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“Science is a way of life. Science is a perspective. Science is the process that takes us from con-
fusion to understanding in a manner that’s precise, predictive and reliable - a transformation,
for those lucky enough to experience it, that is empowering and emotional.”

Brian Greene
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Abstract
In this thesis we have developed a path towards large scale Finite Element simula-

tions of turbulent incompressible flows.
We have assessed the performance of residual-based variational multiscale (VMS)

methods for the large eddy simulation (LES) of turbulent incompressible flows. We
consider VMS models obtained by different subgrid scale approximations which in-
clude either static or dynamic subscales, linear or nonlinear multiscale splitting, and
different choices of the subscale space. We show that VMS thought as an implicit LES
model can be an alternative to the widely used physical-based models. This method
is traditionally combined with equal-order velocity-pressure pairs, since it provides
pressure stabilization. In this work, we also consider a different approach, based on
inf-sup stable elements and convection-only stabilization. In order to do so, we de-
fine a symmetric projection stabilization of the convective term using an orthogonal
subscale decomposition. The accuracy and efficiency of this method compared with
residual-based algebraic subgrid scales and orthogonal subscales methods for equal-
order interpolation is also assessed in this thesis.

Furthermore, we propose Runge-Kutta time integration schemes for the incom-
pressible Navier-Stokes equations with two salient properties. First, velocity and pres-
sure computations are segregated at the time integration level, without the need to
perform additional fractional step techniques that spoil high orders of accuracy. Sec-
ond, the proposed methods keep the same order of accuracy for both velocities and
pressures. Precisely, the symmetric projection stabilization approach is suitable for
segregated Runge-Kutta time integration schemes. This combination, together with
the use of block-preconditioning techniques, lead to elasticity-type and Laplacian-type
problems that can be optimally preconditioned using the balancing domain decompo-
sition by constraints preconditioners. The weak scalability of this formulation have
been demonstrated in this document.

Additionally, we also contemplate the weak imposition of the Dirichlet boundary
conditions for wall-bounded turbulent flows.

Four well known problems have been mainly considered for the numerical experi-
ments: the decay of homogeneous isotropic turbulence, the Taylor-Green vortex prob-
lem, the turbulent flow in a channel and the turbulent flow around an airfoil.
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Resum
En aquesta tesi s’han desenvolupat diferents algoritmes per la simulació a gran

escala de fluxos turbulents incompressibles mitjançant el mètode dels Elements Finits.
En primer lloc s’ha avaluat el comportament dels mètodes de multiescala varia-

cional (VMS) basats en el residu, per la simulació de grans vòrtexs (LES) de fluxos
turbulents. S’han considerat diferents models VMS tenint en compte diferents aproxi-
macions de les subescales, que inclouen tant subescales estàtiques o dinàmiques, una
definicó lineal o nolineal, i diferents seleccions de l’espai de les subescales. S’ha de-
mostrat que els mètodes VMS pensats com a models LES poden ser una alternativa
als models basats en la física del problema. Aquest tipus de mètode normalment es
combina amb l’ús de parelles de velocitat i pressió amb igual ordre d’interpolació. En
aquest treball, també s’ha considerat un enfocament diferent, basat en l’ús d’elements
inf-sup estables conjuntament amb estabilització del terme convectiu. Amb aquest ob-
jectiu, s’ha definit un mètode d’estabilització amb projecció simètrica del terme convec-
tiu mitjançant una descomposició ortogonal de les subescales. En aquesta tesi també
s’ha valorat la precisió i eficiència d’aquest mètode comparat amb mètodes basats en el
residu fent servir interpolacions amb igual ordre per velocitats i pressions.

A més, s’ha proposat un esquema d’integració en temps basat en els mètodes de
Runge-Kutta que té dues propietats destacables. En primer lloc, el càlcul de la ve-
locitat i la pressió es segrega al nivell de la integració temporal, sense la necessitat
d’introduir tècniques de fraccionament del pas de temps. En segon lloc, els esquemes
segregats de Runge-Kutta proposats, mantenen el mateix ordre de precisió tant per les
velocitats com per les pressions. Precisament, els mètodes d’estabilització amb projec-
ció simètrica són adequats per ser integrats en temps mitjançant esquemes segregats
de Runge-Kutta. Aquesta combinació, juntament amb l’ús de tècniques de precondi-
cionament en blocs, dóna lloc a problemes tipus elasticitat i Laplacià que poden ser
òptimament precondicionats fent servir els anomenats balancing domain decomposition
by constraints preconditioners. La escalabilitat dèbil d’aquesta formulació s’ha demostrat
en aquest document.

Adicionalment, també s’ha contemplat la imposició de forma dèbil de les condi-
cions de contorn de Dirichlet en problemes de fluxos turbulents delimitats per parets.

En aquesta tesi principalment s’han considerat quatre problemes ben coneguts per
fer els experiments numèrics: el decaïment de turbulència isotròpica i homogènia, el
problema del vòrtex de Taylor-Green, el flux turbulent en un canal i el flux turbulent al
voltant d’una ala.
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Chapter 1

Introduction

1.1 Motivation

The turbulent phenomena that takes place in fluid flows is one of the most fascinating
and, at the same time, challenging problems of classical physics. We can find examples
of turbulent flows in many situations of our daily life, from the most known and notice-
able like the jets leftover by airplanes in the sky or the flow of a river in the mountains,
to the most inconspicuous like the turbulent flow that we generate in the morning cup
of coffee. Another peculiarity that makes turbulent flows captivating is the wide range
of scales in which it appears, starting from the astrophysics with the turbulent flows
developed within the stars, to the turbulence that is observed in the biological cells
flow.

Despite all the efforts dedicated to understand the turbulent phenomena, this is a
classical mathematical physics problem that remains hitherto unsolved. Many physi-
cists, mathematicians and engineers have been studied this problem during the 19th
and 20th centuries, and the prediction of turbulent behaviour with a certain degree of
reliability is not completely understood yet. Thus, apart from the practical utility of
a deep understanding of its nature, the study of turbulence is also motivated by its
inherent intellectual challenge.

It is said that there are two main motivations to study turbulence, physics and en-
gineering. From the physics point of view, the nature of turbulence must be explored
to understand the behaviour of such flows at all levels. On the other hand, from the
engineering perspective, there are some problems that have to be solved and a solution
to them must be given with the knowledge we have now, although it might be incom-
plete. As an engineering thesis, the motivation of this work relies on the engineering
point of view. The approach will be to contribute in developing novel techniques for
the simulation of incompressible turbulent flows, making use of the current knowledge
of turbulent flow phenomena.

Analytical solutions of fluid flows can only be obtained under certain restrictions
and usually these restrictions cannot be satisfied in real applications. Thus, we need
other approaches to obtain the solution of a fluid flow different from the analytical de-
scription. The numerical solution is an alternative to determine the behaviour of fluid
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2 Chapter 1. Introduction

flows, which basically consists on approximating the solution defined over a contin-
uous domain by a discrete solution defined in a finite set of points. This technique
is known as Computational Fluid Dynamics (CFD) and it is widely used, both in the
engineering and the physics worlds.

As it is depicted in the schematic diagram shown in Figure 1.1, we can think that
CFD leans on the intersection of three different topics: fluid mechanics, software engi-
neering and physical applications. The fluid mechanics field give the basic knowledge
of the physical phenomena that describes the fluid flow motion. The software engi-
neering is needed to build codes able to simulate the fluid flow. Finally, we need the
applications that give us the problem to be solved.

FIGURE 1.1: Topics that conform CFD.

The CFD is widely used in many disciplines and industries like in the aerospace,
automotive, chemical manufacturing, power generation, petroleum exploration, med-
ical research, meteorology or astrophysics. It is a very valuable tool since it leads to
reductions in the cost of production by reducing the need of physical experimentation,
improving the products or optimizing the production processes. In Table 1.1 we enu-
merate some more specific applications of CFD simulations that are very useful for
different disciplines.

There already are CFD codes, both commercial and open source, that have the po-
tential to solve a very broad spectrum of flow problems. However, the development
of computational algorithms for the simulation of turbulent flows is still an open topic.
Moreover, the improvement of accuracy, the reduction of computational time and the
increase of accessibility are also ongoing objectives in CFD. It is true that CFD has some
limitations, but the economic value of industrial applications has been demonstrated
in a variety of industries.

The simulation of fluid flows relies on the fact that we can define a mathematical
model that describes the fluid motion. Fluid dynamics are governed by the Navier-
Stokes equations and the CFD basically consists on approximate the solution of these
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Field Application

Biomedical

Heart pumping
Blood flow
Air flow in lungs
Nose and sinus flows
Cell-fluid interface
Artificial organ design
Cardiac valve design
Life support systems

Electronics Cooling flow in electronic devices

Aerospace and automotive

Aerodynamic shape optimization
Aerodynamic loads computation
Turbines
Propulsion systems
Airbag Deployment
In-Cylinder Engine Flow

Energy and power industry

Heat exchange modeling
Wind turbines blade design
Pulverized coal combustion
Emission of NOx particles

Environmental

Impact of industrial exhausts
Fire and smoke in buildings and tunnels
Natural ventilation systems design
Meteorology prediction

Civil

Effect of wind on structures
Water flow in rivers
Water management

TABLE 1.1: CFD applications.

equations. Many approximation techniques can be used to simulate fluid flows, the
most common are the Finite Element (FE) method, the Finite Differences (FD) method
or the Finite Volume (FV) method. All of them are methods that can approximate the
solution of a fluid flow and vary in the way in which the continuous space is dis-
cretized.

The FD method is based on the application of a local Taylor expansion to approxi-
mate the governing equations, but it can only be applied on a discretization constructed
by a network of topological squares or hexahedras, depending on the spatial dimen-
sions. On the other hand, FE and FV methods are not restricted by this condition and
are more extended in the CFD world. The FV method is based on the approximation of
the average integral value on a reference volume. Rather than an integral average, the
FE method is based on nodal approximations on a grid. In contraposition to FV, it al-
lows the use of high-order approximations and has a strong mathematical foundation
behind.
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In this thesis the FE method will be considered to discretize in space the Navier-
Stokes equations. In any case, it has to be highlighted that the FV method can be recov-
ered with a particular definition of the FE method.

The increasing computing power is one of the points that make not only the CFD,
but also the computational mechanics in general, more appealing to solve engineering
problems with more and more complexity. In order to take advantage of the continu-
ously growing computational power acquired with the new improvements on super-
computers, an advance in software design is imperative. New algorithms need to be
designed to be used in the exascale computing environment.

We understand by exascale computing the capacity of a computing system to per-
form at least one exaFLOPs (1018 floating point operations per second). This computing
capacity is still far from the current computer power, but many efforts are dedicated to
achieve this objective, which is expected to be accomplished before 2020. There are
many issues in the High-Performance Computing (HPC) community to be addressed
in order to achieve the exascale goal. Some of them are related to the hardware de-
velopment, including improvements on processors, memory size, memory bandwidth
and energy consumption. Furthermore, there is the need of software improvement in
such a way that exascale computing systems can be fully exploited.

Exascale computing is the key to be able to perform high-fidelity simulations of
real world problems. Such simulations are a great challenge of computational physics
and engineering, and can transform the computational science into a fully predictive
science.

We still do not know much details about how exascale computing systems will be,
but the definition and implementation of algorithms able to scale in extremely large
computing environments (machines of the order of some million-cores) is a clear prior-
ity. We recall here that an optimal algorithm has the property to have a computational
cost proportional to the size of the problem that is being solved. Other numerical is-
sues that are thought to be needed to achieve exascale computations are the usage of
high-order methods, which give more accurate results for a given problem size, and the
development of adaptive methods, which can improve the efficiency of the simulation.

The application of a FE method to a Partial Differential Equation (PDE) leads to
a matricial system of equations that has to be solved using linear algebra tools. The
development of large scale FE solvers is accomplished by the use of preconditioners
that improve the resolution of such matricial system. The most known algorithmi-
cally scalable preconditioners are the MultiGrid (MG) preconditioner and the Domain
Decomposition (DD) based preconditioners. Nevertheless, in order to reach extreme
scalabilty, the algorithmical scalability of a preconditioner is not a sufficient condition,
since an efficient implementation is needed.

The development of algorithms and implementations of scalable preconditioners is
a hot topic in the FE field and one of the main concerns of FEMPAR, an open source FE
library whose name stands for Finite Element Multiphysics PARallel solvers. FEMPAR
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incorporates all the tools needed for the simulation of multiphysics problems, includ-
ing the linear algebra methods used by the solver, the FE definition or the integration
of the discretized (and linearized) PDEs. The resolution of linear systems in parallel
with FEMPAR is based on a DD strategy.

FEMPAR is being developed within the Large Scale Scientific Computing (LSSC)
group in the “Centre Internacional de Mètodes Numèrics en Enginyeria” (CIMNE),
the group in which this thesis has been developed. More precisely, the FEMPAR code
was born with the COMFUS project (COMputational techniques for FUSion reaction),
which is a Starting Independent Research Grant awarded to Prof. Santiago Badia
funded by the European Research Council and is the main financial support of the
LSSC group.

1.2 Thesis objectives

Keeping the motivations described above in mind, let us define more precisely the main
objectives that this thesis wants to achieve.

• RB-VMS methods as LES models for turbulent incompressible flows
Since the simulation of turbulent flows is a very challenging task, if all scales of
turbulent flows are wanted to be resolved, a Direct Numerical Simulation (DNS)
has to be performed. This kind of techniques are extremely expensive and not
feasible for practical applications. In order to reduce the computational cost of
turbulent flow simulations, a technique which is gaining popularity in the CFD
field is the Large Eddy Simulation (LES). LES models allow a reduction of the
computational cost, since only large scales of the flow are simulated, while the
smallest ones are modeled.

The simulation of fluid flows using the standard Galerkin FE method suffer from
two well-known numerical instabilities. On one hand we have the instability
introduced by the convective term when convection-dominated flows are simu-
lated, which is the case of turbulent flows. On the other hand, the velocity and
pressure FE spaces need to satisfy a compatibility condition to guarantee stability.
The Variational MultiScale (VMS) method is a framework for the development of
stabilization techniques that overcome these two instabilities.

One of the aims of this thesis is to assess the suitability of Residual-Based VMS
(RB-VMS) methods as LES models for the simulation of incompressible turbulent
flows. We will focus on the accuracy of such methods and their computational
cost.

• Mixed FE formulations for LES of turbulent incompressible flows
VMS methods overcome the two instabilities that arise when simulating turbu-
lent incompressible flows using the Galerkin FE formulation, but the usage of
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mixed FE formulations for the velocity and pressure spaces can also lead to stable
methods in what the compatibility condition refers. Then, since when using these
FE formulations the compatibility condition is satisfied by construction, only the
convective instability needs to be controlled.

Based on VMS methods, a convection stabilization technique is aimed to be de-
veloped. As well as the RB-VMS methods, an assessment of its suitability as a
LES model for the simulation of turbulent flows is also a target of this thesis.

• High-order FE methods
One of the numerical issues to achieve exascale computations enumerated in the
motivation section is the use of high-order methods. For a given number of de-
grees of freedom, the accuracy of the solution is improved with higher-order dis-
cretization schemes.

It is true that using high-order methods the resulting system of equations is harder
to solve due to the increase of connectivities between degrees of freedom, but the
improvement on the results usually worths using them. This is one of the points
that this thesis will assess.

The development of order-agnostic algorithms (in the sense that arbitrary order of
interpolation can be used) is also a goal that will be considered in this work.

• High-order time integration methods
The accuracy in time integration is especially important when resolving turbulent
flows. The multiscale behaviour of turbulent flows, also in what refers to the tem-
poral scales, requires an accurate time integration scheme that, with sufficiently
small time steps, give proper results.

There are many high-order time integration schemes that can be used to solve
the temporal flow evolution, but we will favour the so called θ−methods and
Runge-Kutta schemes.

The definition of algorithms order-agnostic in time is also an objective. In this di-
rection, the usage of Runge-Kutta schemes is appropriate since a parametrizable
algorithm can be defined. Then, the order of the time integration scheme is given
by the values of such parameters.

• Adaptive time integration schemes
The fluid flow characteristics vary in space, but also in time. That means that a
fluid flow can be transformed from laminar to turbulent under certain circum-
stances. Thus, for a continuously evolving fluid flow, it is natural to consider
continuously evolving algorithms that can accommodate the flow characteristics
evolution.

When talking about the time integration, adaptive time integration schemes may
be considered if one wants to adapt the time integration algorithm to the flow
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evolution. The use of Runge-Kutta based time integration schemes allow an easy
implementation of adaptive time stepping techniques, and it is one of the reasons
why this kind of methods will be considered in this thesis.

• Segregation of velocity and pressure fields
The block-segregation of velocity and pressure fields can be achieved by the
use of the popular pressure-correction or fractional-step methods. These kind
of methods consider an auxiliar velocity or pressure extrapolated from previous
time steps in order to split the computation of the problem fields. Since these
techniques imply a modification of the equations to be solved, they induce the so
called splitting error into the final solution.

One of the goals of this thesis is to define a method that segregates velocity and
pressure fields at the time discretization level, without introducing splitting er-
rors.

• Large scale and scalable FE solvers
As stated in the motivation, the definition and implementation of algorithms able
to scale in extremely large computing environments is one of the requirements
needed to have an exascale computing system. This implies to build scalable
solvers that guarantee that the computational cost will not increase when more
computational resources are used.

In this thesis, the application of FE solvers able to reach extreme scalability is
one of the main interests. In particular, the code that will be used in the thesis
development is designed to be used in distributed computers and it incorporates
DD methods optimal for large scale problems that can be combined in a natural
way with block preconditioners.

The solvers used in FEMPAR combine robust and scalable solvers for symmetric
positive definite problems and block-preconditioning. This approach allows to
deal with indefinite problems like the Stokes system and fluids at low Reynolds
numbers. However, there is still the challenge to scale up non-symmetric and
indefinite problems. This issue will be treated by the use of segregated velocity-
pressure methods that lead to symmetric positive definite systems to be solved.

When constructing block preconditioners we rely on the fact that the multifield
problem (in the sense of having velocities and pressures) can be rewritten as a
block system, i. e., one block for each unknown of the global problem. The non-
diagonal blocks are those that couple the different subproblems. Here, the key
decision is how to reorganize the system and subsequently how to define a good
approximation to the original matrix, which will be used as a preconditioner.

• Application
During the development of this thesis, real life applications have been considered
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as a motivation of all the improvements that this work provides. All the previous
goals are necessary to build faster and more accurate algorithms.

Although some of the benchmarks used in this thesis can represent a real-life
problem, we also aim to apply all the techniques developed in this dissertation to
a problem of interest in the industry. The turbulent flow around an airfoil could
be a clear example of a problem that is being used in the areospace industry.

Moreover, all the advances induced by this work have been implemented in the
FEMPAR code, and they will remain there. As FEMPAR is an open source code,
all the code developed to achieve the thesis goals will be available for the society
in general.

1.3 Document structure

This thesis is organized as follows:
In this first chapter (Chapter 1) we have described the main motivations in which

this work has been based, as well as the main specific objectives that have been fol-
lowed.

In Chapter 2, a general introduction to the FE framework is done. We begin with
the description of the governing equations of the fluid flows in Section 2.1, where some
details on the mathematical description of the physical phenomena of the fluid motion
are given. In Section 2.2 we introduce some notation about functional spaces that will
be used along the thesis. The variational formulation of the problem is given in Section
2.3, where we define the variational form of the problem at the continuous and discrete
level and we define the concept of FE. After that, in Section 2.4 we describe the VMS
method, which will be referenced by the core chapters of this thesis. In Section 2.5 a
definition of the time integration schemes that are used in the forthcoming chapters is
given. To finalize Chapter 2, a brief summary of what is contained in that chapter is
given in Section 2.6.

An introduction to the turbulent phenomena is given in Chapter 3. A very basic
introduction to the physical phenomena that lie behind turbulent flows is given in Sec-
tion 3.1. More details about isotropic turbulence are given in Section 3.2, including
some benchmarks that are used in the core chapters of this thesis. The specific details
about wall-bounded turbulent flows are defined in Section 3.3. Finally, a summary of
this chapter is given in Section 3.4.

The assessment of some RB-VMS methods for incompressible turbulent flows is
done in Chapter 4. First, an introduction to the chapter is given in Section 4.1, where
a description of the state of the art is presented. The mathematical formulation of the
problem is defined in Section 4.2. Then, some energy balance statements are analyzed
in Section 4.3, and the final discrete problem to be solved is described in Section 4.4.
The results of the numerical experiments for different turbulent benchmarks are given
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in Section 4.5. Finally, the main contributions of this chapter are summarized in Section
4.6.

In Chapter 5 we propose a mixed FE formulation with convection stabilization for
the simulation of turbulent incompressible flows. An introduction to the state of the
art is done in Section 5.1. The problem statement is defined in Section 5.2, with a brief
description of the Navier-Stokes equations and its weak formulation. After that, de-
scription of the VMS framework is introduced in Section 5.3, where apart from what
we have defined in Section 2.4, the formulation of this method for mixed FE methods
is analyzed. A block-preconditioning technique for the monolithic problem is defined
in Section 5.4. The numerical experiments for different turbulent benchmarks are pre-
sented in Section 5.5. To sum up the chapter, some conclusions are stated in Section
5.6.

The development of novel Runge-Kutta based algorithms with velocity and pres-
sure segregation is described in Chapter 6. We first introduce the state of the art for this
chapter in Section 6.1. The problem is briefly stated in Section 6.2. After that, a detailed
description of the segregated Runge-Kutta time integration schemes is given in Section
6.3. Some numerical experiments are carried out in Section 6.4 and the conclusions are
stated in Section 6.5.

In Chapter 7 the method proposed in Chapter 5 together with the time integration
scheme developed in Chapter 6 is assessed for the simulation of turbulent flows. After
introducing the state of the art in Section 7.1, the problem statement is described in Sec-
tion 7.2. A review of the relation between the proposed VMS method as an LES model
is done in Section 7.3. The definition of the segregated Runge-Kutta methods, applied
to the system of equations that arise from the mixed FE formulation with convection
stabilization, is given in Section 7.4. Moreover, we also analyze the solvers that are
used to solve the final discrete equations in Section 7.5. All this formulation is tested
for two different turbulent benchmarks in Section 7.6, and, finally, some conclusions
are pointed out in Section 7.7.

The formulation developed and tested in Chapter 7 is then applied to a realistic test
like the turbulent flow around an airfoil, in Chapter 8. In this chapter a brief introduc-
tion to the problem is given in Section 8.1. The problem setting is defined in Section
8.2 and the numerical results are presented in Section 8.3. Finally some conclusions are
stated in Section 8.4.

To conclude the thesis dissertation, in Chapter 9 we synthesize the various issues
discussed in previous chapters, providing answers to the thesis research questions that
we have formulated in Section 1.2. This synthesis is done in Section 9.1, where we also
identify some limitations of the proposed methods. Finally, in Section 9.2 we propose
some open lines of research that could improve the current work.

At the end of the document, we attach three appendices to extend some concepts
explained in the body of the thesis. The first one, Appendix A gives some instructions
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on how to implement the energy spectra computation. In Appendix B, the implemen-
tation of the VMS methods developed in Chapter 4 is discussed. Lastly, in Appendix C
the setting of the Butcher tableau’s used by the SRK method are defined.

In order to improve the readability of this document, most of the chapters are self-
contained. That means that some notation and definitions can be repeated in several
parts of the document.

1.4 Publications and thesis development timeline

It must be emphasized that during the development of this thesis, four scientific articles
have been written. Two of them have been accepted and published in peer reviewed
journals, one more is under revision at the moment of submitting the thesis, and an-
other one is about to be submitted in a short time.

To be more precise, the first contribution made during the thesis development was
the article Assessment of variational multiscale models for the large eddy simulation of turbu-
lent incompressible flows, published in Computer Methods in Applied Mechanics and Engi-
neering journal in 2015 (see [56]). This work has motivated Chapter 4, where a set of
residual-based VMS methods are assessed for turbulent incompressible flows.

With the aim of having more accurate and efficient time integration schemes, we
developed the SRK method described in Chapter 6, which originated the article Seg-
regated Runge–Kutta methods for the incompressible Navier–Stokes equations, published in
International Journal for Numerical Methods in Engineering in 2016 (see [57]).

The velocity-pressure segregation introduced by the SRK methods are not applica-
ble to the residual-based VMS methods introduced in Chapter 4. Thus, we investigated
the suitability of using a mixed FE method with only convection stabilization which can
be used together with SRK methods. From this study, we have written another article,
Mixed finite element methods with convection stabilization for the large eddy simulation of in-
compressible turbulent flows, which is currently under revision (see [58]). Chapter 5 is
devoted to this work.

Finally, in order to have efficient and scalable Finite Element solvers for the sim-
ulation of turbulent incompressible flows, we have mixed the formulation described
in Chapter 5 and Chapter 6. This approach lead to the definition of Segregated Varia-
tional Multiscale methods, which are described in Chapter 7. Furthermore, with the aim
of using this method for the simulation of wall-bounded flows, we also consider the
weak imposition of Dirichlet boundary conditions. The application of the formulation
described in Chapter 7 for a turbulent flow around an airfoil is studied in Chapter 8.
The conjunction of Chapter 7 and Chapter 8 is the basis of the last article that is going
to be submitted shortly.

Note that, although the main contributions are also reported on the cited articles, in
this thesis we provide additional experiments and discussions to enrich the document.
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Preliminaries

2.1 The Governing equations of Fluid Mechanics

In this section we will briefly state the basic concepts that one has to know about fluid
mechanics and its mathematical description, which will be used in the forthcoming
chapters.

Let us start with a review of the equations that govern the fluid flow. In this thesis
we will restrict to constant-property Newtonian fluids.

2.1.1 The momentum equation

From the Newton’s second law, the momentum equation relates the fluid particle ac-
celeration, Du

Dt , to the external forces acting on such fluid particle. The external forces
can be decomposed into the surface forces and the body forces, f . The surface forces
are described by the stress tensor σ(x, t) that is symmetric and, for constant-property
Newtonian fluids, is defined by

σ = −p̆I + 2µε(u), (2.1)

where p̆ is the pressure field, I the identity tensor, µ the viscosity, u the fluid velocity
and ε(u) the strain rate tensor, which is defined by the following expression

ε(u) =
1

2

[
∇u + (∇u)T

]
. (2.2)

The acceleration of the fluid particle is caused by the external forces according to
the momentum equation

ρ
Du

Dt
= ∇ · σ + ρf , (2.3)

being ρ the density of the flow. Introducing the definition of the stress tensor (2.1)
into (2.3), and dividing by the density ρ, which we consider to be constant, we get an
alternative expression of the momentum equation

Du

Dt
= −∇p+∇ · (2νε(u)) + f , (2.4)

11
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where we have used that (1/ρ)∇p̆ = ∇(p̆/ρ) = ∇p, being p := p̆/ρ the kinematic
pressure, and ν = µ/ρ the kinematic viscosity.

2.1.2 Mass conservation

Matching the rate of change of mass in a given volume and the net mass flux across
the boundary of such volume, and using the divergence theorem, we get the mass
conservation or continuity equation, which is given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.5)

which for constant density can be simplified to the kinematic condition that the velocity
field be solenoidal or, what is the same, divergence-free:

∇ · u = 0. (2.6)

Equation (2.6) is also called incompressibility constraint, since it is a constraint on the
fluid velocity.

2.1.3 Navier-Stokes equations

Let Ω be a bounded domain of Rd, where d = 2, 3 is the number of space dimensions,
Γ = ∂Ω its boundary and (0, T ] the time interval. The strong form of the steady Navier-
Stokes problem that govern the fluid flow motion consists of finding the velocity field
u and the pressure field p such that

∂u

∂t
+ u · ∇u− ν∆u +∇p = f in Ω× (0, T ], (2.7)

∇ · u = 0 in Ω× (0, T ], (2.8)

where the decomposition of the velocity material derivative into the temporal partial
derivative plus the convective derivative, Du

Dt = ∂u
∂t +u·∇u, and the fact that the velocity

field is solenoidal have been used to simplify the momentum equation (2.4) into (2.7).
In forthcoming sections, the temporal partial derivative ∂(·)

∂t will also be denoted as
∂t(·).

Equations (2.7) and (2.8) need to be supplied with appropriate boundary and initial
conditions. The boundary Γ is divided into the Dirichlet (ΓD) and the Neumann (ΓN )
parts such that ΓD∪ΓN = Γ and ΓD∩ΓN = ∅. Then, the boundary and initial conditions
can be written as

u = ug on ΓD × (0, T ], (2.9)

(−pI + ν(∇u +∇uT )) · n = tN on ΓN × (0, T ], (2.10)

u(x, 0) = u0(x) in Ω× {0}, (2.11)
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n being the unit outward vector normal to Γ. For a solid wall, the velocity field on
the Dirichlet boundary ΓD is governed by two conditions. The first of them is the no
penetration condition, the flow cannot penetrate the wall.

u · n = 0 on ΓD × (0, T ]. (2.12)

For the tangential velocity components we impose the so called no-slip condition,
which means that there is no relative movement between the wall and the fluid.

u · t = 0 on ΓD × (0, T ], (2.13)

being t a unit vector tangential to the wall. Putting together equations (2.12) and (2.13)
we have that u = 0 on ΓD × (0, T ]. If the wall is moving with a velocity ug we recover
the Dirichlet boundary condition (2.9).

2.1.4 Pressure and mass conservation

Let us now focus on the role that pressure field has in the fluid flow equations. If
we take the divergence of the momentum equation (2.7), assuming that the continuity
equation (2.8) is not satisfied (∇ · u = ε), we have(

∂

∂t
− ν∆

)
ε = −∆p−∇ · (u · ∇u). (2.14)

Considering problem (2.14) with the initial condition ε0 = 0, we can say that the ve-
locity field will be solenoidal (ε = 0) if, and only if, the following Poisson problem is
satisfied

∆p = −∇ · (u · ∇u). (2.15)

Hence, we can state that the satisfaction of the Poisson problem (2.15) is a necessary
and sufficient condition for a solenoidal velocity field to remain solenoidal, see [150].
Furthermore, for infinite domains, the solution of (2.15) using the Biot-Savart law is
given by

p(x, t) =
1

4π

∫
Ω

∇ · (u(y, t) · ∇u(y, t))

|x− y|
dy. (2.16)

An important consequence of (2.16) is that the pressure field is non-local, that means
that a fluctuation at one point y affects to the hole domain. A direct repercussion of
the non-locality of the pressure is that the pressure waves sent from y induce far-field
pressure forces (−∇p) that can agitate the fluid motion at large distances from that
point. Then, every part of the flow feels every other part. This consequence is more
relevant in the case of turbulent fluid flows, where eddies at different locations of the
flow can interact each other.
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2.2 The function spaces

Before describing the variational formulation of Navier-Stokes equations we need an
introduction to some functional spaces. In this section we define the notation used
in following sections and we give some definitions of fundamental function spaces.
A deeper explanation of the concepts introduced in this section can be found in any
functional analysis text, for example we refer to [175], where we find a numerical anal-
ysis for the Stokes and Navier-Stokes equations. Other texts also enhance the concepts
briefly defined in this section, see [35].

Let us start considering Ω to be an open set of Rn with boundary Γ. Otherwise
stated, we assume that the boundary of Ω is locally Lipschitz. We denote by Lp(Ω),
with 1 < p < +∞ (or L∞(Ω)), the space of real functions defined on Ω with the p-th
power absolutely integrable (or essentially bounded real functions for the case p =∞).
Note that we have made an abuse of notation for p, and the reader should not confuse
the p-th order with the pressure field symbol defined in the previous section. This is a
Banach space with the norm

‖u‖Lp(Ω) :=

(∫
Ω
|u(x)|pdΩ

) 1
p

or, for p =∞,
‖u‖L∞(Ω) := ess sup

Ω

|u(x)|).

For p = 2, L2(Ω) is a Hilbert space with the scalar product

(u,v)Ω :=

∫
Ω

u(x)v(x)dΩ. (2.17)

Henceforth, when considering the scalar product over all domain Ω we will exclude
the subscript, reading (·, ·). Furthermore, in forthcoming sections, the L2(Ω)-norm will
be simply denoted as ‖·‖. The Sobolev spaceWm,p(Ω) is the space of functions in Lp(Ω)

with derivatives of order less than or equal to m in Lp(Ω), being m an integer and with
1 ≤ p ≤ +∞. This is a Banach space with the norm

‖u(x)‖Wm,p(Ω) :=

∑
j≤m
‖Dju(x)‖pLp(Ω)

 1
p

,

where Dj is the differentiation operator. When p = 2, Wm,2(Ω) = Hm(Ω) is a Hilbert
space with the scalar product

(u,v)Hm(Ω) :=
∑
j≤m

(
Dju, Djv

)
.

Often we are concerned about n-dimensional vector functions with components in one
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of the spaces defined above. In this case we use bold characters to denote a vectorial
space

Lp(Ω) := {Lp(Ω)}n, Hm(Ω) := {Hm(Ω)}n.

Let D(Ω) be the space of C∞ functions with compact support contained in Ω. The
closure of D(Ω) in Hm(Ω) is denoted by Hm

0 (Ω). The space Hm
0 (Ω) can be though as

the space of functions that belong in Hm(Ω) that vanish on the boundary Γ in a general
sense. Functions that belong to Hm

0 (Ω) satisfy the Poincaré inequality

‖u‖ ≤ c(Ω)‖∇u‖, ∀u ∈ Hm
0 (Ω). (2.18)

From a physical point of view, as noticed in [73], we can think on the space L2(Ω)

as the space of all vector fields u with finite kinetic energy. Moreover, the H1(Ω) can be
thought as the space of all vector fields u with finite enstrophy. Further explanation of
the kinetic energy and enstrophy concepts is given in Chapter 3.

Let q be the dual index to p, being 1 ≤ p ≤ +∞, i.e. 1
q + 1

p = 1, and k a negative
integer. The Sobolev space W k,p(Ω) is defined to be the dual space

(
W−k,q(Ω)

)′. For
p = 2, q = 2, and the Hilbert space Hk(Ω) is the dual space of H−k(Ω). We define the
duality pairing

〈f, v〉Ω :=

∫
Ω
f(x)v(x) dΩ, for f ∈ H−1(Ω) and v ∈ H1

0 (Ω).

For simplicity hereinafter we will omit the subscript, 〈·, ·〉, when the integral is over the
domain Ω.

Let us consider some additional spaces that are useful in the mathematical descrip-
tion of the Navier-Stokes equations. A possible way to deal with the incompressibility
constrain (2.8) is to consider a functional space with less regularity than H1(Ω) defined
as

H(div,Ω) := {u ∈ L2(Ω)|∇ · u ∈ L2(Ω)},

which is a Hilbert space with the norm

‖u‖div := ‖u‖+ ‖∇ · u‖.

The closure of D(Ω) in H(div,Ω) is denoted by H0(div,Ω).
Let us assume that a and b are two extended real numbers, −∞ ≤ a < b ≤ ∞, and

let X be a Banach space. For a given α, 1 ≤ α +∞, we denote as Lα(a, b;X ) the space
of integrable functions from [a, b] into X .
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2.3 The variational formulation

2.3.1 Continuous formulation

Let us consider the strong form of the Navier-Stokes problem (2.7)-(2.11). In order to
formulate the equivalent variational problem we define a set of variational spaces that
incorporates the homogeneous Dirichlet boundary condition and the temporal evolu-
tion

Vg :=
{

v ∈ H1(Ω) : v|ΓD = ug

}
≡ H1

g(Ω), (2.19)

V0 :=
{

v ∈ H1(Ω) : v|ΓD = 0
}
≡ H1

0(Ω), (2.20)

Q := L2(Ω)/R. (2.21)

Given sufficiently smooth functions v ∈ V0 and q ∈ Q, we obtain the variational or
weak version of the Navier-Stokes equations multiplying (2.7) by v and (2.8) by q, in-
tegrating over Ω and integrating by parts the second order derivatives. Then the vari-
ational Navier-Stokes problem reads: find u ∈ L2(0, T ;Vg),
and p ∈ L1(0, T ;Q) such that:

(∂tu,v) +
(
ν
(
∇u +∇uT

)
,∇v

)
+ b(u,u,v) + (∇p,v) = 〈f,v〉 ∀v ∈ V0, (2.22)

(∇ · u, q) = 0 ∀q ∈ Q. (2.23)

Adding up equations (2.22)-(2.23) we obtain an alternative weak form of the incom-
pressible Navier-Stokes problem (2.7)-(2.11) consists in finding [u, p] ∈ L2(0, T ;Vg) ×
D′(0, T ;Q) (distributions in time with values in Q) such that

(∂tu,v) +B(u; [u, p], [v, q]) = 〈f ,v〉 ∀v ∈ V0, ∀q ∈ Q, (2.24)

satisfying the initial condition (2.11) in a weak sense. Here the form B(a; [u, p], (v, q))

is defined as

B(a; [u, p], [v, q]) := ν(∇u,∇v) + b(a,u,v)− (p,∇ · v) + (q,∇ · u) (2.25)

where the trilinear weak form of the convective term b(u,v,w) can be written in the
following three equivalent ways

b(u,v,w) = (u · ∇v,w) Non conservative, (2.26)

b(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(v,u · ∇w) Skew-symmetric (type 1), (2.27)

b(u,v,w) = (u · ∇v,w) +
1

2
(v ·w,∇ · u) Skew-symmetric (type 2). (2.28)

Note that in the trilinear weak forms (2.26)-(2.28) the boundary integral terms that arise
from the integration by parts have been neglected. This assumption is valid when
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strong Dirichlet boundary conditions are considered over all the boundary. Despite
of that, this equivalence is lost at the discrete level. The skew-symmetric form (type
2) (4.10) is very common when numerical analysis are presented [15, 39, 86] but the
skew-symmetric form (type 2) (4.9) has important advantages when the first argument
is a discontinuous function, as will be shown in forthcoming chapters.

The well-posedness of problem (2.24) relies on the called LBB condition, which
stands for the name of the authors that developed works related to that condition. See
the works by Ladyzhenskaya [126], Babuŝka [10] and Brezzi [36]. The LBB condition
is also called inf-sup condition and reads as follows: there exist a positive constant β
such that,

inf
q∈Q

sup
v∈V0

(∇ · v, q)
‖v‖V‖q‖Q/ kerAt

≥ β > 0, (2.29)

being At the adjoin of the operator defined as

A : V0 → Q′ | 〈A(v), a〉Q′×Q = (∇ · v, q) ∀v ∈ V0, ∀q ∈ Q (2.30)

2.3.2 The Finite Element method

In order to approximate the solution of the variational problem (2.24), one needs to con-
struct finite-dimensional spaces in which the solution can be computed. The approach
followed in this work to construct such finite-dimensional spaces is the called Finite
Element (FE) method. According to Ciarlet, see [48], we can define a FE as follows.

LetK ⊆ Rn be a bounded closed set with nonempty interior and piece-wise smooth
boundary, the element domain. Let S be a finite-dimensional space of functions on K,
the space of shape functions. LetN = {N1,N2, ...,Nk} be a basis for S ′, the set of nodal
variables. Then, (K,S,N ) is called a FE.

We refer to Brenner et al [35] for a deeper explanation of the FE definitions.
In this thesis we will mainly use FE spaces composed by quadrilateral finite el-

ements built from a tensor product of polynomials. For the 3D case, we consider a
reference FE (K̃, S̃, Ñ ) with K̃ a cube defined in [−1, 1]3, S̃ = Qk being

Qk :=

∑
j

cjpj(x)qj(y)rj(z) : with pj , qj and rj polynomials of degree j ≤ k

 ,

and Ñ denoting the point evaluations at {(tl, tm, tn) : l,m, n = 0, 1, ..., k}where
{−1 = t0 < t1 < ... < tk = 1}.

Let us now consider a FE partition Th of the domain Ω composed by a set of ele-
ments {Ke}nee=1, being ne the total amount of elements in the domain. Let us consider
FK a mapping from K to K̃, i. e. FK(K) = K̃ with its pull-back map defined as
F ∗K(f̂) := f̂ ◦ FK , see [49, 35] for more details on equivalence between FEs.
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Then the FE spaces for the velocity and pressure fields equivalent to (2.19)-(2.21)
can be defined as

Vh :=
{

vh ∈ (C0(Ω))d : vh|K = ṽ ◦ F−1
K , ṽ ∈ (Qkv)

d, K ∈ Th
}
, (2.31)

Vg,h :=
{

vh ∈ Vh : vh|K∩ΓD
= ug

}
, (2.32)

V0,h :=
{

vh ∈ Vh : vh|K∩ΓD
= 0
}
, (2.33)

Qh :=
{
C0(Ω) ∩ L2(Ω)/R : qh|K = q̃ ◦ F−1

K , q̃ ∈ Qkq, K ∈ Th
}
. (2.34)

Where kv and kq, not necessarily equal, are the degree of the polynomials used to de-
fine the interpolation space for the velocity and pressure fields, respectively. In what
follows, the subindex h will denote functions related to the FE space. Note that in this
work both velocity and pressure field spaces, Vh andQh, are considered to be made by
continuous functions in the same partition of the domain, Th.

2.3.3 Semi-discrete formulation

Let us consider a FE partition Th of the domain Ω from which we can construct con-
forming finite dimensional spaces for the velocity Vg,h ⊂ Vg, and for the pressure
Q0,h ⊂ Q0. The spaces Vg,h and Q0,h are the ones defined in the previous section,
equations (2.32) and (2.34) respectively.

The Galerkin FE approximation of (2.24) consists in finding [uh, ph] ∈ L2(0, T ;Vg,h)×
D′(0, T ;Qh) such that

(∂tuh,vh) +B(uh; [uh, ph], [vh, qh]) = 〈f ,vh〉 ∀vh ∈ V0,h, ∀qh ∈ Qh, (2.35)

Problem (2.35) is well posed if the discrete inf-sup condition equivalent to (2.29) is
satisfied. The discrete version reads: there exist a positive constant βd, independent of
h, such that,

inf
qh∈Qh

sup
vh∈V0,h

(∇ · vh, qh)

‖vh‖Vh‖q‖Qh/ kerAth

≥ βd > 0, (2.36)

with Ah the equivalent operator to the one defined in (2.30).

2.4 The Variational Multiscale method

Let us consider a FE partition Th of the domain Ω from which we can construct con-
forming finite dimensional spaces for the velocity V0,h ⊂ V0, and for the pressure
Q0,h ⊂ Q0.

It is well known that the Galerkin FE approximation (2.35) has numerical instabil-
ities for high mesh Reynolds number problems, i.e., when the nonlinear convective
term dominates the viscous term. Another drawback of that formulation is the discrete
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inf-sup condition that must be satisfied by the pair V0,h × Q0,h in order to have a well-
posed problem with bounded pressure. These difficulties are overcome by using the
VMS approach, introduced by Hughes in [100, 101], and that is stated as follows.

Let us consider a two-scale decomposition of spaces V0 and Q0 such that

V0 = V0,h ⊕ Ṽ0

and
Q0 = Q0,h ⊕ Q̃0,

where Ṽ0 and Q̃0 are infinite-dimensional spaces that complete the FE spaces in V0 and
Q0, respectively. Hereinafter the subscript (·)h will denote the FE component and the
tilde (̃·) the subgrid component. Applying the two-scale decomposition to (2.24) we
obtain a discrete problem

(∂tuh,vh) + (∂tũ,vh) +B(a; [uh, ph], [vh, qh]) (2.37)

+ (ũ,L∗a(vh, qh))h − (p̃,∇ · vh) = 〈f ,vh〉 ,

where (·, ·)h =
∑

K∈Th(·, ·)K is the sum of scalar products (2.17) over each element K
of the partition Th, and

L∗a(vh, qh) := −ν∇2vh − a · ∇vh −∇qh (2.38)

is the formal of the adjoint operator of the momentum equation. The term involving
the adjoint operator comes from an element-wise integration by parts of the terms in-
volving the subscales, in which the boundary terms (vh, νn · ∇ũ)∂h and (qh,n · ũ)∂h
have been neglected (the subscript ∂h is used to denote the sum over all elements
of the integral on the boundary of each element). It also involves the approximation
b(a, ũ,uh) ≈ −(ũ,a · ∇vh) which implies neglecting (vh,n · aũ)∂h and (ũ,∇ · avh).
These approximations are discussed in [55] together with the choice of a which defines
the type of scale splitting (linear or nonlinear), also discussed below.

The discrete problem depends on ũ ∈ Ṽ0 and on p̃ ∈ Q̃0, Ṽ0 and Q̃0 being infinite-
dimensional. Therefore, the equations for ũ and p̃ obtained after applying the two-scale
decomposition cannot be directly solved, but some modeling steps are needed to obtain
a feasible method. Considering the subscale as a time-dependent variable of the prob-
lem (see below) and approximating the Navier-Stokes operator by two stabilization
parameters τ−1

m and τ−1
c (see for example [55]), the fine scale problem can be written as

∂tũ + τ−1
m ũ = P(Ru), (2.39)

τ−1
c p̃ = P(Rp). (2.40)

In (2.39)-(2.40) P denotes the projection onto the space of subscales, which is discussed
below. In turn, the vector R is the residual of the Navier-Stokes equations (2.7)-(2.8),
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defined as R = [Ru, Rp]
T , with

Ru = f − ∂tuh − La(uh, ph), (2.41)

Rp = −∇ · uh. (2.42)

where
La(vh, qh) := −ν∇2vh + a · ∇vh +∇qh (2.43)

Finally, the expressions of the stabilization parameter τm is

τm =

(
c1ν

h2
+
c2|a|
h

)−1

, (2.44)

whereas we consider two possible definitions of τc, viz. τc = 0 (which implies p̃ = 0)
and

τc =
h2

c1τm
, (2.45)

where h is the mesh size and c1 and c2 are algorithmic constants. Let us comment on
expression (2.44):

• The influence of the constants c1 and c2 is discussed in Section 4.5.4. A theoretical
way to determine them would be to impose that the numerical dissipation they
introduce be equal to the molecular dissipation in turbulent regimes, as explained
in [85].

• The definition of τm in (2.44) is not standard, in the sense that the one used often
depends on the time step size of the time discretization, δt. Instead of (2.44),
τ−1
m = 1

δt + c1ν
h2 + c2|a|

h is more often considered (see, e.g., [98, 78]). We refer
to Section 4.5.5 for a more detailed discussion about this topic. Likewise, other
expressions with the same asymptotic behavior in terms of h, ν and |a| can also
be employed.

• Expression (2.44) corresponds to linear isotropic elements. If elements of order p
are used (p is not the pressure, here), c1 must be replaced by c1p

4 and c2 by c2p.
For anisotropic elements, the definition of h within each element is not obvious.
A possibility is explained in [151].

In the following three sections we discuss the particular ingredients of our VMS
models. A different summary can also be found in [54], together with some numerical
experiments.

2.4.1 The dynamics of the subscales

Stabilized formulations were originally developed for steady convection-diffusion [38]
and Stokes [68, 102] problems. As the numerical instabilities have a spatial nature,
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the time dependency of the subscales was not considered, and the standard choice
[103, 105, 23] was to take

ũ = τmP(Ru), (2.46)

that is, to neglect the temporal derivative of the subscales in (2.39). In this case, the
subscales are called quasi-static in what follows.

The subscale as a time dependent variable of the problem was introduced in [51, 55].
It gives rise to important properties like commutativity of space and time discretiza-
tion, stability without restrictions on the time step size [55, 13] and, combined with or-
thogonal subscales, to convergence towards weak solutions of the Navier-Stokes equa-
tions [15] and the possibility of predicting backscatter [54, 151].

Equation (2.39) can be analytically integrated to give

ũ(t∗) = ũ(0) + µ−1(t∗)

∫ t∗

0
µ(t)PRudt, µ(s) = exp

∫ s

0
τ−1(t)dt, (2.47)

where it is explicitly seen that the subscale is a function of the residual but also of the
flow history. In practice this integration is performed numerically, as described below.

2.4.2 (Non)linear scale splitting

The original VMS formulation [100, 101] was developed having linear problems in
mind and its extension to the Navier-Stokes equations was implicitly based on a “lin-
earization”, fixing the advection velocity and applying the multiscale splitting to the
rest of the terms. A nonlinear scale splitting was used in [103, 105] together with an ex-
plicit resolution of the small scales in which a Smagorinsky damping was introduced.
A nonlinear scale splitting with modeled subscales was used in [51, 23] and in [55],
where it was shown that it leads to global conservation of momentum. We therefore
consider both options

a = uh for linear subscales, (2.48)

a = uh + ũ for nonlinear subscales. (2.49)

Remark 2.4.1. When we use the nonlinear definition for the advection velocity, a = uh + ũ,
the skew-symmetric term type 2 (2.28) in the FE equation (2.35) reads:

b(a,uh,vh) = ((uh + ũ) · ∇uh,vh) +
1

2
(uh · vh,∇ · uh) +

1

2
(uh · vh,∇ · ũ). (2.50)

The last term is not well-defined, since it includes derivatives of the discontinuous subscale ũ.
One possibility is to neglect it (as previously done with other similar terms when arriving to
(2.35)), which implies

b(a,uh,uh) = −1

2
(|uh|2,∇ · ũ), (2.51)
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the same result obtained when the non conservative form is used. By contrast, the skew-
symmetric term type 1 in the FE equation (2.35) reads

b(a,uh,vh) =
1

2
((uh + ũ) · ∇uh,vh)− 1

2
((uh + ũ) · uh,∇ · vh) (2.52)

from where
b(a,uh,uh) = 0. (2.53)

In Subsection 4.5.1 we will see the influence of the two forms of the convective term on the
results. It is worth noting that the same approximations have been introduced in all cases to
implement b(a, ũ,uh), but these approximations are taken into account in the (usual) energy
estimates of Section 4.3.

Remark 2.4.2. At the continuous level, the different expressions of the convective term are also
equivalent to the so called conservation form

b(u,v,w) = −(u⊗ v,∇w).

In the discrete problem, the nonlinear scale splitting leads to the following terms in the momen-
tum equation:

b(a,uh + ũ,vh) = −(uh ⊗ uh,∇vh)− (uh ⊗ ũ,∇vh)− (ũ⊗ uh,∇vh)− (ũ⊗ ũ,∇vh).

(2.54)

Even if this is not exactly what we get using the non-conservative or skew-symmetric forms
because of the approximation error, this allows us to interpret the different contributions arising
from the nonlinear scale splitting. As it is explained in [54], from (2.54) we can identify the
contributions from the cross stresses, the Reynolds stresses and the subgrid scale tensor.

2.4.3 The space for the subscales

The selection of the space for the approximation of the subscales determines the pro-
jection P appearing in the right-hand side of (2.39) and (2.40). The first option, already
considered in [103, 105, 23] and named Algebraic Subgrid Scale (ASGS) in [50] is to take
the subscales in the space of the residuals, that is,

P := I. (2.55)

Another possibility introduced in [50] is to consider the space of the subscales orthog-
onal to the FE space. The main motivation of the method is that a stability estimate
for the projection onto the FE space of the pressure and/or the convective terms can
already be obtained in the standard Galerkin method and therefore the only “missing”
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part is the orthogonal one. The Orthogonal Subscales (OSS) method is then character-
ized by the following projection definition:

P := Π⊥h = I−Πh, (2.56)

where Πh is the projection onto the FE space. With this choice, the residual of the
momentum equation does not depend on ∂tuh. Likewise, P(f) in this case is only well
defined for f ∈ L2(Ω)d. In the case of minimum regularity, f ∈ H−1(Ω)d, this term can
be simply neglected without upsetting the accuracy of the method.

In fact, with this choice, the orthogonality between the space of subscales and the FE
space is only guaranteed when the stabilization parameters are constant. If this is not
the case, the method is still optimally convergent [52] but this property is lost. In order
to have truly orthogonal subscales, which guarantees a proper separation of the FE and the
subgrid scale kinetic energies (see Section 4.3) a slight modification of the projection Πh is
needed (see [52]). We will use two different weighted projections: one for the velocity
subscales (Πm) in (2.39) and another for the pressure subscales (Πc) in (2.40). We define
the weighted projections Πm and Πc such that given any vector w ∈ V0 and any scalar
r ∈ Q0 we have

(τmΠm(w),vh) = (τmw,vh) ∀vh ∈ V0,h, (2.57)

(τcΠc(r), qh) = (τcr, qh) ∀qh ∈ Q0,h. (2.58)

These definitions guarantee the orthogonality between the FE and subscale spaces in
the case of static subscales, that is, neglecting temporal derivatives in (2.39). It then fol-
lows that the term containing the temporal derivative of the subscale in the FE equation
(2.37) also vanishes.

However, if the dynamic version of the method is used, the weight of the projection
(2.57) must be conveniently modified to ensure the mentioned orthogonality. As it can
be seen in (2.47), the definition of the weight depends on the time integration strategy,
as explicitly stated in Section 4.4.

