∂αaβ = n ·ϕϕϕ,αβ. (4.2)

We denote the determinant of the coordinate expression of the metric tensor by a =

det aαβ. The first fundamental form (the metric tensor of the surface) and its inverse

aαβ satisfying aαβaβγ = δαγ allow us to “lower indices” of a vector field v to get

the components of a corresponding one-form v[, i.e. vα = aαβv
β, and also to “rise

indices” of a one-form f to get the components of a corresponding vector field f ],

i.e. fα = aαβfβ.

The Christoffel symbols of the surface are denoted by Γσαβ, can be computed from

the metric tensor as

Γσαβ =
aσµ

2

(
∂aαµ
∂ξβ

+
∂aβµ
∂ξα

− ∂aαβ
∂ξµ

)
, (4.3)

and allow us to compute the partial derivatives of the basis vectors

∂αaβ = Γσαβaσ + bαβn, ∂αa
β = −Γβασa

σ + bβαn, ∂αn = −bσαaσ. (4.4)

and the covariant derivatives of vector fields and one-forms

vα|β = vα,β + Γαβσv
σ, fα|β = fα,β − Γσαβfσ. (4.5)
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The linear Koiter theory is formulated in terms of the infinitesimal displacement

field. This vector field over Ω can be described either extrinsically in terms of a

Cartesian basis {ei} of R3, or intrinsically

U = U iei = uαaα + wa3, (4.6)

where u = uαaα and w denote the in-plane and out-of-plane components of the

displacement field. We formulate the theory intrinsically. However, because most

numerical calculations are based on an extrinsic formulation, we need to connect

both formulations, as further detailed in Appendix B. An important relation for this

purpose, which follows from a direct calculation using Eq. (4.4), is

∂βU = ∂βU
iei =

(
uα|β − bαβw

)
aα +

(
w|β + bαβu

α
)
n. (4.7)

The strain measures in Koiter’s linear thin shell theory are the membrane strain tensor

εαβ and bending strain tensor ραβ, measuring the infinitesimal changes in metric and

in curvature and given by

εαβ =
1

2

(
uα|β + uβ|α − 2 bαβw

)
, (4.8)

ραβ = w|αβ − cαβw + bλαuλ|β + bλβuλ|α + bλα|βuλ, (4.9)

where cαβ = bλαbλβ is the third fundamental form of the shell middle surface.

The strain energy density per unit area can then be written in terms of these strain

measures, W (ε,ρ), which allows us to define the stress resultant and stress couple

symmetric tensors

nαβ =
∂W

∂εαβ
, mαβ =

∂W

∂ραβ
. (4.10)

For the sake of simplicity, we neglect external moments on the middle surface of shell,

external loads at the shell edges, and consider only external body forces acting on the
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middle surface, p = pαaα + p3n. Thus, the external potential energy density V (U) is

V (U) = −p ·U , (4.11)

and the total potential energy of the shell takes the form

Π[U ] =

∫

Ω

[W (ε,ρ) + V (U)] dΩ =

∫

Ω̄

[W (ε,ρ) + V (U)]
√
a dΩ̄. (4.12)

Making the potential energy stationary with respect to arbitrary admissible varia-

tions and integrating by parts, we obtain the in-plane and out-of-plane equilibrium

equations

−
(
nαβ + bαλm

λβ
)
|β − b

α
λm

λβ
|β = pα in Ω, (4.13)

mαβ
|αβ − cαβmαβ − bαβnαβ = p3 in Ω. (4.14)

The natural boundary conditions associated to in-plane equilibrium on the part of the

boundary of Ω where displacements are free, γn, is

(
nαβ + 2bαλm

λβ
)
νβ = 0, (4.15)

where ν is the outer normal to ∂Ω tangent to Ω. The natural boundary conditions

associated to out-of-plane equilibrium can be weakly stated as

∫

γn

(
mαβη|α −mαβ

|αη
)
νβ d` = 0, (4.16)

for all admissible variations η. Further manipulation leads to two additional natural

boundary conditions on γn:

mαβνανβ = 0, and mαβ
|ανβ + ∂τ

(
mαβνατβ

)
= 0, (4.17)
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where τ is tangential to ∂Ω.

