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Abstract

The field of Human-Computer Interaction (HCI) has been historically devoted to under-
stand the interplay between people and computers. However, for the last three decades,
it has been mainly based on overt and explicit control by means of peripheral devices
such as the keyboard and the mouse. As devices and systems are becoming increasingly
complex and powerful, this traditional approach to interface design is often lagging be-
hind, constituting a bottleneck for seamless HCI.

In order to achieve more natural interactions with computer systems, HCI has to go
beyond explicit control and incorporate the implicit subtleties of human-human inter-
action. This could be achieved by means of Physiological Computing, which monitors
naturalistic changes in the user psychophysiological states (a�ective, perceptive or cog-
nitive) for adapting system responses without explicit control. At the output level, Sonic
Interaction Design (SID) appears as an excellent medium for representing implicit phys-
iological states, as acoustic data can be processed faster than visual presentation, can be
easily localized in space, it has a good temporal resolution, and account for displaying
multiple data streams while releasing the visual sense.

Therefore, in this dissertation we aim to conceptualize, prototype and evaluate sonic in-
teraction designs for implicit Physiological Computing in the context of HCI. For achiev-
ing this goal, we leverage on physiological sensing techniques, namely EEG and ECG,
to estimate user’s implicit states in real time, and apply diverse SID methodologies to
adapt system responses according to these statuses. We incrementally develop di�erent
implicit sonic interactions (from direct audification to complex musical mappings) and
evaluate them in HCI scenarios (from neurofeedback to music performance), assessing
their perceptualization quality, the role of mapping complexity, and their meaningfulness
in the musical domain.
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Sinopsis

El campo de la interacción persona-ordenador (HCI, por si siglas en inglés) se ha dedicado
históricamente a comprender la compleja relación entre usuarios y sistemas computa-
cionales. Sin embargo, en las últimas tres décadas, esta disciplina se ha concentrado
primordialmente en mecanismos de control explícitos, mediante dispositivos periféricos
como el teclado o el ratón. A medida que los sistemas informáticos y sus interfaces se
vuelven más complejos y potentes, esta aproximación tradicional al diseño de interfa-
ces representa una limitación para alcanzar mecanismos de interacción más naturales e
intuitivos para el usuario final.
Para superar dicha barrera, HCI debe ir más allá del control explícito e incorporar las
sutilezas de lo implícito, tan características en la comunicación humana. Tal objetivo
puede alcanzarse a través de las Fisiología Computacional, dedicada a monitorear sis-
temáticamente los cambios psicofisiológicos (e.g. afectivos, perceptivos o cognitivos) del
individuo para aplicarlos al control de sistemas computacionales. Asimismo, el diseño
de interacción sonora ofrece ventajas significativas para representar cambios fisiológicos
implícitos en la actividad del usuario, ya que la información acústica puede ser procesada
más rápidamente que las presentaciones visuales, es fácilmente localizable en el espacio,
posee una resolución temporal alta, y permite representar múltiples flujos de datos al
tiempo que libera la visión.
Por lo tanto, esta tesis doctoral tiene por objetivo conceptualizar, prototipar y evaluar
interacciones sonoras basadas en fisiología computacional implícita, en contextos HCI.
Para alcanzar dicho objetivo, se aplican métodos de medición fisiológica, específicamente
EEG y ECG, para estimar estados psicofisiológicos de los usuarios en tiempo real, los
cuales se utilizan para adaptar implícitamente la respuesta de interfaces sonoras interac-
tivas. De esta manera, se presentan diferentes estrategias de interacción sonora implícita
(desde audificación directa, hasta mapeos musicales complejos) las cuales se aplican en
escenarios de HCI (de neurofeedback hasta performance musical) para evaluar sus cua-
lidades de perceptualización, el rol de la complejidad de los mappings entre información
fisiológica y sonido, y sus implicancias en contextos expresivos, como la creación musical.
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1. Introduction

1.1. Motivation

For more than 30 years the multidisciplinary field of Human-Computer Interaction (HCI)
has been devoted to tackle technical and cognitive issues required for understanding the
subtle interplay between people and computers. In this regard, a close look at the his-
torical HCI curricula shows that the general mode of human interaction with computing
systems has been mainly based on overt and explicit communication via peripheral de-
vices such as the keyboard and mouse, a fact that has remained practically unchanged
for the last 3 decades [Fairclough and Gilleade, 2014b] [Carroll, 2013]. The recent ad-
vent of mobile devices and gesture recognition algorithms represent an important shift
on traditional methods of input control, but the basic interaction paradigm remains the
same: a user sending explicit commands to the computer.
As devices and systems are becoming increasingly complex and powerful, this traditional
approach to interface design is often lagging behind, constituting a bottleneck for seam-
less HCI. In the same way as people with tonal agnosia, who are unable to interpret
the context, tone or intonation of the sentences, thus losing an essential component of
speech to the point that they often cannot follow a conversation in a satisfactory manner,
we are also limited by the constraints of current user interfaces. Communication with
systems or within computer supported cooperative work (CSCW) normally takes place
overtly, through explicit and conscious commands, by means such as e-mail or messaging
platforms. In order achieve more natural interactions with computer systems, HCI has
to be brought closer to the communication patterns of human beings [Hettinger et al.,
2003], which imply to go beyond explicit control and incorporate the implicit subtleties
that characterize human-human interaction. Through such approach we might be able
to enrich user experience and contexts of interaction in the same way as archetypical
conversational environments: interpreting the user body language or unconscious men-
tal mechanisms, revealing meanings and hidden behaviors that would otherwise remain
detracted from interactive systems and other users.
The a�ordances of implicit human-human interaction have already called the attention
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1. Introduction

of HCI researchers and practitioners, as a way for making user information immediately
and e�ortlessly available, and for relieving users from constant operation. For instance,
Ju & Leifer [2008] propose a framework that helps to identify when and how to deploy
implicit interactions, in order to develop less needy interactive systems. Buxton’s taxon-
omy for periphery and context [1995] leverages on background social ecology to promote
interactions that transit between foreground and background (the norm in human-human
communication) to compensate the sense of distance that exist in computer and com-
puter mediated interaction. Weiser and colleagues [1996] propose the concept of calm
technology, striving for devices that engage center and periphery of user attention in
a continuous tuning process. Tennenhouse’s proactive computing [Tennenhouse et al.,
1997] places implicit user behavior in the context of ubiquitous computing; and Schmidt
defines implicit interaction within HCI as the result of a complex interplay between the
context of use and the perceptual capabilities of computer systems [Schmidt, 2000].

Whereas most of the aforementioned approaches to implicit interaction are based on the
user situational context, we can also incorporate implicit cues to HCI by directly inspect-
ing user’s brain and body states, as they represent a major outlet of information about
her a�ective, perceptive and cognitive processes. In fact, the exploration of psychophys-
iology (i.e. the physiological bases of psychological processes) within HCI has led to the
emergence of Physiological Computing (PhyComp), a field concerned with monitoring
naturalistic changes in such phenomena for controlling computer systems [Fairclough,
2009]. PhyComp therefore appears as a valuable resource to expand implicit interaction
beyond the situational context, by providing information about the physicality of users
(what we call subjective context). Pragmatically speaking, PhyComp can enhance the
perceptive a�ordances of interactive systems, making available user implicit states that
can be only accessed by looking into the human body.

PhyComp has grown at a fast pace in the last decade. Moreover, with the recent appear-
ance of wearable and non-invasive physiological devices - ranging from Brain-Computer
Interfaces (BCI) to muscle and heart-rate sensors - PhyComp applications have gone be-
yond the lab, towards daily life environments such as gaming, sports and the quantified
self [Allanson and Fairclough, 2004]. In parallel to this expansion, the field has developed
alternative paradigms for interacting with computers without the need of overt forms of
input, like using BCI or eye tracking systems [Tan and Nijholt, 2010][San Agustin et al.,
2009]. However, the great majority of PhyComp paradigms are still designed to read
conscious actions. They bypass body motion, looking for correlates of the user intention
directly from the cortex of the brain or ocular movement, and translate these signals
into actions at the interface level, but these still represent a form of input control that is
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explicit and intentional, just like pointing and clicking with a mouse. In these cases, the
mode of input control is novel, but the mechanics of HCI remain essentially unchanged.
Nonetheless, we can use PhyComp techniques to enhance HCI with covert interactions
that are neither deliberate nor volitional in any conventional sense. This is called im-
plicit PhyComp [Fairclough, 2009], where the nervous system of the user is continuously
monitored, and the resulting data is used to characterize her cognitive, emotional or
motivational status. This dynamic representation is conveyed to the system in order
to inform a real-time process of adaptation. This method of wiretapping the user psy-
chophysiology [Fairclough, 2009] has been already explored by biocybernetic pioneers
such as Alan Pope, who predicted the potential of implicit interfaces to adapt to the
individual in highly personalized ways [Pope et al., 1995]. For instance, during the 1990’s
at NASA, Pope and colleagues developed an adaptive system for flight simulators where
the pilot Electroencephalographic activity (EEG) was monitored in order to manage the
status of an auto-pilot during flight time. The system aimed at sustaining the level of
alertness of the pilot at an optimal level via manipulation of the auto-pilot status. Many
other studies followed, such as computer games that adjusted di�culty according to the
boredom of a gamer [Gilleade et al., 2005], or workload alertness systems for air-tra�c
control [Kaber et al., 2006].
These previous works already demonstrated how implicit physiological input can be used
to tailor the experience to the singularities of a person (e.g. adapting parameters of a
video game to the skill set of a gamer), a usage scenario (e.g. air tra�c control), or a
predefined agenda (e.g. mitigating frustration or promoting positive a�ect). However,
their output methods are mostly direct, blatant and explicit: if the alertness of the pilot
diminishes, the system prompts an alarm; if the gamer gets frustrated, the game explic-
itly reduces the number of enemies, if the user workload is too hight, the system cuts o�
tasks. But an implicit PhyComp paradigm inspired on natural human communication
would probably benefit from the incorporation of implicit outputs as well. We humans
have a wide range of explicit and implicit choices to communicate our thoughts, and a
successful conversational interaction strongly depends on the hearer supplying the miss-
ing elements in the speaker’s communication resource [Yus, 1999]. Therefore, implicit
PhyComp has to account for implicit outputs that help the user to interpret the context
of interaction, and not just providing unambiguous responses. In fact, human cogni-
tion is geared up for searching relevance in non-verbal, implicit stimuli processed in the
course of a conversational interaction [Yus, 1999].
If we aim to develop seamless implicit interactions via PhyComp, our outputs have to be
designed in a way that promotes relevance searching and rich interpretation as mentioned
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above, but in a computer-mediated context. This process of output or feedback design
implies to render the user psychophysiological states by means of sound, visuals, and/or
force [Jovanov et al., 1999]1. Among di�erent feedback techniques, sonic interaction
design (SID) has shown to be an excellent medium for expressing implicit physiological
states, both o�ine [Hermann et al., 2002] and in real time [Hinterberger and Baier, 2005,
De Campo et al., 2007]. This is because acoustic data can be processed faster than visual
presentation, can be easily localized in space, they can have a good temporal resolution
(almost an order of magnitude better than visual [Jovanov et al., 1999]), and account
for displaying multiple data streams while releasing the visual sense [Fitch and Kramer,
1994]. SID also permits a wide range of possible expressions, ranging from representative
sounds for conveying information (sonification) to designs centered in expression and
performance (i.e. new interfaces for musical expression - NIME) [Väljamäe et al., 2013a].

The link between sound and human physiology is long and extensive, showing that SID
is an exceptional candidate for perceiving the complexity of implicit psychophysiological
processes. For instance, sonification has been traditionally used for displaying physio-
logical data in the medical practice, with the stethoscope being a remarkable example
(100 years after its creation, it is still widely used by physicians). NIME researchers,
on the other hand, have pioneered the use of biosignals2 for SID in performance and
creative contexts. Instead of exclusively attending at engineering problems or func-
tional approaches (as in the case of sonifications) or solely looking at the user as a re-
ceptor/listener, NIME practitioners have mostly focused on designing PhyComp-based
interfaces for supporting expressiveness. By doing so, NIME started to bridge the gap
between instrument and interface design, exploring the connections of between audition,
psychophysiology, touch and action. For all these reasons, it also appears as an excellent
testbed for designing and evaluating physiology-based implicit sonic interactions in an
expressive and relevant HCI domain.

There are, however, specific challenges that emerge from the intersection of implicit
PhyComp and SID. One is related to perceptualization, understood as the process of as-
sociating a given sonic strategy to the psychophysiological state that acts as the input for
its rendering, within an HCI context [Jovanov et al., 1999]. In short, perceptualization
defines how well a sonic design represents a given implicit physiological state, aiding user
perception during interaction. Naturally, any SID will always imply a level of arbitrari-
ness. In explicit PhyComp, this arbitrariness is compensated by relying on unambiguous

1In fact research e�orts are being put in the development of other types of feedback, such as digital
smell and taste, but they are still at a very early stage of development [Ranasinghe et al., 2011].

2In this thesis, the term “biosignal” is used as a summarizing term for all physiological signals.
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physiological inputs (for instance, a BCI based on motor imagery) and translating into
explicit outputs (i.e. analogous cursor movement). In these cases, feedback design is
relatively straightforward. For an implicit PhyComp system, however, the ambiguity
of physiology-to-sound mappings augments, as a given sound might convey many psy-
chophysiological states. On the other hand, the perceptualization quality of a given SID
technique also depends on the unambiguity of the physiological input. Any implicit Phy-
Comp system has to first measure, process and classify the physiological correlate (e.g.
heart rate variability) of a rich and nuanced experience (e.g. emotional arousal). How-
ever, physiological streams are usually correlated with multiple user states (e.g. heart
rate variability is also a�ected by fatigue and frustration) making psychophysiological
classification a complex task.

Another challenge in the creation of sonic interactions based on implicit PhyComp is
mapping complexity, understood as the number of physiological streams and sound
parameters used in a SID strategy. Are direct physiology-to-sound mappings (e.g. au-
dification) better than complex mappings (e.g. musical mappings) for perceptualizing
implicit PhyComp in a HCI context? Even if we manage to provide an intuitive map-
ping to a given user, will it be perceived in the same manner by others? When screening
the current literature, we see that most of the sonic designs applied to PhyComp work
with a fixed mapping strategy [De Campo et al., 2007, Väljamäe et al., 2013a], meaning
that users cannot change or fine-tune physiology-driven sonic interactions according to
their individual perception, which can certainly a�ect the user experience. Moreover,
when these SID strategies are applied in a HCI context (e.g. as part of a digital music
instrument) studies tend to be rather elusive on determining how meaningful they are
from an end-user perspective. In the context of NIME, this can be understood as the
potential of a given physiology-driven sonic interaction for being perceived as an expres-
sive component of the interface, through which the user can drive sound operations that,
being expected or unexpected, contribute to the creative task she is committed to.

As mentioned by Fairclough and Gilleade [2014b], if implicit PhyComp is to be mean-
ingful for users, it is important that the system resonates with the user experience in a
seamless way. Therefore, it is the rationale of this thesis that if we:

1. systematically assess and evaluate the perceptualization quality and mapping prop-
erties of di�erent SID techniques

2. provide personalized sonic interactions, tailored to the perception and subjective
context of each user

3. deploy them in a relevant HCI scenario to determine whether the provided sonic
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feedback can be acknowledged (conscious or unconsciously) by the user as a mean-
ingful component of the interaction

we will be able to improve user experience in implicit PhyComp systems, in manners that
could hardly be obtained otherwise using pre-defined, fix display strategies. Through
this approach, we aim to foster natural and seamless interactions that are closer to
the communication patterns of human beings than traditional explicit HCI interfaces.
Hence, analyzing end-user perception of physiology-based SIDs is the starting point
of our work. In particular, in this dissertation we propose methods for designing and
evaluating sonic interactions based on EEG and electrocardiography (ECG) data. The
context of application is, in the first place, a prototype of an adaptive musical interface
named b-Reactable. The outcomes from this initial study are later used for designing
physiology-based sonic interactions of di�erent mapping complexity, which are evaluated
in a neurofeedback context. We also compare the performance of these designs to the
one of personalized sound mappings, in a neurofeedback scenario. The results of this
study are used to inform a second version of the b-Reactable, which is evaluated in a
music performance context.

1.2. Background Knowledge

This dissertation leverages on two main domains for researching on natural interfaces
based on implicit paradigms, namely physiological computing (PhyComp) and sonic
interaction design (SID), the latter covering both sonification techniques and NIME.
Below we provide a short summary in these fields.

1.2.1. Physiological Computing

PhyComp represents an HCI modality where system interaction is achieved by monitor-
ing, analyzing and responding to psychophysiological activity from the user in real-time
[Allanson, 2002]. Although the field has been historically nurtured by medical research,
clinical practice and di�erent cognitive sciences such as psychophysiology and neuro-
science [Treacy Solovey et al., 2015], other disciplines such as music technology3 and
video game4 research have pioneered the use of biosignals for creative and expressive
purposes [Nijholt, 2009, Rosenboom, 1997a]. For this reason, interface design within

3for more information about the history of PhyComp in the music domain, please check the fundamental
work of David Rosenboom “Extended Musical Interface with the Human Nervous System”[1997a].

4for a comprehensive review, please check Kivikangas et al. [2011].
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PhyComp historically responded to specific demands of such fields, like data acquisition
and screening (e.g. topographic maps for diagnosis and study of brain functions), reha-
bilitation tools (e.g. post stroke motor rehabilitation [Cincotti et al., 2012]), prosthesis
design (e.g. control of a prosthetic hand through electromyography [Cipriani et al.,
2008]), but also new interfaces for musical expression and gaming systems [Nacke et al.,
2011].

PhyComp interfaces are already present in the consumer marketplace, shaping the cre-
ative industry. The recent emergence of o�-the-shelf wearable and mobile devices (e.g.
smart watches and non-invasive BCI) together with low-cost prototyping toolkits and
miniaturized sensors (e.g. the BITalino5), have fostered the use of biosensors6 beyond
laboratory conditions, complementing explicit peripheral behavior (e.g. movement) with
physiological states. Not surprisingly, the computer industry is already releasing con-
trollers that capture detailed hand and finger motion by combining inertial measurement
units (IMU) with muscle activity detection (like the wearable controller MYO7), or inter-
faces like the Microsoft Kinect 2, which detects heart-rate variability to assess gamers’
responses to the context of interaction. In this way, PhyComp is rapidly taking on
every-day life in the shape of activity trackers (both for wellness like the Jawbone 8

and professional sports like the Garmin Edge line9), cognitive trainers (like the Neu-
roSky MindWave headsets10) and alternative ways of communication (the Apple Watch
hear-rate sharing system11 being one of the most populars).

Despite biosensing became less invasive, more accessible and pervasive, the experience
for many users is still frustrating since natural interaction does not yet meet their ex-
pectations. Most of the current PhyComp applications are limited to the measurement
and visualization of collected physiological data, thus not exploiting the possibilities of
PhyComp for real time interaction. This scenario has motivated research on di�erent
PhyComp paradigms to foster meaningful interactions beyond monitoring, as described
in the following subsection.

5http://www.bitalino.com/ (accessed on November, 2015).
6In this thesis the term “Biosensors” are used interchangeably with “physiological sensors”.
7https://www.myo.com/ (accessed on November, 2015).
8https://jawbone.com/ (accessed on November, 2015).
9https://buy.garmin.com/en-US/US/into-sports/cycling/edge-520/prod166370.

html (accessed on November, 2015).
10http://store.neurosky.com/collections/eeg-headsets (accessed on November, 2015).
11https://www.apple.com/watch/new-ways-to-connect/ (accessed on November, 2015).
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1. Introduction

Interaction Paradigms in Physiological Computing

As mentioned in 1.1, there are two predominant interaction paradigms in PhyComp:
direct explicit control and indirect implicit adaptation [Fairclough and Gilleade, 2014a].
The goal of direct explicit control is to extend the body schema through interfaces that
are guided by intentionality, as in the case of BCIs or PhyComp based on peripheral
signals such as electromyography (EMG) [Caramiaux et al., 2015b]. This model is anal-
ogous to command inputs (e.g. keystrokes) and has been mainly used for compensating
motor disabilities, prosthesis control or rehabilitation [Wolpaw et al., 2002b]. Nowadays,
explicit PhyComp applications are also designed for healthy users [Allison et al., 2007],
although they still face important constraints (particularly BCIs) such as a limited con-
trol bandwidth, the need of training phases for accurate classification, and limitations
of human attention [Wickens, 2002]. Previous studies have shown that direct explicit
PhyComp can improve user experience and performance in goal oriented scenarios, such
as video games [Nacke et al., 2011], although its seamless integration with traditional
methods (i.e. gamepads or multitouch interfaces) remains a major challenge, as direct
explicit PhyComp also requires intentional user commands.
Indirect implicit PhyComp, on the other hand, controls the state of the system through
a biocybernetic loop [Pope et al., 1995] that continuously monitors psychophysiological
changes for providing adaptive responses perceived as intuitive and timely by users Fair-
clough [2009]. It does not require consciously generated input commands or training,
and can seamlessly encompass multimodality by being combined with other biopoten-
tials and/or traditional input methods [Zander et al., 2010]. As mentioned in Section
1.1, early works as Alan Pope’s adaptive piloting systems made use of this strategy for
enhancing an already existent human-machine scenario by covertly informing the com-
puter system about the user alertness state [Pope et al., 1995]. Following this paradigm,
several adaptive multimodal systems have been developed using cortical oscillatory ac-
tivity [Nijholt et al., 2009], ECG and electrodermal activity (EDA) [Nacke et al., 2011].
Previous studies on video games emphasize the qualities of implicit PhyComp for in-
fluencing long-term elements of the user experience, and its advantages for sustaining
engagement through real-time physiological feedback [Rani et al., 2005, Gilleade et al.,
2005] in a�ective games such as Ozen (Ubisoft)12, which focuses on stress control.
Explicit and implicit interactions are not mutually exclusive. Stephen Fairclough and
Kiel Gilleade13 have proposed a four-group classification to better represent the ex-
12http://www.experience-ozen.com/ (accessed on October, 2015).
13For a complete description of Fairlough and Gilleade’s classification, please check http://www.

physiologicalcomputing.net/?page_id=227
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Explicit
Direct

Implicit
Indirect

Input devices
& Gestures

Musculoskeletal
Interfaces

Brain-Computer
Interfaces

Adaptive
Interfaces

Ambulatory
Monitoring

Figure 1.1.: Classification of Physiological Computing systems, based on
the model proposed by Fairclough and Gilleade (http://www.
physiologicalcomputing.net/?page_id=227).

plicit/implicit interaction continuum (see figure 1.1). It starts with conventional input
devices, including gestures and motion detection, which are eminently explicit. Interac-
tions driven by Musculoskeletal activity (e.g. eye movement) are the next in the classi-
fication, as they can be controlled volitionally but they are also subject to unconscious
action (e.g. reflexes). The third group is BCI, where interactions bypass peripheral body
movement to be directly driven by brain activity and autonomic responses from the ner-
vous system. It is important to note that these three categories are all concerned with
a degree of explicit input control at the interface level, and an analogous explicit output
(e.g. left hand movement/eye gaze toward the left/imagined left hand movement �
move a cursor to the left). They are therefore designed to respond to conscious actions,
thus the user expects an unambiguous output as a result.

The category of adaptive interfaces, on the other hand, is built under an implicit in-
direct paradigm, thus requiring some kind of monitoring system to capture physiology
in applied environments (by means of unobtrusive wearable sensors) to inform the sys-
tem about spontaneous changes in psychophysiology (as in the case of Pope’s adaptive
piloting system). The final category of ambulatory monitoring refers to the use of perva-
sive monitoring for self-learning and self-diagnosis (i.e. tracking the progress of physical
training).

Under the scope of Fairclough and Gilleade’s continuum, this dissertation will mainly
tackle adaptive PhyComp interfaces to design implicit sonic interactions, and explore
their combination with other explicit methods to foster multimodality.
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Feedback design for indirect implicit PhyComp

In PhyComp, the feedback design process is traditionally defined by its directionality.
In this sense, research e�orts have mainly focused on two modes: positive and negative
feedback control14[Carver et al., 2000], and their combination as they are not mutually
exclusive. Negative feedback creates behavioral stability by reducing the discrepancy
between the input state (e.g. physiological correlate of engagement) and a desired stan-
dard (e.g. high engagement). Negative feedback is ideal for adaptive systems designed
to keep the user in the flow [Csikszentmihalyi and Csikzentmihaly, 1991]. Think for in-
stance on a first-person shooter. Negative feedback would be desirable for parents that
will like to keep the stress of their children low if they game becomes too challenging
(i.e. more user stress, less di�culty).

Positive feedback, on the contrary, is generally designed to amplify the discrepancy
between the input state and the desired state in an exponential fashion. This leads to
performance instability, and it may therefore be used to adjust the desired target state
upwards as the user becomes more involved with the task. If we go back to the fist-person
shooter example, positive feedback would be preferred by a gamer willing to improve
her game skills (i.e. more perceived di�culty will trigger more challenging obstacles).

Both types of feedback can be combined to toggle unstable episodes of skill acquisition
(positive feedback) and stable moments for skill consolidation (negative feedback). De-
sign decisions in this regard are essential, especially in the context of goal-oriented HCI
domains such as video games or training applications.

In this dissertation we also explore an extra dimension of feedback design, mapping com-
plexity, defined as the the number of physiological inputs and output parameters used
to produce and display system adaptations. We have focused on this dimension because,
whereas directionality is particularly important for training systems (e.g. biofeedback)
or goal oriented applications (e.g. adaptive video games), feedback complexity plays a
major role when PhyComp coexist with other input methods (e.g. tangible interaction)
and in expressive HCI domains like musical performance. As pointed out by Jordà and
Mealla [2014], mapping strategies are crucial for expression and for domains where con-
tent exploration or creation are as relevant as task solving. In this context, for instance, a
music performer playing alone might prefer a physiology-to-sound mapping with a great
complexity to drive several musical operations overtly and automatically, while focusing
on specific musical aspects explicitly. For collaborative performance, on the other hand,
a reduced complexity might be preferred for avoiding undesired sonic outcomes.
14For a comprehensive review on this topic, please refer to Fairclough [2009]
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The development of seamless implicit sonic interactions that bring HCI closer to human-
human communication patterns thus requires a close study on the perception of di�er-
ent feedback designs, taking into account the characteristics of the end user and the
context of interaction. Therefore, in this thesis we will design and compare di�erent
sonic feedback strategies, stressing on the implications of user preference (through per-
sonalized mappings) and context (ranging from a canonical psychophysiological setup
-neurofeedback- to expressive HCI -NIME).

1.2.2. Sonic Interaction Design

Sonic interaction design (SID) can be defined as an interdisciplinary field of research
and practice that explores the ways in which sound can be used to convey informa-
tion, meaning, and aesthetic and emotional qualities in interactive contexts [FraninoviÊ
and Serafin, 2013]. For years, designers have been rarely aware of the extent to which
sound can a�ect user experience, especially in a computer-mediated context. SID there-
fore emerged from the need to challenge predominant design approaches by considering
sound as a key medium to foster novel phenomenological and social experiences with and
through interactive technology. SID leverages on knowledge and methods from diverse
disciplines such as interactive arts, electronic music, cultural studies, psychology, cogni-
tive sciences, acoustics, and interaction design to explore multisensory, performative, and
tactile aspects of sonic experience, and the ability of a sounding object to communicate
meaning.

SID as representation: Sonification

From an HCI perspective, sound has been predominantly used to encompass screen-
based interaction or to present information in form of sound. This representational use of
sound, known as sonification or auditory display15 [Kramer, 1993], has defined a number
of functional roles for sound, such as the exploration of big databases, aid awareness
through sonic alerts, or inform about action accomplishment (i.e. auditory icons) like
the sound of crashing paper when moving a file to the trash bin on a graphic user interface
(GUI) [Gaver, 1993]. Kramer [1993] defines sonification as “the use of non-speech audio
to convey information”. More specifically, sonification is the transformation of data
relations into perceived relations in an acoustic signal for the purposes of facilitating
communication or interpretation.

15In this thesis, auditory display is used as synonym of sonification.
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Figure 1.2 shows the general structure and necessary conditions for sonification, and the
di�erent closed-loop interaction that can take place in an auditory system, as proposed
by Hermann [2008]. The sonification module plays rendered sonifications to the user.
Data sources feed sonification from the left side, including any system in the world that is
connected to the sonification module (e.g. via sensors that measure its state), or any data
under analysis that are stored separately and accessible by the sonification. The arrows
describe di�erent user interactions that can happen under this setup, with monitoring
being the less interactive procedure, since data from a repository is continuously feeding
the sonification rendering with the user being a passive listener, focusing only in parts
of the sound. Navigation, on the other hand, implies the selection and/or browsing of
chosen data. Physiological feedback refers to the sonification of real-time physiological
data gathered through di�erent sensors. In this case, the user produces the input data
for the sonification system, making possible for her to perceive a sound that depends on
her own physiological activity. Finally, human activity supported by sonification focuses
in the physical world, and the user is driven by the goal to change a world state in a
specific way.
In the recent years, research e�orts have also shifted towards exploring the relations
between human action and sound, introducing the notion of interactive sonification,
where auditory signals, besides providing feedback on the data analyzed, is also refined
and redirected according to the user activity (i.e. changing and adjusting parameters of
the sonification module). However, in this case user action is normally channeled through
traditional user interfaces (e.g. screen icons and mouse or touchscreen), or reduced hand
movements. Therefore, the performative aspects of sound are not exploited to their full
potential.
Despite the a�ordances of sound for displaying physiological activity (e.g. detecting
repetitive elements, regular oscillations, discontinuities, and signal power to a degree
comparable with using visual inspection of spectrograms [Pauletto and Hunt, 2005]) any
sonification strategy implies a level of arbitrariness in its conversions of physiological data
into sound. In this regard, most of the published work in the field do not provide su�cient
details about either physiological data acquisition or applied sound synthesis [Väljamäe
et al., 2013a]. Moreover, very few of these studies have conducted controlled evaluations
of the chosen methods, making it di�cult to replicate or validate most studies.
To overcome these aspects, this dissertation will provide a systematic identification of
application domains for physiology-based implicit sonic interactions; it will also per-
form controlled evaluations and comparative studies to determine how di�erent sonic
strategies perform in a given HCI context, and how they di�erentiates/complement
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Figure 1.2.: Structure and conditions needed to achieve di�erent types of sonifications,
derived from Hermann [2008]. Physiological feedback (the sonification loop
explored in this thesis) is highlighted in blue.
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1. Introduction

other interaction modalities (e.g. tangible and gesture interaction). This thesis will
also investigate till what extent personalized mappings can compensate for arbitrary
physiology-to-sound conversion.

SID as performance: New Interfaces for Musical Expression

Whereas sonifications allow us to represent the dynamics of physiological data by means
of sound, the creation of seamless HCI experience also requires a carefully designed
interface and sonic behavior. In this regard, the field of new interfaces for musical
expression (NIME) has pioneered the use of physical -and more concretely physiological-
resources for developing embodied, tangible interfaces where user performance is at the
center of the design process. Research on digital musical instruments (DMI)16 has widely
explored the importance of body actions for creating expressive interfaces. Through this
approach, NIME has placed performance and physicality [Hornecker, 2011] at the center
of the design process, focusing on the body, the materiality of objects, and the context to
design sonic interactions that intimately engage user behavior [Miranda and Wanderley,
2006]. NIME has expanded the scope of SID, as it does not approach the user as a mere
receiver of auditory stimuli, but rather explores the perception-action loops that are
mediated by acoustic signals [FraninoviÊ and Serafin, 2013]. In fact, music technology
researchers have pioneered the use of biosignals in performance contexts. Avant-garde
musicians such as Alvin Lucier, Richard Teitelbaum and David Rosenboom were among
the early adopters of biofeedback for developing adaptive systems [Rosenboom, 1997a].
Musicians were among the first on experimenting with multimodal physiological input,
as in the case of Spacecraft (1967), were EEG and ECG were used as a control sources for
electronic synthesizers, including the nascent Moog electronic synthesizer, or Biomuse
[Tanaka, 2000], that was also based on synthesized music using real time EMG data.

This dissertation aims to contribute to the SID field by designing and evaluating sonic
interactions in both reception-based studies (i.e. sonification for neurofeedback) and
performance-based studies, by deploying sonic interactions in a NIME scenario. Through
this approach we will address individual and collaborative experiences, where sonic adap-
tations respond to both the implicit physiological states of the user, her physical actions
(e.g. manipulation of tangible objects) and the context of the experience (i.e. playing
music alone and with others).

16In this thesis, “Digital Music Instrument” is used to refer to devices (i.e. musical interfaces) whereas
“New Interfaces for Musical Expression” is used to name the discipline and practice of musical
interface design.
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1.3. Objectives and Outline of the Thesis

In the previous subsections we have exposed the problems that motivate this thesis, de-
scribed their context and how we plan to approach it in a systematic manner. Following
we provide a description of our research objectives and a summary on the organization
of this document.

The main goal of this thesis is to conceptualize, prototype and evaluate sonic interaction
designs that incorporate the implicit cues of human psychophysiology in meaningful
HCI contexts. For achieving it, we leverage on physiological computing technology to
obtain inputs from user’s implicit (i.e. perceptive, emotive and cognitive) states in
real time. SID methodologies are then used to adapt system responses according to
these implicit statuses, thus providing sonic outputs that can aid perceptualization,
personalization and meaningfulness in a computer-mediated domains. We incrementally
develop and evaluate implicit sonic interactions (from direct audification to complex
musical mappings) and apply them in di�erent HCI contexts (from neurofeedback to
music performance). Figure 1.3 illustrates the evolution of this dissertation according to
main research problems, context, and SID approach. What follows is a brief description
of the structure of this document, including specific goals, a summary of methods and
main results. Each chapter also includes a specific discussion on relevant results and
conclusions.

In Chapter 2 we provide a comprehensive literature review on PhyComp, implicit inter-
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action, and SID. The goal of this section is to provide enough background for the reader
to understand the state of the art on these fields, and the way they converge within HCI.
For achieving this goal we analyze the di�erent interaction models that coexist within
PhyComp, stressing on implicit interaction and its di�erences with explicit approaches.
Regarding the SID literature, we review di�erent methodologies and design strategies
for data representation (sonification) and performance (NIME), also describing their
approaches to PhyComp (both o�ine and in real time) from an historical perspective.

Chapter 3 presents our first conceptual, technical and methodological approach to SID
for implicit PhyComp. The goal of this chapter is to study how implicit physiology-based
interactions driven by sound can a�ect user experience in a meaningful HCI context: dig-
ital musical instruments (DMI). To do so, we start with a simple and straightforward
SID strategy: audification of EEG activity and temporal control of sound by means of
ECG. We use these SIDs to create a DMI based on the Reactable, a tabletop inter-
face for music performance [Jordà et al., 2007]. The prototype that emerges from this
combination is called b-Reactable, and being based on a previous tabletop system, it
allows explicit gestural interaction (through tangible objects) and implicit interaction
(through EEG and ECG) for sound generation and control. For a coherent integration
with the Reactable framework, EEG and ECG SIDs are embodied in tangible objects
named physiopucks, which add a level of physicality to the above mentioned implicit
interactions. We evaluate the e�ects of this approach in user motivation, and compare
them to the original Reactable. The experiments involve dyads collaborating in three
experimental groups. The results of this chapter show that motivation dimensions are
significantly higher in b-Reactable than in the Reactable, stressing on the positive e�ects
of physiology-based implicit sonic interaction, and its combination with other inputs
methods even in multi-user HCI scenarios.

Chapter 4 presents a set of studies meant to address two SID aspects that emerge
from our first experiment with b-Reactable: perceptualization and mapping complexity
in physiology-based implicit sonic interaction. The goals of this chapter are to determine
(i) what types of sonic designs perform best in representing a given implicit physiolog-
ical state (e.g. relaxation) according to end-user perception (perceptualization) and (ii)
whether mapping complexity and mapping personalization by end-users play a role in the
perceptualization of implicit physiological states through sound. We address these issues
separately by means of two experiments based on neurofeedback training. The first one
assesses the perceptualization quality of the most used sonic designs for displaying EEG
activity (as suggested by our literature review). The evaluation is based on end-user per-
ception (both subjective and through physiological measures) of own relaxation states
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estimated from EEG alpha activity. The second study leverages on the findings of the
first one to implement a sound engine (i) capable of generating designs of di�erent map-
ping complexity (both in terms of physiological streams and sound parameters) and (ii)
able to be personalized by end-users through sliders. Both mapping complexity and per-
sonalization are tested in alpha/theta neurofeedback training, collecting subjective and
objective (EEG) measures of relaxation. Results from the first experiment suggest that
parameter mapping sonification and musical mappings are good candidates for percep-
tualizing implicit physiological states, whereas the second experiment provides insights
about the positive e�ect of mapping complexity and end-user personalization in the per-
ceptualization of sonic designs for physiology-based implicit interaction. The studies also
empirically demonstrate that personalization becomes less instrumental when multiple
physiological features are displayed through sound.

One of the main SID aspects to be explored in this dissertation is the meaningful in-
tegration of implicit PhyComp in a relevant HCI context, namely music performance.
Since this task requires systematic and specific evaluation methods, Chapter 5 presents
a framework for designing and evaluating NIME, with special focus on expressiveness,
a fundamental aspect to determine the meaningful contribution of implicit PhyComp
in the NIME field. The objectives of this Chapter are (i) to analyze the most relevant
NIME design and evaluation frameworks available in the literature, (ii) to identify how
they tackle di�erent stakeholders, and (iii) to propose and test a framework focused
on expressiveness, on the mapping component in the NIME creation chain, on di�erent
stakeholders (i.e. designers, performers and listeners), and considering how previous
music knowledge would a�ect each of these roles. This framework is deployed in a one-
trimester NIME master course where groups of participants (i.e. students) prototype
DMIs within a restrictive setup, consisting of smart-phones controllers and the Pure
Data (Pd) programming language, and perform with them in front of the rest of the
class, which in turn evaluates the performances as listeners, in an iterative process. The
insights gathered during the study suggest that students with di�erent backgrounds were
able to e�ectively engage in the NIME design processes; that the assessment tools proved
to be consistent for the evaluation of systems and performances aspects of NIME; and
that the outcome of the evaluation translated into a traceable progress in the students’
DMIs.

Chapter 6 addresses the issue of meaningfulness that, together with perceptualization
and mapping complexity, constitutes one of the main aspects of physiology-based im-
plicit sonic interaction in the context of this dissertation. The goal of this Chapter is
to systematically explore how implicit PhyComp contributes to the design of a digital
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musical instrument (DMI) in a meaningful way, implying that it will be perceived as an
expressive component of the interface, through which the player is able to produce musi-
cal processes that, being expected or unexpected, contribute to the creative task she/he
is committed to. To do so, we create a new version of the b-Reactable, that incorporates a
number of features informed by the results of our previous experiments in perceptualiza-
tion and physiology-to-sound mapping, namely a parameter mapping approach, end-user
personalization, and a more complex psychophysiological input (valence and arousal es-
timated through EEG) operated through two di�erent setups (Global and Local). We
test this new incarnation of the b-Reactable in an expressive context (i.e. music perfor-
mance) involving 15 participants with di�erent levels of music experience, who perform
musical improvisation exercises under two conditions (Global and Local implicit inter-
action). The main results show that our a�ective estimations are valid for the context
of music performance, and that participants use these implicit sonic interactions (both
Global and Local) in a distinctive and meaningful manner. Subjective, behavioral and
psychophysiological data show that Global and Local implicit interaction is perceived in
significantly di�erent ways according to participants’ previous musical experience, with
preference for the latter.

Chapter 7 can be seen as a bonus track that aims to explore implicit PhyComp beyond
SID and the musical domain. In order to achieve this goal, we approach the field of
personal fabrication and present NeuroKnitting, a system that can be used to create
knitted garments according to the users’ a�ective responses estimated from EEG. We
deploy this system in two recording sessions, from which we extract preliminary insights
and design guidelines. The tests show that Neuroknitting can be used for embodying
implicit psychophysiological data into unique, customized physical objects. As every hu-
man being reacts di�erently to a given experience, the knitted patterns change according
to the user and her context. NeuroKnitting thus opens the door to further structured
analyses on aspects such as the perception of implicitly generated fabrication patterns,
and the use of di�erent stimuli to trigger meaningful user experiences during fabrication
precesses.

The document concludes with Chapter 8, which provides a summary of the work done,
list of main findings, and discussion on the future perspectives of physiological computing
and sonic interaction design.
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2.1. Introduction

In this chapter we provide a comprehensive review on the topics and fields that conform
the corpus of this thesis. The chapter starts with a review on di�erent approaches to
implicit interaction for HCI perspectives (theoretical, technological and design stand-
points). Then we discuss how implicit interaction is tackled by physiological computing
(PhyComp), providing an introduction to biosignals and physiological computing sys-
tems, with special focus on the way they foster new forms of implicit interaction. We then
move towards sonic interaction design (SID), as sound and music are the main display
techniques employed in this dissertation. We put special emphasis on representational
(i.e. sonification) and aesthetic, performance-based approaches (more concretely, new
interfaces for musical expression). Finally, we o�er a detailed analysis on the state of the
art of SID applied to electroencephalography (EEG), the main biosignal applied in this
dissertation. The goal of this section is to provide enough background for the reader to
understand the framing of this thesis and its contribution to the current state of the art
in the related fields.

2.2. Designing Implicit Interactions

When observing communication between humans we can see that great amounts of
information are only exchanged implicitly through gestures, body language and voice
[Schmidt, 2000]. The way people interact with each other and the situation in which
this happens, carries information that is often exploited implicitly to improve human-
human communication by, for instance, disambiguating information. We people rely on
implicit cues to adapt our actions with considerable ease in a great sort of circumstances,
adapting the way we speak or performing actions that we believe are expected in a given
situation. And we do all this without conscious thought. As mentioned by Ju and
colleagues [2008], these accommodations do much to smooth our day-to-day interactions
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with one another. Without the need of explicit commands we can therefore manage
attention and cognitive load, and measure expectations.

The interest of HCI for leveraging on our great experience in implicit interaction was
rooted in the dawn of interactive computing. In 1960 J.C.R. Licklider envisioned a
human-computer symbiosis based on cooperative interaction between humans and elec-
tronic computers, involving a close coupling between the members of the partnership
[Licklider, 1960]. This symbiosis aimed to enable humans and computers to make deci-
sions and cope with complex situations together in a cooperation that does not rely on
inflexible predetermined programs. This would make computer systems sensitive to the
interaction context and proactive beyond human supervision.

Approaches like Licklider’s led to the advent of more natural ways to interact with com-
puter systems (concretely, graphic user interfaces -GUI- and Windows, Icons, Mouse
and Pointer -WIMP- interactions) which were eminently overt, based on conscious in-
puts from the user, and explicit outputs from the system. Commands therefore shifted
from symbolic (i.e. the command line) to object-oriented metaphors directly manipu-
lated through interfaces such as the mouse, but HCI research and practice were mainly
producing interfaces that constantly required human attention. This approach has gov-
erned desktop computing for more than 30 years, and it works well when the user has
attentional and physical availability, but it is far from ideal when we think about current
interaction scenarios, characterized by devices integrated in our daily life in the shape
of wearable, mobile and embedded interfaces. As mentioned by Neil Gershenfeld [1999]:
“We are expending more and more time responding to the demands of machines”.

As a response to this situation, di�erent disciplines within HCI have strived to create
more natural, seamless interactions inspired on the implicit nature of human-human
communication. It mainly started in the late 1990’s, fostered by the concurrence of
emerging embedded computing, the tremendous leap on wireless connectivity and net-
work infrastructures, and the popularization of mobile and smart devices [Tennenhouse
et al., 1997]. Following we describe di�erent approaches that sought to incorporate
the implicit within interactive computing, from theoretical, technological, and design
perspectives.

2.2.1. Buxton’s taxonomy for integrating periphery and context

In 1995, Bill Buxton proposed an human-centric model for incorporating non-intentional
interaction based on foreground and background [Buxton, 1995]. The model was created
to aid the development of new technology by looking at both human-computer and
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Figure 2.1.: Buxton’s basic model for integrating periphery and context in HCI, and its
possible transitions among quadrants [Buxton, 1995]

computer supported interaction. Buxton’s model is based on a 2 x 2 matrix illustrated
in Figure 2.1. The two dimensions are the ground (horizontal axis) and the object of
communication (vertical axis). The former imply activities that move from the fore
of human consciousness (foreground) such as speaking on a telephone or typing into a
computer, and tasks that take place in the periphery of human attention (background)
like being aware of the presence of another person by hearing her typing from another
room, or a light switching on automatically when we enter home. The second dimension
(object of communication) refers to who or what the user is communicating with, always
in a technology mediated scenario. In this way, a phone call between two people is an
example of human-human communication, whereas operating a computer through a GUI
fall into human-computer communication.