2.5 Time integration

In this section, our aim is to state some basic concepts about the time discretization.
Once we have defined the semi-discrete problem, as it has been formulated in Section
2.3.3, we end up with an Ordinary Differential Equation (ODE), which has to be inte-
grated in order to get the solution of the problem.

In the current work we only will consider the called direct integration methods. The
direct integration of the transient equations rely on a numerical step-by-step procedure,
where the word direct means that no transformation of the ODE problem is carried
out a priory. Looking at the literature, many techniques can be found based in this
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kind of procedure. For instance in [22] the description of the following methods can be
found: the central difference method, the Houbold method, the Newmark method or
the θ-method. An exhaustive analysis of such methods can be found in [26].

Other commonly used time integration methods in the computational fluid dynam-
ics field are the Backward Differentiation Formulas (BDF), the generalized-α method
or the Runge-Kutta time integration schemes, see [34, 108, 65, 91] for instance.

Within the forthcoming chapters, only the θ-methods and Runge-kutta schemes are
used to integrate in time the incompressible Navier-Stokes equations. Consequently, in
the following subsections only these two methods are described.

2.5.1 θ-method

Let suppose that we have an initial-value problem with first order ODE of the form

∂u

∂t
= f(t, u), ∈ (0, T ) (2.59)

u(0) = u0. (2.60)

One of the most popular, widely used and simplest method to solve problem (2.61)-
(2.60) are the so-called single step (one-step) schemes, particularly, the theta-method,
which is usually denoted as θ-method. Using the notation u(tn) = un, the θ-method is
defined as

un+1 = un + h(θf(tn+1, un+1) + (1− θ)f(tn, un)),

u(0) = u0,

being h the time step size and tn = nh for n = 0, ..., N , with N = T/h. Here θ ∈ [0, 1] is
a fixed parameter. The θ-method is considered here as basic method since it represents
the most simple Runge-Kutta method (and also linear multistep method). The case of
θ = 0.5 is of second order and is called Crank-Nicolson method. For θ = 0 we have the
so called (explicit) Forward Euler method and for θ = 1 the (implicit) Backward Euler
(BE) method.

2.5.2 Implicit-explicit Runge-Kutta schemes

One of the main goals of this thesis is the construction of efficient solvers for the res-
olution of the incompressible turbulent Navier-Stokes equations. The solver efficiency
can be addressed not only by the use of efficient time integrators, but also by the ap-
plication of efficient algebraic solvers for the final discrete system of equations. In this
direction, the time integration scheme can help to construct smaller systems of equa-
tion segregating the different variables that appear on the problem and allowing to
solve efficiently each uncoupled variable separately.
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In Chapter 6 and Chapter 7 we will consider the application of Implicit-Explicit
(IMEX) Runge-Kutta methods for the time integration of the Navier-Stokes equations.
The aim is to take advantage of the IMEX schemes for Runge-Kutta methods to uncou-
ple the pressure and velocity degrees of freedom when solving these equations. We
also want to use the Runge-Kutta background to implement an adaptive time stepping
technique to solve efficiently transient incompressible flow problems.

Given an ODE problem of the type

∂u

∂t
= f(u) + g(u), (2.61)

being f and g different operators which definition depends on the specific problem, an
IMEX scheme consists of applying an explicit discretization for the operator f and an
implicit discretization for g. This approach comes from the fact that ODEs usually are
composed by operators of different nature. For instance, thinking in the convection-
diffusion problem we have two different operators, which represent the convection
term (let us denote it by f ) and the diffusion term (which we will denote as g). As it
is well known, the convection term is often nonlinear (i.e. burgers equation) while the
diffusion term is generally linear and stiff. When f ≡ 0, problem (2.61) results in a stiff
and linear system, which is natural to be solved using an implicit scheme. Otherwise,
if g ≡ 0 the problem becomes nonlinear and it could be convenient to solve it using
an explicit time integration scheme. Ascher et al. in [7] study some multistep IMEX
methods for convection-diffusion problem type. Often these type of methods are used
in conjunction with spectral methods, see [43, 120].

The IMEX approach can be used not only for multistep schemes, but also for Runge-
Kutta time integration techniques. The multistage nature of the Runge-Kutta methods
also make feasible IMEX schemes with even better properties than multistep meth-
ods, see [6] where some Runge-Kutta IMEX schemes are developed for the convection-
diffusion problem.

The idea of the Runge-Kutta methods is to approximate the integral u(tn+1) =

u(tn) +
∫ tn+1

tn
[f(u) + g(u)] dt using a numerical quadrature with the points c1, ..., cs

and their weights b1, ...bs, which leads to

u(tn+1) = u(tn) + h

s∑
i=1

bi (f(u(tn + cih)) + g(u(tn + cih))) + Error. (2.62)

Hereafter we will write ti instead of tn + cih. Suppose we have an approximation
un to u(tn)); to use (2.62) we also need values ui to put in for u(ti). We compute them
also by numerical quadratures on the same nodes:

ui = un + h

s∑
j=1

aij (f(uj) + g(uj)) . (2.63)
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In general this is a set of implicit equations, which we solve and use in (2.62) for our
next value

un+1 = un + h

s∑
i=1

bi (f(ui) + g(ui)) . (2.64)

The formulation (2.63)-(2.64) define a Runge-Kutta method, which we designate by
displaying its coefficient in the called Butcher tableau:

c1 a11 a12 ... a1s

c2 a21 a22 ... a2s

...
...

...
. . .

...
cs as1 as2 ... ass

b1 b2 ... bs

(2.65)

Runge-Kutta techniques have been widely used for a lot of ODE problems. The
Navier-Stokes semidiscrete problem is not an exception and the use of Runge-Kutta
methods for its time integration can be easily found in the literature, e. g. [142, 158,
159, 171]. However, like the multistep methods, the Runge-Kutta schemes need to
solve several systems of equations at each time step. Further, when we use an implicit
scheme all stages could be coupled, resulting a large system of equations to be solved.
This drawback can be bypassed using an explicit scheme which only needs to evaluate
the operators that arise from the Navier-Stokes problem. But the use of an explicit
scheme, as it is well known, involve a restriction in the time-step size in order to ensure
stability, see for instance the chapter IV.2 in [92].

Diagonally Implicit Runge-Kutta methods (DIRK) can be used to avoid stability
problems and solving implicitly each Runge-Kutta stage uncoupledly, see [1]. This
technique consists on setting all the Butcher tableau values aij in (2.65) that are above
the diagonal to zero. That is, aij = 0 for all j > i. In fact, in [1] the use of the DIRK
term is what in [92] is referred by Singly Diagonally Implicit Runge-Kutta methods
(SDIRK) which means that all the diagonal terms are equal, aii = γ. As pointed out
by Alexander in [1], the use of SDIRK methods allow to use the same LU-factorization
when solving repeatedly the multistage system of equations.

An interesting issue when solving the transient Navier-Stokes problem is the de-
coupling of the velocity and pressure. There are several techniques to deal with this
approach that consists on solving separately the velocity degrees of freedom and the
pressure by approximating the coupling terms. One of them, for example, is the widely
used Fractional step method, [67]. There also are some works done in this direction for
multistep methods, see for instance [120]. Nikitin in [142] suggested a Runge-Kutta
method which decouples pressure and velocity by using a pressure splitting technique
on the last step of the scheme.

Also related with the time integration procedures, there appears the idea of using
an adaptive time stepping technique. Adaptive time stepping is an interesting tool that
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allows to control the accuracy of the time integration, but also improves the simulation
efficiency. In this direction, the Runge-Kutta method provides an excellent background
to implement this computational tool since we can use the different stages to compute
an error estimate at each time step. John et al. in [115] studied some time stepping
control methods applied to different types of integration schemes, including the DIRK
scheme. A more specific step-control analysis for explicit and implicit Runge-Kutta
methods is done in [92], where a predictive controller is also proposed. More adap-
tive time step techniques are proposed in [83] for convection-diffusion equation and in
[118] for the Navier-Stokes equations. Nikitin also includes a section dedicated to the
adaptive time step in [142].

2.5.3 Stability and order of convergence

Some definitions of stability and order of convergence need to be introduced since it
will be used to characterize some of the methods used in forthcoming chapters. Deeper
explanations on stability and order conditions can be found in [91, 92].

When analyzing stability of ODEs, the solution of the Dahlquist’s equation u′ = λu

is studied. After applying the implicit Euler method it reads

u1 = u0 + hλu1, (2.66)

being h the step size. The solution to (2.66) is

u1 = R(hλ)u0, (2.67)

where R(z) is called the stability function for z ∈ C. For θ-methods, the stability func-
tion reads R(z) = 1+z(1−θ)

1−zθ .
Under these definitions we say that a method is A-stable if

z ∈ C−, with C− := {z ∈ C| Re z ≤ 0}. (2.68)

It can be shown that a θ-method is A-stable for all θ ≥ 1

2
, see [127]. Furthermore, we

say that a method is L-stable when it is A-stable and additionally it satisfies

lim
z→∞

R(z) = 0. (2.69)

Let us consider a Runge-Kutta method given by equations (2.63)-(2.64). We say that
a Runge-Kutta method has order p if

‖u(tn+1)− un+1‖ ≤ Chp+1. (2.70)
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2.6 Conclusions

In this chapter we have settled, with a certain degree of detail, the formulations that
will be used during the forthcoming chapters. If the reader is interested in going further
on the description of the concepts stated during the chapter, more information can be
found in the references that have been provided along this introductory part.

We have defined the governing equations of the flow motion, which lead to the
well-known Navier-Stokes equations for incompressible flows. Some insights are also
given in the first section of this chapter related to the influence of the pressure field and
the incompressibility constraint in the fluid motion.

Some mathematical notation have been introduced in the second section of this
chapter. This notation is a basic tool for the definition of the variational formulation of
the Navier-Stokes equations, which has been stated in the third section. We have split
the description of the variational formulation in three different subsections, starting
with the definition of such formulation at the continuous level. After that, the definition
of the FE method is stated, before the development of the semi-discrete problem.

Once we have settled the variational formulation of the Navier-Stokes equations,
the Variational Multiscale method has been introduced in the fourth section. A deep
description of this method is given focusing on the three different ingredients that de-
fine a particular version of such method. More precisely, we have studied the effects
of the selecting the subscales to be quasi-static or dynamic, linear or nonlinear and
orthogonal or non-orthogonal with respect to the FE space.

Finally, the time integration of the semi-discrete problem has been analyzed in the
fifth section of this chapter. We have defined two different groups of time integration
schemes. One based on the called θ-method and the other based on the Runge-Kutta
schemes. Basic concepts of stability and order of convergence have been given in this
last section.



Chapter 3

The turbulence phenomena

One of the main topics of this thesis is the turbulence phenomena that appear in incom-
pressible fluid flows. In order to put the reader in context, it is mandatory to describe
the main properties and definitions of such kind of flows, albeit rather briefly.

Some elementary definitions are established in the first section of this chapter. There-
after, a short introduction to the vorticity is given, together with some characteristic
properties of this field. The definition of the Reynolds stresses is stated subsequently,
giving some insights of what does turbulence modelling mean. In forthcoming chapters,
some turbulent quantities will be used to characterize the fluid flow, so we dedicate
some lines in this chapter on the explanation of such quantities. Finally, particular
characteristics of isotropic turbulence and wall-bounded turbulent flows are detailed.
Here we introduce the turbulence tests performed during the thesis.

For a deeper explanation of turbulence phenomena we refer to [150, 62, 148, 176,
129].

3.1 Introduction to turbulence

3.1.1 Elementary concepts

In the coming chapters some elementary concepts will be used. Here we give a brief
definition of the most important ones:

• Categories of fluid flow:
Fluid mechanics and fluid flows are often divided into different regimes. In
particular, one can make three different sub-divisions. The first division distin-
guishes between fluids that may be treated as inviscid or fluids in where the finite
viscosity must be taken into account. The second sub-division distinguishes be-
tween laminar (organized) and turbulent (chaotic) flow. The final sub-division is
between irrotational (or potential) flow and rotational flow.

In this thesis we will mainly focus on the second sub-division, distinguishing
between laminar and turbulent flows. Except when stated, the fluid will be con-
sidered to be viscous and rotational.

29
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• Newton’s law of viscosity
In most fluids the shear stress is quantified using an empirical law known as
Newton’s law of viscosity. This law says that a shear stress, τ , is required to cause
relative sliding of the fluid layers. Moreover it states that τ is directly propor-
tional to the angular distortion rate dγ

dt . It can be shown that in a one-dimensional
flow (being x the flow direction), ux(y), dγ

dt = ∂u
∂y . Then the shear stress can be

written as
τ = ρν

∂ux
∂y

, ν =
µ

ρ
.

Where ν is called the kinematic viscosity.

For two-dimensional flow, Newton’s law of viscosity becomes

τxy = ρν

(
∂ux
∂y

+
∂uy
∂x

)
.

• Reynolds number
We define the inertial force of a fluid as the force due to the fluid motion and the
viscous force as the force produced by the friction. The viscous forces per unit
volume have a size: fν ∼ ρν|u|

l2⊥
, where l2⊥ is a characteristic length scale normal to

the streamlines. The inertial forces per unit volume are of the order of: fin ∼ ρ|u|2
l ,

where l is a typical geometric length scale.

We can estimate the ratio between the inertial forces and the viscous forces. This
ratio is called Reynolds number,

Re =
ρ|u|2
l

ρν|u|
l2⊥

=
ul

ν
.

When Re is small, viscous forces outweight inertial forces (laminar regimes), and
when Re is large, viscous forces are relatively small compared against the inertial
ones (turbulent regime).

• Boundary layers
Let us consider a high Reynolds number flow. Since Re is large, we might be
tempted to solve the inviscid equations of motion,

(u · ∇)u = −∇
(
p

ρ

)
subject to the inviscid boundary condition u · dS = 0 on all solid surfaces. This
determines the so-called external problem. If the fluid satisfies the no-slip condition
u = 0 on ΓD, there must be some region where the velocity adjust to zero. This
region is the called Boundary Layer. In this region the only mechanical forces
available to cause a drop in velocity are viscous shear stresses. Thus the viscous
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term must be of the same order as the other terms within the boundary layer,

ν∆u ∼ (u · ∇)u,

If the inertial forces are of the same order than the viscous forces in the boundary
layer, we can establish the following relation

fin ∼ fν

ρu2

l
∼ ρνu

δ2
⇒ δ

l
∼
(
ul

ν

)−1/2

= Re−1/2,

being δ the size of the boundary layer and l the characteristic domain size. Thus
we see that, no matter how small we make ν, there is always some boundary
layer where shear stresses are important.

Since Re is large, δ � l. When the boundary layer is so thin, the pressure within
a boundary layer is virtually the same as the pressure immediately outside the
layer.

Boundary layers have another important characteristic, called separation, that oc-
curs when the fluid in the boundary layer is ejected into the external flow and a
turbulent wake forms. This separation is caused by the pressure forces. When
the adverse pressure gradient (∇p > 0) is big enough, the flow in the boundary
layer decelerates and reduces the momentum. Then, the fluid in the boundary
layer has less momentum than the corresponding external flow and very quickly
it comes to a halt, reverses direction and moves off into the external flow, thus
forming a wake.

• Laminar and Turbulent flow:
It is an empirical observation that at low values of Re flows are laminar, while at
high values of Re they are turbulent (chaotic).

A turbulent flow is characterized by the fact that, superimposed on the mean
flow pattern, there is random, chaotic motion. The transition from laminar to
turbulent flow occurs because, at certain value of Re, instabilities develop in the
laminar flow, usually driven by the inertial forces. At low values of Re these
potential instabilities are damped out by viscosity, while at high values of Re the
damping is inadequate.

3.1.2 Vorticity

The vorticity is a measure of the rotation of individual fluid elements and it is defined
by the following expression

ω · dS =

∮
C

u · dl.
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Vorticity cannot be created within the interior of a fluid unless there are body forces
present, but it spreads by diffusion and can be intensified by stretching of fluid ele-
ments. Boundary layers can be thought as diffusion layers for the vorticity generated
on a surface.

Sometimes it is more fruitful to work with the vorticity field instead than the veloc-
ity field. First, because the rules governing the evolution of ω are somewhat simpler
than those governing u. The second reason is that many flows are characterized by
localized regions of intense rotation. When we are interested in rotation, it is natural
to focus on angular momentum rather than linear momentum. Operating with the an-
gular momentum, one can obtain an equation describing the vorticity motion, see [62].

I
Dω

Dt
= −ωDI

Dt
+ 2νT (3.1)

where I is the moment of inertia of a small material element that is instantaneously
spherical and νT denotes the viscous torque acting on the sphere. The equation (3.1)
suggest several results:

• ω evolves independently of p.

• If ω is initially zero, and the flow is inviscid (ν = 0), then ω should remain zero
in each fluid particle.

• If I decreases (the vortex is stretching) in a inviscid fluid element, then the vor-
ticity of that element should increase.

Alternatively to (3.1), introducing the identity∇(u2/2) = (u · ∇)u + u×ω into the lin-
ear momentum equation and operating, we obtain another expression of the vorticity
motion in terms of the velocity field

Dω

Dt
= (ω · ∇)u + ν∆ω. (3.2)

From (3.1) and (3.2) we can easily see that the rate of rotation of a fluid blob may in-
crease or decrease due to changes in its moment of inertia, or changes because it is
spun up or slowed down by viscous stresses. We also can state from equation (3.2) that
vorticity is advected by u and diffused by viscous stresses.

Looking at the equation (3.2) we can see that in three-dimensional flows the first
term on the right hand side is non-zero. Comparing this equation with the angular
momentum equation (3.1), we can say that (ω · ∇)u represents intensification of vor-
ticity by the stretching fluid elements, a justification of this suggestion can be fount in
[150].

3.1.3 Reynolds stresses and turbulence models

It is an empirical observation that if Re is large enough a flow invariably becomes
unstable and then turbulent. Suppose we have a turbulent flow in which u and p
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consist of a time-averaged component, u and p, plus a fluctuating part, u′ and p′:

u = u + u′, p = p+ p′.

Taking the x-component of the time averaged equation of motion we have that

(u · ∇)ux = − ∂

∂x

(
p

ρ

)
+

∂

∂x

[
2ν
∂ux
∂x

]
+

∂

∂y

[
ν

(
∂ux
∂y

+
∂uy
∂x

)]
+ (3.3)

+
∂

∂z

[
ν

(
∂ux
∂z

+
∂uz
∂x

)]
+

∂

∂x
[−u′xu′x] +

∂

∂y
[−u′xu′y] +

∂

∂z
[−u′xu′z].

We determine the laminar stresses from the Newton’s law of viscosity, taking into ac-
count only the time-averaged components

σx = 2ρν
∂ux
∂x

,

τxy = ρν

[
∂ux
∂y

+
∂uy
∂x

]
,

τxz = ρν

[
∂ux
∂z

+
∂uz
∂z

]
.

From (3.3) we see that the turbulent flow have additional stresses that are not con-
sidered on the laminar definition. These stresses are called Reynolds stresses and are
determined by

σRx = −ρu′xu′x,

τRxy = −ρu′xu′y,

τRxz = −ρu′xu′z.

Then, we can rewrite (3.3) in a more compact way:

∂ūx
∂t

+ (ū · ∇)ūx = −∂p̄
∂x

+ ν∇2ūx + (∇ ·T)x, (3.4)

being

T =

 σRx τRxy τRxz

τRyx σRy τRyz

τRzx τRzy σRz


the Reynolds stress tensor. If we wish to make predictions from equation (3.4) we
need to be able to relate the Reynolds stresses, −ρu′xu′i, to some quantity which we
know about, such as mean velocity gradients of the type ∂ux

∂y . This is the purpose
of turbulence modelling. In effect, a turbulence model provides a means of estimating
Reynolds stresses.
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The Closure Problem of Turbulence

In a turbulent fluid, u is a chaotic field and vary from one realization of a flow to the
next. But the statistical properties of u seem to be well behaved and perfectly repro-
ducible. It turns out to be possible to manipulate the Navier-Stokes equations into a
hierarchy of statistical equations of the form,

∂

∂t
[certain statistical properties of u] = f(other statistical properties of u).

It can be shown that this system of equations is not closed, in the sense that, no mat-
ter how many manipulations we perform, there are always more statistical unknowns
than equations relating them. This is known as the closure problem of turbulence, and it
arises because of the non-linearity of the Navier-Stokes equations.

Reynolds stresses decomposition

Leonard (1974) introduced a decomposition of τRij into three component stresses.

τRij = Lij + Cij +Rij ,

whereLij = uiuj−uiuj are the Leonard stresses. The cross stresses areCij = uiu′j+u
′
iuj

and finally, Rij = u′iu
′
j are the subgrid scale (SGS) Reynolds stresses. Decomposing

Reynolds stresses into Leonard, cross and SGS Reynolds stresses we can reformulate
(2.7) as

∂u

∂t
+ (u · ∇)u = −∂p

∂x
+ ν∇2u +∇ · L +∇ ·C +∇ ·R.

3.1.4 Definition of some turbulent quantities

Turbulent flows are considered to be chaotic since, superimposed on the mean flow
pattern, there appears a fluctuating and random, both in space and time, motion. In
general, the simulation of this kind of flows requires a large amount of computational
resources. This occurs because the size of spatial and temporal scales needed to ac-
curately reproduce the flow are extremely fine. In order to simplify the simulation,
instead of resolving all fluid flow scales, we can simulate the mean flow pattern, i.e.
the largest scales, which in most engineering problems is enough, and consider how
the unresolved scales interact with the largest ones taking into account their gross sta-
tistical properties. Then, if we want to ensure that the simulation reflects the correct
mean flow and the effect of the small scales on the largest ones is accurately predicted
we need some verification tools. These tools are some turbulent quantities that we can
evaluate in our simulation and we can use to compare with analytical or more accurate
results. In general, these quantities are obtained through an averaging procedure of the



Chapter 3. The turbulence phenomena 35

fluctuating fluid motion. We define the averaging procedure for a generic quantity q as

〈q〉 =
1

Πnd
i=1Ni

∑
j1,...,jnd

qj1,...,jnd ,

that is averaged over nd dimensions, each dimension i having Ni evaluation points.
In this section we will briefly define the turbulent quantities that are going to be

used to characterize the turbulent flow simulations and that will allow us to compare
the results against the references. We can find a more complete definition of the turbu-
lent quantities that are going to be stated in this section in [148, 150, 62].

• Velocity correlation function
The velocity correlation function is defined by

Qij =
〈
u′i(x)u′j(x + r)

〉
. (3.5)

In general Qij also depends on time. Qij tells us about the degree to which, and
the manner in which, the velocity components at different points are correlated to
each other. However, the velocity correlation function does not, in of itself, tell us
how the kinetic energy is distributed across the different eddy sizes. Rather, we
must introduce two additional quantities like the second-order structure function
and the energy spectrum.

• Second-order structure function
The second-order longitudinal structure function is defined in terms of the longi-
tudinal velocity increment, ∆u(r) = ux(x + rêx)− ux(x), as follows:

〈
[∆u(r)]2

〉
=
〈
[ux(x + rêx)− ux(x)]2

〉
. (3.6)

Only eddies of size ∼ r, or less, can make significant contribution to ∆u, and so〈
[∆u]2

〉
is often taken as an indication of the energy per unit mass contained in

the eddies of size r or less.

• Energy spectrum
To determine the distribution of the kinetic energy among the eddies of different
size we look at the energy spectrum function E(k). Working with wave number,
k, we define the energy spectrum via the transform pair

E(k) =
2

π

∫ ∞
0

R(r)kr sin(kr)dr, (3.7)

R(r) =

∫ ∞
0

E(k)
sin(kr)

kr
dk. (3.8)
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WhereR(r) = 1
2 〈u(x) · u(x + r)〉 = u2(g+f/2) is called the autocovariance func-

tion. The functions f and g are called the longitudinal and lateral velocity corre-
lation coefficients and satisfy the relation 2rg = (r2f)′.

In Appendix A, some tips for the implementation of the energy spectrum calcu-
lation are given.

• Total kinetic energy
Taking the limit r → 0, the equation (3.8) leads to

R(0) =
1

2

〈
u2
〉

=

∫ ∞
0

E(k)dk, (3.9)

which is nothing else than the total kinetic energy, K := 1
2

〈
u2
〉
. Equation (3.9)

tells us that E(k)dk is the contribution to K from all eddies with wave numbers
in the range k → k + dk, where k ∼ π/r. In fact, it is not true at all, but it works
if we are on the range η−1 < k < l−1, being η and l the Kolmogorov and integral
length scales, respectively, defined in following points.

• Enstrophy
The energy spectrum E(k) has one further property

〈
ω2
〉

=

∫ ∞
0

k2E(k)dk. (3.10)

If we define the enstrophy as Z := 1
2

〈
ω2
〉
, from (3.10), the quantity k2E(k) is

interpreted as the contribution to the enstrophy from the range of wave numbers
k → k + dk.

• Skewness factor
The third-order longitudinal structure function is defined, like the second-order
longitudinal structure function, as

〈
[∆u(r)]3

〉
=
〈
[ux(x + rêx)− ux(x)]3

〉
.

For further discussions, it is more useful to work with the skewness factor. This
factor is a normalized version of the third-order structure function

S(r) =

〈
[∆u(r)]3

〉
〈[∆u(r)]2〉3/2

. (3.11)

The skewness factor for a decaying turbulent flow depends slightly on the Reynolds
number, but usually has a value of around −0, 4± 0, 1 for r → 0 for Re up to 106,
and decays slowly with r.

• Root mean square of the velocity field
For a three-dimensional flow, the root mean square (RMS) of the velocity field is
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given by

u =

(
2

3

∫ ∞
0

E(k)dk

)1/2

.

• Kolmogorov scale
The viscous dissipation acts most efficiently at small scales. Then, for wavenum-
bers greater than certain wavenumber kη, the viscous dissipation will become
important, and the energy spectrum E(k) will decay more rapidly than the iner-
tial range. It can be shown that

kη ∼
( ε
ν3

)1/4
,

with ε the total energy dissipation rate. The Kolmogorov scale is the inverse of
this wave number η := 1/kη, then

η ∼
(
ν3/ε

)1/4
.

• Integral length scale
The integral length scale is the scale of the energy-containing eddies. From the
Kolmogorov spectrum (3.17) we can determine the wavenumber that defines this
scale, k`, in terms of the energy dissipation rate

k` ∼
ε

u3
.

Then, the integral length scale, `, will be ` ∼ u3/ε. Taking the ratio between the
integral and Kolmogorov scales we have that

`

η
∼ u3

ε3/4ν3/4
∼
(
u`

ν

)3/4

∼ Re3/4
` ,

whereRel is the integral Reynolds number. Thus, the inertial range includes a set
of scales growing withRe3/4

` . If we want to accurately simulate the inertial range,
the number grid points on an uniform 3D mesh should be N ∼

(
(Re`)

3/4
)3

=

(Re`)
9/4.

• Taylor microscale
Apart from the Kolmogorov and integral length scale, there is another length
scale that can characterize a turbulent flow. This is the Taylor microscale and
provides a convenient estimate for the fluctuating strain rate field. It is a standard
turbulent length that identifies the inertial subrange. The Taylor microscale is
defined as

λ2 =
15u2

〈ω2〉
=

15νu2

ε
.
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• Taylor-microscale Reynolds number
The Taylor-microscale Reynolds number is associated to the characteristic Taylor-
microscale length and it is defined as

Reλ =
uλ

ν
=
√

15
u2

(νε)1/2
=

1

ν

√
20

3

∫∞
0 E(k)dk(∫∞

0 k2E(k)dk
)1/2 .

• Energy dissipation rate
For a closed domain with stationary boundaries, the total rate of energy dissipa-
tion per unit of mass is given by

ε = 2ν
1

2

〈
ω2
〉

=
15νu2

λ2
.

See Section 3.2.1, where we derive this result.

3.2 Isotropic turbulence

We understand by isotropic turbulent flow the one in which there is no mean flow and
the rotation is negligible. In this situation we do not have any phenomena that intro-
duce anisotropy into the flow. On the other hand, we say that a flow is homogeneous
if the spatial gradients of any averaged quantity are negligible. This condition means
that the turbulent flow statistics do not depend on space.

3.2.1 Energy dissipation

By definition of homogeneity and isotropy, the velocity mean on the spatial domain
is zero. Then, we have to characterize the 3D isotropic turbulent flows relying on the
second order statistics of the velocity field, which is nothing else than the kinetic energy,
K = 1

2

〈
u2
〉
.

Multiplying the momentum equation (2.7) by the velocity, assuming that f = 0, and
operating we have that

∂
(
u2/2

)
∂t

= −∇ ·
[(

u2/2
)
u
]
−∇ · [(p) u] +∇ · [(ν(ω × u))]− νω2. (3.12)

Noting that u2

2 is nothing else than the kinetic energy, equation (3.12) is giving informa-
tion about how the kinetic energy is dissipated. If we integrate (3.12) over an arbitrary
and fixed volume V , and using the divergence theorem, we can determine through
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which mechanisms the energy is dissipating:

d

dt

∫
V

(
u2/2

)
dV = (3.13)

− [rate at which kinetic energy is convected across the boundary]

+ [rate at which the pressure forces do work on the boundary]

+ [rate at which the viscous forces do work on the boundary]

−
∫
V
νω2dV.

Averaging (3.13) and assuming that for homogeneous and isotropic turbulence the av-
erage flux through the boundaries is negligible, we obtain a relation between the aver-
aged total kinetic energy K with the enstrophy Z

dK

dt
= −2νZ, (3.14)

which states that the rate of change of turbulent kinetic energy per unit mass is bal-
anced by the rate of dissipation of mechanical energy per unit mass, ε := 2νZ = ν〈ω2〉.

3.2.2 Kinetic energy in spectral space

One may be interested on how the energy is transferred between different scales, which
is described by the energy spectrum evolution.

In order to obtain an evolutionary equation for the energy spectrum E(k, t), we
will first transform the Navier-Stokes equations (2.7)-(2.8) into the Fourier space. Let
us consider the integral Fourier representation of the velocity field

û(k, t) =

(
1

2π

)3 ∫
exp(−ik · x)u(x, t)dx.

Under this notation, the incompressibility constrain (2.8) would read

k · û(k, t) = 0,

meaning that the Fourier velocity field û is perpendicular to k. Then, the time deriva-
tive ∂û/∂t and the viscosity term νk2û also belong to the plane perpendicular to k,
being k2 =

∑d
i=1 k

2
i . The pressure gradient is given by ip̂k, which is parallel to the

wavevector k. Thus, the Fourier transform of u · ∇u + ∇p is nothing else than the
projection into the plane perpendicular to k of u · ∇u. The final expression of the
Navier-Stokes equations in the Fourier space is given by(

∂

∂t
+ νk2

)
ûi(k, t) = −i

∫
p+q=k

qj

(
δi,m −

kipm
k2

)
ûj(p, t)ûm(q, t)dpdq. (3.15)
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Multiplying (3.15) by the complex conjugate û∗i (k, t) integrating over k, and operating
we have that for isotropic turbulence the energy spectrum follows

∂

∂t
E(k, t) = T (k, t)− 2νk2E(k, t). (3.16)

with T (k, t) the term that comprises all triad interaction terms. Integrating over all k,
and using the relation between the kinetic energy and the total energy dissipation rate
given by (3.14) we have that ∫ ∞

0
T (k, t)dk = 0,

which means that the nonlinear interactions transfer energy between different wave
numbers, but do not change the total energy.

Kolmogorov spectrum

In order to answer some key questions about turbulent flows, like what is the size of
the smallest eddies that are responsible for dissipating the energy?, Kolmogorov stated three
hypotheses in [124]. Let us remind these hypotheses:

• Local isotropy. At sufficiently high Reynolds number, the small-scale turbulent
motions are statistically isotropic.

• First similarity hypothesis. For the locally isotropic turbulence the statistics of
the small-scale motions are uniquely determined by the quantities ν and ε.

• Second similarity hypothesis. In every turbulent flow at sufficiently high Reynolds
number, the statistics of the motions of scale k in the range kη ≥ k ≥ kl have a
universal form that is uniquely determined by ε, independent of ν.

It can be seen that the contribution to the dissipation rate from eddies in the range
(ka, kb) is

ε(ka,kb) =

∫ kb

ka

2νk2E(k)dk.

The energy spectrum E(k) can be non-dimensionalized using ε and k, leading to the
following relation

E(k) = ε2/3k−5/3Φ(kη),

where Φ(kη) is the compensated Kolmogorov spectrum function. According to the
second similarity hypothesis, at the inertial subrange (kη ≥ k ≥ kl), the function Φ be-
comes independent of k and η, tending to a constant C. Then, in the inertial subrange,
the energy spectrum function is

E(k) ∼ Cε2/3k−5/3. (3.17)
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3.2.3 Benchmark tests

Decay of homogeneous isotropic turbulence

The Decay of Homogeneous Isotropic Turbulence (DHIT) test is one of the most used
benchmarks to test the simulation accuracy of isotropic turbulent flows. Here we want
to analyze the statistics of an homogeneous isotropic turbulent flow in a 3D box of size
Ω = {(0, 2π)× (0, 2π)× (0, 2π)}. The flow is initialized with an initial condition that
has a predetermined energy spectrum, considering all the boundary conditions to be
periodic.

In this work, we have taken the energy spectrum expression from Mansour & Wray
[133].

E(k, 0) =
q2

2A
k
−(σ+1)
0 k4 exp

(
−σ

2

(
k

k0

)2
)
, (3.18)

with k0 the wavenumber at which E(k, 0) is maximum, q
2

2 the total kinetic energy and
A =

∫∞
0 kσ exp(−σk2/2). In this thesis we choose q2 = 3 and σ = 4.

With this setting, it can be shown that A = 3
32

√
π
2 . So, the initial energy spectra will

be

E(k, 0) = 16

√
2

π
k−5

0 k4 exp

(
−2

(
k

k0

)2
)
. (3.19)

Going further, from the definitions of the total kinetic energy ,K, and the enstro-
phy, Z, given in (3.9) and (3.10), respectively, we can evaluate the initial value of these
properties. Hence, we have

K =

∫ ∞
0

E(k, 0)dk (3.20)

= 16

√
2

π
k−5

0

(
−k

2
0

4

)∫ ∞
0

k3

(
−4k

k2
0

)
exp

(
−2

(
k

k0

)2
)
dk

= 12

√
2

π
k−3

0

(
−k

2
0

4

)∫ ∞
0

k

(
−4k

k2
0

)
exp

(
−2

(
k

k0

)2
)
dk

= 3

√
2

π
k−1

0

(
k0√

2

)∫ ∞
0

(√
2

k0

)
exp

(
−2

(
k

k0

)2
)
dk

= 3

√
2

π
k−1

0

(
k0√

2

) √
2

2

=
3

2
,
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and

Z =

∫ ∞
0

k2E(k, 0)dk (3.21)

= 16

√
2

π
k−5

0

(
−k

2
0

4

)∫ ∞
0

k5

(
−4k

k2
0

)
exp

(
−2

(
k

k0

)2
)
dk

= 20

√
2

π
k−3

0

∫ ∞
0

k4 exp

(
−2

(
k

k0

)2
)
dk

=
5

4
k2

0

∫ ∞
0

E(k, 0)dk

=
15

8
k2

0.

Following Rogallo [153], we generate the initial field on the Fourier space such that
it satisfies continuity and has the energy spectrum prescribed in (3.19). First, we define
two complex parameters:

α =

(
E(k, 0)

2πk2

)1/2

exp(iθ1) cos(φ),

β =

(
E(k, 0)

2πk2

)1/2

exp(iθ2) cos(φ).

Where θ1, θ2 and φ are random numbers on the interval (0, 2π). With α and β we
can construct a solenoidal field in the wave number space whose initial spectrum is
equal to E(k, 0).

û1 = (α|k|k2 + βk1k3)/(|k|kh), (3.22)

û2 = (−α|k|k2 + βk3k2)/(|k|kh),

û3 = (−βk2
h)/(|k|kh),

where kh =
(
k2

1 + k2
2

)1/2 and |k| =
(
k2

1 + k2
2 + k2

3

)1/2.
To have the field (3.22) in the physical space we apply the inverse Fast Fourier

Transform, see Appendix A for a detailed description of the implementation of the
Fourier Transform.

In order to check the accuracy of the proposed methods, we will compare the re-
sults with those showed in [111]. Then, we set k0 = 6 and the viscosity such that the
associated Taylor-microscale Reynolds number is Reλ = 952,

Reλ =

√
20

3

∫∞
0 E(k)dk

ν
(
2
∫∞

0 k2E(k)dk
)1/2 = 952

which results in ν = 3.5014006 · 10−4.
In Figure 3.1 we show the initial analytical energy spectrum and the one calculated
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from the initial velocity field on the Fourier space (3.22) using a 1283 linear elements
mesh. We observe that the computed energy spectrum is equivalent to the analytical
one, a fact that we were expecting since we use the initial field proposed by Rogallo
[153], which precisely satisfies this condition.
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FIGURE 3.1: Analytical and computed initial energy spectrum for the
DHIT test.

In Figure 3.2 we depict the characteristic structures of a fully developed homoge-
neous and isotropic turbulent flow, plotting the vorticity isosurfaces obtained in the
DHIT test.

FIGURE 3.2: Vorticity isosurfaces in the DHIT test.

The initial condition has a relevant role on homogeneous isotropic turbulence. In
the final periods of decay, as has been exposed by [97], the energy spectrum follows the
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linear decay law,
E(k, t) = E(k, 0) exp(−2νk2t). (3.23)

So, a first conclusion we can point out from (3.23) is that the initial spectra, E(k, 0), in
the final period of decay, has a direct relation with the decay exponent. The total kinetic
energy can be calculated integrating (3.23) over all wave numbers. Then, when t→∞,
the power law decay is determined by the shape of the initial spectrum.

Moreover, [155] showed that if the initial field is generated by random impulsive
forces, a spectrum of the form

E(k, t) ∼ k2 exp(−2νk2t) (3.24)

will ensue. Then, the total kinetic energy will decay with the law K ∼ t−3/2. But,
anyway, we will not consider the case of having impulsive forces acting on the flow.

Also in this direction [154] and [46], say that in the long-run, the energy should
decay following the t−1.4 law.

Taylor-Green Vortex flow

The Taylor-Green Vortex flow (TGV) problem is also a typical and widely used prob-
lem on turbulence numerical simulations. First introduced by Taylor and Green (1937)
[174], this problem aims to show, in a relatively simple flow, the basic turbulence decay
mechanisms like the turbulent energy cascade, the production of small eddies and the
enhancement of dissipation by the stretching of vortex lines.

The initial analytical condition for this problem, unlike the DHIT problem, is de-
fined on the physical space. Here we follow [80], where the initial solution is defined
by

ux = u0 cos(x) sin(y) sin(z), (3.25)

uy = −u0 sin(x) cos(y) sin(z),

uz = 0,

p = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2) .

With
u0 =

2√
3

sin

(
γ +

2π

3

)
.

We choose γ = 0, which gives the mean initial velocity u0 = 1. The Reynolds number is
defined as the inverse of the kinematic viscosity ν, noting that the length and velocity
scales are of the same order. This is done according to [80] and [31], and will allow us
to compare our results with those showed on these papers. For simplicity, the pressure
constant parameter p0 is chosen equal to zero.
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With these definitions we can compute analytically the initial total kinetic energy of
the problem, which is

K =
1

2

1

V

∫ L

0

∫ L

0

∫ L

0
u · u dV (3.26)

=
1

16π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

(
u2
x + u2

y + u2
z

)
dxdydz

=
u2

0

16π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

(
cos2(x) sin2(y) + sin2(x) cos2(y)

)
sin2(z)dxdydz

=
u2

0

8
.

We also can calculate the initial enstrophy of the problem, given by the following
expression

Z =
1

2V

∫ L

0

∫ L

0

∫ L

0
∇u : ∇u dV (3.27)

=
1

16π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

 3∑
i=1

3∑
j=1

(
∂ui
∂xj

)2
 dxdydz

=
u2

0

16π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

[
2 sin2(z)

(
sin2(x) sin2(y) + cos2(x) cos2(y)

)
+ cos2(z)

(
cos2(x) sin2(y) + sin2(x) cos2(y)

)]
dxdydz

=
3

8
u2

0.

Another interesting result coming from the definition of the initial condition (3.25)
is its representation on the Fourier space. According to Fauconnier et al, [71], the initial
velocity field on the Fourier space corresponds to eight Fourier modes located at k =

(±1,±1,±1). It means that the initial flow generates a single vortex scale.
One of the peculiarities about the TGV test is that the initial condition has two-

dimensional streamlines, on the x−y plan, but the flow is three dimensional (the initial
velocity field also depends on the z direction).

It is also important to be said that the initial flow is highly symmetric. This symme-
try makes that, as stressed by Brachet et al. [32], for all times, no fluid crosses any plan
such that x, y or z = nπ, being n an integer. Taking into account these flow properties
we can define the region 0 ≤ x, y, z ≤ π as the impermeable box, since there is a confina-
tion of the flow inside this domain. The whole region, 0 ≤ x, y, z ≤ 2π, can be called
the periodic box. Finally, due to the flow symmetries, there is a region from which we
can determine the flow at any point in the space. This region is called fundamental box
and is generated by the box 0 ≤ x, y, z ≤ 1

2π.
It can be seen that the perpendicular velocity component, u⊥, and the normal deriva-

tive of the parallel velocity component, ∂u‖∂n , for each impermeable box face vanish on
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this face. That is, given a face Γi

u⊥|Γi = 0, and
∂u‖

∂n
|Γi = 0. (3.28)

Equation (3.28) has a direct implication to the voritcity field, ω. For a given imper-
meable box face, the vorticity on this face can be defined in terms of perpendicular and
parallel components as

ω‖1 =

(
∂u‖2
∂x⊥

− ∂u⊥
∂x‖2

)
= 0, (3.29)

ω‖2 =

(
∂u‖1
∂x⊥

− ∂u⊥
∂x‖1

)
= 0,

ω⊥ =

(
∂u‖1
∂x‖2

−
∂u‖2
∂x‖1

)
6= 0.

Which means that the vorticity is perpendicular to each impermeable box face.
We solve the TGV problem using a Reynolds numberRe = 1600. The most common

Reynolds numbers available in the literature are Re = 800, Re = 1600 and Re = 3000

(see, e.g., [2, 71, 80, 109]).
The TGV test is characterized by its laminar evolution at the initial time steps, when

the flow is strongly anisotropic due to the structured large-scale vortexes directly re-
lated to the initial condition. If the Reynolds number is large enough, there appears
the vortex-stretching process, which introduce the energy cascade effect, transferring
energy from large to small-scales. Because of this procedure, the flow becomes unsta-
ble and, therefore, turbulent. According to Brachet et al. [32], the flow becomes nearly
isotropic for Re ≥ 1000.

In Figure 3.3 we depict a vorticity isosurface image computed using a 1283 trilinear
hexahedral elements mesh. In this picture we can see the symmetry plans stated before.

3.3 Turbulence in wall-bounded flow

The vast majority of turbulent flows that we can find in the nature are bounded by, at
least, one solid surface. Some examples of bounded flows can be the flow through a
pipe or a duct, the flow in a channel or a river, the flow around an aircraft or a ship, or
even the atmospheric flow that is bounded by the terrain. In a turbulent wall-bounded
flow, the turbulence is generated through the viscous forces near the wall and then
propagated to the outer layer. In this kind of flows, we are interested on defining the
mean velocity profiles as well as the friction laws, which will allow us to determine the
forces that the fluid flow exerts on the the solid wall.
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FIGURE 3.3: Vorticity isosurfaces at t = 4, 0 with streamlines for the TGV
test.

3.3.1 Mean flow

Shear stress

Let us assume that within a certain region near the wall the mean velocity is parallel,
or almost parallel, to that wall. We consider that we have a wall on the plane (x −
z) where the mean flow is predominantly in the x-direction, which we will denote
as the stream-wise direction and statistically independent of z. The y-direction will
be denoted by the wall-normal direction and the z-direction the span-wise direction.
Under this assumptions, 〈uz〉 = 0 and the 〈ux〉 is independent of x, leading to a mean
continuity equation

d 〈uy〉
dy

= 0. (3.30)

From the mean momentum equation in the wall-normal direction we can conclude
that the pressure is uniform across the flow, satisfying

∂ 〈p〉
∂x

=
dpw
dx

,

being pw(x) the pressure value at the wall. Then, from the axial mean momentum
equation we have that the shear total shear stress τ(y) follows

dτ

dy
=
dpw
dx

, (3.31)

with
τ(y) := ν

d 〈ux〉
dy

− 〈uxuy〉 , (3.32)
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see [150] for a more detailed deduction. We will denote the wall shear stress as τw :=

τ(0). It is seen that the shear stress is the sum of the viscous stress, ν d〈ux〉dy , and the
Reynolds stress −〈uxuy〉. At the wall, the no-slip boundary condition, u = 0, implies
that

τw = ν
d 〈ux〉
dy

∣∣∣∣
y=0

. (3.33)

Friction quantities

From (3.33) one can observe that the viscosity ν is an important parameter in turbulent
wall-bounded flows, particularly in the region near the wall. Hence, the mean velocity
profile will depend on the Reynolds number. Moreover, in the region near the wall
we can define the appropriate viscous velocity and length scales. We will call friction
velocity the velocity scale in the near-wall region, which is defined as

uτ :=

√
τw
ρ
, (3.34)

and the viscous length scale as

δν := ν

√
ρ

τw
=

ν

uτ
. (3.35)

Note that the Reynolds number based on the viscous scales is equal to the unity, Reν =
uτ δν
ν = 1. An alternative is the so called friction Reynolds number, which is defined as

Reτ :=
uτδ

ν
, (3.36)

being δ the boundary layer thickness.
For wall-bounded turbulent flows it is a common practise to use the quantities in

terms of wall units. We will define the distance from the wall in wall units as y+ :=
y
δν

= uτy
ν , and the mean stream-wise velocity in wall units as u+ := 〈ux〉

uτ
.

Velocity profile

It has been shown that in the region near the wall, the mean stream-wise velocity can
be defined by the distance to the wall. This is known as the law of the wall, which can
be expressed in wall units as u+ = fw(y+). In the inner layer, where y/δ ≤ 0.1, the law
of the wall has been shown to follow the following expression

u+ =
1

κ
ln y+ +B, (3.37)

with κ = 0.41 and B = 5.2.
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3.3.2 Benchmark tests

Turbulent Channel Flow

According to [150], most turbulent flows are bounded by one or more solid surfaces,
giving wall-bounded flows. There are several turbulent wall-bounded tests, e.g. fully
developed channel flow, fully developed pipe flow and the flat-plate boundary layer.
We will test just one of them, in particular the fully developed Turbulent Channel Flow
(TCF), which is a widely used wall-bounded turbulent benchmark.

An evidence of the popularity of this test is the large amount of experimental and
computational works done about it. This test consists of a flux that flows between two
parallel walls driven by an imposed pressure gradient, where the mean velocity vector
is parallel to the wall. The most important issues to consider when characterizing the
flow are the mean velocity profiles, velocity fluctuations and the shear stress carried
by the fluid on the wall. It has to be noticed that we will concern only on the fully
developed flow, which means that the turbulent regime has been reached at the time
when we start our flow characterization.

In this test, like in most of turbulent flow tests, the Reynolds number has an im-
portant role when defining the test parameters. In particular, in the turbulent channel
flow test, the most characteristic parameter is the Reynolds number based on the wall
shear velocity, Reτ . In the literature, there appear mostly three different values of this
parameters: Reτ = 590, Reτ = 395 and Reτ = 180, see [23, 40, 78, 82, 87, 105, 113, 121,
136, 140]. We will restrict our work to Reτ = 180 and Reτ = 395 cases.

We consider a computational domain defined by a box of length (Lx × Ly × Lz),
which depends on the Reynolds number. For Reτ = 180 the domain size is (4πδ ×
2δ × 4/3πδ) while for Reτ = 395 the size of the channel is (2πδ × 2δ × 2/3πδ). The
x-direction is the flow direction, also called stream-wise direction, the y-direction is the
wall-normal direction, and the z-direction is the span-wise direction. In Fig. 3.4 we
show schematically the geometry of the computational domain for this test.

FIGURE 3.4: Channel computational domain.

In the wall-normal direction boundaries (y = −δ and y = δ) we impose a non-slip
condition. The stream-wise and span-wise directions are assumed to be homogeneous,
so we use periodic boundary conditions in these directions. According to Kim et al.
[121], the use of periodic boundary conditions in the homogeneous directions can be
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justified when the computational box is such that the largest eddies in the flow fit in
the computational domain. This is the case considered here.

We solve the problem using different mesh discretizations, all of them uniform in
the homogeneous directions and refined near the walls in the wall-normal direction.
The refinement in the wall-normal direction follows a hyperbolic function, also used in
[40, 78, 82, 87, 136], defined as

yi =
tanh

(
γ
(

2i
npy
− 1
))

tanh(γ)
,

where i = 1, ..., npy with npy the total amount of nodes in the wall-normal direction.
Here, γ is chosen to be equal to 2.75 for both Reτ = 180 and Reτ = 395. We refer the
reader to [8] for a complete study of the influence of the discretization in the results of
the TCF.

3.4 Conclusions

With the aim of having a self-contained thesis, in this chapter we have described the
basic concepts of turbulent flows. Although there are not any innovative concepts in
this chapter, all the definitions given in it are basic for the development and interpreta-
tion of further investigations. In any case, all the information provided in this chapter
have been properly referenced.

We have started the chapter with some basic definitions that will be used during al
this thesis. We also have analyzed the vorticity field and its behaviour in a turbulent
flow. The definition of the Reynolds stresses and some turbulent quantities have also
been described in the first section of this chapter.

Some particular insights about isotropic turbulence have been given in the second
section of the chapter. The energy dissipation of this kind of turbulent flows have been
analyzed in both real and spectral spaces. We have stated the relation between the
energy dissipation and the enstrophy of the flow, and we have given a formula for the
energy spectra in terms of the wave length and energy dissipation rate. Finally, two
different isotropic turbulent benchmarks have been defined in the second section, the
decaying of homogeneous isotropic turbulence and the Taylor-Green vortex flow.

In the third section of this chapter, the particular characteristics of wall-bounded
turbulent flows have been defined. First, the description of the mean flow of such
problems is studied. Then, the definition of the turbulent channel flow test is given as
a benchmark for this kind of turbulent flows.
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Residual-based VMS methods

4.1 Introduction

LES techniques for the numerical simulation of turbulent flows [157] are based on a
scale separation that permits to reduce the computational cost with respect to direct
numerical simulation (DNS). Such scale separation is traditionally achieved by filter-
ing the original Navier-Stokes equations, which leads to an extra forcing term defined
by a physical (functional or structural) model. This widely used approach is usually
referred to as explicit LES [157].

By contrast, implicit LES techniques (ILES) rely on purely numerical artifacts with-
out any modification of the continuous problem. This approach was seldom followed,
the MILES (Monotone Integrated LES) approach [28, 76, 84] being the main exception,
until the VMS method was introduced [100, 101] and subsequently proposed as an
ILES method (see below). ILES techniques are usually considered to be based on the
addition of purely dissipative numerical terms, see [157, Section 5.3.4]. It is worth to
emphasize that this is not the case of some particular VMS models, as it is shown in
[151] and discussed below.

VMS was introduced in [100, 101] as a framework for the motivation and devel-
opment of stabilization techniques, which aim to overcome numerical difficulties en-
countered when using the standard Galerkin method. On the one hand, the velocity
and pressure finite element (FE) spaces need to satisfy the inf-sup compatibility con-
dition that guarantees pressure stability and precludes the use of equal order interpo-
lation. Mixed methods satisfying this condition can be used and their finite volume
counterpart, based on staggered grids, are common in the LES community. Stabiliza-
tion techniques that permit the use of equal order interpolation were proposed, e.g., in
[68, 102]. On the other hand, global nonphysical oscillations appear in the convection
dominated regime, when the mesh is not fine enough, that is, for high mesh Reynolds
number flows. The only way to overcome this problem is through the addition of some
form of dissipation which was recognized in the early development of stabilized meth-
ods [38]. Let us note that the common practice in the LES community is to rely on the
explicit extra term introduced by the physical model using high order approximations

51
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of the convective term. 1

The first attempts to perform LES using VMS concepts, presented in [103, 105, 104,
125, 113], were performed introducing explicit subgrid modeling. The VMS models
used in these works split resolved scales into large and small, introducing an explicit
LES model to account for the small scales stress tensor, e.g., a Smagorinsky-type dis-
sipative term acting on the small scales only. As a result, an important fraction of the
degrees of freedom are used for the small resolved scales whereas consistency is re-
tained in the large resolved scales only.

ILES using a VMS approach with resolved and unresolved subgrid scales (the set-
ting that permits to recover stabilized formulations) was suggested in [51] and per-
formed in [42, 23, 144]. Excellent results were first presented in [23], but using isoge-
ometric analysis for the space approximation [99]. Compared to classical LES based
on filtering, the VMS approach does not face difficulties associated to inhomogeneous
non-commutative filters in wall-bounded flows. Further, it retains numerical con-
sistency in the FE equations and optimal convergence up to the interpolation order
whereas, e.g., Smagorinsky models introduce a consistency error of order h4/3 (see
[103, 105, 23]).