For homogeneous and isotropic shells of constant thickness t, the strain energy

density can be written as

W (ε,ρ) =
1

2
Cαβρλ

(
tεαβ ερλ +

t3

12
ραβ ρρλ

)
, (4.18)

with

Cαβρλ =
E

(1− ν2)

[
νaαβ aρλ +

1− ν
2

(
aαρ aβλ + aαλ aβρ

)]
.

where E is Young’s modulus and ν is Poisson’s ratio. The first term is the membrane

strain energy density and the second term is the bending strain energy density.

4.3 Derivation of G using configurational forces

4.3.1 Material rearrangement

To analyze fracture in thin shells using the concepts of configurational forces, and

recalling Eqs. (4.8,4.9), we write the potential energy density as

W (ε,ρ) + V (u) = W̃ (ξ, b,∇b,u,∇u, w,∇2w), (4.19)

where ξ are the coordinates of the referential domain Ω̄ and ∇ denotes the covariant

derivative. The explicit dependence of W̃ on ξ emphasizes the possibly heterogeneous

nature of the material, e.g. due to the presence of a defects or microstructure, treated

distinctly from the dependence on shape through the second fundamental form. Thus,

the total potential energy is written as

Π[u, w] =

∫

Ω̄

W̃ (ξ, b,∇b,u,∇u, w,∇2w)
√
a dΩ̄. (4.20)
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With the goal of understanding the sensitivity of Π to rearrangements of the mi-

crostructure, we define a material rearrangement as a one-parameter family of one-to-

one mappings Ψε : Ω̄ −→ Ω̄, ε ≥ 0, satisfying Ψ0 = Id. Its infinitesimal generator,

or “velocity of the microstructure”, is

V =
dΨε

dε

∣∣∣∣
ε=0

. (4.21)

For crack propagation, V should be tangential to the crack path and ε can be rescaled

so that |Vtip| = 1. A rearrangement induces a one-parameter family of energy func-

tionals

Πε[u, w] =

∫

Ω̄

W̃ (Ψ−1
ε (ξ), b,∇b,u,∇u, w,∇2w)

√
a dΩ̄, (4.22)

whose minimizer is denoted by (uε, wε). Note carefully that, had we considered the

family of functionals

∫

Ω̄

W̃ (Ψ−1
ε (ξ), b(Ψ−1

ε (ξ)),∇b(Ψ−1
ε (ξ)),u,∇u, w,∇2w)

√
a dΩ̄, (4.23)

instead, we would be “moving” both the microstructure and the heterogeneity induced

by curvature. Because shape (in the reference configuration) is viewed here as an

intrinsic property of the shell, the definition in Eq. (4.22) is the right choice to examine

crack propagation past a fixed geometry.

4.3.2 Configurational force field

The energy release rate is defined as (Ortiz, 2004)

G = − d

dε

∣∣∣∣
ε=0

Πε[uε, wε]

= − d

dε

∣∣∣∣
ε=0

∫

Ω̄

W̃ (Ψ−1
ε (ξ), b,∇b,uε,∇uε, wε,∇2wε)

√
a dΩ̄.

(4.24)
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Because (uε, wε) satisfies the essential boundary conditions for all ε, its derivative

with respect to ε is an admissible variation, which, together the fact that (uε, wε) is

an equilibrium solution, leads to

G = −
∫

Ω̄

(
∂W̃

∂ξ

)

expl

· dΨ−1
ε

dε

∣∣∣∣
ε=0

√
a dΩ̄ =

∫

Ω̄

(
∂W̃

∂ξ

)

expl

· V √a dΩ̄, (4.25)

where in writing the last expression we have used the identity

dΨε(ξ)

dε

∣∣∣∣
ε=0

+
dΨ−1

ε (ξ)

dε

∣∣∣∣
ε=0

= 0, (4.26)

which follows from (Ψε ◦Ψ−1
ε ) (ξ) = ξ. Equation (4.25) allows us to identify the

configurational force field, or driving force for microstructure rearrangement, as the

field being conjugate to the microstructure velocity:

Jγ =

(
∂W̃

∂ξγ

)

expl

(4.27)

where the notation emphasizes that the partial derivative is taken with respect to the

first argument of W̃ , see Eq. (4.19).

4.3.3 Eshelby energy-momentum tensor and non-conservative

contributions to the configurational force field

Because the energy density W̃ exhibits position dependence through the second fun-

damental form, even in the absence of defects we cannot expect a conserved quantity

associated to an “explicit” translational symmetry of W̃ invoking Noether’s theorem.