Back in the mid 90’s telematic technologies such as chatting, telephone and videocon-
ferences were a reality, but Buxton questioned the sense of distance that existed in
technology mediated communication. He associated it to the lack of key a�ordances
that occur naturally when people collaborate and interact in close physical proximity.
Interacting in a shared space, even without being in the same room, makes background
information immediately and e�ortlessly available (i.e. a light on in the o�ce next to
ours might indicate that someone is working at late hours). This background informa-
tion fosters what Buxton calls peripheral awareness, and the lack of it is what makes
the right hand side of Buxton’s model so di�cult to populate, “the real sweet spot for
interactive applications” [Buxton, 1995].
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Buxton’s taxonomy leverages on this background social ecology to develop interfaces that
share this periphery among users, and combine it with explicit, foreground technology to
improve the sense of presence and quality of communication. For instance, the “aware-
ness server” Portholes, developed by Duorish & Bly [1992], o�ers information about the
surrounding space (who is next door? what is she/he doing? is she/he available?) by
sending video snapshots every 5 minutes to a desktop application that remains in the
background of our attention. These types of background interfaces aimed to improve
computer supported collaborative work by letting us know when a colleague is in the
building, if he/she is engaged in a given task, if it is a good moment to interrupt him/her,
etc. Under Buxton’s perspective, a smart lighting system that automatically switch on
the lights when we arrive home can be considered a background human-computer inter-
action.

Further elaborations can be made from this bi-dimensional framework by promoting
seamless transitions between quadrants as illustrated in Figure 2.1. Buxton emphasizes
on how background tools like Portholes can help to seamless go from top right to the
top left quadrant if we, for instance, use it to check if a given person is available (by
looking at his/her last frame) and if so, use Portholes to make a call. If, for instance,
the person we want to contact is not available, we can setup this background tool to
automatically detect when he or she is back and automatically deploy an alert to proceed
with a videoconference. In that case, we move from the bottom right quadrant (when
the system looks at the portholes images while we are focusing in another task) to the
bottom left (when the alert appears).

Transitions between background and foreground are norm in human-human communi-
cation, and a significant amount of the complexity in humans dealing with technology
is due to having to explicitly sustain foreground activity. Everyday communication is
completely di�erent, and Buxton’s approach shows how we can significantly reduce com-
plexity of interactive technology if, likewise, information is pushed to the background
through a context sensitive approach. Buxton’s model, however, also presents limita-
tions. On the one hand, implicit cues are exclusively modeled from contextual infor-
mation (i.e. user perception is not directly addressed). On the other hand, as stated
by Ju and Leifer [2008], Buxton’s model of attentional foreground only considers user-
initiated interactions (e.g. typing on a keyboard) therefore conflating attention with
intention. This approach is therefore inadequate for device-initiated interactions (e.g. a
cellphone ringing). These interactions clearly take place in the foreground, but are not
intentionally driven by the user.
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2.2.2. Calm technology

In a similar key as Buxton’s taxonomy, Mark Weiser and John Seely Brown also stressed
on the need of designing for the periphery [1996]. This approach, called calm technology,
aimed to create devices capable or fostering user comfort by engaging both the center
and periphery of our attention in a continuous tuning process. Periphery is anything
but unimportant, as what is in the periphery at one moment might well be at the center
in the next. As periphery is informing without overburdening, calm technology should
be capable of seamlessly move from the background of our attention to the foreground,
and back. Calm technology shows three main empowering properties: (i) it facilitates
the motion between center and periphery (and the power of the user for controlling
such tuning action), (ii) enhances our peripheral reach by bringing more details into the
background, and (iii) promotes locatedness by putting us in a familiar place where we
know what is happening around us.
Like in the case of Buxton’s taxonomy, Weiser and Brown look for the implicit in the
context without looking at user perception or user generated information. Likewise,
their approach is device-oriented, as it overlooks user-generated actions and human-
human interaction.

2.2.3. Proactive computing

In the early 2000’s, and from a ubiquitous computing perspective, David Tennenhouse
proposed a shift in the HCI agenda from human-center to human-supervised computing
[2000]. In the same line as Buxton’s and Weiser’s approach, this was also motivated
by the limitations of human-in-the-loop computing, as networking computers start to
outnumber human beings. In order to craft a research agenda for this excess of net-
worked and embedded interactive systems, Tennenhouse proposed a di�erent mode of
HCI operation, denominated proactive computing, by rethinking the boundaries between
the physical and the digital world, and the time at which computation happens, in order
to foster unsupervised systems that can relief human from constant operation demands,
thus increasing productivity and quality of life.
Proactive computing builds implicit interactions by being intimately connected to the
physical world by means of pervasive sensors and actuators. As show in Figure 2.2,
proactive computing aims at greater system autonomy in complex daily life environ-
ments, as opposite to traditional human-centered HCI approaches. Rather than being
in direct contact with the user, proactive computing interfaces with its physical context,
monitoring and modeling the surroundings of interaction.
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Figure 2.2.: Tennenhouse’s proactive approach within the four quadrants of ubiquitous
computing [2000].

Proactive computing is an approach mainly based on pervasive technology for context
modeling. Therefore it focuses on gathering implicit inputs from the context and pro-
viding explicit outputs to the user. Therefore, it does not consider aspects related to
user perception and cognition, like the multiple manners in which context can be per-
ceived, and its e�ect on human behavior. Although Tennenhouse discuss the challenge
of bringing software closer to the physical environment, methods for displaying systems
responses (both implicitly and explicitly) are not tapped in this model.

2.2.4. Implicit HCI through context

Albrecht Schmidt proposed an approach that directly tackled implicit HCI based on
the interplay between the context of use and the perceptional capabilities of computer
devices [2000]. His vision was motivated by the shift from desktop to mobile interaction
that started at the beginning of this millennium, which promoted interaction periods of-
ten shorter than in the case of traditional desktop computing. This implied new contexts
of interaction, where applications are mainly used while doing something else, or to carry
out a certain task in the real world (like looking for a place in a navigation app). These
contexts called for a reduction of explicit human-machine interaction to promote more
seamless and natural interfaces. From Schmidt’s perspective, devices with perceptional
capabilities would be able to adapt applications to highly changing contexts by looking
at aspects such as time (an specific hour, morning or night...), number of people con-
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currently using the application, conditions of the physical environment (location, type,
temperature, etc.) social settings, etc.
From Schmidt’s perspective, implicit interaction happens when the users performs an
action that is not primarily aimed to interact with a computer system, but the system
understands it as an input. Under this premise, if a system has a level of knowledge
about the context in which the interaction takes place, implicit interaction can happen.
As overt action from the user her/himself is not required, it can easily be combined with
other concurrent applications that require explicit inputs.
As Buxton’s taxonomy, Schmidt’s approach is mainly focused on how the system directly
perceives and interprets the world, without directly addressing how the user perceives
or interprets the same context of interaction. It also discusses how to provide implicit
inputs to the systems (those that are not consciously produced by the users) without
considering the ways in which the system could provide implicit outputs to happen in the
periphery of user’s attention, or initiate interactions in an implicit or explicit manner.
This context-centric approach to implicit HCI translates to 3 main building blocks:

1. The ability to perceive use and environment
2. Mechanisms to understand what is perceived
3. Applications to make a meaningful use of this information

(1) and (2) define what Schmidt calls situational context, which includes location, the
surrounding environment and the state of the device being use for interaction. (3) refers
to applications that are context enabled. In order to equip devices with the required
perceptional capabilities, Schmidt consider 4 basic approaches: databases (like calendars,
address books, etc.), explicit inputs to applications running in the device (e.g. taking
notes, adding an event in the calendar), active environments (cameras, audio, etc.) and
sensors (GPS, accelerometer, etc.). This perceptual capabilities can be built-in the device
itself, in the surrounding environment, or in another device that shares this context over
a network. Technology designed under this approach can therefore benefit at the output
level by:

• Adapt outputs to a current situation (i.e. volume, brightness, privacy settings,
etc.)

• Find the most suitable time for interruption
• Reduce the need for interruption

And at the input level:
• Adapting the input to the current situation (i.e. applying audio filters and recog-

nition algorithms)
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• Limiting the need for inputs (i.e. by looking to information that has already
captured from the context of use)

• Reducing the selection space (by o�ering options tailored to the current context).

2.2.5. A domain-independent approach to implicit interaction

One of the main limitations of the above mentioned approaches to implicit interaction
is the di�culty for generalizing and extrapolating the emergent designs to di�erent
contexts, as they are based on domain specific knowledge. In order to overcome this
limitation, Ju and Leifer [2008] have proposed a framework that provides a domain
independent design methodology for creating a broad class of interactions (both implicit
and explicit) focusing on identifying when implicit interactions are useful. Instead of
looking for situation-specific intelligence, this model proposes interaction patterns to help
designers to model behaviors based on everyday interactions for reaching the appropriate
user experience.

Ju & Leifer’s model characterizes implicit interaction as communication without explicit
input and/or output, both from the human and the system side. Following this approach,
an interaction can be implicit if it occurs on the background of the user’s attention
(e.g. when the computer autosaves or backups files) or if the exchange is initiated
by the system rather than by the user, like when the computer displays a sound to
alert us about new email. In this case, although the output is clearly explicit (as it
appeals to our attention) the interaction is based on an implied demand of information
(new emails). This approach translates to a classification of interactions according to
attentional demand and initiative, as shown in Figure 2.3. The former ranges from
foreground interactions (which require user attention) to those background interactions
that elude user attention. Initiative, on the other hand, refers to who (and till what
extent) initiates the interaction: reactive interactions are initiated by the user, whereas
proactive interactions are fostered by the computer system. Ju & Leifer’s framework
models implicit interaction not only by considering implicit inputs, but also implicit
outputs; something that is generally overlooked by the approaches exposed before. The
implicit does not depends exclusively in the inputs generated by user and the context,
also the system can promote implicit interaction through its outputs, in a reactive or
proactive fashion.

All the models presented before also tapped attention as one of the main components of
implicit interaction. But by introducing the dimension of initiative, Ju & Leifer decouple
attention from intention. Initiative basically determines who initiates an interaction and
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Figure 2.3.: Ju & Leifer’s implicit interaction framework showing the range of interactive
system behaviors [2008]

how, and this is a fundamental aspect in every day human-human interaction, when
working together, when engaging in activities in which users have to be coordinated
for succeeding, etc. And as attention operates under perceptual focalization, initiative
requires proactivity. This bring us directly to Tennenhouse proactive computing (see
Figure 2.2) and his assumption of proactivity operating under presumption. Proactive
computer systems that operate without constant user supervision require a presumption
of the world. That is why Tennenhouse, Weiser and Schmidt were mainly concerned with
issues such as sensing, context modeling and data aggregation. But Ju & Leifer argue
that proactive interaction cannot rely in technology alone. By referring to the (in)famous
case of Clippy, the Microsoft O�ce Helper agent, Ju & Leifer expose the problem of
using technologies that lack facework [Go�man, 2005], the social training required to
accurately guess what the users want or what are they trying to do. Initiative therefore
accounts for this social aspect by describing a mixed interplay between reactive and
proactive actions, from both the user and the system, to foster a greater understanding
of the situation of interaction, as it naturally happens in daily life.

This framework should therefore be seen as a tool for problem representation (“less as a
hammer, more as a lens” in words of the authors) that helps designers to consider implicit
interactions as a possible design solution by focusing on human-human interactions and
translating them to HCI.
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2.3. Implicit interaction through physiological computing:
expanding context with physicality

The above mentioned approaches to implicit interaction were majorly motivated by the
gap between traditional HCI (human-centric, command-dependent, supervised) and con-
temporary interaction scenarios characterized by mobility, pervasiveness, ubiquity, and
concurrently happening with daily life activities. This situation calls for more sophis-
ticated interaction designs that leverage on the implicit component of human-human
interaction for coping with complexity, without the user constantly being in-the-loop.
And while such approaches bring valuable information on how to promote the implicit
though contextual intelligence or behavior modeling (of both humans and machines)
they do not directly discuss one of the main sources of implicit information in human
communication: the body.
For researchers working in the field of physiological computing (PhyComp), to look into
the human body for depicting implicit perceptive, a�ective and cognitive states was the
way to fill in this gap. As stated by Hettinger and colleagues, the standard mode of
HCI is asymmetrical with respect to information exchange: the computer is capable of
providing great amounts of information regarding the system state and the context of
interaction, but very few about the user psychological state (motivations, emotions) is
available for the system [Hettinger et al., 2003]. Therefore, there is little space to leverage
on the implicit nuances of the human body to enrich and adapt HCI. To overcome this
asymmetry, PhyComp aims at expanding HCI by monitoring, analyzing, and responding
to user’s physiological activity in real time [Allanson and Fairclough, 2004]. In these
type of interactive systems, physiological data (also known by the summarizing term
of biosignals) are used as an input for control, even without requiring overt response
from the user. Through this approach, PhyComp is capable of capturing spontaneous
and subconscious facets of user state (from a�ective responses to attention and cognitive
load) to augment the bandwidth of HCI, opening new implicit communication channels
with computer systems [Hettinger et al., 2003].
Di�erently from the design approaches presented in section (2.2), PhyComp provides
user’s context to the system [Fairclough, 2009] that could seamlessly encompass the
situational context of interaction, as defined by Schmidt (see 2.2.4). In this regard,
PhyComp not only is an excellent candidate to foster adaptive and proactive behaviors
from the system side, but also for assessing and quantifying the impact of the system’s
adaptive response on the user. This is what Fairclough calls the reflexive quality of
PhyComp, as the system not only can fine-tune responses according the the preferences
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and states of the user, but it can also learn about the user’s response in the same way
as it can learn form her/his physical or digital context. Similar to the aforementioned
design approaches to implicit interaction, PhyComp seeks for a seamless symbiotic re-
lationship between user and system, one that reliefs human for constant overt control
while empowering the system for adapting autonomously and meaningfully.

Whereas PhyComp has been mainly applied in fields such as rehabilitation, neuroscience,
and prosthesis control, the recent emergence of wearable non-invasive physiological sen-
sors have promoted the use of PhyComp in daily life environments. Out of the lab
PhyComp technology is nowadays more common than ever, and it is rapidly taking on
the market in the shape of activity trackers (both for wellness like the Jawbone1 and
professional sports like the Garmin Edge line2 ), EEG based cognitive trainers (like
the NeuroSky MindWave headsets3) and alternative ways of communication (the Apple
Watch hear-rate sharing system4 being one of the most populars).

To better understand how PhyComp works and leads to di�erent types of interaction
paradigms (both implicit and explicit), we provide an overview on fundamental concepts
such as biosignals, sensing techniques, kinds of PhyComp systems that can be developed
from them, and methods for displaying physiological data in real time.

2.3.1. What is a biosignal?

Within the scope of biomedical sensing, a biosignal can be defined as a description of
a physiological phenomenon, irrespective of the nature of this description [Kaniusas,
2012]. Given the broad sense of this definition, variety of biosignals can span from
visual inspection up to signals recorded from the human body using di�erent types of
sensors, like electrocardiography (ECG) for heart rate activity, electroencephalography
(EEG) for brain cortical activity, or electromyography (EMG) for muscle activity. A
good example for understanding the nature of a biosignal - from its generation till its
registration- are the the acoustic biosignals used for the assessment of cardiorespiratory
pathologies, and the mechanism for assessing them: the stethoscope (see Figure 2.4).
In the heart, the biosignal source is the periodic closure of heart valves, which conveys
sound. Additionally, the lungs also generate sounds by air turbulences in the branching
airways of the lung, whereas the snoring sounds arise in the upper airways, due to elastic

1https://jawbone.com/ (accessed on November, 2015)
2https://buy.garmin.com/en-US/US/into-sports/cycling/edge-520/prod166370.

html (accessed on November, 2015).
3http://store.neurosky.com/collections/eeg-headsets (accessed on November, 2015)
4https://www.apple.com/watch/new-ways-to-connect/ (accessed on November, 2015).
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Figure 2.4.: The stethoscope and the registration of body sounds. The sources of the
acoustic biosignals are depicted, along biosignal’s propagation, coupling, and
conversion for later registration [Kaniusas, 2012]

oscillations in the pharyngeal walls [Kaniusas, 2012].

The sounds propagate throughout the tissue and undergo attenuation due to increasing
distance from the source and damping by the medium itself. As indicated in Figure 2.4
by intensity decay, the attenuation is di�erent for di�erent sounds, since their spectral
components di�er: the attenuation is less for the heart sounds than for the lung and
snoring sounds, since the latter sounds exhibit more high-frequency components facing
a stronger damping. The coupling (and amplification) of sounds is performed by the
stethoscope chest piece, with an oscillating diaphragm and a resonating volume. Finally,
the conversion of the acoustical pressure vibrations into an electric signal is carried out
by an electroacoustic transducer (a microphone).

The principle behavior in the formation of an arbitrary biosignal can be modeled as an
equivalent circuit as shown in Figure 2.5. The source of the biosignal is represented by
a sinusoidal voltage source u(t) = U · cos(Êt + Ï

U

) with complex amplitude

U = U · ejÏU (2.1)

magnitude U , angular frequency Ê(= 2fi · f with f as oscillating frequency), and phase
Ï

U

, satisfying u(t) = Re[U · ejÊt]. The propagation losses are represented by a series
impedance

30



2.3. Implicit interaction through physiological computing: expanding context with physicality

Figure 2.5.: Model of biosignal generation, propagation, coupling, and registration. (a)
Permanent biosignal. (b) Induced biosignal [Kaniusas, 2012]

Z
1

= Z
1

· ejÏ1 (2.2)

the coupling and conversion losses by another series impedance

Z
2

= Z
1

· ejÏ2 (2.3)

and the registered biosignal by the resulting current i(t) = I · cos(Êt + Ï
I

with complex
amplitude

I = I · ejÏI (2.4)

satisfying i(t) = Re[I · ejÊt]. According to Ohm’s law

I = U

Z
1

+ Z
2

(2.5)

In other words, the higher the losses, e.g., the magnitudes Z
1

(”= 0) and of Z
2

(”= 0)
usually capacitive-resistive losses, the weaker the registered biosignal will be, i.e., the
magnitude I. In general, Ï

1

”= Ï
2

provided that Ï
1

”= 0 or Ï
2

”= 0; likewise, if all losses
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can be modeled by real resistances then Ï
1

= Ï
U

and I = U/(Z
1

+ Z
2

). It should be
noted that physiological phenomena of interest are hidden not only in U but also in Z

1

,
for the propagation may influence the resulting I in a significant and even advantageous
way.

If the acoustic biosignal showed in Figure 2.4 is considered in the light of the above
model (Figure 2.5), the temporal behavior of an acoustical source can be described by
u(t) and its intensity by U . The strength of the propagation losses of the body sounds
can be given as Z

1

(2.2) while the capacitive behavior of the propagating medium can be
described by the corresponding phase angle Ï

1

(”= 0). Alternatively, the strength of the
coupling and conversion losses in the acoustical sensor can be defined as Z

2

, whereas the
corresponding Ï

2

(”= 0) can describe the time delay in the chest piece and the conversion
delay in the microphone (2.3). The output S

P CG

(t) of the microphone—as schematically
shown later in Figure 2.8—corresponds then to i(t).

While Figure 2.5(a) applies to biosignals with their source already inside the body, Figure
2.5(b) depicts a model of an induced biosignal. Here, the biosignal is generated outside
the body with an artificial signal source with its complex amplitude U . After coupling
and conversion losses Z Õ

2

on the input side, the induced signal undergoes propagating
losses Z

1

in the body, which are modulated by a physiologic phenomena of interest.
On the output side, the coupling and conversion losses Z

2

co-determine the resulting
induced biosignal I according to

I = U

Z
1

+ Z
2

+ Z
2

Õ
(2.6)

To give an example, U could characterize an incident artificial light beam coupled into a
finger, whereas Z

1

varies by the changing light absorption due to pulsating blood volume
[Kaniusas, 2012]. Since blood pulsations carry cardiac and respiratory information, the
transmitted light characterized by I reflects cardio-respiratory activity, as depicted later
in Figure 2.8(c).

Sensing techniques

There are a number of sensing techniques commonly used for acquiring physiological
data. Following we summarize the most common ones within PhyComp (and the most
relevant for this dissertation).
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Electrodermal activity (EDA) Also known as galvanic skin response, refers to the
change of the skin’s electrical conductance properties caused by stress and/or changes
in emotional states [Boucsein, 2012]. It reflects the activity of sweat glands and the
changes in the sympathetic nervous system, being a direct indicator of overall arousal
state. The signal is normally measured at the palm of the hands or the soles of the
feet using two electrodes between which a small, fixed voltage is applied and measured.
Changes in the skin’s resistance are caused by activity of the sweat glands. In this way,
when a person is presented with a stress-inducing stimulus; his/her skin conductivity
will increase as the perspiratory glands secrete more sweat. The EDA signal is easy to
measure and reliable; it is one of the main components of the original polygraph or lie
detector [Clark and Ti�t, 1966], and is one of the most common signals used in both
psychophysiological research and in the field of a�ective computing [Picard and Picard,
1997].

Electrocardiogram (ECG) The ECG is a measurement of the electrical activity of
the heart as it progresses through the stages of contraction [Haag et al., 2004]. Figure
2.6 shows the components of an ideal ECG signal. In HCI systems for non-clinical
applications, the heart rate (HR) and heart rate variability (HRV) are the most common
features measured. For example, low and high HRs can be indicative of physical e�ort.
In a�ective computing research, if physical activity is constant, a low HRV is commonly
correlated to a state of relaxation, whereas an increased HRV is common to states of
stress or anxiety [Haag et al., 2004].

Electrooculogram (EOG) EOG is the measurement of the Corneal-Retinal Potentials
(CRP) across the eye using electrodes. In most cases, electrodes are placed in pairs
to the sides or above/below the eyes. The EOG is traditionally used in HCI to assess
eye-gaze and is normally used for interaction and communication by people that su�er
from physical impairments that hinder their motor skills [Knapp and Lusted, 1990].

Electromyogram (EMG) Electromyography is a method for measuring the electrical
signal that activates the contraction of muscle tissue [Kaniusas, 2012]. It measures the
isometric muscle activity generated by the firing of motor neurons. Motor Unit Action
Potentials (MUAPs) are the individual components of the EMG signal that regulate our
ability to control the skeletal muscles. Figure 2.7 illustrates a typical EMG signal and
its amplitude envelope.
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Figure 2.6.: Components of an ideal ECG signal, depicting heart rate (HR)
and heart rate variability (HRV). P wave indicates atrial depolar-
ization, or contraction of the atrium; the QRS complex indicates
ventricular depolarization, or contraction of the ventricles (source:
http://www.rnceus.com/ekg/ekgnorm.html accessed on September, 2015).

EMG-based interfaces can recognize motionless gestures across users with di�erent mus-
cle volumes without calibration, measuring only overall muscular tension regardless of
movement or specific coordinated gestures [Caramiaux et al., 2015b]. They are com-
monly used in the fields of prosthesis control and functional neuromuscular stimulation.
For HCI applications, EMG-driven interfaces have traditionally been used as continuous
controllers, mapping amplitude envelope to control various system parameters [Tanaka,
2000].

Electroencephalogram (EEG) The Electroencephalogram monitors the electrical ac-
tivity caused by the firing of cortical neurons across the brain’s surface [Kropotov, 2010].
In 1924, German neurologist Hans Berger measured these electrical signals in the human
brain for the first time and provided the first systematic description of what he called
the electroencephalogram. In his research, Berger noticed spontaneous oscillations in the
EEG signals, and identified rhythmic changes that varied as the subject shifted his/her
state of consciousness. These variations, which would later be given the name of alpha
waves, were originally known as Berger rhythms [Berger, 1934].
Brainwaves are complex signals. In non-invasive EEG monitoring, any given electrode
picks up waves pertaining to a large number of firing neurons, each with di�erent char-
acteristics indicating di�erent processes in the brain. The resulting large amount of
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Figure 2.7.: EMG signal recorded with Ag/AgCl electrodes over bicep during two brief
muscle contractions. The amplifiers were configured with a lower cut-
o� frequency of 10 Hz and an upper cuto� frequency of 1 kHz (source:
http://www.intantech.com/signals_RHA2000.html accessed on September,
2015)

data that represents brain activity creates a di�cult job for physicians and researchers
attempting to extract meaningful information. Brainwaves have been categorized into
four basic groups or bands of activity related to frequency content in the signals: Alpha,
Beta, Theta and Delta [Kropotov, 2010].

• Delta waves are slow periodic oscillations in the brain that lie within the range of
0.5 to 4Hz and appear when the subject is in deep sleep or under the influence of
anesthesia.

• Theta waves lie within the range of 4 to 7Hz and appear as consciousness slips
toward drowsiness. It has been associated with access to unconscious material,
creative inspiration and deep meditation.

• Alpha rhythm has a frequency range that lies between 8 and 12Hz. Alpha waves
have been thought to indicate both a relaxed awareness and the lack of a specific
focus of attention. In holistic terms, it has been often described as a state of
relaxation and awareness.

• Beta refers to all brainwave activity above 12Hz and is further subdivided into 3
categories:

– Slow beta waves (13 ≠ 20Hz) are the usual waking rhythms of the brain
associated with active thinking, active attention, focus on the outside world
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Table 2.1.: EEG frequency bands.

or solving concrete problems

– Medium beta waves (20 ≠ 30Hz) occur when the subject is undertaking com-
plex cognitive tasks, such as making logical conclusions, calculations, obser-
vations or insights.

– Fast beta waves (Over 30Hz) often called Gamma, is defined as a state of
hyper-alertness, stress and anxiety. It is found when performing a reaction-
time motor task

Table 2.1 shows each of the frequency bands as displayed by an EEG monitoring system.
This categorization however, is the source of certain controversy as some researchers
recognize up to six di�erent frequency bands [Väljamäe et al., 2013b].

Classification of biosignals

Given the great variety of biosignals, there is no an unique way for classifying them. In
this regard, Kaniusas has proposed three methods of classification based on existence,
dynamic nature, and origin of the biosignal. Figure 2.8 o�ers a description of these
methods.

Regarding their existence, permanent biosignals are those that exist without the need
of any artificial trigger or excitation from outside the body, as their source is the body
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Figure 2.8.: Kaniusas’ biosignal classification method based on (a)existence (b)dynamic
and (c) origin, with indicated heart rate f

C

and respiratory rate f
R

[2012]
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itself and are available at any time (see Figure 2.5a). For instance, an electrocardio-
graphic signal (ECG) induced by electrical heart muscle excitation with the typical
peaks P–Q–R–S–T (Figure 2.8a) and the aforementioned acoustic biosignal induced by
the consecutive heart valve closures and captured by the stethoscope, with the typical
first and second heart sounds (Figure 2.8c) belong to the group of permanent biosignals.
Induced biosignals, on the other hand, are artificially triggered, excited, or induced (see
Figure 2.5b).

In contrast to permanent biosignals, induced biosignals exist roughly for the duration of
the excitation. As soon as the artificial impact is over, the induced biosignal decays with
a certain time constant determined by the body properties. The interaction of the tissue
with the induced stimulus, irrespective of the stimulus nature, is then recorded as an
induced biosignal. A corresponding example could be given by electric plethysmography,
in which an artificial current is induced in the tissue and a voltage along the current
path reflects tissue impedance changes. The voltage is then registered as an induced
biosignal (electroplethysmogram) with discernible cardiac and respiratory components
(see Figure 2.8a). Alternatively, optical oximetry uses artificially induced light while the
transmitted light intensity is mainly governed by light absorption through local pulsatile
blood volume. The transmitted light is detected as an induced biosignal, showing a
steep systolic increase and a slow diastolic decrease (see Figure 2.8c). In general, the
origin of the induced stimulus, e.g., magnetic field from coils above the head for magnetic
stimulation, may be di�erent from that of the registered biosignal, e.g., generated electric
potentials from electrodes on the head.

Whereas Kaniusas’ classification is mainly based on the physiological nature of the biosig-
nals themselves and from a biomedical standpoint, other PhyComp practitioners attempt
to classify them according to high-level a�ordances to describe their possible integration
into computer systems and user interfaces. In this regard, Hugo Silva [2015] proposes a
classification based on:

1. Controllability: the degree of control that the user has over the source. Three types
of control are considered, namely: voluntary, indirect (or mixed), and involuntary.

2. Acceptability: the extent to which the interface will be cause excessive disruption
or annoyance to the user. For this property three classes are considered, namely:
invasive, wearable, o�-the person.

3. Observability: the degree to which data can be recurrently acquired from a given
source within a certain period of time if needed. For this property the following
classes can be considered: pervasive, momentary, and controlled.
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Figure 2.9.: Diagnostic and therapeutic application of biosignals Kaniusas [2012]

4. Stability: Even if a biosignal source is highly controllable, acceptable, and observ-
able, another property that needs to be taken into account in the design of HCI
applications is how stable is the source over time. Sources can be characterized as
persistent, repeatable, and sporadic.

This model is particularly useful to characterize di�erent types of biosignals in a Phy-
Comp context, where they act as input for interactive systems.

2.3.2. Physiological computing systems

Historically, biosignals were mainly used within medical practice for diagnosis and ther-
apy. The former is concerned with the assessment of health status through biomedical
sensing, whereas therapy utilizes biosignals as an objective feedback for selecting appro-
priate therapeutic measures, continuously monitoring their impact, and improving their
e�ciency. As shown in Figure 2.9, the biosignal registered by a diagnostic device and
presented by I controls a therapeutic device by adjusting its stimulus given by U .

However, as biomedical sensing evolved toward portable, wearable, and inexpensive
equipment, it expanded beyond its traditional application domains. This is how com-
puter scientists and HCI practitioners embraced physiological data as a type of input for
interactive systems. As mentioned by Fairclough and Gilleade, many types of interac-
tions can be facilitated by biosignal input, ranging from intentional control to implicit
software adaptation [Fairclough and Gilleade, 2014b]. It represents a new type of human-
computer interaction that directly interfaces with the human brain and body, and as it is
capable of o�ering quantitative correlates of the user a�ective, cognitive and perceptual
states, it has opened a door for a wide range of implicit and explicit interactions.
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Application domains and types of PhyComp systems

Beyond traditional diagnosis and therapy applications, other PhyComp systems have
been designed for a wide range of purposes, like improving performance or maximize
positive user experiences by looking to cognitive and/or a�ective aspects of the user
behavior. For instance, Wilson and colleagues used EEG in combination with ECG and
respiration rate to characterize the mental workload of users. By means of an artificial
neural net, they categorized the level of mental workload to automate elements of the
undergoing task when the operator was mentally overloaded [Wilson and Russell, 2007,
Pope et al., 1995]. This study reported substantial improvements of performance when
adaptive automation was controlled through physiological responses. A�ective comput-
ing, on the other hand, has leveraged on PhyComp for exploring the psychophysiology
correlate of emotions in laboratory conditions, inducing positive emotions (as happiness
or surprise) and negative (as anger and sadness) [Picard and Picard, 1997, Scheirer et al.,
2002]. In this line, PhyComp has been successfully used to evaluate user experience in
scenarios such as video games by looking at cognitive-emotional responses [Mandryk and
Atkins, 2007], but also using these responses for altering elements of the game in real
time to improve the experience or prevent frustration [Nacke et al., 2011].

Although biosignals can be use for designing a great variety of user interfaces, whose
interaction can range from overtly explicit to covertly implicit (without being mutually
exclusive), Fairclough and Gilleade [2014a] proposed to distribute PhyComp systems in
three main categories:

Input control A PhyComp system designed to communicate intentional actions to a
computer program by transforming physiological activity (e.g. in the cortex, muscles or
eye moment) in discrete or continuous input commands, as if using a keyboard, mouse,
touchscreen on gesture-based interface. Besides monitoring and therapy, direct input
control was one of the first application domains of PhyComp, mainly developed for
users with physical disabilities in order to allow them to use desktop software (i.e. word
processors) [Li et al., 2008] or for controlling a robotic prosthesis [Bitzer and van der
Smagt, 2006]. One salient example in this regard are Brain Computer Interfaces (BCI)
[Wolpaw et al., 2002a] which o�er an alternative way of input control, but rather than
tapping the final psychomotor stage (i.e. the muscle) BCIs are designed to capture electro
cortical activity at source: the intention that precedes movement, the spark of activation
in response to a particular stimulus, the localization of visual attention, etc. In this
manner, BCIs o�er hands-free interaction capable of communicating with conventional
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GUI-based technologies as well as prostheses. It is important to mention that BCIs, like
muscle controlled interfaces, are still a direct form of input control designed to emulate
standard devices such as the keyboard and mouse. As mentioned by Fairclough and
Gilleade, issues like novelty, ease of use, bandwidth and speed play an utter role for
end-user acceptance (especially in the case of healthy users) [2014a].

Biocybernetic adaptation Inspired by Pope’s concept of biocybernetic loop [1995]
these systems monitor spontaneous activity from the brain and the body in order to
capture psychological states linked to user’s emotion, cognition and perception. This
information is later used to inform adaptive systems that react to user states (e.g. fa-
tigue) to compensate such states (e.g. reducing anxiety) by providing a tailored feedback.
This type of biocybernetic adaptation encompasses a wide array of software applications,
with implicit interaction among the most interesting use cases, as HCI practitioners can
leverage on the continuos signals of the human body to create adaptive interfaces that
understand and respond to the user in a highly personalized manner. As stated by
Fairclough and Gilleade “regardless of precise context, biocybernetic systems are fun-
damentally designed to deliver software adaptations that will be perceived as timely,
intuitive and intelligent by the user” [Fairclough and Gilleade, 2014a, p4].

Ambulatory monitoring This category is related to the surveillance function of Phy-
Comp, as its goal is feedback and data visualization -for the individual and other con-
nected people- rather than real-time adaptive control. Biosignal monitoring thus cannot
be consider an interactive modality by itself. However, it is reasonable to assume that
PhyComp systems will rely more and more on lightweight and unobtrusive wearable
sensors, as in the case of smartwatches. Users may therefore carry these devices un-
obtrusively every day, and the flow of physiological data from person to system is the
lifeblood of all PhyComp. These data (which is mostly acquired implicitly and without
user’s direct intention) drive the algorithms used to facilitate software adaptation, but
they may be recorded for other purposes as well. Obvious candidates for continuous
physiological monitoring are users with chronic health problems who are being treated
as out-patients. Basic autonomic functions, such as heart rate, blood pressure and res-
piration patterns, could be recorded wirelessly and made available to qualified medical
sta� who wish to monitor those individuals outside of a medical facility. Alternatively,
a social network of carers, close friends and family members may be granted access to
real-time data feeds from patients for purposes of monitoring or reassurance [Fairclough
and Gilleade, 2014b]. However, this approach can be useful for healthy users as well,
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which are engaged in activity tracking and quantified self communities.

As described in 1.2, these three categories proposed by Fairclough and Gilleade are in-
tended to represent a continuum rather than a hard distinction between di�erent types
of systems (see 1.1). In fact, all these types of PhyComp are already being used in com-
bination with conventional modes of input control (as in the case of the MYO5 armband,
that combines EMG and IMU for controlling interactive systems and applications). It is
therefore easy to envision implicit adaptive PhyComp systems seamlessly complement-
ing and enhancing conventional input control. They will not require extra attentional or
motor e�ort from users, but rather enhance their control bandwidth without penalizing
explicit input methods.

Implicit interaction and PhyComp

Although most PhyComp literature do not tackle directly the concept of implicit in-
teraction, their goals and motivations are indeed very similar to the design approaches
exposed in Section 2.2: enhancing conventional modes of HCI, not to replace them; cre-
ating more autonomous and proactive systems that will not require constant input from
the user for knowing and learning about what she/he wants; systems that will foster
more sophisticated interactions that will seamlessly transit from the background to the
foreground of our attention, and back. The aforementioned design approaches looked at
device intelligence, situational context and everyday behavior. What PhyComp brings
to the table is user context, mechanisms to implicitly inform systems about the user per-
ceptive, emotive and cognitive state at the moment in which the interaction happens,
with the chance of feeding back a highly tailored response, making systems even more
proactive.

For incorporating implicit user information, PhyComp systems have to passively mon-
itor psychophysiological changes in order to inform interface adaptations in real-time.
Physiological data has to be autonomously collected as the user performs a related or
unrelated task, and the system has to subsequently use this information to activate im-
plicit or explicit software adaptations if certain triggering conditions are met. Clearly,
these systems would operate outside the direct, intentional control of the user. The
system might have, however, a specific agenda (e.g. to achieve a specific target state
in terms of human performance or psychological state) [Fairclough and Gilleade, 2014b]
so feedback is designed to explicitly or implicitly influence the psychophysiology of the
user in order to establish/sustain a desired state.

5https://www.myo.com (accessed on November, 2015).
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One of the earliest biocybernetic adaptive systems was developed by NASA to be used
in flight simulators [Pope et al., 1995]. The physiology of the pilot (i.e. EEG) was
monitored in order to manage the status of an auto-pilot facility during flight time. The
agenda of the system was to sustain the level of alertness of the pilot at an optimal
level via manipulation of the auto-pilot status (i.e. alertness), which tended to decline
during auto-pilot activation and to increase when the pilot manually controlled the craft.
Computer games, on the other hand, are designed for a particular skill set that may not
accurately reflect the skill set of the individual player [Gilleade and Dix, 2004]. There
are multiple measures of cognitive workload (e.g. frontal theta [Klimesch, 1999]), which
can be used to infer perceived di�culty during game play. In this manner, an implicit
PhyComp system can make use of these measures to dynamically adjust the level of
di�culty in order to match the ability of the player in real-time.

The concept of biofeedback loop is at the core of several PhyComp systems. It refers
to the process that enables an individual to learn about her/his physiological state by
means of perceptualization techniques such as visualizations, sonic displays, or haptic
feedback [Kropotov, 2010]. The correct perception of such sates permits the individual
to change his/her physiological activity with the purposes of improving a given experi-
ence or performance6. Thus, feedback strategies are of utter importance for designing
adaptive PhyComp systems. As in this dissertation sound will be the main medium for
displaying implicit physiological data, following we provide a summary of sonic inter-
action design applied to biosignals and PhyComp for both aesthetic (i.e. musical) and
representational purposes.

2.4. Sonic interaction design

From Edison’s phonograph to the mp3 and the current boom of streaming services, sound
and music has been a driving factor for technology [Serra et al., 2007]. In this context,
sonic interaction design (SID) allow us to think about sound -not only music- as one of
the main design dimensions of the environments in which we live and work [Rocchesso
et al., 2008], overcoming the sound-as-noise cultural barrier and promoting a sound-as-
information attitude. SID thus can be defined as an interdisciplinary field of research and
practice that explores ways in which sound can be used to convey information, meaning,
aesthetic and emotional qualities in interactive contexts [FraninoviÊ and Serafin, 2013].
This trend has existed within the performing arts and computer science for many years,

6Association for Applied Psychophysiology and Biofeedback: http://www.aapb.org/i4a/pages/
index.cfm?pageid=1. Accessed on November, 2015.
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as exposed by the New Interfaces for Musical Expression (NIME)7 series of conferences
or the International Community for Auditory Display (ICAD)8.

Designing the sonic appearance of interactive systems is thus a main topic within HCI,
which depends on knowledge that has grown in di�erent interrelated fields of research
and practice. As described by Rocchesso and colleagues:

“the relevant areas of SID research have grown in significance, both as a
result of the design needs associated to improving the sonic jungles we are
increasingly confronted with, and as economies of scale and miniaturization
have contributed to a widening array of interactive artifacts and systems that
are embedded with ever more sophisticated computing, sensing and actuating
capabilities” [2008, p3970].

SID emerges from the desire to challenge traditional design approaches that limited
sound as a functional, signaling, or iconic element of HCI, by considering sound as an
active medium that can enable new experiences with and through interactive technology
[FraninoviÊ and Serafin, 2013]. Therefore, the goal of SID is not only to expand the
existing research on interactive sound, but also to promote new applications on a wide
range of domains, such as interaction design, architecture, product and service design, the
arts, and of course PhyComp. In the context of this dissertation two main approaches
to SID (sonification and NIME) are explored to develop adaptive PhyComp systems
that leverage on sound to foster implicit interaction. Whereas sonification mostly relies
on representation-based design strategies, NIME is more concerned with the embodied
and performance aspects of SID. This allow us to spam from low-level studies on the
auditory perception of implicit user activity to high-level HCI approaches (digital musical
instruments and music performance) for studying the impact of sound-based implicit
PhyComp in the user experience. Below we o�er a summary on both SID trends.

2.4.1. Sonification

Sonification describes “the use of non-speech audio to convey information (...) it refers
to the transformation of data relations into perceived relations in an acoustic signal for
the purposes of facilitating communication or interpretation” [Kramer et al., 2010]. In
order to better define which acoustic renders can be considered as sonification, Grond
and Berger [2011] proposed four conditions:

• The sound has to reflect properties/relations in the input data.
7www.nime.org (accessed on November, 2015).
8http://www.icad.org (accessed on November, 2015).
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• The transformation has to be systematic. This means that there is a precise defi-
nition of how interactions and data cause the sound to change.

• The sonification has to be reproducible. Given the same data and identical inter-
actions/triggers the resulting sound has to be structurally identical.

• The system can intentionally be used with di�erent data, and also be used in
repetition with the same data.

Sonification research has historically gravitated around topics such as the auditory dis-
play of datasets (interactive or otherwise), auditory feedback in computing displays,
auditory icons, earcons, signaling, mobile communication and computing applications,
bringing together interests from the areas of data mining, exploratory data analysis,
human–computer interfaces, and computer music [Rocchesso et al., 2008]. By contrast
with visualization, sonification inherently develops in time and exploits the fastest of
human senses.

As exemplified by Hermann and Hunt [2005] the simplest auditory display conceptually
speaking is the auditory event marker, a sound that’s played to signal something (e.g.
a telephone ringing, pressing a button in an ATM or smartphone). Auditory icons
and earcons have been developed for this purpose [Barrass and Zehner, 2000] and are
frequently used as direct feedback to an activity, and as their feedback usually consists
of discrete events, they’re rarely used to display larger data sets (which would require
continuous and dynamic auditory renders).

Other sonification techniques such as audification are used to convert data series to
samples of a sound signal (see Figure 2.10). Many of the resulting sounds are played
back without interruption, and there’s no interaction with the sound. However, the
high number of acoustic attributes makes sonification a high-dimensional data display.
Therefore, in almost every sonification a mapping strategy is applied. This is the driving
feature of another type of sonification, parameter mapping, where data (or data-driven)
features are mapped to acoustic attributes such as pitch, timbre or brilliance [Hermann
and Hunt, 2005] (see Figure 2.10b).

Another strategy for examining data using sound is model-based sonification [Hermann
and Ritter, 2005]. Whereas in other techniques data attributes relate to sound param-
eters, in model based sonification the data is used for a dynamic system setup, what
Hermann and Ritter call a virtual data-driven object, or sonification model: “think, for
instance, of data-driven points forming a solid capable of vibration. Excitation, achieved
by the user interacting with the model, is required to move the system from its state of
equilibrium. Damping and other energy loss mechanisms naturally cause the sonification
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(a)

(b)

Figure 2.10.: Sonification techniques: (a) audification and (b) parameter mapping [Her-
mann, 2008]

to become silent without continuing interaction” [2005]. In this manner, interacting with
sonification models has similar characteristics to interacting with physical objects such
as musical instruments, and thus hopefully inheriting their advantageous properties.

As sonification techniques make more use of acoustic dimensions, or are applied to
setup a dynamic model, they become critically dependent on interaction (moreover if
the intention is to aid users to improve their experience or performance in a given
activity). This approach has led to interactive sonifications. For instance, audification
can be turn into an interactive sonification technique by letting the user move freely
back and forth in the sound file, giving the user instantaneous and accurate control and
portrayal of the signal characteristics at any desired point in the data set. Concerning
parameter mapping, interactive control can play several roles: navigating through the
data, adjusting the mapping on prerecorded data, or molding the sonification of data
in real time. We can therefore increase the interactivity of sonification by including
interactive controls and input devices to continuously move through the data set and
control its transformation into sound.

In the same way as implicit interaction and PhyComp (see section 2.2) sonification has
also evolved driven by the need of multimodal human computer interfaces for coping
with complex HCI scenarios, where visual display may not be e�ective, or may not be
an option. Think, for instance, in a user equipped with a mobile device in a daily life
and mobile scenario [Gaye et al., 2006] (e.g. walking on the streets, working out, or
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cooking). In these cases, displaying information visually might not be the best option,
as the user is clearly engaged in another activity and taking out the smartphone to check
the screen can compromise her/his attention. In other scenarios such as driving a car,
the inconvenience of relying on visual attention becomes even more evident.

As demonstrated by sonification research and practice, sonic displays o�er great poten-
tiality for encompassing multimodal interfaces and complement visual displays [Kramer
et al., 2010, Hermann and Hunt, 2005]. Human perception is tuned to process complex
combined experiences that involve the five senses, and that change instantaneously as
we perform actions. Thus we can leverage on this human attribute by using di�erent
modalities for data representation, where sound plays a fundamental role. As mentioned
by Hermann and Hunt, “the more we understand the interaction of di�erent modalities
in the context of human activity in the real world, the more we learn what conditions
are best for using them to present and interact with high-dimensional data” [2005].

2.4.2. New interfaces for musical expression (NIME)

The domain of new musical instruments -both research and artistic practice- is also one
of the main components of the SID interdisciplinarity. Unlike sonification approaches
(which focus on reception based auditory studies) or interactive sonification techniques
(whose behavior depends on the data under investigation and representation-based de-
sign strategies), the field of new musical instruments focuses on the embodied aspects of
the human perception-action loop mediated by acoustic signals, where physical interac-
tion yields continuous sonic feedback, but also tactile and visual feedback [Leman, 2008].
Scholars in this field have thus expanded the scope of SID by considering the human as
something more than a receiver of auditory stimuli, leveraging on tangible, embedded
and embodied computing for creating expressive HCI, consolidated in venues such as the
New Interfaces for Musical Expression (NIME) and the Sound and Music Computing
(SMC)9 communities.