Scale separation is achieved in the VMS formalism by a variational projection. The
continuous unknown is split into a resolvable FE component and an unresolvable sub-
grid or subscale component. The action of the subscales onto the FE scales can be
approximated in different ways, leading to different VMS models but in all cases these
models are residual based (no eddy viscosity is introduced), which permits to retain con-
sistency. Among the modeling possibilities is the choice of the subscale space, first
discussed in [50], where it was enforced to be L2-orthogonal to the FE space. An-
other modeling ingredient is the possibility of considering time-dependent subscales
and to keep the VMS decomposition in all the nonlinear terms, which was studied in
[51, 55]. Clear improvements have been observed when using dynamic and fully non-
linear models for the simulation of laminar flows [55, 9].

In this chapter we assess implicit VMS models for the numerical simulation of tur-
bulent flows. We refer to the original references for a comprehensive treatment of the
assumptions of the formulations and their numerical analysis. Our intention here is
to compare the different VMS schemes in terms of quality of the results and computa-
tional cost, and discuss some implementation aspects that we find particularly relevant
for the simulation of turbulent flows. Our main motivation is to compare the influence
of using orthogonal subscales, in order to enrich current comparisons on VMS tech-
niques for large-eddy simulations, such as [78], where only non-projected subscales
are considered. We present a detailed numerical experimentation for three well known

1It is worth to point out that both problems (convection instability and compatibility conditions) are
also present in the linear Oseen problem. One of the inconsistencies of an explicit LES approach without a
numerical dissipation term is that convection is stabilized by a term that comes from the physical model
of the nonlinear Navier Stokes equations and such a term is not present when the linear Oseen problem is
considered.
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problems: the decay of homogeneous isotropic turbulence (DHIT), the Taylor-Green
vortex (TGV) and the turbulent flow in a channel (TCF), described in Section 3. Thus,
both unbounded and wall-bounded flows are considered; only wall-bounded tests are
performed in [78]. Some other differences with respect to [78] are: 1) we consider a
nonlinear sub-scale equation; 2) we do not include the time step size in the stabiliza-
tion term; 3) we have analyzed the effect of the skew-symmetric term.

The first implementation aspect we discuss is the treatment of the convective term.
As it is well-known, the numerical analysis [15, 39, 86] requires a skew-symmetric form
of this term in order to avoid any positive contribution to the energy estimates that
cannot be properly controlled. The construction of numerical schemes that preserve
the skew-symmetry of the convective term at the discrete level has been long stud-
ied in the finite difference and finite volume contexts [4, 179, 79, 177, 64, 172]. How-
ever, FE formulations used to perform VMS-based LES use either the conservative form
[103, 125, 23, 40, 42, 78, 82, 136] or the non-conservative one [113, 55, 151]. The approach
we follow here is similar to that in [175] and is based on a split of the convective term
into conservative and non-conservative terms. In the FE (variational) context, this sim-
ple approach guarantees the preservation of skew-symmetry at the discrete level. We
remark that in the nonlinear VMS models the convective velocity is discontinuous (due
to the subscale contribution), which prevents us to use some popular skewsymmetric
forms. We also show numerically that a positive energy contribution actually appears
if a non skew-symmetric form is used.

The second point that we address is the use of weighted (by the stabilization pa-
rameter) projections and consistent mass matrices when orthogonal subscales are con-
sidered. Even though it is cheaper to use non-weighted projections and lumped mass
matrices, only the use of consistent projections guarantees exact L2 orthogonality. An
alternative is the use of Scott-Zhang projections recently proposed in [11], although we
do not consider this approach here.

We also discuss the influence of the algorithmic constants of the stabilization pa-
rameters in the numerical results. In particular, we show that the choice of the stabi-
lization parameter multiplying the div-div term has a strong influence on the numer-
ical results while it is not essential for stability and convergence of the methods. We
further analyze the behavior of the VMS formulation as the time step size is reduced.
These two facts are actually related by the way the stabilization parameters are usually
defined (see [78, 98]).

Finally, we compare the results obtained using VMS models against those obtained
using classical LES based on filtering and the dynamic Smagorinsky closure [71], and
another implicit LES method, the adaptive local deconvolution presented in [96].

The chapter is organized as follows. In Section 4.2 we present the VMS formula-
tion, how to compute truly orthogonal subscales and the different models we aim at
analyzing, whereas in Section 4.3 we discuss energy conservation statements and how



54 Chapter 4. Residual-based VMS methods

they are influenced by the choice of the VMS method and the definition of the convec-
tive term. Sections 4.5.1, 4.5.2, 4.5.3 are devoted to the numerical approximation of the
DHIT, the TGV, and the TCF problems, respectively. Sections 4.5.4 and 4.5.5 discuss
the effect of the algorithmic constants on the results and the behavior of the different
schemes in the small time step limit. Some remarks close the article in Section 4.6.

4.2 Problem statement

4.2.1 The Galerkin semi-discrete problem

In order to improve the readability of this chapter we refresh the Navier-Stokes formu-
lation that was already stated in Chapter 2.

Let Ω be a bounded domain of Rd, where d = 2, 3 is the number of space dimen-
sions, Γ = ∂Ω its boundary and [0, T ] the time interval. The strong form of the in-
compressible Navier-Stokes problem consists of finding the velocity field u and the
pressure field p such that

∂tu− ν∆u + u · ∇u +∇p = f in Ω× (0, T ), (4.1)

∇ · u = 0 in Ω× (0, T ), (4.2)

with f the force vector and ν the kinematic viscosity.
Equations (4.1)-(4.2) have to be supplied with appropriate boundary and initial con-

ditions. The boundary Γ is divided into the Dirichlet (ΓD) and the Neumann (ΓN ) parts
such that ΓD ∪ΓN = Γ and ΓD ∩ΓN = ∅. Then, the boundary and initial conditions can
be written as

u = ug on ΓD × (0, T ], (4.3)

(−pI + ν(∇u +∇uT )) · n = tN on ΓN × (0, T ], (4.4)

u(x, 0) = u0(x) in Ω× {0}, (4.5)

n being the unit outward vector normal to Γ. To simplify the exposition, we will con-
sider ug = 0 and ΓD = Γ in what follows.

The weak form of the incompressible Navier-Stokes problem (4.1)-(4.5) consists,
e.g., in finding [u, p] ∈ L2(0, T ;V0) × D′(0, T ;Q0) (distributions in time with values in
Q0) such that

(∂tu,v) +B(u; [u, p], [v, q]) = 〈f ,v〉 ∀v ∈ V0, ∀q ∈ Q0, (4.6)

satisfying the initial condition (4.5) in a weak sense. Here V0 := H1
0 (Ω)d,Q0 := L2(Ω)/R

and the form B(a; [u, p], (v, q)) is defined as

B(a; [u, p], [v, q]) := ν(∇u,∇v) + b(a,u,v)− (p,∇ · v) + (q,∇ · u) (4.7)
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where the trilinear weak form of the convective term b(u,v,w) can be written in the
following three equivalent ways

b(u,v,w) = (u · ∇v,w) Non conservative, (4.8)

b(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(v,u · ∇w) Skew-symmetric (type 1), (4.9)

b(u,v,w) = (u · ∇v,w) +
1

2
(v ·w,∇ · u) Skew-symmetric (type 2). (4.10)

This equivalence is lost at the discrete level. The skew-symmetric form (type 2) (4.10)
is very common when numerical analysis are presented [15, 39, 86] but the skew-
symmetric form (type 2) (4.9) has important advantages when the first argument is
a discontinuous function, as will be shown below.

Let us now consider a FE partition Th of the domain Ω from which we can construct
conforming finite dimensional spaces for the velocity V0,h ⊂ V0, and for the pressure
Q0,h ⊂ Q0.

The Galerkin FE approximation of (4.6) consists in finding [uh, ph] ∈ L2(0, T ;V0,h)×
D′(0, T ;Q0,h) such that

(∂tuh,vh) +B(uh; [uh, ph], [vh, qh]) = 〈f ,vh〉 ∀vh ∈ V0,h,∀qh ∈ Q0,h. (4.11)

4.2.2 VMS framework

As it was pointed out in Section 2.4, the Galerkin FE formulation (4.11) suffers from
numerical instabilities for high mesh Reynolds number problems, i.e., convection dom-
inated flows. The discrete inf-sup condition that must be satisfied by the pair V0,h×Q0,h

in order to have a well-posed problem with bounded pressure is also a problem that
arise in the Galerkin FE formulation. The VMS method described in Section 2.4 over-
comes these two instabilities.

After the space splitting into the FE space and the subscale space V0 = V0,h ⊕ Ṽ0

and Q = Q0,h ⊕ Q̃0, where Ṽ0 and Q̃0 are infinite-dimensional spaces that complete
the FE spaces in V0 and Q0, respectively. The VMS semi-discrete problem reads: find
[uh, ph] ∈ L2(0, T ;V0,h)×D′(0, T ;Q0,h) such that

(∂tuh,vh) + (∂tũ,vh) +B(a; [uh, ph], [vh, qh]) + (ũ,L∗a(vh, qh))h − (p̃,∇ · vh) = 〈f ,vh〉 .
(4.12)

Where L∗a(vh, qh) is the adjoint operator defined in (2.38). The fine scale problem is
approximated by

∂tũ + τ−1
m ũ = P(Ru), (4.13)

τ−1
c p̃ = P(Rp). (4.14)
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With Ru the momentum equation residual (2.41), Rp the continuity equation residual
(2.42). τm and τc are the momentum and continuity equations stabilization parameters,
respectively, which definition is given by

τm =

(
c1ν

h2
+
c2|a|
h

)−1

, (4.15)

τc =
h2

c1τm
. (4.16)

The particular VMS method will result from the combination of the three particular
ingredients discussed in Sections 2.4.1-2.4.3, the dynamics of the subscale velocity, the
nonlinearity of the advection velocity and the definition of the projection.

4.3 Energy balance statements

In this section we revisit global energy conservation statements of the method. As
shown in [151], similar statements can be obtained locally (in a volume ω ⊂ Ω).

Taking vh = uh and qh = ph in (4.12) we have the energy balance on the FE compo-
nent

1

2
dt‖uh‖2︸ ︷︷ ︸

I

+ ν‖∇uh‖2︸ ︷︷ ︸
II

+ b(a,uh,uh)︸ ︷︷ ︸
III

(4.17)

+ (∂tũ,uh) + (ũ,L∗a(uh, ph))h − (p̃,∇ · uh)︸ ︷︷ ︸
IV

= 〈f ,uh〉︸ ︷︷ ︸
V

,

In equation (4.17) we group the terms as

I) FE kinetic energy variation: 1
2dt‖uh‖

2

II) FE viscous dissipation: ν‖∇uh‖2

III) FE convective term: b(a,uh,uh)

IV) FE to SGS energy transfer: εh = (∂tũ,uh) + (ũ,L∗a(uh, ph))h − (p̃,∇ · uh)

V) FE component of external power: 〈f ,uh〉

Multiplying (4.13) by ũ and (4.14) by p̃, integrating over the domain and decomposing
the residual of the momentum equation as Ru = f − ∂tuh − La(uh, ph), we obtain the
global energy balance on the fine scale

1

2
dt‖ũ‖2︸ ︷︷ ︸
I

+ τ−1
m ‖ũ‖2︸ ︷︷ ︸
II

+ τ−1
c ‖p̃‖2︸ ︷︷ ︸
III

(4.18)

+ (P(∂tuh), ũ) + (P(La(uh, ph)), ũ)h + (P(∇ · uh), p̃)︸ ︷︷ ︸
IV

= (P(f), ũ)︸ ︷︷ ︸
V

.

We group the terms in (4.18) as
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I) SGS kinetic energy variation: 1
2dt‖ũ‖

2

II) SGS velocity dissipation: τ−1
m ‖ũ‖2

III) SGS pressure dissipation: τ−1
c ‖p̃‖2

IV) SGS to FE energy transfer: ε̃ = (P(∂tuh), ũ) + (ũ,P(La(uh, ph)))h
+ (p̃,P(∇ · uh))

V) SGS component of external power: (P(f), ũ)

Finally, adding up equations (4.17) and (4.18) we obtain an equation for the total kinetic
energy

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 + ν‖∇uh‖2 + b(a,uh,uh) + τ−1

m ‖ũ‖2 + τ−1
c ‖p̃‖2 (4.19)

+ (∂tũ,uh) + (P(∂tuh), ũ) + (P(La(uh, ph)) + L∗a(uh, ph), ũ)h

+ (P(∇ · uh)−∇ · uh, p̃) = 〈f ,uh〉+ ((P(f), ũ) .

Let us note the presence of b(a,uh,uh), which is zero only when the skew-symmetric
type 1 form is considered. Other choices could result in a spurious positive contribution
to the FE kinetic energy as it is actually observed in the DHIT problem, and could result
in a loss of stability, although that was not observed.

4.3.1 Static subscales

In this case the energy balance for the subscale is meaningless because there are explicit
expressions for the subscales (2.46) and (4.14). When (2.46) and (4.14) are used in (4.17),
we obtain

1

2
dt‖uh‖2 + ν‖∇uh‖2 + b(a,uh,uh) + (τmP (∂tuh) ,L∗a(uh, ph))h (4.20)

+ (τmP (La(uh, ph)) ,L∗a(uh, ph))h + τc ‖P(∇ · uh)‖2

= 〈f ,uh〉+ (τmP(f),L∗a(uh, ph))h .

In the case of the ASGS method, where P := I, the fourth term on the left hand side
is a source of problems. One the one hand, it cannot be neglected because it is needed
to make the method consistent. On the other hand, it can only be controlled by the
dissipation of the time integration scheme and is therefore responsible for the intro-
duction of a restriction on the time step size. As a side problem, it is very inconvenient
for an implementation if any explicit (operator splitting) time integration is chosen as
it results in a non-symmetric mass matrix. This term is not present if the OSS method
is chosen using the projection P := I − Πh. Stability of both the fully discrete and the
semidiscrete Stokes problem have been proven in [13].

The important term is the fifth one, which permits to control τm ‖P (a · ∇uh +∇ph)‖2;
the FE part in the OSS formulation is readily controlled using inverse estimates. It
therefore provides the essential numerical stability. The last term acts as a penalty
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on the divergence constraint, adding volumetric diffusion and provides (extra, non-
essential) numerical stability.

For the OSS method, it is proved in [85] that the dissipative structure of the dis-
crete problem has the same statistical behavior in fully developed turbulence than the
continuous problem, in the sense that this dissipation has the same estimates as the
molecular one. Both dissipations could be made equal by a proper choice of the stabi-
lization parameters in (4.15). This, however, requires a small change in the advection
velocity of this expression, which depends on an integral length of the problem. See
[85] for details.

4.3.2 Dynamic subscales

In this case, the time derivative of both the FE and subgrid components have to be
considered and an estimator for the kinetic energy variation of both the FE and subgrid
velocity can be obtained. The stability of the subgrid scale velocity can then be used to
obtain a stability estimate of the FE component in a norm that includes the convective
and pressure terms [55, 13, 14].2 Therefore, the numerical dissipation of the method is
actually given by the energy transfer εh from the FE to the subscale component. Using
(4.13)-(4.14), we get:

εh = (∂tũ,uh)− (τm∂tũ,L∗a(uh, ph))h − (τmP (∂tuh) ,L∗a(uh, ph))h (4.21)

− (τmP (La(uh, ph)) ,L∗a(uh, ph))h + τc ‖P∇ · uh‖2 .

Except from the viscous contribution, the last two terms in (4.21) are positive, provid-
ing dissipation of the FE energy, but the first three could be negative, providing these
models with a mechanism to predict a backward energy transfer, not frequently found
in classical LES models [157]. It is justified in [54] that even if the first three terms may
be negative at a certain time instant, their averaged contribution in a time window
greater than the largest period needs to be positive, which is the behavior expected of
backscatter from a physical point of view.

For the ASGS method, i.e., P := I, the last term in the left hand side of (4.19) van-
ishes and the previous one reads

(La(uh, ph) + L∗a(uh, ph), ũ)h = −2 (ν∆uh, ũ)h . (4.22)

In turn, the time derivatives of the FE and subscale velocities can be combined as

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 + (∂tũ,uh) + (∂tuh, ũ) =

1

2
dt‖uh + ũ‖2 (4.23)

2However, it should be kept in mind that the numerical solution of the problem is the FE component.
There is no reason to add the subscale to the final solution as the approximation is limited by the interpo-
lation order, see [55, Remark 10].
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to rewrite (4.19) as

1

2
dt‖uh + ũ‖2 + ν‖∇uh‖2 + b(a,uh,uh) (4.24)

+ τ−1
m ‖ũ‖2 + τ−1

c ‖p̃‖2 − 2 (ν∆uh, ũ) = 〈f ,uh〉+ 〈f , ũ〉 .

From this equation, a stability estimate for ‖uh + ũ‖ can be obtained as the last term on
the left hand side can be controlled using the second one (see [13, Remark 4.7]).

Another important point of (4.24) is that it immediately shows that when the mesh
is fine enough, i.e.,

|a|h
ν
� 1,

the dissipation of the total energy depends only on the viscosity. Therefore, the dissi-
pative structure is correctly predicted when a laminar flow is considered or when the
discretization is fine enough to resolve all scales of the flow, an important advantage
over other LES techniques.

On the other hand, for the OSS method, the FE and subgrid kinetic energy can be
summed to obtain the total one

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 =

1

2
dt‖uh + ũ‖2. (4.25)

since (∂tũ,uh) = (∂tuh, ũ) = 0 as soon as we enforce the subscale to be orthogonal to
the FE space. This property also guarantees that

(Πm(La(uh, ph)), ũ) = 0 (4.26)

(Πc(∇ · uh), p̃) = 0 (4.27)

which implies that the last term on the left hand side of (4.19) vanishes and that the
previous one can be written as

(P(La(uh, ph)) + L∗a(uh, ph), ũ)h = ((La(uh, ph) + L∗a(uh, ph), ũ)h = −2 (ν∆uh, ũ)h
(4.28)

as in the ASGS case. Let us note that the Laplacian term can be eliminated without
affecting the convergence properties of the method. Then, the global energy balance
equation (4.19) reads

1

2
dt‖uh‖2 +

1

2
dt‖ũ‖2 + ν‖∇uh‖2 + b(a,uh,uh) (4.29)

+ τ−1
m ‖ũ‖2 + τ−1

c ‖p̃‖2 = 〈f ,uh〉+ (P(f), ũ) ,

which is exactly (4.24) except for the projection of the force in the last term. Stability
and convergence of this formulation have been proved in [14, 15].
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4.4 Final discrete problem

Applying a time integration algorithm to (4.12)-(4.13)-(4.14) we get the fully discrete
problem. The final implementation of the discrete problem is written here considering
a Picard linearization of the convective term and the Backward Euler (BE) scheme for
the time discretization. It can be straightforwardly modified to consider the Crank-
Nicolson time integration scheme; this last scheme is the one used in the numerical
examples of Sections 4.5.1, 4.5.2 and 4.5.3.

Some tips and comments on the implementation of the methods described here-
inafter are given in Appendix B.

4.4.1 Algebraic Subgrid Scales (ASGS)

Taking the nonlinear advection velocity definition (2.49) and considering the time deriva-
tive in the fine scales, we have the Dynamic and Nonlinear ASGS method, hereinafter
Dyn-Nl-ASGS. At time step n and nonlinear iteration i, given un,i−1

h , un−1
h , ũn,i−1 and

ũn−1 we compute un,ih and pn,ih such that

1

δt
(un,ih ,vh) +B(an,i−1; [un,ih , pn,ih ], [vh, qh]) (4.30)

+

(
τm,t

[
1

δt
un,ih + Lan,i−1(un,ih , pn,ih )

]
,L∗an,i−1(vh, qh)

)
h

+
(
τc∇ · un,ih ,∇ · vh

)
− 1

δt

(
τm,t

[
1

δt
un,ih + Lan,i−1(un,ih , pn,ih )

]
,vh

)
h

= 〈vh, f〉+
1

δt
(un−1

h ,vh) +
1

δt
(ũn−1,vh)

− 1

δt

(
τm,t

[
1

δt
un−1
h + f +

1

δt
ũn−1

]
,vh

)
+

(
τm,t

[
1

δt
un−1
h + f +

1

δt
ũn−1

]
,L∗an,i−1(vh, qh)

)
h

,

where τm,t =
(
δt−1 + τ−1

m

)−1 and an,i−1 = un,i−1
h + ũn,i−1.

In turn, ũn,i is computed by solving the discretization of the fine scale problem
(4.13). Note that in the nonlinear version of the algorithm, the stabilization parameter
τm,t depends on the subscale itself through a in (4.15), making the fine scale equation
also nonlinear, although it is local and does not increase the size of the global linear
system to be solved. At each integration point of each element we iteratively solve

ũn,i,k = τk−1
m,t

1

δt
ũn−1 + τk−1

m,t

[
f −

(un,ih − un−1
h )

δt
− Lan,i,k−1(un,ih , pn,ih )

]
. (4.31)

where an,i,k−1 = un,ih + ũn,i,k−1 is used in (4.15) to obtain τk−1
m,t .
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Alternatively, one can send the corresponding fine scale convective term ũ · ∇uh to
the left-hand side, improving the convergence of the iterative process as

ũn,i,k + ũn,i,k · ∇un,ih = τk−1
m,t

1

δt
ũn−1 + τk−1

m,t

[
f −

(un,ih − un−1
h )

δt
− L

un,ih
(un,ih , pn,ih )

]
.

(4.32)

This is a simple fixed-point iterative scheme that we have found efficient and robust
for the numerical simulations presented in this paper, although in other situations we
have found more convenient to use a conventional Newton-Raphson scheme to solve
the nonlinear subscale equation [9].

For the simplest ASGS scheme we do not consider the time derivative of the fine
scale, we consider them quasi-static, i.e., (∂tũ,vh) = 0. Note that in any case the sub-
scales will depend on time through the FE residual and the stabilization parameter. On
the other hand, the advection velocity is considered to be linear as indicated in (2.48).
We label this method as Static Linear ASGS (Sta-Lin-ASGS). Note that the Sta-Lin-ASGS
method does not need to explicitly compute ũ; invoking (4.15) and (4.16) in (4.12) we
get a discrete equation only in terms of the FE component.

We can readily define the rest of possible combinations of time and nonlinear treat-
ment considering the linear advection velocity definition and the time-dependence in
the subscales (Dyn-Lin-ASGS method) or keeping the static definition of the subscales
with the nonlinear choice for the advection velocity (Sta-Nl-ASGS method).

4.4.2 Orthogonal Subscales (OSS)

Let us state the Dynamic and Nonlinear OSS (Dyn-Nl-OSS) method, which means to
take into account the nonlinearity of the advection velocity (2.49) and the time deriva-
tive of the subscales. At time step n and nonlinear iteration i, given un,i−1

h , un−1
h , ũn,i−1

and ũn−1 we compute un,ih and pn,ih by solving

1

δt
(un,ih ,vh) +B(an,i−1; [un,ih , pn,ih ], [vh, qh]) (4.33)

+

(
τm,t

[
1

δt
un,ih + Lan,i−1(un,ih , pn,ih )

]
,L∗an,i−1(vh, qh)

)
+
(
τc∇ · un,ih ,∇ · vh

)
= 〈vh, f〉+

1

δt
(un−1

h ,vh)

+

(
τm,t

[
f +

1

δt
ũn−1 − ξn,i−1

m

]
,L∗an,i−1(vh, qh)

)
−
(
τcξ

n,i−1
c ,∇ · vh

)
,

where ξm and ξc are the weighted projections of the residuals Ru and Rp (see below)
evaluated at the corresponding time step and nonlinear iteration.
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Like the Dyn-NL-ASGS method, we also need to compute the subscale velocity ũ

explicitly. We compute the discrete subscale problem with the OSS counterpart of (4.31)
or (4.32), viz.

ũn,i,k + ũn,i,k · ∇un,ih = τk−1
m,t

1

δt
ũn−1 (4.34)

+ τk−1
m,t

[
f −

(un,ih − un−1
h )

δt
− L

un,ih
(un,ih , pn,ih )

]
− τk−1

m,t ξ
n,i−1
m .

Note that ξn,im actually depends on ũn,i via the advection velocity of the convective
term an,i = un,ih + ũn,i. In order to simplify the fine scale computation (4.34) we use the
projection at the previous nonlinear iteration, i.e., ξn,i−1

m .
For the dynamic OSS case we should introduce some modifications in the com-

putation of the projection Πm. At the fully discrete level, in order for ũn+1 to be L2

orthogonal to Vh, we must add to the FE residual the subscale time derivative contri-
bution from the previous time step and use τm,t instead of τm in the computation of the
projections. Finally, the projections of the residuals onto the FE spaces ξn,im and ξn,ic are
such that

(τm,tξ
n,i
m ,vh) = (τm,t(R

n,i
u +

1

δt
ũn−1),vh) ∀vh ∈ V0,h, (4.35)

(τcξ
n,i
c , qh) = (τcR

n,i
p , qh) ∀qh ∈ Q0,h, (4.36)

where the residuals Rn,i
u and Rn,ip are evaluated using (2.41) and (2.42) with an,i =

un,ih + ũn,i, un,ih , un−1
h and pn,ih . Note that when convergence of the nonlinear iteration

is achieved, (4.34) and (4.35) guarantee that (vh, ũ
n) = 0 for any vh ∈ V0,h.

4.5 Numerical experiments

4.5.1 Decay of homogeneous isotropic turbulence

This problem, one of the most used benchmarks to test LES models, consists of analyz-
ing the statistics of the turbulent flow in a 3D box of size Ω = (0, 2π)× (0, 2π)× (0, 2π)

with periodic boundary conditions in all directions, which is started with a field hav-
ing a predetermined energy spectrum. A detailed description of the computational do-
main, initial conditions, and problem setting is given in [133]. Furthermore, the main
characteristics of this test are stated in Section 3.2.3.

We recall that the initial energy spectra is:

E(k, 0) = 16

√
2

π
k−5

0 k4 exp

(
−2

(
k

k0

)2
)
. (4.37)
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The initial energy spectrum defined in (4.37) has a peak on the wavenumber k0 = 6

which supposes that the total kinetic energy at the initial time step should be 1/2q2 =

1.5 and the enstrophy 1
2 < ω

2 >= 67.5.

Setting

We solve the DHIT test using different meshes (323, 643 and 1283 Q1/Q1 elements).
We test the ASGS method and the OSS method reported in Section 4.4. The problem

is solved considering three different cases for both methods, depending on the defini-
tion of the advection velocity and the tracking of the subscales. The advection velocity
a can be linear or nonlinear and the subscales can be dynamic or static (see Subsec-
tion 4.2.2). Table 4.1 collects all the VMS combinations to be compared for the different
simulations.

Case Id. Label Method Advection velocity (a) Subscales tracking

1 Sta-Lin-ASGS ASGS Linear (a = uh) Static (∂tũ = 0)
2 Dyn-Lin-ASGS ASGS Linear (a = uh) Dynamic (∂tũ 6= 0)
3 Dyn-Nl-ASGS ASGS Nonlinear (a = uh + ũ) Dynamic (∂tũ 6= 0)

4 Sta-Lin-OSS OSS Linear (a = uh) Static (∂tũ = 0)
5 Dyn-Lin-OSS OSS Linear (a = uh) Dynamic (∂tũ 6= 0)
6 Dyn-Nl-OSS OSS Nonlinear (a = uh + ũ) Dynamic (∂tũ 6= 0)

TABLE 4.1: DHIT test cases.

In terms of the numerical parameters of the methods, we use the skew-symmetric
convective term type 1 defined in Subsection 4.2.1. The stabilization parameter τc is set
equal to zero and the algorithmic constants in τm are c1 = 12 and c2 = 2 (see Section
4.5.4). Further, we use linear, quadratic, and cubic FEs.

The time integration has been performed using the Crank-Nicolson scheme with
an adaptive time step. The initial time step is set to δt0 = 5.0 · 10−3 and it is increased
at each step multiplying it by an amplification factor. For this test the amplification is
equal to 1.1, reading δti = 1.1 · δti−1. The time step is increased step by step until it
reaches a predefined threshold, e.g., 0.1 s. If convergence is not attained at either the
nonlinear or solver loops, we apply a reduction factor (5.0 for this test) and recalculate
the solution using the reduced time step, i.e., δti = 1

5.0δti−1. The amplification of the
time step when the solution converges allows one to decrease the total amount of time
steps needed for the computation. At each time step the nonlinear system is solved as
described in Section 4.4.

It has been seen that for a coarse mesh like the 323 linear hexahedral elements mesh
that we are using for this test, the total amount of energy at the initial time step (com-
puted after the Inverse Fast Fourier Transform of the velocity field is far from the theo-
retical starting pointE0 = 1.5. This error is due to the projection from the Fourier space



64 Chapter 4. Residual-based VMS methods

onto the FE space, which obviously depends on the mesh size. As we refine the mesh,
the initial value of total energy tends to 1.5, as can be seen in Figure 4.1.

20 40 60 80 100 120 140 160 180 200
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Initial energy when h is refined

Number of elements on each direction

In
it
ia

l 
e
n
e
rg

y

FIGURE 4.1: Initial energy evolution refining the mesh

Knowing this behavior of the initial condition, it is difficult to draw conclusions
comparing the simulations with a DNS like AGARD database, [111]. In order to avoid
this problem, we scale the initial condition in a such way that its initial energy achieve
the desired value. This has been done multiplying the initial condition by a factor
defined as

u0new =

√
E0new

E0old

u0old , where E0new = 1.5.

Vorticity

As an introductory result, we show the vorticity contour at two different time steps, t =

5.0 · 10−3 and t = 2.0. These results are obtained considering the nonlinear definition
of a and the dynamic subscales tracking for the OSS method with a 643 hexahedral
trilinear elements mesh.

In Figure 4.2 we see that at the earlier time step the structures are much bigger than
at t = 2.0. As we will see in forthcoming sections, when the energy of the problem is
dissipated, the energy containing eddies become smaller, reducing its vorticity. This
mechanism induces a flattening of the energy spectra, as we will discuss later.

Energy Conservation

In this section we present results of the energy budget described in Section 4.3 obtained
in a 323 elements mesh for the ASGS and OSS methods using the dynamic and non-
linear cases. Fig. 4.3 depicts the energy balance evolution for the mean flow equation
(4.17) and the subscale equation (4.18) separately for the Dyn-Nl-ASGS case. It can be
seen that the variation of kinetic energy shown by the FE component in Fig. 4.3(a) is
offset in a large part by the transfer of energy to the subscales, while remaining energy
on the mean flow balance is offset by the viscous term. On the other side, Fig. 4.3(b)
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(a) t = 5.0 · 10−3 (b) t = 2.0

FIGURE 4.2: Vorticity contour

shows that the energy transferred from the FE equation is mainly dissipated by the
subscale velocity term. There is an small variation of the kinetic energy of the subscale
at the beginning of the simulation. Note that since the viscosity is small, so are the
viscous effects compared to the dissipation introduced by the subscale velocity. As we
use a skew-symmetric form of the convective term, this term does not affect the en-
ergy balance and is not plotted in Fig. 4.3(a). Since τc = 0, the pressure subscale term
τ−1
c ‖p̃‖2 = τc‖P(∇ · uh)‖2 is also zero and does not appear in Fig. 4.3(b).
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FIGURE 4.3: Mean flow and subscale energy balances for the Dyn-Nl-
ASGS method.

The energy balance evolution for the mean flow and the subscales equations in
(4.17)-(4.18) for the Dyn-Nl-OSS case are shown in Fig. 4.4. Fig. 4.4(a) depicts the
energy balance evolution for the mean flow equation. Like for the ASGS method, the
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loss of kinetic energy is balanced by the FE scales to subscales energy transfer terms.
The FE viscous term also has a very little impact on the dissipation of energy. On the
other side, the subscales energy balance shown in Fig. 4.4(b) shows that almost all the
energy transferred by the FE to the subscales is offset by the subscale velocity term,
again like in the ASGS method. The only important difference between both methods
is that no oscillations are observed in the FE kinetic energy evolution when the OSS method is
used.
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FIGURE 4.4: Mean flow and subscale energy balances the Dyn-Nl-OSS
method.

The global energy balance terms obtained solving the problem with the skew-symmetric
convective term type 2 for the Dyn-Nl-ASGS and Dyn-Nl-OSS cases are shown in Fig.
4.5. We note that the loss of skew-symmetry in the convective term has a non-negligible
effect (see Figs. 4.5(a) and 4.5(b)). In particular, this term introduces negative dissipa-
tion (production of energy) into the problem. This fact implies that the method is less
dissipative and the energy decays at a slower rate than using the convective term type 1
and the method seems to be less diffusive. This negative contribution, however, is not
predictable and could result in a blow up of the calculation. We refer to Section 4.5.4
for further comments about numerical instabilities associated to the type 2 convective
term.

Computational cost analysis

The actual implementation in the parallel FE multiphysics code FEMPAR [16] is based
on a classical domain decomposition strategy. At each nonlinear iteration the mono-
lithic linear system is solved using a classical GMRES method applied to the Schur
complement over the interfaces of the subdomains. This iterative procedure is precon-
ditioned using a balancing Neumann-Neumann method applied to the monolithic sys-
tem. The cost of each iteration is that of local Dirichlet solves for the Schur complement
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(b) Global energy balance for Dyn-Nl-OSS

FIGURE 4.5: Global energy balance using skew-symmetric convective
term type 2.

application and a local Neumann solve and a global solve for the preconditioner appli-
cation (see [132, 66, 19]). All local systems are solved using the sparse direct solvers in
PARDISO library [162, 163].

An important issue when comparing different computational methods is their cor-
responding computational cost. In order to characterize the performance of the differ-
ent VMS methods introduced in Section 4.2, we analyze some quantities that define the
computational cost of each method, viz. nonlinear iterations, iterative solver iterations,
and the adaptive time step evolution.

The cases compared here have been solved using 323 and 643 linear hexahedral
element meshes. The 323 discretization is very coarse but it allows us to stress the
differences between the proposed methods. In fact, due to this discretization, the linear
and static ASGS case (Sta-Lin-ASGS) and the dynamic and linear ASGS case (Dyn-Lin-
ASGS) do not converge at t = 0.0 and t = 0.123, respectively; the nonlinear iterations
diverge even reducing the time step size. Anyway, all the methods converge as h→ 0.

The number of nonlinear iterations needed at each time step by the ASGS method
is smaller than the one required by the OSS method in all cases. This is due to the eval-
uation of the projections at the previous nonlinear iteration i−1; the implicit treatment
of the projection is carried out by the nonlinear loop. Alternatively, since the projection
is a linear operation, it can be performed together with the linear system [52], although
a more involved implementation is required. Referring to the OSS method, we ob-
serve that the dynamic cases, both linear and nonlinear, need less iterations to achieve
convergence without any significant difference between each other.

However, the number of nonlinear iterations is not the most relevant measure of
the computational cost as the cost of each iteration is not fixed when iterative linear
solvers are considered. Fig. 4.6 shows the accumulated number of solver iterations for
each time step for the methods that have attained convergence with the 323 mesh (Fig.
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4.6(a)) and for the dynamic versions with the 643 mesh (Fig. 4.6(b)). Unlike the nonlin-
ear iterations, here we see that the ASGS method requires more solver iterations than
OSS. The maximum solver iterations at each time step for the dynamic and nonlinear
ASGS case is variable, starting from near 600, dropping to 200 and rising to around
300 iterations at the end of the computation. Meanwhile, all cases of the OSS method
remain almost constant, around 60 iterations in the dynamic cases and around 40 iter-
ations in the static one. The relation between time step size and solver iterations for
each method is analyzed in Section 4.5.5.
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FIGURE 4.6: Accumulated solver iterations.

The adaptive time stepping described in the previous subsection has an important
role on the computational cost, as mentioned earlier. If the time step is reduced in order
to ensure convergence, the global computational cost is increased. Then, we are looking
for those methods that do not require time step reductions, consequently reducing the
total amount of time step evaluations. In this case, any of the methods shown in Fig.
4.6(a) need to reduce the time step. Since we do not have any time step reduction and
the number of solver iterations per step is stabilized after t = 1 for the 323 mesh and
t = 1.5 for the 643 mesh, the total amount of accumulated solver iterations (in nonlinear
and time loops) shown in Fig. 4.6 increases almost linearly. We see in this figure that
the ASGS scheme performs worse than OSS in this aspect, with a steeper slope in both
the 323 and the 643 meshes. With respect to the OSS method, we see that the number
of nonlinear iterations needed by the static version of this method results in a steeper
slope of the accumulated solver iterations. No significant differences appear between
the dynamic linear and nonlinear definitions of the OSS method.

Summarizing, ASGS methods need less nonlinear iterations (due to the treatment of
the projections in the OSS method), but on the other hand OSS methods need less solver
iterations. Furthermore, ASGS formulations are prone to instabilities; linear formulations
diverge and the nonlinear dynamic formulation requires much more solver iterations.

We can clearly state that the most efficient method for this setting, in terms of com-
putational cost, is the dynamic (both linear and nonlinear) OSS method; all OSS cases
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are below ASGS. It has to be said that the dynamic nonlinear OSS case requires less
nonlinear iterations in some of the time step computations.

Total energy evolution

In this section we present the total energy evolution of the resolved scales, i.e., the FE
component. The results are shown in Fig. 4.7 for the 323 and the 643 grids. We observe
that all methods have a very similar accuracy for this test case, still far from the DNS
result. The difference between the methods becomes even smaller when the mesh is
refined and they are all closer to the DNS solution. Note that we do not plot the non-
converged results from the ASGS static cases.
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FIGURE 4.7: Total energy evolution for the 323 and 643 elements meshes
with the scaled initial condition.

Remark 4.5.1. The results shown in Figure 4.7 have been obtained using the skewsymmetric
convective term type 1, b(a,uh,vh) = 1

2(a · ∇uh,vh) − 1
2(a · uh,∇vh). But what happens

if we choose another definition for this term? We know that the nonskewsymmetric term (off)
can involve convergence problems. So we tested the influence of this term by solving the same
problem with the convective skewsymmetric term (type 2). We did that for the dynamic and
nonlinear cases for both methods, ASGS and OSS. The results obtained for this test are shown
in Figure 4.8.

We can clearly see in Figure 4.8 that the solution using the type 2 term is above the obtained
with term type 1. Then, we can say that the solution is less dissipative when we use this
convective term. It has to be said that in Figure 4.8 we only represent the cases which exhibit
more differences. In other words, in order to see the effect of the convective term definition,
we only show the dynamic and nonlinear cases for ASGS and OSS methods. On the other
hand, here we also have to take into account what we said on Remark 2.4.1. Introducing the
nonlinearity on a we are increasing its weight on the convective term and changing its correct
definition, therefore, it is normal that the differences between each definition increase.
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FIGURE 4.8: Total energy evolution. Comparison between different def-
initions for the convective term

Energy spectra

According to [133], the resolution of the small scales in isotropic decaying turbulence
is judged by the shape of the energy spectra at high wave numbers, and requires
kmaxη ≈ 1, η = (ν3/ε)1/4 being the Kolmogorov length scale and kmax the maximum
wave number required. In this case kmax ≈ 182, which means at least a 3003 FE mesh
for a DNS computation, with a high computational cost. In this section we evaluate the
capability of the VMS method to represent the energy of the eddies at the inertial sub-
range without solving the small scales and compare the results against Kolmogorov’s
law prediction

E(k) ∝ ε2/3k−5/3,

E being the turbulent kinetic energy.
In Fig. 4.9 the energy spectra for the different cases described in Table 4.1, using 323

and 643 linear hexahedral element mesh are presented. We can see in Fig. 4.9(a) that the
energy spectra at t = 0.2 decays with a different slope depending on the VMS method
used. Although the differences are small and only appear at large wavenumbers, we
see that the dynamic OSS models are less dissipative than the Dyn-Nl-ASGS and Sta-
Lin-OSS ones. For the finer 643 mesh the difference between the spectra obtained using
Dyn-Nl-ASGS and Dyn-Lin-OSS are even smaller, as shown in Fig. 4.9(b); OSS is again
less dissipative.

h-p refinement

The energy decay computed using 323 and 643 linear FE meshes is far from the one ob-
tained using DNS [111], as shown in Fig. (4.7) and discussed above. To make clear that
these poor results are due to this crude discretization, we present a mesh refinement
analysis, both reducing the element length h and increasing the interpolation order p.
We choose the Dynamic and Nonlinear OSS method (Dyn-Nl-OSS), which is the one
that shows the lowest slope in the accumulated iterations evolution (Fig. 4.6) for the 323
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FIGURE 4.9: Energy spectra at t = 0.2 (323 mesh) and t = 0.8 (643 mesh).

and 643 linear elements mesh. We solve the problem using the discretizations exposed
in Table 4.2.

Label Mesh elements Element type

32 (Q1) 323 hexahedral linear (Q1)
64 (Q1) 643 hexahedral linear (Q1)
128 (Q1) 1283 hexahedral linear (Q1)
32 (Q2) 323 hexahedral quadratic (Q2)
64 (Q2) 643 hexahedral quadratic (Q2)
32 (Q3) 323 hexahedral cubic (Q3)

TABLE 4.2: h-p refinement cases.

In Fig. (4.10) we show the total kinetic energy evolution obtained using the dis-
cretizations defined in Table 4.2. Reducing the mesh size h and/or increasing the poly-
nomial order p (not to be confused with the pressure) the result becomes closer to the
DNS, as expected. In Fig. 4.10(b) three groups can be clearly observed, namely 32 (Q1),
32 (Q2) and 64 (Q1) and the remaining three. The best results are obtained using Q2
elements although the difference is really small.

Given the differences in the total energy evolution the time at which the k−5/3 law is
achieved differs for the different methods. We show the energy spectra at time t = 0.8

and t = 1.0 for the different cases presented before in Fig. 4.11. As it can be observed in
Fig. 4.11(a), at t = 0.8, only the energy spectra obtained using the 32 (Q1) and 64 (Q1)
have a steeper slope, while the other cases are almost parallel to the k−3/5 line. This
is what was expected since the kinetic energy decay occurs earlier in the coarser cases.
In Fig. 4.11(b) we show the energy spectra at t = 1.0, and compare it against the DNS
spectrum from [111] at the same time step. It can be observed that the results tend to
the DNS one as we increase resolution, being the 64(Q2) case the most accurate one.
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FIGURE 4.10: Total kinetic energy evolution.

Note that the DNS spectra is not present in Fig. 4.11(a) because it is not available in
the database [111] at this time step.
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FIGURE 4.11: Energy spectra at t = 0.8 and t = 1.0 for the h-p refinement
defined in Table 4.2.

Comparison with a non-stabilized method

We use the classical static Smagorinsky model, consisting in adding a turbulent vis-
cosity νt that depends on the velocity gradient and the characteristic element length
h. This additional viscosity also acts as stabilization of convection, as usual in stan-
dard LES simulations. Then, we have to solve the standard Galerkin problem using
Taylor-Hood Q2/Q1 elements and introducing a modified viscosity defined as

ν = νl + νt, (4.38)
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where νl is the real flow viscosity and νt = (Csh)2|∇su|. Cs is the Smagorinsky con-
stant, which we set equal to 0.15.

We can see in Fig. 4.12(a) that the total kinetic energy is decaying faster for the
non-stabilized method than for the OSS method. This behavior is directly related to
the shape of the energy spectra in Figs. 4.12(b)-4.12(d), where we can see that the
Smagorinsky method presents lower values of energy at t = 0.4. It is important to point
out the pile-up that appears in the Smagorinsky spectra, denoting that small scales are
not dissipating energy properly.
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FIGURE 4.12: Total kinetic energy evolution and energy spectra using
OSS and non-stabilized method with an inf-sup stable Q2/Q1 element

4.5.2 Taylor-Green Vortex

This problem aims to show, in a relatively simple flow, the basic turbulence decay
mechanisms like the turbulent energy cascade, the production of small eddies and the
enhancement of dissipation by the stretching of vortex lines. We refer to Section 3.2.3
for a deeper description of this problem.
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The computational domain is the unit cube with periodical boundary conditions.
The initial analytical condition is defined in the physical space (see, e.g., [80]), and
given by

ux = u0 cos(x) sin(y) sin(z), (4.39)

uy = −u0 sin(x) cos(y) sin(z),

uz = 0,

p = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2) ,

with
u0 =

2√
3

sin

(
γ +

2π

3

)
.

We choose γ = 0, which gives the mean initial velocity u0 = 1. The pressure constant
parameter p0 is chosen equal to zero.

Setting

We solve the TGV problem using a Reynolds number Re = 1600. The most common
Reynolds numbers available in the literature are Re = 800, Re = 1600 and Re = 3000

(see, e.g., [2, 71, 80, 109]). We use the same VMS methods as for the DHIT problem
defined in Section 4.5.1 to solve this test, namely the ASGS and OSS methods, both with
linear and nonlinear definitions of the convective term and static or dynamic tracking
in time of the subscales, as it is summarized in Table 4.1. The stabilization parameters
for each method are the same as those chosen for the DHIT test, see Subsection 4.5.1,
and discussed in Section 4.5.4.

Initially we consider a mesh of 323 hexahedral linear elements (Q1), but we will re-
define this discretization to analyze the method performance when we refine the mesh,
decreasing the element size h or increasing the degree of the interpolation polynomial
p. It implies to solve the problem on meshes with 643 and 1283 linear (Q1), quadratic
(Q2) or cubic (Q3) hexahedral elements. We also use a 203(Q3) discretization to com-
pare against other authors results.

Vorticity

The TGV test is characterized by its laminar evolution at the initial time steps, when the
flow is strongly anisotropic due to the structured large-scale vortices directly related to
the initial condition. If the Reynolds number is large enough, the vortex-stretching
process, which activates the energy cascade effect, transfers energy from large to small-
scales and the flow becomes unstable and turbulent. According to Brachet et al. [32],
the flow becomes nearly isotropic for Re ≥ 1000.

In Fig. 4.13 we present some vorticity isosurface images showing this process for
a 1283 linear hexahedral elements mesh, for the dynamic and nonlinear OSS method.
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Note that the initial condition (Fig. 4.13(a)) consists in eight vortices with the same
scale corresponding to the eight Fourier modes located at k = (±1,±1,±1), as it has
been pointed out previously.

Comparison between VMS methods

In order to compare the different VMS methods defined previously and to test their
performance as LES models we solve the TGV test on a 323 and 643 linear elements
mesh with a Reynolds number Re = 1600.

We want to show the amount of numerical dissipation, the energy cascade in the
spectra and the enstrophy evolution (compared to DNS) in all cases. We compare first
the kinetic energy evolution with the kinetic energy evolution obtained by Brachet et
al. [32], (Fig. 4.14(a)). We also present the energy spectra at t = 9, when the flow is
supposed to be nearly isotropic at large wave numbers, (Fig. 4.14(b)).

In Fig. 4.14(a), we can see that for a 323 trilinear hexahedral elements mesh all
methods show a premature decay of energy. We recognize the same behavior observed
for the same mesh in the DHIT test, see Subsection 4.5.1. For this mesh, it is clear that
the methods are not able to simulate properly the transition to turbulence. The energy
spectra at t = 9.0 shows us that the flow is isotropic at large wave numbers since it is
decaying following the k−5/3 Kolmogorov law.

As in the DHIT test, the cases with nonlinear and dynamic definitions of the sub-
scales, using either ASGS or OSS methods, seem to be slightly less dissipative. Further-
more, OSS is a little bit less dissipative than ASGS, but the differences are not important.

As for the DHIT test, the results obtained using the different methods listed in Table
4.1 are very similar for these coarser discretizations. The only point that is worth to
note is that the linear and static ASGS case (Sta-Lin-ASGS) and the dynamic and linear
ASGS case (Dyn-Lin-ASGS) diverge at some time step before t = 9. Anyway, all the
methods converge as h → 0 and the accuracy depends much more on the mesh size
than on the choice of the method. In turn, similar trends for the computational cost
analyzed in the previous section have been observed.

h-p refinement

As in the DHIT problem, we perform a refinement study reducing h and/or increasing
p using Dyn-Nl-OSS. The global energy evolution and the energy spectra are shown in
Fig. 4.15. Fig. 4.15(a) displays the total kinetic energy evolution compared with the
DNS [32]. The results show that all cases, excluding the 323 and 643 linear hexahedral
mesh, follow almost perfectly the line defined by the DNS result points. On the other
hand, Fig. 4.15(b) displays the energy spectra at t = 9, when the dissipation is maxi-
mum and the flow is evolving to turbulence. We compare the energy spectra obtained
solving all the cases considered before with the DNS computed by [80], using the same
Reynolds number (Re = 1600) at the same time.
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(a) Isosurface for |ω| = 1.0 at t = 0.0 (b) Isosurface for |ω| = 1.0 at t = 2.0

(c) Isosurface for |ω| = 2.5 at t = 4.1 (d) Isosurface for |ω| = 5.0 at t = 6.1

(e) Isosurface for |ω| = 8.0 at t = 8.2 (f) Isosurface for |ω| = 9.0 at t = 10.2

FIGURE 4.13: Vorticity isosurfaces with velocity contour at different time
steps.
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FIGURE 4.14: Total kinetic energy evolution and energy spectra
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FIGURE 4.15: Total kinetic energy evolution and energy spectra for the
h− p refinement cases.

In Fig. 4.16 we show the dissipation rate of the problem, compared to the DNS
results. The dissipation rate is directly related to the enstrophy of the problem, ε =

2ν
(

1
2

〈
|ω|2

〉)
, where |ω| is the modulus of the vorticity. At the continuous level, it de-

termines the kinetic energy decay which, at the discrete level, is also influenced by
the numerical dissipation (see equation (4.17)). When an explicit model is used, the
dissipation introduced by the subgrid model also needs to be included. The FE vis-
cous dissipation ν‖∇uh‖2, is shown in Fig. 4.16(a) whereas the total dissipation rate
ν‖∇uh‖2 + εh defined by equation (4.17) is shown in Fig. 4.16(b).

As in the DHIT problem, the results obtained using the coarser 323(Q1) and 643(Q1)

meshes are not accurate, the FE viscous dissipation being far from the exact viscous
dissipation, as shown in Fig. 4.16(a). The total dissipation introduced by the method is
too large and, especially for the 323(Q1), peaked at earlier times, i.e., the energy decays
faster and earlier than it should (see Fig. 4.16(b)). When finer resolutions are used, the
flows dynamics are much better predicted. Even when the resolution is not enough
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FIGURE 4.16: Dissipation rate evolution for the h-p refinement cases.

to completely capture the viscous dissipation, the total dissipation compares very well
with the exact one, as shown in Fig. 4.16. This is a clear illustration of the very good
performance of the method, which adds the right amount of dissipation when the gradients are
not captured by the resolution.

Comparison with a non-stabilized method

All the results presented up to this point have been computed using a VMS method,
either ASGS or OSS. But, what would be the result using other methods? Are the meth-
ods presented here, comparable to classical LES methods? Which methods perform
better? To answer all these questions, we compare the results obtained here against
those obtained using the dynamic Smagorinsky model [71] and the adaptive local de-
convolution method [96] specifically designed as an implicit LES model. The former
has been obtained with a filter of size 2π/64 and spectral resolution up to 2π/256, thus
not having numerical but only modeling error. In turn, the latter has been obtained
using a 643 grid without explicit subgrid model, an explicit third-order Runge-Kutta
scheme for the time discretization, a fourth order spatial approximation of the sym-
metric terms and its particular approximation of the convective term which is based on
the (forth order) five-point central stencils approximation of the convective term [96].
To make the comparison as fair as possible we select those combinations of h and p that
result in a similar number of degrees of freedom, which are 643(Q1) (second order),
323(Q2) (third order) and 20(Q3) (fourth order) meshes (the last one having actually a
bit less degrees of freedom).

The FE viscous dissipation is shown in Fig. 4.17(a) compared to the resolved dissi-
pation obtained using the dynamic Smagorinsky model [71] and the “molecular dissi-
pation” of [96] (the one computed using the molecular viscosity and the approximated
solution, equivalent to our FE viscous dissipation but in the finite volume context). The
total dissipations of the three methods are compared in Fig. 4.17(b).
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FIGURE 4.17: Dissipation rate evolution compared to the dynamic
Smagorinsky [71] and ALDM models [96].

It can be observed in Fig. 4.17(a) that all the methods produce similar results, The
dynamic Smagorinsky is more accurate in predicting the resolved dissipation at earlier
times (up to t ≈ 6) but less accurate at later times (see Fig. 4.17(a)). We plot the total
dissipation in Fig. 4.17(b). We can see that the excellent job our implicit LES model
does when the 20(Q3) mesh is used, which would result in an excellent prediction of
the resolved kinetic energy decay (which is not available in [96]).