Consequently, in general Jα will not admit an expression as the divergence of an Es-

helby tensor for a curved shell. Here, we wish to identify the Eshelby part and the

non-conservative parts of the configurational force field.

As commonly done, we compute the configurational force field introducing the
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total derivative of W̃ with respect to ξγ:

Jγ =

(
∂W̃

∂ξγ

)

expl

=

(
∂W̃

∂ξγ

)

total

− ∂W̃

∂bαβ
bαβ|γ −

∂W̃

∂bαβ|ν
bαβ|νγ (4.28)

− ∂W̃

∂uα
uα|γ −

∂W̃

∂uα|β
uα|βγ (4.29)

− ∂W̃

∂w
w|γ −

∂W̃

∂w|αβ
w|αβγ. (4.30)

Recalling Eqs. (4.8,4.9) and using the chain rule, we have

∂W̃

∂bαβ
= nλµ

∂ελµ
∂bαβ

+mλµ∂ρλµ
∂bαβ

= −nαβw −mαµbβµw −mβµbαµw +mαµuβ |µ +mβµuα|µ,

(4.31)

and thus

∂W̃

∂bαβ
bαβ|γ =

[
−
(
nαβ + 2mαµbβµ

)
w + 2mαµuβ |µ

]
bαβ|γ. (4.32)

Similarly,

∂W̃

∂bαβ|ν
= mλµ ∂ρλµ

∂bαβ|ν
=

1

2
mβνuα +

1

2
mανuβ, (4.33)

and thus

∂W̃

∂bαβ|ν
bαβ|νγ = mανuβbαβ|νγ. (4.34)

Focusing now on Eq. (4.29), we have

∂W̃

∂uα
= −pα +mλµbαλ |µ,

∂W̃

∂uα|β
= lαβ. (4.35)
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where

lαβ = nαβ + 2bαλm
λβ (4.36)

is in general a non-symmetric tensor. Thus,

∂W̃

∂uα
uα|γ +

∂W̃

∂uα|β
uα|βγ =

(
−pα +mλµbαλ |µ

)
uα|γ + lαβuα|βγ. (4.37)

To cast part of this expression in divergence form, we recall that second covariant

derivatives do not commute (Flügge, 1972). Instead,

uα|βγ = uα|γβ +K (aαγuβ − aαβuγ) , (4.38)

where K is the Gaussian curvature of the shell middle surface. Combining the two

equations above, we obtain

∂W̃

∂uα
uα|γ +

∂W̃

∂uα|β
uα|βγ =

(
lαβuα|γ

)
|β +K

(
lγ
βuβ − trl uγ

)

+
(
−lαβ |β +mλµbαλ |µ − pα

)
uα|γ.

(4.39)

Close examination of the last term shows that it vanishes invoking tangential mechan-

ical equilibrium in Eq. (4.13).

We focus now on Eq. (4.30). Direct calculations show that

∂W̃

∂w
= −p3 − nαβbαβ −mαβcαβ = −mαβ

|αβ,
∂W̃

∂w|αβ
= mαβ, (4.40)

where in the last step in the first equation we have used normal mechanical equilib-

rium in Eq. (4.14). Again because of the non-commutativity of the second covariant
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derivative, as have

w|αβγ = w|αγβ +K
(
aαγw|β − aαβw|γ

)
, (4.41)

which leads to

∂W̃

∂w
w|γ +

∂W̃

∂w|αβ
w|αβγ = −mαβ

|αβw|γ +mαβw|αγβ +K
(
mβ
γw|β − trmw|γ

)

=
(
−mαβ

|αw|γ +mαβw|αγ
)
|β +K

(
mβ
γw|β − trmw|γ

)
.

(4.42)

Thus, defining the Eshelby tensor as

Mβ
γ = W̃ δβγ − lαβuα|γ −mαβw|αγ +mαβ

|αw|γ , (4.43)

and defining

Ĵγ = trl uγ − lβγuβ + trmw|γ −mβ
γw|β , (4.44)

and

J̃γ =
(
lαβw − 2mαµuβ |µ

)
bαβ|γ −mανuβbαβ|νγ , (4.45)

we can express the configurational force field as

Jγ = Mβ
γ|β +KĴγ + J̃γ . (4.46)

All terms participating in Jγ, except for the first one in Eq. (4.43), have the structure

of a stress multiplied by a displacement, possibly affected by covariant derivatives

and multiplied by a quantity involving curvature. The first term is conservative (in

divergence form) and does not involve curvature. The second embodies the lack of

translational symmetry due to the mere presence of Gaussian curvature, even if it is