It is therefore natural to place the performative aspects of sonic interaction at the core
of the NIME agenda. By combining the knowledge of fields such as interactive arts,
electronic music, cognitive sciences, cultural studies and interaction design, NIME has
developed a rich and ecological framework to explore new design principles that tightly
connect audition, touch and movement, creating adapting system that sonically respond
to the physicality of users to foster expression. Since the first NIME workshop in CHI

9http://smcnetwork.org (accessed on November, 2015).
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200110, the community has done a major contribution to HCI by transferring the em-
bodied and performance aspects of musical instruments to interface design. As pointed
out by Herman & Hunt:

“The development of electronic musical instruments can shed light on the
design process for human–machine interfaces. Producing an electronic in-
strument requires designing both the interface and its relationship to the
sound source. This input-to-output mapping is a key attribute in deter-
mining the success of the interaction. In fact, Hunt, Paradis, and Wanderley
2003 have shown that the form of this mapping determines whether the users
consider their machine to be an instrument (...) Another important aspect
to consider is naturalness. In any interaction with the physical world, the
resulting sound fed back to the user is natural in the sense that it reflects a
coherent image of the temporal evolution of the physical system. ” [Hermann
and Hunt, 2005].

NIME leverages on the physical and performative aspects of acoustic instruments, and
on the automation of computer systems to create interfaces that foster continuous and
complex interactions, but where the user’s attention is free to concentrate on higher
goals rather than on streams of low-level control needed to operate the system. This
di�ers from acoustic instruments, which require a continuous input to drive the sound
source (thus continuously engaging the player in the interaction loop) provoking con-
stant modulation of all the available sound parameters given the complex cross-couplings
that takes place in the physical instrument. NIME also takes distance from GUI-based
computer systems, which are mostly driven by choice-based inputs (menus, icons, etc)
and rely on language or symbolic processing rather than physical interaction. Jordà has
also discussed the hybrid micro + macrocontrol that can emerge from interactive music
systems (see Figure 2.11):

“(...) in traditional instruments the performer is responsible for controlling
every smallest detail, leaving nothing to the instrument responsibility. In
new interactive music instruments, the instrument’s ‘intelligence’ may be
partially responsible for one or more musical processes, the control of which
may be entirely left to the instrument’s responsibility or may be shared in
di�erent ways with the performer (...) Any combination of micro and macro-
meta-control is now conceivable. Di�erent layers or levels may even exist.
The dialog (...) may be more or less present or implicit, but what is clear

10http://www.nime.org/2001/ (accessed on November, 2015).
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(a) (b)

Figure 2.11.: (a) the traditional instrument microcontrol and (b) The ‘interactive instru-
ment’ hybrid micro + macrocontrol by Jorda [2005]

is that within this approach, instruments tend to surpass the one-action �
one-event and the note-to-note playing paradigms, thus allowing them to
work at di�erent musical levels (from sound to form), and forcing performers
to make higher level (i.e. more compositional) decisions on-the-fly” [Jorda,
2005].

To summarize, SID (and HCI in general) has gained from the NIME field not only guide-
lines and techniques that were traditionally found in the sound and music computing
communities, but also valuable design principles and methodologies that guide HCI in
the creation of socially meaningful, physically engaging and aesthetically pleasant sonic
interactions through situated and explorative approaches [FraninoviÊ and Serafin, 2013].
Studies such as Form Follows Sound by Caramiaux and colleagues [2015a] and Musical
Metaphors for Interface Design by Bau and colleagues [2008] are excellent examples of
how action-sound relationships are exploited in the HCI domain, embracing techniques
such as participatory design, workshopping and prototyping for understanding the nat-
ural and ecological connection that lay behind intuitive sonic interfaces. Sonification
systems, on the other hand, can be also seen as sonic instruments, where acoustic be-
havior depends on the data under investigation, although they are designed for learning
more about the data, rather than for driving musical expression.
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2.5. Sonic interaction design applied to physiological
computing

2.5.1. The pioneers

The idea of making biosignals audible began in parallel with visual body inspection,
without the use of any instrument (e.g. using percussion or auscultation), and it moved
towards tools for signal augmentation and registration [Kaniusas, 2012]. A concrete
example is Laennec’s stethoscope (1819) and its advantages for conducting the sounds
generated inside the body. In the early 1930s. Prof. Edgar Adrian listened to his own
EEG signal while replicating the first EEG experiments by Hans Berger [1934]. Indeed,
sonification appeared to be well-suited for applications based on real time EEG, since
sound can readily represent the complexity and fast temporal dynamics of brain signals.

Musicians and sound computing researchers pioneered several aspects of PhyComp, from
biosignal sensing to processing and, more importantly, control and display paradigms.
In fact, avant-garde musicians were among the first on exploring biofeedback11 for de-
veloping adaptive electrical and electronic systems. In this regard, Rosenboom’s book
“Extended Musical Interface with the Human Nervous System” [1997a] represents a fun-
damental document about the history of physiology-driven sonic interaction. The doc-
ument o�ers valuable insights on the early e�orts of researchers and artists for bridging
the gap between sound and human physiology, like the 1965 work Music for Solo Per-
former by Alvin Lucier, that is considered the first application of biofeedback in the arts,
that achieved a direct mapping of a soloist’s EEG alpha rhythms onto the orchestra-
tional palette of a percussion ensemble (see Figure 2.12). A few years later, Teitelbaum
developed Spacecraft (1967), Organ Music and In Tune [1976] to explore physiologi-
cal multimodality by adding heart rate and breathing measures to EEG signals in the
creation of electronic music textures.

In the 1970’s, Rosenboom began his own research on physiology-driven music, under the
hypothesis that it might be possible to detect aspects of the musical experience in corti-
cal brain activity (EEG). In his attempt to go beyond direct unidimensional mappings
(audification) he developed The Performing Brain and Portable Gold and Philosophers’
Stones (Figure 2.13), in which he introduced a musical system whose parameters were
driven by the EEG, galvanic skin response (GSR) and temperature of 4 performers. The
EEG signal was processed to extract cortical correlates of human selective attention,
although no study or empirical evidence corroborate this claim. Similar to Teitelbaum,
11Check Section 2.3.2 for a definition on biofeedback
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Figure 2.12.: John Cage adjusting the electrodes on Alvin Lucier’s head for a 1988 per-
formance of Music for Solo Performer at Wesleyan University (source:
http://www.statesofawareness.net)

Rosenboom worked on an audiovisual happening entitled Ecology of the Skin, that in-
volved neurofeedback and heart rate from performers and the audience to drive musical
textures.

2.5.2. Beyond biofeedback and towards implicit/explicit control

Before the 1990s most endeavors combining PhyComp and sound were based on biofeed-
back paradigms, and used brain waves amplitude (mostly alpha waves) or other direct
parameter to drive arbitrary music compositions. But as biosensing technology evolved,
musicians and sound designers explored the expressive possibilities of human physiology
beyond biofeedback. They were among the first on developing physiology-based systems
for direct control, as in the case of the Music Activated Dance-Directed Music (MADDM)
[Gillett, 1985] where dancers’ motion was captured through myoelectric signals (EMG)
and classified for synthesized sound control. In 1997, Rosenboom presented a system
using music generating rules, based on digital filtering and coherence analysis of EEG
signals [Wu et al., 2009]. EMG pioneer Atau Tanaka (Figure 2.14) made an extensive use
of the Biomuse system [Knapp and Lusted, 1990] for multimodal, multichannel control of
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Figure 2.13.: System diagram of Rosenboom’s portable gold and philosophers’ stones
(Music from Brains in Four) (1972). Score of a musical composition that
includes measurement and analysis of EEG signals, GSR and body tem-
perature changes from a quartet of performers Rosenboom [1997b, 24]
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Figure 2.14.: Atau Tanaka performing at the Sonar Festival, Barcelona, Spain,
June 1997 (Source: Daniel Langlois Foundation, http://www.
fondation-langlois.org/html/e/page.php?NumPage=285)

electronic musical devices using both EMG and relative position sensing12 [2000]. More
recently, researcher and performance artist Marco Donnarumma [2012] also explored the
a�ordances of direct control mappings in a series of works related to biophysical music13

(Figure 2.15) using mechanomyography (MMG), the mechanical signal observable from
the surface of a muscle when it is contracted (producing subsequent vibrations due to
oscillations of the muscle fibers at the resonance frequency of the muscle).

The further development of Brain-Computer Interfaces (BCI) allowed the use of brain-
driven technologies for music making, a topic of especial interest for this dissertation as
the implicit PhyComp systems implemented in this thesis are based on brain activity.
Following we describe the recent developments on this field.

Eduardo Miranda’s Brain-Computer Music Interfaces (BCMI), as the BCMI-Piano [2006],
looks for information in the EEG signal and match the findings with assigned genera-
tive music processes. The BCMI-Piano architecture is defined by 4 main modules, as
shown in Figure 2.16: (1) Sensing: 7 pairs of EEG electrodes (bipolar montage) that
sense the whole surface of the cortex. (2) Analysis: generates two streams of control
parameters: (a) prominent frequency band in the signal, used by the music engine to

12A video of Atau Tanaka performing with the Biomuse can be found at http://vimeo.com/2483259
(accessed on November, 2015)

13A video of the piece The Moving Forest can be found at http://marcodonnarumma.com/works/
the-moving-forest-act-1/ (accessed on November, 2015)
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Figure 2.15.: Marco Donnarumma performing The Moving Forest at Transmediale.08,
Berlin (2008). Source: http://marcodonnarumma.com/

generate two styles of sound, depending on whether the EEG indicates salient alpha
levels (8 ≠ 13Hz) or beta levels (14 ≠ 33Hz); (b) complexity of the signal, using Hjorth
signal complexity analysis. The music engine uses this information to control the tempo
and the loudness of the music. (3) Music engine: contains the generative music rules.
Each rule produces a musical bar or half-bar. (4) Performance module: plays the music
using a MIDI-enable acoustic piano. It is important to highlight that Miranda’s system
interprets the meaning of the user’s EEG instead of being explicitly controlled by the
user. Still, the authors acknowledge the possibility of biofeedback with their system.
The BCMI-Piano is programmed to search for information within the EEG signal and
match what it finds to various generative musical processes in di�erent musical styles. In
terms of sonic display, spectral information in the EEG is used to activate the generative
music rules, and the complexity of the signal is used to control the tempo of the music.

Miranda et al. also introduced neurogranular sampling, which is a sound synthesis
method based on spiking neural networks (SNN) to control the triggering of sound
grains from a certain sampled output.

The Georgia State University BrainLab has developed The Neural Music Software [Moore,
2003] to translate brain signal and brain-signal patterns directly to Musical Instrument
Device Interface (MIDI), allowing a tonal representation of the signal. The software
has also been ported to the BCI200014 framework for brain-computer interface (BCI)
research used for data acquisition, stimulus presentation, and brain monitoring appli-

14http://www.schalklab.org/research/bci2000 (accessed on September, 2015).
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Figure 2.16.: Miranda’s BCMI-Piano. System architecture [Miranda, 2006].

cations. More recently, Wu and colleagues presented a method for representing mental
states through music [Wu et al., 2010]. Arousal levels, based on EEG features extracted
using wavelet analysis, were mapped to music parameters such as pitch, tempo and
rhythm. After the extraction of the EEG signal features, musical segments based on
the extracted features were defined. Next, bars of music are generated, and notes are
fixed based on bar parameters. Finally, a melody is constructed using MAX/MSP15,
and a MIDI file is generated. Their results suggest that mental states can be identified
by listening to the corresponding music composed using the system. Wu and colleagues
also presented a mapping of EEG waveform amplitude to pitch based on the scale-free
phenomenon. The change of EEG energy was mapped to note volume and the period of
EEG signal was mapped to the duration of notes [2009].

Other musical BCI systems have been developed using P300 features, an event related
potential (ERP) -or brain response- component elicited in the process of decision making.
P300 is considered to be an endogenous potential, as its occurrence is not linked to
the physical attributes of a stimulus, but to a person’s reaction to it [van Dinteren
et al., 2014]. When recorded by EEG, it surfaces as a positive deflection in voltage
with a latency of roughly 300ms after the stimulus appeared. Di�erently from the
BCMI approaches mentioned before, P300 allows to create user interfaces that accounts
for explicit control of the computer system using user selective attention. P300 based
interfaces have been mainly built using visual stimuli (i.e. grids of numbers or letters
flashing at di�erent frequencies). This is the case of Hamadicharef and colleagues [2010]
who used a P300 interface for allowing the user to select notes, rest, delete or play in
the creation of short melodies.
15https://cycling74.com/products/max/ (accessed on November, 2015).
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Vamvakousis and colleagues [2014] went one step further by developing a BCMI (P300
Harmonies) based on auditory P300, using a low-cost EEG device (Emotiv EPOC16).
In this case the user could voluntarily change the harmony of an arpeggio by focusing
and mentally counting the occurrences of each note. The arpeggio consisted of 6 notes
separated by an interval of 175ms. The notes of the arpeggio were controlled through 6
switches, where each switch has two possible states: up and down. When a switch was
in the up-state, the note produced by this switch was one tone or semitone -depending
on the switch- higher than when in the down-state. By focusing on each of the notes of
the arpeggio, the user could change -after 12 repetitions- the state of the corresponding
switch. The notes of the arpeggio appeared in a random order, and the state of each
switch was shown on a screen and flashed when the corresponding note was heard.
An interest aspect of this BCMI is its multimodality, as the user could either focus
exclusively on the auditory presentation or make use of the visual stimuli as well. In
the same line, Grierson and colleagues [2008] developed a computer music device also
controlled by P300 events, through which users could control a synthesizer or sequencer
remotely without moving, by making a subjective decision to focus on a particular choice
o�ered to them on a display.

2.6. State of the art of SID based on EEG

The previous sections helped us to illustrate the significant contribution that sound and
music research had throughout the past 50 years in the development of implicit and
explicit interfaces based on human physiology. From all the possible approaches that
we have described before, the sonic interaction designs based on human EEG are of
particular interest for this dissertation, as it is the biosignal we have mostly used in the
design of sonic interactions for implicit physiological computing systems. The decision
of leveraging on EEG above other biopotentials was motivated by:

• Background knowledge: EEG is a well known and well studied technique that has
been widely applied in di�erent domains such as medical diagnosis, rehabilitation,
cognitive science, neuroscience, among others. The research corpus around EEG
o�er widely accepted methods for acquiring, processing and interpreting EEG data,
thus providing access to cortical correlated of sensory, cognitive and motor activity.

• A�ordances for implicit interaction: as shown in previous sections, EEG-based
interfaces can rely on the continuos monitoring of the user cognitive, emotive and

16https://emotiv.com/epoc.php (accessed on September, 2015)
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perceptive states for implicitly inform adaptive system, without the need of di-
rect user attention or intention. This is a main aspect of the neurofeedback loop
(biofeedback based on brain activity) where the systems not only implicitly adapts
to the user’s states (e.g. relaxation), but also utilizes this information to trigger
personalized (implicit or explicit) outputs (e.g. sound, images, audiovisual) that
help the user to learn about her/his current physiological state, and even train for
reaching a given goal state (e.g. stress control).

• A�ordances for SID: as shown by Rosenboom’s review, EEG has been one of the
most used biosignals for SID [1997b]. The idea of making EEG signals audible
accompanied brain imaging development from the very first steps in the early
1930s, when Prof. Edgar Adrian listened to his own EEG signal while replicating
Hans Berger’s experiments [Adrian and Yamagiwa, 1935]. On the other hand,
SID appears as an excellent candidate for displaying EEG, since sound can readily
represent the complexity and fast temporal dynamics of brain signals, and human
auditory perception provides the highest temporal resolution among the sensory
modalities.

• Ergonomics & multimodality: the recent emergence of portable, wireless and wear-
able EEG sensors such as the Emotiv EPOC or the Enobio have made possible to
incorporate EEG into HCI without restricting user mobility and behavior. More-
over, as non-invasive EEG sensors are directly attached to the user’s scalp using
a cap, it can be easily combined with other implicit or explicit inputs methods
such as motion sensing, tangible and touch surfaces, and other biopotentials such
as heat-rate activity, etc.

• Richness: di�erently from other biosignals such as ECG or EDA, a great variate of
high level features can be extracted from EEG data, from a�ective states (looking
at brain oscillatory activity) motor actions or motor imagery (the mental execution
of a movement without any overt action or peripheral (i.e. muscle) activation
[Mulder, 2007]) or directly addressing visual or auditory perception (as in the case
of P300).

On the negative side, many of the research that combine EEG and SID use rather ar-
bitrary conversions of EEG data into sound. In addition, the associated publications
often do not provide su�cient details about either physiological data acquisition or ap-
plied sound synthesis. Very few of these studies have conducted any kind of controlled
evaluation of their chosen methods, making it impossible to replicate or validate most
studies. Given these widespread limitations, a critical review of the current state of this
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emerging field may help to facilitate its future healthy development. Recent technical
developments in both PhyComp and sound technology are making practical new ways of
exploiting the real-time representation of brain activity using sound, for functional rep-
resentation (sonification) and expressive performance (NIME). For this reason, following
we provide a systematic review on the recent SID research based on EEG (published as
a conference paper in Väljamäe et al. [2013b] and updated for this dissertation).

We first present a synoptic summary spanning over fifty di�erent research projects and
published articles. This is followed by the analysis of SID approaches and EEG data
dimensions such as time-frequency filtering, signal amplitude, and location, before going
through higher order EEG features. By following this approach, we are able to address
wider questions, namely:

• What application domains have employed sound for representing EEG activity?

• What SID techniques have been applied to real-time EEG activity?

• What EEG features are mostly expressed through sound, and with what temporal
resolutions?

• What experimental, methodological and validation techniques have been used in
SID for EEG?

2.6.1. Application areas

There are diverse application areas that rely on sound for displaying EEG activity,
but for various di�erent reasons. Six distinct application areas can be di�erentiated in
terms of their use of data (real-time or o�-line), and on a continuum between functional
(sonification) and aesthetic (NIME) as shown in Figure 2.17. By following this approach,
six main application areas can be identified:

• Monitoring: designed to inform a third person about the user’s EEG in real time
(e.g. an anesthetist during surgery [Glen, 2010]) or to inform the user her/himself
(e.g. an air tra�c controller being warned of her critical fatigue level [Pope et al.,
1995]).

• Diagnosis: sonic display of recorded (o�ine) EEG data for diagnostic purposes,
where brain imaging data is normally speeded up (usually by a factor of 50-200
times) to allow fast identification of prominent changes (e.g. di�erent sleep states
[Olivan et al., 2004] or epileptic seizures [Khamis et al., 2012]).

• Neurofeedback: these applications target learning about one’s own brain states,
aiming at altering this state by training (e.g. for post-stroke rehabilitation or stress
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Figure 2.17.: Application areas that use sonic display of EEG data. Applications areas
can be distinguished in terms of EEG data processing (real-time or o�-
line), and on a continuum between functional and aesthetic. [Väljamäe
et al., 2013b]

control).
• Brain Computer Interface and communication: in this case, SID is applied for

representing EEG activity. which is used as direct input for a system (e.g. the
above mentioned motor imagery to control, for instance, a computer application
or a prosthesis [Hinterberger et al., 2004, McCreadie et al., 2013]).

• Musical instruments: This domain includes the aforementioned BCI for direct
control of musical parameters [Vamvakousis and Ramirez, 2014, Grierson, 2008,
Wu et al., 2010]

• Musical compositions: EEG patterns converted to music in an indirect manner
(without direct explicit user control) like in the case of Miranda’s BCMI tech-
nology, which detects specific brain patterns and turn them directly into musical
composition rules [Miranda and Wanderley, 2006].

All of these application domains have di�erent objectives, di�erent constraints and dif-
ferent validation methods17. One of the dimensions that helps to di�erentiate between
17 See Barrass et al. [2006] for a thorough review on this topic.
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SID approaches is to contrast the ways in which one would expect the end result to be
judged (i.e. quantitative vs qualitative). In the case of EEG-driven musical composi-
tions, just listening to the sonic display may be su�cient for demonstrating that the
system works. In the case of BCI based musical instruments, the player can judge the
extent to which the interface accounts for expression and control. Both domains are
however more concerned with the aesthetics of the resulting sonic composition than any
other kind of validation. The situation is very di�erent for diagnostic and neurofeed-
back, where the informational and perceptual value of produced sounds is of primary
importance and determines the functionality of the application.

2.6.2. Search and selection criteria

To get an overview of the range of published works we searched a number of databases
including Web of Science, Pubmed and Google Scholar. The search terms included
“sonification, audio, sound, auditory display, EEG, neurofeedback, biofeedback”. A clear
trend of growing activity in EEG sonification was observed. For example, when searching
Google Scholar using ”sonification + EEG”, only 25 publications are returned for 2002
but already 140 for 2012. Furthermore, approximately 70% are conference publications.
We decided to report on a selection of these publications, according to the following
selection criteria:

• Use of sound: we followed Grond’s four conditions for sonification (see Section
2.4.1) and complemented it by also considering NIMEs. This approach allowed
us to include a wide range of sonic interactions ranging from auditory icons and
earcons (that can be used to represent discrete events of brain imaging data using
ecological or symbolic sounds) to musical BCI or EEG-driven musical compositions.
Auditory BCIs used in speech applications has been omitted18.

• Real-time: several works in the field deal with auditory display of pre-recorded,
time compressed EEG data with the purpose of prescreening specific events (the
above mentioned diagnosis category). These works were not included in this review.
However, we included works that did o�-line analyses but could potentially lead
to on-line SID at the later stage.

• EEG only: We did not include papers in our review that would deal with other
types of brain imaging technology such as fMRI [Schmele and Gomez, 2012, Wein-
berg and Thatcher, 2006] or ECoG [Potes et al., 2012].

18See Wagner et al. [2013] for a comprehensive review on auditory and multi-sensory BCI’s.
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• Same study, multiple papers: When a journal paper revisited the same content
than an earlier conference publication, the journal publication was used. In cases
where the overlap was only partial, multiple publications were used as sources, but
only counted as one in our statistics and table entries.

• Contemporaneity: the original publications of some early works on EEG sonifica-
tion and music making were not founded. We did not include these works in this
review.

2.6.3. Relating EEG signal processing to SID techniques

Figure 2.18 o�ers a first visual overview of the assessed research, where the labels corre-
sponds to SID strategies and the X-axis to data processing techniques. Within these two
dimensions, all selected publications were classified into one or more categories (i.e. a
single article may cover more than one SID technique and/or data processing strategy).

SID techniques

As exposed in Section 2.4.1, we considered 4 main SID strategies that cover both repre-
sentational (sonification) and performative (NIME) approaches: audification, parameter
mapping sonification, model-based sonification and generative music:

• Audification: represents the simplest and oldest approach for displaying physiologi-
cal data through sound [Adrian and Yamagiwa, 1935]. In this technique, variations
in EEG data values are directly treated as a sound wave. It is often applied when
o�-line EEG data is time-compressed by a factor of 50-200, shifting EEG frequen-
cies to audible spectra. This o�ine approach is excluded from Figure 2.18. Besides
very early works, none of the reviewed papers have used audification.

• Parameter mapping sonification: this technique is currently the broadest and most
used strategy for displaying real time EEG data through sound. The simplest
example would be mapping activity in the EEG alpha band to the intensity level
of a sound. This technique encompasses many mapping methods as described
by De Campo et al. [2007], Hermann et al. [2002] (e.g. continuous, event-based,
or Spectral mappings; distance Matrix method; induced waves/spikes; judging
correlation; vocal sonification, etc.).

• Model-Based Sonification: this approach relies on mathematical models that gen-
erate sound according to the EEG data input. For example, a sound synthesis
model for a bell sound might be changed by the amplitude of the EEG alpha
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Figure 2.18.: Relationship between Data Processing and SID techniques. This figure
shows several trends. Simple processing of EEG data has been gaining in
popularity. Remarkably, only Filtered Bands and Spectral Estimators pro-
cessing categories cover all 4 SID techniques. Among di�erent frequency
bands, alpha and beta activities have been the most displayed through
sound. Interestingly, many works that applied more complex processing
such as Classifiers tended to use simpler display techniques based on pa-
rameter mapping, while most of the EEG-based music approaches relied on
simple signal processing methods. This may illustrate a di�erence between
computer science and computer music communities, reflecting their di�er-
ent purposes. Audification is excluded as there were no works matching
this SID category [Väljamäe et al., 2013b].

rhythm. This has an analogy to real-world sound generation phenomena. For ex-
ample, one could shake a box in order to find out what is inside by means of the
produced sounds. This indirect sonification approach has been gaining increasing
attention over the last decades due its suitability for using di�erent data sets as
input [Hermann and Ritter, 2005, Halim et al., 2007].

• Generative music: this category describe systems that use musical rules and struc-
tures to create sound output driven by EEG data as input signal, like BCMIs[Miranda,
2006] and other performance oriented works that are mainly concerned with music
expressiveness [Mann et al., 2007, Le Groux et al., 2010].
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Figure 2.19.: Articles corresponding to the three most popular processing techniques (a)
unprocessed EEG, (b) filtered bands, and (c) spectral estimators.
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EEG Processing techniques

After analyzing the literature, we found eight main data processing categories (X-axis
in Figure 2.18):

1. Unprocessed: sonic displays that use the raw EEG signal and its features such as
registered zero- crossings, max/min voltage, temporal aspects of max/min voltage
change, inter-maxima and minima values, period, and voltage threshold values (see
Figure 2.19a).

2. Filtered Bands: refers to the auditory display of real time EEG data filtered in
the time domain for the following bands: Delta, Theta, Alpha, Beta, Gamma, Mu
rhythm, and Slow Cortical Potentials (SCP) (see Figure 2.19b).

3. Spectral Estimators: block-wise frequency conversion using FFT or other trans-
forms in order to estimate the EEG features such as energy, power, power ratios
including index of symmetry (SI), asymmetry ratio or a�ective states estimation,
autocorrelation, and crosscorrelation (see Figure 2.19c).

4. Hjorth’s parameters: refers to projects that use this signal complexity measure,
like Baier et al. [2006] for parameter based sonification and Trevisan and Jones
[2011], Miranda [2006] for music generation.

5. Miscellaneous Classifiers: this category includes Linear Discriminant Analysis
(LDA) (McCreadie et al. [2012, 2013] for parameter mapping sonification), Prin-
cipal Component Analysis (PCA) (Hermann et al. [2006] for parameter map-
ping sonification), Independent Component Analysis (ICA) (Vialatte and Cichocki
[2006], Rutkowski et al. [2006] applied to parameter mapping sonification) or arti-
ficial neural networks (McCreadie et al. [2012, 2013], Arslan et al. [2005], Filatriau
et al. [2006] applied to parameter mapping sonification, and Miranda [2006] applied
to music generation).

6. Evoked potentials: mostly used for sound production [Rutkowski et al., 2006,
Hamadicharef et al., 2010] and generative music [Le Groux et al., 2010, Miranda,
2006].

7. Spatial Decomposition: includes Common Spatial Patterns (CSP) (McCreadie
et al. [2013], Arslan et al. [2005] applied to parameter mapping sonification), and
Common Spatial Subspace Decomposition (CSSD) (Filatriau et al. [2006] applied
to parameter mapping sonification).

8. Statistical Analysis: based on features such as Spectral Entropy (Filatriau et al.
[2006] applied to parameter mapping sonification) and Gaussian Kernel 1 (Her-
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mann et al. [2008] applied to parameter mapping sonification).

2.6.4. EEG processing dimensions

To have a closer look at the SID techniques used by di�erent articles, we first identified
the main EEG dimensions described by authors when converting brain data into sound.
This resulted in four main dimensions:

Time-frequency dimension

One aspect of EEG processing to consider is to see how its temporal aspects are ad-
dressed, particularly if latencies are introduced. As mentioned is Section 2.4.1, the
simplest and most straight-forward sonic display technique is the direct conversion of
instantaneous values of EEG signals to sound (audification). This approach, despite
being vulnerable to signal transients, can be useful for purposes such as locating outliers
or detecting periodic patterns in the EEG [Hermann et al., 2002]. In this case latency,
when present, is mostly caused by hardware limitations. A sliding window technique is
often used to smooth the data (e.g. for reducing muscle artifacts by computing a moving
average). This windowing approach can also introduce a delay, caused by the size of the
window (typically varying between 50ms and several seconds).

Another source of delay is signal filtering. Time domain based approaches normally
use finite or infinite impulse response filters to look at the signal in specific frequency
bands. Frequency domain approaches, on the other hand, use windowing and block-based
strategies to select a number of samples to convert into frequency domain, typically by
means of FFT. In such systems, window size majorly determines the system delay.

The biggest latencies in the sonic display of EEG appear in event-based sonification
approaches, where EEG data is bu�ered till a significant event occurs. Figure 2.20 shows
the distribution of publications according to these time-frequency features. Please note
that the list of works that use wavelet transforms is given in Figure 2.25, as typically
these transforms are used as a first stage of higher order EEG processing.

Several trends become apparent when comparing the analyzed articles. First, the most
popular technique for filtering is a block-based (typically FFT) conversion of the time
signal into the frequency domain. This approach normally leads to latency, reflecting
the used window size. Several works deliberately increase this, since their auditory dis-
play strategies are based on musical structures and event-based mappings. Second, a
considerable number of works (25) still rely on straightforward sonification of instanta-
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neous values with the objective of detecting outliers or periodical patterns in the EEG
data. Many artistic works (that do not apply heavy signal processing) also fall into this
category.

System latency is perhaps the most unreported (and more critical) issue for many appli-
cations. For instance, in sonic interactions for neurofeedback, any delay in the feedback
will reduce the contingency of the sound signal to the brain activity, greatly diminishing
training. In real-time EEG visualization, it is common to apply some averaging to the
signal, in order to reduce any eye strain caused by the rapid flickering of the display,
but this is often done without any appreciation of the detrimental consequences. Given
the excellent temporal resolution of both the human auditory system and EEG, this is
probably a key advantage of real-time EEG sonic display over visualization techniques.

The works using transform or filtering-based conversion to frequency domain are depicted
in Figure 2.20. The majority of these works display certain frequency power or energy
as described in next section and Figure 2.21. It should be noted, however, that a few
works use frequency domain conversion to trace spectral dynamics of EEG and use shifts
of a certain frequency or a certain band maximum frequency as features to be sonified
[Hinterberger et al., 2004, Hermann et al., 2002, Wu et al., 2010, Hinterberger, 2011].

Level-based dimension

The level of amplitude of EEG is one of the fundamental properties of the signal as
it reflects the firing rate of the neurons, which in turn mirrors the activation level of
the underlying area of the brain and its information processing. A fast and accurate
representation of this parameter is critical for estimating the rapid fluctuation of the un-
derlying cognitive, a�ective and/or perceptual states of the user. In both neurofeedback
and EEG monitoring, the level of particular sets of parameters is of primary interest (e.g.
frontal alpha power reflecting the alertness of the user) Figure 2.21 summarizes the sonic
interaction and display papers based on their treatment of various scalar features of the
EEG signal, both in temporal and frequency domains. As it can be seen, EEG power is
the most used parameter for sonic display. The second most used parameter is voltage
amplitude. Surprisingly, relative power, which is commonly applied in EEG fields like
neurology or neurofeedback, is rarely used for sonic display or interaction. One possible
reason for this issue concerns the availability of baseline levels in the two contexts. In
experimental settings, baseline levels (e.g. rest conditions) are routinely available to
normalize the data for later comparison across users or sessions. By contrast, in SID,
baseline recordings are rarely available. Ideally, both relative and absolute level values
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Figure 2.20.: Main EEG processing dimensions and number of articles falling in each
category: time-frequency dimension [Väljamäe et al., 2013b]
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Figure 2.21.: Main EEG processing dimensions and number of articles falling in each
category: signal level [Väljamäe et al., 2013b]

should be monitored. Because of the complexity and constant activity of the brain, there
is always a high amounts of background noise to deal with when inferring activation of
a particular area or network of the brain (e.g. onset of epileptic attack [Baier et al.,
2007a, 2006, 2007b]). One of the main methods for addressing this issue is to detect
extreme values, maxima values and link these to sonic events. Another method com-
monly used in neurofeedback is to detect when the parameter exceeds a given threshold
or zero-crossing value. In this case, threshold selection is dependent on the application
and can be critical for its success.

Location-based dimensions

The brain has specialized regions for di�erent tasks with the sensorimotor cortex being
the most prominent for EEG-based applications such as BCI and neurofeedback. How-
ever, many mental operations rely on networks of neurons working in concert. Therefore,
despite the relatively poor spatial resolution of EEG, the location of electrodes is an im-
portant factor for measuring a specific cognitive operation. Furthermore, the usage of
multiple electrodes allows detecting the neuronal activity from specific networks, per-
mitting a number of space-related features for sonic display.

Figure 2.22 shows the distribution of papers regarding their use of multi-channel EEG
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2.6. State of the art of SID based on EEG

systems. Most of the reviewed works use up to 20 EEG channels, with a smaller group
of authors working with higher spatial resolution. The systems that used more than 32
channels are quite recent, reflecting the growing interest on multi-channel EEG systems.
The amount of channels used also reflects the type of application. While practical
and wearable systems tend to have fewer channels, research and diagnostic applications
normally rely on more spatial resolution. Many high-order statistical methods for brain
activity localization, like ICA and LORETA (see next section), require a minimum of
approximately 20 channels.

Regarding the location of the electrodes in the scalp (see Figure 2.23) few works use
sound features such as timbre or pitch transformation to represent electrode location.
Spatialization and panning are common mappings, mostly designed to display sound
according to the hemispheric locations of the brain activity. Interestingly, there are a
number of emerging works that make use of channel correlation as an input for sonic
display, such as timbre or pitch.

Details of electrodes location depend on their placement or, in other words, montage (see
Figure 2.24). Standard electrode placements encourage the replication of SID techniques.
Figure 2.24 shows that the so called 10-20 system [Homan et al., 1987] is the most
common in the reviewed works, with a few specific exceptions that made use of custom
placement methods, mostly due to hardware design (i.e. do-it-yourself devices or low-
cost headsets). Surprisingly, a considerable number of publications (around 40%) neither
specified placement system nor EEG sensor positions.

Features based on higher level processing of EEG

A number of projects applied computational techniques before converting data into
sound. Indeed, it seems that any reliable correlate of human brain activity that rep-
resents some cognitive, emotional or perceptual process is likely to come from higher
order processing of EEG data. An intermediate step towards this goal is to use higher-
order processing of EEG to represent di�erent brain region activities, as in the case of
the biologically inspired method of bump sonification by Vialatte and colleagues [2006]
that reveals time-frequency structures (oscillatory patterns) of brain activity through
sound in real time. Many higher-order processing techniques depend on multiple elec-
trode systems, which limits their application with less invasive and low-cost devices, but
it might gain wider application as multichannel EEG sensing gets more a�ordable in the
near future. On the other hand, it has to be said that many of the computational tech-
niques used in EEG analysis are still not well suited for real-time applications. Figure
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Figure 2.22.: Main EEG processing dimensions and number of articles falling in each
category: channel number [Väljamäe et al., 2013b]
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Figure 2.23.: Main EEG processing dimensions and number of articles falling in each
category: channel location [Väljamäe et al., 2013b]
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Figure 2.24.: Main EEG processing dimensions and number of articles falling in each
category: montage system [Väljamäe et al., 2013b]

2.25 below demonstrates the divergence in tool sets used by di�erent research groups.

Hjorth and wavelet based analysis are most commonly used among the presented tech-
niques. However, it should be noted that it is still a small number of works (< 10 for
each processing method) compared to more simple power band approaches reviewed in
Figure 2.20. The Hjorth’s EEG descriptors are mainly used in BCMI works. A re-
cent and promising trend is to sonically display a�ective states of the user, since basic
acoustic features are closely linked to emotional responses (e.g. rising/falling intensity
influences emotional processing [Tajadura-Jiménez et al., 2008]). Real-time emotional
state sonifications can thus be directly applied both for emotion regulation and for basic
research on a�ective chronometry.

2.7. A summary of learnings for this dissertation

In this chapter we have provided a comprehensive review on the topics that conforms
the background of this dissertation. We have shown that the interest for exploiting the
implicit repertoire, rooted in human communication, is at the core of the HCI agenda,
and has been tackled from theoretical, technical, and design standpoints as a way to cre-
ate more natural, seamless interactions. We have also demonstrated that Physiological
Computing (PhyComp) is an excellent candidate to foster implicit interaction through
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Figure 2.25.: Main EEG processing dimensions and number of articles falling in each
category: high level processing features [Väljamäe et al., 2013b]

adaptive systems that can directly address the human body to access to the implicit
psychophysiological states of the user (cognitive, perceptive, and emotional) for promot-
ing personalized responses that can be delivered implicitly or explicitly to the user to
improve her/his experience and performance.

We have also introduced sonic interaction design (SID) as a method for displaying such
implicit psychophysiological states, analyzing the a�ordances of both representational,
knowledge-driven approaches (i.e. sonifications) and aesthetic, performance-driven ap-
proaches (i.e. NIME). Finally, we have provided a systematic analysis on the state of
the art of SID applied to the electroencephalogram (EEG), which is the main biosignal
used in this dissertation.

Theoretical, technical and design driven approaches to implicit interaction have mainly
agreed on the utter importance of understanding (or better said, of creating systems
that understand) the situation and context where HCI takes place. Buxton’s approach
leverages on background social ecology to promote interactions that transit between fore-
ground and background (as it is the norm in human-human communication) to compen-
sate the sense of distance that exist in computer and computer mediated interaction.
Weiser strived for devices that are capable of fostering user comfort by engaging center
and periphery of our attention in a continuous tuning process. Tennenhouse’s proactive
computing emerged from the need of rethinking the boundaries between the physical
and the digital world, strictly looking at the physical context; and Schmidt defined im-
plicit interaction within HCI as the result of a complex interplay between the context of
use and the perceptual capabilities of computer systems. For these contextual aspects,
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2.7. A summary of learnings for this dissertation

PhyComp appears as a valuable resource to expand our notion of interaction context
by providing information about the physicality of users (what we call subjective context)
that can easily encompass the situational context. In a pragmatical sense, PhyComp
enhances the perceptive a�ordances of interactive systems, making available implicit
information that can be only accessed by looking into the human body.

Another aspect of implicit interaction that can be significantly assisted by PhyComp is
proactivity and initiative. These are fundamental aspects if we want to make background
information immediately and e�ortlessly available, and relief humans from constant op-
eration. Buxton associated the complexity in humans dealing with technology to having
to explicitly sustain foreground activity; Weiser claimed for make computer systems
proactive beyond human supervision; Ju & Leifer presented implicit interaction as a
way to develop more sophisticated and less needy interactive systems, and their pro-
posed framework helps us to identify when and how to deploy implicit interactions. In
this regard, PhyComp can operate at both input and output levels: by informing about
the user’s perceptual, emotive and cognitive state in real time, through implicit channels
(i.e. interpreting biosignals) without the need of user attention and intention; and by
promoting system adaptation based on subjective context to decide when and how to be
proactive and take the lead on the interaction.

As many other researchers and practitioners for the last 50 years, in this dissertation we
will make use of sound for developing implicit PhyComp interactions. As has been shown
in this Chapter, sound can readily represent the complexity and fast temporal dynamics
of physiological signals, and human auditory perception provides the highest temporal
resolution among the sensory modalities. We will also cover both representational and
performance-based approaches to sonic interaction design (SID) to systematically study
how these di�erent modalities perform in an implicit interaction context. As it is ex-
pected, we will also pay special attention to the challenges and problems we have found
when reviewing the current literature on EEG SID.

As shown by our review, many previous works lack technical details on the SID strategies
used, the EEG recording equipment and the processing techniques. Our SID method-
ologies for implicit PhyComp interaction will therefore describe:

• The physiological features (objective properties or relations) that are sonically
displayed (i.e. signal level, temporal, spectral or spatial patterns)

• The sonic parameters that are used for transforming/generating the auditory con-
tent, and what are the precise mappings established between these parameters and
the extracted physiological features
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2. Literature Review

Almost none of the analyzed works have carried on a systematic validation of their SID
methods. In other words, it is still uncertain what types of SID strategies are most e�-
cient for representing implicit physiological data in real time, and in di�erent scenarios.
In this regard, validation currently di�ers according to the application domain. Tradi-
tional PhyComp fields, such as medical diagnosis and neurofeedback therapies, mostly
focus on assessing the e�ectiveness of a given display techniques (sound, visual or haptic)
for representing a given physiological feature (e.g. heart-rate variability) or psychophys-
iological state (e.g. relaxation) through techniques such as randomized and double blind
control studies. The NIME works reviewed for this dissertation, on the other hand,
mostly either lack evaluation or, when it exists, it is mostly focused on unstructured
tests in a musical context (i.e. live performance). In this dissertation we aim at filling
in this gap, designing and comparing di�erent SID techniques, in di�erent context (in-
cluding NIME) with fully described methodologies that facilitate cross-validation and
replication.

Finally, very few PhyComp articles have explored multimodality within SID (e.g. com-
bining sonic interactions with visualization). Given that human perception is multi
sensorial [Calvert et al., 2004], combining auditory, visual and tactile information is
likely to produce enhanced PhyComp interfaces that will benefit from di�erent input
methods for improving both functional and aesthetic purposes.
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3. The b-Reactable: Prototyping Sonic
Interactions for Implicit Physiological
Computing

This Chapter presents our first conceptual, technical and methodological
approach to Sonic Interaction Design (SID) for implicit Physiological Com-
puting. The goal of this chapter is to study how implicit physiology-based
interactions driven by sound can a�ect user experience in a meaningful HCI
context: digital musical instruments (DMI). In order to do so, we start with
a simple and straightforward SID strategy: audification of EEG activity and
temporal control of sound by means of ECG. We use this SID to create
a prototype called b-Reactable, based on a previous tabletop system (the
Reactable). The b-Reactable allows implicit interaction (through EEG and
ECG) and explicit gestural interaction (through tangible objects) for sound
generation and control. Physiology-driven SIDs are embodied in tangible
objects named physiopucks, which add a level of physicality to the above
mentioned implicit interactions. We evaluate the e�ects of this approach
in user motivation, and compared it to the original Reactable. The exper-
iments involve dyads collaborating in three experimental groups (N = 56).
The results of this chapter show that motivation dimensions are significantly
higher in b-Reactable than in the Reactable, stressing on the positive e�ects
of physiology-based implicit sonic interaction, and its combination with other
inputs methods even in multi-user HCI scenarios.

3.1. Introduction and motivation

In the previous Chapter we have shown how Physiological Computing (PhyComp) can
be used to achieve implicit and indirect interaction by continuously monitoring the users
physiological activity to inform system adaptations and provide user-tailored feedback
(implicit or explicit). Under this paradigm, user cognitive, perceptive and emotional
states are classified and subsequently embedded into interactive processes without her
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3. The b-Reactable: Prototyping Sonic Interactions for Implicit Physiological Computing

explicit intention.

Although physiology-based implicit interaction has been already explored by di�erent
disciplines such as cognitive psychology, a�ective computing, and enactive media (see
Chapter 2.3.2 for a review) most of these applications are restricted to activity tracking
and monitoring, informing users about their performance in a given task (e.g. running or
cycling). In this context, we are still in the need of implicit PhyComp systems designed
for meaningful HCI scenarios, thoroughly evaluated and compared to existing interaction
paradigms, in order to determine to what extent they might enhance human-computer
and computer mediated interaction.

This chapter therefore presents our first sonic designs for physiology-based implicit inter-
action, deployed in a meaningful HCI domain: music performance. This first approach is
based on the combination of explicit conscious control (i.e. tangible input) and implicit
interaction based on two biosignals: EEG and ECG. To perform an empirical evaluation
on how such implicit sonic interactions could a�ect HCI, we created a Digital Musical
Instrument (DMI) named b-Reactable, which is based on the Reactable, a renowned mu-
sical tabletop interface [Jordà et al., 2007]. Our DMI can be therefore operated explicitly
(through tangible objects called pucks) and implicitly by means of participant’s brain
activity (EEG) and (ECG). Through these physiological measures we are able to esti-
mate low-level physiological features in real-time: user frontal EEG activity and heart
rate. Both explicit and implicit interaction modes are used for triggering di�erent types
of sonic (musical) interactions. In the case of the physiological data, we use it for sound
synthesis (audification of EEG) and for controlling the tempo of the DMI (beats per
minute - BPM). These implicit physiological controllers are embodied in two physical
objects, named physiopucks, allowing users to combine EEG and ECG features with
other Reactable pucks, such as filters and controllers.

To compare experimental groups we use a Computer-Supported Cooperative Learning
approach, which operationalizes user experience in multiple dimensions of motivation
[Jones and Issro�, 2005]. The main research goal of this study is to determine whether
the use of multimodal control through gestures and implicit interaction (physiopucks)
can influence user motivation in a musical task, compared to the use of a gesture-only
tabletop system, the Reactable. To this end, we hypothesize that:

• Hypothesis 1: Motivation of participants working with the b-Reactable will be
higher than for participants working with the standard Reactable when performing
the same musical task. Specifically, participants working with PhyComp (Emit-
ters) will have stronger motivation than regular, gesture-only participants (Users)
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due to the addition of implicit interaction.