4.5.3 Turbulent channel flow

After studying the performance of VMS in the LES of homogeneous flows we turn
our attention to wall-bounded turbulent flow and present results of fully developed
turbulent flow in a channel.

This test consists of a fluid that flows between two parallel walls driven by an
imposed pressure gradient which is defined by the Reynolds number based on the
wall shear velocity, Reτ . In the important amount of literature devoted to this prob-
lem, the usual Reynolds numbers are: Reτ = 590, Reτ = 395 and Reτ = 180 (see
[23, 40, 78, 82, 87, 105, 113, 121, 136, 140]). We will restrict our attention to Reτ = 180

and Reτ = 395. See Section 3.3.2 for an extended description of this test.

Setting

We solve the problem using the coarsest mesh from previous tests, 323 linear hexahe-
dral (Q1) elements. The refinement in the wall-normal direction follows a hyperbolic
function, also used in [40, 78, 82, 87, 136], defined as

yi =
tanh

(
γ
(

2i
npy
− 1
))

tanh(γ)
,
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where i = 1, ..., npy with npy the total amount of nodes in the wall-normal direction.
Here, γ is chosen to be equal to 2.75 for both Reτ = 180 and Reτ = 395. We refer the
reader to [8] for a complete study of the influence of the discretization in the results of
the TCF.

As it has been said above, we solve the problem using two different friction Reynolds
numbers, Reτ = 180 and Reτ = 395. We compare our results against those obtained by
DNS in [140, 121] and we choose our parameters accordingly. We take the bulk mean
velocity and the half channel height equal to one, Ū = 1 and δ = 1. The viscosity is
computed from the estimated Reynolds number based on the bulk mean velocity Re.
Then, from the friction Reynolds number Reτ we compute the friction velocity (uτ ), the
wall shear stress (τw) and a driving force equivalent to a pressure gradient (fx), given
by [150]:

uτ =
νReτ
δ

, τw = ρu2
τ , fx =

τw
δ
.

We use the Crank-Nicolson time integration scheme with a constant time step. Ham
et al. test in [93] the influence of the time step for a fully implicit Finite Difference
midpoint method, equivalent to Crank-Nicolson, on the statistics of a TCF DNS. They
found little variation in statistical turbulence quantities up to δt+ = 1.6. Following
Gravemeier et al. [82], we define a time step in wall units δt+ = δtu2

τ
ν ≈ 0.69, which,

according to [93], should not affect the turbulent quantity statistics. The same authors
performed 25000 time steps in order to allow the flow to develop and they collected
the statistics during another 5000 time steps. A total averaging time about 500δ/U0 is
used in [47] once the statistically stable regime is achieved.

In Table 4.3 we present the value of the different parameters defined above for
the two different friction Reynolds numbers. For the initial condition we impose a
parabolic profile obtained solving the stationary Stokes problem with the driving force
and viscosity defined above. Additionally, with the aim to achieve a fully developed
flow earlier, we introduce a perturbation with a maximum value of 10% the bulk ve-
locity.

Reτ 180 395

ν 3.5714 · 10−4 1.4545 · 10−4

uτ 6.4286 · 10−2 5.7455 · 10−2

τw 4.1327 · 10−3 3.3010 · 10−3

fx 4.1327 · 10−3 3.3010 · 10−3

δt 0.06 0.03

TABLE 4.3: Test parameters for the different friction Reynolds number.

Our purpose is to check the VMS methods defined in Subsection 4.2.2 for a wall-
bounded flow. Following the computations performed for the previous tests, we solve
the problem using the same cases defined in Table 4.1 and the numerical parameters
τc = 0 and τm are defined in the same way, now with the algorithmic constants c1 = 12
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and c2 = 8 (see Subsection 4.5.4) and the characteristic length, h, is chosen to be the
minimum element length.

Velocity profiles

We first present the mean stream-wise velocity profile scaled by the wall shear stress
velocity, 〈u〉+ = 〈u〉

uτ
for all cases defined in Table 4.1, where 〈·〉 denotes the mean value

in stream-wise and span-wise direction and in time, as a function of y+ = yuτ
ν .

In Fig. 4.18(a) we show the mean stream-wise velocity normalized by the wall-shear
velocity, uτ , obtained for all cases considered in Table 4.1 in a 323 linear elements mesh
for the Reτ = 395 case. We compare the results with the DNS one obtained in [140].
We can observe in Fig. 4.18(a) that all methods perform quite similar and are very close
to the DNS result. Fig. 4.18 also depicts the stream-wise, span-wise and wall-normal
root mean square (rms) velocity fluctuation components normalized by the wall-shear
stress velocity.
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FIGURE 4.18: Mean stream-wise velocity and rms velocity fluctuations
for Reτ = 395 case using a 323 Q1 mesh.
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Reynolds shear stress

Another turbulent quantity widely used in the TCF test is the Reynolds shear stress. At
the continuous level the Reynolds shear stress is defined as

Rxy = −
〈
u′v′

〉
+ ν

∂ 〈u〉
∂y

, (4.40)

being u and v the velocity in the streamwise direction and wall-normal direction, re-
spectively, and the prime denoting the fluctuations, i.e., the variable minus the mean.

It can be seen that for the discrete equation (4.12), one can obtain the Reynolds shear
stress defined as follows:

Rxy = −
〈
a′xa
′
y

〉
+ ν

∂ 〈uh〉
∂y

= −
〈
u′hv

′
h

〉︸ ︷︷ ︸
I

−
〈
u′hṽ

′〉− 〈ũ′v′h〉− 〈ũ′ṽ′〉︸ ︷︷ ︸
II

+ ν
∂ 〈uh〉
∂y︸ ︷︷ ︸
III

. (4.41)

being ai the i-th component of the advection velocity. In (4.41) we have used the non-
linear definition of the advection velocity defined in (2.49).

The first term on the second part of (4.41) (term I) is the contribution of the re-
solved scales (FE component) to the cross term

〈
a′xa
′
y

〉
. Term II denotes the contri-

bution of the subgrid scales and their interaction with the FE components, that is, the
unresolved part of the equation. Finally, term III accounts for the viscous portion of
the Reynolds shear stress. Note that the derivatives of the approximated subscales are
not computable, since these approximated subscales are discontinuous and have been
designed to approximate the effect of the exact subscales on the FE scales element-wise.

For a fully developed and statistically stable turbulent flow, the Reynolds shear
stress along the wall-normal direction has a linear shape (see [121]). Normalized by the
viscous term III value at the wall, the total Reynolds shear stress in terms of y/δ should
have the following expression: Rxy(y/δ) = (−y/δ). Fig. 4.19 depicts the absolute value
of the Reynolds shear stress along the upper half channel (y > 0), with the different
terms appearing in (4.41) and compared with the DNS in [140], for the Dyn-Nl-OSS
case with Reτ = 395. The computed results are almost identical to the DNS ones. It
has to be noted that the computed results are evaluated at the integration points due
to the presence of the derivative in the Reynolds shear stress, which using linear FEs
is constant at each element. Then, using two integration points per direction for the
numerical integration, term III will be constant for those two integration points being
in the same element. This behavior is observed in Fig. 4.19, where the viscous term
is pairwise constant. This last fact also affects the total Reynolds shear stress. Since
the resolved term has different values at each element Gauss point, the sum of terms
I and III results in an oscillatory shape near the wall, where the viscous term is more
relevant. It is also seen that the unresolved term II does not contribute to the Reynolds
shear stress, which is a good property of the tested VMS methods. The results for the
remaining cases in Table 4.1 are similar to those presented in Fig. 4.19 and have not
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been reported.
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FIGURE 4.19: Reynolds stress of the Dyn-Nl-OSS case.

4.5.4 Sensitivity with respect to the stabilization parameters

All the VMS models considered herein depend on the stabilization parameters τm and
τc, which contain constants c1 and c2 whose value is chosen from numerical experi-
ments. However, we can infer from (4.20) or (4.21) how this dependency will be. As
mentioned before, the last two terms in (4.21) are dissipative and therefore, increasing
τm and/or τc we obtain a more dissipative method. From (4.15)-(4.16), increasing τm
results in a reduction of τc. More precisely

τc = ν +
c2

c1
|a|h (4.42)

from where we see that increasing c1 reduces both τm and τc but increasing c2 reduces
τm but increases τc. On the other hand, only the fourth term in (4.21) is essential to
control τm ‖P (a · ∇uh +∇ph)‖2 and it is possible to choose τc = 0.

The results presented above have been obtained using different settings of the nu-
merical stabilization parameters τm and τc. In DHIT and TGV tests, we take the algo-
rithmic constants c1 = 12 and c2 = 2 for τm and we set τc = 0, while for the TCF test
we have used c1 = 12 and c2 = 8 for τm and also τc = 0. In this section we analyze
the influence of these parameters on the numerical results and justify our choice of the
constants for the large eddy simulation of turbulent flows.

We have performed a sensitivity analysis of the VMS schemes with respect to the
value of c1 and c2. To see the effect of such algorithmic constants on τm and τc indepen-
dently, we define a new constant cc which allows us to redefine (4.42) as

τc = cc

(
ν +

c2

c1
|a|h

)
(4.43)

These experiments have been done for the DHIT test using the Dyn-Nl-OSS case in a
323 Q1 mesh and the results are depicted in Fig. 4.20. They show important changes in
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the dissipation the VMS methods introduce when constants are changed. It is known
that the decay rate of kinetic energy in isotropic turbulence is driven by large scales (of
the order of the integral scale) (see, e.g., [59]). As we have observed, the subgrid model
has only influence when a very coarse grid is used.

In particular, for high Reynolds number problems, the constant c1 does not have so
much influence on τm, but it does on τc. With respect to c2, we observe that it influ-
ences the energy dissipation of the method, which is increased when the value of this
constant is decreased. When τc is activated (cc = 1), we observe a growth of the energy
dissipation when the coefficient c2/c1 increases. This behavior is what we are expecting
since the method becomes more diffusive when τc is increased due to the last term in
(4.21).

Concerning the energy spectra, it is also shown in Fig. 4.20(a) and Fig. 4.20(b) that
the only constant that influences the result when τc = 0 is c2. In these figures we can see
that when we increase c2 the method is less dissipative, resulting in an inappropriate
slope of the energy spectra. We can observe that with c2 = 2 the decay of the energy
behaves correctly, keeping the k−5/3 law. For the largest values of c2 the energy at small
scales is not properly dissipated. Note that for c2 = 2 the slope of the energy spectrum
is kept almost constant along the time, which does not happen in the other cases. When
we activate τc (see Figs. 4.20(c) and 4.20(d)) we are introducing additional dissipation
into the system that eliminates the pile up of the energy spectra for all the cases, but
generally results in steeper slopes. Here we also have to note that the energy spectra
slope is time dependent for all cases except for c2 = 2. This analysis led us to choose
c1 = 12 and c2 = 2 for τm and set τc = 0 for homogeneous turbulence, i.e., DHIT and
TGV tests.

In order to go in depth on the effect of the algorithmic constants c1 and c2 and the
stabilization parameter τc of the incompressibility equation, we compare the results for
the TCF problem with a friction Reynolds number Reτ = 180 using the same choice
made for homogeneous turbulence (c1 = 12, c2 = 2 and τc = 0) against the setting of
the incompressible case in [8] (c1 = 12, c2 = 2 and τc as in (4.16)) and a less dissipative
setting with c1 = 12, c2 = 8 and τc = 0. These tests have been done using the Dyn-Nl-
OSS case in a 323 Q1 mesh.

In Fig. 4.21(a) the mean velocity in the streamwise direction is shown. As in the
case of homogeneous turbulence, some differences between the three cases can be ob-
served, the choice used in section 4.5.3 being the most accurate one. The effect of the
algorithmic constant c2 and the stabilization parameter τc in the problem solution can
be clearly observed, i.e., the less dissipative choice gives the best results. Figs. 4.21(b),
4.21(c) and 4.21(d) depict the rms velocity fluctuations in all directions. The fluctua-
tions in the streamwise direction are better predicted using (c1 = 12, c2 = 8 and τc = 0)
but the span-wise and wall-normal directions are not.
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(a) Energy spectra at t = 0.4 with cc = 0
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(b) Energy spectra at t = 0.8 with cc = 0
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(c) Energy spectra at t = 0.4 with cc = 1
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(d) Energy spectra at t = 0.8 with cc = 1
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FIGURE 4.20: Comparison of energy spectra for different c1, c2 and cc in
the DHIT test.

4.5.5 Behavior in the small time step limit

Small time step instabilities for VMS LES simulations of turbulent flows have been
reported in [98, 78]. In these references, the VMS models differ from the ones in this
work. Instead of the definition of τm in (4.15), a time step dependent stabilization
parameter τm

τm =

(
1

δt
+
c1ν

h2
+
c2|a|
h

)−1

,

is considered in all cases.3 The plain introduction of a time step dependency in τm faces
serious difficulties:

• The method becomes unstable in the small time step limit since it converges to
the unstable Galerkin formulation.

3The parameter τm,t for the dynamic subscales model also scales with δt, as discussed in Section (4.4).
However, this dependence comes from a consistent time integration of the subscale time derivative (see
also [55, Section 3.2]).
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FIGURE 4.21: Comparison of mean streamwise velocity and rms velocity
fluctuations for Reτ = 180 case using a 323 Q1 mesh.

• If τc is computed from (4.16) (as it is usually done, see, e.g., [23, 98, 78, 82]),
τm ∼ δt and τc ∼ δt−1 in the small time step limit. If this approach is followed
, the essential numerical dissipation given by the fifth term in (4.20) is reduced
as δt → 0, whereas the numerical dissipation introduced by the last term in the
left hand side (a incompressibility penalty term) of (4.20) is increased. It has a
compensating effect in practice, but the penalty term does not properly act as a
turbulence model.

Let us perform a test to study the small time step behavior of the VMS meth-
ods presented in Section 4.2, using the skew-symmetric type 1 form of the convective
term, as in previous numerical experiments. We also include a combination we do
not advocate here, static subscales and nonlinear splitting, an approach followed in
[42, 23, 98, 78, 82]. The behavior of all the methods for the TCF test with δt = 0.002

is summarized in Table 4.4, where YES means that the simulation was successful, NO
means that the simulation diverged and δt ↓means that the simulation was successful
only when the adaptive time step strategy described in Section 4.5.1 was used.
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It is important to note that the static and nonlinear ASGS formulation used in
[23, 98, 78, 82] with the convective term type 2 becomes unstable after some time, as
also reported in these works, even for the time step size defined in section 4.5.3. How-
ever, using the the skew-symmetric type 1 form of the convective term, which exactly
conserves energy, the simulation ended successfully for the time step defined in sec-
tion 4.5.3, but failed to converge with the small one. This result is a numerical evidence
of the fact that the use of convective terms without the skew-symmetric property pro-
duce energy (see also Section 4.5.1) that can make simulations unstable. Further, these
results evidence once again that it is a good choice to stick to provably unconditionally sta-
ble formulations, i.e., the dynamic formulations and/or orthogonal subscales formulations with
a skew-symmetric convective term. Similar results have been reported in the finite dif-
ference context in [179], where it is shown that stable simulations of the TCF can be
performed using an energy-preserving skew-symmetric formulation.

Method ASGS OSS

Tracking Static Dynamic Static Dynamic

Advection Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear

Converged Yes No Yes Yes δt ↓ δt ↓ Yes Yes

TABLE 4.4: Small time step convergence analysis.

To the best of our knowledge, the stability (or instability) of dynamic ASGS meth-
ods has not been proved. In our numerical experiments the static and dynamic linear
versions fail to converge in some problems (e.g DHIT) but we have not found these
problems with the Dyn-Nl-ASGS method. Nevertheless, we have found an important
increase in the computational cost when the time step is reduced. This behavior is
explained in Fig. 4.22, where the number of solver iterations at the first time step is
plotted against the time step size for the dynamic and nonlinear cases of ASGS and
OSS methods, with 323 and 643 Q1 mesh, for the DHIT test case. The number of required
solver iterations (and as a result the condition number of the system matrix) blows up expo-
nentially for the ASGS method as we reduce the time step size, whereas it remains constant
for the OSS method. This important observation explains the computational cost trends
observed in the previous section.

4.6 Conclusions

In this paper we have assessed the performance of the numerical formulations previ-
ously developed in our group [51, 55, 54, 151] for turbulent incompressible flow prob-
lems.

The methods proposed are different to those whose testing in turbulent regimes
has been published before, the closest ones being those reported in [23, 78]. First, we
consider orthogonal subscales formulations. Further, in [23] the ASGS method with
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FIGURE 4.22: Solver iterations at the first time step for DHIT test.

quasi-static subscales is used (in the isogeometrical analysis context) but the time step
dependency is included in the stabilization parameter (with the inconsistencies and
problems discussed in section 4.5.5) and the nonlinear scale splitting is applied in the
FE equation only (not in the subscale equation). Time dependent subscales are used
in [78], but the authors consider a linear scale splitting. Furthermore, in both works
τc 6= 0.

First, we have discussed some theoretical aspects, such as the dissipative structure
of the methods and the way energy is conserved, which we have numerically verified.
Related to this point, we analyze the effect of using different skew-symmetric forms of
the convective term, and its impact on energy conservation; if a skew symmetric form
is not used, negative energy dissipation can be introduced to the scheme, which may
be a source of instability.

However, the most important conclusions come from the different problems that
we have solved numerically. Overall, OSS and ASGS yield similar results, all display-
ing the features of turbulent flows, reproducing appropriately global outputs such as
energy spectra. The methods are stable and converge to reference solutions, both when
the mesh is refined and when the polynomial order is increased.

On the other hand, we have thoroughly analyzed the effect of the algorithmic con-
stants for isotropic turbulence and wall-bounded turbulent flows, and chosen them
based on this sensitivity analysis. An important observation in this line is the fact that
all the methods considered in this work are certainly sensitive to the algorithmic con-
stants and they have to be properly chosen in order to simulate turbulent flows on
coarse meshes. In fact, the differences in the numerical results are much more influ-
enced by the algorithmic constants than by the choice of the VMS formulation itself.
This strong influence seems to be a characteristic feature of turbulence, since in our ex-
perience it is not so important in laminar flows. VMS methods is something that needs
further research.

Further, we have analyzed the effect of small time steps when the stabilization pa-
rameters depend on them.
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Apart from the quality of the results, the OSS method with dynamic subscales is
convenient in terms of numerical performance. It requires more nonlinear iterations
than ASGS, but less iterations of the linear solver, altogether leading to lower compu-
tational cost. In both formulations, ASGS and OSS, the use of dynamic subscales has
been found to be crucial for nonlinear convergence. In fact, in some cases quasi-static
subscales failed to converge. We have explained these facts by plotting the number of
solver iterations required to converge as we reduce the time step size, for a fixed mesh
in space. The number of iterations (and as a result the condition number of the system
matrix) blows up exponentially for ASGS whereas it remains bounded for OSS.





Chapter 5

Mixed FE methods with convection
stabilization

5.1 Introduction

The VMS method for incompressible turbulent flows has been analyzed previously
in Chapter 4. As stated there, the VMS method introduced by Hughes in [100, 101]
is a framework to develop stable and accurate numerical approximations of partial
differential equations, preventing numerical instabilities that arise when the standard
Galerkin FE method is used.

We also recall here that the use of VMS method as an ILES method was firstly sug-
gested in [104, 105, 51] and, since then, several VMS methods have been developed and
used as ILES. We can distinguish between those that introduce a three scale decomposi-
tion into resolved large and small scales and unresolved scales [125, 113, 114, 41], with a
Smagorinsky type model for the influence of unresolved scales onto the small resolved
ones, and those that introduce a two scale decomposition into resolved and unresolved
ones [23, 56] using a residual based or projection based model of the unresolved scales
to account for their influence into the resolved ones.

In [50], a two scale VMS approach through OSS was firstly introduced. The main
idea of the OSS method is to select the space of small scales orthogonal to the FE space,
in contrast to the traditional choice of taking the subscales proportional to the residual,
which is called ASGS in [50]. Apart from the choice of the space of subscales, their
time dependency and the VMS splitting of nonlinear terms was studied in [55]. Several
combinations of these modelling possibilities where exhaustively assessed for homoge-
neous and wall bounded turbulent flows in [56]1. In that work, an explicit algorithm to
compute the orthogonal projections was used and the projection of the whole residual
was considered.

An alternative definition of the OSS method was proposed in [52] using a term-
by-term stabilization that does not involve the full residual. A similar term-by-term
stabilization approach was followed in [30], where the Local Projection Stabilization
(LPS) method was introduced. This type of techniques are also known as symmetric

1Chapter 4 collects most of the work exposed in [56], which has been extended and adapted to fit in
the argumentation of this thesis.
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projection stabilization, and the key ingredient that leads to different schemes is the
definition of such projection [30, 11]. One of the main interests of a term-by-term sta-
bilization is that one can avoid the addition of the pressure gradient stabilization term
when using inf-sup stable (ISS) velocity-pressure pairs. Another advantage of the term-
by-term stabilization methods is that the projection can be easily treated as implicit,
without having all the residual terms coupled. The use of equal-order or ISS pairs with
the LPS method was assessed for laminar flows in [77], concluding that the grad-div
stabilization term is more relevant than the convective stabilization term when ISS FEs
are used. The same conclusion was pointed out in [114], where the turbulent channel
flow is studied using a projection-based and a bubble-based FE VMS method introduc-
ing a Smagorinsky type model to stabilize convection.

The main goal of this chapter is to assess for the first time the accuracy and effi-
ciency of convection-stabilized ISS schemes as ILES methods, where symmetric projec-
tion stabilization is used. In particular, we analyze the term-by-term OSS method with
implicit treatment of the projection for turbulent flows. We also analyze the influence
of the grad-div stabilization on the accuracy of the method. For ISS discretizations, the
influence of this term on the mass conservation is well known [130] but it also influ-
ences the computational cost of the linear solvers [146, 95]. In this respect, we present a
block preconditioning strategy that makes use of recursive block factorizations [18] to
deal with the implicit projections and with the saddle point structure of the velocity-
pressure coupling, which can also be applied to equal order interpolation with pressure
stabilization. The comparison of the results is made with respect to those obtained us-
ing the residual-based ASGS for which we also use a block preconditioning strategy.

This chapter is organized as follows. The Navier-Stokes equations together with
some notation used in the paper are stated in Section 5.2. The VMS framework is
introduced in Section 5.3, which includes the final discrete formulation of the ASGS
method, given in Section 5.3.1, the term-by-term OSS given in Section 5.3.2, the term-
by-term OSS with ISS elements given in Section 5.3.3 and also a brief discussion of
known properties of the grad-div stabilization given in Section 5.3.4. The recursive
block iterative strategy proposed to solve the linear system of the monolithic problem
is presented in Section 5.4. The numerical results are shown in Section 5.5, where two
different turbulent tests are analyzed: the Taylor-Green Vortex flow in Section 5.5.2 and
the Turbulent Channel Flow in Section 5.5.3. Finally, some conclusions are pointed out
in Section 5.6.

5.2 Problem statement

For the sake of chapter completeness, let us retrieve the problem definition described
in Chapter 2, albeit rather briefly.

Let Ω be a bounded domain of Rd, where d = 2, 3 is the number of space dimen-
sions, Γ = ∂Ω its boundary and (0, T ] the time interval. The strong form of the transient
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Navier-Stokes problem consists in finding the velocity field u and the pressure field p

such that

∂tu− ν∆u + u · ∇u +∇p = f in Ω× (0, T ], (5.1)

∇ · u = 0 in Ω× (0, T ], (5.2)

with f the force vector and ν the kinematic viscosity. Equations (5.1) and (5.2) need
to be supplied with appropriate boundary and initial conditions. The boundary Γ is
divided into the Dirichlet (ΓD) and the Neumann (ΓN ) parts such that ΓD ∪ ΓN = Γ

and ΓD ∩ ΓN = ∅. Then, the boundary and initial conditions can be written as

u = ug on ΓD × (0, T ], (5.3)

(−p · I + ν(∇u +∇uT )) · n = tN on ΓN × (0, T ], (5.4)

u(x, 0) = u0(x) in Ω× {0}, (5.5)

n being the unit outward vector normal to Γ and u0(x) satisfying∇ · u0 = 0.
From equations (5.1)-(5.5) one can derive the weak form of the problem, which

consists in finding [u, p] ∈ L2(0, T ;Vg)× L1(0, T ;Q0) such that

(∂tu,v) +B(u, (u, p), (v, q)) = 〈f ,v〉 ∀v ∈ V0, ∀q ∈ Q0, (5.6)

satisfying the initial condition (5.5) in a weak sense. Here V0 := H1
0(Ω), Vg := H1

g(Ω)

and Q0 := L2(Ω)/R and the form B(u, (u, p), (v, q)) is defined as

B(u, (u, p), (v, q)) := ν(∇u,∇v) + b(u,u,v)− (p,∇ · v) + (q,∇ · u) (5.7)

with the trilinear form of the convective term b(u,v,w) defined in its skew symmetric
version

b(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(v,u · ∇w) +

1

2
(v, (u · n)w)ΓN . (5.8)

5.3 VMS framework

Let us consider a FE partition Th of the domain Ω from which we can construct con-
forming finite dimensional spaces for the velocity V0,h ⊂ V0, Vg,h ⊂ Vg, and for the
pressure Q0,h ⊂ Q0. The Galerkin FE approximation of the problem (5.6) consists in
finding [uh, ph] ∈ L2(0, T ;Vg,h)× L1(0, T ;Q0,h) such that

(∂tuh,vh) +B(uh, (uh, ph), (vh, qh)) = 〈f ,vh〉 ∀vh ∈ V0,h,∀qh ∈ Q0,h. (5.9)

In order to overcome the numerical instabilities and, eventually, to bypass the inf-sup
condition that arises when problem (5.9) is solved, we use the VMS approach [100, 101]
which consists in a two-scale decomposition of spaces V0, Vg and Q0 as V0 = V0,h ⊕ Ṽ0,
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Vg = Vg,h⊕Ṽg andQ = Q0,h⊕Q̃0, where Ṽ0, Ṽg and Q̃0 are infinite-dimensional spaces
that complete the FE spaces in V0, Vg and Q0, respectively. Hereinafter the subscript
(·)h will denote the FE component and the tilde (̃·) the subgrid component. Applying
the two-scale decomposition to (5.6) we obtain

(∂tuh,vh) + (∂tũ,vh) +B(a; [uh, ph], [vh, qh])− (ũ, ν∆vh + a · ∇vh +∇qh)h (5.10)

− (p̃,∇ · vh)h = 〈f ,vh〉 ,

where (·, ·)h =
∑

K∈Th(·, ·)K is the sum of scalar products (2.17) over each element
K of the partition Th. The terms involving the subscales come from an element-wise
integration by parts, in which the boundary terms (vh, νn · ∇ũ)∂h and (qh,n · ũ)∂h
have been neglected (the subscript ∂h is used to denote the sum over all elements
of the integral on the boundary of each element). It also involves the approximation
b(a, ũ,uh) ≈ −(ũ,a · ∇vh) which implies neglecting (vh,n · aũ)∂h and (ũ,∇ · a vh).
These approximations are discussed in [55] together with the choice of the advection
velocity a which defines the type of scale splitting (linear or nonlinear), see also [56].

Problem (5.10) depends on ũ ∈ Ṽ0 and on p̃ ∈ Q̃0, Ṽ0 and Q̃0 being infinite-
dimensional. Therefore, the equations for ũ and p̃ obtained after applying the two-
scale decomposition cannot be directly solved, but some modelling steps are needed
to obtain a feasible method. In this work we consider the velocity subscale as linear
(a = uh) and quasi-static, while the pressure subscale is neglected when equal order
interpolation is used. Different approaches could be used for the definition of the sub-
scales, see Chapter 4 for a deep explanation of the different choices and their numerical
evaluation with equal order approximation. After the approximation of the Navier-
Stokes operators by the stabilization parameters τ−1

m and τ−1
c (see for example [55]),

and introducing the fine scales definitions into (5.10) we get the final discrete problem

(∂tuh,vh) +Bh(uh, (uh, ph), (vh, qh)) = Lh(vh, qh) ∀vh ∈ V0,h,∀qh ∈ Q0,h, (5.11)

The bilinear form Bh and the linear form Lh depend on the particular VMS method as
discussed below.

5.3.1 Residual-based ASGS

The space for the subscales Ṽ0 is determined by the definition of the projection P ap-
pearing in the right-hand side of (2.39)-(2.40). The ASGS method is obtained taking the
subscales in the space of the residuals, that is, PṼ := I and PQ̃ := I . The final discrete
is given by (5.11) with Bh = Basgs and Lh = Lasgs given by

Basgs(uh, (uh, ph), (vh, qh)) := B(uh, (uh, ph), (vh, qh)) (5.12)

+ (τm(∂tuh − ν∆uh + uh · ∇uh +∇ph), ν∆vh + uh · ∇vh +∇qh),

Lasgs(vh, qh) := 〈f ,vh〉+ (τmf , ν∆vh + uh · ∇vh +∇qh). (5.13)
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Note that the pressure subscale term has been neglected in (5.12), that is we have taken
τc = 0. We have observed in [56] (using equal order interpolation) that this term intro-
duces extra dissipation and does not in general improve the solution significantly.

5.3.2 Term by term OSS

Another possibility introduced in [50] is to consider the space of the subscales orthog-
onal to the FE space. This method is mainly motivated by the fact that a stability esti-
mate for the projection onto the FE space of the pressure and the convective terms can
already be obtained in the standard Galerkin method and therefore the only “missing”
part is the orthogonal one. The Orthogonal Subscales (OSS) method is then obtained
taking PṼ := Π⊥h = I−Πh where Πh is a projection onto the FE space. The L2 orthogo-
nality between the FE and subscale spaces is guaranteed considering the τm-weighted
projection

(τmΠh(w),vh) = (τmw,vh) ∀vh ∈ V0,h. (5.14)

which requires the solution of a linear system defined by a τm-weighted mass matrix.
Note that for this choice, the residual of the momentum equation does not depend
on ∂tuh. Likewise, P(f) in this case is only well defined for f ∈ L2(Ω)d. In the case of
minimum regularity, f ∈ H−1(Ω)d, this term can be simply neglected without upsetting
the accuracy of the method.

Remark 5.3.1. Alternatively we can consider the standard L2 projection

(Πh(w),vh) = (w,vh) ∀vh ∈ V0,h, (5.15)

modifying the model of the subscales as

ũ = PṼ(τmRu), (5.16)

p̃ = PQ̃(τcRp). (5.17)

With this modification the orthogonality between the FE and subscale spaces is guaranteed (and
thus (∂tuh, ũ) = 0) and standard mass matrices are used. This is an advantage from which
we can take profit to build more efficient solvers. In the numerical tests we will favour this
alternative.

Neglecting the pressure subscales the OSS method is given by (5.11) with B = Boss

and Lh(vh, qh) = 〈f ,vh〉where

Boss(uh, (uh, ph), (vh, qh)) = B(uh, (uh, ph), (vh, qh)) (5.18)

+ (τm(−ν∆uh + uh · ∇uh +∇ph), ν∆vh + uh · ∇vh +∇qh)

− (τmηh, ν∆vh + uh · ∇vh +∇qh).
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where ηh := Πh(Ru) is computed solving

(τmηh,κh) + (τm(−ν∆uh + uh · ∇uh +∇ph),κh) = (τmf ,κh) ∀κh ∈ Vh,0, (5.19)

An implicit implementation of this method would require the introduction of an extra
variable (the projection ηh) and, more importantly, this variable would be coupled with
both velocity and pressure. Due to the change on the sign of the Laplacian terms of the
adjoint operator, the velocity-projection coupling is non-symmetric, as it can be seen in
(5.18) and (5.19).

In order to reduce the coupling between variables we consider the term by term OSS
method proposed in [52]. The main goal of this alternative is to stabilize separately the
convective term and the pressure gradient term by two uncoupled orthogonal projec-
tions. As noted in [52] the term by term OSS has better stability properties than the clas-
sical one. Considering quasi-static and linear subscales the discrete problem is given
by (5.11) with B = Btbt_oss and Lh(vh, qh) = 〈f ,vh〉where

Btbt_oss(uh, (uh, ph), (vh, qh)) = B(uh, (uh, ph), (vh, qh)) (5.20)

+ (τmuh · ∇uh,uh · ∇vh) + (τm∇ph,∇qh)

− (τmηh,uh · ∇vh)− (τmξh,∇qh).

and ηh := Πh(uh · ∇uh) and ξh := Πh(∇ph) are computed solving

(τmηh,κh) = (τmuh · ∇uh,κh) ∀κh ∈ Vh,0, (5.21)

(τmξh, ζh) = (τm∇ph, ζh) ∀ζh ∈ Vh,0. (5.22)

Note that with the term by term OSS method with implicit FE projections, there are
3d + 1 unknowns per node, while for ASGS the number of unknowns is d + 1 per
node. A priory it seems that such increase of unknowns make the former method not
appealing in front of ASGS, but we will see later that the increase of computational
cost is not linear with the increase of unknowns in this case. Furthermore, an optimal
block preconditioning technique can be used to solve problem (5.11)-(5.20)-(5.21)-(5.22)
taking advantage of its block structure. This point is further discussed in Section 5.4.

5.3.3 Term by term OSS with ISS elements

For equal order interpolation the pressure stabilization is mandatory but for ISS FE
spaces pressure stability is guaranteed. Then, we could define a term by term OSS
method for ISS FE that only stabilizes the convective term by an orthogonal FE pro-
jection. This approach would reduce the number of unknowns per node, keeping sta-
bility properties and the better conditioned matrix than ASGS. The definition of the
term by term OSS-ISS method can be given by equation (5.11) with B = Btbt_oss_iss and
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Lh(vh, qh) = 〈f ,vh〉where

Btbt_oss_iss(uh, (uh, ph), (vh, qh)) = B(uh, (uh, ph), (vh, qh)) (5.23)

+ (τmuh · ∇uh,uh · ∇vh)− (τmηh,uh · ∇vh)

+ (τc∇ · uh,∇ · vh),

complemented by the FE projection of the convective term defined in (5.21). Note that
in this case we include the effect of the pressure subscales, that is, the grad-div stabiliza-
tion. However (for constant stabilization parameters) the projection of the divergence
required to implement (2.40) needs not to be computed because it vanishes, which is
implied by the discrete mass conservation equation. This is not the case when pressure
stabilization is used. When only the projection of the convective term is considered,
we neglect this projection to reduce the computational cost. Note, however, that this
approximation does not introduce any consistency error.

5.3.4 The grad-div stabilization

It is important to highlight here the presence of the pressure subscale term, τc(∇·uh,∇·
vh) in (5.23), first introduced in [75]. Even though it is usually included in VMS for-
mulations it is sometimes neglected in practice, particularly when equal order inter-
polations with pressure stabilization are considered [56]. As it is shown in [77], using
the grad-div stabilization in the simulation of laminar flows produces a small improve-
ment of the results obtained with equal order interpolation but a clear improvement of
the results obtained with ISS elements.

In the VMS decomposition, this term comes from the residual of the incompressibil-
ity constraint and its addition improves the conservation of mass as well as the effect
that the error on the pressure field produces on the velocity field. In [145, 81] the au-
thors assessed the use of ISS elements for the incompressible Navier-Stokes equations
in the laminar regime, highlighting the importance of this term. The optimal choice
of the parameter τc, discussed in [110], depends on the relative norms of the velocity
and pressure (is therefore problem dependent) and can be of order one but also much
bigger. On the other hand, in [44] it is proved that on a regular mesh, the Taylor-Hood
approximations converge to a point-wise divergence-free solution, the one obtained
using Scott-Vogelius (SV) elements [165], as τc → ∞. Then, it is seen that the optimal
value of τc is an open question and, as stated in [145], we may consider the search of opti-
mal parameters as a trade-off between mass and momentum balance in the FE system. In this
work we will try to evaluate the importance of such term for turbulent incompressible
flows when ISS elements are used. Thus, a detailed discussion of which are the values
that should take τc is considered for each numerical test in further sections.

Apart from its influence on mass conservation, this term is also known to introduce
numerical dissipation both when equal order [56] or ISS elements are used [145]. An
energy balance of the term-by-term OSS is obtained taking vh = uh and qh = ph in
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(5.11) and using (5.23)

1

2

d

dt
‖uh‖2 + ν‖∇uh‖2 + ‖τ1/2

m (uh · ∇uh − ηh)‖2 + ‖τ1/2
c ∇ · uh‖2 = 〈f ,uh〉 . (5.24)

Apart from the viscous dissipation coming from the Galerkin method, which is neg-
ligible in turbulent flows, we get extra dissipation that comes from the control of the
orthogonal projection of the convective term and the dissipation that comes from the
grad-div stabilization. When equal order interpolations are used this extra dissipation
is not necessary and very good results are obtained taking τc = 0 [56]. As discussed
above, for ISS discretizations, the numerical dissipation introduced by the grad-div
term is crucial to obtain accurate solutions. For instance, given a velocity space, the
Taylor-Hood element has one order less pressure space than the stabilized equal or-
der counterpart, leading to a poorer approximation of the mass conservation equation.
Note that when τc goes to zero no dissipation is introduced but the accuracy in the
satisfaction of mass conservation is poor. On the other hand taking τc large results
in a strong imposition of the mass conservation (it acts as a penalty term) giving, for
the Taylor-Hood pair on regular meshes, exact (point-wise) zero divergence in the limit
[44]. In this case it turns out that the extra dissipation also vanishes as ‖τ1/2

c ∇·uh‖ −→ 0

in the limit of τc −→ ∞ as τ−1/2
c [131]. In any case it is important to keep in mind that

when τc is changed the velocity field changes and the other dissipative terms in (5.24)
also change. We cannot therefore conclude whether the method is more or less dissi-
pative looking only at ‖τ1/2

c ∇ · uh‖2. It is possible to arrive to such a conclusion when
this parameter does not influence very much the solution, as in the case of equal order
interpolation. This point is discussed in detail when presenting the numerical results
in Section 5.5.

Finally, the grad-div term also has a strong influence on the conditioning of the lin-
ear system and therefore on the convergence of iterative solvers. When the monolithic
system is considered, this term acts as an augmented Lagrangian term improving the
convergence of block iterative schemes but it is also known that it introduces stiffness
in the velocity block [146, 95].

An alternative to the parameter tuning needed for, e.g., Taylor Hood elements, is
the use of divergence-free FEs that also satisfy the inf-sup condition (obviously, for
these elements the grad-div stabilization vanishes). One of this group of elements
is the Scott-Vogelius pair [165] which is given by the triangular/tetrahedral elements
Pk/P

disc
k−1 . This element is similar to the Taylor-Hood element except that the pressure

space is discontinuous, which implies the property of point-wise divergence-free (tak-
ing the pressure test function as the divergence of the velocity). The Scott-Vogelius
element is ISS under certain assumptions on the mesh, e.g., the order of the interpo-
lation k ≥ d and the mesh is a barycentre-refinement of a regular mesh [131]. For
quadrilateral meshes, Zhang introduced a new divergence-free ISS element in [184].
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This work proposed a new family of quadrilateral elements that have a different in-
terpolation space for each velocity component, which for the 3D case can be stated as
Qk+1,k,k×Qk,k+1,k×Qk,k,k+1/Q

disc
k . In this case, the pressure field is also discontinuous

with spurious modes filtered. We do not consider these approaches here.

5.4 Block preconditioning for the monolithic problem

A common approach when the OSS method is used is to treat the projection explic-
itly within a Picard linearization scheme. That means to compute its value after the
resolution of the velocity-pressure system and iterating until the solution converges.
Although the resulting matrix has a better condition number than the ASGS method,
the increase of nonlinear iterations due to the explicit treatment of the orthogonal pro-
jection may cause a lose of efficiency of this method in many cases. In [56] there is a
computational cost analysis of these methods for turbulent incompressible flows where
this effect can be shown.

Alternatively, the implicit approach of the OSS method increases the number of
unknowns of the problem, not only having the usual velocity and pressure unknowns,
but also the FE projection. Treating the FE projection as a new unknown, the system
of equations to be solved is increased with equation (5.14) or (5.15). This projection
unknown is coupled with both the velocity and the pressure and these blocks are non-
symmetric which makes the application of the block preconditioning technique more
difficult. As mentioned, this is not the case when the term by term OSS or the term by
term OSS with ISS elements are considered.

In order to present our recursive block-preconditioning technique, let us assume
that we solve the Navier-Stokes problem using (to fix ideas) a backward Euler time
integration with a monolithic approach, i.e., without any velocity-pressure segrega-
tion algorithm. We consider the implicit term-by-term OSS stabilization given by the
bilinear form (5.20) as this is the more general case when talking about number of un-
knowns that appear in the system, since there are the velocity, pressure and two projec-
tions. The case of the term by term OSS with ISS elements and the ASGS are obtained
just eliminating rows and columns of this system.

Assuming that uh, ph, ηh and ξh are defined by a FE interpolation from the nodal
values {Ua}a=1,...,Nu , {P b}b=1,...,Np , {Υl}l=1,...,Nη and {Ξm}m=1,...,Nξ , the FE approxi-
mation of the velocity, pressure and projection fields can be written as

uh(x) =

Nu∑
a=1

φa(x)Ua, ph(x) =

Np∑
b=1

ψb(x)P b,

ηh(x) =

Nη∑
l=1

φη(x)Υl, ξh(x) =

Nξ∑
m=1

φξ(x)Ξm,
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where {φa,i}a=1,...,Nu;i=1,...,d, {ψb}b=1,...,Np , {φl,i}l=1,...,Nη ;i=1,...,d and {φm,i}m=1,...,Nξ;i=1,...,d

are the Lagrangian basis associated to Vh and Qh. Nu, Np, Nη and Nξ are the total
amount of nodes for the velocity, pressure and projection fields.

The matrix form of the problem (5.11) with the bilinear form (5.20) and, the projec-
tions (5.21)-(5.22) can be written as

1
δtM + K + C + Aτ G Bη,τ 0

D Lτ 0 Bξ,τ
−BTη,τ 0 Mη,τ 0

0 −BTξ,τ 0 Mξ,τ




U

P

Υ

Ξ

 =


Fu

0

0

0

 , (5.25)

where M, K, C, D and G are the matrices that arise from the Galerkin integration of the
mass, diffusive, convective, velocity divergence and pressure gradient terms, respec-
tively. The definition of the remaining terms are given by

Aabτ := (τmu · ∇φa,u · ∇φb) + (τc∇ · φa,∇ · φb), a, b = 1, ..., Nu,

Labτ := (τm∇ψa,∇ψb), a, b = 1, ..., Np,

Babη,τ := −(τmu · ∇φa,φb), a = 1, ..., Nu, b = 1, ..., Nη,

Mab
η,τ := −(τmφa,φb), a, b = 1, ..., Nη,

Babξ,τ := −(τm∇ψa,φb), a = 1, ..., Np, b = 1, ..., Nξ,

Mab
ξ,τ := −(τmφa,φb), a, b = 1, ..., Nξ,

being a and b the node identification. Note that D = −GT , when Dirichlet boundary
conditions are considered. In general, Nξ = Nη, then, Mξ,τ = Mη,τ .

For the ASGS method, only the first two rows and columns of the matricial system
(5.25) are present, with different definitions of Aτ and Lτ that are straight forward from
the bilinear form (5.12). In the case of OSS-ISS method, only the last row and column
disappear, keeping the same definition for the remaining terms.

To solve the system (5.25) we use a recursive block-preconditioning technique. This
methodology was used in [18] for a multiphysics problem like the thermally coupled
inductionless magnetohydrodynamics (MHD). The idea is to construct recursively block
preconditioners of size 2×2 from an incomplete block factorization of the original 2×2

block matrices.
Let us consider a block system equivalent to (5.25) defined as[

M̃τ −B̃Tτ
B̃τ K̃τ

][
Ξ̃

Ũ

]
=

[
0

F̃u

]
, (5.26)
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with K̃τ :=

[
1
δtM + K + C + Aτ G

D Lτ

]
, B̃τ :=

[
Bη,τ 0

0 Bξ,τ

]
, M̃τ :=

[
Mη,τ 0

0 Mξ,τ

]
,

Ξ̃ :=

[
Υ

Ξ

]
, Ũ :=

[
U

P

]
and F̃u :=

[
Fu

0

]
.

The matrix that appear in the system of equations (5.26) can be factorized into an
exact LU matrix product as follows

Ã :=

[
M̃τ −B̃Tτ
B̃τ K̃τ

]
=

[
M̃τ 0

B̃τ S̃

][
I −M̃−1

τ B̃Tτ
0 I

]
(5.27)

=

[
I 0

B̃τM̃−1
τ I

][
M̃τ −B̃Tτ
0 S̃

]
,

being S̃ := K̃τ + B̃Tτ M̃−1
τ B̃τ the Schur complement with respect to U. In order to con-

struct a preconditioner to the system (5.26) we build an inexact factorization of Ã such
that each diagonal block is recursively preconditioned by another block preconditioner.
We consider three different preconditioners of Ã, which try to approximate the LU de-
compositions (5.27)

Diagonal preconditioner (D): PD(Ã) =

[
M̃τ 0

0 S̃

]−1

=

[
M̃−1
τ 0

0 S̃−1

]
,

(5.28)

Upper preconditioner (U): PU (Ã) =

[
M̃τ −B̃Tτ
0 S̃

]−1

=

[
M̃−1
τ M̃−1

τ B̃Tτ S̃−1

0 S̃−1

]
,

(5.29)

Lower preconditioner (U): PL(Ã) =

[
M̃τ 0

B̃τ S̃

]−1

=

[
M̃−1
τ 0

−S̃−1B̃τM̃−1
τ S̃−1

]
.

(5.30)

To apply (5.28)-(5.30) we need to compute the action of M̃−1
τ and S̃−1. In the first case,

M̃−1
τ is block diagonal thus requiring the inverse of each projection mass matrix, M−1

η,τ

and M−1
ξ,τ . In a serial computation, they are applied by a direct method whereas in a

parallel computation they are approximated by one application of a diagonal DD pre-
conditioner constructed with the values of the diagonal of Mη,τ and Mξ,τ , respectively.
In the second case we approximate the Schur complement inverse as S̃ ≈ K̃τ , that is, we
neglect the contribution from the projections B̃Tτ M̃−1

τ B̃τ in the preconditioner. This ap-
proximation corresponds to use the solution of a system arising from a non-consistent
formulation in which artificial pressure and streamline diffusion are added. Stability
of the preconditioner is therefore guaranteed.

For the application of K̃−1
τ we consider other three preconditioners equivalent to

(5.28)-(5.30). Using the notation Kτ := 1
δtM + K + C + Aτ for the velocity block matrix

and S : Lτ−DK−1
τ G for the Schur complement associated to the pressure field, we have
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the following block preconditioners

Diagonal preconditioner (D): PD(K̃τ ) =

[
Kτ 0

0 S

]−1

=

[
K−1
τ 0

0 S−1

]
,

(5.31)

Upper preconditioner (U): PU (K̃τ ) =

[
Kτ G
0 S

]−1

=

[
K−1
τ −K−1

τ GS−1

0 S−1

]
,

(5.32)

Lower preconditioner (U): PL(K̃τ ) =

[
Kτ 0

D S

]−1

=

[
K−1
τ 0

−S−1DK−1
τ S−1

]
.

(5.33)

In this case, the inverse of the Schur complement is approximated by a pressure Lapla-
cian matrix, S−1 ∼ δtL−1

p . In regimes where the viscous term becomes dominant, one
can use the Cahouet-Chabard preconditioner to approximate the inverse of the Schur
complement, i.e., S−1 ∼ (ν+τc)M−1

p +δtL−1
p , see [95, 147]. For the serial case, the Lapla-

cian matrix is inverted using a direct method, but in a parallel context we approximate
the inverse of Lp by one application of a Balancing Domain Decomposition by Con-
straints (BDDC) preconditioner over such matrix. Something similar is done for the
inverse of the velocity block matrix Kτ . Here we use a direct method for the serial case
and one application of BDDC preconditioner when parallel solvers are treated. We refer
to [183] for the application of the BDDC preconditioner to nonsymmetric problems. For
a more detailed description of the implementation and algorithms used for the recur-
sive block-preconditioning technique we refer to [18]. Besides monolithic approaches,
splitting velocity-pressure techniques are commonly used for high Reynolds turbulent
flows, which can be interpreted as one application of a block-preconditioner [69, 12].
High order time integration schemes that segregate velocity and pressure computation
have recently been proposed in [57]. Since the stabilized inf-sup stable FEs proposed
herein do not introduce any term at the pressure-pressure block, they are particularly
well-suited for this type of schemes, because it keeps the index-2 differential-algebraic
nature of the problem.

5.5 Numerical experiments

In this section we provide some numerical results for turbulent incompressible flow
simulations using all the methods stated above. First, we do a comparative analysis
between the three stabilization methods developed in Section 5.3. The parameter elec-
tion for the pressure subscale term is assessed in all numerical tests performed in this
section. But, first of all, we show some results about the computational cost of the VMS
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methods considered in this work. To check the efficiency of each method we solve a
simple 2D steady problem with analytical solution.

5.5.1 Analytical colliding flow

In this section we solve a problem with analytical solution that models a colliding flow.
This test have been used in [69] to discuss error estimates for the Stokes and Navier-
Stokes problems using ISS FE velocity-pressure pairs. It has an analytical solution with
the expression:

u(x, y, t) =

[
20xy3

5x4 − 5y4

]
, (5.34)

p(x, y) = 60x2y − 20y3 + 40. (5.35)

The problem is solved in the square domain [−1, 1] × [−1, 1] with a Reynolds number
Re = 25. Here we analyze the solver iterations convergence in h for each precon-
ditioner defined in Section 5.4 as well as the elapsed CPU time and the error on the
velocity and pressure fields. Due to the simplicity of the test, we will solve the prob-
lem in serial using Q1/Q1 elements meshes for the ASGS and term-by-term OSS, and
Q2/Q1 elements mesh for the OSS-ISS method.

We only show the results when using the lower-triangular preconditioner for the
global matrix PL(Ã), defined in (5.30). The diagonal version PD(Ã) defined in (5.28)
give poorer performance and same results are obtained with the upper-triangular ver-
sion PU (Ã) (5.29). For the velocity-pressure block, all preconditioners defined in (5.31)-
(5.33) are considered.

In Figure 5.1 we depict the solver iterations needed to solve the problem as well
the total elapsed CPU time for different meshes composed by 4, 8, 16, 32 or 64 elements
per direction. When the OSS-ISS method is considered, as we use Q2/Q1 elements, the
number of elements per direction is divided by two. The amount of solver iterations
shown in Figure 5.1(a) is computed adding all solver iterations needed for all nonlinear
iterations. We see in this figure that the OSS-ISS method has an increase of solver
iterations for the coarser mesh, compared with the other two methods. This behaviour
is produced by the fact that for this case the mesh is too coarse, 2× 2 Q2/Q1 elements,
and the nonlinear iterations suffer a drastic increase. For finer meshes, the OSS-ISS
method needs less solver iterations than the other two. We see that for the diagonal
preconditioner PD(Kτ ) the OSS-ISS is the only that scales when we refine the mesh.
The upper and lower preconditioners, PU (Kτ ) and PL(Kτ ), have similar results with a
slightly better performance of the upper version for all methods. The ASGS and OSS
methods also need a similar number of iterations to solve the problem, being the OSS
method a little bit over the ASGS.
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Looking at the elapsed computational time, Figure 5.1(b), we see that the OSS
method is clearly more expensive, in terms of consumed time, than the other two meth-
ods. The ASGS method is slightly faster than the OSS-ISS, but the differences are almost
negligible for the PU (Kτ ) preconditioner. The fact that the most expensive method is
the OSS method is justified by the number of Degrees Of Freedom (DOFs) that appear
in the system of equations. As stated in Section 5.4, the OSS method has two vectorial
unknowns more than ASGS method. On the other hand, the OSS-ISS method also has
an additional vectorial unknown than ASGS, but the pressure field is approximated
with half nodes. Without taking into account the boundary conditions, for the 4×4 ele-
ments mesh (2×2 for the OSS-ISS case), we would have 175 DOFs for the OSS method,
75 DOFs for the ASGS method and 109 DOFs for the OSS-ISS method. Then, we see
that, although it has more DOFs, the OSS-ISS method is comparable in terms of com-
putational time with the ASGS. Further, the number of DOFs is a wrong measure of
the CPU cost. The most expensive problem in such simulations is the pressure Pois-
son equation, which in this case is smaller (one order less) for ISS elements. Further,
the projection DOFs are almost for free, since they just involve a mass matrix solve.
Further, the ISS method exhibit a clearly lower number of iterations.
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FIGURE 5.1: Colliding flow solver iterations and elapsed CPU time us-
ing PU (Ã) for the global matrix.