73



crack

bump
z

x
y

A

D

E

G
F

B

C
u=(0,+δ) w=0 w,y=0

u=(0,-δ) w=0 w,y=0

Figure 4.2: Long plate with a pre-crack and a finite shape disturbance, here a bump.
The boundaries AB and CD are fully clamped with imposed constant opening dis-
placements, i.e, u(x,±H/2) = (0,±δ), w(x,±H/2) = 0, ∂yw(x,±H/2) = 0. All
boundaries including the crack faces are traction-free.

constant. The last term emerges as a result of the non-uniformity of curvature, and

would vanish for instance for a spherical shell. We note that for a cylindrical shell,

Jγ = Mβ
γ|β consistent with the translational symmetry in this geometry.

4.4 Energy release rate in a plate with a pre-crack

and a bump

We examine now a simple shell configuration where the energy release rate can be

computed with the results of the previous section. We consider a long plate with a

pre-crack and a finite geometric disturbance, such as a bump. We assume that this

disturbance is away from the external boundary of the plate defined by AB ∪ BC ∪
CD ∪DE ∪GA, see Figure 4.2. We assume that the plate, except for the bump, lies

on the x− y plane and we take this plane as the parametric domain, ξ = (x, y). We

consider a Monge parametrization of the shell geometry as ϕ(x, y) = (x, y, h(x, y)) for

(x, y) ∈ Ω̄ = [0, L] × [−H/2, H/2]. We consider the one-parameter family of cracks

defined by C = {x ∈ [0, d], y = 0}, i.e. cracks whose projection onto the x − y plane

lies on the x axis.
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In the Monge parametrization, the covariant basis vectors are

a1 = e1 + ∂xh(x, y)e3, a2 = e2 + ∂yh(x, y)e3. (4.47)

The basis vector a1 is tangental to the crack even if supp(h)∩C 6= ∅. The boundary

conditions are shown in Figure 4.2.

To extend infinitesimally the crack towards the right, we need to define an appro-

priate “velocity of the microstructure” V = V 1a1 +V 2a2, see Eq. (4.21), a tangential

velocity field resulting in a rightwards motion of material particles so that the crack

tip advances at unit speed. Thus, its components can be obtained by solving the

system of equations




V · e1 = V 1a1 · e1 + V 2a2 · e1 = 1

V · e2 = V 1a1 · e2 + V 2a2 · e2 = 0
, (4.48)

which leads to V = a1. In fact, this choice results in a projected motion of the

crack tip at unit speed, but in an actual extension of the crack length at a rate of

‖a1‖tip =
√

1 + [∂xh(xtip, ytip)]2. These two speeds coincide if the crack tip is away

from the bump. Therefore, we re-define the “velocity of the microstructure” as

V =
1

‖a1‖tip

a1. (4.49)

Recalling Eq. (4.25), the energy release rate per unit actual crack length G is then

given by

G =

∫

Ω

Jγ V
γ dΩ =

∫

Ω

Mβ
γ|β V

γ dΩ

︸ ︷︷ ︸
Gcons

+

∫

Ω

KĴγ V
γ dΩ

︸ ︷︷ ︸
GK

+

∫

Ω

J̃γ V
γ dΩ

︸ ︷︷ ︸
Gb

, (4.50)

where Gcons stands for the conservative part of the energy release rate expressed in

terms of Eshelby’s tensor, GK denotes the contribution arising from the Gaussian
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curvature, and Gb the contribution arising from the explicit dependence of the energy

density on the second fundamental form, which involves derivatives of b.

In the present setting, because the domain is a curved manifold rather than Eu-

clidean space, ∇V is not zero in general and consequently even the Eshelby contri-

bution to G involves a domain integral in addition to a contour integral. Indeed,

invoking the divergence theorem and the product rule, we have

Gcons =

∫

Ω

(
Mβ

γ V
γ
)
|β dΩ−

∫

Ω

Mβ
γ V

γ
|β dΩ

=

∫

∂Ω

Mβ
γ V

γ νβ d`−
∫

Ω

Mβ
γ V

γ
|β dΩ.