• Hypothesis 2: Experimental groups will di�er on motivation scales. Specifically,
the Sham group (where physiopucks are driven by pre-recorded EEG and ECG
signals) will show lower motivation ratings compared to participants in the Physio
group, were physiopucks respond to real-time EEG and ECG signals.

3.2. Materials

3.2.1. System Design

In this section we describe the b-Reactable, a DMI that introduces PhyComp to the
Reactable system by means of real time EEG and ECG measures that are associated to
tangible objects (physiopucks)1. Figure 3.1 o�ers an overview of the system architecture,
and following we describe each component in depth: the Reactable, the physiopucks and
their operation, the physiological signal acquisition and treatment, and the implemented
sonic designs.

3.2.2. The Reactable and the physiopucks

The Reactable is a DMI based on a tabletop interface where tangibles objects (pucks) and
hand gestures are used for controlling musical operations [Jordà et al., 2007] (see Figure
3.2). This is done by means of computer vision techniques (reacTIVision) that track
both fiducial markers and finger gestures on the surface of the interface [Kaltenbrunner
and Bencina, 2007] (see Figure 3.3). The Reactable sound synthesis and control methods
follow a modular approach, a prevalent model in electronic music, which is based on the
interconnection of sound generators and sound processors units. In the Reactable this is
achieved by relating pucks on the surface of the table, where each puck has a dedicated
function for the generation, modification or control of sound. The Reactable’s objects
can be categorized into several functional groups such as audio generators, processors (i.e
filters and e�ects), controllers (which a�ect the behavior of the generators or processors
they are connected to) and global objects (which a�ect the behavior of all objects within
their area of influence). Each of these families is associated with a di�erent puck shape
and can have many di�erent members, each with a distinct and human-readable symbol
on its surface (see Figure 3.2).

1A video of the b-Reactable can be found at http://www.dtic.upf.edu/~smealla/PhD_
Material/videos.html
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Hybrid BCI - Reactable

Signal
Processing

EEG & ECG

Sound Engine

TCP

Sound
Synthesis

Tempo
(BPM)

The Physiopucks

EEG

ECG

Server

Implicit
Interaction

Gestural
Interaction

Friday, January 28, 2011

Figure 3.1.: The b-Reactable system. Physiological signals (red dotted arrows) are wire-
lessly streamed to a server that applies a signal processing and sonication.
EEG-based sound synthesis and tempo control through heart rate are inte-
grated in the Reactable framework, and presented to performers as physiop-
ucks (blue dotted arrows).
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Figure 3.2.: A performer playing with the Reactable.

Figure 3.3.: The Reactable architecture and components [Jordà et al., 2007].
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Because of this modular approach, the integration of physiological computing features
into the Reactable is straightforward. We added two new pucks (physiopucks) to the
current Reactable framework. In this new version of the Reactable, physiopucks allow
performers to use their physiological signals (namely EEG and ECG) to generate sound
(audification) and control the tempo (BPM) of compositions, in the same manner as
using standard Reactable objects (see Figure 3.4).

3.2.3. Physiological Signal acquisition

The b-Reactable allows input from di�erent physiological equipment. In this study we use
a Starlab Enobio2, a wearable, wireless electro-physiology sensing system that captures
three biopotentials: EEG, ECG, and EOG. The Enobio features four channels connected
to dry active electrodes at a sample rate of 250 Hz. For acquiring physiological activity to
feed the b-Reactable, an electrode is placed on the frontal midline (Fz) lobe of participants
(for EEG recording), and another electrode is placed in the participant’s wrist for ECG
detection. Physiological signals are acquired, amplified and streamed wirelessly to the
Enobio software suite that applied a band pass filter (centered between 50 and 60 Hz)
for noise reduction, and sent physiological data to a sound engine via TCP/IP.

3.2.4. Sound engine

In this study, the choice of SID strategies had two main motivations. First, we wanted to
provide direct sonic feedback on the changes of EEG frequency bands with a minimum
of latency. Second, we aimed at a simple, distinctive sonic interaction that would stand
out from other sounds generated by Reactable. These guidelines led us to design a sonic
interaction based on audification (see Section 2.4.1) as it allows directly translating data
waveform into sound. This is normally achieved by resampling and digitally filtering
input values to make them audible. Audification is particularly applicable to large
datasets with periodic components, as in the case of the EEG and ECG.

The b-Reactable leverages on the already existing Reactable sound engine to generate a
direct mapping between EEG frequency bands and the audible sound frequency spec-
trum. For performers, this sonification appears as a sound generator puck (brain-labeled
physiopuck) on the b-Reactable. On the other hand, ECG activity is used to control the
tempo (beats per minute - BPM) of the interface, appearing as a heart-labeled physiop-
uck (see Figure 3.4). To make it easier for participants to understand the tempo of the

2www.neuroelectrics.com (accessed on October, 2015).
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Figure 3.4.: The two physiopucks added to the Reactable framework. When placed on
the tabletop the brain labeled physiopuck (a) produces an audification of
EEG activity based on a white-noise signal. Users and Emitters can change
the amplitude of the audification by moving the graphic slider that appears
on the right side of the puck. The heart labeled physiopuck (b) drives the
BPM of the sound composition according to the heart rate of the Emitter.
The BPM values are displayed in the upper right corner of the physiopuck.
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b-Reactable, BPM values were displayed in the upper right corner of the heart-labeled
physiopuck. The sound engine was developed using Pure Data (Pd), a visual program-
ming language for computer music [Puckette et al., 1996]. Pd was chosen due to its
openness and suitability for performing such tasks, and for its flexibility when defin-
ing the mappings. This software also favors a robust integration with the Reactable
framework, whose sound engine was also built with Pd.

3.2.5. EEG and ECG signal processing and sonic display

Following we provide a complete description of the DSP for EEG and ECG data, together
with the correspondent sonification and BPM control mappings. Figure 3.5 shows a
diagram of the main building blocks of the EEG sonification and ECG based BPM
control. We processed the signal coming from the Enobio by first applying a DC block
filter to contrast the signal drift and then performing a frequency magnitude analysis.
Each block was multiplied by a Hann window function of the same size. An FFT with
a size of 256 samples is then performed, leading to a spectral resolution of 0.97Hz per
frequency bin.

The computed magnitude spectrum for each block is then used to shape the spectrum
of a white noise signal. Each frequency bin of the EEG is used to weight the first 128
frequency bins of a 256 bins white noise FFT. Working at 44.1kHz for audio synthesis, we
have a covered frequency range going from 0Hz to 11025Hz, with each audio frequency
bin covering about 86Hz. The spectral magnitudes have been equalized by mean of
weighting the chosen curve in order to emphasize the weaker higher frequencies.

This straightforward audification approach was used to map dominant EEG activity
(mainly alpha band, 8 ≠ 12Hz) to human audible frequencies. In this manner the al-
pha activity, which is known to be associated with activation/relaxation [Wheeler et al.,
1993], dominated the audification. This allows listeners to hear periodic components as
frequencies. As demonstrated by Pauletto and Hunt [2005], through audification users
are able to detect attributes such as repetitive elements, regular oscillations, discontinu-
ities, and signal power to a degree comparable with using visual inspection of spectro-
grams. The EEG sonification is finally streamed over a TCP- IP/LAN connection to a
server running the Reactable software, thus allowing to map it to the physiopucks, the
objects that allow direct manipulation of physiological signal audification through hand
gestures, and their combination with other Reactable objects (i.e. filters and controllers).

The overall EEG DSP and audification process implied an inherent latency of about 1
second. This could represent a problem in case of discrete control of a sound process
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Figure 3.5.: Signal processing for EEG audification and ECG tempo control.
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(i.e. triggers), which would require a maximum latency of 20 msec. However, higher
latencies can be considered as tolerable for a continuous control, as the one applied in
our sonification system [Wessel and Wright, 2002, Lago and Kon, 2004], also given the
low frequency and low-variability of alpha rhythms.

ECG measures were used as a control mechanism to adjust the BPM of the system to
the average heart rate of the user. We applied an adaptive rescaling to the ECG signal
in order to smooth changes without losing heart rate peak resolution. A two-seconds
sliding window (500 samples) is used to detect minimum and maximum values, and
signal is normalized depending on that sliding window range. Afterwards, peaks in the
ECG are detected by applying a simple threshold function. A heartbeat is detected if
the normalized signal is above the 40% of the normalized range. A new heartbeat is
then detected only if this signal falls below 30% of the normalized range.

3.3. Methods, experimental setup and procedure

To assess the e�ect of multimodal control on user motivation, we designed a task-oriented
experiment involving two participants working together (i.e. a dyad). We chose this
configuration as it allowed us to study how participants perceive their physiology-driven
operations during music performance, and how a partner perceives implicit interaction
involved in the same task. The experiment took around 45 minutes (equal for all ex-
perimental groups), and was conducted in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki and its later revisions Association et al. [2001].
A total of 56 participants were distributed in three groups: the Physio group, where
the multimodal system was fully functional; the Sham group, where physiopucks were
driven by pre-recorded physiological signals; and the Control group, where no physiop-
ucks were present, thus participants were using the conventional Reactable. The Physio
group contained 11 dyads, with age mean of 28 (SD = 3), 10 females. The Sham group
contained 11 dyads, with age mean of 27.1 (SD = 3.5), 9 females. The Control group
contained 6 dyads, with age mean of 27.7 (SD = 4.1), 6 females. It is important to
clarify that the reason for the Control group having half the dyads compared to the
other groups is because its participants were all of the same type (User). Following we
provide a detailed description of each experimental group.
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3.3.1. The Physio group

The Physio group involved a pair of participants with two distinct roles: a User, who
operated the Reactable in a conventional manner (i.e controlling pucks with her hands)
and an Emitter, who also manipulated the interface through standard pucks and gestures,
but with the addition of providing physiological signals for the physiopucks (i.e. EEG
audification and BPM controlled through heart rate).

In this way, changes in Emitter’s arousal state drove the audification produced by the
EEG physiopuck and the tempo was defined by the ECG physiopuck. This means that
Emitters were continuously -and implicitly- controlling. They could also control phys-
iopucks by trying to change their arousal state at will, and through hand gestures (i.e.
reducing the volume of the EEG audification). Physiopucks were accessible to both
Emitters and Users, therefore any of them could put them or take them out of the
tabletop, or combine them with other Reactable pucks (i.e. filters, controllers).

3.3.2. The Sham group

Dyads in the Sham group were also integrated by Users and Emitters. However, physiop-
ucks were not connected to the Emitters’ physiological states, but driven by pre-recorded
EEG and ECG signals. A placebo e�ect in this group was induced by making Emitters
wear the physiological sensors, and by telling both members of the dyads that physiop-
ucks were connected to Emitter’s EEG and ECG activity.

With the aim of keeping the pre-recorded data as close as possible to the physiological
signals of a Physio-Emitter, we collected and reused the EEG and ECG activities from a
participant working on the same task as the ones applied in the experiment, but during a
pilot session. All Emitters within the Sham Group used the same physiological recording.

3.3.3. The Control group

Participants in the Control Group also worked in dyads, but in this case both participants
were Users. Therefore, dyads operated the Reactable only through hand gestures with
no physiopucks or physiology involved. These User-User dyads worked with a tempo
controller and an additional sound generator that replaced the two physiopucks. This
allowed Users to perform similar operations to the ones allowed by the physiopucks.
EEG headsets were also placed on both Users, explaining them that they were used for
measurement purposes. In any case physiological data was connected to the sonification
system; headsets were used to create a similar setup to the other two experimental groups
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Type Subtype Connection
Generator Oscillator 1 audio out N control in
Generator Sampler 1 audio out N control in
Generator EEG Physiopuck for resynthesis 1 audio out N control in

Audio Filter Delay 1 audio out N control in
Audio Filter Granular Filter 1 audio out N control in
Controller Sin wave low frequency oscillator N control out
Controller Sequencer N control out

Global Metronome N control in
Global ECG Physiopuck for BPM control N control out

Table 3.1.: Description of the Pucks and Physiopucks available during the experiments,
according to Reactable taxonomy, subtype, and connections allowed.

(i.e. wearing and seeing physiological equipment). The Control Group performed the
same tasks and followed the same procedure as the Physio and Sham groups.

3.3.4. Experimental procedure

The three experimental groups followed the same procedure, with di�erent dyad compo-
sition as described in the previous section. Before starting the experiment, participants
were asked to sign a consent form and fill out a pre-test questionnaire (see Section 3.3.5
for more details). Then the physiological sensors were placed on the Emitter’s scalp
and on the wrist of the non-dominant hand respectively. In order to reduce movement
artifacts during ECG acquisition, we asked Emitters to keep their non-dominant hand
in a resting position or on top of the tabletop interface. In the Control Group, EEG
headsets were placed on both participants. A testing period followed for around 10
minutes, where electrode impedance and data acquisition was checked. Afterwards, all
dyads went through a 5-minute explanation session, with the aim of introducing them
to the b-Reactable and the physiopucks (or the standard Reactable in the case of the
Control group). This session included seven Reactable pucks plus the two physiopucks,
and were the same set of objects available for carrying on the tasks (see Table 3.2). Af-
ter the explanation session, dyads had 5 minutes to freely explore the interface through
gestures and physiology with the same set of objects. In the Sham group, once the
exploration was finished, Sham-Emitters were secretly disconnected from the interface
(while keeping the electrodes) to carry on the tasks with pre-recorded physiological data.

The experiment included two tasks, each one consisting on the replication of a 15-second
music excerpt that was created with the same set of pucks that were available to the
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Table 3.2.: Description of tasks involved in the experiment, including pucks involved and
a representation of the solved tasks in the b-Reactable.

participants during the test. The tasks also required specific EEG and ECG states,
namely high or low level of physiological activation, since the two music excerpts di�ered
in musical pace and audification frequency (see Table 3.2)

First, dyads listened to the music reference. Then dyads had up to 5 minutes to mimic
the reference music excerpt. Matching sounds required a concrete combination of pucks
and physiopucks, and di�ered in the activity states required from Emitters (see Table
3.2). The participants could ask the experiment leader to replay the sound reference at
any time. The task finished either when the dyads declared to have matched the reference
sound, or once the 5 minutes period ended up. After the task participants were asked
to fill in the post-test questionnaire (see next Section for more details). Finally, sensors
were removed; participants were debriefed and given a small reward (chocolate bars).
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3.3.5. Measures

Demographic information from participants (including music knowledge, and familiarity
with the Reactable) was gathered through a pre-test questionnaire based on a 5-point
interval scale. Statements for general music knowledge included “I can play music” and
“I can compose music”, whereas electronic music knowledge included “I can play an
electronic instrument” and “I understand how an electronic music instrument works”.

After each task, we used a post-test questionnaire that included a 9-point Bidimensional
Self-Assessment Manikin pictorial scale (SAM) for assessment of valence and arousal
[Bradley and Lang, 1994], and eleven motivational aspects based on CSCW literature
([Jones and Issro�, 2005] and references therein). A Curiosity measure was added from
the attitude scale of Eagly and Chaiken [1998]. Each of motivation measures is based
on one or several statements to be rated on 5 or 10-point interval scale. The ratings for
each measure were collected through computer-based questionnaires, and the mean was
taken if several questions were corresponding to a specific motivation aspect. Below are
listed motivation measures with an example statement in the questionnaire.

• Curiosity (M1): Task perceived as unusual, example of statement: “Performing
with Reactable was an unusual experience”. 5-point interval-scale, 3 questions.

• Di�culty (M2): Rates the di�culty level of the task, example statement: “The
tasks were too di�cult to be accomplished”. 5-point interval-scale, 3 questions.

• Confidence (M3): Self-e�cacy on achieving the tasks, example statement: “I’ve
accomplished the tasks with e�cacy”. 5-point interval-scale, 4 questions.

• Distribution of Control (M4): Balance of control among subjects, example state-
ment: “I feel I was leading most of the work in every task”. 5-point interval-scale,
5 questions.

• Social A�nity (M5): Willingness to work together and collaborate, example state-
ment: “I have a relation of friendship with my partner”. 5-point interval-scale, 2
questions.

• Interface feedback (M6): Measures how multimodal feedback (visual, sound) aids
the collaboration between pairs, e.g. “The visual interface of Reactable helped
me to understand how to create sound compositions”. 5-point interval-scale, 2
questions.

• Motivation Time (M7): How does motivation change over time? Does the sub-
ject lose interest as time pass by? Example statement: “The first tasks were
more compelling and interesting than the latter”. 5-point interval-scale, inverted,
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2 questions.

• Satisfaction (M8): Measures enjoyment and positive attitudes towards the expe-
rience, example statement: “Playing with my partner was a positive experience”.
5-point interval-scale, 3 questions.

• Verbal Communication (M9): Measures the importance of verbal communication
for solving tasks. Example statement: “Please rate Verbal communication accord-
ing to the importance you think it had during the tasks”. 10-point interval-scale,
1 question.

• Visual Communication (M10): measures the importance of the visual feedback
provided by the system as a mean of communication with partners. Example
statement: “Please rate Visual Feedback according to the importance you think it
had during the tasks”. 10-point interval-scale, 1 question.

• Gestural Communication (M11): measures the importance of physical manipula-
tion of tangible objects when communicating with partners during tasks. Example
statement: “Please rate Body Gestures of your partner according to the importance
you think it had during the tasks”, 10-point interval-scale, 1 question.

3.4. Results

The IBM SPSS v20 software suite has was used for statistical analyses. The alpha signif-
icance level was fixed at 0.05 for all statistical tests, and a Greenhouse-Geisser correction
was used to compensate for unequal variances (Greenhouse and Geisser, 1959). For mul-
tivariate analysis, Wilks’ Lambda was used as the multivariate criterion. All variables
were normally distributed according to the Kolmogorov-Smirnov test. The reported re-
sults were not correlated with participants’ age, gender or music knowledge indexes, so
this analysis is not included in the sections below. For the correlation analyses, an ad-
justed Pearson’s correlation coe�cient rho was used to compensate for the small number
of observations [Howell, 2013]. Since the measures were averaged over several questions,
we considered them as continuous variables.

In our analysis we first ran a 1-way ANOVA, comparing all ratings from the four types of
participants of the Physio and Sham groups with the ratings from the Control group (i.e.
standard Reactable users). Second, leaving out the Control group data, we ran a 2-way
MANOVA comparing participant’s ratings using two between-subjects factors: “group”
(Physio vs. Sham) and participant’s “role-in-dyad” (Emitter vs. User). Third, to study
in depth possible similarity between Users and Emitters in dyads, we applied a corre-
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lation analysis. Finally, we compared the correlations between participants’ emotional
state (SAM scale) and reported motivation aspects.

3.4.1. Comparing the four b-Reactable participant types to the Control
group

To address our first hypothesis, we compared all four participant types: Sham-users,
Sham-emitters, Physio-users and Physio-emitters with regular Reactable users in the
Control group using 1-way ANOVA and 2-sided Dunnett post-hoc test. From 13 mea-
sures, only 3 showed significant changes in the reported motivation aspects.

First, the Confidence ratings showed significant di�erences among participant types with
F (4, 51) = 3.18, p < 0.021, h

p2

= 0.2 (see Figure 3.6a). From the four participant types,
two were significantly higher than the Control group (M = 2.6, SE = 0.2), both coming
from the Physio group: Physio-users at p < 0.028(M = 3.4, SE = 0.3), and Physio-
emitters at p < 0.037(M = 3.4, SE = 0.2).

Second, the Satisfaction ratings also showed significant di�erences among participant
types with F (4, 51) = 3.57, p < 0.012, h

p2

= 0.22 (see Figure 3.6b). From the four
participant types, only Users’ ratings were significantly higher than ratings in the Control
group (M = 3.9, SE = 0.2): Physio-users at p < 0.038(M = 4.4, SE = 0.2) and Sham-
users at p < 0.006(M = 4.6, SE = 0.2).

Third, the Gestural Communication ratings also showed significant di�erence among
participant types with F (4, 51) = 2.89, p < 0.031, h

p2

= 0.19 (see Figure 3.6 c). Only
Physio-user’s ratings (M = 7.3, SE = 0.6) were significantly higher than in the Control
group (M = 4.8, SE = 0.7), p < 0.03. The second highest rating was from Physio-
emitters (M = 6.7, SE = 0.7), followed by Sham-users (M = 6.1, SE = 0.6) and Sham-
emitters (M = 4.9, SE = 0.6). It should be noted that no significant di�erences between
b-Reactable and Control groups could be seen for the Visual and Verbal Communication
ratings.

3.4.2. Comparing Physio and Sham groups

To address our second hypothesis, all 11 measures of motivation, together with the two
SAM scale ratings of valence and arousal were submitted to a multivariate analysis with
two between-subjects factors: experimental “group” (Physio vs. Sham) and participant’s
“role-in-dyad” (User vs. Emitter).

The multivariate e�ect of the “group” factor reached significance at p < 0.044 with
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Figure 3.6.: Confidence (a), Satisfaction (b) and Gestural Communication ratings (c)
across five participant types: the users from the Control group (C), Sham-
users (S-u), Sham-emitters (S-e), Physio-users (P-u) and Physio-emitters
(P-e). Error bars represent SEM values. *** - significance atp < 0.005 level,
** - significance at p < 0.01 level, * - significance at p < 0.05 level.
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F (13, 28) = 2.1,L = 0.51, h
p2

= 0.5. In a post-hoc analysis, two measures showed
significant di�erences within this factor, similarly to the analysis in the previous section.
First, the Physio group showed significantly higher Confidence levels than the Sham
group, F (1, 40) = 7.7, p < 0.008, h

p2

= 0.16. The corresponding means were M =
3.4(SE = 0.2) for dyads in the Physio group and M = 2.8(SE = 0.2) for the Sham
group (see FIGURE 3.6a). Second, dyads in the Physio group also paid more attention to
Gestural Communication than in the Sham group, F (1, 40) = 5.62, p < 0.023, h

p2

= 0.12.
The corresponding means were M = 7(SE = 0.4) for dyads in the Physio group vs.
M = 5.5(SE = 0.4) for the Sham group.

The “role-in-dyad” factor reached significance only for the Satisfaction measure. In this
case, Users declared higher level of Satisfaction than Emitters, F (1, 40) = 4.28, p <

0.009, h
p2

= 0.157, in both experimental Groups. The corresponding means were M =
4.5, SE = 0.1 vs. M = 4.1, SE = 0.1 (see also Figure 3.6b).

Two significant interaction e�ects between the “group” and the “role-in-dyad” factors
also emerged, and these response patterns are illustrated in Figure 3.7. The Motiva-
tion Time ratings showed significant di�erences, with Physio-users and Sham-Emitters
declaring significantly more motivation than their partners in the corresponding dyad,
F (1, 40) = 6.61, p < 0.014, h

p2

= 0.142 (see Figure 3.7a). Similar interaction trend could
be observed for the Visual Communication ratings with F (1, 40) = 3.97, p = 0.053, h

p2

=
0.09. Here, same as for the Motivation ratings, Physio-users and Sham-emitters were
paying more attention to visual feedback than their partners in the dyad (see Figure
3.7b).

3.4.3. Correlations between User-Emitter dyad

To complement direct comparisons in sections 3.4.1 and 3.4.2 and to study in depth the
collaborative aspects of the experiment, we applied a correlation analysis to evaluate the
consistency of the User-Emitter dyads’ responses to each measure in the questionnaire
(see TABLE 3.3). When all the questions were combined together, only the Physio group
showed a significant level of consistency between participants’ responses in User-Emitter
dyad. When correlations were analyzed measure by measure, a more detailed picture
emerged.

First, the Curiosity measure showed a significant positive correlation within the user-
emitter dyad, but only for the Sham group. Second, the Confidence measure showed a
significant positive correlation within the User-Emitter dyad, but only for the Physio
group. This is coherent with the results from the previous analysis (Physio-dyads show-
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Figure 3.7.: The illustration of significant interaction patterns between “group” and
“role-in-dyad” factors in the Physio and Sham groups for Motivation (a)
and Visual communication ratings (b) for the Control group (C), Sham-
users (S-u), Sham-emitters (S-e), Physio-users (P-u) and Physio-emitters
(P-e). Error bars represent SEM values.
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Measures Physio rho (rho adjusted) Sham rho (rho adjusted)
All measures together 0.80*** 0.71

Arousal 0.25 (-) 0.38 (0.21)
Valence 0.13 (-) -0.09 (-)

Curiosity (M1) -0.0 (-) 0.66* (0.61)
Di�culty (M2) 0.36 (0.17) 0.21 (-)

Confidence (M3) 0.92*** (0.91) 0.19 (-)
Distribution of Control (M4) 0.30 (-) 0.54 (0.46)

Social A�nity (M5) 0.44 (0.31) 0.44 (0.33)
Interface Feedback (M6) 0.3 (-) -0.3 (-)
Motivation Time (M7) 0.59 (0.52) 0.38 (0.22)

Satisfaction (M8) -0.29 (-) -0.17 (-)
Verbal Communication (M9) 0.35 (0.15) 0.30 (-)
Visual Communication (M10) 0.67* (0.62) 0.04 (-)

Gestural Communication (M11) 0.24 (-) -0.25 (-)

Table 3.3.: The Pearson correlation coe�cients (and observations adjusted values) show-
ing the consistency within user-emitter dyad ratings. Separate data is shown
for Physio and Sham groups (* marks significance at 0.05, ** - at 0.01, ***
- at 0.005 level).

ing greater Confidence than Sham-dyads) and with the results of the role-in-dyad anal-
ysis (Emitters and Users showing high Confidence ratings in the Physio group). Finally,
the Visual Communication measure showed a significant positive correlation within the
User-Emitter dyad, but again only for the Physio group.

3.4.4. Correlations between motivational characteristics and
valence-arousal ratings

All the results reported in previous sections showed no e�ects for the participants’ SAM
ratings of valence or arousal. However, we also decided to check the correlation between
these subjective ratings of emotional state and each of the eleven motivational charac-
teristics. Table 3.4 summarizes only the correlations that showed to be both significant
and strong/moderate, with the intention of illustrating several recurrent patterns that
complement the main findings of sections 3.4.1 and 3.4.2.

Second, two correlations between measures showed an opposite sign for the Control
and the Physio-Emitter group. One was the relation between Di�culty and Social
A�nity (see Figure 3.8). While this correlation was positive for the Control group

94



3.4. Results

Measure Control Sham-users Sham-emitters Physio-Users Physio-emitters
Arousal (A) M8, 0.8*** M1, 0.8** M8, 0.6*

M9, 0.7** M11, 0.6*
Valence (V) M11, 0.5* M1, 0.6* M5, 0.7**

M7, 0.7**
M4, -0.5* M8, 0.8***

Curiosity (M1) M11, 0.5* V, 0.6* A, 0.8**
M4, -0.5* M6, -0.6*

Di�culty (M2) M5, 0.7** M3, -0.8** M5, -0.7*
M10, -0.6*

Confidence (M3) M2, -0.8** M4, 0.6*
M7, 0.6* M7, 0.6*

Distr. of Control (M4) M7, 0.6* V, -0.5* M6, 0.6* M3, 0.6*
M1, -0.5* M11, -0.7* M6, 0.8**
M9, 0.8** M7, 0.6*

Social A�nity (M5) M2, 0.7** M6, 0.6* V, 0.7**
M2, -0.7*
M8, 0.6*

Interface Feedback (M6) M5, 0.6* M1, -0.6* M4, 0.8**
M4, 0.6* M7, 0.6*
M9, 0.6*

Motivation Time (M7) M4, 0.6* M3, 0.6* V, 0.7**
M11, 0.7* M3, 0.6*

M4, 0.6*
M6, 0.6*
M10, 0.6*

Satisfaction (M8) M9, 0.6* A, 0.8*** M11, 0.6* A, 0.6*
M9, 0.7** V, 0.8***

M5, 0.6*
Verbal Comm. (M9) M8, 0.6* A, 0.7** M4, 0.8** M6, 0.6* M10, 0.7**

M10, -0.6* M8, 0.7**
Visual Comm. (M10) M9, -0.6* M2, -0.6*

M7, 0.6*
M9, 0.7**

Gestural Comm. (M11) M1, 0.5* V, 0.5* A, 0.6*
M4, -0.7*

M7, 0.7* M8, 0.6*

Table 3.4.: Significant, strong and moderate correlations between measures of motiva-
tional and emotional experience. The adjusted Pearson’s rho is provided for
each of five user types: Control group (C), Sham-users (S-u), Sham-emitters
(S-e), Physio-users (P-u) and Physio-emitters (P-e); * marks 2-tailed signifi-
cance at 0.05, ** - at 0.01, *** - at 0.005 level.
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Figure 3.8.: The correlations between Social A�nity and task Di�culty measures for
User in the Control group (C, black dots) and Physio-emitters (P-e, gray
dots).

(adjrho = 0.7, p < 0.01), Physio-emitters reported higher Social A�nity when Di�culty
was lower (adjrho = ≠0.7, p < 0.05). The second relation was between Visual and Ver-
bal Communication. Here Physio-emitters had a positive correlation between the two
measures (adjrho = 0.7, p < 0.01). On the contrary, the participants in the Control
group rated Verbal Communication as important while judging the Visual Communica-
tion aspects as low (adjrho = ≠0.6, p < 0.05).

Third, Emitters and Users in the Physio Group had two similar patterns of positive
correlation between measures. One of them was between Distribution of Control and
Interface Feedback, and the other between Confidence and Motivation Time. Finally,
several correlations again highlighted the interaction e�ects between the “group” and
“role-in-dyad” factors for Motivation Time and Visual Communication ratings that were
described in Section 3.4.2 on page 90 (Figure 3.7 on page 93). Both Physio-emitters and
Sham-users had high positive correlations between Motivation Time and Distribution of
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Control, and between Arousal and Satisfaction. In addition, Sham-users shared similar
patterns with the Control group: positive correlations between Satisfaction and Verbal
Communication, and between Satisfaction and emotional ratings.

3.5. Discussion

The results of this study o�er a number of insights on the e�ects of multimodal (ges-
ture and implicit) interaction in user experience, by measuring multidimensional aspects
of participants’ motivation during a musical task. We compared subjective ratings of
three groups of participants - the Control, the Physio and the Sham groups – using the
Reactable and b-Reactable, a DMI that introduces physiology-based implicit interaction
according to EEG and ECG measures. The experiment showed that (i) the motiva-
tion brought by b-Reactable significantly di�ers from the one of the Reactable; (ii) the
dyads using b-Reactable had a di�erent motivational experience depending on whether
the physiological feedback was real or fake; and (iii) Physio-emitters and Physio-users
had di�erent motivational patterns.
Our first hypothesis postulated that User-Emitter dyads using b-Reactable would have
a stronger motivation than users of the standard Reactable when performing the same
collaborative musical tasks. Eleven motivation dimensions together with valence and
arousal pictorial scales were measured through a post-experimental questionnaire. In-
deed, several of these measures showed significantly higher ratings for User-Emitter
dyads compared to the Users dyads in the Control group. Specifically, Physio-users had
significantly higher ratings for Confidence, Satisfaction and Gestural Communication
than conventional tabletop users. In addition, Physio-emitters had higher ratings for
Confidence, and Sham-users for Satisfaction as compared to the Control group. Impor-
tantly, no ratings have been significantly lower than the ones given by Reactable Users
in the Control group, showing that b-Reactable and the use of physiopucks do not a�ect
participants’ motivation negatively. It should also be noted that the observed e�ects
are most likely caused by the presence of implicit interaction through physiopucks, and
not due to the unusual experience of using EEG headsets, as participants in the Con-
trol group also wore headsets. We should also stress the fact that implicit interaction
paradigms like the ones presented in this Chapter can also lead to self-adaptation (i.e.
neuro and biofeedback) with participants trying to alter their EEG and ECG activity to
match a given sound or tempo. However, this is more likely to happen after a number
of training sessions, and this requires further investigation that goes beyond the current
study.
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The observed di�erences between b-Reactable and the standard Reactable could stem
from Emitters, who would have a higher level of motivation compared to Users due
to a new, implicit communication channel available to them. Indeed, taking a closer
look at the di�erences between the four participant types and the Control group that
performed the Reactable, we can see that motivation levels of Users and Emitters dif-
fered from each other. However, not fully in line with our predictions in hypothesis
1, Physio-emitters gave significantly higher ratings only for one measure (Confidence),
while the Physio-users’s ratings were significantly higher for Confidence, Satisfaction and
Gestural Communication. In addition, Sham-users also had a significantly higher Sat-
isfaction scores than the Control group. In other words, Users’ motivation level in the
b-Reactable groups also di�ered from the Control group. One possible explanation for
Sham and Physio-users reporting the highest levels of Satisfaction compared to Emitters
in the both groups, is because Users could only collaborate via hand gestures. Users’
operation with physiopucks did not depend on the quality of physiological feedback, real
or sham one, which could be only (or mostly) noticed by Emitters. Furthermore, Users
in both groups had a less complex and a more conventional control of the interface. On
the other hand, Emitters might not have reached high levels of satisfaction given the
expressive limitations of the physiological control and the quality of the sonic designs
applied in b-Reactable. Whereas Users had a quite varied repertoire of sound generators
to play with, Emitters could have felt tied to white noise audification generated by the
EEG-based physiopuck. Perhaps di�erent sonic design strategies would result in better
satisfaction ratings from Emitters. As Emitters might not have been able to achieve
high expressiveness with the provided audification, we have to explore whether their
satisfaction change in the case of applying other sonic designs for implicit interaction.

When comparing the di�erences between the Physio and Control groups, a few issues
should also be stressed. First, Physio-users showed higher ratings of Gestural Com-
munication, as opposed to the Verbal Communication preference showed by the dyads
within the Control group. Second, Social A�nity between Physio-emitters and their
partners was highly correlated with reported positive Valence. Interestingly, the Social
A�nity ratings were higher when Emitters reported lower di�culty of the task, while
an opposite correlation could be seen in the Control group, in which higher scores on
Di�culty level matched the stronger a�nity with the partner.

Our second hypothesis was that the Physio condition would provide higher levels of mo-
tivation aspects than the Sham one, due to dyads perceiving the di�erence in the implicit
feedback quality (i.e. real-time vs. pre-recorded). Indeed, the multivariate comparison
with all measures combined together showed a significant di�erence between the two
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experimental groups. Specifically, two motivation aspects were significantly higher in
ratings for the Physio than for the Sham group, namely Confidence and Gestural Com-
munication. This result suggests that physiology-driven implicit interaction could be a
relevant technique to enhance quality of collaboration and non-verbal communication
during multi-user music performance, through sonic or multimodal feedback.
In addition, a significant interaction was observed where Sham-users and Physio-emitters
showed lower Motivation Time ratings than Physio-users and Sham-emitters respectively.
The observed interaction may be explained by two factors: (i) task complexity and (ii)
the use of sham recordings. The two tasks di�ered in complexity, with the second one
being more di�cult to solve than the first one (as it involved more pucks and deeper
configurations). The low Motivation Time measures in Sham-users could be explained
by the challenge that could imply solving tasks with an increasing di�culty with a part-
ner (Sham-emitter), whose physiology-driven control parameters were not responding
according to the Sham-emitter physiological state (i.e. working with pre-recorded EEG
and ECG measures). This did not happen in the Physio Group, as Physio-users were
collaborating with a partner whose physiology is driving the physiopucks. In the case of
Physio-emitters, solving the second task could have been a significant challenge (espe-
cially without previous training sessions), and thus diminishing their motivation towards
the end of the experiment. In sum, this interaction may suggest that it was easier for
Sham-Emitters and Physio-users to solve the tasks, and that was reflected in higher
Motivation Time ratings.
The direct between-groups comparisons were complemented by the results from within
dyads correlations that showed whether Emitter and User shared similar motivational
ratings. The dyads’ ratings from the Physio group showed high and significant correla-
tions for the Confidence and Visual Communication. This again stresses the fact that
Physio dyads e�ectively collaborated and relied on gestural or visual communication
resources rather than on speech. This e�ect does not mean that there is a trade-o�
between communication channels (i.e. more gestural communication, less speech) but
a participant preference for one or another. Conversely, Sham dyads’ ratings were only
correlated for Curiosity measures. Finally, the ratings of Distribution of Control and
Interface Feedback, Confidence and Motivation Time were positively and significantly
correlated for both Users and Emitters in the Physio but not in the Sham group. Al-
though we did not address this directly, these results suggest that there might have been
some transfer of subjective experience, like confidence or curiosity, between the partners
working together at the task.
A specific e�ect could be also observed where Sham-users and Physio-emitters had high
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positive correlations between the ratings of Motivation Time and Distribution of Control,
and between the Arousal and Satisfaction ratings. Again, one possible explanation for
this result is that Sham-users and Physio-emitters had a clearer task compared to their
partners in the dyad. In the Sham group, Sham-emitters perceived and tried to solve
the problem with the erroneous feedback, which could explain their high ratings for
Visual Communication. Sham-users in this case were in the control of the situation and
reported high levels of Satisfaction. On the contrary, Physio-emitters were the ones
who had the most satisfying experience, as shown by the highest number of motivation
measures correlated with positive Valence. Taken together, it is clear that the Physio
and Sham groups di�ered significantly on several motivation dimensions.
Both variance and correlation analyses support our second hypothesis and suggest that
participants in both groups were able to perceive the quality (real-time vs. sham feed-
back) of physiological activity displayed sonically and visually on the b-Reactable. Cor-
roborating this result, the significant correlations of Curiosity ratings for Sham-dyads
together with their low levels of Confidence can be explained by participants perceiving
the sham feedback from the interface or, at least, having a certain inability to implicitly
interact through the physiological channels. As a sign of coping with this situation,
Sham dyads had a high correlation between the Verbal Communication and Satisfaction
scores, and the scores of Distribution of Control and Arousal. In sum, the very fact
of preferring gestural communication shows the potential of implicit indirect interaction
for reinforcing a more intuitive, seamless and body-centered multi-user interaction.
It should be noted that that the fake nature of sham feedback could be perceived more
easily via the audiovisual display of ECG activity. Although we did not assess directly
the di�erence between the perception of EEG and ECG, participants might perceive
these two signals di�erently. Unlike EEG feedback, ECG display was more direct and
intuitive (a pulse blasting from the center of the tabletop interface) making it easier to
perceive and to compare with the Emitters’ own body states. Moreover, the ECG values
were displayed in the upper right corner of the physiopuck.
Regarding the validity of our DMI (b-Reactable), the experiment showed that it could be
used as a platform for collaborative music re-creation. Previous research on collabora-
tive learning has highlighted that aspects like confidence, social a�nity and distribution
of control are of utter importance for increasing learning motivation [Jones and Issro�,
2005]. All of these measures have been sensitive to our between-subject manipulation,
showing that b-Reactable can increase motivation as compared to standard tabletop sys-
tems based on hand gesture control. We also see that aspects like Motivation Time
and preference for feedback type (i.e. visual, gestural, verbal) can be used as infor-
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mative measures when studying participants’ motivation during collaborative musical
tasks. In our case, the proposed combination of implicit and explicit interaction fostered
non-verbal communication and body-centric interactions as compared to gesture-only
tabletop system.

When running the experiment we noticed that almost all participants were surprised and
curious about the physiological sensors, even more than about the tabletop system itself.
These reactions, together with the fact that the Users’ task was not directly a�ected
by the quality of the physiology-based feedback, could account for an increase in User’s
Satisfaction, keeping their ratings high even within the Sham group. Hence, Satisfaction
ratings may have captured a sort of wow e�ect, representing the participant’s impres-
sion of a "cool" and novel interface. However, it is important to note that while Users
themselves were not connected to the system, the fact of being able to use their partners
‘physiology through physiopucks still made the interface very exciting for them. The
lower scores of the Control group, where both partners also had EEG headsets, further
support this explanation. Since we are not aware of any other works that use physiol-
ogy driven tangible objects in collaborative tasks (there are, however, other studies that
combine physiology and tangible interaction, like Hermann et al. [2007], but without
addressing music or multi-user experiences) many aspects of this unique User-Emitter
situation are still to be tested concerning the anthropomorphic potential of the physiop-
ucks’ concept (e.g. “touching someone’s heart”). Other uses of multitouch display may
also bring interesting insights about collaborative scenarios based physiology-driven ob-
jects, e.g., transformation of parallel displays for teamwork, as the case of the CityWall
public installation by Peltonen et al. [2008].

It should be noted that the e�ects found in our study might be of temporal nature, thus
future experiments should address the impact of prolonged use of physiopucks. However,
it should be noted that this kind of physiology-based interaction is likely to produce
subjective experiences di�erent from gesture-based control. Consider, for example, the
BRAAMHS project, a novel musical instrument based on fNIRS (functional near-infrared
spectroscopy) that adapts implicitly to users’ changing cognitive state during musical
improvisation Yuksel et al. [2015]. As one of the users commented, "I couldn’t tell if I
was influencing them [patterns] but for some reason it didn’t feel random, I don’t know
why".
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3.6. Conclusions & next steps

This chapter has presented the b-Reactable, a first system prototype supporting both
implicit and gesture interaction for sound generation and control. Through this proto-
type we have studied how physiology-driven implicit sonic interactions can a�ect user
motivation in a musical task, compared to the use of a gesture-only tabletop system (the
Reactable). We have compared multiple dimensions of motivation between three exper-
imental groups -Control, Physio and Sham - using the Reactable and b-Reactable with
either real and fake physiology feedback. The experiment has shown that the motivation
brought by b-Reactable is stronger than the one of the tangible interface just based on
gestural inputs in terms of Confidence. On the other hand, the introduction of a fake
(sham) physiological feedback significantly changes Confidence and Communication of
participants. Importantly, Physio-emitters have shown di�erent experiences than their
partners, e.g, in terms of positive emotions (Valence) and Social A�nity. These results
strongly support the potential of physiology-based interfaces and implicit interaction for
improving single and multi user HCI, within or beyond the musical domain. Further
developments in this regard could therefore explore how implicit interaction could widen
multiuser communication, foster user entrainment by perceiving brain and body signals
via physiopucks after training, or increase interpersonal synchronization in computer
supported cooperative work (CSCW).

The results of this first study also allow us to formalize 3 specific aspects of sonic inter-
action design applied to implicit PhyComp that have to be further investigated:

• Although the sonic interactions presented in our first study had a significant e�ect
on participants and were properly perceived by Physio-emitters, we cannot claim
at this stage that they perform better than other sonic displays strategies (i.e.
parameter mapping, musical mappings) for perceiving implicit physiological states.
On the other hand, the fact of providing a fix, pre-defined physiology-to-sound
mapping that does not consider user perception in its design could potentially a�ect
user experience. It is highly likely that an ad-hoc mapping will not be perceived
in the same manner by every user. Therefore, the aspect of perceptualization,
understood as the process of associating a given display strategy (in this case
sound) to the psychophysiological state that acts as the input for its rendering,
has to be further explored. In line with Jovanov’s studies on perceptualization of
physiological data Jovanov et al. [1999], it defines how well a sonic design represents
a given implicit physiological state, aiding user perception.

• Whereas the SID strategies implemented for this study were simple and straight-
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forward (i.e. audification of EEG and BPM control through ECG) the fact of
using two biosignals simultaneously made di�cult to identify the specific impact
that each of these had in the users during the experiment. Moreover, we cannot
claim that such simple physiology-to-sound mappings are better than more com-
plex mappings (e.g. parameter or musical mappings) for perceptualizing implicit
PhyComp. Therefore, the role of mapping complexity in physiology-based sonic
interaction, understood as the number of physiological streams and sound param-
eters used in a given SID strategy, has o be further explored. This will require
an experimental design and SID strategy that allow to use several physiological
features for informing adaptive systems (like in this study) but also to evaluate
the e�ect of of each of them in isolation.

• Although the multimodality of the b-Reactable accounts for rich musical operations
(as it is based on an extensively used DMI) the physiology-driven sonic interactions
embedded in the physiopucks were rather simple in terms of expressiveness (white
noise and BPM control of the overall music composition). In this study we did not
directly assesses how meaningful these concrete SIDs were in the context of music
performance. Therefore, the aspect of meaningfulness in the NIME context has
to be explored further, understood as the potential of physiology-driven implicit
interaction for being perceived as an expressive component of the DMI, through
which the player can produce musical processes that, being expected or unexpected,
contribute to the creative task she/he is committed to.