Let us now focus on the error in the velocity and pressure fields. Since we are
solving a problem with analytical solution, we can evaluate exactly the error of the FE
approximation, eu := ‖uh − u‖ and ep := ‖ph − p‖. Figure 5.2 depicts the convergence
of both errors when refining the mesh. In Figure 5.2(a) we see that the velocity error
converges as expected, with a 2nd order rate for the ASGS and OSS methods, which are
approximated by Q1/Q1 elements, and with a 3rd order rate for the OSS-ISS method,
which is approximated by a Q2/Q1 element. Looking at Figure 5.2(b), it is seen that the
pressure error norm converges with a 2nd order rate for all the methods, as expected.
Note that there is no difference between the results changing the preconditioner, since
the solution is the same for all cases because we are not modifying the system that is
solved.
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FIGURE 5.2: Colliding flow error convergence using PU (Ã) for the global
matrix.

In order to check the efficiency of each method we compare the error norm with
the elapsed computational time. In this way we have an idea of the time needed for
a given method to achieve certain solution accuracy. Figure 5.3 shows this compari-
son for velocity (Figure 5.3(a)) and pressure (Figure 5.3(b)) fields, where we see that,
excluding the coarser mesh, the OSS-ISS method is much more efficient than the other
two. Furthermore, the most efficient preconditioner is the upper version PU (Kτ ).
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FIGURE 5.3: Colliding flow error vs. CPU time using PU (Ã) for the
global matrix.

5.5.2 Taylor Green Vortex flow

It has been shown by many authors that VMS stabilization terms can act as a LES model
for turbulent flows, introducing the appropriate dissipation of the small scales that are
not captured by the coarse solution. In particular, ASGS and OSS methods were as-
sessed in [56], showing that these methods are capable to perform a good LES simula-
tion of different turbulent benchmark problems. In order to check the performance of
the convection-only OSS stabilization of ISS elements for a LES simulation, we analyze
its behaviour in the TGV flow, extensively described in Section 3.2.3.
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We recall that this test is solved in a computational domain given by the cube
(0, 2π)3 with periodical boundary conditions and the initial condition is given by an
analytical field (see, e.g., [31])

u(x, y, z, 0) =

 ux

uy

uz

 =

 u0 cos(x) sin(y) sin(z)

−u0 sin(x) cos(y) sin(z)

0

 (5.36)

p(x, y, z, 0) = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2) ,

with
u0 =

2√
3

sin

(
γ +

2π

3

)
.

Being γ = 0, resulting in a mean initial velocity u0 = 1. We consider the TGV problem
with a Reynolds number Re = 1600.

Setting

The problem is solved from t = 0.0 to T = 10.0 with a fixed time step size of δt =

5.0·10−2 using a Crank-Nicolson time integration scheme, and the results are compared
against a DNS by Brachet et al. [31]. We discretize the domain using different choices
of the number of elements and the order of approximation, having two different group
of discretizations; one with 323 velocity DOFs and another with 643 velocity DOFs (for
each velocity component). The former will be composed by the following meshes: 323

Q1/Q1, 163 Q2/Q2 elements or 163 Q2/Q1 elements when we use ISS discretization. The
second group of meshes is made by: 643 Q1/Q1, 323 Q2/Q2 or 323 Q2/Q1 elements. For
the stabilized formulations, ASGS and OSS, the algorithmic constants are c1 = 12 c2 = 2

and cc = 0.0, and for the OSS-ISS method the same c1 and c2 algorithmic constants are
used, but cc = 4.0 unless noted otherwise. This choice of cc for the OSS-ISS method is
assessed in a following subsection.

Comparison between VMS methods

In Figure 5.4 we show the energy evolution and the energy dissipation rate for the
ASGS, the OSS, and the OSS-ISS methods. A first thing that we have to state at this
point is that the ASGS method with 323 Q1/Q1 has failed to converge at early stages of
the problem, a behaviour also observed in [56]. Looking at Figure 5.4(a) it is clear that
the degree of interpolation makes a great difference on the solution, even with the same
number of DOFs, the solution is more accurate when a higher order of interpolation is
used. In the same figure we see that the loss of precision in the pressure for the ISS
elementsQ2/Q1 does affect the solution, giving a result between theQ1/Q1 andQ2/Q2

solutions. At Figure 5.4(b) we see that the OSS-ISS method is more dissipative than the
others. This behaviour is caused by the lack of accuracy in the pressure field, which in
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turn affects the conservation of mass of the problem. A more exhaustive analysis of the
effect of this term is done below.
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FIGURE 5.4: Energy and Total energy dissipation rate evolution with 323

velocity DOFs

Although an important improvement of the solution is achieved by increasing the
order of interpolation, 323 velocity DOFs is still a very coarse mesh and the results
shown in Figure 5.4 are far from the DNS ones. Then, the same problem is solved in
a finer mesh, with the double of velocity DOFs per direction, with the results shown
in Figure 5.5. In this case, all methods converge at all time steps. Figure 5.5(a) depicts
the energy evolution and it is also seen that the increase on the degree of interpolation
results in a more accurate solution. Both ASGS and OSS methods with 323 Q2/Q2 ele-
ments have very accurate results, providing a solution almost on top of the DNS. There
are very little differences between stabilization methods when the same discretization
is used. Furthermore, the results of the OSS-ISS method are closer to the Q1/Q1 dis-
cretization than to the Q2/Q2 one. The total energy dissipation rate shown in Figure
5.5(b) denote a very good agreement of the Q2/Q2 solution with the DNS, while the
Q1/Q1 discretization for both ASGS and OSS methods are still more diffusive. Note
that the OSS-ISS method for this discretization has more or less the same energy dissi-
pation as the Q1/Q1 discretizations.

When analyzing the suitability of a LES model, a very important turbulent quantity
to take into account is the energy spectra. It gives us information about how the energy
is distributed among the scales of the problem. In order to assess the behaviour of the
proposed methods in that aspect, we compare our results by the DNS by Gassner et
al. [80]. In Figure 5.6 the energy spectra at t = 9.0 is depicted for both discretization
groups. The coarser cases shown in Figure 5.6(a) are all far from the DNS result, but
follow the same pattern, with most of the energy on the greatest scales and little energy
on the small scales, without any pileup of energy on the small scales. When the mesh is
refined, see Figure 5.6(b), the computed energy spectra tends to the DNS one. Note that
also in this plot, Q2/Q2 discretization have better agreement with the DNS, specially
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FIGURE 5.5: Energy and Total energy dissipation rate evolution with 643

velocity DOFs

on the small scales, where the influence of the enrichment of the interpolation space is
patent.
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FIGURE 5.6: Energy spectra at t = 9.0

Computational cost

It is clear that a good LES model has to reproduce as accurately as possible all the
turbulent quantities, even for coarse meshes. The results presented until now show
that ASGS and OSS methods perform better than the OSS-ISS when Q2/Q2 elements
are used. Additionally, it has been seen that all methods converge to the DNS results
when the mesh is refined. But a crucial point that has to be always taken into account
when we talk about numerical simulations is the computational cost. At the end, we
are looking for the cheapest method that allow us to reproduce accurately the physical
phenomena that takes place in a turbulent flow. So in this subsection we will discuss
the computational cost associated to each method and their efficiency when solving
this kind of flows.
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To check the computational cost we look at the number of solver iterations needed
for each method, shown in Figure 5.7. In particular, Figure 5.7(a) depicts the total
amount of solver iterations at each time step, adding up all nonlinear iterations. Note
that the change of the nonlinear iterations along the time can be clearly noticed by
the jumps on the curves. We see that the cheapest method is the OSS-ISS for both
discretizations, 323 and 643 velocity DOFs, with much less solver iterations per time
step than the other methods. It is also seen that ASGS is a little bit cheaper than the
OSS method, which can be caused by the size of the system, much bigger for the OSS
case due to the implicit treatment of the projections. An interesting result also seen in
5.7(a) is the improvement on the computational cost when we go fromQ1/Q1 toQ2/Q2

discretization, keeping constant the number of DOFs. Looking at 5.7(b) we realize that
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FIGURE 5.7: Computational cost

at the end of the computation, the total amount of solver iterations needed by OSS-
ISS method is around 1.5 times less than the ASGS method, for the finer mesh, and
half of them for the coarse mesh. This result indicates that the OSS-ISS is a very good
approach as a LES model for turbulent problems since, although it has been seen that
is not the most accurate when looking to the turbulent quantities, it is much cheaper
and we can refine the mesh in order to get better results remaining competitive with
the other methods. Further, let us remark that the pressure Poisson solvers are the most
computationally intensive, and ISS methods involveQ1 pressure spaces forQ2 ones for
stabilized methods.

Influence of the pressure subscale term

As said above and also stated in Section 5.3.4, the pressure subscale τc(∇ · uh,∇ · vh)

term has an important role when using ISS elements. In this subsection we are going to
analyse the effect of this term on the results when simulating the TGV problem. Hence,
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we redefine the τc definition in (2.45) by

τc = cc

(
ν +

c2

c1
h|uh|

)
, (5.37)

which is equivalent to (2.45) when cc = 1.0. We keep the algorithmic parameters c1 =

12.0 and c2 = 2.0 constant, so considering different values of cc we can evaluate the
influence of the pressure subscale term on the solution. In this case we choose six
different configurations cc = {0.0, 0.25, 0.5, 1.0, 2.0, 4.0} and solve the problem with the
163 Q2/Q1 elements mesh. We compare the solution against the one obtained with the
OSS method with 163 Q2/Q2 elements discretization.

In Figure 5.8(a) the energy dissipation rate of the FE counterpart is shown. That is
the viscous term ν‖∇uh‖2 that appears in equation (5.24). We see that when we reduce
cc the viscous dissipation introduced by the FE counterpart increase, being the case
cc = 0.5 the one closer to the DNS curve. But if we look at the energy spectra shown in
Figure 5.8(b), we see that this is not a good choice. What is actually happening when cc
goes to zero is that the dissipation is taking place in the largest scales of the problem,
while the smallest ones keep the energy, resulting in an energy pileup at the tail of
the spectra. This means that the energy is not dissipating in the correct way and the
small scales, which are the ones that have more influence on the viscous dissipation
term, have more energy than the desired one. Therefore, a good selection is to choose
cc = 4.0, which results are closer to the OSS method and has a better energy spectra
shape. A higher value of cc eventually lead to unstable solutions, for instance, with
cc = 8.0 and δt = 5.0 · 10−2 the solution fails to converge at t = 0.4. In that case,
the solution becomes unstable and the nonlinear iteratition does not reach the required
tolerance.
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FIGURE 5.8: Comparison for different cc choices for OSS-ISS with 323

velocity DOFs

As stated in Section 5.3.4, the pressure subscale term is essential to enforce the in-
compressibility constrain at the discrete level. In Figure 5.9 the total energy dissipation
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rate (Figure 5.9(a)) is depicted together with the velocity divergence L2-norm ‖∇ · uh‖
(Figure 5.9(b)). We see that, effectively, ‖∇ · uh‖ is reduced when τc is increased. The
case of cc = 0.0 give especially bad results in terms of mass conservation, affecting also
to the energy dissipation rate. In this case, as seen in Figure 5.8(b), the over-dissipation
on the large scales and the under-dissipation on the smallest ones makes that the veloc-
ity spatial derivatives become relevant, increasing the ‖∇ · uh‖ term. The introduction
of τc‖∇ · uh‖ into the energy dissipation equation (5.24) changes the way in which the
flow dissipates its energy among the different scales, decreasing the energy of the small
scales and, then, reducing the importance of the spatial derivatives, which is reflected
in a lower value of ‖∇ ·uh‖ but also in a lower dissipation rate, as seen in Figure 5.9(a),
even if a positive term has been added to (5.24).
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Refinement analysis for the OSS-ISS method

In the computational cost analysis shown above we have seen that OSS-ISS has a great
potential as a LES model, especially when we the computational cost is taken into ac-
count. This subsection aims to check the performance of this method when we refine
the mesh both reducing the element size and increasing the interpolation order.

Once determined that the best algorithmic constant for the pressure subscale term is
cc = 4.0 when ISS FEs are used, we keep this value constant and change the discretiza-
tion. A refinement analysis can be done to determine if the LES approach presented
in this work effectively converges to the DNS solution when we refine the mesh. In
section 5.5.2 the TGV problem has been solved using different discretizations with 323

and 643 velocity DOFs. Now we go further and also solve the problem with 963 ve-
locity DOFs, that is a 483 Q2/Q1 elements mesh. Furthermore, here we also use Q3/Q2

FEs. In particular, a 213 and 323 Q3/Q2 elements meshes are used, corresponding to
the group of 643 and 963 velocity DOFs, respectively. We also decrease the time step to
δt = 2.5 · 10−2 for the discretizations with 643 velocity DOFs and δt = 1.5 · 10−2 for the
discretizations with 963 velocity DOFs.
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In Figure 5.10 we depict the kinetic energy and the total energy dissipation rate evo-
lution for the different discretizations considered in this refinement analysis. Looking
at the energy evolution in Figure 5.10(a) it is clearly seen that the solution converge to
the DNS results, giving the 323 Q3/Q2 elements mesh a very accurate solution, which is
also evident in Figure 5.10(b) where the total energy dissipation rate of this discretiza-
tion is on top of the DNS solution. We also see in Figure 5.10 the relevance of the degree
of interpolation, where for a given number of DOFs, the higher-order discretization re-
sults in a better solution.
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FIGURE 5.10: Energy and Total energy dissipation rate evolution refin-
ing the mesh with cc = 4.0.

Now, we ask ourselves how the tuning of the parameter τc affects when finer meshes
are used. In particular, we want to know how important the cc parameter becomes
when higher order FEs are used. To answer this question we solve the TGV problem
for two different discretizations: 323 Q2/Q1 and 213 Q3/Q2 elements meshes, and three
different values of cc: 0.0, 1.0 and 4.0.
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FIGURE 5.11: Total energy dissipation and velocity divergence L2-norm
for different cc choices for OSS-ISS with 643 velocity DOFs

Figure 5.11 depicts the total energy dissipation rate (Figure 5.11(a)) and the veloc-
ity divergence L2-norm (Figure 5.11(b)) for the two discretizations considered and for
different choices of cc. We still see a dependence on cc, but differences reduce when
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higher order of interpolation is used, as expected. It is also seen that when increasing
cc, the differences between the two discretizations are reduced (for a fixed cc). This
behaviour is particularly significant when we look at the velocity divergence norm in
Figure 5.11(b), where we see that for cc = 0 the two discretizations give a completely
different evolution of ‖∇ ·uh‖, while for cc = 4.0 the results are almost the same. In the
same figure, we can see that the largest value of ‖∇ ·uh‖ for cc is larger than the largest
one depicted in Figure 5.9(b), which is a result of a 163 Q2/Q1 elements mesh.

Going further we also do the same test for the 483 Q2/Q1 and 323 Q3/Q2 elements
mesh (Figure 5.12). In this figure we see that the differences between the three cc cases
are reduced. Looking at Figure 5.12(a) it is seen that for cc = 0 and Q2/Q1 elements,
although the result is far from the DNS, the maximum value of the dissipation rate is
much lower than the given in Figure 5.11(a). When using Q3/Q2 elements, the changes
on cc produce lower differences compared against the Q2/Q1 approximation. The di-
vergence norm depicted in Figure 5.12 also show improvements with respect to Figure
5.11. In this case, the maximum value of the divergence for cc for Q2/Q1 elements is
lower than the case of 643 velocity DOFs and also for the case of 323 velocity DOFs.
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for different cc choices for OSS-ISS with 963 velocity DOFs

To summarize, we have checked that refining the mesh we converge to the DNS
results and, for a given number of DOFs, the results improve when higher order inter-
polation is used. On the hand, we have seen that increasing cc we reduce ‖∇ · u‖, and
consequently the accuracy of the solution.

5.5.3 Turbulent channel flow at Reτ = 395

In Section 5.5.2 we have tested an homogeneous turbulent flow. Now, we want to
check the behaviour of the proposed OSS-ISS stabilization method for a wall bounded
turbulent test. To do so, we use the Turbulent Channel Flow test with a Reynolds
number based on the wall friction (Reτ ) equal to 395. This benchmark was exhaustively
tested using a VMS method with OSS in previous Chapter 4.



114 Chapter 5. Mixed FE methods with convection stabilization

Setting

Recalling the problem description exposed in Section 3.3.2, the domain of the TCF prob-
lem for Reτ = 395 is given by a box of length (2πδ× 2δ× 2/3πδ). The x-direction is the
flow direction, also called stream-wise direction, the y-direction is the wall-normal di-
rection, and the z-direction is the span-wise direction. Homogeneous Dirichlet bound-
ary conditions for the velocity DOFs are imposed on wall-normal direction boundaries
(y = −δ and y = δ), while periodic boundary conditions are defined on the stream-wise
and span-wise directions.

The problem is solved using two different meshes, with 323 Q2−Q1 and 213 Q3/Q2

elements mesh. Both meshes have refined elements near the wall in the wall-normal
direction, like the one used in [56]. The algorithmic constants that appear in the OSS-
ISS method will be discussed in the following subsections.

The obtained results are compared against a DNS computed in [140, 121] (MKM-
DNS), then, the parameter election will be according to the ones defined in the cited
paper. The bulk mean velocity and the half channel height are taken equal to one,
Ū = 1 and δ = 1. Knowing the estimated Reynolds number based on the bulk mean
velocity, Re = Ū2δ/ν ≈ 13, 750 (see [150]), one can obtain the value of the viscosity,
ν = 1.4545 · 10−4. From the Reynolds number based on the friction velocity, we can
determine the friction velocity magnitude: uτ = Reτν/δ = 5.745 · 10−2. Thus, the wall
shear stress reads τw = u2

τ = 3.3010 · 10−3. A force equivalent to a pressure gradient is
imposed to drive the movement of the flow in the stream-wise direction, fx = τw/δ.

In order to achieve the statistically steady state solution, an initial solution is pro-
vided following [139]. This initial solution consists in a unidirectional velocity profile
over which is added a fluctuation:

ux = C
(
1− y8

)
+ ε

Lx
2

sin(πy) cos

(
4πx

Lx

)
sin

(
2πz

Lz

)
, (5.38)

uy = −ε(1 + cos(πy)) sin(πy) sin

(
4πx

Lx

)
sin

(
2πz

Lz

)
,

uz = −εLz
2

sin

(
4πx

Lx

)
sin(πy) cos

(
2πz

Lz

)
.

The constantC is chosen in such a way that the field without fluctuations would have a
bulk mean velocity Ū = 1.0. The fluctuation constant ε is 10% of the bulk mean velocity.

Effect of the pressure subscale term on the conservation of mass

As it has been said in Section 5.3.4, the pressure subscale term has a noticeable effect on
the solution when ISS elements are used. The effect of this term has also been analyzed
in a previous test, see Section 5.5.2. Here we will also assess the effect of this term on a
wall-bounded flow.

First we will focus on the effect of the second term in (5.37), looking how the c2/c1

ratio affects the solution keeping cc = 1.0. As we are in a turbulent regime, we do not
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expect that the viscous counterpart in (2.44) will have relevance on the solution, but
we do expect it for the convective counterpart. Then, we will keep c1 = 12.0 and we
will increase c2 from 1.0 to 16.0. The variations on c2 not only have an effect on τc but
also on τm. We solve the problem from t = 0 to t = 20π (time needed to cross the
channel 10 times, based on the initial mean bulk velocity Ū ) starting from the initial
solution (5.38) using the implicit version of (3-3) SRK scheme. The energy and ‖∇ ·uh‖
evolution are plotted in Figure 5.13. It is clearly seen in Figure 5.13 that the modification
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FIGURE 5.13: Energy evolution and velocity divergence norm for differ-
ent values of c2, keeping c1 = 12.0 and cc = 1.0

of c2 has an effect on the solution. We see in Figure 5.13(a) that the energy drops faster
when lower values of c2 are used. Looking at Figure 5.13(b) we see that the velocity
divergence L2-norm is higher when lower values of c2 are taken. The evolution of ‖∇ ·
uh‖ gives us information about how the flow is evolving. From an initial and structured
condition, the flow starts becoming chaotic around t = 10, depending on the case,
when the turbulent structures increase the rotation of the flow particles, growing the
spatial derivatives. At this stage, the energy dissipates until the equilibrium between
the internal energy and the external forces is reached. These stages can be seen in
Figure 5.14, where we depict the vorticity isosurfaces for |ω| = 5.0 coloured with the
velocity field module at t = 0.15 (Figure 5.14(a)), at t = 12.0 (Figure 5.14(b)) and at
t = 70.0 (Figure 5.14(d)) setting c2 = 1.0 and cc = 32.0, and using a 323 Q2/Q1 elements
mesh.

When increasing c2 we are decreasing the value of τm, but increasing τc. This means
that in the energy dissipation equation (5.24), the dissipation through the convective
term ‖τ1/2

m (uh · ∇uh − ηh)‖2 becomes less relevant in front of the ‖τ1/2
c ∇ · uh‖2.

Now, knowing the influence of c2, and with the aim to distinguish the effect of
modifying τm or τc, we keep this constant fixed with a value c2 = 8.0 and we analyse
the influence of τc on the solution, by changing cc. In this situation, τm will remain
constant for all cases and we will see the effect of the pressure subscale term. For
this test, we solve the problem until t = 300, where the energy evolution stabilizes
for all cc choices. In Figure 5.15 we see that the energy evolution (Figure 5.15(a)) and
the divergence norm evolution (Figure 5.15(b)) follow the same pattern observed in
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(a) t = 0.15 (b) t = 12.0

(c) t = 70.0

FIGURE 5.14: Velocity module at different times with c1 = 12.0, c2 = 1.0
and cc = 32.0 using a 323 Q2/Q1 elements mesh.
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FIGURE 5.15: Energy evolution and velocity divergence norm for differ-
ent values of cc, keeping c1 = 12.0 and c2 = 8.0

Figure 5.13. In this case we see that the improvement on the mass conservation is more
pronounced when increasing cc than when increasing c2. We also see in Figure 5.15(a)
that there is a certain threshold after which the result is improving very little. In this
case, the results for cc = 32.0 and cc = 64.0 are almost the same.

We can compare our results with the MKM-DNS, contrasting the mean velocity
and its fluctuations in Figure 5.16. To obtain these results we have solved the problem
from t = 300 to t = 330 with a time step size of δt = 0.03, collecting 1000 samples
to obtain the mean quantities. The mean quantities are computed integrating the de-
sired quantity within each element and adding up all elemental results belonging to the
same y-orthogonal plane. Thus, since we are using high-order elements, the number of
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points that will appear in the graphics will be smaller than the number of DOFs. This
procedure was also followed in [78] noting that the integral averaging procedure takes
into account information from the secondary nodes that the widely used point-wise
averaging does not contemplate.

Figure 5.16(a) depicts the mean stream-wise velocity normalized by the prescribed
wall-shear velocity, uτ . In this picture we see the difference when changing cc, where
the dissipation of energy shown in Figure 5.15(a) becomes clear looking at the velocity
magnitude. The increase of ‖∇ · uh‖, and its consequent loss of mass conservation, re-
sults in a mean velocity profile much lower than the DNS. We see that for cc = 32.0 and
cc = 64.0 the mean velocity profile is on top of the DNS result, even for the coarse mesh
in which we are solving the problem. Looking at the stream-wise velocity fluctuation
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FIGURE 5.16: Mean stream-wise velocity and rms velocity fluctuations
using a 163 Q2/Q1 mesh for different choices of cc.

(Figure 5.16(b)) we see that it increases as we increase cc. This behaviour is justified by
the fact that for low cc values we have less energy in the system, and then, the fluctuat-
ing magnitude is also lower. The wall-normal and span-wise velocity fluctuations also
give the smallest fluctuation magnitude for the smallest cc value, but increasing cc the
fluctuation grows until certain point and then it decreases, becoming closer to the DNS
curve.

From Figure 5.16 we clearly see that increasing cc the results improve, but this pro-
cedure may have some drawbacks. One of them is the ill-conditioning of the system
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of equations when cc → ∞. Table 5.1 summarizes the total accumulated solver itera-
tions as well as the elapsed time needed to solve the problem for the different choices
of cc. As we see in Table 5.1, to solve the TCF problem with cc = 64.0 is a 29.0% more

TABLE 5.1: Solver iterations and elapsed time to solve the TCF problem
from t = 300 to t = 330 for different cc values.

cc Solver iterations Elapsed time (s) Increment in time (%)

1.0 397899 19238 0.0
4.0 402490 19674 2.27
8.0 422217 19987 3.89
16.0 466687 20803 8.13
32.0 539879 22794 18.48
64.0 626487 24817 29.00

expensive than solving it with cc = 1.0. Thus, it is clear that at some point it could be
preferable to refine the mesh rather than increase the cc value if we want more accurate
results.

Provided that in all results shown until now, the case cc = 32.0 gives almost the
same solution as the cc = 64.0 case, hereinafter we will only consider the case in which
the parametric constants are c1 = 12.0, c2 = 8.0 and cc = 32.0.

Refinement for a given cc

Let us now explore what happens when the mesh is refined in the TCF test. Here we
consider four different discretizations changing both the element size and the order of
interpolation: 163 Q2/Q1, 243 Q2/Q1, 163 Q3/Q2 and 323 Q2/Q1. These discretizations
have 323, 483, 483 and 643 velocity DOFs, respectively.

Looking at the energy evolution (Figure 5.17(a)) and the velocity divergence L2-
norm (Figure 5.17(b)) depicted in Figure 5.17 we see that there are very little differences
between the cases considered in this section. This means that given the appropriate
parametric constants, the energy evolves in a similar way for all discretizations, with a
similar evolution of the mass conservation.

If we focus on the averaged turbulent quantities shown in Figure 5.18, we also see
similar results between the different cases. In Figure 5.18(a) the mean stream-wise ve-
locity is plotted, and it is seen that all methods are almost on top of the DNS curve. The
163 Q3/Q2 discretization gives a mean velocity profile slightly lower than the other
discretizations, which is also reflected on the energy evolution shown in Figure 5.17(a).
If we look at the velocity fluctuations in span-wise, wall-normal, and span-wise di-
rections depicted in Figure 5.18(b), Figure 5.18(c) and Figure 5.18(d), respectively, the
convergence to the DNS solution is clear.
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FIGURE 5.17: Energy evolution and velocity divergence norm refining
the mesh, keeping c1 = 12.0, c2 = 8.0 and cc = 32.0
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FIGURE 5.18: Mean stream-wise velocity and rms velocity fluctuations
for using different discretizations.

5.6 Conclusions

In this chapter we have considered the numerical simulation of turbulent incompress-
ible flows using the term-by-term OSS method for convection-stabilization applied to
ISS elements. We have considered an implicit treatment of the projection. For the solu-
tion of the monolithic linear systems a block preconditioning strategy that makes use
of recursive block factorizations has been proposed. Among the three variants we pro-
posed, namely diagonal, lower and upper triangular, the last two are much faster than
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the first one, as expected, the upper triangular being slightly faster for the problems
considered.

Using this strategy, the comparison of the three methods, ASGS, term-by-term OSS,
and convection-only OSS with ISS elements reveals that the accuracy is similar for the
same order of interpolation of the velocity, the OSS-ISS being slightly inferior in this
respect. But on the other hand, when computational cost is analyzed the OSS-ISS is
clearly the cheapest one so a finer discretization can be used. Another advantage of the
OSS-ISS method is that it does not change the nature in time of the problem, i.e., the
discrete system is an index-2 differential-algebraic equation. Thus, it allow us, e.g., to
use Segregated Runge-Kutta (SRK) time integration schemes that cannot be applied to
the ASGS or OSS methods. This issue will be discussed in further works, but we can say
that SRK schemes are well suited to perform high-order time integration as well as the
use of an adaptive time-stepping technique. This method was firstly introduced and
tested for laminar incompressible flows in [57] and will be discussed in forthcoming
chapters.

Finally, we have also analyzed the influence of the grad-div stabilization on the
results when ISS discretizations are considered. It has been clearly shown that this
term affects the solution. Increasing the value of cc results in a better mass conservation
and better results but this saturates at some point from which little improvements are
achieved while we have a high increase on the computational cost. Moreover, this
effect is smaller when the mesh is refined and also when higher order interpolations
are used.



Chapter 6

Segregated Runge-Kutta time
integration schemes

6.1 Introduction

Many problems in science and engineering can be simulated by incompressible flow
solvers, e.g., flows around aircrafts during take-off and landing, cars, bridges, wind
turbines, etc. Incompressible flows are also encountered when simulating liquid metal
blankets in fusion reactors or blood flow in bio-mechanics. The increasing computer
power of super-computers has motivated the interest in high-fidelity massively parallel
predictive tools on unstructured meshes for this type of applications. Higher levels
of accuracy in space can be based on refined meshes or higher-order approximations,
being the use of hp-adaptive simulations the most refined approach so far.

The transient incompressible Navier-Stokes system of partial differential equations
is nonlinear (due to convection) and indefinite (due to the divergence-free constraint),
which complicates its discretization and the linear solver step. A fully implicit time-
integration involves nonlinear iterations at every time step, increasing computational
cost. On the other hand, it is hard to define scalable parallel solvers for non-symmetric
and indefinite problems. The definition of scalable preconditioners for this nonlinear
system of equations is an open problem both for domain decomposition and multigrid
techniques. Further, the nonlinear nature of the problem requires frequent precondi-
tioner set-up steps, that make this approach computationally intensive.

The velocity-pressure block-segregation can be understood as a solver (introduc-
ing an additional splitting error) instead of a preconditioner, leading to the popular
pressure-correction or fractional-step methods [120, 128, 53, 12]. This approach in-
volves to solve decoupled a momentum equation for the velocity and a pressure Pois-
son equation. This is the most popular approach for the simulation of turbulent incom-
pressible flows. The time integration of the momentum equation can be carried out
using explicit, semi-implicit, or fully implicit methods. The fully implicit method has
some of the drawbacks considered above, whereas an explicit integration of the viscous
terms is not suitable for wall-bounded flows. In order to capture the viscous effects
around solids, very refined anisotropic meshes are required, leading to too stringent

121
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viscous Courant-Friedrichs-Lewy (CFL) conditions. The use of hp-adaptivity makes
hard to use explicit methods, since intensive local refinement in some parts, e.g., the
tip of an airfoil, leads to global time steps that must go to zero as h2

p4 for stability pur-
poses, being h the characteristic element size and p the degree of interpolation, and
local time-stepping cannot be efficiently exploited on parallel platforms. The use of
semi-implicit methods, which treat implicitly the diffusive term and explicitly the con-
vective one, seems to be the perfect compromise for turbulent flows around objects
and viscous flows. The time step restriction is given by the convective CFL condition,
which is much weaker than the diffusive one and also avoids nonlinear iterations. In
fact, the majority of direct and large eddy simulations of incompressible flows involve
semi-implicit methods, in which only the viscous term is treated implicitly.

When high-order time integration aims to be achieved, a popular approach is to use
Runge-Kutta (RK) schemes, due to the good stability properties, high-order accuracy,
and the easy computation of time error estimates for adaptive time stepping (see [90,
63]). RK schemes involve several systems of equations at each time step. Further,
when we use an implicit scheme all stages can be coupled, resulting in a large system
of equations to be solved, which is quite impractical in terms of CPU cost. This is the
case of [158], where energy-conserving implicit Runge-Kutta methods are investigated.
This drawback can be bypassed using an explicit scheme, with the problems related by
the time step restriction to ensure stability. An accuracy analysis of these methods is
done by Sanderse et al in [159]. Diagonally Implicit RK methods (DIRK) can be used
to avoid stability problems and solving implicitly each RK stage uncoupled (see, e..g,
[135]). These type of method were tested by Marx in [135] and turned out to be the best
compromise in accuracy, efficiency and robustness among the different time integration
schemes investigated in that work.

Due to the differential-algebraic nature of the ordinary differential system that arises
from the spatial discretization, the application of RK methods to the Navier-Stokes
equations is not straightforward. The typical approach is to compute the velocity at the
next time step by integrating the momentum equation using some RK method (freez-
ing the pressure gradient term), and next recover the pressure using a pressure Poisson
equation (see, e.g., [142]). However, it is unclear how this approach affects the conver-
gence error of both velocities and pressures. Alternatively, other methods perform a
RK time-integration in which the velocity at every stage is enforced to be divergence-
free, and next a pressure segregation is applied at every stage [128, 122]. As a result,
the error due to time RK discretization is spoiled by a second-order pressure splitting
error. It is common in the literature not to report pressure error in time [142, 117] or
to report at most second-order of accuracy [122]. An exception to this situation is the
recent work [159], where the half-explicit RK (HERK) methods for index-2 algebraic-
differential equation (DAE) systems (see [92]) have been applied to the incompress-
ible Navier-Stokes equations. These methods provide error estimates for both veloci-
ties and pressures, but require an explicit treatment of both convection and diffusion
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terms. Other approaches include the energy-conserving implicit RK methods in [158]
(coupling all stages at the linear system).

A very accurate pressure is required in many applications, especially those involv-
ing fluid-structure interaction for high Reynolds number flows, and when evaluating
drag and lift coefficients on objects. With the aim to develop high-order semi-implicit
methods, we propose new time-integration schemes, that we will denote as segregated
Runge-Kutta (SRK) methods, that do not involve any additional splitting error, since the
pressure-velocity decoupled computation is already obtained at the time-integration
level. These methods are motivated from the projected momentum equation onto the
space of divergence-free functions, which allows us to eliminate the pressure and con-
sider general RK schemes for the time integration. This way, we can easily prove the
order of the pressure time error and attain higher than two schemes for the pressure
too. The benefit of this approach with respect to HERK methods is the flexibility to
consider implicit and implicit-explicit (IMEX) versions of these methods.

In order to ease an effective preconditioning, we will favour SRK schemes that treat
implicitly the viscous term, explicitly the convective terms, and segregated the pres-
sure. The use of IMEX-SRK methods is very appealing for large-scale computations.
At every stage, it only involves a vector-Laplacian (or elasticity-type) plus a mass ma-
trix solver for the velocity and a discrete pressure Poisson solver. For this type of coer-
cive and symmetric problems, we can make use of efficient and highly scalable domain
decomposition or multigrid algorithms (see, e.g., [20]). Further, the set-up of these
preconditioners can be kept on fixed meshes, reducing computational cost.

The statement of the incompressible Navier-Stokes equations is developed in Sec-
tion 6.2. In Section 6.3 the time integration through RK schemes is introduced, giving
an overview of the HERK methods and developing the proposed SRK schemes. Four
different tests are exposed in Section 6.4, where the application of SRK schemes is as-
sessed for two different manufactured analytical solutions and laminar and turbulent
flow tests. Finally, some conclusions are stated in Section 6.5.

6.2 Problem statement

We start this section by briefly describing the Navier-Stokes problem, referring to Sec-
tion 2.1 for a deep description of the problem statement. Let Ω be a bounded domain
of Rd, where d = 2, 3 is the number of space dimensions, Γ = ∂Ω its boundary and
(0, T ] the time interval. The strong form of the incompressible Navier-Stokes problem
consists of finding a velocity field u and a pressure p such that

∂tu−∇ · (ν(∇u +∇uT )) + u · ∇u +∇p = f in Ω× (0, T ], (6.1)

∇ · u = 0 in Ω× (0, T ], (6.2)
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with f the force vector and ν the kinematic viscosity. Recalling that bold characters
denote vectors and tensors. Equations (6.1) and (6.2) need to be supplied with appro-
priate boundary and initial conditions. The boundary Γ is divided into the Dirichlet
(ΓD) and the Neumann (ΓN ) parts such that ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅. Then, the
boundary and initial conditions can be written as

u = ug on ΓD × (0, T ], (6.3)

(−p · I + ν(∇u +∇uT )) · n = tN on ΓN × (0, T ], (6.4)

u(x, 0) = u0(x) in Ω× {0}, (6.5)

n being the unit outward vector normal to Γ.
Using the notation defined in Section 2.2, the weak form of the transient incom-

pressible Navier-Stokes problem (6.1)-(6.5) reads as follows: find [u(t), p(t)] ∈ H1
0 (Ω)×

L2
0(Ω) such that

(∂tu,v) +B(u, (u, p), (v, q)) = 〈f ,v〉+ (g, q) for any [v, q] ∈ H1
0 (Ω)× L2

0(Ω), (6.6)

almost everywhere in time, satisfying the initial condition (6.5) in a weak sense, where
the form B(a, (u, p), (v, q)) is defined as

B(a, (u, p), (v, q)) := ν(∇u,∇v) + b(a,u,v)− (p,∇ · v) + (q,∇ · u), (6.7)

and b(a,u,v) is the trilinear weak form of the convective term.
Let us now consider a quasi-uniform FE partition Th of the domain Ω from which

we can construct the finite dimensional spaces for the velocity and pressure. After the
discretization in space of (6.6), we end up with an index-2 DAE system of equations:

MU̇ + (K + C(U))U + GP = F, (6.8)

DU = H, (6.9)

where M is the mass matrix, K the contribution of the diffusion term, C(U) the nonlin-
ear convective term (related to the trilinear form b), G the pressure gradient operator
and D the divergence matrix (note that D = −GT ). U and P are the nodal values of
the discrete velocity and pressure, while F and H are the force terms of the momentum
and incompressibility constraint equations, respectively.

Focusing on the matrix system (6.8)-(6.9), if we derive with respect to the time equa-
tion (6.9), we have that DU̇ = Ḣ, assuming that D is constant in time. Then, multiply-
ing the first equation (6.8) by DM−1 and invoking this result, we obtain an alternative
equation for U and P.

Ḣ + DM−1(K + C(U))U + DM−1GP = DM−1F. (6.10)
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Assuming that DU(0) = H(0), systems (6.8)-(6.9) and (6.8)-(6.10) are equivalent. Fur-
ther, matrix DM−1G is invertible, due to the inf-sup condition to be satisfied by the
mixed FE space (see [69]). As a result, the pressure can be expressed in terms of U

using (6.10), getting

−DM−1GP = DM−1(K + C(U)U− F) + Ḣ. (6.11)

Replacing this expression in (6.8), we obtain an equation for the velocity field only:

MU̇ + Π(K + C(U))U = ΠF + G(DM−1G)−1Ḣ, (6.12)

with
Π := (I−G(DM−1G)−1DM−1),

I being the identity matrix. This system matrix stands for the projected Navier-Stokes
system onto the discrete divergence-free space; we can easily check that DM−1Π = 0,
readily leading to DU̇ = Ḣ. It is a system of ordinary differential equations (ODEs)
and the use of RK methods is now straightforward.

6.3 Runge-Kutta time integration

Let us consider now the Navier-Stokes semi-discrete problem given by equations (6.8)-
(6.9) or (6.8) and (6.10). We consider a space discretization using mixed FE spaces
satisfying the inf-sup condition. This way, we avoid the use of stabilized formulations
that involve extra terms that may couple pressure and velocity fields or fill the diagonal
block related to the pressure, and change the mathematical structure of the system.

Following the motivation in Section 6.1, we aim to develop RK schemes for the
incompressible Navier-Stokes equations that will segregate the velocity and pressure com-
putation while keeping high order of accuracy. This splitting leads to the use of optimal
solvers for the velocity block and the pressure block, respectively, without the need to
develop efficient and scalable algorithms for indefinite systems. Further, when con-
sidering explicitly the convective term, we can maintain the same preconditioner at
all stages (while the mesh does not change) and avoid the need to deal with non-
symmetric (and possibly convection-dominant) systems.

A RK scheme consists of a multistage integration in which each stage is computed
as a combination of the unknowns evaluated in other stages. This combination can give
an implicit scheme or an explicit scheme, depending on the definition of the Butcher
tableau. Implicit and explicit schemes can be combined, leading to IMEX schemes, i.e.,
different Butcher tableaus are used for the implicit and explicit terms (see C). System
(6.8)-(6.9) can be compactly written as

MU̇ = F(U) + G(U,P), DU = H, (6.13)
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where F(U) and G(U,P) are the terms to be treated implicitly and explicitly, respec-
tively. For the implicit integration of F , we will use the so called DIRK method; for a
given stage i, it only involves the stages j such that 1 ≤ j ≤ i. For the explicit inte-
gration of G, in a given stage i, the method only concerns about the contribution of the
stages j such that 1 ≤ j ≤ i− 1.

6.3.1 Half-explicit Runge-Kutta schemes

The first approach to get a RK time integration with the properties described above is
the use of half-explicit RK (HERK) methods (see [33, 5, 141] for the general definition of
these methods and [159] for its very recent application to the Navier-Stokes equations).
So, we consider F = 0. HERK methods combine an explicit RK method for the mo-
mentum equation with an implicit enforcement of the discrete divergence constraint.
A half-explicit integration of the Navier-Stokes equations reads as:

1

δt
MUi =

1

δt
MUn +

i−1∑
j=1

âijG(Uj ,Pj), DUi = H(ti), (6.14)

where ti := tn + ĉiδt. We observe that the computation of Ui at every stage does only
depend on Pj with j = 1, . . . , i−1. Applying DM−1 over the momentum equation and
recalling the discrete divergence constraint, we obtain the equivalent method

1

δt
MUi =

1

δt
MUn +

i−1∑
j=1

âijG(Uj ,Pj), DUn + δt
i−1∑
j=1

âijDM−1G(Uj ,Pj) = H(ti).

(6.15)

We can easily check that the second equation is a linear system for Pi−1 with the system
matrix DM−1G (see [159] for different implementations). At the end of the multi-stage
computation, we update the velocity field:

M
δt

Un+1 =
M
δt

Un +
s∑
i=1

b̂iG(Ui,Pi), DUn+1 = H(tn+1). (6.16)

At the velocity update, we compute the last stage pressure Ps as above. Pn+1 does not
appear in the definition of the method, but it can easily be defined using a pressure
Poisson equation (see [159] for different alternatives).

However, when considering some implicit terms, the implicit treatment of the con-
straint in the spirit of HERK methods is not affordable. For instance, treating the diffu-
sive term implicitly, it would involve the system matrix D(M + δtK)−1G for the pres-
sure. So, the extension of this approach to implicit and IMEX integration schemes for
the momentum equation is not feasible. It has motivated the schemes introduced be-
low.
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6.3.2 Segregated Runge-Kutta schemes

In order to get implicit or IMEX RK schemes for the incompressible Navier-Stokes
equations, we consider the velocity-only projected system (6.12), which is just an ODE
system that can straightforwardly be integrated using RK schemes. Let us write this
problem in compact form as:

MU̇ = F(U) + G(U). (6.17)

In particular, we can define a method in which the viscous term is treated implicitly
and the convective and pressure-related term are treated explicitly. One choice is to
define the operators F and G as

F(U) := −KU and (6.18)

G(U) := F− C(U)U + G(DM−1G)−1
(
DM−1(K + C(U)U− F) + Ḣ

)
, (6.19)

i.e., using an implicit treatment of the viscous term and an explicit one for the convec-
tive and forcing term. We note that the evaluation of the pressure-related term involves
a discrete pressure Poisson equation DM−1G. However, in order to have a segregated
RK method, the term involving DM−1G is treated always explicitly. Alternatively, we could
choose other definitions of F and G, e.g., the convective term and the force term could
be considered implicitly, leading to

F(U) := −KU + F− C(U)U and (6.20)

G(U) := G(DM−1G)−1
(
DM−1(K + C(U)U− F) + Ḣ

)
. (6.21)

IMEX-SRK methods could also be of especial interest in turbulent flows in which the
time step restriction due to the convective CFL is in most situations smaller than the
one needed to capture the smallest time scales in the flow (see for instance [179, 181]).

Considering a RK method with s stages, the velocity at the stage i, Ui, for 1 ≤ i ≤ s
is computed as

1

δt
MUi =

1

δt
MUn +

i∑
j=1

aijF(Uj) +
i−1∑
j=1

âijG(Uj), (6.22)

where aij and âij are the coefficients of the implicit and explicit Butcher tableau, re-
spectively. After some manipulation, we can rewrite (6.22) as

1

δt
MUi =

1

δt
MUn +

i∑
j=1

aijF(Uj) +

i−1∑
j=1

âijG(Uj ,Pj), (6.23a)

−DM−1G(Pi) = DM−1((K + C(Ui))Ui − F(ti)) + Ḣ(ti). (6.23b)
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For the choice of the operator in (6.18), we would define G(U,P) := F − C(U)U −
GP, leading to an IMEX-SRK scheme, whereas the choice in (6.20) is obtained with
G(U,P) := −GP and corresponds to the fully implicit SRK scheme.

At the end of the multi-stage computation, we update the velocity and pressure
fields as it can be shown in the following equations:

M
δt

Un+1 =
M
δt

Un +
s∑
i=1

biF(Ui) +
s∑
i=1

b̂iG(Ui,Pi), (6.24a)

− DM−1G(Pn+1) = DM−1((K + C(Un+1))Un+1 − F(tn+1)) + Ḣ(tn+1). (6.24b)

Due to the fact that the resulting method involves a segregated computation of velocity
and pressure, it is coined as Segregated Runge-Kutta (SRK) method. In this approach, we
can naturally consider the viscous and/or convective term implicitly, while keeping a
simple pressure Poisson equation. On the other hand, Pn+1 is already defined, which
is a difference compared to HERK methods.

Remark 6.3.1. Note that Eq. (6.23b) (respectively, (6.24b)) is equivalent to solve a Darcy-type
problem, with the following expression:[

M G
D 0

][
U∗

Pk

]
=

[
F(tk)− (K + C(Uk))Uk

Ḣ(tk)

]
, (6.25)

with k being i (respectively, n + 1), and U∗ an auxiliar velocity field, which satisfies the dis-
crete incompressibility constraint. System (6.25) can be easily preconditioned by the spectrally
equivalent matrix diag(M, L̃), where L̃ is in turn an optimal (and scalable) preconditioner of
the Laplacian matrix [12, 69]. For large scale simulations, L̃ can be, e.g., an extremely scalable
balancing domain decomposition preconditioner for the Poisson problem [19, 20, 17].

In the SRK methods the discrete divergence constraint DU = H is not explicitly en-
forced, a difference with respect to HERK methods. However, it is implicitly enforced
by the pressure Poisson equation. Let us remind that both equations lead to equivalent
systems at the continuous level. In the next proposition we analyze the equivalence
between the HERK method and the fully explicit version of the scheme (6.23)-(6.24),
i.e., taking F = 0.

Proposition 6.3.1. Let us assume that H is independent of time, the initial condition satisfies
DU0 = H, and the SRK scheme (6.23)-(6.24) is fully explicit, i.e., F = 0. Then, the HERK
scheme (6.14)-(6.15) and the SRK scheme (6.23)-(6.24) are equivalent.

Proof. Let us assume that DUn = H. Both methods start with U1 = Un at stage 1, see
C where this condition is exposed. The SRK method also computes the pressure P1 as
the solution of DM−1G(U1,P1) = 0. At the second stage, the HERK method computes

MU2 = MUn + â21δtG(U1,P1), DU2 = H.
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The constraint leads to the pressure equation DM−1G(U1,P1) = 0. As a result, P1 and
U2 are identical for both methods, the difference being the fact that P1 is computed
at stage 1 in SRK and at stage 2 in HERK. Next, we proceed by induction. Let us
assume that both methods are equivalent till stage i − 1, i.e., we obtain the same Uj

for j = 1, . . . , i − 1 and Pj for j for j = 1, . . . , i − 2. At stage i, the HERK method
computes first Pi−1. Since DUn = H, and using the fact that DM−1G(Uj ,Pj) = 0

for j = 1, . . . , i − 2 (due to the equivalence with the SRK method and Eq. (6.23)), we
finally get DM−1G(Ui−1,Pi−1) = 0. As a result, Pi−1 is the same as the one obtained
with SRK. Since the velocity steps at (6.14) and (6.22) are identical for both methods,
we also get the same Ui. Within SRK, the pressure Ps at the last stage is computed
from DM−1G(Us,Ps) = 0. The velocity update in both cases is also identical. Further,
using the velocity update at (6.15) and proceeding as above, we can also check that
the pressure at the last stage of HERK also satisfies this equation. As a result of the
equivalence, we note that DUn+1 = H also holds for SRK. The initial assumption holds
for the first time step, since DU0 = H. As a result, DU1 = . . . = DUn = H holds,
proving the proposition.

This result has another implication. Using the SRK method, we also preserve the
discrete divergence constraint exactly in many situations of interest. Now, the question
that arises is whether we have this property too whenF 6= 0. We analyze the fulfillment
of the discrete divergence constraint for SRK.

Proposition 6.3.2. Let us assume that every component of H(t) is a p-th order polynomial in
time, the initial condition satisfies DU0 = H(0), the RK integrator integrates exactly polyno-
mials of order p − 1, and bi = b̂i for i = 1, . . . , s, s being the number of stages of the scheme.
Then, the SRK method preserves the exact discrete divergence constraint at all time steps.

Proof. We assume that DUn = H(tn). The equation DM−1(F(Ui) + G(Ui,Pi)) = Ḣ(ti)

holds at every stage of the SRK method. Applying DM−1 over the velocity update
(6.24a), we get DUn+1 =

∑s
j=1 DM−1(biF(Ui)+ b̂iG(Ui,Pi)). Clearly, DUn+1 = DUn+∑s

j=1 biḢ(ti) if bi = b̂i. Since the components of Ḣ are p− 1 polynomials in time, their
time integration is exact by assumption, i.e.,

∑s
j=1 biḢ(ti) = H(tn+1) − H(tn), and

DUn+1 = H(tn+1). Since DU0 = H(0), it proves the proposition.

This result is certainly strong. Even though we are not explicitly enforcing the
discrete divergence constraint at every time step, the solution does keep this desired
property in many cases. (We note that the intermediate stage corrections do not hold
the discrete divergence constraint unless we consider F = 0, see Proposition 6.3.1.)

Remark 6.3.2. The assumption bi = b̂i for i = 1, . . . , s is satisfied by many RK time inte-
grators; in particular, schemes (1-1), (1-2), (2-2/1), (2-3), (3-3) and (5-3) defined in C satisfy
this condition. The assumption that a p-th order RK scheme integrates exactly p − 1 poly-
nomials is one of the standard so-called simplifying conditions of RK methods [92], stated as∑s

j=1 bjc
q−1
j = 1

q , for q = 1, . . . , p.
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Remark 6.3.3. In this section, we have worked with the most general case in which H(t) is
time-dependent. It only happens when the Dirichlet boundary conditions are enforced strongly
and the velocity trace ug(t) to be enforced on ΓD is time-dependent. For exactly fulfilling
the discrete divergence constraint in all cases, we strongly favour the weak imposition of the
boundary conditions, i.e., using Nitsche’s method, having DU = 0 in all cases. When H(t)

is not a p-th polynomial, the method still shows the right convergence order, but the discrete
divergence constraint is only computed approximately due to the time integration error.

Remark 6.3.4. The previous results are obtained assuming that the linear systems are being
solved with exact arithmetic. Since the divergence-free condition is enforced in an incremental
way, there is a potential loss of accuracy in the constraint equation due to the accumulated error
of the linear system for long-term simulations (see Section 6.4). In any case, it is easy to correct
it by projecting the velocity field when the divergence residual is larger than some threshold.
Given a velocity field U, the projected discrete divergence-free velocity field Ũ is computed as
follows:

F Ũ +Gφ = FU, DŨ = 0,

with F = M (L2-projection) or F = M+K (H1-projection). This kind of techniques are heavily
used in MHD simulations in order to clean the induced magnetic field of its non-divergence free
component.

Finally, let us analyze the error introduced by the SRK methods, which is straight-
forward from the general RK schemes.

Proposition 6.3.3. Let us consider the SRK method with a p-th order scheme. The error for the
velocity and the pressure is reduced as O(δtp).

Proof. Let us denote the time-continuous solution as (Uex(t),Pex(t)). The convergence
order for the velocity is ‖Un −Uex(tn)‖M ≤ cδtp (where ‖ · ‖M denotes the norm en-
dowed by matrix M) since the SRK method for the velocity amounts to a standard RK
scheme for the ODE system (6.17) (see [91]). The pressure error is straightforward from
the velocity estimate, Eq. (6.24b), and the fact that DM−1G is invertible. In order to
obtain the pressure error, let us subtract Eq. (6.11) from Eq. (6.24b) at time value tn,
getting:

−DM−1G(Pn −Pex(tn)) = DM−1((K + C(Un))Un − DM−1(K + C(Uex(tn))Uex(tn)

= DM−1((K + C(Un))(Un −Uex(tn)))

+ DM−1C(Un −Uex(tn))Uex(tn).

Since DM−1G is a positive-definite matrix (due to the discrete inf-sup condition) we
easily get

‖(Pn −Pex(tn))‖M ≤ c‖Un −Uex(tn)‖M ≤ cδtp,
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where the constant c certainly depends on the spatial mesh and the modulus of the
computed and exact velocity, but not on δt. It proves the proposition.