(4.51)

Thus,

G =

∫

∂Ω

Mβ
γ V

γ νβ d`−
∫

Ω

Mβ
γ V

γ
|β dΩ +

∫

Ω

KĴγ V
γ dΩ +

∫

Ω

J̃γ V
γ dΩ, . (4.52)

Focusing on the boundary integral and recalling Eq. (4.43), we have

∫

∂Ω

Mβ
γ V

γ νβ d` =

∫

∂Ω

W̃V γνγ d`

︸ ︷︷ ︸
1

−
∫

∂Ω

lαβuα|γV
γνβ d`

︸ ︷︷ ︸
2

−
∫

∂Ω

(
mαβw|αγV

γ −mαβ
|αw|γ V

γ
)
νβ d`

︸ ︷︷ ︸
3

,

(4.53)

where ∂Ω = AB ∪ BC ∪ CD ∪ DE ∪ EF ∪ FG ∪ GA. The parts of the boundary

aligned with the x axis (AB,CD,EF, FG) do not contribute to 1 since there V

is perpendicular to ν. Thus, because the bump is away from the outer part of the

boundary, we have

1 =
1

‖a1‖tip

(∫

BC

W̃ d`−
∫

DE

W̃ d`−
∫

GA

W̃ d`

)
. (4.54)
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On AB and CD, the clamped parts of the boundary, uα|γV
γ = 0 since u is constant

along these segments and V is parallel to them. All other parts of the boundary are

traction-free and hence do not contribute to 2 neither, see Eq. (4.15). Consequently,

2 = 0.

On AB and CD w|γV
γ = 0 and w|αγV

γ = 0 because there w = 0, w,y = w|y = 0

(the bump is away from the boundary), and V is parallel to these segments. Therefore,

these two segments do not contribute to 3 . All other parts of the boundary are

traction-free, which therefore recalling Eq. (4.55) and taking as a test function η =

w|γV
γ, leads to

∫

∂Ω\(AB∪CD)

[
mαβ

(
w|αγV

γ + w|γV
γ
|α
)
−mαβ

|αw|γV
γ
]
νβ d` = 0, (4.55)

where we have used the fact that w|αγ = w|γα. Comparing this expression with

Eq. (4.53) leads to

3 = −
∫

∂Ω\(AB∪CD)

mαβw|γV
γ
|ανβ d`. (4.56)

Because we have assumed that the bump is away from the outer part of boundary,

∇V can only be non-zero along the crack when it intersects with the bump. Thus,

the boundary contribution to G is

∫

∂Ω

Mβ
γ V

γ νβ d` =
1

‖a1‖tip

(∫

BC

W̃ d`−
∫

DE

W̃ d`−
∫

GA

W̃ d`

)

+

∫

EF∪FG
mαβw|γV

γ
|ανβ d`,

(4.57)

where the last terms is non-zero only when supp(h) ∩ C 6= ∅.

Consider now for simplicity the case of a very long strip, so that the effect of the

bump is negligible on the lateral sides of the plate, the material is fully relaxed on a

vertical boundary far away on the left, and uniformly strained (εxx = εxy = 0, εyy =

2δ/H) on a vertical boundary far away on the right. Then, the first line in Eq. (4.57)
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can be evaluated considering a planar plate under plane stress conditions, obtaining

∫

BC

W̃ d`−
∫

DE

W̃ d`−
∫

GA

W̃ d` =
E

1− ν2

2δ2

H
= Gno bump. (4.58)

In summary, we can express the energy release rate of a plate with a pre-crack and

a bump in terms of the energy release rate of a plate without bump as

G =
1

‖a1‖tip

Gno bump +GK +Gb −
∫

Ω

Mβ
γ V

γ
|β dΩ +

∫

EF∪FG
mαβw|γV

γ
|ανβ d` ,

(4.59)

where the correction involving ‖a1‖tip accounts for the difference between projected

at actual crack extension when the crack tip lies within supp(h),

GK =

∫

Ω

KĴγ V
γ dΩ (4.60)

accounts for the lack of translational symmetry in the presence of Gaussian curvature,

Gb =

∫

Ω

J̃γ V
γ dΩ (4.61)

accounts for the non-uniformity of curvature, and the last two terms account for the

fact that, for a curved shell, the “velocity of the microstructure” field cannot be made

uniform in general.