These three aspects will guide our next steps on the exploration of implicit, physiology-
driven sonic interaction. Concretely, in the next chapter we tackle perceptualization
and mapping complexity. We will thus implement more sophisticated algorithms and
signal processing techniques to measure and classify high-level EEG features (i.e. re-
laxation and a�ective states). We also proceed to extend our sound engine to support
multi-parameter sonic display, musical mappings, and end-user configurations for pro-
viding personalized sonic interactions. This sound engine allows multiple mappings be-
tween physiological features and sound, ranging from direct audification to more complex
paradigms, such as parameter-based sonifications and musical mappings (see Section 2.10
on page 46 for a summary on these techniques). In order to assess the perceptualization
of these di�erent SIDs, we temporally move away from the musical domain to apply
our sonic designs in a perception-based context: neurofeedback. We design a set of ex-
periments were participants are exposed to their own physiological activity (displayed
through di�erent SID strategies) in order to learn about their psychophysiological state
(e.g. relaxation) and aiming at controlling this state by training.
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To carry on evaluations through neurofeedback training imply to focus on EEG features.
However, EEG estimations are more complex in this case (e.g looking at alpha/theta
ratios) as well as the sonic interactions presented to users (multi parametric and musical
mappings). Finally, in the next study we will also allow participants to personalize SIDs,
to produce sound mappings tailored to their own perception and subjective preference.
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Complexity

This Chapter presents a set of studies meant to address two of the SID
aspects that emerged from our previous experiment with b-Reactable: per-
ceptualization and mapping complexity in physiology-based implicit sonic in-
teraction. The goals of this chapter are (i) to determine what types of sonic
designs perform best in representing a given implicit physiological state (e.g.
relaxation) according to end-user perception (perceptualization) and (ii) to
determine whether mapping complexity and personalization by end-users play
a role in the perceptualization process. We address these issues separately
by mean of two experiments based on neurofeedback training. The first one
assesses the perceptualization quality of the most used sonic designs for dis-
playing EEG activity (as suggested by our literature review). The evaluation
is based on end-user perception (both subjective and through physiological
measures) of own relaxation states estimated from EEG alpha activity. The
second study leverages on the findings of the first one to implement a sound
engine capable of (i) generating designs of di�erent complexity (both in terms
of physiological streams and sound parameters) and (ii) able to be personal-
ized by end-users. Both mapping complexity and personalization are tested
in alpha/theta neurofeedback training, collecting subjective and objective
(EEG) measures of relaxation. Results from the first experiment suggest
that parameter mapping sonification and musical mappings are good can-
didates for perceptualizing implicit physiological states, whereas the second
experiment provides empirical evidence about the positive e�ect of mapping
complexity and end-user personalization in the perceptualization of sonic de-
signs for physiology-based implicit interaction. The studies also demonstrate
that personalization becomes less instrumental when multiple physiological
features are displayed through sound.
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4.1. Introduction and motivation

Our previous study on the b-Reactable revealed the positive impact of physiology-based
implicit interaction in user experience when expressed through sound. However, it also
highlighted specific design issues that have to be further investigated. Under the light of
our previous experiment, on the other hand, we still cannot claim that the implemented
sonic design (i.e. audification) performs better than other sonic strategies (i.e. parameter
mapping, musical mappings) for perceiving implicit physiological states. On the other
hand, the fact of providing a pre-defined and ad-hoc physiology-to-sound mapping could
potentially a�ect user experience, as it does not consider user perception in the design
process.
One way to address these issues is to assess the perceptual link between a given sonic
display strategy and the psychophysiological state that acts as its input. In line with
Jovanov’s studies [1999], we define this aspect as perceptualization, which basically
describes how well a sonic design represents a given implicit physiological state, aiding
user perception.
The SID strategies implemented in the b-Reactable were simple and straightforward
(i.e. audification of EEG and BPM control through ECG) and we did not compare its
performance with more sophisticated approaches (e.g. parameter or musical mappings).
Therefore, the role of mapping complexity has to be further explored. This aspect
specifically refers to the number of physiological streams and sound parameters used in
a given SID strategy1.
Perceptualization and mapping complexity of SID applied to implicit PhyComp are di-
rectly related to what we have already discussed in 3.6 on page 102: the selection of
EEG-to-sound mappings is always a di�cult task involving perceptual and aesthetic
trade-o�s, and it heavily depends on the application domain and goal. On the one
hand, a simple EEG-to-sound mapping (as the one applied in the b-Reactable) accounts
for a direct perception of changes in implicit physiological states, producing an almost
reversible signal. However, such sonic designs tend to be unnatural, dull and not well
suited for hearing out multiple, simultaneous physiological events. In short, they might
convey good perceptualization quality, but they lack complexity (and most likely ex-
pressiveness). On the other hand, more indirect and complex mappings account for
more naturalistic, rich and perceptually pleasant sounds. This is the case of parameter

1In Chapter 3 we also identified meaningfulness as a third aspect to be further explored in the design
of implicit sonic interaction for PhyComp. However, as it requires to deploy SID in an expressive
and creative context (e.g. music performance) it will be addressed in a separated study (see Chapter
6).
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mapping sonification (see Section 2.4.1) or musical interfaces as the ones presented in
Section 2.5, which were in fact designed with the aim of aiding music expression. But
by applying more complex (and arbitrary) mappings, these sonic designs tend to hide or
mask the nature of the physiological features that feed the sonic operations (therefore
compromising the perceptualization of implicit states). In this context, the evaluation of
perceptualization of sonic designs from an end-users perspective (i.e. directly assessing
user perception) becomes a crucial factor for validating SID for implicit PhyComp, and
to further explore its application in a given HCI context.

In this chapter we therefore tackle perceptualization and mapping complexity by running
two studies. The first one addresses perceptualization by presenting sonic designs that
vary in complexity (ranging from simple, direct strategies to more complex sound designs)
and comparing them according to end-user perception in neurofeedback sessions, where
sonic designs are used to display participant relaxation states estimated from EEG alpha
activity. Following the literature review presented in Chapter 2 (see Section 2.6.3 on
page 61) we choose the sonic designs most used for displaying real time EEG data:
parameter mapping sonification (of di�erent complexities) and musical mapping. Twelve
participants take part on this experiment, where both subjective and EEG measures of
user perception are collected to evaluate the performance of each sonic design in terms
of perceptualization (relaxation perception and representation) and neurofeedback e�ect
(relaxation state after training).

The second study leverages on the findings of experiment 1 to implement a sonic en-
gine capable of generating designs of di�erent mapping complexity, both in terms of
physiological streams (i.e. number of EEG features being displayed) and sound parame-
ters. To further explore perceptualization, experiment 2 also introduces personalization
of physiology-to-sound mappings by end-users. This approach is tested through a more
complex neurofeedback paradigm (alpha/theta training) with 31 participants, involving
longer training sessions than experiment 1.

4.2. Experiment 1: assessing perceptualization of sonic
designs

As discussed in the literature review (Chapter 2), the perceptualization of sonic designs
for implicit PhyComp has not been widely explored. It is still not clear what type of
sonic strategies perform best in terms of representing a given implicit physiological state,
aiding its perception by the end-user (i.e. the listener). Therefore, this experiment has
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been designed for determining the perceptualization quality of diverse sonic designs for
representing implicit physiological states (concretely relaxation) by assessing subjective
and objective perception. Following the insights gathered in our literature review (Sec-
tion 2.6) we selected three di�erent sonic designs for the experiment: a simple and direct
sound synthesis method (similar to the one implemented in the b-Reactable), parameter
mapping sonification (the most used in the field of EEG sonic display) and musical map-
pings (the most explored within NIME and HCI). User perception was evaluated during
alpha neurofeedback training, one of the most common neurofeedback paradigms which
targets an increase in the EEG alpha band (8 ≠ 13Hz) to reduce anxiety levels and in-
crease relaxation states [Angelakis et al., 2007]. Levels of alpha activity in such training
are often translated into sound-based feedback, either continuous or threshold-based, as
it predominantly originates from the occipital lobe during wakeful relaxation with closed
eyes [Hardt and Kamiya, 1978]. All sound designs were tested in both neurofeedback
and o�ine (sham) conditions, the last one being based on the pre-recorded physiological
data of a volunteer performing the same neurofeedback training as the participants in
the experiment.

Three main hypotheses drove the study:

• H1: Simple and direct sonic designs will better represent relaxation states esti-
mated through EEG, as they directly translate EEG data into sound.

• H2: Sonic designs with more complex mappings, such as parameter and musical
mappings, will reach greater relaxation e�ect.

• H3: Relaxation will be induced in participants as result of the neurofeedback
training, being reflected in both subjective and EEG measures.

4.2.1. Material & methods

System design

In terms of system design, specific technical requirements need to be satisfied. Since
our research deals with real-time sonic display, it is of the upmost importance that the
processing time for the entire signal chain -from EEG acquisition to auditory display- be
minimized. Additionally, the EEG data processing need to be done at a constant rate in
order to properly represent participant’s relaxation states and promote neurofeedback
training. Figure 4.1 shows the overall system architecture for experiment 1. The system
is mainly composed of two modules: one devoted to EEG signal acquisition and process-
ing, and a second module dedicated to the sonic display of the selected EEG features.
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Figure 4.1.: Graphical overview of the system architecture for experiment 1.

Each module runs in a di�erent computer (Apple MacBook Pro laptop, late 2013) and
communicates through a middleware, as described below.

EEG signal acquisition and processing

Figure 4.2 presents a diagram illustrating each step of EEG signal acquisition and pro-
cessing. Participants’ EEG activity is acquired using an Emotiv EPOC2, a 14-channel
wireless and non-invasive neuroheadset that accounts for a fast and ergonomic place-
ment. The EPOC is one of the leaders in low-cost consumer EEG sensing devices, and
although previous studies have shown it unreliable for specific BCI applications (since

2https://emotiv.com/epoc.php (accessed on October, 2015).
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its signal-to-noise levels are lower than in professional devices)[Duvinage et al., 2013], it
has been successfully used for monitoring [Rodríguez et al., 2013], which is the process
underlying neurofeedback. The EPOC’s electrodes require a saline solution to improve
conductivity, and their placement is related to the 10-20 international system [Homan
et al., 1987]. Following the literature on alpha activity estimation [Kropotov, 2010, An-
gelakis et al., 2007], we acquire raw EEG data from 6 channels placed at O1, O2, P7, P8,
T7, T8 of the 10-20 international system. Such placement accounts for a robust signal
acquisition, reducing artifacts caused by facial muscle contractions.

Raw EEG data is wirelessly streamed at 128 samples per second to a signal processing
module implemented in OpenVibe3. The six above mentioned channels are selected and
epochs of 15ms are created for further processing. The incoming signal is later filtered
using 4th order Butterworth filters to isolate the alpha band (7 ≠ 13Hz) and the full
EEG bandwidth (0.1 ≠ 40Hz). The values of both signals are squared and spatial filters
are applied to compute a single value from the six incoming input channels. At a final
stage, relative alpha power is estimated by dividing the estimated alpha power by the
full EEG band power.

Communication from OpenVibe to the sonic design engine is established using a Virtual
Reality Peripheral Network (VRPN) server/client structure that outputs OpenSound-
Control (OSC) [Wright, 2005] messages in real time. This software was designed as a
middleware that reads from the VRPN server within OpenVibe and receives two data
streams simultaneously [Vamvakousis and Ramirez, 2014]. OSC packages are then sent
to the sonic design engine.

Sonic design engine

Like in the case of the b-Reactable prototype (see Chapter 3) the engine for display-
ing EEG activity through sound was implemented in Pure Data (Pd) [Puckette et al.,
1996], a real-time graphical programming environment for audio synthesis and process-
ing. The engine routes the incoming alpha values (received as OSC messages from the
communication middleware) so that they can be displayed according to the desired sonic
design.

Once the EEG data is received in Pd, it is then sent simultaneously to three process-
ing blocks, corresponding to the sonic designs (direct sonification, parameter mapping
sonification, and musical mapping) that will be discussed in detail in the following sec-
tion. It is important to note that the engine and the implemented sonic designs work

3http://openvibe.inria.fr (accessed on October, 2015).
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Figure 4.2.: Flowchart illustrating EEG signal acquisition and processing.
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with both real-time EEG data (online mode), and prerecorded data (o�ine mode). This
functionality allows testing sonic designs without the need of a real-time stream coming
from an EEG headset.

Sonic designs and mapping criteria

For this experiment we implemented 3 sonic designs that represent widely used tech-
niques in the field of EEG auditory display. However, as pointed out by our review and
by other recent assessments such as Williams et al. [2014], a great variety of sound and
musical features have been used to perceive and/or induce states, such as emotions or
relaxation. The mapping approaches employed by such systems vary quite significantly,
with little agreement on which sound features are essential, desirable, dispensable, etc.
Thus, deducing an ubiquitous sound feature-set for representing and inducing relaxation
is not a straight forward task. In order to overcome this limitation, we defined a mapping
criteria based on previous studies on relaxation neurofeedback training, and on the on-
tology for a�ective algorithmic composition (AAC) systems proposed by Williams et al.
[2014], where pitch, rhythm and timbre are proposed as the most common sound features
found in AAC. By following this approach, we established five mapping guidelines for
all our sonic designs:

• Positive reinforcement: the main objective of neurofeedback is to reach a greater
awareness and, eventually, a voluntary control of physiological processes. The suc-
cess of neurofeedback therapy is thus related to the e�ectiveness of this learning
and self-regulation process. In this regard, positive reinforcement has shown to
be an important factor for successful self-regulation, both at conscious and uncon-
scious levels [Siniatchkin et al., 2000]. Following this premise, our sonic feedback
will be designed with the goal of reinforcing the target state (i.e. relaxation) in a
positive manner: higher relaxation estimations will yield more relaxing sounds.

• Pitch variation: as suggested by previous psychoacoustic and biofeedback studies
[Batty et al., 2006, Budzynski and Stoyva, 1969, Hevner, 1937] pitch center (high,
low) has shown to be correlated with a range of emotional descriptors, including
arousal. Leveraging on this research, our physiology-to-sound mappings will reflect
an inverse relationship between the measured relaxation state and pitch frequency.
That is, when relaxation increases the pitch becomes lower, and when relaxation
decreases the pitch becomes higher.

• Harmonicity: harmonicity is a component that suggest an inter-relationship be-
tween pitch and timbre. Although pitch content can influence the harmonicity and
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noisiness of a musical timbre, the majority of the literature identifies harmonicity
as a contributory timbral component rather than a pitch derived one (see Williams
et al. [2014] for a review). Previous studies in emotional and psychophysiological
response to music have shown that the level of relaxation increases with an in-
crease in harmonicity of tones [van der Zwaag et al., 2011, Juslin, 1997]. However,
there is also evidence of complex and dissonant harmony being correlated with
low relaxation (i.e. excitement and arousal) [Williams et al., 2014]. Therefore, our
sonic designs will seek harmonicity (when possible) but avoiding complex harmony
structures.

• Tempo: previous investigations have shown a correlation between low tempo and
low arousal [Hevner, 1937, Thompson and Robitaille, 1992, Collins, 1989]. There-
fore our sonic designs will follow the same rule.

• Loudness: although previous research has established a relationship between loud-
ness and a�ective states such as anger and happiness [Gabrielsson and Juslin,
1996] there is no agreement on the role of loudness in perceived and/or induce
relaxation through neurofeedback. Therefore loudness will be a parameter defined
by the participant prior the beginning of the experiment.

Following this mapping criteria, we have implemented 3 sonic designs4:
1. Direct sonification: this technique involves the direct translation of data into

sound, and represents our starting point for designing a simple auditory display
strategy. For implementing it, we use FM modulation [Chowning, 1973] as a syn-
thesis method, as it is fairly simple from a signal processing standpoint, but it can
result in harmonically-rich waveforms. FM synthesis works on the principle that
one signal (the carrier) is modulated by a second signal (the modulator). The
amount of alteration in the resulting signal is dependent on the amplitude of the
modulator. For the sake of synthesizing a sound that was not unpleasant to listen
to, we choose a simple FM technique with one carrier and one modulator. Since
only one stream of values is provided by the EEG acquisition module (relative
alpha power), it a�ects both the carrier frequency and the modulator, but in dif-
ferent ways. For the carrier, rather than immediately scaling the input values to
an audible range, we instead subtract them from a fixed initial value of 450Hz. In
this way, a higher input value yields to a lower carrier frequency. This is done fol-
lowing the above mentioned mapping criteria, which establishes that higher EEG
input values (associated with higher relaxation) should convey low pitch sound.

4An excerpt of each sonic design can be found at http://www.dtic.upf.edu/~smealla/PhD_
Material/Sounds.html
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For the modulator, the mean of the input signal is calculated in real-time and used
as the frequency for the modulator. The depth or amount of amplitude given to the
modulator is preset and left fixed throughout our tests and experiments, providing
enough of the modulator signal to create harmonic richness, without promoting an
uncomfortable listening experience. In fact, rapidly changing the depth amount by
tying it to the input value tends to generate uncomfortable sounds. The resulting
sound is a dynamic rapidly-changing modulated sine wave, which has harmonic
richness, but does not lead to an uncomfortable listening experience.

2. Parameter mapping sonification: this strategy involves features of the input signal
being mapped to some features of the resultant output sound [Hinterberger and
Baier, 2005]. In our case, the data is first sent to a feature extractor module and
selected features are then mapped to di�erent sound parameters. The sound in
this case is an oscillator put through a voltage controlled filter (VCF). When data
is streamed, the feature extractor detects each time a new local maxima or minima
occurs. These values a�ect separate yet similar output sounds, which di�er mainly
in the way that the center frequency of the VCF is determined. The sounds, when
triggered, take on the following parameters as determined by the data:

• Sustain: the distance in time between each maxima or minima is used to
calculate the sustain of the resulting sounds’ amplitude envelope. The sonifi-
cation is designed so that the output will have a generally fast envelope, but
the length of the sustain is somewhat variable within a predetermined range.

• Center frequency: by keeping track of how many maxima or minima occurs
each second, a crude estimation of the input signal’s frequency is calculated.
This value is scaled, and the frequency of the maxima is used to modulate the
center frequency of one sounds VCF, while the minima frequency modulates
the center frequency of the second VCF.

3. Musical mapping: to achieve a more inherently musical-sounding output, we map
the incoming stream of data to frequency values and trigger bursts of sounds set
to these notes. To favor more musical outputs, input data is scaled to integers to
trigger recognized MIDI notes. We restrict the MIDI output to values associated
with certain notes. In this case, the 7 diatonic notes of a major scale (minus
the octave) are used. The input stream is scaled to select one of these notes
at a time, and the input data are also used to send groups of MIDI messages
corresponding to the diatonic chords within the same major scale. By doing so,
the data create a melodic line in addition to the underlying chords. Since these all
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belonged to the same scale, a relatively consonant, if not melodically memorable,
composition is created in real time. In terms of rhythm, separate approaches are
taken for the melodic line and the chords. The notes from the melody are played
in euclidian rhythms [Toussaint et al., 2005], which have onsets that are as evenly
divided as possible given the input parameters. By adjusting these parameters,
the tempo of the output can be adjusted, as can the number of beats per measure
and how many notes can happen in each measure as a maximum. Meanwhile, the
chords’ output is set to be triggered every 1000, 1500, 2500 or 3000 milliseconds,
based on a random selection. At the MIDI output, the Ableton Live5 Operator
is used, a versatile synthesizer that combines classic analog sounds and frequency
modulation synthesis. Separate patches are chosen for the melody and the chords,
and modifications are made from the stock patches to create longer reverb times
and decay times, promoting a pleasant sound. In fact, two identical sounds are
used for the chords in Ableton, and their output is alternated within Pd, so that
each new triggered chord would not prematurely cut o� the decay of the previous
chord. With these elements combined, a seemingly random, although actually
rather complex, musical output is created. As in the case of the previous sonic
designs, higher input values produced lower notes within the scale.

All sonic designs were handled by a MacBook Pro laptop (late 2013), and resulting
sounds were displayed using an M-Audio Fast Track Pro sound card, and a pair of
Genelec 8010A studio monitors.

Participants

The tested sample consisted of 12 students (5 females), from Universitat Pompeu Fabra,
Barcelona. Their ages ranged from 23 to 36 years, with the mean being 28.1 (SD = 1.4).
The participants did not have prior knowledge on the experiment, although several were
familiar with EEG and the Emotiv EPOC in particular. None had participated in
experiments involving EEG sonic display before. The study was conducted in accordance
with the Declaration of Helsinki.

Experimental procedure and measures

Before the experiment, each participant signed a consent form, provided demographic
data (age, gender, place of birth and academic background) and was exposed to a 5-

5https://www.ableton.com (accessed on October, 2015)
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Block Neurofeedback Session
S1 S2 S3 S4 S5 S6

B1 Direct
RT

Direct
S

Parameter
RT

Parameter
S

Musical
RT

Musical
S

B2 Direct
RT

Direct
S

Parameter
RT

Parameter
S

Musical
RT

Musical
S

Table 4.1.: Procedure for Experiment 1. Each experiment consisted of two blocks (B1
and B2) of six neurofeedback sessions (S1-S6), one per type of sonic display
in real time (RT) and sham (S) conditions. All sessions were randomized and
separated by a 1-minute break. Blocks were separated by a 2-minute break.

minute relaxation induction, using the sound of sea waves, after the EEG headset was
mounted.

The experiment consisted of two blocks separated by a two-minute break (see Table
4.1). In each block participants were exposed to six neurofeedback session of 2 minutes
length. These six conditions included the three types sonic designs, triggered either by
participants EEG (real time) or by pre-recorded EEG (sham) acquired from a volun-
teer that followed the same experimental procedure. All sessions were randomized and
were followed by a one-minute break where the participant was asked to answer three
questions.

Three subjectives measures (5-point Likert scale) were used to assessed (i) participant’s
own relaxation state (question: “how relaxed do you feel now?”) , (ii) the quality of
the sonic design for representing the relaxation state, called sound tranquility (question:
“how relaxing was the sound you just heard?” ), and (iii) the perceived congruency be-
tween own relaxation state and the relaxation represented by the sonic display (question:
“how well did the sound reflect your state of relaxation?”).

Data analysis

All data satisfied the normality criterion as verified using the Kolmogorov-Smirnov test.
To test our hypotheses, we applied 3-way ANOVAs with the factors of (i) sonic design
(direct, parameter mapping or musical mapping), (ii) type of feedback (real or sham)
and (iii) presentation block (1st and 2nd) for 3 subjective measures and relative alpha
power values. Greenhouse-Geisser correction was used to correct for unequal variances.
Alpha level was fixed at 0.05 for all statistical tests.
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4.2.2. Results and discussion

From the three experimental factors only sonic design showed significant di�erences
both for sound tranquility (F

(1.9,20.5)

= 12.42, p < 0.001, ÷2

P

= 0.53) and for the reported
relaxation (F

(1.5,16.3)

= 8.53; p < 0.005, ÷2

P

= 0.44). We used Bonferroni-corrected pair-
wise comparisons to see these e�ects in detail (see Figure 4.3). For sound tranquility,
the direct sonification was perceived significantly less relaxing than the two other sonic
designs. Moreover, parameter mapping sonification was perceived as the most relax-
ing. A similar pattern can be observed for reported relaxation, with parameter mapping
sonification leading to the highest reported measures. No significant di�erences were
observed for perceived congruency (F

(1.7,19)

= 3.27, p = 0.07, ÷̂2

P

= 0.23). However, as
shown in Figure 4.3 (panel C), a similar trend for parameter mapping sonification was
found, being perceived as the most congruent between participants relaxation and sound
representation. Relative alpha power data did not show significant di�erences across all
three factors. Finally, the factors of type of feedback and presentation block did not reach
any significance.

Going back to our initial hypotheses, H1 (“simple and direct sonic designs will represent
relaxation states estimated through EEG better”) is discarded, as direct sonification per-
formed significantly worst than parameter mapping sonification and musical mapping
in conveying relaxation (sound tranquility). The same trend was detected when par-
ticipants were asked about the perceived congruency between the sound and their own
relaxation state after the experiment, although the lack of significant e�ects in this as-
pect demands a deeper study, probably including longer exposure to sonic designs. This
preliminary results nonetheless show promising perceptualization quality for paramet-
ric mapping sonification and musical mappings for representing participants’ relaxation
state, leading us to consider parameter mapping sonification as a good candidate for
further develop sonic interactions for implicit PhyComp.

Regarding H2 (“sonic designs with more complex mappings, such as parameter and mu-
sical mappings, will reach greater relaxation e�ect”), the study showed that parameter
mapping sonification also achieved significantly better relaxation e�ect than the direct
sonic strategy (see Figure 4.3, panel B), but it is still comparable with the performance of
musical mapping. It is important to note that this trend was only observed in the subjec-
tive data. Also related with this issue, H3 (“relaxation will be induced in participants as
result of the neurofeedback training”) has to be rejected. Although participants declared
a significantly higher relaxation e�ect when exposed to parameter mapping sonification,
there is no evidence of induced neurofeedback e�ect by any of the sound designs when

117



4. Perceptualization and Mapping Complexity

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DIR PAR

A

MUS

S
o

u
n

d
 t

ra
n

q
u

ili
ty

 (
0

..
5

)

*
***

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DIR PAR

B

MUS

*
p = 0.09

R
e

p
o

rt
e

d
 r

e
la

xa
tio

n
 (

0
..

5
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DIR PAR

C

MUS

P
e

rc
e

iv
e

d
 c

o
n

g
ru

e
n

cy
 (

0
..

5
)

Figure 4.3.: Ratings of sound tranquility (A), reported relaxation (B), and perceived con-
gruency (C) for the three sonic designs: audification (AUD), parametric
mapping (PAR) and musical mapping(MUS). Significant di�erences from
Bonferroni-corrected pairwise comparisons (A) and t-tests to 0 (B) are
marked at p < 0 : 05 (*), and at p < 0 : 005 (***) levels. Error bars
represent standard error values.

118



4.2. Experiment 1: assessing perceptualization of sonic designs

looking at the EEG recordings.

At this point it is important to make a distinction between perceived and induced relax-
ation to fully understand the contributions of this experiment. These results o�er em-
pirical evidence on the advantages of parameter mapping sonification for the perceptual-
ization of a given implicit psychophysiological state (relaxation). Although participants
have declared to felt more relaxed after being exposed to parameter mapping sonifica-
tion (see Figure 4.3, panel B) this result by itself does not provide enough evidence for
claiming that relaxation has been induced to participants as result of the neurofeedback
training, mainly because no di�erences emerged when compared real and sham feedback.
In fact, Zenter and colleagues [2008] carried out experiments to precisely examine the
di�erences in felt and perceived emotions when conveyed through sound (particularly
music). Their conclusion highlights that emotions were less frequently felt in response
to music than they were perceived as expressive properties of the music (p. 502). This
distinction has been also well documented by Västfjäll [2002], Gabrielsson and Lind-
ström [2001], Vuoskoski and Eerola [2011]. By examining the results of this first study,
on the one hand, we cannot claim that any of the tested sonic designs perform better
than the rest for inducing relaxation through neurofeedback training, but on the other
hand, we have found evidence about parameter mapping sonification performing better
in terms of perceptualization (the representation of relaxation through sound, aiding user
perception) with potential for inducing relaxation, as shown by the subjective data.

We leveraged on these findings for designing a second experiment that will compensate
the weaknesses of experiment 1. In order to further explore relaxation induction and
neurofeedback e�ect, experiment 2 will introduce longer training sessions (i.e. longer
exposure to the stimuli), a more complex EEG estimation of relaxation states (i.e. al-
pha/theta ratio) to determine whether a more sophisticated physiological estimation
plays a role in perception and induction of implicit PhyComp. We will also involve end-
user perception in the sonic design loop, allowing participants to personalize physiology-
to-sound mappings before the experiment. Finally, it should be noted that the similarity
observed between parametric and musical sonic designs is somehow expected, as both
were more complex in nature than the direct sonification strategy. We consider the aes-
thetic dimension of these sonic designs as a main contributor to the di�erence between
parametric and musical mapping.
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4.3. Experiment 2: mapping complexity and personalization

The results of experiment 1 showed the advantages of parameter and musical mappings
for perceiving implicit physiological states through sound. However, these positive e�ects
have been only demonstrated through subjective perception, without participants’ EEG
recordings showing any statistical di�erence, or noticing a significant neurofeedback
e�ect. This second experiment leverages on these finding, focusing on the sound designs
that showed better perceptualization performance (parameter and musical mapping)
applying a more complex relaxation estimation (alpha/theta ratio), and strengthening
neurofeedback training with longer sessions.

Moreover, in this experiment we also further explore a second aspect of SID applied to
implicit PhyComp, namely mapping complexity (the number of physiological streams
and sound parameters used in a given SID strategy). As pointed out in the review
presented in Section 2.6, most of the available EEG sonic designs work with a constant
number of EEG features, and also apply fixed, predefined EEG-to-sound mappings that
cannot be changed by end users. De Campo and colleagues [2007] conducted one of the
few studies addressing the personalization of EEG sonification by end users. Tests were
done with medical specialists performing evaluation of EEG data containing epileptic
events and seizures, and showed the advantages of sound parameters personalization.

The goal of this second experiment is thus to determine whether mapping complexity
and end-user personalization play a role in the perceptualization of implicit physiological
states through sound. In order to do so, we improve our sonic engine to account for
a flexible and customizable multi-parametric EEG signal transformation into sound.
We test this approach in an empirical study based on the well-established alpha/theta
(a/t) neurofeedback training paradigm (see [Gruzelier, 2009] for a review). During this
training, users try to relax with their eyes closed. The most important moment is the
so-called theta/alpha crossover (t/a), when alpha activity slowly subsides accompanying
sleep onset and theta activity becomes more dominant [Egner et al., 2002]. The increase
of t/a power ratio with eyes closed is a well known accompaniment of states of deep
relaxation such as stage 1 of sleep and meditation [Gruzelier, 2009]. The change on
the relaxation estimation and training based on a/t neurofeedback (instead of solely
use alpha relative power) responds to the need of further study the lack of relaxation
induction found in experiment 1. On the other hand, multidimensional physiological
features are a prerequisite for creating sonic designs with greater mapping complexity.
Finally, as the a/t neurofeedback training is typically based on auditory feedback due
to its closed-eyes condition, it is a good candidate to validate the personalization and
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Figure 4.4.: Components and data streams of the EEG sonic display system: EEG signal
acquisition, signal extraction and processing, and sonic engine.

complexity of our sonic designs.

The driving hypotheses for experiment 2 are:

• H1: a/t neurofeedback training will have more impact for participants using per-
sonalized sonic designs than for the ones using pre-defined, fixed sound mappings.

• H2: a/t neurofeedback training will have more impact for participants using more
complex sonic designs (based on multiple EEG features) compared to the ones
using only one (t/a ratio).

4.3.1. Material & methods

System design

The system developed for experiment 2 is composed of three main blocks: (i) EEG signal
acquisition, (ii) signal extraction and processing, and (iii) the sonic engine. This modular
approach allow us to create personalized and versatile EEG-to-sound mappings. Figure
4.4 illustrates each component of the system architecture, and in the following sections
we describe them in depth.

EEG signal acquisition

As in experiment 1, EEG activity is acquired using the Emotiv EPOC. The data is
sampled at 128Hz and low- and high-pass filtered internally at 85Hz and 0.16Hz re-
spectively. This semi-raw data is accessed through the EPOC SDK and then sent to
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Figure 4.5.: The EEG-TOOLbox integrated into the Matlab/Simulink library.

Matlab/Simulink6, as described below.

Signal extractions and processing

Di�erently from experiment 1 (where an ad hoc signal processing was applied to specif-
ically estimate EEG alpha relative power), for this study we created a custom-made
toolbox for Matlab/Simulink (denominated EEG-TOOLbox) to process the EPOC EEG
data, both online and o�ine, and to feed the sonic engine. Although other tools have
been designed for real time processing of EEG in Simulink (see Arslan et al. [2005, 2006],
Filatriau et al. [2006]), they have been conceived as processing systems rather than a
modular toolbox. This was a main motivation for creating the EEG-TOOLbox, com-
posed of di�erent processing blocks (see Figure 4.5) which allow extracting EEG features
in a modular way, adapting to di�erent neurofeedback or monitoring scenarios, beyond
the scope of this particular study. Each block present a menu for adjusting processing
parameters and for configuring its internal properties, as described below.

Emotiv2Simulink: through this block it is possible to access to the EPOC raw EEG data
stream for further processing within Simulink. The block is based on a Mex S-function
and on the drivers provided by the manufacturer. The Mex S-function outputs a vector
with the data, and a demultiplexer is used to separate 21 data types (EEG channels, the

6http://www.mathworks.com/products/simulink/ (accessed on October, 2015).
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Figure 4.6.: The EEG-TOOLbox. Emotiv2Simulink block.

EPOC gyroscope, and synchronization signals) as depicted in Figure 4.6.

BP-filters: this block is used for applying a band-pass filter to the input signal. It is based
on a Butterworth IIR discrete band-pass (BP) filter that allows direct configuration of
sampling frequency, filter order, lower and upper cut-o� frequencies (see Figure 4.7a).
The EEG-TOOLbox also o�ers a filtering block with predefined EEG frequency ranges:
delta (0.5≠3.5Hz), Theta (4≠7.5Hz), alpha (8≠13Hz), beta (14≠30Hz), and gamma
(30 ≠ 63Hz). This block only requires to select a given sampling frequency and filter
order (see Figure 4.7b).

Envelope: a block that squares the input signal and then applies a FIR low-pass filter
and down-sampling to estimate its envelope (See Figure 4.8). The signal is squared to
demodulate the input signal, using the input as its own carrier wave. This means that
half of the energy of the signal is shifted up to higher frequencies, and the average moves
down to DC. Next step is to reduce the signal resolution in order to reduce the sampling
frequency. As the signal may contain frequencies which can cause aliasing, a FIR low-
pass filter is applied before performing the downsampling. A minimum phase low-pass
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(a)

(b)

Figure 4.7.: The EEG-TOOLbox. Band-pass filter blocks.
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4.3. Experiment 2: mapping complexity and personalization

Figure 4.8.: The EEG-TOOLbox. Processing for envelope estimation.

filter is applied to remove the energy of high frequencies. The result of this process is
the envelope of the signal. In order to maintain the correct scale, the signal is amplified
by a factor of two; since we are keeping only the lower half of the energy of the signal,
this gain allows to make it match with the original energy. Finally, the square root of
the signal is calculated to reverse the distortion resulting from squaring the signal.

MaxMin: this block is based on a configurable window of size L, and it estimates the
maximum, minimum and median value of a signal in the temporal and frequency domain.

(Relative)Power: this block calculates the power of the input signal applying the Parseval
formula

P
x

(k) = 1
N

N≠1ÿ

n=0

| x(n) |2 (4.1)

based on a sliding window that performs the cumulative sum and squaring for each
instant of time. The Relative Power block works the same way, calculating the power of
in1 and dividing it by in2, where in1 is a signal filtered on a specific frequency band,
and in2 is the full frequency spectrum of the same signal. Being the result a relative
value, the output can only go out from 0 to 1.

Hjorth-Descriptors: this block calculates the Hjorth parameters for activity, mobility,
and complexity [Liang et al., 2013, Hjorth, 1975]. Hjorth activity is estimated as

A
(x)

= std(x)2 = V ar(x) (4.2)

the Hjorth mobility parameter is calculated as

M(x) =
A

Ȧ(x)
A(x)

B
2

(4.3)
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the Hjorth complexity parameter is calculated as

C(x) =
A

Ṁ(x)
M(x)

B
2

(4.4)

OSCSend: it allows direct communication via UDP with virtually any modern real-time
sound synthesis environment through the Open Sound Control (OSC) protocol.

The sonic engine

We updated the sonic engine presented in experiment 1, following a modular approach
for allowing: (i) to choose among di�erent EEG features (as processed by the above
mentioned Simulink toolbox), (ii) to decide on the number of EEG features to be dis-
play sonically (complexity), and (iii) to flexible define EEG-to-sound mappings (sound
modules). Although for this experiment the system is tested with 3 EEG features feed-
ing 5 sound modules in parallel, there are no restrictions on the number of features and
modules to be displayed, other than hardware limitations (e.g. processing power). Mul-
tiple EEG streams can also feed a single sound module. Importantly, the engine also
allows further personalization by end users via sliders.

Below we provide a description of the di�erent sound modules that compose the engine
at this stage, following the same mapping criteria for relaxation neurofeedback training
used in experiment 1 (Section 4.2.1). For flexibility and easiness, all inputs of the sonic
engine modules are normalized between 0 and 100.

• Pedal module: a fixed pitch tonic sound is initialized on loading (D2, MIDI note
n° 38). A tremolo e�ect is applied and phase shifted to each of the even harmonics,
giving a slowly moving chorus-like timbre to the drone. Inputs for this module are
able to control tremolo, panning and gain (see Figure 4.9).

• Melody module: the melody is constructed using a major scale stemming from
five semitones (one fourth) bellow the central tonic to sixteen semitones above it
(major third). The slope of the incoming signal controls note triggering speed and
pitch, whereas the volume is controlled by a linear function of the input signal (see
Figure 4.10).

• Rewarding module: this module triggers short duration nature sounds (birds, owls,
and crickets) when the input signal goes over a predefined threshold value. There-
fore, every time the input signal is over the threshold set, the user is rewarded
with a more varying yet still relaxing soundscape. A dynamic amplitude panning
allows use of spatial audio (see Figure 4.11).
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Figure 4.9.: Sonic Engine. Pd patch of the Pedal module.

Figure 4.10.: Sonic Engine. Pd patch of the Melody module.

127



4. Perceptualization and Mapping Complexity

Figure 4.11.: Sonic Engine. Pd patch of the Rewarding module.

• Wind model module: based on a procedural audio, this module uses a series of
white noise generators to create a wind soundscape. The use of procedural audio
(in contrast to a sample-based approach) gives a complete control over sound
parameters (e.g. wind speed). Therefore, the perceptual quality of the windy
scene dynamically changes according to mapped EEG features (see Figure 4.12).

• Rain model module: based on a sample-based approach, this module preserves
soundscape fidelity using dynamic cross fading between di�erent rain excerpts. It
also allows a comparison with the procedural audio approach of the wind module.
Input signal modulates the amount of excerpts in the resulting composite rain
density, which varies from a light rain to a small thunderstorm (see Figure 4.13).

• Graphic User Interface and personalization: a graphic user interface (GUI) is used
to simplify the patching between di�erent sound modules and EEG features. It
also contains time and frequency signal monitoring scopes for both input (EEG)
and output (sound) data. The GUI also displays tools for users’ personalization
via sliders using a MIDI controller, allowing them to adjust their mapping on the
fly while listening to the sonic results in real-time (see Figure 4.14).

Users are able to personalize (i.e. adjust) the mappings as follows. One EEG feature is
associated to one sound element (e.g. alpha relative power is mapped to rain density of
the rain model module). The user is then allowed to change the mapping in a continuous
scale from -1 to +1. If the potentiometer is dragged to -1, the mapping is inverted, i.e. a
greater value of the input data will yield a smaller value for the sound parameter (more
alpha would lead to less rain). If it is positioned at 1, the mapping is positive (e.g. more
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Figure 4.12.: Sonic Engine. Pd patch of the Wind module.

Figure 4.13.: Sonic Engine. Pd patch of the Rain module
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Figure 4.14.: Sonic Engine. Graphic User Interface

alpha yields more rain). If the potentiometer is place in the middle (zero), the sound is
fixed, thus not influenced by the input data (e.g. a fixed amount of rain equivalent to
50% of its maximum value, independently of the alpha power).
As can be seen, this new version of the sonic engine7 presents considerable technical
and design advantages compared to the version used in experiment 1. In this new
engine, modules can be combined and expanded easily using Pd, parameter mapping
sonifications has been enriched with more complex models using procedural audio and
samples, and end-user personalization is easily allowed through a GUI and physical
sliders.

System settings used in the experiment

Figure 4.15 shows the system configuration for the experiment. The EEG-TOOLbox
is configured to extract three main EEG features, according to the a/t neurofeedback
protocol [Gruzelier, 2009]: alpha relative power, theta relative power, and t/a power
ratio. In accordance with previous neurofeedback studies [Egner et al., 2002], alpha
relative power (7 ≠ 13Hz range) is calculated from the occipital area where this type of
activity occurs during close-eye conditions [Kropotov, 2010]. The second feature, theta
relative power (4 ≠ 7.5Hz range) is calculated from the activity of all 14 channels, as

7The sound engine for Pd is available for downloading at http://www.dtic.upf.edu/~smealla/
phd_material.html
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Figure 4.15.: Processing stages of EEG features and corresponding sound mappings for
experiment 2.

cortical theta rhythms are small and di�use when picked up by scalp electrodes, arising
almost entirely from the cerebral cortex Kropotov [2010]. These two relative powers
are obtained by dividing the band power by the overall signal power. In this manner,
the output signal is kept within a range of 0 to 1. Finally, the third feature, t/a power
ratio, is estimated as the main measure for the a/t neurofeedback procedure. A spatial
filtering is applied to give more weight to the occipital channels in the calculation of
the envelope of the alpha band and t/a ratio. For the calculation of the envelope of
theta, equal weight for all channels is used. The envelope is estimated for all three EEG
features using the envelope block based on FIR-based filter (order 35).

The sound engine has been configured as follows8, according to the mapping criteria
defined in 4.2.1 (see also Table 4.2 on the next page):

• Pedal module: tremolo, panning and gain are linearly mapped to t/a ratio.

• Melody module: note triggering speed and pitch are functions of the t/a ratio where
its positive change yield descending pitches while negative ones leads to ascending

8A video of the sound engine configured for the experiment is available at http://www.dtic.upf.
edu/~smealla/PhD_Material/videos.html

131

http://www.dtic.upf.edu/~smealla/PhD_Material/videos.html
http://www.dtic.upf.edu/~smealla/PhD_Material/videos.html


4. Perceptualization and Mapping Complexity

Group Foreground Reward Wind Rain

Fix-Single (F-S) t/a ratio (Fixed) t/a ratio Constant Constant

Personalized-Single (P-S) t/a ratio (Personalized) t/a ratio Constant Constant

Fix-Multiple (F-M) t/a ratio (Fixed) t/a ratio theta (Fixed) alpha (Fixed)

Personalized-Multiple (P-M) t/a ratio (Personalized) t/a ratio theta (Personalized) alpha (Personalized)

Table 4.2.: Configuration of the sonic engine for each experimental group, defined by type
of mapping (Personalized or Fixed) and number of EEG features (Single or
Multiple). EEG features include t/a ratio, and relative power of alpha and
theta. “Personalized” stands for adjusted mappings driven by EEG, “Fixed”
stands for fixed mapping driven by EEG, and “Constant” stands for sound
feature held constant.

pitches. Higher rate of change yields bigger jumps in melody (more semitones
between two consecutive notes). The note volume is a linear function of t/a ratio.

• Rewarding module: threshold is set at 50% of the calibrated maximum value of t/a
ratio recorded prior to the main training session.

• Wind model module: theta relative power controls wind speed of the modeled
sound object - the higher is the input, the faster the wind will blow.

• Rain model: alpha relative power is used to control rain density.
Figure 4.16 shows the experiment setup. The study was conducted in a room isolated
from external noise. Participants were seated on a swivel chair equally distant to four
loudspeakers (Roland active loudspeakers, Model MA15-D, and a M-Audio sound card,
FastTrack Pro), as previous research has shown that spatial rendering increases a�ective
impact of sound [Västfjäll, 2003]. The sonic engine and EEG processing were handled
by two di�erent computers. The lights were dimmed down during the personalization
and pre-relaxation sessions and turned o� during the a/t neurofeedback session. A 42
inches screen (not visible to the for participants) was used to monitor the EEG signal
quality and levels.

Participants and experimental procedure

Our two hypotheses were tested using a between-subjects design. Thirty one partici-
pants, mean age 27.81 (SD = 5.18), 15 females, took part in the experiment. The study
was conducted in accordance with the Declaration of Helsinki. Participants were equally
and randomly distributed among four experimental groups (see Table 4.2):

• F-S group: fixed EEG-to-sound mappings, single EEG feature displayed (M =
26, SD = 2).
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Figure 4.16.: Photo of the technical setup for experiment 2. The participant seated on a
swivel chair surrounded by a 4-channel sound system (spatial sound). The
DSP and sound design engines were executed from two di�erent laptop
computers. A 42 inches screen was used to monitor the EEG signal quality
and levels.

• P-S group: personalized mappings, single EEG feature displayed (M = 27.6, SD =
5).

• F-M group: fixed mappings, multiple EEG features displayed (M = 30, SD = 8).

• P-M group: personalized mappings, multiple EEG features displayed (M = 27.5, SD =
4).

All groups listened to soundscapes of a comparable sound richness, but varying in the
number of EEG features feeding the system, and in the sonic design applied. Table
4.2 shows the configuration of the sonic engine for each group. Each experiment lasted
around 50 minutes, according to the following protocol:

• Information and consent form: the participant receives an explanation on each
stage of the experiment, and the relation between brain activity and the created
soundscape. The participant signs a consent form.

• Initial emotional state self-assessment: subjective measures of emotional valence
and arousal are collected in paper through a 9-point Self-Assessment Manikin
(SAM) scale [Bradley and Lang, 1994].

• Sensor placement and baseline state recording: the participant sits in a swivel chair,
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and the Emotiv EPOC is mounted in her/his scalp. The baseline EEG activity is
recorded.

• Relaxation induction: we request the participant to close her/his eyes and listen
to a 5-minute sound of sea waves. EEG activity is recorded, and the thresholds
for the neurofeedback session is calculated by looking at the maxima and minima
values.

• Pre-test emotional state self-assessment: the participant is requested to fill in a
SAM scale.

• Mapping adjustment: EEG features start to be sonically displayed in real time.
The participant is then asked to personalize the mappings to reach the “most
relaxing sound possible”, using a MIDI interface with sliders placed in front of the
chair (as described in Section 4.3.1). There is no time limit to personalize the
mappings.

• Neurofeedback training session: the participant is asked to close her/his eyes and to
turn the chair facing away from the experimenter. The participant is then asked to
relax and to listen to the soundscape (di�erent for each group) for 15 minutes. The
participant is instructed to raise her/his hand if feeling uncomfortable or falling
asleep.

• Post-test emotional state self-assessment: the participant is requested to fill-in a
SAM scales again.

• Headset removal and debriefing: the EEG headset is removed. The participant is
debriefed, thanked and receives candies as a small reward.