6.3.3 Order reduction phenomena

It is known that RK approximation for PDEs suffer from order reduction phenomena
for schemes of order greater than two. Many works have been devoted to this issue,
e.g., [160, 180], where they prove that only under certain conditions the order in time of
the fully discrete scheme equals the conventional order of the RK formula. However,
the authors of [160, 180] say that these conditions are not natural and, in general, the
order in time for schemes of conventional order greater than two will be strictly smaller.
In particular, [180] stated that for DIRK schemes of third and fourth-order, in case of
inhomogeneous and time dependent boundary conditions, the actual order of these
methods is 2.

Boscarino in [29] derives a third-order IMEX RK method for stiff problems that does
not suffer from the order reduction phenomena. It is stated in this work that most of IMEX
RK schemes of order greater than two suffer from order reduction in the stiff regime.
The important point here is that for convection-diffusion problems the semi-discrete
system becomes stiffer when the spatial mesh is refined. Then, the order reduction
phenomena becomes relevant when we use high-order time integrators in fine spatial
meshes. This scheme is included in C, denoted by (5-3), and tested in section 6.4.

6.4 Numerical experiments

In this section we aim to see the performance of the SRK methods proposed previously
with different test cases. We start with an analytical manufactured solution that belongs
to the FE space, so we do not have any spatial error. The next test case is the laminar
flow around a cylinder, a widely used benchmark for laminar flows. Finally, we test a
turbulent case, the also widely used Taylor-Green vortex flow.

All the different schemes have been implemented in the FEMPAR (Finite Element
Multiphysics and massively PARallel) numerical software. FEMPAR is an open source
in-house developed, parallel hybrid OpenMP/MPI, object-oriented (OO) framework
which, among other features, provides the basic tools for the efficient parallel distributed-
memory implementation of substructuring domain decomposition solvers [19, 20].

6.4.1 Manufactured analytical solution

With this test, we want to check that the methods proposed in this work achieve the
desired order of convergence in time for the Butcher tableaus defined in C. In order to
analyze the convergence order in time, we want to make sure that the solution is not
polluted by the spatial error. Then, to eliminate the error of the spatial component, we
define an analytical solution in the FE space. This means that we can capture exactly
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the solution in space but not in time. The analytical solution in a 2D domain is chosen
to be:

u(x, y, t) =

(
x

−y

)
sin
( π

10
t
)

exp

(
t

25

)
, (6.26)

p(x, y) = x+ y. (6.27)

This solution belongs to the FE space, even for linear elements. We use inf-sup stable
elements of the type Q2/Q1 in order to avoid the use of a stabilization which would
introduce non-desired extra terms. This test is solved in the unit square Ω = (0, 1)2,
discretized with a very coarse mesh with 10 elements per direction. With this coarse
discretization we do not expect significant impact of the order reduction phenom-
ena exposed in Subsection 6.3.3 for small viscosity since it occurs in the stiff regime,
i.e., small element sizes and high viscosity. We define three different viscosities, ν =

{1.0, 0.1, 0.01}. We run this test in the time domain (t0, T ) = (0, 0.1), using several time
step sizes. In particular, we start with a large time step δt = 0.1 and we reduce it by
a half recursively four times until we reach δt = 1.25 · 10−2. The errors in the veloc-
ity and pressure fields, eu and ep, are computed as the `∞-norm (with respect to the
nodal values) of the difference between the computed solution and the analytical one
at t = T .

As we use either explicit or IMEX time integration schemes, we have to be care-
ful with the CFL number. Here we will have a diffusive CFL number (CFLν), which
will limit the method when we use a fully explicit scheme, and a convective CFL num-
ber (CFLu), which will limit the method when we use an IMEX scheme with only the
diffusive term integrated implicitly, i.e.,

CFLν =
νδt

(h/p2)2
, CFLu =

uδt

(h/p2)
,

being h the characteristic element size, p the degree of interpolation, and u the charac-
teristic velocity. In this test, we have h = 0.1, p = 2 and u ∼ 0.0315. Table 6.1 shows the
CFL values for each time step and viscosity.

TABLE 6.1: CFL values.

δt
CFLν CFLuν = 1.0 ν = 0.1 ν = 0.01

1.0 · 10−1 160 16 1.6 0.126
5.0 · 10−2 80 8 0.8 0.063
2.5 · 10−2 40 4 0.4 0.032
1.25 · 10−2 20 2 0.2 0.016

Note that the characteristic velocity u is very small, so the CFLu number will also
be very small (much lower than 1.0), since it only depends linearly on the mesh size.
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Then we do not expect instabilities due to the explicit treatment of the convective term
in this test. We cannot say the same for the CFLν number, which is larger than 1.0 in
most of the cases because of the quadratic dependency on the mesh size.

In this test we consider three different situations: 1) Fully implicit SRK scheme; 2)
SRK scheme with diffusive term integrated implicitly and convective term explicitly;
3) Fully explicit SRK scheme.

Fully implicit SRK. Here we consider a SRK scheme with the convective and diffu-
sive terms integrated implicitly. That is to set the operators F and G that appear in Eqs.
(6.23) and (6.24) equal to

F(U) := F− (K + C(U))U, and G(U,P) := −GP.

It is important to highlight here that this scheme is nonlinear, since we have the con-
vective velocity on the left-hand side of the equation.

Figure 6.1 shows the convergence rate of the velocity and the pressure fields for
the different viscosity choices. Looking at the stiffest case, Figure 6.1(a) and Figure
6.1(b), where ν = 1.0, we see that schemes (2-2/2) and (4-3) seem to converge in a rate
lower than two, which could be justified by the order reduction phenomena. Note that
precisely these two methods do not satisfy the incompressibility constrain when time
dependent boundary conditions are applied, see Proposition 6.3.2. Almost the same
behaviour is observed for the scheme (2-3) which also has an order reduction in its
convergence. On the other hand, scheme (3-3) has a reduction on the order of convergence
but it is still greater than two. Finally, scheme (5-3) is not affected by the order reduction
phenomena.

When we reduce the viscosity to ν = 0.1, the schemes seem to start to recover their
prescribed convergence rate. In Figure 6.1(c) and Figure 6.1(d) the convergence rate
in time are plotted for the velocity and pressure fields, respectively. It is seen that for
small time steps all schemes converge with the correct rate, but for larger time steps the
(2-2/1) and (4-3) schemes have order reduction.

Finally, in Figure 6.1(e) and Figure 6.1(f), where we show the convergence rate for
the velocity and pressure fields with ν = 0.01, all schemes considered in this work
perform with the prescribed convergence rate.

IMEX-SRK. In this case the SRK scheme is defined only with the diffusive term inte-
grated implicitly, while the convective one is treated explicitly. Then, the operators F
and G will be

F(U) := −KU, and G(U,P) := F− C(U)U−GP.
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(e) Velocity convergence, ν = 0.01
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(f) Pressure convergence, ν = 0.01

FIGURE 6.1: Fully implicit SRK.

Note that for this case, there will be the limitation on the hyperbolic CFLu number,
which is less restrictive than the parabolic one. As it is seen in Table 6.1, it is always
less than 1.0 for the chosen time step sizes.

Figure 6.2 depicts the velocity and pressure convergence rate using different vis-
cosities for this second case. For the highest viscosity ν = 1.0 (Figure 6.2(a) and Figure
6.2(b)), we note that almost all methods perform in a similar way as the fully implicit
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SRK case, with the difference that scheme (3-3) is also showing an order reduction in
its convergence rate, being of 2nd order. In this case, we can state that the (5-3) scheme
is the only third-order scheme that does not show an order reduction in the time con-
vergence, although for the smallest time steps, the velocity convergence rate is a little
bit lower than 3.

When we reduce the viscosity to ν = 0.1 or ν = 0.01, all schemes show the same
behaviour as the fully implicit SRK case, see Figure 6.2(c), Figure 6.2(d), Figure 6.2(e),
and Figure 6.2(f). Let us note that the (2-2/1) scheme has much lower error in the IMEX-
SRK case than in the fully implicit SRK case.

Fully explicit SRK. Finally we test the fully explicit situation, which consist on send-
ing all terms to the right-hand side of the equation. The operators F and G in Eqs.
(6.23) and (6.24) will read

F(U) := 0, and G(U,P) := F− (K + C(U))U−GP.

In this case the CFL number that limits the stability of the method is given by the
parabolic one (CFLν). This is far more restrictive than CFLu in the IMEX case, and
for the setting described above we get unstable results. Only when the viscosity is
ν = 0.01, the CFLν values are in the order or smaller than the critical value 1.0.

Figure 6.3 depicts the convergence rate for this case, where we see that for the ve-
locity (Figure 6.3(a)) and the pressure (Figure 6.3(b)) fields the order of convergence is
the desired one for most of the schemes, except for the (5-3) scheme which converges
with a higher order. Here does not appear the order reduction phenomena since it is
not present for explicit schemes.

Discrete divergence constraint preservation. As stated in Proposition 6.3.2, the dis-
crete divergence constraint is preserved when the strongly imposed Dirichlet data is a
polynomial of order at most p − 1 in time. In order to show this phenomena we solve
the same problem given by (6.26)-(6.27), but considering a second order polynomial for
the time dependency. The analytical solution to be solved in this case will be

u(x, y, t) =

(
x

−y

)
t2,

p(x, y) = x+ y.

This problem is solved with the fully implicit SRK method from t = 0 to t = 2.0 using
a time step size δt = 1.0 · 10−2 and a viscosity ν = 0.01. The linear solver tolerance
has been set equal to 1.0 · 10−8, and for the implicit version, the nonlinear tolerance is
1.0 · 10−6. In Figure 6.4 the evolution of ‖∇ · u‖ is depicted for all schemes considered
in C, for both the implicit and explicit versions of the SRK method. We see that for the
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(d) Pressure convergence, ν = 0.1
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(e) Velocity convergence, ν = 0.01
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(f) Pressure convergence, ν = 0.01

FIGURE 6.2: SRK convergence with convection integrated explicitly and
diffusion integrated implicitly.

first-order (1-1) scheme the discrete divergence constraint is not preserved as it was ex-
pected. Moreover, the second-order schemes seem to give really accurate results when
evaluating the discrete divergence, even when the time dependence of the solution is
of order 2. The (2-2/2) and (4-3) schemes, which do not satisfy the condition bi = b̂i

for i = 1, ..., s, have the worst performance compared to the other methods of the same
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FIGURE 6.3: Fully explicit SRK convergence.

order. Although the errors are very small, we can observe the effect of the accumula-
tion of solver error commented in Remark 6.3.4, which leads to an increasing value of
‖∇ · u‖. In any case, the third order schemes that have been proved to preserve the
discrete divergence constraint (see Proposition 6.3.2) keep ‖∇ · u‖ below 10−9.
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FIGURE 6.4: ‖∇ · u‖ for the implicit and explicit SRK schemes.

6.4.2 Beltrami flow

In the manufactured analytical solution stated in (6.26)-(6.27) the spatial error is not
present since the solution belongs to the FE space. In order to check the behaviour of
SRK methods when solving problems with spatial error originated by the discretization
in space, we consider an analytical solution that does not belong to the FE space. A 3D
Beltrami flow like the one defined in [70] is used in this subsection, but in this case a
pressure with no dependence in time is defined. The flow is solved in a cube centered
on (x, y, z) = (0, 0, 0) and with a edge size L = 2, the viscosity of the problem in this
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case is set as ν = 0.01.

u(x, y, z, t) =

 −a [eax sin(ay + dz) + eaz cos(ax+ dy)]

−a [eay sin(az + dx) + eax cos(ay + dz)]

−a [eaz sin(ax+ dy) + eay cos(az + dx)]

 e−d
2t, (6.28)

p(x, y, z) = −a
2

2

[
e2ax + e2ay + e2ay + 2 sin(ax+ dy) cos(az + dx)ea(y+z) (6.29)

+2 sin(ay + dz) cos(ax+ dy)ea(z+x) + 2 sin(az + dx) cos(ay + dz)ea(x+y)
]
.

To analyze the effect of the spatial error we solve the problem with the analytical solu-
tion (6.28)-(6.29) refining both in time and space keeping the ratio δt/h constant. The
problem is solved using Q2/Q1 elements with the IMEX SRK method, for all schemes
stated in C. A first result is obtained setting the δt/h = 0.01, with the time step sizes
δt = {5.0·10−3, 2.5·10−3, 1.25·10−3, 6.25·10−4} and solving from t = 0 till T = 5.0·10−3.
A second test is done with a smaller ratio, δt/h = 0.002, being the time steps sizes
δt = {1.0 · 10−3, 5.0 · 10−4, 2.5 · 10−4, 1.25 · 10−4} from t = 0 till T = 1.0 · 10−3. In
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FIGURE 6.5: Beltrami flow error convergence (red and blue lines below
green line).

Figure 6.5 the error convergence for both velocity and pressure fields is depicted. The
results for the case with δt

h = 0.01 are shown in Figure 6.5(a), where we clearly see that
the convergence rate for the pressure field is two, the one prescribed by the spatial dis-
cretization error, so here all schemes give the same result since the spatial error prevails
over the temporal error. But looking at the velocity field results at the same figure, it is
seen that the third-order of convergence given by the theoretical spatial error conver-
gence is reduced. Here we see how the first order scheme (1-1) starts loosing the con-
vergence rate given by the spatial error and exhibits the convergence rate prescribed
by the temporal discretization. All the other schemes converge with a second order
slope, even the third-order schemes. This order reduction phenomena is also observed
in [160] when both δt and h are refined simultaneously. When we select a smaller ratio
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of δt/h, see Figure 6.5(b), the temporal error is masked by the spatial error, giving a
third-order convergence for the velocity field and a second-order convergence for the
pressure field. A little reduction of the order is observed at the smallest time step sizes
for the velocity field in Figure 6.5(b).

6.4.3 2D Laminar flow around a cylinder

Once studied the behaviour of the different methods proposed in Section 6.3 for a
manufactured analytical solution, we study a widely used laminar flow benchmark
which is the flow around a cylinder for a low Reynolds number Re = 100. A detailed
overview of benchmark computations of laminar flow around a cylinder are given in
[161]. The test performed in the current work is called 2D-2 in that paper and is defined
as shown in Figure 6.6. It basically consists in a rectangular channel with a cylinder lo-
cated near the inflow boundary. A non-slip condition is imposed in the cylinder wall
and the channel walls that are perpendicular to the flow direction (x). The inflow con-
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FIGURE 6.6: Flow around a cylinder test geometry.

dition is

u(0, y, t) =

(
ux

uy

)
=

(
4Um

y(H−y)
H2

0

)
,

with the maximum velocity Um = 1.5 m/s and H = 0.41 the channel height.
Our aim is not only to see the order of convergence of the time integration schemes

proposed, but also to compare the results with a detailed benchmark that has been used
to test different algorithmic approaches. Then, we compute the parameters needed for
this comparison, namely the drag coefficient cD, the lift coefficient cL, and the pressure
difference ∆P as functions of time for one period [t0, t0 + 1/f ], f being the frequency
of separation. The values that we will use in the comparison are the maximum drag
coefficient cDmax , the maximum lift coefficient cLmax , the Strouhal number St and the
pressure difference ∆P (t) at t = t0 + 0.5/f . The initial time t0 should correspond to the
flow state with cLmax . The drag coefficient cD and the lift coefficient cL are given by

cD =
2FD
ρŪ2D

, cL =
2FL
ρŪ2D

,
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being ρ = 1.0 the fluid density, D = 0.1 the cylinder diameter, and Ū = 1.0 the mean
velocity. The drag FD and lift FL forces are defined as

FD =

∫
S

(
ρν
∂vt
∂n

ny − pnx
)

dS, FL = −
∫
S

(
ρν
∂vt
∂n

nx − pny
)

dS,

with S the cylinder surface and n the normal vector on S, with nx and ny the x-
component and y-component, respectively. vt is the tangential velocity on S for the
tangent vector t = (ny,−nx). These surface integrals are computed as the residual of
the weak form on boundary nodes, as advocated in [37] for accuracy reasons.

In order to reduce computational cost, we first compute the flow from t = 0 to
t = 8.0 with a monolithic fully implicit Crank-Nicolson scheme with a time step equal
to δt = 0.05. In Figure 6.7 we show the vorticity field at t = 8.0. It can be seen that
at that time the flow is fully developed. So, at t = 8.0 we can start the computations
with the different schemes studied in this work. The computations are performed from
t = 8.0 to t = 8.4, ensuring that we have two maximums of the lift coefficient, so we
have a complete period of data after the first lift coefficient maximum.

FIGURE 6.7: Vorticity field at t = 8.0.

As exposed in the discussion of results in [161], the use of explicit schemes for the
time integration of laminar flows is not an efficient approach. The restriction on the
time step size to ensure stability of the method is critical since the physical time scale
may be much larger. As a result, we will only focus on the fully implicit and IMEX
approaches. In this test we consider two different situations: 1) Fully implicit SRK
scheme; 2) SRK scheme with diffusive term integrated implicitly and convective term
explicitly.

This test is solved using a mesh with 13886 Q2/Q1 elements, for all the schemes de-
fined by the Butcher tableaus exposed in C and for several time step sizes. In particular,
the problem is solved with δt = {2.0 · 10−2, 1.0 · 10−2, 5.0 · 10−3, 2.5 · 10−3, 1.25 · 10−3}
for each scheme. Furthermore, an extra computation for the (3-3) scheme is done with
δt = 3.125 · 10−4 in order to have a more accurate result from which we can compare to
do the convergence analysis.

In [161] there is not a prescribed correct value for the benchmark quantities, but
there is a range within which most of the reported values are located. Then, we expect
that our computation results will fit into these bounds.
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Fully implicit SRK. Here, as the flow is laminar, we do not expect the nonlinearity
of the convective term to play a decisive role in the computational cost. So, it seems
natural to consider an implicit treatment of this term, especially taking into account
that the explicit treatment of this term involves time stepping restrictions. Thus, the
schemes used in this first case are given by defining the operators F and G in Eqs.
(6.23) and (6.24) as

F(U) := F− (K + C(U))U, and G(U,P) := −GP.

Let us point out that for this test the (1-2) and (2-3) schemes are unstable for the
largest time step sizes, i.e. δt ≥ 1.25 ·10−3 for the (1-2) scheme and δt ≥ 2.5 ·10−3 for the
(2-3) scheme. Therefore, these two schemes will not be taken into account in the results
shown in this first case. The benchmark quantities of the different computations are
given in Table 6.2, together with the lower and upper bounds of the results in [161]. It is
seen that most of the computed quantities fit into the benchmark bounds; the Strouhal
number seems to be a little bit greater than the upper bound in some cases. Note that
aside the Strouhal number, the other quantities converge to a value that is inside the
benchmark range. As it is expected, the schemes with higher order have more results
in the correct range and give very accurate results earlier when we refine the time step.

To check the convergence in time of the different time integration schemes, we per-
form a convergence analysis computing the `∞-norm of the velocity and the pressure
errors, eu and ep. In this case, the solution is not compared against an analytical one but
computed with a finer time step (δt = 3.125 · 10−4) with the (3-3) scheme. The reason
of this choice is related to the efficiency of this scheme, discussed below.

In Figure 6.8 we show the convergence rate for both velocity and pressure fields,
Figure 6.8(a) and Figure 6.8(b), respectively. A first conclusion that we can make is that
for the largest time steps the order of convergence is not the prescribed one, especially
for the first order scheme. It is explained by the fact that the largest time step sizes
are greater than the one required for stability purposes when a fully-explicit scheme is
used. For the time steps smaller than 2.0 · 10−2 the convergence rates are the expected
ones, with the exception of (1-1) and (4-3) schemes, with a convergence rate lower than
the expected one.

Figure 6.8 shows that the most accurate schemes are (3-3) and (5-3). Now, let us
analyze the computational cost of these methods based on the CPU time for a given
target error. In Figure 6.9 it is clearly seen that the most efficient scheme is (3-3), even
for relatively high error (∼ 4 · 10−2). For larger target errors, the (2-2/1) schemes is
competitive. We note that the first order (1-1) scheme is not competitive at all, since the
error is too large and there is no significant gain in CPU time.



142 Chapter 6. Segregated Runge-Kutta time integration schemes

TABLE 6.2: Benchmark 2D-2 results with implicit convection.

Scheme δt cDmax cLmax St ∆P

(1− 1) 2.000e-02 3.1984 0.8261 0.2941 2.4291
(1− 1) 1.000e-02 3.2024 0.8704 0.2941 2.4398
(1− 1) 5.000e-03 3.2108 0.9158 0.3030 2.4568
(1− 1) 2.500e-03 3.2182 0.9441 0.3030 2.4700
(1− 1) 1.250e-03 3.2230 0.9598 0.3042 2.4780

(2− 2/1) 2.000e-02 3.2423 1.0121 0.3125 2.5082
(2− 2/1) 1.000e-02 3.2329 1.0039 0.3030 2.4867
(2− 2/1) 5.000e-03 3.2304 1.0008 0.3077 2.4852
(2− 2/1) 2.500e-03 3.2298 1.0009 0.3053 2.4884
(2− 2/1) 1.250e-03 3.2296 1.0007 0.3065 2.4883

(2− 2/2) 2.000e-02 3.2418 1.0819 0.3125 2.4954
(2− 2/2) 1.000e-02 3.2323 1.0063 0.3030 2.4835
(2− 2/2) 5.000e-03 3.2301 0.9973 0.3077 2.4845
(2− 2/2) 2.500e-03 3.2297 0.9997 0.3053 2.4883
(2− 2/2) 1.250e-03 3.2296 1.0003 0.3065 2.4883

(3− 3) 2.000e-02 3.2361 1.0138 0.3125 2.5027
(3− 3) 1.000e-02 3.2304 1.0013 0.3030 2.4849
(3− 3) 5.000e-03 3.2298 0.9999 0.3077 2.4848
(3− 3) 2.500e-03 3.2296 1.0007 0.3053 2.4883
(3− 3) 1.250e-03 3.2296 1.0006 0.3065 2.4883

(4− 3) 2.000e-02 3.2321 1.1003 0.3125 2.4788
(4− 3) 1.000e-02 3.2285 0.9948 0.3030 2.4802
(4− 3) 5.000e-03 3.2285 0.9954 0.3077 2.4839
(4− 3) 2.500e-03 3.2294 1.0000 0.3053 2.4881
(4− 3) 1.250e-03 3.2296 1.0005 0.3065 2.4882

(5− 3) 2.000e-02 3.2249 0.9770 0.3125 2.4951
(5− 3) 1.000e-02 3.2290 0.9977 0.3030 2.4843
(5− 3) 5.000e-03 3.2295 0.9995 0.3077 2.4847
(5− 3) 2.500e-03 3.2296 1.0006 0.3053 2.4883
(5− 3) 1.250e-03 3.2296 1.0006 0.3065 2.4883

lower bound 3.2200 0.9900 0.2950 2.4600
upper bound 3.2400 1.0100 0.3050 2.5000

IMEX-SRK. In this case, we consider an explicit time integration approach of the
convective term. That is to define the operators F and G in Eqs. (6.23) and (6.24) as

F(U) := F−KU, and G(U,P) := C(U)−GP.

As it has been exposed above, the explicit treatment of the convective term implies
time stepping restrictions that are given by the condition on the hyperbolic CFLu num-
ber. As the mesh is not homogeneous and the velocity is not the same over all the
domain, we can obtain a bound for the maximum CFLu number taking the maximum
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FIGURE 6.8: Fully implicit SRK convergence.
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FIGURE 6.9: Fully implicit SRK CPU time efficiency.

value over all the elements. With these parameters, the maximum CFLu depending on
the time step size will be of the order shown in Table 6.3.

Looking at Table 6.3 we see that in this case the time step needs to be much smaller
than in the previous case if we want to guarantee a stable solution. For the implicit
treatment of the convective term, for time step sizes below or equal to δt ≤ 1.0 · 10−2,
the method is stable and gives good convergence rates. Here, for this time step we see
that we have a CFLu ∼ 3.4, which is grater than the critical ∼ 1.0.

In effect, the largest time step size for which all the schemes give stable results for
this case is δt = 3.125 · 10−4. Some schemes also are stable for δt = 6.25 · 10−4 or even
for δt = 1.25 · 10−3, but no one is stable for δt = 2.5 · 10−3, which is of the order of the
critical time step size. Thus, it is clear that for this type of problems, an explicit time
integration of the convective term implies the use of much smaller time steps than for
an implicit time integration of this term.

In Table 6.4 we show the benchmark quantities of the cases that attained conver-
gence, till δt = 1.5625 · 10−4. It is clearly seen that for such small time step sizes all the
results are very similar, showing that the IMEX-SRK scheme also gives good results
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TABLE 6.3: CFLu values.

δt CFLu

2.0 · 10−2 6.81
1.0 · 10−2 3.48
5.0 · 10−3 1.79
2.5 · 10−3 0.91
1.25 · 10−3 0.46
6.25 · 10−4 0.21
3.125 · 10−4 0.11
1.5625 · 10−4 0.05
7.8125 · 10−5 0.03

considering the explicit integration of the convective term, whenever the time step is
sufficiently small to give a stable result. The results that are out of the range are in
italics.

TABLE 6.4: Benchmark 2D-2 results with explicit convection.

Scheme δt cDmax cLmax St ∆P

(1− 1) 3.125e-04 3.2272 0.9882 0.3059 2.4862
(1− 1) 1.563e-04 3.2280 0.9944 0.3062 2.4879

(1− 2) 3.125e-04 3.2296 1.0006 0.3068 2.4891
(1− 2) 1.563e-04 3.2296 1.0006 0.3065 2.4893

(2− 2/1) 6.250e-04 3.2296 1.0006 0.3065 2.4891
(2− 2/1) 3.125e-04 3.2296 1.0006 0.3065 2.4895
(2− 2/1) 1.563e-04 3.2296 1.0006 0.3065 2.4893

(2− 2/2) 6.250e-04 3.2296 1.0006 0.3065 2.4892
(2− 2/2) 3.125e-04 3.2296 1.0006 0.3065 2.4896
(2− 2/2) 1.563e-04 3.2296 1.0006 0.3065 2.4893

(2− 3) 3.125e-04 3.2296 1.0006 0.3065 2.4895
(2− 3) 1.563e-04 3.2296 1.0006 0.3065 2.4893

(3− 3) 6.250e-04 3.2296 1.0006 0.3065 2.4891
(3− 3) 3.125e-04 3.2296 1.0006 0.3065 2.4895
(3− 3) 1.563e-04 3.2296 1.0006 0.3065 2.4893

(4− 3) 6.250e-04 3.2296 1.0006 0.3065 2.4891
(4− 3) 3.125e-04 3.2296 1.0006 0.3065 2.4895
(4− 3) 1.563e-04 3.2296 1.0006 0.3065 2.4893

(5− 3) 6.250e-04 3.2296 1.0006 0.3065 2.4891
(5− 3) 3.125e-04 3.2296 1.0006 0.3065 2.4895
(5− 3) 1.563e-04 3.2296 1.0006 0.3065 2.4893

lower bound 3.2200 0.9900 0.2950 2.4600
upper bound 3.2400 1.0100 0.3050 2.5000
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In order to compare the efficiency between the implicit and explicit approaches
for the time integration of the convective term for this particular test, we perform the
convergence analysis for both methods at t = 8.01 s. We restrict this test only to the
most efficient schemes for each order of approximation, which are (1-1), (2-2/1), and
(3-3) schemes. The results of the convergence in time for this comparison are shown in
Figure 6.10. Unstable results for the explicit convective term integration are not plotted
in this figure.

The fully implicit versions of the SRK schemes considered here show a good agree-
ment with the prescribed convergence rate. Furthermore, when the time step is suffi-
ciently small, the explicit version seems to give more accurate results. This is especially
remarkable for the (2-2/1) scheme, where the differences are bigger. Same conclusions
can be pointed out for both velocity and pressure fields, since there are not signifi-
cant differences between their convergence rates, see Figure 6.10(a) and Figure 6.10(b).
Figure 6.10 shows that the (3-3) scheme is the most accurate one. Apart from the (2-
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FIGURE 6.10: Fully implicit and IMEX-SRK convergence rate compari-
son.

2/1) scheme, implicit and explicit versions give similar results when the time step is
sufficiently small.

Next, we look at the overall computational time needed for each approach. This
is shown in Figure 6.11, where the error eu is plotted against the CPU time for each
scheme and for each approach. We see that, as expected, the approach with explicit
time integration of the convective term is more efficient than the implicit one when
the time step is sufficiently small. For large time steps, we cannot use the explicit ver-
sions since the CFLu condition is limiting the stability of the method, and therefore
its accuracy. Note that there is not a big difference on the efficiency for (1-1) and (3-3)
schemes, since the gain of treating the convective term explicitly is not too much rele-
vant in laminar problem types. As exposed at the beginning of this subsection, explicit
approaches involve time step size restrictions, which may be much smaller than the
physical time scale. Furthermore, as it has also been exposed before, the nonlinearity
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FIGURE 6.11: Fully implicit and IMEX-SRK CPU time efficiency com-
parison.

of the convective term when it is integrated implicitly does not increase the cost too
much. Despite of that, for errors smaller than ∼ 10−4, the most efficient scheme is the
(3-3) using explicit time integration of the convective term, at least for this test.

Adaptive time stepping technique

When solving generic transient flow problems, it is very useful to use an adaptive time
stepping technique that will automatically provide a (dynamic) value of the time step
size for a target accuracy. Time stepping techniques allow us to adapt the time step size
to the flow conditions, that is to change the time step when the physical scales of the
flow change, e.g., transition to turbulence. Adaptive time-stepping techniques have
been implemented to satisfy accuracy requirements for the incompressible Navier-
Stokes equations and several successful tests can be found in the literature, as it can
be shown in [72, 115, 118, 178].

These adaptive time stepping techniques can straightforwardly be applied to SRK
methods. In fact, for all multi-step or multi-stage methods like SRK schemes, the im-
plementation of an adaptive time step technique is widely used, since we only need a
different evaluation of the final unknown at each step that can be done using a different
Butcher tableau, see for instance [88, 89]. Here we use the so called PI11 controller by
[173] and suggested in [89], which computes the time step size as follows

δtn+1 =

(
ε

rn+1

)1/k ( rn
rn+1

)1/k δtn
δtn+1

δtn,

with ε = 0.8 · TOL, where TOL is a given tolerance that we take as 1 · 10−6 and 0.8 is a
safety factor. The local error is rn+1 = ‖U− Û‖ if the error per step (EPS) is controlled
or rn+1 = ‖(U − Û)/δtn‖ if the error per unit step (EPUS) is controlled. In the former
case k = p+ 1 (EPS) and for the second one (EPUS) k = p, p being the order of the time
integration scheme which has been used to compute the estimated velocity Û.
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We solve the problem from t = 8.0 to t = 8.4 using the SRK (3-3) scheme, con-
sidering the implicit time integration of the convective term. We compare the solu-
tions against the one obtained with the same scheme, but using a fixed time step size
δt = 3.125·10−4, the smallest time step considered in previous analysis. Let us note that
an adaptive time stepping technique for the explicit time integration of the convective
term does not make sense in this case. We see in Table 6.3 that the CFLu number of the
SRK with explicit versions of the convective term with a time step of δt = 3.125 · 10−4

is already above the critical value of 1.0. This means that if we increase the time step
size, we will have stability problems due to the hyperbolic CFL condition.

To compute Û we have used the 2nd order Butcher tableau referred as Embedded
Formula of Order 2 for the Third Order Strongly S-Stable Formula defined in [45], which is
3rd order and corresponds to the (3-3) scheme defined in C. The initial time step size
is set to be δt0 = 1.0 · 10−5, small enough to get an accurate first solution. In Figure
6.12(a) we show the time step evolution for the two different cases considered in this
subsection. We see that the time step size for the scheme with adaptive time stepping is
increasing with a variable rate and seems to converge to an optimal one. Figure 6.12(b)

8 8.05 8.1 8.15 8.2 8.25 8.3 8.35 8.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3 Time step evolution

Time

T
im

e
 s

te
p

 

 

Impl. conv. dt=3.125e−04

Impl. conv. adaptive dt

(a) Time step evolution

8.305 8.31 8.315 8.32 8.325 8.33 8.335 8.34 8.345 8.35 8.355
0.9

0.92

0.94

0.96

0.98

1

Lift coefficient evolution (Close up view)

Time

L
if
t 

c
o

e
ff

ic
ie

n
t

 

 

Impl. conv. dt=3.125e−04

Impl. conv. adaptive dt

(b) Lift coefficient (close up view)

FIGURE 6.12: Adaptive time stepping.

depicts a close up view of the lift coefficient evolution. We see that for the implicit
adaptive time step case, the results are really close to those obtained with the same
scheme with a fixed time step of δt = 3.125 · 10−4. Note that the adaptive time step
size are twice or even three times larger than the fixed one. The total elapsed CPU time
for the implicit scheme with adaptive time step is 3615 s, while the total time for the
implicit scheme with fixed time step is 8453 s, which supposes a reduction of a 42.8%

of time consumption with a very little difference in the result.

6.4.4 Taylor-Green vortex flow

The next step of this work is to check the performance of the SRK methods for turbulent
incompressible flows. The use of IMEX-SRK methods is usually favoured for turbulent
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flows, since the time step size required to satisfy the CFLu condition is of the same or-
der as the physical one needed for accuracy purposes. The Taylor-Green vortex (TGV)
problem is a typical and widely used problem in turbulence numerical simulations, in
which we can see the basic turbulence decay mechanisms in a relatively simple flow.
Here, the computational domain is the cube (0, 2π)3 with periodical boundary condi-
tions. The initial analytical condition for this problem is given by (see, e.g., [31])

u(x, y, z, 0) =

 ux

uy

uz

 =

 u0 cos(x) sin(y) sin(z)

−u0 sin(x) cos(y) sin(z)

0

 (6.30)

p(x, y, z, 0) = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2) ,

with
u0 =

2√
3

sin

(
γ +

2π

3

)
.

We choose γ = 0, which gives the mean initial velocity u0 = 1. We solve the TGV
problem using a Reynolds number Re = 1600, but in the literature the same test using
different Reynolds numbers (e.g., Re = 800 and Re = 3000) can be found (see, e.g.,
[80, 96]).

The problem is solved in a 643 Q2/Q1 elements mesh, and no additional sub-grid
modelling is being used. Our concern is about the time integration, therefore the spatial
accuracy does not take a crucial role in this work. Anyway, we analyze some physical
quantities, like the global kinetic energy or the kinetic energy dissipation rate, that are
typically used for this test to calibrate different methods.

We only use the IMEX-SRK method with the convection treated explicitly, avoiding
the need of nonlinear iterations. This situation is given by defining the operatorsF and
G in Eqs. (6.23) and (6.24) as

F(U) := −KU, and G(U,P) := F− C(U)U−GP.

First of all, we perform a time step convergence analysis at the beginning of the
simulation, where the flow is still laminar. This convergence analysis consists in solving
the problem from t = 0.0 to t = 0.1 for all the schemes proposed in C for several
time step sizes. In particular, we solve the problem with four different time step sizes
(δt = {0.1, 0.05, 0.025, 0.0125}) and we compare the solution against the one obtained
with the (5-3) scheme with a time step equal to δt = 6.25 · 10−3. The L2-norm of the
kinetic energy error compared against the reference kinetic energy solution given by a
DNS computation can be found in [27]. Our approach is to compute the L∞-norm of
the solution, comparing against a solution computed with a finer time step, but with
the same spatial discretization. With this approach we are eliminating the spatial error
and we are using a more restrictive error norm.

We show in Figure 6.13 the order of convergence in time for both velocity (Figure
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6.13(a)) and pressure (Figure 6.13(b)) fields. We can see that the order of convergence in
this regime follows the predicted rate for almost all schemes; the (5-3) schemes seems
to converge with a higher rate than the expected one, being this performance especially
remarkable for the velocity field convergence.
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FIGURE 6.13: IMEX-SRK convergence for the laminar regime.

Another point to be highlighted in Figure 6.13 is that the (2-2/1) scheme shows a
much lower error compared to the other second-order schemes. This performance is
also observed on the previous tests when an IMEX-SRK (with explicit treatment of the
convection) is used.

As it has been done for the 2D laminar flow around a cylinder test (see Subsection
6.4.3) we analyze the efficiency of the methods comparing error against CPU time. This
comparison is in Figure 6.14, where the error is plotted in terms of the averaged elapsed
CPU time per processor needed to complete the simulation from t = 0 to t = 0.1.
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FIGURE 6.14: IMEX-SRK efficiency for the laminar regime.

It is seen in Figure 6.14 that the most efficient schemes are the (2-2/1) and (3-3)
ones, which for errors greater than ∼ 10−6 give the same error-CPU time ratio. As it is
natural, below this threshold, the second-order scheme (2-2/1) starts loosing efficiency
and the (3-3) scheme becomes the most efficient one for errors smaller than ∼ 10−6.
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Once we have determined that the most efficient schemes for this test are the (2-2/1)
and (3-3) ones, we now want to see their performance for a larger time interval. The
aim is to solve the problem until the turbulence becomes fully developed, which for
this Reynolds number case takes place around t ∼ 9. Following [31], the time interval
will go from t = 0.0 to T = 10.0, so we will be able to compare the results with their
DNS. For this computation, we select the time step size that has an error at t = 0.1

in Figure 6.13(a) of the order ∼ 1 · 10−6, i.e., δt = 5.0 · 10−2 for the (3-3) scheme and
δt = 3.6 · 10−2 for the (2-2/1) scheme.

Figure 6.15 depicts the total energy evolution (Figure 6.15(a)) and the kinetic energy
dissipation rate of the resolved scales (Figure 6.15(b)) compared against the DNS pro-
vided by [31]. The result is exactly the same for both schemes, despite the fact that the
third-order scheme uses a larger time step. Looking at Figure 6.15(a), we see that the
energy evolution of the solution is not far from the DNS, but there is a gap after t = 6,
when the turbulence is developed. This is caused by the lack of any turbulent model
which would capture the small scales proper dissipation. For the same reason we see
big differences between our solutions and the DNS results in Figure 6.15(b) after t = 6.

0 1 2 3 4 5 6 7 8 9 10

0.08

0.09

0.1

0.11

0.12

0.13

Global Energy

Time

E
n

e
rg

y

 

 

2−2/1

3−3

DNS (Brachet et al)

(a) Global energy.

0 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Total kinetic energy dissipation rate (−)

Time

D
is

s
ip

a
ti
o

n

 

 

2−2/1

3−3

DNS (Brachet et al)

(b) Kinetic energy dissipation rate.

FIGURE 6.15: Global energy and Kinetic energy dissipation rate evolu-
tion (blue line below red line).

Looking at Figure 6.15(b) we clearly see that the error given by the spatial discretiza-
tion when the flow becomes turbulent is too large to appreciate significant differences
between time integration schemes. We want to highlight here that an adaptive time
step technique could be used in order to efficiently solve the transient problem. How-
ever, the use of an adaptive time stepping technique without an accurate solution in
space does not make sense. Future work in this direction involves the introduction of
LES models within the IMEX-SRK approach proposed in this work.



Chapter 6. Segregated Runge-Kutta time integration schemes 151

6.5 Conclusions

The segregated Runge-Kutta methods proposed in this work enjoy two nice features,
namely the velocity and pressure segregation at the time integration level (without the
need to perform additional fractional step techniques that spoil high orders of accu-
racy) and the provable same order of accuracy for both velocities and pressures. These
methods have been motivated as an implicit-explicit Runge-Kutta time integration of
the projected Navier-Stokes system onto the discrete divergence-free space. The terms
in this system that involve the inverse of a discrete Laplacian DM−1G are treated ex-
plicitly in all cases, in order to make the resulting method numerically feasible. Viscous
and convection terms can be treated using implicit, combined implicit/explicit, or fully
explicit schemes, leading to implicit, IMEX, or explicit SRK schemes, respectively. The
pressure can be recovered by using a discrete pressure Poisson equation, and the SRK
scheme can be finally recasted in a velocity-pressure formulation.

Explicit SRK methods have been proved to be equivalent to existing half-explicit
RK methods. Further, these methods exactly satisfy the divergence-constraint equation
in most situations of interest; in all cases when weakly enforcing Dirichlet boundary
conditions, and for fixed or at most a point-wise p-th order polynomial variation in
time (for a p-th order method) of the Dirichlet data for a strong enforcement. Further,
it is easy to check that the error for the pressure is of the same order as the one for the
velocity.

We have performed a wide set of numerical experiments to evaluate the segre-
gated Runge-Kutta algorithms; first to third order schemes have been implemented
and analyzed. They include convergence tests for problems with manufactured solu-
tions for time-dependent Dirichlet boundary data. This way, we can also evaluate the
well-known order reduction effect of RK methods. We have also performed numerical
tests for the laminar flow around a cylinder (evaluating drag and lift coefficients) and
the turbulent Taylor-Green vortex flow. The different methods have been compared
in terms of CPU cost for a target error. Fully implicit, implicit viscous/explicit con-
vective, and fully explicit methods have been evaluated, considering their respective
CFL conditions. Fully implicit SRK schemes have shown a remarkably strong stability
and high accuracy till about 100 times the explicit CFL condition. Further, segregated
Runge-Kutta schemes with adaptive time stepping have been proposed and analyzed
numerically.

The use of SRK schemes is very appealing for large scale computations of incom-
pressible flows, since the monolithic indefinite system is replaced by segregated positive-
definite velocity and pressure blocks. The pressure block involves a Poisson solver,
whereas the velocity block is a vector-Laplacian or elasticity matrix when the convec-
tive term is treated explicitly. Massively parallel solvers for these problems can be
found in the literature (see, e.g., [20]) and are at the user’s disposal, e.g., within the
FEMPAR scientific computing software.





Chapter 7

Segregated Variational Multiscale
Finite Element methods

7.1 Introduction

The numerical simulation of turbulent flows is widely used for scientific purposes and
highly demanded in the industry to solve a large amount of engineering problems.
The algorithms employed in the computational fluid dynamics field are constantly
evolving, adapting to the new trends and tailoring to the continually changing com-
putational requirements. The increasing computational power acquired with the new
improvements on super-computer also involves additional advances in the software
able to be executed in such machines.

As exposed in Section 4.1, simulating incompressible turbulent flows involve the
resolution of multiple scales, both in space and time, becoming a really challenging
numerical problem. DNS of turbulent flows are used to capture the physical phenom-
ena at all scales, even the smallest ones. This approach has the inconvenience that
consumes a large amount of computational resources. A technique that saves a lot of
computational cost is the LES, which basically consist on separating the flow in a coarse
scale and a fine one, simulating the coarser and modelling the finer [156].

In order to model the fine scales in a LES method, we can consider a physically
based approach, which is defined taking into account the physical phenomena that
takes place on the smallest scales, or a purely numerical approach, that does not in-
troduce any modification to the governing equations at the continuous level. This last
numerical approach is commonly denoted as ILES, which stands for Implicit LES, see
for instance [28].

The VMS method (extensively described in Section 2.4) introduced by Hughes in
[100, 101] is a framework to develop stable and accurate numerical approximations
of partial differential equations, preventing numerical instabilities that arise when the
standard Galerkin FE method is used. The use of the VMS method as an ILES method
was firstly suggested in [104, 105, 51] and, since then, several variants have been devel-
oped and used as ILES. We can distinguish between those that introduce a three scale
decomposition into resolved large and small scales and unresolved scales [125, 113,

153
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114, 41], with a Smagorinsky type model for the influence of unresolved scales onto the
small resolved ones, and those that introduce a two scale decomposition into resolved
and unresolved ones. The later is the case of [23, 56], where a residual based or projec-
tion based model of the unresolved scales is used to account for their influence into the
resolved ones. We recall that [56] has motivated Chapter 4.

In this chapter we will consider a two scale VMS approach based on an orthogo-
nal definition of the subscales space, firstly proposed in [50], and named OSS method.
Moreover, an alternative definition of the OSS method was proposed in [52], making
use of a term-by-term stabilization that does not involve the full residual. Further-
more, we will follow the approach considered in [58], where a symmetric projection
stabilization of the convective term using a OSS decomposition is used for inf-sup sta-
ble elements. It worth pointing out that this approach is the one described in Chapter
5, so we refer to that chapter for a deeper understanding of such methods.

It is a common approach in the CFD field to consider a strong imposition of the
Dirichlet boundary conditions. That is to impose the solution at the nodes of the Dirich-
let boundary. This approach may lead to inaccurate solutions in some situations, spe-
cially when LES methods to simulate wall-bounded turbulent flows are considered.
LES methods are used to simulate turbulent flows in quite coarse meshes, which of-
ten are insufficiently fine to capture the boundary layers that appear in wall-bounded
flows. In this case, the effect of not capturing properly the solution at the boundary
layer can affect to the mean flow, resulting in imprecise simulations. In order to over-
come this issue, weak imposition of the Dirichlet boundary conditions can be contem-
plated. This technique was considered in [24] and later improved with a wall-law based
approach for turbulent flows in [25]. In [112] a weak treatment of the boundary con-
ditions is also contemplated for the simulation of flows considering slip with friction
and penetration with resistance boundary conditions. Other examples of using weak
Dirichlet boundary conditions can be found in [60].

Furthermore, in [24, 25] the wall-normal component of the velocity on the Dirichlet
boundary is imposed strongly. This is an approach that we want to avoid due to its
complex implementation on curved boundaries. In complicated geometries, the nor-
mal vector is not well defined on the boundary nodes because each element surround-
ing a given node has a different wall-normal vector. Thus, there is not a clear way to
distinguish the velocity normal component on the boundary nodes. In this chapter we
also consider the weak imposition of the wall-normal component.

As noticed before, the turbulent phenomena is characterized by having not only
many spatial scales, but also a multiscale description in time. Then, the time discretiza-
tion becomes an important issue when simulating this kind of flows. Many authors
favor implicit time integration schemes to avoid the time step restriction given by the
Courant-Friedrichs-Lewy (CFL) number. However, at high Reynolds number, the hy-
perbolic CFL number (given by the convective term) has to be kept of the order of the
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unity, see [47]. Then, it is a common practice to consider a semi-implicit time integra-
tion scheme where only the convective term is treated explicit, which prevents on using
too small time step sizes given by the restriction of the parabolic CFL number. See for
instance [128], where a fractional-step method with Runge-Kutta schemes are used.
Another example of this type of time integration schemes can be found in [74], where
a semi-implicit BDF time integration scheme is considered together with a VMS-LES
spatial discretization approach.

The SRK time integration schemes for the incompressible Navier-Stokes equations
where firstly proposed in [57], that work has motivated Chapter 6. These schemes are
based on two main goals. First, the segregation of the velocity and pressure compu-
tations at the time integration level, without the need to perform additional fractional
step techniques that spoil high orders of accuracy. Second, the preservation of the same
order of accuracy for both velocities and pressures. In this work we will consider the
IMEX version of the SRK scheme that consists on treating implicitly the diffusive term
and explicitly the convective term.

When trying to solve increasingly larger problems on super-computers, one has
to ensure efficiency on the computational cost. That is to build scalable solvers that
guarantee that the computational cost will not increase when more resources are used.
In this work we consider the use of BDDC preconditioners, firstly introduced in [66],
following the implementations described in [20, 134].

The velocity-pressure segregation introduced by the SRK schemes lead to elasticiy-
type and Darcy-type problems that can be preconditioned using a block-preconditioning
technique, see [18]. A recursive block-preconditioning technique was used in [58] to
solve the monolithic Navier-Stokes problem in serial, giving scalable results in terms
of the number of solver iterations. The performance of the block-preconditioning tech-
nique together with the BDDC methods proposed in [134], are going to be tested in this
chapter.

This chapter is organized as follows. In Section 7.2 the Navier-Stokes problem is
stated and the weak Dirichlet boundary conditions imposition is described. In Section
7.3 the VMS formulation is introduced. The SRK method, and its peculiarities when
weak boundary conditions are considered, is defined in Section 7.4. In Section 7.5 the
block-preconditioning technique and the parallel solver are defined. Two different tests
have been considered in the numerical results section (Section 7.6), the Taylor-Green
Vortex flow and the Turbulent Channel Flow test. Finally, some conclusions are pointed
out in Section 7.7.
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7.2 Problem statement

7.2.1 Navier-Stokes equations

We begin with a brief revision of the Navier-Stokes equations statement, referring to
Section 2.1 for a deeper description. Let Ω be a bounded domain of Rd, where d = 2, 3

is the number of space dimensions, Γ = ∂Ω its boundary and (0, T ] the time interval.
The strong form of the steady Navier-Stokes problem consists of finding the velocity
field u and the pressure field p such that

∂tu− ν∆u + u · ∇u +∇p = f in Ω× (0, T ], (7.1)

∇ · u = 0 in Ω× (0, T ], (7.2)

with f the force vector and ν the kinematic viscosity. Like in previous chapters, bold
characters will denote vectors and tensors.

Equations (7.1) and (7.2) need to be supplied with appropriate boundary and initial
conditions. The boundary Γ is divided into the Dirichlet (ΓD) and the Neumann (ΓN )
parts such that ΓD∪ΓN = Γ and ΓD∩ΓN = ∅. Then, the boundary and initial conditions
can be written as

u = ug on ΓD × (0, T ], (7.3)

(−pI + ν(∇u +∇uT )) · n = tN on ΓN × (0, T ], (7.4)

u(x, 0) = u0(x) in Ω× {0}, (7.5)

n being the unit outward vector normal to Γ.
From equations (7.1)-(7.5), and making use of the notation defined in Section 2.2,

one can derive the weak form of the problem, which consists in finding
[u, p] ∈ L2(0, T ;V0)× L1(0, T ;Q0) such that

(∂tu,v) +B(u, (u, p), (v, q)) = 〈f ,v〉 ∀v ∈ V0, ∀q ∈ Q0, (7.6)

satisfying the initial condition (7.5) in a weak sense. Here V0 := H1
0(Ω) and Q0 :=

L2(Ω)/R and the form B(u, (u, p), (v, q)) is defined as

B(u, (u, p), (v, q)) := ν(∇u,∇v) + b(u,u,v)− (p,∇ · v) + (q,∇ · u) (7.7)

with the triliniar form of the convective term b(u,v,w) defined in its skewsymmetric
version

b(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(v,u · ∇w) +

1

2
(v, (u · n)w)ΓN . (7.8)

We refer to Section 2.3 for a more complete description of the variational formulation
of the Navier-Stokes equations.
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7.2.2 Weak Dirichlet boundary conditions

There are some situations in which the strong imposition of the boundary conditions
may have negative effects on the simulation performance. That is the case, for instance,
of LES methods for wall-bounded flow problems. It is well known that LES methods
have several difficulties when trying to solve wall-bounded problems, see for instance
[169, 168]. The issue of solving this kind of problems using a LES method is that the
boundary layer that appear next to the wall can not be captured properly using rela-
tively coarse meshes. Then, there is the need of using very thin elements next to the
wall in order to have at least one point in the viscous sublayer layer (y+ ∼ 1), see [150].
Usually, this requirement is satisfied by the use of stretched meshes, with very thin
elements on the boundary and coarser ones in the middle of the channel.

Despite of that, in many engineering problems it is more important to capture prop-
erly the large-scale flow properties than the fine-scales, focusing on the effect of the
boundary layers on the mean flow instead of trying to solve properly the boundary
layer itself. In this direction, an approach is to make use of the fact that the velocity
profile at the boundary layer has been shown to have a relation to the wall-normal dis-
tance, [150]. Knowing this relation, one can impose weak boundary conditions on the
Dirichlet boundary enforcing that the traction generated at that walls is the one given
by an analytical expression. This approach was followed by Bazilevs and co-workers
in [25], showing that weakly-imposed boundary conditions provide the same results
than strongly-imposed ones when using stretched meshes, but the former improves
significantly the accuracy when using uniform meshes.

When weak Dirichlet boundary conditions are used, the functional space of the test
functions loose the property of having zero trace on Γ, then v ∈ V and q ∈ Q. Therefore,
we have to consider the terms that arise when we use integration by parts to get the
weak form of the Navier-Stokes equation (7.6). That is to include the following terms
to the bilinear form.

BΓ(u, (u, p), (v, q)) = B(u, (u, p), (v, q)) (7.9)

− ((−pI + 2ν∇su) · n,v)Γ +
1

2
((u · n)u,v)Γ.

Assuming that u · ∇ = 0, the term that is in charge of enforcing a given traction on
the wall can be written as

(τwt,v)ΓD
=

(
τw

(u− ug)

‖u− ug‖
,v

)
ΓD

= (αb(u− ug),v)ΓD
, (7.10)

where t denotes the normalized vector acting on the direction of the traction and τw the
wall shear stress magnitude. The term (7.10) is nothing else than a penalty term with a
parameter

αb :=
τw

‖u− ug‖
. (7.11)
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In addition to this term, we also consider other boundary terms that arise when the
so called Nitche’s method is used, see [143, 170]. Then, the resulting bilinear form
(equivalent to (7.7)) will read

Bweak(u, (u, p), (v, q)) = BΓ(u, (u, p), (v, q)) (7.12)

+ (αb(u− ug),v)ΓD
− ((qI + 2ν∇sv) · n, (u− ug))ΓD .

Note that the sign of the pressure test function in the second term of (7.12) is changed
to keep the skewsymmetry of the velocity-pressure blocks.