The contribution Gb involves a term with second derivatives of the curvature,

hence fourth derivatives of the parametrization of the middle surface, which can be

difficult to evaluate numerically. Indeed, substituting Eq. (4.45) into Eq. (4.61), we

have

Gb = . . . −
∫

Ω

mανuβbαβ|νγ V
γ dΩ. (4.62)
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However, by integration by parts, we have

∫

Ω

mανuβbαβ|νγ V
γ dΩ =

∫

∂Ω

mανuβbαβ|ν V
γνγ d`−

∫

Ω

(
mανuβ V γ

)
|γ bαβ|ν dΩ, (4.63)

where ∂Ω = AB ∪ BC ∪ CD ∪ DE ∪ EF ∪ FG ∪ GA. The parts of the boundary

aligned with the x axis (AB,CD,EF, FG) do not contribute to the boundary integral

since there V is perpendicular to the outer normal ν. Furthermore, the bump being

away from the outer part of the boundary, we have bαβ|ν = 0 on BC,DE,GA. Thus,

the boundary integral vanishes and we have the alternative expression

Gb = . . . +

∫

Ω

(
mανuβ V γ

)
|γ bαβ|ν dΩ. (4.64)

Appendix B presents the connection between the intrinsic formulation given here

and an extrinsic formulation. The extrinsic formulation being the basis of finite ele-

ment calculations, this Appendix provides a practical method to evaluate G compu-

tationally.

4.5 Conclusions

We have derived a general expression for the configurational force field on the linear

Koiter theory of thin shells accounting for the effect of geometry, see Eq. (4.46). Not

surprisingly, this field cannot be fully expressed as the divergence of an Eshelby ten-

sor because of the lack of translational symmetry in the presence of curvature. The

configurational force field is found to be the sum of a conservative Eshelby-like con-

tribution, a contribution proportional to the Gaussian curvature, and a contribution

accounting for non-uniformity of curvature.

We have used the general expression of the configurational force field to compute

the energy release rate associated with crack extension for a plate with a pre-crack and

finite a geometric disturbance, only requiring that this disturbance is away from the

external boundaries of the plate. Our final expression shows explicitly the corrections
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with respect to the standard planar plate case that arise from curvature.

Our results could be used to model brittle fracture in thin shells in general, and

to understand the effect of geometry on crack propagation in situations such as that

examined in Figure 4.1.
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Chapter 5
Conclusions and future directions

5.1 Conclusions

The main contributions of this dissertation are summarized below:

• In Chapter 2, we propose a variational phase-field model for strongly anisotropic

fracture, which resorts to the extended Cahn-Hilliard framework proposed in the

context of crystal growth. Previous phase-field models for anisotropic fracture

were formulated in a framework only allowing for weak anisotropy. We imple-

ment numerically our higher-order phase-field model with smooth local maxi-

mum entropy approximants in a direct Galerkin method. The numerical results

exhibit all the features of strongly anisotropic fracture, and reproduce strikingly

well recent experimental observations.

• In Chapter 3, we develop a variational phase-field model and a computational

framework for fracture in thin elastic sheets accounting for geometric nonlin-

earity and adhesion to a substrate. We directly discretize the displacements

and phase-field by C1 continuous subdivision surface finite element method.

The simulations remarkably reproduce the crack patterns observed in tearing

experiments and are in good agreement with the theoretical results.

• Motivated by simulations with our phase-field model of fracture in this shells, in

81



Chapter 4, focusing on the linear Koiter thin shell theory, we obtain expressions

for the configurational force-field and for the energy release rate of a plate with

a pre-crack and a finite shape disturbance. Because of the curvature of the shell

middle surface, the configurational force is path-dependent except for shells

which have a constant curvature and zero Gaussian curvature.

Taken together, our results show that the regularized variational approach to brit-

tle fracture constitutes a general framework that naturally generalizes to non-trivial

situations such as fracture in materials with strongly anisotropic surface energy or

fracture in thin elastic sheets.

5.2 Future Directions

This work also identifies a number of future research directions.

Regarding Chapter 2, our work is only a first step in the modeling and simulation

of strongly anisotropic fracture using phase-field models, and many questions arise.

From a theoretical viewpoint, we would like to understand the relation between our

proposed model and a sharp-interface model to predict the direction of cracks. We

also plan to investigate the energetic penalty for crack bending implicit in the phase-

field model, which presumably imposes an energy cost to crack kinking. It is not clear

at this point how this contribution depends on the tensors αijkl, βijkl and γijkl of the

ECH framework, and more importantly it is not clear either if such a penalty has a

physical meaning.