Data Analysis

For analysis purposes, the raw EEG data with sampling at 128Hz was first filtered
(0.5 ≠ 30Hz). Using visual inspection and thresholding (over 3‡) data regions with
artifacts were marked for removal in subsequent analyses. Closely following the design
of the neurofeedback training protocol (see Section 4.3.1), we analyzed data from O1 and
O2 electrodes. Signals were BP filtered to obtain alpha (7≠13Hz) and theta (4≠7.5Hz)
components. The 15-minute data recordings were split into 10-second epochs and for
each of them relative alpha, relative theta and t/a ratio where calculated. Next, we
averaged the means from individual epochs for five 3-minute periods (18 epochs each)
excluding the epochs marked as containing artifacts. This was done for O1 and O2
channels separately. For analysis we used the values averaged across both channels and
the means from the first and the last 3-minute period of the experimental procedure.
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In other words, we compared maximal changes caused by 15-minute training in relative
alpha, relative theta and t/a ratio.

Both subjective (SAM ratings of pre and post assessment of emotional state) and ob-
jective measures (EEG features) of two relaxation periods were subjected to a 3-way
MANOVA. Therefore, the within-subjects factor was relaxation period (1-3 min vs. 12-
15 min period), whereas the between-subjects factors were Number of sonified EEG
features (Single vs. Multiple) and Feedback personalization (Personalized vs. Fixed
mapping). Alpha level was fixed at 0.05 for all statistical tests. Greenhouse-Geisser
correction was used to correct for unequal variances. For multivariate analysis Wilks’ �
was used as the multivariate criterion. All variables were normally distributed according
to the Kolmogorov-Smirnov test.

4.3.2. Results and Discussion

In accordance with the relaxing nature of the experimental procedure, the overall MANOVA
e�ect of relaxation period was significant with F (5, 23) = 6.89, p < 0.001, � = 0.4, ÷̂2

P

=
0.6. Split by measures, this e�ect reached significance for subjective arousal ratings,
F (1, 27) = 26.06, p < 0.001, ÷̂2

P

= 0.49, relative alpha power, F (1, 27) = 5.81, p <

0.05, ÷̂2

P

= 0.18, relative theta power, F (1, 27) = 10.4, p < 0.005, ÷̂2

P

= 0.28, and
t/a ratio, F (1, 27) = 5.45, p < 0.05, ÷̂2

P

= 0.17. This shows that participants in all
four groups reached greater relaxation as compared with the initial 3-minute period of
the experiment. More importantly, the interaction between the relaxation period and
between-group factors of number of sonified EEG features and feedback personalization
also showed significance, as described below.

Confirming H1 (“a/t neurofeedback training will have more impact for participants using
personalized sonic designs than for the ones using pre-defined, fixed sound mappings”)
the overall MANOVA e�ect of relaxation period ◊ feedback personalization was signifi-
cant with F (5, 23) = 2.58, p < 0.05, � = 0.64, ÷̂2

P

= 0.36. This e�ect reached significance
both for t/a ratio at F (1, 27) = 13.14, p < 0.001, ÷̂2

P

= 0.33; and for relative alpha
power, F (1, 27) = 10.08, p < 0.005, ÷̂2

P

= 0.27. Changes in relative theta power did not
reach significance. For the groups with personalized feedback, t/a ratios increased from
0.73 (SE = 0.2) to 1.42 (SE = 0.2), while for the groups with fixed mappings such change
was not found; the period means were 0.93 (SE = 0.2) for the first and 0.79 (SE = 0.2)
for the fifth one (see Figure 4.17 right panel). A similar pattern occurred for relative
alpha levels, with the means for personalized groups dropping from 0.29 (SE = 0.04) to
0.15 (SE = 0.03), and steady means for groups with fixed mappings of 0.2 (SE = 0.04).
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This e�ect can be also seen in Figure 4.18 (right panel) where di�erences between the
last and the first period are plotted.

In line with H2 (“a/t neurofeedback training will have more impact for participants using
more complex mappings”), the overall MANOVA e�ect of Relaxation period ◊ Number
of sonified EEG features was significant with F (5, 23) = 5.09, p < 0.005, � = 0.48, ÷̂2

P

=
0.53. This e�ect reached significance only for t/a ratio at F (1, 27) = 8.94, p < 0.01, ÷̂2

P

=
0.25. Here, the higher number of sonified features in the feedback resulted in a greater
t/a ratio increase from the mean of 0.83 (SE = 0.2) at the initial experiment stage to
1.45 (SE = 0.2) at the final 3-min period. In comparison, groups with single-feature
based feedback showed no improvement, going from the mean of 0.84 (SE = 0.2) to
0.76 (SE = 0.2), see also Figure 4.17 (right panel).

A triple interaction between Relaxation period ◊ Feedback personalization ◊ Number
of sonified features was also observed. It reached significance only for relative alpha,
F (1, 27) = 5.13, p < 0.05, ÷̂2

P

= 0.16. This e�ect can be better seen in Figure 4.18
(right panel), where di�erences between two periods are plotted for each of participants’
group. While not significant when comparing the period di�erences within each group,
this interaction is reflected in bigger di�erence between F-S and P-S groups as compared
to the di�erence between F-M and P-M groups.

4.4. General discussion

As shown in the previous section, the results from our between-group analysis confirmed
our initial hypotheses, both for subjective and objective data. The significant di�erences
between initial and final relaxation periods for P-S and P-M groups using personalized
feedback support our first hypothesis that personalized mappings are more instrumental
than the fixed ones for displaying implicit physiological states through sound (in this
case, relaxation). This is supported by a significant increase in t/a ratio and decrease in
alpha relative power, observed after 15-min neurofeedback session. This trend did not
occur in F-S and F-M groups, where training was done with fixed sonic mappings.

Our second hypothesis, stating that more complex mappings (based on multiple EEG
features) will be more e�cient than those relying on a single EEG feature, was also
confirmed. A significant increase of t/a ratio and a significantly lower reported subjective
arousal after the neurofeedback session was observed only for P-M and F-M groups with
multiple feature feedback. As expected, the training e�ect was smaller for P-S and F-S
groups undergoing neurofeedback with a single feature mapping.
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Figure 4.17.: The means of the di�erence between the first and the final 3-min period of
the 15-minute session. Subjective arousal (left panel) and t/a ratios (right
panel) are shown for four experimental groups: F-S (Fixed mapping/ Sin-
gle feature), P-S (Personalized mapping/ Single feature), F-M (Fixed map-
ping/ Multiple features), P-M (Personalized mapping/ Multiple features).
Error bars represent standard error values. Bonferroni-corrected significant
di�erence from 0 at p < 0.05 (*), and at p < 0.01 (**) levels.
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Figure 4.18.: The means of the di�erence between the first and the final 3-minute period
of the 15-minute session. Relative theta power (left panel) and relative
alpha power (right panel) are shown for the four experimental groups:
F-S (Fixed mapping/ Single feature), P-S (Personalized mapping/ Sin-
gle feature), F-M (Fixed mapping/ Multiple features), P-M (Personalized
mapping/ Multiple features). Error bars represent standard error values.
Bonferroni-corrected significant di�erence from 0 at p < 0.05 (*), and at
p < 0.01 (**) levels.
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Finally, changes in relative alpha power showed an interaction between mapping com-
plexity and personalization. Here the di�erences between the P-S and F-S (groups that
were using fixed and personalized sound mappings of a single EEG feature) are bigger
than between P-M and F-M (groups whose training was based on multiple EEG fea-
tures). In other words, personalization became less instrumental when multiple features
are displayed. In this case, a decrease in user attentional resources could explain this
e�ect. As the number of sound processes to attend to becomes larger, it is more likely
that change deafness will reduce the e�ciency of sonic designs, as stated by Shinn-
Cunningham [2008] on auditory spatial attention. Certainly, mapping complexity plays
a central role in the design of sonic interactions for implicit PhyComp, and has to be
further explored.
Significant between-group di�erences in both subjective and physiological data show
that the observed results are not obtained merely due to relaxing nature of presented
sounds (wind, water, etc.). Thus, the e�ect caused by our a/t neurofeedback setup
di�ered from simple relaxation. The observed results, that varied significantly between
four test groups, support the functionality of the conducted neurofeedback training,
and we can argue that both mapping complexity (the number of EEG features to be
displayed) and end-user personalization play an important role in the e�ectiveness of
sonic designs for physiology-based implicit interaction. More training sessions, larger
number of participants, and more robust EEG equipment could be used to further study
brain dynamics during a/t training (e.g. changes between training sessions, learning
curves within each session, individual di�erences etc.).
Di�erently from our first study, experiment 2 did not include a sham group with fake
neurofeedback, or a control group undergoing 15-minute relaxation to compare with our
experimental conditions. As shown by the pre and post-training di�erences, the partic-
ipants within the F-S group, with fixed sound mappings of a single EEG feature, can
be seen as a strong baseline for the three other groups. Nonetheless, future works could
complement this study by adding a control group to quantify the depth of relaxation
induction with and without neurofeedback.
Also several observations can be made when comparing our results with previous works
on EEG sonification and personalization. In our case, the transparency of the personal-
ization controls was an important factor, as already suggested by previous research like
De Campo et al. [2007]. The positive e�ect of personalization in our studies demon-
strates that the task of sound mapping adjustment was clear and understandable for
end-users. However, the development and evaluation of intuitive interfaces for person-
alization should be further explored. For instance, a natural step would be to integrate
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the sonic engine presented in this Chapter into the b-Reactable to further study whether
mapping complexity and personalization of sonic designs for physiology-based implicit
interaction also result in positive e�ects for music performance (e.g. enhanced expres-
siveness).
Another key issue tackled by our two experiments is the validation of sonic designs in
the context of implicit PhyComp. As pointed out by our literature review (see 2.6 on
page 56), while diagnostic applications are expected to have a rigorous assessment, most
of sonic designs applied to PhyComp lack a systematic validation, making di�cult to
determine the e�ciency of a particular sonic design for an specific goal (in this case
for conveying relaxation estimated through EEG). In this context, we contributed to
the methodologies for sonic design validation through a combination of objective and
subjective measures using a well-known perception-based scenario (i.e. neurofeedback).
In fact, some of the discrepancies between subjective ratings and physiological indices
observed in our study should encourage the use of multimodal measures for correcting
and further interpreting results. Our studies also provide grounding to further explore
other aspects of SID applied to implicit PhyComp, such as expressiveness in HCI contexts
(see Chapter 6).
Finally, it is important to note a number of advantages o�ered by the presented sonic
design system. Firstly, the sonic models created for this experiment (wind and rain, with
procedural audio and samples respectively) can be easily modified and further used for
future research, promoting new EEG-to-sound mappings, and realistic dynamic sounds.
Secondly, the use of Pd makes it easy for other practitioners and researchers to modify
the existing sound modules and to add new ones. In this manner, the sonic engine could
easily be expanded to present sounds that are directly related to other psychophysi-
ological states estimated through di�erent modalities such as breathing or heart rate
[Tajadura-Jiménez et al., 2008]. Other future work could test di�erent neurofeedback
protocols, integration of other EEG devices, and deeper studies on user preference for
sound mappings and their e�ectiveness for other domains such as data mining, diagnosis,
entertainment, or music.

4.5. Conclusion & next steps

This Chapter presented a set of experiments that explored two main aspects of sonic
interaction design applied to implicit PhyComp, as depicted by Chapter 3: perceptualiza-
tion (how well a sonic design represents a given implicit physiological state, aiding user
perception), and mapping complexity (the number of physiological streams and sound
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parameters used). The goal of these studies was to determine how these aspects a�ect
the performance of sonic designs for implicit PhyComp. Whereas experiment 1 provided
empirical insights on the perceptualization quality of parameter mapping sonification and
musical mappings for representing implicit physiological states (specifically relaxation)
and for aiding user perception, the results of experiment 2 provided evidence about the
role that both mapping complexity and end-user personalization play in the perceptual-
ization of sonic designs for implicit PhyComp. The studies also o�ered insights on the
interaction of these issues, showing that personalization becomes less instrumental when
multiple physiological features are displayed through sound (probably due to a decrease
on the user attentional resources).

In the next Chapters we will then move forward towards meaningfulness, one of the
three aspects that, together with perceptualization and mapping complexity, arose from
our first study on sonic interaction design (see Chapter 3). In order to do so, we will
use the findings of this Chapter to create a new version of the b-Reactable that will
include a parameter mapping approach, and will allow user personalization directly
through the tangible user interface. Through this approach we will aim at studying
whether physiology-based, implicit sonic interaction can meaningfully support music
performance. For undergoing this task, we first propose a methodological framework for
NIME design, that focuses on the exploration of expressiveness and on the role of the
mapping component in the NIME creation chain. This framework will make possible
to directly assess system properties (such as mapping and synthesis) and performance
aspects (such as musicality and expressiveness) of the updated version of the b-Reactable.

141
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Designing and Evaluating NIME

One of the main SID aspects to be explored in this dissertation is the mean-
ingful integration of implicit PhyComp in a relevant HCI context, namely
music performance. As this task requires systematic and specific evaluation
methods, in this Chapter we present a framework for designing and eval-
uating new interfaces for musical expression (NIME), with special interest
on expressiveness, a relevant aspect to determine the meaningful contribu-
tion of implicit PhyComp in the NIME field. The objectives of this Chapter
are therefore (i) to analyze the most relevant NIME design and evaluation
frameworks available in the literature, (ii) to identify how they tackle di�er-
ent stakeholders, and (iii) to propose and test a framework focused on ex-
pressiveness, mapping, and participants’ previous musical knowledge. This
framework is deployed in a one-trimester NIME master course where groups
of participants ( students) prototype DMIs within a restrictive setup, con-
sisting of smart-phones controllers and the Pure Data (Pd) programming
language, and perform with them in front of the rest of the class, which in
turn evaluates the performances as listeners, in an iterative process. The
insights gathered during the study suggest that students with di�erent back-
grounds were able to e�ectively engage in the NIME design processes; that
the assessment tools proved to be consistent for the evaluation of systems
and performances aspects of NIME; and that the outcome of the evaluation
translated into a traceable progress in the students’ DMIs.

5.1. Introduction and motivation

In the previous Chapter we have explored two of the three SID aspects that arose from
our first experiment with the b-Reactable: perceptualization and mapping complexity of
sonic designs for implicit PhyComp. Now we move towards the investigation of the third
aspect: how physiology-based implicit interaction can meaningfully support musical
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expression. In order to achieve this goal, we propose to update the b-Reactable according
to the guidelines of perceptualization and mapping discussed in the previous Chapter,
and to test it in a music performance context. However, as our objective is to identify
concrete contributions of implicit PhyComp to NIME, a thorough evaluation on key
design aspects (both at system and music performance levels) is required to determine
its potential for being perceived as an expressive component of a DMI, through which
the player can produce musical processes that, being expected or unexpected, contribute
to the creative task she/he is committed to.
In this Chapter we therefore propose a framework for NIME design and evaluation,
that is also meant to inform teaching and iterative design processes. In order to test
the performance of this framework in a real world scenario, we deploy it in a one-
trimester NIME master course focused on the exploration of expressiveness and on the
crucial importance of the mapping component in the NIME creation chain. In this
context, participants (i.e. students) prototype DMIs in groups, using a quite restrictive
setup consisting only of smart-phones controllers and the Pure Data (Pd) programming
language. This is done following a complete hands-on and self-reflective approach, in
which the students (i) design a DMI (with the aforementioned important and predefined
constraints), (ii) perform with the instrument in front of the rest of the class, and (iii)
evaluate these performances as listeners, in an iterative process.
This Chapter is structured as follows. We first present an overview of the existing NIME
frameworks in the context of education, design and evaluation. We then introduce the
course, describing its context and its peculiarities. We describe the evaluation methods
developed for assessing the projects created by the students, detailing how we apply this
evaluation to inform iterative design, and we analyze and discuss the obtained results.
We conclude discussing relevant findings and challenges, the manners in which the pro-
posed framework can be applied to the evaluation of implicit PhyComp (concretely, the
updated version of the b-Reactable) and how it could inform other NIME practitioners,
educators or designers.

5.2. Designing and evaluating NIME

Since its birth in 2001, the NIME conference gathers researchers and practitioners that
initially attempted to answer the question of how to better play computer music by
exploring connections with the better-established field of human-computer interaction
(HCI). As the NIME field matured, it integrated knowledge and practices from di�erent
disciplines. Moreover, in parallel to this maturation process, there has been a naturally
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growing interest in finding methodological and design frameworks that help evaluating
the quality or the suitability of NIME, guiding teaching and iterative design processes.

In 1999, Michel Waisvisz, artistic director of the Dutch center for research and develop-
ment of new musical instruments -STEIM- from 1981 until his death in 2008, and one
of the few undeniable NIME virtuosi, highlighted the apparent lack of progress and the
permanent reinvention of the wheel that seemed to be going on in the realm of musi-
cal gestural controllers: “A growing number of researchers/composers/performers work
with gestural controllers but to my astonishment I hardly see a consistent development
of systematic thought on the interpretation of gesture into music, and the notion of
musical feed-back into gesture.”1 [Cadoz et al., 2000].

5.2.1. Learning NIME design

The way DMIs are currently created and evaluated is strongly related to how design and
validation methods are taught in di�erent NIME venues. Sixteen years after Waisvisz’s
concerns, the design of DMIs no longer relies solely on the e�orts of some romantic
and isolated pioneers. While a course on controllers taught at Stanford’s CCRMA was
already presented in the first NIME Workshop in 2001 [Verplank et al., 2001], in the last
years numerous NIME design courses have sprung up at universities around the world. A
special workshop devoted to NIME education took place at NIME 2011, with the aim of
providing a structured forum for NIME educators to share their approaches, experiences
and perspectives on teaching NIME curricula [Gurevich et al., 2011]. While we do not
aim at identifying the main di�erences and peculiarities between existing NIME design
courses, we proceed to summarize the common features they typically share:

• Courses tend to be taught at the beginning of graduate or senior undergraduate
levels [Lyons and Fels, 2013];

• They tend to be very multidisciplinary, often bridging the gap between art and
science education [Lehrman and Ryan, 2005], and thus agglutinating students from
very di�erent backgrounds and di�erent levels of knowledge (e.g. fine arts, music,
computer science, engineering, interaction or product design, etc.).

• While some courses are more closely defined and more knowledge oriented than
others (i.e. the competences to be acquired during the course may include a given
set of tools, technologies or procedures), they mostly tend to be project oriented
and students learn what they need in order to develop their own projects, which

1Waisvisz, Michel. "Gestural Round Table". Available at www.steim.org/steim/texts.php (ac-
cessed on October, 2015).
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are then finally presented in live performances or demo scenarios [Lyons and Fels,
2013].

• While very often these projects give great freedom to the students - typically only
limited by the technical resources and the know-how available at each center - the
lack of a shared technological knowledge among these students, makes technological
topics prevalent (e.g. how to use di�erent sensors; how to connect them to a micro-
controller; how to synthesize/process sound in a programming environment such
as Pd, Max/MSP, SuperCollider or Chuck, etc.) and more important than design
aspects or more conceptual criteria.

• Finally, most courses tend to instruct on how to create new DMIs, most often
eluding the question of how to improve them or make better ones, whatever this
adjective may mean.

These aspects lead us to the next section, in which we present an overview on the existing
frameworks for the design and the evaluation of DMIs.

5.2.2. NIME design and evaluation frameworks

Is Waisvisz’s initial quote still valid? Are the designers of DMIs (who may also be per-
formers, composers and/or researchers) still blindly working in a field which shows no
consistent development of systematic thought? Inseparable from concepts so complex
and elusive as music or taste, the NIME realm may indeed always remain an area im-
possible to reduce and systematize, or as Perry Cook put it in the first NIME workshop
in 2001, “musical interface construction proceeds as more art than science, and possibly
this is the only way it can be done” [2001]. Creating DMIs is indeed in many respects,
very similar to creating music. It involves a great deal of di�erent know-how and many
technical issues, while at the same time, like in music, there are no inviolable laws. But
even if we may agree in the fact that the NIME discipline will never become a science,
this should not prohibit us from thinking about it and analyzing its outcomes, and in
particular, it should not prevent us building on the successes and the failures of expe-
rienced practitioners. Not unlike much research in HCI culminates in lists of guidelines
and/or principles for design (and/or evaluation of design) based on research or practical
experience relating to how people learn and work, it comes as no surprise that the first
tentative NIME design frameworks have been mostly proposed by experienced digital
luthiers [Jorda, 2005].

In his aforementioned paper, Cook also delivers his first principles for designing computer
music controllers. As pointed out by O’Modhrain [2011], Cook’s paper (as well as most
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of the following frameworks) which includes statements such as “copying an instrument
is dumb, leveraging expert technique is smart”, sets the goals for desirable properties of
successful DMIs, yet saying little about how to achieve these goals. In this regard, Jordà
proposes a conceptual framework that could serve in evaluating the potential, the possi-
bilities, and the diversity of new digital musical instruments, focusing on the expressive
possibilities these instruments can o�er to their performers. This framework discusses
in depth several DMIs desirable properties or goals such as the instrument’s playability,
learnability, musical e�ciency, variability, reproducibility, explorability or diversity (the
ability of an instrument to support diversity in musical style and performance), and how
each of these di�erent properties can promote/support di�erent performance needs and
approaches, such as the ones desirable in a instrument for novices, or the ones required
for developing virtuosity [2005].
Dobrian and Koppelman , when approaching expression in digital musical performance,
also stress the importance of virtuosic mastery, and how this can be promoted through
intuitive but complex gesture-sound mappings (and obvious long-term practice) [2006].
All the above mentioned authors elude however the delicate issues of how to clearly
attain these design goals and how to objectively evaluate them. The task of evaluating
DMIs is, in fact, strongly linked to that of designing them, and knowledge gained in
any side of the equation should complement the other. It is also clear that traditional
evaluation methodologies coming from the field of HCI tend to be unsuited to the even
more subjective evaluation of DMIs [Bellotti et al., 2002]. And yet, directly inspired
by HCI, Wanderley and Orio [2002] provide one of the first sets of guidelines to aid
in the selection suitable tasks for evaluating DMI designs. Although these guidelines
and tasks do not constitute in themselves methods for evaluation, they definitely bring
observations that can constitute good evaluation starting points.
More recently O’´Modhrain [2011] presents an excellent and detailed overview of pre-
viously existing DMI evaluation frameworks that we encourage the reader to consult,
and proposes the evaluation of DMIs from the diverse and complementary perspectives
of all the stakeholders involved in the process. This list includes performers, audi-
ences, composers, instrument builders, component manufacturers and customers, and
assumes that each of these stakeholders may have di�erent ideas of what evaluation may
mean, and that DMI designs should be therefore tackle from these multiple perspectives.
O´Modhrain’s paper also provides a list of goals such as enjoyment, playability, robust-
ness or achievement of design specifications, meant to be confronted from the diverse
perspectives of each stakeholder.
Following this stakeholder-based approach, Barbosa et al. [2011] deepen in evaluation
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methodologies from the perspective of the audience, while Gurevich and Cavan Fyans
[2011] focus on the relationship between performers and digital systems and on the
spectatorú’ perception of these interactions. Among other recent publications, Gelineck
and Serafin [2012] insist on the importance of longitudinal studies carried along longer
periods of time, in an attempt to study the development of virtuosity. Along similar
lines, Marquez-Borbon et al. [2011] study the evolution of skill development interviewing
and following a group of users for several months, while they also propose the conception
and design of experimental DMIs for specific evaluation purposes (as opposed to artistic
purposes). Kiefer [2012] also uses his own DMIs for proposing the combination of HCI
inspired methodologies and grounded theory methods for assisting the design, use and
evaluation of creativity support tools with a focus on multi-parametric DMIs. In essence,
while the search for solid and grounded design and evaluation frameworks is one of the
main trends in current NIME research, general and formal methods that go beyond
specific use cases have probably not yet emerged.

5.3. Framework and deployment

We now propose a methodology for NIME design and a set of evaluating tools intended
to inform the design process. In order to test and refine all aspects of this framework, we
deployed these methods in a one-trimester graduate course called Real-time Interaction,
coordinated by Prof. Sergi Jordà. Following we provide a description of the course,
background of participants, content structure, and specific results.

5.3.1. Context

The course was compulsory for two one-year master programs at Universitat Pompeu
Fabra, Barcelona: (i) Sound and Music Computing -SMC-, and (ii) Cognitive Systems
and Interactive Media (CSIM). For this reason, the background and interests of both
types of students tend to be quite di�erent. SMC students have clear musical interests,
most often playing one or several musical instruments, and tend to come also from more
technical and engineering backgrounds, thus often having prior experience in computer
programming. CSIM students, on the other hand, come from a mix of backgrounds
(psychology, sociology, humanities, design, mathematics, architecture, etc.) and most
often do not have any prior experience in music performance nor in computer program-
ming. Finding a suitable balance to satisfy such diversity is not an easy task. For this
pragmatic reason, previous deliveries of the course did not explicitly focus on NIME
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design, but rather in analyzing the characteristics and di�erences of real-time interac-
tion in di�erent contexts (e.g. NIME, video games, augmented reality, etc.) from a
more conceptual point of view. From 2013 on, we decided to face the challenge. Would
it be possible to conceive a more hands-on course that (i) from a technological per-
spective, would be challenging and yet feasible for all types of students (musicians vs.
non-musicians, programmers vs. non-programmers), and that (ii) from a conceptual and
theoretical perspective would also provide enough food for thought and useful learning
for all participants?

Taking into consideration some of the properties that constitute the intrinsic and more
relevant features of real-time interaction when compared to more conventional WIMP
interaction, namely the multidimensionality, multi-modality and the continuity of the
input space [Jordà, 2008] we decided to focus on the systematic exploration of two
advanced NIME topics that are tightly related to the scope of this dissertation, assuming
that the conceptual challenges they would provide would not be substantially minor for
the SMC students than for the CSIM students. Also the later could benefit from some
of the learnings, being able to subsequently extrapolate them to their specific areas of
research. The two chosen topics for exploration were expressiveness and the crucial
importance of the mapping component in the NIME creation chain.

In this context, the introduction of an evaluation process within the course had two
main motivations. From a pedagogical perspective, there was a clear objective of making
the students fully aware of the intrinsic di�culties of evaluating complex and creative
interaction contexts. On the other side, it allowed us to research and validate our
framework in a relevant, hands-on environment. Through this approach, we aimed at:

1. Experiment with evaluation methods in which participants would swap between
di�erent roles (i.e. designers, performers and listeners) and analyze how previous
music knowledge would a�ect each of these roles (following O´Modhrain’s ideas on
stakeholders [2011]).

2. Investigate to what extent the proposed evaluation method could e�ectively inform
iterative design processes.

3. Shed some additional light on the elusive concept of expressiveness, needed to
systematically assess the meaningful contributions of physiology-based implicit in-
teraction to the NIME field.

From a technical point of view, and unlike most NIME courses that tend to o�er a
free or at least wide enough approach to technology, we decided to apply a restrictive
approach based on two technological tools, namely smart-phones as controllers and the
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Pd programming language for audio synthesis and processing. This strategy responded
to two main reasons: eliminate all accessory technical information that would probably
add confusion to the least tech-savvy students, and to carry on our framework evaluation
in a reasonably constrained and controlled scenario.

5.3.2. Students profile & structure of the course

Real Time Interaction takes place in the first trimester (October-December) of the aca-
demic year and is composed of 12 weekly 2-hour classes. Thirty five students took the
course that year, with approximately half coming from each of the two above mentioned
master programs. SMC students had some musical knowledge, playing one or several
instruments and being familiar with Digital Audio Workstations and electronic music
production. This information was obtained through a questionnaire as described in Sec-
tion 5.3.3. Most also had some computer programming knowledge and several were even
familiar with Pd or Max/MSP, although none had worked on real-time electronic music
performance. With some exceptions, most of the CSIM on their side, did not have any
prior musical experience. Although some were engineers acquainted with computer pro-
gramming, none of them had ever worked with digital audio or data flow programming
languages. Special e�orts were needed in order to find a right balance between novelty
and viability that would satisfy almost everyone, a goal that was almost achieved. No
student found the course too trivial and only two complained about its di�culty. Table
5.1 shows the topics covered in the course, along with the recommended readings and
the assignments required for each of the 12 sessions.

The topics covered, which did progressively deepen from the more general to the more
specific, can be synthesized as follow: starting with the concept of interaction and the
problems deriving from the evaluation of interactivity (session #1), the special character-
istics of real-time interaction were highlighted (#2), then the particular case of musical
interaction with DMI was studied (#4), for subsequently focusing on timbre control and
navigation (as opposed to more traditional pitch-based control), trying to elucidate the
meanings of expressiveness (#5), and investigating how more complex (especially non-
linear - many-to-many) mappings [Hunt et al., 2003, Kiefer, 2012] could a�ect achieving
this objective (#6). To encourage participation and discussion, students were asked to
read several papers before each new topic was introduced, the full list of which can be
also consulted in Table 5.1.

Additionally, all these concepts were put in practice by the students with progressively
sophisticated implementations using Pd. These started from a simple Theremin with vi-
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Session Content Readings for next

session

Assignments for next session

0 [Rafaeli, 1988,

Svanaes, 2013]

1 Introduction and discussion on

‘interaction’ and the ‘evaluation of

interactivity’

Start reading the

Pd tutorial

Think about potential real-time

applications

2 Real-time interaction (technical,

perceptual and design issues)

Selected and

abridged info on

sound and digital

audio (Hz, pitch,

dB...)

Build basic Theremin with sine oscillator in

Pd. Control pitch, amplitude and add a

‘nice’ and natural vibrato control

3 Pd hands-on exercises Interactive

music: [Chadabe,

1984]

Build monophonic synth with 2-3

continuous parameters. Don’t worry about

the interface: just put sliders

4 Interactive music overview

(historical, conceptual)

Find videos of ‘expressive’ performances

(acoustic, electric, electronic...) with a

focus on timbre control

5 Expressiveness. Timbre navigation

videos: Tuvan singing, didgeridoo,

wah-wah brass, electric guitar

Selected and

abridged info on

audio filters,

subtractive and

modular

synthesis

Add filter and LFO to your synth.

Download OSC app for your

smartphone/tablet (IOS/Android)

6 MIDI, OSC, sensors and

accelerometers. Connecting

smartphones/tablets to Pd

Create minimalistic smartphone interface

for your synth. No sliders; just continuous

control from accelerometers, compass, 2D

multi-touch... Focus on timbre; forget pitch.

7 1st performance and on-line

evaluation questionnaire

Control: [Ryan,

1991, Pressing,

1990]. Mapping:

[Arfib et al.,

2002, Hunt et al.,

2003]

Check the feedback from your colleagues

and continue enhancing your synth

8 Mapping and non-linearity [Jorda, 2005,

Chapter 7]

Continue enhancing your synth

9 Pd hands-on: feedback, distortion,

non-linear many-to-many mappings

[Tahiro�lu, 2011] Focus on non-linearity and many-to-many

mappings. Get ready for the 2nd

performance

10 2nd performance and on-line

evaluation questionnaire

Document and upload your final synth

11 Machine learning in HCI [Fiebrink, 2011,

Gillian et al.,

2011]

12 Evaluation methods in HCI and

NIME.

[O’Modhrain,

2011]

Table 5.1.: Structure and contents of the course [Jordà and Mealla, 2014]
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brato control (#2-3) and went into several iterations of a monophonic synthesizer with
increasing timbral control parameters (#3-4, #5-6), that later was controlled from a
smartphone/tablet using the OSC protocol with increasingly complex mappings (#6-7,
#7-8, #8-9). While during the first sessions students worked individually, after session 3
they created 11 working groups (of 2-4 students) that remained stable for the rest of the
course2. Sessions 7 and 10 constituted the backbone of the evaluation method, since in
these two sessions each working group performed a 2 to 3 minutes piece/improvisation
that was evaluated by all the other students, as described in detail in the next sec-
tion. Performances were video-recorded3 and made available to the students for a more
detailed evaluation (see Figure 5.1).

After the second performance (#10), session 11 was devoted to the use of machine
learning techniques for NIME control mappings [8],[10]. Although one of the initial
objectives when envisaging this course was to include a 3rd performance/iteration using
these techniques, it turned out clear from the beginning that it would be impossible to
grab as much content in a 12 weeks course, so this topic remained at the theoretical
level and was presented to the students as a potential follow-up to their work. Finally,
session 12 provided an overview of evaluation methods and issues in HCI in general and
NIME in particular, which concluded with a discussion of the results of the evaluation.

5.3.3. Evaluation tools

The methods applied during the master course were designed to assess both the System
and the Performance aspects of the developed projects. Through this approach, we were
able to evaluate DMIs in di�erent stages, and explore how this evaluation can inform
iterative design. Learning aspects, however, were not assessed.

Twenty two students (7 females), mean age 25.3(SD = 2.15) participated in the evalu-
ation. Participants’ demographic data (age and gender) and previous music knowledge
(capability for playing music and electronic music) were measured at the beginning of
the master course through an electronic questionnaire.

During each performance session, all participants (in the listeners role) completed a
5-point Likert scale questionnaire to rate both the System (the DMI itself) and the
Performance (related to the use of the DMI and the quality of the musical output). The
System’s properties were measured according to 3 variables:

2The reports on the projects developed by each group are available at http://www.dtic.upf.edu/
~smealla/phd_material.html

3The videos of the performances are available at http://www.dtic.upf.edu/~smealla/PhD_
Material/videos.html
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Figure 5.1.: Performances by working groups using the DMIs developed during the mas-
ter course.

153



5. A Methodological Framework for Designing and Evaluating NIME

• Mapping richness. Statement: “I have found the control mapping rich and inter-
esting”.

• Synthesis richness. Statement: “I have found the sound synthesis rich and inter-
esting”.

• Potential. Statement: “The system shows great potential as a DMI”.
Performance’s aspects, on the other hand, were assessed through the following variables:

• Musicality. Statement: “I have found the performance musical”.
• Expressiveness. Statement: “I have found the performance expressive”.
• Virtuosity. Statement: “The performers were able to control de instrument as real

virtuosi”.
These variables, whose choice was influenced by Jorda [2005], O’Modhrain [2011], were
previously debated in class to assure a consistent interpretation during the evaluation
process. Each listener fulfilled the questionnaire after each performance (except their
own). Together with the questionnaire, tags and comments about the projects were also
collected.

5.3.4. Results

For analysis purposes, the sample was divided in two groups: High Music Knowledge
(HMK, 15 participants) and Low Music Knowledge (LMK, 7 participants), and in two
stages (1st and 2nd Performances). A Pearson Correlation analysis was applied to test
the coherence and strength of the two Categories of variables (System and Performance
properties). An analysis of Variance (ANOVA) was applied to find significant di�erences
between 1st and 2nd Performances. For this multiple comparison analysis, Bonferroni
correction of significances was applied and alpha was fixed at 0.05 for all statistical tests.

Correlation Analysis
The correlation analysis showed significances for both 1st and 2nd Performance stages.
More specifically, Musicality, Mapping Richness and Synthesis Richness were positively
correlated for in both 1st and 2nd Performances. On the other hand, Potentiality,
Expressiveness, and Virtuosity also showed a significant correlation for both stages.
Table 5.2 shows the direction and strength of significant correlations in both stages.

Between Stages Analysis

When analyzing di�erences between 1st and 2nd Performances without considering pre-
vious music knowledge (all listeners together) three variables (Potentiality, Expressive-
ness and Virtuosity) reached significance for 3 of the 11 projects (see Table 5.3). When
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Variable Mapping Synthesis Potential Musicality Expressiveness Virtuosity

Mapping r = .450ú r = .334ú

Synthesis r = .450ú r = .502ú

Potential r = .505ú r = .391ú

Musicality r = .334ú r = .502ú

Expressiveness r = .505ú r = .591ú

Virtuosity r = .391ú r = .591ú

Table 5.2.: Pearson correlations for System and Performance variables. Only signifi-
cances are shown (* p < 0.01) [Jordà and Mealla, 2014]

DMI All HMK LMK

4 Expressiveness (F(9.20) = 1.43)

ú
No significances No sig.

5 Potential (F(5.90) = 1.44)

ú
Expressiveness (F(6.30) = 1.6)

ú
Expressiveness (F(9.20) = 1.62)

ú
No sig.

11 Expressiveness (F(9.20) = 1.51)

ú
Virtuoso (F(4.60) = 2.10)

ú
Virtuoso (F(7.18) = 2.1)

ú
No sig.

Table 5.3.: Analysis of Variance between 1st and 2nd Performances for the whole sample
(All), and High and Low Music Knowledge (HMK/LMK). Only significant
di�erences are shown. Alpha for Bonferroni-corrected significances set at
p < 0.05(ú) [Jordà and Mealla, 2014]

analyzing between-stages di�erences according to previous music knowledge, a di�erent
picture emerged. For the HMK group, only two variables (Expressiveness and Virtuos-
ity) reached significance for two projects (see Table 5.3). The LMK, on the other hand,
did not show any significance.

5.4. Discussion

5.4.1. Analysis of the Results

The statistical analysis showed that the proposed categories (Performance and System)
were coherent and consistent independently of listeners’ previous music knowledge. In
spite of these findings, two variables (Musicality and Potential) showed to be correlated
with the opposite category, meaning that Musicality was significantly correlated with
the variables within the System category, and Potential with those of the Performance
category. This can be explained by a certain level of ambiguity in the operationaliza-
tion of these variables in the questionnaire (i.e. the way in which the questions were
formulated). This has occurred despite the musical background of listeners. The out-
come of this first study, however, helped us to rearrange the variables according to their
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coherence, making them a good fit for our next study on implicit PhyComp with the
b-Reactable. The ANOVA, on the other hand, showed that the evaluation of DMIs
through the questionnaire is sensitive to participants’ music knowledge. In this regard,
certain musical background facilitates a proper understanding of the framework and the
questionnaire. We also have to mention that the disparities between groups (LMK was
half of the size of the HMK group) represents a limitation in this study, therefore we
cannot fully describe the real impact of musical knowledge in the empirical use of the
proposed framework. In sum, future studies using our framework should address simi-
lar educational settings, bigger group sizes, and music knowledge should be normalized.
Moreover, the addition of qualitative tools such as interviews and open questionnaires
could complement statistical validity (as will be seen in the next Chapter). This could
bring a better understanding of how the proposed framework can contribute to improve
the DMI design process, beyond the natural enhancement resulting from mere iteration.

5.4.2. Analysis of the Initial Objectives

As stated in the Section 5.3, the main objectives of this course/deployment covered
design, pedagogical and research issues. From the designs and pedagogical perspectives,
the focus was on the role of Expressiveness and Mapping in the DMI design process,
and on the value of our evaluation tools to feedback meaningful information to the
iterative design process. In this regard, the Case Study has shown that the students
got actively engaged in a design process, with the evaluation informing the development
of prototypes. Although only 3 out of 11 projects reached significant di�erences when
comparing the 2 design stages, almost all DMIs showed improvements after iteration. A
bigger and equilibrated sample will help to reflect the contributions of these evaluation
tools in the design process.

It is also worthy to discuss to what extent the design guidelines imposed during the
course either constrained or helped students to focus on core aspects of the DMI design
chain. In this sense, the fact that all groups achieved operative DMIs shows that the
proposed guidelines helped to leverage the students’ background, fostering collaboration
between students with di�erent skills. Our research goals, on the other hand, aimed
at studying how these methodologies can cover di�erent stakeholders. Although we
present methodologies mainly focused on listeners and their music knowledge (meaning
that although all participants exerted the 3 roles, they only evaluated from what they
heard from their colleagues performers, without testing the other DMIs themselves)
the results show the relevance of listeners’ perception for informing iterative design
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of DMIs. Future studies should broaden the scope of this study by also considering
designers and performers. Finally, the internal analysis of each project was not covered
by this study. Since we did not analyze the relation between the implementations and
the feedback received, no conclusion can be taken on the interactions between mapping
and expressiveness at this point. Data was collected in this regard, in the form of
smartphones GUIs, Pd patches (which incorporated all the mappings), video recordings
and written reports, so future work can be devoted to such analysis.

5.4.3. Guidelines for future work

A number of guidelines for future work can be envisioned in response to the faced
challenges and problems. Firstly, the proposed evaluation tools have to be tested in
di�erent NIME design scenarios (e.g. workshops) beyond the specific master course
presented in this Chapter. Regarding the grouping of participants by music knowledge,
experimental groups should be leveraged for achieving better statistical validation, and
for analyzing in depth the e�ect of musical background in the design, performance and
evaluation process. In the same direction, the roles of designer and performer could be
detached and analyzed separately, together with the influence of music knowledge for
both stakeholders. In this regard, we envision an experiment where performers could
select their favorite DMIs designed by other working groups and perform with them for
later evaluation as performers. Concerning the design guidelines, the proposed methods
should be tested with other design constraints, and future work should also deal with
the analysis of the DMIs themselves, to go beyond listeners’ perception.

Finally, it is important to mention that the study presented in this Chapter represents
a first step in the creation of a NIME design and evaluation framework. Our current
approach could be complemented and expanded with qualitative methods such as in-
terviews and focus groups. In fact, we have been applying this framework in a master
course for the last two years, extending the evaluation from the listener perspective to
the standpoint of designers and performers, including interviews group discussions.

5.5. Conclusion & next steps

In this Chapter we have presented a framework for NIME design and evaluation meant
to inform the iterative design processes. These methods have been applied in a Case
Study focused on the exploration of expressiveness and mapping as crucial components
in the NIME creation chain, and making use of a quite restrictive setup consisting

157



5. A Methodological Framework for Designing and Evaluating NIME

only of smart-phones controllers and the Pd programming language. Working groups
were formed, and a 2-step DMI design process was applied, including 2 performance
stages. The evaluation tools assess both System and Performance aspects of each DMI,
according to listeners’ impressions during each performance stage. Listeners’ previous
music knowledge was also considered.

The learning and knowledge that we have gained through this iterative methodology is
threefold:

1. All the students (some of whom had never performed music, neither programmed
computers) were able to e�ectively engage in the NIME design processes, being
able to develop working DMIs that fulfilled all the asked requirements;

2. The assessment tools proved to be a consistent method for the evaluation of systems
and performances, in the context of our master course.

3. The fact of informing the design processes with the outcome of the evaluation,
showed a traceable progress in the students’ outcomes.

Although these findings were obtained in the specific context of a NIME course, we
believe that several of these solutions and learnings could be extrapolated to more generic
contexts, being other NIME or even HCI courses, and used to inform teachers, designers
and practitioners in general. Our next Chapter will therefore leverage on this design
and evaluation framework to determine to what extent implicit PhyComp is perceived
as a meaningful component of a DMI, through which the player can produce musical
processes that, being expected or unexpected, contribute to the creative task she/he is
committed to.
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Physiological Computing

This Chapter addresses the issue of meaningfulness that, together with per-
ceptualization and mapping complexity, constitutes one of the main aspects of
physiology-based implicit sonic interaction in the context of this dissertation.
The goal of this Chapter is to systematically explore how implicit PhyComp
contributes to the design of a digital musical instrument (DMI) in a mean-
ingful way, implying that it will be perceived as an expressive component of
the DMI, through which the player is able to produce musical processes that,
being expected or unexpected, contribute to the creative task she/he is com-
mitted to. In order to do so, we create a new version of the b-Reactable, that
incorporates a number of features informed by the results of our previous
experiments in perceptualization and physiology-to-sound mapping, namely a
parameter mapping approach, end-user personalization of physiopucks, and
a more complex implicit psychophysiological input (valence and arousal es-
timated through EEG).

We test this new incarnation of the b-Reactable in an expressive context
(i.e. music performance) involving 15 participants with di�erent levels of
music experience (novice, knowledgeable and expert) who perform musical
improvisation exercises under two conditions (Global and Local implicit in-
teraction). Four di�erent measures are collected for evaluating user experi-
ence and meaningfulness: a�ective data (valence/arousal) estimated through
EEG, behavioral data (based on the use of the physiopucks), System and Per-
formance aspects of the DMI (in accordance with the framework defined in
Chapter 5) and open interviews on user experience.

The main results show that our a�ective estimations are valid for the con-
text of music performance, and that participants use these implicit sonic
interactions (both Global and Local) in a distinctive and meaningful man-
ner. Subjective, behavioral and psychophysiological data show that Global
and Local implicit interaction are perceived in significantly di�erent ways
according to participants’ previous musical experience, with preference for
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the latter.

6.1. Introduction and motivation

In the previous Chapter we have proposed and tested a framework for the design and
evaluation of new interfaces for musical expression (NIME), also meant to inform teach-
ing and iterative design processes. By assessing System and Performance components
of digital musical instruments (DMI), this framework o�ers methodological tools to sys-
tematically explore how physiology-based implicit interaction could contribute to NIME
design in a meaningful way, implying that it will be perceived as an expressive compo-
nent of the DMI, through which the player is able to produce musical processes that,
being expected or unexpected, contribute to the creative task she/he is committed to.

At this point, it is important to recall the outcomes of our first study with the b-
Reactable (Chapter 3). It shows that physiology-driven sonic interactions embedded in
physiopucks improve user experience in terms of motivation. However, its sonic designs
were rather simple and limited in terms of expressiveness (white noise shaped by EEG
alpha activity and BPM control of the overall music composition through ECG), and we
did not directly assessed how meaningful these specific sonic designs were for performing
music, according to players with di�erent musical background.