The definition of the traction parameter τw comes from the minimization of the
residual of the Spalding equation

y+ = f(u+) = u+ + e−χB

(
eχu

+ − 1− χu+ − (χu+)
2

2
− (χu+)

3

6

)
, (7.13)

being χ = 0.4, B = 5.5, y+ := yuτ
ν the wall distance and u+ := ‖uh‖

uτ
the mean flow

velocity in non-dimensional wall units. In this case, the distance to the wall is approxi-
mated to be proportional to the wall-normal mesh size, y = hb

Cb
, and τw = u2

τ . Here, hb
denotes the wall-normal mesh size and Cb a positive algorithmic constant.

A deeper description of this method as well as the algorithm for computing the
parameter αb can be found in [25]. However, in that work, the authors impose strongly
the normal component of the velocity (u ·n = 0 on ΓD), a thing we want to avoid in the
current work. As noticed in the introduction of the present chapter, the normal vector
is not well defined on the nodes that belong to curved boundaries. Thus, we will split
the penalty term distinguishing between the normal and tangential counterparts.

Let us consider a function v ∈ V . We can split its normal and tangential components
as follows

v = (v · n)n + (v − (v · n)n) = (n⊗ n)v + (I− n⊗ n)v. (7.14)

Introducing the decomposition (7.14) into the penalty term (αb(u− ug),v)ΓD
, and con-

sidering two different penalty parameters for each component, αb,n and αb,t, we obtain
the equivalent penalty terms

(αb,n(u− ug), (n⊗ n)v)ΓD + (αb,t(u− ug), (I− n⊗ n)v)ΓD . (7.15)

In this case, the normalized tangential vector appearing in (7.10) reads t =
(I−n⊗n)(u−ug)
‖(I−n⊗n)(u−ug)‖ .
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We define the wall-normal component parameter to be proportional to the original def-
inition of the penalty term in [24], leading to the following parameter definitions

αb,n := β
Cbν

hb
, (7.16)

αb,t :=
τw

‖(I− n⊗ n)(u− ug)‖
. (7.17)

In (7.16), β is a constant that we can tune to adjust the model. An assessment of the
parameter selection is done in Section 7.6.2.

Replacing the penalty terms from (7.15) into (7.12), we get a new expression for the
bilinear form

Bweak(u, (u, p), (v, q)) = BΓ(u, (u, p), (v, q)) (7.18)

+ (αb,n(u− ug), (n⊗ n)v)ΓD
+ (αb,t(u− ug), (I− n⊗ n)v)ΓD

− ((u− ug), (qI + 2ν∇sv) · n)ΓD .

7.3 The VMS method as an LES model

In this section we will give some insights about the suitability of a particular definition
of a VMS method as an LES model. Here we consider the application of the term by
term OSS method developed in Chapter 5 with inf-sup stable elements, together with
weak boundary conditions imposition. For the sake of completeness of the present
chapter, a brief review of the VMS method is firstly given (see Section 2.4 for a deeper
understanding). Later, the particular definition of the mixed FE method with convec-
tion stabilization through OSS is stated, refreshing the formulation given in Section
5.3.3. Finally, the equivalence of such formulation with an LES model is discussed.

7.3.1 VMS framework

In order to define the semi-discrete problem, we consider a FE partition Th of the
domain Ω, from which we construct the conforming FE spaces for the velocity field,
Vh ⊂ V , and for the pressure field, Qh ⊂ Q. The Galerkin Finite Element problem
equivalent to (7.6) consists in finding [uh, ph] ∈ L2(0, T ;Vg,h)×L1(0, T ;Q0,h) such that

(∂tuh,vh) +B(uh, (uh, ph), (vh, qh)) = 〈f ,vh〉 ∀vh ∈ V0,h,∀qh ∈ Q0,h. (7.19)

With the boundary and initial conditions (7.3)-(7.5) satisfied in a weak sense. In (7.19)
the subsets V0,h and Q0,h denote the set of functions belonging to Vh and Qh, respec-
tively, with zero trace on ΓD. Moreover, the velocity field function space is defined as
Vg,h := {vh ∈ Vh : vh|ΓD = ug}.
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When weak boundary conditions are considered, the problem results in finding
[uh, ph] ∈ L2(0, T ;Vh)× L1(0, T ;Qh) such that

(∂tuh,vh) +Bweak(uh, (uh, ph), (vh, qh)) = 〈f ,vh〉 ∀vh ∈ Vh,∀qh ∈ Qh. (7.20)

Note that in this case uh,vh ∈ Vh and ph, qh ∈ Qh.
Henceforward, we will assume that in the case when Dirichlet boundary conditions

are considered, ΓD 6= ∅, they will be imposed weakly, making use of the bilinear form
defined in (7.18).

Following the VMS approach, [101], we consider a two-scale decomposition of the
continuous spaces as V = Vh ⊕ Ṽ and Q = Qh ⊕ Q̃. Where Ṽ and Q̃ are infinite-
dimesnional subscale spaces that complement the FE spaces Vh and Qh, respectively.
Then, introducing the VMS decomposition into (7.6) with the bilinear definition (7.18),
we get the following semi-discrete problem: find [uh, ph] ∈ L2(0, T ;Vh) × L1(0, T ;Qh)

such that

(∂tuh,vh) + (∂tũ,vh) +Bweak(a, (uh, ph), (vh, qh)) (7.21)

+ (ũ,L∗a(vh, qh))h − (p̃,∇ · vh)h = 〈f ,vh〉 ∀vh ∈ Vh, ∀qh ∈ Qh,

where L∗a(vh, qh) is the formal adjoint operator of the momentum equation, defined as

L∗a(vh, qh) := −∇ · (2ν∇svh)− a · ∇vh −∇qh. (7.22)

The fourth and fifth terms in (7.21) involving the velocity and pressure subscales, re-
spectively, come from an element-wise integration by parts, in which the boundary
terms (vh, νn · ∇ũ)∂h and (qh,n · ũ)∂h have been neglected (the subscript ∂h is used to
denote the sum over all elements of the integral on the boundary of each element). It
also involves the approximation b(a, ũ,uh) ≈ −(ũ,a · ∇vh) which implies neglecting
(vh,n · aũ)∂h and (ũ,∇ · a vh). These approximations are discussed in [55] together
with the choice of a which defines the type of scale splitting (linear or nonlinear), see
also [56].

The resulting semi-discrete problem (7.21) cannot be solved directly since the sub-
scales belong to infinite-dimensional spaces, ũ ∈ Ṽ and p̃ ∈ Q̃. Therefore, the modelling
of the small scales is needed in order to obtain a feasible method. Considering the gen-
eral case where the subscales are treated as time-dependent, and approximating the
Navier-Stokes operator by two stabilization parameters τ−1

m and τ−1
c (see for example

[55]), the fine scale problem can be written as

∂tũ + τ−1
m ũ = P(Ru), (7.23)

τ−1
c p̃ = P(Rp). (7.24)
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In (7.23)-(7.24) P denotes the projection onto the space of subscales. The vector R =

[Ru, Rp]
T is the residual of the Navier-Stokes equations (7.1)-(7.2), with

Ru = f − ∂tuh −∇ · (2ν∇suh) + a · ∇uh +∇p, (7.25)

Rp = −∇ · uh, (7.26)

and the expressions of the stabilization parameters τm and τc is

τm =

(
c1ν

h2
+
c2|a|
h

)−1

, (7.27)

τc =
h2

c1τm
, (7.28)

where h is the mesh size and c1 and c2 are algorithmic constants.
Alternatively to (7.28) one can consider the following definition of τc

τc = cc

(
ν +

c1

c2
h|uh|

)
, (7.29)

which results from introducing (7.27) into (7.28) and considering a new constant cc.
Equations (7.21)-(7.28) define a generic VMS method that can be tuned depending

on the selection of three different ingredients. The first one is the definition of the
projection, P , used in (7.23)-(7.24). One possible choice is to select the projection as the
identity,P := I, which would lead to the ASGS method. Another option is to choose the
subscale space to be orthogonal to the FE space, then P := Π⊥h = I−Πh, which lead to
the OSS method introduced in [50]. The second ingredient that can vary the definition
of the VMS method is the nonlinearity of the advective velocity a. One can choose
between a linear approach taking only the FE counterpart, a = uh, or a nonlinear
advection term with a = uh + ũ. Finally the velocity subscale time-dependency is
the third ingredient that specializes the VMS method. We can consider the definition
(7.23), resulting in a dynamic approach for the velocity subscale, or we could assume
quasi-static velocity subscales. In the last case, (7.23) would read τ−1

m ũ = P(Ru), and
the second term in (7.21) would be removed.

All combinations resulting from changing the different definitions of the VMS method
have been studied for LES of incompressible turbulent flows in [56] (see Chapter 4). The
final definition of the VMS method used in this chapter has been developed in Section
5.3.3 and is restated in the following subsection.

7.3.2 OSS with implicit projection for mixed FE methods

Let us consider a quasi-static definition of the velocity and pressure subscales, neglect-
ing the temporal derivative ∂tũ in (7.23). Regarding the definition of the advection
velocity, we set a = uh, resulting in a linear approach for the velocity subscale. Fur-
thermore, we select an orthogonal definition of the subscale space, P := Π⊥h = I−Πh.
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This setting for equal-order FEs would result in the so called static linear OSS (Sta-
Lin-OSS) method described in Chapter 4. In the cited chapter, an assessment of the
different choices that can conform the VMS method have been assessed, showing that
all methods give similar results. Despite of that, the dynamic and nonlinear version
with orthogonal subscales was shown to be the most efficient choice in terms of com-
putational cost.

An alternative to the residual-based OSS method is to consider a term-by-term pro-
jection approach, proposed in [52]. Instead of having all residuals coupled, result of
considering the residual projection in (7.23) and the full adjoint operator in (7.21), only
the essential terms to guarantee stability are taken into account. That is to replace
the fourth term in (7.21) by the orthogonal projection of the convective term plus the
orthogonal projection of the pressure gradient term. Note that we have to keep the
orthogonal projection of the pressure gradient when equal-order elements are used to
satisfy the inf-sup condition (2.36). Using static and linear subscales, this approach
reads: find [uh, ph] ∈ L2(0, T ;Vh)× L1(0, T ;Qh) such that

(∂tuh,vh) +Bweak(uh, (uh, ph), (vh, qh)) +
(
τmΠ⊥h (uh · ∇uh),uh · ∇vh

)
h

(7.30)

+
(
τmΠ⊥h (∇ph),∇qh

)
h
− (p̃,∇ · vh)h = 〈f ,vh〉 ∀vh ∈ Vh,∀qh ∈ Qh.

This approach has been tested in Chapter 5 where an implicit treatment of the projec-
tions was considered. Together with the static and linear version of the ASGS method,
the performance of the mentioned methods was tested for the LES of incompressible
turbulent flows, and compared against an inf-sup stable mixed FE method with con-
vection stabilization through orthogonal subscales.

We will refer to the inf-sup stable mixed FE method with convection stabilization
through orthogonal subscales as ISS-OSS method. It is defined with an inf-sup stable
velocity-pressure pair composed by Q2/Q1 or Q3/Q2 elements with a term-by-term
OSS method that only considers the convection stabilization term.

After all this considerations, the final semi-discrete problem in which the current
work is based consists in finding [uh, ph] ∈ L2(0, T ;Vh)× L1(0, T ;Qh) such that

(∂tuh,vh) +Bweak(uh, (uh, ph), (vh, qh)) + (τmuh · ∇uh,uh · ∇vh)h (7.31)

− (τmηh,uh · ∇vh)h + (τc∇ · uh,∇ · vh)h = 〈f ,vh〉 ∀vh ∈ Vh,∀qh ∈ Qh,

being ηh := Πh(uh · ∇uh) the projection of the convective term into the FE space,
satisfying

(τmηh,vh) = (τmuh · ∇uh,vh) ∀vh ∈ Vh (7.32)

In (7.31), the last term of the left-hand side, (τc∇ · uh,∇ · vh)h, is usually called
grad-div stabilization term, and in general it is not required to ensure stability of the
problem. Nevertheless, when an inf-sup stable discretization is used, the influence
of the grad-div stabilization on the accuracy of the method is important. It has been
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shown that this term has an influence on the mass conservation [130], but it also influ-
ences the computational cost of the linear solvers [146, 95]. In Chapter 5, the effect of
this term is assessed for the Taylor-Green Vortex problem and the Turbulent Channel
Flow test using an ISS-OSS method.

7.3.3 Equivalence with LES models

In order to justify that the method that we use in this work acts as a LES model without
the need of adding any kind of physical based extra dissipation, we focus on the energy
balance equations. To do so, we replace vh by uh and qh by ph in (7.31). The resulting
equation is

(∂tuh,uh) + (2ν∇suh,∇uh) + b(uh,uh,uh) (7.33)

− ((−phI + 2ν∇suh) · n,uh)Γ

+ (αb,n(uh − ug), (n⊗ n)uh)Γ + (αb,t(uh − ug), (I− n⊗ n)uh)Γ

− ((uh − ug), (phI + 2ν∇suh) · n)Γ

+
(
τmΠ⊥h (uh · ∇uh),uh · ∇uh

)
h

+ (τc∇ · uh,∇ · uh)h = 〈f ,uh〉 .

Using the skewsymmetric convetive term defined in (7.8), the third term in (7.33) reads

b(uh,uh,uh) =
1

2
(uh · ∇uh,uh)− 1

2
(uh,uh · ∇uh) +

1

2
((uh · n)uh,uh)Γ

=
1

2
((uh · n)uh,uh)Γ =

∥∥∥(uh · n)1/2uh

∥∥∥2

Γ
.

Making use of the orthogonality of the projection Π⊥h , splitting the boundary terms into
its normal and tangential components, and operating, equation (7.33) can be rewritten
as

d

dt

(
1

2
‖uh‖2

)
+ 2ν ‖∇suh‖2 +

∥∥∥τ1/2
m Π⊥h (uh · ∇uh)

∥∥∥2

h
+
∥∥∥τ1/2
c ∇ · uh

∥∥∥2

h
(7.34)

+ (αb,n(uh − ug)− (−phI + 2ν∇suh) · n, (n⊗ n)uh)Γ

+ (αb,t(uh − ug)− (−phI + 2ν∇suh) · n, (I− n⊗ n)uh)Γ

+
∥∥∥(uh · n)1/2uh

∥∥∥2

Γ

− ((uh − ug), (phI + 2ν∇suh) · n)Γ

= 〈f ,uh〉 .
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Let us analyze in more detail the implication of each term of (7.34) into the energy
evolution of the problem. To simplify the notation, we rewrite (7.34) as

dkh
dt

=−
∫

Ω
εmol,h dΩ−

∑
e

∫
Ωe

ε̃m dΩ−
∑
e

∫
Ωe

ε̃c dΩ (7.35)

−
∫

Γ
εa,h dΓ−

∫
Γ
εN,h dΓ

+

∫
Ω
Wf,h dΩ +

∫
Γ
Wt,h dΓ,

being kh := 1
2 ‖uh‖

2 the kinetic energy of the resolved scales, εmol,h := 2ν (∇suh)2 the
molecular dissipation introduced by the resolved scales, ε̃m := τm

(
Π⊥h (uh · ∇uh)

)2 the
energy transfer through the momentum subscale, ε̃c := τc (∇ · uh)2 the energy trans-
fer through the continuity subscale, εa,h := (uh · n)uh · uh the dissipation introduced
by the convective term on the boundary, εN,h := (uh − ug) · (phI + 2ν∇suh) · n the
dissipation introduced by the Nitsche’s terms, Wf,h := f · uh the work of the volumet-
ric external forces, and Wt,h := [αb,n(uh − ug)− (−phI + 2ν∇suh) · n] · [(n⊗ n)uh] +

[αb,t(uh − ug)− (−phI + 2ν∇suh) · n] · [(I− n⊗ n)uh] the work of the boundary forces.
Going further, assuming that strong boundary conditions are applied, we have that

εa,h = εN,h = Wt,h = 0. For a fully developed turbulent flow, if the resolved scales are
fine enough to capture the inertial subrange, the total energy of the problem accounts
for almost all the energy of the problem, kh ≈ k. Furthermore, when external forces
mainly acts on the large scales of the flow we have that Wf,h ≈ Wf . Hence, knowing
that the energy dissipation rate at the continuous level is

dk

dt
= −

∫
Ω
εmol dΩ +

∫
Ω
Wf dΩ,

from the energy balance equation (7.35), we can say that our method acts properly as a
LES method if ∑

e

∫
Ωe

ε̃m dΩ +
∑
e

∫
Ωe

ε̃c dΩ ≈
∫

Ω
εmol,h dΩ.

According to [85], this condition is satisfied since

1

Ve

〈∫
Ωe

ε̃m dΩ

〉
+

1

Ve

〈∫
Ωe

ε̃c dΩ

〉
∼ εmol,h

[
1 +O

(
h

L

)2/3
]
,

with L the characteristic large eddies length.
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7.4 Segregated Runge-Kutta time integration

7.4.1 Matricial form

Let us suppose that we solve the problem (7.1)-(7.5) using the implicit term by term OSS
method with Inf-Sup stable elements, which definition is given by equations (7.30)-
(7.31). Assuming that uh, ph and ηh are defined by a FE interpolation from the nodal
values {Ua}a=1,...,Nu , {P b}b=1,...,Np and {Υc}c=1,...,Nη , the FE approximation of the ve-
locity, pressure and projection fields can be written as

uh(x) =

Nu∑
a=1

φa(x)Ua, ph(x) =

Np∑
b=1

ψb(x)P b, ηh(x) =

Nη∑
c=1

φη(x)Υc,

where {φa,i}a=1,...,Nu;i=1,...,d, {ψb}b=1,...,Np and {φc,i}c=1,...,Nη ;i=1,...,d are the Langrangian
bases associated to Vh andQh. Nu, Np and Nη are the total amount of nodes for the ve-
locity, pressure and projection fields.

The matricial form of the stabilized problem (7.30) introducing the definition (7.31)
and considering strong Dirichlet boundary conditions can be written as follows. MU̇

0

0

+

 K + C + Aτ G Bτ
D 0 0

−BTτ 0 Mτ


 U

P

Υ

 =

 Fu

0

0

 , (7.36)

which definition are given by

Mab := (φa,φb), a, b = 1, ..., Nu,

Kab := 2ν(∇φa,∇sφb), a, b = 1, ..., Nu,

Cab := (φa,u · ∇φb), a, b = 1, ..., Nu,

Aabτ := τm(u · ∇φa,u · ∇φb) + τc(∇ · φa,∇ · φb), a, b = 1, ..., Nu,

Gab := −(∇ · φa, ψb), a = 1, ..., Nu, b = 1, ..., Np,

Dab := (ψa,∇ · φb), a = 1, ..., Np, b = 1, ..., Nu,

Babτ := −τm(u · ∇φa,φb), a = 1, ..., Nu, b = 1, ..., Nη,

Mab
τ := −τm(φa,φb), a, b = 1, ..., Nη,

being a and b the node identification. Note that D = −GT , when boundary conditions
are considered.

7.4.2 Time integration through Segregated Runge-Kutta schemes

Focusing in the time integration of the problem (7.36) we consider now the application
of a Segregated Runge-Kutta scheme. SRK methods have been proposed in [57] and
successfully tested for laminar flows, see Chapter 6. The main goal of this kind of time
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integrators is the segregation of velocity and pressure computations, giving systems
much easier to be solved, taking advantage of an IMEX Runge-Kutta scheme. The
use of a Rung-Kutta scheme also allows the use a high order integration in time with
no extra implementation efforts. Furthermore, with this kind of time integrators, an
adaptive time stepping technique can be easily used.

Let us now consider the matricial problem (7.36), which can be written in a compact
form in terms of the velocity and projection fields as follows

MU̇ = F(U) + G(U,Υ), (7.37a)

−BTτ U + MτΥ = 0. (7.37b)

Where F and G are certain operators that contain the terms that will be integrated
implicitly or explicitly, respectively. In particular we can define a SRK method in which
the linear viscous term is integrated implicitly and the nonlinear terms, such as the
convective and projection terms, and the pressure term are integrated explicitly. In this
case, the operators F and G will read

F(U) := −KU, (7.38)

G(U,Υ) := Fu − (C + Aτ )U− BτΥ (7.39)

+ G
(
DM−1G

)−1 (DM−1 ((K + C + Aτ )U + BτΥ− Fu)
)
.

Note that this choice will lead to a linear system of equations since the only term in-
tegrated implicitly is the viscous term. Another fact to be highlighted here is that the
projection and the velocity fields are not coupled with this definition. Other choices
could be used to define the operators F and G, for instance, the convective and the
projection terms could be integrated implicitly. In this later case, the resulting system
would be nonlinear and would couple velocity and projection fields. We choose defini-
tions (7.38)-(7.39) because we are interested on solving turbulent flows, where the time
step restriction due to the hyperbolic CFL condition is often smaller than the restriction
on the time step size required to capture the small time scales of the flow.

We now proceed with the time integration scheme for equation (7.37a). Let us con-
sider an IMEX RK method with s stages, the velocity and projection at the stage i, Ui

and Υi, for 1 ≤ i ≤ s are computed as

1

δt
MUi =

1

δt
MUn +

i∑
j=1

aijF(Uj) +
i−1∑
j=1

âijG(Uj ,Υj), (7.40a)

− BTτ Ui + MτΥi = 0. (7.40b)
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where aij and âij are the coefficients of the implicit and explicit Butcher tableau, re-
spectively. After some manipulation, we can rewrite (7.40) as

1

δt
MUi =

1

δt
MUn +

i∑
j=1

aijF(Uj) +
i−1∑
j=1

âijG(Uj ,Pj ,Υj), (7.41a)

− BTτ Ui + MτΥi = 0, (7.41b)

− DM−1G(Pi) = DM−1 ((K + C + Aτ )Ui + BτΥi − Fu(ti)) . (7.41c)

The final update after the s stages will read as follows

1

δt
MUn+1 =

1

δt
MUn +

s∑
i=1

biF(Ui) + b̂iG(Ui,Pi,Υi), (7.42a)

− BTτ Un+1 + MτΥn+1 = 0, (7.42b)

− DM−1G(Pn+1) = DM−1 ((K + C + Aτ )Un+1 + BτΥn+1 − Fu(tn+1)) . (7.42c)

Note that equations (7.41c) and (7.42c) are equivalent to solve a Darcy type problem,
with the following expression[

M G
D 0

][
U∗

Pk

]
=

[
Fu(tk)− (K + C + Aτ )Uk − BτΥk

0

]
, (7.43)

with k being i or n + 1, depending of the equation that we are solving, and U∗ an
auxiliar velocity field, which satisfies the discrete incompressibility constraint. Then,
in practice, equations (7.41c) and (7.42c) are implemented as a Darcy problem (7.43),
which can be efficiently solved through block preconditioning technique like what it is
explained in subsection 7.5.1.

The system of equations (7.41a)-(7.42c) that arise when using a SRK time integration
scheme over the particular definition of a VMS method exposed in Section 7.3.2, will
be denoted as Segregated Variational MultiScale (SVMS) method.

7.4.3 Weak Dirichlet boundary conditions for SRK schemes

In Section 7.2.2 we have stated that in some situations weak Dirichlet boundary con-
ditions may be used. In this case, the SRK time integration schemes have to take into
account the boundary terms described in (7.9) and (7.12), which implementation is dis-
cussed in this subsection.
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The use of weak Dirichlet boundary conditions give a matricial equation equivalent
to (7.36) that can be written as follows MU̇

0

0

+

 K + KΓ + C + CΓ + Aτ + MΓ G + GΓ Bτ
D + DΓ 0 0

−BTτ 0 Mτ


 U

P

Υ

 =

 Fu + Fu,Γ

Fp,Γ

0

 ,
(7.44)

with

Mab
Γ := (αb,n(n⊗ n)φa,φb)ΓD + (αb,t(I− n⊗ n)φa,φb)ΓD , a, b = 1, ..., Nu,

Kab
Γ := −2ν(φa,∇sφb · n)Γ − 2ν(∇sφa · n,φb)ΓD , a, b = 1, ..., Nu,

CabΓ :=
1

2
(φa, (u · n)φb)Γ, a, b = 1, ..., Nu,

Gab
Γ := (φa, ψbI · n)Γ, a = 1, ..., Nu, b = 1, ..., Np,

DabΓ := −(ψaI · n,φb)ΓD , a = 1, ..., Np, b = 1, ..., Nu,

Fa
u,Γ := αb(φa,ug)Γ − 2ν(∇sφa · n,ug)ΓD , a = 1, ..., Nu,

Fa
p,Γ := −(ψaI · n,ug)ΓD , a = 1, ..., Np,

being a and b the node identification. The velocity-pressure block keeps its skewsym-
metry since DΓ = −GT

Γ .
Note that the incompressibility constrain equation in this case reads

D̃U = Fp,Γ, (7.45)

being D̃ := (D + DΓ). If we derive (7.45) in time and we operate with first equation of
(7.44), we have that

Ḟp,Γ︷ ︸︸ ︷
D̃M−1MU̇ +D̃M−1

[
(K̃ + C̃ + Aτ + MΓ)U + G̃P + BτΥ

]
= D̃M−1F̃u, (7.46)

with K̃ := (K + KΓ), C̃ := (C + CΓ), G̃ := (G + GΓ) and F̃u := (Fu + Fu,Γ). From (7.46)
we get

D̃M−1G̃P = D̃M−1
[
F̃u − (K̃ + C̃ + Aτ + MΓ)U− BτΥ

]
− Ḟp,Γ, (7.47)

where Ḟa
p,Γ = −(ψaI·n, u̇g)Γ, for a = 1, ..., Np. Then, when using weak Dirichlet bound-

ary conditions in SRK time integration schemes, the Darcy type problem equivalent to
(7.43) to be solved is[

M G̃
D̃ 0

][
U∗

Pk

]
=

[
F̃u(tk)− (K̃ + C̃ + Aτ + MΓ)Uk − BτΥk

Ḟp,Γ(tk)

]
, (7.48)

with k corresponding to the stage i or the update n+ 1.
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Remark 7.4.1. Note that the auxiliar velocity U∗ in (7.48) is nothing else than the veloc-
ity derivative. Then, as the mass matrix M is the same that is considered for the momentum
equation, when weak Dirichlet boundary conditions are considered for the velocity field, any
condition is imposed to its time derivative. In order to ensure stability of the time discretiza-
tion scheme, we also impose weak boundary conditions to the velocity derivative, leading to an
equivalent Darcy problem to (7.48) like[

M̃ G̃
D̃ 0

][
U∗

Pk

]
=

[
F̃u(tk)− (K̃ + C̃ + Aτ + MΓ)Uk − BτΥk + Ḟu,Γ(tk)

Ḟp,Γ(tk)

]
. (7.49)

Here M̃ := M + ṀΓ, with

Ṁab
Γ := (αb,nδt(n⊗ n)φa,φb)ΓD + (αb,tδt(I− n⊗ n)φa,φb)ΓD (7.50)

and

Ḟa
u,Γ(tk) := (αb,nδt(n⊗ n)φa, u̇g(tk))ΓD + (αb,tδt(I− n⊗ n)φa, u̇g(tk))ΓD ,

for each a, b = 1, ..., Nu.

Remark 7.4.2. In order to give consistency to the time integration scheme, when considering
also weak Dirichlet boundary conditions for the velocity derivatives, as exposed in Remark 7.4.1,
the modified mass matrix M̃ will also be used at all the equations of the SRK scheme. That is to
consider M̃ instead of M at the equivalent equations to (7.41a)-(7.42c).

It is important to highlight that in the momentum equations (7.41a) and (7.42a), the penalty
terms introduced by MΓ and ṀΓ are of the same order since, as it is seen in (7.50), ṀΓ is scaled
by δt.

7.4.4 Adaptive time-stepping technique

One of the advantages when using a multi-stage time integration scheme, like a SRK
method, is that an adaptive time stepping technique can be used straightforwardly. In
fact, for a SRK scheme, the usage of an adaptive time stepping technique only requires
an extra evaluation of the final velocity update, which involve a mass matrix solver,
see [88, 89].

This kind of strategy allow us to adapt the time step size to the flow conditions
dynamicaly, that is to change the time step when the physical scales of the flow change,
e.g., transition to turbulence. Many authors have been used adaptive time stepping to
accurately solve the incompressible Navier-Stokes equations, see for instance [72, 115,
118, 178].
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Our approach to define an adaptive time step is to follow the PI11 controller method
described in [173] and suggested in [89], which computes the time step size as

δtn+1 =

(
ε

rn+1

)1/k ( rn
rn+1

)1/k δtn
δtn+1

δtn,

with ε = 0.8 · TOL, where TOL is a given tolerance that we take as 1 · 10−5 and 0.8 is a
safety factor. The local error is rn+1 = ‖U− Û‖ if the error per step (EPS) is controlled
or rn+1 = ‖(U − Û)/δtn‖ if the error per unit step (EPUS) is controlled. In the former
case k = p+ 1 (EPS) and for the second one (EPUS) k = p, p being the order of the time
integration scheme which has been used to compute the estimated velocity Û. In this
work we will favour the EPS definition.

Moreover, when treating with explicit versions of the SRK scheme, we have to limit
the time step size to guarantee that the CFL condition is satisfied. When either the
parabolic CFL condition, CFLν = νδt

(h/p2)2 , or the hyperbolic CFL condition, CFLu =
uδt

(h/p2)
, exceed the bound 1.0, the time step is rejected and reduced according to the

safety factor ε, δtn+1,new = εδt
n+1,old.

7.5 Scalable solvers for incompressible Navier-Stokes equations

In this section we will discuss the construction of efficient and scalable solvers for the
stabilized Navier-Stokes equations in turbulent flows through BDDC methods in par-
allel contexts. First of all we will have a look at the block preconditioning technique
used in the different systems involved in the SRK scheme. After that, the main charac-
teristics of the BDDC solvers used in this work will be described.

7.5.1 Block-preconditioning technique for the segregated problem

Let us assume that the matricial problem (7.37) is solved with an IMEX version of the
SRK scheme given by the operators F and G defined in (7.38)-(7.39). In this case, at the
stage i, for 1 ≤ i ≤ s, the resulting matrix from the system (7.40) can be factorized into
an exact LU matrix product as follows

Au :=

[
Mτ −BTτ
Bτ Kτ

]
=

[
I 0

BτM−1
τ I

][
Mτ −BTτ
0 Su

]
, (7.51)

where Su := Kτ + BTτ M−1
τ Bτ is the Schur complement with respect to U. We define a

block-preconditioner, P (Au), based on inexact factorization of Au given by the upper
triangular matrix in (7.51), reading

P (Au) :=

[
Mτ −BTτ
0 Su

]−1

=

[
M−1
τ M−1

τ BTτ S−1
u

0 S−1
u

]
. (7.52)
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To solve the system resulting from (7.37) we use a preconditioned GMRES method
with the preconditioner defined in (7.52). The application of the preconditioner P (Au)

simplifies to the computation of the inverse of the diagonal blocks, M−1
τ and S−1

u . The
mass matrix inverse is approximated by one application of a diagonal DD precondi-
tioner constructed from the diagonal values of Mτ . The Schur complement is approx-
imated to the velocity-velocity block matrix, Su ≈ Kτ , neglecting the contribution of
the term coming from the projections BTτ M−1

τ Bτ . This approximation is equivalent to
consider a solution corresponding to a non-consistent formulation in which streamline
diffusion is added, ensuring stability of the preconditioner. At his turn, the inverse K−1

τ

is approximated by one application of a BDDC preconditioner over this matrix.
Focusing on the Darcy-type equation (7.43), we also consider an LU factorization of

the form

Ap :=

[
M G
D 0

]
=

[
I 0

DM−1 I

][
M G
0 Sp

]
, (7.53)

being Sp := −DM−1G the Schur complement with respect to P. In this case we also
consider a block-preconditioner based on an inexact LU factorization of Ap, determined
by the upper triangular matrix,

P (Ap) :=

[
M G
0 Sp

]−1

=

[
M−1 −M−1GS−1

p

0 S−1
p

]
. (7.54)

The resolution of system (7.43) with a preconditioned GMRES method involve the
computation of the inverse of matrices M and Sp. The approach followed to approxi-
mate M−1 is the same we have defined for M−1

τ , with one application of a diagonal DD
preconditioner. Concerning about the Schur complement, we approximate it by a pres-
sure Laplacian Sp ≈ Lp. Another time, its inverse is approximated by one application
of a BDDC preconditioner over such matrix.

The matricial systems arising from equations (7.42a) and (7.42b) are solved using a
preconditioned GMRES with a diagonal DD preconditioner to approximate M−1 and
M−1
τ , respectively.

7.5.2 BDDC solver

As stated above, the solution of the resulting discrete equations (7.41a)-(7.42c) is done
through a block-preconditioning technique that, for the diagonal blocks, makes use
of BDDC preconditioners. The BDDC method, firstly introduced by Dohrmann [66],
basically consists on decomposing the FE mesh into a set of subdomains that share an
interface between each other. The nodes in this interface are classified by corners, edges
and faces (this last class only appears in the 3D case), and conform a coarse problem
that is used to precondition the finer. The continuity among subdomains is only weakly
enforced, e.g., the value on subdomain corners and mean values on subdomain edges
and subdomain faces, so each interface entity is equivalent to a node at the coarse level.
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The main properties of BDDC preconditioner that make this kind of preconditioners
very suitable to reach extreme scalability are:

• The mathematically supported extremely aggressive coarsening, keeping the spar-
sity pattern of the coarse matrix similar to the original system matrix.

• The possibility to compute in parallel the coarse and the fine components due to
the orthogonal definition of the coarse space with respect to the finer.

• The possibility to extend the algorithm with a multilevel approach, based on the
similarity of the coarse matrix pattern.

Regarding the last point, a fully-distributed, communicator-aware, recursive, and
interlevel-overlapped message-passing implementation of the multilevel balancing do-
main decomposition by constraints (MLBDDC) preconditioner has been developed in
[134]. In that work, excellent weak scalability results have been obtained for the res-
olution of a 3D Laplacian and elasticity problems. Hence, as a result of the block-
preconditioning technique described in Section 7.5.1, we end up with a Laplacian-type
and an elasticity-type problem, which can use the implementation of the MLBDDC
proposed in [134].

In some situations the mesh partition may lead to singular coarse problems, espe-
cially for the Laplacian-type problem. This problem can be overcome by the use of a
perturbed BDDC with the addition of a properly scaled mass matrix at the precondi-
tioner, see [21]. This approach will be used in Chapter 8, where a non-structured mesh
partition is used.

7.6 Numerical experiments

In this section we show the numerical results for two different incompressible turbulent
flow tests. The suitability of the OSS-ISS method, with weak boundary conditions and
SRK time integration schemes, as a LES model for large scale problems is assessed
in these tests. First, we analyze the advantages of using SRK methods in the TGV
problem, where a weak scalability analysis is performed. Note that in this test we do
not have boundary conditions since periodic boundary conditions are imposed in all
directions. Then, the suitability of weak boundary conditions in wall-bounded flows is
analyzed in the Turbulent Channel Flow test.

In [58] has been shown that OSS-ISS has a great potential as a LES model, especially
when we the computational cost is taken into account. The experiments of this chapter
aim to check the performance of this method when it is used together with a Segregated
Runge-Kutta time integration scheme.

The main goal of a SRK scheme is the velocity and pressure decoupling, allowing
the use of more efficient solvers. This only happen when there is not any other term
apart from the divergence in the pressure row, see the matricial form (7.36), which is
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a feature of the OSS-ISS method. When we solve turbulent flows, some stabilization
method is needed, not only to control the convection instabilities, but also to model the
effect of the small scales. The ASGS and OSS stabilization methods proposed in the
cited work introduce extra terms in the pressure row, which disallow the use of SRK
schemes for the time integration. This is not the case of OSS-ISS method, which only
introduces an extra term in the velocity-velocity block. Then, the applicability of SRK
schemes to this method is straight forward as it has been exposed in subsection 7.4.2.

7.6.1 Taylor Green Vortex flow

The TGV is a widely used benchmark for turbulent numerical simulations. It consists
in a free-evolving flow from an analytical solution, with a computational domain which
is the cube (0, 2π)3 and with periodical boundary conditions (see, e.g., [31]). We refer
to Section 3.2.3 to a deeper description of this benchmark test. The initial solution is
given by the following expression

u(x, y, z, 0) =

 ux

uy

uz

 =

 u0 cos(x) sin(y) sin(z)

−u0 sin(x) cos(y) sin(z)

0

 (7.55)

p(x, y, z, 0) = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2) ,

with
u0 =

2√
3

sin

(
γ +

2π

3

)
.

We choose γ = 0, which gives the mean initial velocity u0 = 1. We solve the TGV
problem using a Reynolds number Re = 1600.

Setting

The problem is solved from t = 0.0 to T = 10.0 and the results are compared against a
DNS by Brachet et al [31]. We discretize the domain using different choices of the num-
ber of elements and the order of approximation, with either Q2/Q1 or Q3/Q2 velocity-
pressure pairs.

As it was shown in [58] (see also Chapter 5), the most appropriate algorithmic
parameters for the TGV test when using inf-sup stable discretizations are c1 = 12.0,
c2 = 4.0 and cc = 4.0.

Monolithic vs Segregated Runge-Kutta

A first point that we want to analyze is the comparison between the results obtained
with a monolithic approach, using a Crank-Nicolson time integration scheme, against
the ones computed using the IMEX version of the SRK method. In the later case we use
the (3-3) scheme, see Appendix C.
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The results shown in Figure 7.1 have been computed using two different discretiza-
tions, one with 163 Q2/Q1 elements and the other one with 323 Q2/Q1. In Figure 7.1(a)
the energy evolution is depicted and in Figure 7.1(b) we show the energy dissipation
rate. It is seen that very little differences appear using the SRK time integration method
instead of a monolithic Crank-Nicolson scheme. It is also clear that the differences be-
come smaller when the mesh is refined.
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FIGURE 7.1: Energy and Total energy dissipation rate evolution with 333

velocity DOFs

h-p refinement and adaptive time-stepping technique

In Fig 7.1 we clearly see that refining the mesh, the results computed using the OSS-
ISS method converge to the DNS. Moreover, it has been shown in Chapter 5 that a
323 Q3/Q2 elements mesh is fine enough to get very accurate results with the OSS-ISS
method.

One of the main problems when using explicit or IMEX time integration schemes is
the restriction on the CFL number. In the case of the IMEX version of the SRK scheme,
the diffusive term is treated implicitly and no restriction has to be satisfied for the
parabolic CFL, but the convective term is treated explicitly. Then, we have to restrict
the time step size in order to satisfy the parabolic CFL condition, CFLu = δtu/h < 1.
This restriction becomes more important when the mesh is refined, i. e. h is reduced.

An important goal of using SRK schemes is the possibility to easily implement an
adaptive time stepping technique, see section 7.4.4. The important point of using this
kind of techniques is that one can dynamicaly (and automaticaly) adapt the time step
in order to satisfy both, the physical and numerical, requirements. The physical re-
quirement on the time step size will be given by the change in the solution, while the
numerical requirement will be given by the CFL condition.

In order to check the performance of the SRK method using adaptive time stepping,
we solve the TGV problem with different mesh sizes and interpolations. Particularly,
we use 163 and 323 elements mesh with Q2/Q1 and Q3/Q2 discretizations, depicted in
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Fig 7.2. Looking at the kinetic energy evolution (Figure 7.2(a)) and at the total energy
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FIGURE 7.2: Energy and total energy dissipation rate evolution refining
the mesh

dissipation rate (Figure 7.2(b)), we can clearly see that when the mesh is refined the
solution tends to the DNS result. It is important to highlight here the improvement
of the results when higher order of approximation is used. We see that using Q3/Q2

elements we get better results than using Q2/Q1, even with less DOFs. This behaviour
is observed comparing the 163 Q3/Q2 elements mesh, with 483 velocity DOFs, against
the 323 Q2/Q1 elements discretization, which have 643 velocity DOFs. It is seen that
the former mesh have better agreement with the DNS solution.

As stated above, the mesh refinement has a direct implication in the time step size
when explicit or IMEX schemes are used. To determine the influence of this refine-
ment using an adaptive time stepping technique, we show the time step evolution for
the four cases considered in this subsection, see Figure 7.3. The initial time step is
δt0 = 5 · 10−2 for all cases. It is seen that the coarser mesh (163 Q2/Q1 elements) allow
a higher time step, which is constantly increased until the difference on the solution
between to time steps is too high. It occurs around t = 4.0, moment from which the
time step size is adapted, remaining between 0.1 and 0.12. The 163 Q3/Q2 and the 323

Q2/Q1 show moreorless the same behaviour, with a first stage where the time step is
increased until the CFL restriction is violated, point at which the time step is reduced.
This pattern is repeated until the solution between two time steps is different enough
to require a smaller time step to give more accurate solution. In what concerns the
finest mesh, 323 Q3/Q2, the CFL restriction prevails over the physical phenomena re-
striction. Consequently, the time step increase-decrease pattern is followed during the
whole simulation.

Scalability analysis

All the solutions have been computed with FEMPAR (Finite Element Multiphysics and
massively PARallel) numerical software. FEMPAR is an open source in-house devel-
oped, parallel hybrid OpenMP/MPI, object-oriented (OO) framework which, among
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other features, provides the basic tools for the efficient parallel distributed-memory
implementation of substructuring domain decomposition solvers [19, 20]. Under this
parallel framework, an important issue is the scalability of the algorithms when large
scale problems are solved. This means that when refining the mesh, there is the need
of having scalable solvers that do not increase the elapsed CPU time when the number
of processors are increased. To check the suitability of the explicit SRK algorithm for
large scale problems we perform a weak scalability test solving the TGV problem.

Let us denote H the unidirectional size of the domain partition and L the unidi-
rectional domain length. The TGV problem is solved in a domain of size L3, with
structured subdomain partitions of size H3, and with a uniformly structured mesh
composed of elements of size h3. In a weak scalability test we keep the local meshes
constant, that is to keep the number of elements per processor constant, which means
that H/h = C. In order to preserve the numerical properties, i. e. keep h constant,
instead of reducing h we increase L. Hence, as the reference problem is computed in
a domain of size L0 = 2π, the scalabitilty analysis will be done in a domain of size
L = βL0, being β = {1, 2, 3, 4, 5}. The reference partition size is H0 = L0/4 and will be
kept constant.

We compute the solution after one time step of size δt = 5 ·10−2 with the IMEX ver-
sion of the (1-2) scheme (see Appendix C), using theQ2/Q1 element type, and reporting
the number of solver iterations and the CPU time consumed by each system resolution.
Different local mesh sizes are considered to see the effect of the local mesh size on the
scalability of the solver. In particular, we will consider three cases: H/h = {4, 8, 12}.
The total amount of processors used to solve the problem will be (L/H)3 = (4β)3. The
smallest mesh used to solve the problem in this analysis is a 163 Q2/Q1 elements mesh,
while the biggest one is a 2403 Q2/Q1 elements mesh, which give more than 680 million
DOFs.

The following results are computed with a two-level BDDC solver, considering the
corners, edges and faces of the subdomain partitions as part of the coarse system. We
recall that the first step of a SRK (1-2) scheme consist in six system resolutions that are
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specified in Algorithm 1. Note that the first system solver is only needed at the first

Algorithm 1: SRK system resolutions for one time step using the (1-2) scheme

1. Solve initial pressure (equation (7.41c)).

2. Solve second-stage momentum system (equations (7.41a)-(7.41b)).

3. Solve second-stage pressure (equation (7.41c)).

4. Solve velocity update (equation (7.42a)).

5. Solve projection update (equation (7.42b)).

6. Solve pressure update (equation (7.42c)).

step, since after that p1 = pn.
Figure 7.4 depicts the solver iterations and the elapsed CPU time for the weak scal-

ability analysis with the three different local mesh sizes. All the six system solvers
are depicted in the solver iteration plots (Figure 7.4(a), Figure 7.4(c) and Figure 7.4(e)),
while for the CPU time graphics (Figure 7.4(b), Figure 7.4(d) and Figure 7.4(f)) the pres-
sure system resolutions have been grouped and the building time has been added. The
building time includes the time consumed to integrate all matrices and vectors and the
time consumed computing the preconditioners.

Looking at the solver iterations, we see that the number of iterations for each system
resolution is kept constant when the number of processors is increased, independently
of the local mesh size. We notice that when the local mesh sizes increase, the number of
iterations decrease a little for all systems. Another thing that we must point out looking
at the solver iterations column in Figure 7.4 is that, as expected, the velocity update and
the projection update give the same number of solver iterations. This is caused by the
fact that both systems solve a mass matrix, with the only difference that the velocity
update mass matrix is scaled by 1

δt . We also see that, in terms of solver iterations, the
hardest system is the pressure computation (equations (7.41c) and (7.42c)).

In what refers to the consumed CPU time, a first conclusion we can take looking
at Figure 7.4(b), Figure 7.4(d) and Figure 7.4(f) is that the most expensive resolution
is the momentum system (equations (7.41a)-(7.41b)). Although the number of solver
iterations is smaller than the pressure computations, in terms of time consumed, the
momentum equations resolution is much expensive, even counting together the three
pressure solvers. This difference in the computational time required for the momentum
equations versus the pressure ones, is due to the number of DOFs that are being solved.
We have to take into account that both velocity and projection fields are computed with
a second order polynomial, Q2, while the pressure is first order, Q1. Then, we not only
have two vectorial fields versus a scalar field, but we have a second order interpolation
versus a first order. Leaving aside the mass matrix blocks, the size of the system of
equations to be solved in the velocity block of the momentum computation is ∼ 24
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FIGURE 7.4: Weak scalability test. Number of iterations and elapsed
CPU time for solving one time step of the TGV problem with different

local mesh sizes.
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times larger than the one that arise for the pressure block of the Darcy computations,
taking into account that the pressure system is solved using (7.48).

keeping with the discussion about the CPU time consumed shown in Figure 7.4, we
see that the computations of the momentum and pressure systems do not scale in terms
of time. This performance has an easy explanation, which is given by the ratio between
the fine and coarse system sizes. The coarse system size only depends on the number
of processors (subdomains) used by the BDDC method. When corners, edges and faces
of the subdomain are considered, the total amount of degrees of freedom of the coarse
system is equivalent to a local mesh of Q2 elements (without the interior node) with
as many elements as subdomains. Consequently, for a H/h = 4 local mesh, we can
only expect to have weak scalability until 64 (43) processors, for H/h = 8 until 512 (83)
processors, and for H/h = 12 until 1728 (123) processors. In fact this is what we are
seeing in Figure 7.4, where, taking into account that the local meshes have the interior
DOF inside each element, the results show the expected scalability performance.

In order to have even better results, one can reduce the size of the coarse system by
considering only the corners and the edges of the subdomain. In Figure 7.5 we depict
the results obtained in this case, for aH/h = 12 local mesh size. It is seen that when the
subdomain faces are ignored, the number of solver iterations increase, see Figure 7.5(a).
Despite that, in the trade-off of having more solver iterations with smaller system of
equations, ignoring the subdomain faces in the coarse system worth. As we can see
in Figure 7.5(b), the momentum system is scalable up to 8.000 processors since the
local problem is more expensive than the coarse one. We can not scale in time for the
pressure solver because the local problem is much smaller than the coarse as we useQ1

elements for the pressure field.
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and only corners and edges at the coarse level.

Although that the weak scalability of the proposed method have been demon-
strated up to 8000 processors, we could go further making use of a three-level method
as it is defined in the multilevel implementation MLBDDC proposed in [134].
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7.6.2 Turbulent channel flow at Reτ = 395

In the previous section we have tested the suitability of the proposed VMS method
using an IMEX SRK time integration scheme for the LES simulation of homogeneous
turbulence. After that, we aim to show the performance of such methods for wall-
bounded turbulent flows. In order to check the behaviour of the proposed approach,
we solve the TCF test with a Reynolds number based on the wall velocity Reτ = 395.

One of the main purposed of this test is to assess the accuracy of the solution when
using the weak boundary conditions formulation given by the bilinear form described
in (7.18). Then, the TCF test is suitable for this assessment.

Setting

The TCF problem is solved in a boxed domain of size (2πδ × 2δ × 2/3πδ). Where
the x-direction is the flow direction, also called stream-wise direction, the y-direction
is the wall-normal direction, and the z-direction is the span-wise direction. Homo-
geneous Dirichlet boundary conditions for the velocity DOFs are weakly imposed on
wall-normal direction boundaries (y = −δ and y = δ), while periodic boundary condi-
tions are defined on the stream-wise and span-wise directions. We refer to Section 3.3.2
for a deeper description of this test.

We select the problem parameters according to the DNS computation performed
by Moser et al in [140, 121] (MKM-DNS), so we can compare our results with the cited
work. The bulk mean velocity and the half channel height are taken equal to one, Ū = 1

and δ = 1. The estimated Reynolds number based on the bulk mean velocity is known,
Re = Ū2δ/ν ≈ 13, 750 (see [150]). Therefore, one can obtain the value of the viscosity,
ν = 1.4545 · 10−4, and from the Reynolds number based on the friction velocity, we can
determine the friction velocity magnitude: uτ = Reτν/δ = 5.745 · 10−2. Thus, the wall
shear stress reads τw = u2

τ = 3.3010 · 10−3. A force equivalent to a pressure gradient is
imposed to drive the movement of the flow in the stream-wise direction, fx = τw/δ.

As we have done in Section 5.5.3, an initial solution proposed in [139] is used to
reach the statistically steady state faster, which consists in a unidirectional velocity pro-
file over which is added a fluctuation:

ux = C
(
1− y8

)
+ ε

Lx
2

sin(πy) cos

(
4πx

Lx

)
sin

(
2πz

Lz

)
, (7.56)

uy = −ε(1 + cos(πy)) sin(πy) sin

(
4πx

Lx

)
sin

(
2πz

Lz

)
,

uz = −εLz
2

sin

(
4πx

Lx

)
sin(πy) cos

(
2πz

Lz

)
.

The constantC is chosen in a such way that the field without fluctuations would have a
bulk mean velocity Ū = 1.0. The fluctuation constant ε is 10% of the bulk mean velocity.

To solve the problem we use two different meshes, composed by 163 Q2/Q1 and
Q3/Q2 elements. As a weak imposition of the boundary conditions is considered, we
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use uniformly distributed elements along the wall-normal direction. The effect of con-
sidering uniform or stretched meshes in the wall-normal direction is assessed in [25],
concluding that similar results are achieved when weak Dirichlet boundary conditions
are used.

According to the results obtained in Chapter 5, the algorithmic constants that ap-
pear in (7.27) and (7.28) are chosen as c1 = 12.0 and c2 = 8.0. The constant that appear
in the weak boundary conditions formulation is set to Cb = 32.0. We will analyze the
effect of the constant cc for the current problem setting as it plays an important role
when using inf-sup stable elements.

Effect of cc in uniform meshes

In Section 5.5.3 we have analyzed the effect of the constant cc that appear in equation
(7.29) for the case in which we have strong imposition of the boundary conditions to-
gether with the use of stretched meshes that capture the boundary layer. In this section
we aim to check the performance of the method when changing the cc algorithmic pa-
rameter in uniform meshes and weak boundary conditions imposition. In this case, in
order to avoid the influence of the weak imposition of the wall normal component, we
restrict strongly the wall-normal velocity, e.g. u · n = 0 on ΓD.

In Figure 7.6 we show the energy evolution of the solution for different values of cc
from t = 0.0 to t = 100.0, and computed on a 163 Q2/Q1 mesh. It can be shown that for
uniform meshes, high values of cc makes the solution more energy conserving, so the
energy is not dissipating properly. The value cc = 1.0 is the first case that reaches the
statistically stable state, at t ∼ 280.0, with the lowest global energy. Then, in following
sections we will use cc = 1.0.
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FIGURE 7.6: Energy evolution for the TCF test for different values of cc.

Influence of the wall-normal component

A significant difference on the approach followed for the weak enforcement of the
Dirichlet boundary conditions considered in this work, with respect to the originally
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proposed in [25], is the treatment of the normal component. In [25] a no-penetration
condition is considered, which means that the normal component of the velocity is im-
posed strongly, u · n = 0 on ΓD. We propose to keep the weak boundary imposition
even in the wall-normal direction. The main advantage of keeping the same approach
for all components is revealed in curved boundaries. In that case, the different treat-
ment of each component could lead to tedious code implementation.

As stated in section 7.2.2, we define two difference penalty parameters. One for
the tangential component, based on the law of the wall, and another one for the wall-
normal component, which is proportional to the original penalty parameter proposed
in [24], αb,n := βCbνhb . As it is obvious, when β → ∞ the solution at the wall becomes
closer to the one obtained imposing strongly the normal component, but the penalty
term may disturb the proper solution.

In order to determine the best value for β, we solve the TCF test from t = 0.0

to t = 100.0, with different values β = {1.0, 10, 100, 1000} in a 163 Q2/Q1 elements
mesh. The problem is solved using an IMEX SRK scheme with adaptive time adaptive
technique.