Another set of interesting questions revolves around the modeling capabilities of

the extended Cahn-Hilliard framework, including the symmetries that can be de-

scribed with such models, or the kinds of angle dependence of Gc(θ) that can be

achieved, also including the tensors αijkl and βijkl neglected here. A very simple

motivation for this are geological materials, which typically exhibit two-fold strong

anisotropy. These tensors in the ECH model could be made dependent on the phase-

field, and the surface energy may depend on the form of the dissipation function f0(φ).

All these extra features in the model introduce further nonlinearity in the equations,
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and may require different numerical solution methods. It is also interesting to examine

if one can model surface energies such that the polar plot of 1/Gc(θ) exhibits cusps,

as one expects in brittle crystals with cleavage planes. Here, we have expanded the

local free energy density f (φ,∇φ,∇2φ, . . .) up to fourth order tensors that can only

capture anisotropic surface energy with up to cubic symmetry. However, a large class

of materials are in the hexagonal crystal system. The hexagonal symmetry in the

anisotropic surface energy could be incorporated into the phase-field fracture model

by including an expansion of the free energy involving up to sixth-order tensors. The

number of non-zero and independent components of these sixth-order tensors and the

constraints imposed on them can be determined following the arugments used in the

context of phase-field models for crystal growth/solidification (Nani and Gururajan,

2014). Finally, the extension of our modeling framework to 3D is open.

The computational approach proposed Chapter 3 could help us examine in detail

the hypotheses underlying current theoretical models of thin sheet tearing, as well as

explore other parameter regimes where simple models are not available. This tool

could also shed light into ways to control the effective fracture toughness or the crack

path of thin shell structures using their overall shape or small shape disturbances, as

illustrated in Figure 4.1. On a different note, the computational cost associated to

phase-field simulations is one of the difficulties to reproduce experimental configura-

tions. Small shell thickness, narrow numerical cracks or small cohesive lengths require

very thin meshes. An adaptive mesh refinement algorithm guided by the phase-field

or a distributed memory parallel implementation would allow us to reach more easily

interesting parameter ranges.

Finally, the results in Chapter 4 open many new research directions. We could

consider simple examples where our expression for G could be easily evaluated, and

the effect of curvature on crack propagation compared with experiments. One such

example could be that of ring defined by the region between to parallel circles on

a sphere with an equatorial segment crack. The expressions obtained could also be

tested numerically and compared to phase-field simulations. Close examination of our

expressions for concrete examples could bring insight into the relative importance of

83



the different terms, and possibly provide an understanding of the influence of geometry

on crack propagation in simple terms. This understanding could guide the design of

new thin objects with optimized fracture behavior.
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Appendix A
Appendix to Chapter 2

Rotation of material orientation relative to the sam-

ple

For cubic symmetry and centrosymmetric materials, the fourth-rank tensors αijkl, βijkl

and γijkl have the same major and minor symmetries as the anisotropic elastic stiffness

tensor. We summarize next how to transform these tensors to a coordinate system

that does not coincide with the principal material axes. The basis change formulae

for fourth-rank tensors in Voigt notation are not straightforward. Suppose that the

components of the fourth-rank tensor are given in basis E, and we want to determine

its components in a second basis Ẽ. The change of basis formula for the tensor

expressed as a matrix in Voigt notation C can be expressed in matrix form as

CẼ = KCEKT , (A.1)

where K is a transformation matrix (Ting, 1996). In 3D, when we rotate the material

about the third coordinate vector by an angle Θ, the transformation matrix reduces
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86 Appendix to Chapter 2

to

K =




c2 s2 0 0 0 2cs

s2 c2 0 0 0 −2cs

0 0 1 0 0 0

0 0 0 c −s 0

0 0 0 s c 0

−cs cs 0 0 0 c2 − s2




,

where c = cos Θ, s = sin Θ. Consequently, in 2D, the transformation matrix for the

3× 3 Voigt representation of the fourth-order tensor, see Eq. (2.16) is just

K =




c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2


 .



Appendix B
Appendix to Chapter 4

Calculation of G using an extrinsic shell formulation

In the finite element solution of mechanical equilibrium of a thin shell, the displace-

ment field of shell middle surface is described in terms of Cartesian components

U i, i = 1, 2, 3

U = U iei = uαaα + wn, (B.1)

yet the formulation in Chapter 4 is given in terms of the intrinsic or Gaussian com-

ponents uα, α = 1, 2 and w. In the equation above, the natural basis vectors are

computed from the parametrization of the middle surface as aα = ϕ,α. From the

relation above we can obtain the intrinsic components from the Cartesian ones as

uα = U · aα and w = U · n.