Guided by the perceptualization and mapping complexity findings presented in Chapter
4, we are now in a better position to integrate new sonic strategies into the b-Reactable to
further study the meaningfulness of physiology-driven, implicit interaction in a musical
context. In order to do so, we update the b-Reactable with the following features:

• Perceptualization: the tangible objects used to deploy physiology-based sonic inter-
actions (physiopucks) now work under a parameter mapping approach (the sonic
design that showed better perceptualization in Chapter 4) based on transposing
a�ective states (valence/arousal) into a sound output according to timbre charac-
teristics. As end-user personalization has shown to improve the perceptualization
of implicit sonic interactions, we add a feature called Gain, that allows players to
interpolate between physiological and gesture input, thus fostering multimodality.

• Mapping complexity: we use a two-dimensional representation of user a�ective
states (valence/arousal) estimated through EEG, as implicit physiological input.
This is a more complex data stream compared to the one used in the first prototype
(EEG alpha activity). Given that the manner in which sonic interactions are con-
trolled constitutes a crucial component in the NIMEs creation chain (see Chapter
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5), two implicit interaction strategies are applied for driving sound through Phy-
Comp (i.e. Global and Local implicit interactions).

We test this new incarnation of the b-Reactable in an expressive context (i.e. music im-
provisation) involving novice (N), knowledgeable (K) and expert (E) musicians. More-
over, we also ran comparative studies with the standard Reactable, as we did in Chapter
3. Participants are asked to perform musical improvisation exercises under two con-
ditions, defined by the above mentioned sonic implicit interactions (Global and Local).
Four di�erent measures were collected for evaluating user experience and meaningfulness:

• M1: a�ective data (self-reported and physiological measures of valence and arousal)
• M2: behavioral data, based on the use of the physiopucks
• M3: system and performance aspects of the DMI, as defined by the framework

presented in Chapter 5.
• M4: open interviews on user experience

Our main hypotheses are:
• H1: Players will be able to perceive the provided physiology-based implicit sonic

interactions based on valence and arousal.
• H2: Players will perceive these sonic interaction as a meaningful music resource

during performance.
• H3: Players’ perception and preference on sonic interaction will vary according to

their music knowledge.
This chapter is structured as follows. We first provide a short summary on specific topics
(feedback design in PhyComp, EEG and emotion estimation, expressiveness and HCI)
that although are present all across this dissertation, will help the reader to put the
study in context. Then we provide a detailed description of the new b-Reactable and its
implementation, followed by the use case definition, methods and experimental protocol.
We then present the results of the experiment and conclude discussing the main findings
of this study and future work.

6.2. Context

6.2.1. Feedback design for physiology-based implicit interaction

As shown in our initial study with the b-Reactable (Chapter 3) and in the perceptual-
ization experiments of Chapter 4, when an interactive system uses physiological activity
(e.g. EEG) to implicitly and indirectly drive sonic interactions in real time, feedback
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design becomes crucial. As explained in Chapter 2, the feedback design process in Phy-
Comp is traditionally defined by its directionality. In this sense, research e�orts have
mainly focused on two modes: positive and negative feedback control1[Carver et al.,
2000] and their combination, as they are not mutually exclusive. Negative feedback
creates behavioral stability by reducing the discrepancy between the input state (e.g.
physiological correlate of engagement) and a desired standard (a given level of engage-
ment). Negative feedback is ideal for adaptive systems that are designed to keep the
user in the flow [Csikszentmihalyi and Csikzentmihaly, 1991]. Think for instance on a
first-person shooter; negative feedback would be desirable for parents that will like to
keep the stress of their children low if they game becomes too challenging (i.e. more user
stress, less di�culty).

Positive feedback, on the contrary, is designed to amplify the discrepancy between the
input state and the desired state in an exponential fashion. This leads to performance
instability, and it may therefore be used to adjust the desired target state upwards as
the user becomes more involved with the task. If we go back to the fist-person shooter
example, positive feedback would be preferred by a gamer willing to improve her game
skills (i.e. more perceived di�culty will trigger more challenging obstacles).

Both types of feedback can be combined for toggling unstable episodes of skill acquisi-
tion (positive feedback) and stable moments for skill consolidation (negative feedback).
Design decisions in this regard are essential, especially for goal-oriented HCI domains
such as video games or training applications.

However, together with feedback directionality, the dimension of feedback complexity is
also of utter importance, as demonstrated in Chapter 4. In the concrete case of SID
for implicit PhyComp, this complexity is defined by the number of physiological inputs
and sound parameters used to produce and display system adaptations. In this Chap-
ter we explore this dimension because, whereas directionality is particularly important
when the agenda of the system is based on training (e.g. biofeedback) or a goal oriented
application (e.g. an adaptive video game), feedback complexity plays a major role when
PhyComp coexists with other input methods (e.g. tangible interaction, as in the case of
the b-Reactable), and in expressive HCI domains like NIME. As pointed out by Jordà
and Mealla [2014], mapping strategies are crucial for expression and for domains where
content exploration or creation are as relevant as task solving. In this context, for in-
stance, a performer playing alone might prefer a physiology-to-sound mapping with a
great complexity to drive several musical operations overtly and automatically, while fo-

1For a comprehensive re- view on this topic, please refer to Fairclough [2009]
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cusing on specific musical aspects explicitly. For collaborative performance, on the other
hand, a reduced complexity might be preferred for avoiding undesired sonic outcomes.

6.2.2. Music, EEG and emotion estimation

According to Scherer and colleagues [1984], emotions can be conceived as a process that
consists of various components: cognitive appraisal, physiological activation, motor ex-
pression, behavior intentions, and subjective feeling. Emotional states can be therefore
described as particular configurations of these components. For a long time, cognitive
sciences have been studying the foundations of emotions. More recently, computational
models have also been proposed and applied in several domains such as music [Schubert,
1999], body movement [Castellano et al., 2007], and films [Fredrickson and Branigan,
2005]. There are distinct approaches and techniques used to generate music with appro-
priate a�ective content. For instance, Livingstone and Brown [2007] established relations
between music features and emotions, based on the findings of earlier studies by Emery
Schubert [1999]. To this end, both emotions and a set of musical structural rules were
represented in a two-dimensional emotion space with an octal form (see Figure 6.1) know
as the circumplex model of a�ect, as proposed by Russell [1980]. Each emotional expres-
sion is placed at an approximate point in a two dimensional emotion space constituted
by valence (positive and negative) and arousal (active and passive) levels.

A recent work by Cichocki BCI lab [Valenzi et al., 2014] compares state-of-the-art algo-
rithms and electrode placement for emotion estimation. It confirms the well established
findings that frontal EEG alpha asymmetry is linked to the withdrawal model and can be
used to estimate emotional valence [Davidson et al., 1990]. Valenzi’s classification also
shows the known association between higher brain activity (arousal) and lower alpha
band activation [Lindsley and Wicke, 1974]. Several a�ective estimation systems have
been implemented following these considerations, both o�ine [Takahashi, 2004, Bos,
2006, Petrantonakis and Hadjileontiadis, 2010], and online [Ramirez and Vamvakousis,
2012, Lin et al., 2010].

6.2.3. Expressiveness in NIME and HCI

As mentioned in the introduction of this Chapter and as discussed in Chapter 5, expres-
siveness plays a major role in the perception of a given input method as a meaningful
component of a DMI. In fact, previous studies on HCI have stressed on the importance
of expressiveness for designing interactive systems [Dearden and Harrison, 1997], for
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Figure 6.1.: The primary music-emotion structural rules graphed on the Two Dimen-
sional Emotion Space [Livingstone et al., 2007]

real-time audiovisual performances [Hook et al., 2011], or to inform the design of con-
trol surfaces [Bodanzky, 2012]. However, the assessment of expressiveness in PhyComp
systems remains almost unexplored. As mentioned in Chapter 2, most of the evaluation
of PhyComp systems from an HCI perspective have focused on control and perceptual
aspects in task oriented applications, as in the case of video games [Allison et al., 2007,
Nacke et al., 2011, Nijholt et al., 2009]. This has brought valuable information about
the integration of PhyComp into interactive systems, user preference and multimodal
control. However, assessment of expressiveness in domain-specific contexts (e.g. NIME)
is still pretty much uncovered, with the exception of biomedical studies on expressive
EMG-based control of prosthetic devices [Shenoy et al., 2008].

As shown in Chapter 5, NIME provides a valuable corpus for understanding the role of
expressiveness in interface design, HCI and computer music. These e�orts have shaped
NIME methodologies and design frameworks like the one presented in this disserta-
tion, that aim to explore the potential and diversity of new digital musical instruments
and sonic interactions, focusing on the expressive possibilities these interfaces can o�er.
By deploying PhyComp in a NIME context, we can then explore its expressiveness in
depth, looking at System and Performance aspects, as proposed by our NIME design
and evaluation framework (i.e. mapping and synthesis richness, potential, musicality,
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expressiveness, and virtuosity). In this manner, we can analyze how each of these prop-
erties support di�erent user needs, such as the ones desirable in a instrument for novices,
or the ones required for developing virtuosity. NIME thus appears as a perfect candidate
for exploring the expressive possibilities of implicit PhyComp, and for studying it in a
context that goes beyond goal-oriented scenarios. It is important to note that very few
studies have been carried out in this direction, as most of the work on the intersection
of NIME and PhyComp focuses on technical development, prototyping and interface
design, and tend to elude the delicate issue of how to better attain expressiveness or
how to empirically evaluate it.

6.3. Materials and methods

6.3.1. System design

In this section we describe the main aspects of the new version of the b-Reactable, in-
cluding physiological signal acquisition and treatment, a�ective classifiers, sound display
and implicit interaction strategies. From an interaction design perspective, three main
goals drove our design process:

• Robust signal acquisition with care on ergonomics: the accurate measurement and
processing of user’s physiological signals are central for any PhyComp system.
That can be achieved by combining professional physiological sensing hardware
and previously validated processing algorithms. However, this type of equipment
tends to be rather restrictive and invasive for music performers. In order to cope
with these constraints, we use a Mitsar-EEG 201 amplifier2, which complies with
high monitoring standards, but still constitutes a portable solution for out of the
lab EEG recordings.

• Perceptible physiology-based sonic interaction: following the outcomes of our per-
ceptualization and mapping complexity studies (Chapter 4) we aim to design a DMI
where implicit PhyComp interaction will be coherently perceived by participants,
and will be meaningfully applied in a musical context. Since the link between mu-
sic and emotions has been su�ciently demonstrated (see Section 6.2.2) we decide
to estimate the real time a�ective response of participants (valence and arousal)
from the EEG, and apply them to drive sound processors implicitly.

2http://www.mitsar-medical.com/eeg-machine/eeg-amplifier-201/ (accessed on Octo-
ber, 2015)
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Figure 6.2.: The updated b-Reactable: system architecture diagram.

• Multimodal control and personalization: based on the a�ordances shown by the first
b-Reactable for combining implicit physiological control with other input methods
(i.e. gestures), in this study we go further, studying the preference among di�erent
implicit interaction modes, and comparing them with tangible interaction. As
in Chapter 3, this is done by using the Reactable framework, which supports
both tangible and multitouch inputs, and which has been widely used in music
performance.

Figure 6.2 shows the main components of the system architecture.

6.3.2. Physiological signal acquisition and processing

Brain activity from participants is measured with a 21-channel EEG amplifier (Mitsar-
EEG 201). The amplifier is interfaced to a desktop computer via USB at a sampling rate
of 500Hz. A five-meters length secure wired connection allows the player to stand in
front of the b-Reactable without the need of being stuck close to the amplifier. Sintered
Ag\AgCl electrodes are placed in the player’s scalp using conductive gel and an elastic
cap (MCSCap) with plastic holders positioned according to the 10-20 International Sys-
tem [Homan et al., 1987]. We use F3 and F4 electrodes for recording, whereas Cz was
used as reference. Unipolar recording is performed using the EEGStudio software3. The
signal is band-pass filtered between 0.5 and 30Hz in real time, using a notch filter to

3http://www.mitsar-medical.com/eeg-software/erp-software/ (accessed October, 2015).
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eliminate environmental noise. ICA decomposition of raw EEG is also applied for eye
movement suppression. An FFT conversion with a size of 500 samples is applied to treat
the signal in the frequency domain, and to calculate alpha and beta power spectrums.
For reducing the e�ect of movement artifacts, we relied on alpha/beta ratios, adaptive
rectification (max/min value updating) and a 5-second averaging window to smooth the
signal.

6.3.3. Valence and arousal estimation

In line with the considerations mentioned in Section 6.2.2, we apply a two-dimensional
a�ective model based on valence and arousal indexes (V/A), well-known within emotion
research [Bradley and Lang, 1994]. V/A indexes are estimated as following: we use
1-second blocks transformed by FFT to the frequency domain. Relative power of alpha
(8 ≠ 13Hz) and beta (13 ≠ 30Hz) bands are calculated for F3 and F4 channels. The use
of F3 and F4 is meant to reduce montage time, and it is consistent with previous work
on real time V/A estimation [Ramirez and Vamvakousis, 2012]. The valence estimator
is calculated as:

EEG
val

= F3
alpha

/F3
beta

≠ F4
alpha

/F4
beta

(6.1)

The arousal estimator is calculated as:

EEG
aro

= (F4
beta

+ F3
beta

)/(F4
alpha

+ F3
alpha

) (6.2)

The first 20 seconds of the recording are used to calculate initial max and min values
for the estimator (mean +/ ≠ 1‡). During the task, this 20-second bu�er is updated
with new values, and new max/min are recalculated every second. The values above
max/min are rectified to extreme values. The estimated V/A values are then normal-
ized to a range of 1..9. Finally, a 5-second moving average is applied to assure smooth
changes of the data sent to the sonic engine. Previous a�ective estimations were devel-
oped and validated following the same model. Takahashi [2004] and Petrantonakis and
Hadjileontiadis [2010] applied it for emotion recognition using multi-modal bio-potential
(EEG, skin conductance, and face recognition), and Bos [2006] validated this approach
using the IAPS and IADS databases, two libraries that contain emotion-annotated im-
ages and sounds respectively, which are widely used in emotion research [Lang et al.,
1999, Lang and Bradley, 1999].
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Figure 6.3.: Reactable sound processors capable to be controlled through physiology-
based implicit interaction mappings. From left to right: low-pass filter, a
delay, distortion and chorus. The upper and lower texts indicate their two
control parameters.

6.3.4. Mapping design

Following previous research on the a�ective potential of musical parameters such as
tempo, loudness, timing, timbre or vibrato [Juslin, 1997] and our own studies on percep-
tualization (see Chapter 4), we apply a parameter mapping strategy based on transposing
a�ective states into a sound output according to timbre characteristics. The mapping
is created ad hoc by applying two bi-linear interpolations that associated the four ex-
treme coordinates of the two-dimensional V/A space, to the four extreme coordinates
of a two-dimensional sound parameter space defined by P1 ≠ P2, where P1 and P2 are
directly proportional to V/A (see Figure 6.4). Mathematically, the desired interpolation
point is calculated as:
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Where x and y corresponds to valence and arousal respectively, and the fourf(Q)’s
are the known extreme values of the sound parameter space. We use this mapping to
control four sound processors in the Reactable: a low-pass filter, a delay, a chorus and a
distortion (see Figure 6.3). The mapping for each one is defined as follows:

• Filter:

– Valence-Arousal (-1,-1) to Cut O�-Resonance (10,0)
– Valence-Arousal (-1,1) to Cut O�-Resonance (10,1)
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– Valence-Arousal (1,-1) to Cut O�-Resonance (127,0)

– Valence-Arousal (1,1) to Cut O�-Resonance (127,1)

• Delay:

– Valence-Arousal (-1,-1) to Delay Time-Feedback Amount (0,0)

– Valence-Arousal (-1,1) to Delay Time-Feedback Amount (0,1)

– Valence-Arousal (1,-1) to Delay Time-Feedback Amount (8,0)

– Valence-Arousal (1,1) to Delay Time-Feedback Amount (8,1)

• Distortion:

– Valence-Arousal (-1,-1) to Main Parameter-Dry/Wet (0,0)

– Valence-Arousal (-1,1) to Main Parameter-Dry/Wet (0,1)

– Valence-Arousal (1,-1) Main Parameter-Dry/Wet (4,0)

– Valence-Arousal (1,1) to Main Parameter-Dry/Wet (4,1)

• Modulator/Chorus:

– Valence-Arousal (-1,-1) to Main Parameter-Dry/Wet (0,0)

– Valence-Arousal (-1,1) to Main Parameter-Dry/Wet (0,1)

– Valence-Arousal (1,-1) to Main Parameter-Dry/Wet (10,0)

– Valence-Arousal (1,1) to Main Parameter-Dry/Wet (10,1)

For instance, for the low-pass filter, its two parameters P1 (frequency cut-o�) and P2
(resonance) increase when the player’s arousal augments. Accordingly, when the player’s
valence goes from ≠ to +, P1 and P2 will also increase.

6.3.5. Integration into the Reactable framework

Given the Reactable’s modular approach, the integration of the above mentioned phys-
iological control mapping is straightforward. Two new pucks (Physiopucks) are added
to a standard Reactable, allowing players to deploy implicit physiological interaction
without penalizing the standard Reactable performance mechanisms (i.e. controlling
sound processes by means of tangible pucks and hand gestures). The control mappings
are presented in detail in the following section. The additional software component that
bridges the physiological parameters with the main Reactable software was programmed
in Pure Data (Pd).
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Figure 6.4.: Mapping for indirect physiological control: Player’s a�ective states are trans-
posed to sound parameters via two coupled bi-linear interpolators.

6.3.6. Global and Local implicit interaction

The b-Reactable presents two di�erent implicit interaction modes based on a�ective data:
Global and Local. The Global implicit interaction (GII) is represented by a squared-
shape physiopuck (figure 6.5 A). When the player places it on top of the interface, the
parameters of all sound processors running in the tabletop at that moment are driven by
the player’s V/A. Local implicit interaction (LII), on the other hand, is represented by
a circular physiopuck (Figure 6.5 B), and it only a�ects the parameters of the processor
closer to its position. Both physiopucks feature a Gain parameter that permits to
modify and personalize the extent to which V/A mappings a�ect sound processors in
the Reactable. The Gain matches gesture and V/A inputs according to the interpolation
formula:

P
V A

◊G + P
T AN

◊(1≠G) (6.4)

Where P
V A

is the V/A parameter calculated after the bi-linear interpolation, G is the
gain and P

T AN

is the tangible parameter set by the player. When the Gain is at its
maximum, the parameters of sound processors are fully controlled by V/A estimations.
With the Gain at zero, sound processors are only controlled by gesture inputs, as in
the standard Reactable. For intermediate Gain configurations, the parameter values of
sound processors are the result of an interpolation between tangible settings and V/A
estimations.

As shown in figure 6.5, the Gain is controlled di�erently for GII and LII. In the former,
the Gain is controlled by rotating the object. When rotating clockwise (G towards 1),
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Figure 6.5.: Left panel: Global implicit interaction physiopuck (GII) a�ects all proces-
sors. Right panel: Local implicit interaction physiopuck (LII) a�ects only
the closest processor

V/A is favored for driving sound processors. When rotating anti-clockwise (G towards
0) gesture control is favored instead. In the case of LII, the Gain amount depends on
the distance between the physiopuck and its target (see figure 6.5 B), so that the closer
the two pucks are, the greater is the Gain. LII works as a relative controller, as V/A
estimations control a delta increase or decrease over the instantaneous value set by the
user on the target music processor.

This design approach is inspired by the design guidelines of the standard Reactable,
whose controllers also respond to global or local parameters (among others), and use the
same puck shapes to make them readable and intuitive for users. This design strategy
allows a seamless and coherent integration of implicit physiological interaction into the
musical interface, without restricting gesture control. It also provides a moderation of
over-corrective activation of the feedback loop, which is a key issue in PhyComp design
for not constraining players’ self-regulation of behavior and emotion to an excessive
degree [Fairclough, 2009]. It is also important for expert performers of the conventional
Reactable, which are used to control the interface by means of tangible and gesture
inputs.
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6.3.7. Case study with musicians

To validate our hypotheses, we designed a study with musicians performing improvisation
tasks with b-Reactable in its two implicit interaction modalities (GII and LII).

Sample, setup and task design

Fifteen participants (12 males, mean age 29, SD = 9), all of them with a declared expe-
rience playing digital musical instruments, performed with our system in its two setups:
GII and LII. Each setup implied two music improvisation tasks where participants had
to achieve a given V/A target, in terms of how the resulting sound would be perceived
by an hypothetical listener : (1) high arousal - high valence composition (HAHV), and
(2) low arousal - low valence composition (LALV). This V/A target were based on previ-
ous studies on emotion analysis using physiological signals [Koelstra et al., 2012]. Both
setup and task order were randomized among participants. The study was conducted in
accordance with the Declaration of Helsinki.

Measures

During the experiment we collected six types of measures:

1. Musical experience: self-reported measures on musical knowledge and previous
experience playing the Reactable.

2. A�ective data (EEG): V/A estimations based on EEG recordings (as explained in
Section 6.3.3)

3. A�ective data (subjective): self- reported V/A using the Self-Assessment Manikin
(SAM) [Bradley and Lang, 1994].

4. Behavioral data: log files corresponding to the usage of the physiopucks’ Gain in
the two setups (GII and LII), including both the amount of implicit interaction
Gain set by the user, and the Homogeneity of Gain values along each task (i.e.
how much the participant changed the gain value during the task).

5. System and Performance aspects of the DMI: as defined by the framework pre-
sented in Chapter 5

6. Open interviews: performed at the end of each session to gather insights about
user experience.
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Figure 6.6.: Players performing with the multimodal musical system

Experimental protocol

Each experiment lasted about an hour; Figure 6.6 shows the setup used in each session,
and Table 6.1 summarizes the protocol. First, the participant received a description
of the experiment, including an explanation about the b-Reactable and its interactions
with V/A states. Then, the participant was placed in a chair and the experimenter
mounted the EEG cap and checked impedance (< 5kOhms). A 2-minute EEG baseline
was recorded during the presentation of a relaxing auditory stimulus (sea waves) whose
playback was triggered by the participant on the b-Reactable. This was followed by an
a�ective state (subjective scale) and musical experience assessment gathered through a
digital questionnaire. The next step was an open ended hands-on experience with the
b-Reactable, assisted by the experimenter. Through it, the participant had the chance
to learn how the system works, to explore the sounds stored in each generator object,
and to try the physiopucks.

After re-checking electrodes impedance (< 5kOhms) Task 1 began, during which the
participant was asked to improvise a musical piece of 5 minutes length, with one of the
2 system setups (GII or LII) following a given V/A target: high arousal - high valence
(HAHV) or low arousal - low valence (LALV). After this first task, a�ective subjective
ratings were assessed again and the impedance was checked (< 5kOhms). This was
followed by Task 2, and once completed, the participant fulfilled again an a�ective sub-
jective assessment, and answered the questionnaire on system and performance aspects
of the DMI.

These two steps were repeated for each system setup (GII and LII), with an additional
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Setup Task 1 Task 2
Global Implicit Interaction high arousal-high valence low arousal-low valence
Local Implicit Interaction high arousal-high valence low arousal-low valence

Tangible high arousal-high valence low arousal-low valence

Table 6.1.: Experimental protocol. Each participant performed two music improvisations
(high arousal-high valence, HAHV, and low arousal-low valence, LALV) with
the b-Reactable in its two setups (Global implicit interaction, GII, and Lo-
cal implicit interaction). A tangible only-condition (T) was added for non
Reactable experts. The order of both tasks and setups were randomized.

Tangible only-condition (T) for non Reactable experts, which implied to perform the
two above mentioned task using the standard Reactable. Each experiment therefore
generated 4 or 6 musical improvisations per participant. At the end of each experiment,
electrodes were removed and a 10-minute block for open questions was carried out to
gather information about user experience.

Data analysis and pre-processing

For analyzing the influence of previous musical experience, we split participants into 3
groups: Novice (N, N = 5) with low experience playing electronic music; Knowledge-
able (K, N = 5), with high electronic music experience but that had never played the
Reactable before; and Expert Reactable users (E, N = 5). We applied a 3-way mixed
MANOVA with previous musical experience as a between-groups factor, and setup (GII
vs. LII) and task (HAHV vs LALV) as within-group factors. We combined 6 measures:
V/A (subjective scale), V/A (EEG estimation, as described in Section 6.3.3), implicit
interaction Gain and Homogeneity. For these multivariate analyses, Wilks� Lambda �
was used as the multivariate criterion. Alpha level was fixed at 0.05 for all statistical
tests. Greenhouse-Geisser correction was used to correct for unequal variances. All data
satisfied the normality criterion as verified by the Kolmogorov-Smirnov test.

For analyzing EEG V/A estimations, we used the estimated values before system cali-
bration (rectification of min and max values and averaging as described in Section 6.3.3).
For each recording, we calculated the means of the first and the last 15 seconds of each
task, and the di�erence values between the two were submitted to the analysis. Hence,
the greater and positive di�erence value meant higher arousal or more positive valence.
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6.4. Results

6.4.1. Validation of affective estimations

While the implemented V/A estimation algorithms were already validated in previous
studies, the baseline recording serves as a good measure to determine the validity of
the applied EEG processing. For valence estimation, the means of the first and last
15 seconds were ≠0.04 and 0.30 respectively (p = 0.05, t(14) = 2.11). For arousal
estimation, the means changed from 1.73 to 1.38 (p = 0.01, t(14) = ≠1.74). Both
estimations showed that, during the relaxation baseline, arousal decreased and valence
changed to more positive.

6.4.2. Differences between setups

The overall e�ect of the setup (GII vs LII) was significant at � = 0.09, F (6, 7) =
11.22, p < 0.003, ÷̂2

P

= 0.91. When looking at individual measures, the di�erence in
subjective arousal was significant at F (1, 12) = 4.57, p < 0.05, ÷̂2

P

= 0.28, with the GII
setup having a smaller mean of 4.6(SE = 0.3) as compared to 5.03(SE = 0.26) for
the LII setup. The EEG-based arousal estimation also showed a similar trend, with
greater changes in the LII setup, with a mean of 0.32(SE = 0.22), as compared to
the GII setup with mean of ≠0.21(SE = 0.16). In this regard, a trend for a signifi-
cant di�erence was observed with F (1, 12) = 11.73, p = 0.061, ÷̂2

P

= 0.26. In addition,
behavioral data also showed significant di�erences. For Gain data, the setups di�ered
at F (1, 12) = 12.07, p < 0.005, ÷̂2

P

= 0.5 with means of 0.77(SE = 0.03) for GII vs.
0.56(SE = 0.05) for LII. A similar pattern emerged for Homogeneity data, where signif-
icance was at F (1, 12) = 24.81, p < 0.001, ÷̂2

P

= 0.67 with the means of 0.92(SE = 0.01)
for GII vs. 0.76(SE = 0.03) for LII.

6.4.3. Differences between tasks

The overall e�ect of the task was significant at � = 0.09, F (6, 7) = 12.05, p < 0.002, ÷̂2

P

=
0.91. By looking at each measure, it can be seen that the di�erence between HAHV
and LALV tasks was mainly due to subjective V/A ratings. For arousal it was at
F (1, 12) = 80.83, p < 0.001, ÷̂2

P

= 0.87 with the means of 3.33(SE = 0.26) for LALV
vs. 6.3(SE = 0.38) for the HAHV tasks. For valence it was at F (1, 12) = 10.62, p <

0.01, ÷̂2

P

= 0.47 with the means of 5.23(SE = 0.19) for LALV vs. 6.27(SE500 = 0.24) for
the HAHV tasks. These results confirm the separation of tasks in the Valence-Arousal
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space from a subjective perspective. Gain data also showed a trend to significance with
F (1, 12) = 2.8, p = 0.12, ÷̂2

P

= 0.19, with means of 0.69(SE = 0.03) for the LALV vs.
0.64(SE = 0.04) for the HAHV task.

6.4.4. Interaction between setup and task factors

As shown in Figure 6.7 (right panel), from all measures only EEG-based valence esti-
mation showed a significant interaction between setup and task at F (1, 12) = 6.16, p <

0.05, ÷̂2

P

= 0.34. Whereas for the GII setup there was no di�erence between the LALV
and HAHV tasks (0.04 vs. 0.04), a di�erence was found for LII (-0.11 vs. 0.22). In ad-
dition, subjective arousal showed a trend for a significant e�ect at F (1, 12) = 3.67, p =
0.08, ÷̂2

P

= 0.23. In consonance with EEG-based valence, the separation between the
LALV and HAHV tasks were higher for LII (3.33 vs 6.73) than for GII setup (3.33 vs.
5.87) (see Figure 6.7, left panel).

6.4.5. Interaction between setup, task and music experience

The triple interaction between setup (GII vs. LII), task (HAHV vs. LALV) and group
(N, K and E) was significant for subjective valence ratings and EEG-based valence. In the
case of the former, this interaction was significant at F (2, 12) = 6.26, p < 0.05, ÷̂2

P

= 0.51.
Figure 6.8 shows the nature of this interaction, where novices (N) showed a clear di�er-
ence between HAHV and LALV tasks in both setups (GII and LII). The knowledgeable
group (K) showed this pattern only for local implicit interaction (LII), and the experts
group (E) did not show the same level of distinction between tasks.

Similarly, for EEG-based valence the interaction was significant at F (2, 12) = 5.93, p <

0.05, ÷̂2

P

= 0.5, showing that the second group (Knowledgeable) demonstrated the strongest
di�erence between the HAHV and LALV tasks in the LII setup (see Figure 6.9).

6.4.6. Analysis of System and Performance aspects of the DMI

Statistical analysis showed no significant di�erences for System and Performance vari-
ables. Table 6.2 describes the means of both GII and LII setups by music knowledge
group. A Tangible setup (tangible interaction only) was added as a baseline for Novice
and Knowledgeable groups.
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Figure 6.7.: Interactions between setup and task factors for subjective arousal (p = 0.08)
and EEG-based valence (p < 0.05). Low arousal - low valence (LALV), and
high arousal - high valence (HAHV). Error bars represent standard error
values
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(Novice, Knowledgeable and Experts) factors for EEG-based valence (p <
0.02). Error bars represent standard error values.

Setup System Performance
N = 3.60(SE = 0.33) N = 3.00(SE = 0.25)

Tangible K = 3.7(SE = 0.23) K = 3.4(SE = 0.25)
E = ≠ E = ≠

N = 3.60(SE = 0.23) N = 3.20(SE = 0.25)
Global K = 2.95(SE = 0.23) K = 3.00(SE = 0.25)

E = 3.10(SE = 0.23) E = 3.10(SE = 0.25)
N = 3.90(SE = 0.32) N = 3.10(SE = 0.29)

Local K = 3.50(SE = 0.32) K = 3.60(SE = 0.29)
E = 2.80(SE = 0.32) E = 2.80(SE = 0.29)

Table 6.2.: System and Performance aspects of b-Reactable Global and Local setups
for the three experimental groups (N= novice; K= knowledgeable; E= Re-
actable experts). A Tangible condition is included as a baseline for N and K
participants.
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6.4.7. Insights from user experience interviews

Many Novice and Knowledgeable participants (i.e. with scarce or no previous experience
playing Reactable) declared that learning to use the physiopucks and understanding their
working mechanisms was not more di�cult than coping with the standard Reactable
itself:

“After the initial explanation and testing phase, it was easy for me to under-
stand how the physiopucks work.” (P14, Male, Novice).
“I played with the Reactable before and I found the physiopucks working in a
very similar way to the rest of the objects. Their labels and shapes were also
useful for understanding the di�erence between general (Global) and Local
controllers” (P11, Male, Knowledgeable).

Some Knowledgeable participants found the Local implicit interaction (LII) easier to
learn and use compared to the Global implicit interaction (GII):

“You catch the Local controller very fast, as it a�ects specific objects on the
table. It is more straightforward” (P8, Male, Knowledgeable).
“The Global object spreads through the whole surface and it takes some
time to understand how it a�ects all that is happening in the interface at
that moment. This does not happen with the Local object.” (P11, Male,
Knowledgeable).

In the same manner, many participants showed preference for LII over GII:
“Global control had less possibilities than Local control. Local is better
integrated into the Reactable, and it is less restrictive” (P13, Male, Knowl-
edgeable).
“In Global control music events were happening in an unexpected way (...)
in Local control the e�ect was smooth because it controlled only one object”
(P4, Male, Knowledgeable).
“It was easier with Local (implicit interaction) because I could better decide
what to control with the EEG (...) With the Global it was a bit tricky to
have it working in the way I expected” (P10, Female, Novice).

However, some Expert participants stressed on the expressive possibilities of GII or its
combination with LII:

“If you have more or less an idea of what you want to play, I think Global
works better. You just have to dispose the right elements (pucks) on the
table, and then the Global (physiopuck) works as a steering wheel (...) With
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Local you have to pay more attention and adjust it specifically for one object”
(P3, Male, Expert).

“I think the Global mode is more powerful if what you want to do is to
use your a�ective states as an instrument, but I would like to have a mixed
controlled system with Local and Global” (P2, Male, Expert).

In terms of multimodality, LII also stood out as the preferred method for combining
gestural and implicit physiological interaction:

“I never played Reactable before, so I wanted to use it all. For that, I found
Local more friendly” (P14, Male, Novice).

“Combining hand operations and brain (a�ective) states was easier in the
Local mode. Also you can use the Local (physiopuck) as both an EEG input
and a manual controller by changing the gain in a specific direction” (P11,
Male, Knowledgeable)

“(Local Control) works best if you want to take full advantage of Reactable,
meaning using your hands” (P15, Male, Expert).

Comments about feedback perception were mixed. Whereas some participants suggested
that the b-Reactable “could also work for neurofeedback training” (P3, Male, Expert),
or described physiology-driven musical processors as “responding in the direction they
were expecting” (P12, Male, Knowledgeable), others did not perceived the feedback in
a straightforward manner:

“It was di�cult to see the relation between my a�ective responses and the
music (...) I couldn’t plan my performance based only on EEG” (P1, Male,
Expert).

“I felt the need of stronger changes in the music when using brain objects
(physiopucks). That would help to better perceive their e�ect during perfor-
mance” (P2, Male, Expert).

“The mapping design was right, but it was a bit slow. To have a fast response
is important in music performance, otherwise you tend to perceive the brain
signals as random” (P8, Male, Knowledgeable).

Interestingly, players did not highlighted di�erences between GII and LII in terms of
feedback perception. In terms of ergonomics and wearability, one player stressed on the
intrusiveness of the EEG equipment:

“The system is responsive, but not for performing on stage. The equipment
is uncomfortable” (P10, Female, Novice).
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Finally, players suggested a number of system improvements such as a GUI for mapping
personalization (”I would include a graphic interface in order to personalize the a�ective
mapping”, P4, Male, Knowledgeable.”), and the addition of multiple LIIs physiopucks
(”It would be nice to have more Local brain pucks in order to apply them to di�erent
Reactable objects”, P2, Male, 610 Expert).

6.5. Discussion

According to our initial hypotheses, the analysis shows five main results:

1. The proposed implicit sonic interactions were distinctly perceived by participants,
and used di�erently during music performance.

2. Participants applied these sonic interactions (both GII and LII) as a meaningful
component of music performance.

3. Participant’s perception and preference on implicit sonic interaction varied accord-
ing to their previous music knowledge.

4. Local implicit interaction (LLI) achieved better results in terms of physiological
and subjective perception, and favored multimodality compared to GII.

In the following subsections we discuss these aspects in depth.

6.5.1. Performance of affective estimations and physiology-based
implicit interaction setups

One of our main design goals was to achieve a robust real time a�ective estimations
based on EEG. This objective presented a number of technical challenges such as avoid-
ing artifacts caused by the participant’s movement and muscle activity. We aimed at
controlling these factors by utilizing professional hardware for EEG monitoring, using
relative power estimates, and by restricting user movements around the b-Reactable.

The results presented in Section 6.4.1 show that the proposed a�ective estimations were
reliable in a music performance context. The statistical analysis show a significant
decrease of arousal and increase of valence after the relaxation induction (which was
performed by the participant herself using the b-Reactable). Moreover, the between task
analysis show that, regardless of the implicit interaction setup (GII or LII), participants
were able to perform improvisations in the required V/A target (HAHV or LALV).
These findings support our real-time a�ective estimations and task design. However, we
also have to consider that the duration of each task was rather short (5 minutes) and
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HAHV and LALV conditions did not represent extreme a�ective states, which resulted
in smaller di�erences in the EEG recordings.

6.5.2. Meaningful integration of implicit PhyComp in music performance

As the direct assessment of System and Performance aspects did not bring significant
e�ects (see Table 6.2) we have to be cautious on claiming that our implicit sonic in-
teractions were e�ectively perceived as an expressive component of the participants’
performance. However, our study shows that all participants understood the operation
of the sonic implicit interactions, as they were able to perform music improvisations
in the requested a�ective direction, with both GII and LII setups. In fact, the latter
reached better outcomes with greater V/A separations between HAHV and LALV tasks
than GII. Together with the reliability of the a�ective estimations and task design, this
shows a better perception of the sonic feedback coming from LII, supported by the
analysis of subjective arousal and EEG-based valence, as described in the Subsection
6.4.4. The Performance assessment (although not significant) suggests that LII might
be preferred in terms of expressive performance by Novice and Knowledgeable partici-
pants. This trend is also consistent with the open interviews (Section 6.4.7) where these
kind of participants appreciated the way LII was integrated into the b-Reactable, and its
potential for being combined with other input methods (e.g. gesture input).
Considering the above mentioned findings, further investigation is needed to specifically
determine how physiology-driven implicit sonic interactions enhance music expression.
In order to do so, this study could be expanded with a bigger sample, applying longitu-
dinally tests through repeated sessions, and even use other NIME evaluation frameworks
like O’Modhrain [2011]. However, the results of this experiment already suggest that
the combination of implicit PhyComp with di�erent input methods (i.e. tangible objects
and touch) in the musical domain is a promising option for improving multimodality and
unsupervised control. Similarly, we can envision these types of indirect interactions com-
plementing other adaptive systems (e.g. gaming or learning applications) that modify
their content and interface in real time according to the user’s a�ective states without
the need of special training. This approach may have a significant impact in user’s
learning, experience and exploration of data.

6.5.3. The role of music knowledge in implicit interaction preference

The study also shows a predominant role of previous knowledge in the perception and
utilization of physiology-based implicit sonic interaction. Knowledgeable players were
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the ones reporting higher V/A e�ects, precisely by means of LII. This is supported
by the analysis of EEG-based valence estimations, and also consistent with the post-
experimental interviews, where LII was described as “less restrictive”, “better inte-
grated”, “smoother” and “easier to work with”. On the other hand, participants with
deeper Reactable expertise tend to favor GII over LII. This is shown in the comments
gathered after the experiment, and a similar trend can be seen in the System metrics,
(Table 6.2) although they are not significant. This could be explained by the fact that
Experts knew well how to operate the Reactable, and were therefore in a better position
for arranging music operations that would better fit global implicit interaction. As sug-
gested by several participants, GII required some previous idea of the composition to be
performed, in order to reach satisfactory results.

6.5.4. Multimodality and personalization

Together with robust physiological mappings and meaningful interaction, another goal of
our study was to assess the possibilities of Global and Local implicit interaction for mul-
timodal control. In this regard, behavioral data resulting from the use of Physiopucks’s
Gain show that participants used GII and LII in significant di�erent ways.

The use of GII demanded significantly higher Gain than LII (see Section 6.4.2). The
homogeneity of GII was also significantly higher than the LII setup. This means that,
while using GII, participants prioritized implicit physiological control over gesture input.
By doing this, musical processors (filters, delay, distortion and modulators) were driven
by the user a�ective responses, leaving sound generation as the sole gestural operation.
As shown by the open interviews, this has been perceived as a restriction and a control
impairment by Novice and Knowledgeable users. Experts, on the other hand, did not
consider it as a problem, but rather as a global feature that needed to be initialized
and disposed in a specific manner to reach a desired musical outcome. Of course, it
required understanding and skills on the use of the Reactable, something that Novice
and Knowledgeable users did not have.

LII, on the other hand, was operated in a very di�erent manner. It required significantly
lower Gain values, with greater customization than GII (i.e. less homogeneity). Through
this approach, participants also favored multimodal interaction, as lower Gain accounts
for a combination of both physiological implicit and gestural direct control. It is not
surprising therefore that LII was preferred by Novice and Knowledgeable users, who saw
it as less restrictive, smoother and better integrated to the Reactable framework. This
preference is also supported by higher measures of V/A for LII. Finally it is important
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to note that while all the players had the option of not using implicit sonic interactions
by setting the physiopuck’s Gain to zero, none of the participants did so.

6.5.5. Limitations and future work

The study presented in this Chapter also o�ers useful insights for guiding future work
on physiology-based implicit sonic interaction. Participants’ perception was critical for
evaluating sonic designs within an expressive context such as NIME. Although partici-
pants agreed on the convenience of the proposed implicit control mappings, some were
not entirely satisfied with the manner the feedback was presented to them. Concretely,
Expert users requested stronger and faster changes in the sound processors when ap-
plying physiological control. The challenge of providing the expected sonic feedback for
each player could be addressed by improving the current user personalization mecha-
nisms, like adding a graphic user interface (GUI) on the tabletop surface to customize
the V/A-to-Sound Parameters interpolation. As mentioned during the open interviews,
this feature could significantly improve user experience.

As discussed before, the analysis of System and Performance aspects of the b-Reactable
did not show significant e�ects. This is a relevant aspect to be tackled if we aim to
determine the contribution of implicit PhyComp to musical expression. One possible
explanation for the lack of significance in this regard could be the manner in which we
applied the framework, that di�ered from the first framework deployment, presented
in Chapter 5. In that case, we validated the framework from the listener perspective.
But in the experiment presented in this Chapter we applied the framework to assess
the perception of performers. It could be possible that our framework does not reflect
the perception of di�erent stakeholders in the way we expected. To further explore this
scenario we could have listeners evaluating the performances done with the b-Reactable,
following a given valence/arousal target. Such approach would also allow to assess the
congruency between performer and listener perception of musical improvisations. On
the other hand, it is important to consider that the System and Performance assessment,
although not significant, was coherent with the insights gathered form participants dur-
ing the open ended interviews. This could mean that the lack of significant e�ects is
due to the sample size, or the lack of longitudinal studies. In any case, other evaluation
frameworks could be applied to verify the consistency of our current results.

Another aspect that requires further improvement is sensor wearability. Although the
technical setup used for this study accounts for robust signal acquisition, it is not yet
convenient for out-of-the-lab performances. Preparation time is long, moreover partic-
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ipants pointed out the inconvenience of wearing a wired EEG cap for long periods of
time. Less invasive and wireless hardware, such as the Starlab Enobio or Emotiv EPOC,
could be tested in this regard.

Our physiology-driven implicit sonic interactions could be also expanded beyond EEG.
The incorporation of other biopotentials such as EMG, ECG or respiration could be used
to estimate other psychophysiological features (e.g. stress), for strengthen our current
a�ective estimations with multimodal physiological data, or for promoting both explicit
and implicit physiological control, as it has been done for video games [Nacke et al., 2011].
By following this approach, a future version of the b-Reactable could integrate multiple
Local and Global physiopucks responding to di�erent psychophysiological estimations.
Self-regulation and implicit learning could also be further explored by using longer and
repeated sessions. In this manner, we could determine whether participants learn to
control implicit sonic interactions better, in a musical performance context.

As in the case of our first study with b-Reactable (Chapter 3), we could also explore
collaborative and multiuser music performance. In this regard, we envision a setup
with two Emitters using the implicit sonic interactions proposed in this Chapter. This
approach will allow to study aspects such as multi-user adaptation and synchronization.

Finally, it is evident that several aspects of this work are specific to the musical domain.
Whereas music appears as a good candidate for exploring the contributions of implicit
interaction in an expressive context beyond goal oriented tasks, it also imposes specific
constrains in the way control mappings are defined (i.e. controlling sound processors in
the way a modular synthesizer would do) and in users’ previous knowledge. Therefore,
while our study shows significant di�erences between Global and Local implicit inter-
action in music performance, this could be further explored in other domains, ranging
from gaming to learning and big data exploration.

6.6. Conclusion & next steps

In this Chapter we have addressed the issue of meaningfulness that, together with percep-
tualization and mapping complexity, constitutes one of the main aspects of physiology-
based implicit sonic interaction analyzed in this dissertation. A meaningful integration
in a NIME context implies the perception of implicit PhyComp as an expressive com-
ponent of the DMI, through which the player can produce musical processes that, being
expected or unexpected, contribute to the creative task she/he is committed to.

In order to tackle this issue, we have created a new version of the b-Reactable, which
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incorporated a number of features informed by our previous experiments, namely a pa-
rameter mapping approach, end-user personalization of physiopucks, a complex implicit
physiological input (a two-dimensional representation of user a�ective responses esti-
mated through EEG, and two di�erent implicit interaction setups (Global and Local).

We tested this new incarnation of the b-Reactable in an expressive context (i.e. music
performance) involving 15 participants with di�erent levels of music experience (Novice,
Knowledgeable and Expert) who performed musical improvisation exercises under two
conditions, defined by the aforementioned implicit interaction setups (Global and Local).
Four di�erent measures were collected for evaluating user experience and meaningfulness:
a�ective data (V/A), behavioral data (based on the use of the physiopucks), system and
performance aspects of the DMI, and open interviews on user experience.

The main results showed that our a�ective estimations were valid for the context of music
performance, and that participants used these sonic interactions (both Global and Local)
in a comprehensive and meaningful manner. However, System and Performance aspects
of implicit PhyComp in the realm of DMI have to be further explored by analyzing bigger
samples, applying longitudinal studies, and other evaluation frameworks. Subjective,
behavioral and physiological data showed that Global and Local implicit interaction were
perceived in significantly distinctive ways according to participants’ previous musical
experience, with preference for the latter.