In Figure 7.7 we show the energy evolution for the different settings of β. We clearly
see that the choice of β has not a large implication on the results unless too low values
of beta are used. For too low values of β, the case of β = 1.0, the solution starts dissi-
pating too much energy at the early stages of the simulation. When increasing β, the
results tend to the ones obtained considering a strong imposition of the normal compo-
nent, denoted by strong. However, as it has been said before, the proposed method on
uniform meshes is too little dissipative, so we will choose the value of β = 10.0, which
is a little bit more dissipative than greater values.
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Comparison between strong and week boundary conditions imposition

Once analyzed the effect of the β parameter when Dirichlet boundary conditions are
imposed weakly for the wall-normal component, let us check the performance of the
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approach followed in this work compared against a strong Dirichlet boundary condi-
tions definition. We will compare with the results presented in [58], where the TCF test
was solved using strong Dirichlet boundary conditions in a stretched mesh. In Table
7.1 we state the distance to the wall of the nearest velocity DOF for an stretched and a
uniform mesh, with two different discretizations.

TABLE 7.1: Distance to the wall of the nearest velocity DOF in wall units.

Mesh type Discretization y+

Stretched
163 Q2/Q1 1.6
163 Q3/Q2 1.0

Uniform
163 Q2/Q1 24.7
163 Q3/Q2 16.5

The TCF test is solved from t = 0.0 until the flow reach a statistically stable solu-
tion. In this case it is until t = 300.0 for the 163 Q2/Q1 mesh and to t = 240.0 for the 163

Q3/Q2 mesh. We store the statistics from the last 10.0 seconds, accumulating more than
1000 samples. The results are shown in Figure 7.8, where the mean stream-wise veloc-
ity is plotted (Figure 7.8(a)) together with the velocity fluctuations in the stream-wise,
wall-normal and span-wise directions (Figs. 7.8(b), 7.8(c) and 7.8(d), respectively).
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It is seen in Figure 7.8(a) that the mean stream-wise velocity profile is a little bit far
from the DNS results and also from the results obtained with strong boundary condi-
tions in a stretched mesh. This behaviour is related to the energy evolution that we
have shown in Figure 7.6, where it is seen that the method does not dissipate the en-
ergy as it should. An explanation of such behaviour is the fact that the uniform mesh
has the first node located too far from the wall, as seen in Table 7.1.

Similar results are observed for the velocity fluctuations. Looking at Figure 7.8(b),
where the stream-wise velocity fluctuation is depicted, we see that the nearest to the
wall point is far to the DNS curve for the weak and uniform case, but we see that
the remaining points fit to the desired results. As it is expected, an improvement in
the solution is observed when higher order discretization is used. Same behaviour is
observed for the wall-normal and span-wise velocity fluctuations, Figures 7.8(c) and
7.8(d).

7.7 Conclusions

In this chapter we have addressed the suitability of using SRK time integrations schemes
for the LES of turbulent incompressible flows. A mixed FE formulation with convection
stabilization through OSS method have been used for the spatial discretization of the
Navier-Stokes equations, which, together with the SRK methods, conform a promising
combination of spatial and temporal discretizations that are suitable for the simulation
of turbulent incompressible flows. This particular combination have been denoted as
Segregated Variational MultiScale, SVMS, method.

The application of the SVMS method to the simulation of turbulent incompressible
flows has been tested with the TGV test, showing that same results are achieved when
considering a SRK time integration scheme instead of the traditional Crank-Nicolson
scheme. The convergence to the DNS solution has also been demonstrated when a
refinement both in h and p is considered, giving more accurate results the p-refinement.

One of the advantages of using SRK schemes is the easy implementation of time
adaptive techniques that allow the automatic time step adaptation to the numerical
and physical requirements. This issue has also been addressed for the TGV test, where
we have seen that the method is able to adapt to the numerical restriction given by the
CFL conditions and to the physical requirements given by the change in the solution.

Another advantage of the SVMS methods is the possibility to use block precondi-
tioning techniques that lead to the approximation of the inverse of Laplacian-type and
elasticity-type matrices, which at his turn are suitable to be preconditioned with BDDC
algorithms. The weak scalability of this approach for the resolution of one time step
of the TGV test have been demonstrated up to 8000 cores. Furthermore, a three-level
MLBDDC algorithm could be used to achieve weak scalability in a higher number of
processors.
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Moreover, aside from the TGV test, we have also checked the performance of SVMS
method for the wall-bounded TCF test. In this case, we have also proposed the use of
weak Dirichlet boundary conditions with the particularity of considering a wall-law
based tangential traction and also a weak imposition of the wall-normal component.

This last test shows that the approach of imposing weakly the tangential and the
normal velocity components on the Dirichlet boundary lead to acceptable results, even
when uniform meshes with very coarse elements near the wall are considered. How-
ever, comparing the results against the ones obtained with a stretched mesh and strong
boundary conditions imposition, we see that the near wall fluctuations are not properly
captured. Then, in order to obtain more accurate results, a mesh with thinner elements
near the wall should be considered.

We have seen that the weak imposition of the Dirichlet boundary conditions is suit-
able when SRK methods are considered. First, because the continuity equation is not
polluted by the strong imposition of the temporal derivative of the velocity diver-
gence on the boundary. This occurs when time-dependent boundary conditions are
imposed on the Dirichlet boundary. Furthermore, the weak imposition of the velocity
wall-normal component considered in this chapter, avoids the complexity of imposing
strongly such component on curved boundaries.





Chapter 8

Flow around an airfoil at low
Reynolds number

8.1 Introduction

As comented in Chapter 1, a common application of CFD software is the simulation
of flows around airfoils. These simulations are needed by the aerospace industry to
optimize their products and reduce the costs of experimentation.

The aim of this chapter is to apply all the numerical improvements that this thesis
has contributed with to the resolution of a realistic problem. We consider the simulation
of turbulent incompressible flow around an airfoil, particularly a NACA 0012 airfoil
[106].

The NACA airfoils are widely used as a benchmark of a real life problem, note that
many airplane and wind turbines wings are based on these profiles. Both numerical
simulations and experiments in wind tunnels have been done with several configura-
tions of this type of airfoil. The NACA 0012 is one of the most used configurations, see
for instance [166, 137, 152], but others like the NACA 4412 are also widely studied, see
[182, 94]. Another type of airfoil that are also used as a benchmark in the literature is
the Aerospatiale-A airfoil, used for example in the LESFOIL project [61].

Although most of the works that can be found in the literature deal with challenging
configurations, i.e. high Reynolds numbers and high angles of attack (see [107, 116,
164, 138]), we will restrict ourselves to a more modest scenario. That is to consider low
Reynolds number with moderate angles of attack. The main reason for considering
this case is the possibility to compare the results obtained with a weak treatment of
the Dirichlet boundary conditions against the obtained with a strong imposition of the
Dirichlet boundaries, without the need of spending too many computational resources.

Nevertheless, the simulation of turbulent flow around an airfoil at low Reynolds
number is gaining interest in the recent years. This increase on the demand of the sim-
ulation of such flows is caused by the fact that aircraft-like devices have been proposed
as possible Mars explorers, see [123, 167, 3]. These vehicles are being designed to take
photographs of Mars while traveling at low-speed in a thin atmosphere, resulting in a
low Reynolds number (103 ≤ Re ≤ 105) environment.

187
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In this type of problems the mesh design plays an important role on the solution, in
particular, a proper spacing has to be used at the boundary layer. If a strong definition
of the Dirichlet boundary conditions is considered, we say that the simulation is a Wall-
Resolved LES (WRLES). According to [149], the coherent structures that appear in the
turbulent boundary layer can be captured with a WRLES method if the near-wall node
of the mesh is located at a wall distance y+ < 2 and the stream-wise cell size is within
the range 50 < ∆x+ < 150. Otherwise, when a wall-law model is used considering
weak imposition of the Dirichlet boundary conditions, we say that the simulation is a
Wall-Modeled LES (WMLES).

In this chapter we will contemplate the SVMS approach, described in Chapter 7,
considering the weak imposition of Dirichlet boundary conditions. Our concern is to
check the feasibility of the proposed method as a WMLES method for the simulation
of turbulent flows around an aircraft. In such simulations many flow characteristics
are stressed, dealing not simply with turbulent flows, but also with other difficulties
like the presence of very thin laminar boundary layers, transition from laminar to tur-
bulent regimes, wall-bounded flow or flow that separates from curved surfaces. The
fact is that LES methods have been shown to be very useful for flows where the turbu-
lent structure is dominated by the large-scale structures, like the TGV test presented in
Section 3.2.3 or homogeneous turbulent problems (see [56]). Despite that, the simula-
tion of near-wall flows using LES methods has been demonstrated to be a challenging
task, manly because of the complex physical phenomena like the reduction of the large
scales structures near the wall, the flow anisotropy or the mesh sensitivity to high as-
pect ratios.

Many works have been done discussing the suitability of LES methods for the sim-
ulation of flow around an airfoil. This is the case of the European project LESFOIL [61],
where nine different academic and industrial groups worked with the aim to identify
the potential of LES as a prediction method for separation in high-Reynolds-number
airfoil flows. In this case, the simulated geometry was the Aerospatiale-A airfoil op-
erating at a chord Reynolds number equal to 2.1 · 106 with an angle of attack equal to
13.3o and a Mach number of 0.15. Other authors have been worked with NACA type
airfoils. This is the case of [107, 116, 164], where the use of LES method for the simula-
tion of the flow around a NACA4412 airfoil is studied using unstructured, structured
and semi-structured grids, respectively.

This chapter is structured as follows. First we define the test setting in Section 8.2,
followed by the numerical results exposed in Section 8.3. Finally, some conclusions are
pointed out in Section 8.4.

8.2 Test setting

The formulation used for the NACA simulation is the one defined in Chapter 7. We
consider the use of a mixed FE formulation with convection stabilization through an
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OSS method. Here we also use weak Dirichlet boundary conditions imposition for
both the tangential and normal velocity components, detailed in Section 7.2.2. A SRK
scheme is used to integrate the equations in time, as described in Section 7.4.

In this test we study the flow around a NACA 0012 airfoil with a span-wise length
of 0.16c, being c the chord length. In Figure 8.1 we depict the geometry of the stud-
ied airfoil. The computational domain is defined with an inlet and outlet boundaries
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z

GiD

FIGURE 8.1: NACA 0012 airfoil geometry.

around 10 chord lengths away from the airfoil surface. At the inlet boundary a free-
stream velocity U∞ = 10 has been settled, while the outlet boundary has left free. We
consider an angle of attack of α = 6 deg and a Reynolds number based on the chord
length Rec = 2.3 · 104, the same used in [123, 119].

The simulation of this test is done on a structured C-type mesh around the airfoil
profile. We consider two different 2-dimensional meshes of quadrilaterals, one much
finer than the other, which are extruded along the span-wise direction. The goal of
using two different meshes is to assess the performance of the weak imposition of the
Dirichlet boundary conditions at the airfoil surface. We define the meshes in a such way
that we have fine enough elements around the airfoil surface, the turbulent boundary
layer and the wake region, while coarse elements are used in the far field region. In
Figure 8.2 we depict the two meshes used in this test. Focusing on the finer mesh,
shown in Figure 8.2(b), at the leading edge, the near wall-node is located at y ∼ 2.0 ·
10−4c which leads to a wall distance of y+ < 1. This distance is kept almost constant at
the laminar region and it is increased constantly until it reaches the maximum of y ∼
2.0 · 10−3 at the trailing edge, where the wall distance is less restrictive. The maximum
stream-wise elemental length is ∆x ∼ 0.028c located at the suction side of the airfoil,
giving a normalized distance of ∆x+ ∼ 40. We see that the mesh sizes satisfy the
conditions needed to capture the boundary layer phenomena.

Regarding the coarse mesh, see Figure 8.2(a) and Figure 8.2(c), the near wall-node is
located at y ∼ 1.2 ·10−3c leading to a wall distance of the order of y+ ∼ 2. This distance
is constantly increased until it reaches a value of y ∼ 6.4 · 10−3c at the trailing edge,
much grater than the finer mesh. In this mesh, the maximum stream-wise elemental
length is ∆x ∼ 0.032c that is equivalent to a normalized distance of ∆x+ ∼ 50. We only
compute the 3D test on the coarse mesh, with a constant span-wise elemental length
equal to ∆z ∼ 0.02c.

The spatial discretization is done using inf-sup stable elements Q2/Q1. These type
of elements will allow us to use the SVMS approach described in the previous Chapter
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(a) Coarse mesh.
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(c) Close up view of the coarse mesh.

FIGURE 8.2: NACA 0012 meshes.

7. Here we use the same algorithmic parameters, c1 = 12.0 and c2 = 8.0, as used
in Section 5.5.3. The problem is solved using the IMEX version of the SRK method
introduced in Chapter 6 and also used in Chapter 7 with a (3-3) scheme, see Appendix
C, and an adaptive time stepping technique as exposed in Section 7.4.4. The time step
size evolves tending to δt = 5.0 · 10−4c/U∞ giving a maximum hyperbolic CFL around
0.3.
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8.3 Simulation results and discussion

In order to check the suitability of the proposed methods we start with a 2-dimensional
simulation comparing the results obtained with the fine and coarse meshes. For such
computations, we begin with an initial solution that has been computed solving the
Stokes problem. We solve the problem from t = 0.0 to t = 1.0 which is equivalent to 10

time units (1 time unit = c/U∞).

8.3.1 Effect of cc in a 2D mesh with strong boundary conditions

We first analyze the effect of the cc constant that appear in equation (7.29). We know
by the experience acquired on the turbulent tests performed in Chapter 5 and Chapter
7 that this parameter plays a relevant role when inf-sup stable elements are used. Here
we choose the set of values cc = {1.0, 2.0, 4.0, 8.0, 16.0, 32.0} and solve the problem
from t = 0.0 to t = 1.0 using the finer mesh with strong boundary conditions.

We depict the Drag and Lift coefficients in Figure 8.3, computed as stated in Section
6.4.3. It is seen in both the drag (Figure 8.3(a)) and lift (Figure 8.3(b)) coefficients that
at some point, the computations for cc < 32.0 blows up. Let us now focus on the
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FIGURE 8.3: Drag and Lift coefficients for the 2D computation for differ-
ent cc values.
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evolution of the velocity divergence norm, which is shown in Figure 8.4 scaled by the
kinetic energy of the problem. It is seen on this figure that, for cc < 32.0, the velocity
divergence norm is increased with a constant rate until it reaches an unstable point
from which it explodes. This behavior does not occur for cc = 32.0 until t = 1.0. We
also see that the rate of increase of the velocity divergence tends to the one followed
by the cc = 32.0 case. This constant increase shown in Figure 8.4 is normal and may
be caused by the flow development from a laminar initial solution to a fully developed
turbulent flow. In the forthcoming computations of this test we will use cc = 32.0.
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8.3.2 Effect of β in a 2D mesh with weak boundary conditions

Once analyzed the effect of the constant cc on the solution, we proceed to check the
effect of the β constant that appear on the definition of the weak imposition of the
wall-normal component on the Dirichlet boundary. In this case we select four different
values, β = 10, 100 and we solve the problem on the coarse mesh from t = 0.0 to
t = 1.0. The case in which β = 1000 have been discarded since the computational cost
is much greater than the other two.

In this analysis, as it is seen in Figure 8.5, very little differences can be distinguished
during the laminar transition to turbulent flow for the different values of β. Further-
more, if we compare against the solution obtained with strong imposition of the bound-
ary conditions using the fine mesh, we see that the results are very similar for the lam-
inar transition. Things change when the flow starts evolving to turbulent behaviour,
around t = 0.5, where we see that the differences between the different parameters
selection begin to increase. The solution with strong boundary conditions in a coarse
mesh explodes when the turbulence starts developing. The cases in which we con-
sider a weak boundary imposition keep being stable, with a drag coefficient similar
the one obtained with strong boundary conditions in a finner mesh, see Figure 8.5(a).
However, if we look at Figure 8.5(b), we see that for β = 10 the lift coefficient starts
increasing more than the reference solution, while for β = 100 this coefficient remains
of the same order than the strong boundary conditions case. Given these results, in
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FIGURE 8.5: Drag and Lift coefficients for the 2D computation for differ-
ent β values.

coming computations we will favour β = 100.

8.3.3 Strong versus weak boundary conditions

In order to see the difference on the computed solution when using strong or weak
Dirichlet boundary conditions, we show the mean flow for both, fine and coarse meshes,
respectively, averaging the results obtained between t = 0.8 and t = 1.0.

In Figure 8.6 we depict the mean velocity magnitude for the case in which we im-
pose strongly the boundary conditions in a fine mesh (Figure 8.6(a)) and the case in
which we impose weakly the boundary conditions in a coarse mesh (Figure 8.6(b)).
We see the same velocity distribution in both cases, with slight changes between them.
In order to better see the difference between both solutions, in Figure 8.6(c) we depict
the mean velocity isolines for the two cases. We see that the solution is very similar
for the two computations, conserving the same structures. Focusing on the velocity
fluctuations, in Figure 8.7 we depict the standard deviation of the velocity magnitude
computed from t = 0.8 to t = 1.0. In this case, we also see very little differences, noting
that the fluctuating regions are located at the same positions in both cases.
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FIGURE 8.6: Mean velocity magnitude for the fine and coarse meshes.

Looking now at the mean pressure plots depicted in Figure 8.8 we can observe the
same similarities between the two computations. In Figure 8.8(a) the fine mesh with
strong boundary conditions solution is plotted, while the solution in the coarse mesh
and weak boundary conditions is shown in Figure 8.8(b). The little differences between
the two results can be distinguished in Figure 8.8(c), where the pressure isolines are
depicted.



Chapter 8. Flow around an airfoil at low Reynolds number 195

2.8125

5.625

8.4375

0.000e+00

1.125e+01
Velocity’

(a) Fine mesh, strong boundary conditions.

2.8125

5.625

8.4375

0.000e+00

1.125e+01
Velocity’

(b) Coarse mesh, weak boundary conditions.

FIGURE 8.7: Standard deviation of the velocity magnitude for the fine
and coarse meshes.

8.3.4 Instantaneous flow fields for the 3D case

Once analyzed the effect of using weak Dirichlet boundary conditions on a two-dimensional
mesh, we check the performance for the 3D case. Here we use as an initial solution the
extruded solution of the 2D case at t = 1.0. Then, we let the flow evolve until it reach a
3D description, which occurs after about one time unit.

In this section we will analyze the instantaneous flow fields, trying to identify the
turbulent structures that are generated along the wing.

In Figure 8.9 we can see the velocity isosurfaces for ‖u‖ = 25.0 colored by the
pressure value. In this figure we can clearly see the flow transition from a laminar
regime at the leading edge to a turbulent flow, starting the 3D flow development near
the maximum wing thickness point.

To study the structures that arise in the turbulent flow we use the Q-criterion de-
fined as Q = 1

2(|ω|2 − |ε(u)|2), being ω the vorticity and ε the strain rate tensor. The
isosurface of Q = 5 · 105 is depicted in Figure 8.10, where we can see the generation
of 2D coherent vortices that break up near the maximum thickness point, turning into
hairpin vortices. Similar results are obtained in [123], where a much finer mesh is used
to solve the same problem. In Figure 8.11 we present a top view of the Q = 5 · 105

isosurface. There, we can see the position of the first 2D coherent vortex, located at
x/c = 0.37. This result is similar to the obtained in [123], where the first 2D vortex is
located at x/c = 0.41.

8.4 Conclusions

In this chapter we have tested the behavior of the SVMS method with weak boundary
conditions based on a wall-law model for the simulation of turbulent flows around an
airfoil.

Considering weak boundary conditions when coarse meshes are used have been
demonstrated to be necessary when the mesh size at the wall does not allow to capture
properly the boundary layer. Furthermore, the weak imposition of the wall-normal
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FIGURE 8.8: Mean pressure for the fine and coarse meshes.

component have been successfully used in this test, avoiding the complex techniques
that are required for the strong imposition of only the normal component on curvilin-
ean geometries.

The effect of the algorithmic constants cc and β have been assessed for this test,
concluding that, as noted in previous turbulent tests, the cc constant has a clear effect
on the solution. This phenomena have been studied in previous chapters, where the
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FIGURE 8.10: Q-criterion isosurface for Q = 5 ·105 and colored by veloc-
ity magnitude.
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FIGURE 8.11: Top view of Q-criterion isosurface for Q = 5 · 105.

dependency of the solution on the cc value have been related to the fact that the grad-
div stabilization term is highly important when using inf-sup stable elements.

Further computations need to be carried out to study with a higher degree of detail
the problem solved in this chapter. Particularly for the 3D case, where the aerodynamic
coefficients like the pressure coefficient, drag coefficient and lift coefficient should be
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addresses and compared with the existing results in the literature. Moreover, it also
has to be studied the effect of the mesh resolution in such computations, since a very
coarse mesh has been used here.



Chapter 9

Conclusions and future work

9.1 Conclusions

The development of new algorithms based on the FE method for the simulation of large
scale turbulent incompressible flows has been studied in this thesis.

In order to take advantage of the continuously increasing computational power
acquired with the new improvements on super-computers, an advance in software de-
sign is imperative. New algorithms need to be designed to be used in the exascale
computing environment. In this thesis we have proposed a framework for the High
Performance Computing of turbulent incompressible flows that relies on the extreme
scalability of Balancing Domain Decomposition by Constraints preconditioners and the
use of Variational Multiscale stabilization methods as Large Eddy Simulation models.
Furthermore, a novel time integration scheme that segregates velocity and pressure
computations through Runge-Kutta schemes has been developed.

The thesis has sought to address the main objectives that we have defined in the
introduction chapter, whose fulfillment is discussed in what follows.

• RB-VMS methods as LES models for turbulent incompressible flows
The applicability of RB-VMS methods as LES models for the simulation of turbu-
lent incompressible flows has been demonstrated in Chapter 4. In that chapter,
some theoretical aspects have been discussed, such as the dissipative structure
of the methods and the way energy is conserved, which we have numerically
verified.

The most important conclusion that we can point out from the results obtained
in Chapter 4 is that OSS and ASGS methods yield similar results, all displaying
the features of turbulent flows, reproducing appropriately global outputs such as
energy spectra. Moreover, the methods are stable and converge to reference solu-
tions, both when the mesh is refined and when the polynomial order is increased.

• Mixed FE formulations for LES of turbulent incompressible flows
With respect to this objective, in Chapter 5 the comparison of three methods,
ASGS, term-by-term OSS, and convection-only OSS with ISS elements have been
tested. It has been shown that the accuracy is similar for the same order of inter-
polation of the velocity for all methods, the OSS-ISS being slightly inferior in this
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respect. But on the other hand, when computational cost is analyzed the OSS-
ISS is clearly the cheapest one so a finer discretization can be used for a given
computational cost.

• High-order FE methods
The use of high-order FE methods, up to third order, have been considered in the
core chapters of the thesis. Besides, all the proposed algorithms can be used with
arbitrary order of interpolation, making them extensible for orders greater than
three.

• High-order time integration methods
One of the main concerns of this work has been the use of high-order schemes
for the time integration. The use of such methods has motivated the Segregated
Runge-Kutta algorithm proposed in Chapter 6 and later also used in Chapter 7
and Chapter 8. The proposed SRK method has been used with orders of conver-
gence in time up to three, for both velocity and pressure fields. Nevertheless, the
SRK scheme is not restricted to third order since the order only depends on the
definition of the Butcher tableaus.

• Adaptive time integration schemes
Related to the previous point, the Segregated Runge-Kutta methods also allows
the easy implementation of adaptive time-stepping techniques. These techniques
has been successfully analyzed in Chapter 6 and effectively used for the simula-
tion of turbulent flows in the tests done in Chapter 7 and Chapter 8.

• Segregation of velocity and pressure fields
The segregated Runge-Kutta methods proposed in this work allows the veloc-
ity and pressure segregation at the time integration level (without the need to
perform additional fractional step techniques that spoil high orders of accuracy).
The use of such schemes is very appealing for large scale computations of incom-
pressible flows, since the monolithic indefinite system is replaced by segregated
positive-definite velocity and pressure blocks. The pressure block involves a Pois-
son solver, whereas the velocity block is a vector-Laplacian or elasticity matrix
when the convective term is treated explicitly.

• Large scale and scalable FE solvers
The use of massively parallel and scalable solvers for the problems that arise after
the segregation introduced by the SRK scheme, have been considered in Chapter
7. This approach also enables the use of block preconditioning techniques that
lead to the approximation of Laplacian-type and elasticity-type problems, suit-
able to be preconditioned with BDDC algorithms. The weak scalability of this
approach for the resolution of one time step of the TGV test have been demon-
strated up to 8000 cores.
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• Application
In Chapter 8 the methods proposed in Chapter 7 have been used to assess their
performance when simulating turbulent flows around an airfoil, in particular a
NACA 0012 profile. This is a widely used benchmark in the aerospace industry
since many airplane and wind turbines wings are based on these kind of profiles.

Although all the objectives stated at the introduction have been addressed in this
work, there are some limitations that worth pointing out.

One of the weakness of the proposed VMS methods is the high dependency on the
algorithmic constants that appear on the formulation, especially when coarse meshes
are used. Albeit the constant election is not critical when laminar flows are simulated,
their influence for turbulent incompressible flows have been revealed in all tests per-
formed in the thesis.

Furthermore, it has been shown that the best configuration of the algorithmic con-
stants is problem dependent. Meaning that in order to obtain the best results for a given
turbulent problem, e.g. isotropic turbulence, wall-bounded flow, etc., the setting of the
algorithmic constants change. Even for different mesh configurations, i.e. stretched
meshes versus uniform meshes, the influence of the constant parameters is notorious.

However, it is important to stress that this high algorithmic parameter influence is
important when very coarse meshes are used, being less important for fine meshes.

9.2 Open lines of research

Some lines of research could be considered to further investigate the applicability of
the proposed methods, as well as to deal with the limitations inherent to them. These
open lines of research are described below:

• Embedded methods and mesh refinement
One of the main problems we have faced during the dissertation is the need of
defining good meshes a priory. Then, the development of adaptive meshes able
to refine where the turbulent structures are being developed is one of the lines of
research that could resolve this issue.

The approach that could be followed is to consider the use of Cartesian meshes
with embedded boundaries. This approach basically consist on having most of
the domain covered by completely regular Cartesian cells and considering em-
bedded boundary methods to impose the boundary conditions. This methodol-
ogy could also be related to the work done in this thesis when weak boundary
conditions are imposed considering a wall-law model.

• Parallel in time
The turbulent phenomena is characterized by having not only many spatial scales,
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but also a multiscale description in time. Then, the time discretization of Navier-
Stokes equations at high Reynolds number becomes an important issue. Many ef-
forts are being dedicated to the parallelization of the time discretization schemes.
It could be interesting to seek the applicability of parallel time integration tech-
niques when using SRK schemes for the time integration of the Navier-Stokes
equations, with a particular interest on the simulation of turbulent flows.

• Divergence-free Finite Elements
It has been shown in this work that when using inf-sup stable elements, the grad-
div stabilization term plays an important role to ensure the satisfaction of the
incompressibility constraint. In order to address this weakness, we could con-
sider to make use of FE types that are divergence-free, and inf-sup stable, by
construction.



Appendix A

Energy spectrum computation

In this appendix we will briefly resume the code that has to be implemented to obtain
the energy spectra of a turbulent fluid sample.

We assume that we are working with a two-dimensional fluid flow with periodic
boundary conditions on both directions. We also assume that we compute the energy
spectrum from the velocity field, coming from the Navier-Stoke equations. There also
are many works on the turbulence world that use the vorticity field to calculate the
energy spectra.

As we are using a Finite Element Method to calculate the velocity field, our data
will be a discrete data with the values of the velocity on each node of the FEM mesh.
The first thing we need to do is to store the velocity field into an array with the same
components as problem dimensions. Usually, the velocity field that arise after the so-
lution of the FE system of equations is stored in a vector. Then, we must transform the
velocity field into two-dimensional array, having a matrix with the same rows as nodes
in the vertical direction and the same columns as nodes in the horizontal direction. The
matrix values must be stored in the equivalent position than the node position in the
FEM mesh.

It also has to be said that for a problem with periodic boundary conditions we only
have to transform those values that are not repeated. For a two-dimensional grid with
Nx ×Ny divisions ((Nx + 1)× (Ny + 1) nodes), the values to be transformed are those
corresponding to the nodes 1 to Nx, in the x-direction, and 1 to Ny, in the y-direction.
The (Nx + 1)-th and (Ny + 1)-th nodes have the same value as the first ones.

Once we have obtained the velocity field and we have transformed into a two di-
mensional array, we follow the following steps.

1. FFT transform of the velocity field

At this point we perform the Discrete Fast Fourier Transform (DFFT) of each com-
ponent of the velocity field. To do that we use the fft99 and cfft99 packages that
we can find in [148]. The first code transforms a real data vector to a half-complex
vector with the transformed field. The second one transforms a complex vector
to another complex vector with the transformed field.
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Both packages are based on the following Discrete Fast Fourier Transform defini-
tions:

fk =
N−1∑
n=0

fne
−i 2πkn

N , (Forward transform)

fn =

N−1∑
k=0

fke
i 2πkn
N , (Backward transform)

with k the wave number, N the number of values to transform, fk the k-th value
of the transformed vector and fn the n-th value of the original vector.

We also must have into account that to use these packages the lengths of the
transforms must be an even number greater than 4 that has no other prime factors
than 2, 3 and 5.

Since we have a two-dimensional real data field, and using the Fourier Trans-
forms theory, we compute the two-dimensional transform by first transforming
a set of vectors using fft99 along one direction and then transforming the results
using cfft99 along the orthogonal direction.

By this way, if we first transform the horizontal direction, the real to complex
transformation give us a half-complex matrix with dimension

(
Nx ×

(
Ny
2 + 1

))
.

It means that the matrix is built by Nx vectors each containing the Fourier coeffi-
cients a(ky) and b(ky) for 0 ≤ ky ≤ Ny

2 , defining the Fourier transform as

c(ky) = a(ky) + ib(ky).

Note that with this definitions we should have a matrix of dimension
(
Nx ×

(
Ny
2 + 2

))
.

But the fact that the input values are real implies that b(0) = b(Ny/2) = 0, then
we can get rid of one value for each row.

After that we perform the transform along the vertical direction. As we already
have a complex matrix, that is to compute the transforms of

(
Ny
2 + 1

)
complex

vectors with length Nx.

The result is a
(
Nx ×

(
Ny
2 + 1

))
complex matrix with the transformed values.

2. Wave number definition

The next step is to set the wave numbers. The amount of wave numbers that we
have in each direction is equal to the corresponding size of the original matrix,
then, the Nyquist wave number will be Nx

2 and Ny
2 , respectively. It means that

wave numbers higher than the Nyquist one will encounter a “symmetric” (with
respect to the Nyquist wave number), back into lower wave numbers. Hence, we
define the wave number vectors as follows.

~kx =

[
0, 1, ...,

Nx

2
,−Nx

2
+ 1,−Nx

2
+ 2, ...,−1

]
,
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~ky =

[
0, 1, ...,

Ny

2

]
.

3. Energy spectrum calculation

Finally, the third step is to compute the energy spectrum. Here, the point is to rep-
resent the energy evolution from a two-dimensional field into a one-dimensional.
So we need to group the two-dimensional grid values into some strips.

To do that we first define the one-dimensional wave number vector and the max-
imum one-dimensional wave number as follows.

k(l) = integer

(√
~kx(i)2 + ~ky(j)2 + 0.5

)
,


i = 1, ..., Nx,

j = 1, ...,
Ny
2 + 1,

l = 0, ..., kmax,

kmax = max
{
integer

(√
k2
x + k2

y + 0.5
)}

.

It is equivalent to say that each one-dimensional wave number k(l) will be com-
posed for all kx and ky such that the value of

√
k2
x + k2

y is in the interval [k −
0.5, k + 0.5].

To compute the energy spectra we only use those wave numbers between 0 and
kmax√

2
. Suppose that we have a squared domain with the same number of nodes in

both direction, that is Nx = Ny = N . Then the maximum wave number will be:

kmax = int

√(Nx

2

)2

+

(
Ny

2

)2

+ 0.5

 = int

√2

(
N

2

)2

+ 0.5


= int

(√
2

(
N

2

)
+ 0.5

)
.

We can see that the contributions from kx and ky will increase until the wave
number k reaches N

2 . After that the number of two-dimensional wave numbers
that contributes to the one-dimensional wave number decreases. For this reason,
the realistic maximum wave number must be integer

(
kmax√

2

)
.

If we define the interval Ik = [k − 0.5, k + 0.5] for each k between 0 and kmax√
2

, we
can construct the energy spectra, E(l), as follows.

For each i = 1, ..., Nx and for each j = 1, ...,
Ny
2 + 1, |k| =

√
~kx(i)2 + ~ky(j)2 and

E(k) =
∑

i,j\|k|∈Ik

1

2
[ûx(kx(i), ky(j)) · û∗x(kx(i), ky(j))

+ûy(kx(i), ky(j)) · û∗y(kx(i), ky(j))
]
,

where ûi is the transformed i-direction velocity field and û∗i its complex conju-
gate.
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Algorithm

In the following table the algorithm described above to compute the energy spectrum
of a turbulent sample in a two-dimensional structured mesh is resumed.

Algorithm 2: Algorithm to compute the energy spectrum.

1. Transform the velocity vector into a matrix corresponding to the mesh points:
ux = ux(1 : Nx, 1 : Ny), uy = uy(1 : Nx, 1 : Ny).

2. Compute the FFT of the velocity fields: ûx = fft(ux), ûy = fft(uy).

3. Define the wave number vectors:
~kx =

[
0, 1, ..., Nx2 ,−

Nx
2 + 1,−Nx

2 + 2, ...,−1
]
, ~ky =

[
0, 1, ...,

Ny
2

]
.

4. Calculate the maximum one-dimensional wave number kmax.

5. Compute the one-dimensional wave number vector k and the energy spectra
E(k).



Appendix B

VMS methods implementation

In this appendix we give some tips and some comments on how the VMS methods
defined in Chapter 4 are implemented in a FE software.

We will describe the algorithms used to implement the dynamic and nonlinear ver-
sions for both the ASGS and the OSS methods. The quasi-static alternatives and the
linear subscales definition can be though as a particular case of the former version.

Algebraic Subgrid Scale (ASGS)

The Algebraic Subgrid Scale (ASGS) method is characterized by the projection P ap-
pearing in the right-hand side of (2.39) and (2.40) defined as

P := I (B.1)

Then, the equivalent Navier-Stokes problem expressions are given by

(∂tuh,vh) + (∂tũ,vh) +B(a; [uh, ph], [vh, qh]) (B.2)

+ (ũ,L∗a(vh, qh))h − (p̃,∇ · vh) = 〈f ,vh〉 ,

together with the subscales equations

∂tũ + τ−1
m ũ = Ru, (B.3)

τ−1
c p̃ = Rp. (B.4)

The previous expressions are solved using the Picard method for nonlinear equa-
tions. Once discretized in time using a Backward Euler discretization, we have that at
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the step n + 1 and each nonlinear iteration i, the values of un+1,i
h and pn+1,i

h are calcu-
lated solving the following decomposed equations

1

δt
(un+1,i

h ,vh) + (ai · ∇un+1,i
h ,vh) + ν(∇un+1,i

h ,∇vh)− (pn+1,i
h ,∇ · vh) (B.5)

+ (qh,∇ · un+1,i
h )− τm,t(ai · ∇un+1,i

h − ν∆un+1,i
h +∇pn+1,i

h ,−ai · ∇vh − ν∆vh −∇qh)

+ τc(∇ · un+1,i
h ,∇ · vh)− τm,t

1

δt
(ai · ∇un+1,i

h − ν∆un+1,i
h +∇pn+1,i

h ,vh)

− τm,t
1

δt
(un+1,i

h ,−ai · ∇vh − ν∆vh −∇qh)− τm,t
1

δt2
(un+1,i

h ,vh)

= 〈f ,vh〉+
1

δt
(unh,vh)− τm,t(f ,−ai · ∇vh − ν∆vh −∇qh)− τm,t

1

δt
(f ,vh)

− τm,t
1

δt
(unh,−ai · ∇vh − ν∆vh −∇qh)− τm,t

1

δt2
(unh,vh)

− τm,t
1

δt
(ũn,−ai · ∇vh − ν∆vh −∇qh) + τm,t

1

δtτm
(ũn,vh),

where

ũn+1,i = τm,t
1

δt
ũn + τm,t

[
f − (ai · ∇un+1,i

h − ν∆un+1,i
h +∇pn+1,i

h )
]
. (B.6)

With ai = un+1,i−1
h + ũn+1,i−1 and τm,t =

[
1
δt + 1

τm

]−1

The implementation of the dynamic subscales has been done only for a linear ap-
proximation. It means that the terms involving the laplacian ∆(·) are equal to zero.
Given this assumption, the simplified expressions of (B.5) and (B.6) are:

1

δt
(un+1,i

h ,vh) + (ai · ∇un+1,i
h ,vh) + ν(∇un+1,i

h ,∇vh)− (pn+1,i
h ,∇ · vh) (B.7)

+ (qh,∇ · un+1,i
h )s− τm,t(ai · ∇un+1,i

h +∇pn+1,i
h ,−ai · ∇vh −∇qh)

+ τc(∇ · un+1,i
h ,∇ · vh)− τm,t

1

δt
(ai · ∇un+1,i

h +∇pn+1,i
h ,vh)

− τm,t
1

δt
(un+1,i

h ,−ai · ∇vh −∇qh)− τm,t
1

δt2
(un+1,i

h ,vh)

= 〈f ,vh〉+
1

δt
(unh,vh)− τm,t(f ,−ai · ∇vh −∇qh)− τm,t

1

δt
(f ,vh)

− τm,t
1

δt
(unh,−ai · ∇vh −∇qh)− τm,t

1

δt2
(unh,vh)− τm,t

1

δt
(ũn,−ai · ∇vh −∇qh)

+ τm,t
1

δtτm
(ũn,vh),

with
ũn+1,i = τm,t

1

δt
ũn + τm,t

[
f − (ai · ∇un+1,i

h +∇pn+1,i
h )

]
. (B.8)

An alternative equation to (B.8) can be the equivalent to (4.32).
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Orthogonal Subscales (OSS)

The Orthogonal Subscales (OSS) method is characterized by the following projection
definition.

P := Π⊥τ = I−Πτ (B.9)

Then, the equivalent subscales equations to (B.3)-(B.4) are given by

∂tũ + τ−1
m ũ = Π⊥τ (Ru), (B.10)

τ−1
c p̃ = Π⊥τ (Rp). (B.11)

As we have done for the ASGS method, using a Backward Euler time discretization
and the Picard method for solving the nonlinearity, at the time step n + 1 and at each
iteration i, un+1,i

h and pn+1,i
h are calculated solving the following decomposed equations

1

δt
(un+1,i

h ,vh) + (ai · ∇un+1,i
h ,vh) + ν(∇un+1,i

h ,∇vh)− (pn+1,i
h ,∇ · vh) (B.12)

+ (qh,∇ · un+1,i
h )− τm,t(ai · ∇un+1,i

h − ν∆un+1,i
h +∇pn+1,i

h ,−ai · ∇vh − ν∆vh −∇qh)

+ τc(∇ · un+1,i
h ,∇ · vh)− τm,t

1

δt
(ai · ∇un+1,i

h − ν∆un+1,i
h +∇pn+1,i

h ,vh)

− τm,t
1

δt
(un+1,i

h ,−ai · ∇vh − ν∆vh −∇qh)− τm,t
1

δt2
(un+1,i

h ,vh)

= 〈f ,vh〉+
1

δt
(unh,vh)− τm,t(f ,−ai · ∇vh − ν∆vh −∇qh)− τm,t

1

δt
(f ,vh)

− τm,t
1

δt
(unh,−ai · ∇vh − ν∆vh −∇qh)− τm,t

1

δt2
(unh,vh)

+ τm,t(Πτ (Ri−1
u ),−ai · ∇vh − ν∆vh −∇qh) + τc(Πτ (∇ · un+1,i−1),∇ · vh)

+ τm,t
1

δt
(Πτ (Ri−1

u ),vh)− τm,t
1

δt
(ũn,−ai · ∇vh − ν∆vh −∇qh) + τm,t

1

δtτm
(ũn,vh),

where

ũn+1,i = τm,t
1

δt
ũn + τm,t

[
f − (ai · ∇un+1,i

h − ν∆un+1,i
h +∇pn+1,i

h )
]
− τm,tΠτ (Ri−1

u ).

(B.13)
With Ri

u = f − (ai · ∇un+1,i
h − ν∆un+1,i

h +∇pn+1,i
h ).

As the ASGS method, the implementation of the dynamic subscales has been done
only for a linear approximation. Moreover, some of the terms that appear in (B.13) can
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be neglected, see Chapter 4. So the resulting expressions are the following.

1

δt
(un+1,i

h ,vh) + (ai · ∇un+1,i
h ,vh) + ν(∇un+1,i

h ,∇vh)− (pn+1,i
h ,∇ · vh) (B.14)

+ (qh,∇ · un+1,i
h )− τm,t(ai · ∇un+1,i

h +∇pn+1,i
h ,−ai · ∇vh −∇qh)

− τm,t
1

δt
(un+1,i

h ,−ai · ∇vh −∇qh) + τc(∇ · un+1,i
h ,∇ · vh)

= 〈f ,vh〉+
1

δt
(unh,vh)− τm,t(f ,−ai · ∇vh −∇qh)

+ τm,t(Πτ (Ri−1
u ),−ai · ∇vh −∇qh)

− τm,t
1

δt
(ũn,−ai · ∇vh −∇qh) + τc(Πτ (∇ · un+1,i−1),∇ · vh),

with

ũn+1,i = τm,t
1

δt
ũn + τm,t

[
f − (ai · ∇un+1,i

h +∇pn+1,i
h )

]
− τm,tΠτ (Ri−1

u ). (B.15)

Terms to be implemented

In the following table (Table B.1) we list the terms needed to be implemented for each
version of the VMS methods used in Chapter 4.

Note that the quasi-static and the dynamic versions of the OSS method, have to
compute almost the same terms. The difference between these two versions is the need
to compute explicitly ũn+1,i even for the linear definition of the subscales, and the def-
inition of the parameter τm,t, which for the quasi-static version is τm,t = τm.

Algorithm

In this section, the generic algorithm followed to implement the VMS methods used
in Chapter 4 is described. The nonlinear description of the subscales is considered in
Algorithm 3.

In order to compute the velocity subscale ũn+1,i, we must have an explicit imple-
mentation of the residual projection. For the global nonlinear iterations, the residual
projection is treated implicitly. In Algorithm 4, the steps followed to compute the ve-
locity subscale are described.
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TABLE B.1: List of VMS terms

Term

Subgrid method

ASGS OSS

QS DYN QS DYN

1
δt(u

n+1,i
h ,vh) X X X X

(ai · ∇un+1,i
h ,vh) X X X X

ν(∇un+1,i
h ,∇vh) X X X X

(pn+1,i
h ,∇ · vh) X X X X

(qh,∇ · un+1,i
h ) X X X X

τm,t(a
i · ∇un+1,i

h ,ai · ∇vh) X X X X

τm,t(a
i · ∇un+1,i

h ,∇qh) X X X X

τm,t(∇pn+1,i
h ,ai · ∇vh) X X X X

τm,t(∇pn+1,i
h ,∇qh) X X X X

τc(∇ · un+1,i
h ,∇ · vh) X X X X

τm,t
1
δt(a

i · ∇un+1,i
h ,vh) 7 X 7 7

τm,t
1
δt(∇p

n+1,i
h ,vh) 7 X 7 7

τm,t
1
δt(u

n+1,i
h ,−ai · ∇vh) X X X X

τm,t
1
δt(u

n+1,i
h ,−∇qh) X X X X

τm,t
1
δt2

(un+1,i
h ,vh) 7 X 7 7

〈f ,vh〉 X X X X

1
δt(u

n
h,vh) X X X X

τm,t(f ,−ai · ∇vh) X X X X

τm,t(f ,−∇qh) X X X X

τm,t
1
δt(f ,vh) 7 X 7 7

τm,t
1
δt(u

n
h,−ai · ∇vh) X X X X

τm,t
1
δt(u

n
h,−∇qh) X X X X

τm,t
1
δt2

(unh,vh) 7 X 7 7

τm,t(Πτ (Ri−1
u ),−ai · ∇vh) 7 7 X X

τm,t(Πτ (Ri−1
u ),−∇qh) 7 7 X X

τc(Πτ (∇ · un+1,i−1),∇ · vh) 7 7 X X

τm,t
1
δt(ũ

n,−ai · ∇vh) 7 X 7 7

τm,t
1
δt(ũ

n,−∇qh) 7 X 7 7

τm,t
1

δtτm
(ũn,vh) 7 X 7 7

ũn+1,i 7 X 7 X
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Algorithm 3: VMS method algorithm

Read (or compute) u0
h and set p0

h = 0, ũ0 = 0.
FOR n = 0, ..., N − 1 DO:

Set i = 0
Set un+1,0

h = unh, pn+1,0
h = pnh, ũn+1,0 = ũn

WHILE (not converged) DO:
i← i+ 1
Set ai = un+1,i−1

h + ũn+1,i−1

Compute τm, τm,t and τc
Compute un+1,i

h and pn+1,i
h by solving (B.7) or (B.14)

Update the subscales ũn+1,i from (B.8) or (B.15), see Algorithm 4
For OSS, compute the projections Πτ (Ri

u) and Πτ (∇ · un+1,i)
Check convergence

END
Set up the converged values un+1

h = un+1,i
h , pn+1

h = pn+1,i
h and ũn+1 = ũn+1,i

END

Algorithm 4: Velocity subscale computation algorithm
Compute the residual without the contribution of the subscale on the convective
term. That is:

Rn+1,i
u = f −

(
1
δt(u

n+1,i
h − unh) + un+1,i

h · ∇un+1,i
h +∇pn+1

h

)
If OSS, substract the projection. Here we have the projection Π(Rn+1,i−1

u )

Rn+1,i
u −Π(Rn+1,i−1

u )→ Rn+1,i
u

WHILE (not converged) DO:
Compute, and add to the residual, the contribution of the subscale on the

convective term:
Rn+1,i
u − (ũn+1,i,k−1 · ∇un+1,i

h )→ R̂n+1,i,k−1
u

Compute τm, τm,t and τc
Update the subscale:

ũn+1,i,k = τm,t

(
1
δt ũ

n + R̂n+1,i,k−1
u

)
Check convergence

END
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Butcher tableaus for the Segregated
Runge-Kutta schemes

Butcher tableaus

We define different settings of the Butcher tableaus, depending on the stages and the
order of accuracy of the time integration scheme. For the DIRK tableaus we use the
following notation:

c A

b
=

c1 a11 0 ... 0

c2 a21 a22 ... 0
...

...
...

. . .
...

cs as1 as2 ... ass

b1 b2 ... bs

with the convention ci =
∑s

j=1 aij .
In the explicit case the tables are similar, but with zeros on the diagonal. A r-stage

explicit scheme can be written as follows.

ĉ Â

b̂
=

0 0 0 0 ... 0

ĉ2 â21 0 0 ... 0

ĉ3 â31 â32 0 ... 0
...

...
...

...
. . .

...
ĉr âr1 âr2 âr3 ... 0

b̂1 b̂2 b̂3 ... b̂r

Note that in general the number of implicit stages (s) are not the same than the explicit
ones (r). In fact, usually we have one additional stage for the explicit Butcher Tableau
(r = s + 1). Then, in order to facilitate the IMEX schemes implementation, we pad
the implicit s-stage scheme with zeroes, obtaining a new tableau with the same size
than the explicit one. We can easily see that with this procedure we will always have
U1 = Un since the first rows for the explicit and the implicit tableaus are filled with
zeros. Given that, no computation is needed at the first stage, so we will say that the
IMEX scheme has s stages when the associated Butcher tableaus are of the size (s+ 1).
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We select from the literature some Butcher table settings for IMEX RK schemes that
have been already tested for convection-diffusion type problems, mostly from [6], but
also from [29]. It is important to keep in mind that the properties described below are
given for the ODE system in time that arises from the convection-diffusion equation
and may not be preserved for an index 2 DAE system like the semi-discrete incom-
pressible Navier-Stokes problem.

• 1 stage, 1st order (1-1): This is the so called Forward-Backward Euler and was pro-
posed by Ascher et al. in [6]. There are two different versions of this scheme, one
that satisfies b̂ = b and another that does not satisfy this condition. We use the
first version, just to be consistent with the following schemes, although it requires
an extra evaluation per step of the explicit counterpart. Note that this scheme has
stability problems when the implicit operator is zero. Furthermore, the choice
b̂ = b preserves the incompressibility constraint under the conditions stated in
Proposition 6.3.2.

Implicit: Explicit:
0 0 0

1 0 1

0 1

0 0 0

1 1 0

0 1

• 1 stage, 2nd order (1-2): This scheme was also proposed in [6], where they called
it as Implicit-explicit midpoint. It is second-order accurate and as stated in [6]
performs comparably to the popular Crank-Nicolson Adams-Bashforth method,
with the addition that it has better symmetry properties. It is important to remark
that it does not have any attenuation at the stiffness limit.

Implicit: Explicit:
0 0 0
1
2 0 1

2

0 1

0 0 0
1
2

1
2 0

0 1

• 2 stages, 2nd order, case 1 (2-2/1): Another second-order IMEX RK scheme was
proposed in [6], but in this case it has two stages. This scheme turns out to be L-
stable and it is based on a stiffly accurate two-stage, second-order DIRK scheme.

Implicit: Explicit:
0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

0 1− γ γ

with γ = (2−
√

2)/2 and δ = −2
√

2/3.
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• 2 stages, 2nd order, case 2 (2-2/2): An alternative definition of the previous scheme
is also proposed in [6], where the explicit table is defined satisfying the condition
b̂j = âsj for all j = 1, ..., s instead of satisfying that b̂ = b. The resulting scheme
is also L-stable and second-order accurate in time. Note that this scheme will not
satisfy the incompressibility constrain under the assumptions exposed in Propo-
sition 6.3.2.

Implicit: Explicit:
0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

with γ = (2−
√

2)/2 and δ = 1− 1/(2γ).

• 2 stages, 3rd order (2-3): A two-stage combination, third-order accurate in time
IMEX scheme is defined in [6]. In this case, the implicit table is based on a two-
stage, third-order DIRK scheme.

Implicit: Explicit:
0 0 0 0

γ 0 γ 0

1− γ 0 1− 2γ γ

0 1
2

1
2

0 0 0 0

γ γ 0 0

1− γ γ − 1 2(1− γ) 0

0 1
2

1
2

with γ = (3 +
√

3)/6.

• 3 stages, 3rd order (3-3): A stiffly accurate third-order, three-stage DIRK scheme
combined with a four-stage third-order explicit RK scheme is proposed in [6].
The resulting scheme is third-order accurate in time and L-stable.

Implicit:
0 0 0 0 0

0.4358665215 0 0.4358665215 0 0

0.7179332608 0 0.2820667392 0.4358665215 0

1 0 1.208496649 −0.644363171 0.4358665215

0 1.208496649 −0.644363171 0.4358665215

Explicit:
0 0 0 0 0

0.4358665215 0.4358665215 0 0 0

0.7179332608 0.3212788860 0.3966543747 0 0

1 −0.105858296 0.5529291479 0.5529291479 0

0 1.208496649 −0.644363171 0.4358665215
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• 4 stages, 3rd order (4-3): Finally, it is proposed in [6] a four-stage third-order
accurate in time IMEX scheme.

Implicit: Explicit:
0 0 0 0 0 0

1/2 0 1/2 0 0 0

2/3 0 1/6 1/2 0 0

1/2 0 −1/2 1/2 1/2 0

1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

0 0 0 0 0 0

1/2 1/2 0 0 0 0

2/3 11/18 1/18 0 0 0

1/2 5/6 −5/6 1/2 0 0

1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

• 5 stages, 3rd order (5-3): Boscarino developed in [29] a third-order five-stage
IMEX RK scheme that does not suffer from order reduction phenomena when
stiff problems containing a non-stiff term and a stiff term are solved. Note that
in this case we say that the method has five stages because the first column of
the implicit table is not zero, although the first row is still full of zeros so the first
stage will give U1 = Un.

Implicit: Explicit:
0 0 0 0 0 0

c2 γ γ 0 0 0

c3 a31 a32 γ 0 0

c4 a41 a42 a43 γ 0

1 b1 b2 b3 b4 γ

b1 b2 b3 b4 γ

0 0 0 0 0 0

c2 γ 0 0 0 0

c3 â31 â32 0 0 0

c4 â41 â42 â43 0 0

1 â51 â52 â53 â54 0

b1 b2 b3 b4 γ

The parameter values can be found in the appendix of [29].
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