The membrane and bending strain tensors of the linear Koiter’s theory can be

computed in terms of Cartesian components as

εαβ =
1

2
(ϕ,α ·U,β +ϕϕϕ,β ·U,α) , (B.2)

ραβ = n · U,αβ − [(ϕ,αβ ×ϕ,2) ·U,1 + (ϕ,1 ×ϕ,αβ) ·U,2] /
√
a

− (n ·ϕ,αβ) [(ϕ,2 × n) ·U,1 + (n×ϕ,1) ·U,2] /
√
a, (B.3)
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88 Appendix to Chapter 4

which are alternative expressions to the intrinsic expressions in Eqs. (4.8,4.9). See

Millán et al. (2011) for a detailed derivation. The first and second fundamental forms

can be computed as aαβ = aα · aβ and

bαβ = n · ∂
2ϕ

∂ξαξβ
. (B.4)

We focus now on the terms in Eqs. (4.43,4.44,4.45) that can not be directly calcu-

lated. Recalling Eq. (4.7) and multiplying this equation by aα, the covariant derivative

uα|γ can be computed as

uα|γ = ∂γU · aα + bαγw, (B.5)

and w|γ as

w|γ = ∂γU · n− bαγuα. (B.6)

The second covariant derivative w|αγ can be computed invoking Eq. (4.9) as

w|αγ = ραγ + cαγw − bλαuλ|γ − bλγuλ|α − bλα|γuλ. (B.7)

In this expression, bλα|γ is computed from the definition of the covariant derivative of

a second-order tensor

bλα|γ = aλµbµα|γ = aλµ
(
∂bµα
∂ξγ

− bβαΓβµγ − bµβΓβαγ

)
, (B.8)

and noting that from Eqs. (4.4,B.4) we have

∂bµα
∂ξγ

= −bλγaλ ·
∂2ϕ

∂ξµξα
+ n · ∂3ϕ

∂ξµξαξγ
. (B.9)
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The term mαβ|α is computed as

mαβ|α =
Eh3

12 (1− ν2)
Hαβµγρµγ|α, (B.10)

=
Eh3

12 (1− ν2)
Hαβµγ

(
∂ρµγ
∂ξα

− ρλγΓλµα − ρµλΓλγα
)
, (B.11)

where in writing Eq. (B.10) we have used the fact that the covariant derivative of the

first fundamental form vanishes. A direct calculation shows that

∂ρµγ
∂ξα

=n,α · U,µγ + n · U,µγα − Aα (Bµγ +Bµγ)− (Bµγ,α + Cµγ,α) /
√
a , (B.12)

where

Aα =∂α(1/
√
a) = (ϕ,1α ×ϕ,2 +ϕ,1 ×ϕ,2α) · n , (B.13)

n,α = (ϕ,1α ×ϕ,2 +ϕ,1 ×ϕ,2α) /
√
a−

(
Aα/
√
a
)
n , (B.14)

Bµγ = (ϕ,µγ ×ϕ,2) ·U,1 + (ϕ,1 ×ϕ,µγ) ·U,2 , (B.15)

Cµγ = (n ·ϕ,µγ) [(ϕ,2 × n) ·U,1 + (n×ϕ,1) ·U,2] , (B.16)

Bµγ,α = (ϕ,µγα ×ϕ,2) ·U,1 + (ϕ,1α ×ϕ,µγ) ·U,2 + (ϕ,µγ ×ϕ,2α) ·U,1

+ (ϕ,1 ×ϕ,µγα) ·U,2 + (ϕ,µγ ×ϕ,2) ·U,1α + (ϕ,1 ×ϕ,µγ) ·U,2α , (B.17)

Cµγ,α = (n,α ·ϕ,µγ + n ·ϕ,µγα) [(ϕ,2 × n) ·U,1 + (n×ϕ,1) ·U,2]

+ (n ·ϕ,µγ) [(ϕ,2α × n) ·U,1 + (n,α ×ϕ,1) ·U,2]

+ (n ·ϕ,µγ) [(ϕ,2 × n,α) ·U,1 + (n×ϕ,1α) ·U,2]

+ (n ·ϕ,µγ) [(ϕ,2 × n) ·U,1α + (n×ϕ,1) ·U,2α] . (B.18)
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N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering,
46(1):131–150, 1999.
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