With this Chapter we conclude our investigation on sonic interaction design for implicit
PhyComp within the NIME domain. In order to explore other possible uses of this tech-
nology beyond music, in the next Chapter we will apply implicit PhyComp in personal
fabrication processes, presenting a do-it-yourself knitting system based on EEG a�ective
estimations, called NeuroKnitting.
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7. Bonus Track. Implicit Physiological
Computing Beyond Sonic Interaction
Design

This chapter aims to explore implicit Physiological Computing beyond
sonic interaction design and the musical domain. To achieve this goal, we
tackle the field of personal fabrication and present NeuroKnitting, a system
that can be used to create knitted garments according to the users’ a�ec-
tive responses estimated from EEG. We deploy this system in two recording
sessions, from which we extract preliminary insights and design guidelines.
The tests show that Neuroknitting can be used for embodying implicit psy-
chophysiological data into unique, customized physical objects. As every
human being reacts di�erently to a given experience, the knitted patterns
change according to the user and her context. NeuroKnitting thus opens
the door to further structured analyses on aspects such as the perception of
implicitly generated fabrication patterns, and the use of di�erent stimuli to
trigger meaningful user experiences during the fabrication process.

7.1. Introduction

In this Chapter we move away from sonic interaction design (SID) to explore a di�erent
use case for implicit physiological computing (PhyComp). We consider this Chapter
a bonus track, as it does not pursue specific research problems, but rather engages
PhyComp technology in a di�erent context with the goal of identifying design guidelines
that go beyond the musical domain. In order to do so, we focus on personal fabrication,
a field that explores how information relates its physical properties by creating fully
functioning systems that include sensing, logic, actuation, and displays. As expressed
by Gershenfeld [2008]: “the way the world has evolved, hardware has been separated from
software, and channels from their content, but many of the hardest, most challenging,
and most interesting problems lie right at this interface”.
In this context we develop NeuroKnitting, a fabrication system that can be used to create
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knitted garments according to the users’ psychophysiological responses estimated from
EEG measures. We present two versions of NeuroKnitting, based on di�erent fabrica-
tion (i.e. knitting) strategies. The Chapter is structured as follows. We first present
our motivation for approaching the field of personal fabrication, together with relevant
background information. We then introduce the NeuroKnitting system, including all
its technical components (i.e. EEG signal acquisition, processing, fabrication pattern
definition, and knitting process). This is followed by two deployments for testing the
system (patterns through Bach’s Goldberg variations, and demos at the Maker Faire
Rome). Finally, we discuss the main insights gathered in each deployment.

7.2. Motivation

The recent years have shown significant advances in techniques for do-it-yourself (DIY)
digital fabrication such as 3D printing and laser cutting, promoting low-cost, high-speed
and high-quality physical production and prototyping. This scenario, together with
the expansion of open-hardware platforms such as Arduino1 and the Raspberry Pi2, also
provoked an increasing interest among di�erent research fields, such as HCI [Willis et al.,
2011] and end-user communities as the Maker movement, that can now access to a broad
set of tools and techniques to create proof of concepts without recurring to specialized
and expensive equipment.

As personal fabrication gets more popular and spread, a wide new range of services for
designing and manufacturing is emerging. This scenario accounts for new possibilities
of making and disseminating, where the phenomena that Lipson and Kurman called “a
factory at home” and “one-person industries” is not anymore a vision of the future but
a fact [Lipson and Kurman, 2010].

Although personal fabrication has empowered end-users and non-expert communities
-encouraging activities around the DIY mindset as in the case of the Maker Faire3- the
production of new content and new fabrication methods do not seem to advance at the
same pace. The open nature and a�ordability of several fabrication tools provides an
exciting opportunity to explore new ways to produce home-brew, personal content and
to interact with di�erent sources of data. However, most of the creations within these
communities are still based on the replication of pre-existent objects, or on the adaptation
of methods and patterns previously developed in other fields, such as architecture and

1https://www.arduino.cc/ (accessed on October, 2015).
2https://www.raspberrypi.org/ (accessed on October, 2015).
3http://makerfaire.com/ (accessed on October, 2015).
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industrial design. This trend can be clearly observed in the online digital database
Thingiverse4, where most of the user experience is based on sharing and replicating
fabrication models, with very little space for customization5.

In the quest for finding new methods to create alternative fabrication patterns, the
field of PhyComp stands out. As described in Chapter 2, the recent advance in human
physiological sensing and signal processing techniques have fostered the development of
non-invasive systems that allow to measure and interpret brain activity, heart rate and
skin conductance, among others, for estimating di�erent psychophysiological states. As
in the case of personal fabrication technology, an increasing number of consumer of-
the-shelf devices and open source platforms have brought PhyComp out of specialized
laboratories and closer to real life conditions. Systems like the Emotiv EPOC6 and
NeuroSky’s Mindwave7, together with open hardware initiatives such as the BITalino8

are currently bridging the gap between PhyComp and the maker community.

In this context we present NeuroKnitting, a modified knitting machine, created together
with the artists Varvara Guljajeva and Mar Canet, for generating garments according
to the users’ psychophysiological response to a given experience. In NeuroKnitting,
PhyComp technology is at the core of the fabrication process. It presents methods to
acquire EEG signals in real time and to estimate a�ective states that are later used
for creating personalized garments. Through this approach, we tackle the problem of
generating novel and personalized fabrication patterns, creating unique pieces capable
of embodying the physiological traits of human experience.

7.3. Background

Although PhyComp o�ers the unique opportunity of accessing to our a�ective, perceptive
and cognitive states in real time, there are very few initiatives that bring together human
physiology and personal fabrication. McGrath and colleagues created the NeuroMarker
[2012], an artwork that playfully implements the concept of translating designer’s ideas
into a product. Visitors are invited to use their own raw EEG to fabricate personal-
ized physical objects. However, the NeuroMarker do not aim at extracting high level

4https://www.thingiverse.com/ (accessed on October, 2015).
5In this regard, personal fabrication platforms have recently put more e�ort in enabling end-user cus-

tomization tools, as in the case of Thingiverse’s Customizer, which lets anyone personalize 3D print-
able designs created with OpenSCAD.

6https://emotiv.com/epoc.php (accessed on October, 2015).
7http://store.neurosky.com/products/mindwave-1 (accessed on October, 2015)
8http://www.bitalino.com/ (accessed on October, 2015).
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representations of brain activity, thus no link between EEG and psychophysiological
states can be traced. More recently, the company Thinker Thing presented Objects from
Thought9, a project that interfaces EEG equipment with 3D printing machines using
a set of images as emotional stimuli. Although this project utilizes EEG to identify
emotional responses, the algorithms for signal processing and mapping are not described
in the current documentation.

A remarkable case of the intersection between personal fabrication and PhyComp is
Stephen Barrass’ Hypertension, a project where a singing bowl is shaped from a year of
blood pressure readings, producing an individual and unique object [2015]. The bowl,
digitally fabricated in stainless steel, is also an acoustic object that produces a tone when
rubbed with a wooden puja stick. In this way, the object is unique both in terms of shape
and in the sounds it generates, directly related to the person from whom the readings
were taken. Although Hypertension does not make use of real time physiological data,
it represents an interesting case of physiology-based fabrication using meaningful data.

7.4. The NeuroKnitting prototype

NeuroKnitting was built with the aim of placing PhyComp at the core of a personal
fabrication process. NeuroKnitting measures psychophysiological responses to a given
stimuli by means of EEG, and produces a knitting pattern for the creation of garments.
The system is composed of three main modules, as showed in Figure 7.1: (i) signal
acquisition, (ii) signal processing, and (iii) fabrication. The latter includes a pattern
generation software and the Knitic open-hardware framework for controlling a knitting
machine via Arduino.

7.4.1. EEG signal acquisition and toolbox for processing

Leveraging on the methods and techniques applied and validated in Chapter 4, EEG
data is acquired using the Emotiv EPOC, a wireless, non-invasive 14-channel EEG head-
set. The EPOC’s electrodes require a saline solution to improve conductivity, and their
placement is based on the 10-20 system [Homan et al., 1987]. Data acquired with this
device is converted to a digital signal at a sampling rate of 128 Hz. The device also
applies internal low and high pass filtering at 85Hz and 0.16Hz respectively. This data
is accessed through the Emotiv EPOC SDK and then fed into Matlab/Simulink10 for

9http://thinkerthing.com/ (accessed on October, 2015)
10http://es.mathworks.com/products/simulink/ (accessed on October, 2015).
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Figure 7.1.: The NeuroKnitting system architecture. A signal acquisition module (upper
left section) allows measuring brain activity from a EEG headset, delivering
raw data for processing. The signal processing module (upper left section) is
composed by a toolbox and the EPOC’s A�ective Suite for extracting high
level EEG features. The fabrication module (lower right section) includes
pattern generator software and the Knitic framework that interfaces the
system with a Brother KH-930e knitting machine.
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further processing. We use the EEG-TOOLbox created for the experiments of Chapter
4, as it has been designed for treating the Emotiv semi-raw data and extracting di�erent
EEG features, both online and o�ine. Its modular approach allows extracting low level
EEG features through a number of processing blocks, adapting to di�erent monitoring
strategies, as in the case of NeuroKnitting. We therefore use the following blocks of the
toolbox:

• Emotiv2Simulink: based on a Mex S-function and on the drivers provided by the
manufacturer, it allows the access to the semi-raw data for all 14 electrodes in real
time, plus a built-in gyroscope, time stamp, markers and sync signals.

• BP filters: Butterworth IIR discrete band-pass filters that can be tuned to any
given custom frequency. Envelope is a block that squares the input signal and
then applies an FIR low-pass filter and down- sampling to estimate its envelope.
The filter parameters depend on the particular EEG feature to be computed.

• Envelope: a block that squares the input signal and then applies a FIR low-pass
filter and down-sampling to estimate its envelope.

• OSCSend: allows direct communication via UDP through the Open Sound Control
protocol (OSC).

As in Chapter 4, the participant’s relaxation state is estimated by looking at the EEG
alpha and theta bands, and the theta-alpha ratio (t/a). In this regard, the toolbox is
configured to extract three main low-level EEG features, according the a/t neurofeedback
rationale [Gruzelier, 2009]:

• Alpha relative power : calculated from the occipital area (electrodes O1 and O2),
where this type of activity occurs during close-eye conditions, applying a band-pass
filter with a frequency range of 8Hz to 13Hz.

• Theta relative power : calculated from the activity of all 14 channels, as cortical
theta rhythms are small and di�use when picked up by scalp electrode, arising
almost entirely from the cerebral cortex [Kropotov, 2010], applying a band-pass
filter with a range of 4Hz to 7.5Hz.

• t/a power ratio: estimated as the main measure of relaxation. A spatial filtering
is applied to give more weight to the occipital channels in the calculation of the
envelope of the t/a ratio. The envelope is estimated using the envelope block based
on FIR-based filter (order 35).

The relative power is obtained by dividing the power of each band by the overall power
of the same signal. In this way, the output signal is kept within a range of 0 to 1. A
second psychophysiological feature, engagement, is extracted using the Emotiv A�ective

194



7.4. The NeuroKnitting prototype

Figure 7.2.: Processing stages of EEG features for the NeuroKnitting prototype.

Suite. Figure 7.2 shows the processing stages for both relaxation and engagement.

Each feature is streamed via OSC to a communication module made in Pure Data
(Pd) (see Figure 7.1) where they are recorded in a CSV file at a rate of 1Hz. This
downsampling was done calculating the mean of all values within a bin of the same size,
in order to achieve a coherent mapping with the knitting pattern (i.e. each stitch made
by the knitting machine is around 50mm, so greater temporal resolution will translate
to bigger weaves). Therefore, this resampling can be adjusted according to the type of
garment to be knitted.

7.4.2. Pattern generator

A pattern generation software was developed using Processing11, an open source pro-
gramming language for fast prototyping. The pattern generator automatically reads up
the CSV file created by the communication module and displays it by means of three
bars with variable width, corresponding to (i) relaxation, (ii) excitement and (iii) en-
gagement activity. The software then creates a PNG file out of this render, where each

11https://processing.org/ (accessed on October, 2015).
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bar has a maximum width of 40 pixels (i.e. stitches). Width is intentionally limited in
order to avoid broad weaves, but this parameters can be easily changed according to the
garment that will be created. Given the limitation of most domestic knitting machines
for handling multiple yarn streams (they normally support up to two reels) our fabri-
cation pattern is based on two colors (one for the bars and other for the background).
The full pattern is therefore 150 stitches width and its length varies depending on the
duration of the EEG recording.

The Knitic framework

Once the knitting pattern is created from the aforementioned EEG features, it is sent to
Knitic12, an open hardware controller based on Arduino and Processing. This controller
was originally developed for the 1980’s Brother electronic knitting machines, as an at-
tempt to bring together textile and contemporary digital manufacturing. The electronic
knitting machine was arguably the first fabrication tool at home. However, it has not
been further developed by the personal fabrication or DIY communities. Hence, Knitic
aims to update this obsolete technology for the current creation needs. In order to do so,
Knitic provides hardware and software tools to update the machine pattern-uploading
methods. This is a primary technical need, as domestic electronic knitting machines
were discontinued in the late 1990s, and the only available method for uploading pat-
terns is via floppy disks or scanned sheets, which are not e�cient options for garment
production and pattern sharing nowadays.

For overcoming the above mentioned limitations, Knitic replaces the original hardware
controller of the knitting machine with an Arduino PCB, as showed in Figure 7.3. The
PCB reads the inputs of end-of-line sensors and encoders that identify the precise position
of the carriage in the machine. The hardware also controls the solenoids that command
the movements of each needle based on the input pattern. Once the knitting machine
is modified, new knitting patterns can be sent to it using the Knitic software, which
in its current version utilizes a bitmap file (i.e. PNG) as the source of the pattern.
The Knitic software provides a front end interface that allows to visualize the pattern
in use, and to monitor the operation of the machine (i.e. the position of the carriage,
knitting direction, dimensions of the weave, and the rows and stitches already knitted).
A black pixel stands for a contrast yarn (needle position D) and a white pixel indicates
background yarn (the needle position B).13. Currently the Knitic project has evolved,
12http://www.knitic.com/ (accessed on October, 2015).
13A step-by-step tutorial on how Knitic works at hardware and software levels (including a video) can

be found at http://www.knitic.com/tutorials/ (accessed on October, 2015).
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Figure 7.3.: The Knitic PCB for Arduino is designed to replace the knitting machine’s
old brain without any harm. It means the original system can be use anytime
if wished.

allowing not only to recycle discontinued knitting machines, but also to create open
hardware replicable circular knitting machines from scratch, using open hardware and
3D printed pieces.

7.4.3. Deployment 1: patterns through Bach’s Goldberg variations

The first test of NeuroKnitting in real world conditions was done using music as a�ective
stimulus. We chose music as it is a well-known mood inducer that has been widely used
for emotional induction and as an a�ective reward in di�erent neurofeedback therapies
[Egner and Gruzelier, 2003]14. Bach’s Goldberg Variations (concretely the aria and its
first seven variations, with length of 10 minutes) were used as musical stimuli. Two
subjects, aged 39 and 30 years old, both male, participated in the test, according to the
following procedure: (i) EEG headset placement (5 minutes); (ii) calibration phase to
assure good conductivity (5 minutes); (iii) musical stimulation phase under closed-eyes
condition. EEG activity was collected and sent to the pattern generation system. (10
minutes); (iv) headset removal (3 minutes length).

The generated pattern was used to knit a scarf, as showed in Figure 7.4. We have chosen
this garment as it accounts for a straightforward representation of the evolution of EEG
activity in the temporal domain. Each stitch of the knitting machine equals 1 second of
the stimulus and the EEG recording15.

14Please see Section 6.2.2 for a review on this topic.
15A video showing this setup is available at https://vimeo.com/67714066 (accessed on October,

2015).
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Figure 7.4.: Scarves knitted during deployment 1.

Insights from deployment 1

This deployment o�ered a first insight on the possibilities of implicit PhyComp for
personal fabrication . On the one hand, music showed to be a good candidate to stimulate
users. In contrast to visual stimuli, sound allowed well-controlled EEG recordings under
close-eyes conditions, a fact that reduces significantly the artifacts coming from muscular
movement and sensor displacement. The scarves showed to be a good garment to start
with. The generated patterns were simple and easy to adapt to the shape of the scarf,
but waveform-alike plots were not perceptually intuitive. Participants tended to confuse
them with audio waveforms, as they expected sound information to be embedded in the
scarves as well.

Although users were able to depict their a�ective responses in the scarves, they needed
a short explanation about the meaning of the pattern and the correspondence of each
row with a given psychophysiological state. Another limitation was color. These first
patterns used a single color to di�erentiate the rows from the body of the scarf. Par-
ticipants expected color to be related to their a�ective states, rather than an arbitrary
element to separate foreground and background . Finally, both participants expressed
the desire of selecting “their favorite song” for generating a scarf and for making the
fabrication process more engaging and personal.
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7.4.4. Deployment 2: Maker Faire Rome

Leveraging on the insights from the first deployment, we decided to update and test
NeuroKnitting for a second time in a public event. We showed the system at the Maker
Faire Rome16 (MFR), the biggest event around the DIY community and the maker
movement in Europe. The Maker Faire celebrated 131 editions worldwide in 2014, and
reached over 1.5 million attendees globally since it initial launch in San Mateo, California
in 2006.

In MFR we also used NeuroKnitting for producing scarves based on musical stimuli, but
with two main di�erences compared to the first deployment: (1) participants were able
to choose their preferred song, and (2) the fabrication process involved a new pattern
strategy, updated according to the feedback received in deployment 1.

We installed NeuroKnitting in a booth open to the general audience. Once there, par-
ticipants were able to choose a song from a music streaming application (Spotify17).
We estimated the amplitude envelope of the selected song by including an extra feature
in the NeuroKnitting communication module (see Figure 7.1). This new information
was added to the fabrication pattern for complementing the psychophysiological data
embedded in the garment (see Figure 7.5).

As in deployment 1, we used two psychophysiological features (engagement and relax-
ation) to generate the scarves. Engagement was represented by a dotted pattern that
increased and decreased along the garment according to the level of engagement of the
participant. Relaxation indices, on the other hand, were displayed through color (red
for low, black for middle, and blue for high relaxation) estimating the mean of indices in
bins of 30 samples (i.e. 30 seconds of music). The pattern turned blue when relaxation
was below 0.3 in average, black when relaxation was between 0.3 and 0.6, and red when
relaxation is higher than 0.6. We chose these colors in order to make relaxation infor-
mation as intuitive as possible, at least in western cultures [Gage, 1999]. On the other
hand, the envelope of the chosen music track was estimated and represented as a dotted
pattern in the upper part of the scarf (as seen in Figure 7.5).

Twelve participants, 7 female, participated in the recording sessions according to the
following procedure: (1) EEG headset placement (5 minutes); (2) calibration phase
(5 minutes); (3) stimulation phase under closed-eyes condition (of variable duration,
according to the song); (4) headset removal (3 minutes).

16http://www.makerfairerome.eu/en/(accessed on October, 2015)
17www.spotify.com (accessed on October, 2015).
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Figure 7.5.: Picture of one of the scarves created with NeuroKnitting during the second
deployment at MFR, based on Stevie Wonder’s For once in my life (3:50
minutes). The upper section represents the envelope of the selected song.
The lower part displays the user’s engagement levels (width of the dotted
column) and relaxation states (red, blue, and black colors) in bins of 30
seconds.

200



7.4. The NeuroKnitting prototype

Insights from Deployment 2

The second deployment of NeuroKnitting was useful for testing alternative (and more
complex) fabrication patterns, and for trying out the system with a bigger sample of
users in a short period of time, avoiding long placing and preparation phases. It has to
be said that although we knitted 12 scarves, the system was used by dozens of visitors,
which did not received a garment but were able to see a digital simulation of the scarf
in a laptop computer. Also, the fact of letting the participant choose their favorite song
reinforced participants’ attachment to the garments and involvement in the fabrication
process. As deployment 1 was restricted to one specific stimulus, the role of the user in
the fabrication loop was limited to some sort of perceptive middleware between the sonic
input and the graphical output (i.e. pattern). This second deployment thus allowed
participants to occupy a more active role in the process.
As the new patterns included both color (as a representation of relaxation states) and a
dotted pattern for revealing sound information, the knitting machine had to be tinkered
to handle up to 4 colors. This modification required manual operation (for changing
the yarn reels) but together with the possibility of choosing multiple songs, it made
NeuroKnitting more compelling for the general audience.
We detected, however, two main drawbacks. The first one was related to the recording
conditions. Although music showed to be, again, a good a�ective stimulus, the recording
setup was still very sensitive to environmental factors such as noise, light, crowds, etc.
Participants were not able to wear headphones as they can cause electrical interference in
the EEG recording, so an isolated room was needed for a correct stimulus presentation.
The second problem was related to the knitting process. In average, It took up to half an
hour to knit a single scarf, as the electronic knitting machine required manual operation
to change yarn reels.

7.4.5. Discussion and conclusion

NeuroKnitting represents a step towards the use of PhyComp for personal fabrication be-
yond replication. The insights presented in this Chapter could lead to structured studies
on aspects such as (i) perception of fabrication patterns (e.g. which ones better convey
and represent the source data?, which ones provoke more attachment from participants?
can participants distinguish their scarf from the ones generated with the psychophysi-
ological responses of others?) (ii) the possible impact of end-user personalization (e.g.
letting participants choose colors, elements within the pattern, garment types, etc.), (iii)
the use of other stimuli beside music and (iv) the use of other biopotentials beyond
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EEG (e.g. heart rate variability or EDA) or other psychophysiological estimations (e.g.
cognitive load).
Taking into consideration our current findings, NeuroKnitting could be improved in dif-
ferent manners. We chose psychophysiological estimation based on EEG given the con-
venience of leveraging on the technical tools generated for this dissertation, and because
EEG o�ers a rich physiological input from which several psychophysiological states can
be deduced, ranging from emotion to perception and cognition. However, NeuroKnitting
could be improved by applying a multimodal approach that integrates other biosignals
that complement changes in the EEG. This combination, common in the field of a�ective
computing, neuroscience and user experience evaluation, will account for stronger mea-
sures and fabrication methods beyond stationary conditions. Also, physiological sensing
techniques such as ECG are good alternatives to EEG when working in ambulatory or
out of the lab scenarios, as it requires less invasive setups without compromising signal
quality.
Regarding the stimuli, other experiences beyond music could be explored, such as films,
photography or even attending to a live event. In fact, we recently used NeuroKnitting
to generate personalized scarves for football (soccer) fans, as in the case of the final
match of La Copa del Rey between FC Barcelona and Real Madrid18.
So far, NeuroKnitting requires a controlled environment for EEG signal acquisition, but
as neuroheadsets get cheaper and widespread as consumer devices, users could perform
their own recordings and send them along over the Internet to be processed and used
digital fabrication in a 3D printing or knitting bureau.
NeuroKnitting also serves as a demonstration of how PhyComp can be used to fabricate
a tangible object. The current prototype, however, does not exploit tangibility in depth.
We envision other possibilities in this aspect, such as EEG responses mapped to the
shape of the object/garment, or to tactile properties such as texture. These approaches
might lead to more intuitive representations. For instance, soft or coarse patterns could
help to di�erentiate users’ relaxation and excitement, producing more evocative objects.
Neuroknitting is also a tool for embedding personal data into unique, customized physical
objects. As every human being reacts di�erently to a given experience, the knitted
patterns change according to the participant and her context. As mentioned before,
other methods such as 3D printing can be further explored in this regard. The evocative
e�ect of such objects also has to be taken into account. The patterns generated for
NeuroKnitting allow us to track psychophysiological changes in time, as it would be
18https://www.flickr.com/photos/mcanet/15072507222/in/photostream/ (accessed Oc-

tober, 2015).
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a physical timeline. These patterns can certainly be improved to favor more intuitive
readings, especially if the goal is to provoke a response in the reader similar to the stimuli
(i.e. relaxing music should produce physical objects capable of inducing relaxation). In
this regard, we believe that color, texture and shape will be decisive at the moment of
defining new fabrication strategies.

Finally, in its current state NeuroKnitting might not be consider an interactive system,
as pattern generation occurs de-attached from the knitting process (i.e. the a�ective
recordings are used to generate a bitmap that later on is knitted with the help of an op-
erator). This limitation is basically due to the the constraints of working with a restored
knitting machine. However, the new Knitic circular machine accounts for a completely
automatic knitting process. The incorporation of such a tool into NeuroKnitting will
represent a step toward a full implicit interactive fabrication system.
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The main goal of this dissertation has been to conceptualize and prototype sonic interac-
tion designs (SID) based on the implicit cues of human psychophysiology, and evaluate
them in the context of HCI. For achieving it, we have leveraged on physiological com-
puting (PhyComp) techniques, namely EEG and ECG, to obtain inputs from user’s
implicit (i.e. perceptive, emotive and cognitive) states in real time, and applied diverse
SID methodologies to adapt system responses according to these implicit statuses.
For determining to what extent di�erent sonic strategies aid the perception of implicit
states, and improve user experience in specific computer-mediated domains, we have
incrementally built up implicit sonic interactions (from direct audification to complex
musical mappings) and evaluated them within HCI scenarios (from neurofeedback to
music performance), assessing their perceptualization quality, the role of mapping com-
plexity, and their meaningfulness in the musical domain.
This thesis has therefore evolved gradually, with each chapter tackling concrete research
problems that emerge from the intersection of PhyComp and SID, providing specific
contributions (and questions) that we summarize and discuss, under the scope of their
limitations and possible expansions, in the following sections.

8.1. Contribution 1: understanding the context

SID applied to implicit PhyComp is a rather young and emergent field, and this disser-
tation has contributed to identify and understand the trends, techniques and problems
that emerge from the intersection of PhyComp and SID. Through a comprehensive re-
view (presented in Chapter 2) which cover theoretical, technical, and design standpoints,
we have shown that the interest for exploiting the implicit repertoire of human behavior
is at the core of the HCI agenda. Additionally, we have analyzed the main techniques
and contexts in which PhyComp is used for creating adaptive systems that directly ac-
cess to the implicit psychophysiological states of the user, thus promoting personalized
responses that can be delivered implicitly or explicitly to improve user experience. In
this context, we have studied the role of SID for displaying psychophysiological states,
and described how sound can be used to represent the fast temporal dynamics of phys-
iological signals, leveraging on human auditory perception (which provides the highest
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temporal resolution among the sensory modalities). Moreover, we studied the a�or-
dances of both representational, knowledge-driven approaches (i.e. sonifications) and
aesthetic, performance-driven approaches (i.e. NIME).

Through this systematic analysis, we have identified specific challenges and problems
about SID applied to the electroencephalograph (EEG), which is the main biosignal
used in this dissertation:

• Many previous works lack technical details on the SID strategies, EEG equipment,
and the processing techniques used for their implementation.

• Almost none of the analyzed works have carried out a systematic validation of
their SID methods. In other words, by looking at the current literature, it was
uncertain what types of SID strategies are most e�cient for representing implicit
physiological data in real time, and in di�erent HCI scenarios.

• Very few of the studies that address PhyComp and SID have explored multi-
modality (e.g. the combination of sonic interactions with visualization). Given
that human perception is multi sensorial, combining auditory, visual and tactile
information is likely to produce enhanced PhyComp interfaces for both functional
and aesthetic purposes.

This assessment work and its contributions have been published in a conference paper
[Väljamäe et al., 2013a]

8.1.1. Limitations and possible expansions

It is important to note that, whereas our assessment on implicit interaction (from an
HCI perspective), PhyComp and SID have been rather extensive, our literature review
on sonic displays applied to human physiology has focused mainly on EEG. This narrow
approach is due to the fact of EEG being the main biosignal explored in this dissertation.
However, our current work could be further expanded by analyzing SID approaches
to other PhyComp techniques, such as electromyography (EMG), electrocardiography
(ECG) or electrodermal activity (EDA). Works in this direction are already emerging,
like Caramiaux et al. [2015b] and Donnarumma and Tanaka [2014], both from a musical
and HCI standpoint. Such e�orts will account for a holistic overview of the field, which
was out of the scope of this thesis.
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8.2. Contribution 2: enhancing user motivation through
implicit PhyComp

Through the b-Reactable prototype, we have studied how physiology-driven implicit sonic
interaction a�ects user motivation in HCI contexts (i.e. collaborative performance using
a digital music instrument) compared to other eminently explicit interfaces (e.g. the Re-
actable). The experiments presented in Chapter 3 have shown that motivation aspects
of user experience are significantly a�ected by physiology-driven sonic interactions, con-
cretely in terms of greater confidence, positive a�ective response (valence) and stronger
social a�nity between dyads. Our between-group analyses have also suggested that the
introduction of an incongruent physiological feedback (i.e. sham) significantly a�ects
user experience, deteriorating confidence and communication between participants.
The results of the first study with the b-Reactable not only o�ered evidence on the
potential of physiology-based implicit interaction for improving single and multi user
HCI within the musical domain, it also helped us to detect three relevant aspects of SID
applied to implicit PhyComp:

• Perceptualization, understood as the process of associating a given display strategy
(in this case sound) to the psychophysiological state that acts as the input for its
rendering, according to the end-user perception.

• Mapping complexity in physiology-based sonic interaction, understood as the num-
ber of physiological streams and sound parameters used in a given SID strategy.

• Meaningfulness in the NIME context, understood as the potential of physiology-
driven implicit interaction for being perceived as an expressive component of the
DMI, through which the player can produce musical processes that, being expected
or unexpected, contribute to the creative task she/he is committed to.

These aspects have served us as guidelines for our subsequent exploration of implicit,
physiology-driven sonic interaction, and the contributions in this regard have resulted
in a journal Mealla et al. [2016] and two conference papers [Mealla et al., 2011b,a, b]

8.2.1. Limitations and possible expansions

Although the first version of the b-Reactable has shown to have a significant positive
e�ect on participants’ motivation, and its sonic designs have been properly perceived
by participants, other sonic strategies strategies should be tested to determine whether
the e�ects reported in this regard are specific to our sonic strategies or can be gener-
alized. In the same direction, personalization of mappings by end-users could be also
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explored in the proposed collaborative setup, as the first version of the b-Reactable ap-
plied fix, pre-defined mappings. Our subsequent experiments have shown that mapping
personalization to play a significant role in perceptualization and user experience.

We should also stress the fact that implicit interaction paradigms like the ones present
in the b-Reactable can also lead to self-adaptation (i.e. neuro and biofeedback) with par-
ticipants trying to alter their EEG and ECG activity to match a given sound or tempo.
However, this is more likely to happen after a number of training sessions, thus requir-
ing further investigation. Future developments in this regard could determine whether
physiology-driven implicit sonic interactions widen multi-user communication, or in-
crease interpersonal synchronization in computer supported cooperative work (CSCW).

The SID strategies implemented in the first version of the b-Reactable were simple and
straightforward (i.e. audification of EEG and BPM control through ECG) but the fact
of using two biosignals simultaneously made di�cult to identify the specific impact that
each of these had in participants during the experiment. Moreover, it should be noted
that the e�ects found in our study might be of temporal nature, thus future experiments
should address the impact of prolonged use of physiopucks. In this regard, the literature
suggests that this kind of physiology-based interaction is likely to produce subjective
experiences di�erent from gesture-based control, as in the case of the BRAAMHS musical
interface based on functional near-infrared spectroscopy (fNIRS) Yuksel et al. [2015].

8.3. Contribution 3: perceptualization and mapping
complexity

In this dissertation we have also explored two main aspects of SID applied to implicit
PhyComp: perceptualization (how well a sonic design represents a given implicit phys-
iological state, aiding user perception), and mapping complexity (the number of physi-
ological streams and sound parameters used). The studies presented in Chapter 4 have
provided empirical evidence on the perceptualization quality of parameter mapping soni-
fication and musical mapping for representing implicit physiological states (specifically
relaxation), compared to direct sonification techniques. Parameter mapping sonifica-
tion has achieved better relaxation e�ects than direct sonic strategies, but being still
comparable with the results of musical mapping.

These experiments have also provided valuable insights about the role that both mapping
complexity and end-user personalization plays in the perceptualization of sonic designs
for implicit PhyComp. Personalized mappings have shown to be more instrumental
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than fixed ones for displaying implicit physiological states through sound (specifically
relaxation estimated according to the a/t neurofeedback protocol). Complex physiology-
to-sound mappings, based on multiple EEG features, have shown to be more e�cient
than sonic designs relying on a single EEG feature, for both perceptualizing and relax-
ation induction. Finally, the studies have also o�ered evidence about personalization
becoming less instrumental when multiple physiological features are displayed through
sound (probably due to a decrease on the user attentional resources).
In this dissertation we have additionally contributed with methodologies for evaluating
perceptualization, mapping complexity and personalization of sonic designs for implicit
PhyComp. These methods are based on the combination of objective and subjective
measures, and a well-known perception-based scenario (i.e. neurofeedback). This con-
tribution aimed to tackle one of the main issues detected in our literature review, which
is that most of the previous works in the field lack a structured validation, making it
di�cult to determine the e�ciency of a particular sonic design for conveying a given
implicit psychophysiological state.
Finally, we have proposed a sonic engine that can be easily configured and expanded
for designing a great variety of sonic interactions for di�erent psychophysiological states
(e.g. engagement, cognitive load) and biosignals (e.g. muscle activity, heart rate, etc).
The contributions in this regard have been published in a conference paper [Mealla et al.,
2014] and are part of a journal paper currently under review [Mealla et al., in review].

8.3.1. Limitations and possible expansions

In order to corroborate the perceptualization and brain dynamics obtained in our neu-
rofeedback experiments, more training sessions, a larger number of participants, and
di�erent EEG equipments could be applied. Such approach will help to detect changes
between training sessions and learning curves, both at group and individual levels. Other
ways of expanding our current work would be testing di�erent biofeedback protocols (for
determining the a�ordances of SID to perceptualize and induce other psychophysiolog-
ical states such as cognitive load or engagement) or evaluating perceptualization and
mapping complexity in domains such as data mining, diagnosis or entertainment.
Regarding the e�ect of mapping personalization, the experiments presented in this dis-
sertation have demonstrated that our methods for mapping adjustment were clear and
understandable for naive end-users. However, a specific study on interface design for
mapping personalization should be performed.
Finally, significant between-groups di�erences in both subjective and physiological data
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suggest that our results on perceptualization and mapping complexity are not obtained
merely due to relaxing nature of presented sounds. However, some of the discrepancies
that we have encountered between subjective ratings and physiological indices suggest
that more experiments have to be carried out, encouraging the use of multimodal mea-
sures for correcting and interpreting new results.

8.4. Contribution 4: NIME design and evaluation

In this dissertation we have also presented and tested a framework for NIME design and
evaluation, focused on System and Performance aspects of digital music instruments
(DMI), that considered music knowledge of di�erent stakeholders, and meant to inform
iterative design processes (see Chapter 5).

Through the deployment of this methodology within a master course, we have detected
that all the participants (some of whom had never performed music, nor programmed
computers) have been able to e�ectively engage in the creation of DMIs, following
specific constraints imposed during the course. Also, the assessment tools included in
this framework have proven to be useful for evaluating and informing iterative NIME
design processes.

Although these findings have been obtained in the specific context of a master course,
we believe that several of these solutions and learnings could be extrapolated to more
generic contexts, being other NIME or even HCI courses, and used to inform teachers,
designers and practitioners in general.

The contributions in this regard have been published in a conference paper Jordà and
Mealla [2014].

8.4.1. Limitation and possible expansions

The study presented in Chapter 5 should be seen as a first step towards the creation
of a more general NIME framework. In particular, our current approach could be com-
plemented and expanded with qualitative methods such as interviews and focus groups
that will allow to collect valuable insights, particularly from performers and listeners.
At Universitat Pompeu Fabra, we have been applying this framework in a master course
for the last two years, extending the evaluation from the listener perspective to the
standpoint of designers and performers, and including structured interviews and focus
groups. In this regard, we are preparing a publication that will report the process and
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main findings in this direction1.

Other ways to strengthen our current NIME methodology would be to test it longitudi-
nally with bigger samples and in di�erent NIME scenarios (e.g. workshops) beyond the
specific scope of the course presented in this dissertation. For instance, we envision a
study where performers could select their favorite DMIs designed by other participants
and perform with them for later evaluation as performers. Finally, the proposed methods
could be also tested with di�erent design constraints (other than the ones applied in our
study). In this regard, future work could tackle design guidelines related to touch/force
or embodied interaction, as suggested by Zappi and McPherson [2014].

8.5. Contribution 5: Implicit PhyComp supporting musical
expression

In this dissertation we have also explored the meaningful integration of implicit PhyComp
in a NIME context. In Chapter 6 we have addressed to what extent music performers
perceived implicit PhyComp as an expressive component of a DMI (i.e. a second version
of the b-Reactable) through which they could produce musical processes that, being
expected or unexpected, contribute to the creative task they were committed to.

Our study has shown that implicit sonic interactions can be used in a comprehensive
and meaningful manner during music performance, according to the requested a�ective
targets based on a two-dimensional model of valence and arousal. In the same line,
subjective, behavioral and physiological data showed that Global and Local implicit
interactions were perceived in significantly distinctive ways according to participants’
previous musical experience, with preference for the Local control.

8.5.1. Limitation and possible expansions

Our studies with the b-Reactable have o�ered useful information about implicit Phy-
Comp supporting musical expression. Nonetheless, there are a number of limitations
that have to be considered and eventually tackled by future work. One limitation is re-
lated to the proposed physiology-to-sound mappings. Although most participants were
able to perceive valence and arousal states through the displayed sounds, some were not
entirely satisfied with the manner the feedback was presented to them. A way to meet

1Documentation on the developed DMIs within the master course (both videos and written reports) can
be found at http://www.dtic.upf.edu/~smealla/phd_material.html (accessed on Novem-
ber, 2015).
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user expectations in this regard would be improving our current personalization mecha-
nisms by adding a graphic user interface (GUI) for in-depth mapping customization.

In the same way, our NIME framework could be further expanded to cover di�erent
stakeholders, listeners could evaluate the performances done with the b-Reactable. Such
approach would allows us to assess the congruency between performer and listener per-
ceptions on musical improvisations. Also, other evaluation frameworks could be applied
to verify the consistency of our current findings.

Future studies on the meaningful integration of implicit PhyComp into NIME could also
go beyond EEG. The explorations of other biopotentials such as EMG or respiration will
allow to estimate other psychophysiological features (e.g. stress) that could complement
implicit a�ective estimations like the ones presented in this thesis, even promoting multi-
modal explicit/implicit control, as it has been done for video games [Nacke et al., 2011].
The b-Reactable could also integrate multiple Local and Global physiopucks, responding
to di�erent psychophysiological estimations. Finally, self-regulation and implicit learn-
ing could be further explored by applying longer and repeated sessions. In this manner,
we could determine whether participants get better in perceiving and controlling implicit
sonic interactions in a musical performance context.

It is evident that several aspects of this work are specific to music. Whereas music
appears as an excellent candidate for exploring the contributions of PhyComp-based
implicit interaction in an expressive context, it also imposes specific constrains in the
way control mappings are defined and in users’ previous knowledge. Therefore, Global
and Local implicit interaction modes could be further explored in other domains, ranging
from gaming to learning or big data exploration.

8.6. Contribution 6: taking implicit PhyComp beyond SID

At the end of this dissertation we have proposed to explore implicit PhyComp beyond
sound and music. In order to do so, we have tackled the field of personal fabrication
presenting NeuroKnitting, a system for creating knitted garments according to the users’
a�ective responses estimated from EEG. We consider NeuroKnitting a design contribu-
tion, as it has not pursued specific research problems. However, the insights collected
during its testing could certainly lead to structured studies on aspects such as the percep-
tion of implicitly generated fabrication patterns, the use of di�erent stimuli (e.g. music,
films, images) to drive fabrication processes, and the exploration of other biopotentials
beyond EEG (e.g. heart rate variability, electrodermal activity).
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NeuroKnitting also serves as a demonstrator on how implicit PhyComp can be used
to fabricate tangible objects. However, with NeuroKnitting we have not exploited tan-
gibility in depth, thus we envision other possibilities in this regard, such as mapping
psychophysiological states to the shape of objects and garments, or to tactile properties
such as texture. These approaches might lead to more intuitive physical representations
of implicit psychophysiological states. For instance, soft or coarse patterns could help
to di�erentiate users’ relaxation and excitement, producing more evocative objects.

Methods like 3D printing could also be explored, and fabrication patterns could be im-
proved to provoke a response, similar to the stimuli that originated the object (e.g.
relaxing music should produce physical objects capable of inducing or representing re-
laxation). We believe that color, texture and shape will be decisive at the moment of
defining new fabrication strategies in this regard.

Finally, it is important to note that, in its current state, NeuroKnitting might not be
considered an interactive system, as pattern generation occurs de-attached from the
knitting process. In order to overcome this limitation, we could update the knitting
system with a di�erent hardware platform (e.g. the Knitic circular machine) to achieve
a fully automatic knitting process.

Neuroknitting has been showcased in a number of public events and exhibitions such as
Maker Faire Rome 2013, Maribor Art Gallery2, Art Deal Project 3, and Sonar Festival
(2013) in Barcelona.

8.7. Non-academic contributions

8.7.1. Workshops and Hackathons

During the realization of this thesis we have also carried knowledge transfer activities
aimed to take Physiological Computing technology out of the lab and deploy it in music
technology contexts. Most of these actions took place within the Barcelona Music Hack
Day (MHD)4, a 24-hours hacking session in which participants conceptualize, create and
present music technology projects (i.e. hacks). The MHD was organized for the first
time in July 2009 and since then has proven to be a remarkable way to demonstrate the

2http://mcanet.info/files/catalogue_maribor_25x30_op.pdf (accessed on November,
2015).

3http://www.artdealproject.com/index.php?lang=esp&mod=03&expos=42 (accessed on
November, 2015).

4http://musichackday.upf.edu (accessed on November, 2015)

213

http://mcanet.info/files/catalogue_maribor_25x30_op.pdf
http://www.artdealproject.com/index.php?lang=esp&mod=03&expos=42
http://musichackday.upf.edu


8. Conclusion

creativity around the music technology community, fostering cross-platform and cross-
device innovation. The MHD was brought to Barcelona in 2010 by the Music Technology
Group of the Universitat Pompeu Fabra.

In 2013, with the support of the EC funded project KiiCS (Knowledge Incubation in
Innovation and Creation for Science)5, we created a special neuroscience track within
the MHD, that aimed to provide a set of useful tools and APIs to encourage hacks
that bring together music and physiological computing6. Through this approach, we
encouraged the creation of prototypes that fostered new ideas around music creation
and interaction. The initiative gathered 100 hackers from all around the world, and
counted with the support of Starlab Barcelona.

In 2015, in the context of the EU funded project RAPID-MIX7, we organized a second
special track on wearable and multimodal technology that brought together experts
on physiological and motion sensing, interaction design and interface prototyping. We
o�ered a hands-on workshop on prototyping expressive wearable technology for music
performance, where participants had the chance of combining innovative physiological
sensing (using the BITalino board8), real-time machine learning interfaces (Wekinator9)
and audio synthesis/processing libraries (Maximilian10 and JUCE11) for prototyping
wearable and mobile music interfaces12.

8.8. Closing remarks

Implicit PhyComp o�ers us unparalleled advantages for creating a new generation of
interactive systems capable of tailoring content and experience to the user perceptive,
cognitive and a�ective states, in a seamless and unobtrusive way. As PhyComp technol-
ogy becomes more ubiquitous, reliable and a�ordable, it is expected that these systems
will gain greater importance in a wide range of creative industries such as video games,
sports, quantified self and, of course, music. We can already see them in the streets,

5http://www.kiics.eu/en/ (accessed on November, 2015).
6A video teaser of the event and the presentation of projects developed during the

MHD can be found at https://www.youtube.com/watch?v=SbzkcA4G0Wo&list=PL0EPT_
FWD3MlcDoNTKpLBeOETOHJzfLA8 (accessed on November, 2015)

7http://rapidmix.goldsmithsdigital.com/(accessed on November, 2015)
8http://www.bitalino.com/ (accessed on November, 2015)
9http://www.wekinator.org/(accessed on November, 2015)

10http://eavi.goldsmithsdigital.com/research/maximilian/ (accessed on November,
2015)

11http://www.juce.com/ (accessed on November, 2015).
12A video summarizing the event can be found at https://www.youtube.com/watch?v=

1sqFnHAmAh0 (accessed on November, 2015)
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in the shape of wearables or mobile devices. However, most of these interfaces are still
limited to activity tracking and monitoring, with very few cases exploring real-time in-
teraction. Di�erently from direct PhyComp, which faces important constraints such
as a limited control bandwidth, accuracy, and limitations of human attention, implicit
PhyComp is capable of enhancing human bandwidth by providing adaptive responses
perceived as intuitive and timely by users, without consciously generated input com-
mands or training. In this context, we believe sound plays a major role to encompass
implicit PhyComp in HCI without burdening the user, and for seamlessly incorporating
multimodality when combined with other input methods. Due to the aforementioned
reasons, this dissertation represents represents a step towards the meaningful integra-
tion of implicit PhyComp in relevant HCI scenarios, that it will hopefully inspire other
scholars and practitioners to further explore this path beyond the musical domain.
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